Science.gov

Sample records for fast microtubule dynamics

  1. Microtubule dynamics and organization

    NASA Astrophysics Data System (ADS)

    Dogterom, Marileen

    2000-03-01

    Microtubules are rigid biopolymers found in all higher order cells. They are a mayor part of the cytoskeleton, the network of protein polymers that gives the cell its shape and rigidity and allows for various forms of (intra)cellular motility. The intracellular spatial organization of the microtubule network is constantly changing as the microtubules adapt to their different functions. In part, this spatial organization depends on the assembly dynamics (including microtubule nucleation) and forces generated by the microtubules themselves. To understand these mechanisms, we study the physical aspects connected with the assembly, force generation and spatial organization of microtubules in simplified model systems, in the absence of other cellular components. We measure the forces generated by individual microtubules by making them grow against a microfabricated barrier. These experiments show that a single microtubule can generate at least several picoNewton of force, comparable to what is known for motor proteins. Theoretical modeling of force-generation by multi-protofilament polymers is used to predict force-velocity relations that can be compared to experimental data. We study the self-organization of microtubules by confining them to microfabricated chambers that mimic the geometry of living cells. The distribution of microtubule nucleation sites in these chambers is controlled to study its effect on the organization of the microtubule network. We find that so-called microtubule asters position themselves in response to forces generated by dynamic microtubules. Experiments aimed at measuring the forces acting on these asters using optical trapping techniques will be described.

  2. Microtubule dynamics in fish melanophores

    PubMed Central

    1994-01-01

    We have studied the dynamics of microtubules in black tetra (Gymnocorymbus ternetzi) melanophores to test the possible correlation of microtubule stability and intracellular particle transport. X- rhodamine-or caged fluorescein-conjugated tubulin were microinjected and visualized by fluorescence digital imaging using a cooled charge coupled device and videomicroscopy. Microtubule dynamics were evaluated by determining the time course of tubulin incorporation after pulse injection, by time lapse observation, and by quantitation of fluorescence redistribution after photobleaching and photoactivation. The time course experiments showed that the kinetics of incorporation of labeled tubulin into microtubules were similar for cells with aggregated or dispersed pigment with most microtubules becoming fully labeled within 15-20 min after injection. Quantitation by fluorescence redistribution after photobleaching and photoactivation confirmed that microtubule turnover was rapid in both states, t1/2 = 3.5 +/- 1.5 and 6.1 +/- 3.0 min for cells with aggregated and dispersed pigment, respectively. In addition, immunostaining with antibodies specific to posttranslationally modified alpha-tubulin, which is usually enriched in stable microtubules, showed that microtubules composed exclusively of detyrosinated tubulin were absent and microtubules containing acetylated tubulin were sparse. We conclude that the microtubules of melanophores are very dynamic, that their dynamic properties do not depend critically on the state of pigment distribution, and that their stabilization is not a prerequisite for intracellular transport. PMID:8089178

  3. MCF7 microtubules: Cancer microtubules with relatively slow and stable dynamic in vitro.

    PubMed

    Feizabadi, Mitra Shojania; Rosario, Brandon

    2017-03-04

    There is known to be significant diversity of β-tubulin isoforms in cells. However, whether the functions of microtubules that are polymerized from different distributions of beta isotypes become distinct from one another are still being explored. Of particular interest, recent studies have identified the role that different beta tubulin isotypes carry in regulating the functions of some of the molecular motors along MCF7, or breast cancer, microtubules. That being said, how the specific distribution of beta tubulin isotypes impacts the MCF7 microtubules' dynamic is not well understood. The current study was initiated to directly quantify the in vitro dynamic and polymerization parameters of single MCF7 microtubules and then compare them with those obtained from neuronal microtubules polymerized from porcine brain tubulin. Surprisingly, unlike porcine brain microtubules, this type of cancer microtubule showed a relatively stable and slow dynamic. The comparison between the subsequently fast and unstable dynamic of porcine brain microtubules with the significantly slow and relatively stable dynamic of MCF7 microtubules suggests that beta tubulin isotypes may not only influence the microtubule based functionalities of some molecular motors, but also may change the microtubule's intrinsic dynamic.

  4. Microtubule dynamics in plant cells.

    PubMed

    Buschmann, Henrik; Sambade, Adrian; Pesquet, Edouard; Calder, Grant; Lloyd, Clive W

    2010-01-01

    This chapter describes some of the choices and unavoidable compromises to be made when studying microtubule dynamics in plant cells. The choice of species still depends very much on the ability to produce transgenic plants and most work has been done in the relatively small cells of Arabidopsis plants or in tobacco BY-2 suspension cells. Fluorescence-tagged microtubule proteins have been used to label entire microtubules, or their plus ends, but there are still few minus-end markers for these acentrosomal cells. Pragmatic decisions have to be made about probes, balancing the efficacy of microtubule labeling against a tendency to overstabilize and bundle the microtubules and even induce helical plant growth. A key limitation in visualizing plant microtubules is the ability to keep plants alive for long periods under the microscope and we describe a biochamber that allows for plant cell growth and development while allowing gas exchange and reducing evaporation. Another major difficulty is the limited fluorescence lifetime and we describe imaging strategies to reduce photobleaching in long-term imaging. We also discuss methods of measuring microtubule dynamics, with emphasis on the behavior of plant-specific microtubule arrays. 2010 Elsevier Inc. All rights reserved.

  5. Microtubule catastrophe from protofilament dynamics.

    PubMed

    Jemseena, V; Gopalakrishnan, Manoj

    2013-09-01

    The disappearance of the guanosine triphosphate- (GTP) tubulin cap is widely believed to be the forerunner event for the growth-shrinkage transition ("catastrophe") in microtubule filaments in eukaryotic cells. We study a discrete version of a stochastic model of the GTP cap dynamics, originally proposed by Flyvbjerg, Holy, and Leibler [Phys. Rev. Lett. 73, 2372 (1994)]. Our model includes both spontaneous and vectorial hydrolysis, as well as dissociation of a nonhydrolyzed dimer from the filament after incorporation. In the first part of the paper, we apply this model to a single protofilament of a microtubule. A catastrophe transition is defined for each protofilament, similarly to the earlier one-dimensional models, the frequency of occurrence of which is then calculated under various conditions but without explicit assumption of steady-state conditions. Using a perturbative approach, we show that the leading asymptotic behavior of the protofilament catastrophe in the limit of large growth velocities is remarkably similar across different models. In the second part of the paper, we extend our analysis to the entire filament by making a conjecture that a minimum number of such transitions are required to occur for the onset of microtubule catastrophe. The frequency of microtubule catastrophe is then determined using numerical simulations and compared with analytical and semianalytical estimates made under steady-state and quasi-steady-state assumptions, respectively, for the protofilament dynamics. A few relevant experimental results are analyzed in detail and compared with predictions from the model. Our results indicate that loss of GTP cap in two to three protofilaments is necessary to trigger catastrophe in a microtubule.

  6. Stochastic Model of Microtubule Dynamics

    NASA Astrophysics Data System (ADS)

    Hryniv, Ostap; Martínez Esteban, Antonio

    2017-10-01

    We introduce a continuous time stochastic process on strings made of two types of particle, whose dynamics mimics that of microtubules in a living cell. The long term behaviour of the system is described in terms of the velocity v of the string end. We show that v is an analytic function of its parameters and study its monotonicity properties. We give a complete characterisation of the phase diagram of the model and derive several criteria of the growth (v>0) and the shrinking (v<0) regimes of the dynamics.

  7. Video microscopy analysis of the polymerization dynamics of individual microtubules

    NASA Astrophysics Data System (ADS)

    Salmon, E. D.

    1991-05-01

    We have developed methods using video-enhanced differential interference contrast light microscopy (VE-DIC) to measure the association and dissociation rate constants and transition frequencies of microtubule dynamic instability for microtubules assembled from pure tubulin, plus brain microtubule assoicated proteins (MAPs), and for microtubule assembly in living cells and cytosol extracts. Following nucleation, a microtubule end is seen to elongate at constant velocity until it abruptly begins rapid shortening, a transition termed catastrophe. The microtubule either disappears, or converts back to the elongation phase, a transition termed rescue. Catastrophes and rescues occur stochastically and infrequently in comparison to the durations of the elongation and shortening phases. In purified tubulin preparations from both mammalian brain and sea urchin embryos, the elongation and shortening phases exhibit distinctly different association and dissociation rate constants; in particular, the rate of dissocation during rapid shortening can be 100 times or more greater than during elongation particularly at high Mg2+. Brain MAPs (MAP2 and Tau) promote faster elongation, but suppress dynamic instability mainly by decreasing the frequency of catastrophe and increasing the frequency of rescue. In contrast, there are unknown factors in living dividing cells and in extracts from dividing cells which enhance dynamic instability by producing high frequencies of catastrophe (.01-.05 sec-1) at fast elongation velocities (10 μm min-1). Using a microscope perfusion chamber, we have shown for microtubules assembled from pure tubulin that dilution induces rapid shortening within several seconds independent of the elongation velocity or microtubule length. Thus, the stabilizing cap at elongating microtubule ends is small and sensitive to transient changes in the rate of tubulin association, even at high elongation velocities. This means that substantial changes in microtubule

  8. Tubulin bistability and polymorphic dynamics of microtubules.

    PubMed

    Mohrbach, Hervé; Johner, Albert; Kulić, Igor M

    2010-12-31

    Based on the hypothesis that the GDP-tubulin dimer is a conformationally bistable molecule-rapidly fluctuating between a discrete curved and a straight state-we develop a model for polymorphic dynamics of the microtubule lattice. We show that GDP-tubulin bistability consistently explains unusual dynamic fluctuations, the apparent length-stiffness relation of grafted taxol-stabilized microtubules, and the curved-helical appearance of microtubules in general. When clamped by one end the microtubules undergo an unusual zero energy motion-in its effect reminiscent of a limited rotational hinge. We conclude that microtubules exist in highly cooperative energy-degenerate helical states and discuss possible implications in vivo.

  9. Tubulin Bistability and Polymorphic Dynamics of Microtubules

    NASA Astrophysics Data System (ADS)

    Mohrbach, Hervé; Johner, Albert; Kulić, Igor M.

    2010-12-01

    Based on the hypothesis that the GDP-tubulin dimer is a conformationally bistable molecule—rapidly fluctuating between a discrete curved and a straight state—we develop a model for polymorphic dynamics of the microtubule lattice. We show that GDP-tubulin bistability consistently explains unusual dynamic fluctuations, the apparent length-stiffness relation of grafted taxol-stabilized microtubules, and the curved-helical appearance of microtubules in general. When clamped by one end the microtubules undergo an unusual zero energy motion—in its effect reminiscent of a limited rotational hinge. We conclude that microtubules exist in highly cooperative energy-degenerate helical states and discuss possible implications in vivo.

  10. Profilin connects actin assembly with microtubule dynamics

    PubMed Central

    Nejedla, Michaela; Sadi, Sara; Sulimenko, Vadym; de Almeida, Francisca Nunes; Blom, Hans; Draber, Pavel; Aspenström, Pontus; Karlsson, Roger

    2016-01-01

    Profilin controls actin nucleation and assembly processes in eukaryotic cells. Actin nucleation and elongation promoting factors (NEPFs) such as Ena/VASP, formins, and WASP-family proteins recruit profilin:actin for filament formation. Some of these are found to be microtubule associated, making actin polymerization from microtubule-associated platforms possible. Microtubules are implicated in focal adhesion turnover, cell polarity establishment, and migration, illustrating the coupling between actin and microtubule systems. Here we demonstrate that profilin is functionally linked to microtubules with formins and point to formins as major mediators of this association. To reach this conclusion, we combined different fluorescence microscopy techniques, including superresolution microscopy, with siRNA modulation of profilin expression and drug treatments to interfere with actin dynamics. Our studies show that profilin dynamically associates with microtubules and this fraction of profilin contributes to balance actin assembly during homeostatic cell growth and affects micro­tubule dynamics. Hence profilin functions as a regulator of microtubule (+)-end turnover in addition to being an actin control element. PMID:27307590

  11. Harnessing microtubule dynamic instability for nanostructure assembly

    NASA Astrophysics Data System (ADS)

    Bouchard, Ann M.; Warrender, Christina E.; Osbourn, Gordon C.

    2006-10-01

    Intracellular molecular machines synthesize molecules, tear apart others, transport materials, transform energy into different forms, and carry out a host of other coordinated processes. Many molecular processes have been shown to work outside of cells, and the idea of harnessing these molecular machines to build nanostructures is attractive. Two examples are microtubules and motor proteins, which aid cell movement, help determine cell shape and internal structure, and transport vesicles and organelles within the cell. These molecular machines work in a stochastic, noisy fashion: microtubules switch randomly between growing and shrinking in a process known as dynamic instability; motor protein movement along microtubules is randomly interrupted by the motor proteins falling off. A common strategy in attempting to gain control over these highly dynamic, stochastic processes is to eliminate some processes (e.g., work with stabilized microtubules) in order to focus on others (interaction of microtubules with motor proteins). In this paper, we illustrate a different strategy for building nanostructures, which, rather than attempting to control or eliminate some dynamic processes, uses them to advantage in building nanostructures. Specifically, using stochastic agent-based simulations, we show how the natural dynamic instability of microtubules can be harnessed in building nanostructures, and discuss strategies for ensuring that “unreliable” stochastic processes yield a robust outcome.

  12. Harnessing microtubule dynamic instability for nanostructure assembly.

    SciTech Connect

    Bouchard, Ann Marie; Osbourn, Gordon Cecil

    2004-06-01

    Intracellular molecular machines synthesize molecules, tear apart others, transport materials, transform energy into different forms, and carry out a host of other coordinated processes. Many molecular processes have been shown to work outside of cells, and the idea of harnessing these molecular machines to build nanostructures is attractive. Two examples are microtubules and motor proteins, which aid cell movement, help determine cell shape and internal structure, and transport vesicles and organelles within the cell. These molecular machines work in a stochastic, noisy fashion: microtubules switch randomly between growing and shrinking in a process known as dynamic instability; motor protein movement along microtubules is randomly interrupted by the motor proteins falling off. A common strategy in attempting to gain control over these highly dynamic, stochastic processes is to eliminate some processes (e.g., work with stabilized microtubules) in order to focus on others (interaction of microtubules with motor proteins). In this paper, we illustrate a different strategy for building nanostructures, which, rather than attempting to control or eliminate some dynamic processes, uses them to advantage in building nanostructures. Specifically, using stochastic agent-based simulations, we show how the natural dynamic instability of microtubules can be harnessed in building nanostructures, and discuss strategies for ensuring that 'unreliable' stochastic processes yield a robust outcome.

  13. Single-molecule tracking of tau reveals fast kiss-and-hop interaction with microtubules in living neurons.

    PubMed

    Janning, Dennis; Igaev, Maxim; Sündermann, Frederik; Brühmann, Jörg; Beutel, Oliver; Heinisch, Jürgen J; Bakota, Lidia; Piehler, Jacob; Junge, Wolfgang; Brandt, Roland

    2014-11-05

    The microtubule-associated phosphoprotein tau regulates microtubule dynamics and is involved in neurodegenerative diseases collectively called tauopathies. It is generally believed that the vast majority of tau molecules decorate axonal microtubules, thereby stabilizing them. However, it is an open question how tau can regulate microtubule dynamics without impeding microtubule-dependent transport and how tau is also available for interactions other than those with microtubules. Here we address this apparent paradox by fast single-molecule tracking of tau in living neurons and Monte Carlo simulations of tau dynamics. We find that tau dwells on a single microtubule for an unexpectedly short time of ∼40 ms before it hops to the next. This dwell time is 100-fold shorter than previously reported by ensemble measurements. Furthermore, we observed by quantitative imaging using fluorescence decay after photoactivation recordings of photoactivatable GFP-tagged tubulin that, despite this rapid dynamics, tau is capable of regulating the tubulin-microtubule balance. This indicates that tau's dwell time on microtubules is sufficiently long to influence the lifetime of a tubulin subunit in a GTP cap. Our data imply a novel kiss-and-hop mechanism by which tau promotes neuronal microtubule assembly. The rapid kiss-and-hop interaction explains why tau, although binding to microtubules, does not interfere with axonal transport.

  14. Visualization of microtubule growth in living platelets reveals a dynamic marginal band with multiple microtubules

    PubMed Central

    Patel-Hett, Sunita; Richardson, Jennifer L.; Schulze, Harald; Drabek, Ksenija; Isaac, Natasha A.; Hoffmeister, Karin; Shivdasani, Ramesh A.; Bulinski, J. Chloë; Galjart, Niels; Hartwig, John H.

    2008-01-01

    The marginal band of microtubules maintains the discoid shape of resting blood platelets. Although studies of platelet microtubule coil structure conclude that it is composed of a single microtubule, no investigations of its dynamics exist. In contrast to previous studies, permeabilized platelets incubated with GTP-rhodamine-tubulin revealed tubulin incorporation at 7.9 (± 1.9) points throughout the coil, and anti-EB1 antibodies stained 8.7 (± 2.0) sites, indicative of multiple free microtubules. To pursue this result, we expressed the microtubule plus-end marker EB3-GFP in megakaryocytes and examined its behavior in living platelets released from these cells. Time-lapse microscopy of EB3-GFP in resting platelets revealed multiple assembly sites within the coil and a bidirectional pattern of assembly. Consistent with these findings, tyrosinated tubulin, a marker of newly assembled microtubules, localized to resting platelet microtubule coils. These results suggest that the resting platelet marginal band contains multiple highly dynamic microtubules of mixed polarity. Analysis of microtubule coil diameters in newly formed resting platelets indicates that microtubule coil shrinkage occurs with aging. In addition, activated EB3-GFP–expressing platelets exhibited a dramatic increase in polymerizing microtubules, which travel outward and into filopodia. Thus, the dynamic microtubules associated with the marginal band likely function during both resting and activated platelet states. PMID:18230754

  15. Dynamic response of axonal microtubules under suddenly applied end forces.

    PubMed

    Manuchehrfar, Farid; Shamloo, Amir; Mehboudi, Nastaran

    2014-01-01

    Axon is a filament in neuronal system and axonal microtubules are bundles in axons. In axons, microtubules are coated with microtubule-associated protein tau, a natively unfolded profuse filamentous protein in the central nervous system. These proteins are responsible for the cross-linked structure of the axonal microtubule bundles. Through complimentary dimerization with other tau proteins, bridges are formed to nearby microtubules to create bundles. The transverse reinforcement of microtubules by cross-linking to the cytoskeleton has been shown to enhance their ability to bear compressive loads. Though microtubules are conventionally regarded as bearing compressive loads, in certain circumstances such as in traumatic stretch injury, they are placed in tension. We employ Standard Linear Solid, a viscoelastic model, to computationally simulate microtubules. This study investigates the dynamic response of two dimensional axonal microtubules under suddenly applied end forces. We obtain the results for steady state behavior of axonal microtubule for different forces.

  16. Dynamic microtubules and the texture of plant cell walls.

    PubMed

    Lloyd, Clive

    2011-01-01

    The relationship between microtubules and cell-wall texture has had a fitful history in which progress in one area has not been matched by progress in the other. For example, the idea that wall texture arises entirely from self-assembly, independently of microtubules, originated with electron microscopic analyses of fixed cells that gave no clue to the ability of microtubules to reorganize. Since then, live-cell studies have established the surprising dynamicity of plant microtubules involving collisions, changes in angle, parallelization, and rotation of microtubule tracks. Combined with proof that cellulose synthases do track along shifting microtubules, this offers more realistic models for the dynamic influence of microtubules on wall texture than could have been imagined in the electron microscopic era-the era from which most ideas on wall texture originate. This review revisits the classical literature on wall organization from the vantage point of current knowledge of microtubule dynamics.

  17. Mmb1p binds mitochondria to dynamic microtubules

    PubMed Central

    Fu, Chuanhai; Jain, Deeptee; Costa, Judite; Velve-Casquillas, Guilhem; Tran, Phong T.

    2015-01-01

    Summary Background Mitochondria form a dynamics tubular network within the cell. Proper mitochondria movement and distribution are critical for their localized function in cell metabolism, growth, and survival. In mammalian cells, mechanisms of mitochondria positioning appear dependent on the microtubule cytoskeleton, with kinesin or dynein motors carrying mitochondria as cargos and distributing them throughout the microtubule network. Interestingly, the timescale of microtubule dynamics occurs in seconds, and the timescale of mitochondria distribution occurs in minutes. How does the cell couple these two time constants? Results Fission yeast also relies on microtubules for mitochondria distribution. We report here a new microtubule-dependent but motor-independent mechanism for proper mitochondria positioning in fission yeast. We identify the protein mmb1p, which binds to mitochondria and microtubules. Mmb1p attaches the tubular mitochondria to the microtubule lattice at multiple discrete interaction sites. Mmb1 deletion causes mitochondria to aggregate, with the long-term consequence of defective mitochondria distribution and cell death. Mmb1p decreases microtubule dynamicity. Conclusion Mmb1p is a new microtubule-mitochondria binding protein. We propose that mmb1p act to couple long-term mitochondria distribution to short-term microtubule dynamics by attenuating microtubule dynamics, thus enhancing the mitochondria-microtubule interaction time. PMID:21856157

  18. Dynamic Concentration of Motors in Microtubule Arrays

    NASA Astrophysics Data System (ADS)

    Nédélec, François; Surrey, Thomas; Maggs, A. C.

    2001-04-01

    We present experimental and theoretical studies of the dynamics of molecular motors in microtubule arrays and asters. By solving a convection-diffusion equation we find that the density profile of motors in a two-dimensional aster is characterized by continuously varying exponents. Simulations are used to verify the assumptions of the continuum model. We observe the concentration profiles of kinesin moving in quasi-two-dimensional artificial asters by fluorescent microscopy and compare with our theoretical results.

  19. Microtubule Dynamics Control Tail Retraction in Migrating Vascular Endothelial Cells†

    PubMed Central

    Ganguly, Anutosh; Yang, Hailing; Zhang, Hong; Cabral, Fernando; Patel, Kamala D.

    2014-01-01

    Drugs that target microtubules are potent inhibitors of angiogenesis but their mechanism of action is not well understood. To explore this, we treated human umbilical vein endothelial cells with paclitaxel, vinblastine, and colchicine and measured the effects on microtubule dynamics and cell motility. In general, lower drug concentrations suppressed microtubule dynamics and inhibited cell migration whereas higher concentrations were needed to inhibit cell division; but, surprisingly, large drug-dependent differences were seen in the relative concentrations needed to inhibit these two processes. Suppression of microtubule dynamics did not significantly affect excursions of lamellipodia away from the nucleus or prevent cells from elongating; but, it did inhibit retraction of the trailing edges that are normally enriched in dynamic microtubules, thereby limiting cell locomotion. Complete removal of microtubules with a high vinblastine concentration caused a loss of polarity that resulted in roundish rather than elongated cells, rapid but non-directional membrane activity, and little cell movement. The results are consistent with a model in which more static microtubules stabilize the leading edge of migrating cells while more dynamic microtubules locate to the rear where they can remodel and allow tail retraction. Suppressing microtubule dynamics interferes with tail retraction, but removal of microtubules destroys the asymmetry needed for cell elongation and directional motility. The prediction that suppressing microtubule dynamics might be sufficient to prevent angiogenesis was supported by showing that low concentrations of paclitaxel could prevent the formation of capillary-like structures in an in vitro tube formation assay. PMID:24107446

  20. Mathematical modeling of microtubule dynamics: insights into physiology and disease.

    PubMed

    Buxton, Gavin A; Siedlak, Sandra L; Perry, George; Smith, Mark A

    2010-12-01

    Computer models of microtubule dynamics have provided the basis for many of the theories on the cellular mechanics of the microtubules, their polymerization kinetics, and the diffusion of tubulin and tau. In the three-dimensional model presented here, we include the effects of tau concentration and the hydrolysis of GTP-tubulin to GDP-tubulin and observe the emergence of microtubule dynamic instability. This integrated approach simulates the essential physics of microtubule dynamics in a cellular environment. The model captures the structure of the microtubules as they undergo steady state dynamic instabilities in this simplified geometry, and also yields the average number, length, and cap size of the microtubules. The model achieves realistic geometries and simulates cellular structures found in degenerating neurons in disease states such as Alzheimer disease. Further, this model can be used to simulate microtubule changes following the addition of antimitotic drugs which have recently attracted attention as chemotherapeutic agents.

  1. Analysis of microtubule polymerization dynamics in live cells

    PubMed Central

    Gierke, Sarah; Kumar, Praveen; Wittmann, Torsten

    2012-01-01

    Intracellular microtubule polymerization dynamics are spatiotemporally controlled by numerous microtubule-associated proteins and other mechanisms, and this regulation is central to many cell processes. Here, we give an overview and practical guide on how to acquire and analyze time-lapse sequences of dynamic microtubules in live cells by either fluorescently labeling entire microtubules or by utilizing proteins that specifically associate only with growing microtubule ends, and summarize the strengths and weaknesses of different approaches. We give practical recommendations for imaging conditions, and we also discuss important limitations of such analysis that are dictated by the maximal achievable spatial and temporal sampling frequencies. PMID:20719263

  2. Micropattern-Guided Assembly of Overlapping Pairs of Dynamic Microtubules

    PubMed Central

    Fourniol, Franck J.; Li, Tai-De; Bieling, Peter; Mullins, R. Dyche; Fletcher, Daniel A.; Surrey, Thomas

    2014-01-01

    Interactions between antiparallel microtubules are essential for the organization of spindles in dividing cells. The ability to form immobilized antiparallel microtubule pairs in vitro, combined with the ability to image them via TIRF microscopy, permits detailed biochemical characterization of microtubule cross-linking proteins and their effects on microtubule dynamics. Here, we describe methods for chemical micropatterning of microtubule seeds on glass surfaces in configurations that specifically promote the formation of antiparallel microtubule overlaps in vitro. We demonstrate that this assay is especially well suited for reconstitution of minimal midzone overlaps stabilized by the antiparallel microtubule cross-linking protein PRC1 and its binding partners. The micropatterning method is suitable for use with a broad range of proteins, and the assay is generally applicable to any microtubule cross-linking protein. PMID:24630116

  3. Neurodegeneration and microtubule dynamics: death by a thousand cuts

    PubMed Central

    Dubey, Jyoti; Ratnakaran, Neena; Koushika, Sandhya P.

    2015-01-01

    Microtubules form important cytoskeletal structures that play a role in establishing and maintaining neuronal polarity, regulating neuronal morphology, transporting cargo, and scaffolding signaling molecules to form signaling hubs. Within a neuronal cell, microtubules are found to have variable lengths and can be both stable and dynamic. Microtubule associated proteins, post-translational modifications of tubulin subunits, microtubule severing enzymes, and signaling molecules are all known to influence both stable and dynamic pools of microtubules. Microtubule dynamics, the process of interconversion between stable and dynamic pools, and the proportions of these two pools have the potential to influence a wide variety of cellular processes. Reduced microtubule stability has been observed in several neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic Lateral Sclerosis (ALS), and tauopathies like Progressive Supranuclear Palsy. Hyperstable microtubules, as seen in Hereditary Spastic Paraplegia (HSP), also lead to neurodegeneration. Therefore, the ratio of stable and dynamic microtubules is likely to be important for neuronal function and perturbation in microtubule dynamics might contribute to disease progression. PMID:26441521

  4. Vinblastine suppresses dynamics of individual microtubules in living interphase cells.

    PubMed Central

    Dhamodharan, R; Jordan, M A; Thrower, D; Wilson, L; Wadsworth, P

    1995-01-01

    We have characterized the effects of vinblastine on the dynamic instability behavior of individual microtubules in living BS-C-1 cells microinjected with rhodamine-labeled tubulin and have found that at low concentrations (3-64 nM), vinblastine potently suppresses dynamic instability without causing net microtubule depolymerization. Vinblastine suppressed the rates of microtubule growth and shortening, and decreased the frequency of transitions from growth or pause to shortening, also called catastrophe. In vinblastine-treated cells, both the average duration of a pause (a state of attenuated dynamics where neither growth nor shortening could be detected) and the percentage of total time spent in pause were significantly increased. Vinblastine potently decreased dynamicity, a measure of the overall dynamic activity of microtubules, reducing this parameter by 75% at 32 nM. The present work, consistent with earlier in vitro studies, demonstrates that vinblastine kinetically caps the ends of microtubules in living cells and supports the hypothesis that the potent chemotherapeutic action of vinblastine as an antitumor drug is suppression of mitotic spindle microtubule dynamics. Further, the results indicate that molecules that bind to microtubule ends can regulate microtubule dynamic behavior in living cells and suggest that endogenous regulators of microtubule dynamics that work by similar mechanisms may exist in living cells. Images PMID:8534917

  5. Microtubules: dynamically unstable stochastic phase-switching polymers

    NASA Astrophysics Data System (ADS)

    Zakharov, P. N.; Arzhanik, V. K.; Ulyanov, E. V.; Gudimchuk, N. B.; Ataullakhanov, F. I.

    2016-08-01

    One of the simplest molecular motors, a biological microtubule, is reviewed as an example of a highly nonequilibrium molecular machine capable of stochastic transitions between slow growth and rapid disassembly phases. Basic properties of microtubules are described, and various approaches to simulating their dynamics, from statistical chemical kinetics models to molecular dynamics models using the Metropolis Monte Carlo and Brownian dynamics methods, are outlined.

  6. Microtubules Modulate F-actin Dynamics during Neuronal Polarization.

    PubMed

    Zhao, Bing; Meka, Durga Praveen; Scharrenberg, Robin; König, Theresa; Schwanke, Birgit; Kobler, Oliver; Windhorst, Sabine; Kreutz, Michael R; Mikhaylova, Marina; Calderon de Anda, Froylan

    2017-08-29

    Neuronal polarization is reflected by different dynamics of microtubule and filamentous actin (F-actin). Axonal microtubules are more stable than those in the remaining neurites, while dynamics of F-actin in axonal growth cones clearly exceed those in their dendritic counterparts. However, whether a functional interplay exists between the microtubule network and F-actin dynamics in growing axons and whether this interplay is instrumental for breaking cellular symmetry is currently unknown. Here, we show that an increment on microtubule stability or number of microtubules is associated with increased F-actin dynamics. Moreover, we show that Drebrin E, an F-actin and microtubule plus-end binding protein, mediates this cross talk. Drebrin E segregates preferentially to growth cones with a higher F-actin treadmilling rate, where more microtubule plus-ends are found. Interruption of the interaction of Drebrin E with microtubules decreases F-actin dynamics and arrests neuronal polarization. Collectively the data show that microtubules modulate F-actin dynamics for initial axon extension during neuronal development.

  7. Drugs That Target Dynamic Microtubules: A New Molecular Perspective

    PubMed Central

    Stanton, Richard A.; Gernert, Kim M.; Nettles, James H.; Aneja, Ritu

    2011-01-01

    Microtubules have long been considered an ideal target for anticancer drugs because of the essential role they play in mitosis, forming the dynamic spindle apparatus. As such, there is a wide variety of compounds currently in clinical use and in development that act as antimitotic agents by altering microtubule dynamics. Although these diverse molecules are known to affect microtubule dynamics upon binding to one of the three established drug domains (taxane, vinca alkaloid, or colchicine site), the exact mechanism by which each drug works is still an area of intense speculation and research. In this study, we review the effects of microtubule-binding chemotherapeutic agents from a new perspective, considering how their mode of binding induces conformational changes and alters biological function relative to the molecular vectors of microtubule assembly or disassembly. These “biological vectors” can thus be used as a spatiotemporal context to describe molecular mechanisms by which microtubule-targeting drugs work. PMID:21381049

  8. Theoretical Description of Microtubule Dynamics in Fission Yeast During Interphase

    NASA Astrophysics Data System (ADS)

    Oei, Yung-Chin; Jiménez-Dalmaroni, Andrea; Vilfan, Andrej; Duke, Thomas

    2009-03-01

    Fission yeast (S. pombe) is a unicellular organism with a characteristic cylindrical shape. Cell growth during interphase is strongly influenced by microtubule self-organization - a process that has been experimentally well characterised. The microtubules are organized in 3 to 4 bundles, called ``interphase microtubule assemblies'' (IMAs). Each IMA is composed of several microtubules, arranged with their dynamic ``plus'' ends facing the cell tips and their ``minus'' ends overlapping at the cell middle. Although the main protein factors involved in interphase microtubule organization have been identified, an understanding of how their collective interaction with microtubules leads to the organization and structures observed in vivo is lacking. We present a physical model of microtubule dynamics that aims to provide a quantitative description of the self-organization process. First, we solve equations for the microtubule length distribution in steady-state, taking into account the way that a limited tubulin pool affects the nucleation, growth and shrinkage of microtubules. Then we incorporate passive and active crosslinkers (the bundling factor Ase1 and molecular motor Klp2) and investigate the formation of IMA structures. Analytical results are complemented by a 3D stochastic simulation.

  9. Dynamic shape changes of cytoplasmic organelles translocating along microtubules

    PubMed Central

    1987-01-01

    Transient shape changes of organelles translocating along microtubules are directly visualized in thinly spread cytoplasmic processes of the marine foraminifer. Allogromia laticollaris, by a combination of high- resolution video-enhanced microscopy and fast-freezing electron microscopy. The interacting side of the organelle flattens upon binding to a microtubule, as if to maximize contact with it. Organelles typically assume a teardrop shape while moving, as if they were dragged through a viscous medium. Associated microtubules bend around attachments of the teardrop-shaped organelles, suggesting that they too are acted on by the forces deforming the organelles. An 18-nm gap between the organelles and the microtubules is periodically bridged by 10-nm-thick cross-bridge structures that may be responsible for the binding and motive forces deforming organelles and microtubules. PMID:3654751

  10. Dynamic shape changes of cytoplasmic organelles translocating along microtubules.

    PubMed

    Kachar, B; Bridgman, P C; Reese, T S

    1987-09-01

    Transient shape changes of organelles translocating along microtubules are directly visualized in thinly spread cytoplasmic processes of the marine foraminifer. Allogromia laticollaris, by a combination of high-resolution video-enhanced microscopy and fast-freezing electron microscopy. The interacting side of the organelle flattens upon binding to a microtubule, as if to maximize contact with it. Organelles typically assume a teardrop shape while moving, as if they were dragged through a viscous medium. Associated microtubules bend around attachments of the teardrop-shaped organelles, suggesting that they too are acted on by the forces deforming the organelles. An 18-nm gap between the organelles and the microtubules is periodically bridged by 10-nm-thick cross-bridge structures that may be responsible for the binding and motive forces deforming organelles and microtubules.

  11. Leading at the Front: How EB Proteins Regulate Microtubule Dynamics

    NASA Astrophysics Data System (ADS)

    Hawkins, Taviare

    2012-02-01

    Microtubules are the most rigid of the cytoskeletal filaments, they provide the cell's scaffolding, form the byways on which motor proteins transport intracellular cargo and reorganize to form the mitotic spindle when the cell needs to divide. These biopolymers are composed of alpha and beta tubulin monomers that create hollow cylindrical nanotubes with an outer diameter of 25 nm and an inner diameter of 17 nm. At steady state concentrations, microtubules undergo a process known as dynamic instability. During dynamic instability the length of individual microtubules is changing as the filament alternates between periods of growth to shrinkage (catastrophe) and shrinkage to growth (rescue). This process can be enhanced or diminished with the addition of microtubule associated proteins (MAPs). MAPs are microtubule binding proteins that stabilize, destabilize, or nucleate microtubules. We will discuss the effects of the stabilizing end-binding proteins (EB1, EB2 and EB3), on microtubule dynamics observed in vitro. The EBs are a unique family of MAPs known to tip track and enhance microtubule growth by stabilizing the ends. This is a different mechanism than those employed by structural MAPs such as tau or MAP4.

  12. Dynamical Length-Regulation of Microtubules

    NASA Astrophysics Data System (ADS)

    Melbinger, Anna; Reese, Louis; Frey, Erwin

    2012-02-01

    Microtubules (MTs) are vital constituents of the cytoskeleton. These stiff filaments are not only needed for mechanical support. They also fulfill highly dynamic tasks. For instance MTs build the mitotic spindle, which pulls the doubled set of chromosomes apart during mitosis. Hence, a well-regulated and adjustable MT length is essential for cell division. Extending a recently introduced model [1], we here study length-regulation of MTs. Thereby we account for both spontaneous polymerization and depolymerization triggered by motor proteins. In contrast to the polymerization rate, the effective depolymerization rate depends on the presence of molecular motors at the tip and thereby on crowding effects which in turn depend on the MT length. We show that these antagonistic effects result in a well-defined MT length. Stochastic simulations and analytic calculations reveal the exact regimes where regulation is feasible. Furthermore, the adjusted MT length and the ensuing strength of fluctuations are analyzed. Taken together, we make quantitative predictions which can be tested experimentally. These results should help to obtain deeper insights in the microscopic mechanisms underlying length-regulation. [4pt] [1] L.Reese, A.Melbinger, E.Frey, Biophys. J., 101, 9, 2190 (2011)

  13. Ubiquitin editing enzyme UCH L1 and microtubule dynamics

    PubMed Central

    Bheda, Anjali; Gullapalli, Anuradha; Caplow, Michael; Pagano, Joseph S.; Shackelford, Julia

    2015-01-01

    Microtubules are essential components of the cytoskeleton and are involved in many aspects of cell responses including cell division, migration, and intracellular signal transduction. Among other factors, post-translational modifications play a significant role in the regulation of microtubule dynamics. Here, we demonstrate that the ubiquitin-editing enzyme UCH L1, abundant expression of which is normally restricted to brain tissue, is also a part of the microtubule network in a variety of transformed cells. Moreover, during mitosis, endogenous UCH L1 is expressed and tightly associated with the mitotic spindle through all stages of M phase, suggesting that UCH L1 is involved in regulation of microtubule dynamics. Indeed, addition of recombinant UCH L1 to the reaction of tubulin polymerization in vitro had an inhibitory effect on microtubule formation. Unexpectedly, western blot analysis of tubulin fractions after polymerization revealed the presence of a specific ∼50 kDa band of UCH L1 (not the normal ∼25 kDa) in association with microtubules, but not with free tubulin. In addition, we show that along with 25 kDa UCH L1, endogenous high molecular weight UCH L1 complexes exist in cells, and that levels of 50 kDa UCH L1 complexes are increasing in cells during mitosis. Finally, we provide evidence that ubiquitination is involved in tubulin polymerization: the presence of ubiquitin during polymerization in vitro by itself inhibited microtubule formation and enhanced the inhibitory effect of added UCH L1. the inhibitory effects of UCH L1 correlate with an increase in ubiquitination of microtubule components. Since besides being a deubiquitinating enzyme, UCH L1 as a dimer has also been shown to exhibit ubiquitin ligase activity, we discuss the possibility that the ∼50 kDa UCH L1 observed is a dimer which prevents microtubule formation through ubiquitination of tubulins and/or microtubule-associated proteins. PMID:20160478

  14. Nonlinear dynamics of C-terminal tails in cellular microtubules

    NASA Astrophysics Data System (ADS)

    Sekulic, Dalibor L.; Sataric, Bogdan M.; Zdravkovic, Slobodan; Bugay, Aleksandr N.; Sataric, Miljko V.

    2016-07-01

    The mechanical and electrical properties, and information processing capabilities of microtubules are the permanent subject of interest for carrying out experiments in vitro and in silico, as well as for theoretical attempts to elucidate the underlying processes. In this paper, we developed a new model of the mechano-electrical waves elicited in the rows of very flexible C-terminal tails which decorate the outer surface of each microtubule. The fact that C-terminal tails play very diverse roles in many cellular functions, such as recruitment of motor proteins and microtubule-associated proteins, motivated us to consider their collective dynamics as the source of localized waves aimed for communication between microtubule and associated proteins. Our approach is based on the ferroelectric liquid crystal model and it leads to the effective asymmetric double-well potential which brings about the conditions for the appearance of kink-waves conducted by intrinsic electric fields embedded in microtubules. These kinks can serve as the signals for control and regulation of intracellular traffic along microtubules performed by processive motions of motor proteins, primarly from kinesin and dynein families. On the other hand, they can be precursors for initiation of dynamical instability of microtubules by recruiting the proper proteins responsible for the depolymerization process.

  15. Astral Microtubule Dynamics in Yeast: A Microtubule-based Searching Mechanism for Spindle Orientation and Nuclear Migration into the Bud

    PubMed Central

    Shaw, Sidney L.; Yeh, Elaine; Maddox, Paul; Salmon, E.D.; Bloom, Kerry

    1997-01-01

    Localization of dynein–green fluorescent protein (GFP) to cytoplasmic microtubules allowed us to obtain one of the first views of the dynamic properties of astral microtubules in live budding yeast. Several novel aspects of microtubule function were revealed by time-lapse, three-dimensional fluorescence microscopy. Astral microtubules, about four to six in number for each pole, exhibited asynchronous dynamic instability throughout the cell cycle, growing at ≅0.3–1.5 μm/min toward the cell surface then switching to shortening at similar velocities back to the spindle pole body (SPB). During interphase, a conical array of microtubules trailed the SPB as the nucleus traversed the cytoplasm. Microtubule disassembly by nocodozole inhibited these movements, indicating that the nucleus was pushed around the interior of the cell via dynamic astral microtubules. These forays were evident in unbudded G1 cells, as well as in late telophase cells after spindle disassembly. Nuclear movement and orientation to the bud neck in S/G2 or G2/M was dependent on dynamic astral microtubules growing into the bud. The SPB and nucleus were then pulled toward the bud neck, and further microtubule growth from that SPB was mainly oriented toward the bud. After SPB separation and central spindle formation, a temporal delay in the acquisition of cytoplasmic dynein at one of the spindle poles was evident. Stable microtubule interactions with the cell cortex were rarely observed during anaphase, and did not appear to contribute significantly to spindle alignment or elongation into the bud. Alterations of microtubule dynamics, as observed in cells overexpressing dynein-GFP, resulted in eventual spindle misalignment. These studies provide the first mechanistic basis for understanding how spindle orientation and nuclear positioning are established and are indicative of a microtubule-based searching mechanism that requires dynamic microtubules for nuclear migration into the bud. PMID:9362516

  16. A Mechanism for Cytoplasmic Streaming: Kinesin-Driven Alignment of Microtubules and Fast Fluid Flows.

    PubMed

    Monteith, Corey E; Brunner, Matthew E; Djagaeva, Inna; Bielecki, Anthony M; Deutsch, Joshua M; Saxton, William M

    2016-05-10

    The transport of cytoplasmic components can be profoundly affected by hydrodynamics. Cytoplasmic streaming in Drosophila oocytes offers a striking example. Forces on fluid from kinesin-1 are initially directed by a disordered meshwork of microtubules, generating minor slow cytoplasmic flows. Subsequently, to mix incoming nurse cell cytoplasm with ooplasm, a subcortical layer of microtubules forms parallel arrays that support long-range, fast flows. To analyze the streaming mechanism, we combined observations of microtubule and organelle motions with detailed mathematical modeling. In the fast state, microtubules tethered to the cortex form a thin subcortical layer and undergo correlated sinusoidal bending. Organelles moving in flows along the arrays show velocities that are slow near the cortex and fast on the inward side of the subcortical microtubule layer. Starting with fundamental physical principles suggested by qualitative hypotheses, and with published values for microtubule stiffness, kinesin velocity, and cytoplasmic viscosity, we developed a quantitative coupled hydrodynamic model for streaming. The fully detailed mathematical model and its simulations identify key variables that can shift the system between disordered (slow) and ordered (fast) states. Measurements of array curvature, wave period, and the effects of diminished kinesin velocity on flow rates, as well as prior observations on f-actin perturbation, support the model. This establishes a concrete mechanistic framework for the ooplasmic streaming process. The self-organizing fast phase is a result of viscous drag on kinesin-driven cargoes that mediates equal and opposite forces on cytoplasmic fluid and on microtubules whose minus ends are tethered to the cortex. Fluid moves toward plus ends and microtubules are forced backward toward their minus ends, resulting in buckling. Under certain conditions, the buckling microtubules self-organize into parallel bending arrays, guiding varying directions

  17. Cooperative lattice dynamics and anomalous fluctuations of microtubules.

    PubMed

    Mohrbach, Hervé; Johner, Albert; Kulić, Igor M

    2012-02-01

    Microtubules have been in the focus of biophysical research for several decades. However, the confusing and mutually contradictory results regarding their elasticity and fluctuations have cast doubt on their present understanding. In this paper, we present the empirical evidence for the existence of discrete guanosine diphosphate (GDP)-tubulin fluctuations between a curved and a straight configuration at room temperature as well as for conformational tubulin cooperativity. Guided by a number of experimental findings, we build the case for a novel microtubule model, with the principal result that microtubules can spontaneously form micron-sized cooperative helical states with unique elastic and dynamic features. The polymorphic dynamics of the microtubule lattice resulting from the tubulin bistability quantitatively explains several experimental puzzles, including anomalous scaling of dynamic fluctuations of grafted microtubules, their apparent length-stiffness relation, and their remarkable curved-helical appearance in general. We point out that the multistability and cooperative switching of tubulin dimers could participate in important cellular processes, and could in particular lead to efficient mechanochemical signaling along single microtubules.

  18. Nonlinear dynamics of C–terminal tails in cellular microtubules

    SciTech Connect

    Sekulic, Dalibor L. Sataric, Bogdan M.; Sataric, Miljko V.; Zdravkovic, Slobodan; Bugay, Aleksandr N.

    2016-07-15

    The mechanical and electrical properties, and information processing capabilities of microtubules are the permanent subject of interest for carrying out experiments in vitro and in silico, as well as for theoretical attempts to elucidate the underlying processes. In this paper, we developed a new model of the mechano–electrical waves elicited in the rows of very flexible C–terminal tails which decorate the outer surface of each microtubule. The fact that C–terminal tails play very diverse roles in many cellular functions, such as recruitment of motor proteins and microtubule–associated proteins, motivated us to consider their collective dynamics as the source of localized waves aimed for communication between microtubule and associated proteins. Our approach is based on the ferroelectric liquid crystal model and it leads to the effective asymmetric double-well potential which brings about the conditions for the appearance of kink–waves conducted by intrinsic electric fields embedded in microtubules. These kinks can serve as the signals for control and regulation of intracellular traffic along microtubules performed by processive motions of motor proteins, primarly from kinesin and dynein families. On the other hand, they can be precursors for initiation of dynamical instability of microtubules by recruiting the proper proteins responsible for the depolymerization process.

  19. Ibuprofen regulation of microtubule dynamics in cystic fibrosis epithelial cells.

    PubMed

    Rymut, Sharon M; Kampman, Claire M; Corey, Deborah A; Endres, Tori; Cotton, Calvin U; Kelley, Thomas J

    2016-08-01

    High-dose ibuprofen, an effective anti-inflammatory therapy for the treatment of cystic fibrosis (CF), has been shown to preserve lung function in a pediatric population. Despite its efficacy, few patients receive ibuprofen treatment due to potential renal and gastrointestinal toxicity. The mechanism of ibuprofen efficacy is also unclear. We have previously demonstrated that CF microtubules are slower to reform after depolymerization compared with respective wild-type controls. Slower microtubule dynamics in CF cells are responsible for impaired intracellular transport and are related to inflammatory signaling. Here, it is identified that high-dose ibuprofen treatment in both CF cell models and primary CF nasal epithelial cells restores microtubule reformation rates to wild-type levels, as well as induce extension of microtubules to the cell periphery. Ibuprofen treatment also restores microtubule-dependent intracellular transport monitored by measuring intracellular cholesterol transport. These effects are specific to ibuprofen as other cyclooxygenase inhibitors have no effect on these measures. Effects of ibuprofen are mimicked by stimulation of AMPK and blocked by the AMPK inhibitor compound C. We conclude that high-dose ibuprofen treatment enhances microtubule formation in CF cells likely through an AMPK-related pathway. These findings define a potential mechanism to explain the efficacy of ibuprofen therapy in CF. Copyright © 2016 the American Physiological Society.

  20. The engine of microtubule dynamics comes into focus.

    PubMed

    Mitchison, T J

    2014-05-22

    In this issue, Alushin et al. report high-resolution structures of three states of the microtubule lattice: GTP-bound, which is stable to depolymerization; unstable GDP-bound; and stable Taxol and GDP-bound. By comparing these structures at near-atomic resolution, they are able to propose a detailed model for how GTP hydrolysis destabilizes the microtubule and thus powers dynamic instability and chromosome movement. Destabilization of cytoskeleton filaments by nucleotide hydrolysis is an important general principle in cell dynamics, and this work represents a major step forward on a problem with a long history.

  1. Nonprocessive Motor Dynamics at the Microtubule Membrane Tube Interface

    PubMed Central

    Shaklee, Paige M.; Bourel-Bonnet, Line; Dogterom, Marileen; Schmidt, Thomas

    2010-01-01

    Abstract Key cellular processes such as cell division, membrane compartmentalization, and intracellular transport rely on motor proteins. Motors have been studied in detail on the single motor level such that information on their step size, stall force, average run length, and processivity are well known. However, in vivo, motors often work together, so that the question of their collective coordination has raised great interest. Here, we specifically attach motors to giant vesicles and examine collective motor dynamics during membrane tube formation. Image correlation spectroscopy reveals directed motion as processive motors walk at typical speeds (≤500 nm/s) along an underlying microtubule and accumulate at the tip of the growing membrane tube. In contrast, nonprocessive motors exhibit purely diffusive behavior, decorating the entire length of a microtubule lattice with diffusion constants at least 1000 times smaller than a freely-diffusing lipid-motor complex in a lipid bilayer (1 μm2/s); fluorescence recovery after photobleaching experiments confirm the presence of the slower-moving motor population at the microtubule-membrane tube interface. We suggest that nonprocessive motors dynamically bind and unbind to maintain a continuous interaction with the microtubule. This dynamic and continuous interaction is likely necessary for nonprocessive motors to mediate bidirectional membrane tube dynamics reported previously. PMID:20085722

  2. Contributions of microtubule rotation and dynamic instability to kinetochore capture

    NASA Astrophysics Data System (ADS)

    Sweezy-Schindler, Oliver; Edelmaier, Christopher; Blackwell, Robert; Glaser, Matt; Betterton, Meredith

    2014-03-01

    The capture of lost kinetochores (KCs) by microtubules (MTs) is a crucial part of prometaphase during mitosis. Microtubule dynamic instability has been considered the primary mechanism of KC capture, but recent work discovered that lateral KC attachment to pivoting MTs enabled rapid capture even with significantly reduced MT dynamics. We aim to understand the relative contributions of MT rotational diffusion and dynamic instability to KC capture, as well as KC capture through end-on and/or lateral attachment. Our model consists of rigid MTs and a spherical KC, which are allowed to diffuse inside a spherical nuclear envelope consistent with the geometry of fission yeast. For simplicity, we include a single spindle pole body, which is anchored to the nuclear membrane, and its associated polar MTs. Brownian dynamics treats the diffusion of the MTs and KC and kinetic Monte Carlo models stochastic processes such as dynamic instability. NSF 1546021.

  3. Nonlinear dynamics of dipoles in microtubules: Pseudospin model.

    PubMed

    Nesterov, Alexander I; Ramírez, Mónica F; Berman, Gennady P; Mavromatos, Nick E

    2016-06-01

    We perform a theoretical study of the dynamics of the electric field excitations in a microtubule by taking into consideration the realistic cylindrical geometry, dipole-dipole interactions of the tubulin-based protein heterodimers, the radial electric field produced by the solvent, and a possible degeneracy of energy states of individual heterodimers. The consideration is done in the frame of the classical pseudospin model. We derive the system of nonlinear dynamical partial differential equations of motion for interacting dipoles and the continuum version of these equations. We obtain the solutions of these equations in the form of snoidal waves, solitons, kinks, and localized spikes. Our results will help to achieve a better understanding of the functional properties of microtubules including the motor protein dynamics and the information transfer processes. Our considerations are based on classical dynamics. Some speculations on the role of possible quantum effects are also made.

  4. Nonlinear dynamics of dipoles in microtubules: Pseudospin model

    NASA Astrophysics Data System (ADS)

    Nesterov, Alexander I.; Ramírez, Mónica F.; Berman, Gennady P.; Mavromatos, Nick E.

    2016-06-01

    We perform a theoretical study of the dynamics of the electric field excitations in a microtubule by taking into consideration the realistic cylindrical geometry, dipole-dipole interactions of the tubulin-based protein heterodimers, the radial electric field produced by the solvent, and a possible degeneracy of energy states of individual heterodimers. The consideration is done in the frame of the classical pseudospin model. We derive the system of nonlinear dynamical partial differential equations of motion for interacting dipoles and the continuum version of these equations. We obtain the solutions of these equations in the form of snoidal waves, solitons, kinks, and localized spikes. Our results will help to achieve a better understanding of the functional properties of microtubules including the motor protein dynamics and the information transfer processes. Our considerations are based on classical dynamics. Some speculations on the role of possible quantum effects are also made.

  5. EWSR1 regulates mitosis by dynamically influencing microtubule acetylation.

    PubMed

    Wang, Yi-Long; Chen, Hui; Zhan, Yi-Qun; Yin, Rong-Hua; Li, Chang-Yan; Ge, Chang-Hui; Yu, Miao; Yang, Xiao-Ming

    2016-08-17

    EWSR1, participating in transcription and splicing, has been identified as a translocation partner for various transcription factors, resulting in translocation, which in turn plays crucial roles in tumorigenesis. Recent studies have investigated the role of EWSR1 in mitosis. However, the effect of EWSR1 on mitosis is poorly understood. Here, we observed that depletion of EWSR1 resulted in cell cycle arrest in the mitotic phase, mainly due to an increase in the time from nuclear envelope breakdown to metaphase, resulting in a high percentage of unaligned chromosomes and multipolar spindles. We also demonstrated that EWSR1 is a spindle-associated protein that interacts with α-tubulin during mitosis. EWSR1 depletion increased the cold-sensitivity of spindle microtubules, and decreased the rate of spindle assembly. EWSR1 regulated the level of microtubule acetylation in the mitotic spindle; microtubule acetylation was rescued in EWSR1-depleted mitotic cells following suppression of HDAC6 activity by its specific inhibitor or siRNA treatment. In summary, these results suggest that EWSR1 regulates the acetylation of microtubules in a cell cycle-dependent manner through its dynamic location on spindle MTs, and may be a novel regulator for mitosis progress independent of its translocation.

  6. The role of TOG domains in microtubule plus end dynamics.

    PubMed

    Slep, Kevin C

    2009-10-01

    The XMAP215 (Xenopus microtubule-associated protein 215) and CLASP [CLIP-170 (cytoskeletal linker protein 170) associated protein] microtubule plus end tracking families play central roles in the regulation of interphase microtubule dynamics and the proper formation of mitotic spindle architecture and flux. XMAP215 members comprise N-terminally-arrayed hexa-HEAT (huntingtin, elongation factor 3, the PR65/A subunit of protein phosphatase 2A and the lipid kinase Tor) repeats known as TOG (tumour overexpressed gene) domains. Higher eukaryotic XMAP215 members are monomeric and have five TOG domains. Yeast counterparts are dimeric and have two TOG domains. Structure determination of the TOG domain reveals that the six HEAT repeats are aligned to form an oblong scaffold. The TOG domain face composed of intra-HEAT loops forms a contiguous, conserved tubulin-binding surface. Nested within the conserved intra-HEAT loop 1 is an invariant, signature, surface-exposed tryptophan residue that is a prime determinant in the TOG domain-tubulin interaction. The arrayed organization of TOG domains is critical for the processive mechanism of XMAP215, indicative that multiple tubulin/microtubule-binding sites are required for plus end tracking activity. The CLASP family has been annotated as containing a single N-terminal TOG domain. Using XMAP215 TOG domain structure determinants as a metric to analyse CLASP sequence, it is anticipated that CLASP contains two additional cryptic TOGL (TOG-like) domains. The presence of additional TOGL domains implicates CLASP as an ancient XMAP215 relative that uses a similar, multi-TOG-based mechanism to processively track microtubule ends.

  7. 3-D structure and dynamics of microtubule self-organization

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Ou-Yang, H. Daniel

    2008-03-01

    Laser scanning confocal microscopy was used to study the dynamics of 3D assemblies spontaneously formed in microtubule (MT) solutions. Microtubule solutions prepared by mixing and incubating tubulin in the presence of GTP and Oregon Green conjugated taxol in PM buffer were placed in long, sub-millimeter thin glass cells by the capillary action. Within 24 hours, starting with a uniform distribution, microtubules were found to be gradually separated into a few large ``buckled'' bundles along the long direction, and in the middle plane, of the sample cell. A well-defined wavelength of the buckling sinusoids was around 510 μm. The cross section of these round bundles was approximately 40 μm in diameter and the lengths were several centimeters. Detailed analysis of the 3-D image within the bundles revealed that each bundle seemed to consist of loosely packed MTs. It appeared that MTs were phase separated resulting from attractive interactions between charged MT fibers. The ``buckling'' behavior could be the result of geometrical constraints of the repulsive cell walls and the repulsive interaction between bundles. Detailed 3-D observations of the dynamic evolution of MT assembly could provide insight to the mechanisms of cellular MT organization and phase separation of charged colloidal rods.

  8. Of microtubules and memory: implications for microtubule dynamics in dendrites and spines

    PubMed Central

    Dent, Erik W.

    2017-01-01

    Microtubules (MTs) are cytoskeletal polymers composed of repeating subunits of tubulin that are ubiquitously expressed in eukaryotic cells. They undergo a stochastic process of polymerization and depolymerization from their plus ends termed dynamic instability. MT dynamics is an ongoing process in all cell types and has been the target for the development of several useful anticancer drugs, which compromise rapidly dividing cells. Recent studies also suggest that MT dynamics may be particularly important in neurons, which develop a highly polarized morphology, consisting of a single axon and multiple dendrites that persist throughout adulthood. MTs are especially dynamic in dendrites and have recently been shown to polymerize directly into dendritic spines, the postsynaptic compartment of excitatory neurons in the CNS. These transient polymerization events into dendritic spines have been demonstrated to play important roles in synaptic plasticity in cultured neurons. Recent studies also suggest that MT dynamics in the adult brain function in the essential process of learning and memory and may be compromised in degenerative diseases, such as Alzheimer’s disease. This raises the possibility of targeting MT dynamics in the design of new therapeutic agents. PMID:28035040

  9. The implications of microtubule dynamic instability on chromosome dynamics in metaphase

    NASA Astrophysics Data System (ADS)

    Lubin, David; Chakrabarti, Buddhapriya

    2005-03-01

    We present a model of chromosome oscillations during late metaphase based on the postulates of the stochastic detachment/reattachment of kinetochore microtubules and the dynamic instability model for microtubules dynamics. In this approach the motion of the chromosomes is analyzed by treating them as Brownian particles subject to a fluctuating force arising from the varying number of microtubules attached to the kinetochore at a given time. Furthermore, we predict observable changes in the chromosome dynamics in response to antimitotic drugs (e.g. taxol) that affects the microtubule dynamics. This approach may facilitate the use of the stochastic time series of chromosome position data as a complement to more traditional approaches in the elucidation of the mechanisms of chromosome alignment during metaphase of cell division.

  10. Dynamic Behavior of Microtubules during Dynein-dependent Nuclear Migrations of Meiotic Prophase in Fission Yeast

    PubMed Central

    Yamamoto, Ayumu; Tsutsumi, Chihiro; Kojima, Hiroaki; Oiwa, Kazuhiro; Hiraoka, Yasushi

    2001-01-01

    During meiotic prophase in fission yeast, the nucleus migrates back and forth between the two ends of the cell, led by the spindle pole body (SPB). This nuclear oscillation is dependent on astral microtubules radiating from the SPB and a microtubule motor, cytoplasmic dynein. Here we have examined the dynamic behavior of astral microtubules labeled with the green fluorescent protein during meiotic prophase with the use of optical sectioning microscopy. During nuclear migrations, the SPB mostly follows the microtubules that extend toward the cell cortex. SPB migrations start when these microtubules interact with the cortex and stop when they disappear, suggesting that these microtubules drive nuclear migrations. The microtubules that are followed by the SPB often slide along the cortex and are shortened by disassembly at their ends proximal to the cortex. In dynein-mutant cells, where nuclear oscillations are absent, the SPB never migrates by following microtubules, and microtubule assembly/disassembly dynamics is significantly altered. Based on these observations, together with the frequent accumulation of dynein at a cortical site where the directing microtubules interact, we propose a model in which dynein drives nuclear oscillation by mediating cortical microtubule interactions and regulating the dynamics of microtubule disassembly at the cortex. PMID:11739791

  11. Mechanism of microtubule-facilitated "fast track" nuclear import.

    PubMed

    Roth, Daniela Martino; Moseley, Gregory W; Pouton, Colin W; Jans, David A

    2011-04-22

    Although the microtubule (MT) cytoskeleton has been shown to facilitate nuclear import of specific cancer-regulatory proteins including p53, retinoblastoma protein, and parathyroid hormone-related protein (PTHrP), the MT association sequences (MTASs) responsible and the nature of the interplay between MT-dependent and conventional importin (IMP)-dependent nuclear translocation are unknown. Here we used site-directed mutagenesis, live cell imaging, and direct IMP and MT binding assays to map the MTAS of PTHrP for the first time, finding that it is within a short modular region (residues 82-108) that overlaps with the IMPβ1-recognized nuclear localization signal (residues 66-108) of PTHrP. Importantly, fluorescence recovery after photobleaching experiments indicated that disruption of the MT network or mutation of the MTAS of PTHrP decreases the rate of nuclear import by 2-fold. Moreover, MTAS functions depend on mutual exclusivity of binding of PTHrP to MTs and IMPβ1 such that, following MT-dependent trafficking toward the nucleus, perinuclear PTHrP can be displaced from MTs by IMPβ1 prior to import into the nucleus. This is the first molecular definition of an MTAS that facilitates protein nuclear import as well as the first delineation of the mechanism whereby cargo is transferred directly from the cytoskeleton to the cellular nuclear import apparatus. The results have broad significance with respect to fundamental processes regulating cell physiology/transformation.

  12. Spatial regulation of astral microtubule dynamics by Kif18B in PtK cells

    PubMed Central

    Walczak, Claire E.; Zong, Hailing; Jain, Sachin; Stout, Jane R.

    2016-01-01

    The spatial and temporal control of microtubule dynamics is fundamentally important for proper spindle assembly and chromosome segregation. This is achieved, in part, by the multitude of proteins that bind to and regulate spindle microtubules, including kinesin superfamily members, which act as microtubule-destabilizing enzymes. These fall into two general classes: the kinesin-13 proteins, which directly depolymerize microtubules, and the kinesin-8 proteins, which are plus end–directed motors that either destabilize microtubules or cap the microtubule plus ends. Here we analyze the contribution of a PtK kinesin-8 protein, Kif18B, in the control of mitotic microtubule dynamics. Knockdown of Kif18B causes defects in spindle microtubule organization and a dramatic increase in astral microtubules. Kif18B-knockdown cells had defects in chromosome alignment, but there were no defects in chromosome segregation. The long astral microtubules that occur in the absence of Kif18B are limited in length by the cell cortex. Using EB1 tracking, we show that Kif18B activity is spatially controlled, as loss of Kif18B has the most dramatic effect on the lifetimes of astral microtubules that extend toward the cell cortex. Together our studies provide new insight into how diverse kinesins contribute to spatial microtubule organization in the spindle. PMID:27559136

  13. Spatial regulation of astral microtubule dynamics by Kif18B in PtK cells.

    PubMed

    Walczak, Claire E; Zong, Hailing; Jain, Sachin; Stout, Jane R

    2016-10-15

    The spatial and temporal control of microtubule dynamics is fundamentally important for proper spindle assembly and chromosome segregation. This is achieved, in part, by the multitude of proteins that bind to and regulate spindle microtubules, including kinesin superfamily members, which act as microtubule-destabilizing enzymes. These fall into two general classes: the kinesin-13 proteins, which directly depolymerize microtubules, and the kinesin-8 proteins, which are plus end-directed motors that either destabilize microtubules or cap the microtubule plus ends. Here we analyze the contribution of a PtK kinesin-8 protein, Kif18B, in the control of mitotic microtubule dynamics. Knockdown of Kif18B causes defects in spindle microtubule organization and a dramatic increase in astral microtubules. Kif18B-knockdown cells had defects in chromosome alignment, but there were no defects in chromosome segregation. The long astral microtubules that occur in the absence of Kif18B are limited in length by the cell cortex. Using EB1 tracking, we show that Kif18B activity is spatially controlled, as loss of Kif18B has the most dramatic effect on the lifetimes of astral microtubules that extend toward the cell cortex. Together our studies provide new insight into how diverse kinesins contribute to spatial microtubule organization in the spindle.

  14. Signatures of a macroscopic switching transition for a dynamic microtubule

    NASA Astrophysics Data System (ADS)

    Aparna, J. S.; Padinhateeri, Ranjith; Das, Dibyendu

    2017-04-01

    Characterising complex kinetics of non-equilibrium self-assembly of bio-filaments is of general interest. Dynamic instability in microtubules, consisting of successive catastrophes and rescues, is observed to occur as a result of the non-equilibrium conversion of GTP-tubulin to GDP-tubulin. We study this phenomenon using a model for microtubule kinetics with GTP/GDP state-dependent polymerisation, depolymerisation and hydrolysis of subunits. Our results reveal a sharp switch-like transition in the mean velocity of the filaments, from a growth phase to a shrinkage phase, with an associated co-existence of the two phases. This transition is reminiscent of the discontinuous phase transition across the liquid-gas boundary. We probe the extent of discontinuity in the transition quantitatively using characteristic signatures such as bimodality in velocity distribution, variance and Binder cumulant, and also hysteresis behaviour of the system. We further investigate ageing behaviour in catastrophes of the filament, and find that the multi-step nature of catastrophes is intensified in the vicinity of the switching transition. This assumes importance in the context of Microtubule Associated Proteins which have the potential of altering kinetic parameter values.

  15. Signatures of a macroscopic switching transition for a dynamic microtubule

    PubMed Central

    Aparna, J. S.; Padinhateeri, Ranjith; Das, Dibyendu

    2017-01-01

    Characterising complex kinetics of non-equilibrium self-assembly of bio-filaments is of general interest. Dynamic instability in microtubules, consisting of successive catastrophes and rescues, is observed to occur as a result of the non-equilibrium conversion of GTP-tubulin to GDP-tubulin. We study this phenomenon using a model for microtubule kinetics with GTP/GDP state-dependent polymerisation, depolymerisation and hydrolysis of subunits. Our results reveal a sharp switch-like transition in the mean velocity of the filaments, from a growth phase to a shrinkage phase, with an associated co-existence of the two phases. This transition is reminiscent of the discontinuous phase transition across the liquid-gas boundary. We probe the extent of discontinuity in the transition quantitatively using characteristic signatures such as bimodality in velocity distribution, variance and Binder cumulant, and also hysteresis behaviour of the system. We further investigate ageing behaviour in catastrophes of the filament, and find that the multi-step nature of catastrophes is intensified in the vicinity of the switching transition. This assumes importance in the context of Microtubule Associated Proteins which have the potential of altering kinetic parameter values. PMID:28374844

  16. Tau co-organizes dynamic microtubule and actin networks

    PubMed Central

    Elie, Auréliane; Prezel, Elea; Guérin, Christophe; Denarier, Eric; Ramirez-Rios, Sacnicte; Serre, Laurence; Andrieux, Annie; Fourest-Lieuvin, Anne; Blanchoin, Laurent; Arnal, Isabelle

    2015-01-01

    The crosstalk between microtubules and actin is essential for cellular functions. However, mechanisms underlying the microtubule-actin organization by cross-linkers remain largely unexplored. Here, we report that tau, a neuronal microtubule-associated protein, binds to microtubules and actin simultaneously, promoting in vitro co-organization and coupled growth of both networks. By developing an original assay to visualize concomitant microtubule and actin assembly, we show that tau can induce guided polymerization of actin filaments along microtubule tracks and growth of single microtubules along actin filament bundles. Importantly, tau mediates microtubule-actin co-alignment without changing polymer growth properties. Mutagenesis studies further reveal that at least two of the four tau repeated motifs, primarily identified as tubulin-binding sites, are required to connect microtubules and actin. Tau thus represents a molecular linker between microtubule and actin networks, enabling a coordination of the two cytoskeletons that might be essential in various neuronal contexts. PMID:25944224

  17. SCG10, a microtubule destabilizing factor, stimulates the neurite outgrowth by modulating microtubule dynamics in rat hippocampal primary cultured neurons.

    PubMed

    Morii, Hiroshi; Shiraishi-Yamaguchi, Yoko; Mori, Nozomu

    2006-09-01

    Microtubule dynamics, one of the key elements in neurite outgrowth, is regulated by various regulatory factors to determine the behavior of the neuronal growth cone and to form the specialized neuronal shape. SCG10 is a neuron-specific stathmin protein with a potent microtubule destabilizing factor and is enriched in the growth cones of the developing neurons. We investigated the functional role of SCG10 in neurite outgrowth using rat hippocampal primary cultured neurons. Genetic manipulation of SCG10 using a short-interfering RNA duplex markedly decreased the SCG10 expression level and significantly suppressed neurite outgrowth. This result was confirmed by immunodepletion experiments. On the other hand, the protein transduction of SCG10 using a polyarginine tag stimulated neurite outgrowth. Such manipulation of the SCG10 expression level affected microtubule morphology within the growth cones. A decrease in the SCG10 level converted the morphology to a more stable state, while an increase converted the morphology to a more dynamic state. However, an excess of SCG10 induced neurite retraction due to an excess of microtubule disassembly. These results suggest that SCG10 serves as an important regulatory factor of growth cone motility by enhancing microtubule dynamics, possibly through increasing the catastrophe frequency.

  18. The taccalonolides and paclitaxel cause distinct effects on microtubule dynamics and aster formation

    PubMed Central

    2014-01-01

    Background Microtubule stabilizers suppress microtubule dynamics and, at the lowest antiproliferative concentrations, disrupt the function of mitotic spindles, leading to mitotic arrest and apoptosis. At slightly higher concentrations, these agents cause the formation of multiple mitotic asters with distinct morphologies elicited by different microtubule stabilizers. Results We tested the hypothesis that two classes of microtubule stabilizing drugs, the taxanes and the taccalonolides, cause the formation of distinct aster structures due, in part, to differential effects on microtubule dynamics. Paclitaxel and the taccalonolides suppressed the dynamics of microtubules formed from purified tubulin as well as in live cells. Both agents suppressed microtubule dynamic instability, with the taccalonolides having a more pronounced inhibition of microtubule catastrophe, suggesting that they stabilize the plus ends of microtubules more effectively than paclitaxel. Live cell microscopy was also used to evaluate the formation and resolution of asters after drug treatment. While each drug had similar effects on initial formation, substantial differences were observed in aster resolution. Paclitaxel-induced asters often coalesced over time resulting in fewer, larger asters whereas numerous compact asters persisted once they were formed in the presence of the taccalonolides. Conclusions We conclude that the increased resistance of microtubule plus ends to catastrophe may play a role in the observed inability of taccalonolide-induced asters to coalesce during mitosis, giving rise to the distinct morphologies observed after exposure to these agents. PMID:24576146

  19. Microtubule dynamic instability: the role of cracks between protofilaments.

    PubMed

    Li, Chunlei; Li, Jun; Goodson, Holly V; Alber, Mark S

    2014-03-28

    Microtubules (MTs) are cytoplasmic protein polymers that are essential for fundamental cellular processes including the maintenance of cell shape, organelle transport and formation of the mitotic spindle. Microtubule dynamic instability is critical for these processes, but it remains poorly understood, in part because the relationship between the structure of the MT tip and the growth/depolymerization transitions is enigmatic. In previous work, we used computational models of dynamic instability to provide evidence that cracks (laterally unbonded regions) between protofilaments play a key role in the regulation of dynamic instability. Here we use computational models to investigate the connection between cracks and dynamic instability in more detail. Our work indicates that while cracks contribute to dynamic instability in a fundamental way, it is not the depth of the cracks per se that governs MT dynamic instability. Instead, what matters more is whether the cracks terminate in GTP-rich or GDP-rich regions of the MT. Based on these observations, we suggest that a functional "GTP cap" (i.e., one capable of promoting MT growth) is one where the cracks terminate in pairs of GTP-bound subunits, and that the likelihood of catastrophe rises significantly with the fraction of crack-terminating subunits that contain GDP. In addition to helping clarify the mechanism of dynamic instability, this idea could also explain how MT stabilizers work: proteins that introduce lateral cross-links between protofilaments would produce islands of GDP-bound tubulin that mimic GTP-rich regions in having strong lateral bonds, thus reducing crack propagation, suppressing catastrophe and promoting rescue.

  20. TOG Proteins Are Spatially Regulated by Rac-GSK3β to Control Interphase Microtubule Dynamics

    PubMed Central

    Trogden, Kathryn P.; Rogers, Stephen L.

    2015-01-01

    Microtubules are regulated by a diverse set of proteins that localize to microtubule plus ends (+TIPs) where they regulate dynamic instability and mediate interactions with the cell cortex, actin filaments, and organelles. Although individual +TIPs have been studied in depth and we understand their basic contributions to microtubule dynamics, there is a growing body of evidence that these proteins exhibit cross-talk and likely function to collectively integrate microtubule behavior and upstream signaling pathways. In this study, we have identified a novel protein-protein interaction between the XMAP215 homologue in Drosophila, Mini spindles (Msps), and the CLASP homologue, Orbit. These proteins have been shown to promote and suppress microtubule dynamics, respectively. We show that microtubule dynamics are regionally controlled in cells by Rac acting to suppress GSK3β in the peripheral lamellae/lamellipodium. Phosphorylation of Orbit by GSK3β triggers a relocalization of Msps from the microtubule plus end to the lattice. Mutation of the Msps-Orbit binding site revealed that this interaction is required for regulating microtubule dynamic instability in the cell periphery. Based on our findings, we propose that Msps is a novel Rac effector that acts, in partnership with Orbit, to regionally regulate microtubule dynamics. PMID:26406596

  1. Inhibition of microtubule dynamics impedes repair of kidney ischemia/reperfusion injury and increases fibrosis

    PubMed Central

    Han, Sang Jun; Kim, Ji-Hyeon; Kim, Jee In; Park, Kwon Moo

    2016-01-01

    The microtubule cytoskeleton is composed of α-tubulin and β-tubulin heterodimers, and it serves to regulate the shape, motility, and division of a cell. Post-translational modifications including acetylation are closely associated with the functional aspects of the microtubule, involving in a number of pathological diseases. However, the role of microtubule acetylation in acute kidney injury (AKI) and progression of AKI to chronic kidney disease have yet to be understood. In this study, ischemia/reperfusion (I/R), a major cause of AKI, resulted in deacetylation of the microtubules with a decrease in α-tubulin acetyltransferase 1 (α-TAT1). Paclitaxel (taxol), an agent that stabilizes microtubules by tubulin acetylation, treatment during the recovery phase following I/R injury inhibited tubular cell proliferation, impaired renal functional recovery, and worsened fibrosis. Taxol induced α-tubulin acetylation and post-I/R cell cycle arrest. Taxol aggregated the microtubule in the cytoplasm, resulting in suppression of microtubule dynamics. Our studies have demonstrated for the first time that I/R induced deacetylation of the microtubules, and that inhibition of microtubule dynamics retarded repair of injured tubular epithelial cells leading to an acceleration of fibrosis. This suggests that microtubule dynamics plays an important role in the processes of repair and fibrosis after AKI. PMID:27270990

  2. TACC3 is a microtubule plus end–tracking protein that promotes axon elongation and also regulates microtubule plus end dynamics in multiple embryonic cell types

    PubMed Central

    Nwagbara, Belinda U.; Faris, Anna E.; Bearce, Elizabeth A.; Erdogan, Burcu; Ebbert, Patrick T.; Evans, Matthew F.; Rutherford, Erin L.; Enzenbacher, Tiffany B.; Lowery, Laura Anne

    2014-01-01

    Microtubule plus end dynamics are regulated by a conserved family of proteins called plus end–tracking proteins (+TIPs). It is unclear how various +TIPs interact with each other and with plus ends to control microtubule behavior. The centrosome-associated protein TACC3, a member of the transforming acidic coiled-coil (TACC) domain family, has been implicated in regulating several aspects of microtubule dynamics. However, TACC3 has not been shown to function as a +TIP in vertebrates. Here we show that TACC3 promotes axon outgrowth and regulates microtubule dynamics by increasing microtubule plus end velocities in vivo. We also demonstrate that TACC3 acts as a +TIP in multiple embryonic cell types and that this requires the conserved C-terminal TACC domain. Using high-resolution live-imaging data on tagged +TIPs, we show that TACC3 localizes to the extreme microtubule plus end, where it lies distal to the microtubule polymerization marker EB1 and directly overlaps with the microtubule polymerase XMAP215. TACC3 also plays a role in regulating XMAP215 stability and localizing XMAP215 to microtubule plus ends. Taken together, our results implicate TACC3 as a +TIP that functions with XMAP215 to regulate microtubule plus end dynamics. PMID:25187649

  3. Dynamic Change of Cellular Localization of Microtubule-Organizing Center During Conjugation of Ciliate Tetrahymena thermophila.

    PubMed

    Kushida, Yasuharu; Takaine, Masak; Nakano, Kentaro; Sugai, Toshiro; Numata, Osamu

    2015-01-01

    To obtain a comprehensive picture of microtubule dynamics during conjugation, the mode of sexual reproduction in ciliates, we combined indirect immunofluorescence and three-dimensional imaging using confocal laser-scanning microscope to visualize the cellular localization of DNA, microtubules, and γ-tubulin, the main component of the microtubule-organizing center in mating Tetrahymena cells. As the conjugational stages proceeded, the distribution of γ-tubulin changed drastically and microtubules showed dynamic appearance and disappearance during meiosis, nuclear selection, nuclear exchange, and the development of new macronuclei. This study highlights the involvement of cytoskeletal regulation in the modulation of germline nuclear motilities required for ciliate reproduction.

  4. Qualitative Behavior of the Low-Frequency Vibrational Dynamics of Microtubules and the Surrounding Water.

    PubMed

    Moix, Jeremy M; Parker, James E; Echchgadda, Ibtissam

    2017-04-13

    The dynamics of the low-frequency vibrational modes of microtubules play a key role in many theoretical models regarding their biological function. We analyze these dynamics through large scale, classical molecular dynamics simulations of a microtubule composed of 42 tubulin heterodimers to provide insights into the qualitative nature of the vibrational energy absorption and dissipation mechanisms. The computed microtubule absorption spectra and vibrational density of states in the terahertz regime are presented, along with an analysis of the vibrational dephasing rates of the tubulin monomer center of mass dynamics, which are shown to be overdamped. Additionally, the presence of the microtubule modifies the dynamical properties of the solvation shell structure within roughly 10 Å of the protein. These vibrational properties are similar to those seen in other globular proteins and indicate microtubules are unlikely candidates for any large scale collective vibrational processes in the terahertz regime such as Fröhlich condensates.

  5. Contributions of Microtubule Dynamic Instability and Rotational Diffusion to Kinetochore Capture.

    PubMed

    Blackwell, Robert; Sweezy-Schindler, Oliver; Edelmaier, Christopher; Gergely, Zachary R; Flynn, Patrick J; Montes, Salvador; Crapo, Ammon; Doostan, Alireza; McIntosh, J Richard; Glaser, Matthew A; Betterton, Meredith D

    2017-02-07

    Microtubule dynamic instability allows search and capture of kinetochores during spindle formation, an important process for accurate chromosome segregation during cell division. Recent work has found that microtubule rotational diffusion about minus-end attachment points contributes to kinetochore capture in fission yeast, but the relative contributions of dynamic instability and rotational diffusion are not well understood. We have developed a biophysical model of kinetochore capture in small fission-yeast nuclei using hybrid Brownian dynamics/kinetic Monte Carlo simulation techniques. With this model, we have studied the importance of dynamic instability and microtubule rotational diffusion for kinetochore capture, both to the lateral surface of a microtubule and at or near its end. Over a range of biologically relevant parameters, microtubule rotational diffusion decreased capture time, but made a relatively small contribution compared to dynamic instability. At most, rotational diffusion reduced capture time by 25%. Our results suggest that while microtubule rotational diffusion can speed up kinetochore capture, it is unlikely to be the dominant physical mechanism for typical conditions in fission yeast. In addition, we found that when microtubules undergo dynamic instability, lateral captures predominate even in the absence of rotational diffusion. Counterintuitively, adding rotational diffusion to a dynamic microtubule increases the probability of end-on capture.

  6. Contributions of Microtubule Dynamic Instability and Rotational Diffusion to Kinetochore Capture

    NASA Astrophysics Data System (ADS)

    Blackwell, Robert; Sweezy-Schindler, Oliver; Edelmaier, Christopher; Gergely, Zachary R.; Flynn, Patrick J.; Montes, Salvador; Crapo, Ammon; Doostan, Alireza; McIntosh, J. Richard; Glaser, Matthew A.; Betterton, Meredith D.

    2017-02-01

    Microtubule dynamic instability allows search and capture of kinetochores during spindle formation, an important process for accurate chromosome segregation during cell division. Recent work has found that microtubule rotational diffusion about minus-end attachment points contributes to kinetochore capture in fission yeast, but the relative contributions of dynamic instability and rotational diffusion are not well understood. We have developed a biophysical model of kinetochore capture in small fission-yeast nuclei using hybrid Brownian dynamics/kinetic Monte Carlo simulation techniques. With this model, we have studied the importance of dynamic instability and microtubule rotational diffusion for kinetochore capture, both to the lateral surface of a microtubule and at or near its end. Over a range of biologically relevant parameters, microtubule rotational diffusion decreased capture time, but made a relatively small contribution compared to dynamic instability. At most, rotational diffusion reduced capture time by 25%. Our results suggest that while microtubule rotational diffusion can speed up kinetochore capture, it is unlikely to be the dominant physical mechanism. In addition, we found that when microtubules undergo dynamic instability, lateral captures predominate even in the absence of rotational diffusion. Counterintuitively, adding rotational diffusion to a dynamic microtubule increases the probability of end-on capture.

  7. Microtubule-dependent transport and dynamics of vimentin intermediate filaments

    PubMed Central

    Hookway, Caroline; Ding, Liya; Davidson, Michael W.; Rappoport, Joshua Z.; Danuser, Gaudenz; Gelfand, Vladimir I.

    2015-01-01

    We studied two aspects of vimentin intermediate filament dynamics—transport of filaments and subunit exchange. We observed transport of long filaments in the periphery of cells using live-cell structured illumination microscopy. We studied filament transport elsewhere in cells using a photoconvertible-vimentin probe and total internal reflection microscopy. We found that filaments were rapidly transported along linear tracks in both anterograde and retrograde directions. Filament transport was microtubule dependent but independent of microtubule polymerization and/or an interaction with the plus end–binding protein APC. We also studied subunit exchange in filaments by long-term imaging after photoconversion. We found that converted vimentin remained in small clusters along the length of filaments rather than redistributing uniformly throughout the network, even in cells that divided after photoconversion. These data show that vimentin filaments do not depolymerize into individual subunits; they recompose by severing and reannealing. Together these results show that vimentin filaments are very dynamic and that their transport is required for network maintenance. PMID:25717187

  8. Minimal model for collective kinetochore–microtubule dynamics

    PubMed Central

    Banigan, Edward J.; Chiou, Kevin K.; Ballister, Edward R.; Mayo, Alyssa M.; Lampson, Michael A.; Liu, Andrea J.

    2015-01-01

    Chromosome segregation during cell division depends on interactions of kinetochores with dynamic microtubules (MTs). In many eukaryotes, each kinetochore binds multiple MTs, but the collective behavior of these coupled MTs is not well understood. We present a minimal model for collective kinetochore–MT dynamics, based on in vitro measurements of individual MTs and their dependence on force and kinetochore phosphorylation by Aurora B kinase. For a system of multiple MTs connected to the same kinetochore, the force–velocity relation has a bistable regime with two possible steady-state velocities: rapid shortening or slow growth. Bistability, combined with the difference between the growing and shrinking speeds, leads to center-of-mass and breathing oscillations in bioriented sister kinetochore pairs. Kinetochore phosphorylation shifts the bistable region to higher tensions, so that only the rapidly shortening state is stable at low tension. Thus, phosphorylation leads to error correction for kinetochores that are not under tension. We challenged the model with new experiments, using chemically induced dimerization to enhance Aurora B activity at metaphase kinetochores. The model suggests that the experimentally observed disordering of the metaphase plate occurs because phosphorylation increases kinetochore speeds by biasing MTs to shrink. Our minimal model qualitatively captures certain characteristic features of kinetochore dynamics, illustrates how biochemical signals such as phosphorylation may regulate the dynamics, and provides a theoretical framework for understanding other factors that control the dynamics in vivo. PMID:26417109

  9. Genome stability is ensured by temporal control of kinetochore-microtubule dynamics

    PubMed Central

    Bakhoum, Samuel F.; Thompson, Sarah L.; Manning, Amity L.; Compton, Duane A.

    2008-01-01

    Summary Most solid tumors are aneuploid and many frequently mis-segregate chromosomes. This chromosomal instability is commonly caused by persistent maloriented attachment of chromosomes to spindle microtubules. Chromosome segregation requires stable microtubule attachment at kinetochores, yet those attachments must be sufficiently dynamic to permit correction of malorientations. How this balance is achieved is unknown, and the permissible boundaries of attachment stability versus dynamics essential for genome stability remain poorly understood. Here we show that two microtubule-depolymerizing kinesins, Kif2b and MCAK, stimulate kinetochore-microtubule dynamics during distinct phases of mitosis to correct malorientations. Few-fold reductions in kinetochore-microtubule turnover, particularly in early mitosis, induce severe chromosome segregation defects. In addition, we show that stimulation of microtubule dynamics at kinetochores restores chromosome stability to chromosomally unstable tumor cell lines, establishing a causal relationship between deregulation of kinetochore-microtubule dynamics and chromosomal instability. Thus, temporal control of microtubule attachment to chromosomes during mitosis is central to genome stability in human cells. PMID:19060894

  10. Steering microtubule shuttle transport with dynamically controlled magnetic fields

    SciTech Connect

    Mahajan, K. D.; Ruan, G.; Dorcéna, C. J.; Vieira, G.; Nabar, G.; Bouxsein, N. F.; Chalmers, J. J.; Bachand, G. D.; Sooryakumar, R.; Winter, J. O.

    2016-03-23

    Nanoscale control of matter is critical to the design of integrated nanosystems. Here, we describe a method to dynamically control directionality of microtubule (MT) motion using programmable magnetic fields. MTs are combined with magnetic quantum dots (i.e., MagDots) that are manipulated by external magnetic fields provided by magnetic nanowires. MT shuttles thus undergo both ATP-driven and externally-directed motion with a fluorescence component that permits simultaneous visualization of shuttle motion. This technology is used to alter the trajectory of MTs in motion and to pin MT motion. Ultimately, such an approach could be used to evaluate the MT-kinesin transport system and could serve as the basis for improved lab-on-a-chip technologies based on MT transport.

  11. Steering microtubule shuttle transport with dynamically controlled magnetic fields

    DOE PAGES

    Mahajan, K. D.; Ruan, G.; Dorcéna, C. J.; ...

    2016-03-23

    Nanoscale control of matter is critical to the design of integrated nanosystems. Here, we describe a method to dynamically control directionality of microtubule (MT) motion using programmable magnetic fields. MTs are combined with magnetic quantum dots (i.e., MagDots) that are manipulated by external magnetic fields provided by magnetic nanowires. MT shuttles thus undergo both ATP-driven and externally-directed motion with a fluorescence component that permits simultaneous visualization of shuttle motion. This technology is used to alter the trajectory of MTs in motion and to pin MT motion. Ultimately, such an approach could be used to evaluate the MT-kinesin transport system andmore » could serve as the basis for improved lab-on-a-chip technologies based on MT transport.« less

  12. Steering microtubule shuttle transport with dynamically controlled magnetic fields.

    PubMed

    Mahajan, K D; Ruan, G; Dorcéna, C J; Vieira, G; Nabar, G; Bouxsein, N F; Chalmers, J J; Bachand, G D; Sooryakumar, R; Winter, J O

    2016-04-28

    Nanoscale control of matter is critical to the design of integrated nanosystems. Here, we describe a method to dynamically control directionality of microtubule (MT) motion using programmable magnetic fields. MTs are combined with magnetic quantum dots (i.e., MagDots) that are manipulated by external magnetic fields provided by magnetic nanowires. MT shuttles thus undergo both ATP-driven and externally-directed motion with a fluorescence component that permits simultaneous visualization of shuttle motion. This technology is used to alter the trajectory of MTs in motion and to pin MT motion. Such an approach could be used to evaluate the MT-kinesin transport system and could serve as the basis for improved lab-on-a-chip technologies based on MT transport.

  13. Steering microtubule shuttle transport with dynamically controlled magnetic fields

    NASA Astrophysics Data System (ADS)

    Mahajan, K. D.; Ruan, G.; Dorcéna, C. J.; Vieira, G.; Nabar, G.; Bouxsein, N. F.; Chalmers, J. J.; Bachand, G. D.; Sooryakumar, R.; Winter, J. O.

    2016-04-01

    Nanoscale control of matter is critical to the design of integrated nanosystems. Here, we describe a method to dynamically control directionality of microtubule (MT) motion using programmable magnetic fields. MTs are combined with magnetic quantum dots (i.e., MagDots) that are manipulated by external magnetic fields provided by magnetic nanowires. MT shuttles thus undergo both ATP-driven and externally-directed motion with a fluorescence component that permits simultaneous visualization of shuttle motion. This technology is used to alter the trajectory of MTs in motion and to pin MT motion. Such an approach could be used to evaluate the MT-kinesin transport system and could serve as the basis for improved lab-on-a-chip technologies based on MT transport.Nanoscale control of matter is critical to the design of integrated nanosystems. Here, we describe a method to dynamically control directionality of microtubule (MT) motion using programmable magnetic fields. MTs are combined with magnetic quantum dots (i.e., MagDots) that are manipulated by external magnetic fields provided by magnetic nanowires. MT shuttles thus undergo both ATP-driven and externally-directed motion with a fluorescence component that permits simultaneous visualization of shuttle motion. This technology is used to alter the trajectory of MTs in motion and to pin MT motion. Such an approach could be used to evaluate the MT-kinesin transport system and could serve as the basis for improved lab-on-a-chip technologies based on MT transport. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08529b

  14. A plus-end raft to control microtubule dynamics and function.

    PubMed

    Galjart, Niels; Perez, Franck

    2003-02-01

    Cells require a properly oriented and organised microtubule array to transmit positional information. Recent data have revealed a heterogeneous population of microtubule-binding proteins that accumulates mainly at distal ends of polymerising microtubules. Two mechanisms may account for this concentration: transient immobilisation, which involves association of proteins with growing ends, followed by release more proximally; and deposition at ends via a molecular motor. As with lipid rafts, protein concentration at distal ends may allow a cascade of interactions in the restricted area of a microtubule plus end. This may, in turn, control the dynamic behaviour of this cytoskeletal network and its anchoring to other structures.

  15. An ELMO2-RhoG-ILK network modulates microtubule dynamics

    PubMed Central

    Jackson, Bradley C.; Ivanova, Iordanka A.; Dagnino, Lina

    2015-01-01

    ELMO2 belongs to a family of scaffold proteins involved in phagocytosis and cell motility. ELMO2 can simultaneously bind integrin-linked kinase (ILK) and RhoG, forming tripartite ERI complexes. These complexes are involved in promoting β1 integrin–dependent directional migration in undifferentiated epidermal keratinocytes. ELMO2 and ILK have also separately been implicated in microtubule regulation at integrin-containing focal adhesions. During differentiation, epidermal keratinocytes cease to express integrins, but ERI complexes persist. Here we show an integrin-independent role of ERI complexes in modulation of microtubule dynamics in differentiated keratinocytes. Depletion of ERI complexes by inactivating the Ilk gene in these cells reduces microtubule growth and increases the frequency of catastrophe. Reciprocally, exogenous expression of ELMO2 or RhoG stabilizes microtubules, but only if ILK is also present. Mechanistically, activation of Rac1 downstream from ERI complexes mediates their effects on microtubule stability. In this pathway, Rac1 serves as a hub to modulate microtubule dynamics through two different routes: 1) phosphorylation and inactivation of the microtubule-destabilizing protein stathmin and 2) phosphorylation and inactivation of GSK-3β, which leads to the activation of CRMP2, promoting microtubule growth. At the cellular level, the absence of ERI species impairs Ca2+-mediated formation of adherens junctions, critical to maintaining mechanical integrity in the epidermis. Our findings support a key role for ERI species in integrin-independent stabilization of the microtubule network in differentiated keratinocytes. PMID:25995380

  16. An ELMO2-RhoG-ILK network modulates microtubule dynamics.

    PubMed

    Jackson, Bradley C; Ivanova, Iordanka A; Dagnino, Lina

    2015-07-15

    ELMO2 belongs to a family of scaffold proteins involved in phagocytosis and cell motility. ELMO2 can simultaneously bind integrin-linked kinase (ILK) and RhoG, forming tripartite ERI complexes. These complexes are involved in promoting β1 integrin-dependent directional migration in undifferentiated epidermal keratinocytes. ELMO2 and ILK have also separately been implicated in microtubule regulation at integrin-containing focal adhesions. During differentiation, epidermal keratinocytes cease to express integrins, but ERI complexes persist. Here we show an integrin-independent role of ERI complexes in modulation of microtubule dynamics in differentiated keratinocytes. Depletion of ERI complexes by inactivating the Ilk gene in these cells reduces microtubule growth and increases the frequency of catastrophe. Reciprocally, exogenous expression of ELMO2 or RhoG stabilizes microtubules, but only if ILK is also present. Mechanistically, activation of Rac1 downstream from ERI complexes mediates their effects on microtubule stability. In this pathway, Rac1 serves as a hub to modulate microtubule dynamics through two different routes: 1) phosphorylation and inactivation of the microtubule-destabilizing protein stathmin and 2) phosphorylation and inactivation of GSK-3β, which leads to the activation of CRMP2, promoting microtubule growth. At the cellular level, the absence of ERI species impairs Ca(2+)-mediated formation of adherens junctions, critical to maintaining mechanical integrity in the epidermis. Our findings support a key role for ERI species in integrin-independent stabilization of the microtubule network in differentiated keratinocytes.

  17. Dynamic interplay between nitration and phosphorylation of tubulin cofactor B in the control of microtubule dynamics

    PubMed Central

    Rayala, Suresh K.; Martin, Emil; Sharina, Iraida G.; Molli, Poonam R.; Wang, Xiaoping; Jacobson, Raymond; Murad, Ferid; Kumar, Rakesh

    2007-01-01

    Tubulin cofactor B (TCoB) plays an important role in microtubule dynamics by facilitating the dimerization of α- and β-tubulin. Recent evidence suggests that p21-activated kinase 1 (Pak1), a major signaling nodule in eukaryotic cells, phosphorylates TCoB on Ser-65 and Ser-128 and plays an essential role in microtubule regrowth. However, to date, no upstream signaling molecules have been identified to antagonize the functions of TCoB, which might help in maintaining the equilibrium of microtubules. Here, we discovered that TCoB is efficiently nitrated, mainly on Tyr-64 and Tyr-98, and nitrated-TCoB attenuates the synthesis of new microtubules. In addition, we found that nitration of TCoB antagonizes signaling-dependent phosphorylation of TCoB, whereas optimal nitration of TCoB requires the presence of functional Pak1 phosphorylation sites, thus providing a feedback mechanism to regulate phosphorylation-dependent MT regrowth. Together these findings identified TCoB as the third cytoskeleton protein to be nitrated and suggest a previously undescribed mechanism, whereby growth factor signaling may coordinately integrate nitric oxide signaling in the regulation of microtubule dynamics. PMID:18048340

  18. Functional specialization of stable and dynamic microtubules in protein traffic in WIF-B cells.

    PubMed

    Poüs, C; Chabin, K; Drechou, A; Barbot, L; Phung-Koskas, T; Settegrana, C; Bourguet-Kondracki, M L; Maurice, M; Cassio, D; Guyot, M; Durand, G

    1998-07-13

    We found that the magnesium salt of ilimaquinone, named 201-F, specifically disassembled dynamically unstable microtubules in fibroblasts and various epithelial cell lines. Unlike classical tubulin- interacting drugs such as nocodazole or colchicine which affect all classes of microtubules, 201-F did not depolymerize stable microtubules. In WIF-B-polarized hepatic cells, 201-F disrupted the Golgi complex and inhibited albumin and alpha1-antitrypsin secretion to the same extent as nocodazole. By contrast, 201-F did not impair the transport of membrane proteins to the basolateral surface, which was only affected by the total disassembly of cellular microtubules. Transcytosis of two apical membrane proteins-the alkaline phosphodiesterase B10 and dipeptidyl peptidase IV-was affected to the same extent by 201-F and nocodazole. Taken together, these results indicate that only dynamically unstable microtubules are involved in the transport of secretory proteins to the plasma membrane, and in the transcytosis of membrane proteins to the apical surface. By contrast, stable microtubules, which are not functionally affected by 201-F treatment, are involved in the transport of membrane proteins to the basolateral surface. By specifically disassembling highly dynamic microtubules, 201-F is an invaluable tool with which to study the functional specialization of stable and dynamic microtubules in living cells.

  19. Important factors determining the nanoscale tracking precision of dynamic microtubule ends

    PubMed Central

    BOHNER, G.; GUSTAFSSON, N.; CADE, N.I.; MAURER, S.P.; GRIFFIN, L.D.

    2016-01-01

    Summary Tracking dynamic microtubule ends in fluorescence microscopy movies provides insight into the statistical properties of microtubule dynamics and is vital for further analysis that requires knowledge of the trajectories of the microtubule ends. Here we analyse the performance of a previously developed automated microtubule end tracking routine; this has been optimized for comparatively low signal‐to‐noise image sequences that are characteristic of microscopy movies of dynamic microtubules growing in vitro. Sequences of simulated microtubule images were generated assuming a variety of different experimental conditions. The simulated movies were then tracked and the tracking errors were characterized. We found that the growth characteristics of the microtubules within realistic ranges had a negligible effect on the tracking precision. The fluorophore labelling density, the pixel size of the images, and the exposure times were found to be important parameters limiting the tracking precision which could be explained using concepts of single molecule localization microscopy. The signal‐to‐noise ratio was found to be a good single predictor of the tracking precision: typical experimental signal‐to‐noise ratios lead to tracking precisions in the range of tens of nanometres, making the tracking program described here a useful tool for dynamic microtubule end tracking with close to molecular precision. PMID:26444439

  20. Microtubule Dynamics in Living Root Hairs: Transient Slowing by Lipochitin Oligosaccharide Nodulation SignalsW⃞

    PubMed Central

    Vassileva, Valya N.; Kouchi, Hiroshi; Ridge, Robert W.

    2005-01-01

    The incorporation of a fusion of green fluorescent protein and tubulin-α 6 from Arabidopsis thaliana in root hairs of Lotus japonicus has allowed us to visualize and quantify the dynamic parameters of the cortical microtubules in living root hairs. Analysis of individual microtubule turnover in real time showed that only plus polymer ends contributed to overall microtubule dynamicity, exhibiting dynamic instability as the main type of microtubule behavior in Lotus root hairs. Comparison of the four standard parameters of in vivo dynamic instability—the growth rate, the disassembly rate, and the frequency of transitions from disassembly to growth (rescue) and from growth to disassembly (catastrophe)—revealed that microtubules in young root hairs were more dynamic than those in mature root hairs. Either inoculation with Mesorhizobium loti or purified M. loti lipochitin oligosaccharide signal molecules (Nod factors) significantly affected the growth rate and transition frequencies in emerging and growing root hairs, making microtubules less dynamic at a specific window after symbiotic inoculation. This response of root hair cells to rhizobial Nod factors is discussed in terms of the possible biological significance of microtubule dynamics in the early signaling events leading to the establishment and progression of the globally important Rhizobium/legume symbiosis. PMID:15863517

  1. A divergent canonical WNT-signaling pathway regulates microtubule dynamics

    PubMed Central

    Ciani, Lorenza; Krylova, Olga; Smalley, Matthew J.; Dale, Trevor C.; Salinas, Patricia C.

    2004-01-01

    Dishevelled (DVL) is associated with axonal microtubules and regulates microtubule stability through the inhibition of the serine/threonine kinase, glycogen synthase kinase 3β (GSK-3β). In the canonical WNT pathway, the negative regulator Axin forms a complex with β-catenin and GSK-3β, resulting in β-catenin degradation. Inhibition of GSK-3β by DVL increases β-catenin stability and TCF transcriptional activation. Here, we show that Axin associates with microtubules and unexpectedly stabilizes microtubules through DVL. In turn, DVL stabilizes microtubules by inhibiting GSK-3β through a transcription- and β-catenin–independent pathway. More importantly, axonal microtubules are stabilized after DVL localizes to axons. Increased microtubule stability is correlated with a decrease in GSK-3β–mediated phosphorylation of MAP-1B. We propose a model in which Axin, through DVL, stabilizes microtubules by inhibiting a pool of GSK-3β, resulting in local changes in the phosphorylation of cellular targets. Our data indicate a bifurcation in the so-called canonical WNT-signaling pathway to regulate microtubule stability. PMID:14734535

  2. Initiation of Hepatitis C Virus Infection Requires the Dynamic Microtubule Network

    PubMed Central

    Roohvand, Farzin; Maillard, Patrick; Lavergne, Jean-Pierre; Boulant, Steeve; Walic, Marine; Andréo, Ursula; Goueslain, Lucie; Helle, François; Mallet, Adeline; McLauchlan, John; Budkowska, Agata

    2009-01-01

    Early events leading to the establishment of hepatitis C virus (HCV) infection are not completely understood. We show that intact and dynamic microtubules play a key role in the initiation of productive HCV infection. Microtubules were required for virus entry into cells, as evidenced using virus pseudotypes presenting HCV envelope proteins on their surface. Studies carried out using the recent infectious HCV model revealed that microtubules also play an essential role in early, postfusion steps of the virus cycle. Moreover, low concentrations of vinblastin and nocodazol, microtubule-affecting drugs, and paclitaxel, which stabilizes microtubules, inhibited infection, suggesting that microtubule dynamic instability and/or treadmilling mechanisms are involved in HCV internalization and early transport. By protein chip and direct core-dependent pull-down assays, followed by mass spectrometry, we identified β- and α-tubulin as cellular partners of the HCV core protein. Surface plasmon resonance analyses confirmed that core directly binds to tubulin with high affinity via amino acids 2-117. The interaction of core with tubulin in vitro promoted its polymerization and enhanced the formation of microtubules. Immune electron microscopy showed that HCV core associates, at least temporarily, with microtubules polymerized in its presence. Studies by confocal microscopy showed a juxtaposition of core with microtubules in HCV-infected cells. In summary, we report that intact and dynamic microtubules are required for virus entry into cells and for early postfusion steps of infection. HCV may exploit a direct interaction of core with tubulin, enhancing microtubule polymerization, to establish efficient infection and promote virus transport and/or assembly in infected cells. PMID:19269968

  3. Lighting up microtubule cytoskeleton dynamics in skeletal muscle

    PubMed Central

    Masedunskas, Andrius; Appaduray, Mark; Gunning, Peter W; Hardeman, Edna C

    2014-01-01

    In the past few decades, live cell microscopy techniques in combination with fluorescent tagging have provided a true explosion in our knowledge of the inner functioning of the cell. Dynamic phenomena can be observed inside living cells and the behavior of individual molecules participating in those events can be documented. However, our preference for simple or easy model systems such as cell culture, has come at a cost of chasing artifacts and missing out on understanding real biology as it happens in complex multicellular organisms. We are now entering a new era where developing meaningful, but also tractable model systems to study biological phenomenon dynamically in vivo in a mammal is not only possible; it will become the gold standard for scientific quality and translational potential.1,2 A study by Oddoux et al. describing the dynamics of the microtubule (MT) cytoskeleton in skeletal muscle is one example that demonstrates the power of developing in vivo/ex vivo models.3 MTs have long attracted attention as targets for cancer therapeutics 4 and more recently as mediators of Duchene muscular dystrophy.5 The muscle fiber MT cytoskeleton forms an intricate rectilinear lattice beneath the sarcolemma and is essential for the structural integrity of the muscle. Cultured cells do not develop such a specialized organization of the MT cytoskeleton and our understanding of it has come from static snapshots of muscle sections.6 In this context, the methodology and the findings reported by Oddoux et al. are a significant step forward. PMID:28243508

  4. The role of microtubule dynamics in growth cone motility and axonal growth

    PubMed Central

    1995-01-01

    The growth cone contains dynamic and relatively stable microtubule populations, whose function in motility and axonal growth is uncharacterized. We have used vinblastine at low doses to inhibit microtubule dynamics without appreciable depolymerization to probe the role of these dynamics in growth cone behavior. At doses of vinblastine that interfere only with dynamics, the forward and persistent movement of the growth cone is inhibited and the growth cone wanders without appreciable forward translocation; it quickly resumes forward growth after the vinblastine is washed out. Direct visualization of fluorescently tagged microtubules in these neurons shows that in the absence of dynamic microtubules, the remaining mass of polymer does not invade the peripheral lamella and does not undergo the usual cycle of bundling and splaying and the growth cone stops forward movement. These experiments argue for a role for dynamic microtubules in allowing microtubule rearrangements in the growth cone. These rearrangements seem to be necessary for microtubule bundling, the subsequent coalescence of the cortex around the bundle to form new axon, and forward translocation of the growth cone. PMID:7822411

  5. Microtubule dynamics in relation to osmotic stress-induced ABA accumulation in Zea mays roots.

    PubMed

    Lü, Bing; Gong, Zhonghua; Wang, Juan; Zhang, Jianhua; Liang, Jiansheng

    2007-01-01

    Microtubules play important roles in many physiological processes such as plant responses to drought stress. Abscisic acid (ABA) accumulates significantly in plants in response to drought conditions, which has been considered as a major response for plants to enhance drought tolerance. In this work, the focus was on the possible roles of microtubules in the induction of ABA biosynthesis in the roots of Zea mays when subjected to osmotic stress. The dynamic changes of microtubules in response to the stress were investigated by immunofluorescence staining, enzyme-linked immunosorbent assay, and a pharmacological approach. Disruption and stabilization of microtubules both significantly stimulated ABA accumulation in maize root cells, although this stimulation was markedly lower than that caused by osmotic stress. Cells in which the microtubule stability had been changed did not respond further to osmotic stress in terms of ABA biosynthesis. However, treatment with both a microtubule de-stabilizer and a stabilizer enhanced the sensitivity of cells to osmotic stress in terms of ABA accumulation. It is suggested that both osmotic stress and changes in microtubule dynamics would trigger maize root cells to biosynthesize ABA, and interactions between osmotic stress and microtubule dynamics would have an effect on ABA accumulation in root cells, although the exact mechanism is not clear at present.

  6. Stable and dynamic microtubules coordinately shape the myosin activation zone during cytokinetic furrow formation

    PubMed Central

    Foe, Victoria E.; von Dassow, George

    2008-01-01

    The cytokinetic furrow arises from spatial and temporal regulation of cortical contractility. To test the role microtubules play in furrow specification, we studied myosin II activation in echinoderm zygotes by assessing serine19-phosphorylated regulatory light chain (pRLC) localization after precisely timed drug treatments. Cortical pRLC was globally depressed before cytokinesis, then elevated only at the equator. We implicated cell cycle biochemistry (not microtubules) in pRLC depression, and differential microtubule stability in localizing the subsequent myosin activation. With no microtubules, pRLC accumulation occurred globally instead of equatorially, and loss of just dynamic microtubules increased equatorial pRLC recruitment. Nocodazole treatment revealed a population of stable astral microtubules that formed during anaphase; among these, those aimed toward the equator grew longer, and their tips coincided with cortical pRLC accumulation. Shrinking the mitotic apparatus with colchicine revealed pRLC suppression near dynamic microtubule arrays. We conclude that opposite effects of stable versus dynamic microtubules focuses myosin activation to the cell equator during cytokinesis. PMID:18955555

  7. Microtubule Dynamics Interacting with Stabilizing Agents in a Cell-like Environment

    NASA Astrophysics Data System (ADS)

    Shojania Feizabadi, Mitra

    2010-03-01

    Microtubules, key components of the cytoskeleton, are involved in several biological functions. They are highly dynamic polymers that stochastically switch between growing and shrinking phases. Due to their critical role in the process of cell division, they are the target of anti-cancer drugs. Antimitotic drugs usually suppress the dynamic instability of microtubules and, therefore, affect the process of cell division. In this work, the dynamic of microtubules interacting with catastrophe suppressing drugs as stabilizing agents, introduced by Mishra et al. (Phys. Rev. E. 72, 51914, 2005), is modified in a confined geometry and associated with the obtained and analyzed steady state solutions.

  8. Microtubules as key coordinators of nuclear envelope and endoplasmic reticulum dynamics during mitosis.

    PubMed

    Schlaitz, Anne-Lore

    2014-07-01

    During mitosis, cells comprehensively restructure their interior to promote the faithful inheritance of DNA and cytoplasmic contents. In metazoans, this restructuring entails disassembly of the nuclear envelope, redistribution of its components into the endoplasmic reticulum (ER) and eventually nuclear envelope reassembly around the segregated chromosomes. The microtubule cytoskeleton has recently emerged as a critical regulator of mitotic nuclear envelope and ER dynamics. Microtubules and associated molecular motors tear open the nuclear envelope in prophase and remove nuclear envelope remnants from chromatin. Additionally, two distinct mechanisms of microtubule-based regulation of ER dynamics operate later in mitosis. First, association of the ER with microtubules is reduced, preventing invasion of ER into the spindle area, and second, organelle membrane is actively cleared from metaphase chromosomes. However, we are only beginning to understand the role of microtubules in shaping and distributing ER and other organelles during mitosis.

  9. Regulation of microtubule dynamic instability in vitro by differentially phosphorylated stathmin.

    PubMed

    Manna, Tapas; Thrower, Douglas A; Honnappa, Srinivas; Steinmetz, Michel O; Wilson, Leslie

    2009-06-05

    Stathmin is an important regulator of microtubule polymerization and dynamics. When unphosphorylated it destabilizes microtubules in two ways, by reducing the microtubule polymer mass through sequestration of soluble tubulin into an assembly-incompetent T2S complex (two alpha:beta tubulin dimers per molecule of stathmin), and by increasing the switching frequency (catastrophe frequency) from growth to shortening at plus and minus ends by binding directly to the microtubules. Phosphorylation of stathmin on one or more of its four serine residues (Ser(16), Ser(25), Ser(38), and Ser(63)) reduces its microtubule-destabilizing activity. However, the effects of phosphorylation of the individual serine residues of stathmin on microtubule dynamic instability have not been investigated systematically. Here we analyzed the effects of stathmin singly phosphorylated at Ser(16) or Ser(63), and doubly phosphorylated at Ser(25) and Ser(38), on its ability to modulate microtubule dynamic instability at steady-state in vitro. Phosphorylation at either Ser(16) or Ser(63) strongly reduced or abolished the ability of stathmin to bind to and sequester soluble tubulin and its ability to act as a catastrophe factor by directly binding to the microtubules. In contrast, double phosphorylation of Ser(25) and Ser(38) did not affect the binding of stathmin to tubulin or microtubules or its catastrophe-promoting activity. Our results indicate that the effects of stathmin on dynamic instability are strongly but differently attenuated by phosphorylation at Ser(16) and Ser(63) and support the hypothesis that selective targeting by Ser(16)-specific or Ser(63)-specific kinases provides complimentary mechanisms for regulating microtubule function.

  10. Microtubule-based nanomaterials: Exploiting nature's dynamic biopolymers.

    PubMed

    Bachand, George D; Spoerke, Erik D; Stevens, Mark J

    2015-06-01

    For more than a decade now, biomolecular systems have served as an inspiration for the development of synthetic nanomaterials and systems that are capable of reproducing many of unique and emergent behaviors of living systems. One intriguing element of such systems may be found in a specialized class of proteins known as biomolecular motors that are capable of performing useful work across multiple length scales through the efficient conversion of chemical energy. Microtubule (MT) filaments may be considered within this context as their dynamic assembly and disassembly dissipate energy, and perform work within the cell. MTs are one of three cytoskeletal filaments in eukaryotic cells, and play critical roles in a range of cellular processes including mitosis and vesicular trafficking. Based on their function, physical attributes, and unique dynamics, MTs also serve as a powerful archetype of a supramolecular filament that underlies and drives multiscale emergent behaviors. In this review, we briefly summarize recent efforts to generate hybrid and composite nanomaterials using MTs as biomolecular scaffolds, as well as computational and synthetic approaches to develop synthetic one-dimensional nanostructures that display the enviable attributes of the natural filaments.

  11. Microtubule-based nanomaterials: Exploiting nature's dynamic biopolymers

    DOE PAGES

    Bachand, George D.; Stevens, Mark J.; Spoerke, Erik David

    2015-04-09

    For more than a decade now, biomolecular systems have served as an inspiration for the development of synthetic nanomaterials and systems that are capable of reproducing many of unique and emergent behaviors of living systems. In addition, one intriguing element of such systems may be found in a specialized class of proteins known as biomolecular motors that are capable of performing useful work across multiple length scales through the efficient conversion of chemical energy. Microtubule (MT) filaments may be considered within this context as their dynamic assembly and disassembly dissipate energy, and perform work within the cell. MTs are onemore » of three cytoskeletal filaments in eukaryotic cells, and play critical roles in a range of cellular processes including mitosis and vesicular trafficking. Based on their function, physical attributes, and unique dynamics, MTs also serve as a powerful archetype of a supramolecular filament that underlies and drives multiscale emergent behaviors. In this review, we briefly summarize recent efforts to generate hybrid and composite nanomaterials using MTs as biomolecular scaffolds, as well as computational and synthetic approaches to develop synthetic one-dimensional nanostructures that display the enviable attributes of the natural filaments.« less

  12. Microtubule-based nanomaterials: Exploiting nature's dynamic biopolymers

    SciTech Connect

    Bachand, George D.; Stevens, Mark J.; Spoerke, Erik David

    2015-04-09

    For more than a decade now, biomolecular systems have served as an inspiration for the development of synthetic nanomaterials and systems that are capable of reproducing many of unique and emergent behaviors of living systems. In addition, one intriguing element of such systems may be found in a specialized class of proteins known as biomolecular motors that are capable of performing useful work across multiple length scales through the efficient conversion of chemical energy. Microtubule (MT) filaments may be considered within this context as their dynamic assembly and disassembly dissipate energy, and perform work within the cell. MTs are one of three cytoskeletal filaments in eukaryotic cells, and play critical roles in a range of cellular processes including mitosis and vesicular trafficking. Based on their function, physical attributes, and unique dynamics, MTs also serve as a powerful archetype of a supramolecular filament that underlies and drives multiscale emergent behaviors. In this review, we briefly summarize recent efforts to generate hybrid and composite nanomaterials using MTs as biomolecular scaffolds, as well as computational and synthetic approaches to develop synthetic one-dimensional nanostructures that display the enviable attributes of the natural filaments.

  13. γ-Tubulin ring complexes regulate microtubule plus end dynamics

    PubMed Central

    Bouissou, Anaïs; Vérollet, Christel; Sousa, Aureliana; Sampaio, Paula; Wright, Michel; Sunkel, Claudio E.; Merdes, Andreas

    2009-01-01

    γ-Tubulin is critical for the initiation and regulation of microtubule (MT) assembly. In Drosophila melanogaster, it acts within two main complexes: the γ-tubulin small complex (γ-TuSC) and the γ-tubulin ring complex (γ-TuRC). Proteins specific of the γ-TuRC, although nonessential for viability, are required for efficient mitotic progression. Until now, their role during interphase remained poorly understood. Using RNA interference in Drosophila S2 cells, we show that the γ-TuRC is not critical for overall MT organization. However, depletion of any component of this complex results in an increase of MT dynamics. Combined immunofluorescence and live imaging analysis allows us to reveal that the γ-TuRC localizes along interphase MTs and that distal γ-tubulin spots match with sites of pause or rescue events. We propose that, in addition to its role in nucleation, the γ-TuRC associated to MTs may regulate their dynamics by limiting catastrophes. PMID:19948476

  14. Phosphoregulation promotes release of kinetochores from dynamic microtubules via multiple mechanisms.

    PubMed

    Sarangapani, Krishna K; Akiyoshi, Bungo; Duggan, Nicole M; Biggins, Sue; Asbury, Charles L

    2013-04-30

    During mitosis, multiprotein complexes called kinetochores orchestrate chromosome segregation by forming load-bearing attachments to dynamic microtubule tips, and by participating in phosphoregulatory error correction. The conserved kinase Aurora B phosphorylates the major microtubule-binding kinetochore subcomplexes, Ndc80 and (in yeast) Dam1, to promote release of erroneous attachments, giving another chance for proper attachments to form. It is unknown whether Aurora B phosphorylation promotes release directly, by increasing the rate of kinetochore detachment, or indirectly, by destabilizing the microtubule tip. Moreover, the relative importance of phosphorylation of Ndc80 vs. Dam1 in the context of whole kinetochores is unclear. To address these uncertainties, we isolated native yeast kinetochore particles carrying phosphomimetic mutations on Ndc80 and Dam1, and applied advanced laser-trapping techniques to measure the strength and stability of their attachments to individual dynamic microtubule tips. Rupture forces were reduced by phosphomimetic mutations on both subcomplexes, in an additive manner, indicating that both subcomplexes make independent contributions to attachment strength. Phosphomimetics on either subcomplex reduced attachment lifetimes under constant force, primarily by accelerating detachment during microtubule growth. Phosphomimetics on Dam1 also increased the likelihood of switches from microtubule growth into shortening, further promoting release in an indirect manner. Taken together, our results suggest that, in vivo, Aurora B releases kinetochores via at least two mechanisms: by weakening the kinetochore-microtubule interface and also by destabilizing the kinetochore-attached microtubule tip.

  15. Visualization of the Peroxisomal Compartment in Living Mammalian Cells: Dynamic Behavior and Association with Microtubules

    PubMed Central

    Wiemer, Erik A.C.; Wenzel, Thibaut; Deerinck, Thomas J.; Ellisman, Mark H.; Subramani, Suresh

    1997-01-01

    Peroxisomes in living CV1 cells were visualized by targeting the green fluorescent protein (GFP) to this subcellular compartment through the addition of a COOH-terminal peroxisomal targeting signal 1 (GFP–PTS1). The organelle dynamics were examined and analyzed using time-lapse confocal laser scanning microscopy. Two types of movement could be distinguished: a relatively slow, random, vibration-like movement displayed by the majority (∼95%) of the peroxisomes, and a saltatory, fast directional movement displayed by a small subset (∼5%) of the peroxisomes. In the latter instance, peak velocities up to 0.75 μm/s and sustained directional velocities up to 0.45 μm/s over 11.5 μm were recorded. Only the directional type of motion appeared to be energy dependent, whereas the vibrational movement continued even after the cells were depleted of energy. Treatment of cells, transiently expressing GFP–PTS1, with microtubule-destabilizing agents such as nocodazole, vinblastine, and demecolcine clearly altered peroxisome morphology and subcellular distribution and blocked the directional movement. In contrast, the microtubule-stabilizing compound paclitaxel, or the microfilament-destabilizing drugs cytochalasin B or D, did not exert these effects. High resolution confocal analysis of cells expressing GFP–PTS1 and stained with anti-tubulin antibodies revealed that many peroxisomes were associated with microtubules. The GFP–PTS1–labeled peroxisomes were found to distribute themselves in a stochastic, rather than ordered, manner to daughter cells at the time of mitosis. PMID:9008704

  16. Distinct ECM mechanosensing pathways regulate microtubule dynamics to control endothelial cell branching morphogenesis

    PubMed Central

    Myers, Kenneth A.; Applegate, Kathryn T.

    2011-01-01

    During angiogenesis, cytoskeletal dynamics that mediate endothelial cell branching morphogenesis during vascular guidance are thought to be regulated by physical attributes of the extracellular matrix (ECM) in a process termed mechanosensing. Here, we tested the involvement of microtubules in linking mechanosensing to endothelial cell branching morphogenesis. We used a recently developed microtubule plus end–tracking program to show that specific parameters of microtubule assembly dynamics, growth speed and growth persistence, are globally and regionally modified by, and contribute to, ECM mechanosensing. We demonstrated that engagement of compliant two-dimensional or three-dimensional ECMs induces local differences in microtubule growth speed that require myosin II contractility. Finally, we found that microtubule growth persistence is modulated by myosin II–mediated compliance mechanosensing when cells are cultured on two-dimensional ECMs, whereas three-dimensional ECM engagement makes microtubule growth persistence insensitive to changes in ECM compliance. Thus, compliance and dimensionality ECM mechanosensing pathways independently regulate specific and distinct microtubule dynamics parameters in endothelial cells to guide branching morphogenesis in physically complex ECMs. PMID:21263030

  17. A minimal model for kinetochore-microtubule dynamics

    NASA Astrophysics Data System (ADS)

    Liu, Andrea

    2014-03-01

    During mitosis, chromosome pairs align at the center of a bipolar microtubule (MT) spindle and oscillate as MTs attaching them to the cell poles polymerize and depolymerize. The cell fixes misaligned pairs by a tension-sensing mechanism. Pairs later separate as shrinking MTs pull each chromosome toward its respective cell pole. We present a minimal model for these processes based on properties of MT kinetics. We apply the measured tension-dependence of single MT kinetics to a stochastic many MT model, which we solve numerically and with master equations. We find that the force-velocity curve for the single chromosome system is bistable and hysteretic. Above some threshold load, tension fluctuations induce MTs to spontaneously switch from a pulling state into a growing, pushing state. To recover pulling from the pushing state, the load must be reduced far below the threshold. This leads to oscillations in the two-chromosome system. Our minimal model quantitatively captures several aspects of kinetochore dynamics observed experimentally. This work was supported by NSF-DMR-1104637.

  18. Ubiquitin editing enzyme UCH L1 and microtubule dynamics: implication in mitosis.

    PubMed

    Bheda, Anjali; Gullapalli, Anuradha; Caplow, Michael; Pagano, Joseph S; Shackelford, Julia

    2010-03-01

    Microtubules are essential components of the cytoskeleton and are involved in many aspects of cell responses including cell division, migration, and intracellular signal transduction. Among other factors, post-translational modifications play a significant role in the regulation of microtubule dynamics. Here, we demonstrate that the ubiquitin-editing enzyme UCH L1, abundant expression of which is normally restricted to brain tissue, is also a part of the microtubule network in a variety of transformed cells. Moreover, during mitosis, endogenous UCH L1 is expressed and tightly associated with the mitotic spindle through all stages of M phase, suggesting that UCH L1 is involved in regulation of microtubule dynamics. Indeed, addition of recombinant UCH L1 to the reaction of tubulin polymerization in vitro had an inhibitory effect on microtubule formation. Unexpectedly, western blot analysis of tubulin fractions after polymerization revealed the presence of a specific approximately 50 kDa band of UCH L1 (not the normal approximately 25 kDa) in association with microtubules, but not with free tubulin. In addition, we show that along with 25 kDa UCH L1, endogenous high molecular weight UCH L1 complexes exist in cells, and that levels of 50 kDa UCH L1 complexes are increasing in cells during mitosis. Finally, we provide evidence that ubiquitination is involved in tubulin polymerization: the presence of ubiquitin during polymerization in vitro by itself inhibited microtubule formation and enhanced the inhibitory effect of added UCH L1. The inhibitory effects of UCH L1 correlate with an increase in ubiquitination of microtubule components. Since besides being a deubiquitinating enzyme, UCH L1 as a dimer has also been shown to exhibit ubiquitin ligase activity, we discuss the possibility that the approximately 50 kDa UCH L1 observed is a dimer which prevents microtubule formation through ubiquitination of tubulins and/or microtubule-associated proteins.

  19. A Case for Microtubule Vulnerability in Amyotrophic Lateral Sclerosis: Altered Dynamics During Disease

    PubMed Central

    Clark, Jayden A.; Yeaman, Elise J.; Blizzard, Catherine A.; Chuckowree, Jyoti A.; Dickson, Tracey C.

    2016-01-01

    Amyotrophic lateral sclerosis (ALS) is an aggressive multifactorial disease converging on a common pathology: the degeneration of motor neurons (MNs), their axons and neuromuscular synapses. This vulnerability and dysfunction of MNs highlights the dependency of these large cells on their intracellular machinery. Neuronal microtubules (MTs) are intracellular structures that facilitate a myriad of vital neuronal functions, including activity dependent axonal transport. In ALS, it is becoming increasingly apparent that MTs are likely to be a critical component of this disease. Not only are disruptions in this intracellular machinery present in the vast majority of seemingly sporadic cases, recent research has revealed that mutation to a microtubule protein, the tubulin isoform TUBA4A, is sufficient to cause a familial, albeit rare, form of disease. In both sporadic and familial disease, studies have provided evidence that microtubule mediated deficits in axonal transport are the tipping point for MN survivability. Axonal transport deficits would lead to abnormal mitochondrial recycling, decreased vesicle and mRNA transport and limited signaling of key survival factors from the neurons peripheral synapses, causing the characteristic peripheral “die back”. This disruption to microtubule dependant transport in ALS has been shown to result from alterations in the phenomenon of microtubule dynamic instability: the rapid growth and shrinkage of microtubule polymers. This is accomplished primarily due to aberrant alterations to microtubule associated proteins (MAPs) that regulate microtubule stability. Indeed, the current literature would argue that microtubule stability, particularly alterations in their dynamics, may be the initial driving force behind many familial and sporadic insults in ALS. Pharmacological stabilization of the microtubule network offers an attractive therapeutic strategy in ALS; indeed it has shown promise in many neurological disorders, ALS

  20. Dietary flavonoid fisetin binds to β-tubulin and disrupts microtubule dynamics in prostate cancer cells.

    PubMed

    Mukhtar, Eiman; Adhami, Vaqar Mustafa; Sechi, Mario; Mukhtar, Hasan

    2015-10-28

    Microtubule targeting based therapies have revolutionized cancer treatment; however, resistance and side effects remain a major limitation. Therefore, novel strategies that can overcome these limitations are urgently needed. We made a novel discovery that fisetin, a hydroxyflavone, is a microtubule stabilizing agent. Fisetin binds to tubulin and stabilizes microtubules with binding characteristics far superior than paclitaxel. Surface plasmon resonance and computational docking studies suggested that fisetin binds to β-tubulin with superior affinity compared to paclitaxel. Fisetin treatment of human prostate cancer cells resulted in robust up-regulation of microtubule associated proteins (MAP)-2 and -4. In addition, fisetin treated cells were enriched in α-tubulin acetylation, an indication of stabilization of microtubules. Fisetin significantly inhibited PCa cell proliferation, migration, and invasion. Nudc, a protein associated with microtubule motor dynein/dynactin complex that regulates microtubule dynamics, was inhibited with fisetin treatment. Further, fisetin treatment of a P-glycoprotein overexpressing multidrug-resistant cancer cell line NCI/ADR-RES inhibited the viability and colony formation. Our results offer in vitro proof-of-concept for fisetin as a microtubule targeting agent. We suggest that fisetin could be developed as an adjuvant for treatment of prostate and other cancer types. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Dietary flavonoid fisetin binds to β-tubulin and disrupts microtubule dynamics in prostate cancer cells

    PubMed Central

    Mukhtar, Eiman; Adhami, Vaqar Mustafa; Sechi, Mario; Mukhtar, Hasan

    2015-01-01

    Microtubule targeting based therapies have revolutionized cancer treatment; however, resistance and side effects remain a major limitation. Therefore, novel strategies that can overcome these limitations are urgently needed. We made a novel discovery that fisetin, a hydroxyflavone, is a microtubule stabilizing agent. Fisetin binds to tubulin and stabilizes microtubules with binding characteristics far superior than paclitaxel. Surface plasmon resonance and computational docking studies suggested that fisetin binds to β-tubulin with superior affinity compared to paclitaxel. Fisetin treatment of human prostate cancer cells resulted in robust up-regulation of microtubule associated proteins (MAP)-2 and -4. In addition, fisetin treated cells were enriched in α-tubulin acetylation, an indication of stabilization of microtubules. Fisetin significantly inhibited PCa cell proliferation, migration, and invasion. Nudc, a protein associated with microtubule motor dynein/dynactin complex that regulates microtubule dynamics, was inhibited with fisetin treatment. Further, fisetin treatment of a P-glycoprotein overexpressing multidrug-resistant cancer cell line NCI/ADR-RES inhibited the viability and colony formation. Our results offer in vitro proof-of-concept for fisetin as a microtubule targeting agent. We suggest that fisetin could be developed as an adjuvant for treatment of prostate and other cancer types. PMID:26235140

  2. Mechanism and Dynamics of Breakage of Fluorescent Microtubules

    PubMed Central

    Guo, Honglian; Xu, Chunhua; Liu, Chunxiang; Qu, E.; Yuan, Ming; Li, Zhaolin; Cheng, Bingying; Zhang, Daozhong

    2006-01-01

    The breakage of fluorescence-labeled microtubules under irradiation of excitation light is found in our experiments. Its mechanism is studied. The results indicate that free radicals are the main reason for the photosensitive breakage. Furthermore, the mechanical properties of the microtubules are probed with a dual-optical tweezers system. It is found that the fluorescence-labeled microtubules are much easier to extend compared with those without fluorescence. Such microtubules can be extended by 30%, and the force for breaking them up is only several piconewtons. In addition, we find that the breakup of the protofilaments is not simultaneous but step-by-step, which further confirms that the interaction between protofilaments is fairly weak. PMID:16387782

  3. Non-linear dynamics in biological microtubules: solitons and dissipation-free energy transfer

    NASA Astrophysics Data System (ADS)

    Mavromatos, Nick E.

    2017-08-01

    I review some recent developments concerning soliton solutions in biological microtubules and their significance in transferring energy without dissipation. I discuss various types of soliton solutions, as well as ‘spikes’, of the associated non-linear Lagrange equations describing the dynamics of a ‘pseudo-spin non-linear σ-model’ that models the dynamics of a microtubule system with dipole-dipole interactions. These results will hopefully contribute to a better understanding of the functional properties of microtubules, including the motor protein dynamics and the information transfer processes. With regards to the latter we also speculate on the use of microtubules as ‘logical’ gates. Our considerations are classical, but the soliton solutions may have a microscopic quantum origin, which we briefly touch upon.

  4. The microtubule lattice and plus-end association of Drosophila Mini spindles is spatially regulated to fine-tune microtubule dynamics

    PubMed Central

    Currie, Joshua D.; Stewman, Shannon; Schimizzi, Gregory; Slep, Kevin C.; Ma, Ao; Rogers, Stephen L.

    2011-01-01

    Individual microtubules (MTs) exhibit dynamic instability, a behavior in which they cycle between phases of growth and shrinkage while the total amount of MT polymer remains constant. Dynamic instability is promoted by the conserved XMAP215/Dis1 family of microtubule-associated proteins (MAPs). In this study, we conducted an in vivo structure–function analysis of the Drosophila homologue Mini spindles (Msps). Msps exhibits EB1-dependent and spatially regulated MT localization, targeting to microtubule plus ends in the cell interior and decorating the lattice of growing and shrinking microtubules in the cell periphery. RNA interference rescue experiments revealed that the NH2-terminal four TOG domains of Msps function as paired units and were sufficient to promote microtubule dynamics and EB1 comet formation. We also identified TOG5 and novel inter-TOG linker motifs that are required for targeting Msps to the microtubule lattice. These novel microtubule contact sites are necessary for the interplay between the conserved TOG domains and inter-TOG MT binding that underlies the ability of Msps to promote MT dynamic instability. PMID:21965297

  5. Integrated modeling methodology for microtubule dynamics and Taxol kinetics with experimentally identifiable parameters.

    PubMed

    Zhao, He; Sokhansanj, Bahrad A

    2007-10-01

    Microtubule dynamics play a critical role in cell function and stress response, modulating mitosis, morphology, signaling, and transport. Drugs such as paclitaxel (Taxol) can impact tubulin polymerization and affect microtubule dynamics. While theoretical methods have been previously proposed to simulate microtubule dynamics, we develop a methodology here that can be used to compare model predictions with experimental data. Our model is a hybrid of (1) a simple two-state stochastic formulation of tubulin polymerization kinetics and (2) an equilibrium approximation for the chemical kinetics of Taxol drug binding to microtubule ends. Model parameters are biologically realistic, with values taken directly from experimental measurements. Model validation is conducted against published experimental data comparing optical measurements of microtubule dynamics in cultured cells under normal and Taxol-treated conditions. To compare model predictions with experimental data requires applying a "windowing" strategy on the spatiotemporal resolution of the simulation. From a biological perspective, this is consistent with interpreting the microtubule "pause" phenomenon as at least partially an artifact of spatiotemporal resolution limits on experimental measurement.

  6. The molecular dynamics of crawling migration in microtubule-disrupted keratocytes.

    PubMed

    Nakashima, Hitomi; Okimura, Chika; Iwadate, Yoshiaki

    2015-01-01

    Cell-crawling migration plays an essential role in complex biological phenomena. It is now generally believed that many processes essential to such migration are regulated by microtubules in many cells, including fibroblasts and neurons. However, keratocytes treated with nocodazole, which is an inhibitor of microtubule polymerization - and even keratocyte fragments that contain no microtubules - migrate at the same velocity and with the same directionality as normal keratocytes. In this study, we discovered that not only these migration properties, but also the molecular dynamics that regulate such properties, such as the retrograde flow rate of actin filaments, distributions of vinculin and myosin II, and traction forces, are also the same in nocodazole-treated keratocytes as those in untreated keratocytes. These results suggest that microtubules are not in fact required for crawling migration of keratocytes, either in terms of migrating properties or of intracellular molecular dynamics.

  7. Microtubule catastrophe and rescue.

    PubMed

    Gardner, Melissa K; Zanic, Marija; Howard, Jonathon

    2013-02-01

    Microtubules are long cylindrical polymers composed of tubulin subunits. In cells, microtubules play an essential role in architecture and motility. For example, microtubules give shape to cells, serve as intracellular transport tracks, and act as key elements in important cellular structures such as axonemes and mitotic spindles. To accomplish these varied functions, networks of microtubules in cells are very dynamic, continuously remodeling through stochastic length fluctuations at the ends of individual microtubules. The dynamic behavior at the end of an individual microtubule is termed 'dynamic instability'. This behavior manifests itself by periods of persistent microtubule growth interrupted by occasional switching to rapid shrinkage (called microtubule 'catastrophe'), and then by switching back from shrinkage to growth (called microtubule 'rescue'). In this review, we summarize recent findings which provide new insights into the mechanisms of microtubule catastrophe and rescue, and discuss the impact of these findings in regards to the role of microtubule dynamics inside of cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Microtubule Catastrophe and Rescue

    PubMed Central

    Gardner, Melissa K.; Zanic, Marija; Howard, Jonathon

    2012-01-01

    Microtubules are long cylindrical polymers composed of tubulin subunits. In cells, microtubules play an essential role in architecture and motility. For example, microtubules give shape to cells, serve as intracellular transport tracks, and act as key elements in important cellular structures such as axonemes and mitotic spindles. To accomplish these varied functions, networks of microtubules in cells are very dynamic, continuously remodeling through stochastic length fluctuations at the ends of individual microtubules. The dynamic behavior at the end of an individual microtubule is termed “dynamic instability”. This behavior manifests itself by periods of persistent microtubule growth interrupted by occasional switching to rapid shrinkage (called microtubule `catastrophe'), and then by switching back from shrinkage to growth (called microtubule `rescue'). In this review, we summarize recent findings which provide new insights into the mechanisms of microtubule catastrophe and rescue, and discuss the impact of these findings in regards to the role of microtubule dynamics inside of cells. PMID:23092753

  9. Kinetochore microtubule dynamics and the metaphase-anaphase transition.

    PubMed

    Zhai, Y; Kronebusch, P J; Borisy, G G

    1995-11-01

    We have quantitatively studied the dynamic behavior of kinetochore fiber microtubules (kMTs); both turnover and poleward transport (flux) in metaphase and anaphase mammalian cells by fluorescence photoactivation. Tubulin derivatized with photoactivatable fluorescein was microinjected into prometaphase LLC-PK and PtK1 cells and allowed to incorporate to steady-state. A fluorescent bar was generated across the MTs in a half-spindle of the mitotic cells using laser irradiation and the kinetics of fluorescence redistribution were determined in terms of a double exponential decay process. The movement of the activated zone was also measured along with chromosome movement and spindle elongation. To investigate the possible regulation of MT transport at the metaphase-anaphase transition, we performed double photoactivation analyses on the same spindles as the cell advanced from metaphase to anaphase. We determined values for the turnover of kMTs (t1/2 = 7.1 +/- 2.4 min at 30 degrees C) and demonstrated that the turnover of kMTs in metaphase is approximately an order of magnitude slower than that for non-kMTs. In anaphase, kMTs become dramatically more stable as evidenced by a fivefold increase in the fluorescence redistribution half-time (t1/2 = 37.5 +/- 8.5 min at 30 degrees C). Our results also indicate that MT transport slows abruptly at anaphase onset to one-half the metaphase value. In early anaphase, MT depolymerization at the kinetochore accounted, on average, for 84% of the rate of chromosome movement toward the pole whereas the relative contribution of MT transport and depolymerization at the pole contributed 16%. These properties reflect a dramatic shift in the dynamic behavior of kMTs at the metaphase-anaphase transition. A release-capture model is presented in which the stability of kMTs is increased at the onset of anaphase through a reduction in the probability of MT release from the kinetochore. The reduction in MT transport at the metaphase

  10. MCAK-mediated regulation of endothelial cell microtubule dynamics is mechanosensitive to myosin-II contractility

    PubMed Central

    D’Angelo, Lauren; Myer, Nicole M.; Myers, Kenneth A.

    2017-01-01

    Compliance and dimensionality mechanosensing, the processes by which cells sense the physical attributes of the extracellular matrix (ECM), are known to drive cell branching and shape change largely through a myosin-II–mediated reorganization of the actin and microtubule (MT) cytoskeletons. Subcellular regulation of MT dynamics is spatially controlled through a Rac1–Aurora-A kinase pathway that locally inhibits the MT depolymerizing activity of mitotic centromere–associated kinesin (MCAK), thereby promoting leading-edge MT growth and cell polarization. These results suggest that the regulation of MT growth dynamics is intimately linked to physical engagement of the cell with the ECM. Here, we tested the hypothesis that MCAK contributes to compliance and dimensionality mechanosensing-mediated regulation of MT growth dynamics through a myosin-II–dependent signaling pathway. We cultured endothelial cells (ECs) on collagen-coupled stiff or compliant polyacrylamide ECMs to examine the effects of MCAK expression on MT growth dynamics and EC branching morphology. Our results identify that MCAK promotes fast MT growth speeds in ECs cultured on compliant 2D ECMs but promotes slow MT growth speeds in ECs cultured on compliant 3D ECMs, and these effects are myosin-II dependent. Furthermore, we find that 3D ECM engagement uncouples MCAK-mediated regulation of MT growth persistence from myosin-II–mediated regulation of growth persistence specifically within EC branched protrusions. PMID:28298485

  11. Dynamic microtubules at the vegetal cortex predict the embryonic axis in zebrafish.

    PubMed

    Tran, Long Duc; Hino, Hiromu; Quach, Helen; Lim, Shimin; Shindo, Asako; Mimori-Kiyosue, Yuko; Mione, Marina; Ueno, Naoto; Winkler, Christoph; Hibi, Masahiko; Sampath, Karuna

    2012-10-01

    In zebrafish, as in many animals, maternal dorsal determinants are vegetally localized in the egg and are transported after fertilization in a microtubule-dependent manner. However, the organization of early microtubules, their dynamics and their contribution to axis formation are not fully understood. Using live imaging, we identified two populations of microtubules, perpendicular bundles and parallel arrays, which are directionally oriented and detected exclusively at the vegetal cortex before the first cell division. Perpendicular bundles emanate from the vegetal cortex, extend towards the blastoderm, and orient along the animal-vegetal axis. Parallel arrays become asymmetric on the vegetal cortex, and orient towards dorsal. We show that the orientation of microtubules at 20 minutes post-fertilization can predict where the embryonic dorsal structures in zebrafish will form. Furthermore, we find that parallel microtubule arrays colocalize with wnt8a RNA, the candidate maternal dorsal factor. Vegetal cytoplasmic granules are displaced with parallel arrays by ~20°, providing in vivo evidence of a cortical rotation-like process in zebrafish. Cortical displacement requires parallel microtubule arrays, and probably contributes to asymmetric transport of maternal determinants. Formation of parallel arrays depends on Ca(2+) signaling. Thus, microtubule polarity and organization predicts the zebrafish embryonic axis. In addition, our results suggest that cortical rotation-like processes might be more common in early development than previously thought.

  12. Aurora B suppresses microtubule dynamics and limits central spindle size by locally activating KIF4A

    PubMed Central

    Nunes Bastos, Ricardo; Gandhi, Sapan R.; Baron, Ryan D.; Gruneberg, Ulrike; Nigg, Erich A.

    2013-01-01

    Anaphase central spindle formation is controlled by the microtubule-stabilizing factor PRC1 and the kinesin KIF4A. We show that an MKlp2-dependent pool of Aurora B at the central spindle, rather than global Aurora B activity, regulates KIF4A accumulation at the central spindle. KIF4A phosphorylation by Aurora B stimulates the maximal microtubule-dependent ATPase activity of KIF4A and promotes its interaction with PRC1. In the presence of phosphorylated KIF4A, microtubules grew more slowly and showed long pauses in growth, resulting in the generation of shorter PRC1-stabilized microtubule overlaps in vitro. Cells expressing only mutant forms of KIF4A lacking the Aurora B phosphorylation site overextended the anaphase central spindle, demonstrating that this regulation is crucial for microtubule length control in vivo. Aurora B therefore ensures that suppression of microtubule dynamic instability by KIF4A is restricted to a specific subset of microtubules and thereby contributes to central spindle size control in anaphase. PMID:23940115

  13. Mechanical Effects of Dynamic Binding between Tau Proteins on Microtubules during Axonal Injury

    PubMed Central

    Ahmadzadeh, Hossein; Smith, Douglas H.; Shenoy, Vivek B.

    2015-01-01

    The viscoelastic nature of axons plays a key role in their selective vulnerability to damage in traumatic brain injury (TBI). Experimental studies have shown that although axons can tolerate 100% strain under slow loading rates, even strain as small as 5% can rupture microtubules (MTs) during the fast loading velocities relevant to TBI. Here, we developed a computational model to examine rate-dependent behavior related to dynamic interactions between MTs and the MT-associated protein tau under varying strains and strain rates. In the model, inverted pairs of tau proteins can dynamically cross-link parallel MTs via the respective MT-binding domain of each tau. The model also incorporates realistic thermodynamic breaking and reformation of the bonds between the connected tau proteins as they respond to mechanical stretch. With simulated stretch of the axon, the model shows that despite the highly dynamic nature of binding and unbinding events, under fast loading rates relevant to TBI, large tensile forces can be transmitted to the MTs that can lead to mechanical rupture of the MT cylinder, in agreement with experimental observations and as inferred in human TBI. In contrast, at slow loading rates, the progressive breaking and reformation of the bonds between the tau proteins facilitate the extension of axons up to ∼100% strain without any microstructural damage. The model also predicts that under fast loading rates, individual MTs detach from MT bundles via sequential breaking of the tau-tau bonds. Finally, the model demonstrates that longer MTs are more susceptible to mechanical rupture, whereas short MTs are more prone to detachment from the MT bundle, leading to disintegration of the axonal MT ultrastructure. Notably, the predictions from the model are in excellent agreement with the findings of the recent in vitro mechanical testing of micropatterned neuronal cultures. PMID:26636944

  14. Microtubule dynamics in the peripheral nervous system: A matter of balance.

    PubMed

    Almeida-Souza, Leonardo; Timmerman, Vincent; Janssens, Sophie

    2011-11-01

    The special architecture of neurons in the peripheral nervous system, with axons extending for long distances, represents a major challenge for the intracellular transport system. Two recent studies show that mutations in the small heat shock protein HSPB1, which cause an axonal type of Charcot-Marie-Tooth (CMT) neuropathy, affect microtubule dynamics and impede axonal transport. Intriguingly, while at presymptomatic age the neurons in the mutant HSPB1 mouse show a hyperstable microtubule network, at postsymptomatic age, the microtubule network completely lost its stability as reflected by a marked decrease in tubulin acetylation levels. We here propose a model explaining the role of microtubule stabilization and tubulin acetylation in the pathogenesis of HSPB1 mutations.

  15. Green's functions and first passage time distributions for dynamic instability of microtubules

    NASA Astrophysics Data System (ADS)

    Bicout, D. J.

    1997-12-01

    It is shown that the dynamic instability process describing the self-assembly and/or disassembly of microtubules is a continuous version of a variant of persistent random walks described by the generalized telegrapher's equation. That is to say, a microtubule is likely to undergo stochastic traveling waves in which catastrophe and rescue events cannot propagate faster than v- and v+, respectively. For this stochastic process, analytic expressions for Green's functions of position and velocity of a microtubule and exact solutions for the first passage time distributions of a microtubule to the nucleating site are obtained. It is shown that, in the ω-->∞ limit, where ω-1 is the persistence time, the dynamic instability process can be described by a diffusion process in the presence of a drift term that, in fact, is the steady-state velocity of the microtubule. As a result, the catastrophe time distribution (i.e., the distribution of microtubule lifetimes to the nucleating site) exhibits a power law with an exponential cutoff as F(t\\|x0)~t-3/2e-t/τc, where τc is the time scale at which the drift term and the diffusive term are comparable.

  16. Nanomolar concentrations of nocodazole alter microtubule dynamic instability in vivo and in vitro.

    PubMed Central

    Vasquez, R J; Howell, B; Yvon, A M; Wadsworth, P; Cassimeris, L

    1997-01-01

    Previous studies demonstrated that nanomolar concentrations of nocodazole can block cells in mitosis without net microtubule disassembly and resulted in the hypothesis that this block was due to a nocodazole-induced stabilization of microtubules. We tested this hypothesis by examining the effects of nanomolar concentrations of nocodazole on microtubule dynamic instability in interphase cells and in vitro with purified brain tubulin. Newt lung epithelial cell microtubules were visualized by video-enhanced differential interference contrast microscopy and cells were perfused with solutions of nocodazole ranging in concentration from 4 to 400 nM. Microtubules showed a loss of the two-state behavior typical of dynamic instability as evidenced by the addition of a third state where they exhibited little net change in length (a paused state). Nocodazole perfusion also resulted in slower elongation and shortening velocities, increased catastrophe, and an overall decrease in microtubule turnover. Experiments performed on BSC-1 cells that were microinjected with rhodamine-labeled tubulin, incubated in nocodazole for 1 h, and visualized by using low-light-level fluorescence microscopy showed similar results except that nocodazole-treated BSC-1 cells showed a decrease in catastrophe. To gain insight into possible mechanisms responsible for changes in dynamic instability, we examined the effects of 4 nM to 12 microM nocodazole on the assembly of purified tubulin from axoneme seeds. At both microtubule plus and minus ends, perfusion with nocodazole resulted in a dose-dependent decrease in elongation and shortening velocities, increase in pause duration and catastrophe frequency, and decrease in rescue frequency. These effects, which result in an overall decrease in microtubule turnover after nocodazole treatment, suggest that the mitotic block observed is due to a reduction in microtubule dynamic turnover. In addition, the in vitro results are similar to the effects of

  17. Altered microtubule dynamics in neurodegenerative disease: Therapeutic potential of microtubule-stabilizing drugs.

    PubMed

    Brunden, Kurt R; Lee, Virginia M-Y; Smith, Amos B; Trojanowski, John Q; Ballatore, Carlo

    2017-09-01

    Many neurodegenerative diseases are characterized by deficiencies in neuronal axonal transport, a process in which cellular cargo is shuttled with the aid of molecular motors from the cell body to axonal termini and back along microtubules (MTs). Proper axonal transport is critical to the normal functioning of neurons, and impairments in this process could contribute to the neuronal damage and death that is characteristic of neurodegenerative disease. Although the causes of axonal transport abnormalities may vary among the various neurodegenerative conditions, in many cases it appears that the transport deficiencies result from a diminution of axonal MT stability. Here we review the evidence of MT abnormalities in a number of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and traumatic brain injury, and highlight the potential benefit of MT-stabilizing agents in improving axonal transport and nerve function in these diseases. Moreover, we discuss the challenges associated with the utilization of MT-stabilizing drugs as therapeutic candidates for neurodegenerative conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Push or Pull? -- Cryo-Electron Microscopy of Microtubule's Dynamic Instability and Its Roles in the Kinetochore

    NASA Astrophysics Data System (ADS)

    Wang, Hong-Wei

    2009-03-01

    Microtubule is a biopolymer made up of alpha-beta-tubulin heterodimers. The tubulin dimers assemble head-to-tail as protofilaments and about 13 protofilaments interact laterally to form a hollow cylindrical structure which is the microtubule. As the major cytoskeleton in all eukaryotic cells, microtubules have the intrinsic property to switch stochastically between growth and shrinkage phases, a phenomenon termed as their dynamic instability. Microtubule's dynamic instability is closely related to the types of nucleotide (GTP or GDP) that binds to the beta-tubulin. We have biochemically trapped two types of assembly states of tubulin with GTP or GDP bound representing the polymerizing and depolymerizing ends of microtubules respectively. Using cryo-electron microscopy, we have elucidated the structures of these intermediate assemblies, showing that tubulin protofilaments demonstrate various curvatures and form different types of lateral interactions depending on the nucleotide states of tubulin and the temperature. Our work indicates that during the microtubule's dynamic cycle, tubulin undergoes various assembly states. These states, different from the straight microtubule, lend the highly dynamic and complicated behavior of microtubules. Our study of microtubule's interaction with certain kinetochore complexes suggests that the intermediate assemblies are responsible for specific mechanical forces that are required during the mitosis or meiosis. Our discoveries strongly suggest that a microtubule is a molecular machine rather than a simple cellular scaffold.

  19. Elastic and damping forces generated by confined arrays of dynamic microtubules.

    PubMed

    Howard, J

    2006-02-28

    In addition to serving as structural elements and as tracks for motor proteins, microtubules use chemical energy derived from the hydrolysis of GTP to generate forces when growing and shrinking. These forces are used to push or pull on organelles such as chromosomes and the mitotic spindle. If an array of microtubules grows out from a nucleation site and is confined by the periphery of the cell, pushing and pulling forces can give rise to interesting collective phenomena. In this paper, I show that pushing forces center the array provided that the microtubules are dynamic in the sense that they switch from pushing to shrinking after reaching the periphery. Microtubule dynamics of free ends is neither necessary nor sufficient for centering. Buckling can augment the centering force. For small displacements and velocities, the array can be modeled very simply as a damped spring. The dynamic stiffness of the array is orders of magnitude smaller than its static stiffness, and the relaxation time is on the order of the time that it takes for a microtubule to grow from the center to the periphery. Replacement of a dynamic polymer array with an equivalent mechanical circuit provides a bridge between molecular and cellular mechanics.

  20. Kinesin-8 effects on mitotic microtubule dynamics contribute to spindle function in fission yeast

    PubMed Central

    Gergely, Zachary R.; Crapo, Ammon; Hough, Loren E.; McIntosh, J. Richard; Betterton, Meredith D.

    2016-01-01

    Kinesin-8 motor proteins destabilize microtubules. Their absence during cell division is associated with disorganized mitotic chromosome movements and chromosome loss. Despite recent work studying effects of kinesin-8s on microtubule dynamics, it remains unclear whether the kinesin-8 mitotic phenotypes are consequences of their effect on microtubule dynamics, their well-established motor activity, or additional, unknown functions. To better understand the role of kinesin-8 proteins in mitosis, we studied the effects of deletion of the fission yeast kinesin-8 proteins Klp5 and Klp6 on chromosome movements and spindle length dynamics. Aberrant microtubule-driven kinetochore pushing movements and tripolar mitotic spindles occurred in cells lacking Klp5 but not Klp6. Kinesin-8–deletion strains showed large fluctuations in metaphase spindle length, suggesting a disruption of spindle length stabilization. Comparison of our results from light microscopy with a mathematical model suggests that kinesin-8–induced effects on microtubule dynamics, kinetochore attachment stability, and sliding force in the spindle can explain the aberrant chromosome movements and spindle length fluctuations seen. PMID:27146110

  1. Polo-like kinase-1 regulates kinetochore–microtubule dynamics and spindle checkpoint silencing

    PubMed Central

    Liu, Dan; Davydenko, Olga

    2012-01-01

    Polo-like kinase-1 (Plk1) is a highly conserved kinase with multiple mitotic functions. Plk1 localizes to prometaphase kinetochores and is reduced at metaphase kinetochores, similar to many checkpoint signaling proteins, but Plk1 is not required for spindle checkpoint function. Plk1 is also implicated in stabilizing kinetochore–microtubule attachments, but these attachments are most stable when kinetochore Plk1 levels are low at metaphase. Therefore, it is unclear how Plk1 function at kinetochores can be understood in the context of its dynamic localization. In this paper, we show that Plk1 activity suppresses kinetochore–microtubule dynamics to stabilize initial attachments in prometaphase, and Plk1 removal from kinetochores is necessary to maintain dynamic microtubules in metaphase. Constitutively targeting Plk1 to kinetochores maintained high activity at metaphase, leading to reduced interkinetochore tension and intrakinetochore stretch, a checkpoint-dependent mitotic arrest, and accumulation of microtubule attachment errors. Together, our data show that Plk1 dynamics at kinetochores control two critical mitotic processes: initially establishing correct kinetochore–microtubule attachments and subsequently silencing the spindle checkpoint. PMID:22908307

  2. Microtubule dynamic instability: A new model with coupled GTP hydrolysis and multistep catastrophe

    PubMed Central

    Bowne-Anderson, Hugo; Zanic, Marija; Kauer, Monika; Howard, Jonathon

    2013-01-01

    A key question in understanding microtubule dynamics is how GTP hydrolysis leads to catastrophe, the switch from slow growth to rapid shrinkage. We first provide a review of the experimental and modeling literature, and then present a new model of microtubule dynamics. We demonstrate that vectorial, random, and coupled hydrolysis mechanisms are not consistent with the dependence of catastrophe on tubulin concentration and show that, although single-protofilament models can explain many features of dynamics, they do not describe catastrophe as a multistep process. Finally, we present a new combined (coupled plus random hydrolysis) multiple-protofilament model that is a simple, analytically solvable generalization of a single-protofilament model. This model accounts for the observed lifetimes of growing microtubules, the delay to catastrophe following dilution and describes catastrophe as a multistep process. PMID:23532586

  3. Calcium-independent disruption of microtubule dynamics by nanosecond pulsed electric fields in U87 human glioblastoma cells

    PubMed Central

    Carr, Lynn; Bardet, Sylvia M.; Burke, Ryan C.; Arnaud-Cormos, Delia; Leveque, Philippe; O’Connor, Rodney P.

    2017-01-01

    High powered, nanosecond duration, pulsed electric fields (nsPEF) cause cell death by a mechanism that is not fully understood and have been proposed as a targeted cancer therapy. Numerous chemotherapeutics work by disrupting microtubules. As microtubules are affected by electrical fields, this study looks at the possibility of disrupting them electrically with nsPEF. Human glioblastoma cells (U87-MG) treated with 100, 10 ns, 44 kV/cm pulses at a frequency of 10 Hz showed a breakdown of their interphase microtubule network that was accompanied by a reduction in the number of growing microtubules. This effect is temporally linked to loss of mitochondrial membrane potential and independent of cellular swelling and calcium influx, two factors that disrupt microtubule growth dynamics. Super-resolution microscopy revealed microtubule buckling and breaking as a result of nsPEF application, suggesting that nsPEF may act directly on microtubules. PMID:28117459

  4. Calcium-independent disruption of microtubule dynamics by nanosecond pulsed electric fields in U87 human glioblastoma cells.

    PubMed

    Carr, Lynn; Bardet, Sylvia M; Burke, Ryan C; Arnaud-Cormos, Delia; Leveque, Philippe; O'Connor, Rodney P

    2017-01-24

    High powered, nanosecond duration, pulsed electric fields (nsPEF) cause cell death by a mechanism that is not fully understood and have been proposed as a targeted cancer therapy. Numerous chemotherapeutics work by disrupting microtubules. As microtubules are affected by electrical fields, this study looks at the possibility of disrupting them electrically with nsPEF. Human glioblastoma cells (U87-MG) treated with 100, 10 ns, 44 kV/cm pulses at a frequency of 10 Hz showed a breakdown of their interphase microtubule network that was accompanied by a reduction in the number of growing microtubules. This effect is temporally linked to loss of mitochondrial membrane potential and independent of cellular swelling and calcium influx, two factors that disrupt microtubule growth dynamics. Super-resolution microscopy revealed microtubule buckling and breaking as a result of nsPEF application, suggesting that nsPEF may act directly on microtubules.

  5. BRCA1 regulates microtubule dynamics and taxane-induced apoptotic cell signaling

    PubMed Central

    Sung, M; Giannakakou, P

    2013-01-01

    The taxanes are effective microtubule-stabilizing chemotherapy drugs used in the treatment of various solid tumors. However, the emergence of drug resistance hampers their clinical efficacy. The molecular basis of clinical taxane resistance remains poorly understood. Breast cancer 1, early onset gene, BRCA1, is a tumor-suppressor gene, whose expression has been correlated with taxane sensitivity in many solid tumors including non-small cell lung cancer. However, the molecular mechanism underlying the relationship between BRCA1 (B1) expression and taxane activity remains unclear. To this end, we created a stable B1 knockdown A549 cell line (B1-KD) to investigate B1’s role in microtubule biology and response to taxane treatment. We show that B1-KD rendered A549 cells resistant to paclitaxel (PTX), phenocopying clinical studies showing that low B1 expression correlated with taxane resistance. As previously reported, we show that loss of B1 enhanced centrosomal γ-tubulin localization and microtubule nucleation. Interestingly, we found that the B1-KD cells exhibited increased microtubule dynamics as compared with parental A549 cells, as assessed by live-cell confocal microscopy using enhanced green fluorescent protein-tagged α-tubulin or EB1 protein. In addition, we showed that loss of B1 impairs the ability of PTX to induce microtubule polymerization using immunofluorescence microscopy and a cell-based tubulin polymerization assay. Furthermore, B1-KD cells exhibited significantly lower intracellular binding of a fluorescently labeled PTX to microtubules. Recent studies have shown that PTX-stabilized microtubules serves as a scaffold for pro-caspase-8 binding and induction of apoptosis downstream of induced-proximity activation of caspase-8. Here we show that loss of B1 reduces the association of pro-caspase-8 with microtubules and subsequently leads to impaired PTX-induced activation of apoptosis. Taken together, our data show that B1 regulates indirectly

  6. How the transition frequencies of microtubule dynamic instability (nucleation, catastrophe, and rescue) regulate microtubule dynamics in interphase and mitosis: analysis using a Monte Carlo computer simulation.

    PubMed Central

    Gliksman, N R; Skibbens, R V; Salmon, E D

    1993-01-01

    Microtubules (MTs) in newt mitotic spindles grow faster than MTs in the interphase cytoplasmic microtubule complex (CMTC), yet spindle MTs do not have the long lengths or lifetimes of the CMTC microtubules. Because MTs undergo dynamic instability, it is likely that changes in the durations of growth or shortening are responsible for this anomaly. We have used a Monte Carlo computer simulation to examine how changes in the number of MTs and changes in the catastrophe and rescue frequencies of dynamic instability may be responsible for the cell cycle dependent changes in MT characteristics. We used the computer simulations to model interphase-like or mitotic-like MT populations on the basis of the dynamic instability parameters available from newt lung epithelial cells in vivo. We started with parameters that produced MT populations similar to the interphase newt lung cell CMTC. In the simulation, increasing the number of MTs and either increasing the frequency of catastrophe or decreasing the frequency of rescue reproduced the changes in MT dynamics measured in vivo between interphase and mitosis. Images PMID:8298190

  7. Myosin-Va and dynamic actin oppose microtubules to drive long-range organelle transport.

    PubMed

    Evans, Richard D; Robinson, Christopher; Briggs, Deborah A; Tooth, David J; Ramalho, Jose S; Cantero, Marta; Montoliu, Lluis; Patel, Shyamal; Sviderskaya, Elena V; Hume, Alistair N

    2014-08-04

    In animal cells, microtubule and actin tracks and their associated motors (dynein, kinesin, and myosin) are thought to regulate long- and short-range transport, respectively. Consistent with this, microtubules extend from the perinuclear centrosome to the plasma membrane and allow bidirectional cargo transport over long distances (>1 μm). In contrast, actin often comprises a complex network of short randomly oriented filaments, suggesting that myosin motors move cargo short distances. These observations underpin the "highways and local roads" model for transport along microtubule and actin tracks. The "cooperative capture" model exemplifies this view and suggests that melanosome distribution in melanocyte dendrites is maintained by long-range transport on microtubules followed by actin/myosin-Va-dependent tethering. In this study, we used cell normalization technology to quantitatively examine the contribution of microtubules and actin/myosin-Va to organelle distribution in melanocytes. Surprisingly, our results indicate that microtubules are essential for centripetal, but not centrifugal, transport. Instead, we find that microtubules retard a centrifugal transport process that is dependent on myosin-Va and a population of dynamic F-actin. Functional analysis of mutant proteins indicates that myosin-Va works as a transporter dispersing melanosomes along actin tracks whose +/barbed ends are oriented toward the plasma membrane. Overall, our data highlight the role of myosin-Va and actin in transport, and not tethering, and suggest a new model in which organelle distribution is determined by the balance between microtubule-dependent centripetal and myosin-Va/actin-dependent centrifugal transport. These observations appear to be consistent with evidence coming from other systems showing that actin/myosin networks can drive long-distance organelle transport and positioning.

  8. Myosin-Va and Dynamic Actin Oppose Microtubules to Drive Long-Range Organelle Transport

    PubMed Central

    Evans, Richard D.; Robinson, Christopher; Briggs, Deborah A.; Tooth, David J.; Ramalho, Jose S.; Cantero, Marta; Montoliu, Lluis; Patel, Shyamal; Sviderskaya, Elena V.; Hume, Alistair N.

    2014-01-01

    Summary In animal cells, microtubule and actin tracks and their associated motors (dynein, kinesin, and myosin) are thought to regulate long- and short-range transport, respectively [1–8]. Consistent with this, microtubules extend from the perinuclear centrosome to the plasma membrane and allow bidirectional cargo transport over long distances (>1 μm). In contrast, actin often comprises a complex network of short randomly oriented filaments, suggesting that myosin motors move cargo short distances. These observations underpin the “highways and local roads” model for transport along microtubule and actin tracks [2]. The “cooperative capture” model exemplifies this view and suggests that melanosome distribution in melanocyte dendrites is maintained by long-range transport on microtubules followed by actin/myosin-Va-dependent tethering [5, 9]. In this study, we used cell normalization technology to quantitatively examine the contribution of microtubules and actin/myosin-Va to organelle distribution in melanocytes. Surprisingly, our results indicate that microtubules are essential for centripetal, but not centrifugal, transport. Instead, we find that microtubules retard a centrifugal transport process that is dependent on myosin-Va and a population of dynamic F-actin. Functional analysis of mutant proteins indicates that myosin-Va works as a transporter dispersing melanosomes along actin tracks whose +/barbed ends are oriented toward the plasma membrane. Overall, our data highlight the role of myosin-Va and actin in transport, and not tethering, and suggest a new model in which organelle distribution is determined by the balance between microtubule-dependent centripetal and myosin-Va/actin-dependent centrifugal transport. These observations appear to be consistent with evidence coming from other systems showing that actin/myosin networks can drive long-distance organelle transport and positioning [10, 11]. PMID:25065759

  9. Autoinhibition of TBCB regulates EB1-mediated microtubule dynamics.

    PubMed

    Carranza, Gerardo; Castaño, Raquel; Fanarraga, Mónica L; Villegas, Juan Carlos; Gonçalves, João; Soares, Helena; Avila, Jesus; Marenchino, Marco; Campos-Olivas, Ramón; Montoya, Guillermo; Zabala, Juan Carlos

    2013-01-01

    Tubulin cofactors (TBCs) participate in the folding, dimerization, and dissociation pathways of the tubulin dimer. Among them, TBCB and TBCE are two CAP-Gly domain-containing proteins that together efficiently interact with and dissociate the tubulin dimer. In the study reported here we showed that TBCB localizes at spindle and midzone microtubules during mitosis. Furthermore, the motif DEI/M-COO(-) present in TBCB, which is similar to the EEY/F-COO(-) element characteristic of EB proteins, CLIP-170, and α-tubulin, is required for TBCE-TBCB heterodimer formation and thus for tubulin dimer dissociation. This motif is responsible for TBCB autoinhibition, and our analysis suggests that TBCB is a monomer in solution. Mutants of TBCB lacking this motif are derepressed and induce microtubule depolymerization through an interaction with EB1 associated with microtubule tips. TBCB is also able to bind to the chaperonin complex CCT containing α-tubulin, suggesting that it could escort tubulin to facilitate its folding and dimerization, recycling or degradation.

  10. Effects of aging in catastrophe on the steady state and dynamics of a microtubule population

    NASA Astrophysics Data System (ADS)

    Jemseena, V.; Gopalakrishnan, Manoj

    2015-05-01

    Several independent observations have suggested that the catastrophe transition in microtubules is not a first-order process, as is usually assumed. Recent in vitro observations by Gardner et al. [M. K. Gardner et al., Cell 147, 1092 (2011), 10.1016/j.cell.2011.10.037] showed that microtubule catastrophe takes place via multiple steps and the frequency increases with the age of the filament. Here we investigate, via numerical simulations and mathematical calculations, some of the consequences of the age dependence of catastrophe on the dynamics of microtubules as a function of the aging rate, for two different models of aging: exponential growth, but saturating asymptotically, and purely linear growth. The boundary demarcating the steady-state and non-steady-state regimes in the dynamics is derived analytically in both cases. Numerical simulations, supported by analytical calculations in the linear model, show that aging leads to nonexponential length distributions in steady state. More importantly, oscillations ensue in microtubule length and velocity. The regularity of oscillations, as characterized by the negative dip in the autocorrelation function, is reduced by increasing the frequency of rescue events. Our study shows that the age dependence of catastrophe could function as an intrinsic mechanism to generate oscillatory dynamics in a microtubule population, distinct from hitherto identified ones.

  11. The dynamic nature of mollusc egg surface architecture and its relation to the microtubule network.

    PubMed

    Tyler, Sheena E B; Kimber, Susan J

    2006-01-01

    Dynamic changes in the surface architecture pattern of embryos of the slipper limpet (Crepidula fornicata, Mollusca) were found in this study to correlate with the dynamic activity and pattern of the underlying mitotic spindle microtubule network, revealed by fluorescent labelling and confocal imaging techniques. Examination of a series of optical sections indicate that this network appears to be spatially co-ordinated together as a whole throughout the embryo. The microtubule pattern also associated with abnormal multipolar spindles resulting from an applied static magnetic field, indicating that the pattern may be generated by a natural endogenous field source. The patterning characteristics of the surface and microtubule network together provide further morphological evidence for a primary morphogenetic or developmental field system which organises the primary body axis and co-ordinates the pattern of cleavage.

  12. Regulation of Microtubule Dynamics by TOG-domain proteins XMAP215/Dis1 and CLASP

    PubMed Central

    Al-Bassam, Jawdat; Chang, Fred

    2011-01-01

    The molecular mechanisms by which microtubule-associated proteins (MAPs) regulate the dynamic properties of microtubules (MTs) are still poorly understood. Here, we review recent advances in our understanding of two conserved families of MAPs, the XMAP215/Dis1 and CLASP family of proteins. In vivo and in vitro studies show that XMAP215 proteins act as microtubule polymerases at MT plus ends to accelerate MT assembly, while CLASP proteins promote MT rescue and suppress MT catastrophe events. These are structurally related proteins that use conserved TOG domains to recruit tubulin dimers to MTs. We discuss models for how these proteins might use these individual tubulin dimers to regulate dynamic behaviors of MT plus ends. PMID:21782439

  13. Effects of eribulin, vincristine, paclitaxel and ixabepilone on fast axonal transport and kinesin-1 driven microtubule gliding: Implications for chemotherapy-induced peripheral neuropathy

    PubMed Central

    LaPointe, Nichole E.; Morfini, Gerardo; Brady, Scott T.; Feinstein, Stuart C.; Wilson, Leslie; Jordan, Mary Ann

    2014-01-01

    Chemotherapy-induced peripheral neuropathy (CIPN) is a serious, painful and dose-limiting side effect of cancer drugs that target microtubules. The mechanisms underlying the neuronal damage are unknown, but may include disruption of fast axonal transport, an essential microtubule-based process that moves cellular components over long distances between neuronal cell bodies and nerve terminals. This idea is supported by the “dying back” pattern of degeneration observed in CIPN, and by the selective vulnerability of sensory neurons bearing the longest axonal projections. In this study, we test the hypothesis that microtubule-targeting drugs disrupt fast axonal transport using vesicle motility assays in isolated squid axoplasm and a cell-free microtubule gliding assay with defined components. We compare four clinically-used drugs, eribulin, vincristine, paclitaxel and ixabepilone. Of these, eribulin is associated with a relatively low incidence of severe neuropathy, while vincristine has a relatively high incidence. In vesicle motility assays, we found that all four drugs inhibited anterograde (conventional kinesin-dependent) fast axonal transport, with the potency being vincristine = ixabepilone > paclitaxel = eribulin. Interestingly, eribulin and paclitaxel did not inhibit retrograde (cytoplasmic dynein-dependent) fast axonal transport, in contrast to vincristine and ixabepilone. Similarly, vincristine and ixabepilone both exerted significant inhibitory effects in an in vitro microtubule gliding assay consisting of recombinant kinesin (kinesin-1) and microtubules composed of purified bovine brain tubulin, whereas paclitaxel and eribulin had negligible effects. Our results suggest that (i) inhibition of microtubule-based fast axonal transport may be a significant contributor to neurotoxicity induced by microtubule-targeting drugs, and (ii) that individual microtubule-targeting drugs affect fast axonal transport through different mechanisms. PMID:23711742

  14. Internal Dynamics of Dynactin CAP-Gly Is Regulated by Microtubules and Plus End Tracking Protein EB1*

    PubMed Central

    Yan, Si; Zhang, Huilan; Hou, Guangjin; Ahmed, Shubbir; Williams, John C.; Polenova, Tatyana

    2015-01-01

    CAP-Gly domain of dynactin, a microtubule-associated activator of dynein motor, participates in multiple cellular processes, and its point mutations are associated with neurodegenerative diseases. Recently, we have demonstrated that conformational plasticity is an intrinsic property of CAP-Gly. To understand its origin, we addressed internal dynamics of CAP-Gly assembled on polymeric microtubules, bound to end-binding protein EB1 and free, by magic angle spinning NMR and molecular dynamics simulations. The analysis of residue-specific dynamics of CAP-Gly on time scales spanning nano- through milliseconds reveals its unusually high mobility, both free and assembled on polymeric microtubules. On the contrary, CAP-Gly bound to EB1 is significantly more rigid. Molecular dynamics simulations indicate that these motions are strongly temperature-dependent, and loop regions are surprisingly mobile. These findings establish the connection between conformational plasticity and internal dynamics in CAP-Gly, which is essential for the biological functions of CAP-Gly and its ability to bind to polymeric microtubules and multiple binding partners. In this work, we establish an approach, for the first time, to probe atomic resolution dynamic profiles of a microtubule-associated protein assembled on polymeric microtubules. More broadly, the methodology established here can be applied for atomic resolution analysis of dynamics in other microtubule-associated protein assemblies, including but not limited to dynactin, dynein, and kinesin motors assembled on microtubules. PMID:25451937

  15. Internal dynamics of dynactin CAP-Gly is regulated by microtubules and plus end tracking protein EB1.

    PubMed

    Yan, Si; Zhang, Huilan; Hou, Guangjin; Ahmed, Shubbir; Williams, John C; Polenova, Tatyana

    2015-01-16

    CAP-Gly domain of dynactin, a microtubule-associated activator of dynein motor, participates in multiple cellular processes, and its point mutations are associated with neurodegenerative diseases. Recently, we have demonstrated that conformational plasticity is an intrinsic property of CAP-Gly. To understand its origin, we addressed internal dynamics of CAP-Gly assembled on polymeric microtubules, bound to end-binding protein EB1 and free, by magic angle spinning NMR and molecular dynamics simulations. The analysis of residue-specific dynamics of CAP-Gly on time scales spanning nano- through milliseconds reveals its unusually high mobility, both free and assembled on polymeric microtubules. On the contrary, CAP-Gly bound to EB1 is significantly more rigid. Molecular dynamics simulations indicate that these motions are strongly temperature-dependent, and loop regions are surprisingly mobile. These findings establish the connection between conformational plasticity and internal dynamics in CAP-Gly, which is essential for the biological functions of CAP-Gly and its ability to bind to polymeric microtubules and multiple binding partners. In this work, we establish an approach, for the first time, to probe atomic resolution dynamic profiles of a microtubule-associated protein assembled on polymeric microtubules. More broadly, the methodology established here can be applied for atomic resolution analysis of dynamics in other microtubule-associated protein assemblies, including but not limited to dynactin, dynein, and kinesin motors assembled on microtubules. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Dynamic microtubule organization and mitochondrial transport are regulated by distinct Kinesin-1 pathways

    PubMed Central

    Melkov, Anna; Simchoni, Yasmin; Alcalay, Yehonatan; Abdu, Uri

    2015-01-01

    ABSTRACT The microtubule (MT) plus-end motor kinesin heavy chain (Khc) is well known for its role in long distance cargo transport. Recent evidence showed that Khc is also required for the organization of the cellular MT network by mediating MT sliding. We found that mutations in Khc and the gene of its adaptor protein, kinesin light chain (Klc) resulted in identical bristle morphology defects, with the upper part of the bristle being thinner and flatter than normal and failing to taper towards the bristle tip. We demonstrate that bristle mitochondria transport requires Khc but not Klc as a competing force to dynein heavy chain (Dhc). Surprisingly, we demonstrate for the first time that Dhc is the primary motor for both anterograde and retrograde fast mitochondria transport. We found that the upper part of Khc and Klc mutant bristles lacked stable MTs. When following dynamic MT polymerization via the use of GFP-tagged end-binding protein 1 (EB1), it was noted that at Khc and Klc mutant bristle tips, dynamic MTs significantly deviated from the bristle parallel growth axis, relative to wild-type bristles. We also observed that GFP-EB1 failed to concentrate as a focus at the tip of Khc and Klc mutant bristles. We propose that the failure of bristle tapering is due to defects in directing dynamic MTs at the growing tip. Thus, we reveal a new function for Khc and Klc in directing dynamic MTs during polarized cell growth. Moreover, we also demonstrate a novel mode of coordination in mitochondrial transport between Khc and Dhc. PMID:26581590

  17. Dynamic interactions of fluorescently labeled microtubule-associated proteins in living cells

    PubMed Central

    1984-01-01

    Microtubule-associated proteins (MAPs) from calf brain were fluorescently labeled with 6-iodoacetamido fluorescein (I-AF). The modified MAPs (especially enriched for MAP2) were fully active in promoting tubulin polymerization in vitro and readily associated with cytoplasmic filaments when microinjected into living cultured cells. Double-labeling experiments indicated that the microinjected AF-MAPs were incorporated predominantly, if not exclusively, into cytoplasmic microtubules in untreated cells or paracrystals induced within vinblastine-treated cells. Similar results were obtained with different cell types (neuronal, epithelial, and fibroblastic) of diverse origin (man, mouse, chicken, and rat kangaroo). Mobility measurements of the microinjected AF-MAPs using the method of fluorescence-photobleaching recovery (FPR) revealed two populations of AF-MAPs with distinct dynamic properties: One fraction represents the soluble pool of MAPs and is mobile with a diffusion coefficient of D = 3 X 10(-9) cm2/s. The other fraction of MAPs is associated with the microtubules and is essentially immobile on the time scale of FPR experiments. However, it showed slow fluorescence recovery with an apparent half time of approximately 5 min. The slow recovery of fluorescence on defined photobleached microtubules occurred most probably by the incorporation of AF-MAPs from the soluble cytoplasmic pool into the bleached area. The bleached spot on defined microtubules remained essentially immobile during the slow recovery phase. These results suggest that MAPs can associate in vivo with microtubules of diverse cell types and that treadmilling of MAP2-containing microtubules in vivo, if it exists, is slower than 4 micron/h. PMID:6547721

  18. Global up-regulation of microtubule dynamics and polarity reversal during regeneration of an axon from a dendrite.

    PubMed

    Stone, Michelle C; Nguyen, Michelle M; Tao, Juan; Allender, Dana L; Rolls, Melissa M

    2010-03-01

    Axon regeneration is crucial for recovery after trauma to the nervous system. For neurons to recover from complete axon removal they must respecify a dendrite as an axon: a complete reversal of polarity. We show that Drosophila neurons in vivo can convert a dendrite to a regenerating axon and that this process involves rebuilding the entire neuronal microtubule cytoskeleton. Two major microtubule rearrangements are specifically induced by axon and not dendrite removal: 1) 10-fold up-regulation of the number of growing microtubules and 2) microtubule polarity reversal. After one dendrite reverses its microtubules, it initiates tip growth and takes on morphological and molecular characteristics of an axon. Only neurons with a single dendrite that reverses polarity are able to initiate tip growth, and normal microtubule plus-end dynamics are required to initiate this growth. In addition, we find that JNK signaling is required for both the up-regulation of microtubule dynamics and microtubule polarity reversal initiated by axon injury. We conclude that regulation of microtubule dynamics and polarity in response to JNK signaling is key to initiating regeneration of an axon from a dendrite.

  19. Global Up-Regulation of Microtubule Dynamics and Polarity Reversal during Regeneration of an Axon from a Dendrite

    PubMed Central

    Stone, Michelle C.; Nguyen, Michelle M.; Tao, Juan; Allender, Dana L.

    2010-01-01

    Axon regeneration is crucial for recovery after trauma to the nervous system. For neurons to recover from complete axon removal they must respecify a dendrite as an axon: a complete reversal of polarity. We show that Drosophila neurons in vivo can convert a dendrite to a regenerating axon and that this process involves rebuilding the entire neuronal microtubule cytoskeleton. Two major microtubule rearrangements are specifically induced by axon and not dendrite removal: 1) 10-fold up-regulation of the number of growing microtubules and 2) microtubule polarity reversal. After one dendrite reverses its microtubules, it initiates tip growth and takes on morphological and molecular characteristics of an axon. Only neurons with a single dendrite that reverses polarity are able to initiate tip growth, and normal microtubule plus-end dynamics are required to initiate this growth. In addition, we find that JNK signaling is required for both the up-regulation of microtubule dynamics and microtubule polarity reversal initiated by axon injury. We conclude that regulation of microtubule dynamics and polarity in response to JNK signaling is key to initiating regeneration of an axon from a dendrite. PMID:20053676

  20. Alterations in Ovarian Cancer Cell Adhesion Drive Taxol Resistance by Increasing Microtubule Dynamics in a FAK-dependent Manner

    PubMed Central

    McGrail, Daniel J.; Khambhati, Niti N.; Qi, Mark X.; Patel, Krishan S.; Ravikumar, Nithin; Brandenburg, Chandler P.; Dawson, Michelle R.

    2015-01-01

    Chemorefractory ovarian cancer patients show extremely poor prognosis. Microtubule-stabilizing Taxol (paclitaxel) is a first-line treatment against ovarian cancer. Despite the close interplay between microtubules and cell adhesion, it remains unknown if chemoresistance alters the way cells adhere to their extracellular environment, a process critical for cancer metastasis. To investigate this, we isolated Taxol-resistant populations of OVCAR3 and SKOV3 ovarian cancer cell lines. Though Taxol-resistant cells neither effluxed more drug nor gained resistance to other chemotherapeutics, they did display increased microtubule dynamics. These changes in microtubule dynamics coincided with faster attachment rates and decreased adhesion strength, which correlated with increased surface β1-integrin expression and decreased focal adhesion formation, respectively. Adhesion strength correlated best with Taxol-sensitivity, and was found to be independent of microtubule polymerization but dependent on focal adhesion kinase (FAK), which was up-regulated in Taxol-resistant cells. FAK inhibition also decreased microtubule dynamics to equal levels in both populations, indicating alterations in adhesive signaling are up-stream of microtubule dynamics. Taken together, this work demonstrates that Taxol-resistance dramatically alters how ovarian cancer cells adhere to their extracellular environment causing down-stream increases in microtubule dynamics, providing a therapeutic target that may improve prognosis by not only recovering drug sensitivity, but also decreasing metastasis. PMID:25886093

  1. Alterations in ovarian cancer cell adhesion drive taxol resistance by increasing microtubule dynamics in a FAK-dependent manner.

    PubMed

    McGrail, Daniel J; Khambhati, Niti N; Qi, Mark X; Patel, Krishan S; Ravikumar, Nithin; Brandenburg, Chandler P; Dawson, Michelle R

    2015-04-17

    Chemorefractory ovarian cancer patients show extremely poor prognosis. Microtubule-stabilizing Taxol (paclitaxel) is a first-line treatment against ovarian cancer. Despite the close interplay between microtubules and cell adhesion, it remains unknown if chemoresistance alters the way cells adhere to their extracellular environment, a process critical for cancer metastasis. To investigate this, we isolated Taxol-resistant populations of OVCAR3 and SKOV3 ovarian cancer cell lines. Though Taxol-resistant cells neither effluxed more drug nor gained resistance to other chemotherapeutics, they did display increased microtubule dynamics. These changes in microtubule dynamics coincided with faster attachment rates and decreased adhesion strength, which correlated with increased surface β1-integrin expression and decreased focal adhesion formation, respectively. Adhesion strength correlated best with Taxol-sensitivity, and was found to be independent of microtubule polymerization but dependent on focal adhesion kinase (FAK), which was up-regulated in Taxol-resistant cells. FAK inhibition also decreased microtubule dynamics to equal levels in both populations, indicating alterations in adhesive signaling are up-stream of microtubule dynamics. Taken together, this work demonstrates that Taxol-resistance dramatically alters how ovarian cancer cells adhere to their extracellular environment causing down-stream increases in microtubule dynamics, providing a therapeutic target that may improve prognosis by not only recovering drug sensitivity, but also decreasing metastasis.

  2. Modulation of microtubule dynamics by a TIR domain protein from the intracellular pathogen Brucella melitensis.

    PubMed

    Radhakrishnan, Girish K; Harms, Jerome S; Splitter, Gary A

    2011-10-01

    TIR (Toll/interleukin-1 receptor) domain-containing proteins play a crucial role in innate immunity in eukaryotes. Brucella is a highly infectious intracellular bacterium that encodes a TIR domain protein (TcpB) to subvert host innate immune responses to establish a beneficial niche for pathogenesis. TcpB inhibits NF-κB (nuclear factor κB) activation and pro-inflammatory cytokine secretions mediated by TLR (Toll-like receptor) 2 and TLR4. In the present study, we have demonstrated that TcpB modulates microtubule dynamics by acting as a stabilization factor. TcpB increased the rate of nucleation as well as the polymerization phases of microtubule formation in a similar manner to paclitaxel. TcpB could efficiently inhibit nocodazole- or cold-induced microtubule disassembly. Microtubule stabilization by TcpB is attributed to the BB-loop region of the TIR domain, and a point mutation affected the microtubule stabilization as well as the TLR-suppression properties of TcpB.

  3. RSK2 signals through stathmin to promote microtubule dynamics and tumor metastasis.

    PubMed

    Alesi, G N; Jin, L; Li, D; Magliocca, K R; Kang, Y; Chen, Z G; Shin, D M; Khuri, F R; Kang, S

    2016-10-13

    Metastasis is responsible for >90% of cancer-related deaths. Complex signaling in cancer cells orchestrates the progression from a primary to a metastatic cancer. However, the mechanisms of these cellular changes remain elusive. We previously demonstrated that p90 ribosomal S6 kinase 2 (RSK2) promotes tumor metastasis. Here we investigated the role of RSK2 in the regulation of microtubule dynamics and its potential implication in cancer cell invasion and tumor metastasis. Stable knockdown of RSK2 disrupted microtubule stability and decreased phosphorylation of stathmin, a microtubule-destabilizing protein, at serine 16 in metastatic human cancer cells. We found that RSK2 directly binds and phosphorylates stathmin at the leading edge of cancer cells. Phosphorylation of stathmin by RSK2 reduced stathmin-mediated microtubule depolymerization. Moreover, overexpression of phospho-mimetic mutant stathmin S16D significantly rescued the decreased invasive and metastatic potential mediated by RSK2 knockdown in vitro and in vivo. Furthermore, stathmin phosphorylation positively correlated with RSK2 expression and metastatic cancer progression in primary patient tumor samples. Our finding demonstrates that RSK2 directly phosphorylates stathmin and regulates microtubule polymerization to provide a pro-invasive and pro-metastatic advantage to cancer cells. Therefore, the RSK2-stathmin pathway represents a promising therapeutic target and a prognostic marker for metastatic human cancers.

  4. Label-Free Imaging of Single Microtubule Dynamics Using Spatial Light Interference Microscopy.

    PubMed

    Kandel, Mikhail E; Teng, Kai Wen; Selvin, Paul R; Popescu, Gabriel

    2017-01-24

    Due to their diameter, of only 24 nm, single microtubules are extremely challenging to image without the use of extrinsic contrast agents. As a result, fluorescence tagging is the common method to visualize their motility. However, such investigation is limited by photobleaching and phototoxicity. We experimentally demonstrate the capability of combining label-free spatial light interference microscopy (SLIM) with numerical processing for imaging single microtubules in a gliding assay. SLIM combines four different intensity images to obtain the optical path length map associated with the sample. Because of the use of broadband fields, the sensitivity to path length is better than 1 nm without (temporal) averaging and better than 0.1 nm upon averaging. Our results indicate that SLIM can image the dynamics of microtubules in a full field of view, of 200 × 200 μm(2), over many hours. Modeling the microtubule transport via the diffusion-advection equation, we found that the dispersion relation yields the standard deviation of the velocity distribution, without the need for tracking individual tubes. Interestingly, during a 2 h window, the microtubules begin to decelerate, at 100 pm/s(2) over a 20 min period. Thus, SLIM is likely to serve as a useful tool for understanding molecular motor activity, especially over large time scales, where fluorescence methods are of limited utility.

  5. Tank binding kinase 1 is a centrosome-associated kinase necessary for microtubule dynamics and mitosis.

    PubMed

    Pillai, Smitha; Nguyen, Jonathan; Johnson, Joseph; Haura, Eric; Coppola, Domenico; Chellappan, Srikumar

    2015-12-10

    TANK Binding Kinase 1 (TBK1) is a non-canonical IκB kinase that contributes to KRAS-driven lung cancer. Here we report that TBK1 plays essential roles in mammalian cell division. Specifically, levels of active phospho-TBK1 increase during mitosis and localize to centrosomes, mitotic spindles and midbody, and selective inhibition or silencing of TBK1 triggers defects in spindle assembly and prevents mitotic progression. TBK1 binds to the centrosomal protein CEP170 and to the mitotic apparatus protein NuMA, and both CEP170 and NuMA are TBK1 substrates. Further, TBK1 is necessary for CEP170 centrosomal localization and binding to the microtubule depolymerase Kif2b, and for NuMA binding to dynein. Finally, selective disruption of the TBK1-CEP170 complex augments microtubule stability and triggers defects in mitosis, suggesting that TBK1 functions as a mitotic kinase necessary for microtubule dynamics and mitosis.

  6. Dynein and mast/orbit/CLASP have antagonistic roles in regulating kinetochore-microtubule plus-end dynamics.

    PubMed

    Reis, Rita; Feijão, Tália; Gouveia, Susana; Pereira, António J; Matos, Irina; Sampaio, Paula; Maiato, Helder; Sunkel, Claudio E

    2009-07-15

    Establishment and maintenance of the mitotic spindle requires the balanced activity of microtubule-associated proteins and motors. In this study we have addressed how the microtubule plus-end tracking protein mast/orbit/CLASP and cytoplasmic dynein regulate this process in Drosophila melanogaster embryos and S2 cells. We show that mast accumulates at kinetochores early in mitosis, which is followed by a poleward streaming upon microtubule attachment. This leads to a reduction of mast levels at kinetochores during metaphase and anaphase that depends largely on the microtubule minus end-directed motor cytoplasmic dynein. Surprisingly, we also found that co-depletion of dynein rescues spindle bipolarity in mast-depleted cells, while restoring normal microtubule poleward flux. Our results suggest that mast and dynein have antagonistic roles in the local regulation of microtubule plus-end dynamics at kinetochores, which are important for the maintenance of spindle bipolarity and normal spindle length.

  7. Signaling Scaffold Protein IQGAP1 Interacts with Microtubule Plus-end Tracking Protein SKAP and Links Dynamic Microtubule Plus-end to Steer Cell Migration*

    PubMed Central

    Cao, Dan; Su, Zeqi; Wang, Wenwen; Wu, Huihui; Liu, Xing; Akram, Saima; Qin, Bo; Zhou, Jiajia; Zhuang, Xiaoxuan; Adams, Gregory; Jin, Changjiang; Wang, Xiwei; Liu, Lifang; Hill, Donald L.; Wang, Dongmei; Ding, Xia; Yao, Xuebiao

    2015-01-01

    Cell migration is orchestrated by dynamic interaction of microtubules with the plasma membrane cortex. However, the regulatory mechanisms underlying the cortical actin cytoskeleton and microtubule dynamics are less characterized. Our earlier study showed that small GTPase-activating proteins, IQGAPs, regulate polarized secretion in epithelial cells (1). Here, we show that IQGAP1 links dynamic microtubules to steer cell migration via interacting with the plus-end tracking protein, SKAP. Biochemical characterizations revealed that IQGAP1 and SKAP form a cognate complex and that their binding interfaces map to the WWIQ motif and the C-terminal of SKAP, respectively. The WWIQ peptide disrupts the biochemical interaction between IQGAP1 and SKAP in vitro, and perturbation of the IQGAP1-SKAP interaction in vivo using a membrane-permeable TAT-WWIQ peptide results in inhibition of directional cell migration elicited by EGF. Mechanistically, the N-terminal of SKAP binds to EB1, and its C terminus binds to IQGAP1 in migrating cells. Thus, we reason that a novel IQGAP1 complex orchestrates directional cell migration via coupling dynamic microtubule plus-ends to the cell cortex. PMID:26242911

  8. Titanium dioxide nanoparticles alter cellular morphology via disturbing the microtubule dynamics

    NASA Astrophysics Data System (ADS)

    Mao, Zhilei; Xu, Bo; Ji, Xiaoli; Zhou, Kun; Zhang, Xuemei; Chen, Minjian; Han, Xiumei; Tang, Qiusha; Wang, Xinru; Xia, Yankai

    2015-04-01

    Titanium dioxide (TiO2) nanoparticles (NPs) have been widely used in our daily lives, for example, in the areas of sunscreens, cosmetics, toothpastes, food products, and nanomedical reagents. Recently, increasing concern has been raised about their neurotoxicity, but the mechanisms underlying such toxic effects are still unknown. In this work, we employed a human neuroblastoma cell line (SH-SY5Y) to study the effects of TiO2 NPs on neurological systems. Our results showed that TiO2 NPs did not affect cell viability but induced noticeable morphological changes until 100 μg ml-1. Immunofluorescence detection showed disorder, disruption, retraction, and decreased intensity of the microtubules after TiO2 NPs treatment. Both α and β tubule expressions did not change in the TiO2 NP-treated group, but the percentage of soluble tubules was increased. A microtubule dynamic study in living cells indicated that TiO2 NPs caused a lower growth rate and a higher shortening rate of microtubules as well as shortened lifetimes of de novo microtubules. TiO2 NPs did not cause changes in the expression and phosphorylation state of tau proteins, but a tau-TiO2 NP interaction was observed. TiO2 NPs could interact with tubule heterodimers, microtubules and tau proteins, which led to the instability of microtubules, thus contributing to the neurotoxicity of TiO2 NPs.Titanium dioxide (TiO2) nanoparticles (NPs) have been widely used in our daily lives, for example, in the areas of sunscreens, cosmetics, toothpastes, food products, and nanomedical reagents. Recently, increasing concern has been raised about their neurotoxicity, but the mechanisms underlying such toxic effects are still unknown. In this work, we employed a human neuroblastoma cell line (SH-SY5Y) to study the effects of TiO2 NPs on neurological systems. Our results showed that TiO2 NPs did not affect cell viability but induced noticeable morphological changes until 100 μg ml-1. Immunofluorescence detection showed disorder

  9. Maytansinoid-Antibody Conjugates Induce Mitotic Arrest by Suppressing Microtubule Dynamic Instability

    PubMed Central

    Oroudjev, Emin; Lopus, Manu; Wilson, Leslie; Audette, Charlene; Provenzano, Carmela; Erickson, Hans; Kovtun, Yelena; Chari, Ravi; Jordan, Mary Ann

    2010-01-01

    Maytansine and its analogs (maytansinoids) are potent microtubule-targeted compounds that inhibit proliferation of cells at mitosis. Antibody-maytansinoid conjugates consisting of maytansinoids (DM1 and DM4) attached to tumor-specific antibodies have shown promising clinical results. To determine the mechanism by which the antibody-DM1 conjugates inhibit cell proliferation, we examined the effects of the cleavable anti-EpCAM -SPP-DM1 and uncleavable anti-EpCAM-SMCC-DM1 conjugates on MCF7 human breast tumor cells. We also examined the effects of the free maytansinoids, maytansine and S-methyl DM1 (a version of DM1 that is stable in cell culture medium) for comparison. Both the conjugates and free maytansinoids potently inhibited MCF7 cell proliferation at nanomolar and subnanomolar concentrations, respectively, by arresting the cells in mitotic prometaphase/metaphase. Arrest occurred in concert with the internalization and intracellular processing of both conjugates under conditions that induced abnormal spindle organization and suppressed microtubule dynamic instability. Microtubule depolymerization occurred only at significantly higher drug concentrations. The results indicate that free maytansinoids, antibody-maytansinoid conjugates, and their metabolites exert their potent antimitotic effects via a common mechanism involving suppression of microtubule dynamic instability. PMID:20937595

  10. The dynamics of plus end polarization and microtubule assembly during Xenopus cortical rotation.

    PubMed

    Olson, David J; Oh, Denise; Houston, Douglas W

    2015-05-15

    The self-organization of dorsally-directed microtubules during cortical rotation in the Xenopus egg is essential for dorsal axis formation. The mechanisms controlling this process have been problematic to analyze, owing to difficulties in visualizing microtubules in living egg. Also, the order of events occurring at the onset of cortical rotation have not been satisfactorily visualized in vivo and have been inferred from staged fixed samples. To address these issues, we have characterized the dynamics of total microtubule and plus end behavior continuously throughout cortical rotation, as well as in oocytes and unfertilized eggs. Here, we show that the nascent microtubule network forms in the cortex but associates with the deep cytoplasm at the start of rotation. Importantly, plus ends remain cortical and become increasingly more numerous and active prior to rotation, with dorsal polarization occurring rapidly after the onset of rotation. Additionally, we show that vegetally localized Trim36 is required to attenuate dynamic plus end growth, suggesting that vegetal factors are needed to locally coordinate growth in the cortex. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. The dynamics of plus end polarization and microtubule assembly during Xenopus cortical rotation

    PubMed Central

    Olson, David J.; Oh, Denise

    2015-01-01

    The self-organization of dorsally-directed microtubules during cortical rotation in the Xenopus egg is essential for dorsal axis formation. The mechanisms controlling this process have been problematic to analyze, owing to difficulties in visualizing microtubules in living egg. Also, the order of events occurring at the onset of cortical rotation have not been satisfactorily visualized in vivo and have been inferred from staged fixed samples. To address these issues, we have characterized the dynamics of total microtubule and plus end behavior continuously throughout cortical rotation, as well as in oocytes and unfertilized eggs. Here, we show that the nascent microtubule network forms in the cortex but associates with the deep cytoplasm at the start of rotation. Importantly, plus ends remain cortical and become increasingly more numerous and active prior to rotation, with dorsal polarization occurring rapidly after the onset of rotation. Additionally, we show that vegetally localized Trim36 is required to attenuate dynamic plus end growth, suggesting that vegetal factors are needed to locally coordinate growth in the cortex. PMID:25753733

  12. NuSAP modulates the dynamics of kinetochore microtubules by attenuating MCAK depolymerisation activity

    PubMed Central

    Li, Chenyu; Zhang, Yajun; Yang, Qiaoyun; Ye, Fan; Sun, Stella Ying; Chen, Ee Sin; Liou, Yih-Cherng

    2016-01-01

    Nucleolar and spindle-associated protein (NuSAP) is a microtubule-associated protein that functions as a microtubule stabiliser. Depletion of NuSAP leads to severe mitotic defects, however the mechanism by which NuSAP regulates mitosis remains elusive. In this study, we identify the microtubule depolymeriser, mitotic centromere-associated kinesin (MCAK), as a novel binding partner of NuSAP. We show that NuSAP regulates the dynamics and depolymerisation activity of MCAK. Phosphorylation of MCAK by Aurora B kinase, a component of the chromosomal passenger complex, significantly enhances the interaction of NuSAP with MCAK and modulates the effects of NuSAP on the depolymerisation activity of MCAK. Our results reveal an underlying mechanism by which NuSAP controls kinetochore microtubule dynamics spatially and temporally by modulating the depolymerisation function of MCAK in an Aurora B kinase-dependent manner. Hence, this study provides new insights into the function of NuSAP in spindle formation during mitosis. PMID:26733216

  13. Hydrogen peroxide modulates the dynamic microtubule cytoskeleton during the defence responses to Verticillium dahliae toxins in Arabidopsis.

    PubMed

    Yao, Lin-Lin; Zhou, Qun; Pei, Bao-Lei; Li, Ying-Zhang

    2011-09-01

    The molecular mechanisms of signal transduction of plants in response to infection by Verticillium dahliae (VD) are not well understood. We previously showed that NO may act as an upstream signalling molecule to trigger the depolymerization of cortical microtubules in Arabidopsis. In the present study, we used the wild-type, and atrbohD and atrbohF mutants of Arabidopsis to explore the mechanisms of action of H(2)O(2) signals and the dynamic microtubule cytoskeleton in defence responses. We demonstrated that H(2)O(2) may also act as an upstream signalling molecule to regulate cortical microtubule depolymerization. The depolymerization of the cortical microtubules played a functional role in the signalling pathway to mediate the expression of defence genes. The results indicate that H(2)O(2) modulates the dynamic microtubule cytoskeleton to trigger the expression of defence genes against V. dahliae toxins (VD-toxins) in Arabidopsis.

  14. Erucin, the major isothiocyanate in arugula (Eruca sativa), inhibits proliferation of MCF7 tumor cells by suppressing microtubule dynamics.

    PubMed

    Azarenko, Olga; Jordan, Mary Ann; Wilson, Leslie

    2014-01-01

    Consumption of cruciferous vegetables is associated with reduced risk of various types of cancer. Isothiocyanates including sulforaphane and erucin are believed to be responsible for this activity. Erucin [1-isothiocyanato-4-(methylthio)butane], which is metabolically and structurally related to sulforaphane, is present in large quantities in arugula (Eruca sativa, Mill.), kohlrabi and Chinese cabbage. However, its cancer preventive mechanisms remain poorly understood. We found that erucin inhibits proliferation of MCF7 breast cancer cells (IC50 = 28 µM) in parallel with cell cycle arrest at mitosis (IC50 = 13 µM) and apoptosis, by a mechanism consistent with impairment of microtubule dynamics. Concentrations of 5-15 µM erucin suppressed the dynamic instability of microtubules during interphase in the cells. Most dynamic instability parameters were inhibited, including the rates and extents of growing and shortening, the switching frequencies between growing and shortening, and the overall dynamicity. Much higher erucin concentrations were required to reduce the microtubule polymer mass. In addition, erucin suppressed dynamic instability of microtubules reassembled from purified tubulin in similar fashion. The effects of erucin on microtubule dynamics, like those of sulforaphane, are similar qualitatively to those of much more powerful clinically-used microtubule-targeting anticancer drugs, including taxanes and the vinca alkaloids. The results suggest that suppression of microtubule dynamics by erucin and the resulting impairment of critically important microtubule-dependent cell functions such as mitosis, cell migration and microtubule-based transport may be important in its cancer preventive activities.

  15. Biallelic Mutations in TBCD, Encoding the Tubulin Folding Cofactor D, Perturb Microtubule Dynamics and Cause Early-Onset Encephalopathy.

    PubMed

    Flex, Elisabetta; Niceta, Marcello; Cecchetti, Serena; Thiffault, Isabelle; Au, Margaret G; Capuano, Alessandro; Piermarini, Emanuela; Ivanova, Anna A; Francis, Joshua W; Chillemi, Giovanni; Chandramouli, Balasubramanian; Carpentieri, Giovanna; Haaxma, Charlotte A; Ciolfi, Andrea; Pizzi, Simone; Douglas, Ganka V; Levine, Kara; Sferra, Antonella; Dentici, Maria Lisa; Pfundt, Rolph R; Le Pichon, Jean-Baptiste; Farrow, Emily; Baas, Frank; Piemonte, Fiorella; Dallapiccola, Bruno; Graham, John M; Saunders, Carol J; Bertini, Enrico; Kahn, Richard A; Koolen, David A; Tartaglia, Marco

    2016-10-06

    Microtubules are dynamic cytoskeletal elements coordinating and supporting a variety of neuronal processes, including cell division, migration, polarity, intracellular trafficking, and signal transduction. Mutations in genes encoding tubulins and microtubule-associated proteins are known to cause neurodevelopmental and neurodegenerative disorders. Growing evidence suggests that altered microtubule dynamics may also underlie or contribute to neurodevelopmental disorders and neurodegeneration. We report that biallelic mutations in TBCD, encoding one of the five co-chaperones required for assembly and disassembly of the αβ-tubulin heterodimer, the structural unit of microtubules, cause a disease with neurodevelopmental and neurodegenerative features characterized by early-onset cortical atrophy, secondary hypomyelination, microcephaly, thin corpus callosum, developmental delay, intellectual disability, seizures, optic atrophy, and spastic quadriplegia. Molecular dynamics simulations predicted long-range and/or local structural perturbations associated with the disease-causing mutations. Biochemical analyses documented variably reduced levels of TBCD, indicating relative instability of mutant proteins, and defective β-tubulin binding in a subset of the tested mutants. Reduced or defective TBCD function resulted in decreased soluble α/β-tubulin levels and accelerated microtubule polymerization in fibroblasts from affected subjects, demonstrating an overall shift toward a more rapidly growing and stable microtubule population. These cells displayed an aberrant mitotic spindle with disorganized, tangle-shaped microtubules and reduced aster formation, which however did not alter appreciably the rate of cell proliferation. Our findings establish that defective TBCD function underlies a recognizable encephalopathy and drives accelerated microtubule polymerization and enhanced microtubule stability, underscoring an additional cause of altered microtubule dynamics with

  16. Microtubule-associated protein/microtubule affinity-regulating kinase (p110mark). A novel protein kinase that regulates tau-microtubule interactions and dynamic instability by phosphorylation at the Alzheimer-specific site serine 262.

    PubMed

    Drewes, G; Trinczek, B; Illenberger, S; Biernat, J; Schmitt-Ulms, G; Meyer, H E; Mandelkow, E M; Mandelkow, E

    1995-03-31

    Aberrant phosphorylation of the microtubule-associated protein tau is one of the pathological features of neuronal degeneration in Alzheimer's disease. The phosphorylation of Ser-262 within the microtubule binding region of tau is of particular interest because so far it is observed only in Alzheimer's disease (Hasegawa, M., Morishima-Kawashima, M., Takio, K., Suzuki, M., Titani, K., and Ihara, Y. (1992) J. Biol. Chem. 26, 17047-17054) and because phosphorylation of this site alone dramatically reduces the affinity for microtubules in vitro (Biernat, J., Gustke, N., Drewes, G., Mandelkow, E.-M., and Mandelkow, E. (1993) Neuron 11, 153-163). Here we describe the purification and characterization of a protein-serine kinase from brain tissue with an apparent molecular mass of 110 kDa on SDS gels. This kinase specifically phosphorylates tau on its KIGS or KCGS motifs in the repeat domain, whereas no significant phosphorylation outside this region was detected. Phosphorylation occurs mainly on Ser-262 located in the first repeat. This largely abolishes tau's binding to microtubules and makes them dynamically unstable, in contrast to other protein kinases that phosphorylate tau at or near the repeat domain. The data suggest a role for this novel kinase in cellular events involving rearrangement of the microtuble-associated proteins/microtubule arrays and their pathological degeneration in Alzheimer's disease.

  17. AKAP9, a Regulator of Microtubule Dynamics, Contributes to Blood-Testis Barrier Function

    PubMed Central

    Venkatesh, Deepak; Mruk, Dolores; Herter, Jan M.; Cullere, Xavier; Chojnacka, Katarzyna; Cheng, C. Yan; Mayadas, Tanya N.

    2017-01-01

    The blood-testis barrier (BTB), formed between adjacent Sertoli cells, undergoes extensive remodeling to facilitate the transport of preleptotene spermatocytes across the barrier from the basal to apical compartments of the seminiferous tubules for further development and maturation into spermatozoa. The actin cytoskeleton serves unique structural and supporting roles in this process, but little is known about the role of microtubules and their regulators during BTB restructuring. The large isoform of the cAMP-responsive scaffold protein AKAP9 regulates microtubule dynamics and nucleation at the Golgi. We found that conditional deletion of Akap9 in mice after the initial formation of the BTB at puberty leads to infertility. Akap9 deletion results in marked alterations in the organization of microtubules in Sertoli cells and a loss of barrier integrity despite a relatively intact, albeit more apically localized F-actin and BTB tight junctional proteins. These changes are accompanied by a loss of haploid spermatids due to impeded meiosis. The barrier, however, progressively reseals in older Akap9 null mice, which correlates with a reduction in germ cell apoptosis and a greater incidence of meiosis. However, spermiogenesis remains defective, suggesting additional roles for AKAP9 in this process. Together, our data suggest that AKAP9 and, by inference, the regulation of the microtubule network are critical for BTB function and subsequent germ cell development during spermatogenesis. PMID:26687990

  18. Tobacco mutants with reduced microtubule dynamics are less susceptible to TMV.

    PubMed

    Ouko, Maurice O; Sambade, Adrian; Brandner, Katrin; Niehl, Annette; Peña, Eduardo; Ahad, Abdul; Heinlein, Manfred; Nick, Peter

    2010-06-01

    A panel of seven SR1 tobacco mutants (ATER1 to ATER7) derived via T-DNA activation tagging and screening for resistance to a microtubule assembly inhibitor, ethyl phenyl carbamate, were used to study the role of microtubules during infection and spread of tobacco mosaic virus (TMV). In one of these lines, ATER2, alpha-tubulin is shifted from the tyrosinylated into the detyrosinated form, and the microtubule plus-end marker GFP-EB1 moves significantly slower when expressed in the background of the ATER2 mutant as compared with the SR1 wild type. The efficiency of cell-to-cell movement of TMV encoding GFP-tagged movement protein (MP-GFP) is reduced in ATER2 accompanied by a reduced association of MP-GFP with plasmodesmata. This mutant is also more tolerant to viral infection as compared with the SR1 wild type, implying that reduced microtubule dynamics confer a comparative advantage in face of TMV infection.

  19. Unconventional functions of microtubule motors.

    PubMed

    Muresan, Virgil; Muresan, Zoia

    2012-04-01

    With the functional characterization of proteins advancing at fast pace, the notion that one protein performs different functions - often with no relation to each other - emerges as a novel principle of how cells work. Molecular motors are no exception to this new development. Here, we provide an account on recent findings revealing that microtubule motors are multifunctional proteins that regulate many cellular processes, in addition to their main function in transport. Some of these functions rely on their motor activity, but others are independent of it. Of the first category, we focus on the role of microtubule motors in organelle biogenesis, and in the remodeling of the cytoskeleton, especially through the regulation of microtubule dynamics. Of the second category, we discuss the function of microtubule motors as static anchors of the cargo at the destination, and their participation in regulating signaling cascades by modulating interactions between signaling proteins, including transcription factors. We also review atypical forms of transport, such as the cytoplasmic streaming in the oocyte, and the movement of cargo by microtubule fluctuations. Our goal is to provide an overview of these unexpected functions of microtubule motors, and to incite future research in this expanding field.

  20. Enhanced dynamic instability of microtubules in a ROS free inert environment.

    PubMed

    Islam, Md Sirajul; Kabir, Arif Md Rashedul; Inoue, Daisuke; Sada, Kazuki; Kakugo, Akira

    2016-04-01

    Reactive oxygen species (ROS), one of the regulators in various biological processes, have recently been suspected to modulate microtubule (MT) dynamics in cells. However due to complicated cellular environment and unavailability of any in vitro investigation, no detail is understood yet. Here, by performing simple in vitro investigations, we have unveiled the effect of ROS on MT dynamics. By studying dynamic instability of MTs in a ROS free environment and comparing with that in the presence of ROS, we disclosed that MTs showed enhanced dynamics in the ROS free environment. All the parameters that define dynamic instability of MTs e.g., growth and shrinkage rates, rescue and catastrophe frequencies were significantly affected by the presence of ROS. This work clearly reveals the role of ROS in modulating MT dynamics in vitro, and would be a great help in understanding the role of ROS in regulation of MT dynamics in cells.

  1. Analysis of microtubule growth dynamics arising from altered actin network structure and contractility in breast tumor cells

    NASA Astrophysics Data System (ADS)

    Ory, Eleanor C.; Bhandary, Lekhana; E Boggs, Amanda; Chakrabarti, Kristi R.; Parker, Joshua; Losert, Wolfgang; Martin, Stuart S.

    2017-04-01

    The periphery of epithelial cells is shaped by opposing cytoskeletal physical forces generated predominately by two dynamic force generating systems—growing microtubule ends push against the boundary from the cell center, and the actin cortex contracts the attached plasma membrane. Here we investigate how changes to the structure and dynamics of the actin cortex alter the dynamics of microtubules. Current drugs target actin polymerization and contraction to reduce cell division and invasiveness; however, the impacts on microtubule dynamics remain incompletely understood. Using human MCF-7 breast tumor cells expressing GFP-tagged microtubule end-binding-protein-1 (EB1) and coexpression of cytoplasmic fluorescent protein mCherry, we map the trajectories of growing microtubule ends and cytoplasmic boundary respectively. Based on EB1 tracks and cytoplasmic boundary outlines, we calculate the speed, distance from cytoplasmic boundary, and straightness of microtubule growth. Actin depolymerization with Latrunculin-A reduces EB1 growth speed as well as allows the trajectories to extend beyond the cytoplasmic boundary. Blebbistatin, a direct myosin-II inhibitor, reduced EB1 speed and yielded less straight EB1 trajectories. Inhibiting signaling upstream of myosin-II contractility via the Rho-kinase inhibitor, Y-27632, altered EB1 dynamics differently from Blebbistatin. These results indicate that reduced actin cortex integrity can induce distinct alterations in microtubule dynamics. Given recent findings that tumor stem cell characteristics are increased by drugs which reduce actin contractility or stabilize microtubules, it remains important to clearly define how cytoskeletal drugs alter the interactions between these two filament systems in tumor cells.

  2. Analysis of microtubule growth dynamics arising from altered actin network structure and contractility in breast tumor cells.

    PubMed

    Ory, Eleanor; Bhandary, Lekhana; Boggs, Amanda; Chakrabarti, Kristi; Parker, Joshua; Losert, Wolfgang; Martin, Stuart S

    2017-01-16

    The periphery of epithelial cells is shaped by opposing cytoskeletal physical forces generated predominately by two dynamic force generating systems - growing microtubule ends push against the boundary from the cell center, and the actin cortex contracts the attached plasma membrane. Here we investigate how changes to the structure and dynamics of the actin cortex alter the dynamics of microtubules. Current drugs target actin polymerization and contraction to reduce cell division and invasiveness; however, the impacts on microtubule dynamics remain incompletely understood. Using human MCF-7 breast tumor cells expressing GFP-tagged microtubule end-binding-protein-1 (EB1) and coexpression of cytoplasmic fluorescent protein mCherry, we map the trajectories of growing microtubule ends and cytoplasmic boundary respectively. Based on EB1 tracks and cytoplasmic boundary outlines, we calculate the speed, distance from cytoplasmic boundary, and straightness of microtubule growth. Actin depolymerization with Latrunculin-A reduces EB1 growth speed as well as allows the trajectories to extend beyond the cytoplasmic boundary. Blebbistatin, a direct myosin-II inhibitor, reduced EB1 speed and yielded less straight EB1 trajectories. Inhibiting signaling upstream of myosin-II contractility via the Rho-kinase inhibitor, Y-27632, altered EB1 dynamics differently from Blebbistatin. These results indicate that reduced actin cortex integrity can induce distinct alterations in microtubule dynamics. Given recent findings that tumor stem cell characteristics are increased by drugs which reduce actin contractility or stabilize microtubules, it remains important to clearly define how cytoskeletal drugs alter the interactions between these two filament systems in tumor cells.

  3. Regulation of Kif15 localization and motility by the C-terminus of TPX2 and microtubule dynamics

    PubMed Central

    Mann, Barbara J.; Balchand, Sai K.; Wadsworth, Patricia

    2017-01-01

    Mitotic motor proteins generate force to establish and maintain spindle bipolarity, but how they are temporally and spatially regulated in vivo is unclear. Prior work demonstrated that a microtubule-associated protein, TPX2, targets kinesin-5 and kinesin-12 motors to spindle microtubules. The C-terminal domain of TPX2 contributes to the localization and motility of the kinesin-5, Eg5, but it is not known whether this domain regulates kinesin-12, Kif15. We found that the C-terminal domain of TPX2 contributes to the localization of Kif15 to spindle microtubules in cells and suppresses motor walking in vitro. Kif15 and Eg5 are partially redundant motors, and overexpressed Kif15 can drive spindle formation in the absence of Eg5 activity. Kif15-dependent bipolar spindle formation in vivo requires the C-terminal domain of TPX2. In the spindle, fluorescent puncta of GFP-Kif15 move toward the equatorial region at a rate equivalent to microtubule growth. Reduction of microtubule growth with paclitaxel suppresses GFP-Kif15 motility, demonstrating that dynamic microtubules contribute to Kif15 behavior. Our results show that the C-terminal region of TPX2 regulates Kif15 in vitro, contributes to motor localization in cells, and is required for Kif15 force generation in vivo and further reveal that dynamic microtubules contribute to Kif15 behavior in vivo. PMID:27852894

  4. Reversible polyglutamylation of alpha- and beta-tubulin and microtubule dynamics in mouse brain neurons.

    PubMed Central

    Audebert, S; Desbruyères, E; Gruszczynski, C; Koulakoff, A; Gros, F; Denoulet, P; Eddé, B

    1993-01-01

    The relationship between microtubule dynamics and polyglutamylation of tubulin was investigated in young differentiating mouse brain neurons. Selective posttranslational labeling with [3H]glutamate and immunoblotting with a specific monoclonal antibody (GT335) enabled us to analyze polyglutamylation of both alpha and beta subunits. Nocodazole markedly inhibited incorporation of [3H]glutamate into alpha- and beta-tubulin, whereas taxol had no effect for alpha-tubulin and a stimulating effect for beta-tubulin. These results strongly suggest that microtubule polymers are the preferred substrate for polyglutamylation. Chase experiments revealed the existence of a reversal reaction that, in the case of alpha-tubulin, was not affected by microtubule drugs, suggesting that deglutamylation of this subunit can occur on both polymers and soluble tubulin. Evidence was obtained that deglutamylation of alpha-tubulin operates following two distinct rates depending on the length of the polyglutamyl chain, the distal units (4th-6th) being removed rapidly whereas the proximal ones (1st-3rd) appearing much more resistant to deglutamylation. Partition of glutamylated alpha-tubulin isoforms was also correlated with the length of the polyglutamyl chain. Forms bearing four to six units were recovered specifically in the polymeric fraction, whereas those bearing one to three units were distributed evenly between polymeric and soluble fractions. It thus appears that the slow rate component of the deglutamylation reaction offers to neurons the possibility to maintain a basal level of glutamylated alpha-tubulin in the soluble pool independently of microtubule dynamics. Finally, some differences observed in the glutamylation of alpha- and beta-tubulin suggest that distinct enzymes are involved. Images PMID:8104053

  5. The Salmonella effector SseJ disrupts microtubule dynamics when ectopically expressed in normal rat kidney cells

    PubMed Central

    Raines, Sally A.; Hodgkinson, Michael R.; Dowle, Adam A.

    2017-01-01

    Salmonella effector protein SseJ is secreted by Salmonella into the host cell cytoplasm where it can then modify host cell processes. Whilst host cell small GTPase RhoA has previously been shown to activate the acyl-transferase activity of SseJ we show here an un-described effect of SseJ protein production upon microtubule dynamism. SseJ prevents microtubule collapse and this is independent of SseJ’s acyl-transferase activity. We speculate that the effects of SseJ on microtubules would be mediated via its known interactions with the small GTPases of the Rho family. PMID:28235057

  6. FTDP-17 mutations in Tau alter the regulation of microtubule dynamics: an "alternative core" model for normal and pathological Tau action.

    PubMed

    LeBoeuf, Adria C; Levy, Sasha F; Gaylord, Michelle; Bhattacharya, Arnab; Singh, Ambuj K; Jordan, Mary Ann; Wilson, Leslie; Feinstein, Stuart C

    2008-12-26

    Mutations affecting either the structure or regulation of the microtubule-associated protein Tau cause neuronal cell death and dementia. However, the molecular mechanisms mediating these deleterious effects remain unclear. Among the most characterized activities of Tau is the ability to regulate microtubule dynamics, known to be essential for proper cell function and viability. Here we have tested the hypothesis that Tau mutations causing neurodegeneration also alter the ability of Tau to regulate the dynamic instability behaviors of microtubules. Using in vitro microtubule dynamics assays to assess average microtubule growth rates, microtubule growth rate distributions, and catastrophe frequencies, we found that all tested mutants possessing amino acid substitutions or deletions mapping to either the repeat or interrepeat regions of Tau do indeed compromise its ability to regulate microtubule dynamics. Further mutational analyses suggest a novel mechanism of Tau regulatory action based on an "alternative core" of microtubule binding and regulatory activities composed of two repeats and the interrepeat between them. In this model, the interrepeat serves as the primary regulator of microtubule dynamics, whereas the flanking repeats serve as tethers to properly position the interrepeat on the microtubule. Importantly, since there are multiple interrepeats on each Tau molecule, there are also multiple cores on each Tau molecule, each with distinct mechanistic capabilities, thereby providing significant regulatory potential. Taken together, the data are consistent with a microtubule misregulation mechanism for Tau-mediated neuronal cell death and provide a novel mechanistic model for normal and pathological Tau action.

  7. An EB1-kinesin complex is sufficient to steer microtubule growth in vitro

    PubMed Central

    Chen, Yalei; Rolls, Melissa M.; Hancock, William O.

    2013-01-01

    Summary Proper microtubule polarity underlies overall neuronal polarity, but mechanisms for maintaining microtubule polarity are not well understood. Previous live imaging in Drosophila dendritic arborization (da) neurons showed that, while microtubules are uniformly plus-end out in axons, dendrites possess uniformly minus-end-out microtubules [1]. Thus, maintaining uniform microtubule polarity in dendrites requires that growing microtubule plus-ends entering branch points must be actively directed towards the cell body. A model was proposed in which EB1 tracks the plus-ends of microtubules growing into a branches and an associated kinesin-2 motor walks along a static microtubule to steer the plus-end toward the cell body. However, the fast plus-end binding dynamics of EB1 [2–5] appear at odds with this proposed mechanical function. To test this model in vitro, we reconstituted the system by artificially dimerizing EB1 to kinesin, growing microtubules from immobilized seeds, and imaging encounters between growing microtubule plus-ends and static microtubules. Consistent with in vivo observations, the EB1-kinesin complex actively steered growing microtubules. Thus EB1 kinetics and mechanics are sufficient to bend microtubules for several seconds. Other kinesins also demonstrated this activity, suggesting this is a general mechanism for organizing and maintaining proper microtubule polarity in cells. PMID:24462004

  8. Microtubules growth rate alteration in human endothelial cells.

    PubMed

    Alieva, Irina B; Zemskov, Evgeny A; Kireev, Igor I; Gorshkov, Boris A; Wiseman, Dean A; Black, Stephen M; Verin, Alexander D

    2010-01-01

    To understand how microtubules contribute to the dynamic reorganization of the endothelial cell (EC) cytoskeleton, we established an EC model expressing EB3-GFP, a protein that marks microtubule plus-ends. Using this model, we were able to measure microtubule growth rate at the centrosome region and near the cell periphery of a single human EC and in the EC monolayer. We demonstrate that the majority of microtubules in EC are dynamic, the growth rate of their plus-ends is highest in the internal cytoplasm, in the region of the centrosome. Growth rate of microtubule plus-ends decreases from the cell center toward the periphery. Our data suggest the existing mechanism(s) of local regulation of microtubule plus-ends growth in EC. Microtubule growth rate in the internal cytoplasm of EC in the monolayer is lower than that of single EC suggesting the regulatory effect of cell-cell contacts. Centrosomal microtubule growth rate distribution in single EC indicated the presence of two subpopulations of microtubules with "normal" (similar to those in monolayer EC) and "fast" (three times as much) growth rates. Our results indicate functional interactions between cell-cell contacts and microtubules.

  9. ATX-2, the C. elegans Ortholog of Human Ataxin-2, Regulates Centrosome Size and Microtubule Dynamics

    PubMed Central

    Stubenvoll, Michael D.; Medley, Jeffrey C.; Irwin, Miranda

    2016-01-01

    Centrosomes are critical sites for orchestrating microtubule dynamics, and exhibit dynamic changes in size during the cell cycle. As cells progress to mitosis, centrosomes recruit more microtubules (MT) to form mitotic bipolar spindles that ensure proper chromosome segregation. We report a new role for ATX-2, a C. elegans ortholog of Human Ataxin-2, in regulating centrosome size and MT dynamics. ATX-2, an RNA-binding protein, forms a complex with SZY-20 in an RNA-independent fashion. Depleting ATX-2 results in embryonic lethality and cytokinesis failure, and restores centrosome duplication to zyg-1 mutants. In this pathway, SZY-20 promotes ATX-2 abundance, which inversely correlates with centrosome size. Centrosomes depleted of ATX-2 exhibit elevated levels of centrosome factors (ZYG-1, SPD-5, γ-Tubulin), increasing MT nucleating activity but impeding MT growth. We show that ATX-2 influences MT behavior through γ-Tubulin at the centrosome. Our data suggest that RNA-binding proteins play an active role in controlling MT dynamics and provide insight into the control of proper centrosome size and MT dynamics. PMID:27689799

  10. Mechanism of dynamic reorientation of cortical microtubules due to mechanical stress.

    PubMed

    Muratov, Alexander; Baulin, Vladimir A

    2015-12-01

    Directional growth caused by gravitropism and corresponding bending of plant cells has been explored since 19th century, however, many aspects of mechanisms underlying the perception of gravity at the molecular level are still not well known. Perception of gravity in root and shoot gravitropisms is usually attributed to gravisensitive cells, called statocytes, which exploit sedimentation of macroscopic and heavy organelles, amyloplasts, to sense the direction of gravity. Gravity stimulus is then transduced into distal elongation zone, which is several mm far from statocytes, where it causes stretching. It is suggested that gravity stimulus is conveyed by gradients in auxin flux. We propose a theoretical model that may explain how concentration gradients and/or stretching may indirectly affect the global orientation of cortical microtubules, attached to the cell membrane and induce their dynamic reorientation perpendicular to the gradients. In turn, oriented microtubule arrays direct the growth and orientation of cellulose microfibrils, forming part of the cell external skeleton and determine the shape of the cell. Reorientation of microtubules is also observed in reaction to light in phototropism and mechanical bending, thus suggesting universality of the proposed mechanism.

  11. Tank binding kinase 1 is a centrosome-associated kinase necessary for microtubule dynamics and mitosis

    PubMed Central

    Pillai, Smitha; Nguyen, Jonathan; Johnson, Joseph; Haura, Eric; Coppola, Domenico; Chellappan, Srikumar

    2015-01-01

    TANK Binding Kinase 1 (TBK1) is a non-canonical IκB kinase that contributes to KRAS-driven lung cancer. Here we report that TBK1 plays essential roles in mammalian cell division. Specifically, levels of active phospho-TBK1 increase during mitosis and localize to centrosomes, mitotic spindles and midbody, and selective inhibition or silencing of TBK1 triggers defects in spindle assembly and prevents mitotic progression. TBK1 binds to the centrosomal protein CEP170 and to the mitotic apparatus protein NuMA, and both CEP170 and NuMA are TBK1 substrates. Further, TBK1 is necessary for CEP170 centrosomal localization and binding to the microtubule depolymerase Kif2b, and for NuMA binding to dynein. Finally, selective disruption of the TBK1–CEP170 complex augments microtubule stability and triggers defects in mitosis, suggesting that TBK1 functions as a mitotic kinase necessary for microtubule dynamics and mitosis. PMID:26656453

  12. Dynamic Association of the Fragile X Mental Retardation Protein as a Messenger Ribonucleoprotein between Microtubules and Polyribosomes

    PubMed Central

    Wang, Houping; Dictenberg, Jason B.; Ku, Li; Li, Wen; Bassell, Gary J.

    2008-01-01

    The fragile X mental retardation protein (FMRP) is a selective RNA-binding protein that regulates translation and plays essential roles in synaptic function. FMRP is bound to specific mRNA ligands, actively transported into neuronal processes in a microtubule-dependent manner, and associated with polyribosomes engaged in translation elongation. However, the biochemical relationship between FMRP–microtubule association and FMRP–polyribosome association remains elusive. Here, we report that although the majority of FMRP is incorporated into elongating polyribosomes in the soluble cytoplasm, microtubule-associated FMRP is predominantly retained in translationally dormant, polyribosome-free messenger ribonucleoprotein (mRNP) complexes. Interestingly, FMRP–microtubule association is increased when mRNPs are dynamically released from polyribosomes as a result of inhibiting translation initiation. Furthermore, the I304N mutant FMRP that fails to be incorporated into polyribosomes is associated with microtubules in mRNP particles and transported into neuronal dendrites in a microtubule-dependent, 3,5-dihydroxyphenylglycine-stimulated manner with similar kinetics to that of wild-type FMRP. Hence, polyribosome-free FMRP–mRNP complexes travel on microtubules and wait for activity-dependent translational derepression at the site of function. The dual participation of FMRP in dormant mRNPs and polyribosomes suggests distinct roles of FMRP in dendritic transport and translational regulation, two distinct phases that control local protein production to accommodate synaptic plasticity. PMID:17978095

  13. A model for the regulatory network controlling the dynamics of kinetochore microtubule plus-ends and poleward flux in metaphase.

    PubMed

    Fernandez, Nicolas; Chang, Qiang; Buster, Daniel W; Sharp, David J; Ma, Ao

    2009-05-12

    Tight regulation of kinetochore microtubule dynamics is required to generate the appropriate position and movement of chromosomes on the mitotic spindle. A widely studied but mysterious aspect of this regulation occurs during metaphase when polymerization of kinetochore microtubule plus-ends is balanced by depolymerization at their minus-ends. Thus, kinetochore microtubules maintain a constant net length, allowing chromosomes to persist at the spindle equator, but consist of tubulin subunits that continually flux toward spindle poles. Here, we construct a feasible network of regulatory proteins for controlling kinetochore microtubule plus-end dynamics, which was combined with a Monte Carlo algorithm to simulate metaphase tubulin flux. We also test the network model by combining it with a force-balancing model explicitly taking force generators into account. Our data reveal how relatively simple interrelationships among proteins that stimulate microtubule plus-end polymerization, depolymerization, and dynamicity can induce robust flux while accurately predicting apparently contradictory results of knockdown experiments. The model also provides a simple and robust physical mechanism through which the regulatory networks at kinetochore microtubule plus- and minus-ends could communicate.

  14. Regulation of Microtubule Dynamics in Axon Regeneration: Insights from C. elegans

    PubMed Central

    Tang, Ngang Heok; Chisholm, Andrew D.

    2016-01-01

    The capacity of an axon to regenerate is regulated by its external environment and by cell-intrinsic factors. Studies in a variety of organisms suggest that alterations in axonal microtubule (MT) dynamics have potent effects on axon regeneration. We review recent findings on the regulation of MT dynamics during axon regeneration, focusing on the nematode Caenorhabditis elegans. In C. elegans the dual leucine zipper kinase (DLK) promotes axon regeneration, whereas the exchange factor for Arf6 (EFA-6) inhibits axon regeneration. Both DLK and EFA-6 respond to injury and control axon regeneration in part via MT dynamics. How the DLK and EFA-6 pathways are related is a topic of active investigation, as is the mechanism by which EFA-6 responds to axonal injury. We evaluate potential candidates, such as the MT affinity-regulating kinase PAR-1/MARK, in regulation of EFA-6 and axonal MT dynamics in regeneration. PMID:27350865

  15. Regulation of Microtubule Dynamics in Axon Regeneration: Insights from C. elegans.

    PubMed

    Tang, Ngang Heok; Chisholm, Andrew D

    2016-01-01

    The capacity of an axon to regenerate is regulated by its external environment and by cell-intrinsic factors. Studies in a variety of organisms suggest that alterations in axonal microtubule (MT) dynamics have potent effects on axon regeneration. We review recent findings on the regulation of MT dynamics during axon regeneration, focusing on the nematode Caenorhabditis elegans. In C. elegans the dual leucine zipper kinase (DLK) promotes axon regeneration, whereas the exchange factor for Arf6 (EFA-6) inhibits axon regeneration. Both DLK and EFA-6 respond to injury and control axon regeneration in part via MT dynamics. How the DLK and EFA-6 pathways are related is a topic of active investigation, as is the mechanism by which EFA-6 responds to axonal injury. We evaluate potential candidates, such as the MT affinity-regulating kinase PAR-1/MARK, in regulation of EFA-6 and axonal MT dynamics in regeneration.

  16. The von Hippel-Lindau tumor suppressor protein influences microtubule dynamics at the cell periphery.

    PubMed

    Lolkema, Martijn P; Mehra, Niven; Jorna, Anita S; van Beest, Moniek; Giles, Rachel H; Voest, Emile E

    2004-12-10

    The von Hippel-Lindau (VHL) protein protects microtubules (MTs) from destabilization by nocodazole treatment. Based on this fixed-cell assay with static end points, VHL has been reported to directly stabilize the MT cytoskeleton. To investigate the dynamic changes in MTs induced by VHL in living cells, we measured the influence of VHL on tubulin turnover using fluorescence recovery after photobleaching (FRAP). To this end, we engineered VHL-deficient renal cell carcinoma cells to constitutively incorporate fluorescently labeled tubulin and to inducibly express VHL. Induction of VHL in these cells resulted in a decrease of tubulin turnover as measured by FRAP at the cell periphery, while minimally influencing MT dynamics around the centrosome. Our data indicates that VHL changes the behavior of MTs dependent on their subcellular localization implying a role for VHL in cellular processes such as migration, polarization, and cell-cell interactions. Here we propose a complementary method to directly measure VHL-induced subcellular changes in microtubule dynamics, which may serve as a tool to study the effect of MT binding proteins such as VHL.

  17. Microtubule dynamics in serum-starved and serum-stimulated Swiss 3T3 mouse fibroblasts: implications for the relationship between serum-induced contractility and microtubules.

    PubMed

    Danowski, B A

    1998-01-01

    It has been established that cell contractility can be stimulated with low or depolymerizing doses of microtubule (MT) poisons. In addition, low doses of nocodazole and vinblastine have recently been shown to decrease MT dynamics in vivo. In this study, investigated whether there is a direct, or reciprocal feedback-type relationship between contractility and microtubule dynamics, by examining MT dynamic behavior in live cells under conditions where contractility is known to be altered. Quiescent, serum-starved Swiss 3T3 mouse fibroblasts have been shown to be weakened in their contractility; serum stimulation increases cell contractility and causes the formation of stress fibers and adhesion plaques. Growing (control), quiescent (Go), and serum-stimulated cells were injected with rhodamine-tubulin, and MT dynamics were determined by analysis of MT length changes obtained from digitized images of the extreme periphery of the cells, where the MT ends were readily apparent. The MTs in quiescent cells were less dynamic than those in control cells: the growth and shortening rates were reduced by 30% and 45%, respectively. Dynamicity decreased by 47%, and the MTs spent more time in pause. After serum stimulation, MT growth rate, dynamicity, and time spent in pause returned to control cell levels. Although the shortening rate increased by 28%, it remained significantly lower than in control cells. In this system, the serum-induced increase in contractility was accompanied by an increase in MT dynamics. However, increased contractility stimulated with low doses of MT poisons is known to be accompanied by a decrease in MT dynamics. These results suggest that the relationship between MT dynamics and contractility is an indirect one.

  18. Dynamic model of the force driving kinesin to move along microtubule-Simulation with a model system

    NASA Astrophysics Data System (ADS)

    Chou, Y. C.; Hsiao, Yi-Feng; To, Kiwing

    2015-09-01

    A dynamic model for the motility of kinesin, including stochastic-force generation and step formation is proposed. The force driving the motion of kinesin motor is generated by the impulse from the collision between the randomly moving long-chain stalk and the ratchet-shaped outer surface of microtubule. Most of the dynamical and statistical features of the motility of kinesin are reproduced in a simulation system, with (a) ratchet structures similar to the outer surface of microtubule, (b) a bead chain connected to two heads, similarly to the stalk of the real kinesin motor, and (c) the interaction between the heads of the simulated kinesin and microtubule. We also propose an experiment to discriminate between the conventional hand-over-hand model and the dynamic model.

  19. Inhibition of aurora B kinase blocks chromosome segregation, overrides the spindle checkpoint, and perturbs microtubule dynamics in mitosis.

    PubMed

    Kallio, Marko J; McCleland, Mark L; Stukenberg, P Todd; Gorbsky, Gary J

    2002-06-04

    How kinetochores correct improper microtubule attachments and regulate the spindle checkpoint signal is unclear. In budding yeast, kinetochores harboring mutations in the mitotic kinase Ipl1 fail to bind chromosomes in a bipolar fashion. In C. elegans and Drosophila, inhibition of the Ipl1 homolog, Aurora B kinase, induces aberrant anaphase and cytokinesis. To study Aurora B kinase in vertebrates, we microinjected mitotic XTC cells with inhibitory antibody and found several related effects. After injection of the antibody, some chromosomes failed to congress to the metaphase plate, consistent with a conserved role for Aurora B in bipolar attachment of chromosomes. Injected cells exited mitosis with no evidence of anaphase or cytokinesis. Injection of anti-Xaurora B antibody also altered the microtubule network in mitotic cells with an extension of the astral microtubules and a reduction of kinetochore microtubules. Finally, inhibition of Aurora B in cultured cells and in cycling Xenopus egg extracts caused escape from the spindle checkpoint arrest induced by microtubule drugs. Our findings implicate Aurora B as a critical coordinator relating changes in microtubule dynamics in mitosis, chromosome movement in prometaphase and anaphase, signaling of the spindle checkpoint, and cytokinesis.

  20. The kinesin-2 family member KIF3C regulates microtubule dynamics and is required for axon growth and regeneration.

    PubMed

    Gumy, Laura F; Chew, Daniel J; Tortosa, Elena; Katrukha, Eugene A; Kapitein, Lukas C; Tolkovsky, Aviva M; Hoogenraad, Casper C; Fawcett, James W

    2013-07-10

    Axon regeneration after injury requires the extensive reconstruction, reorganization, and stabilization of the microtubule cytoskeleton in the growth cones. Here, we identify KIF3C as a key regulator of axonal growth and regeneration by controlling microtubule dynamics and organization in the growth cone. KIF3C is developmentally regulated. Rat embryonic sensory axons and growth cones contain undetectable levels of KIF3C protein that is locally translated immediately after injury. In adult neurons, KIF3C is axonally transported from the cell body and is enriched at the growth cone where it preferentially binds to tyrosinated microtubules. Functionally, the interaction of KIF3C with EB3 is necessary for its localization at the microtubule plus-ends in the growth cone. Depletion of KIF3C in adult neurons leads to an increase in stable, overgrown and looped microtubules because of a strong decrease in the microtubule frequency of catastrophes, suggesting that KIF3C functions as a microtubule-destabilizing factor. Adult axons lacking KIF3C, by RNA interference or KIF3C gene knock-out, display an impaired axonal outgrowth in vitro and a delayed regeneration after injury both in vitro and in vivo. Murine KIF3C knock-out embryonic axons grow normally but do not regenerate after injury because they are unable to locally translate KIF3C. These data show that KIF3C is an injury-specific kinesin that contributes to axon growth and regeneration by regulating and organizing the microtubule cytoskeleton in the growth cone.

  1. Activation of microtubule dynamics increases neuronal growth via the nerve growth factor (NGF)- and Gαs-mediated signaling pathways.

    PubMed

    Sarma, Tulika; Koutsouris, Athanasia; Yu, Jiang Zhu; Krbanjevic, Aleksandar; Hope, Thomas J; Rasenick, Mark M

    2015-04-17

    Signals that activate the G protein Gαs and promote neuronal differentiation evoke Gαs internalization in rat pheochromocytoma (PC12) cells. These agents also significantly increase Gαs association with microtubules, resulting in an increase in microtubule dynamics because of the activation of tubulin GTPase by Gαs. To determine the function of Gαs/microtubule association in neuronal development, we used real-time trafficking of a GFP-Gαs fusion protein. GFP-Gαs concentrates at the distal end of the neurites in differentiated living PC12 cells as well as in cultured hippocampal neurons. Gαs translocates to specialized membrane compartments at tips of growing neurites. A dominant-negative Gα chimera that interferes with Gαs binding to tubulin and activation of tubulin GTPase attenuates neurite elongation and neurite number both in PC12 cells and primary hippocampal neurons. This effect is greatest on differentiation induced by activated Gαs. Together, these data suggest that activated Gαs translocates from the plasma membrane and, through interaction with tubulin/microtubules in the cytosol, is important for neurite formation, development, and outgrowth. Characterization of neuronal G protein dynamics and their contribution to microtubule dynamics is important for understanding the molecular mechanisms by which G protein-coupled receptor signaling orchestrates neuronal growth and differentiation.

  2. Models for microtubule cargo transport coupling the Langevin equation to stochastic stepping motor dynamics: Caring about fluctuations

    NASA Astrophysics Data System (ADS)

    Bouzat, Sebastián

    2016-01-01

    One-dimensional models coupling a Langevin equation for the cargo position to stochastic stepping dynamics for the motors constitute a relevant framework for analyzing multiple-motor microtubule transport. In this work we explore the consistence of these models focusing on the effects of the thermal noise. We study how to define consistent stepping and detachment rates for the motors as functions of the local forces acting on them in such a way that the cargo velocity and run-time match previously specified functions of the external load, which are set on the base of experimental results. We show that due to the influence of the thermal fluctuations this is not a trivial problem, even for the single-motor case. As a solution, we propose a motor stepping dynamics which considers memory on the motor force. This model leads to better results for single-motor transport than the approaches previously considered in the literature. Moreover, it gives a much better prediction for the stall force of the two-motor case, highly compatible with the experimental findings. We also analyze the fast fluctuations of the cargo position and the influence of the viscosity, comparing the proposed model to the standard one, and we show how the differences on the single-motor dynamics propagate to the multiple motor situations. Finally, we find that the one-dimensional character of the models impede an appropriate description of the fast fluctuations of the cargo position at small loads. We show how this problem can be solved by considering two-dimensional models.

  3. Mechanism of Microtubule-facilitated “Fast Track” Nuclear Import*

    PubMed Central

    Roth, Daniela Martino; Moseley, Gregory W.; Pouton, Colin W.; Jans, David A.

    2011-01-01

    Although the microtubule (MT) cytoskeleton has been shown to facilitate nuclear import of specific cancer-regulatory proteins including p53, retinoblastoma protein, and parathyroid hormone-related protein (PTHrP), the MT association sequences (MTASs) responsible and the nature of the interplay between MT-dependent and conventional importin (IMP)-dependent nuclear translocation are unknown. Here we used site-directed mutagenesis, live cell imaging, and direct IMP and MT binding assays to map the MTAS of PTHrP for the first time, finding that it is within a short modular region (residues 82–108) that overlaps with the IMPβ1-recognized nuclear localization signal (residues 66–108) of PTHrP. Importantly, fluorescence recovery after photobleaching experiments indicated that disruption of the MT network or mutation of the MTAS of PTHrP decreases the rate of nuclear import by 2-fold. Moreover, MTAS functions depend on mutual exclusivity of binding of PTHrP to MTs and IMPβ1 such that, following MT-dependent trafficking toward the nucleus, perinuclear PTHrP can be displaced from MTs by IMPβ1 prior to import into the nucleus. This is the first molecular definition of an MTAS that facilitates protein nuclear import as well as the first delineation of the mechanism whereby cargo is transferred directly from the cytoskeleton to the cellular nuclear import apparatus. The results have broad significance with respect to fundamental processes regulating cell physiology/transformation. PMID:21339293

  4. The Dynamic Behavior of Individual Microtubules Associated with Chromosomes In Vitro

    PubMed Central

    Hunt, Alan J.; McIntosh, J. Richard

    1998-01-01

    Mitotic movements of chromosomes are usually coupled to the elongation and shortening of the microtubules to which they are bound. The lengths of kinetochore-associated microtubules change by incorporation or loss of tubulin subunits, principally at their chromosome-bound ends. We have reproduced aspects of this phenomenon in vitro, using a real-time assay that displays directly the movements of individual chromosome-associated microtubules as they elongate and shorten. Chromosomes isolated from cultured Chinese hamster ovary cells were adhered to coverslips and then allowed to bind labeled microtubules. In the presence of tubulin and GTP, these microtubules could grow at their chromosome-bound ends, causing the labeled segments to move away from the chromosomes, even in the absence of ATP. Sometimes a microtubule would switch to shortening, causing the direction of movement to change abruptly. The link between a microtubule and a chromosome was mechanically strong; 15 pN of tension was generally insufficient to detach a microtubule, even though it could add subunits at the kinetochore–microtubule junction. The behavior of the microtubules in vitro was regulated by the chromosomes to which they were bound; the frequency of transitions from polymerization to depolymerization was decreased, and the speed of depolymerization-coupled movement toward chromosomes was only one-fifth the rate of shortening for microtubules free in solution. Our results are consistent with a model in which each microtubule interacts with an increasing number of chromosome-associated binding sites as it approaches the kinetochore. PMID:9763448

  5. Site-specific phosphorylation and microtubule dynamics control Pyrin inflammasome activation

    PubMed Central

    Gao, Wenqing; Yang, Jieling; Liu, Wang; Wang, Yupeng; Shao, Feng

    2016-01-01

    Pyrin, encoded by the MEFV gene, is best known for its gain-of-function mutations causing familial Mediterranean fever (FMF), an autoinflammatory disease. Pyrin forms a caspase-1–activating inflammasome in response to inactivating modifications of Rho GTPases by various bacterial toxins or effectors. Pyrin-mediated innate immunity is unique in that it senses bacterial virulence rather than microbial molecules, but its mechanism of activation is unknown. Here we show that Pyrin was phosphorylated in bone marrow-derived macrophages and dendritic cells. We identified Ser-205 and Ser-241 in mouse Pyrin whose phosphorylation resulted in inhibitory binding by cellular 14-3-3 proteins. The two serines underwent dephosphorylation upon toxin stimulation or bacterial infection, triggering 14-3-3 dissociation, which correlated with Pyrin inflammasome activation. We developed antibodies specific for phosphorylated Ser-205 and Ser-241, which confirmed the stimuli-induced dephosphorylation of endogenous Pyrin. Mutational analyses indicated that both phosphorylation and signal-induced dephosphorylation of Ser-205/241 are important for Pyrin activation. Moreover, microtubule drugs, including colchicine, commonly used to treat FMF, effectively blocked activation of the Pyrin inflammasome. These drugs did not affect Pyrin dephosphorylation and 14-3-3 dissociation but inhibited Pyrin-mediated apoptosis-associated Speck-like protein containing CARD (ASC) aggregation. Our study reveals that site-specific (de)phosphorylation and microtubule dynamics critically control Pyrin inflammasome activation, illustrating a fine and complex mechanism in cytosolic immunity. PMID:27482109

  6. Microtubule-associated protein-4 controls nanovesicle dynamics and T cell activation.

    PubMed

    Bustos-Morán, Eugenio; Blas-Rus, Noelia; Martin-Cófreces, Noa Beatriz; Sánchez-Madrid, Francisco

    2017-04-01

    The immune synapse (IS) is a specialized structure formed at the contact area between T lymphocytes and antigen-presenting cells (APCs) that is essential for the adaptive immune response. Proper T cell activation requires its polarization towards the APC, which is highly dependent on the tubulin cytoskeleton. Microtubule-associated protein-4 (MAP4) is a microtubule (MT)-stabilizing protein that controls MTs in physiological processes, such as cell division, migration, vesicular transport or primary cilia formation. In this study, we assessed the role of MAP4 in T cell activation. MAP4 decorates the pericentrosomal area and MTs of the T cell, and it is involved in MT detyrosination and stable assembly in response to T cell activation. In addition, MAP4 prompts the timely translocation of the MT-organizing center (MTOC) towards the IS and the dynamics of signaling nanovesicles that sustains T cell activation. However, MAP4 acts as a negative regulator of other T cell activation-related signals, including diacylglycerol (DAG) production and IL2 secretion. Our data indicate that MAP4 acts as a checkpoint molecule that balances positive and negative hallmarks of T cell activation.

  7. Human TUBB3 mutations perturb microtubule dynamics, kinesin interactions, and axon guidance

    PubMed Central

    Tischfield, Max A.; Baris, Hagit N.; Wu, Chen; Rudolph, Guenther; Van Maldergem, Lionel; He, Wei; Chan, Wai-Man; Andrews, Caroline; Demer, Joseph L.; Robertson, Richard L.; Mackey, David A.; Ruddle, Jonathan B.; Bird, Thomas D.; Gottlob, Irene; Pieh, Christina; Traboulsi, Elias I.; Pomeroy, Scott L.; Hunter, David G.; Soul, Janet S.; Newlin, Anna; Sabol, Louise J.; Doherty, Edward J.; de Uzcátegui, Clara E.; de Uzcátegui, Nicolas; Collins, Mary Louise Z.; Sener, Emin C.; Wabbels, Bettina; Hellebrand, Heide; Meitinger, Thomas; de Berardinis, Teresa; Magli, Adriano; Schiavi, Costantino; Pastore-Trossello, Marco; Koc, Feray; Wong, Agnes M.; Levin, Alex V.; Geraghty, Michael T.; Descartes, Maria; Flaherty, Maree; Jamieson, Robyn V.; Møller, H. U.; Meuthen, Ingo; Callen, David F.; Kerwin, Janet; Lindsay, Susan; Meindl, Alfons; Gupta, Mohan L.; Pellman, David; Engle, Elizabeth C.

    2011-01-01

    We report that eight heterozygous missense mutations in TUBB3, encoding the neuron-specific β-tubulin isotype III, result in a spectrum of human nervous system disorders we now call the TUBB3 syndromes. Each mutation causes the ocular motility disorder CFEOM3, whereas some also result in intellectual and behavioral impairments, facial paralysis, and/or later-onset axonal sensorimotor polyneuropathy. Neuroimaging reveals a spectrum of abnormalities including hypoplasia of oculomotor nerves, and dysgenesis of the corpus callosum, anterior commissure, and corticospinal tracts. A knock-in disease mouse model reveals axon guidance defects without evidence of cortical cell migration abnormalities. We show the disease-associated mutations can impair tubulin heterodimer formation in vitro, although folded mutant heterodimers can still polymerize into microtubules. Modeling each mutation in yeast tubulin demonstrates that all alter dynamic instability whereas a subset disrupts the interaction of microtubules with kinesin motors. These findings demonstrate normal TUBB3 is required for axon guidance and maintenance in mammals. PMID:20074521

  8. The polarity and dynamics of microtubule assembly in the budding yeast Saccharomyces cerevisiae

    PubMed Central

    Maddox, Paul S.; Bloom, Kerry S.; Salmon, E.D.

    2010-01-01

    Microtubule assembly in Saccharomyces cerevisiae is initiated from sites within spindle pole bodies (SPBs) in the nuclear envelope. Microtubule plus ends are thought to be organized distal to the SPBs, while minus ends are proximal. Several hypotheses for the function of microtubule motor proteins in force generation and regulation of microtubule assembly propose that assembly and disassembly occur at minus ends as well as at plus ends. Here we analyse microtubule assembly relative to the SPBs in haploid yeast cells expressing green fluorescent protein fused to α-tubulin, a microtubule subunit. Throughout the cell cycle, analysis of fluorescent speckle marks on cytoplasmic astral microtubules reveals that there is no detectable assembly or disassembly at minus ends. After laser-photobleaching, metaphase spindles recover about 63% of the bleached fluorescence, with a half-life of about 1 minute. After anaphase onset, photobleached marks in the interpolar spindle are persistent and do not move relative to the SPBs. In late anaphase, the elongated spindles disassemble at the microtubule plus ends. These results show for astral and anaphase interpolar spindle microtubules, and possibly for metaphase spindle microtubules, that microtubule assembly and disassembly occur at plus, and not minus, ends. PMID:10620805

  9. Modification of growth anisotropy and cortical microtubule dynamics in Arabidopsis hypocotyls grown under microgravity conditions in space.

    PubMed

    Soga, Kouichi; Yamazaki, Chiaki; Kamada, Motoshi; Tanigawa, Naoki; Kasahara, Haruo; Yano, Sachiko; Kojo, Kei H; Kutsuna, Natsumaro; Kato, Takehide; Hashimoto, Takashi; Kotake, Toshihisa; Wakabayashi, Kazuyuki; Hoson, Takayuki

    2017-09-01

    We carried out a space experiment, denoted as Aniso Tubule, to examine the effects of microgravity on the growth anisotropy and cortical microtubule dynamics in Arabidopsis hypocotyls, using lines in which microtubules are visualized by labelling tubulin or microtubule-associated proteins (MAPs) with green fluorescent protein (GFP). In all lines, GFP-tubulin6 (TUB6)-, basic proline-rich protein1 (BPP1)-GFP- and spira1-like3 (SP1L3)-GFP-expressing using a constitutive promoter, and spiral2 (SPR2)-GFP- and GFP-65 kDa MAP-1 (MAP65-1)-expressing using a native promoter, the length of hypocotyls grown under microgravity conditions in space was longer than that grown at 1 g conditions on the ground. In contrast, the diameter of hypocotyls grown under microgravity conditions was smaller than that of the hypocotyls grown at 1 g. The percentage of cells with transverse microtubules was increased under microgravity conditions, irrespective of the lines. Also, the average angle of the microtubules with respect to the transverse cell axis was decreased in hypocotyls grown under microgravity conditions. When GFP fluorescence was quantified in hypocotyls of GFP-MAP65-1 and SPR2-GFP lines, microgravity increased the levels of MAP65-1, which appears to be involved in the maintenance of transverse microtubule orientation. However, the levels of SPR2 under microgravity conditions were comparable to those at 1 g. These results suggest that the microgravity-induced increase in the levels of MAP65-1 is involved in increase in the transverse microtubules, which may lead to modification of growth anisotropy, thereby developing longer and thinner hypocotyls under microgravity conditions in space. This article is protected by copyright. All rights reserved.

  10. A Mec17-Myosin II Effector Axis Coordinates Microtubule Acetylation and Actin Dynamics to Control Primary Cilium Biogenesis

    PubMed Central

    Rao, Yanhua; Hao, Rui; Wang, Bin; Yao, Tso-Pang

    2014-01-01

    Primary cilia are specialized, acetylated microtubule-based signaling processes. Cilium assembly is activated by cellular quiescence and requires reconfiguration of microtubules, the actin cytoskeleton, and vesicular trafficking machinery. How these components are coordinated to activate ciliogenesis remains unknown. Here we identify the microtubule acetyltransferase Mec-17 and myosin II motors as the key effectors in primary cilium biogenesis. We found that myosin IIB (Myh10) is required for cilium formation; however, myosin IIA (Myh9) suppresses it. Myh10 binds and antagonizes Myh9 to increase actin dynamics, which facilitates the assembly of the pericentrosomal preciliary complex (PPC) that supplies materials for cilium growth. Importantly, Myh10 expression is upregulated by serum-starvation and this induction requires Mec-17, which is itself accumulated upon cellular quiescence. Pharmacological stimulation of microtubule acetylation also induces Myh10 expression and cilium formation. Thus cellular quiescence induces Mec17 to couple the production of acetylated microtubules and Myh10, whose accumulation overcomes the inhibitory role of Myh9 and initiates ciliogenesis. PMID:25494100

  11. An agent-based model contrasts opposite effects of dynamic and stable microtubules on cleavage furrow positioning

    PubMed Central

    Odell, Garrett M.; Foe, Victoria E.

    2008-01-01

    From experiments by Foe and von Dassow (Foe, V.E., and G. von Dassow. 2008. J. Cell Biol. 183:457–470) and others, we infer a molecular mechanism for positioning the cleavage furrow during cytokinesis. Computer simulations reveal how this mechanism depends on quantitative motor-behavior details and explore how robustly this mechanism succeeds across a range of cell sizes. The mechanism involves the MKLP1 (kinesin-6) component of centralspindlin binding to and walking along microtubules to stimulate cortical contractility where the centralspindlin complex concentrates. The majority of astral microtubules are dynamically unstable. They bind most MKLP1 and suppress cortical Rho/myosin II activation because the tips of unstable microtubules usually depolymerize before MKLP1s reach the cortex. A subset of astral microtubules stabilizes during anaphase, becoming effective rails along which MKLP1 can actually reach the cortex. Because stabilized microtubules aim statistically at the equatorial spindle midplane, that is where centralspindlin accumulates to stimulate furrow formation. PMID:18955556

  12. Topological Phonon Modes and Their Role in Dynamic Instability of Microtubules

    NASA Astrophysics Data System (ADS)

    Prodan, Emil; Prodan, Camelia

    2009-12-01

    Microtubules (MTs) are self-assembled hollow protein tubes playing important functions in live cells. Their building block is a protein called tubulin, which self-assembles in a particulate 2 dimensional lattice. We study the vibrational modes of this lattice and find Dirac points in the phonon spectrum. We discuss a splitting of the Dirac points that leads to phonon bands with nonzero Chern numbers, signaling the existence of topological vibrational modes localized at MTs edges, which we indeed observe after explicit calculations. Since these modes are robust against the large changes occurring at the edges during the dynamic cycle of the MTs, we can build a simple mechanical model to illustrate how they would participate in this phenomenon.

  13. Dynamic microtubule-dependent interactions position homotypic neurones in regular monolayered arrays during retinal development.

    PubMed

    Galli-Resta, Lucia; Novelli, Elena; Viegi, Alessandro

    2002-08-01

    In the vertebrate retina cell layers support serial processing, while monolayered arrays of homotypic neurones tile each layer to allow parallel processing. How neurones form layers and arrays is still largely unknown. We show that monolayered retinal arrays are dynamic structures based on dendritic interactions between the array cells. The analysis of three developing retinal arrays shows that these become regular as a net of dendritic processes links neighbouring array cells. Molecular or pharmacological perturbations of microtubules within dendrites lead to a stereotyped and reversible disruption of array organization: array cells lose their regular spacing and the arrangement in a monolayer. This leads to a micro-mechanical explanation of how monolayers of regularly spaced 'like-cells' are formed.

  14. Dynamic assembly of polymer nanotube networks via kinesin powered microtubule filaments

    NASA Astrophysics Data System (ADS)

    Paxton, Walter F.; Bouxsein, Nathan F.; Henderson, Ian M.; Gomez, Andrew; Bachand, George D.

    2015-06-01

    We describe for the first time how biological nanomotors may be used to actively self-assemble mesoscale networks composed of diblock copolymer nanotubes. The collective force generated by multiple kinesin nanomotors acting on a microtubule filament is large enough to overcome the energy barrier required to extract nanotubes from polymer vesicles comprised of poly(ethylene oxide-b-butadiene) in spite of the higher force requirements relative to extracting nanotubes from lipid vesicles. Nevertheless, large-scale polymer networks were dynamically assembled by the motors. These networks displayed enhanced robustness, persisting more than 24 h post-assembly (compared to 4-5 h for corresponding lipid networks). The transport of materials in and on the polymer membranes differs substantially from the transport on analogous lipid networks. Specifically, our data suggest that polymer mobility in nanotubular structures is considerably different from planar or 3D structures, and is stunted by 1D confinement of the polymer subunits. Moreover, quantum dots adsorbed onto polymer nanotubes are completely immobile, which is related to this 1D confinement effect and is in stark contrast to the highly fluid transport observed on lipid tubules.We describe for the first time how biological nanomotors may be used to actively self-assemble mesoscale networks composed of diblock copolymer nanotubes. The collective force generated by multiple kinesin nanomotors acting on a microtubule filament is large enough to overcome the energy barrier required to extract nanotubes from polymer vesicles comprised of poly(ethylene oxide-b-butadiene) in spite of the higher force requirements relative to extracting nanotubes from lipid vesicles. Nevertheless, large-scale polymer networks were dynamically assembled by the motors. These networks displayed enhanced robustness, persisting more than 24 h post-assembly (compared to 4-5 h for corresponding lipid networks). The transport of materials in and on

  15. Fast internal dynamics in alcohol dehydrogenase

    SciTech Connect

    Monkenbusch, M.; Stadler, A. Biehl, R.; Richter, D.; Ollivier, J.; Zamponi, M.

    2015-08-21

    Large-scale domain motions in alcohol dehydrogenase (ADH) have been observed previously by neutron spin-echo spectroscopy (NSE). We have extended the investigation on the dynamics of ADH in solution by using high-resolution neutron time-of-flight (TOF) and neutron backscattering (BS) spectroscopy in the incoherent scattering range. The observed hydrogen dynamics were interpreted in terms of three mobility classes, which allowed a simultaneous description of the measured TOF and BS spectra. In addition to the slow global protein diffusion and domain motions observed by NSE, a fast internal process could be identified. Around one third of the protons in ADH participate in the fast localized diffusive motion. The diffusion coefficient of the fast internal motions is around two third of the value of the surrounding D{sub 2}O solvent. It is tempting to associate the fast internal process with solvent exposed amino acid residues with dangling side chains.

  16. Fast internal dynamics in alcohol dehydrogenase

    NASA Astrophysics Data System (ADS)

    Monkenbusch, M.; Stadler, A.; Biehl, R.; Ollivier, J.; Zamponi, M.; Richter, D.

    2015-08-01

    Large-scale domain motions in alcohol dehydrogenase (ADH) have been observed previously by neutron spin-echo spectroscopy (NSE). We have extended the investigation on the dynamics of ADH in solution by using high-resolution neutron time-of-flight (TOF) and neutron backscattering (BS) spectroscopy in the incoherent scattering range. The observed hydrogen dynamics were interpreted in terms of three mobility classes, which allowed a simultaneous description of the measured TOF and BS spectra. In addition to the slow global protein diffusion and domain motions observed by NSE, a fast internal process could be identified. Around one third of the protons in ADH participate in the fast localized diffusive motion. The diffusion coefficient of the fast internal motions is around two third of the value of the surrounding D2O solvent. It is tempting to associate the fast internal process with solvent exposed amino acid residues with dangling side chains.

  17. Using plusTipTracker software to measure microtubule dynamics in Xenopus laevis growth cones.

    PubMed

    Stout, Alina; D'Amico, Salvatore; Enzenbacher, Tiffany; Ebbert, Patrick; Lowery, Laura Anne

    2014-09-07

    Microtubule (MT) plus-end-tracking proteins (+TIPs) localize to the growing plus-ends of MTs and regulate MT dynamics(1,2). One of the most well-known and widely-utilized +TIPs for analyzing MT dynamics is the End-Binding protein, EB1, which binds all growing MT plus-ends, and thus, is a marker for MT polymerization(1). Many studies of EB1 behavior within growth cones have used time-consuming and biased computer-assisted, hand-tracking methods to analyze individual MTs(1-3). Our approach is to quantify global parameters of MT dynamics using the software package, plusTipTracker(4), following the acquisition of high-resolution, live images of tagged EB1 in cultured embryonic growth cones(5). This software is a MATLAB-based, open-source, user-friendly package that combines automated detection, tracking, visualization, and analysis for movies of fluorescently-labeled +TIPs. Here, we present the protocol for using plusTipTracker for the analysis of fluorescently-labeled +TIP comets in cultured Xenopus laevis growth cones. However, this software can also be used to characterize MT dynamics in various cell types(6-8).

  18. Microtubules Are Essential for Mitochondrial Dynamics-Fission, Fusion, and Motility-in Dictyostelium discoideum.

    PubMed

    Woods, Laken C; Berbusse, Gregory W; Naylor, Kari

    2016-01-01

    Mitochondrial function is dependent upon mitochondrial structure which is in turn dependent upon mitochondrial dynamics, including fission, fusion, and motility. Here we examined the relationship between mitochondrial dynamics and the cytoskeleton in Dictyostelium discoideum. Using time-lapse analysis, we quantified mitochondrial fission, fusion, and motility in the presence of cytoskeleton disrupting pharmaceuticals and the absence of the potential mitochondria-cytoskeleton linker protein, CluA. Our results indicate that microtubules are essential for mitochondrial movement, as well as fission and fusion; actin plays a less significant role, perhaps selecting the mitochondria for transport. We also suggest that CluA is not a linker protein but plays an unidentified role in mitochondrial fission and fusion. The significance of our work is to gain further insight into the role the cytoskeleton plays in mitochondrial dynamics and function. By better understanding these processes we can better appreciate the underlying mitochondrial contributions to many neurological disorders characterized by altered mitochondrial dynamics, structure, and/or function.

  19. Centrosome maturation requires YB-1 to regulate dynamic instability of microtubules for nucleus reassembly

    PubMed Central

    Kawaguchi, Atsushi; Asaka, Masamitsu N.; Matsumoto, Ken; Nagata, Kyosuke

    2015-01-01

    Microtubule formation from the centrosome increases dramatically at the onset of mitosis. This process is termed centrosome maturation. However, regulatory mechanisms of microtubule assembly from the centrosome in response to the centrosome maturation are largely unknown. Here we found that YB-1, a cellular cancer susceptibility protein, is required for the centrosome maturation. Phosphorylated YB-1 accumulated in the centrosome at mitotic phase. By YB-1 knockdown, microtubules were found detached from the centrosome at telophase and an abnormal nuclear shape called nuclear lobulation was found due to defective reassembly of nuclear envelope by mis-localization of non-centrosomal microtubules. In conclusion, we propose that YB-1 is important for the assembly of centrosomal microtubule array for temporal and spatial regulation of microtubules. PMID:25740062

  20. Using Photobleaching to Measure Spindle Microtubule Dynamics in Primary Cultures of Dividing Drosophila Meiotic Spermatocytes.

    PubMed

    Savoian, Matthew S

    2015-07-01

    In dividing animal cells, a microtubule (MT)-based bipolar spindle governs chromosome movement. Current models propose that the spindle facilitates and/or generates translocating forces by regionally depolymerizing the kinetochore fibers (k-fibers) that bind each chromosome. It is unclear how conserved these sites and the resultant chromosome-moving mechanisms are between different dividing cell types because of the technical challenges of quantitatively studying MTs in many specimens. In particular, our knowledge of MT kinetics during the sperm-producing male meiotic divisions remains in its infancy. In this study, I use an easy-to-implement photobleaching-based assay for measuring spindle MT dynamics in primary cultures of meiotic spermatocytes isolated from the fruit fly Drosophila melanogaster. By use of standard scanning confocal microscopy features, fiducial marks were photobleached on fluorescent protein (FP)-tagged MTs. These were followed by time-lapse imaging during different division stages, and their displacement rates were calculated using public domain software. I find that k-fibers continually shorten at their poles during metaphase and anaphase A through the process of MT flux. Anaphase chromosome movement is complemented by Pac-Man, the shortening of the k-fiber at its chromosomal interface. Thus, Drosophila spermatocytes share the sites of spindle dynamism and mechanisms of chromosome movement with mitotic cells. The data reveal the applicability of the photobleaching assay for measuring MT dynamics in primary cultures. This approach can be readily applied to other systems.

  1. FoxO regulates microtubule dynamics and polarity to promote dendrite branching in Drosophila sensory neurons.

    PubMed

    Sears, James C; Broihier, Heather T

    2016-10-01

    The size and shape of dendrite arbors are defining features of neurons and critical determinants of neuronal function. The molecular mechanisms establishing arborization patterns during development are not well understood, though properly regulated microtubule (MT) dynamics and polarity are essential. We previously found that FoxO regulates axonal MTs, raising the question of whether it also regulates dendritic MTs and morphology. Here we demonstrate that FoxO promotes dendrite branching in all classes of Drosophila dendritic arborization (da) neurons. FoxO is required both for initiating growth of new branches and for maintaining existing branches. To elucidate FoxO function, we characterized MT organization in both foxO null and overexpressing neurons. We find that FoxO directs MT organization and dynamics in dendrites. Moreover, it is both necessary and sufficient for anterograde MT polymerization, which is known to promote dendrite branching. Lastly, FoxO promotes proper larval nociception, indicating a functional consequence of impaired da neuron morphology in foxO mutants. Together, our results indicate that FoxO regulates dendrite structure and function and suggest that FoxO-mediated pathways control MT dynamics and polarity. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Five factors can reconstitute all three phases of microtubule polymerization dynamics.

    PubMed

    Moriwaki, Takashi; Goshima, Gohta

    2016-11-07

    Cytoplasmic microtubules (MTs) undergo growth, shrinkage, and pausing. However, how MT polymerization cycles are produced and spatiotemporally regulated at a molecular level is unclear, as the entire cycle has not been recapitulated in vitro with defined components. In this study, we reconstituted dynamic MT plus end behavior involving all three phases by mixing tubulin with five Drosophila melanogaster proteins (EB1, XMAP215(Msps), Sentin, kinesin-13(Klp10A), and CLASP(Mast/Orbit)). When singly mixed with tubulin, CLASP(Mast/Orbit) strongly inhibited MT catastrophe and reduced the growth rate. However, in the presence of the other four factors, CLASP(Mast/Orbit) acted as an inducer of pausing. The mitotic kinase Plk1(Polo) modulated the activity of CLASP(Mast/Orbit) and kinesin-13(Klp10A) and increased the dynamic instability of MTs, reminiscent of mitotic cells. These results suggest that five conserved proteins constitute the core factors for creating dynamic MTs in cells and that Plk1-dependent phosphorylation is a crucial event for switching from the interphase to mitotic mode.

  3. A conceptual view at microtubule plus end dynamics in neuronal axons.

    PubMed

    Voelzmann, André; Hahn, Ines; Pearce, Simon P; Sánchez-Soriano, Natalia; Prokop, Andreas

    2016-09-01

    Axons are the cable-like protrusions of neurons which wire up the nervous system. Polar bundles of microtubules (MTs) constitute their structural backbones and are highways for life-sustaining transport between proximal cell bodies and distal synapses. Any morphogenetic changes of axons during development, plastic rearrangement, regeneration or degeneration depend on dynamic changes of these MT bundles. A key mechanism for implementing such changes is the coordinated polymerisation and depolymerisation at the plus ends of MTs within these bundles. To gain an understanding of how such regulation can be achieved at the cellular level, we provide here an integrated overview of the extensive knowledge we have about the molecular mechanisms regulating MT de/polymerisation. We first summarise insights gained from work in vitro, then describe the machinery which supplies the essential tubulin building blocks, the protein complexes associating with MT plus ends, and MT shaft-based mechanisms that influence plus end dynamics. We briefly summarise the contribution of MT plus end dynamics to important cellular functions in axons, and conclude by discussing the challenges and potential strategies of integrating the existing molecular knowledge into conceptual understanding at the level of axons. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Using Photobleaching to Measure Spindle Microtubule Dynamics in Primary Cultures of Dividing Drosophila Meiotic Spermatocytes

    PubMed Central

    2015-01-01

    In dividing animal cells, a microtubule (MT)-based bipolar spindle governs chromosome movement. Current models propose that the spindle facilitates and/or generates translocating forces by regionally depolymerizing the kinetochore fibers (k-fibers) that bind each chromosome. It is unclear how conserved these sites and the resultant chromosome-moving mechanisms are between different dividing cell types because of the technical challenges of quantitatively studying MTs in many specimens. In particular, our knowledge of MT kinetics during the sperm-producing male meiotic divisions remains in its infancy. In this study, I use an easy-to-implement photobleaching-based assay for measuring spindle MT dynamics in primary cultures of meiotic spermatocytes isolated from the fruit fly Drosophila melanogaster. By use of standard scanning confocal microscopy features, fiducial marks were photobleached on fluorescent protein (FP)-tagged MTs. These were followed by time-lapse imaging during different division stages, and their displacement rates were calculated using public domain software. I find that k-fibers continually shorten at their poles during metaphase and anaphase A through the process of MT flux. Anaphase chromosome movement is complemented by Pac-Man, the shortening of the k-fiber at its chromosomal interface. Thus, Drosophila spermatocytes share the sites of spindle dynamism and mechanisms of chromosome movement with mitotic cells. The data reveal the applicability of the photobleaching assay for measuring MT dynamics in primary cultures. This approach can be readily applied to other systems. PMID:25802491

  5. Five factors can reconstitute all three phases of microtubule polymerization dynamics

    PubMed Central

    Moriwaki, Takashi

    2016-01-01

    Cytoplasmic microtubules (MTs) undergo growth, shrinkage, and pausing. However, how MT polymerization cycles are produced and spatiotemporally regulated at a molecular level is unclear, as the entire cycle has not been recapitulated in vitro with defined components. In this study, we reconstituted dynamic MT plus end behavior involving all three phases by mixing tubulin with five Drosophila melanogaster proteins (EB1, XMAP215Msps, Sentin, kinesin-13Klp10A, and CLASPMast/Orbit). When singly mixed with tubulin, CLASPMast/Orbit strongly inhibited MT catastrophe and reduced the growth rate. However, in the presence of the other four factors, CLASPMast/Orbit acted as an inducer of pausing. The mitotic kinase Plk1Polo modulated the activity of CLASPMast/Orbit and kinesin-13Klp10A and increased the dynamic instability of MTs, reminiscent of mitotic cells. These results suggest that five conserved proteins constitute the core factors for creating dynamic MTs in cells and that Plk1-dependent phosphorylation is a crucial event for switching from the interphase to mitotic mode. PMID:27799364

  6. Microtubule dynamics from mating through the first zygotic division in the budding yeast Saccharomyces cerevisiae.

    PubMed

    Maddox, P; Chin, E; Mallavarapu, A; Yeh, E; Salmon, E D; Bloom, K

    1999-03-08

    We have used time-lapse digital imaging microscopy to examine cytoplasmic astral microtubules (Mts) and spindle dynamics during the mating pathway in budding yeast Saccharomyces cerevisiae. Mating begins when two cells of opposite mating type come into proximity. The cells arrest in the G1 phase of the cell cycle and grow a projection towards one another forming a shmoo projection. Imaging of microtubule dynamics with green fluorescent protein (GFP) fusions to dynein or tubulin revealed that the nucleus and spindle pole body (SPB) became oriented and tethered to the shmoo tip by a Mt-dependent search and capture mechanism. Dynamically unstable astral Mts were captured at the shmoo tip forming a bundle of three or four astral Mts. This bundle changed length as the tethered nucleus and SPB oscillated toward and away from the shmoo tip at growth and shortening velocities typical of free plus end astral Mts (approximately 0.5 micrometer/min). Fluorescent fiduciary marks in Mt bundles showed that Mt growth and shortening occurred primarily at the shmoo tip, not the SPB. This indicates that Mt plus end assembly/disassembly was coupled to pushing and pulling of the nucleus. Upon cell fusion, a fluorescent bar of Mts was formed between the two shmoo tip bundles, which slowly shortened (0.23 +/- 0.07 micrometer/min) as the two nuclei and their SPBs came together and fused (karyogamy). Bud emergence occurred adjacent to the fused SPB approximately 30 min after SPB fusion. During the first mitosis, the SPBs separated as the spindle elongated at a constant velocity (0.75 micrometer/min) into the zygotic bud. There was no indication of a temporal delay at the 2-micrometer stage of spindle morphogenesis or a lag in Mt nucleation by replicated SPBs as occurs in vegetative mitosis implying a lack of normal checkpoints. Thus, the shmoo tip appears to be a new model system for studying Mt plus end dynamic attachments and much like higher eukaryotes, the first mitosis after haploid

  7. Microtubule Dynamics from Mating through the First Zygotic Division in the Budding Yeast Saccharomyces cerevisiae

    PubMed Central

    Maddox, Paul; Chin, E.; Mallavarapu, A.; Yeh, E.; Salmon, E.D.; Bloom, K.

    1999-01-01

    We have used time-lapse digital imaging microscopy to examine cytoplasmic astral microtubules (Mts) and spindle dynamics during the mating pathway in budding yeast Saccharomyces cerevisiae. Mating begins when two cells of opposite mating type come into proximity. The cells arrest in the G1 phase of the cell cycle and grow a projection towards one another forming a shmoo projection. Imaging of microtubule dynamics with green fluorescent protein (GFP) fusions to dynein or tubulin revealed that the nucleus and spindle pole body (SPB) became oriented and tethered to the shmoo tip by a Mt-dependent search and capture mechanism. Dynamically unstable astral Mts were captured at the shmoo tip forming a bundle of three or four astral Mts. This bundle changed length as the tethered nucleus and SPB oscillated toward and away from the shmoo tip at growth and shortening velocities typical of free plus end astral Mts (∼0.5 μm/min). Fluorescent fiduciary marks in Mt bundles showed that Mt growth and shortening occurred primarily at the shmoo tip, not the SPB. This indicates that Mt plus end assembly/disassembly was coupled to pushing and pulling of the nucleus. Upon cell fusion, a fluorescent bar of Mts was formed between the two shmoo tip bundles, which slowly shortened (0.23 ± 0.07 μm/min) as the two nuclei and their SPBs came together and fused (karyogamy). Bud emergence occurred adjacent to the fused SPB ∼30 min after SPB fusion. During the first mitosis, the SPBs separated as the spindle elongated at a constant velocity (0.75 μm/min) into the zygotic bud. There was no indication of a temporal delay at the 2-μm stage of spindle morphogenesis or a lag in Mt nucleation by replicated SPBs as occurs in vegetative mitosis implying a lack of normal checkpoints. Thus, the shmoo tip appears to be a new model system for studying Mt plus end dynamic attachments and much like higher eukaryotes, the first mitosis after haploid cell fusion in budding yeast may forgo cell cycle

  8. Fast Parallel Computation Of Multibody Dynamics

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Kwan, Gregory L.; Bagherzadeh, Nader

    1996-01-01

    Constraint-force algorithm fast, efficient, parallel-computation algorithm for solving forward dynamics problem of multibody system like robot arm or vehicle. Solves problem in minimum time proportional to log(N) by use of optimal number of processors proportional to N, where N is number of dynamical degrees of freedom: in this sense, constraint-force algorithm both time-optimal and processor-optimal parallel-processing algorithm.

  9. Automated screening of microtubule growth dynamics identifies MARK2 as a regulator of leading edge microtubules downstream of Rac1 in migrating cells.

    PubMed

    Nishimura, Yukako; Applegate, Kathryn; Davidson, Michael W; Danuser, Gaudenz; Waterman, Clare M

    2012-01-01

    Polarized microtubule (MT) growth in the leading edge is critical to directed cell migration, and is mediated by Rac1 GTPase. To find downstream targets of Rac1 that affect MT assembly dynamics, we performed an RNAi screen of 23 MT binding and regulatory factors and identified RNAi treatments that suppressed changes in MT dynamics induced by constitutively activated Rac1. By analyzing fluorescent EB3 dynamics with automated tracking, we found that RNAi treatments targeting p150(glued), APC2, spastin, EB1, Op18, or MARK2 blocked Rac1-mediated MT growth in lamellipodia. MARK2 was the only protein whose RNAi targeting additionally suppressed Rac1 effects on MT orientation in lamellipodia, and thus became the focus of further study. We show that GFP-MARK2 rescued effects of MARK2 depletion on MT growth lifetime and orientation, and GFP-MARK2 localized in lamellipodia in a Rac1-activity-dependent manner. In a wound-edge motility assay, MARK2-depleted cells failed to polarize their centrosomes or exhibit oriented MT growth in the leading edge, and displayed defects in directional cell migration. Thus, automated image analysis of MT assembly dynamics identified MARK2 as a target regulated downstream of Rac1 that promotes oriented MT growth in the leading edge to mediate directed cell migration.

  10. Automated Screening of Microtubule Growth Dynamics Identifies MARK2 as a Regulator of Leading Edge Microtubules Downstream of Rac1 in Migrating Cells

    PubMed Central

    Nishimura, Yukako; Applegate, Kathryn; Davidson, Michael W.; Danuser, Gaudenz; Waterman, Clare M.

    2012-01-01

    Polarized microtubule (MT) growth in the leading edge is critical to directed cell migration, and is mediated by Rac1 GTPase. To find downstream targets of Rac1 that affect MT assembly dynamics, we performed an RNAi screen of 23 MT binding and regulatory factors and identified RNAi treatments that suppressed changes in MT dynamics induced by constitutively activated Rac1. By analyzing fluorescent EB3 dynamics with automated tracking, we found that RNAi treatments targeting p150glued, APC2, spastin, EB1, Op18, or MARK2 blocked Rac1-mediated MT growth in lamellipodia. MARK2 was the only protein whose RNAi targeting additionally suppressed Rac1 effects on MT orientation in lamellipodia, and thus became the focus of further study. We show that GFP-MARK2 rescued effects of MARK2 depletion on MT growth lifetime and orientation, and GFP-MARK2 localized in lamellipodia in a Rac1-activity-dependent manner. In a wound-edge motility assay, MARK2-depleted cells failed to polarize their centrosomes or exhibit oriented MT growth in the leading edge, and displayed defects in directional cell migration. Thus, automated image analysis of MT assembly dynamics identified MARK2 as a target regulated downstream of Rac1 that promotes oriented MT growth in the leading edge to mediate directed cell migration. PMID:22848487

  11. Dynamic regulation of cortical microtubule organization through prefoldin-DELLA interaction.

    PubMed

    Locascio, Antonella; Blázquez, Miguel A; Alabadí, David

    2013-05-06

    Plant morphogenesis relies on specific patterns of cell division and expansion. It is well established that cortical microtubules influence the direction of cell expansion, but less is known about the molecular mechanisms that regulate microtubule arrangement. Here we show that the phytohormones gibberellins (GAs) regulate microtubule orientation through physical interaction between the nuclear-localized DELLA proteins and the prefoldin complex, a cochaperone required for tubulin folding. In the presence of GA, DELLA proteins are degraded, and the prefoldin complex stays in the cytoplasm and is functional. In the absence of GA, the prefoldin complex is localized to the nucleus, which severely compromises α/β-tubulin heterodimer availability, affecting microtubule organization. The physiological relevance of this molecular mechanism was confirmed by the observation that the daily rhythm of plant growth was accompanied by coordinated oscillation of DELLA accumulation, prefoldin subcellular localization, and cortical microtubule reorientation.

  12. The Dam1 kinetochore complex harnesses microtubule dynamics to produce force and movement.

    PubMed

    Asbury, Charles L; Gestaut, Daniel R; Powers, Andrew F; Franck, Andrew D; Davis, Trisha N

    2006-06-27

    Kinetochores remain attached to microtubule (MT) tips during mitosis even as the tips assemble and disassemble under their grip, allowing filament dynamics to produce force and move chromosomes. The specific proteins that mediate tip attachment are uncertain, and the mechanism of MT-dependent force production is unknown. Recent work suggests that the Dam1 complex, an essential component of kinetochores in yeast, may contribute directly to kinetochore-MT attachment and force production, perhaps by forming a sliding ring encircling the MT. To test these hypotheses, we developed an in vitro motility assay where beads coated with pure recombinant Dam1 complex were bound to the tips of individual dynamic MTs. The Dam1-coated beads remained tip-bound and underwent assembly- and disassembly-driven movement over approximately 3 microm, comparable to chromosome displacements in vivo. Dam1-based attachments to assembling tips were robust, supporting 0.5-3 pN of tension applied with a feedback-controlled optical trap as the MTs lengthened approximately 1 microm. The attachments also harnessed energy from MT disassembly to generate movement against tension. Reversing the direction of force (i.e., switching to compressive force) caused the attachments to disengage the tip and slide over the filament, but sliding was blocked by areas where the MT was anchored to a coverslip, consistent with a coupling structure encircling the filament. Our findings demonstrate how the Dam1 complex may contribute directly to MT-driven chromosome movement.

  13. Dynamics of centrosome translocation and microtubule organization in neocortical neurons during distinct modes of polarization.

    PubMed

    Sakakibara, Akira; Sato, Toshiyuki; Ando, Ryota; Noguchi, Namiko; Masaoka, Makoto; Miyata, Takaki

    2014-05-01

    Neuronal migration and process formation require cytoskeletal organization and remodeling. Recent studies suggest that centrosome translocation is involved in initial axon outgrowth, while the role of centrosomal positioning is not clear. Here, we examine relations between centrosomal positioning, axonogenesis, and microtubule (MT) polarization in multipolar and bipolar neocortical neurons. We monitored dynamic movements of centrosomes and MT plus ends in migratory neurons in embryonic mouse cerebral slices. In locomoting bipolar neurons, the centrosome oriented toward the pia-directed leading process. Bipolar neurons displayed dense MT plus end dynamics in leading processes, while trailing processes showed clear bidirectional MTs. In migrating multipolar neurons, new processes emerged irrespective of centrosome localization, followed by centrosome reorientations toward the dominant process. Anterograde movements of MT plus ends occurred in growing processes and retrograde movements were observed after retraction of the distal tip. In multipolar neurons, axon formed by tangential extension of a dominant process and the centrosome oriented toward the growing axon, while in locomoting neurons, an axon formed opposite to the direction of migration and the centrosome localized to the base of the leading process. Our data suggest that MT organization may alter centrosomal localization and that centrosomal positioning does not necessarily direct process formation.

  14. CLASP2 interacts with p120-catenin and governs microtubule dynamics at adherens junctions

    PubMed Central

    Shahbazi, Marta N.; Megias, Diego; Epifano, Carolina; Akhmanova, Anna; Gundersen, Gregg G.; Fuchs, Elaine

    2013-01-01

    Classical cadherins and their connections with microtubules (MTs) are emerging as important determinants of cell adhesion. However, the functional relevance of such interactions and the molecular players that contribute to tissue architecture are still emerging. In this paper, we report that the MT plus end–binding protein CLASP2 localizes to adherens junctions (AJs) via direct interaction with p120-catenin (p120) in primary basal mouse keratinocytes. Reductions in the levels of p120 or CLASP2 decreased the localization of the other protein to cell–cell contacts and altered AJ dynamics and stability. These features were accompanied by decreased MT density and altered MT dynamics at intercellular junction sites. Interestingly, CLASP2 was enriched at the cortex of basal progenitor keratinocytes, in close localization to p120. Our findings suggest the existence of a new mechanism of MT targeting to AJs with potential functional implications in the maintenance of proper cell–cell adhesion in epidermal stem cells. PMID:24368809

  15. Microtubule dynamics analysis using kymographs and variable-rate particle filters.

    PubMed

    Smal, Ihor; Grigoriev, Ilya; Akhmanova, Anna; Niessen, Wiro J; Meijering, Erik

    2010-07-01

    Studying intracellular dynamics is of fundamental importance for understanding healthy life at the molecular level and for developing drugs to target disease processes. One of the key technologies to enable this research is the automated tracking and motion analysis of these objects in microscopy image sequences. To make better use of the spatiotemporal information than common frame-by-frame tracking methods, two alternative approaches have recently been proposed, based upon either Bayesian estimation or space-time segmentation. In this paper, we propose to combine the power of both approaches, and develop a new probabilistic method to segment the traces of the moving objects in kymograph representations of the image data. It is based on variable-rate particle filtering and uses multiscale trend analysis of the extracted traces to estimate the relevant kinematic parameters. Experiments on realistic synthetically generated images as well as on real biological image data demonstrate the improved potential of the new method for the analysis of microtubule dynamics in vitro.

  16. Regulation of a Dynamic Interaction between Two Microtubule-binding Proteins, EB1 and TIP150, by the Mitotic p300/CBP-associated Factor (PCAF) Orchestrates Kinetochore Microtubule Plasticity and Chromosome Stability during Mitosis*

    PubMed Central

    Ward, Tarsha; Wang, Ming; Liu, Xing; Wang, Zhikai; Xia, Peng; Chu, Youjun; Wang, Xiwei; Liu, Lifang; Jiang, Kai; Yu, Huijuan; Yan, Maomao; Wang, Jianyu; Hill, Donald L.; Huang, Yuejia; Zhu, Tongge; Yao, Xuebiao

    2013-01-01

    The microtubule cytoskeleton network orchestrates cellular dynamics and chromosome stability in mitosis. Although tubulin acetylation is essential for cellular plasticity, it has remained elusive how kinetochore microtubule plus-end dynamics are regulated by p300/CBP-associated factor (PCAF) acetylation in mitosis. Here, we demonstrate that the plus-end tracking protein, TIP150, regulates dynamic kinetochore-microtubule attachments by promoting the stability of spindle microtubule plus-ends. Suppression of TIP150 by siRNA results in metaphase alignment delays and perturbations in chromosome biorientation. TIP150 is a tetramer that binds an end-binding protein (EB1) dimer through the C-terminal domains, and overexpression of the C-terminal TIP150 or disruption of the TIP150-EB1 interface by a membrane-permeable peptide perturbs chromosome segregation. Acetylation of EB1-PCAF regulates the TIP150 interaction, and persistent acetylation perturbs EB1-TIP150 interaction and accurate metaphase alignment, resulting in spindle checkpoint activation. Suppression of the mitotic checkpoint serine/threonine protein kinase, BubR1, overrides mitotic arrest induced by impaired EB1-TIP150 interaction, but cells exhibit whole chromosome aneuploidy. Thus, the results identify a mechanism by which the TIP150-EB1 interaction governs kinetochore microtubule plus-end plasticity and establish that the temporal control of the TIP150-EB1 interaction by PCAF acetylation ensures chromosome stability in mitosis. PMID:23595990

  17. Regulation of a dynamic interaction between two microtubule-binding proteins, EB1 and TIP150, by the mitotic p300/CBP-associated factor (PCAF) orchestrates kinetochore microtubule plasticity and chromosome stability during mitosis.

    PubMed

    Ward, Tarsha; Wang, Ming; Liu, Xing; Wang, Zhikai; Xia, Peng; Chu, Youjun; Wang, Xiwei; Liu, Lifang; Jiang, Kai; Yu, Huijuan; Yan, Maomao; Wang, Jianyu; Hill, Donald L; Huang, Yuejia; Zhu, Tongge; Yao, Xuebiao

    2013-05-31

    The microtubule cytoskeleton network orchestrates cellular dynamics and chromosome stability in mitosis. Although tubulin acetylation is essential for cellular plasticity, it has remained elusive how kinetochore microtubule plus-end dynamics are regulated by p300/CBP-associated factor (PCAF) acetylation in mitosis. Here, we demonstrate that the plus-end tracking protein, TIP150, regulates dynamic kinetochore-microtubule attachments by promoting the stability of spindle microtubule plus-ends. Suppression of TIP150 by siRNA results in metaphase alignment delays and perturbations in chromosome biorientation. TIP150 is a tetramer that binds an end-binding protein (EB1) dimer through the C-terminal domains, and overexpression of the C-terminal TIP150 or disruption of the TIP150-EB1 interface by a membrane-permeable peptide perturbs chromosome segregation. Acetylation of EB1-PCAF regulates the TIP150 interaction, and persistent acetylation perturbs EB1-TIP150 interaction and accurate metaphase alignment, resulting in spindle checkpoint activation. Suppression of the mitotic checkpoint serine/threonine protein kinase, BubR1, overrides mitotic arrest induced by impaired EB1-TIP150 interaction, but cells exhibit whole chromosome aneuploidy. Thus, the results identify a mechanism by which the TIP150-EB1 interaction governs kinetochore microtubule plus-end plasticity and establish that the temporal control of the TIP150-EB1 interaction by PCAF acetylation ensures chromosome stability in mitosis.

  18. The dynamics of fast metal forming processes

    NASA Astrophysics Data System (ADS)

    Tirosh, J.; Iddan, D.

    1994-04-01

    THIS WORK PRESENTS a procedure to assess, by an approximate lower bound, the dynamic stress distribution that prevails in the deforming zone during fast forming processes. An objective measure to what is "a fast process" will be determined by the magnitude of three dimensionless groups which characterize dynamic plasticity. The suggested generalization of the lower bound calls for admissible trials of "dynamic stress" solutions for rigid-plastic and, possibly, viscoplastic materials. The analysis becomes a rigorous lower bound as the speed approaches zero. Otherwise, it elevates the true bound with quantified speed-dependent terms associated with the above groups. Applications are demonstrated via examples. Technological limitations imposed by the high speed are indicated. Experimental data and/or numerical solutions are added for comparisons whenever these exist.

  19. Controlling fast chaos in delay dynamical systems.

    PubMed

    Blakely, Jonathan N; Illing, Lucas; Gauthier, Daniel J

    2004-05-14

    We introduce a novel approach for controlling fast chaos in time-delay dynamical systems and use it to control a chaotic photonic device with a characteristic time scale of approximately 12 ns. Our approach is a prescription for how to implement existing chaos-control algorithms in a way that exploits the system's inherent time delay and allows control even in the presence of substantial control-loop latency (the finite time it takes signals to propagate through the components in the controller). This research paves the way for applications exploiting fast control of chaos, such as chaos-based communication schemes and stabilizing the behavior of ultrafast lasers.

  20. Phosphorylation of α-Tubulin by Protein Kinase C Stimulates Microtubule Dynamics in Human Breast Cells

    PubMed Central

    De, Shatarupa; Tsimounis, Areti; Chen, Xiangyu; Rotenberg, Susan A.

    2014-01-01

    Protein kinase C (PKC) engenders motility through phosphorylation of α-tubulin at Ser-165 in non-transformed MCF-10A cells. Live cell imaging explored the impact of PKC-mediated phosphorylation on microtubule (MT) dynamics. MTs fluorescently labeled with GFP-α-tubulin were treated with diacylglycerol (DAG)-lactone (a membrane-permeable PKC activator), or co-transfected with a pseudo-phosphorylated S165D-α6-tubulin mutant. Each condition increased the dynamicity of MTs by stimulating the rate and duration of the growth phase and decreasing the frequency of catastrophe. In MDA-MB-231 metastatic breast cells where the intrinsic PKC activity is high, these MT growth parameters were also high but could be suppressed by expression of phosphorylation-resistant S165N-α6-tubulin or by treatment with a pan-PKC inhibitor (bis-indoleylmaleimide). Sub-cellular fractionation and immunofluorescence of MCF-10A cells showed that phosphorylation (via DAG-lactone) or pseudo-phosphorylation of α6-tubulin increased its partitioning into MTs as compared to controls, and produced longer, more stable MTs. Following expression of the plus-end binding protein GFP-EB1, DAG-lactone accelerated the formation and increased the number of nascent MTs. Expression of S165D-α6-tubulin promoted Rac1 activation and Rac1-dependent cell motility. These findings call attention to PKC-mediated phosphorylation of α-tubulin as a novel mechanism for controlling the dynamics of MTs that result in cell movement. PMID:24574051

  1. Dynamic assembly of polymer nanotube networks via kinesin powered microtubule filaments

    DOE PAGES

    Paxton, Walter F.; Bachand, George D.; Gomez, Andrew; ...

    2015-04-24

    In this study, we describe for the first time how biological nanomotors may be used to actively self-assemble mesoscale networks composed of diblock copolymer nanotubes. The collective force generated by multiple kinesin nanomotors acting on a microtubule filament is large enough to overcome the energy barrier required to extract nanotubes from polymer vesicles comprised of poly(ethylene oxide-b-butadiene) in spite of the higher force requirements relative to extracting nanotubes from lipid vesicles. Nevertheless, large-scale polymer networks were dynamically assembled by the motors. These networks displayed enhanced robustness, persisting more than 24 h post-assembly (compared to 4–5 h for corresponding lipid networks).more » The transport of materials in and on the polymer membranes differs substantially from the transport on analogous lipid networks. Specifically, our data suggest that polymer mobility in nanotubular structures is considerably different from planar or 3D structures, and is stunted by 1D confinement of the polymer subunits. Moreover, quantum dots adsorbed onto polymer nanotubes are completely immobile, which is related to this 1D confinement effect and is in stark contrast to the highly fluid transport observed on lipid tubules.« less

  2. Kinesin-Binding Protein Controls Microtubule Dynamics and Cargo Trafficking by Regulating Kinesin Motor Activity.

    PubMed

    Kevenaar, Josta T; Bianchi, Sarah; van Spronsen, Myrrhe; Olieric, Natacha; Lipka, Joanna; Frias, Cátia P; Mikhaylova, Marina; Harterink, Martin; Keijzer, Nanda; Wulf, Phebe S; Hilbert, Manuel; Kapitein, Lukas C; de Graaff, Esther; Ahkmanova, Anna; Steinmetz, Michel O; Hoogenraad, Casper C

    2016-04-04

    Kinesin motor proteins play a fundamental role for normal neuronal development by controlling intracellular cargo transport and microtubule (MT) cytoskeleton organization. Regulating kinesin activity is important to ensure their proper functioning, and their misregulation often leads to severe human neurological disorders. Homozygous nonsense mutations in kinesin-binding protein (KBP)/KIAA1279 cause the neurological disorder Goldberg-Shprintzen syndrome (GOSHS), which is characterized by intellectual disability, microcephaly, and axonal neuropathy. Here, we show that KBP regulates kinesin activity by interacting with the motor domains of a specific subset of kinesins to prevent their association with the MT cytoskeleton. The KBP-interacting kinesins include cargo-transporting motors such as kinesin-3/KIF1A and MT-depolymerizing motor kinesin-8/KIF18A. We found that KBP blocks KIF1A/UNC-104-mediated synaptic vesicle transport in cultured hippocampal neurons and in C. elegans PVD sensory neurons. In contrast, depletion of KBP results in the accumulation of KIF1A motors and synaptic vesicles in the axonal growth cone. We also show that KBP regulates neuronal MT dynamics by controlling KIF18A activity. Our data suggest that KBP functions as a kinesin inhibitor that modulates MT-based cargo motility and depolymerizing activity of a subset of kinesin motors. We propose that misregulation of KBP-controlled kinesin motors may represent the underlying molecular mechanism that contributes to the neuropathological defects observed in GOSHS patients.

  3. Mechanical properties of a complete microtubule revealed through molecular dynamics simulation.

    PubMed

    Wells, David B; Aksimentiev, Aleksei

    2010-07-21

    Microtubules (MTs) are the largest type of cellular filament, essential in processes ranging from mitosis and meiosis to flagellar motility. Many of the processes depend critically on the mechanical properties of the MT, but the elastic moduli, notably the Young's modulus, are not directly revealed in experiment, which instead measures either flexural rigidity or response to radial deformation. Molecular dynamics (MD) is a method that allows the mechanical properties of single biomolecules to be investigated through computation. Typically, MD requires an atomic resolution structure of the molecule, which is unavailable for many systems, including MTs. By combining structural information from cryo-electron microscopy and electron crystallography, we have constructed an all-atom model of a complete MT and used MD to determine its mechanical properties. The simulations revealed nonlinear axial stress-strain behavior featuring a pronounced softening under extension, a possible plastic deformation transition under radial compression, and a distinct asymmetry in response to the two senses of twist. This work demonstrates the possibility of combining different levels of structural information to produce all-atom models suitable for quantitative MD simulations, which extends the range of systems amenable to the MD method and should enable exciting advances in our microscopic knowledge of biology. Copyright (c) 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  4. In vivo microtubule dynamics during experimentally induced conversions between tubulin assembly states in Allogromia laticollaris.

    PubMed

    Welnhofer, E A; Travis, J L

    1996-01-01

    A distinctive property of foraminiferan tubulin is that, in addition to microtubules (MTs), it exists in an alternate assembly state, helical filaments. Here, we have examined in vivo MT dynamics during experimentally induced conversions between these two assembly states in the reticulopods of the marine foraminiferan Allogromia laticollaris. Exposure to high extracellular concentrations of Mg2+ (165 mM) resulted in a complete conversion of MTs into helical filaments. However, Mg2+ treatment also induced a retrograde movement of organelles and cytoplasm, and it was necessary to inhibit this response in order to assess the effects of assembly state changes on individual MTs. This was accomplished by simultaneous treatment with high extracellular Mg2+ and 2,4-dinitrophenol (DNP). The resulting loss in MTs was detected by video enhanced DIC (VEC-DIC) microscopy as either an endwise MT shortening (at an average rate of 474 microns/min) or transformation into one or more irregularly shaped fibrils, which we termed residual fibrils. Correlative immunofluorescence and video microscopy showed residual fibrils to be composed of helical filaments. Removal of extracellular Mg2+/DNP initiated a reversal in assembly state, from helical filaments into MTs, which was completed within 5 min. VEC-DIC microscopy showed that MTs reformed by an endwise lengthening at an average rate of 216 microns/min. These results suggest that conversion between alternate tubulin assembly states provides a more rapid means to build and dismantle MTs than conventional subunit-driven pathways.

  5. Altered microtubule dynamics and vesicular transport in mouse and human MeCP2-deficient astrocytes

    PubMed Central

    Delépine, Chloé; Meziane, Hamid; Nectoux, Juliette; Opitz, Matthieu; Smith, Amos B.; Ballatore, Carlo; Saillour, Yoann; Bennaceur-Griscelli, Annelise; Chang, Qiang; Williams, Emily Cunningham; Dahan, Maxime; Duboin, Aurélien; Billuart, Pierre; Herault, Yann; Bienvenu, Thierry

    2016-01-01

    Rett syndrome (RTT) is a rare X-linked neurodevelopmental disorder, characterized by normal post-natal development followed by a sudden deceleration in brain growth with progressive loss of acquired motor and language skills, stereotypic hand movements and severe cognitive impairment. Mutations in the methyl-CpG-binding protein 2 (MECP2) cause more than 95% of classic cases. Recently, it has been shown that the loss of Mecp2 from glia negatively influences neurons in a non-cell-autonomous fashion, and that in Mecp2-null mice, re-expression of Mecp2 preferentially in astrocytes significantly improved locomotion and anxiety levels, restored respiratory abnormalities to a normal pattern and greatly prolonged lifespan compared with globally null mice. We now report that microtubule (MT)-dependent vesicle transport is altered in Mecp2-deficient astrocytes from newborn Mecp2-deficient mice compared with control wild-type littermates. Similar observation has been made in human MECP2 p.Arg294* iPSC-derived astrocytes. Importantly, administration of Epothilone D, a brain-penetrant MT-stabilizing natural product, was found to restore MT dynamics in Mecp2-deficient astrocytes and in MECP2 p.Arg294* iPSC-derived astrocytes in vitro. Finally, we report that relatively low weekly doses of Epothilone D also partially reversed the impaired exploratory behavior in Mecp2308/y male mice. These findings represent a first step toward the validation of an innovative treatment for RTT. PMID:26604147

  6. Dynamic assembly of polymer nanotube networks via kinesin powered microtubule filaments

    SciTech Connect

    Paxton, Walter F.; Bachand, George D.; Gomez, Andrew; Henderson, Ian M.; Bouxsein, Nathan F.

    2015-04-24

    In this study, we describe for the first time how biological nanomotors may be used to actively self-assemble mesoscale networks composed of diblock copolymer nanotubes. The collective force generated by multiple kinesin nanomotors acting on a microtubule filament is large enough to overcome the energy barrier required to extract nanotubes from polymer vesicles comprised of poly(ethylene oxide-b-butadiene) in spite of the higher force requirements relative to extracting nanotubes from lipid vesicles. Nevertheless, large-scale polymer networks were dynamically assembled by the motors. These networks displayed enhanced robustness, persisting more than 24 h post-assembly (compared to 4–5 h for corresponding lipid networks). The transport of materials in and on the polymer membranes differs substantially from the transport on analogous lipid networks. Specifically, our data suggest that polymer mobility in nanotubular structures is considerably different from planar or 3D structures, and is stunted by 1D confinement of the polymer subunits. Moreover, quantum dots adsorbed onto polymer nanotubes are completely immobile, which is related to this 1D confinement effect and is in stark contrast to the highly fluid transport observed on lipid tubules.

  7. A Dynamic Microtubule Cytoskeleton Directs Medial Actomyosin Function during Tube Formation

    PubMed Central

    Booth, Alexander J.R.; Blanchard, Guy B.; Adams, Richard J.; Röper, Katja

    2014-01-01

    Summary The cytoskeleton is a major determinant of cell-shape changes that drive the formation of complex tissues during development. Important roles for actomyosin during tissue morphogenesis have been identified, but the role of the microtubule cytoskeleton is less clear. Here, we show that during tubulogenesis of the salivary glands in the fly embryo, the microtubule cytoskeleton undergoes major rearrangements, including a 90° change in alignment relative to the apicobasal axis, loss of centrosomal attachment, and apical stabilization. Disruption of the microtubule cytoskeleton leads to failure of apical constriction in placodal cells fated to invaginate. We show that this failure is due to loss of an apical medial actomyosin network whose pulsatile behavior in wild-type embryos drives the apical constriction of the cells. The medial actomyosin network interacts with the minus ends of acentrosomal microtubule bundles through the cytolinker protein Shot, and disruption of Shot also impairs apical constriction. PMID:24914560

  8. Fast dynamic processes of solar radiation

    SciTech Connect

    Tomson, Teolan

    2010-02-15

    This paper studies dynamic processes of fast-alternating solar radiation which are assessed by alternation of clouds. Most attention is devoted to clouds of type Cumulus Humilis, identified through visual recognition and/or a specially constructed automatic sensor. One second sampling period was used. Recorded data series were analyzed with regard to duration of illuminated 'windows' between shadows, their stochastic intervals, fronts and the magnitude of increments of solar irradiance. (author)

  9. Fast Parallel Computation Of Manipulator Inverse Dynamics

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Bejczy, Antal K.

    1991-01-01

    Method for fast parallel computation of inverse dynamics problem, essential for real-time dynamic control and simulation of robot manipulators, undergoing development. Enables exploitation of high degree of parallelism and, achievement of significant computational efficiency, while minimizing various communication and synchronization overheads as well as complexity of required computer architecture. Universal real-time robotic controller and simulator (URRCS) consists of internal host processor and several SIMD processors with ring topology. Architecture modular and expandable: more SIMD processors added to match size of problem. Operate asynchronously and in MIMD fashion.

  10. Fast imaging for mapping dynamic networks.

    PubMed

    LeVan, Pierre; Akin, Burak; Hennig, Jürgen

    2017-08-10

    The development of highly accelerated fMRI acquisition techniques has led to novel possibilities to monitor cerebral activity non-invasively and with unprecedented temporal resolutions. With the emergence of dynamic connectivity and its ability to provide a much richer characterization of brain function compared to static measures, fast fMRI may yet play a crucial role in tracking dynamically varying networks. In spite of the dominance of slow hemodynamic contributions to the BOLD signal, high temporal sampling rates nevertheless improve the measurement of physiological noise, yielding an exceptional sensitivity for the detection of periods of transient connectivity at time scales of a few tens of seconds. There is also evidence that relevant BOLD fluctuations are detectable at high frequencies, implying that the benefits of fast fMRI extend beyond the ability to sample nuisance confounds. Here we review the latest technological advancements that have established fast fMRI as an effective acquisition technique, as well as its current and future implications on the analysis of dynamic networks. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. plusTipTracker: Quantitative image analysis software for the measurement of microtubule dynamics.

    PubMed

    Applegate, Kathryn T; Besson, Sebastien; Matov, Alexandre; Bagonis, Maria H; Jaqaman, Khuloud; Danuser, Gaudenz

    2011-11-01

    Here we introduce plusTipTracker, a Matlab-based open source software package that combines automated tracking, data analysis, and visualization tools for movies of fluorescently-labeled microtubule (MT) plus end binding proteins (+TIPs). Although +TIPs mark only phases of MT growth, the plusTipTracker software allows inference of additional MT dynamics, including phases of pause and shrinkage, by linking collinear, sequential growth tracks. The algorithm underlying the reconstruction of full MT trajectories relies on the spatially and temporally global tracking framework described in Jaqaman et al. (2008). Post-processing of track populations yields a wealth of quantitative phenotypic information about MT network architecture that can be explored using several visualization modalities and bioinformatics tools included in plusTipTracker. Graphical user interfaces enable novice Matlab users to track thousands of MTs in minutes. In this paper, we describe the algorithms used by plusTipTracker and show how the package can be used to study regional differences in the relative proportion of MT subpopulations within a single cell. The strategy of grouping +TIP growth tracks for the analysis of MT dynamics has been introduced before (Matov et al., 2010). The numerical methods and analytical functionality incorporated in plusTipTracker substantially advance this previous work in terms of flexibility and robustness. To illustrate the enhanced performance of the new software we thus compare computer-assembled +TIP-marked trajectories to manually-traced MT trajectories from the same movie used in Matov et al. (2010). Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Electric fields generated by synchronized oscillations of microtubules, centrosomes and chromosomes regulate the dynamics of mitosis and meiosis.

    PubMed

    Zhao, Yue; Zhan, Qimin

    2012-07-02

    Super-macromolecular complexes play many important roles in eukaryotic cells. Classical structural biological studies focus on their complicated molecular structures, physical interactions and biochemical modifications. Recent advances concerning intracellular electric fields generated by cell organelles and super-macromolecular complexes shed new light on the mechanisms that govern the dynamics of mitosis and meiosis. In this review we synthesize this knowledge to provide an integrated theoretical model of these cellular events. We suggest that the electric fields generated by synchronized oscillation of microtubules, centrosomes, and chromatin fibers facilitate several events during mitosis and meiosis, including centrosome trafficking, chromosome congression in mitosis and synapsis between homologous chromosomes in meiosis. These intracellular electric fields are generated under energy excitation through the synchronized electric oscillations of the dipolar structures of microtubules, centrosomes and chromosomes, three of the super-macromolecular complexes within an animal cell.

  13. Physical Modeling of Microtubules Network

    NASA Astrophysics Data System (ADS)

    Allain, Pierre; Kervrann, Charles

    2014-10-01

    Microtubules (MT) are highly dynamic tubulin polymers that are involved in many cellular processes such as mitosis, intracellular cell organization and vesicular transport. Nevertheless, the modeling of cytoskeleton and MT dynamics based on physical properties is difficult to achieve. Using the Euler-Bernoulli beam theory, we propose to model the rigidity of microtubules on a physical basis using forces, mass and acceleration. In addition, we link microtubules growth and shrinkage to the presence of molecules (e.g. GTP-tubulin) in the cytosol. The overall model enables linking cytosol to microtubules dynamics in a constant state space thus allowing usage of data assimilation techniques.

  14. Control of myofibroblast differentiation by microtubule dynamics through a regulated localization of mDia2.

    PubMed

    Sandbo, Nathan; Ngam, Caitlyn; Torr, Elizabeth; Kregel, Steve; Kach, Jacob; Dulin, Nickolai

    2013-05-31

    Myofibroblast differentiation plays a critical role in wound healing and in the pathogenesis of fibrosis. We have previously shown that myofibroblast differentiation is mediated by the activity of serum response factor (SRF), which is tightly controlled by the actin polymerization state. In this study, we investigated the role of the microtubule cytoskeleton in modulating myofibroblast phenotype. Treatment of human lung fibroblasts with the microtubule-destabilizing agent, colchicine, resulted in a formation of numerous stress fibers and expression of myofibroblast differentiation marker proteins. These effects of colchicine were independent of Smad signaling but were mediated by Rho signaling and SRF, as they were attenuated by the Rho kinase inhibitor, Y27632, or by the SRF inhibitor, CCG-1423. TGF-β-induced myofibroblast differentiation was not accompanied by gross changes in the microtubule polymerization state. However, microtubule stabilization by paclitaxel attenuated TGF-β-induced myofibroblast differentiation. Paclitaxel had no effect on TGF-β-induced Smad activation and Smad-dependent gene transcription but inhibited actin polymerization, nuclear accumulation of megakaryoblastic leukemia-1 protein, and SRF activation. The microtubule-associated formin, mDIA2, localized to actin stress fibers upon treatment with TGF-β, and paclitaxel prevented this localization. Treatment with the formin inhibitor, SMI formin homology 2 domain, inhibited stress fiber formation and myofibroblast differentiation induced by TGF-β, without affecting Smad-phosphorylation or microtubule polymerization. Together, these data suggest that (a) TGF-β promotes association of mDia2 with actin stress fibers, which further drives stress fiber formation and myofibroblast differentiation, and (b) microtubule polymerization state controls myofibroblast differentiation through the regulation of mDia2 localization.

  15. Rho GTPases at the crossroad of signaling networks in mammals: impact of Rho-GTPases on microtubule organization and dynamics.

    PubMed

    Wojnacki, José; Quassollo, Gonzalo; Marzolo, María-Paz; Cáceres, Alfredo

    2014-01-01

    Microtubule (MT) organization and dynamics downstream of external cues is crucial for maintaining cellular architecture and the generation of cell asymmetries. In interphase cells RhoA, Rac, and Cdc42, conspicuous members of the family of small Rho GTPases, have major roles in modulating MT stability, and hence polarized cell behaviors. However, MTs are not mere targets of Rho GTPases, but also serve as signaling platforms coupling MT dynamics to Rho GTPase activation in a variety of cellular conditions. In this article, we review some of the key studies describing the reciprocal relationship between small Rho-GTPases and MTs during migration and polarization.

  16. Fast dynamics in molecules of biological interest

    NASA Astrophysics Data System (ADS)

    Faurskov Nielsen, O.; Jacobsen, K. L.; Westh, P.; Radovic, T.; Due Larsen, B.; Christensen, D. H.

    2001-10-01

    Isotopic substitution is used in cw-Raman studies of fast dynamics in molecules of biological interest. Simple liquid amides are considered as model systems for hydrogen bonding in peptides and proteins. Collectivity of amide I modes is studied by resonance energy transfer (RET) and coalescence of bands in mixtures of isotopomers (CBMI). A 1:1 mixture of HC 16OND 2 and HC 18OND 2 shows only one amide I band with a peak maximum between those observed for each of the pure isotopomers. Dilution studies of this mixture in D 2O show that the collective effects disappear in diluted solutions, where two bands are observed, one from each isotopomer. This is confirmed by dilution experiments performed on HC 16OND 2 in D 2O. Raman spectroscopy is a fast experimental technique reflecting the fast molecular dynamics on a picosecond and faster time scale. Future aspects of the collectivity of vibrational modes in peptides and proteins are mentioned. In this context a vibrational coupling between the amide I modes and the bending mode of water may be important. A comparison between low-frequency Raman and thermodynamic studies of water/lysozyme mixtures seems promising in terms of the difference between protein bound water and the formation of water clusters.

  17. Microtubule dynamics of the centrosome-like polar organizers from the basal land plant Marchantia polymorpha.

    PubMed

    Buschmann, Henrik; Holtmannspötter, Michael; Borchers, Agnes; O'Donoghue, Martin-Timothy; Zachgo, Sabine

    2016-02-01

    The liverwort Marchantia employs both modern and ancestral devices during cell division: it forms preprophase bands and in addition it shows centrosome-like polar organizers. We investigated whether polar organizers and preprophase bands cooperate to set up the division plane. To this end, two novel green fluorescent protein-based microtubule markers for dividing cells of Marchantia were developed. Cells of the apical notch formed polar organizers first and subsequently assembled preprophase bands. Polar organizers were formed de novo from multiple mobile microtubule foci localizing to the nuclear envelope. The foci then became concentrated by bipolar aggregation. We determined the comet production rate of polar organizers and show that microtubule plus ends of astral microtubules polymerize faster than those found on cortical microtubules. Importantly, it was observed that conditions increasing polar organizer numbers interfere with preprophase band formation. The data show that polar organizers have much in common with centrosomes, but that they also have specialized features. The results suggest that polar organizers contribute to preprophase band formation and in this way are involved in controlling the division plane. Our analyses of the basal land plant Marchantia shed new light on the evolution of plant cell division.

  18. Fission yeast mitochondria are distributed by dynamic microtubules in a motor-independent manner.

    PubMed

    Li, Tianpeng; Zheng, Fan; Cheung, Martin; Wang, Fengsong; Fu, Chuanhai

    2015-06-05

    The cytoskeleton plays a critical role in regulating mitochondria distribution. Similar to axonal mitochondria, the fission yeast mitochondria are distributed by the microtubule cytoskeleton, but this is regulated by a motor-independent mechanism depending on the microtubule associated protein mmb1p as the absence of mmb1p causes mitochondria aggregation. In this study, using a series of chimeric proteins to control the subcellular localization and motility of mitochondria, we show that a chimeric molecule containing a microtubule binding domain and the mitochondria outer membrane protein tom22p can restore the normal interconnected mitochondria network in mmb1-deletion (mmb1∆) cells. In contrast, increasing the motility of mitochondria by using a chimeric molecule containing a kinesin motor domain and tom22p cannot rescue mitochondria aggregation defects in mmb1∆ cells. Intriguingly a chimeric molecule carrying an actin binding domain and tom22p results in mitochondria associated with actin filaments at the actomyosin ring during mitosis, leading to cytokinesis defects. These findings suggest that the passive motor-independent microtubule-based mechanism is the major contributor to mitochondria distribution in wild type fission yeast cells. Hence, we establish that attachment to microtubules, but not kinesin-dependent movement and the actin cytoskeleton, is required and crucial for proper mitochondria distribution in fission yeast.

  19. Fission yeast mitochondria are distributed by dynamic microtubules in a motor-independent manner

    PubMed Central

    Li, Tianpeng; Zheng, Fan; Cheung, Martin; Wang, Fengsong; Fu, Chuanhai

    2015-01-01

    The cytoskeleton plays a critical role in regulating mitochondria distribution. Similar to axonal mitochondria, the fission yeast mitochondria are distributed by the microtubule cytoskeleton, but this is regulated by a motor-independent mechanism depending on the microtubule associated protein mmb1p as the absence of mmb1p causes mitochondria aggregation. In this study, using a series of chimeric proteins to control the subcellular localization and motility of mitochondria, we show that a chimeric molecule containing a microtubule binding domain and the mitochondria outer membrane protein tom22p can restore the normal interconnected mitochondria network in mmb1-deletion (mmb1∆) cells. In contrast, increasing the motility of mitochondria by using a chimeric molecule containing a kinesin motor domain and tom22p cannot rescue mitochondria aggregation defects in mmb1∆ cells. Intriguingly a chimeric molecule carrying an actin binding domain and tom22p results in mitochondria associated with actin filaments at the actomyosin ring during mitosis, leading to cytokinesis defects. These findings suggest that the passive motor-independent microtubule-based mechanism is the major contributor to mitochondria distribution in wild type fission yeast cells. Hence, we establish that attachment to microtubules, but not kinesin-dependent movement and the actin cytoskeleton, is required and crucial for proper mitochondria distribution in fission yeast. PMID:26046468

  20. Effect of Microtubule Disruption on Dynamics of Acidic Organelles in the Axons of Primary Cultured Retinal Ganglion Cells.

    PubMed

    Miyake, Seiji; Takihara, Yuji; Yokota, Satoshi; Takamura, Yoshihiro; Inatani, Masaru

    2017-09-22

    Axonal transport is fundamental to autophagy in neuronal cells. To understand its biological significance in various conditions, it is necessary to monitor the process of autophagy. However, monitoring methods are often limited to static analyses, such as protein expression and histological observations. Autophagy has multistep process and is highly dynamic; therefore, additional techniques are necessary to study autophagy. In this study, we quantified the dynamics of autophagy-related organelle transport under conditions of dynamic instability and catastrophic disruption of microtubules using in vitro live imaging. Retinal ganglion cells (RGCs) were isolated from postnatal day 3 Sprague-Dawley rats by immunopanning. After 7 days of culture, acidic organelles were stained by LysoTracker. Dynamics of acidic organelles was quantified using kymographs. Colchicine was used to induce microtubule disruption. Movement of acidic organelles was observed at five time points: before, and at 6, 24, 72, and 120 h after colchicine stimulation. Ethidium homodimer-1 (EthD-1) was used to determine cell viability. The status of axonal transport of acidic organelles (n = 363) from 27 RGCs was classified into four categories: anterograde (1.4%), retrograde (90%), stationary (8.0%), and fluttering (0.28%). Six hours after the induction of microtubule disruption in 14 of 27 RGCs, almost all acidic organelles (n = 236) were stationary. All acidic components had completely stopped moving 24 h later. At 72 h after stimulation, axonal fragmentation, and shrinking and disappearance of soma were observed in 71% of RGCs. Finally, the remaining RGCs became positive for EthD-1. In the control (13 of 27 RGCs), axonal transport was maintained for 120 h and EthD-1-positive RGCs were not observed. Almost all acidic organelles were transported retrogradely along the axon, which was inhibited by colchicine. Understanding the dynamics of acidic organelles may provide useful parameters for

  1. Ochratoxin A: apoptosis and aberrant exit from mitosis due to perturbation of microtubule dynamics?

    PubMed

    Rached, Eva; Pfeiffer, Erika; Dekant, Wolfgang; Mally, Angela

    2006-07-01

    Ochratoxin A (OTA) is a potent nephrotoxin and causes high incidences of renal tumors in rodents. The molecular events leading to tumor formation by OTA are not well defined. Early pathological changes observed in kidneys of rats treated with OTA in vivo include frequent mitotic and abnormally enlarged cells, detachment of tubule cells, and apoptosis within the S3 segment of the proximal tubule, suggesting that OTA may interfere with molecules involved in the regulation of cell division and apoptosis. In this study, treatment of immortalized human kidney epithelial (IHKE) cells with OTA (0-50 microM) resulted in a time- and dose-dependent increase in apoptosis and activation of c-Jun N-terminal kinase. At the same time, OTA blocked metaphase/anaphase transition and led to the formation of aberrant mitotic figures and giant cells with abnormally enlarged and/or multiple nuclei, sometimes still connected by chromatin bridges. Immunostaining of the mitotic apparatus using an alpha-tubulin antibody revealed defects in spindle formation. In addition, OTA inhibited microtubule assembly in a concentration-dependent manner in a cell-free, in vitro assay. Interestingly, treatment with OTA also resulted in activation of the transcription factor nuclear factor kappa B (NFkappaB), which has recently been shown to promote cell survival during mitotic cell cycle arrest. Based on these observations, we hypothesize that the mechanism by which OTA promotes tumor formation involves interference with microtubuli dynamics and mitotic spindle formation, resulting in apoptosis or-in the presence of survival signals such as stimulation of the NFkappaB pathway-premature exit from mitosis. Aberrant exit from mitosis resulting in blocked or asymmetric cell division may favor the occurrence of cytogenetic abnormalities and may therefore play a critical role in renal tumor formation by OTA.

  2. Geometrical shock dynamics of fast magnetohydrodynamic shocks

    NASA Astrophysics Data System (ADS)

    Mostert, Wouter; Pullin, Dale I.; Samtaney, Ravi; Wheatley, Vincent

    2016-11-01

    We extend the theory of geometrical shock dynamics (GSD, Whitham 1958), to two-dimensional fast magnetohydrodynamic (MHD) shocks moving in the presence of nonuniform magnetic fields of general orientation and strength. The resulting generalized area-Mach number rule is adapted to MHD shocks moving in two spatial dimensions. A partially-spectral numerical scheme developed from that of Schwendeman (1993) is described. This is applied to the stability of plane MHD fast shocks moving into a quiescent medium containing a uniform magnetic field whose field lines are inclined to the plane-shock normal. In particular, we consider the time taken for an initially planar shock subject to an initial perturbed magnetosonic Mach number distribution, to first form shock-shocks. Supported by KAUST OCRF Award No. URF/1/2162-01.

  3. Correlative live-cell and superresolution microscopy reveals cargo transport dynamics at microtubule intersections

    PubMed Central

    Bálint, Štefan; Verdeny Vilanova, Ione; Sandoval Álvarez, Ángel; Lakadamyali, Melike

    2013-01-01

    Intracellular transport plays an essential role in maintaining the organization of polarized cells. Motor proteins tether and move cargos along microtubules during long-range transport to deliver them to their proper location of function. To reach their destination, cargo-bound motors must overcome barriers to their forward motion such as intersection points between microtubules. The ability to visualize how motors navigate these barriers can give important information about the mechanisms that lead to efficient transport. Here, we first develop an all-optical correlative imaging method based on single-particle tracking and superresolution microscopy to map the transport trajectories of cargos to individual microtubules with high spatiotemporal resolution. We then use this method to study the behavior of lysosomes at microtubule–microtubule intersections. Our results show that the intersection poses a significant hindrance that leads to long pauses in transport only when the separation distance of the intersecting microtubules is smaller than ∼100 nm. However, the obstructions are typically overcome by the motors with high fidelity by either switching to the intersecting microtubule or eventually passing through the intersection. Interestingly, there is a large tendency to maintain the polarity of motion (anterograde or retrograde) after the intersection, suggesting a high degree of regulation of motor activity to maintain transport in a given direction. These results give insights into the effect of the cytoskeletal geometry on cargo transport and have important implications for the mechanisms that cargo-bound motors use to maneuver through the obstructions set up by the complex cytoskeletal network. PMID:23401534

  4. Azaindole derivatives are inhibitors of microtubule dynamics, with anti-cancer and anti-angiogenic activities

    PubMed Central

    Prudent, Renaud; Vassal-Stermann, Émilie; Nguyen, Chi-Hung; Mollaret, Marjorie; Viallet, Jean; Desroches-Castan, Agnès; Martinez, Anne; Barette, Caroline; Pillet, Catherine; Valdameri, Glaucio; Soleilhac, Emmanuelle; Di Pietro, Attilio; Feige, Jean-Jacques; Billaud, Marc; Florent, Jean-Claude; Lafanechère, Laurence

    2013-01-01

    Background and Purpose Drugs targeting microtubules are commonly used for cancer treatment. However, the potency of microtubule inhibitors used clinically is limited by the emergence of resistance. We thus designed a strategy to find new cell-permeable microtubule-targeting agents. Experimental Approach Using a cell-based assay designed to probe for microtubule polymerization status, we screened a chemical library and identified two azaindole derivatives, CM01 and CM02, as cell-permeable microtubule-depolymerizing agents. The mechanism of the anti-tumour effects of these two compounds was further investigated both in vivo and in vitro. Key Results CM01 and CM02 induced G2/M cell cycle arrest and exerted potent cytostatic effects on several cancer cell lines including multidrug-resistant (MDR) cell lines. In vitro experiments revealed that the azaindole derivatives inhibited tubulin polymerization and competed with colchicines for this effect, strongly indicating that tubulin is the cellular target of these azaindole derivatives. In vivo experiments, using a chicken chorioallantoic xenograft tumour assay, established that these compounds exert a potent anti-tumour effect. Furthermore, an assay probing the growth of vessels out of endothelial cell spheroids showed that CM01 and CM02 exert anti-angiogenic activities. Conclusions and Implications CM01 and CM02 are reversible microtubule-depolymerizing agents that exert potent cytostatic effects on human cancer cells of diverse origins, including MDR cells. They were also shown to inhibit angiogenesis and tumour growth in chorioallantoic breast cancer xenografts. Hence, these azaindole derivatives are attractive candidates for further preclinical investigations. PMID:23004938

  5. Fission yeast kinesin-8 Klp5 and Klp6 are interdependent for mitotic nuclear retention and required for proper microtubule dynamics.

    PubMed

    Unsworth, Amy; Masuda, Hirohisa; Dhut, Susheela; Toda, Takashi

    2008-12-01

    Fission yeast has two kinesin-8s, Klp5 and Klp6, which associate to form a heterocomplex. Here, we show that Klp5 and Klp6 are mutually dependent on each other for nuclear mitotic localization. During interphase, they are exported to the cytoplasm. In sharp contrast, during mitosis, Klp5 and Klp6 remain in the nucleus, which requires the existence of each counterpart. Canonical nuclear localization signal (NLS) is identified in the nonkinesin C-terminal regions. Intriguingly individual NLS mutants (NLSmut) exhibit loss-of-function phenotypes, suggesting that Klp5 and Klp6 enter the nucleus separately. Indeed, although neither Klp5-NLSmut nor Klp6-NLSmut enters the nucleus, wild-type Klp6 or Klp5, respectively, does so with different kinetics. In the absence of Klp5/6, microtubule catastrophe/rescue frequency and dynamicity are suppressed, whereas growth and shrinkage rates are least affected. Remarkably, chimera strains containing only the N-terminal Klp5 kinesin domains cannot disassemble interphase microtubules during mitosis, leading to the coexistence of cytoplasmic microtubules and nuclear spindles with massive chromosome missegregation. In this strain, a marked reduction of microtubule dynamism, even higher than in klp5/6 deletions, is evident. We propose that Klp5 and Klp6 play a vital role in promoting microtubule dynamics, which is essential for the spatiotemporal control of microtubule morphogenesis.

  6. Silencing of tubulin binding cofactor C modifies microtubule dynamics and cell cycle distribution and enhances sensitivity to gemcitabine in breast cancer cells.

    PubMed

    Hage-Sleiman, Rouba; Herveau, Stéphanie; Matera, Eva-Laure; Laurier, Jean-Fabien; Dumontet, Charles

    2011-02-01

    Tubulin binding cofactor C (TBCC) is essential for the proper folding of α- and β-tubulins into microtubule polymerizable heterodimers. Because microtubules are considered major targets in the treatment of breast cancer, we investigated the influence of TBCC silencing on tubulin pools, microtubule dynamics, and cell cycle distribution of breast cancer cells by developing a variant MCF7 cells with reduced content of TBCC (MC-). MC- cells displayed decreased content in nonpolymerizable tubulins and increased content of polymerizable/microtubule tubulins when compared with control MP6 cells. Microtubules in MC- cells showed stronger dynamics than those of MP6 cells. MC- cells proliferated faster than MP6 cells and showed an altered cell cycle distribution, with a higher percentage in S-phase of the cell cycle. Consequently, MC- cells presented higher sensitivity to the S-phase-targeting agent gemcitabine than MP6 cells in vitro. Although the complete duration of mitosis was shorter in MC- cells and their microtubule dynamics was enhanced, the percentage of cells in G(2)-M phase was not altered nor was there any difference in sensitivity to antimicrotubule-targeting agents when compared with MP6 cells. Xenografts derived from TBCC variants displayed significantly enhanced tumor growth in vivo and increased sensitivity to gemcitabine in comparison to controls. These results are the first to suggest that proteins involved in the proper folding of cytoskeletal components may have an important influence on the cell cycle distribution, proliferation, and chemosensitivity of tumor cells.

  7. Fission Yeast Kinesin-8 Klp5 and Klp6 Are Interdependent for Mitotic Nuclear Retention and Required for Proper Microtubule Dynamics

    PubMed Central

    Unsworth, Amy; Masuda, Hirohisa; Dhut, Susheela

    2008-01-01

    Fission yeast has two kinesin-8s, Klp5 and Klp6, which associate to form a heterocomplex. Here, we show that Klp5 and Klp6 are mutually dependent on each other for nuclear mitotic localization. During interphase, they are exported to the cytoplasm. In sharp contrast, during mitosis, Klp5 and Klp6 remain in the nucleus, which requires the existence of each counterpart. Canonical nuclear localization signal (NLS) is identified in the nonkinesin C-terminal regions. Intriguingly individual NLS mutants (NLSmut) exhibit loss-of-function phenotypes, suggesting that Klp5 and Klp6 enter the nucleus separately. Indeed, although neither Klp5-NLSmut nor Klp6-NLSmut enters the nucleus, wild-type Klp6 or Klp5, respectively, does so with different kinetics. In the absence of Klp5/6, microtubule catastrophe/rescue frequency and dynamicity are suppressed, whereas growth and shrinkage rates are least affected. Remarkably, chimera strains containing only the N-terminal Klp5 kinesin domains cannot disassemble interphase microtubules during mitosis, leading to the coexistence of cytoplasmic microtubules and nuclear spindles with massive chromosome missegregation. In this strain, a marked reduction of microtubule dynamism, even higher than in klp5/6 deletions, is evident. We propose that Klp5 and Klp6 play a vital role in promoting microtubule dynamics, which is essential for the spatiotemporal control of microtubule morphogenesis. PMID:18799626

  8. Formation of orthopoxvirus cytoplasmic A-type inclusion bodies and embedding of virions are dynamic processes requiring microtubules.

    PubMed

    Howard, Amanda R; Moss, Bernard

    2012-05-01

    In cells infected with some orthopoxviruses, numerous mature virions (MVs) become embedded within large, cytoplasmic A-type inclusions (ATIs) that can protect infectivity after cell lysis. ATIs are composed of an abundant viral protein called ATIp, which is truncated in orthopoxviruses such as vaccinia virus (VACV) that do not form ATIs. To study ATI formation and occlusion of MVs within ATIs, we used recombinant VACVs that express the cowpox full-length ATIp or we transfected plasmids encoding ATIp into cells infected with VACV, enabling ATI formation. ATI enlargement and MV embedment required continued protein synthesis and an intact microtubular network. For live imaging of ATIs and MVs, plasmids expressing mCherry fluorescent protein fused to ATIp were transfected into cells infected with VACV expressing the viral core protein A4 fused to yellow fluorescent protein. ATIs appeared as dynamic, mobile bodies that enlarged by multiple coalescence events, which could be prevented by disrupting microtubules. Coalescence of ATIs was confirmed in cells infected with cowpox virus. MVs were predominantly at the periphery of ATIs early in infection. We determined that coalescence contributed to the distribution of MVs within ATIs and that microtubule-disrupting drugs abrogated coalescence-mediated MV embedment. In addition, MVs were shown to move from viral factories at speeds consistent with microtubular transport to the peripheries of ATIs, whereas disruption of microtubules prevented such trafficking. The data indicate an important role for microtubules in the coalescence of ATIs into larger structures, transport of MVs to ATIs, and embedment of MVs within the ATI matrix.

  9. A Dynamic Management Method for Fast Manufacturing Resource Reconfiguration

    NASA Astrophysics Data System (ADS)

    Yuan, Zhiye

    To fast and optimally reconfigure manufacturing resource, a dynamic management method for fast manufacturing resource reconfiguration based on holon was proposed. In this method, a dynamic management structure for fast manufacturing resource reconfiguration was established based on holon. Moreover, the cooperation relationship among holons for fast manufacturing resource reconfiguration and the manufacturing information cooperation mechanism based on holonic were constructed. Finally, the simulation system of a dynamic management method for fast manufacturing resource reconfiguration was demonstrated and validated by Flexsim software. It has shown the proposed method can dynamically and optimally reconfigure manufacturing resource, and it can effectively improve the efficiency of manufacturing processes.

  10. A dynamic microtubule cytoskeleton directs medial actomyosin function during tube formation.

    PubMed

    Booth, Alexander J R; Blanchard, Guy B; Adams, Richard J; Röper, Katja

    2014-06-09

    The cytoskeleton is a major determinant of cell-shape changes that drive the formation of complex tissues during development. Important roles for actomyosin during tissue morphogenesis have been identified, but the role of the microtubule cytoskeleton is less clear. Here, we show that during tubulogenesis of the salivary glands in the fly embryo, the microtubule cytoskeleton undergoes major rearrangements, including a 90° change in alignment relative to the apicobasal axis, loss of centrosomal attachment, and apical stabilization. Disruption of the microtubule cytoskeleton leads to failure of apical constriction in placodal cells fated to invaginate. We show that this failure is due to loss of an apical medial actomyosin network whose pulsatile behavior in wild-type embryos drives the apical constriction of the cells. The medial actomyosin network interacts with the minus ends of acentrosomal microtubule bundles through the cytolinker protein Shot, and disruption of Shot also impairs apical constriction. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Dynamic changes in microtubule configuration correlate with nuclear migration in the preblastoderm Drosophila embryo

    PubMed Central

    1993-01-01

    Drosophila embryogenesis is initiated by a series of syncytial mitotic divisions. The first nine of these divisions are internal, and are accompanied by two temporally distinct nuclear movements that lead to the formation of a syncytial blastoderm with a uniform monolayer of cortical nuclei. The first of these movements, which we term axial expansion, occurs during division cycles 4-6 and distributes nuclei in a hollow ellipsoid underlying the cortex. This is followed by cortical migration, during cycles 7-10, which places the nuclei in a uniform monolayer at the cortex. Here we report that these two movements differ in their geometry, velocity, cell-cycle dependence, and protein synthesis requirement. We therefore conclude that axial expansion and cortical migration are mechanistically distinct, amplifying a similar conclusion based on pharmacological data (Zalokar and Erk, 1976). We have examined microtubule organization during cortical migration and find that a network of interdigitating microtubules connects the migrating nuclei. These anti-parallel microtubule arrays are observed between migrating nuclei and yolk nuclei located deeper in the embryo. These arrays are present during nuclear movement but break down when the nuclei are not moving. We propose that cortical migration is driven by microtubule-dependent forces that repel adjacent nuclei, leading to an expansion of the nuclear ellipsoid established by axial expansion. PMID:8314839

  12. Curcumin hampers the antitumor effect of vinblastine via the inhibition of microtubule dynamics and mitochondrial membrane potential in HeLa cervical cancer cells.

    PubMed

    Lee, Jae-Wook; Park, Sojin; Kim, Sun Yeou; Um, Sung Hee; Moon, Eun-Yi

    2016-06-15

    Curcumin, a major component of curry powder, which is a natural polyphenol product extracted from rhizoma curcumae longae, interacts with a specific binding site on microtubules. Vinblastine is an antitumor drug that induces microtubule depolymerization. We investigated whether curcumin influences the antitumor effect of vinblastine in HeLa human cervical cancer cells. Changes in microtubule filaments were visualized by immuno-staining. Cell death was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT) or water-soluble tetrazolium(WST) assay. Apoptotic cell formation was assessed by flow cytometry after staining cells with propidium iodide(PI) and/or Annexin V or with 6-diamidino-2-phenylindole(DAPI). Reactive oxygen species(ROS) were also measured by flow cytometry using dichloro-dihydro-fluorescein diacetate(DCF-DA). JC-1 was used to determine mitochondrial membrane potential (MMP). When cells were pretreated with curcumin, microtubule filaments were disordered. Vinblastine-induced microtubule depolymerization and cell death were reduced in HeLa human cervical cancer cells pretreated with curcumin compared to the control. The decrease in cell death was much greater in cells pretreated with curcumin compared to cotreatment or post-treatment. DNA condensation by vinblastine was also decreased in curcumin-pretreated cells. Curcumin reduced ROS production by vinblastine. However, no changes in vinblastine-mediated microtubule depolymerization were detected upon N-acetylcysteine(NAC) treatment. In contrast, vinblastine-induced MMP collapse was inhibited by pretreatment with curcumin or NAC. These findings suggest that vinblastine-induced tumor cell death might be inhibited by curcumin via ROS-independent microtubule dynamics and ROS-dependent MMP collapse. It also suggests that microtubule dynamics could be necessary for the optimal antitumor activity of vinblastine. Our results suggest that patients treated with vinblastine should not

  13. Fast Fourier transform discrete dislocation dynamics

    NASA Astrophysics Data System (ADS)

    Graham, J. T.; Rollett, A. D.; LeSar, R.

    2016-12-01

    Discrete dislocation dynamics simulations have been generally limited to modeling systems described by isotropic elasticity. Effects of anisotropy on dislocation interactions, which can be quite large, have generally been ignored because of the computational expense involved when including anisotropic elasticity. We present a different formalism of dislocation dynamics in which the dislocations are represented by the deformation tensor, which is a direct measure of the slip in the lattice caused by the dislocations and can be considered as an eigenstrain. The stresses arising from the dislocations are calculated with a fast Fourier transform (FFT) method, from which the forces are determined and the equations of motion are solved. Use of the FFTs means that the stress field is only available at the grid points, which requires some adjustments/regularizations to be made to the representation of the dislocations and the calculation of the force on individual segments, as is discussed hereinafter. A notable advantage of this approach is that there is no computational penalty for including anisotropic elasticity. We review the method and apply it in a simple dislocation dynamics calculation.

  14. Cluster Dynamics: Fast Reactions and Coulomb Explosion

    NASA Astrophysics Data System (ADS)

    Poth, Lutz; Wisniewski, Eric S.; Welford Castleman, A., Jr.

    2002-07-01

    One of the enduring mysteries of chemistry is exactly what happens during the few femtoseconds it takes for a chemical reaction to transpire. We see what goes in and what comes out, but the in between happens so fast it has proved devilishly hard to study. One promising area of investigation involves the use of clusters—tiny atomic or molecular assemblages with weak bonding. Clusters can be rapidly ionized using laser pulses of very short duration, producing like charges of sufficient intensity and closeness to cause explosive repulsion, called Coulomb explosion. By carefully adjusting the delivery interval between femtosecond-duration laser pulses to clusters, the authors have begun to reveal the secrets of reaction dynamics.

  15. [Dynamics of cytoskeleton microtubules in higher plant meiosis. II. Perinuclear band formation].

    PubMed

    Shamina, N V; Dorogova, N V; Seriukova, E G

    2003-01-01

    Analyses of correspondent meiotic abnormalities is a good tool for studying cytoskeletal rearrangements during plant cell division. The paper reports on the wheat x wheatgrass F1 hybrids, showing various abnormalities during organization of the prophase perinuclear band of microtubules (PNB) in male meiosis. Based on these data, it may be concluded that the perinuclear system of microtubules (MT) in higher plant meiosis is formed from fibrils of the radial system as a result of their translocation in the cell cytoplasm space. According to our data, at this stage the radial MT arrays pass through the following consequence of events: separating from the nuclear envelope, 2) approaching, 3) tangential orientation to the nuclear surface, 4) bending, 5) co-orientation, lateral interaction. As a result, a flat ring of well organized concentric bent MT bundles encircling the nucleus meridionally is organized.

  16. Toward Discovery of Novel Microtubule Targeting Agents: A SNAP-tag-Based High-Content Screening Assay for the Analysis of Microtubule Dynamics and Cell Cycle Progression.

    PubMed

    Berges, Nina; Arens, Katharina; Kreusch, Verena; Fischer, Rainer; Di Fiore, Stefano

    2017-04-01

    Microtubule targeting agents (MTAs) are used for the treatment of cancer. Novel MTAs could provide additional and beneficial therapeutic options. To improve the sensitivity and throughput of standard immunofluorescence assays for the characterization of MTAs, we used SNAP-tag technology to produce recombinant tubulin monomers. To visualize microtubule filaments, A549 cells transfected with SNAP-tubulin were stained with a membrane-permeable, SNAP-reactive dye. The treatment of SNAP-tubulin cells with stabilizing MTAs such as paclitaxel resulted in the formation of coarsely structured microtubule filaments, whereas depolymerizing MTAs such as nocodazole resulted in diffuse staining patterns in which the tubulin filaments were no longer distinguishable. By combining these components with automated microscopy and image analysis algorithms, we established a robust high-content screening assay for MTAs with a Z' factor of 0.7. Proof of principle was achieved by testing a panel of 10 substances, allowing us to identify MTAs and to distinguish between stabilizing and destabilizing modes of action. By extending the treatment of the cells from 2 to 20 h, our assay also detected abnormalities in cell cycle progression and in the formation of microtubule spindles, providing additional readouts for the discovery of new MTAs and facilitating their early identification during drug-screening campaigns.

  17. PSD-95 alters microtubule dynamics via an association with EB3

    PubMed Central

    Sweet, Eric S.; Previtera, Michelle L.; Fernández, Jose R.; Charych, Erik I.; Tseng, Chia-Yi; Kwon, Munjin; Starovoytov, Valentin; Zheng, James Q.; Firestein, Bonnie L.

    2011-01-01

    Little is known about how the neuronal cytoskeleton is regulated when a dendrite decides whether to branch or not. Previously, we reported that postsynaptic density protein 95 (PSD-95) acts as a stop signal for dendrite branching. It is yet to be elucidated how PSD-95 affects the cytoskeleton and how this regulation relates to the dendritic arbor. Here, we show that the SH3 (src homology 3) domain of PSD-95 interacts with a proline-rich region within the microtubule end-binding protein EB3. Overexpression of PSD-95 or mutant EB3 results in a decreased lifetime of EB3 comets in dendrites. In line with these data, transfected rat neurons show that overexpression of PSD-95 results in less organized microtubules at dendritic branch points and decreased dendritogensis. The interaction between PSD-95 and EB3 elucidates a function for a novel region of EB3 and provides a new and important mechanism for the regulation of microtubules in determining dendritic morphology. PMID:21248129

  18. Cortical microtubule rearrangements and cell wall patterning

    PubMed Central

    Oda, Yoshihisa

    2015-01-01

    Plant cortical microtubules, which form a highly ordered array beneath the plasma membrane, play essential roles in determining cell shape and function by directing the arrangement of cellulosic and non-cellulosic compounds on the cell surface. Interphase transverse arrays of cortical microtubules self-organize through their dynamic instability and inter-microtubule interactions, and by branch-form microtubule nucleation and severing. Recent studies revealed that distinct spatial signals including ROP GTPase, cellular geometry, and mechanical stress regulate the behavior of cortical microtubules at the subcellular and supercellular levels, giving rise to dramatic rearrangements in the cortical microtubule array in response to internal and external cues. Increasing evidence indicates that negative regulators of microtubules also contribute to the rearrangement of the cortical microtubule array. In this review, I summarize recent insights into how the rearrangement of the cortical microtubule array leads to proper, flexible cell wall patterning. PMID:25904930

  19. Self-repair promotes microtubule rescue

    PubMed Central

    Gaillard, Jérémie; John, Karin; Blanchoin, Laurent; Théry, Manuel

    2016-01-01

    Summary The dynamic instability of microtubules is characterised by slow growth phases stochastically interrupted by rapid depolymerisations called catastrophes. Rescue events can arrest the depolymerisation and restore microtubule elongation. However the origin of these rescue events remain unexplained. Here we show that microtubule lattice self-repair, in structurally damaged sites, is responsible for the rescue of microtubule growth. Tubulin photo-conversion in cells revealed that free tubulin dimers can incorporate along the shafts of microtubules, especially in regions where microtubules cross each other, form bundles or become bent due to mechanical constraints. These incorporation sites appeared to act as effective rescue sites ensuring microtubule rejuvenation. By securing damaged microtubule growth, the self-repair process supports a mechanosensitive growth by specifically promoting microtubule assembly in regions where they are subjected to physical constraints. PMID:27617929

  20. Revisiting the tubulin cofactors and Arl2 in the regulation of soluble αβ-tubulin pools and their effect on microtubule dynamics.

    PubMed

    Al-Bassam, Jawdat

    2017-02-01

    Soluble αβ-tubulin heterodimers are maintained at high concentration inside eukaryotic cells, forming pools that fundamentally drive microtubule dynamics. Five conserved tubulin cofactors and ADP ribosylation factor-like 2 regulate the biogenesis and degradation of αβ-tubulins to maintain concentrated soluble pools. Here I describe a revised model for the function of three tubulin cofactors and Arl2 as a multisubunit GTP-hydrolyzing catalytic chaperone that cycles to promote αβ-tubulin biogenesis and degradation. This model helps explain old and new data indicating these activities enhance microtubule dynamics in vivo via repair or removal of αβ-tubulins from the soluble pools.

  1. NO serves as a signaling intermediate downstream of H₂O₂ to modulate dynamic microtubule cytoskeleton during responses to VD-toxins in Arabidopsis.

    PubMed

    Yao, Lin-Lin; Pei, Bao-Lei; Zhou, Qun; Li, Ying-Zhang

    2012-02-01

    Although hydrogen peroxide (H₂O₂) and nitric oxide (NO) can act as an upstream signaling molecule to modulate the dynamic microtubule cytoskeleton during the defense responses to Verticillium dahliae (VD) toxins in Arabidopsis, it is not known the relationship between these two signaling molecules. Here, we show that VD-toxin-induced NO accumulation was dependent on prior H₂O₂ production, NO is downstream of H₂O₂ in the signaling process, and that H₂O₂ acted synergistically with NO to modulate the dynamic microtubule cytoskeleton responses to VD-toxins in Arabidopsis.

  2. Spindle microtubule dynamics in sea urchin embryos: analysis using a fluorescein-labeled tubulin and measurements of fluorescence redistribution after laser photobleaching

    PubMed Central

    1984-01-01

    The rate of exchange of tubulin that is incorporated into spindle microtubules with dimeric tubulin in the cytoplasm has been measured in sea urchin eggs by studying fluorescence redistribution after photobleaching (FRAP). Dichlorotriazinyl amino fluorescein (DTAF) has been used to label bovine brain tubulin. DTAF-tubulin has been injected into fertilized eggs of Lytechinus variegatus and allowed to equilibrate with the endogenous tubulin pool. Fluorescent spindles formed at the same time that spindles were seen in control eggs, and the injected embryos proceeded through many cycles of division on schedule, suggesting that DTAF-tubulin is a good analogue of tubulin in vivo. A microbeam of argon laser light has been used to bleach parts of the fluorescent spindles, and FRAP has been recorded with a sensitive video camera. Laser bleaching did not affect spindle structure, as seen with polarization optics, nor spindle function, as seen by rate of progress through mitosis, even when one spindle was bleached several times in a single cell cycle. Video image analysis has been used to measure the rate of FRAP and to obtain a low resolution view of the fluorescence redistribution process. The half-time for spindle FRAP is approximately 19 s, even when an entire half-spindle is bleached. Complete exchange of tubulin in nonkinetochore spindle and astral microtubules appeared to occur within 60-80 s at steady state. This rate is too fast to be explained by a simple microtubule end-dependent exchange of tubulin. Efficient microtubule treadmilling would be fast enough, but with current techniques we saw no evidence for movement of the bleached spot during recovery, which we would expect on the basis of Margolis and Wilson's model (Nature (Lond.)., 1981, 293:705)-- fluorescence recovers uniformly. Microtubules may be depolymerizing and repolymerizing rapidly and asynchronously throughout the spindle and asters, but the FRAP data are most compatible with a rapid exchange of

  3. CYTOPLASMIC MICROTUBULES

    PubMed Central

    Slautterback, David B.

    1963-01-01

    Small cytoplasmic tubules are present in the interstitial cells and cnidoblasts of hydra. They are referred to here as "microtubules." These tubular elements have an outside diameter of 180 A and an inside diameter of 80 A. By difference, the membranous wall is estimated to be 50 A thick. The maximum length of the microtubules cannot be determined from thin sections but is known to exceed 1.5 µ. In the interstitial cells the microtubules are found in the intercellular bridges, free in the cytoplasm and in association with the centrioles. In the cnidoblast they form a framework around the developing nematocyst and in late stages are related to the cnidocil forming a tight skein in the basal part of the cell. Especially in this cell, confluence of microtubules with small spherical vesicles of the Golgi complex has been observed. It is proposed that these tubules function in the transport of water, ions, or small molecules. PMID:14079495

  4. Microtubule Severing Stymied by Free Tubulin

    NASA Astrophysics Data System (ADS)

    Ross, Jennifer; Bailey, Megan

    2015-03-01

    Proper organization of the microtubule cytoskeletal network is required to perform many necessary cellular functions including mitosis, cell development, and cell motility. Network organization is achieved through filament remodeling by microtubule-associated proteins (MAPs) that control microtubule dynamics. MAPs that stabilize are relatively well understood, while less is known about destabilizing MAPs, such as severing enzymes. Katanin, the first-discovered microtubule-severing enzyme, is a AAA + enzyme that oligomerizes into hexamers and uses ATP hydrolysis to sever microtubules. Using quantitative fluorescence imaging on reconstituted microtubule severing assays in vitro we investigate how katanin can regulate microtubule dynamics. Interestingly, we find microtubule dynamics inhibits katanin severing activity; dynamic microtubules are not severed. Using systematic experiments introducing free tubulin into the assays we find that free tubulin can compete for microtubule filaments for the katanin proteins. Our work indicates that katanin could function best on stabile microtubules or stabile regions of microtubules in cells in regions where free tubulin is sequesters, low, or depleted.

  5. The kinesin KIF21B regulates microtubule dynamics and is essential for neuronal morphology, synapse function and learning and memory

    PubMed Central

    Muhia, Mary; Thies, Edda; Labonté, Dorthe; Ghiretti, Amy E.; Gromova, Kira V.; Xompero, Francesca; Lappe-Siefke, Corinna; Hermans-Borgmeyer, Irm; Kuhl, Dietmar; Schweizer, Michaela; Ohana, Ora; Schwarz, Jürgen R.; Holzbaur, Erika L.F.

    2017-01-01

    SUMMARY The kinesin KIF21B is implicated in several human neurological disorders including delayed cognitive development, yet it remains unclear how KIF21B dysfunction may contribute to pathology. One limitation is that relatively little is known about KIF21B-mediated physiological mechanisms. Here, we generated Kif21b knockout mice and used cellular assays to investigate the relevance of KIF21B in neuronal and in vivo function. We show that KIF21B is a processive motor, and identify an additional role for KIF21B in regulating microtubule dynamics. In neurons lacking KIF21B, microtubules grow more slowly and persistently, leading to tighter packing in dendrites. KIF21B-deficient neurons exhibit decreased dendritic arbor complexity and reduced spine density, which correlate with deficits in synaptic transmission. Consistent with these observations, KIF21B-null mice exhibit behavioral changes involving learning and memory deficits. Collectively, our study provides insight into the cellular function of KIF21B and the basis for cognitive decline resulting from KIF21B dysregulation. PMID:27117409

  6. The acetylenic tricyclic bis(cyano enone), TBE-31, targets microtubule dynamics and cell polarity in migrating cells.

    PubMed

    Chan, Eddie; Saito, Akira; Honda, Tadashi; Di Guglielmo, Gianni M

    2016-04-01

    Cell migration is dependent on the microtubule network for structural support as well as for the proper delivery and positioning of polarity proteins at the leading edge of migrating cells. Identification of drugs that target cytoskeletal-dependent cell migration and protein transport in polarized migrating cells is important in understanding the cell biology of normal and tumor cells and can lead to new therapeutic targets in disease processes. Here, we show that the tricyclic compound TBE-31 directly binds to tubulin and interferes with microtubule dynamics, as assessed by end binding 1 (EB1) live cell imaging. Interestingly, this interference is independent of in vitro tubulin polymerization. Using immunofluorescence microscopy, we also observed that TBE-31 interferes with the polarity of migratory cells. The polarity proteins Rac1, IQGAP and Tiam1 were localized at the leading edge of DMSO-treated migrating cell, but were observed to be in multiple protrusions around the cell periphery of TBE-31-treated cells. Finally, we observed that TBE-31 inhibits the migration of Rat2 fibroblasts with an IC50 of 0.75 μM. Taken together, our results suggest that the inhibition of cell migration by TBE-31 may result from the improper maintenance of cell polarity of migrating cells.

  7. High-resolution Time-lapse Imaging and Automated Analysis of Microtubule Dynamics in Living Human Umbilical Vein Endothelial Cells

    PubMed Central

    Braun, Alexander; Caesar, Nicole M.; Dang, Kyvan; Myers, Kenneth A.

    2016-01-01

    The physiological process by which new vasculature forms from existing vasculature requires specific signaling events that trigger morphological changes within individual endothelial cells (ECs). These processes are critical for homeostatic maintenance such as wound healing, and are also crucial in promoting tumor growth and metastasis. EC morphology is defined by the organization of the cytoskeleton, a tightly regulated system of actin and microtubule (MT) dynamics that is known to control EC branching, polarity and directional migration, essential components of angiogenesis. To study MT dynamics, we used high-resolution fluorescence microscopy coupled with computational image analysis of fluorescently-labeled MT plus-ends to investigate MT growth dynamics and the regulation of EC branching morphology and directional migration. Time-lapse imaging of living Human Umbilical Vein Endothelial Cells (HUVECs) was performed following transfection with fluorescently-labeled MT End Binding protein 3 (EB3) and Mitotic Centromere Associated Kinesin (MCAK)-specific cDNA constructs to evaluate effects on MT dynamics. PlusTipTracker software was used to track EB3-labeled MT plus ends in order to measure MT growth speeds and MT growth lifetimes in time-lapse images. This methodology allows for the study of MT dynamics and the identification of how localized regulation of MT dynamics within sub-cellular regions contributes to the angiogenic processes of EC branching and migration. PMID:27584860

  8. Microtubule-microtubule sliding by kinesin-1 is essential for normal cytoplasmic streaming in Drosophila oocytes.

    PubMed

    Lu, Wen; Winding, Michael; Lakonishok, Margot; Wildonger, Jill; Gelfand, Vladimir I

    2016-08-23

    Cytoplasmic streaming in Drosophila oocytes is a microtubule-based bulk cytoplasmic movement. Streaming efficiently circulates and localizes mRNAs and proteins deposited by the nurse cells across the oocyte. This movement is driven by kinesin-1, a major microtubule motor. Recently, we have shown that kinesin-1 heavy chain (KHC) can transport one microtubule on another microtubule, thus driving microtubule-microtubule sliding in multiple cell types. To study the role of microtubule sliding in oocyte cytoplasmic streaming, we used a Khc mutant that is deficient in microtubule sliding but able to transport a majority of cargoes. We demonstrated that streaming is reduced by genomic replacement of wild-type Khc with this sliding-deficient mutant. Streaming can be fully rescued by wild-type KHC and partially rescued by a chimeric motor that cannot move organelles but is active in microtubule sliding. Consistent with these data, we identified two populations of microtubules in fast-streaming oocytes: a network of stable microtubules anchored to the actin cortex and free cytoplasmic microtubules that moved in the ooplasm. We further demonstrated that the reduced streaming in sliding-deficient oocytes resulted in posterior determination defects. Together, we propose that kinesin-1 slides free cytoplasmic microtubules against cortically immobilized microtubules, generating forces that contribute to cytoplasmic streaming and are essential for the refinement of posterior determinants.

  9. Mutations in Human Tubulin Proximal to the Kinesin-Binding Site Alter Dynamic Instability at Microtubule Plus- and Minus-Ends

    SciTech Connect

    Ti, Shih-Chieh; Pamula, Melissa C.; Howes, Stuart C.; Duellberg, Christian; Cade, Nicholas I.; Kleiner, Ralph E.; Forth, Scott; Surrey, Thomas; Nogales, Eva; Kapoor, Tarun M.

    2016-04-01

    The assembly of microtubule-based cellular structures depends on regulated tubulin polymerization and directional transport. In this research, we have purified and characterized tubulin heterodimers that have human β-tubulin isotype III (TUBB3), as well as heterodimers with one of two β-tubulin mutations (D417H or R262H). Both point mutations are proximal to the kinesin-binding site and have been linked to an ocular motility disorder in humans. Compared to wild-type, microtubules with these mutations have decreased catastrophe frequencies and increased average lifetimes of plus- and minus-end-stabilizing caps. Importantly, the D417H mutation does not alter microtubule lattice structure or Mal3 binding to growing filaments. Instead, this mutation reduces the affinity of tubulin for TOG domains and colchicine, suggesting that the distribution of tubulin heterodimer conformations is changed. Together, our findings reveal how residues on the surface of microtubules, distal from the GTP-hydrolysis site and inter-subunit contacts, can alter polymerization dynamics at the plus- and minus-ends of microtubules.

  10. A higher-order mathematical modeling for dynamic behavior of protein microtubule shell structures including shear deformation and small-scale effects.

    PubMed

    Daneshmand, Farhang; Farokhi, Hamed; Amabili, Marco

    2014-06-01

    Microtubules in mammalian cells are cylindrical protein polymers which structurally and dynamically organize functional activities in living cells. They are important for maintaining cell structures, providing platforms for intracellular transport, and forming the spindle during mitosis, as well as other cellular processes. Various in vitro studies have shown that microtubules react to applied mechanical loading and physical environment. To investigate the mechanisms underlying such phenomena, a mathematical model based on the orthotropic higher-order shear deformation shell formulation and Hamilton's principle is presented in this paper for dynamic behavior of microtubules. The numerical results obtained by the proposed shell model are verified by the experimental data from the literature, showing great consistency. The nonlocal elasticity theory is also utilized to describe the nano-scale effects of the microtubule structure. The wave propagation and vibration characteristics of the microtubule are examined in the presence and absence of the cytosol employing proposed formulations. The effects of different system parameters such as length, small scale parameter, and cytosol viscosity on vibrational behavior of a microtubule are elucidated. The definitions of critical length and critical viscosity are introduced and the results obtained using the higher order shell model are compared with those obtained employing a first-order shear deformation theory. This comparison shows that the small scale effects become important for higher values of the wave vector and the proposed model gives more accurate results for both small and large values of wave vectors. Moreover, it is shown that for higher circumferential wave number, the torsional wave velocity obtained by the higher-order shell model tend to be higher than the one predicted by the first-order shell model.

  11. Optical imaging of fast, dynamic neurophysiological function.

    SciTech Connect

    Rector, D. M.; Carter, K. M.; Yao, X.; George, J. S.

    2002-01-01

    Fast evoked responses were imaged from rat dorsal medulla and whisker barrel cortex. To investigate the biophysical mechanisms involved, fast optical responses associated with isolated crustacean nerve stimulation were recorded using birefringence and scattered light. Such studies allow optimization of non-invasive imaging techniques being developed for use in humans.

  12. The Sudden Recruitment of γ-Tubulin to the Centrosome at the Onset of Mitosis and Its Dynamic Exchange Throughout the Cell Cycle, Do Not Require Microtubules

    PubMed Central

    Khodjakov, Alexey; Rieder, Conly L.

    1999-01-01

    γ-Tubulin is a centrosomal component involved in microtubule nucleation. To determine how this molecule behaves during the cell cycle, we have established several vertebrate somatic cell lines that constitutively express a γ-tubulin/green fluorescent protein fusion protein. Near simultaneous fluorescence and DIC light microscopy reveals that the amount of γ-tubulin associated with the centrosome remains relatively constant throughout interphase, suddenly increases during prophase, and then decreases to interphase levels as the cell exits mitosis. This mitosis-specific recruitment of γ-tubulin does not require microtubules. Fluorescence recovery after photobleaching (FRAP) studies reveal that the centrosome possesses two populations of γ-tubulin: one that turns over rapidly and another that is more tightly bound. The dynamic exchange of centrosome-associated γ-tubulin occurs throughout the cell cycle, including mitosis, and it does not require microtubules. These data are the first to characterize the dynamics of centrosome-associated γ-tubulin in vertebrate cells in vivo and to demonstrate the microtubule-independent nature of these dynamics. They reveal that the additional γ-tubulin required for spindle formation does not accumulate progressively at the centrosome during interphase. Rather, at the onset of mitosis, the centrosome suddenly gains the ability to bind greater than three times the amount of γ-tubulin than during interphase. PMID:10444067

  13. A Mutation in γ-Tubulin Alters Microtubule Dynamics and Organization and Is Synthetically Lethal with the Kinesin-like Protein Pkl1pV⃞

    PubMed Central

    Paluh, Janet L.; Nogales, Eva; Oakley, Berl R.; McDonald, Kent; Pidoux, Alison L.; Cande, W. Z.

    2000-01-01

    Mitotic segregation of chromosomes requires spindle pole functions for microtubule nucleation, minus end organization, and regulation of dynamics. γ-Tubulin is essential for nucleation, and we now extend its role to these latter processes. We have characterized a mutation in γ-tubulin that results in cold-sensitive mitotic arrest with an elongated bipolar spindle but impaired anaphase A. At 30°C cytoplasmic microtubule arrays are abnormal and bundle into single larger arrays. Three-dimensional time-lapse video microscopy reveals that microtubule dynamics are altered. Localization of the mutant γ-tubulin is like the wild-type protein. Prediction of γ-tubulin structure indicates that non-α/β-tubulin protein–protein interactions could be affected. The kinesin-like protein (klp) Pkl1p localizes to the spindle poles and spindle and is essential for viability of the γ-tubulin mutant and in multicopy for normal cell morphology at 30°C. Localization and function of Pkl1p in the mutant appear unaltered, consistent with a redundant function for this protein in wild type. Our data indicate a broader role for γ-tubulin at spindle poles in regulating aspects of microtubule dynamics and organization. We propose that Pkl1p rescues an impaired function of γ-tubulin that involves non-tubulin protein–protein interactions, presumably with a second motor, MAP, or MTOC component. PMID:10749926

  14. Experimental Virus Evolution Reveals a Role of Plant Microtubule Dynamics and TORTIFOLIA1/SPIRAL2 in RNA Trafficking

    PubMed Central

    Buschmann, Henrik; Niehl, Annette; Elena, Santiago F.; Rubio, Luis; Heinlein, Manfred

    2014-01-01

    The cytoskeleton is a dynamic network composed of filamentous polymers and regulatory proteins that provide a flexible structural scaffold to the cell and plays a fundamental role in developmental processes. Mutations that alter the spatial orientation of the cortical microtubule (MT) array of plants are known to cause important changes in the pattern of cell wall synthesis and developmental phenotypes; however, the consequences of such alterations on other MT-network-associated functions in the cytoplasm are not known. In vivo observations suggested a role of cortical MTs in the formation and movement of Tobacco mosaic virus (TMV) RNA complexes along the endoplasmic reticulum (ER). Thus, to probe the significance of dynamic MT behavior in the coordination of MT-network-associated functions related to TMV infection and, thus, in the formation and transport of RNA complexes in the cytoplasm, we performed an evolution experiment with TMV in Arabidopsis thaliana tor1/spr2 and tor2 mutants with specific defects in MT dynamics and asked whether TMV is sensitive to these changes. We show that the altered cytoskeleton induced genetic changes in TMV that were correlated with efficient spread of infection in the mutant hosts. These observations demonstrate a role of dynamic MT rearrangements and of the MT-associated protein TORTIFOLIA1/SPIRAL2 in cellular functions related to virus spread and indicate that MT dynamics and MT-associated proteins represent constraints for virus evolution and adaptation. The results highlight the importance of the dynamic plasticity of the MT network in directing cytoplasmic functions in macromolecular assembly and trafficking and illustrate the value of experimental virus evolution for addressing the cellular functions of dynamic, long-range order systems in multicellular organisms. PMID:25133612

  15. Experimental virus evolution reveals a role of plant microtubule dynamics and TORTIFOLIA1/SPIRAL2 in RNA trafficking.

    PubMed

    Peña, Eduardo José; Ferriol, Inmaculada; Sambade, Adrián; Buschmann, Henrik; Niehl, Annette; Elena, Santiago F; Rubio, Luis; Heinlein, Manfred

    2014-01-01

    The cytoskeleton is a dynamic network composed of filamentous polymers and regulatory proteins that provide a flexible structural scaffold to the cell and plays a fundamental role in developmental processes. Mutations that alter the spatial orientation of the cortical microtubule (MT) array of plants are known to cause important changes in the pattern of cell wall synthesis and developmental phenotypes; however, the consequences of such alterations on other MT-network-associated functions in the cytoplasm are not known. In vivo observations suggested a role of cortical MTs in the formation and movement of Tobacco mosaic virus (TMV) RNA complexes along the endoplasmic reticulum (ER). Thus, to probe the significance of dynamic MT behavior in the coordination of MT-network-associated functions related to TMV infection and, thus, in the formation and transport of RNA complexes in the cytoplasm, we performed an evolution experiment with TMV in Arabidopsis thaliana tor1/spr2 and tor2 mutants with specific defects in MT dynamics and asked whether TMV is sensitive to these changes. We show that the altered cytoskeleton induced genetic changes in TMV that were correlated with efficient spread of infection in the mutant hosts. These observations demonstrate a role of dynamic MT rearrangements and of the MT-associated protein TORTIFOLIA1/SPIRAL2 in cellular functions related to virus spread and indicate that MT dynamics and MT-associated proteins represent constraints for virus evolution and adaptation. The results highlight the importance of the dynamic plasticity of the MT network in directing cytoplasmic functions in macromolecular assembly and trafficking and illustrate the value of experimental virus evolution for addressing the cellular functions of dynamic, long-range order systems in multicellular organisms.

  16. Active sliding between cytoplasmic microtubules.

    PubMed

    Koonce, M P; Tong, J; Euteneuer, U; Schliwa, M

    Microtubules are versatile cellular polymers that play a role in cell shape determination and mediate various motile processes such as ciliary and flagellar bending, chromosome movements and organelle transport. That a sliding microtubule mechanism can generate force has been demonstrated in highly ordered structures such as axonemes, and microtubule-based force generation almost certainly contributes to the function of mitotic and meiotic spindles. Most cytoplasmic microtubule arrays, however, do not exhibit the structural regularity of axonemes and some spindles, and often appear disorganized. Yet many cellular activities (such as shape changes during morphogenesis, axonal extension and spindle assembly) involve highly coordinated microtubule behaviour and possibly require force generated by an intermicrotubule sliding mechanism, or perhaps use sliding to move microtubules rapidly into a protrusion for stabilization. Here we show that active sliding between cytoplasmic microtubules can occur in microtubule bundles of the amoeba Reticulomyxa. A force-producing mechanism of this sort could be used by this organism to facilitate the extension of cell processes and to generate the dynamic movements of the cytoplasmic network.

  17. The metaphase and anaphase dynamics is dominated by the physical and mechanical properties of both microtubules and chromatin

    NASA Astrophysics Data System (ADS)

    Grisa, Luca; Kilfoil, Maria

    2012-02-01

    One of the most interesting problems in biophysics involves the physical separation of chromosomes and the mechanical properties of both microtubules (MT's) and chromatin. This process involves the polymers MT's and chromatin, each of which has unique physical properties that have been determined extensively in vitro. Of further interest for physicists is the out-of-equilibrium nature of this process involving several force generators from motor proteins and MT depolymerization. We follow the dynamics of spindle pole bodies and centromeres of yeast cells during mitosis in three-dimensions at high spatial resolution. Using this novel approach, we are able to observe spindle oscillations during metaphase, and the three-dimensional dynamics of spindle elongation and chromosome separation during anaphase. With these data, we can separate the dynamics caused by MT depolymerization from those caused by the motors. This allows us to determine the depolymerization rate of the kinetochore MT's in vivo. Furthermore, we determine the temporal profile of the chromatin extension during anaphase we combine with the known force-extension curve of chromatin in vitro, to infer the expected force-velocity curve of the collective motors in vivo, which has never been measured in vivo or in vitro.

  18. A Toll receptor–FoxO pathway represses Pavarotti/MKLP1 to promote microtubule dynamics in motoneurons

    PubMed Central

    Liu, Nan

    2016-01-01

    FoxO proteins are evolutionarily conserved regulators of neuronal structure and function, yet the neuron-specific pathways within which they act are poorly understood. To elucidate neuronal FoxO function in Drosophila melanogaster, we first screened for FoxO’s upstream regulators and downstream effectors. On the upstream side, we present genetic and molecular pathway analyses indicating that the Toll-6 receptor, the Toll/interleukin-1 receptor domain adaptor dSARM, and FoxO function in a linear pathway. On the downstream side, we find that Toll-6–FoxO signaling represses the mitotic kinesin Pavarotti/MKLP1 (Pav-KLP), which itself attenuates microtubule (MT) dynamics. We next probed in vivo functions for this novel pathway and found that it is essential for axon transport and structural plasticity in motoneurons. We demonstrate that elevated expression of Pav-KLP underlies transport and plasticity phenotypes in pathway mutants, indicating that Toll-6–FoxO signaling promotes MT dynamics by limiting Pav-KLP expression. In addition to uncovering a novel molecular pathway, our work reveals an unexpected function for dynamic MTs in enabling rapid activity-dependent structural plasticity. PMID:27502486

  19. End-binding proteins sensitize microtubules to the action of microtubule-targeting agents.

    PubMed

    Mohan, Renu; Katrukha, Eugene A; Doodhi, Harinath; Smal, Ihor; Meijering, Erik; Kapitein, Lukas C; Steinmetz, Michel O; Akhmanova, Anna

    2013-05-28

    Microtubule-targeting agents (MTAs) are widely used for treatment of cancer and other diseases, and a detailed understanding of the mechanism of their action is important for the development of improved microtubule-directed therapies. Although there is a large body of data on the interactions of different MTAs with purified tubulin and microtubules, much less is known about how the effects of MTAs are modulated by microtubule-associated proteins. Among the regulatory factors with a potential to have a strong impact on MTA activity are the microtubule plus end-tracking proteins, which control multiple aspects of microtubule dynamic instability. Here, we reconstituted microtubule dynamics in vitro to investigate the influence of end-binding proteins (EBs), the core components of the microtubule plus end-tracking protein machinery, on the effects that MTAs exert on microtubule plus-end growth. We found that EBs promote microtubule catastrophe induction in the presence of all MTAs tested. Analysis of microtubule growth times supported the view that catastrophes are microtubule age dependent. This analysis indicated that MTAs affect microtubule aging in multiple ways: destabilizing MTAs, such as colchicine and vinblastine, accelerate aging in an EB-dependent manner, whereas stabilizing MTAs, such as paclitaxel and peloruside A, induce not only catastrophes but also rescues and can reverse the aging process.

  20. Characterization of microtubule buckling in living cells.

    PubMed

    Pallavicini, Carla; Monastra, Alejandro; Bardeci, Nicolás González; Wetzler, Diana; Levi, Valeria; Bruno, Luciana

    2017-09-01

    Microtubules are filamentous biopolymers involved in essential biological processes. They form key structures in eukaryotic cells, and thus it is very important to determine the mechanisms involved in the formation and maintenance of the microtubule network. Microtubule bucklings are transient and localized events commonly observed in living cells and characterized by a fast bending and its posterior relaxation. Active forces provided by molecular motors have been indicated as responsible for most of these rapid deformations. However, the factors that control the shape amplitude and the time scales of the rising and release stages remain unexplored. In this work, we study microtubule buckling in living cells using Xenopus laevis melanophores as a model system. We tracked single fluorescent microtubules from high temporal resolution (0.3-2 s) confocal movies. We recovered the center coordinates of the filaments with 10-nm precision and analyzed the amplitude of the deformation as a function of time. Using numerical simulations, we explored different force mechanisms resulting in microtubule bending. The simulated events reproduce many features observed for microtubules, suggesting that a mechanistic model captures the essential processes underlying microtubule buckling. Also, we studied the interplay between actively transported vesicles and the microtubule network using a two-color technique. Our results suggest that microtubules may affect transport indirectly besides serving as tracks of motor-driven organelles. For example, they could obstruct organelles at microtubule intersections or push them during filament mechanical relaxation.

  1. A viscoelastic model for axonal microtubule rupture.

    PubMed

    Shamloo, Amir; Manuchehrfar, Farid; Rafii-Tabar, Hashem

    2015-05-01

    Axon is an important part of the neuronal cells and axonal microtubules are bundles in axons. In axons, microtubules are coated with microtubule-associated protein tau, a natively unfolded filamentous protein in the central nervous system. These proteins are responsible for cross-linking axonal microtubule bundles. Through complimentary dimerization with other tau proteins, bridges are formed between nearby microtubules creating bundles. Formation of bundles of microtubules causes their transverse reinforcement and has been shown to enhance their ability to bear compressive loads. Though microtubules are conventionally regarded as bearing compressive loads, in certain circumstances during traumatic brain injuries, they are placed in tension. In our model, microtubule bundles were formed from a large number of discrete masses. We employed Standard Linear Solid model (SLS), a viscoelastic model, to computationally simulate microtubules. In this study, we investigated the dynamic responses of two dimensional axonal microtubules under suddenly applied end forces by implementing discrete masses connected to their neighboring masses with a Standard Linear Solid unit. We also investigated the effect of the applied force rate and magnitude on the deformation of bundles. Under tension, a microtubule fiber may rupture as a result of a sudden force. Using the developed model, we could predict the critical regions of the axonal microtubule bundles in the presence of varying end forces. We finally analyzed the nature of microtubular failure under varying mechanical stresses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. On and around microtubules: an overview.

    PubMed

    Wade, Richard H

    2009-10-01

    Microtubules are hollow tubes some 25 nm in diameter participating in the eukaryotic cytoskeleton. They are built from alphabeta-tubulin heterodimers that associate to form protofilaments running lengthwise along the microtubule wall with the beta-tubulin subunit facing the microtubule plus end conferring a structural polarity. The alpha- and beta-tubulins are highly conserved. A third member of the tubulin family, gamma-tubulin, plays a role in microtubule nucleation and assembly. Other members of the tubulin family appear to be involved in microtubule nucleation. Microtubule assembly is accompanied by hydrolysis of GTP associated with beta-tubulin so that microtubules consist principally of 'GDP-tubulin' stabilized at the plus end by a short 'cap'. An important property of microtubules is dynamic instability characterized by growth randomly interrupted by pauses and shrinkage. Many proteins interact with microtubules within the cell and are involved in essential functions such as microtubule growth, stabilization, destabilization, and interactions with chromosomes during cell division. The motor proteins kinesin and dynein use microtubules as pathways for transport and are also involved in cell division. Crystallography and electron microscopy are providing a structural basis for understanding the interactions of microtubules with antimitotic drugs, with motor proteins and with plus end tracking proteins.

  3. Force measurements on cargoes in living cells reveal collective dynamics of microtubule motors

    PubMed Central

    Hendricks, Adam G.; Holzbaur, Erika L. F.; Goldman, Yale E.

    2012-01-01

    Many cellular cargoes move bidirectionally along microtubules, driven by teams of plus- and minus-end–directed motor proteins. To probe the forces exerted on cargoes during intracellular transport, we examined latex beads phagocytosed into living mammalian macrophages. These latex bead compartments (LBCs) are encased in membrane and transported along the cytoskeleton by a complement of endogenous kinesin-1, kinesin-2, and dynein motors. The size and refractive index of LBCs makes them well-suited for manipulation with an optical trap. We developed methods that provide in situ calibration of the optical trap in the complex cellular environment, taking into account any variations among cargoes and local viscoelastic properties of the cytoplasm. We found that centrally and peripherally directed forces exerted on LBCs are of similar magnitude, with maximum forces of ∼20 pN. During force events greater than 10 pN, we often observe 8-nm steps in both directions, indicating that the stepping of multiple motors is correlated. These observations suggest bidirectional transport of LBCs is driven by opposing teams of stably bound motors that operate near force balance. PMID:23091040

  4. Katanin p80, NuMA and cytoplasmic dynein cooperate to control microtubule dynamics.

    PubMed

    Jin, Mingyue; Pomp, Oz; Shinoda, Tomoyasu; Toba, Shiori; Torisawa, Takayuki; Furuta, Ken'ya; Oiwa, Kazuhiro; Yasunaga, Takuo; Kitagawa, Daiju; Matsumura, Shigeru; Miyata, Takaki; Tan, Thong Teck; Reversade, Bruno; Hirotsune, Shinji

    2017-01-12

    Human mutations in KATNB1 (p80) cause severe congenital cortical malformations, which encompass the clinical features of both microcephaly and lissencephaly. Although p80 plays critical roles during brain development, the underlying mechanisms remain predominately unknown. Here, we demonstrate that p80 regulates microtubule (MT) remodeling in combination with NuMA (nuclear mitotic apparatus protein) and cytoplasmic dynein. We show that p80 shuttles between the nucleus and spindle pole in synchrony with the cell cycle. Interestingly, this striking feature is shared with NuMA. Importantly, p80 is essential for aster formation and maintenance in vitro. siRNA-mediated depletion of p80 and/or NuMA induced abnormal mitotic phenotypes in cultured mouse embryonic fibroblasts and aberrant neurogenesis and neuronal migration in the mouse embryonic brain. Importantly, these results were confirmed in p80-mutant harboring patient-derived induced pluripotent stem cells and brain organoids. Taken together, our findings provide valuable insights into the pathogenesis of severe microlissencephaly, in which p80 and NuMA delineate a common pathway for neurogenesis and neuronal migration via MT organization at the centrosome/spindle pole.

  5. Katanin p80, NuMA and cytoplasmic dynein cooperate to control microtubule dynamics

    PubMed Central

    Jin, Mingyue; Pomp, Oz; Shinoda, Tomoyasu; Toba, Shiori; Torisawa, Takayuki; Furuta, Ken’ya; Oiwa, Kazuhiro; Yasunaga, Takuo; Kitagawa, Daiju; Matsumura, Shigeru; Miyata, Takaki; Tan, Thong Teck; Reversade, Bruno; Hirotsune, Shinji

    2017-01-01

    Human mutations in KATNB1 (p80) cause severe congenital cortical malformations, which encompass the clinical features of both microcephaly and lissencephaly. Although p80 plays critical roles during brain development, the underlying mechanisms remain predominately unknown. Here, we demonstrate that p80 regulates microtubule (MT) remodeling in combination with NuMA (nuclear mitotic apparatus protein) and cytoplasmic dynein. We show that p80 shuttles between the nucleus and spindle pole in synchrony with the cell cycle. Interestingly, this striking feature is shared with NuMA. Importantly, p80 is essential for aster formation and maintenance in vitro. siRNA-mediated depletion of p80 and/or NuMA induced abnormal mitotic phenotypes in cultured mouse embryonic fibroblasts and aberrant neurogenesis and neuronal migration in the mouse embryonic brain. Importantly, these results were confirmed in p80-mutant harboring patient-derived induced pluripotent stem cells and brain organoids. Taken together, our findings provide valuable insights into the pathogenesis of severe microlissencephaly, in which p80 and NuMA delineate a common pathway for neurogenesis and neuronal migration via MT organization at the centrosome/spindle pole. PMID:28079116

  6. Force measurements on cargoes in living cells reveal collective dynamics of microtubule motors.

    PubMed

    Hendricks, Adam G; Holzbaur, Erika L F; Goldman, Yale E

    2012-11-06

    Many cellular cargoes move bidirectionally along microtubules, driven by teams of plus- and minus-end-directed motor proteins. To probe the forces exerted on cargoes during intracellular transport, we examined latex beads phagocytosed into living mammalian macrophages. These latex bead compartments (LBCs) are encased in membrane and transported along the cytoskeleton by a complement of endogenous kinesin-1, kinesin-2, and dynein motors. The size and refractive index of LBCs makes them well-suited for manipulation with an optical trap. We developed methods that provide in situ calibration of the optical trap in the complex cellular environment, taking into account any variations among cargoes and local viscoelastic properties of the cytoplasm. We found that centrally and peripherally directed forces exerted on LBCs are of similar magnitude, with maximum forces of ~20 pN. During force events greater than 10 pN, we often observe 8-nm steps in both directions, indicating that the stepping of multiple motors is correlated. These observations suggest bidirectional transport of LBCs is driven by opposing teams of stably bound motors that operate near force balance.

  7. γ-Tubulin Ring Complexes and EB1 play antagonistic roles in microtubule dynamics and spindle positioning

    PubMed Central

    Bouissou, Anaїs; Vérollet, Christel; de Forges, Hélène; Haren, Laurence; Bellaїche, Yohanns; Perez, Franck; Merdes, Andreas; Raynaud-Messina, Brigitte

    2014-01-01

    γ-Tubulin is critical for microtubule (MT) assembly and organization. In metazoa, this protein acts in multiprotein complexes called γ-Tubulin Ring Complexes (γ-TuRCs). While the subunits that constitute γ-Tubulin Small Complexes (γ-TuSCs), the core of the MT nucleation machinery, are essential, mutation of γ-TuRC-specific proteins in Drosophila causes sterility and morphological abnormalities via hitherto unidentified mechanisms. Here, we demonstrate a role of γ-TuRCs in controlling spindle orientation independent of MT nucleation activity, both in cultured cells and in vivo, and examine a potential function for γ-TuRCs on astral MTs. γ-TuRCs locate along the length of astral MTs, and depletion of γ-TuRC-specific proteins increases MT dynamics and causes the plus-end tracking protein EB1 to redistribute along MTs. Moreover, suppression of MT dynamics through drug treatment or EB1 down-regulation rescues spindle orientation defects induced by γ-TuRC depletion. Therefore, we propose a role for γ-TuRCs in regulating spindle positioning by controlling the stability of astral MTs. PMID:24421324

  8. TTBK2 with EB1/3 regulates microtubule dynamics in migrating cells through KIF2A phosphorylation

    PubMed Central

    Watanabe, Takashi; Kakeno, Mai; Matsui, Toshinori; Sugiyama, Ikuko; Arimura, Nariko; Matsuzawa, Kenji; Shirahige, Aya; Ishidate, Fumiyoshi; Nishioka, Tomoki; Taya, Shinichiro; Hoshino, Mikio

    2015-01-01

    Microtubules (MTs) play critical roles in various cellular events, including cell migration. End-binding proteins (EBs) accumulate at the ends of growing MTs and regulate MT end dynamics by recruiting other plus end–tracking proteins (+TIPs). However, how EBs contribute to MT dynamics through +TIPs remains elusive. We focused on tau-tubulin kinase 2 (TTBK2) as an EB1/3-binding kinase and confirmed that TTBK2 acted as a +TIP. We identified MT-depolymerizing kinesin KIF2A as a novel substrate of TTBK2. TTBK2 phosphorylated KIF2A at S135 in intact cells in an EB1/3-dependent fashion and inactivated its MT-depolymerizing activity in vitro. TTBK2 depletion reduced MT lifetime (facilitated shrinkage and suppressed rescue) and impaired HeLa cell migration, and these phenotypes were partially restored by KIF2A co-depletion. Expression of nonphosphorylatable KIF2A, but not wild-type KIF2A, reduced MT lifetime and slowed down the cell migration. These findings indicate that TTBK2 with EB1/3 phosphorylates KIF2A and antagonizes KIF2A-induced depolymerization at MT plus ends for cell migration. PMID:26323690

  9. TTBK2 with EB1/3 regulates microtubule dynamics in migrating cells through KIF2A phosphorylation.

    PubMed

    Watanabe, Takashi; Kakeno, Mai; Matsui, Toshinori; Sugiyama, Ikuko; Arimura, Nariko; Matsuzawa, Kenji; Shirahige, Aya; Ishidate, Fumiyoshi; Nishioka, Tomoki; Taya, Shinichiro; Hoshino, Mikio; Kaibuchi, Kozo

    2015-08-31

    Microtubules (MTs) play critical roles in various cellular events, including cell migration. End-binding proteins (EBs) accumulate at the ends of growing MTs and regulate MT end dynamics by recruiting other plus end-tracking proteins (+TIPs). However, how EBs contribute to MT dynamics through +TIPs remains elusive. We focused on tau-tubulin kinase 2 (TTBK2) as an EB1/3-binding kinase and confirmed that TTBK2 acted as a +TIP. We identified MT-depolymerizing kinesin KIF2A as a novel substrate of TTBK2. TTBK2 phosphorylated KIF2A at S135 in intact cells in an EB1/3-dependent fashion and inactivated its MT-depolymerizing activity in vitro. TTBK2 depletion reduced MT lifetime (facilitated shrinkage and suppressed rescue) and impaired HeLa cell migration, and these phenotypes were partially restored by KIF2A co-depletion. Expression of nonphosphorylatable KIF2A, but not wild-type KIF2A, reduced MT lifetime and slowed down the cell migration. These findings indicate that TTBK2 with EB1/3 phosphorylates KIF2A and antagonizes KIF2A-induced depolymerization at MT plus ends for cell migration.

  10. Phosphorylation of β-Tubulin by the Down Syndrome Kinase, Minibrain/DYRK1a, Regulates Microtubule Dynamics and Dendrite Morphogenesis

    PubMed Central

    Ori-McKenney, Kassandra M.; McKenney, Richard J.; Huang, Hector H.; Li, Tun; Meltzer, Shan; Jan, Lily Yeh; Vale, Ronald D.; Wiita, Arun P.; Jan, Yuh Nung

    2016-01-01

    SUMMARY Dendritic arborization patterns are consistent anatomical correlates of genetic disorders such as Down syndrome (DS) and autism spectrum disorders (ASD). In a screen for abnormal dendrite development, we identified Minibrain(MNB)/DYRK1a, a kinase implicated in DS and ASD, as a regulator of the microtubule cytoskeleton. We show that MNB is necessary to establish the length and cytoskeletal composition of terminal dendrites by controlling microtubule growth. Altering MNB levels disrupts dendrite morphology and perturbs neuronal electrophysiological activity, resulting in larval mechanosensation defects. Using in vivo and in vitro approaches, we uncover a molecular pathway whereby direct phosphorylation of β-tubulin by MNB inhibits tubulin polymerization, a function that is conserved for mammalian DYRK1a. Our results demonstrate that phospho-regulation of microtubule dynamics by MNB/DYRK1a is critical for dendritic patterning and neuronal function, revealing a previously unidentified mode of post-translational microtubule regulation in neurons and uncovering a conserved pathway for a DS- and ASD-associated kinase. PMID:27112495

  11. Optomechanical proposal for monitoring microtubule mechanical vibrations

    NASA Astrophysics Data System (ADS)

    Barzanjeh, Sh.; Salari, V.; Tuszynski, J. A.; Cifra, M.; Simon, C.

    2017-07-01

    Microtubules provide the mechanical force required for chromosome separation during mitosis. However, little is known about the dynamic (high-frequency) mechanical properties of microtubules. Here, we theoretically propose to control the vibrations of a doubly clamped microtubule by tip electrodes and to detect its motion via the optomechanical coupling between the vibrational modes of the microtubule and an optical cavity. In the presence of a red-detuned strong pump laser, this coupling leads to optomechanical-induced transparency of an optical probe field, which can be detected with state-of-the art technology. The center frequency and line width of the transparency peak give the resonance frequency and damping rate of the microtubule, respectively, while the height of the peak reveals information about the microtubule-cavity field coupling. Our method opens the new possibilities to gain information about the physical properties of microtubules, which will enhance our capability to design physical cancer treatment protocols as alternatives to chemotherapeutic drugs.

  12. Fast multipole methods for particle dynamics

    PubMed Central

    Kurzak, J.; Pettitt, B. M.

    2008-01-01

    The growth of simulations of particle systems has been aided by advances in computer speed and algorithms. The adoption of O(N) algorithms to solve N-body simulation problems has been less rapid due to the fact that such scaling was only competitive for relatively large N. Our work seeks to find algorithmic modifications and practical implementations for intermediate values of N in typical use for molecular simulations. This article reviews fast multipole techniques for calculation of electrostatic interactions in molecular systems. The basic mathematics behind fast summations applied to long ranged forces is presented along with advanced techniques for accelerating the solution, including our most recent developments. The computational efficiency of the new methods facilitates both simulations of large systems as well as longer and therefore more realistic simulations of smaller systems. PMID:19194526

  13. The hepatitis E virus open reading frame 3 product interacts with microtubules and interferes with their dynamics.

    PubMed

    Kannan, Harilakshmi; Fan, Sumin; Patel, Deendayal; Bossis, Ioannis; Zhang, Yan-Jin

    2009-07-01

    Hepatitis E virus (HEV) is the causative agent of hepatitis E, a major form of viral hepatitis in developing countries. The open reading frame 3 (ORF3) of HEV encodes a phosphoprotein with a molecular mass of approximately 13 kDa (hereinafter called vp13). vp13 is essential for establishing HEV infections in animals, yet its exact functions are still obscure. Our current study found evidence showing interaction between vp13 and microtubules. Live-cell confocal fluorescence microscopy revealed both filamentous and punctate distribution patterns of vp13 in cells transfected with recombinant ORF3 reporter plasmids. The filamentous pattern of vp13 was altered by a microtubule-destabilizing drug. The vp13 expression led to elevation of acetylated alpha-tubulin, indicating increased microtubule stability. Its association with microtubules was further supported by its presence in microtubule-containing pellets in microtubule isolation assays. Exposure of these pellets to a high-salt buffer caused release of the vp13 to the supernatant, suggesting an electrostatic interaction. Inclusion of ATP and GTP in the lysis buffer during microtubule isolation also disrupted the interaction, indicating its sensitivity to the nucleotides. Further assays showed that motor proteins are needed for the vp13 association with the microtubules because disruption of dynein function abolished the vp13 filamentous pattern. Analysis of ORF3 deletion constructs found that both of the N-terminal hydrophobic domains of vp13 are needed for the interaction. Thus, our findings suggest that the vp13 interaction with microtubules might be needed for establishment of an HEV infection.

  14. 6α-Acetoxyanopterine: A Novel Structure Class of Mitotic Inhibitor Disrupting Microtubule Dynamics in Prostate Cancer Cells.

    PubMed

    Levrier, Claire; Sadowski, Martin C; Rockstroh, Anja; Gabrielli, Brian; Kavallaris, Maria; Lehman, Melanie; Davis, Rohan A; Nelson, Colleen C

    2017-01-01

    The lack of a cure for metastatic castrate-resistant prostate cancer (mCRPC) highlights the urgent need for more efficient drugs to fight this disease. Here, we report the mechanism of action of the natural product 6α-acetoxyanopterine (6-AA) in prostate cancer cells. At low nanomolar doses, this potent cytotoxic alkaloid from the Australian endemic tree Anopterus macleayanus induced a strong accumulation of LNCaP and PC-3 (prostate cancer) cells as well as HeLa (cervical cancer) cells in mitosis, severe mitotic spindle defects, and asymmetric cell divisions, ultimately leading to mitotic catastrophe accompanied by cell death through apoptosis. DNA microarray of 6-AA-treated LNCaP cells combined with pathway analysis identified very similar transcriptional changes when compared with the anticancer drug vinblastine, which included pathways involved in mitosis, microtubule spindle organization, and microtubule binding. Like vinblastine, 6-AA inhibited microtubule polymerization in a cell-free system and reduced cellular microtubule polymer mass. Yet, microtubule alterations that are associated with resistance to microtubule-destabilizing drugs like vinca alkaloids (vinblastine/vincristine) or 2-methoxyestradiol did not confer resistance to 6-AA, suggesting a different mechanism of microtubule interaction. 6-AA is a first-in-class microtubule inhibitor that features the unique anopterine scaffold. This study provides a strong rationale to further develop this novel structure class of microtubule inhibitor for the treatment of malignant disease. Mol Cancer Ther; 16(1); 3-15. ©2016 AACR. ©2016 American Association for Cancer Research.

  15. Stimulation of the CLIP-170–dependent capture of membrane organelles by microtubules through fine tuning of microtubule assembly dynamics

    PubMed Central

    Lomakin, Alexis J.; Kraikivski, Pavel; Semenova, Irina; Ikeda, Kazuho; Zaliapin, Ilya; Tirnauer, Jennifer S.; Akhmanova, Anna; Rodionov, Vladimir

    2011-01-01

    Cytoplasmic microtubules (MTs) continuously grow and shorten at their free plus ends, a behavior that allows them to capture membrane organelles destined for MT minus end–directed transport. In Xenopus melanophores, the capture of pigment granules (melanosomes) involves the +TIP CLIP-170, which is enriched at growing MT plus ends. Here we used Xenopus melanophores to test whether signals that stimulate minus end MT transport also enhance CLIP-170–dependent binding of melanosomes to MT tips. We found that these signals significantly (>twofold) increased the number of growing MT plus ends and their density at the cell periphery, thereby enhancing the likelihood of interaction with dispersed melanosomes. Computational simulations showed that local and global increases in the density of CLIP-170–decorated MT plus ends could reduce the half-time of melanosome aggregation by ∼50%. We conclude that pigment granule aggregation signals in melanophores stimulate MT minus end–directed transport by the increasing number of growing MT plus ends decorated with CLIP-170 and redistributing these ends to more efficiently capture melanosomes throughout the cytoplasm. PMID:21880898

  16. Understanding force-generating microtubule systems through in vitro reconstitution

    PubMed Central

    Kok, Maurits; Dogterom, Marileen

    2016-01-01

    ABSTRACT Microtubules switch between growing and shrinking states, a feature known as dynamic instability. The biochemical parameters underlying dynamic instability are modulated by a wide variety of microtubule-associated proteins that enable the strict control of microtubule dynamics in cells. The forces generated by controlled growth and shrinkage of microtubules drive a large range of processes, including organelle positioning, mitotic spindle assembly, and chromosome segregation. In the past decade, our understanding of microtubule dynamics and microtubule force generation has progressed significantly. Here, we review the microtubule-intrinsic process of dynamic instability, the effect of external factors on this process, and how the resulting forces act on various biological systems. Recently, reconstitution-based approaches have strongly benefited from extensive biochemical and biophysical characterization of individual components that are involved in regulating or transmitting microtubule-driven forces. We will focus on the current state of reconstituting increasingly complex biological systems and provide new directions for future developments. PMID:27715396

  17. Tubulin cofactors and Arl2 are cage-like chaperones that regulate the soluble αβ-tubulin pool for microtubule dynamics

    PubMed Central

    Nithianantham, Stanley; Le, Sinh; Seto, Elbert; Jia, Weitao; Leary, Julie; Corbett, Kevin D; Moore, Jeffrey K; Al-Bassam, Jawdat

    2015-01-01

    Microtubule dynamics and polarity stem from the polymerization of αβ-tubulin heterodimers. Five conserved tubulin cofactors/chaperones and the Arl2 GTPase regulate α- and β-tubulin assembly into heterodimers and maintain the soluble tubulin pool in the cytoplasm, but their physical mechanisms are unknown. Here, we reconstitute a core tubulin chaperone consisting of tubulin cofactors TBCD, TBCE, and Arl2, and reveal a cage-like structure for regulating αβ-tubulin. Biochemical assays and electron microscopy structures of multiple intermediates show the sequential binding of αβ-tubulin dimer followed by tubulin cofactor TBCC onto this chaperone, forming a ternary complex in which Arl2 GTP hydrolysis is activated to alter αβ-tubulin conformation. A GTP-state locked Arl2 mutant inhibits ternary complex dissociation in vitro and causes severe defects in microtubule dynamics in vivo. Our studies suggest a revised paradigm for tubulin cofactors and Arl2 functions as a catalytic chaperone that regulates soluble αβ-tubulin assembly and maintenance to support microtubule dynamics. DOI: http://dx.doi.org/10.7554/eLife.08811.001 PMID:26208336

  18. Multiple Domains of Human CLASP Contribute to Microtubule Dynamics and Organization In Vitro and in Xenopus Egg Extracts

    PubMed Central

    Patel, Kieren; Nogales, Eva; Heald, Rebecca

    2012-01-01

    Cytoplasmic linker associated proteins (CLASPs) comprise a class of microtubule (MT) plus end-binding proteins (+TIPs) that contribute to the dynamics and organization of MTs during many cellular processes, among them mitosis. Human CLASP proteins contain multiple MT-binding domains, including tumor over-expressed gene (TOG) domains, and a Ser-x-Ile-Pro (SxIP) motif known to target some +TIPs though interaction with end-binding protein 1 (EB1). However, how individual domains contribute to CLASP function is poorly understood. We generated full-length recombinant human CLASP1 and a series of truncation mutants and found that two N-terminal TOG domains make the strongest contribution to MT polymerization and bundling, but also identified a third TOG domain that further contributes to CLASP activity. Plus end tracking by CLASP requires the SxIP motif and interaction with EB1. The C-terminal coiled-coil domain mediates dimerization and association with many other factors, including the kinetochore motor centromere protein E (CENP-E), and the chromokinesin Xkid. Only the full-length protein was able to rescue spindle assembly in Xenopus egg extracts depleted of endogenous CLASP. Deletion of the C-terminal domain caused aberrant MT polymerization and dramatic spindle phenotypes, even with small amounts of added protein, indicating that proper localization of CLASP activity is essential to control MT polymerization during mitosis. © 2012 Wiley Periodicals, Inc PMID:22278908

  19. Mammalian diaphanous-related formin 1 regulates GSK3β-dependent microtubule dynamics required for T cell migratory polarization.

    PubMed

    Dong, Baoxia; Zhang, Steven S; Gao, Wen; Su, Haichun; Chen, Jun; Jin, Fuzi; Bhargava, Ajay; Chen, Xiequn; Jorgensen, Lars; Alberts, Arthur S; Zhang, Jinyi; Siminovitch, Katherine A

    2013-01-01

    The mammalian diaphanous-related formin (mDia1), a Rho-regulated cytoskeletal modulator, has been shown to promote T lymphocyte chemotaxis and interaction with antigen presenting cells, but the mechanisms underpinning mDia1 roles in these processes have not been defined. Here we show that mDia1(-/-) T cells exhibit impaired lymphocyte function-associated antigen 1 (LFA-1)-mediated T cell adhesion, migration and in vivo trafficking. These defects are associated with impaired microtubule (MT) polarization and stabilization, altered MT dynamics and reduced peripheral clustering of the MT plus-end-protein, adenomatous polyposis coli (APC) in migrating T cells following LFA-1-engagement. Loss of mDia1 also leads to impaired inducible inactivation of the glycogen synthase kinase (GSK) 3β as well as hyperphosphorylation and reduced levels of APC in migrating T cells. These findings identify essential roles for the mDia1 formin in modulating GSK3β-dependent MT contributions to induction of T-cell polarity, adhesion and motility.

  20. Mammalian Diaphanous-Related Formin 1 Regulates GSK3β-Dependent Microtubule Dynamics Required for T Cell Migratory Polarization

    PubMed Central

    Su, Haichun; Chen, Jun; Jin, Fuzi; Bhargava, Ajay; Chen, Xiequn; Jorgensen, Lars; Alberts, Arthur S.; Zhang, Jinyi; Siminovitch, Katherine A.

    2013-01-01

    The mammalian diaphanous-related formin (mDia1), a Rho-regulated cytoskeletal modulator, has been shown to promote T lymphocyte chemotaxis and interaction with antigen presenting cells, but the mechanisms underpinning mDia1 roles in these processes have not been defined. Here we show that mDia1-/- T cells exhibit impaired lymphocyte function-associated antigen 1 (LFA-1)-mediated T cell adhesion, migration and in vivo trafficking. These defects are associated with impaired microtubule (MT) polarization and stabilization, altered MT dynamics and reduced peripheral clustering of the MT plus-end-protein, adenomatous polyposis coli (APC) in migrating T cells following LFA-1-engagement. Loss of mDia1 also leads to impaired inducible inactivation of the glycogen synthase kinase (GSK) 3β as well as hyperphosphorylation and reduced levels of APC in migrating T cells. These findings identify essential roles for the mDia1 formin in modulating GSK3β-dependent MT contributions to induction of T-cell polarity, adhesion and motility. PMID:24260404

  1. Fast dynamics for atoms in optical lattices.

    PubMed

    Łącki, Mateusz; Zakrzewski, Jakub

    2013-02-08

    Cold atoms in optical lattices allow for accurate studies of many body dynamics. Rapid time-dependent modifications of optical lattice potentials may result in significant excitations in atomic systems. The dynamics in such a case is frequently quite incompletely described by standard applications of tight-binding models (such as, e.g., Bose-Hubbard model or its extensions) that typically neglect the effect of the dynamics on the transformation between the real space and the tight-binding basis. We illustrate the importance of a proper quantum mechanical description using a multiband extended Bose-Hubbard model with time-dependent Wannier functions. We apply it to situations directly related to experiments.

  2. On complex, curved trajectories in microtubule gliding

    NASA Astrophysics Data System (ADS)

    Gosselin, Pierre; Mohrbach, Hervé; Kulić, Igor M.; Ziebert, Falko

    2016-04-01

    We study the dynamics of microtubules in gliding assays. These biofilaments are typically considered as purely semiflexible, hence their trajectories under the action of motors covering the substrate have been regarded so far as straight, modulo fluctuations. However, this is not always the case experimentally, where microtubules are known to move on large scale circles or spirals, or even display quite regular wavy trajectories and more complex dynamics. Incorporating recent experimental evidence for a (small) preferred curvature as well as the microtubules' well established lattice twist into a dynamic model for microtubule gliding, we could reproduce both types of trajectories. Interestingly, as a function of the microtubules' length we found length intervals of stable rings alternating with regions where wavy and more complex dynamics prevails. Finally, both types of dynamics (rings and waves) can be rationalized by considering simple limits of the full model.

  3. Ectopic A-lattice seams destabilize microtubules.

    PubMed

    Katsuki, Miho; Drummond, Douglas R; Cross, Robert A

    2014-01-01

    Natural microtubules typically include one A-lattice seam within an otherwise helically symmetric B-lattice tube. It is currently unclear how A-lattice seams influence microtubule dynamic instability. Here we find that including extra A-lattice seams in GMPCPP microtubules, structural analogues of the GTP caps of dynamic microtubules, destabilizes them, enhancing their median shrinkage rate by >20-fold. Dynamic microtubules nucleated by seeds containing extra A-lattice seams have growth rates similar to microtubules nucleated by B-lattice seeds, yet have increased catastrophe frequencies at both ends. Furthermore, binding B-lattice GDP microtubules to a rigor kinesin surface stabilizes them against shrinkage, whereas microtubules with extra A-lattice seams are stabilized only slightly. Our data suggest that introducing extra A-lattice seams into dynamic microtubules destabilizes them by destabilizing their GTP caps. On this basis, we propose that the single A-lattice seam of natural B-lattice MTs may act as a trigger point, and potentially a regulation point, for catastrophe.

  4. Ectopic A-lattice seams destabilize microtubules

    PubMed Central

    Katsuki, Miho; Drummond, Douglas R.; Cross, Robert A.

    2014-01-01

    Natural microtubules typically include one A-lattice seam within an otherwise helically symmetric B-lattice tube. It is currently unclear how A-lattice seams influence microtubule dynamic instability. Here we find that including extra A-lattice seams in GMPCPP microtubules, structural analogues of the GTP caps of dynamic microtubules, destabilizes them, enhancing their median shrinkage rate by >20-fold. Dynamic microtubules nucleated by seeds containing extra A-lattice seams have growth rates similar to microtubules nucleated by B-lattice seeds, yet have increased catastrophe frequencies at both ends. Furthermore, binding B-lattice GDP microtubules to a rigor kinesin surface stabilizes them against shrinkage, whereas microtubules with extra A-lattice seams are stabilized only slightly. Our data suggest that introducing extra A-lattice seams into dynamic microtubules destabilizes them by destabilizing their GTP caps. On this basis, we propose that the single A-lattice seam of natural B-lattice MTs may act as a trigger point, and potentially a regulation point, for catastrophe. PMID:24463734

  5. Differential regulation of microtubule dynamics by three- and four-repeat tau: implications for the onset of neurodegenerative disease.

    PubMed

    Panda, Dulal; Samuel, Jonathan C; Massie, Michelle; Feinstein, Stuart C; Wilson, Leslie

    2003-08-05

    The microtubule (MT)-associated protein tau is important in neuronal development and in Alzheimer's and other neurodegenerative diseases. Genetic analyses have established a cause-and-effect relationship between tau dysfunction/misregulation and neuronal cell death and dementia in frontotemporal dementia and parkinsonism associated with chromosome 17; several mutations causing this dementia lead to increased ratios of four-repeat (4R) to three-repeat (3R) wild-type tau, and an attractive hypothesis is that the abnormally high ratio of 4R to 3R tau might lead to neuronal cell death by altering normal tau functions in adult neurons. Thus, we tested whether 3R and 4R tau might differentially modulate the dynamic instability of MTs in vitro using video microscopy. Although both isoforms promoted MT polymerization and decreased the tubulin critical subunit concentration to approximately similar extents, 4R tau stabilized MTs significantly more strongly that 3R tau. For example, 4R tau suppressed the shortening rate, whereas 3R tau had little or no detectable effect. Similarly, 3R tau had no effect on the length shortened during a shortening event, whereas 4R tau strongly reduced this parameter. Further, when MTs were diluted into buffer containing 4R tau, the MTs were stabilized and shortened slowly. In contrast, when diluted into 3R tau, the MTs were unstable and shortened rapidly. Thus, 4R tau stabilizes MTs differently and significantly more strongly than 3R tau. We suggest a "dosage effect" or haploinsufficiency model in which both tau alleles must be active and properly regulated to produce appropriate amounts of each tau isoform to maintain MT dynamics within a tolerable window of activity.

  6. Differential regulation of microtubule dynamics by three- and four-repeat tau: Implications for the onset of neurodegenerative disease

    PubMed Central

    Panda, Dulal; Samuel, Jonathan C.; Massie, Michelle; Feinstein, Stuart C.; Wilson, Leslie

    2003-01-01

    The microtubule (MT)-associated protein tau is important in neuronal development and in Alzheimer's and other neurodegenerative diseases. Genetic analyses have established a cause-and-effect relationship between tau dysfunction/misregulation and neuronal cell death and dementia in frontotemporal dementia and parkinsonism associated with chromosome 17; several mutations causing this dementia lead to increased ratios of four-repeat (4R) to three-repeat (3R) wild-type tau, and an attractive hypothesis is that the abnormally high ratio of 4R to 3R tau might lead to neuronal cell death by altering normal tau functions in adult neurons. Thus, we tested whether 3R and 4R tau might differentially modulate the dynamic instability of MTs in vitro using video microscopy. Although both isoforms promoted MT polymerization and decreased the tubulin critical subunit concentration to approximately similar extents, 4R tau stabilized MTs significantly more strongly that 3R tau. For example, 4R tau suppressed the shortening rate, whereas 3R tau had little or no detectable effect. Similarly, 3R tau had no effect on the length shortened during a shortening event, whereas 4R tau strongly reduced this parameter. Further, when MTs were diluted into buffer containing 4R tau, the MTs were stabilized and shortened slowly. In contrast, when diluted into 3R tau, the MTs were unstable and shortened rapidly. Thus, 4R tau stabilizes MTs differently and significantly more strongly than 3R tau. We suggest a “dosage effect” or haploinsufficiency model in which both tau alleles must be active and properly regulated to produce appropriate amounts of each tau isoform to maintain MT dynamics within a tolerable window of activity. PMID:12886013

  7. Real-time monitoring of changes in microtubule mechanical properties in response to microtubule-destabilizing drug treatment.

    PubMed

    Han, Sung-Woong; Simona, Patriche; Banu, Mihaela; Adachi, Taiji

    2013-03-01

    Microtubules are cylindrical protein polymers that play important roles in a number of cellular functions. The properties of microtubules are dynamically changed by interacting with many microtubule-related proteins and drugs. In this study, we used atomic force microscopy to evaluate the changes in microtubule mechanical properties induced by treatment with nocodazole, which is a microtubule-destabilizing drug. The average spring constant of the microtubules, which was used as a measure of microtubule lateral stiffness, was drastically decreased by treatment with nocodazole within 30 min from 0.052 +/- 0.014 N/m to 0.029 +/- 0.015 N/m. Our findings will aid in the understanding of microtubule dynamics, protein interactions in response to drug treatment, microtubule-related diseases, and drug development.

  8. Depletion of JMJD5 sensitizes tumor cells to microtubule-destabilizing agents by altering microtubule stability.

    PubMed

    Wu, Junyu; He, Zhimin; Wang, Da-Liang; Sun, Fang-Lin

    2016-11-01

    Microtubules play essential roles in mitosis, cell migration, and intracellular trafficking. Drugs that target microtubules have demonstrated great clinical success in cancer treatment due to their capacity to impair microtubule dynamics in both mitotic and interphase stages. In a previous report, we demonstrated that JMJD5 associated with mitotic spindle and was required for proper mitosis. However, it remains elusive whether JMJD5 could regulate the stability of cytoskeletal microtubules and whether it affects the efficacy of microtubule-targeting agents. In this study, we find that JMJD5 localizes not only to the nucleus, a fraction of it also localizes to the cytoplasm. JMJD5 depletion decreases the acetylation and detyrosination of α-tubulin, both of which are markers of microtubule stability. In addition, microtubules in JMJD5-depleted cells are more sensitive to nocodazole-induced depolymerization, whereas JMJD5 overexpression increases α-tubulin detyrosination and enhances the resistance of microtubules to nocodazole. Mechanistic studies revealed that JMJD5 regulates MAP1B protein levels and that MAP1B overexpression rescued the microtubule destabilization induced by JMJD5 depletion. Furthermore, JMJD5 depletion significantly promoted apoptosis in cancer cells treated with the microtubule-targeting anti-cancer drugs vinblastine or colchicine. Together, these findings suggest that JMJD5 is required to regulate the stability of cytoskeletal microtubules and that JMJD5 depletion increases the susceptibility of cancer cells to microtubule-destabilizing agents.

  9. External electric field effects on the mechanical properties of the αβ-tubulin dimer of microtubules: a molecular dynamics study.

    PubMed

    Saeidi, H R; Lohrasebi, A; Mahnam, K

    2014-08-01

    The mechanical properties of the αβ-tubulin dimer of microtubules was modeled by using the molecular dynamics (MD) simulation method. The effect on the mechanical properties of the dimer of the existence and nonexistence of an applied electric field, either constant or periodic, was studied. Since there are charged or polar groups in the dimer structure, the electric field can interact with the dimer. The elastic constant and Young's modulus of the dimer were decreased when the dimer was exposed to a constant electric field of 0.03 V/nm. Furthermore, applying an oscillating electric field in the 1 GHz range to the dimer increased the elastic constant and Young's modulus of the dimer. These parameters were related to dimer rigidity and, consequently, in this frequency range, the application of electric fields may affect the function of microtubules.

  10. SAS-4 is recruited to a dynamic structure in newly forming centrioles that is stabilized by the gamma-tubulin-mediated addition of centriolar microtubules.

    PubMed

    Dammermann, Alexander; Maddox, Paul S; Desai, Arshad; Oegema, Karen

    2008-02-25

    Centrioles are surrounded by pericentriolar material (PCM), which is proposed to promote new centriole assembly by concentrating gamma-tubulin. Here, we quantitatively monitor new centriole assembly in living Caenorhabditis elegans embryos, focusing on the conserved components SAS-4 and SAS-6. We show that SAS-4 and SAS-6 are coordinately recruited to the site of new centriole assembly and reach their maximum levels during S phase. Centriolar SAS-6 is subsequently reduced by a mechanism intrinsic to the early assembly pathway that does not require progression into mitosis. Centriolar SAS-4 remains in dynamic equilibrium with the cytoplasmic pool until late prophase, when it is stably incorporated in a step that requires gamma-tubulin and microtubule assembly. These results indicate that gamma-tubulin in the PCM stabilizes the nascent daughter centriole by promoting microtubule addition to its outer wall. Such a mechanism may help restrict new centriole assembly to the vicinity of preexisting parent centrioles that recruit PCM.

  11. Fast Brillouin Optical Time Domain Analysis for dynamic sensing.

    PubMed

    Peled, Yair; Motil, Avi; Tur, Moshe

    2012-04-09

    A new technique for the fast implementation of Brillouin Optical Time Domain Analysis (BOTDA) is proposed and demonstrated, carrying the classical BOTDA method to the dynamic sensing domain. By using a digital signal generator which enables fast switching among 100 scanning frequencies, we demonstrate a truly distributed and dynamic measurement of a 100 m long fiber with a sampling rate of ~10 kHz, limited only by the fiber length and the frequency granularity. With 10 averages the standard deviation of the measured strain was ~5 µε.

  12. EXTRACELLULAR MICROTUBULES

    PubMed Central

    Bouck, G. Benjamin

    1969-01-01

    Mastigonemes (Flimmer) from the sperm of Ascophyllum and Fucus were found to consist of a tripartite structure—a ca. 2000-A tapered basal region, a closed microtubular shaft, and a group of terminal filaments. Each of these regions appears to be constructed of globular subunits with a center-to-center distance of about 45 A. The mastigoneme microtubule is of smaller diameter (170–190 A) than cytoplasmic microtubules in these or other plant cells. During the initial stages of flagellar ontogeny, structures similar to mastigonemes (presumptive mastigonemes) are found within membrane-limited sacs in the cytoplasm or within the perinuclear space. Mastigonemes at this time are generally not found on the flagellar surface. Later, when the anterior flagellum acquires mastigonemes, the presumptive mastigonemes are absent from the cytoplasm. The regularity of attachment of mastigonemes to the flagellar surface suggests that specific attachment sites are constructed on the plasma membrane during flagellar ontogeny. No evidence for penetration of the mastigoneme through the plasma membrane was obtained. The origin and structure of mastigonemes are discussed in relation to reports of the origin and structure of other microtubular systems. PMID:5812471

  13. Structural investigations into the binding mode of novel neolignans Cmp10 and Cmp19 microtubule stabilizers by in silico molecular docking, molecular dynamics, and binding free energy calculations.

    PubMed

    Tripathi, Shubhandra; Kumar, Akhil; Kumar, B Sathish; Negi, Arvind S; Sharma, Ashok

    2016-06-01

    Microtubule stabilizers provide an important mode of treatment via mitotic cell arrest of cancer cells. Recently, we reported two novel neolignans derivatives Cmp10 and Cmp19 showing anticancer activity and working as microtubule stabilizers at micromolar concentrations. In this study, we have explored the binding site, mode of binding, and stabilization by two novel microtubule stabilizers Cmp10 and Cmp19 using in silico molecular docking, molecular dynamics (MD) simulation, and binding free energy calculations. Molecular docking studies were performed to explore the β-tubulin binding site of Cmp10 and Cmp19. Further, MD simulations were used to probe the β-tubulin stabilization mechanism by Cmp10 and Cmp19. Binding affinity was also compared for Cmp10 and Cmp19 using binding free energy calculations. Our docking results revealed that both the compounds bind at Ptxl binding site in β-tubulin. MD simulation studies showed that Cmp10 and Cmp19 binding stabilizes M-loop (Phe272-Val288) residues of β-tubulin and prevent its dynamics, leading to a better packing between α and β subunits from adjacent tubulin dimers. In addition, His229, Ser280 and Gln281, and Arg278, Thr276, and Ser232 were found to be the key amino acid residues forming H-bonds with Cmp10 and Cmp19, respectively. Consequently, binding free energy calculations indicated that Cmp10 (-113.655 kJ/mol) had better binding compared to Cmp19 (-95.216 kJ/mol). This study provides useful insight for better understanding of the binding mechanism of Cmp10 and Cmp19 and will be helpful in designing novel microtubule stabilizers.

  14. Fast Responding Voltage Regulator and Dynamic VAR Compensator

    SciTech Connect

    Divan, Deepak; Moghe, Rohit; Tholomier, Damien

    2014-12-31

    The objectives of this project were to develop a dynamic VAR compensator (DVC) for voltage regulation through VAR support to demonstrate the ability to achieve greater levels of voltage control on electricity distribution networks, and faster response compared to existing grid technology. The goal of the project was to develop a prototype Fast Dynamic VAR Compensator (Fast DVC) hardware device, and this was achieved. In addition to developing the dynamic VAR compensator device, Varentec in partnership with researchers at North Carolina State University (NCSU) successfully met the objectives to model the potential positive impact of such DVCs on representative power networks. This modeling activity validated the ability of distributed dynamic VAR compensators to provide fast voltage regulation and reactive power control required to respond to grid disturbances under high penetration of fluctuating and intermittent distributed energy resources (DERs) through extensive simulation studies. Specifically the following tasks were set to be accomplished: 1) Development of dynamic VAR compensator to support dynamic voltage variations on the grid through VAR control 2) Extensive testing of the DVC in the lab environment 3) Present the operational DVC device to the DOE at Varentec’s lab 4) Formulation of a detailed specification sheet, unit assembly document, test setup document, unit bring-up plan, and test plan 5) Extensive simulations of the DVC in a system with high PV penetration. Understanding the operation with many DVC on a single distribution system 6) Creation and submittal of quarterly and final reports conveying the design documents, unit performance data, modeling simulation charts and diagrams, and summary explanations of the satisfaction of program goals. This report details the various efforts that led to the development of the Fast DVC as well as the modeling & simulation results. The report begins with the introduction in Section II which outlines the

  15. Rigidity of microtubules is increased by stabilizing agents

    PubMed Central

    1995-01-01

    Microtubules are rigid polymers that contribute to the static mechanical properties of cells. Because microtubules are dynamic structures whose polymerization is regulated during changes in cell shape, we have asked whether the mechanical properties of microtubules might also be modulated. We measured the flexural rigidity, or bending stiffness, of individual microtubules under a number of different conditions that affect the stability of microtubules against depolymerization. The flexural rigidity of microtubules polymerized with the slowly hydrolyzable nucleotide analogue guanylyl-(alpha, beta)- methylene-diphosphonate was 62 +/- 9 x 10(-24) Nm2 (weighted mean +/- SEM); that of microtubules stabilized with tau protein was 34 +/- 3 x 10(-24) Nm2; and that of microtubules stabilized with the antimitotic drug taxol was 32 +/- 2 x 10(-24) Nm2. For comparison, microtubules that were capped to prevent depolymerization, but were not otherwise stabilized, had a flexural rigidity of 26 +/- 2 x 10(-24) Nm2. Decreasing the temperature from 37 degrees C to approximately 25 degrees C, a condition that makes microtubules less stable, decreased the stiffness of taxol-stabilized microtubules by one-third. We thus find that the more stable a microtubule, the higher its flexural rigidity. This raises the possibility that microtubule rigidity may be regulated in vivo. In addition, the high rigidity of an unstabilized, GDP-containing microtubule suggests that a large amount of energy could be stored as mechanical strain energy in the protein lattice for subsequent force generation during microtubule depolymerization. PMID:7642706

  16. Switching quantum dynamics for fast stabilization

    NASA Astrophysics Data System (ADS)

    Scaramuzza, Pierre; Ticozzi, Francesco

    2015-06-01

    Control strategies for dissipative preparation of target quantum states, both pure and mixed, and subspaces are obtained by switching between a set of available semigroup generators. We show that the class of problems of interest can be recast, from a control-theoretic perspective, into a switched-stabilization problem for linear dynamics. This is attained by a suitable affine transformation of the coherence-vector representation. In particular, we propose and compare stabilizing time-based and state-based switching rules for entangled state preparation, showing that the latter not only ensure faster convergence with respect to nonswitching methods, but can be designed so that they retain robustness with respect to initialization, as long as the target is a pure state or a subspace.

  17. Fast dynamics of glass-forming glycerol

    NASA Astrophysics Data System (ADS)

    Wuttke, J.; Petry, W.; Coddens, G.; Fujara, F.

    1995-10-01

    The vibrational and relaxational dynamics of glycerol has been measured by incoherent neutron scattering for energy transfers from some 10 μeV to several 10 meV, and for temperatures from 4 to 413 K. On heating towards and above the glass transition, scattering from low-frequency vibrations shows an unspectacular increase that is consistent with ultrasonic data. We propose using the vibrational density of states for calculating the Fourier transformed time correlation function S(q,t) without the cutoff usually imposed by the kinematics of neutron scattering. For high temperatures and low frequencies, structural relaxation is well described by the empirical Kohlrausch law. There is no extended crossover region between vibrations and structural relaxation.

  18. Persistence Length of Stable Microtubules

    NASA Astrophysics Data System (ADS)

    Hawkins, Taviare; Mirigian, Matthew; Yasar, M. Selcuk; Ross, Jennifer

    2011-03-01

    Microtubules are a vital component of the cytoskeleton. As the most rigid of the cytoskeleton filaments, they give shape and support to the cell. They are also essential for intracellular traffic by providing the roadways onto which organelles are transported, and they are required to reorganize during cellular division. To perform its function in the cell, the microtubule must be rigid yet dynamic. We are interested in how the mechanical properties of stable microtubules change over time. Some ``stable'' microtubules of the cell are recycled after days, such as in the axons of neurons or the cilia and flagella. We measured the persistence length of freely fluctuating taxol-stabilized microtubules over the span of a week and analyzed them via Fourier decomposition. As measured on a daily basis, the persistence length is independent of the contour length. Although measured over the span of the week, the accuracy of the measurement and the persistence length varies. We also studied how fluorescently-labeling the microtubule affects the persistence length and observed that a higher labeling ratio corresponded to greater flexibility. National Science Foundation Grant No: 0928540 to JLR.

  19. Microtubules self-repair in response to mechanical stress

    NASA Astrophysics Data System (ADS)

    Schaedel, Laura; John, Karin; Gaillard, Jérémie; Nachury, Maxence V.; Blanchoin, Laurent; Théry, Manuel

    2015-11-01

    Microtubules--which define the shape of axons, cilia and flagella, and provide tracks for intracellular transport--can be highly bent by intracellular forces, and microtubule structure and stiffness are thought to be affected by physical constraints. Yet how microtubules tolerate the vast forces exerted on them remains unknown. Here, by using a microfluidic device, we show that microtubule stiffness decreases incrementally with each cycle of bending and release. Similar to other cases of material fatigue, the concentration of mechanical stresses on pre-existing defects in the microtubule lattice is responsible for the generation of more extensive damage, which further decreases microtubule stiffness. Strikingly, damaged microtubules were able to incorporate new tubulin dimers into their lattice and recover their initial stiffness. Our findings demonstrate that microtubules are ductile materials with self-healing properties, that their dynamics does not exclusively occur at their ends, and that their lattice plasticity enables the microtubules' adaptation to mechanical stresses.

  20. Microtubules self-repair in response to mechanical stress

    PubMed Central

    Schaedel, Laura; John, Karin; Gaillard, Jérémie; Nachury, Maxence V.; Blanchoin, Laurent; Théry, Manuel

    2015-01-01

    Microtubules - which define the shape of axons, cilia and flagella, and provide tracks for intracellular transport - can be highly bent by intracellular forces, and microtubule structure and stiffness are thought to be affected by physical constraints. Yet how microtubules tolerate the vast forces exerted on them remains unknown. Here, by using a microfluidic device, we show that microtubule stiffness decreases incrementally with each cycle of bending and release. Similar to other cases of material fatigue, the concentration of mechanical stresses on pre-existing defects in the microtubule lattice is responsible for the generation of larger damages, which further decrease microtubule stiffness. Strikingly, damaged microtubules were able to incorporate new tubulin dimers into their lattice and recover their initial stiffness. Our findings demonstrate that microtubules are ductile materials with self-healing properties, that their dynamics does not exclusively occur at their ends, and that their lattice plasticity enables the microtubules' adaptation to mechanical stresses. PMID:26343914

  1. Microtubules self-repair in response to mechanical stress.

    PubMed

    Schaedel, Laura; John, Karin; Gaillard, Jérémie; Nachury, Maxence V; Blanchoin, Laurent; Théry, Manuel

    2015-11-01

    Microtubules--which define the shape of axons, cilia and flagella, and provide tracks for intracellular transport--can be highly bent by intracellular forces, and microtubule structure and stiffness are thought to be affected by physical constraints. Yet how microtubules tolerate the vast forces exerted on them remains unknown. Here, by using a microfluidic device, we show that microtubule stiffness decreases incrementally with each cycle of bending and release. Similar to other cases of material fatigue, the concentration of mechanical stresses on pre-existing defects in the microtubule lattice is responsible for the generation of more extensive damage, which further decreases microtubule stiffness. Strikingly, damaged microtubules were able to incorporate new tubulin dimers into their lattice and recover their initial stiffness. Our findings demonstrate that microtubules are ductile materials with self-healing properties, that their dynamics does not exclusively occur at their ends, and that their lattice plasticity enables the microtubules' adaptation to mechanical stresses.

  2. Bat Dynamics of Female Fast Pitch Softball Batters.

    ERIC Educational Resources Information Center

    Messier, Stephen P.; Owen, Marjorie G.

    1984-01-01

    Female fast pitch softball batters served in an examination of the dynamic characteristics of the bat during the swing through the use of three-dimensional cinematographic analysis techniques. These results were compared with those from previous studies of baseball batting. Findings are listed. (Author/DF)

  3. Bat Dynamics of Female Fast Pitch Softball Batters.

    ERIC Educational Resources Information Center

    Messier, Stephen P.; Owen, Marjorie G.

    1984-01-01

    Female fast pitch softball batters served in an examination of the dynamic characteristics of the bat during the swing through the use of three-dimensional cinematographic analysis techniques. These results were compared with those from previous studies of baseball batting. Findings are listed. (Author/DF)

  4. Quantum dynamics of fast chemical reactions

    SciTech Connect

    Light, J.C.

    1993-12-01

    The aims of this research are to explore, develop, and apply theoretical methods for the evaluation of the dynamics of gas phase collision processes, primarily chemical reactions. The primary theoretical tools developed for this work have been quantum scattering theory, both in time dependent and time independent forms. Over the past several years, the authors have developed and applied methods for the direct quantum evaluation of thermal rate constants, applying these to the evaluation of the hydrogen isotopic exchange reactions, applied wave packet propagation techniques to the dissociation of Rydberg H{sub 3}, incorporated optical potentials into the evaluation of thermal rate constants, evaluated the use of optical potentials for state-to-state reaction probability evaluations, and, most recently, have developed quantum approaches for electronically non-adiabatic reactions which may be applied to simplify calculations of reactive, but electronically adiabatic systems. Evaluation of the thermal rate constants and the dissociation of H{sub 3} were reported last year, and have now been published.

  5. Microtubule plus-end tracking proteins and their roles in cell division.

    PubMed

    Ferreira, Jorge G; Pereira, Ana L; Maiato, Helder

    2014-01-01

    Microtubules are cellular components that are required for a variety of essential processes such as cell motility, mitosis, and intracellular transport. This is possible because of the inherent dynamic properties of microtubules. Many of these properties are tightly regulated by a number of microtubule plus-end-binding proteins or +TIPs. These proteins recognize the distal end of microtubules and are thus in the right context to control microtubule dynamics. In this review, we address how microtubule dynamics are regulated by different +TIP families, focusing on how functionally diverse +TIPs spatially and temporally regulate microtubule dynamics during animal cell division.

  6. Discovery of Thalicthuberine as a Novel Antimitotic Agent from Nature that Disrupts Microtubule Dynamics and Induces Apoptosis in Prostate Cancer Cells.

    PubMed

    Levrier, Claire; Rockstroh, Anja; Gabrielli, Brian; Kavallaris, Maria; Lehman, Melanie; Davis, Rohan A; Sadowski, Martin C; Nelson, Colleen C

    2017-07-27

    We report for the first time the mechanism of action of the natural product thalicthuberine (TH) in prostate and cervical cancer cells. TH induced a strong accumulation of LNCaP cells in mitosis, severe mitotic spindle defects and asymmetric cell divisions, ultimately leading to mitotic catastrophe accompanied by cell death through apoptosis. However, unlike microtubule-binding drugs (vinblastine and paclitaxel), TH did not directly inhibit tubulin polymerization when tested in a cell-free system, whereas it reduced cellular microtubule polymer mass in LNCaP cells. This suggests that TH indirectly targets microtubule dynamics through inhibition of a critical regulator or tubulin-associated protein. Furthermore, TH is not a major substrate for P-glycoprotein (Pgp), which is responsible for multidrug resistance in numerous cancers, providing a rationale to further study TH in cancers with Pgp-mediated treatment resistance. The identification of TH's molecular target in future studies will be of great value to the development of TH as potential treatment of multidrug resistant tumors.

  7. Mechanical stress induced mechanism of microtubule catastrophes.

    PubMed

    Hunyadi, Viktória; Chrétien, Denis; Jánosi, Imre M

    2005-05-13

    Microtubules assembled in vitro from pure tubulin can switch occasionally from growing to shrinking states or resume assembly, an unusual behavior termed "dynamic instability of microtubule growth". Its origin remains unclear and several models have been proposed, including occasional switching of the microtubules into energetically unfavorable configurations during assembly. In this study, we have asked whether the excess energy accumulated in these configurations would be of sufficient magnitude to destabilize the capping region that must exist at the end of growing microtubules. For this purpose, we have analyzed the frequency distribution of microtubules assembled in vitro from pure tubulin, and modeled the different mechanical constraints accumulated in their wall. We find that the maximal excess energy that the microtubule lattice can store is in the order of 11 kBT per dimer. Configurations that require distortions up to approximately 20 kBT are allowed at the expense of a slight conformational change, and larger distortions are not observed. Modeling of the different elastic deformations suggests that the excess energy is essentially induced by protofilament skewing, microtubule radial curvature change and inter-subunit shearing, distortions that must destabilize further the tubulin subunits interactions. These results are consistent with the hypothesis that unfavorable closure events may trigger the catastrophes observed at low tubulin concentration in vitro. In addition, we propose a novel type of representation that describes the stability of microtubule assembly systems, and which might be of considerable interest to study the effects of stabilizing and destabilizing factors on microtubule structure and dynamics.

  8. Characterization of the role of calcium in regulating the microtubule-destabilizing activity of MDP25.

    PubMed

    Qin, Tao; Li, Jiejie; Yuan, Ming; Mao, Tonglin

    2012-07-01

    Regulation of cell elongation is important for plant morphogenesis. Many studies have shown that cortical microtubules play crucial roles during cell elongation and that microtubule stability, organization, and dynamics are regulated by microtubule regulatory proteins. Recently, we reported that a novel protein from Arabidopsis, termed microtubule-destabilizing protein 25 (MDP25), functions as a negative regulator of hypocotyl cell elongation. MDP25 destabilizes microtubules and exerts its effect on microtubules as a result of transient elevation of cytosolic calcium levels.

  9. Leiodermatolide, a novel marine natural product, has potent cytotoxic and antimitotic activity against cancer cells, appears to affect microtubule dynamics, and exhibits antitumor activity.

    PubMed

    Guzmán, Esther A; Xu, Qunli; Pitts, Tara P; Mitsuhashi, Kaoru Ogawa; Baker, Cheryl; Linley, Patricia A; Oestreicher, Judy; Tendyke, Karen; Winder, Priscilla L; Suh, Edward M; Wright, Amy E

    2016-11-01

    Pancreatic cancer, the fourth leading cause of cancer death in the United States, has a negative prognosis because metastasis occurs before symptoms manifest. Leiodermatolide, a polyketide macrolide with antimitotic activity isolated from a deep water sponge of the genus Leiodermatium, exhibits potent and selective cytotoxicity toward the pancreatic cancer cell lines AsPC-1, PANC-1, BxPC-3, and MIA PaCa-2, and potent cytotoxicity against skin, breast and colon cancer cell lines. Induction of apoptosis by leiodermatolide was confirmed in the AsPC-1, BxPC-3 and MIA PaCa-2 cells. Leiodermatolide induces cell cycle arrest but has no effects on in vitro polymerization or depolymerization of tubulin alone, while it enhances polymerization of tubulin containing microtubule associated proteins (MAPs). Observations through confocal microscopy show that leiodermatolide, at low concentrations, causes minimal effects on polymerization or depolymerization of the microtubule network in interphase cells, but disruption of spindle formation in mitotic cells. At higher concentrations, depolymerization of the microtubule network is observed. Visualization of the growing microtubule in HeLa cells expressing GFP-tagged plus end binding protein EB-1 showed that leiodermatolide stopped the polymerization of tubulin. These results suggest that leiodermatolide may affect tubulin dynamics without directly interacting with tubulin and hint at a unique mechanism of action. In a mouse model of metastatic pancreatic cancer, leiodermatolide exhibited significant tumor reduction when compared to gemcitabine and controls. The antitumor activities of leiodermatolide, as well as the proven utility of antimitotic compounds against cancer, make leiodermatolide an interesting compound with potential chemotherapeutic effects that may merit further research. © 2016 UICC.

  10. Identification of novel microtubule-binding proteins by taxol-mediated microtubule stabilization and mass spectrometry analysis

    PubMed Central

    He, Xianfei; Liu, Zhu; He, Qianqian; Qin, Juan; Liu, Ningning; Zhang, Linlin; Li, Dengwen; Zhou, Jun; Shui, Wenqing; Liu, Min

    2015-01-01

    Microtubule-binding proteins (MBPs) are structurally and functionally diverse regulators of microtubule-mediated cellular processes. Alteration of MBPs has been implicated in the pathogenesis of human diseases, including cancer. MBPs can stabilize or destabilize microtubules or move along microtubules to transport various cargoes. In addition, MBPs can control microtubule dynamics through direct interaction with microtubules or coordination with other proteins. To better understand microtubule structure and function, it is necessary to identify additional MBPs. In this study, we isolated microtubules and MBPs from mammalian cells by a taxol-based method and then profiled a panel of MBPs by mass spectrometry. We discovered a number of previously uncharacterized MBPs, including several membrane-associated proteins and proteins involved in post-translational modifications, in addition to several structural components. These results support the notion that microtubules have a wide range of functions and may undergo more exquisite regulation than previously recognized. PMID:26445615

  11. Collisionally induced stochastic dynamics of fast ions in solids

    SciTech Connect

    Burgdoerfer, J.

    1989-01-01

    Recent developments in the theory of excited state formation in collisions of fast highly charged ions with solids are reviewed. We discuss a classical transport theory employing Monte-Carlo sampling of solutions of a microscopic Langevin equation. Dynamical screening by the dielectric medium as well as multiple collisions are incorporated through the drift and stochastic forces in the Langevin equation. The close relationship between the extrinsically stochastic dynamics described by the Langevin and the intrinsic stochasticity in chaotic nonlinear dynamical systems is stressed. Comparison with experimental data and possible modification by quantum corrections are discussed. 49 refs., 11 figs.

  12. Progressive and spatially differentiated stability of microtubules in developing neuronal cells

    PubMed Central

    1989-01-01

    The establishment of neural circuits requires both stable and plastic properties in the neuronal cytoskeleton. In this study we show that properties of stability and lability reside in microtubules and these are governed by cellular differentiation and intracellular location. After culture for 3, 7, and 14 d in nerve growth factor-containing medium, PC-12 cells were microinjected with X-rhodamine-labeled tubulin. 8-24 h later, cells were photobleached with a laser microbeam at the cell body, neurite shaft, and growth cone. Replacement of fluorescence in bleached zones was monitored by digital video microscopy. In 3-d cultures, fluorescence recovery in all regions occurred by 26 +/- 17 min. Similarly, in older cultures, complete fluorescence recovery at the cell body and growth cone occurred by 10- 30 min. However, in neurite shafts, fluorescence recovery was markedly slower (71 +/- 48 min for 7-d and 201 +/- 94 min for 14-d cultures). This progressive increase in the stability of microtubules in the neurite shafts correlated with an increase of acetylated microtubules. Acetylated microtubules were present specifically in the neurite shaft and not in the regions of fast microtubule turnover, the cell body and growth cone. During the recovery of fluorescence, bleached zones did not move with respect to the cell body. We conclude that the microtubule component of the neuronal cytoskeleton is differentially dynamic but stationary. PMID:2745551

  13. History-dependent catastrophes regulate axonal microtubule behavior.

    PubMed

    Stepanova, Tatiana; Smal, Ihor; van Haren, Jeffrey; Akinci, Umut; Liu, Zhe; Miedema, Marja; Limpens, Ronald; van Ham, Marco; van der Reijden, Michael; Poot, Raymond; Grosveld, Frank; Mommaas, Mieke; Meijering, Erik; Galjart, Niels

    2010-06-08

    In Chinese hamster ovary cells, microtubules originate at the microtubule organizing center (MTOC) and grow persistently toward the cell edge, where they undergo catastrophe. In axons, microtubule dynamics must be regulated differently because microtubules grow parallel to the plasma membrane and there is no MTOC. GFP-tagged microtubule plus end tracking proteins (+TIPs) mark the ends of growing neuronal microtubules. Their fluorescent "comet-like" pattern reflects turnover of +TIP binding sites. Using GFP-tagged +TIPs and fluorescence-based segmentation and tracking tools, we show that axonal microtubules grow with a constant average velocity and that they undergo catastrophes at random positions, yet in a programmed fashion. Using protein depletion approaches, we find that the +TIPs CLIP-115 and CLIP-170 affect average microtubule growth rate and growth distance in neurons but not the duration of a microtubule growth event. In N1E-115 neuroblastoma cells, we find that EB1, the core +TIP, regulates microtubule growth rate, growth distance, and duration, consistent with in vitro data. Combined, our data suggest that CLIPs influence the axonal microtubule/tubulin ratio, whereas EB1 stimulates microtubule growth and structural transitions at microtubule ends, thereby regulating microtubule catastrophes and the turnover of +TIP binding sites.

  14. Microtubule heterogeneity of Ornithogalum umbellatum ovary epidermal cells: non-stable cortical microtubules and stable lipotubuloid microtubules.

    PubMed

    Kwiatkowska, Maria; Stępiński, Dariusz; Polit, Justyna T; Popłońska, Katarzyna; Wojtczak, Agnieszka

    2011-01-01

    Lipotubuloids, structures containing lipid bodies and microtubules, are described in ovary epidermal cells of Ornithogalum umbellatum. Microtubules of lipotubuloids can be fixed in electron microscope fixative containing only buffered OsO(4) or in glutaraldehyde with OsO(4) post-fixation, or in a mixture of OsO(4) and glutaraldehyde. None of these substances fixes cortical microtubules of ovary epidermis of this plant which is characterized by dynamic longitudinal growth. However, cortical microtubules can be fixed with cold methanol according immunocytological methods with the use of β-tubulin antibodies and fluorescein. The existence of cortical microtubules has also been evidenced by EM observations solely after the use of taxol, microtubule stabilizer, and fixation in a glutaraldehyde/OsO(4) mixture. These microtubules mostly lie transversely, sometimes obliquely, and rarely parallel to the cell axis. Staining, using Ruthenium Red and silver hexamine, has revealed that lipotubuloid microtubules surface is covered with polysaccharides. The presumption has been made that the presence of a polysaccharide layer enhances the stability of lipotubuloid microtubules.

  15. Kinesin-12 motors cooperate to suppress microtubule catastrophes and drive the formation of parallel microtubule bundles

    PubMed Central

    Drechsler, Hauke; McAinsh, Andrew D.

    2016-01-01

    Human Kinesin-12 (hKif15) plays a crucial role in assembly and maintenance of the mitotic spindle. These functions of hKif15 are partially redundant with Kinesin-5 (Eg5), which can cross-link and drive the extensile sliding of antiparallel microtubules. Although both motors are known to be tetramers, the functional properties of hKif15 are less well understood. Here we reveal how single or multiple Kif15 motors can cross-link, transport, and focus the plus-ends of intersecting microtubules. During transport, Kif15 motors step simultaneously along both microtubules with relative microtubule transport driven by a velocity differential between motor domain pairs. Remarkably, this differential is affected by the underlying intersection geometry: the differential is low on parallel and extreme on antiparallel microtubules where one motor domain pair becomes immobile. As a result, when intersecting microtubules are antiparallel, canonical transport of one microtubule along the other is allowed because one motor is firmly attached to one microtubule while it is stepping on the other. When intersecting microtubules are parallel, however, Kif15 motors can drive (biased) parallel sliding because the motor simultaneously steps on both microtubules that it cross-links. These microtubule rearrangements will focus microtubule plus-ends and finally lead to the formation of parallel bundles. At the same time, Kif15 motors cooperate to suppress catastrophe events at polymerizing microtubule plus-ends, raising the possibility that Kif15 motors may synchronize the dynamics of bundles that they have assembled. Thus, Kif15 is adapted to operate on parallel microtubule substrates, a property that clearly distinguishes it from the other tetrameric spindle motor, Eg5. PMID:26969727

  16. Kinesin-12 motors cooperate to suppress microtubule catastrophes and drive the formation of parallel microtubule bundles.

    PubMed

    Drechsler, Hauke; McAinsh, Andrew D

    2016-03-22

    Human Kinesin-12 (hKif15) plays a crucial role in assembly and maintenance of the mitotic spindle. These functions of hKif15 are partially redundant with Kinesin-5 (Eg5), which can cross-link and drive the extensile sliding of antiparallel microtubules. Although both motors are known to be tetramers, the functional properties of hKif15 are less well understood. Here we reveal how single or multiple Kif15 motors can cross-link, transport, and focus the plus-ends of intersecting microtubules. During transport, Kif15 motors step simultaneously along both microtubules with relative microtubule transport driven by a velocity differential between motor domain pairs. Remarkably, this differential is affected by the underlying intersection geometry: the differential is low on parallel and extreme on antiparallel microtubules where one motor domain pair becomes immobile. As a result, when intersecting microtubules are antiparallel, canonical transport of one microtubule along the other is allowed because one motor is firmly attached to one microtubule while it is stepping on the other. When intersecting microtubules are parallel, however, Kif15 motors can drive (biased) parallel sliding because the motor simultaneously steps on both microtubules that it cross-links. These microtubule rearrangements will focus microtubule plus-ends and finally lead to the formation of parallel bundles. At the same time, Kif15 motors cooperate to suppress catastrophe events at polymerizing microtubule plus-ends, raising the possibility that Kif15 motors may synchronize the dynamics of bundles that they have assembled. Thus, Kif15 is adapted to operate on parallel microtubule substrates, a property that clearly distinguishes it from the other tetrameric spindle motor, Eg5.

  17. Accelerated dynamic EPR imaging using fast acquisition and compressive recovery

    NASA Astrophysics Data System (ADS)

    Ahmad, Rizwan; Samouilov, Alexandre; Zweier, Jay L.

    2016-12-01

    Electron paramagnetic resonance (EPR) allows quantitative imaging of tissue redox status, which provides important information about ischemic syndromes, cancer and other pathologies. For continuous wave EPR imaging, however, poor signal-to-noise ratio and low acquisition efficiency limit its ability to image dynamic processes in vivo including tissue redox, where conditions can change rapidly. Here, we present a data acquisition and processing framework that couples fast acquisition with compressive sensing-inspired image recovery to enable EPR-based redox imaging with high spatial and temporal resolutions. The fast acquisition (FA) allows collecting more, albeit noisier, projections in a given scan time. The composite regularization based processing method, called spatio-temporal adaptive recovery (STAR), not only exploits sparsity in multiple representations of the spatio-temporal image but also adaptively adjusts the regularization strength for each representation based on its inherent level of the sparsity. As a result, STAR adjusts to the disparity in the level of sparsity across multiple representations, without introducing any tuning parameter. Our simulation and phantom imaging studies indicate that a combination of fast acquisition and STAR (FASTAR) enables high-fidelity recovery of volumetric image series, with each volumetric image employing less than 10 s of scan. In addition to image fidelity, the time constants derived from FASTAR also match closely to the ground truth even when a small number of projections are used for recovery. This development will enhance the capability of EPR to study fast dynamic processes that cannot be investigated using existing EPR imaging techniques.

  18. Accelerated dynamic EPR imaging using fast acquisition and compressive recovery.

    PubMed

    Ahmad, Rizwan; Samouilov, Alexandre; Zweier, Jay L

    2016-12-01

    Electron paramagnetic resonance (EPR) allows quantitative imaging of tissue redox status, which provides important information about ischemic syndromes, cancer and other pathologies. For continuous wave EPR imaging, however, poor signal-to-noise ratio and low acquisition efficiency limit its ability to image dynamic processes in vivo including tissue redox, where conditions can change rapidly. Here, we present a data acquisition and processing framework that couples fast acquisition with compressive sensing-inspired image recovery to enable EPR-based redox imaging with high spatial and temporal resolutions. The fast acquisition (FA) allows collecting more, albeit noisier, projections in a given scan time. The composite regularization based processing method, called spatio-temporal adaptive recovery (STAR), not only exploits sparsity in multiple representations of the spatio-temporal image but also adaptively adjusts the regularization strength for each representation based on its inherent level of the sparsity. As a result, STAR adjusts to the disparity in the level of sparsity across multiple representations, without introducing any tuning parameter. Our simulation and phantom imaging studies indicate that a combination of fast acquisition and STAR (FASTAR) enables high-fidelity recovery of volumetric image series, with each volumetric image employing less than 10 s of scan. In addition to image fidelity, the time constants derived from FASTAR also match closely to the ground truth even when a small number of projections are used for recovery. This development will enhance the capability of EPR to study fast dynamic processes that cannot be investigated using existing EPR imaging techniques.

  19. Effect of Partially Screened Nuclei on Fast-Electron Dynamics

    NASA Astrophysics Data System (ADS)

    Hesslow, L.; Embréus, O.; Stahl, A.; DuBois, T. C.; Papp, G.; Newton, S. L.; Fülöp, T.

    2017-06-01

    We analyze the dynamics of fast electrons in plasmas containing partially ionized impurity atoms, where the screening effect of bound electrons must be included. We derive analytical expressions for the deflection and slowing-down frequencies, and show that they are increased significantly compared to the results obtained with complete screening, already at subrelativistic electron energies. Furthermore, we show that the modifications to the deflection and slowing down frequencies are of equal importance in describing the runaway current evolution. Our results greatly affect fast-electron dynamics and have important implications, e.g., for the efficacy of mitigation strategies for runaway electrons in tokamak devices, and energy loss during relativistic breakdown in atmospheric discharges.

  20. Fast Surface Dynamics of Metallic Glass Enable Superlatticelike Nanostructure Growth.

    PubMed

    Chen, L; Cao, C R; Shi, J A; Lu, Z; Sun, Y T; Luo, P; Gu, L; Bai, H Y; Pan, M X; Wang, W H

    2017-01-06

    Contrary to the formation of complicated polycrystals induced by general crystallization, a modulated superlatticelike nanostructure, which grows layer by layer from the surface to the interior of a Pd_{40}Ni_{10}Cu_{30}P_{20} metallic glass, is observed via isothermal annealing below the glass transition temperature. The generation of the modulated nanostructure can be solely controlled by the annealing temperature, and it can be understood based on the fast dynamic and liquidlike behavior of the glass surface. The observations have implications for understanding the glassy surface dynamics and pave a way for the controllable fabrication of a unique and sophisticated nanostructure on a glass surface to realize the properties' modification.

  1. Fast Surface Dynamics of Metallic Glass Enable Superlatticelike Nanostructure Growth

    NASA Astrophysics Data System (ADS)

    Chen, L.; Cao, C. R.; Shi, J. A.; Lu, Z.; Sun, Y. T.; Luo, P.; Gu, L.; Bai, H. Y.; Pan, M. X.; Wang, W. H.

    2017-01-01

    Contrary to the formation of complicated polycrystals induced by general crystallization, a modulated superlatticelike nanostructure, which grows layer by layer from the surface to the interior of a Pd40Ni10Cu30P20 metallic glass, is observed via isothermal annealing below the glass transition temperature. The generation of the modulated nanostructure can be solely controlled by the annealing temperature, and it can be understood based on the fast dynamic and liquidlike behavior of the glass surface. The observations have implications for understanding the glassy surface dynamics and pave a way for the controllable fabrication of a unique and sophisticated nanostructure on a glass surface to realize the properties' modification.

  2. A novel microtubule inhibitor, MT3-037, causes cancer cell apoptosis by inducing mitotic arrest and interfering with microtubule dynamics

    PubMed Central

    Chang, Ling-Chu; Yu, Yung-Luen; Hsieh, Min-Tsang; Wang, Sheng-Hung; Chou, Ruey-Hwang; Huang, Wei-Chien; Lin, Hui-Yi; Hung, Hsin-Yi; Huang, Li-Jiau; Kuo, Sheng-Chu

    2016-01-01

    We investigated the anticancer potential of a new synthetic compound, 7-(3-fluorophenyl)-4-methylpyrido-[2,3-d]pyrimidin-5(8H)-one (MT3-037). We found that MT3-037 effectively decreased the cancer cell viability by inducing apoptosis. MT3-037 treatments led to cell cycle arrest at M phase, with a marked increase in both expression of cyclin B1 and cyclin-dependent kinase 1 (CDK1) as well as in CDK1 kinase activity. Key proteins that regulate mitotic spindle dynamics, including survivin, Aurora A/B kinases, and polo-like kinase 1 (PLK1), were activated in MT3-037-treated cells. MT3-037-induced apoptosis was accompanied by activation of a pro-apoptotic factor, FADD, and the inactivation of apoptosis inhibitors, Bcl-2 and Bcl-xL, resulting in the cleavage/activation of caspases. The activation of c-Jun N-terminal kinase (JNK) was associated with MT3-037-induced CDK1 and Aurora A/B activation and apoptosis. Immunofluorescence staining of tubulin indicated that MT3-037 altered tubulin networks in cancer cells. Moreover, an in vitro tubulin polymerization assay revealed that MT3-037 inhibited the tubulin polymerization by direct binding to tubulin. Molecular docking studies and binding site completion assays revealed that MT3-037 binds to the colchicine-binding site. Furthermore, MT3-037 significantly inhibited the tumor growth in both MDAMB-468 and Erlotinib-resistant MDA-MB-468 xenograft mouse models. In addition, MT3-037 inhibited the angiogenesis and disrupted the tube formation by human endothelial cells. Our study demonstrates that MT3-037 is a potential tubulin-disrupting agent for antitumor therapy. PMID:27186428

  3. FAST Simulation Tool Containing Methods for Predicting the Dynamic Response of Wind Turbines

    SciTech Connect

    Jonkman, Jason

    2015-08-12

    FAST is a simulation tool (computer software) for modeling tlie dynamic response of horizontal-axis wind turbines. FAST employs a combined modal and multibody structural-dynamics formulation in the time domain.

  4. A note on the theory of fast money flow dynamics

    NASA Astrophysics Data System (ADS)

    Sokolov, A.; Kieu, T.; Melatos, A.

    2010-08-01

    The gauge theory of arbitrage was introduced by Ilinski in [K. Ilinski, preprint arXiv:hep-th/9710148 (1997)] and applied to fast money flows in [A. Ilinskaia, K. Ilinski, preprint arXiv:cond-mat/9902044 (1999); K. Ilinski, Physics of finance: gauge modelling in non-equilibrium pricing (Wiley, 2001)]. The theory of fast money flow dynamics attempts to model the evolution of currency exchange rates and stock prices on short, e.g. intra-day, time scales. It has been used to explain some of the heuristic trading rules, known as technical analysis, that are used by professional traders in the equity and foreign exchange markets. A critique of some of the underlying assumptions of the gauge theory of arbitrage was presented by Sornette in [D. Sornette, Int. J. Mod. Phys. C 9, 505 (1998)]. In this paper, we present a critique of the theory of fast money flow dynamics, which was not examined by Sornette. We demonstrate that the choice of the input parameters used in [K. Ilinski, Physics of finance: gauge modelling in non-equilibrium pricing (Wiley, 2001)] results in sinusoidal oscillations of the exchange rate, in conflict with the results presented in [K. Ilinski, Physics of finance: gauge modelling in non-equilibrium pricing (Wiley, 2001)]. We also find that the dynamics predicted by the theory are generally unstable in most realistic situations, with the exchange rate tending to zero or infinity exponentially.

  5. Microtubule organization by kinesin motors and microtubule crosslinking protein MAP65

    NASA Astrophysics Data System (ADS)

    Pringle, Joshua; Muthukumar, Amutha; Tan, Amanda; Crankshaw, Laura; Conway, Leslie; Ross, Jennifer L.

    2013-09-01

    Microtubules are rigid, proteinaceous filaments required to organize and rearrange the interior of cells. They organize space by two mechanisms, including acting as the tracks for long-distance cargo transporters, such as kinesin-1, and by forming a network that supports the shape of the cell. The microtubule network is composed of microtubules and a bevy of associated proteins and enzymes that self-organize using non-equilibrium dynamic processes. In order to address the effects of self-organization of microtubules, we have utilized the filament-gliding assay with kinesin-1 motors driving microtubule motion. To further enhance the complexity of the system and determine if new patterns are formed, we added the microtubule crosslinking protein MAP65-1. MAP65-1 is a microtubule-associated protein from plants that crosslinks antiparallel microtubules, similar to mammalian PRC1 and fission yeast Ase1. We find that MAP65 can slow and halt the velocity of microtubules in gliding assays, but when pre-formed microtubule bundles are added to gliding assays, kinesin-1 motors can pull apart the bundles and reconstitute cell-like protrusions.

  6. Reeling in chromosomes to spindle poles: The roles of microtubule-destabilizing enzymes in mitotic spindle dynamics

    NASA Astrophysics Data System (ADS)

    Sharp, David

    2004-03-01

    The central purpose of mitosis is achieved during anaphase when sister chromatids disjoin and translocate towards opposite poles of a microtubule-based machine termed mitotic spindle. We have identified two functionally distinct microtubule-destabilizing Kin I kinesin enzymes that are responsible for normal chromatid-to-pole motion during anaphase in Drosophila. One of them, KLP59C, is required to depolymerize MTs specifically at their kinetochore-associated "plus-ends" such that chromosomes 'chew' their way poleward. The second, KLP10A, is required to depolymerize MTs specifically at their pole-associated "minus-ends" thereby 'reeling' chromosomes into spindle poles. These findings provide the first description of the protein machinery that drives anaphase chromatid segregation by actively depolymerizing kinetochore MTs at both ends.

  7. Arabidopsis AUGMIN Subunit8 Is a Microtubule Plus-End Binding Protein That Promotes Microtubule Reorientation in Hypocotyls[C][W

    PubMed Central

    Cao, Lingyan; Wang, Linhai; Zheng, Min; Cao, Hong; Ding, Lian; Zhang, Xiaolan; Fu, Ying

    2013-01-01

    In plant cells, cortical microtubules provide tracks for cellulose-synthesizing enzymes and regulate cell division, growth, and morphogenesis. The role of microtubules in these essential cellular processes depends on the spatial arrangement of the microtubules. Cortical microtubules are reoriented in response to changes in cell growth status and cell shape. Therefore, an understanding of the mechanism that underlies the change in microtubule orientation will provide insight into plant cell growth and morphogenesis. This study demonstrated that AUGMIN subunit8 (AUG8) in Arabidopsis thaliana is a novel microtubule plus-end binding protein that participates in the reorientation of microtubules in hypocotyls when cell elongation slows down. AUG8 bound to the plus ends of microtubules and promoted tubulin polymerization in vitro. In vivo, AUG8 was recruited to the microtubule branch site immediately before nascent microtubules branched out. It specifically associated with the plus ends of growing cortical microtubules and regulated microtubule dynamics, which facilitated microtubule reorientation when microtubules changed their growth trajectory or encountered obstacle microtubules during microtubule reorientation. This study thus reveals a novel mechanism underlying microtubule reorientation that is critical for modulating cell elongation in Arabidopsis. PMID:23735294

  8. SKI-178: A Multitargeted Inhibitor of Sphingosine Kinase and Microtubule Dynamics Demonstrating Therapeutic Efficacy in Acute Myeloid Leukemia Models.

    PubMed

    Hengst, Jeremy A; Dick, Taryn E; Sharma, Arati; Doi, Kenichiro; Hegde, Shailaja; Tan, Su-Fern; Geffert, Laura M; Fox, Todd E; Sharma, Arun K; Desai, Dhimant; Amin, Shantu; Kester, Mark; Loughran, Thomas P; Paulson, Robert F; Claxton, David F; Wang, Hong-Gang; Yun, Jong K

    2017-01-01

    To further characterize the selectivity, mechanism-of-action and therapeutic efficacy of the novel small molecule inhibitor, SKI-178. Using the state-of-the-art Cellular Thermal Shift Assay (CETSA) technique to detect "direct target engagement" of proteins intact cells, in vitro and in vivo assays, pharmacological assays and multiple mouse models of acute myeloid leukemia (AML). Herein, we demonstrate that SKI-178 directly target engages both Sphingosine Kinase 1 and 2. We also present evidence that, in addition to its actions as a Sphingosine Kinase Inhibitor, SKI-178 functions as a microtubule network disrupting agent both in vitro and in intact cells. Interestingly, we separately demonstrate that simultaneous SphK inhibition and microtubule disruption synergistically induces apoptosis in AML cell lines. Furthermore, we demonstrate that SKI-178 is well tolerated in normal healthy mice. Most importantly, we demonstrate that SKI-178 has therapeutic efficacy in several mouse models of AML. SKI-178 is a multi-targeted agent that functions both as an inhibitor of the SphKs as well as a disruptor of the microtubule network. SKI-178 induced apoptosis arises from a synergistic interaction of these two activities. SKI-178 is safe and effective in mouse models of AML, supporting its further development as a multi-targeted anti-cancer therapeutic agent.

  9. Insights into Antiparallel Microtubule Crosslinking by PRC1, a Conserved Nonmotor Microtubule Binding Protein

    SciTech Connect

    Subramanian, Radhika; Wilson-Kubalek, Elizabeth M.; Arthur, Christopher P.; Bick, Matthew J.; Campbell, Elizabeth A.; Darst, Seth A.; Milligan, Ronald A.; Kapoor, Tarun M.

    2010-09-03

    Formation of microtubule architectures, required for cell shape maintenance in yeast, directional cell expansion in plants and cytokinesis in eukaryotes, depends on antiparallel microtubule crosslinking by the conserved MAP65 protein family. Here, we combine structural and single molecule fluorescence methods to examine how PRC1, the human MAP65, crosslinks antiparallel microtubules. We find that PRC1's microtubule binding is mediated by a structured domain with a spectrin-fold and an unstructured Lys/Arg-rich domain. These two domains, at each end of a homodimer, are connected by a linkage that is flexible on single microtubules, but forms well-defined crossbridges between antiparallel filaments. Further, we show that PRC1 crosslinks are compliant and do not substantially resist filament sliding by motor proteins in vitro. Together, our data show how MAP65s, by combining structural flexibility and rigidity, tune microtubule associations to establish crosslinks that selectively mark antiparallel overlap in dynamic cytoskeletal networks.

  10. GDP-tubulin incorporation into growing microtubules modulates polymer stability.

    PubMed

    Valiron, Odile; Arnal, Isabelle; Caudron, Nicolas; Job, Didier

    2010-06-04

    Microtubule growth proceeds through the endwise addition of nucleotide-bound tubulin dimers. The microtubule wall is composed of GDP-tubulin subunits, which are thought to come exclusively from the incorporation of GTP-tubulin complexes at microtubule ends followed by GTP hydrolysis within the polymer. The possibility of a direct GDP-tubulin incorporation into growing polymers is regarded as hardly compatible with recent structural data. Here, we have examined GTP-tubulin and GDP-tubulin incorporation into polymerizing microtubules using a minimal assembly system comprised of nucleotide-bound tubulin dimers, in the absence of free nucleotide. We find that GDP-tubulin complexes can efficiently co-polymerize with GTP-tubulin complexes during microtubule assembly. GDP-tubulin incorporation into microtubules occurs with similar efficiency during bulk microtubule assembly as during microtubule growth from seeds or centrosomes. Microtubules formed from GTP-tubulin/GDP-tubulin mixtures display altered microtubule dynamics, in particular a decreased shrinkage rate, apparently due to intrinsic modifications of the polymer disassembly properties. Thus, although microtubules polymerized from GTP-tubulin/GDP-tubulin mixtures or from homogeneous GTP-tubulin solutions are both composed of GDP-tubulin subunits, they have different dynamic properties, and this may reveal a novel form of microtubule "structural plasticity."

  11. GDP-Tubulin Incorporation into Growing Microtubules Modulates Polymer Stability*

    PubMed Central

    Valiron, Odile; Arnal, Isabelle; Caudron, Nicolas; Job, Didier

    2010-01-01

    Microtubule growth proceeds through the endwise addition of nucleotide-bound tubulin dimers. The microtubule wall is composed of GDP-tubulin subunits, which are thought to come exclusively from the incorporation of GTP-tubulin complexes at microtubule ends followed by GTP hydrolysis within the polymer. The possibility of a direct GDP-tubulin incorporation into growing polymers is regarded as hardly compatible with recent structural data. Here, we have examined GTP-tubulin and GDP-tubulin incorporation into polymerizing microtubules using a minimal assembly system comprised of nucleotide-bound tubulin dimers, in the absence of free nucleotide. We find that GDP-tubulin complexes can efficiently co-polymerize with GTP-tubulin complexes during microtubule assembly. GDP-tubulin incorporation into microtubules occurs with similar efficiency during bulk microtubule assembly as during microtubule growth from seeds or centrosomes. Microtubules formed from GTP-tubulin/GDP-tubulin mixtures display altered microtubule dynamics, in particular a decreased shrinkage rate, apparently due to intrinsic modifications of the polymer disassembly properties. Thus, although microtubules polymerized from GTP-tubulin/GDP-tubulin mixtures or from homogeneous GTP-tubulin solutions are both composed of GDP-tubulin subunits, they have different dynamic properties, and this may reveal a novel form of microtubule “structural plasticity.” PMID:20371874

  12. Fast ion dynamics measured by collective Thomson scattering

    NASA Astrophysics Data System (ADS)

    Bindslev, Henrik

    2001-10-01

    In magnetically confined fusion plasmas, fast ions, from fusion reactions and auxiliary heating, typically carry a third of the total plasma kinetic energy, and even more of the free energy. This free energy must be channelled into heating the bulk plasma, but is also available for driving waves in the plasma, affecting confinement of bulk and fast ions. We know that fast ions can drive Alfvén waves, affect sawteeth and fishbones. In turn all three can redistribute or ejects the fast ions. Wave particle interaction, also the basis of Ion Cyclotron Resonance Heating (ICRH), depends crucially on the phase space distribution of the fast ions. Conversely the effect waves and instabilities have of fast ions will manifest itself in the detail of the fast ion phase space distribution. To explore the dynamics of fast ions and their interaction with the plasma thus begs for measurements of the fast ion distribution resolved in space, time and velocity. This has long been the promise of Collective Thomson Scattering (CTS) [1]. First demonstrated at JET [2]and subsequently at TEXTOR [3], CTS is living up to its promise and is now contributing to the understanding of fast ion dynamics. With the TEXTOR CTS, temporal behaviours of fast ion velocity distributions have been uncovered. The fast ion populations are produced by ICRH and Neutral Beam Injection (NBI). At sawteeth, we see clear variations in the fast ion population, which depend on ion energy, pitch angle and spatial location. Investigating the region just inside the inversion radius, we find that ions with small parallel energy, and with perpendicular energies up to a soft threshold well above thermal, are lost from the high field side near the inversion radius, while more energetic ions in the same pitch angle range remain insensitive to the sawteeth. The sensitive population could include the potato and stagnation orbit particles identified theoretically as being sensitive the sawteeth [4]. Under the same conditions

  13. Microtubules search for chromosomes by pivoting around the spindle pole

    NASA Astrophysics Data System (ADS)

    Tolic-Norrelykke, Iva

    2014-03-01

    During cell division, proper segregation of genetic material between the two daughter cells requires that the spindle microtubules attach to the chromosomes via kinetochores, protein complexes on the chromosome. The central question, how microtubules find kinetochores, is still under debate. We observed in fission yeast that kinetochores are captured by microtubules pivoting around the spindle pole body, instead of growing towards the kinetochores. By introducing a theoretical model, we show that the observed angular movement of microtubules is sufficient to explain the process of kinetochore capture. Our theory predicts that the speed of the capture process depends mainly on how fast microtubules pivot. We confirmed this prediction experimentally by speeding up and slowing down microtubule pivoting. Thus, microtubules explore space by pivoting, as they search for intracellular targets such as kinetochores.

  14. White dwarf dynamical interactions and fast optical transients

    NASA Astrophysics Data System (ADS)

    García-Berro, Enrique; Badenes, Carles; Aznar-Siguán, Gabriela; Lorén-Aguilar, Pablo

    2017-07-01

    Recent advances in time-domain astronomy have uncovered a new class of optical transients with time-scales shorter than typical supernovae and a wide range of peak luminosities. Several subtypes have been identified within this broad class, including Ca-rich transients, Type Ia supernovae (SNe Ia) and fast/bright transients. We examine the predictions from a state-of-the-art grid of three-dimensional simulations of dynamical white dwarf interactions in the context of these fast optical transients. We find that for collisions involving carbon-oxygen or oxygen-neon white dwarfs, the peak luminosities and durations of the light curves in our models are in good agreement with the properties of fast/bright transients. When one of the colliding white dwarfs is made of helium, the properties of the light curves are similar to those of Ca-rich gap transients. The model light curves from our white dwarf collisions are too slow to reproduce those of SNe Ia, and too fast to match any normal or peculiar SNe Ia.

  15. Fast Learning for Big Data Using Dynamic Function

    NASA Astrophysics Data System (ADS)

    Alwajeeh, T.; Alharthi, A. F.; Rahmat, R. F.; Budiarto, R.

    2017-04-01

    This paper discusses an approach for fast learning in big data. The proposed approach combines momentum factor and training rate, where the momentum is a dynamic function of the training rate in order to avoid overshoot weight to speed up training time of the back propagation neural network engine. The two factors are adjusted dinamically to assure the fast convergence of the training process. Experiments on 2-bit XOR parity problem were conducted using Matlab and a sigmoid function. Experiments results show that the proposed approach signifcantly performs better compare to the standard back propagation neural network in terms of training time. Both, the maximum training time and the minimum training time are significantly faster than the standard algorithm at error threshold of 10-5.

  16. Mechanical Properties of Doubly Stabilized Microtubule Filaments

    PubMed Central

    Hawkins, Taviare L.; Sept, David; Mogessie, Binyam; Straube, Anne; Ross, Jennifer L.

    2013-01-01

    Microtubules are cytoskeletal filaments responsible for cell morphology and intracellular organization. Their dynamical and mechanical properties are regulated through the nucleotide state of the tubulin dimers and the binding of drugs and/or microtubule-associated proteins. Interestingly, microtubule-stabilizing factors have differential effects on microtubule mechanics, but whether stabilizers have cumulative effects on mechanics or whether one effect dominates another is not clear. This is especially important for the chemotherapeutic drug Taxol, an important anticancer agent and the only known stabilizer that reduces the rigidity of microtubules. First, we ask whether Taxol will combine additively with another stabilizer or whether one stabilizer will dominate another. We call microtubules in the presence of Taxol and another stabilizer, doubly stabilized. Second, since Taxol is often added to a number of cell types for therapeutic purposes, it is important from a biomedical perspective to understand how Taxol added to these systems affects the mechanical properties in treated cells. To address these questions, we use the method of freely fluctuating filaments with our recently developed analysis technique of bootstrapping to determine the distribution of persistence lengths of a large population of microtubules treated with different stabilizers, including Taxol, guanosine-5′ [(α, β)-methyleno] triphosphate, guanosine-5′-O-(3-thiotriphosphate), tau, and MAP4. We find that combinations of these stabilizers have novel effects on the mechanical properties of microtubules. PMID:23561528

  17. Kinesin-5 is a microtubule polymerase

    PubMed Central

    Chen, Yalei; Hancock, William O

    2015-01-01

    Kinesin-5 slides antiparallel microtubules during spindle assembly, and regulates the branching of growing axons. Besides the mechanical activities enabled by its tetrameric configuration, the specific motor properties of kinesin-5 that underlie its cellular function remain unclear. Here by engineering a stable kinesin-5 dimer and reconstituting microtubule dynamics in vitro, we demonstrate that kinesin-5 promotes microtubule polymerization by increasing the growth rate and decreasing the catastrophe frequency. Strikingly, microtubules growing in the presence of kinesin-5 have curved plus ends, suggesting that the motor stabilizes growing protofilaments. Single-molecule fluorescence experiments reveal that kinesin-5 remains bound to the plus ends of static microtubules for 7 s, and tracks growing microtubule plus ends in a manner dependent on its processivity. We propose that kinesin-5 pauses at microtubule plus ends and enhances polymerization by stabilizing longitudinal tubulin–tubulin interactions, and that these activities underlie the ability kinesin-5 to slide and stabilize microtubule bundles in cells. PMID:26437877

  18. Mechanical properties of doubly stabilized microtubule filaments.

    PubMed

    Hawkins, Taviare L; Sept, David; Mogessie, Binyam; Straube, Anne; Ross, Jennifer L

    2013-04-02

    Microtubules are cytoskeletal filaments responsible for cell morphology and intracellular organization. Their dynamical and mechanical properties are regulated through the nucleotide state of the tubulin dimers and the binding of drugs and/or microtubule-associated proteins. Interestingly, microtubule-stabilizing factors have differential effects on microtubule mechanics, but whether stabilizers have cumulative effects on mechanics or whether one effect dominates another is not clear. This is especially important for the chemotherapeutic drug Taxol, an important anticancer agent and the only known stabilizer that reduces the rigidity of microtubules. First, we ask whether Taxol will combine additively with another stabilizer or whether one stabilizer will dominate another. We call microtubules in the presence of Taxol and another stabilizer, doubly stabilized. Second, since Taxol is often added to a number of cell types for therapeutic purposes, it is important from a biomedical perspective to understand how Taxol added to these systems affects the mechanical properties in treated cells. To address these questions, we use the method of freely fluctuating filaments with our recently developed analysis technique of bootstrapping to determine the distribution of persistence lengths of a large population of microtubules treated with different stabilizers, including Taxol, guanosine-5' [(α, β)-methyleno] triphosphate, guanosine-5'-O-(3-thiotriphosphate), tau, and MAP4. We find that combinations of these stabilizers have novel effects on the mechanical properties of microtubules.

  19. Cortical microtubule contacts position the spindle in C. elegans embryos.

    PubMed

    Kozlowski, Cleopatra; Srayko, Martin; Nedelec, Francois

    2007-05-04

    Interactions between microtubules and the cell cortex play a critical role in positioning organelles in a variety of biological contexts. Here we used Caenorhabditis elegans as a model system to study how cortex-microtubule interactions position the mitotic spindle in response to polarity cues. Imaging EBP-2::GFP and YFP::alpha-tubulin revealed that microtubules shrink soon after cortical contact, from which we propose that cortical adaptors mediate microtubule depolymerization energy into pulling forces. We also observe association of dynamic microtubules to form astral fibers that persist, despite the catastrophe events of individual microtubules. Computer simulations show that these effects, which are crucially determined by microtubule dynamics, can explain anaphase spindle oscillations and posterior displacement in 3D.

  20. Dual Role for Microtubules in Regulating Cortical Contractility during Cytokinesis

    PubMed Central

    Murthy, Kausalya; Wadsworth, Patricia

    2008-01-01

    Microtubules stimulate contractile ring formation in the equatorial cortex and simultaneously suppress contractility in the polar cortex; how they accomplish these differing activities is incompletely understood. We measured the behavior of GFP-actin in mammalian cells treated with nocodazole under conditions that either completely eliminate microtubules or selectively disassemble astral microtubules. Selective disassembly of astral microtubules resulted functional contractile rings that were wider than controls and had altered dynamic activity, as measured by FRAP. Complete microtubule disassembly or selective loss of astral microtubules resulted in wave-like contractile behavior of actin in the non-equatorial cortex and mislocalization of myosin II and Rho. FRAP experiments showed that both contractility and actin polymerization contributed to the wave-like behavior of actin. Wave-like, contractile behavior in anaphase cells was Rho-dependent. We conclude that dynamic astral microtubules function to suppress Rho activation in the nonequatorial cortex, limiting the contractile activity of the polar cortex. PMID:18559890

  1. Lessons from in vitro reconstitution analyses of plant microtubule-associated proteins

    PubMed Central

    Hamada, Takahiro

    2014-01-01

    Plant microtubules, composed of tubulin GTPase, are irreplaceable cellular components that regulate the directions of cell expansion and cell division, chromosome segregation and cell plate formation. To accomplish these functions, plant cells organize microtubule structures by regulating microtubule dynamics. Each microtubule localizes to the proper position with repeated growth and shortening. Although it is possible to reconstitute microtubule dynamics with pure tubulin solution in vitro, many microtubule-associated proteins (MAPs) govern microtubule dynamics in cells. In plants, major MAPs are identified as microtubule stabilizers (CLASP and MAP65 etc.), microtubule destabilizers (kinesin-13, katanin, MAP18 and MDP25), and microtubule dynamics promoters (EB1, MAP215, MOR1, MAP200, SPR2). Mutant analyses with forward and reverse genetics have shown the importance of microtubules and individual MAPs in plants. However, it is difficult to understand how each MAP regulates microtubule dynamics, such as growth and shortening, through mutant analyses. In vitro reconstitution analyses with individual purified MAPs and tubulin are powerful tools to reveal how each MAP regulates microtubule dynamics at the molecular level. In this review, I summarize the results of in vitro reconstitution analyses and introduce current models of how each MAP regulates microtubule dynamic instability. PMID:25202315

  2. Lessons from in vitro reconstitution analyses of plant microtubule-associated proteins.

    PubMed

    Hamada, Takahiro

    2014-01-01

    Plant microtubules, composed of tubulin GTPase, are irreplaceable cellular components that regulate the directions of cell expansion and cell division, chromosome segregation and cell plate formation. To accomplish these functions, plant cells organize microtubule structures by regulating microtubule dynamics. Each microtubule localizes to the proper position with repeated growth and shortening. Although it is possible to reconstitute microtubule dynamics with pure tubulin solution in vitro, many microtubule-associated proteins (MAPs) govern microtubule dynamics in cells. In plants, major MAPs are identified as microtubule stabilizers (CLASP and MAP65 etc.), microtubule destabilizers (kinesin-13, katanin, MAP18 and MDP25), and microtubule dynamics promoters (EB1, MAP215, MOR1, MAP200, SPR2). Mutant analyses with forward and reverse genetics have shown the importance of microtubules and individual MAPs in plants. However, it is difficult to understand how each MAP regulates microtubule dynamics, such as growth and shortening, through mutant analyses. In vitro reconstitution analyses with individual purified MAPs and tubulin are powerful tools to reveal how each MAP regulates microtubule dynamics at the molecular level. In this review, I summarize the results of in vitro reconstitution analyses and introduce current models of how each MAP regulates microtubule dynamic instability.

  3. Fast-growing species and sustainability (productivity and site dynamics of three fast-growing species)

    SciTech Connect

    Reddy, A.N.; Sugur, G.V.

    1992-12-31

    Growth of three fast-growing species, raised in a high rainfall zone (2000-2500 mm per annum) has been compared, and the associated site dynamics studies in the Western Ghat area of Karnataka State. Two fast-growing exotics, Acacia auriculiformis and Castuarina equisitifolia, were planted on degraded, open sites at high planting densities (5000 plants ha{sup {minus}1}), and one native fast-growing species. Dendrocalamus strictus, was planted on a good site under seasonal irrigation and wider spacing (500 plants ha{sup {minus}1}). These were studies at the age of 5 years for their comparative productivity, quantity of litter fall and changes in nutrient and microbial status. Among these species, A. auriculiformis recorded the highest total productivity closely followed by D. strictus. However, the MAI after 5 years indicated a higher productivity for D. strictus, when culm production attained harvestable size. C. equisitifolia was a close third. It was also found that D. strictus produced higher biomass at lower planting densities, under better sites and management. The litter fall and changes in nutrient status indicated the highest efficiency in A. auriculiformis, followed by C. equisitifolia. It was concluded that the higher planting density was the major contributing factor; the values were comparatively low for D. strictus mainly owing to a lower stocking density of plants.

  4. Potent Antiproliferative Cembrenoids Accumulate in Tobacco upon Infection with Rhodococcus fascians and Trigger Unusual Microtubule Dynamics in Human Glioblastoma Cells

    PubMed Central

    Nacoulma, Aminata P.; Megalizzi, Veronique; Pottier, Laurent R.; De Lorenzi, Manuela; Thoret, Sylviane; Dubois, Joëlle; Vandeputte, Olivier M.; Duez, Pierre; Vereecke, Danny; Jaziri, Mondher El

    2013-01-01

    Aims Though plant metabolic changes are known to occur during interactions with bacteria, these were rarely challenged for pharmacologically active compounds suitable for further drug development. Here, the occurrence of specific chemicals with antiproliferative activity against human cancer cell lines was evidenced in hyperplasia (leafy galls) induced when plants interact with particular phytopathogens, such as the Actinomycete Rhodococcus fascians. Methods We examined leafy galls fraction F3.1.1 on cell proliferation, cell division and cytoskeletal disorganization of human cancer cell lines using time-lapse videomicroscopy imaging, combined with flow cytometry and immunofluorescence analysis. We determined the F3.1.1-fraction composition by gas chromatography coupled to mass spectrometry. Results The leafy galls induced on tobacco by R. fascians yielded fraction F3.1.1 which inhibited proliferation of glioblastoma U373 cells with an IC50 of 4.5 µg/mL, F.3.1.1 was shown to increase cell division duration, cause nuclear morphological deformations and cell enlargement, and, at higher concentrations, karyokinesis defects leading to polyploidization and apoptosis. F3.1.1 consisted of a mixture of isomers belonging to the cembrenoids. The cellular defects induced by F3.1.1 were caused by a peculiar cytoskeletal disorganization, with the occurrence of fragmented tubulin and strongly organized microtubule aggregates within the same cell. Colchicine, paclitaxel, and cembrene also affected U373 cell proliferation and karyokinesis, but the induced microtubule rearrangement was very different from that provoked by F3.1.1. Altogether our data indicate that the cembrenoid isomers in F3.1.1 have a unique mode of action and are able to simultaneously modulate microtubule polymerization and stability. PMID:24167576

  5. Effect of the microtubule-associated protein tau on dynamics of single-headed motor proteins KIF1A

    NASA Astrophysics Data System (ADS)

    Sparacino, J.; Farías, M. G.; Lamberti, P. W.

    2014-02-01

    Intracellular transport based on molecular motors and its regulation are crucial to the functioning of cells. Filamentary tracks of the cells are abundantly decorated with nonmotile microtubule-associated proteins, such as tau. Motivated by experiments on kinesin-tau interactions [Dixit et al., Science 319, 1086 (2008), 10.1126/science.1152993] we developed a stochastic model of interacting single-headed motor proteins KIF1A that also takes into account the interactions between motor proteins and tau molecules. Our model reproduces experimental observations and predicts significant effects of tau on bound time and run length which suggest an important role of tau in regulation of kinesin-based transport.

  6. Evolving tip structures can explain age-dependent microtubule catastrophe.

    PubMed

    Coombes, Courtney E; Yamamoto, Ami; Kenzie, Madeline R; Odde, David J; Gardner, Melissa K

    2013-07-22

    Microtubules are key structural and transport elements in cells. The dynamics at microtubule ends are characterized by periods of slow growth, followed by stochastic switching events termed "catastrophes," in which microtubules suddenly undergo rapid shortening. Growing microtubules are thought to be protected from catastrophe by a GTP-tubulin "cap": GTP-tubulin subunits add to the tips of growing microtubules but are subsequently hydrolyzed to GDP-tubulin subunits once they are incorporated into the microtubule lattice. Loss of the GTP-tubulin cap exposes GDP-tubulin subunits at the microtubule tip, resulting in a catastrophe event. However, the mechanistic basis for sudden loss of the GTP cap, leading to catastrophe, is not known. To investigate microtubule catastrophe events, we performed 3D mechanochemical simulations that account for interactions between neighboring protofilaments. We found that there are two separate factors that contribute to catastrophe events in the 3D simulation: the GTP-tubulin cap size, which settles into a steady-state value that depends on the free tubulin concentration during microtubule growth, and the structure of the microtubule tip. Importantly, 3D simulations predict, and both fluorescence and electron microscopy experiments confirm, that microtubule tips become more tapered as the microtubule grows. This effect destabilizes the tip and ultimately contributes to microtubule catastrophe. Thus, the likelihood of a catastrophe event may be intimately linked to the aging physical structure of the growing microtubule tip. These results have important consequences for catastrophe regulation in cells, as microtubule-associated proteins could promote catastrophe events in part by modifying microtubule tip structures.

  7. Dynamically controlled energy dissipation for fast magnetic vortex switching

    NASA Astrophysics Data System (ADS)

    Badea, R.; Berezovsky, J.

    2017-09-01

    Manipulation of vortex states in magnetic media provides new routes towards information storage and processing technology. The typical slow relaxation times (˜100 ns) of magnetic vortex dynamics may present an obstacle to the realization of these applications. Here, we investigate how a vortex state in a ferromagnetic microdisk can be manipulated in a way that translates the vortex core while enhancing energy dissipation to rapidly damp the vortex dynamics. We use time-resolved differential magneto-optical Kerr effect microscopy to measure the motion of the vortex core in response to applied magnetic fields. We first map out how the vortex core becomes sequentially trapped by pinning sites as it translates across the disk. After applying a fast magnetic field step to translate the vortex from one pinning site to another, we observe long-lived dynamics of the vortex as it settles to the new equilibrium. We then demonstrate how the addition of a short (<10 ns) magnetic field pulse can induce additional energy dissipation, strongly damping the long-lived dynamics. A model of the vortex dynamics using the Thiele equation of motion explains the mechanism behind this effect.

  8. Mechanism of action of antitumor drugs that interact with microtubules and tubulin.

    PubMed

    Jordan, M A

    2002-01-01

    Microtubules, major structural components in cells, are the target of a large and diverse group of natural product anticancer drugs. Given the success of this class of drugs in cancer treatment, it can be argued that microtubules represent the single best cancer target identified to date. Microtubules are highly dynamic assemblies of the protein tubulin. They readily polymerize and depolymerize in cells, and they undergo two interesting kinds of dynamics called dynamic instability and treadmilling. These dynamic behaviors are crucial to mitosis, the process of chromosomal division to form new cells. Microtubule dynamics are highly regulated during the cell cycle by endogenous cellular regulators. In addition, many antitumor drugs and natural compounds alter the polymerization dynamics of microtubules, blocking mitosis, and consequently, inducing cell death by apoptosis. These drugs include several that inhibit microtubule polymerization at high drug concentrations, namely, the Vinca alkaloids, cryptophycins, halichondrins, estramustine, and colchicine. Another group of these compounds stimulates microtubule polymerization and stabilizes microtubules at high concentrations. These include Taxol, Taxotere, eleutherobins, epothilones, laulimalide, sarcodictyins, and discodermolide. Importantly, considerable evidence indicates that, at lower concentrations, these drugs have a common mechanism of action; they suppress the dynamics of microtubules without appreciably changing the mass of microtubules in the cell. The drugs bind to diverse sites on tubulin and at different positions within the microtubule, and they have diverse effects on microtubule dynamics. However, by their common mechanism of suppression microtubule dynamics, they all block mitosis at the metaphase/anaphase transition, and induce cell death.

  9. Structural Mutants of the Spindle Pole Body Cause Distinct Alteration of Cytoplasmic Microtubules and Nuclear Dynamics in Multinucleated Hyphae

    PubMed Central

    Lang, Claudia; Grava, Sandrine; Finlayson, Mark; Trimble, Rhonda; Philippsen, Peter

    2010-01-01

    In the multinucleate fungus Ashbya gossypii, cytoplasmic microtubules (cMTs) emerge from the spindle pole body outer plaque (OP) in perpendicular and tangential directions. To elucidate the role of cMTs in forward/backward movements (oscillations) and bypassing of nuclei, we constructed mutants potentially affecting cMT nucleation or stability. Hyphae lacking the OP components AgSpc72, AgNud1, AgCnm67, or the microtubule-stabilizing factor AgStu2 grew like wild- type but showed substantial alterations in the number, length, and/or nucleation sites of cMTs. These mutants differently influenced nuclear oscillation and bypassing. In Agspc72Δ, only long cMTs were observed, which emanate tangentially from reduced OPs; nuclei mainly moved with the cytoplasmic stream but some performed rapid bypassing. Agnud1Δ and Agcnm67Δ lack OPs; short and long cMTs emerged from the spindle pole body bridge/half-bridge structures, explaining nuclear oscillation and bypassing in these mutants. In Agstu2Δ only very short cMTs emanated from structurally intact OPs; all nuclei moved with the cytoplasmic stream. Therefore, long tangential cMTs promote nuclear bypassing and short cMTs are important for nuclear oscillation. Our electron microscopy ultrastructural analysis also indicated that assembly of the OP occurs in a stepwise manner, starting with AgCnm67, followed by AgNud1 and lastly AgSpc72. PMID:20053682

  10. The microtubule as a breast cancer target.

    PubMed

    Higa, Gerald M

    2011-04-01

    Manifestations of non-equilibrium polarity, random transgressions, and catastrophes are not conditions usually associated with a sense of normalcy. Yet these disquieting features distinguish a utilitarian behavior known as dynamic instability, the signature characteristic of the microtubule. Long known to be a tumor target, disruption of this fragile attribute is associated with some of the most effective agents used to treat breast cancer today. Although the biology of the microtubule is under intense investigation much still remains unknown. As such, our understanding of regulatory molecules and resistance mechanisms are still rudimentary, further compromising our ability to develop novel therapeutic strategies to improve microtubule inhibitors. This review focuses on several classes of anti-microtubule agents and their effects on the functional dynamics of the targeted polymer. The primary objective is to critically examine the molecular mechanisms that contribute to tumor cell death, tumor-resistance, and incident neurotoxicity.

  11. Rho-associated coiled-coil kinase (ROCK) protein controls microtubule dynamics in a novel signaling pathway that regulates cell migration.

    PubMed

    Schofield, Alice V; Steel, Rohan; Bernard, Ora

    2012-12-21

    The two members of the Rho-associated coiled-coil kinase (ROCK1 and 2) family are established regulators of actin dynamics that are involved in the regulation of the cell cycle as well as cell motility and invasion. Here, we discovered a novel signaling pathway whereby ROCK regulates microtubule (MT) acetylation via phosphorylation of the tubulin polymerization promoting protein 1 (TPPP1/p25). We show that ROCK phosphorylation of TPPP1 inhibits the interaction between TPPP1 and histone deacetylase 6 (HDAC6), which in turn results in increased HDAC6 activity followed by a decrease in MT acetylation. As a consequence, we show that TPPP1 phosphorylation by ROCK increases cell migration and invasion via modulation of cellular acetyl MT levels. We establish here that the ROCK-TPPP1-HDAC6 signaling pathway is important for the regulation of cell migration and invasion.

  12. Expansion and Polarity Sorting in Microtubule-Dynein Bundles

    NASA Astrophysics Data System (ADS)

    Zemel, A.; Mogilner, A.

    Interactions of multiple molecular motors with dynamicpolymers, such as actin and microtubules, form the basis for many processes in the cell cytoskeleton. One example is the active `sorting' of microtubule bundles by dynein molecular motors into aster-like arrays of microtubules; in these bundles dynein motors cross-link and slide neighboring microtubules apart. A number of models have been suggested to quantify the active dynamics of cross-linked bundles of polar filaments. In the case of densely packed bundles, however, a major complication arises from the fact that each microtubule interacts with multiple neighboring filaments. To explicitly take these interactions into account we performed detailed computer simulations in which the equations of motion for all microtubules in the bundle were iteratively solved. Our simulations demonstrate the phenomenon of polarity sorting and reveal the variable-rate of the concurrent bundle expansion and its dependence on the nature of the microtubule-motor interactions.

  13. Reovirus Cell Entry Requires Functional Microtubules

    PubMed Central

    Mainou, Bernardo A.; Zamora, Paula F.; Ashbrook, Alison W.; Dorset, Daniel C.; Kim, Kwang S.; Dermody, Terence S.

    2013-01-01

    ABSTRACT Mammalian reovirus binds to cell-surface glycans and junctional adhesion molecule A and enters cells by receptor-mediated endocytosis in a process dependent on β1 integrin. Within the endocytic compartment, reovirus undergoes stepwise disassembly, allowing release of the transcriptionally active viral core into the cytoplasm. To identify cellular mediators of reovirus infectivity, we screened a library of small-molecule inhibitors for the capacity to block virus-induced cytotoxicity. In this screen, reovirus-induced cell killing was dampened by several compounds known to impair microtubule dynamics. Microtubule inhibitors were assessed for blockade of various stages of the reovirus life cycle. While these drugs did not alter reovirus cell attachment or internalization, microtubule inhibitors diminished viral disassembly kinetics with a concomitant decrease in infectivity. Reovirus virions colocalize with microtubules and microtubule motor dynein 1 during cell entry, and depolymerization of microtubules results in intracellular aggregation of viral particles. These data indicate that functional microtubules are required for proper sorting of reovirus virions following internalization and point to a new drug target for pathogens that use the endocytic pathway to invade host cells. PMID:23820395

  14. Analysis of microtubules in isolated axoplasm from the squid giant axon.

    PubMed

    Song, Yuyu; Brady, Scott T

    2013-01-01

    Biochemical specialization of cellular microtubules has emerged as a primary mechanism in specifying microtubule dynamics and function. However, study of specific subcellular populations of cytoplasmic microtubules has been limited, particularly in the nervous system. The complexity of nervous tissue makes it difficult to distinguish neuronal microtubules from glial microtubules, and axonal microtubules from dendritic and cell body microtubules. The problem is further compounded by the finding that a large fraction of neuronal tubulin is lost during standard preparations of brain tubulin, and this population of stable microtubules is enriched in axons. Here, we consider a unique biological model that provides a unique opportunity to study axonal microtubules both in situ and in vitro: isolated axoplasm from the squid giant axon. The axoplasm model represents a powerful system for addressing fundamental questions of microtubule structure and function in the axon. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Fast and Slow Wetting Dynamics on nanostructured surfaces

    NASA Astrophysics Data System (ADS)

    Nandyala, Dhiraj; Rahmani, Amir; Cubaud, Thomas; Colosqui, Carlos

    2015-11-01

    This talk will present force-displacement and spontaneous drop spreading measurements on diverse nanostructured surfaces (e.g., mesoporous titania thin films, nanoscale pillared structures, on silica or glass substrates). Experimental measurements are performed for water-air and water-oil systems. The dynamics of wetting observed in these experiments can present remarkable crossovers from fast to slow or arrested dynamics. The emergence of a slow wetting regime is attributed to a multiplicity of metastable equilibrium states induced by nanoscale surface features. The crossover point can be dramatically advanced or delayed by adjusting specific physical parameters (e.g., viscosity of the wetting phases) and geometric properties of the surface nanostructure (e.g., nanopore/pillar radius and separation). Controlling the crossover point to arrested dynamics can effectively modify the degree of contact angle hysteresis and magnitude of liquid adhesion forces observed on surfaces of different materials. This work is supported by a SEED Award from The Office of Brookhaven National Laboratory Affairs at Stony Brook University.

  16. Fast dynamics in glass-forming polymers revisited

    SciTech Connect

    Colmenero, J.; Arbe, A.; Mijangos, C.; Reinecke, H.

    1997-12-31

    The so called fast-dynamics of glass-forming systems as observed by time of flight (TOF) neutron scattering techniques is revisited. TOF-results corresponding to several glass-forming polymers with different chemical microstructure and glass-transition temperature are presented together with the theoretical framework proposed by the authors to interpret these results. The main conclusion is that the TOF-data can be explained in terms of quasiharmonic vibrations and the particular short time behavior of the segmental dynamics. The segmental dynamics display in the very short time range (t {approx} 2 ps) a crossover from a simple exponential behavior towards a non-exponential regime. The first exponential decay, which is controlled by C-C rotational barriers, can be understood as a trace of the behavior of the system in absence of the effects (correlations, cooperativity, memory effects {hor_ellipsis}) which characterize the dense supercooled liquid like state against the normal liquid state. The non-exponential regime at t > 2 ps corresponds to what is usually understood as {alpha} and {beta} relaxations. Some implications of these results are also discussed.

  17. Compressed correlation functions and fast aging dynamics in metallic glasses

    NASA Astrophysics Data System (ADS)

    Ruta, B.; Baldi, G.; Monaco, G.; Chushkin, Y.

    2013-02-01

    We present x-ray photon correlation spectroscopy measurements of the atomic dynamics in a Zr67Ni33 metallic glass, well below its glass transition temperature. We find that the decay of the density fluctuations can be well described by compressed, thus faster than exponential, correlation functions which can be modeled by the well-known Kohlrausch-Williams-Watts function with a shape exponent β larger than one. This parameter is furthermore found to be independent of both waiting time and wave-vector, leading to the possibility to rescale all the correlation functions to a single master curve. The dynamics in the glassy state is additionally characterized by different aging regimes which persist in the deep glassy state. These features seem to be universal in metallic glasses and suggest a nondiffusive nature of the dynamics. This universality is supported by the possibility of describing the fast increase of the structural relaxation time with waiting time using a unique model function, independently of the microscopic details of the system.

  18. Cavitation in confined water: ultra-fast bubble dynamics

    NASA Astrophysics Data System (ADS)

    Vincent, Olivier; Marmottant, Philippe

    2012-02-01

    In the hydraulic vessels of trees, water can be found at negative pressure. This metastable state, corresponding to mechanical tension, is achieved by evaporation through a porous medium. It can be relaxed by cavitation, i.e. the sudden nucleation of vapor bubbles. Harmful for the tree due to the subsequent emboli of sap vessels, cavitation is on the contrary used by ferns to eject spores very swiftly. We will focus here on the dynamics of the cavitation bubble, which is of primary importance to explain the previously cited natural phenomena. We use the recently developed method of artificial tress, using transparent hydrogels as the porous medium. Our experiments, on water confined in micrometric hydrogel cavities, show an extremely fast dynamics: bubbles are nucleated at the microsecond timescale. For cavities larger than 100 microns, the bubble ``rings'' with damped oscillations at MHz frequencies, whereas for smaller cavities the oscillations become overdamped. This rich dynamics can be accounted for by a model we developed, leading to a modified Rayleigh-Plesset equation. Interestingly, this model predicts the impossibility to nucleate bubbles above a critical confinement that depends on liquid negative pressure and corresponds to approximately 100 nm for 20 MPa tensions.

  19. Dynamic Mode Decomposition of Fast Pressure Sensitive Paint Data

    PubMed Central

    Ali, Mohd Y.; Pandey, Anshuman; Gregory, James W.

    2016-01-01

    Fast-response pressure sensitive paint (PSP) is used in this work to measure and analyze the acoustic pressure field in a rectangular cavity. The high spatial resolution and fast frequency response of PSP effectively captures the spatial and temporal detail of surface pressure resulting in the acoustic pressure field. In this work, a high-speed camera is used to generate a continuous time record of the acoustic pressure fluctuations with PSP. Since the level of the acoustic pressure is near the resolution limit of the sensor system, advanced analysis techniques are used to extract the spatial modes of the pressure field. Both dynamic mode decomposition (DMD) and proper orthogonal decomposition (POD) are compared with phase averaging for data analysis. While all three techniques effectively extract the pressure field and reduce the impact of sensor noise, DMD and POD are more robust techniques that can be applied to aperiodic or multi-frequency signals. Furthermore, DMD is better than POD at suppressing noise in particular regions of the spectrum and at effectively separating spectral energy when multiple acoustic excitation frequencies are present. PMID:27294939

  20. Fast-slow climate dynamics and peak global warming

    NASA Astrophysics Data System (ADS)

    Seshadri, Ashwin K.

    2017-04-01

    The dynamics of a linear two-box energy balance climate model is analyzed as a fast-slow system, where the atmosphere, land, and near-surface ocean taken together respond within few years to external forcing whereas the deep-ocean responds much more slowly. Solutions to this system are approximated by estimating the system's time-constants using a first-order expansion of the system's eigenvalue problem in a perturbation parameter, which is the ratio of heat capacities of upper and lower boxes. The solution naturally admits an interpretation in terms of a fast response that depends approximately on radiative forcing and a slow response depending on integrals of radiative forcing with respect to time. The slow response is inversely proportional to the "damping-timescale", the timescale with which deep-ocean warming influences global warming. Applications of approximate solutions are discussed: conditions for a warming peak, effects of an individual pulse emission of carbon dioxide (CO2), and metrics for estimating and comparing contributions of different climate forcers to maximum global warming.

  1. Fast stochastic algorithm for simulating evolutionary population dynamics

    NASA Astrophysics Data System (ADS)

    Tsimring, Lev; Hasty, Jeff; Mather, William

    2012-02-01

    Evolution and co-evolution of ecological communities are stochastic processes often characterized by vastly different rates of reproduction and mutation and a coexistence of very large and very small sub-populations of co-evolving species. This creates serious difficulties for accurate statistical modeling of evolutionary dynamics. In this talk, we introduce a new exact algorithm for fast fully stochastic simulations of birth/death/mutation processes. It produces a significant speedup compared to the direct stochastic simulation algorithm in a typical case when the total population size is large and the mutation rates are much smaller than birth/death rates. We illustrate the performance of the algorithm on several representative examples: evolution on a smooth fitness landscape, NK model, and stochastic predator-prey system.

  2. Wind turbine control systems: Dynamic model development using system identification and the fast structural dynamics code

    SciTech Connect

    Stuart, J.G.; Wright, A.D.; Butterfield, C.P.

    1996-10-01

    Mitigating the effects of damaging wind turbine loads and responses extends the lifetime of the turbine and, consequently, reduces the associated Cost of Energy (COE). Active control of aerodynamic devices is one option for achieving wind turbine load mitigation. Generally speaking, control system design and analysis requires a reasonable dynamic model of {open_quotes}plant,{close_quotes} (i.e., the system being controlled). This paper extends the wind turbine aileron control research, previously conducted at the National Wind Technology Center (NWTC), by presenting a more detailed development of the wind turbine dynamic model. In prior research, active aileron control designs were implemented in an existing wind turbine structural dynamics code, FAST (Fatigue, Aerodynamics, Structures, and Turbulence). In this paper, the FAST code is used, in conjunction with system identification, to generate a wind turbine dynamic model for use in active aileron control system design. The FAST code is described and an overview of the system identification technique is presented. An aileron control case study is used to demonstrate this modeling technique. The results of the case study are then used to propose ideas for generalizing this technique for creating dynamic models for other wind turbine control applications.

  3. Microtubules, Tubulins and Associated Proteins.

    ERIC Educational Resources Information Center

    Raxworthy, Michael J.

    1988-01-01

    Reviews much of what is known about microtubules, which are biopolymers consisting predominantly of subunits of the globular protein, tubulin. Describes the functions of microtubules, their structure and assembly, microtube associated proteins, and microtubule-disrupting agents. (TW)

  4. Microtubules, Tubulins and Associated Proteins.

    ERIC Educational Resources Information Center

    Raxworthy, Michael J.

    1988-01-01

    Reviews much of what is known about microtubules, which are biopolymers consisting predominantly of subunits of the globular protein, tubulin. Describes the functions of microtubules, their structure and assembly, microtube associated proteins, and microtubule-disrupting agents. (TW)

  5. Natural product derivative Bis(4-fluorobenzyl)trisulfide inhibits tumor growth by modification of beta-tubulin at Cys 12 and suppression of microtubule dynamics.

    PubMed

    Xu, Wanhong; Xi, Biao; Wu, Jieying; An, Haoyun; Zhu, Jenny; Abassi, Yama; Feinstein, Stuart C; Gaylord, Michelle; Geng, Baoqin; Yan, Huifang; Fan, Weimin; Sui, Meihua; Wang, Xiaobo; Xu, Xiao

    2009-12-01

    Bis(4-fluorobenzyl)trisulfide (BFBTS) is a synthetic molecule derived from a bioactive natural product, dibenzyltrisulfide, found in a subtropical shrub, Petiveria allieacea. BFBTS has potent anticancer activities to a broad spectrum of tumor cell lines with IC50 values from high nanomolar to low micromolar and showed equal anticancer potency between tumor cell lines overexpressing multidrug-resistant gene, MDR1 (MCF7/adr line and KBv200 line), and their parental MCF7 line and KB lines. BFBTS inhibited microtubule polymerization dynamics in MCF7 cells, at a low nanomolar concentration of 54 nmol/L, while disrupting microtubule filaments in cells at low micromolar concentration of 1 micromol/L. Tumor cells treated with BFBTS were arrested at G2-M phase, conceivably resulting from BFBTS-mediated antimicrotubule activities. Mass spectrometry studies revealed that BFBTS bound and modified beta-tubulin at residue Cys12, forming beta-tubulin-SS-fluorobenzyl. The binding site differs from known antimicrotubule agents, suggesting that BFBTS functions as a novel antimicrotubule agent. BFBTS at a dose of 25 mg/kg inhibited tumor growth with relative tumor growth rates of 19.91%, 18.5%, and 23.42% in A549 lung cancer, Bcap-37 breast cancer, and SKOV3 ovarian cancer xenografts, respectively. Notably, BFBTS was more potent against MDR1-overexpressing MCF7/adr breast cancer xenografts with a relative tumor growth rate of 12.3% than paclitaxel with a rate of 43.0%. BFBTS displays a novel antimicrotubule agent with potentials for cancer therapeutics.

  6. Microtubules Growth Rate Alteration in Human Endothelial Cells

    PubMed Central

    Alieva, Irina B.; Zemskov, Evgeny A.; Kireev, Igor I.; Gorshkov, Boris A.; Wiseman, Dean A.; Black, Stephen M.; Verin, Alexander D.

    2010-01-01

    To understand how microtubules contribute to the dynamic reorganization of the endothelial cell (EC) cytoskeleton, we established an EC model expressing EB3-GFP, a protein that marks microtubule plus-ends. Using this model, we were able to measure microtubule growth rate at the centrosome region and near the cell periphery of a single human EC and in the EC monolayer. We demonstrate that the majority of microtubules in EC are dynamic, the growth rate of their plus-ends is highest in the internal cytoplasm, in the region of the centrosome. Growth rate of microtubule plus-ends decreases from the cell center toward the periphery. Our data suggest the existing mechanism(s) of local regulation of microtubule plus-ends growth in EC. Microtubule growth rate in the internal cytoplasm of EC in the monolayer is lower than that of single EC suggesting the regulatory effect of cell-cell contacts. Centrosomal microtubule growth rate distribution in single EC indicated the presence of two subpopulations of microtubules with “normal” (similar to those in monolayer EC) and “fast” (three times as much) growth rates. Our results indicate functional interactions between cell-cell contacts and microtubules. PMID:20445745

  7. Dimer model for Tau proteins bound in microtubule bundles

    NASA Astrophysics Data System (ADS)

    Hall, Natalie; Kluber, Alexander; Hayre, N. Robert; Singh, Rajiv; Cox, Daniel

    2013-03-01

    The microtubule associated protein tau is important in nucleating and maintaining microtubule spacing and structure in neuronal axons. Modification of tau is implicated as a later stage process in Alzheimer's disease, but little is known about the structure of tau in microtubule bundles. We present preliminary work on a proposed model for tau dimers in microtubule bundles (dimers are the minimal units since there is one microtubule binding domain per tau). First, a model of tau monomer was created and its characteristics explored using implicit solvent molecular dynamics simulation. Multiple simulations yield a partially collapsed form with separate positively/negatively charged clumps, but which are a factor of two smaller than required by observed microtubule spacing. We argue that this will elongate in dimer form to lower electrostatic energy at a cost of entropic ``spring'' energy. We will present preliminary results on steered molecular dynamics runs on tau dimers to estimate the actual force constant. Supported by US NSF Grant DMR 1207624.

  8. Stable isotope labeling by amino acids in cell culture-based liquid chromatography-mass spectrometry assay to measure microtubule dynamics in neuronal cell cultures.

    PubMed

    Polson, Craig; Cantone, Joseph L; Wei, Cong; Drexler, Dieter M; Meredith, Jere E

    2014-12-01

    Microtubules (MTs) are highly dynamic polymers composed of α- and β-tubulin heterodimers. Dysregulation of MT dynamics in neurons may be a contributing factor in the progression of various neurodegenerative diseases. We developed a stable isotope labeling by amino acids in cell culture (SILAC)-based liquid chromatography-mass spectrometry (LC-MS) method to measure the fraction of [(13)C6]leucine-labeled α-tubulin-derived surrogate peptides. Using this approach, we measured the time course of incorporation of [(13)C6]leucine label into the MT and dimer pools isolated from cycling cells and rat primary hippocampal neurons. We found that the MT pool is in rapid equilibrium with the dimer pool in the cycling cells, consistent with rapid MT polymerization/depolymerization during cell proliferation. Conversely, in neurons, we found that labeling of the MT pool was rapid, whereas the dimer pool was delayed. These results suggest that newly synthesized α-tubulin is first incorporated into MTs or complexes that co-sediment with MTs and that appearance of labeled α-tubulin in the dimer pool may be a consequence of MT depolymerization or breakdown. Our results demonstrate that a SILAC-based approach can be used to measure MT dynamics and may have utility for exploring MT dysregulation in various models of neurodegenerative disease.

  9. Filopodia and actin arcs guide the assembly and transport of two populations of microtubules with unique dynamic parameters in neuronal growth cones

    PubMed Central

    Schaefer, Andrew W.; Kabir, Nurul; Forscher, Paul

    2002-01-01

    We have used multimode fluorescent speckle microscopy (FSM) and correlative differential interference contrast imaging to investigate the actin–microtubule (MT) interactions and polymer dynamics known to play a fundamental role in growth cone guidance. We report that MTs explore the peripheral domain (P-domain), exhibiting classical properties of dynamic instability. MT extension occurs preferentially along filopodia, which function as MT polymerization guides. Filopodial bundles undergo retrograde flow and also transport MTs. Thus, distal MT position is determined by the rate of plus-end MT assembly minus the rate of retrograde F-actin flow. Short MT displacements independent of flow are sometimes observed. MTs loop, buckle, and break as they are transported into the T-zone by retrograde flow. MT breakage results in exposure of new plus ends which can regrow, and minus ends which rapidly undergo catastrophes, resulting in efficient MT turnover. We also report a previously undetected presence of F-actin arc structures, which exhibit persistent retrograde movement across the T-zone into the central domain (C-domain) at ∼1/4 the rate of P-domain flow. Actin arcs interact with MTs and transport them into the C-domain. Interestingly, although the MTs associated with arcs are less dynamic than P-domain MTs, they elongate efficiently as a result of markedly lower catastrophe frequencies. PMID:12105186

  10. Tao-1 is a negative regulator of microtubule plus-end growth

    PubMed Central

    Liu, Tao; Rohn, Jennifer L.; Picone, Remigio; Kunda, Patricia; Baum, Buzz

    2010-01-01

    Microtubule dynamics are dominated by events at microtubule plus ends as they switch between discrete phases of growth and shrinkage. Through their ability to generate force and direct polar cell transport, microtubules help to organise global cell shape and polarity. Conversely, because plus-end binding proteins render the dynamic instability of individual microtubules sensitive to the local intracellular environment, cyto-architecture also affects the overall distribution of microtubules. Despite the importance of plus-end regulation for understanding microtubule cytoskeletal organisation and dynamics, little is known about the signalling mechanisms that trigger changes in their behaviour in space and time. Here, we identify a microtubule-associated kinase, Drosophila Tao-1, as an important regulator of microtubule stability, plus-end dynamics and cell shape. Active Tao-1 kinase leads to the destabilisation of microtubules. Conversely, when Tao-1 function is compromised, rates of cortical-induced microtubule catastrophe are reduced and microtubules contacting the actin cortex continue to elongate, leading to the formation of long microtubule-based protrusions. These data reveal a role for Tao-1 in controlling the dynamic interplay between microtubule plus ends and the actin cortex in the regulation of cell form. PMID:20647372

  11. Fast regional readout CMOS Image Sensor for dynamic MLC tracking

    NASA Astrophysics Data System (ADS)

    Zin, H.; Harris, E.; Osmond, J.; Evans, P.

    2014-03-01

    Advanced radiotherapy techniques such as volumetric modulated arc therapy (VMAT) require verification of the complex beam delivery including tracking of multileaf collimators (MLC) and monitoring the dose rate. This work explores the feasibility of a prototype Complementary metal-oxide semiconductor Image Sensor (CIS) for tracking these complex treatments by utilising fast, region of interest (ROI) read out functionality. An automatic edge tracking algorithm was used to locate the MLC leaves edges moving at various speeds (from a moving triangle field shape) and imaged with various sensor frame rates. The CIS demonstrates successful edge detection of the dynamic MLC motion within accuracy of 1.0 mm. This demonstrates the feasibility of the sensor to verify treatment delivery involving dynamic MLC up to ~400 frames per second (equivalent to the linac pulse rate), which is superior to any current techniques such as using electronic portal imaging devices (EPID). CIS provides the basis to an essential real-time verification tool, useful in accessing accurate delivery of complex high energy radiation to the tumour and ultimately to achieve better cure rates for cancer patients.

  12. A comparison of the ability of XMAP215 and tau to inhibit the microtubule destabilizing activity of XKCM1.

    PubMed

    Noetzel, Tim L; Drechsel, David N; Hyman, Anthony A; Kinoshita, Kazuhisa

    2005-03-29

    During mitosis, microtubules not only grow fast, but also have a high rate of catastrophe. This is achieved in part by the activity of the MAP, XMAP215, which can stimulate the growth rate of microtubules without fully inhibiting the function of the catastrophe-kinesin XKCM1. We do not know whether this activity is particular to XMAP215, or is a general property of all MAPs. Here, we compare the activities of XMAP215 with the neuronal MAP tau, in opposing the destabilizing activity of the non-conventional kinesin XKCM1. We show that tau is a much more potent inhibitor of XKCM1 than XMAP215. Because tau completely suppresses XKCM1 activity, even at low concentrations, the combination of tau and XKCM1 is unable to generate mitotic microtubule dynamics.

  13. Effects of silver ions (Ag+) on contractile ring function and microtubule dynamics during first cleavage in Ilyanassa obsoleta

    NASA Technical Reports Server (NTRS)

    Conrad, A. H.; Stephens, A. P.; Paulsen, A. Q.; Schwarting, S. S.; Conrad, G. W.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    The terminal phase of cell division involves tight constriction of the cleavage furrow contractile ring, stabilization/elongation of the intercellular bridge, and final separation of the daughter cells. At first cleavage, the fertilized eggs of the mollusk, Ilyanassa obsoleta, form two contractile rings at right angles to each other in the same cytoplasm that constrict to tight necks and partition the egg into a trefoil shape. The cleavage furrow contractile ring (CF) normally constricts around many midbody microtubules (MTs) and results in cleavage; the polar lobe constriction contractile ring (PLC) normally constricts around very few MTs and subsequently relaxes without cleavage. In the presence of Ag+ ions, the PLC 1) begins MT-dependent rapid constriction sooner than controls, 2) encircles more MTs than control egg PLCs, 3) elongates much more than control PLCs, and 4) remains tightly constricted and effectively cleaves the polar lobe from the egg. If Ag(+)-incubated eggs are returned to normal seawater at trefoil, tubulin fluorescence disappears from the PLC neck and the neck relaxes. If nocodazole, a drug that depolymerizes MTs, is added to Ag(+)-incubated eggs during early PLC constriction, the PLC is not stabilized and eventually relaxes. However, if nocodazole is added to Ag(+)-incubated eggs at trefoil, tubulin fluorescence disappears from the PLC neck but the neck remains constricted. These results suggest that Ag+ accelerates and gradually stabilizes the PLC constriction by a mechanism that is initially MT-dependent, but that progressively becomes MT-independent.

  14. Effects of silver ions (Ag+) on contractile ring function and microtubule dynamics during first cleavage in Ilyanassa obsoleta

    NASA Technical Reports Server (NTRS)

    Conrad, A. H.; Stephens, A. P.; Paulsen, A. Q.; Schwarting, S. S.; Conrad, G. W.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    The terminal phase of cell division involves tight constriction of the cleavage furrow contractile ring, stabilization/elongation of the intercellular bridge, and final separation of the daughter cells. At first cleavage, the fertilized eggs of the mollusk, Ilyanassa obsoleta, form two contractile rings at right angles to each other in the same cytoplasm that constrict to tight necks and partition the egg into a trefoil shape. The cleavage furrow contractile ring (CF) normally constricts around many midbody microtubules (MTs) and results in cleavage; the polar lobe constriction contractile ring (PLC) normally constricts around very few MTs and subsequently relaxes without cleavage. In the presence of Ag+ ions, the PLC 1) begins MT-dependent rapid constriction sooner than controls, 2) encircles more MTs than control egg PLCs, 3) elongates much more than control PLCs, and 4) remains tightly constricted and effectively cleaves the polar lobe from the egg. If Ag(+)-incubated eggs are returned to normal seawater at trefoil, tubulin fluorescence disappears from the PLC neck and the neck relaxes. If nocodazole, a drug that depolymerizes MTs, is added to Ag(+)-incubated eggs during early PLC constriction, the PLC is not stabilized and eventually relaxes. However, if nocodazole is added to Ag(+)-incubated eggs at trefoil, tubulin fluorescence disappears from the PLC neck but the neck remains constricted. These results suggest that Ag+ accelerates and gradually stabilizes the PLC constriction by a mechanism that is initially MT-dependent, but that progressively becomes MT-independent.

  15. Fast passage dynamic nuclear polarization on rotating solids

    NASA Astrophysics Data System (ADS)

    Mentink-Vigier, Frederic; Akbey, Ümit; Hovav, Yonatan; Vega, Shimon; Oschkinat, Hartmut; Feintuch, Akiva

    2012-11-01

    Magic Angle Spinning (MAS) Dynamic Nuclear Polarization (DNP) has proven to be a very powerful way to improve the signal to noise ratio of NMR experiments on solids. The experiments have in general been interpreted considering the Solid-Effect (SE) and Cross-Effect (CE) DNP mechanisms while ignoring the influence of sample spinning. In this paper, we show experimental data of MAS-DNP enhancements of 1H and 13C in proline and SH3 protein in glass forming water/glycerol solvent containing TOTAPOL. We also introduce a theoretical model that aims at explaining how the nuclear polarization is built in MAS-DNP experiments. By using Liouville space based simulations to include relaxation on two simple spin models, {electron-nucleus} and {electron-electron-nucleus}, we explain how the basic MAS-SE-DNP and MAS-CE-DNP processes work. The importance of fast energy passages and short level anti-crossing is emphasized and the differences between static DNP and MAS-DNP is explained. During a single rotor cycle the enhancement in the {electron-electron-nucleus} system arises from MAS-CE-DNP involving at least three kinds of two-level fast passages: an electron-electron dipolar anti-crossing, a single quantum electron MW encounter and an anti-crossing at the CE condition inducing nuclear polarization in- or decrements. Numerical, powder-averaged, simulations were performed in order to check the influence of the experimental parameters on the enhancement efficiencies. In particular we show that the spinning frequency dependence of the theoretical MAS-CE-DNP enhancement compares favorably with the experimental 1H and 13C MAS-DNP enhancements of proline and SH3.

  16. Experimental control of instabilities and chaos in fast dynamical systems

    NASA Astrophysics Data System (ADS)

    Sukow, David Wayne

    I investigate experimentally and theoretically the application of control techniques in systems that display temporal instabilities, including chaos, on very short timescales. My study includes two distinct systems: a fast chaotic electronic circuit called the diode resonator, and a compound-cavity semiconductor laser system that exhibits an instability called low-frequency fluctuations. Control of fast unstable systems presents several experimental challenges. It is also a topic of broad interest, since it requires the development of new control techniques, and addresses technologically important devices such as the semiconductor laser. The diode resonator is a well-understood system, and when modified for 10 MHz operation serves as a good testbed for the application of novel control techniques. I develop a new high-speed time-delay feedback control technique that is based on the comparison of the present value of a system variable with a series of its past values. The principles of operation of this technique are studied in both time and frequency domains, as well as possible methods for its implementation. I develop a detailed analog electronic implementation that addresses the experimental needs of rapid processing and faithful reproduction of the feedback signal. This control system successfully stabilizes unstable periodic orbits in the diode resonator, the fastest experimental instability controlled to date. This technique also increases significantly the regions of parameter space in which control is effective, in comparison with previous methods. The improvement is gained by incorporating more information from further in the system's past. I study the dynamics of the external cavity semiconductor laser system in the regime where low-frequency fluctuations occur, seeking to improve our understanding of the system before attempting to control its behavior. This system is not completely understood, as it exhibits extremely complex, high-speed, potentially

  17. Histone H2B monoubiquitination is involved in regulating the dynamics of microtubules during the defense response to Verticillium dahliae toxins in Arabidopsis.

    PubMed

    Hu, Min; Pei, Bao-Lei; Zhang, Li-Fan; Li, Ying-Zhang

    2014-04-01

    Histone H2B monoubiquitination (H2Bub) is being recognized as a regulatory mechanism that controls a range of cellular processes in plants, but the molecular mechanisms of H2Bub that are involved in responses to biotic stress are largely unknown. In this study, we used wild-type and H2Bub loss-of-function mutations of Arabidopsis (Arabidopsis thaliana) to elucidate which of its mechanisms are involved in the regulation of the plant's defense response to Verticillium dahliae (Vd) toxins. We demonstrate that the depolymerization of the cortical microtubules (MTs) was different in the wild type and the mutants in the response to Vd toxins. The loss-of-function alleles of HISTONE MONOUBIQUITINATION1 and HISTONE MONOUBIQUITINATION2 mutations present a weaker depolymerization of the MTs, and protein tyrosine phosphorylation plays a critical role in the regulation of the dynamics of MTs. Moreover, H2Bub is a positive regulator of the gene expression of protein tyrosine phosphatases. These findings provide direct evidence for H2Bub as an important modification with regulatory roles in the defense against Vd toxins and demonstrate that H2Bub is involved in modulating the dynamics of MTs, likely through the protein tyrosine phosphatase-mediated signaling pathway.

  18. Microtubules in plants.

    PubMed

    Hashimoto, Takashi

    2015-01-01

    Microtubules (MTs) are highly conserved polar polymers that are key elements of the eukaryotic cytoskeleton and are essential for various cell functions. αβ-tubulin, a heterodimer containing one structural GTP and one hydrolysable and exchangeable GTP, is the building block of MTs and is formed by the sequential action of several molecular chaperones. GTP hydrolysis in the MT lattice is mechanistically coupled with MT growth, thus giving MTs a metastable and dynamic nature. MTs adopt several distinct higher-order organizations that function in cell division and cell morphogenesis. Small molecular weight compounds that bind tubulin are used as herbicides and as research tools to investigate MT functions in plant cells. The de novo formation of MTs in cells requires conserved γ-tubulin-containing complexes and targeting/activating regulatory proteins that contribute to the geometry of MT arrays. Various MT regulators and tubulin modifications control the dynamics and organization of MTs throughout the cell cycle and in response to developmental and environmental cues. Signaling pathways that converge on the regulation of versatile MT functions are being characterized.

  19. Microtubules in Plants

    PubMed Central

    Hashimoto, Takashi

    2015-01-01

    Microtubules (MTs) are highly conserved polar polymers that are key elements of the eukaryotic cytoskeleton and are essential for various cell functions. αβ-tubulin, a heterodimer containing one structural GTP and one hydrolysable and exchangeable GTP, is the building block of MTs and is formed by the sequential action of several molecular chaperones. GTP hydrolysis in the MT lattice is mechanistically coupled with MT growth, thus giving MTs a metastable and dynamic nature. MTs adopt several distinct higher-order organizations that function in cell division and cell morphogenesis. Small molecular weight compounds that bind tubulin are used as herbicides and as research tools to investigate MT functions in plant cells. The de novo formation of MTs in cells requires conserved γ-tubulin-containing complexes and targeting/activating regulatory proteins that contribute to the geometry of MT arrays. Various MT regulators and tubulin modifications control the dynamics and organization of MTs throughout the cell cycle and in response to developmental and environmental cues. Signaling pathways that converge on the regulation of versatile MT functions are being characterized. PMID:26019693

  20. Saccharin enhances neurite extension by regulating organization of the microtubules.

    PubMed

    Yamashita, Hiroo; Muroi, Yoshikage; Ishii, Toshiaki

    2013-11-06

    In the present study, we found that saccharin, an artificial calorie-free sweetener, promotes neurite extension in the cultured neuronal cells. The purposes of this study are to characterize the effect of saccharine on neurite extension and to determine how saccharin enhances neurite extension. The analyses were performed using mouse neuroblastoma N1E-115 cells and rat pheochromocytoma PC12 cells. Neurite extension was evaluated by counting the cells bearing neurites and measuring the length of neurites. Formation, severing and transportation of the microtubules were evaluated by immunostaining and western blotting analysis. Deprivation of glucose increased the number of N1E-115 cells bearing long processes. And the effect was inhibited by addition of glucose. Saccharin increased the number of these cells bearing long processes in a dose-dependent manner and total neurite length and longest neurite length in each cell. Saccharin also had a similar effect on NGF-treated PC12 cells. Saccharin increased the amount of the microtubules reconstructed after treatment with nocodazole, a disruptor of microtubules. The effect of saccharin on microtubule reconstruction was not influenced by dihydrocytochalasin B, an inhibitor of actin polymerization, indicating that saccharin enhances microtubule formation without requiring actin dynamics. In the cells treated with vinblastine, an inhibitor of microtubule polymerization, after microtubule reorganization, filamentous microtubules were observed more distantly from the centrosome in saccharin-treated cells, indicating that saccharin enhances microtubule severing and/or transportation. These results suggest that saccharin enhances neurite extension by promoting microtubule organization. © 2013.

  1. (Z)-3,5,4'-Trimethoxystilbene Limits Hepatitis C and Cancer Pathophysiology by Blocking Microtubule Dynamics and Cell Cycle Progression

    PubMed Central

    Nguyen, Charles B.; Kotturi, Hari; Waris, Gulam; Mohammed, Altaf; Chandrakesan, Parthasarathy; May, Randal; Sureban, Sripathi; Weygant, Nathaniel; Qu, Dongfeng; Rao, Chinthalapally V.; Dhanasekaran, Danny N.; Bronze, Michael S.; Houchen, Courtney W.; Ali, Naushad

    2016-01-01

    Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related deaths worldwide. Chronic hepatitis C virus (HCV) infection causes induction of several tumor/cancer stem cell (CSC) markers and is known to be a major risk factor for development of HCC. Therefore, drugs that simultaneously target viral replication and CSC properties are needed for a risk-free treatment of advanced stage liver diseases including HCC. Here, we demonstrated that (Z)-3,5,4’-trimethoxystilbene (Z-TMS) exhibits potent anti-tumor and anti-HCV activities without exhibiting cytotoxicity to human hepatocytes in vitro or in mice livers. Diethylnitrosamine (DEN)/carbon tetrachloride (CCl4) extensively induced expression of DCLK1 (a CSC marker) in the livers of C57BL/6 mice following hepatic injury. Z-TMS exhibited hepatoprotective effects against DEN/CCl4-induced injury by reducing DCLK1 expression and improving histological outcomes. The drug caused bundling of DCLK1 with microtubules and blocked cell cycle progression at G2/M phase in hepatoma cells via downregulation of CDK1, induction of p21cip1/waf1 expression, and inhibition of Akt (Ser473) phosphorylation. Z-TMS also inhibited proliferation of erlotinib-resistant lung adenocarcinoma cells (H1975) bearing the T790M EGFR mutation most likely by promoting autophagy and nuclear fragmentation. In conclusion, Z-TMS appears to be a unique therapeutic agent targeting HCV and concurrently eliminating cells with neoplastic potential during chronic liver diseases including HCC. It may also be a valuable drug for targeting drug-resistant carcinomas and cancers of the lungs, pancreas, colon, and intestine in which DCLK1 is involved in tumorigenesis. PMID:27287718

  2. Fast Simulation of Dynamic Ultrasound Images Using the GPU.

    PubMed

    Storve, Sigurd; Torp, Hans

    2017-10-01

    Simulated ultrasound data is a valuable tool for development and validation of quantitative image analysis methods in echocardiography. Unfortunately, simulation time can become prohibitive for phantoms consisting of a large number of point scatterers. The COLE algorithm by Gao et al. is a fast convolution-based simulator that trades simulation accuracy for improved speed. We present highly efficient parallelized CPU and GPU implementations of the COLE algorithm with an emphasis on dynamic simulations involving moving point scatterers. We argue that it is crucial to minimize the amount of data transfers from the CPU to achieve good performance on the GPU. We achieve this by storing the complete trajectories of the dynamic point scatterers as spline curves in the GPU memory. This leads to good efficiency when simulating sequences consisting of a large number of frames, such as B-mode and tissue Doppler data for a full cardiac cycle. In addition, we propose a phase-based subsample delay technique that efficiently eliminates flickering artifacts seen in B-mode sequences when COLE is used without enough temporal oversampling. To assess the performance, we used a laptop computer and a desktop computer, each equipped with a multicore Intel CPU and an NVIDIA GPU. Running the simulator on a high-end TITAN X GPU, we observed two orders of magnitude speedup compared to the parallel CPU version, three orders of magnitude speedup compared to simulation times reported by Gao et al. in their paper on COLE, and a speedup of 27000 times compared to the multithreaded version of Field II, using numbers reported in a paper by Jensen. We hope that by releasing the simulator as an open-source project we will encourage its use and further development.

  3. Kinetochore-microtubule interactions during cell division.

    PubMed

    Maiato, Helder; Sunkel, Claudio E

    2004-01-01

    Proper segregation of chromosomes during cell division is essential for the maintenance of genetic stability. During this process chromosomes must establish stable functional interactions with microtubules through the kinetochore, a specialized protein structure located on the surface of the centromeric heterochromatin. Stable attachment of kinetochores to a number of microtubules results in the formation of a kinetochore fibre that mediates chromosome movement. How the kinetochore fibre is formed and how chromosome motion is produced and regulated remain major questions in cell biology. Here we look at some of the history of research devoted to the study of kinetochore-microtubule interaction and attempt to identify significant advances in the knowledge of the basic processes. Ultrastructural work has provided substantial insights into the structure of the kinetochore and associated microtubules during different stages of mitosis. Also, recent in-vivo studies have probed deep into the dynamics of kinetochore-attached microtubules suggesting possible models for the way in which kinetochores harness the capacity of microtubules to do work and turn it into chromosome motion. Much of the research in recent years suggests that indeed multiple mechanisms are involved in both formation of the k-fibre and chromosome motion. Thus, rather than moving to a unified theory, it has become apparent that most cell types have the capacity to build the spindle using multiple and probably redundant mechanisms.

  4. Microtubule Elasticity: Connecting All-Atom Simulations with Continuum Mechanics

    NASA Astrophysics Data System (ADS)

    Sept, David; Mackintosh, Fred C.

    2010-01-01

    The mechanical properties of microtubules have been extensively studied using a wide range of biophysical techniques, seeking to understand the mechanics of these cylindrical polymers. Here we develop a method for connecting all-atom molecular dynamics simulations with continuum mechanics and show how this can be applied to understand microtubule mechanics. Our coarse-graining technique applied to the microscopic simulation system yields consistent predictions for the Young’s modulus and persistence length of microtubules, while clearly demonstrating how binding of the drug Taxol decreases the stiffness of microtubules. The techniques we develop should be widely applicable to other macromolecular systems.

  5. The parallel lives of microtubules and cellulose microfibrils.

    PubMed

    Lloyd, Clive; Chan, Jordi

    2008-12-01

    A major breakthrough was the recent discovery that cellulose synthases really do move along the plasma membrane upon tracks provided by the underlying cortical microtubules. It emphasized the cytoplasmic contribution to cell wall organization. A growing number of microtubule-associated proteins has been identified and shown to affect the way that microtubules are ordered, with downstream effects on the pattern of growth. The dynamic properties of microtubules turn out to be key in understanding the behaviour of the global array and good progress has been made in deciphering the rules by which the array is self-organized.

  6. Fast method for dynamic thresholding in volume holographic memories

    NASA Astrophysics Data System (ADS)

    Porter, Michael S.; Mitkas, Pericles A.

    1998-11-01

    It is essential for parallel optical memory interfaces to incorporate processing that dynamically differentiates between databit values. These thresholding points will vary as a result of system noise -- due to contrast fluctuations, variations in data page composition, reference beam misalignment, etc. To maintain reasonable data integrity it is necessary to select the threshold close to its optimal level. In this paper, a neural network (NN) approach is proposed as a fast method of determining the threshold to meet the required transfer rate. The multi-layered perceptron network can be incorporated as part of a smart photodetector array (SPA). Other methods have suggested performing the operation by means of histogram or by use of statistical information. These approaches fail in that they unnecessarily switch to a 1-D paradigm. In this serial domain, global thresholding is pointless since sequence detection could be applied. The discussed approach is a parallel solution with less overhead than multi-rail encoding. As part of this method, a small set of values are designated as threshold determination data bits; these are interleaved with the information data bits and are used as inputs to the NN. The approach has been tested using both simulated data as well as data obtained from a volume holographic memory system. Results show convergence of the training and an ability to generalize upon untrained data for binary and multi-level gray scale datapage images. Methodologies are discussed for improving the performance by a proper training set selection.

  7. General theory for the mechanics of confined microtubule asters

    NASA Astrophysics Data System (ADS)

    Ma, Rui; Laan, Liedewij; Dogterom, Marileen; Pavin, Nenad; Jülicher, Frank

    2014-01-01

    In cells, dynamic microtubules organize into asters or spindles to assist positioning of organelles. Two types of forces are suggested to contribute to the positioning process: (i) microtubule-growth based pushing forces; and (ii) motor protein mediated pulling forces. In this paper, we present a general theory to account for aster positioning in a confinement of arbitrary shape. The theory takes account of microtubule nucleation, growth, catastrophe, slipping, as well as interaction with cortical force generators. We calculate microtubule distributions and forces acting on microtubule organizing centers in a sphere and in an ellipsoid. Positioning mechanisms based on both pushing forces and pulling forces can be distinguished in our theory for different parameter regimes or in different geometries. In addition, we investigate positioning of microtubule asters in the case of asymmetric distribution of motors. This analysis enables us to characterize situations relevant for Caenorrhabditis elegans embryos.

  8. The dual specificity phosphatase Cdc14B bundles and stabilizes microtubules

    SciTech Connect

    Plumley, Hyekyung; Liu, Yie; Gomez, Marla V; Wang, Yisong

    2005-01-01

    The Cdc14 dual-specificity phosphatases regulate key events in the eukaryotic cell cycle. However, little is known about the function of mammalian CDC14B family members. Here, we demonstrate that subcellular localization of CDC14B protein is cell cycle regulated. CDC14B can bind, bundle, and stabilize microtubules in vitro independently of its catalytic activity. Basic amino acid residues within the nucleolar targeting domain are important for both retaining CDC14B in the nucleolus and preventing microtubule bundling. Overexpression of CDC14B resulted in the formation of cytoplasmic CDC14B and microtubule bundles in interphase cells. These microtubule bundles were resistant to microtubule depolymerization reagents and enriched in acetylated -tubulin. Expression of cytoplasmic forms of CDC14B impaired microtubule nucleation from the microtubule organization center. CDC14B is thus a novel microtubule-bundling and -stabilizing protein, whose regulated subcellular localization may help modulate spindle and microtubule dynamics in mitosis.

  9. Characterization of the role of calcium in regulating the microtubule-destabilizing activity of MDP25

    PubMed Central

    Qin, Tao; Li, Jiejie; Yuan, Ming; Mao, Tonglin

    2012-01-01

    Regulation of cell elongation is important for plant morphogenesis. Many studies have shown that cortical microtubules play crucial roles during cell elongation and that microtubule stability, organization, and dynamics are regulated by microtubule regulatory proteins.1 Recently, we reported that a novel protein from Arabidopsis, termed microtubule-destabilizing protein 25 (MDP25), functions as a negative regulator of hypocotyl cell elongation. MDP25 destabilizes microtubules and exerts its effect on microtubules as a result of transient elevation of cytosolic calcium levels.2 PMID:22751329

  10. Mechanically cut mitotic spindles: clean cuts and stable microtubules.

    PubMed

    Nicklas, R B; Lee, G M; Rieder, C L; Rupp, G

    1989-11-01

    We have discovered an easy way to cut through the mitotic spindle at any desired place. Spindles of demembranated cricket or grasshopper spermatocytes were severed with a microneedle between the chromosomes and one pole, and the cut-off polar piece was swept away. Spindle structure and microtubule dynamics in cut spindles were studied by anti-tubulin immunostaining and electron microscopy. The cut is clean: all microtubules are severed and only a few extend beyond the others. This provides the basis for a clear test of whether traction fibers pull chromosomes to the pole in anaphase, because the putative traction fiber is cleanly severed. Cutting creates new plus ends on microtubules in the cut-off polar piece and new minus ends on microtubules in the main spindle body. The microtubules with new plus ends are unstable, as expected from the dynamic instability of microtubules. However, the microtubules with new minus ends are as stable as uncut microtubules in the same spindle. Our mechanical method of cutting microtubules very likely creates native, reactive ends, and therefore the surprising stability of new minus ends is genuinely interesting, not an artifact of cutting.

  11. A Refined Reaction-Diffusion Model of Tau-Microtubule Dynamics and Its Application in FDAP Analysis

    PubMed Central

    Igaev, Maxim; Janning, Dennis; Sündermann, Frederik; Niewidok, Benedikt; Brandt, Roland; Junge, Wolfgang

    2014-01-01

    Fluorescence decay after photoactivation (FDAP) and fluorescence recovery after photobleaching (FRAP) are well established approaches for studying the interaction of the microtubule (MT)-associated protein tau with MTs in neuronal cells. Previous interpretations of FDAP/FRAP data have revealed dwell times of tau on MTs in the range of several seconds. However, this is difficult to reconcile with a dwell time recently measured by single-molecule analysis in neuronal processes that was shorter by two orders of magnitude. Questioning the validity of previously used phenomenological interpretations of FDAP/FRAP data, we have generalized the standard two-state reaction-diffusion equations by 1), accounting for the parallel and discrete arrangement of MTs in cell processes (i.e., homogeneous versus heterogeneous distribution of tau-binding sites); and 2), explicitly considering both active (diffusion upon MTs) and passive (piggybacking upon MTs at rates of slow axonal transport) motion of bound tau. For some idealized cases, analytical solutions were derived. By comparing them with the full numerical solution and Monte Carlo simulations, the respective validity domains were mapped. Interpretation of our FDAP data (from processes of neuronally differentiated PC12 cells) in light of the heterogeneous formalism yielded independent estimates for the association (∼2 ms) and dwell (∼100 ms) times of tau to/on a single MT rather than in an MT array. The dwell time was shorter by orders of magnitude than that in a previous report where a homogeneous topology of MTs was assumed. We found that the diffusion of bound tau was negligible in vivo, in contrast to an earlier report that tau diffuses along the MT lattice in vitro. Methodologically, our results demonstrate that the heterogeneity of binding sites cannot be ignored when dealing with reaction-diffusion of cytoskeleton-associated proteins. Physiologically, the results reveal the behavior of tau in cellular processes

  12. INSIGHTS INTO ANTI-PARALLEL MICROTUBULE CROSSLINKING BY PRC1, A CONSERVED NON-MOTOR MICROTUBULE BINDING PROTEIN

    PubMed Central

    Subramanian, Radhika; Wilson-Kubalek, Elizabeth M.; Arthur, Christopher P.; Bick, Matthew J.; Campbell, Elizabeth A.; Darst, Seth A.; Milligan, Ronald A.; Kapoor, Tarun M.

    2010-01-01

    SUMMARY Formation of microtubule architectures, required for cell shape maintenance in yeast, directional cell expansion in plants and cytokinesis in eukaryotes, depends on antiparallel microtubule crosslinking by the conserved MAP65 protein family. Here, we combine structural and single molecule fluorescence methods to examine how PRC1, the human MAP65, crosslinks antiparallel microtubules. We find that PRC1's microtubule binding is mediated by a structured domain with a spectrin-fold and an unstructured Lys/Arg-rich domain. These two domains, at each end of a homodimer, are connected by a linkage that is flexible on single microtubules, but forms well-defined crossbridges between antiparallel filaments. Further, we show that PRC1 crosslinks do not substantially resist filament sliding by motor proteins in vitro. Together, our data show how MAP65s, by combining structural flexibility and rigidity, tune microtubule associations to establish compliant crosslinks that selectively `mark' antiparallel overlap in dynamic cytoskeletal networks. PMID:20691902

  13. Basement Membrane Laminin α2 Regulation of BTB Dynamics via Its Effects on F-Actin and Microtubule Cytoskeletons Is Mediated Through mTORC1 Signaling.

    PubMed

    Gao, Ying; Chen, Haiqi; Lui, Wing-Yee; Lee, Will M; Cheng, C Yan

    2017-04-01

    A local axis connects the apical ectoplasmic specialization (ES) at the Sertoli-spermatid interface, the basal ES at the blood-testis barrier (BTB), and the basement membrane across the seminiferous epithelium functionally in rat testes. As such, cellular events that take place simultaneously across the epithelium such as spermiation and BTB remodeling that occur at the apical ES and the basal ES, respectively, at stage VIII of the cycle are coordinated. Herein, laminin α2, a structural component of the basement membrane, was found to regulate BTB dynamics. Sertoli cells were cultured in vitro to allow the establishment of a tight junction (TJ) barrier that mimicked the BTB in vivo. Knockdown of laminin α2 by transfecting Sertoli cells with laminin α2-specific short hairpin RNA vs the nontargeting negative control was shown to perturb the Sertoli cell TJ barrier, illustrating laminin α2 was involved in regulating BTB dynamics. This regulatory effect was mediated through mammalian target of rapamycin complex 1 (mTORC1) signaling because the two mTORC1 downstream signaling molecules ribosomal protein S6 and Akt1/2 were activated and inactivated, respectively, consistent with earlier findings that mTORC1 is involved in promoting BTB remodeling. Also, laminin α2 knockdown induced F-actin and microtubule (MT) disorganization through changes in the spatial expression of F-actin regulators actin-related protein 3 and epidermal growth factor receptor pathway substrate 8 vs end-binding protein 1 (a MT plus-end tracking protein, +TIP). These laminin α2 knockdown-mediated effects on F-actin and MT organization was blocked by exposing Sertoli cells to rapamycin, an inhibitor of mTORC1 signaling, and also SC79, an activator of Akt. In summary, laminin α2-mediated regulation on Sertoli cell BTB dynamics is through mTORC1 signaling. Copyright © 2017 Endocrine Society.

  14. Fast engineering optimization: A novel highly effective control parameterization approach for industrial dynamic processes.

    PubMed

    Liu, Ping; Li, Guodong; Liu, Xinggao

    2015-09-01

    Control vector parameterization (CVP) is an important approach of the engineering optimization for the industrial dynamic processes. However, its major defect, the low optimization efficiency caused by calculating the relevant differential equations in the generated nonlinear programming (NLP) problem repeatedly, limits its wide application in the engineering optimization for the industrial dynamic processes. A novel highly effective control parameterization approach, fast-CVP, is first proposed to improve the optimization efficiency for industrial dynamic processes, where the costate gradient formulae is employed and a fast approximate scheme is presented to solve the differential equations in dynamic process simulation. Three well-known engineering optimization benchmark problems of the industrial dynamic processes are demonstrated as illustration. The research results show that the proposed fast approach achieves a fine performance that at least 90% of the computation time can be saved in contrast to the traditional CVP method, which reveals the effectiveness of the proposed fast engineering optimization approach for the industrial dynamic processes.

  15. Novel mitochondrial extensions provide evidence for a link between microtubule-directed movement and mitochondrial fission

    SciTech Connect

    Bowes, Timothy; Gupta, Radhey S.

    2008-11-07

    Mitochondrial dynamics play an important role in a large number of cellular processes. Previously, we reported that treatment of mammalian cells with the cysteine-alkylators, N-ethylmaleimide and ethacrynic acid, induced rapid mitochondrial fusion forming a large reticulum approximately 30 min after treatment. Here, we further investigated this phenomenon using a number of techniques including live-cell confocal microscopy. In live cells, drug-induced fusion coincided with a cessation of fast mitochondrial movement which was dependent on microtubules. During this loss of movement, thin mitochondrial tubules extending from mitochondria were also observed, which we refer to as 'mitochondrial extensions'. The formation of these mitochondrial extensions, which were not observed in untreated cells, depended on microtubules and was abolished by pretreatment with nocodazole. In this study, we provide evidence that these extensions result from of a block in mitochondrial fission combined with continued application of motile force by microtubule-dependent motor complexes. Our observations strongly suggest the existence of a link between microtubule-based mitochondrial trafficking and mitochondrial fission.

  16. Microtubule–microtubule sliding by kinesin-1 is essential for normal cytoplasmic streaming in Drosophila oocytes

    PubMed Central

    Lu, Wen; Winding, Michael; Lakonishok, Margot; Wildonger, Jill

    2016-01-01

    Cytoplasmic streaming in Drosophila oocytes is a microtubule-based bulk cytoplasmic movement. Streaming efficiently circulates and localizes mRNAs and proteins deposited by the nurse cells across the oocyte. This movement is driven by kinesin-1, a major microtubule motor. Recently, we have shown that kinesin-1 heavy chain (KHC) can transport one microtubule on another microtubule, thus driving microtubule–microtubule sliding in multiple cell types. To study the role of microtubule sliding in oocyte cytoplasmic streaming, we used a Khc mutant that is deficient in microtubule sliding but able to transport a majority of cargoes. We demonstrated that streaming is reduced by genomic replacement of wild-type Khc with this sliding-deficient mutant. Streaming can be fully rescued by wild-type KHC and partially rescued by a chimeric motor that cannot move organelles but is active in microtubule sliding. Consistent with these data, we identified two populations of microtubules in fast-streaming oocytes: a network of stable microtubules anchored to the actin cortex and free cytoplasmic microtubules that moved in the ooplasm. We further demonstrated that the reduced streaming in sliding-deficient oocytes resulted in posterior determination defects. Together, we propose that kinesin-1 slides free cytoplasmic microtubules against cortically immobilized microtubules, generating forces that contribute to cytoplasmic streaming and are essential for the refinement of posterior determinants. PMID:27512034

  17. Anti-Microtubule Drugs.

    PubMed

    Florian, Stefan; Mitchison, Timothy J

    2016-01-01

    Small molecule drugs that target microtubules (MTs), many of them natural products, have long been important tools in the MT field. Indeed, tubulin (Tb) was discovered, in part, as the protein binding partner of colchicine. Several anti-MT drug classes also have important medical uses, notably colchicine, which is used to treat gout, familial Mediterranean fever (FMF), and pericarditis, and the vinca alkaloids and taxanes, which are used to treat cancer. Anti-MT drugs have in common that they bind specifically to Tb in the dimer, MT or some other form. However, their effects on polymerization dynamics and on the human body differ markedly. Here we briefly review the most-studied molecules, and comment on their uses in basic research and medicine. Our focus is on practical applications of different anti-MT drugs in the laboratory, and key points that users should be aware of when designing experiments. We also touch on interesting unsolved problems, particularly in the area of medical applications. In our opinion, the mechanism by which any MT drug cures or treats any disease is still unsolved, despite decades of research. Solving this problem for particular drug-disease combinations might open new uses for old drugs, or provide insights into novel routes for treatment.

  18. Microtubules are essential for guard-cell function in Vicia and Arabidopsis.

    PubMed

    Eisinger, William; Ehrhardt, David; Briggs, Winslow

    2012-05-01

    Radially arranged cortical microtubules are a prominent feature of guard cells. Guard cells expressing GFP-tubulin showed consistent changes in the appearance of microtubules when stomata opened or closed. Guard cells showed fewer microtubule structures as stomata closed, whether induced by transfer to darkness, ABA, hydrogen peroxide, or sodium hydrogen carbonate. Guard cells kept in the dark (closed stomata) showed increases in microtubule structures and stomatal aperture on light treatment. GFP-EB1, marking microtubule growing plus ends, showed no change in number of plus ends or velocity of assembly on stomatal closure. Since the number of growing plus ends and the rate of plus-end growth did not change when microtubule structure numbers declined, microtubule instability and/or rearrangement must be responsible for the apparent loss of microtubules. Guard cells with closed stomata showed more cytosolic GFP-fluorescence than those with open stomata as cortical microtubules became disassembled, although with a large net loss in total fluorescence. Microtubule-targeted drugs blocked guard-cell function in Vicia and Arabidopsis. Oryzalin disrupted guard-cell microtubules and prevented stomatal opening and taxol stabilized guard-cell microtubules and delayed stomatal closure. Gas exchange measurements indicated that the transgenes for fluorescent-labeled proteins did not disrupt normal stomatal function. These dynamic changes in guard-cell microtubules combined with our inhibitor studies provide evidence for an active role of microtubules in guard-cell function.

  19. Multiscale modeling and simulation of microtubule-motor-protein assemblies

    NASA Astrophysics Data System (ADS)

    Gao, Tong; Blackwell, Robert; Glaser, Matthew A.; Betterton, M. D.; Shelley, Michael J.

    2015-12-01

    Microtubules and motor proteins self-organize into biologically important assemblies including the mitotic spindle and the centrosomal microtubule array. Outside of cells, microtubule-motor mixtures can form novel active liquid-crystalline materials driven out of equilibrium by adenosine triphosphate-consuming motor proteins. Microscopic motor activity causes polarity-dependent interactions between motor proteins and microtubules, but how these interactions yield larger-scale dynamical behavior such as complex flows and defect dynamics is not well understood. We develop a multiscale theory for microtubule-motor systems in which Brownian dynamics simulations of polar microtubules driven by motors are used to study microscopic organization and stresses created by motor-mediated microtubule interactions. We identify polarity-sorting and crosslink tether relaxation as two polar-specific sources of active destabilizing stress. We then develop a continuum Doi-Onsager model that captures polarity sorting and the hydrodynamic flows generated by these polar-specific active stresses. In simulations of active nematic flows on immersed surfaces, the active stresses drive turbulent flow dynamics and continuous generation and annihilation of disclination defects. The dynamics follow from two instabilities, and accounting for the immersed nature of the experiment yields unambiguous characteristic length and time scales. When turning off the hydrodynamics in the Doi-Onsager model, we capture formation of polar lanes as observed in the Brownian dynamics simulation.

  20. Multiscale modeling and simulation of microtubule-motor-protein assemblies.

    PubMed

    Gao, Tong; Blackwell, Robert; Glaser, Matthew A; Betterton, M D; Shelley, Michael J

    2015-01-01

    Microtubules and motor proteins self-organize into biologically important assemblies including the mitotic spindle and the centrosomal microtubule array. Outside of cells, microtubule-motor mixtures can form novel active liquid-crystalline materials driven out of equilibrium by adenosine triphosphate-consuming motor proteins. Microscopic motor activity causes polarity-dependent interactions between motor proteins and microtubules, but how these interactions yield larger-scale dynamical behavior such as complex flows and defect dynamics is not well understood. We develop a multiscale theory for microtubule-motor systems in which Brownian dynamics simulations of polar microtubules driven by motors are used to study microscopic organization and stresses created by motor-mediated microtubule interactions. We identify polarity-sorting and crosslink tether relaxation as two polar-specific sources of active destabilizing stress. We then develop a continuum Doi-Onsager model that captures polarity sorting and the hydrodynamic flows generated by these polar-specific active stresses. In simulations of active nematic flows on immersed surfaces, the active stresses drive turbulent flow dynamics and continuous generation and annihilation of disclination defects. The dynamics follow from two instabilities, and accounting for the immersed nature of the experiment yields unambiguous characteristic length and time scales. When turning off the hydrodynamics in the Doi-Onsager model, we capture formation of polar lanes as observed in the Brownian dynamics simulation.

  1. Distinct roles for antiparallel microtubule pairing and overlap during early spindle assembly

    PubMed Central

    Nazarova, Elena; O'Toole, Eileen; Kaitna, Susi; Francois, Paul; Winey, Mark; Vogel, Jackie

    2013-01-01

    During spindle assembly, microtubules may attach to kinetochores or pair to form antiparallel pairs or interpolar microtubules, which span the two spindle poles and contribute to mitotic pole separation and chromosome segregation. Events in the specification of the interpolar microtubules are poorly understood. Using three-dimensional electron tomography and analysis of spindle dynamical behavior in living cells, we investigated the process of spindle assembly. Unexpectedly, we found that the phosphorylation state of an evolutionarily conserved Cdk1 site (S360) in γ-tubulin is correlated with the number and organization of interpolar microtubules. Mimicking S360 phosphorylation (S360D) results in bipolar spindles with a normal number of microtubules but lacking interpolar microtubules. Inhibiting S360 phosphorylation (S360A) results in spindles with interpolar microtubules and high-angle, antiparallel microtubule pairs. The latter are also detected in wild-type spindles <1 μm in length, suggesting that high-angle microtubule pairing represents an intermediate step in interpolar microtubule formation. Correlation of spindle architecture with dynamical behavior suggests that microtubule pairing is sufficient to separate the spindle poles, whereas interpolar microtubules maintain the velocity of pole displacement during early spindle assembly. Our findings suggest that the number of interpolar microtubules formed during spindle assembly is controlled in part through activities at the spindle poles. PMID:23966467

  2. Confinement and dynamics of neutral beam injected fast ions in the MST Reversed Field Pinch

    NASA Astrophysics Data System (ADS)

    Liu, D.; Almagri, F.; Anderson, J. K.; den Hartog, D. J.; Nornberg, M. D.; Sarff, J. S.; Waksman, J.; Fiksel, G.; Deichuli, P.; Davydenko, V. I.; Ivanov, A. A.; Polosatkin, S. V.; Stupishin, N.; Andre, R.; McCune, D.

    2010-11-01

    The new 1MW neutral beam injector (97% H, 3% D) on MST provides a good test-bed for study of fast ions in the RFP. Analysis of the D-D fusion neutron flux decay at beam turn-off reveals that the confinement time of the fast ions is at least 10 ms, ten-fold larger than the thermal conferment times for particles and energy in standard stochastic plasmas. Also, the fast ion confinement increases with magnetic field strength. Dependence of fast ion confinement on plasma parameters, beam energy, and injection direction will be characterized and compared with TRANSP simulations. In addition, an advanced neutral particle analyzer and a prototype of fast ion charge exchange spectroscopy are under construction to measure neutralized fast ions and induced Doppler-shifted Hα light, respectively, thereby resolving fast ion density and energy distribution. Initial measurements of fast-ion dynamics during magnetic reconnection events will be presented.

  3. Microtubule defects & Neurodegeneration.

    PubMed

    Baird, Fiona J; Bennett, Craig L

    2013-12-06

    One of the major challenges facing the long term survival of neurons is their requirement to maintain efficient axonal transport over long distances. In humans as large, long-lived vertebrates, the machinery maintaining neuronal transport must remain efficient despite the slow accumulation of cell damage during aging. Mutations in genes encoding proteins which function in the transport system feature prominently in neurologic disorders. Genes known to cause such disorders and showing traditional Mendelian inheritance have been more readily identified. It has been more difficult, however, to isolate factors underlying the complex genetics contributing to the more common idiopathic forms of neurodegenerative disease. At the heart of neuronal transport is the rail network or scaffolding provided by neuron specific microtubules (MTs). The importance of MT dynamics and stability is underscored by the critical role tau protein plays in MT-associated stabilization versus the dysfunction seen in Alzheimer's disease, frontotemporal dementia and other tauopathies. Another example of the requirement for tight regulation of MT dynamics is the need to maintain balanced levels of post-translational modification of key MT building-blocks such as α-tubulin. Tubulins require extensive polyglutamylation at their carboxyl-terminus as part of a novel post-translational modification mechanism to signal MT growth versus destabilization. Dramatically, knock-out of a gene encoding a deglutamylation family member causes an extremely rapid cell death of Purkinje cells in the ataxic mouse model, pcd. This review will examine a range of neurodegenerative conditions where current molecular understanding points to defects in the stability of MTs and axonal transport to emphasize the central role of MTs in neuron survival.

  4. Large scale molecular dynamics simulations of a liquid crystalline droplet with fast multipole implementations

    SciTech Connect

    Wang, Z.; Lupo, J.; Patnaik, S.S.; McKenney, A.; Pachter, R.

    1999-07-01

    The Fast Multipole Method (FMM) offers an efficient way (order O(N)) to handle long range electrostatic interactions, thus enabling more realistic molecular dynamics simulations of large molecular systems. The performance of the fast molecular dynamics (FMD) code, a parallel MD code being developed in the group, using the three-dimensional fast multipole method, shows a good speedup. The application to the full atomic-scale molecular dynamics simulation of a liquid crystalline droplet of 4-n-pentyl-4{prime}-cyanobiphenyl (5CB) molecules, of size 35,872 atoms, shows strong surface effects on various orientational order parameters.

  5. Association of actin filaments with axonal microtubule tracts.

    PubMed

    Bearer, E L; Reese, T S

    1999-02-01

    Axoplasmic organelles move on actin as well as microtubules in vitro and axons contain a large amount of actin, but little is known about the organization and distribution of actin filaments within the axon. Here we undertake to define the relationship of the microtubule bundles typically found in axons to actin filaments by applying three microscopic techniques: laser-scanning confocal microscopy of immuno-labeled squid axoplasm; electronmicroscopy of conventionally prepared thin sections; and electronmicroscopy of touch preparations-a thin layer of axoplasm transferred to a specimen grid and negatively stained. Light microscopy shows that longitudinal actin filaments are abundant and usually coincide with longitudinal microtubule bundles. Electron microscopy shows that microfilaments are interwoven with the longitudinal bundles of microtubules. These bundles maintain their integrity when neurofilaments are extracted. Some, though not all microfilaments decorate with the S1 fragment of myosin, and some also act as nucleation sites for polymerization of exogenous actin, and hence are definitively identified as actin filaments. These actin filaments range in minimum length from 0.5 to 1.5 microm with some at least as long as 3.5 microm. We conclude that the microtubule-based tracks for fast organelle transport also include actin filaments. These actin filaments are sufficiently long and abundant to be ancillary or supportive of fast transport along microtubules within bundles, or to extend transport outside of the bundle. These actin filaments could also be essential for maintaining the structural integrity of the microtubule bundles.

  6. The microtubule plus-end tracking protein ARMADILLO-REPEAT KINESIN1 promotes microtubule catastrophe in Arabidopsis.

    PubMed

    Eng, Ryan Christopher; Wasteneys, Geoffrey O

    2014-08-01

    Microtubule dynamics are critically important for plant cell development. Here, we show that Arabidopsis thaliana ARMADILLO-REPEAT KINESIN1 (ARK1) plays a key role in root hair tip growth by promoting microtubule catastrophe events. This destabilizing activity appears to maintain adequate free tubulin concentrations in order to permit rapid microtubule growth, which in turn is correlated with uniform tip growth. Microtubules in ark1-1 root hairs exhibited reduced catastrophe frequency and slower growth velocities, both of which were restored by low concentrations of the microtubule-destabilizing drug oryzalin. An ARK1-GFP (green fluorescent protein) fusion protein expressed under its endogenous promoter localized to growing microtubule plus ends and rescued the ark1-1 root hair phenotype. Transient overexpression of ARK1-RFP (red fluorescent protein) increased microtubule catastrophe frequency. ARK1-fusion protein constructs lacking the N-terminal motor domain still labeled microtubules, suggesting the existence of a second microtubule binding domain at the C terminus of ARK1. ARK1-GFP was broadly expressed in seedlings, but mutant phenotypes were restricted to root hairs, indicating that ARK1's function is redundant in cells other than those forming root hairs.

  7. Electrostatic differences: A possible source for the functional differences between MCF7 and brain microtubules.

    PubMed

    Feizabadi, Mitra Shojania; Rosario, Brandon; Hernandez, Marcos A V

    2017-09-05

    Recent studies suggested a link between diversity of beta tubulin isotypes in microtubule structures and the regulatory roles that they play not only on microtubules' intrinsic dynamic, but also on the translocation characteristics of some of the molecular motors along microtubules. Remarkably, unlike porcine brain microtubules, MCF7 microtubules are structured from a different beta tubulin distribution. These types of cancer microtubules show a relatively stable and slow dynamic. In addition, the translocation parameters of some molecular motors are distinctly different along MCF7 as compared to those parameters on brain microtubules. It is known that the diversity of beta tubulin isotypes differ predominantly in the specifications and the electric charge of their carboxy-terminal tails. A key question is to identify whether the negative electrostatic charge of tubulin isotypes and, consequently, microtubules, can potentially be considered as one of the sources of functional differences in MCF7 vs. brain microtubules. We tested this possibility experimentally by monitoring the electro-orientation of these two types of microtubules inside a uniform electric field. Through this evaluation, we quantified and compared the average normalized polarization coefficient of MCF7 vs. Porcine brain microtubules. The higher value obtained for the polarization of MCF7 microtubules, which is associated to the higher negative charge of these types of microtubules, is significant as it can further explain the slow intrinsic dynamic that has been recently reported for single MCF7 microtubules in vitro. Furthermore, it can be potentially considered as a factor that can directly impact the translocation parameters of some molecular motors along MCF7 microtubules, by altering the mutual electrostatic interactions between microtubules and molecular motors. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Targeting Microtubules for Wound Repair

    PubMed Central

    Charafeddine, Rabab A.; Nosanchuk, Joshua D.; Sharp, David J.

    2016-01-01

    Significance: Fast and seamless healing is essential for both deep and chronic wounds to restore the skin and protect the body from harmful pathogens. Thus, finding new targets that can both expedite and enhance the repair process without altering the upstream signaling milieu and causing serious side effects can improve the way we treat wounds. Since cell migration is key during the different stages of wound healing, it presents an ideal process and intracellular structural machineries to target. Recent Advances and Critical Issues: The microtubule (MT) cytoskeleton is rising as an important structural and functional regulator of wound healing. MTs have been reported to play different roles in the migration of the various cell types involved in wound healing. Specific microtubule regulatory proteins (MRPs) can be targeted to alter a section or subtype of the MT cytoskeleton and boost or hinder cell motility. However, inhibiting intracellular components can be challenging in vivo, especially using unstable molecules, such as small interfering RNA. Nanoparticles can be used to protect these unstable molecules and topically deliver them to the wound. Utilizing this approach, we recently showed that fidgetin-like 2, an uncharacterized MRP, can be targeted to enhance cell migration and wound healing. Future Directions: To harness the full potential of the current MRP therapeutic targets, studies should test them with different delivery platforms, dosages, and skin models. Screening for new MT effectors that boost cell migration in vivo would also help find new targets for skin repair. PMID:27785378

  9. Fluorescent microtubules break up under illumination

    PubMed Central

    1988-01-01

    We have synthesized three new fluorescent analogues of tubulin, using fluorescein or rhodamine groups attached to N-hydroxy-succinimidyl esters, and have partially characterized the properties of these analogues. We have also further characterized the tubulin derivatized with dichlorotriazinyl-aminofluorescein that has previously been used in this and other laboratories. Our results show that all four analogues assemble into microtubules which break up when exposed to light of the wavelengths that excite fluorescence. This sensitivity places severe constraints on the use of these analogues in studies of microtubule dynamics. PMID:3417772

  10. EB1 targets to kinetochores with attached, polymerizing microtubules.

    PubMed

    Tirnauer, Jennifer S; Canman, Julie C; Salmon, E D; Mitchison, Timothy J

    2002-12-01

    Microtubule polymerization dynamics at kinetochores is coupled to chromosome movements, but its regulation there is poorly understood. The plus end tracking protein EB1 is required both for regulating microtubule dynamics and for maintaining a euploid genome. To address the role of EB1 in aneuploidy, we visualized its targeting in mitotic PtK1 cells. Fluorescent EB1, which localized to polymerizing ends of astral and spindle microtubules, was used to track their polymerization. EB1 also associated with a subset of attached kinetochores in late prometaphase and metaphase, and rarely in anaphase. Localization occurred in a narrow crescent, concave toward the centromere, consistent with targeting to the microtubule plus end-kinetochore interface. EB1 did not localize to kinetochores lacking attached kinetochore microtubules in prophase or early prometaphase, or upon nocodazole treatment. By time lapse, EB1 specifically targeted to kinetochores moving antipoleward, coupled to microtubule plus end polymerization, and not during plus end depolymerization. It localized independently of spindle bipolarity, the spindle checkpoint, and dynein/dynactin function. EB1 is the first protein whose targeting reflects kinetochore directionality, unlike other plus end tracking proteins that show enhanced kinetochore binding in the absence of microtubules. Our results suggest EB1 may modulate kinetochore microtubule polymerization and/or attachment.

  11. Physical basis of large microtubule aster growth

    PubMed Central

    Ishihara, Keisuke; Korolev, Kirill S; Mitchison, Timothy J

    2016-01-01

    Microtubule asters - radial arrays of microtubules organized by centrosomes - play a fundamental role in the spatial coordination of animal cells. The standard model of aster growth assumes a fixed number of microtubules originating from the centrosomes. However, aster morphology in this model does not scale with cell size, and we recently found evidence for non-centrosomal microtubule nucleation. Here, we combine autocatalytic nucleation and polymerization dynamics to develop a biophysical model of aster growth. Our model predicts that asters expand as traveling waves and recapitulates all major aspects of aster growth. With increasing nucleation rate, the model predicts an explosive transition from stationary to growing asters with a discontinuous jump of the aster velocity to a nonzero value. Experiments in frog egg extract confirm the main theoretical predictions. Our results suggest that asters observed in large fish and amphibian eggs are a meshwork of short, unstable microtubules maintained by autocatalytic nucleation and provide a paradigm for the assembly of robust and evolvable polymer networks. DOI: http://dx.doi.org/10.7554/eLife.19145.001 PMID:27892852

  12. Taxol Crystals Can Masquerade as Stabilized Microtubules

    PubMed Central

    Alsop, G. Bradley; Zhang, Dahong

    2008-01-01

    Taxol is a potent anti-mitotic drug used in chemotherapy, angioplastic stents, and cell biology research. By binding and stabilizing microtubules, Taxol inhibits their dynamics, crucial for cell division, motility, and survival. The drug has also been reported to induce formation of asters and bundles composed of stabilized microtubules. Surprisingly, at commonly used concentrations, Taxol forms crystals that rapidly bind fluorescent tubulin subunits, generating structures with an uncanny resemblance to microtubule asters and bundles. Kinetic and topological considerations suggest that tubulin subunits, rather than microtubules, bind the crystals. This sequestration of tubulin from the subunit pool would be expected to shift the equilibrium of free to polymerized tubulin to disfavor assembly. Our results imply that some previously reported Taxol-induced asters or bundles could include or be composed of tubulin-decorated Taxol crystals. Thus, reevaluation of certain morphological, chemical, and physical properties of Taxol-treated microtubules may be necessary. Moreover, our findings suggest a novel mechanism for chemotherapy-induced cytotoxicity in non-dividing cells, with far-reaching medical implications. PMID:18213384

  13. LIM-kinase 2, a regulator of actin dynamics, is involved in mitotic spindle integrity and sensitivity to microtubule-destabilizing drugs.

    PubMed

    Po'uha, S T; Shum, M S Y; Goebel, A; Bernard, O; Kavallaris, M

    2010-01-28

    LIM-kinase 2 (LIMK2) belongs to the LIMK family of proteins, which comprises LIMK1 and LIMK2. Both proteins regulate actin polymerization through phosphorylation and inactivation of the actin depolymerizing factor cofilin. In this study, we show that the level of LIMK2 protein is increased in neuroblastoma, BE(2)-C cells, selected for resistance to microtubule-destabilizing agents, vincristine and colchicine. However, the level of phosphorylated LIMK1 and LIMK2 was similar in the resistant and parental BE(2)-C cells. In contrast, the level of phospho-cofilin was greatly increased in the drug-resistant cells. Downregulation of LIMK2 expression increases sensitivity of neuroblastoma SH-EP cells to vincristine and vinblastine but not to microtubule-stabilizing agents, while it's overexpression increased its resistance to vincristine. Its vincristine-induced mitotic arrest was moderately inhibited in the LIMK2 knockdown cells, suggesting that the increased drug sensitivity is through an alternative mechanism other then mitotic arrest and apoptosis. Moreover, downregulation of LIMK2 expression induces formation of abnormal mitotic spindles, an effect enhanced in the presence of microtubule-destabilizing agents. LIMK2 is important for normal mitotic spindle formation and altered LIMK2 expression mediates sensitivity to microtubule destabilizing agents. These findings suggest that inhibition of LIMK2 activity may be used for the treatment of tumors resistant to microtubule-destabilizing drugs.

  14. Do prokaryotes contain microtubules?

    NASA Technical Reports Server (NTRS)

    Bermudes, D.; Hinkle, G.; Margulis, L.

    1994-01-01

    In eukaryotic cells, microtubules are 24-nm-diameter tubular structures composed of a class of conserved proteins called tubulin. They are involved in numerous cell functions including ciliary motility, nerve cell elongation, pigment migration, centrosome formation, and chromosome movement. Although cytoplasmic tubules and fibers have been observed in bacteria, some with diameters similar to those of eukaryotes, no homologies to eukaryotic microtubules have been established. Certain groups of bacteria including azotobacters, cyanobacteria, enteric bacteria, and spirochetes have been frequently observed to possess microtubule-like structures, and others, including archaebacteria, have been shown to be sensitive to drugs that inhibit the polymerization of microtubules. Although little biochemical or molecular biological information is available, the differences observed among these prokaryotic structures suggest that their composition generally differs among themselves as well as from that of eukaryotes. We review the distribution of cytoplasmic tubules in prokaryotes, even though, in all cases, their functions remain unknown. At least some tend to occur in cells that are large, elongate, and motile, suggesting that they may be involved in cytoskeletal functions, intracellular motility, or transport activities comparable to those performed by eukaryotic microtubules. In Escherichia coli, the FtsZ protein is associated with the formation of a ring in the division zone between the newly forming offspring cells. Like tubulin, FtsZ is a GTPase and shares with tubulin a 7-amino-acid motif, making it a promising candidate in which to seek the origin of tubulins.

  15. Do prokaryotes contain microtubules?

    NASA Technical Reports Server (NTRS)

    Bermudes, D.; Hinkle, G.; Margulis, L.

    1994-01-01

    In eukaryotic cells, microtubules are 24-nm-diameter tubular structures composed of a class of conserved proteins called tubulin. They are involved in numerous cell functions including ciliary motility, nerve cell elongation, pigment migration, centrosome formation, and chromosome movement. Although cytoplasmic tubules and fibers have been observed in bacteria, some with diameters similar to those of eukaryotes, no homologies to eukaryotic microtubules have been established. Certain groups of bacteria including azotobacters, cyanobacteria, enteric bacteria, and spirochetes have been frequently observed to possess microtubule-like structures, and others, including archaebacteria, have been shown to be sensitive to drugs that inhibit the polymerization of microtubules. Although little biochemical or molecular biological information is available, the differences observed among these prokaryotic structures suggest that their composition generally differs among themselves as well as from that of eukaryotes. We review the distribution of cytoplasmic tubules in prokaryotes, even though, in all cases, their functions remain unknown. At least some tend to occur in cells that are large, elongate, and motile, suggesting that they may be involved in cytoskeletal functions, intracellular motility, or transport activities comparable to those performed by eukaryotic microtubules. In Escherichia coli, the FtsZ protein is associated with the formation of a ring in the division zone between the newly forming offspring cells. Like tubulin, FtsZ is a GTPase and shares with tubulin a 7-amino-acid motif, making it a promising candidate in which to seek the origin of tubulins.

  16. Do prokaryotes contain microtubules?

    PubMed Central

    Bermudes, D; Hinkle, G; Margulis, L

    1994-01-01

    In eukaryotic cells, microtubules are 24-nm-diameter tubular structures composed of a class of conserved proteins called tubulin. They are involved in numerous cell functions including ciliary motility, nerve cell elongation, pigment migration, centrosome formation, and chromosome movement. Although cytoplasmic tubules and fibers have been observed in bacteria, some with diameters similar to those of eukaryotes, no homologies to eukaryotic microtubules have been established. Certain groups of bacteria including azotobacters, cyanobacteria, enteric bacteria, and spirochetes have been frequently observed to possess microtubule-like structures, and others, including archaebacteria, have been shown to be sensitive to drugs that inhibit the polymerization of microtubules. Although little biochemical or molecular biological information is available, the differences observed among these prokaryotic structures suggest that their composition generally differs among themselves as well as from that of eukaryotes. We review the distribution of cytoplasmic tubules in prokaryotes, even though, in all cases, their functions remain unknown. At least some tend to occur in cells that are large, elongate, and motile, suggesting that they may be involved in cytoskeletal functions, intracellular motility, or transport activities comparable to those performed by eukaryotic microtubules. In Escherichia coli, the FtsZ protein is associated with the formation of a ring in the division zone between the newly forming offspring cells. Like tubulin, FtsZ is a GTPase and shares with tubulin a 7-amino-acid motif, making it a promising candidate in which to seek the origin of tubulins. Images PMID:7968920

  17. Kinetochore-dependent microtubule rescue ensures their efficient and sustained interactions in early mitosis.

    PubMed

    Gandhi, Sapan R; Gierliński, Marek; Mino, Akihisa; Tanaka, Kozo; Kitamura, Etsushi; Clayton, Lesley; Tanaka, Tomoyuki U

    2011-11-15

    How kinetochores regulate microtubule dynamics to ensure proper kinetochore-microtubule interactions is unknown. Here, we studied this during early mitosis in Saccharomyces cerevisiae. When a microtubule shrinks and its plus end reaches a kinetochore bound to its lateral surface, the microtubule end attempts to tether the kinetochore. This process often fails and, responding to this failure, microtubule rescue (conversion from shrinkage to growth) occurs, preventing kinetochore detachment from the microtubule end. This rescue is promoted by Stu2 transfer (ortholog of vertebrate XMAP215/ch-TOG) from the kinetochore to the microtubule end. Meanwhile, microtubule rescue distal to the kinetochore is also promoted by Stu2, which is transported by a kinesin-8 motor Kip3 along the microtubule from the kinetochore. Microtubule extension following rescue facilitates interaction with other widely scattered kinetochores, diminishing long delays in collecting the complete set of kinetochores by microtubules. Thus, kinetochore-dependent microtubule rescue ensures efficient and sustained kinetochore-microtubule interactions in early mitosis. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Kinetochore-Dependent Microtubule Rescue Ensures Their Efficient and Sustained Interactions in Early Mitosis

    PubMed Central

    Gandhi, Sapan R.; Gierliński, Marek; Mino, Akihisa; Tanaka, Kozo; Kitamura, Etsushi; Clayton, Lesley; Tanaka, Tomoyuki U.

    2011-01-01

    Summary How kinetochores regulate microtubule dynamics to ensure proper kinetochore-microtubule interactions is unknown. Here, we studied this during early mitosis in Saccharomyces cerevisiae. When a microtubule shrinks and its plus end reaches a kinetochore bound to its lateral surface, the microtubule end attempts to tether the kinetochore. This process often fails and, responding to this failure, microtubule rescue (conversion from shrinkage to growth) occurs, preventing kinetochore detachment from the microtubule end. This rescue is promoted by Stu2 transfer (ortholog of vertebrate XMAP215/ch-TOG) from the kinetochore to the microtubule end. Meanwhile, microtubule rescue distal to the kinetochore is also promoted by Stu2, which is transported by a kinesin-8 motor Kip3 along the microtubule from the kinetochore. Microtubule extension following rescue facilitates interaction with other widely scattered kinetochores, diminishing long delays in collecting the complete set of kinetochores by microtubules. Thus, kinetochore-dependent microtubule rescue ensures efficient and sustained kinetochore-microtubule interactions in early mitosis. PMID:22075150

  19. An array of nuclear microtubules reorganizes the budding yeast nucleus during quiescence

    PubMed Central

    Laporte, Damien; Courtout, Fabien; Salin, Bénédicte; Ceschin, Johanna

    2013-01-01

    The microtubule cytoskeleton is a highly dynamic network. In dividing cells, its complex architecture not only influences cell shape and movement but is also crucial for chromosome segregation. Curiously, nothing is known about the behavior of this cellular machinery in quiescent cells. Here we show that, upon quiescence entry, the Saccharomyces cerevisiae microtubule cytoskeleton is drastically remodeled. Indeed, while cytoplasmic microtubules vanish, the spindle pole body (SPB) assembles a long and stable monopolar array of nuclear microtubules that spans the entire nucleus. Consequently, the nucleolus is displaced. Kinetochores remain attached to microtubule tips but lose SPB clustering and distribute along the microtubule array, leading to a large reorganization of the nucleus. When cells exit quiescence, the nuclear microtubule array slowly depolymerizes and, by pulling attached centromeres back to the SPB, allows the recovery of a typical Rabl-like configuration. Finally, mutants that do not assemble a nuclear array of microtubules are impaired for both quiescence survival and exit. PMID:24247429

  20. Electric field-induced reversible trapping of microtubules along metallic glass microwire electrodes

    NASA Astrophysics Data System (ADS)

    Kim, Kyongwan; Sikora, Aurélien; Nakayama, Koji S.; Umetsu, Mitsuo; Hwang, Wonmuk; Teizer, Winfried

    2015-04-01

    Microtubules are among bio-polymers providing vital functions in dynamic cellular processes. Artificial organization of these bio-polymers is a requirement for transferring their native functions into device applications. Using electrophoresis, we achieve an accumulation of microtubules along a metallic glass (Pd42.5Cu30Ni7.5P20) microwire in solution. According to an estimate based on migration velocities of microtubules approaching the wire, the electrophoretic mobility of microtubules is around 10-12 m2/Vs. This value is four orders of magnitude smaller than the typical mobility reported previously. Fluorescence microscopy at the individual-microtubule level shows microtubules aligning along the wire axis during the electric field-induced migration. Casein-treated electrodes are effective to reversibly release trapped microtubules upon removal of the external field. An additional result is the condensation of secondary filamentous structures from oriented microtubules.

  1. Microtubule doublets are double-track railways for intraflagellar transport trains.

    PubMed

    Stepanek, Ludek; Pigino, Gaia

    2016-05-06

    The cilium is a large macromolecular machine that is vital for motility, signaling, and sensing in most eukaryotic cells. Its conserved core structure, the axoneme, contains nine microtubule doublets, each comprising a full A-microtubule and an incomplete B-microtubule. However, thus far, the function of this doublet geometry has not been understood. We developed a time-resolved correlative fluorescence and three-dimensional electron microscopy approach to investigate the dynamics of intraflagellar transport (IFT) trains, which carry ciliary building blocks along microtubules during the assembly and disassembly of the cilium. Using this method, we showed that each microtubule doublet is used as a bidirectional double-track railway: Anterograde IFT trains move along B-microtubules, and retrograde trains move along A-microtubules. Thus, the microtubule doublet geometry provides direction-specific rails to coordinate bidirectional transport of ciliary components.

  2. CYLD Regulates Noscapine Activity in Acute Lymphoblastic Leukemia via a Microtubule-Dependent Mechanism.

    PubMed

    Yang, Yunfan; Ran, Jie; Sun, Lei; Sun, Xiaodong; Luo, Youguang; Yan, Bing; Tala; Liu, Min; Li, Dengwen; Zhang, Lei; Bao, Gang; Zhou, Jun

    2015-01-01

    Noscapine is an orally administrable drug used worldwide for cough suppression and has recently been demonstrated to disrupt microtubule dynamics and possess anticancer activity. However, the molecular mechanisms regulating noscapine activity remain poorly defined. Here we demonstrate that cylindromatosis (CYLD), a microtubule-associated tumor suppressor protein, modulates the activity of noscapine both in cell lines and in primary cells of acute lymphoblastic leukemia (ALL). Flow cytometry and immunofluorescence microscopy reveal that CYLD increases the ability of noscapine to induce mitotic arrest and apoptosis. Examination of cellular microtubules as well as in vitro assembled microtubules shows that CYLD enhances the effect of noscapine on microtubule polymerization. Microtubule cosedimentation and fluorescence titration assays further reveal that CYLD interacts with microtubule outer surface and promotes noscapine binding to microtubules. These findings thus demonstrate CYLD as a critical regulator of noscapine activity and have important implications for ALL treatment.

  3. Control of microtubule nucleation and stability in Madin-Darby canine kidney cells: the occurrence of noncentrosomal, stable detyrosinated microtubules

    PubMed Central

    1987-01-01

    The microtubule-nucleating activity of centrosomes was analyzed in fibroblastic (Vero) and in epithelial cells (PtK2, Madin-Darby canine kidney [MDCK]) by double-immunofluorescence labeling with anti- centrosome and antitubulin antibodies. Most of the microtubules emanated from the centrosomes in Vero cells, whereas the microtubule network of MDCK cells appeared to be noncentrosome nucleated and randomly organized. The pattern of microtubule organization in PtK2 cells was intermediate to the patterns observed in the typical fibroblastic and epithelial cells. The two centriole cylinders were tightly associated and located close to the nucleus in Vero and PtK2 cells. In MDCK cells, however, they were clearly separated and electron microscopy revealed that they nucleated only a few microtubules. The stability of centrosomal and noncentrosomal microtubules was examined by treatment of these different cell lines with various concentrations of nocodazole. 1.6 microM nocodazole induced an almost complete depolymerization of microtubules in Vero cells; some centrosome nucleated microtubules remained in PtK2 cells, while many noncentrosomal microtubules resisted that treatment in MDCK cells. Centrosomal and noncentrosomal microtubules regrew in MDCK cells with similar kinetics after release from complete disassembly by high concentrations of nocodazole (33 microM). During regrowth, centrosomal microtubules became resistant to 1.6 microM nocodazole before the noncentrosomal ones, although the latter eventually predominate. We suggest that in MDCK cells, microtubules grow and shrink as proposed by the dynamic instability model but the presence of factors prevents them from complete depolymerization. This creates seeds for reelongation that compete with nucleation off the centrosome. By using specific antibodies, we have shown that the abundant subset of nocodazole- resistant microtubules in MDCK cells contained detyrosinated alpha- tubulin (glu tubulin). On the other hand

  4. Multiscale Polar Theory of Microtubule and Motor-Protein Assemblies

    PubMed Central

    Gao, Tong; Blackwell, Robert; Glaser, Matthew A.; Betterton, M. D.; Shelley, Michael J.

    2015-01-01

    Microtubules and motor proteins are building blocks of self-organized subcellular biological structures such as the mitotic spindle and the centrosomal microtubule array. These same ingredients can form new “bioactive” liquid-crystalline fluids that are intrinsically out of equilibrium and which display complex flows and defect dynamics. It is not yet well understood how microscopic activity, which involves polarity-dependent interactions between motor proteins and microtubules, yields such larger-scale dynamical structures. In our multiscale theory, Brownian dynamics simulations of polar microtubule ensembles driven by cross-linking motors allow us to study microscopic organization and stresses. Polarity sorting and cross-link relaxation emerge as two polar-specific sources of active destabilizing stress. On larger length scales, our continuum Doi-Onsager theory captures the hydrodynamic flows generated by polarity-dependent active stresses. The results connect local polar structure to flow structures and defect dynamics. PMID:25679909

  5. Multiscale polar theory of microtubule and motor-protein assemblies

    SciTech Connect

    Gao, Tong; Blackwell, Robert; Glaser, Matthew A.; Betterton, Meredith D.; Shelley, Michael J.

    2015-01-27

    Microtubules and motor proteins are building blocks of self-organized subcellular biological structures such as the mitotic spindle and the centrosomal microtubule array. These same ingredients can form new “bioactive” liquid-crystalline fluids that are intrinsically out of equilibrium and which display complex flows and defect dynamics. It is not yet well understood how microscopic activity, which involves polarity-dependent interactions between motor proteins and microtubules, yields such larger-scale dynamical structures. In our multiscale theory, Brownian dynamics simulations of polar microtubule ensembles driven by cross-linking motors allow us to study microscopic organization and stresses. Polarity sorting and cross-link relaxation emerge as two polar-specific sources of active destabilizing stress. On larger length scales, our continuum Doi-Onsager theory captures the hydrodynamic flows generated by polarity-dependent active stresses. Finally, the results connect local polar structure to flow structures and defect dynamics.

  6. Multiscale polar theory of microtubule and motor-protein assemblies

    DOE PAGES

    Gao, Tong; Blackwell, Robert; Glaser, Matthew A.; ...

    2015-01-27

    Microtubules and motor proteins are building blocks of self-organized subcellular biological structures such as the mitotic spindle and the centrosomal microtubule array. These same ingredients can form new “bioactive” liquid-crystalline fluids that are intrinsically out of equilibrium and which display complex flows and defect dynamics. It is not yet well understood how microscopic activity, which involves polarity-dependent interactions between motor proteins and microtubules, yields such larger-scale dynamical structures. In our multiscale theory, Brownian dynamics simulations of polar microtubule ensembles driven by cross-linking motors allow us to study microscopic organization and stresses. Polarity sorting and cross-link relaxation emerge as two polar-specificmore » sources of active destabilizing stress. On larger length scales, our continuum Doi-Onsager theory captures the hydrodynamic flows generated by polarity-dependent active stresses. Finally, the results connect local polar structure to flow structures and defect dynamics.« less

  7. Multiscale polar theory of microtubule and motor-protein assemblies.

    PubMed

    Gao, Tong; Blackwell, Robert; Glaser, Matthew A; Betterton, M D; Shelley, Michael J

    2015-01-30

    Microtubules and motor proteins are building blocks of self-organized subcellular biological structures such as the mitotic spindle and the centrosomal microtubule array. These same ingredients can form new "bioactive" liquid-crystalline fluids that are intrinsically out of equilibrium and which display complex flows and defect dynamics. It is not yet well understood how microscopic activity, which involves polarity-dependent interactions between motor proteins and microtubules, yields such larger-scale dynamical structures. In our multiscale theory, Brownian dynamics simulations of polar microtubule ensembles driven by cross-linking motors allow us to study microscopic organization and stresses. Polarity sorting and cross-link relaxation emerge as two polar-specific sources of active destabilizing stress. On larger length scales, our continuum Doi-Onsager theory captures the hydrodynamic flows generated by polarity-dependent active stresses. The results connect local polar structure to flow structures and defect dynamics.

  8. Multiscale Polar Theory of Microtubule and Motor-Protein Assemblies

    NASA Astrophysics Data System (ADS)

    Gao, Tong; Blackwell, Robert; Glaser, Matthew A.; Betterton, M. D.; Shelley, Michael J.

    2015-01-01

    Microtubules and motor proteins are building blocks of self-organized subcellular biological structures such as the mitotic spindle and the centrosomal microtubule array. These same ingredients can form new "bioactive" liquid-crystalline fluids that are intrinsically out of equilibrium and which display complex flows and defect dynamics. It is not yet well understood how microscopic activity, which involves polarity-dependent interactions between motor proteins and microtubules, yields such larger-scale dynamical structures. In our multiscale theory, Brownian dynamics simulations of polar microtubule ensembles driven by cross-linking motors allow us to study microscopic organization and stresses. Polarity sorting and cross-link relaxation emerge as two polar-specific sources of active destabilizing stress. On larger length scales, our continuum Doi-Onsager theory captures the hydrodynamic flows generated by polarity-dependent active stresses. The results connect local polar structure to flow structures and defect dynamics.

  9. A coarse-grained model of microtubule self-assembly

    NASA Astrophysics Data System (ADS)

    Regmi, Chola; Cheng, Shengfeng

    Microtubules play critical roles in cell structures and functions. They also serve as a model system to stimulate the next-generation smart, dynamic materials. A deep understanding of their self-assembly process and biomechanical properties will not only help elucidate how microtubules perform biological functions, but also lead to exciting insight on how microtubule dynamics can be altered or even controlled for specific purposes such as suppressing the division of cancer cells. Combining all-atom molecular dynamics (MD) simulations and the essential dynamics coarse-graining method, we construct a coarse-grained (CG) model of the tubulin protein, which is the building block of microtubules. In the CG model a tubulin dimer is represented as an elastic network of CG sites, the locations of which are determined by examining the protein dynamics of the tubulin and identifying the essential dynamic domains. Atomistic MD modeling is employed to directly compute the tubulin bond energies in the surface lattice of a microtubule, which are used to parameterize the interactions between CG building blocks. The CG model is then used to study the self-assembly pathways, kinetics, dynamics, and nanomechanics of microtubules.

  10. BRIDGES BETWEEN MICROTUBULES

    PubMed Central

    McIntosh, J. R.

    1974-01-01

    Bridges between microtubules have been studied with the electron microscope in the axostyle of Saccinobaculus and in various tubule systems of chicken testis, including the helix of tubules surrounding the elongating spermatid nucleus and the flagellum of the sperm tail. In addition to the previously described periodic bridges, evidence is presented that nonperiodic bridges exist between certain tubules. An analysis of axial spacing between adjacent nonperiodic bridges suggests that these structures are attached to periodic binding sites on the microtubule wall, but that not all the binding sites are filled. The bridges appear nonperiodic as a result of random occupancy of some fraction of the periodic sites. The distribution of these binding sites is related to the substructure of the microtubule wall as seen with negative staining and optical diffraction. PMID:4132065

  11. Microtubule-based force generation.

    PubMed

    Kent, Ian A; Lele, Tanmay P

    2017-05-01

    Microtubules are vital to many important cell processes, such as cell division, transport of cellular cargo, organelle positioning, and cell migration. Owing to their diverse functions, understanding microtubule function is an important part of cell biological research that can help in combating various diseases. For example, microtubules are an important target of chemotherapeutic drugs such as paclitaxel because of their pivotal role in cell division. Many functions of microtubules relate to the generation of mechanical forces. These forces are generally either a direct result of microtubule polymerization/depolymerization or generated by motor proteins that move processively along microtubules. In this review, we summarize recent efforts to quantify and model force generation by microtubules in the context of microtubule function. WIREs Nanomed Nanobiotechnol 2017, 9:e1428. doi: 10.1002/wnan.1428 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.

  12. Using dynamic interferometric synthetic aperature radar (InSAR) to image fast-moving surface waves

    DOEpatents

    Vincent, Paul

    2005-06-28

    A new differential technique and system for imaging dynamic (fast moving) surface waves using Dynamic Interferometric Synthetic Aperture Radar (InSAR) is introduced. This differential technique and system can sample the fast-moving surface displacement waves from a plurality of moving platform positions in either a repeat-pass single-antenna or a single-pass mode having a single-antenna dual-phase receiver or having dual physically separate antennas, and reconstruct a plurality of phase differentials from a plurality of platform positions to produce a series of desired interferometric images of the fast moving waves.

  13. Molecular mechanism of action of microtubule-stabilizing anticancer agents.

    PubMed

    Prota, Andrea E; Bargsten, Katja; Zurwerra, Didier; Field, Jessica J; Díaz, José Fernando; Altmann, Karl-Heinz; Steinmetz, Michel O

    2013-02-01

    Microtubule-stabilizing agents (MSAs) are efficacious chemotherapeutic drugs widely used for the treatment of cancer. Despite the importance of MSAs for medical applications and basic research, their molecular mechanisms of action on tubulin and microtubules remain elusive. We determined high-resolution crystal structures of αβ-tubulin in complex with two unrelated MSAs, zampanolide and epothilone A. Both compounds were bound to the taxane pocket of β-tubulin and used their respective side chains to induce structuring of the M-loop into a short helix. Because the M-loop establishes lateral tubulin contacts in microtubules, these findings explain how taxane-site MSAs promote microtubule assembly and stability. Further, our results offer fundamental structural insights into the control mechanisms of microtubule dynamics.

  14. Assembly and Positioning of Microtubule Asters in Microfabricated Chambers

    NASA Astrophysics Data System (ADS)

    Holy, Timothy E.; Dogterom, Marileen; Yurke, Bernard; Leibler, Stanislas

    1997-06-01

    Intracellular organization depends on a variety of molecular assembly processes; while some of these have been studied in simplified cell-free systems, others depend on the confined geometry of cells and cannot be reconstructed using bulk techniques. To study the latter processes in vitro, we fabricated microscopic chambers that simulate the closed environment of cells. We used these chambers to study the positioning of microtubule asters. Microtubule assembly alone, without the action of molecular motors, is sufficient to position asters. Asters with short microtubules move toward the position expected from symmetry; however, once the microtubules become long enough to buckle, symmetry is broken. Calculations and experiments show that the bending-energy landscape has multiple minima. Microtubule dynamic instability modifies the landscape over time and allows asters to explore otherwise inaccessible configurations.

  15. Role of microtubule cytoskeleton in regulation of endothelial barrier function.

    PubMed

    Alieva, I B

    2014-09-01

    Cytoplasmic microtubules are an obligatory component of the cytoskeleton of all types of cells. Microtubules are involved in many cellular processes including directed transport of vesicles and signaling molecules and changes in cell shape during its spreading, polarization, and movement. The intracellular organization of the system of microtubules and their dynamic properties are different in different types of cells because they play a key role in the implementation of a variety of cell and tissue functions, including the regulation of the endothelial barrier function. This review presents an overview of current studies on the properties of endothelial microtubules, their interaction with other components of the cytoskeleton and cell adhesion structures, and the role of microtubules in the regulation of the endothelial barrier function.

  16. Microtubule stabilising peptides rescue tau phenotypes in-vivo

    PubMed Central

    Quraishe, Shmma; Sealey, Megan; Cranfield, Louise; Mudher, Amritpal

    2016-01-01

    The microtubule cytoskeleton is a highly dynamic, filamentous network underpinning cellular structure and function. In Alzheimer’s disease, the microtubule cytoskeleton is compromised, leading to neuronal dysfunction and eventually cell death. There are currently no disease-modifying therapies to slow down or halt disease progression. However, microtubule stabilisation is a promising therapeutic strategy that is being explored. We previously investigated the disease-modifying potential of a microtubule-stabilising peptide NAP (NAPVSIPQ) in a well-established Drosophila model of tauopathy characterised by microtubule breakdown and axonal transport deficits. NAP prevented as well as reversed these phenotypes even after they had become established. In this study, we investigate the neuroprotective capabilities of an analogous peptide SAL (SALLRSIPA). We found that SAL mimicked NAP’s protective effects, by preventing axonal transport disruption and improving behavioural deficits, suggesting both NAP and SAL may act via a common mechanism. Both peptides contain a putative ‘SIP’ (Ser-Ile-Pro) domain that is important for interactions with microtubule end-binding proteins. Our data suggests this domain may be central to the microtubule stabilising function of both peptides and the mechanism by which they rescue phenotypes in this model of tauopathy. Our observations support microtubule stabilisation as a promising disease-modifying therapeutic strategy for tauopathies like Alzheimer’s disease. PMID:27910888

  17. Microtubule-severing enzymes at the cutting edge

    PubMed Central

    Sharp, David J.; Ross, Jennifer L.

    2012-01-01

    ATP-dependent severing of microtubules was first reported in Xenopus laevis egg extracts in 1991. Two years later this observation led to the purification of the first known microtubule-severing enzyme, katanin. Katanin homologs have now been identified throughout the animal kingdom and in plants. Moreover, members of two closely related enzyme subfamilies, spastin and fidgetin, have been found to sever microtubules and might act alongside katanins in some contexts (Roll-Mecak and McNally, 2010; Yu et al., 2008; Zhang et al., 2007). Over the past few years, it has become clear that microtubule-severing enzymes contribute to a wide range of cellular activities including mitosis and meiosis, morphogenesis, cilia biogenesis and disassembly, and migration. Thus, this group of enzymes is revealing itself to be among the most important of the microtubule regulators. This Commentary focuses on our growing understanding of how microtubule-severing enzymes contribute to the organization and dynamics of diverse microtubule arrays, as well as the structural and biophysical characteristics that afford them the unique capacity to catalyze the removal of tubulin from the interior microtubule lattice. Our goal is to provide a broader perspective, focusing on a limited number of particularly informative, representative and/or timely findings. PMID:22595526

  18. Microtubule-severing enzymes at the cutting edge.

    PubMed

    Sharp, David J; Ross, Jennifer L

    2012-06-01

    ATP-dependent severing of microtubules was first reported in Xenopus laevis egg extracts in 1991. Two years later this observation led to the purification of the first known microtubule-severing enzyme, katanin. Katanin homologs have now been identified throughout the animal kingdom and in plants. Moreover, members of two closely related enzyme subfamilies, spastin and fidgetin, have been found to sever microtubules and might act alongside katanins in some contexts (Roll-Mecak and McNally, 2010; Yu et al., 2008; Zhang et al., 2007). Over the past few years, it has become clear that microtubule-severing enzymes contribute to a wide range of cellular activities including mitosis and meiosis, morphogenesis, cilia biogenesis and disassembly, and migration. Thus, this group of enzymes is revealing itself to be among the most important of the microtubule regulators. This Commentary focuses on our growing understanding of how microtubule-severing enzymes contribute to the organization and dynamics of diverse microtubule arrays, as well as the structural and biophysical characteristics that afford them the unique capacity to catalyze the removal of tubulin from the interior microtubule lattice. Our goal is to provide a broader perspective, focusing on a limited number of particularly informative, representative and/or timely findings.

  19. PACSIN1, a Tau-interacting protein, regulates axonal elongation and branching by facilitating microtubule instability.

    PubMed

    Liu, Yingying; Lv, Kaosheng; Li, Zenglong; Yu, Albert C H; Chen, Jianguo; Teng, Junlin

    2012-11-16

    Tau is a major member of the neuronal microtubule-associated proteins. It promotes tubulin assembly and stabilizes axonal microtubules. Previous studies have demonstrated that Tau forms cross-bridges between microtubules, with some particles located on cross-bridges, suggesting that some proteins interact with Tau and might be involved in regulating Tau-related