NASA Astrophysics Data System (ADS)
Park, Sang-Gon; Jeong, Dong-Seok
2000-12-01
In this paper, we propose a fast adaptive diamond search algorithm (FADS) for block matching motion estimation. Many fast motion estimation algorithms reduce the computational complexity by the UESA (Unimodal Error Surface Assumption) where the matching error monotonically increases as the search moves away from the global minimum point. Recently, many fast BMAs (Block Matching Algorithms) make use of the fact that global minimum points in real world video sequences are centered at the position of zero motion. But these BMAs, especially in large motion, are easily trapped into the local minima and result in poor matching accuracy. So, we propose a new motion estimation algorithm using the spatial correlation among the neighboring blocks. We move the search origin according to the motion vectors of the spatially neighboring blocks and their MAEs (Mean Absolute Errors). The computer simulation shows that the proposed algorithm has almost the same computational complexity with DS (Diamond Search), but enhances PSNR. Moreover, the proposed algorithm gives almost the same PSNR as that of FS (Full Search), even for the large motion with half the computational load.
Variable disparity-motion estimation based fast three-view video coding
NASA Astrophysics Data System (ADS)
Bae, Kyung-Hoon; Kim, Seung-Cheol; Hwang, Yong Seok; Kim, Eun-Soo
2009-02-01
In this paper, variable disparity-motion estimation (VDME) based 3-view video coding is proposed. In the encoding, key-frame coding (KFC) based motion estimation and variable disparity estimation (VDE) for effectively fast three-view video encoding are processed. These proposed algorithms enhance the performance of 3-D video encoding/decoding system in terms of accuracy of disparity estimation and computational overhead. From some experiments, stereo sequences of 'Pot Plant' and 'IVO', it is shown that the proposed algorithm's PSNRs is 37.66 and 40.55 dB, and the processing time is 0.139 and 0.124 sec/frame, respectively.
Fast image interpolation for motion estimation using graphics hardware
NASA Astrophysics Data System (ADS)
Kelly, Francis; Kokaram, Anil
2004-05-01
Motion estimation and compensation is the key to high quality video coding. Block matching motion estimation is used in most video codecs, including MPEG-2, MPEG-4, H.263 and H.26L. Motion estimation is also a key component in the digital restoration of archived video and for post-production and special effects in the movie industry. Sub-pixel accurate motion vectors can improve the quality of the vector field and lead to more efficient video coding. However sub-pixel accuracy requires interpolation of the image data. Image interpolation is a key requirement of many image processing algorithms. Often interpolation can be a bottleneck in these applications, especially in motion estimation due to the large number pixels involved. In this paper we propose using commodity computer graphics hardware for fast image interpolation. We use the full search block matching algorithm to illustrate the problems and limitations of using graphics hardware in this way.
Fast instantaneous center of rotation estimation algorithm for a skied-steered robot
NASA Astrophysics Data System (ADS)
Kniaz, V. V.
2015-05-01
Skid-steered robots are widely used as mobile platforms for machine vision systems. However it is hard to achieve a stable motion of such robots along desired trajectory due to an unpredictable wheel slip. It is possible to compensate the unpredictable wheel slip and stabilize the motion of the robot using visual odometry. This paper presents a fast optical flow based algorithm for estimation of instantaneous center of rotation, angular and longitudinal speed of the robot. The proposed algorithm is based on Horn-Schunck variational optical flow estimation method. The instantaneous center of rotation and motion of the robot is estimated by back projection of optical flow field to the ground surface. The developed algorithm was tested using skid-steered mobile robot. The robot is based on a mobile platform that includes two pairs of differential driven motors and a motor controller. Monocular visual odometry system consisting of a singleboard computer and a low cost webcam is mounted on the mobile platform. A state-space model of the robot was derived using standard black-box system identification. The input (commands) and the output (motion) were recorded using a dedicated external motion capture system. The obtained model was used to control the robot without visual odometry data. The paper is concluded with the algorithm quality estimation by comparison of the trajectories estimated by the algorithm with the data from motion capture system.
Real-Time Robust Tracking for Motion Blur and Fast Motion via Correlation Filters.
Xu, Lingyun; Luo, Haibo; Hui, Bin; Chang, Zheng
2016-09-07
Visual tracking has extensive applications in intelligent monitoring and guidance systems. Among state-of-the-art tracking algorithms, Correlation Filter methods perform favorably in robustness, accuracy and speed. However, it also has shortcomings when dealing with pervasive target scale variation, motion blur and fast motion. In this paper we proposed a new real-time robust scheme based on Kernelized Correlation Filter (KCF) to significantly improve performance on motion blur and fast motion. By fusing KCF and STC trackers, our algorithm also solve the estimation of scale variation in many scenarios. We theoretically analyze the problem for CFs towards motions and utilize the point sharpness function of the target patch to evaluate the motion state of target. Then we set up an efficient scheme to handle the motion and scale variation without much time consuming. Our algorithm preserves the properties of KCF besides the ability to handle special scenarios. In the end extensive experimental results on benchmark of VOT datasets show our algorithm performs advantageously competed with the top-rank trackers.
Vision System for Coarsely Estimating Motion Parameters for Unknown Fast Moving Objects in Space
Chen, Min; Hashimoto, Koichi
2017-01-01
Motivated by biological interests in analyzing navigation behaviors of flying animals, we attempt to build a system measuring their motion states. To do this, in this paper, we build a vision system to detect unknown fast moving objects within a given space, calculating their motion parameters represented by positions and poses. We proposed a novel method to detect reliable interest points from images of moving objects, which can be hardly detected by general purpose interest point detectors. 3D points reconstructed using these interest points are then grouped and maintained for detected objects, according to a careful schedule, considering appearance and perspective changes. In the estimation step, a method is introduced to adapt the robust estimation procedure used for dense point set to the case for sparse set, reducing the potential risk of greatly biased estimation. Experiments are conducted against real scenes, showing the capability of the system of detecting multiple unknown moving objects and estimating their positions and poses. PMID:29206189
Fast left ventricle tracking in CMR images using localized anatomical affine optical flow
NASA Astrophysics Data System (ADS)
Queirós, Sandro; Vilaça, João. L.; Morais, Pedro; Fonseca, Jaime C.; D'hooge, Jan; Barbosa, Daniel
2015-03-01
In daily cardiology practice, assessment of left ventricular (LV) global function using non-invasive imaging remains central for the diagnosis and follow-up of patients with cardiovascular diseases. Despite the different methodologies currently accessible for LV segmentation in cardiac magnetic resonance (CMR) images, a fast and complete LV delineation is still limitedly available for routine use. In this study, a localized anatomically constrained affine optical flow method is proposed for fast and automatic LV tracking throughout the full cardiac cycle in short-axis CMR images. Starting from an automatically delineated LV in the end-diastolic frame, the endocardial and epicardial boundaries are propagated by estimating the motion between adjacent cardiac phases using optical flow. In order to reduce the computational burden, the motion is only estimated in an anatomical region of interest around the tracked boundaries and subsequently integrated into a local affine motion model. Such localized estimation enables to capture complex motion patterns, while still being spatially consistent. The method was validated on 45 CMR datasets taken from the 2009 MICCAI LV segmentation challenge. The proposed approach proved to be robust and efficient, with an average distance error of 2.1 mm and a correlation with reference ejection fraction of 0.98 (1.9 +/- 4.5%). Moreover, it showed to be fast, taking 5 seconds for the tracking of a full 4D dataset (30 ms per image). Overall, a novel fast, robust and accurate LV tracking methodology was proposed, enabling accurate assessment of relevant global function cardiac indices, such as volumes and ejection fraction
Motion Field Estimation for a Dynamic Scene Using a 3D LiDAR
Li, Qingquan; Zhang, Liang; Mao, Qingzhou; Zou, Qin; Zhang, Pin; Feng, Shaojun; Ochieng, Washington
2014-01-01
This paper proposes a novel motion field estimation method based on a 3D light detection and ranging (LiDAR) sensor for motion sensing for intelligent driverless vehicles and active collision avoidance systems. Unlike multiple target tracking methods, which estimate the motion state of detected targets, such as cars and pedestrians, motion field estimation regards the whole scene as a motion field in which each little element has its own motion state. Compared to multiple target tracking, segmentation errors and data association errors have much less significance in motion field estimation, making it more accurate and robust. This paper presents an intact 3D LiDAR-based motion field estimation method, including pre-processing, a theoretical framework for the motion field estimation problem and practical solutions. The 3D LiDAR measurements are first projected to small-scale polar grids, and then, after data association and Kalman filtering, the motion state of every moving grid is estimated. To reduce computing time, a fast data association algorithm is proposed. Furthermore, considering the spatial correlation of motion among neighboring grids, a novel spatial-smoothing algorithm is also presented to optimize the motion field. The experimental results using several data sets captured in different cities indicate that the proposed motion field estimation is able to run in real-time and performs robustly and effectively. PMID:25207868
Motion field estimation for a dynamic scene using a 3D LiDAR.
Li, Qingquan; Zhang, Liang; Mao, Qingzhou; Zou, Qin; Zhang, Pin; Feng, Shaojun; Ochieng, Washington
2014-09-09
This paper proposes a novel motion field estimation method based on a 3D light detection and ranging (LiDAR) sensor for motion sensing for intelligent driverless vehicles and active collision avoidance systems. Unlike multiple target tracking methods, which estimate the motion state of detected targets, such as cars and pedestrians, motion field estimation regards the whole scene as a motion field in which each little element has its own motion state. Compared to multiple target tracking, segmentation errors and data association errors have much less significance in motion field estimation, making it more accurate and robust. This paper presents an intact 3D LiDAR-based motion field estimation method, including pre-processing, a theoretical framework for the motion field estimation problem and practical solutions. The 3D LiDAR measurements are first projected to small-scale polar grids, and then, after data association and Kalman filtering, the motion state of every moving grid is estimated. To reduce computing time, a fast data association algorithm is proposed. Furthermore, considering the spatial correlation of motion among neighboring grids, a novel spatial-smoothing algorithm is also presented to optimize the motion field. The experimental results using several data sets captured in different cities indicate that the proposed motion field estimation is able to run in real-time and performs robustly and effectively.
Real-Time Robust Tracking for Motion Blur and Fast Motion via Correlation Filters
Xu, Lingyun; Luo, Haibo; Hui, Bin; Chang, Zheng
2016-01-01
Visual tracking has extensive applications in intelligent monitoring and guidance systems. Among state-of-the-art tracking algorithms, Correlation Filter methods perform favorably in robustness, accuracy and speed. However, it also has shortcomings when dealing with pervasive target scale variation, motion blur and fast motion. In this paper we proposed a new real-time robust scheme based on Kernelized Correlation Filter (KCF) to significantly improve performance on motion blur and fast motion. By fusing KCF and STC trackers, our algorithm also solve the estimation of scale variation in many scenarios. We theoretically analyze the problem for CFs towards motions and utilize the point sharpness function of the target patch to evaluate the motion state of target. Then we set up an efficient scheme to handle the motion and scale variation without much time consuming. Our algorithm preserves the properties of KCF besides the ability to handle special scenarios. In the end extensive experimental results on benchmark of VOT datasets show our algorithm performs advantageously competed with the top-rank trackers. PMID:27618046
orbit-estimation: Fast orbital parameters estimator
NASA Astrophysics Data System (ADS)
Mackereth, J. Ted; Bovy, Jo
2018-04-01
orbit-estimation tests and evaluates the Stäckel approximation method for estimating orbit parameters in galactic potentials. It relies on the approximation of the Galactic potential as a Stäckel potential, in a prolate confocal coordinate system, under which the vertical and horizontal motions decouple. By solving the Hamilton Jacobi equations at the turning points of the horizontal and vertical motions, it is possible to determine the spatial boundary of the orbit, and hence calculate the desired orbit parameters.
A rate-constrained fast full-search algorithm based on block sum pyramid.
Song, Byung Cheol; Chun, Kang-Wook; Ra, Jong Beom
2005-03-01
This paper presents a fast full-search algorithm (FSA) for rate-constrained motion estimation. The proposed algorithm, which is based on the block sum pyramid frame structure, successively eliminates unnecessary search positions according to rate-constrained criterion. This algorithm provides the identical estimation performance to a conventional FSA having rate constraint, while achieving considerable reduction in computation.
Taimouri, Vahid; Afacan, Onur; Perez-Rossello, Jeannette M.; Callahan, Michael J.; Mulkern, Robert V.; Warfield, Simon K.; Freiman, Moti
2015-01-01
Purpose: To evaluate the effect of the spatially constrained incoherent motion (SCIM) method on improving the precision and robustness of fast and slow diffusion parameter estimates from diffusion-weighted MRI in liver and spleen in comparison to the independent voxel-wise intravoxel incoherent motion (IVIM) model. Methods: We collected diffusion-weighted MRI (DW-MRI) data of 29 subjects (5 healthy subjects and 24 patients with Crohn’s disease in the ileum). We evaluated parameters estimates’ robustness against different combinations of b-values (i.e., 4 b-values and 7 b-values) by comparing the variance of the estimates obtained with the SCIM and the independent voxel-wise IVIM model. We also evaluated the improvement in the precision of parameter estimates by comparing the coefficient of variation (CV) of the SCIM parameter estimates to that of the IVIM. Results: The SCIM method was more robust compared to IVIM (up to 70% in liver and spleen) for different combinations of b-values. Also, the CV values of the parameter estimations using the SCIM method were significantly lower compared to repeated acquisition and signal averaging estimated using IVIM, especially for the fast diffusion parameter in liver (CVIV IM = 46.61 ± 11.22, CVSCIM = 16.85 ± 2.160, p < 0.001) and spleen (CVIV IM = 95.15 ± 19.82, CVSCIM = 52.55 ± 1.91, p < 0.001). Conclusions: The SCIM method characterizes fast and slow diffusion more precisely compared to the independent voxel-wise IVIM model fitting in the liver and spleen. PMID:25832079
A novel directional asymmetric sampling search algorithm for fast block-matching motion estimation
NASA Astrophysics Data System (ADS)
Li, Yue-e.; Wang, Qiang
2011-11-01
This paper proposes a novel directional asymmetric sampling search (DASS) algorithm for video compression. Making full use of the error information (block distortions) of the search patterns, eight different direction search patterns are designed for various situations. The strategy of local sampling search is employed for the search of big-motion vector. In order to further speed up the search, early termination strategy is adopted in procedure of DASS. Compared to conventional fast algorithms, the proposed method has the most satisfactory PSNR values for all test sequences.
Liu, Hong; Yan, Meng; Song, Enmin; Wang, Jie; Wang, Qian; Jin, Renchao; Jin, Lianghai; Hung, Chih-Cheng
2016-05-01
Myocardial motion estimation of tagged cardiac magnetic resonance (TCMR) images is of great significance in clinical diagnosis and the treatment of heart disease. Currently, the harmonic phase analysis method (HARP) and the local sine-wave modeling method (SinMod) have been proven as two state-of-the-art motion estimation methods for TCMR images, since they can directly obtain the inter-frame motion displacement vector field (MDVF) with high accuracy and fast speed. By comparison, SinMod has better performance over HARP in terms of displacement detection, noise and artifacts reduction. However, the SinMod method has some drawbacks: 1) it is unable to estimate local displacements larger than half of the tag spacing; 2) it has observable errors in tracking of tag motion; and 3) the estimated MDVF usually has large local errors. To overcome these problems, we present a novel motion estimation method in this study. The proposed method tracks the motion of tags and then estimates the dense MDVF by using the interpolation. In this new method, a parameter estimation procedure for global motion is applied to match tag intersections between different frames, ensuring specific kinds of large displacements being correctly estimated. In addition, a strategy of tag motion constraints is applied to eliminate most of errors produced by inter-frame tracking of tags and the multi-level b-splines approximation algorithm is utilized, so as to enhance the local continuity and accuracy of the final MDVF. In the estimation of the motion displacement, our proposed method can obtain a more accurate MDVF compared with the SinMod method and our method can overcome the drawbacks of the SinMod method. However, the motion estimation accuracy of our method depends on the accuracy of tag lines detection and our method has a higher time complexity. Copyright © 2015 Elsevier Inc. All rights reserved.
The MusIC method: a fast and quasi-optimal solution to the muscle forces estimation problem.
Muller, A; Pontonnier, C; Dumont, G
2018-02-01
The present paper aims at presenting a fast and quasi-optimal method of muscle forces estimation: the MusIC method. It consists in interpolating a first estimation in a database generated offline thanks to a classical optimization problem, and then correcting it to respect the motion dynamics. Three different cost functions - two polynomial criteria and a min/max criterion - were tested on a planar musculoskeletal model. The MusIC method provides a computation frequency approximately 10 times higher compared to a classical optimization problem with a relative mean error of 4% on cost function evaluation.
Resolving Fast, Confined Diffusion in Bacteria with Image Correlation Spectroscopy.
Rowland, David J; Tuson, Hannah H; Biteen, Julie S
2016-05-24
By following single fluorescent molecules in a microscope, single-particle tracking (SPT) can measure diffusion and binding on the nanometer and millisecond scales. Still, although SPT can at its limits characterize the fastest biomolecules as they interact with subcellular environments, this measurement may require advanced illumination techniques such as stroboscopic illumination. Here, we address the challenge of measuring fast subcellular motion by instead analyzing single-molecule data with spatiotemporal image correlation spectroscopy (STICS) with a focus on measurements of confined motion. Our SPT and STICS analysis of simulations of the fast diffusion of confined molecules shows that image blur affects both STICS and SPT, and we find biased diffusion rate measurements for STICS analysis in the limits of fast diffusion and tight confinement due to fitting STICS correlation functions to a Gaussian approximation. However, we determine that with STICS, it is possible to correctly interpret the motion that blurs single-molecule images without advanced illumination techniques or fast cameras. In particular, we present a method to overcome the bias due to image blur by properly estimating the width of the correlation function by directly calculating the correlation function variance instead of using the typical Gaussian fitting procedure. Our simulation results are validated by applying the STICS method to experimental measurements of fast, confined motion: we measure the diffusion of cytosolic mMaple3 in living Escherichia coli cells at 25 frames/s under continuous illumination to illustrate the utility of STICS in an experimental parameter regime for which in-frame motion prevents SPT and tight confinement of fast diffusion precludes stroboscopic illumination. Overall, our application of STICS to freely diffusing cytosolic protein in small cells extends the utility of single-molecule experiments to the regime of fast confined diffusion without requiring advanced microscopy techniques. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Adaptive correlation filter-based video stabilization without accumulative global motion estimation
NASA Astrophysics Data System (ADS)
Koh, Eunjin; Lee, Chanyong; Jeong, Dong Gil
2014-12-01
We present a digital video stabilization approach that provides both robustness and efficiency for practical applications. In this approach, we adopt a stabilization model that maintains spatio-temporal information of past input frames efficiently and can track original stabilization position. Because of the stabilization model, the proposed method does not need accumulative global motion estimation and can recover the original position even if there is a failure in interframe motion estimation. It can also intelligently overcome the situation of damaged or interrupted video sequences. Moreover, because it is simple and suitable to parallel scheme, we implement it on a commercial field programmable gate array and a graphics processing unit board with compute unified device architecture in a breeze. Experimental results show that the proposed approach is both fast and robust.
Shock and Vibration Control of a Golf-Swing Robot at Impacting the Ball
NASA Astrophysics Data System (ADS)
Hoshino, Yohei; Kobayashi, Yukinori
A golf swing robot is a kind of fast motion manipulator with a flexible link. A robot manipulator is greatly affected by Corioli's and centrifugal forces during fast motion. Nonlinearity due to these forces can have an adverse effect on the performance of feedback control. In the same way, ordinary state observers of a linear system cannot accurately estimate the states of nonlinear systems. This paper uses a state observer that considers disturbances to improve the performance of state estimation and feedback control. A mathematical model of the golf robot is derived by Hamilton's principle. A linear quadratic regulator (LQR) that considers the vibration of the club shaft is used to stop the robot during the follow-through action. The state observer that considers disturbances estimates accurate state variables when the disturbances due to Corioli's and centrifugal forces, and impact forces work on the robot. As a result, the performance of the state feedback control is improved. The study compares the results of the numerical simulations with experimental results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
El-Sherif, Omar, E-mail: Omar.ElSherif@lhsc.on.ca; Department of Physics, London Regional Cancer Program, London, Ontario; Yu, Edward
Purpose: To use 4-dimensional computed tomography (4D-CT) imaging to predict the level of uncertainty in cardiac dose estimates of the left anterior descending artery that arises due to breathing motion during radiation therapy for left-sided breast cancer. Methods and Materials: The fast helical CT (FH-CT) and 4D-CT of 30 left-sided breast cancer patients were retrospectively analyzed. Treatment plans were created on the FH-CT. The original treatment plan was then superimposed onto all 10 phases of the 4D-CT to quantify the dosimetric impact of respiratory motion through 4D dose accumulation (4D-dose). Dose-volume histograms for the heart, left ventricle (LV), and left anteriormore » descending (LAD) artery obtained from the FH-CT were compared with those obtained from the 4D-dose. Results: The 95% confidence interval of 4D-dose and FH-CT differences in mean dose estimates for the heart, LV, and LAD were ±0.5 Gy, ±1.0 Gy, and ±8.7 Gy, respectively. Conclusion: Fast helical CT is a good approximation for doses to the heart and LV; however, dose estimates for the LAD are susceptible to uncertainties that arise due to intrafraction breathing motion that cannot be ascertained without the additional information obtained from 4D-CT and dose accumulation. For future clinical studies, we suggest the use of 4D-CT–derived dose-volume histograms for estimating the dose to the LAD.« less
Motion streaks in fast motion rivalry cause orientation-selective suppression.
Apthorp, Deborah; Wenderoth, Peter; Alais, David
2009-05-14
We studied binocular rivalry between orthogonally translating arrays of random Gaussian blobs and measured the strength of rivalry suppression for static oriented probes. Suppression depth was quantified by expressing monocular probe thresholds during dominance relative to thresholds during suppression. Rivalry between two fast motions or two slow motions was compared in order to test the suggestion that fast-moving objects leave oriented "motion streaks" due to temporal integration (W. S. Geisler, 1999). If fast motions do produce motion streaks, then fast motion rivalry might also entail rivalry between the orthogonal streak orientations. We tested this using a static oriented probe that was aligned either parallel to the motion trajectory (hence collinear with the "streaks") or was orthogonal to the trajectory, predicting that rivalry suppression would be greater for parallel probes, and only for rivalry between fast motions. Results confirmed that suppression depth did depend on probe orientation for fast motion but not for slow motion. Further experiments showed that threshold elevations for the oriented probe during suppression exhibited clear orientation tuning. However, orientation-tuned elevations were also present during dominance, suggesting within-channel masking as the basis of the extra-deep suppression. In sum, the presence of orientation-dependent suppression in fast motion rivalry is consistent with the "motion streaks" hypothesis.
Gleeson, Fergus V.; Brady, Michael; Schnabel, Julia A.
2018-01-01
Abstract. Deformable image registration, a key component of motion correction in medical imaging, needs to be efficient and provides plausible spatial transformations that reliably approximate biological aspects of complex human organ motion. Standard approaches, such as Demons registration, mostly use Gaussian regularization for organ motion, which, though computationally efficient, rule out their application to intrinsically more complex organ motions, such as sliding interfaces. We propose regularization of motion based on supervoxels, which provides an integrated discontinuity preserving prior for motions, such as sliding. More precisely, we replace Gaussian smoothing by fast, structure-preserving, guided filtering to provide efficient, locally adaptive regularization of the estimated displacement field. We illustrate the approach by applying it to estimate sliding motions at lung and liver interfaces on challenging four-dimensional computed tomography (CT) and dynamic contrast-enhanced magnetic resonance imaging datasets. The results show that guided filter-based regularization improves the accuracy of lung and liver motion correction as compared to Gaussian smoothing. Furthermore, our framework achieves state-of-the-art results on a publicly available CT liver dataset. PMID:29662918
Papież, Bartłomiej W; Franklin, James M; Heinrich, Mattias P; Gleeson, Fergus V; Brady, Michael; Schnabel, Julia A
2018-04-01
Deformable image registration, a key component of motion correction in medical imaging, needs to be efficient and provides plausible spatial transformations that reliably approximate biological aspects of complex human organ motion. Standard approaches, such as Demons registration, mostly use Gaussian regularization for organ motion, which, though computationally efficient, rule out their application to intrinsically more complex organ motions, such as sliding interfaces. We propose regularization of motion based on supervoxels, which provides an integrated discontinuity preserving prior for motions, such as sliding. More precisely, we replace Gaussian smoothing by fast, structure-preserving, guided filtering to provide efficient, locally adaptive regularization of the estimated displacement field. We illustrate the approach by applying it to estimate sliding motions at lung and liver interfaces on challenging four-dimensional computed tomography (CT) and dynamic contrast-enhanced magnetic resonance imaging datasets. The results show that guided filter-based regularization improves the accuracy of lung and liver motion correction as compared to Gaussian smoothing. Furthermore, our framework achieves state-of-the-art results on a publicly available CT liver dataset.
Image-driven, model-based 3D abdominal motion estimation for MR-guided radiotherapy
NASA Astrophysics Data System (ADS)
Stemkens, Bjorn; Tijssen, Rob H. N.; de Senneville, Baudouin Denis; Lagendijk, Jan J. W.; van den Berg, Cornelis A. T.
2016-07-01
Respiratory motion introduces substantial uncertainties in abdominal radiotherapy for which traditionally large margins are used. The MR-Linac will open up the opportunity to acquire high resolution MR images just prior to radiation and during treatment. However, volumetric MRI time series are not able to characterize 3D tumor and organ-at-risk motion with sufficient temporal resolution. In this study we propose a method to estimate 3D deformation vector fields (DVFs) with high spatial and temporal resolution based on fast 2D imaging and a subject-specific motion model based on respiratory correlated MRI. In a pre-beam phase, a retrospectively sorted 4D-MRI is acquired, from which the motion is parameterized using a principal component analysis. This motion model is used in combination with fast 2D cine-MR images, which are acquired during radiation, to generate full field-of-view 3D DVFs with a temporal resolution of 476 ms. The geometrical accuracies of the input data (4D-MRI and 2D multi-slice acquisitions) and the fitting procedure were determined using an MR-compatible motion phantom and found to be 1.0-1.5 mm on average. The framework was tested on seven healthy volunteers for both the pancreas and the kidney. The calculated motion was independently validated using one of the 2D slices, with an average error of 1.45 mm. The calculated 3D DVFs can be used retrospectively for treatment simulations, plan evaluations, or to determine the accumulated dose for both the tumor and organs-at-risk on a subject-specific basis in MR-guided radiotherapy.
Image-driven, model-based 3D abdominal motion estimation for MR-guided radiotherapy.
Stemkens, Bjorn; Tijssen, Rob H N; de Senneville, Baudouin Denis; Lagendijk, Jan J W; van den Berg, Cornelis A T
2016-07-21
Respiratory motion introduces substantial uncertainties in abdominal radiotherapy for which traditionally large margins are used. The MR-Linac will open up the opportunity to acquire high resolution MR images just prior to radiation and during treatment. However, volumetric MRI time series are not able to characterize 3D tumor and organ-at-risk motion with sufficient temporal resolution. In this study we propose a method to estimate 3D deformation vector fields (DVFs) with high spatial and temporal resolution based on fast 2D imaging and a subject-specific motion model based on respiratory correlated MRI. In a pre-beam phase, a retrospectively sorted 4D-MRI is acquired, from which the motion is parameterized using a principal component analysis. This motion model is used in combination with fast 2D cine-MR images, which are acquired during radiation, to generate full field-of-view 3D DVFs with a temporal resolution of 476 ms. The geometrical accuracies of the input data (4D-MRI and 2D multi-slice acquisitions) and the fitting procedure were determined using an MR-compatible motion phantom and found to be 1.0-1.5 mm on average. The framework was tested on seven healthy volunteers for both the pancreas and the kidney. The calculated motion was independently validated using one of the 2D slices, with an average error of 1.45 mm. The calculated 3D DVFs can be used retrospectively for treatment simulations, plan evaluations, or to determine the accumulated dose for both the tumor and organs-at-risk on a subject-specific basis in MR-guided radiotherapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stemkens, B; Tijssen, RHN; Denis de Senneville, B Denis
2015-06-15
Purpose: To estimate full field-of-view abdominal respiratory motion from fast 2D image navigators using a 4D-MRI based motion model. This will allow for radiation dose accumulation mapping during MR-Linac treatment. Methods: Experiments were conducted on a Philips Ingenia 1.5T MRI. First, a retrospectively ordered 4D-MRI was constructed using 3D transient-bSSFP with radial in-plane sampling. Motion fields were calculated through 3D non-rigid registration. From these motion fields a PCA-based abdominal motion model was constructed and used to warp a 3D reference volume to fast 2D cine-MR image navigators that can be used for real-time tracking. To test this procedure, a time-seriesmore » consisting of two interleaved orthogonal slices (sagittal and coronal), positioned on the pancreas or kidneys, were acquired for 1m38s (dynamic scan-time=0.196ms), during normal, shallow, or deep breathing. The coronal slices were used to update the optimal weights for the first two PCA components, in order to warp the 3D reference image and construct a dynamic 4D-MRI time-series. The interleaved sagittal slices served as an independent measure to test the model’s accuracy and fit. Spatial maps of the root-mean-squared error (RMSE) and histograms of the motion differences within the pancreas and kidneys were used to evaluate the method. Results: Cranio-caudal motion was accurately calculated within the pancreas using the model for normal and shallow breathing with an RMSE of 1.6mm and 1.5mm and a histogram median and standard deviation below 0.2 and 1.7mm, respectively. For deep-breathing an underestimation of the inhale amplitude was observed (RMSE=4.1mm). Respiratory-induced antero-posterior and lateral motion were correctly mapped (RMSE=0.6/0.5mm). Kidney motion demonstrated good motion estimation with RMSE-values of 0.95 and 2.4mm for the right and left kidney, respectively. Conclusion: We have demonstrated a method that can calculate dynamic 3D abdominal motion in a large volume, while acquiring real-time cine-MR images for MR-guided radiotherapy.« less
Motion prediction of a non-cooperative space target
NASA Astrophysics Data System (ADS)
Zhou, Bang-Zhao; Cai, Guo-Ping; Liu, Yun-Meng; Liu, Pan
2018-01-01
Capturing a non-cooperative space target is a tremendously challenging research topic. Effective acquisition of motion information of the space target is the premise to realize target capture. In this paper, motion prediction of a free-floating non-cooperative target in space is studied and a motion prediction algorithm is proposed. In order to predict the motion of the free-floating non-cooperative target, dynamic parameters of the target must be firstly identified (estimated), such as inertia, angular momentum and kinetic energy and so on; then the predicted motion of the target can be acquired by substituting these identified parameters into the Euler's equations of the target. Accurate prediction needs precise identification. This paper presents an effective method to identify these dynamic parameters of a free-floating non-cooperative target. This method is based on two steps, (1) the rough estimation of the parameters is computed using the motion observation data to the target, and (2) the best estimation of the parameters is found by an optimization method. In the optimization problem, the objective function is based on the difference between the observed and the predicted motion, and the interior-point method (IPM) is chosen as the optimization algorithm, which starts at the rough estimate obtained in the first step and finds a global minimum to the objective function with the guidance of objective function's gradient. So the speed of IPM searching for the global minimum is fast, and an accurate identification can be obtained in time. The numerical results show that the proposed motion prediction algorithm is able to predict the motion of the target.
MPEG-1 low-cost encoder solution
NASA Astrophysics Data System (ADS)
Grueger, Klaus; Schirrmeister, Frank; Filor, Lutz; von Reventlow, Christian; Schneider, Ulrich; Mueller, Gerriet; Sefzik, Nicolai; Fiedrich, Sven
1995-02-01
A solution for real-time compression of digital YCRCB video data to an MPEG-1 video data stream has been developed. As an additional option, motion JPEG and video telephone streams (H.261) can be generated. For MPEG-1, up to two bidirectional predicted images are supported. The required computational power for motion estimation and DCT/IDCT, memory size and memory bandwidth have been the main challenges. The design uses fast-page-mode memory accesses and requires only one single 80 ns EDO-DRAM with 256 X 16 organization for video encoding. This can be achieved only by using adequate access and coding strategies. The architecture consists of an input processing and filter unit, a memory interface, a motion estimation unit, a motion compensation unit, a DCT unit, a quantization control, a VLC unit and a bus interface. For using the available memory bandwidth by the processing tasks, a fixed schedule for memory accesses has been applied, that can be interrupted for asynchronous events. The motion estimation unit implements a highly sophisticated hierarchical search strategy based on block matching. The DCT unit uses a separated fast-DCT flowgraph realized by a switchable hardware unit for both DCT and IDCT operation. By appropriate multiplexing, only one multiplier is required for: DCT, quantization, inverse quantization, and IDCT. The VLC unit generates the video-stream up to the video sequence layer and is directly coupled with an intelligent bus-interface. Thus, the assembly of video, audio and system data can easily be performed by the host computer. Having a relatively low complexity and only small requirements for DRAM circuits, the developed solution can be applied to low-cost encoding products for consumer electronics.
Dipolar filtered magic-sandwich-echoes as a tool for probing molecular motions using time domain NMR
NASA Astrophysics Data System (ADS)
Filgueiras, Jefferson G.; da Silva, Uilson B.; Paro, Giovanni; d'Eurydice, Marcel N.; Cobo, Márcio F.; deAzevedo, Eduardo R.
2017-12-01
We present a simple 1 H NMR approach for characterizing intermediate to fast regime molecular motions using 1 H time-domain NMR at low magnetic field. The method is based on a Goldmann Shen dipolar filter (DF) followed by a Mixed Magic Sandwich Echo (MSE). The dipolar filter suppresses the signals arising from molecular segments presenting sub kHz mobility, so only signals from mobile segments are detected. Thus, the temperature dependence of the signal intensities directly evidences the onset of molecular motions with rates higher than kHz. The DF-MSE signal intensity is described by an analytical function based on the Anderson Weiss theory, from where parameters related to the molecular motion (e.g. correlation times and activation energy) can be estimated when performing experiments as function of the temperature. Furthermore, we propose the use of the Tikhonov regularization for estimating the width of the distribution of correlation times.
Rapid processing of PET list-mode data for efficient uncertainty estimation and data analysis
NASA Astrophysics Data System (ADS)
Markiewicz, P. J.; Thielemans, K.; Schott, J. M.; Atkinson, D.; Arridge, S. R.; Hutton, B. F.; Ourselin, S.
2016-07-01
In this technical note we propose a rapid and scalable software solution for the processing of PET list-mode data, which allows the efficient integration of list mode data processing into the workflow of image reconstruction and analysis. All processing is performed on the graphics processing unit (GPU), making use of streamed and concurrent kernel execution together with data transfers between disk and CPU memory as well as CPU and GPU memory. This approach leads to fast generation of multiple bootstrap realisations, and when combined with fast image reconstruction and analysis, it enables assessment of uncertainties of any image statistic and of any component of the image generation process (e.g. random correction, image processing) within reasonable time frames (e.g. within five minutes per realisation). This is of particular value when handling complex chains of image generation and processing. The software outputs the following: (1) estimate of expected random event data for noise reduction; (2) dynamic prompt and random sinograms of span-1 and span-11 and (3) variance estimates based on multiple bootstrap realisations of (1) and (2) assuming reasonable count levels for acceptable accuracy. In addition, the software produces statistics and visualisations for immediate quality control and crude motion detection, such as: (1) count rate curves; (2) centre of mass plots of the radiodistribution for motion detection; (3) video of dynamic projection views for fast visual list-mode skimming and inspection; (4) full normalisation factor sinograms. To demonstrate the software, we present an example of the above processing for fast uncertainty estimation of regional SUVR (standard uptake value ratio) calculation for a single PET scan of 18F-florbetapir using the Siemens Biograph mMR scanner.
PROMO – Real-time Prospective Motion Correction in MRI using Image-based Tracking
White, Nathan; Roddey, Cooper; Shankaranarayanan, Ajit; Han, Eric; Rettmann, Dan; Santos, Juan; Kuperman, Josh; Dale, Anders
2010-01-01
Artifacts caused by patient motion during scanning remain a serious problem in most MRI applications. The prospective motion correction technique attempts to address this problem at its source by keeping the measurement coordinate system fixed with respect to the patient throughout the entire scan process. In this study, a new image-based approach for prospective motion correction is described, which utilizes three orthogonal 2D spiral navigator acquisitions (SP-Navs) along with a flexible image-based tracking method based on the Extended Kalman Filter (EKF) algorithm for online motion measurement. The SP-Nav/EKF framework offers the advantages of image-domain tracking within patient-specific regions-of-interest and reduced sensitivity to off-resonance-induced corruption of rigid-body motion estimates. The performance of the method was tested using offline computer simulations and online in vivo head motion experiments. In vivo validation results covering a broad range of staged head motions indicate a steady-state error of the SP-Nav/EKF motion estimates of less than 10 % of the motion magnitude, even for large compound motions that included rotations over 15 degrees. A preliminary in vivo application in 3D inversion recovery spoiled gradient echo (IR-SPGR) and 3D fast spin echo (FSE) sequences demonstrates the effectiveness of the SP-Nav/EKF framework for correcting 3D rigid-body head motion artifacts prospectively in high-resolution 3D MRI scans. PMID:20027635
Optical Flow Estimation for Flame Detection in Videos
Mueller, Martin; Karasev, Peter; Kolesov, Ivan; Tannenbaum, Allen
2014-01-01
Computational vision-based flame detection has drawn significant attention in the past decade with camera surveillance systems becoming ubiquitous. Whereas many discriminating features, such as color, shape, texture, etc., have been employed in the literature, this paper proposes a set of motion features based on motion estimators. The key idea consists of exploiting the difference between the turbulent, fast, fire motion, and the structured, rigid motion of other objects. Since classical optical flow methods do not model the characteristics of fire motion (e.g., non-smoothness of motion, non-constancy of intensity), two optical flow methods are specifically designed for the fire detection task: optimal mass transport models fire with dynamic texture, while a data-driven optical flow scheme models saturated flames. Then, characteristic features related to the flow magnitudes and directions are computed from the flow fields to discriminate between fire and non-fire motion. The proposed features are tested on a large video database to demonstrate their practical usefulness. Moreover, a novel evaluation method is proposed by fire simulations that allow for a controlled environment to analyze parameter influences, such as flame saturation, spatial resolution, frame rate, and random noise. PMID:23613042
Moment Magnitude discussion in Austria
NASA Astrophysics Data System (ADS)
Weginger, Stefan; Jia, Yan; Hausmann, Helmut; Lenhardt, Wolfgang
2017-04-01
We implemented and tested the Moment Magnitude estimation „dbmw" from the University of Trieste in our Antelope near real-time System. It is used to get a fast Moment Magnitude solutions and Ground Motion Parameter (PGA, PGV, PSA 0.3, PSA 1.0 and PSA 3.0) to calculate Shake and Interactive maps. A Moment Magnitude Catalogue was generated and compared with the Austrian Earthquake Catalogue and all available Magnitude solution of the neighbouring agencies. Relations of Mw to Ml and Ground Motion to Intensity are presented.
Motion Correction in PROPELLER and Turboprop-MRI
Tamhane, Ashish A.; Arfanakis, Konstantinos
2009-01-01
PROPELLER and Turboprop-MRI are characterized by greatly reduced sensitivity to motion, compared to their predecessors, fast spin-echo and gradient and spin-echo, respectively. This is due to the inherent self-navigation and motion correction of PROPELLER-based techniques. However, it is unknown how various acquisition parameters that determine k-space sampling affect the accuracy of motion correction in PROPELLER and Turboprop-MRI. The goal of this work was to evaluate the accuracy of motion correction in both techniques, to identify an optimal rotation correction approach, and determine acquisition strategies for optimal motion correction. It was demonstrated that, blades with multiple lines allow more accurate estimation of motion than blades with fewer lines. Also, it was shown that Turboprop-MRI is less sensitive to motion than PROPELLER. Furthermore, it was demonstrated that the number of blades does not significantly affect motion correction. Finally, clinically appropriate acquisition strategies that optimize motion correction were discussed for PROPELLER and Turboprop-MRI. PMID:19365858
NASA Astrophysics Data System (ADS)
Zabolotnov, Yu. M.
2016-07-01
We analyze the spatial motion of a rigid body fixed to a cable about its center of mass when the orbital cable system is unrolling. The analysis is based on the integral manifold method, which permits separating the rigid body motion into the slow and fast components. The motion of the rigid body is studied in the case of slow variations in the cable tension force and under the action of various disturbances.We estimate the influence of the static and dynamic asymmetry of the rigid body on its spatial motion about the cable fixation point. An example of the analysis of the rigid body motion when the orbital cable system is unrolling is given for a special program of variations in the cable tension force. The conditions of applicability of the integral manifold method are analyzed.
Integrated direct/indirect adaptive robust motion trajectory tracking control of pneumatic cylinders
NASA Astrophysics Data System (ADS)
Meng, Deyuan; Tao, Guoliang; Zhu, Xiaocong
2013-09-01
This paper studies the precision motion trajectory tracking control of a pneumatic cylinder driven by a proportional-directional control valve. An integrated direct/indirect adaptive robust controller is proposed. The controller employs a physical model based indirect-type parameter estimation to obtain reliable estimates of unknown model parameters, and utilises a robust control method with dynamic compensation type fast adaptation to attenuate the effects of parameter estimation errors, unmodelled dynamics and disturbances. Due to the use of projection mapping, the robust control law and the parameter adaption algorithm can be designed separately. Since the system model uncertainties are unmatched, the recursive backstepping technology is adopted to design the robust control law. Extensive comparative experimental results are presented to illustrate the effectiveness of the proposed controller and its performance robustness to parameter variations and sudden disturbances.
Tamhane, Ashish A; Arfanakis, Konstantinos
2009-07-01
Periodically-rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) and Turboprop MRI are characterized by greatly reduced sensitivity to motion, compared to their predecessors, fast spin-echo (FSE) and gradient and spin-echo (GRASE), respectively. This is due to the inherent self-navigation and motion correction of PROPELLER-based techniques. However, it is unknown how various acquisition parameters that determine k-space sampling affect the accuracy of motion correction in PROPELLER and Turboprop MRI. The goal of this work was to evaluate the accuracy of motion correction in both techniques, to identify an optimal rotation correction approach, and determine acquisition strategies for optimal motion correction. It was demonstrated that blades with multiple lines allow more accurate estimation of motion than blades with fewer lines. Also, it was shown that Turboprop MRI is less sensitive to motion than PROPELLER. Furthermore, it was demonstrated that the number of blades does not significantly affect motion correction. Finally, clinically appropriate acquisition strategies that optimize motion correction are discussed for PROPELLER and Turboprop MRI. (c) 2009 Wiley-Liss, Inc.
Spatio-Temporal Brain Mapping of Motion-Onset VEPs Combined with fMRI and Retinotopic Maps
Pitzalis, Sabrina; Strappini, Francesca; De Gasperis, Marco; Bultrini, Alessandro; Di Russo, Francesco
2012-01-01
Neuroimaging studies have identified several motion-sensitive visual areas in the human brain, but the time course of their activation cannot be measured with these techniques. In the present study, we combined electrophysiological and neuroimaging methods (including retinotopic brain mapping) to determine the spatio-temporal profile of motion-onset visual evoked potentials for slow and fast motion stimuli and to localize its neural generators. We found that cortical activity initiates in the primary visual area (V1) for slow stimuli, peaking 100 ms after the onset of motion. Subsequently, activity in the mid-temporal motion-sensitive areas, MT+, peaked at 120 ms, followed by peaks in activity in the more dorsal area, V3A, at 160 ms and the lateral occipital complex at 180 ms. Approximately 250 ms after stimulus onset, activity fast motion stimuli was predominant in area V6 along the parieto-occipital sulcus. Finally, at 350 ms (100 ms after the motion offset) brain activity was visible again in area V1. For fast motion stimuli, the spatio-temporal brain pattern was similar, except that the first activity was detected at 70 ms in area MT+. Comparing functional magnetic resonance data for slow vs. fast motion, we found signs of slow-fast motion stimulus topography along the posterior brain in at least three cortical regions (MT+, V3A and LOR). PMID:22558222
Improving best-phase image quality in cardiac CT by motion correction with MAM optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rohkohl, Christopher; Bruder, Herbert; Stierstorfer, Karl
2013-03-15
Purpose: Research in image reconstruction for cardiac CT aims at using motion correction algorithms to improve the image quality of the coronary arteries. The key to those algorithms is motion estimation, which is currently based on 3-D/3-D registration to align the structures of interest in images acquired in multiple heart phases. The need for an extended scan data range covering several heart phases is critical in terms of radiation dose to the patient and limits the clinical potential of the method. Furthermore, literature reports only slight quality improvements of the motion corrected images when compared to the most quiet phasemore » (best-phase) that was actually used for motion estimation. In this paper a motion estimation algorithm is proposed which does not require an extended scan range but works with a short scan data interval, and which markedly improves the best-phase image quality. Methods: Motion estimation is based on the definition of motion artifact metrics (MAM) to quantify motion artifacts in a 3-D reconstructed image volume. The authors use two different MAMs, entropy, and positivity. By adjusting the motion field parameters, the MAM of the resulting motion-compensated reconstruction is optimized using a gradient descent procedure. In this way motion artifacts are minimized. For a fast and practical implementation, only analytical methods are used for motion estimation and compensation. Both the MAM-optimization and a 3-D/3-D registration-based motion estimation algorithm were investigated by means of a computer-simulated vessel with a cardiac motion profile. Image quality was evaluated using normalized cross-correlation (NCC) with the ground truth template and root-mean-square deviation (RMSD). Four coronary CT angiography patient cases were reconstructed to evaluate the clinical performance of the proposed method. Results: For the MAM-approach, the best-phase image quality could be improved for all investigated heart phases, with a maximum improvement of the NCC value by 100% and of the RMSD value by 81%. The corresponding maximum improvements for the registration-based approach were 20% and 40%. In phases with very rapid motion the registration-based algorithm obtained better image quality, while the image quality of the MAM algorithm was superior in phases with less motion. The image quality improvement of the MAM optimization was visually confirmed for the different clinical cases. Conclusions: The proposed method allows a software-based best-phase image quality improvement in coronary CT angiography. A short scan data interval at the target heart phase is sufficient, no additional scan data in other cardiac phases are required. The algorithm is therefore directly applicable to any standard cardiac CT acquisition protocol.« less
Seismic evidence for convection-driven motion of the North American plate.
Eaton, David W; Frederiksen, Andrew
2007-03-22
Since the discovery of plate tectonics, the relative importance of driving forces of plate motion has been debated. Resolution of this issue has been hindered by uncertainties in estimates of basal traction, which controls the coupling between lithospheric plates and underlying mantle convection. Hotspot tracks preserve records of past plate motion and provide markers with which the relative motion between a plate's surface and underlying mantle regions may be examined. Here we show that the 115-140-Myr surface expression of the Great Meteor hotspot track in eastern North America is misaligned with respect to its location at 200 km depth, as inferred from plate-reconstruction models and seismic tomographic studies. The misalignment increases with age and is consistent with westward displacement of the base of the plate relative to its surface, at an average rate of 3.8 +/- 1.8 mm yr(-1). Here age-constrained 'piercing points' have enabled direct estimation of relative motion between the surface and underside of a plate. The relative displacement of the base is approximately parallel to seismic fast axes and calculated mantle flow, suggesting that asthenospheric flow may be deforming the lithospheric keel and exerting a driving force on this part of the North American plate.
Gyroscope-reduced inertial navigation system for flight vehicle motion estimation
NASA Astrophysics Data System (ADS)
Wang, Xin; Xiao, Lu
2017-01-01
In this paper, a novel configuration of strategically distributed accelerometer sensors with the aid of one gyro to infer a flight vehicle's angular motion is presented. The MEMS accelerometer and gyro sensors are integrated to form a gyroscope-reduced inertial measurement unit (GR-IMU). The motivation for gyro aided accelerometers array is to have direct measurements of angular rates, which is an improvement to the traditional gyroscope-free inertial system that employs only direct measurements of specific force. Some technical issues regarding error calibration in accelerometers and gyro in GR-IMU are put forward. The GR-IMU based inertial navigation system can be used to find a complete attitude solution for flight vehicle motion estimation. Results of numerical simulation are given to illustrate the effectiveness of the proposed configuration. The gyroscope-reduced inertial navigation system based on distributed accelerometer sensors can be developed into a cost effective solution for a fast reaction, MEMS based motion capture system. Future work will include the aid from external navigation references (e.g. GPS) to improve long time mission performance.
NASA Astrophysics Data System (ADS)
Dou, Hsiang-Tai
The uncertainties due to respiratory motion present significant challenges to accurate characterization of cancerous tissues both in terms of imaging and treatment. Currently available clinical lung imaging techniques are subject to inferior image quality and incorrect motion estimation, with consequences that can systematically impact the downstream treatment delivery and outcome. The main objective of this thesis is the development of the techniques of fast helical computed tomography (CT) imaging and deformable image registration for the radiotherapy applications in accurate breathing motion modeling, lung tissue density modeling and ventilation imaging. Fast helical CT scanning was performed on 64-slice CT scanner using the shortest available gantry rotation time and largest pitch value such that scanning of the thorax region amounts to just two seconds, which is less than typical breathing cycle in humans. The scanning was conducted under free breathing condition. Any portion of the lung anatomy undergoing such scanning protocol would be irradiated for only a quarter second, effectively removing any motion induced image artifacts. The resulting CT data were pristine volumetric images that record the lung tissue position and density in a fraction of the breathing cycle. Following our developed protocol, multiple fast helical CT scans were acquired to sample the tissue positions in different breathing states. To measure the tissue displacement, deformable image registration was performed that registers the non-reference images to the reference one. In modeling breathing motion, external breathing surrogate signal was recorded synchronously with the CT image slices. This allowed for the tissue-specific displacement to be modeled as parametrization of the recorded breathing signal using the 5D lung motion model. To assess the accuracy of the motion model in describing tissue position change, the model was used to simulate the original high-pitch helical CT scan geometries, employed as ground truth data. Image similarity between the simulated and ground truth scans was evaluated. The model validation experiments were conducted in a patient cohort of seventeen patients to assess the model robustness and inter-patient variation. The model error averaged over multiple tracked positions from several breathing cycles was found to be on the order of one millimeter. In modeling the density change under free breathing condition, the determinant of Jacobian matrix from the registration-derived deformation vector field yielded volume change information of the lung tissues. Correlation of the Jacobian values to the corresponding voxel Housfield units (HU) reveals that the density variation for the majority of lung tissues can be very well described by mass conservation relationship. Different tissue types were identified and separately modeled. Large trials of validation experiments were performed. The averaged deviation between the modeled and the reference lung density was 30 HU, which was estimated to be the background CT noise level. In characterizing the lung ventilation function, a novel method was developed to determine the extent of lung tissue volume change. Information on volume change was derived from the deformable image registration of the fast helical CT images in terms of Jacobian values with respect to a reference image. Assuming the multiple volume change measurements are independently and identically distributed, statistical formulation was derived to model ventilation distribution of each lung voxels and empirical minimum and maximum probability distribution of the Jacobian values was computed. Ventilation characteristic was evaluated as the difference of the expectation value from these extremal distributions. The resulting ventilation map was compared with an independently obtained ventilation image derived directly from the lung intensities and good correlation was found using statistical test. In addition, dynamic ventilation characterization was investigated by estimating the voxel-specific ventilation distribution. Ventilation maps were generated at different percentile levels using the tissue volume expansion metrics.
Efficient biprediction decision scheme for fast high efficiency video coding encoding
NASA Astrophysics Data System (ADS)
Park, Sang-hyo; Lee, Seung-ho; Jang, Euee S.; Jun, Dongsan; Kang, Jung-Won
2016-11-01
An efficient biprediction decision scheme of high efficiency video coding (HEVC) is proposed for fast-encoding applications. For low-delay video applications, bidirectional prediction can be used to increase compression performance efficiently with previous reference frames. However, at the same time, the computational complexity of the HEVC encoder is significantly increased due to the additional biprediction search. Although a some research has attempted to reduce this complexity, whether the prediction is strongly related to both motion complexity and prediction modes in a coding unit has not yet been investigated. A method that avoids most compression-inefficient search points is proposed so that the computational complexity of the motion estimation process can be dramatically decreased. To determine if biprediction is critical, the proposed method exploits the stochastic correlation of the context of prediction units (PUs): the direction of a PU and the accuracy of a motion vector. Through experimental results, the proposed method showed that the time complexity of biprediction can be reduced to 30% on average, outperforming existing methods in view of encoding time, number of function calls, and memory access.
Attractors of relaxation discrete-time systems with chaotic dynamics on a fast time scale.
Maslennikov, Oleg V; Nekorkin, Vladimir I
2016-07-01
In this work, a new type of relaxation systems is considered. Their prominent feature is that they comprise two distinct epochs, one is slow regular motion and another is fast chaotic motion. Unlike traditionally studied slow-fast systems that have smooth manifolds of slow motions in the phase space and fast trajectories between them, in this new type one observes, apart the same geometric objects, areas of transient chaos. Alternating periods of slow regular motions and fast chaotic ones as well as transitions between them result in a specific chaotic attractor with chaos on a fast time scale. We formulate basic properties of such attractors in the framework of discrete-time systems and consider several examples. Finally, we provide an important application of such systems, the neuronal electrical activity in the form of chaotic spike-burst oscillations.
NASA Astrophysics Data System (ADS)
Avci, Can Onur; Rosenberg, Ethan; Baumgartner, Manuel; Beran, Lukáš; Quindeau, Andy; Gambardella, Pietro; Ross, Caroline A.; Beach, Geoffrey S. D.
2017-08-01
We report fast and efficient current-induced switching of a perpendicular anisotropy magnetic insulator thulium iron garnet by using spin-orbit torques (SOT) from the Pt overlayer. We first show that, with quasi-DC (10 ms) current pulses, SOT-induced switching can be achieved with an external field as low as 2 Oe, making TmIG an outstanding candidate to realize efficient switching in heterostructures that produce moderate stray fields without requiring an external field. We then demonstrate deterministic switching with fast current pulses (≤20 ns) with an amplitude of ˜1012 A/m2, similar to all-metallic structures. We reveal that, in the presence of an initially nucleated domain, the critical switching current is reduced by up to a factor of five with respect to the fully saturated initial state, implying efficient current-driven domain wall motion in this system. Based on measurements with 2 ns-long pulses, we estimate the domain wall velocity of the order of ˜400 m/s per j = 1012 A/m2.
Magnitude Estimation for Large Earthquakes from Borehole Recordings
NASA Astrophysics Data System (ADS)
Eshaghi, A.; Tiampo, K. F.; Ghofrani, H.; Atkinson, G.
2012-12-01
We present a simple and fast method for magnitude determination technique for earthquake and tsunami early warning systems based on strong ground motion prediction equations (GMPEs) in Japan. This method incorporates borehole strong motion records provided by the Kiban Kyoshin network (KiK-net) stations. We analyzed strong ground motion data from large magnitude earthquakes (5.0 ≤ M ≤ 8.1) with focal depths < 50 km and epicentral distances of up to 400 km from 1996 to 2010. Using both peak ground acceleration (PGA) and peak ground velocity (PGV) we derived GMPEs in Japan. These GMPEs are used as the basis for regional magnitude determination. Predicted magnitudes from PGA values (Mpga) and predicted magnitudes from PGV values (Mpgv) were defined. Mpga and Mpgv strongly correlate with the moment magnitude of the event, provided sufficient records for each event are available. The results show that Mpgv has a smaller standard deviation in comparison to Mpga when compared with the estimated magnitudes and provides a more accurate early assessment of earthquake magnitude. We test this new method to estimate the magnitude of the 2011 Tohoku earthquake and we present the results of this estimation. PGA and PGV from borehole recordings allow us to estimate the magnitude of this event 156 s and 105 s after the earthquake onset, respectively. We demonstrate that the incorporation of borehole strong ground-motion records immediately available after the occurrence of large earthquakes significantly increases the accuracy of earthquake magnitude estimation and the associated improvement in earthquake and tsunami early warning systems performance. Moment magnitude versus predicted magnitude (Mpga and Mpgv).
Adaptive rood pattern search for fast block-matching motion estimation.
Nie, Yao; Ma, Kai-Kuang
2002-01-01
In this paper, we propose a novel and simple fast block-matching algorithm (BMA), called adaptive rood pattern search (ARPS), which consists of two sequential search stages: 1) initial search and 2) refined local search. For each macroblock (MB), the initial search is performed only once at the beginning in order to find a good starting point for the follow-up refined local search. By doing so, unnecessary intermediate search and the risk of being trapped into local minimum matching error points could be greatly reduced in long search case. For the initial search stage, an adaptive rood pattern (ARP) is proposed, and the ARP's size is dynamically determined for each MB, based on the available motion vectors (MVs) of the neighboring MBs. In the refined local search stage, a unit-size rood pattern (URP) is exploited repeatedly, and unrestrictedly, until the final MV is found. To further speed up the search, zero-motion prejudgment (ZMP) is incorporated in our method, which is particularly beneficial to those video sequences containing small motion contents. Extensive experiments conducted based on the MPEG-4 Verification Model (VM) encoding platform show that the search speed of our proposed ARPS-ZMP is about two to three times faster than that of the diamond search (DS), and our method even achieves higher peak signal-to-noise ratio (PSNR) particularly for those video sequences containing large and/or complex motion contents.
An Efficient VLSI Architecture of the Enhanced Three Step Search Algorithm
NASA Astrophysics Data System (ADS)
Biswas, Baishik; Mukherjee, Rohan; Saha, Priyabrata; Chakrabarti, Indrajit
2016-09-01
The intense computational complexity of any video codec is largely due to the motion estimation unit. The Enhanced Three Step Search is a popular technique that can be adopted for fast motion estimation. This paper proposes a novel VLSI architecture for the implementation of the Enhanced Three Step Search Technique. A new addressing mechanism has been introduced which enhances the speed of operation and reduces the area requirements. The proposed architecture when implemented in Verilog HDL on Virtex-5 Technology and synthesized using Xilinx ISE Design Suite 14.1 achieves a critical path delay of 4.8 ns while the area comes out to be 2.9K gate equivalent. It can be incorporated in commercial devices like smart-phones, camcorders, video conferencing systems etc.
Slow and fast visual motion channels have independent binocular-rivalry stages.
van de Grind, W. A.; van Hof, P.; van der Smagt, M. J.; Verstraten, F. A.
2001-01-01
We have previously reported a transparent motion after-effect indicating that the human visual system comprises separate slow and fast motion channels. Here, we report that the presentation of a fast motion in one eye and a slow motion in the other eye does not result in binocular rivalry but in a clear percept of transparent motion. We call this new visual phenomenon 'dichoptic motion transparency' (DMT). So far only the DMT phenomenon and the two motion after-effects (the 'classical' motion after-effect, seen after motion adaptation on a static test pattern, and the dynamic motion after-effect, seen on a dynamic-noise test pattern) appear to isolate the channels completely. The speed ranges of the slow and fast channels overlap strongly and are observer dependent. A model is presented that links after-effect durations of an observer to the probability of rivalry or DMT as a function of dichoptic velocity combinations. Model results support the assumption of two highly independent channels showing only within-channel rivalry, and no rivalry or after-effect interactions between the channels. The finding of two independent motion vision channels, each with a separate rivalry stage and a private line to conscious perception, might be helpful in visualizing or analysing pathways to consciousness. PMID:11270442
Chanel, Laure-Anais; Nageotte, Florent; Vappou, Jonathan; Luo, Jianwen; Cuvillon, Loic; de Mathelin, Michel
2015-01-01
High Intensity Focused Ultrasound (HIFU) therapy is a very promising method for ablation of solid tumors. However, intra-abdominal organ motion, principally due to breathing, is a substantial limitation that results in incorrect tumor targeting. The objective of this work is to develop an all-in-one robotized HIFU system that can compensate motion in real-time during HIFU treatment. To this end, an ultrasound visual servoing scheme working at 20 Hz was designed. It relies on the motion estimation by using a fast ultrasonic speckle tracking algorithm and on the use of an interleaved imaging/HIFU sonication sequence for avoiding ultrasonic wave interferences. The robotized HIFU system was tested on a sample of chicken breast undergoing a vertical sinusoidal motion at 0.25 Hz. Sonications with and without motion compensation were performed in order to assess the effect of motion compensation on thermal lesions induced by HIFU. Motion was reduced by more than 80% thanks to this ultrasonic visual servoing system.
Motion-Blur-Free High-Speed Video Shooting Using a Resonant Mirror
Inoue, Michiaki; Gu, Qingyi; Takaki, Takeshi; Ishii, Idaku; Tajima, Kenji
2017-01-01
This study proposes a novel concept of actuator-driven frame-by-frame intermittent tracking for motion-blur-free video shooting of fast-moving objects. The camera frame and shutter timings are controlled for motion blur reduction in synchronization with a free-vibration-type actuator vibrating with a large amplitude at hundreds of hertz so that motion blur can be significantly reduced in free-viewpoint high-frame-rate video shooting for fast-moving objects by deriving the maximum performance of the actuator. We develop a prototype of a motion-blur-free video shooting system by implementing our frame-by-frame intermittent tracking algorithm on a high-speed video camera system with a resonant mirror vibrating at 750 Hz. It can capture 1024 × 1024 images of fast-moving objects at 750 fps with an exposure time of 0.33 ms without motion blur. Several experimental results for fast-moving objects verify that our proposed method can reduce image degradation from motion blur without decreasing the camera exposure time. PMID:29109385
Attractors of relaxation discrete-time systems with chaotic dynamics on a fast time scale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maslennikov, Oleg V.; Nekorkin, Vladimir I.
In this work, a new type of relaxation systems is considered. Their prominent feature is that they comprise two distinct epochs, one is slow regular motion and another is fast chaotic motion. Unlike traditionally studied slow-fast systems that have smooth manifolds of slow motions in the phase space and fast trajectories between them, in this new type one observes, apart the same geometric objects, areas of transient chaos. Alternating periods of slow regular motions and fast chaotic ones as well as transitions between them result in a specific chaotic attractor with chaos on a fast time scale. We formulate basicmore » properties of such attractors in the framework of discrete-time systems and consider several examples. Finally, we provide an important application of such systems, the neuronal electrical activity in the form of chaotic spike-burst oscillations.« less
Fast restoration approach for motion blurred image based on deconvolution under the blurring paths
NASA Astrophysics Data System (ADS)
Shi, Yu; Song, Jie; Hua, Xia
2015-12-01
For the real-time motion deblurring, it is of utmost importance to get a higher processing speed with about the same image quality. This paper presents a fast Richardson-Lucy motion deblurring approach to remove motion blur which rotates blurred image under blurring paths. Hence, the computational time is reduced sharply by using one-dimensional Fast Fourier Transform in one-dimensional Richardson-Lucy method. In order to obtain accurate transformational results, interpolation method is incorporated to fetch the gray values. Experiment results demonstrate that the proposed approach is efficient and effective to reduce motion blur under the blur paths.
Hou, Gary Y; Provost, Jean; Grondin, Julien; Wang, Shutao; Marquet, Fabrice; Bunting, Ethan; Konofagou, Elisa E
2014-11-01
Harmonic motion imaging for focused ultrasound (HMIFU) utilizes an amplitude-modulated HIFU beam to induce a localized focal oscillatory motion simultaneously estimated. The objective of this study is to develop and show the feasibility of a novel fast beamforming algorithm for image reconstruction using GPU-based sparse-matrix operation with real-time feedback. In this study, the algorithm was implemented onto a fully integrated, clinically relevant HMIFU system. A single divergent transmit beam was used while fast beamforming was implemented using a GPU-based delay-and-sum method and a sparse-matrix operation. Axial HMI displacements were then estimated from the RF signals using a 1-D normalized cross-correlation method and streamed to a graphic user interface with frame rates up to 15 Hz, a 100-fold increase compared to conventional CPU-based processing. The real-time feedback rate does not require interrupting the HIFU treatment. Results in phantom experiments showed reproducible HMI images and monitoring of 22 in vitro HIFU treatments using the new 2-D system demonstrated reproducible displacement imaging, and monitoring of 22 in vitro HIFU treatments using the new 2-D system showed a consistent average focal displacement decrease of 46.7 ±14.6% during lesion formation. Complementary focal temperature monitoring also indicated an average rate of displacement increase and decrease with focal temperature at 0.84±1.15%/(°)C, and 2.03±0.93%/(°)C , respectively. These results reinforce the HMIFU capability of estimating and monitoring stiffness related changes in real time. Current ongoing studies include clinical translation of the presented system for monitoring of HIFU treatment for breast and pancreatic tumor applications.
Massanes, Francesc; Cadennes, Marie; Brankov, Jovan G.
2012-01-01
In this paper we describe and evaluate a fast implementation of a classical block matching motion estimation algorithm for multiple Graphical Processing Units (GPUs) using the Compute Unified Device Architecture (CUDA) computing engine. The implemented block matching algorithm (BMA) uses summed absolute difference (SAD) error criterion and full grid search (FS) for finding optimal block displacement. In this evaluation we compared the execution time of a GPU and CPU implementation for images of various sizes, using integer and non-integer search grids. The results show that use of a GPU card can shorten computation time by a factor of 200 times for integer and 1000 times for a non-integer search grid. The additional speedup for non-integer search grid comes from the fact that GPU has built-in hardware for image interpolation. Further, when using multiple GPU cards, the presented evaluation shows the importance of the data splitting method across multiple cards, but an almost linear speedup with a number of cards is achievable. In addition we compared execution time of the proposed FS GPU implementation with two existing, highly optimized non-full grid search CPU based motion estimations methods, namely implementation of the Pyramidal Lucas Kanade Optical flow algorithm in OpenCV and Simplified Unsymmetrical multi-Hexagon search in H.264/AVC standard. In these comparisons, FS GPU implementation still showed modest improvement even though the computational complexity of FS GPU implementation is substantially higher than non-FS CPU implementation. We also demonstrated that for an image sequence of 720×480 pixels in resolution, commonly used in video surveillance, the proposed GPU implementation is sufficiently fast for real-time motion estimation at 30 frames-per-second using two NVIDIA C1060 Tesla GPU cards. PMID:22347787
Massanes, Francesc; Cadennes, Marie; Brankov, Jovan G
2011-07-01
In this paper we describe and evaluate a fast implementation of a classical block matching motion estimation algorithm for multiple Graphical Processing Units (GPUs) using the Compute Unified Device Architecture (CUDA) computing engine. The implemented block matching algorithm (BMA) uses summed absolute difference (SAD) error criterion and full grid search (FS) for finding optimal block displacement. In this evaluation we compared the execution time of a GPU and CPU implementation for images of various sizes, using integer and non-integer search grids.The results show that use of a GPU card can shorten computation time by a factor of 200 times for integer and 1000 times for a non-integer search grid. The additional speedup for non-integer search grid comes from the fact that GPU has built-in hardware for image interpolation. Further, when using multiple GPU cards, the presented evaluation shows the importance of the data splitting method across multiple cards, but an almost linear speedup with a number of cards is achievable.In addition we compared execution time of the proposed FS GPU implementation with two existing, highly optimized non-full grid search CPU based motion estimations methods, namely implementation of the Pyramidal Lucas Kanade Optical flow algorithm in OpenCV and Simplified Unsymmetrical multi-Hexagon search in H.264/AVC standard. In these comparisons, FS GPU implementation still showed modest improvement even though the computational complexity of FS GPU implementation is substantially higher than non-FS CPU implementation.We also demonstrated that for an image sequence of 720×480 pixels in resolution, commonly used in video surveillance, the proposed GPU implementation is sufficiently fast for real-time motion estimation at 30 frames-per-second using two NVIDIA C1060 Tesla GPU cards.
Xie, Weihong; Yu, Yang
2017-01-01
Robot-assisted motion compensated beating heart surgery has the advantage over the conventional Coronary Artery Bypass Graft (CABG) in terms of reduced trauma to the surrounding structures that leads to shortened recovery time. The severe nonlinear and diverse nature of irregular heart rhythm causes enormous difficulty for the robot to realize the clinic requirements, especially under arrhythmias. In this paper, we propose a fusion prediction framework based on Interactive Multiple Model (IMM) estimator, allowing each model to cover a distinguishing feature of the heart motion in underlying dynamics. We find that, at normal state, the nonlinearity of the heart motion with slow time-variant changing dominates the beating process. When an arrhythmia occurs, the irregularity mode, the fast uncertainties with random patterns become the leading factor of the heart motion. We deal with prediction problem in the case of arrhythmias by estimating the state with two behavior modes which can adaptively “switch” from one to the other. Also, we employed the signal quality index to adaptively determine the switch transition probability in the framework of IMM. We conduct comparative experiments to evaluate the proposed approach with four distinguished datasets. The test results indicate that the new proposed approach reduces prediction errors significantly. PMID:29124062
Liang, Fan; Xie, Weihong; Yu, Yang
2017-01-01
Robot-assisted motion compensated beating heart surgery has the advantage over the conventional Coronary Artery Bypass Graft (CABG) in terms of reduced trauma to the surrounding structures that leads to shortened recovery time. The severe nonlinear and diverse nature of irregular heart rhythm causes enormous difficulty for the robot to realize the clinic requirements, especially under arrhythmias. In this paper, we propose a fusion prediction framework based on Interactive Multiple Model (IMM) estimator, allowing each model to cover a distinguishing feature of the heart motion in underlying dynamics. We find that, at normal state, the nonlinearity of the heart motion with slow time-variant changing dominates the beating process. When an arrhythmia occurs, the irregularity mode, the fast uncertainties with random patterns become the leading factor of the heart motion. We deal with prediction problem in the case of arrhythmias by estimating the state with two behavior modes which can adaptively "switch" from one to the other. Also, we employed the signal quality index to adaptively determine the switch transition probability in the framework of IMM. We conduct comparative experiments to evaluate the proposed approach with four distinguished datasets. The test results indicate that the new proposed approach reduces prediction errors significantly.
Gaglianese, A; Costagli, M; Ueno, K; Ricciardi, E; Bernardi, G; Pietrini, P; Cheng, K
2015-01-22
The main visual pathway that conveys motion information to the middle temporal complex (hMT+) originates from the primary visual cortex (V1), which, in turn, receives spatial and temporal features of the perceived stimuli from the lateral geniculate nucleus (LGN). In addition, visual motion information reaches hMT+ directly from the thalamus, bypassing the V1, through a direct pathway. We aimed at elucidating whether this direct route between LGN and hMT+ represents a 'fast lane' reserved to high-speed motion, as proposed previously, or it is merely involved in processing motion information irrespective of speeds. We evaluated functional magnetic resonance imaging (fMRI) responses elicited by moving visual stimuli and applied connectivity analyses to investigate the effect of motion speed on the causal influence between LGN and hMT+, independent of V1, using the Conditional Granger Causality (CGC) in the presence of slow and fast visual stimuli. Our results showed that at least part of the visual motion information from LGN reaches hMT+, bypassing V1, in response to both slow and fast motion speeds of the perceived stimuli. We also investigated whether motion speeds have different effects on the connections between LGN and functional subdivisions within hMT+: direct connections between LGN and MT-proper carry mainly slow motion information, while connections between LGN and MST carry mainly fast motion information. The existence of a parallel pathway that connects the LGN directly to hMT+ in response to both slow and fast speeds may explain why MT and MST can still respond in the presence of V1 lesions. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
As time passes by: Observed motion-speed and psychological time during video playback.
Nyman, Thomas Jonathan; Karlsson, Eric Per Anders; Antfolk, Jan
2017-01-01
Research shows that psychological time (i.e., the subjective experience and assessment of the passage of time) is malleable and that the central nervous system re-calibrates temporal information in accordance with situational factors so that psychological time flows slower or faster. Observed motion-speed (e.g., the visual perception of a rolling ball) is an important situational factor which influences the production of time estimates. The present study examines previous findings showing that observed slow and fast motion-speed during video playback respectively results in over- and underproductions of intervals of time. Here, we investigated through three separate experiments: a) the main effect of observed motion-speed during video playback on a time production task and b) the interactive effect of the frame rate (frames per second; fps) and motion-speed during video playback on a time production task. No main effect of video playback-speed or interactive effect between video playback-speed and frame rate was found on time production.
As time passes by: Observed motion-speed and psychological time during video playback
Karlsson, Eric Per Anders; Antfolk, Jan
2017-01-01
Research shows that psychological time (i.e., the subjective experience and assessment of the passage of time) is malleable and that the central nervous system re-calibrates temporal information in accordance with situational factors so that psychological time flows slower or faster. Observed motion-speed (e.g., the visual perception of a rolling ball) is an important situational factor which influences the production of time estimates. The present study examines previous findings showing that observed slow and fast motion-speed during video playback respectively results in over- and underproductions of intervals of time. Here, we investigated through three separate experiments: a) the main effect of observed motion-speed during video playback on a time production task and b) the interactive effect of the frame rate (frames per second; fps) and motion-speed during video playback on a time production task. No main effect of video playback-speed or interactive effect between video playback-speed and frame rate was found on time production. PMID:28614353
String-like collective motion in the α- and β-relaxation of a coarse-grained polymer melt
NASA Astrophysics Data System (ADS)
Pazmiño Betancourt, Beatriz A.; Starr, Francis W.; Douglas, Jack F.
2018-03-01
Relaxation in glass-forming liquids occurs as a multi-stage hierarchical process involving cooperative molecular motion. First, there is a "fast" relaxation process dominated by the inertial motion of the molecules whose amplitude grows upon heating, followed by a longer time α-relaxation process involving both large-scale diffusive molecular motion and momentum diffusion. Our molecular dynamics simulations of a coarse-grained glass-forming polymer melt indicate that the fast, collective motion becomes progressively suppressed upon cooling, necessitating large-scale collective motion by molecular diffusion for the material to relax approaching the glass-transition. In each relaxation regime, the decay of the collective intermediate scattering function occurs through collective particle exchange motions having a similar geometrical form, and quantitative relationships are derived relating the fast "stringlet" collective motion to the larger scale string-like collective motion at longer times, which governs the temperature-dependent activation energies associated with both thermally activated molecular diffusion and momentum diffusion.
Fast internal dynamics in alcohol dehydrogenase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monkenbusch, M.; Stadler, A., E-mail: a.stadler@fz-juelich.de; Biehl, R.
2015-08-21
Large-scale domain motions in alcohol dehydrogenase (ADH) have been observed previously by neutron spin-echo spectroscopy (NSE). We have extended the investigation on the dynamics of ADH in solution by using high-resolution neutron time-of-flight (TOF) and neutron backscattering (BS) spectroscopy in the incoherent scattering range. The observed hydrogen dynamics were interpreted in terms of three mobility classes, which allowed a simultaneous description of the measured TOF and BS spectra. In addition to the slow global protein diffusion and domain motions observed by NSE, a fast internal process could be identified. Around one third of the protons in ADH participate in themore » fast localized diffusive motion. The diffusion coefficient of the fast internal motions is around two third of the value of the surrounding D{sub 2}O solvent. It is tempting to associate the fast internal process with solvent exposed amino acid residues with dangling side chains.« less
Josso, Nicolas F; Ioana, Cornel; Mars, Jérôme I; Gervaise, Cédric
2010-12-01
Acoustic channel properties in a shallow water environment with moving source and receiver are difficult to investigate. In fact, when the source-receiver relative position changes, the underwater environment causes multipath and Doppler scale changes on the transmitted signal over low-to-medium frequencies (300 Hz-20 kHz). This is the result of a combination of multiple paths propagation, source and receiver motions, as well as sea surface motion or water column fast changes. This paper investigates underwater acoustic channel properties in a shallow water (up to 150 m depth) and moving source-receiver conditions using extracted time-scale features of the propagation channel model for low-to-medium frequencies. An average impulse response of one transmission is estimated using the physical characteristics of propagation and the wideband ambiguity plane. Since a different Doppler scale should be considered for each propagating signal, a time-warping filtering method is proposed to estimate the channel time delay and Doppler scale attributes for each propagating path. The proposed method enables the estimation of motion-compensated impulse responses, where different Doppler scaling factors are considered for the different time delays. It was validated for channel profiles using real data from the BASE'07 experiment conducted by the North Atlantic Treaty Organization Undersea Research Center in the shallow water environment of the Malta Plateau, South Sicily. This paper provides a contribution to many field applications including passive ocean tomography with unknown natural sources position and movement. Another example is active ocean tomography where sources motion enables to rapidly cover one operational area for rapid environmental assessment and hydrophones may be drifting in order to avoid additional flow noise.
Three-dimensional reconstruction of the fast-start swimming kinematics of densely schooling fish
Paley, Derek A.
2012-01-01
Information transmission via non-verbal cues such as a fright response can be quantified in a fish school by reconstructing individual fish motion in three dimensions. In this paper, we describe an automated tracking framework to reconstruct the full-body trajectories of densely schooling fish using two-dimensional silhouettes in multiple cameras. We model the shape of each fish as a series of elliptical cross sections along a flexible midline. We estimate the size of each ellipse using an iterated extended Kalman filter. The shape model is used in a model-based tracking framework in which simulated annealing is applied at each step to estimate the midline. Results are presented for eight fish with occlusions. The tracking system is currently being used to investigate fast-start behaviour of schooling fish in response to looming stimuli. PMID:21642367
Zhang, Zhilin; Pi, Zhouyue; Liu, Benyuan
2015-02-01
Heart rate monitoring using wrist-type photoplethysmographic signals during subjects' intensive exercise is a difficult problem, since the signals are contaminated by extremely strong motion artifacts caused by subjects' hand movements. So far few works have studied this problem. In this study, a general framework, termed TROIKA, is proposed, which consists of signal decomposiTion for denoising, sparse signal RecOnstructIon for high-resolution spectrum estimation, and spectral peaK trAcking with verification. The TROIKA framework has high estimation accuracy and is robust to strong motion artifacts. Many variants can be straightforwardly derived from this framework. Experimental results on datasets recorded from 12 subjects during fast running at the peak speed of 15 km/h showed that the average absolute error of heart rate estimation was 2.34 beat per minute, and the Pearson correlation between the estimates and the ground truth of heart rate was 0.992. This framework is of great values to wearable devices such as smartwatches which use PPG signals to monitor heart rate for fitness.
Thought Speed, Mood, and the Experience of Mental Motion.
Pronin, Emily; Jacobs, Elana
2008-11-01
This article presents a theoretical account relating thought speed to mood and psychological experience. Thought sequences that occur at a fast speed generally induce more positive affect than do those that occur slowly. Thought speed constitutes one aspect of mental motion. Another aspect involves thought variability, or the degree to which thoughts in a sequence either vary widely from or revolve closely around a theme. Thought sequences possessing more motion (occurring fast and varying widely) generally produce more positive affect than do sequences possessing little motion (occurring slowly and repetitively). When speed and variability oppose each other, such that one is low and the other is high, predictable psychological states also emerge. For example, whereas slow, repetitive thinking can prompt dejection, fast, repetitive thinking can prompt anxiety. This distinction is related to the fact that fast thinking involves greater actual and felt energy than slow thinking does. Effects of mental motion occur independent of the specific content of thought. Their consequences for mood and energy hold psychotherapeutic relevance. © 2008 Association for Psychological Science.
Scene-aware joint global and local homographic video coding
NASA Astrophysics Data System (ADS)
Peng, Xiulian; Xu, Jizheng; Sullivan, Gary J.
2016-09-01
Perspective motion is commonly represented in video content that is captured and compressed for various applications including cloud gaming, vehicle and aerial monitoring, etc. Existing approaches based on an eight-parameter homography motion model cannot deal with this efficiently, either due to low prediction accuracy or excessive bit rate overhead. In this paper, we consider the camera motion model and scene structure in such video content and propose a joint global and local homography motion coding approach for video with perspective motion. The camera motion is estimated by a computer vision approach, and camera intrinsic and extrinsic parameters are globally coded at the frame level. The scene is modeled as piece-wise planes, and three plane parameters are coded at the block level. Fast gradient-based approaches are employed to search for the plane parameters for each block region. In this way, improved prediction accuracy and low bit costs are achieved. Experimental results based on the HEVC test model show that up to 9.1% bit rate savings can be achieved (with equal PSNR quality) on test video content with perspective motion. Test sequences for the example applications showed a bit rate savings ranging from 3.7 to 9.1%.
Validity of the iPhone M7 motion co-processor as a pedometer for able-bodied ambulation.
Major, Matthew J; Alford, Micah
2016-12-01
Physical activity benefits for disease prevention are well-established. Smartphones offer a convenient platform for community-based step count estimation to monitor and encourage physical activity. Accuracy is dependent on hardware-software platforms, creating a recurring challenge for validation, but the Apple iPhone® M7 motion co-processor provides a standardised method that helps address this issue. Validity of the M7 to record step count for level-ground, able-bodied walking at three self-selected speeds, and agreement with the StepWatch TM was assessed. Steps were measured concurrently with the iPhone® (custom application to extract step count), StepWatch TM and manual count. Agreement between iPhone® and manual/StepWatch TM count was estimated through Pearson correlation and Bland-Altman analyses. Data from 20 participants suggested that iPhone® step count correlations with manual and StepWatch TM were strong for customary (1.3 ± 0.1 m/s) and fast (1.8 ± 0.2 m/s) speeds, but weak for the slow (1.0 ± 0.1 m/s) speed. Mean absolute error (manual-iPhone®) was 21%, 8% and 4% for the slow, customary and fast speeds, respectively. The M7 accurately records step count during customary and fast walking speeds, but is prone to considerable inaccuracies at slow speeds which has important implications for certain patient groups. The iPhone® may be a suitable alternative to the StepWatch TM for only faster walking speeds.
Independent motion detection with a rival penalized adaptive particle filter
NASA Astrophysics Data System (ADS)
Becker, Stefan; Hübner, Wolfgang; Arens, Michael
2014-10-01
Aggregation of pixel based motion detection into regions of interest, which include views of single moving objects in a scene is an essential pre-processing step in many vision systems. Motion events of this type provide significant information about the object type or build the basis for action recognition. Further, motion is an essential saliency measure, which is able to effectively support high level image analysis. When applied to static cameras, background subtraction methods achieve good results. On the other hand, motion aggregation on freely moving cameras is still a widely unsolved problem. The image flow, measured on a freely moving camera is the result from two major motion types. First the ego-motion of the camera and second object motion, that is independent from the camera motion. When capturing a scene with a camera these two motion types are adverse blended together. In this paper, we propose an approach to detect multiple moving objects from a mobile monocular camera system in an outdoor environment. The overall processing pipeline consists of a fast ego-motion compensation algorithm in the preprocessing stage. Real-time performance is achieved by using a sparse optical flow algorithm as an initial processing stage and a densely applied probabilistic filter in the post-processing stage. Thereby, we follow the idea proposed by Jung and Sukhatme. Normalized intensity differences originating from a sequence of ego-motion compensated difference images represent the probability of moving objects. Noise and registration artefacts are filtered out, using a Bayesian formulation. The resulting a posteriori distribution is located on image regions, showing strong amplitudes in the difference image which are in accordance with the motion prediction. In order to effectively estimate the a posteriori distribution, a particle filter is used. In addition to the fast ego-motion compensation, the main contribution of this paper is the design of the probabilistic filter for real-time detection and tracking of independently moving objects. The proposed approach introduces a competition scheme between particles in order to ensure an improved multi-modality. Further, the filter design helps to generate a particle distribution which is homogenous even in the presence of multiple targets showing non-rigid motion patterns. The effectiveness of the method is shown on exemplary outdoor sequences.
The integrated motion measurement simulation for SOFIA
NASA Astrophysics Data System (ADS)
Kaswekar, Prashant; Greiner, Benjamin; Wagner, Jörg
2014-07-01
The Stratospheric Observatory for Infrared Astronomy SOFIA consists of a B747-SP aircraft, which carries aloft a 2.7-meter reflecting telescope. The image stability goal for SOFIA is 0:2 arc-seconds rms. The performance of the telescope structure is affected by elastic vibrations induced by aeroacoustic and suspension disturbances. Active compensation of such disturbances requires a fast way of estimating the structural motion. Integrated navigation systems are examples of such estimation systems. However they employ a rigid body assumption. A possible extension of these systems to an elastic structure is shown by different authors for one dimensional beam structures taking into account the eigenmodes of the structural system. The rigid body motion as well as the flexible modes of the telescope assembly, however, are coupled among the three axes. Extending a special mathematical approach to three dimensional structures, the aspect of a modal observer based on integrated motion measurement is simulated for SOFIA. It is in general a fusion of different measurement methods by using their benefits and blinding out their disadvantages. There are no mass and stillness properties needed directly in this approach. However, the knowledge of modal properties of the structure is necessary for the implementation of this method. A finite-element model is chosen as a basis to extract the modal properties of the structure.
Robust Foot Clearance Estimation Based on the Integration of Foot-Mounted IMU Acceleration Data
Benoussaad, Mourad; Sijobert, Benoît; Mombaur, Katja; Azevedo Coste, Christine
2015-01-01
This paper introduces a method for the robust estimation of foot clearance during walking, using a single inertial measurement unit (IMU) placed on the subject’s foot. The proposed solution is based on double integration and drift cancellation of foot acceleration signals. The method is insensitive to misalignment of IMU axes with respect to foot axes. Details are provided regarding calibration and signal processing procedures. Experimental validation was performed on 10 healthy subjects under three walking conditions: normal, fast and with obstacles. Foot clearance estimation results were compared to measurements from an optical motion capture system. The mean error between them is significantly less than 15% under the various walking conditions. PMID:26703622
Fast 3D shape measurements with reduced motion artifacts
NASA Astrophysics Data System (ADS)
Feng, Shijie; Zuo, Chao; Chen, Qian; Gu, Guohua
2017-10-01
Fringe projection is an extensively used technique for high speed three-dimensional (3D) measurements of dynamic objects. However, the motion often leads to artifacts in reconstructions due to the sequential recording of the set of patterns. In order to reduce the adverse impact of the movement, we present a novel high speed 3D scanning technique combining the fringe projection and stereo. Firstly, promising measuring speed is achieved by modifying the traditional aperiodic sinusoidal patterns so that the fringe images can be cast at kilohertz with the widely used defocusing strategy. Next, a temporal intensity tracing algorithm is developed to further alleviate the influence of motion by accurately tracing the ideal intensity for stereo matching. Then, a combined cost measure is suggested to robustly estimate the cost for each pixel. In comparison with the traditional method where the effect of motion is not considered, experimental results show that the reconstruction accuracy for dynamic objects can be improved by an order of magnitude with the proposed method.
Robust adaptive kinematic control of redundant robots
NASA Technical Reports Server (NTRS)
Tarokh, M.; Zuck, D. D.
1992-01-01
The paper presents a general method for the resolution of redundancy that combines the Jacobian pseudoinverse and augmentation approaches. A direct adaptive control scheme is developed to generate joint angle trajectories for achieving desired end-effector motion as well as additional user defined tasks. The scheme ensures arbitrarily small errors between the desired and the actual motion of the manipulator. Explicit bounds on the errors are established that are directly related to the mismatch between actual and estimated pseudoinverse Jacobian matrix, motion velocity and the controller gain. It is shown that the scheme is tolerant of the mismatch and consequently only infrequent pseudoinverse computations are needed during a typical robot motion. As a result, the scheme is computationally fast, and can be implemented for real-time control of redundant robots. A method is incorporated to cope with the robot singularities allowing the manipulator to get very close or even pass through a singularity while maintaining a good tracking performance and acceptable joint velocities. Computer simulations and experimental results are provided in support of the theoretical developments.
1992-04-10
and passive tracer concentrations, and their cross correlations have generally been used to estimate the magnitude of dispersive atmospheric transport...of gravity waves and turbulence. . 10 III. METHODS .......... ........................ 12 A. Data .......... ........................ 12 B. Analysis ...unstable, i.e., strange. For waves or even limit cycle motion about fixed attractors, self-similarity does not occur. Pertinent to time series analysis , this
Hardie, Russell C; Barnard, Kenneth J; Ordonez, Raul
2011-12-19
Fast nonuniform interpolation based super-resolution (SR) has traditionally been limited to applications with translational interframe motion. This is in part because such methods are based on an underlying assumption that the warping and blurring components in the observation model commute. For translational motion this is the case, but it is not true in general. This presents a problem for applications such as airborne imaging where translation may be insufficient. Here we present a new Fourier domain analysis to show that, for many image systems, an affine warping model with limited zoom and shear approximately commutes with the point spread function when diffraction effects are modeled. Based on this important result, we present a new fast adaptive Wiener filter (AWF) SR algorithm for non-translational motion and study its performance with affine motion. The fast AWF SR method employs a new smart observation window that allows us to precompute all the needed filter weights for any type of motion without sacrificing much of the full performance of the AWF. We evaluate the proposed algorithm using simulated data and real infrared airborne imagery that contains a thermal resolution target allowing for objective resolution analysis.
Electrogastrograms during motion sickness in fasted and fed subjects
NASA Technical Reports Server (NTRS)
Stewart, John J.; Wood, Mary J.; Wood, Charles D.
1989-01-01
Seven human volunteers were subjected to stressful Coriolis stimulation (rotating chair) either during the fasted state or following the ingestion of yogurt (6 oz). Subjects tested after yogurt reached a malaise-III (M-III) endpoint of motion sickness after significantly (p smaller than 0.01) fewer head movements than subjects tested in the fasted state. Surface electrogastrogram (EGG) recordings at M-III were similar for both dietary stats and consisted of a brief period of tachygastria, followed by a period of low-amplitude EGG waves. Ingestion of yogurt enhanced susceptibility to motion sickness but did not affect the associated pattern of EGG.
Robust Stereo Visual Odometry Using Improved RANSAC-Based Methods for Mobile Robot Localization
Liu, Yanqing; Gu, Yuzhang; Li, Jiamao; Zhang, Xiaolin
2017-01-01
In this paper, we present a novel approach for stereo visual odometry with robust motion estimation that is faster and more accurate than standard RANSAC (Random Sample Consensus). Our method makes improvements in RANSAC in three aspects: first, the hypotheses are preferentially generated by sampling the input feature points on the order of ages and similarities of the features; second, the evaluation of hypotheses is performed based on the SPRT (Sequential Probability Ratio Test) that makes bad hypotheses discarded very fast without verifying all the data points; third, we aggregate the three best hypotheses to get the final estimation instead of only selecting the best hypothesis. The first two aspects improve the speed of RANSAC by generating good hypotheses and discarding bad hypotheses in advance, respectively. The last aspect improves the accuracy of motion estimation. Our method was evaluated in the KITTI (Karlsruhe Institute of Technology and Toyota Technological Institute) and the New Tsukuba dataset. Experimental results show that the proposed method achieves better results for both speed and accuracy than RANSAC. PMID:29027935
Neuromorphic Event-Based 3D Pose Estimation
Reverter Valeiras, David; Orchard, Garrick; Ieng, Sio-Hoi; Benosman, Ryad B.
2016-01-01
Pose estimation is a fundamental step in many artificial vision tasks. It consists of estimating the 3D pose of an object with respect to a camera from the object's 2D projection. Current state of the art implementations operate on images. These implementations are computationally expensive, especially for real-time applications. Scenes with fast dynamics exceeding 30–60 Hz can rarely be processed in real-time using conventional hardware. This paper presents a new method for event-based 3D object pose estimation, making full use of the high temporal resolution (1 μs) of asynchronous visual events output from a single neuromorphic camera. Given an initial estimate of the pose, each incoming event is used to update the pose by combining both 3D and 2D criteria. We show that the asynchronous high temporal resolution of the neuromorphic camera allows us to solve the problem in an incremental manner, achieving real-time performance at an update rate of several hundreds kHz on a conventional laptop. We show that the high temporal resolution of neuromorphic cameras is a key feature for performing accurate pose estimation. Experiments are provided showing the performance of the algorithm on real data, including fast moving objects, occlusions, and cases where the neuromorphic camera and the object are both in motion. PMID:26834547
TH-AB-202-04: Auto-Adaptive Margin Generation for MLC-Tracked Radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glitzner, M; Lagendijk, J; Raaymakers, B
Purpose: To develop an auto-adaptive margin generator for MLC tracking. The generator is able to estimate errors arising in image guided radiotherapy, particularly on an MR-Linac, which depend on the latencies of machine and image processing, as well as on patient motion characteristics. From the estimated error distribution, a segment margin is generated, able to compensate errors up to a user-defined confidence. Method: In every tracking control cycle (TCC, 40ms), the desired aperture D(t) is compared to the actual aperture A(t), a delayed and imperfect representation of D(t). Thus an error e(t)=A(T)-D(T) is measured every TCC. Applying kernel-density-estimation (KDE), themore » cumulative distribution (CDF) of e(t) is estimated. With CDF-confidence limits, upper and lower error limits are extracted for motion axes along and perpendicular leaf-travel direction and applied as margins. To test the dosimetric impact, two representative motion traces were extracted from fast liver-MRI (10Hz). The traces were applied onto a 4D-motion platform and continuously tracked by an Elekta Agility 160 MLC using an artificially imposed tracking delay. Gafchromic film was used to detect dose exposition for static, tracked, and error-compensated tracking cases. The margin generator was parameterized to cover 90% of all tracking errors. Dosimetric impact was rated by calculating the ratio between underexposed points (>5% underdosage) to the total number of points inside FWHM of static exposure. Results: Without imposing adaptive margins, tracking experiments showed a ratio of underexposed points of 17.5% and 14.3% for two motion cases with imaging delays of 200ms and 300ms, respectively. Activating the margin generated yielded total suppression (<1%) of underdosed points. Conclusion: We showed that auto-adaptive error compensation using machine error statistics is possible for MLC tracking. The error compensation margins are calculated on-line, without the need of assuming motion or machine models. Further strategies to reduce consequential overdosages are currently under investigation. This work was funded by the SoRTS consortium, which includes the industry partners Elekta, Philips and Technolution.« less
Qu, Zhiyu; Qu, Fuxin; Hou, Changbo; Jing, Fulong
2018-05-19
In an inverse synthetic aperture radar (ISAR) imaging system for targets with complex motion, the azimuth echo signals of the target are always modeled as multicomponent quadratic frequency modulation (QFM) signals. The chirp rate (CR) and quadratic chirp rate (QCR) estimation of QFM signals is very important to solve the ISAR image defocus problem. For multicomponent QFM (multi-QFM) signals, the conventional QR and QCR estimation algorithms suffer from the cross-term and poor anti-noise ability. This paper proposes a novel estimation algorithm called a two-dimensional product modified parameterized chirp rate-quadratic chirp rate distribution (2D-PMPCRD) for QFM signals parameter estimation. The 2D-PMPCRD employs a multi-scale parametric symmetric self-correlation function and modified nonuniform fast Fourier transform-Fast Fourier transform to transform the signals into the chirp rate-quadratic chirp rate (CR-QCR) domains. It can greatly suppress the cross-terms while strengthening the auto-terms by multiplying different CR-QCR domains with different scale factors. Compared with high order ambiguity function-integrated cubic phase function and modified Lv's distribution, the simulation results verify that the 2D-PMPCRD acquires higher anti-noise performance and obtains better cross-terms suppression performance for multi-QFM signals with reasonable computation cost.
Invariant Tori in the Secular Motions of the Three-body Planetary Systems
NASA Astrophysics Data System (ADS)
Locatelli, Ugo; Giorgilli, Antonio
We consider the problem of the applicability of KAM theorem to a realistic problem of three bodies. In the framework of the averaged dynamics over the fast angles for the Sun-Jupiter-Saturn system we can prove the perpetual stability of the orbit. The proof is based on semi-numerical algorithms requiring both explicit algebraic manipulations of series and analytical estimates. The proof is made rigorous by using interval arithmetics in order to control the numerical errors.
Balance in non-hydrostatic rotating stratified turbulence
NASA Astrophysics Data System (ADS)
McKiver, William J.; Dritschel, David G.
It is now well established that two distinct types of motion occur in geophysical turbulence: slow motions associated with potential vorticity advection and fast oscillations due to inertiamaster variable this is known as balance. In real geophysical flows, deviations from balance in the form of inertiaimbalance|N/f) where optimal potential vorticity balancenonlinear quasi-geostrophic balance’ procedure expands the equations of motion to second order in Rossby number but retains the exact (unexpanded) definition of potential vorticity. This proves crucial for obtaining an accurate estimate of balanced motions. In the analysis of rotating stratified turbulence at Ro1 and N/f1, this procedure captures a significantly greater fraction of the underlying balance than standard (linear) quasi-geostrophic balance (which is based on the linearized equations about a state of rest). Nonlinear quasi-geostrophic balance also compares well with optimal potential vorticity balance, which captures the greatest fraction of the underlying balance overall.More fundamentally, the results of these analyses indicate that balance dominates in carefully initialized simulations of freely decaying rotating stratified turbulence up to O(1) Rossby numbers when N/f1. The fluid motion exhibits important quasi-geostrophic features with, in particular, typical height-to-width scale ratios remaining comparable to f/N.
Kim, Kio; Habas, Piotr A.; Rajagopalan, Vidya; Scott, Julia A.; Corbett-Detig, James M.; Rousseau, Francois; Barkovich, A. James; Glenn, Orit A.; Studholme, Colin
2012-01-01
A common solution to clinical MR imaging in the presence of large anatomical motion is to use fast multi-slice 2D studies to reduce slice acquisition time and provide clinically usable slice data. Recently, techniques have been developed which retrospectively correct large scale 3D motion between individual slices allowing the formation of a geometrically correct 3D volume from the multiple slice stacks. One challenge, however, in the final reconstruction process is the possibility of varying intensity bias in the slice data, typically due to the motion of the anatomy relative to imaging coils. As a result, slices which cover the same region of anatomy at different times may exhibit different sensitivity. This bias field inconsistency can induce artifacts in the final 3D reconstruction that can impact both clinical interpretation of key tissue boundaries and the automated analysis of the data. Here we describe a framework to estimate and correct the bias field inconsistency in each slice collectively across all motion corrupted image slices. Experiments using synthetic and clinical data show that the proposed method reduces intensity variability in tissues and improves the distinction between key tissue types. PMID:21511561
Kim, Kio; Habas, Piotr A; Rajagopalan, Vidya; Scott, Julia A; Corbett-Detig, James M; Rousseau, Francois; Barkovich, A James; Glenn, Orit A; Studholme, Colin
2011-09-01
A common solution to clinical MR imaging in the presence of large anatomical motion is to use fast multislice 2D studies to reduce slice acquisition time and provide clinically usable slice data. Recently, techniques have been developed which retrospectively correct large scale 3D motion between individual slices allowing the formation of a geometrically correct 3D volume from the multiple slice stacks. One challenge, however, in the final reconstruction process is the possibility of varying intensity bias in the slice data, typically due to the motion of the anatomy relative to imaging coils. As a result, slices which cover the same region of anatomy at different times may exhibit different sensitivity. This bias field inconsistency can induce artifacts in the final 3D reconstruction that can impact both clinical interpretation of key tissue boundaries and the automated analysis of the data. Here we describe a framework to estimate and correct the bias field inconsistency in each slice collectively across all motion corrupted image slices. Experiments using synthetic and clinical data show that the proposed method reduces intensity variability in tissues and improves the distinction between key tissue types.
Optical measurement of blood flow in exercising skeletal muscle: a pilot study
NASA Astrophysics Data System (ADS)
Wang, Detian; Baker, Wesley B.; Parthasarathy, Ashwin B.; Zhu, Liguo; Li, Zeren; Yodh, Arjun G.
2017-07-01
Blood flow monitoring during rhythm exercising is very important for sports medicine and muscle dieases. Diffuse correlation spectroscopy(DCS) is a relative new invasive way to monitor blood flow but suffering from muscle fiber motion. In this study we focus on how to remove exercise driven artifacts and obtain accurate estimates of the increase in blood flow from exercise. Using a novel fast software correlator, we measured blood flow in forearm flexor muscles of N=2 healthy adults during handgrip exercise, at a sampling rate of 20 Hz. Combining the blood flow and acceleration data, we resolved the motion artifact in the DCS signal induced by muscle fiber motion, and isolated the blood flow component of the signal from the motion artifact. The results show that muscle fiber motion strongly affects the DCS signal, and if not accounted for, will result in an overestimate of blood flow more than 1000%. Our measurements indicate rapid dilation of arterioles following exercise onset, which enabled blood flow to increase to a plateau of 200% in 10s. The blood flow also rapidly recovered to baseline following exercise in 10s. Finally, preliminary results on the dependence of blood flow from exercise intensity changes will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiyono, Samsul H., E-mail: samsul.wiyono@bmkg.go.id; Indonesia’s Agency for Meteorology Climatology and Geophysics, Jakarta 10610; Nugraha, Andri Dian, E-mail: nugraha@gf.itb.ac.id
2015-04-24
Determining of seismic anisotropy allowed us for understanding the deformation processes that occured in the past and present. In this study, we performed shear wave splitting to characterize seismic anisotropy beneath Sunda-Banda subduction-collision zone. For about 1,610 XKS waveforms from INATEWS-BMKG networks have been analyzed. From its measurements showed that fast polarization direction is consistent with trench-perpendicular orientation but several stations presented different orientation. We also compared between fast polarization direction with absolute plate motion in the no net rotation and hotspot frame. Its result showed that both absolute plate motion frame had strong correlation with fast polarization direction. Strongmore » correlation between the fast polarization direction and the absolute plate motion can be interpreted as the possibility of dominant anisotropy is in the asthenosphere.« less
NASA Technical Reports Server (NTRS)
Cohn, S. E.
1982-01-01
Numerical weather prediction (NWP) is an initial-value problem for a system of nonlinear differential equations, in which initial values are known incompletely and inaccurately. Observational data available at the initial time must therefore be supplemented by data available prior to the initial time, a problem known as meteorological data assimilation. A further complication in NWP is that solutions of the governing equations evolve on two different time scales, a fast one and a slow one, whereas fast scale motions in the atmosphere are not reliably observed. This leads to the so called initialization problem: initial values must be constrained to result in a slowly evolving forecast. The theory of estimation of stochastic dynamic systems provides a natural approach to such problems. For linear stochastic dynamic models, the Kalman-Bucy (KB) sequential filter is the optimal data assimilation method, for linear models, the optimal combined data assimilation-initialization method is a modified version of the KB filter.
Protein Conformational Entropy is Independent of Solvent
NASA Astrophysics Data System (ADS)
Nucci, Nathaniel; Moorman, Veronica; Gledhill, John; Valentine, Kathleen; Wand, A. Joshua
Proteins exhibit most of their conformational entropy in individual bond vector motions on the ps-ns timescale. These motions can be examined through determination of the Lipari-Szabo generalized squared order parameter (O2) using NMR spin relaxation measurements. It is often argued that most protein motions are intimately dependent on the nature of the solvating environment. Here the solvent dependence of the fast protein dynamics is directly assessed. Using the model protein ubiquitin, the order parameters of the backbone and methyl groups are shown to be generally unaffected by up to a six-fold increase in bulk viscosity or by encapsulation in the nanoscale interior of a reverse micelle. In addition, the reverse micelle condition permits direct comparison of protein dynamics to the mobility of the hydration layer; no correlation is observed. The dynamics of aromatic side chains are also assessed and provide an estimate of the length- and timescale of protein motions where solvent dependence is seen. These data demonstrate the solvent independence of conformational entropy, clarifying a long-held misconception in the fundamental behavior of biological macromolecules. Supported by the National Science Foundation.
Localized diffusive motion on two different time scales in solid alkane nanoparticles
NASA Astrophysics Data System (ADS)
Wang, S.-K.; Mamontov, E.; Bai, M.; Hansen, F. Y.; Taub, H.; Copley, J. R. D.; García Sakai, V.; Gasparovic, G.; Jenkins, T.; Tyagi, M.; Herwig, K. W.; Neumann, D. A.; Montfrooij, W.; Volkmann, U. G.
2010-09-01
High-energy-resolution quasielastic neutron scattering on three complementary spectrometers has been used to investigate molecular diffusive motion in solid nano- to bulk-sized particles of the alkane n-C32H66. The crystalline-to-plastic and plastic-to-fluid phase transition temperatures are observed to decrease as the particle size decreases. In all samples, localized molecular diffusive motion in the plastic phase occurs on two different time scales: a "fast" motion corresponding to uniaxial rotation about the long molecular axis; and a "slow" motion attributed to conformational changes of the molecule. Contrary to the conventional interpretation in bulk alkanes, the fast uniaxial rotation begins in the low-temperature crystalline phase.
Hou, Gary Y.; Provost, Jean; Grondin, Julien; Wang, Shutao; Marquet, Fabrice; Bunting, Ethan; Konofagou, Elisa E.
2015-01-01
Harmonic Motion Imaging for Focused Ultrasound (HMIFU) is a recently developed High-Intensity Focused Ultrasound (HIFU) treatment monitoring method. HMIFU utilizes an Amplitude-Modulated (fAM = 25 Hz) HIFU beam to induce a localized focal oscillatory motion, which is simultaneously estimated and imaged by confocally-aligned imaging transducer. HMIFU feasibilities have been previously shown in silico, in vitro, and in vivo in 1-D or 2-D monitoring of HIFU treatment. The objective of this study is to develop and show the feasibility of a novel fast beamforming algorithm for image reconstruction using GPU-based sparse-matrix operation with real-time feedback. In this study, the algorithm was implemented onto a fully integrated, clinically relevant HMIFU system composed of a 93-element HIFU transducer (fcenter = 4.5MHz) and coaxially-aligned 64-element phased array (fcenter = 2.5MHz) for displacement excitation and motion estimation, respectively. A single transmit beam with divergent beam transmit was used while fast beamforming was implemented using a GPU-based delay-and-sum method and a sparse-matrix operation. Axial HMI displacements were then estimated from the RF signals using a 1-D normalized cross-correlation method and streamed to a graphic user interface. The present work developed and implemented a sparse matrix beamforming onto a fully-integrated, clinically relevant system, which can stream displacement images up to 15 Hz using a GPU-based processing, an increase of 100 fold in rate of streaming displacement images compared to conventional CPU-based conventional beamforming and reconstruction processing. The achieved feedback rate is also currently the fastest and only approach that does not require interrupting the HIFU treatment amongst the acoustic radiation force based HIFU imaging techniques. Results in phantom experiments showed reproducible displacement imaging, and monitoring of twenty two in vitro HIFU treatments using the new 2D system showed a consistent average focal displacement decrease of 46.7±14.6% during lesion formation. Complementary focal temperature monitoring also indicated an average rate of displacement increase and decrease with focal temperature at 0.84±1.15 %/ °C, and 2.03± 0.93%/ °C, respectively. These results reinforce the HMIFU capability of estimating and monitoring stiffness related changes in real time. Current ongoing studies include clinical translation of the presented system for monitoring of HIFU treatment for breast and pancreatic tumor applications. PMID:24960528
Reduction of motion artifact in pulse oximetry by smoothed pseudo Wigner-Ville distribution
Yan, Yong-sheng; Poon, Carmen CY; Zhang, Yuan-ting
2005-01-01
Background The pulse oximeter, a medical device capable of measuring blood oxygen saturation (SpO2), has been shown to be a valuable device for monitoring patients in critical conditions. In order to incorporate the technique into a wearable device which can be used in ambulatory settings, the influence of motion artifacts on the estimated SpO2 must be reduced. This study investigates the use of the smoothed psuedo Wigner-Ville distribution (SPWVD) for the reduction of motion artifacts affecting pulse oximetry. Methods The SPWVD approach is compared with two techniques currently used in this field, i.e. the weighted moving average (WMA) and the fast Fourier transform (FFT) approaches. SpO2 and pulse rate were estimated from a photoplethysmographic (PPG) signal recorded when subject is in a resting position as well as in the act of performing four types of motions: horizontal and vertical movements of the hand, and bending and pressing motions of the finger. For each condition, 24 sets of PPG signals collected from 6 subjects, each of 30 seconds, were studied with reference to the PPG signal recorded simultaneously from the subject's other hand, which was stationary at all times. Results and Discussion The SPWVD approach shows significant improvement (p < 0.05), as compared to traditional approaches, when subjects bend their finger or press their finger against the sensor. In addition, the SPWVD approach also reduces the mean absolute pulse rate error significantly (p < 0.05) from 16.4 bpm and 11.2 bpm for the WMA and FFT approaches, respectively, to 5.62 bpm. Conclusion The results suggested that the SPWVD approach could potentially be used to reduce motion artifact on wearable pulse oximeters. PMID:15737241
MUSIC algorithm DoA estimation for cooperative node location in mobile ad hoc networks
NASA Astrophysics Data System (ADS)
Warty, Chirag; Yu, Richard Wai; ElMahgoub, Khaled; Spinsante, Susanna
In recent years the technological development has encouraged several applications based on distributed communications network without any fixed infrastructure. The problem of providing a collaborative early warning system for multiple mobile nodes against a fast moving object. The solution is provided subject to system level constraints: motion of nodes, antenna sensitivity and Doppler effect at 2.4 GHz and 5.8 GHz. This approach consists of three stages. The first phase consists of detecting the incoming object using a highly directive two element antenna at 5.0 GHz band. The second phase consists of broadcasting the warning message using a low directivity broad antenna beam using 2× 2 antenna array which then in third phase will be detected by receiving nodes by using direction of arrival (DOA) estimation technique. The DOA estimation technique is used to estimate the range and bearing of the incoming nodes. The position of fast arriving object can be estimated using the MUSIC algorithm for warning beam DOA estimation. This paper is mainly intended to demonstrate the feasibility of early detection and warning system using a collaborative node to node communication links. The simulation is performed to show the behavior of detecting and broadcasting antennas as well as performance of the detection algorithm. The idea can be further expanded to implement commercial grade detection and warning system
Robust object tacking based on self-adaptive search area
NASA Astrophysics Data System (ADS)
Dong, Taihang; Zhong, Sheng
2018-02-01
Discriminative correlation filter (DCF) based trackers have recently achieved excellent performance with great computational efficiency. However, DCF based trackers suffer boundary effects, which result in the unstable performance in challenging situations exhibiting fast motion. In this paper, we propose a novel method to mitigate this side-effect in DCF based trackers. We change the search area according to the prediction of target motion. When the object moves fast, broad search area could alleviate boundary effects and reserve the probability of locating object. When the object moves slowly, narrow search area could prevent effect of useless background information and improve computational efficiency to attain real-time performance. This strategy can impressively soothe boundary effects in situations exhibiting fast motion and motion blur, and it can be used in almost all DCF based trackers. The experiments on OTB benchmark show that the proposed framework improves the performance compared with the baseline trackers.
Low-Cost 3-D Flow Estimation of Blood With Clutter.
Wei, Siyuan; Yang, Ming; Zhou, Jian; Sampson, Richard; Kripfgans, Oliver D; Fowlkes, J Brian; Wenisch, Thomas F; Chakrabarti, Chaitali
2017-05-01
Volumetric flow rate estimation is an important ultrasound medical imaging modality that is used for diagnosing cardiovascular diseases. Flow rates are obtained by integrating velocity estimates over a cross-sectional plane. Speckle tracking is a promising approach that overcomes the angle dependency of traditional Doppler methods, but suffers from poor lateral resolution. Recent work improves lateral velocity estimation accuracy by reconstructing a synthetic lateral phase (SLP) signal. However, the estimation accuracy of such approaches is compromised by the presence of clutter. Eigen-based clutter filtering has been shown to be effective in removing the clutter signal; but it is computationally expensive, precluding its use at high volume rates. In this paper, we propose low-complexity schemes for both velocity estimation and clutter filtering. We use a two-tiered motion estimation scheme to combine the low complexity sum-of-absolute-difference and SLP methods to achieve subpixel lateral accuracy. We reduce the complexity of eigen-based clutter filtering by processing in subgroups and replacing singular value decomposition with less compute-intensive power iteration and subspace iteration methods. Finally, to improve flow rate estimation accuracy, we use kernel power weighting when integrating the velocity estimates. We evaluate our method for fast- and slow-moving clutter for beam-to-flow angles of 90° and 60° using Field II simulations, demonstrating high estimation accuracy across scenarios. For instance, for a beam-to-flow angle of 90° and fast-moving clutter, our estimation method provides a bias of -8.8% and standard deviation of 3.1% relative to the actual flow rate.
Fast antibody fragment motion: flexible linkers act as entropic spring
Stingaciu, Laura R.; Ivanova, Oxana; Ohl, Michael; Biehl, Ralf; Richter, Dieter
2016-01-01
A flexible linker region between three fragments allows antibodies to adjust their binding sites to an antigen or receptor. Using Neutron Spin Echo Spectroscopy we observed fragment motion on a timescale of 7 ns with motional amplitudes of about 1 nm relative to each other. The mechanistic complexity of the linker region can be described by a spring model with Brownian motion of the fragments in a harmonic potential. Displacements, timescale, friction and force constant of the underlying dynamics are accessed. The force constant exhibits a similar strength to an entropic spring, with friction of the fragment matching the unbound state. The observed fast motions are fluctuations in pre-existing equilibrium configurations. The Brownian motion of domains in a harmonic potential is the appropriate model to examine functional hinge motions dependent on the structural topology and highlights the role of internal forces and friction to function. PMID:27020739
Fast antibody fragment motion: flexible linkers act as entropic spring
Stingaciu, Laura R.; Ivanova, Oxana; Ohl, Michael; ...
2016-03-29
A flexible linker region between three fragments allows antibodies to adjust their binding sites to an antigen or receptor. Using Neutron Spin Echo Spectroscopy we observed fragment motion on a timescale of 7 ns with motional amplitudes of about 1 nm relative to each other. The mechanistic complexity of the linker region can be described by a spring model with Brownian motion of the fragments in a harmonic potential. Displacements, timescale, friction and force constant of the underlying dynamics are accessed. The force constant exhibits a similar strength to an entropic spring, with friction of the fragment matching the unboundmore » state. The observed fast motions are fluctuations in pre-existing equilibrium configurations. In conclusion, the Brownian motion of domains in a harmonic potential is the appropriate model to examine functional hinge motions dependent on the structural topology and highlights the role of internal forces and friction to function.« less
Fast antibody fragment motion: flexible linkers act as entropic spring.
Stingaciu, Laura R; Ivanova, Oxana; Ohl, Michael; Biehl, Ralf; Richter, Dieter
2016-03-29
A flexible linker region between three fragments allows antibodies to adjust their binding sites to an antigen or receptor. Using Neutron Spin Echo Spectroscopy we observed fragment motion on a timescale of 7 ns with motional amplitudes of about 1 nm relative to each other. The mechanistic complexity of the linker region can be described by a spring model with Brownian motion of the fragments in a harmonic potential. Displacements, timescale, friction and force constant of the underlying dynamics are accessed. The force constant exhibits a similar strength to an entropic spring, with friction of the fragment matching the unbound state. The observed fast motions are fluctuations in pre-existing equilibrium configurations. The Brownian motion of domains in a harmonic potential is the appropriate model to examine functional hinge motions dependent on the structural topology and highlights the role of internal forces and friction to function.
Nonrigid registration-based coronary artery motion correction for cardiac computed tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhagalia, Roshni; Pack, Jed D.; Miller, James V.
2012-07-15
Purpose: X-ray computed tomography angiography (CTA) is the modality of choice to noninvasively monitor and diagnose heart disease with coronary artery health and stenosis detection being of particular interest. Reliable, clinically relevant coronary artery imaging mandates high spatiotemporal resolution. However, advances in intrinsic scanner spatial resolution (CT scanners are available which combine nearly 900 detector columns with focal spot oversampling) can be tempered by motion blurring, particularly in patients with unstable heartbeats. As a result, recently numerous methods have been devised to improve coronary CTA imaging. Solutions involving hardware, multisector algorithms, or {beta}-blockers are limited by cost, oversimplifying assumptions aboutmore » cardiac motion, and populations showing contraindications to drugs, respectively. This work introduces an inexpensive algorithmic solution that retrospectively improves the temporal resolution of coronary CTA without significantly affecting spatial resolution. Methods: Given the goal of ruling out coronary stenosis, the method focuses on 'deblurring' the coronary arteries. The approach makes no assumptions about cardiac motion, can be used on exams acquired at high heart rates (even over 75 beats/min), and draws on a fast and accurate three-dimensional (3D) nonrigid bidirectional labeled point matching approach to estimate the trajectories of the coronary arteries during image acquisition. Motion compensation is achieved by employing a 3D warping of a series of partial reconstructions based on the estimated motion fields. Each of these partial reconstructions is created from data acquired over a short time interval. For brevity, the algorithm 'Subphasic Warp and Add' (SWA) reconstruction. Results: The performance of the new motion estimation-compensation approach was evaluated by a systematic observer study conducted using nine human cardiac CTA exams acquired over a range of average heart rates between 68 and 86 beats/min. Algorithm performance was based-lined against exams reconstructed using standard filtered-backprojection (FBP). The study was performed by three experienced reviewers using the American Heart Association's 15-segment model. All vessel segments were evaluated to quantify their viability to allow a clinical diagnosis before and after motion estimation-compensation using SWA. To the best of the authors' knowledge this is the first such observer study to show that an image processing-based software approach can improve the clinical diagnostic value of CTA for coronary artery evaluation. Conclusions: Results from the observer study show that the SWA method described here can dramatically reduce coronary artery motion and preserve real pathology, without affecting spatial resolution. In particular, the method successfully mitigated motion artifacts in 75% of all initially nondiagnostic coronary artery segments, and in over 45% of the cases this improvement was enough to make a previously nondiagnostic vessel segment clinically diagnostic.« less
Effects of motion speed in action representations
van Dam, Wessel O.; Speed, Laura J.; Lai, Vicky T.; Vigliocco, Gabriella; Desai, Rutvik H.
2017-01-01
Grounded cognition accounts of semantic representation posit that brain regions traditionally linked to perception and action play a role in grounding the semantic content of words and sentences. Sensory-motor systems are thought to support partially abstract simulations through which conceptual content is grounded. However, which details of sensory-motor experience are included in, or excluded from these simulations, is not well understood. We investigated whether sensory-motor brain regions are differentially involved depending on the speed of actions described in a sentence. We addressed this issue by examining the neural signature of relatively fast (The old lady scurried across the road) and slow (The old lady strolled across the road) action sentences. The results showed that sentences that implied fast motion modulated activity within the right posterior superior temporal sulcus and the angular and middle occipital gyri, areas associated with biological motion and action perception. Sentences that implied slow motion resulted in greater signal within the right primary motor cortex and anterior inferior parietal lobule, areas associated with action execution and planning. These results suggest that the speed of described motion influences representational content and modulates the nature of conceptual grounding. Fast motion events are represented more visually whereas motor regions play a greater role in representing conceptual content associated with slow motion. PMID:28160739
Vertical-angle control system in the LLMC
NASA Astrophysics Data System (ADS)
Li, Binhua; Yang, Lei; Tie, Qiongxian; Mao, Wei
2000-10-01
A control system of the vertical angle transmission used in the Lower Latitude Meridian Circle (LLMC) is described in this paper. The transmission system can change the zenith distance of the tube quickly and precisely. It works in three modes: fast motion, slow motion and lock mode. The fast motion mode and the slow motion mode are that the tube of the instrument is driven by a fast motion stepper motor and a slow motion one separately. The lock mode is running for lock mechanism that is driven by a lock stepper motor. These three motors are controlled together by a single chip microcontroller, which is controlled in turn by a host personal computer. The slow motion mechanism and its rotational step angle are fully discussed because the mechanism is not used before. Then the hardware structure of this control system based on a microcontroller is described. Control process of the system is introduced during a normal observation, which is divided into eleven steps. All the steps are programmed in our control software in C++ and/or in ASM. The C++ control program is set up in the host PC, while the ASM control program is in the microcontroller system. Structures and functions of these rprograms are presented. Some details and skills for programming are discussed in the paper too.
Beam-induced motion correction for sub-megadalton cryo-EM particles.
Scheres, Sjors Hw
2014-08-13
In electron cryo-microscopy (cryo-EM), the electron beam that is used for imaging also causes the sample to move. This motion blurs the images and limits the resolution attainable by single-particle analysis. In a previous Research article (Bai et al., 2013) we showed that correcting for this motion by processing movies from fast direct-electron detectors allowed structure determination to near-atomic resolution from 35,000 ribosome particles. In this Research advance article, we show that an improved movie processing algorithm is applicable to a much wider range of specimens. The new algorithm estimates straight movement tracks by considering multiple particles that are close to each other in the field of view, and models the fall-off of high-resolution information content by radiation damage in a dose-dependent manner. Application of the new algorithm to four data sets illustrates its potential for significantly improving cryo-EM structures, even for particles that are smaller than 200 kDa. Copyright © 2014, Scheres.
Study of the effect of sawteeth on fast ions and neutron emission in MAST using a neutron camera
NASA Astrophysics Data System (ADS)
Cecconello, M.; Sperduti, A.; the MAST team
2018-05-01
The effect of the sawtooth instability on the confinement of fast ions on MAST, and the impact it has on the neutron emission, has been studied in detail using the TRANSP/NUBEAM codes coupled to a full orbit following code. The sawtooth models in TRANSP/NUBEAM indicate that, on MAST, passing and trapped fast ions are redistributed in approximately equal number and on a level that is consistent with the observations. It has not been possible to discriminate between the different sawtooth models since their predictions are all compatible with the neutron camera observations. Full orbit calculations of the fast ion motion have been used to estimate the characteristic time scales and energy thresholds that according to theoretical predictions govern the fast ions redistribution: no energy threshold for the redistribution for either passing and trapped fast ions was found. The characteristic times have, however, frequencies that are comparable with the frequencies of a m = 1, n = 1 perturbation and its harmonics with toroidal mode numbers n=2, \\ldots , 4, suggesting that on spherical tokamaks, in addition to the classical sawtooth-induced transport mechanisms of fast ions by attachment to the evolving perturbation and the associated E × B drift, a resonance mechanism between the m = 1 perturbation and the fast ions orbits might be at play.
Plasma equilibrium with fast ion orbit width, pressure anisotropy, and toroidal flow effects
Gorelenkov, Nikolai N.; Zakharov, Leonid E.
2018-04-27
Here, we formulate the problem of tokamak plasma equilibrium including the toroidal flow and fast ion (or energetic particle, EP) pressure anisotropy and the finite drift orbit width (FOW) effects. The problem is formulated via the standard Grad-Shafranov equation (GShE) amended by the solvability condition which imposes physical constraints on allowed spacial dependencies of the anisotropic pressure. The GShE problem employs the pressure coupling scheme and includes the dominant diagonal terms and non-diagonal corrections to the standard pressure tensor. The anisotropic tensor elements are obtained via the distribution function represented in the factorized form via the constants of motion. Consideredmore » effects on the plasma equilibrium are estimated analytically, if possible, to understand their importance for GShE tokamak plasma problem.« less
Plasma equilibrium with fast ion orbit width, pressure anisotropy, and toroidal flow effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorelenkov, Nikolai N.; Zakharov, Leonid E.
Here, we formulate the problem of tokamak plasma equilibrium including the toroidal flow and fast ion (or energetic particle, EP) pressure anisotropy and the finite drift orbit width (FOW) effects. The problem is formulated via the standard Grad-Shafranov equation (GShE) amended by the solvability condition which imposes physical constraints on allowed spacial dependencies of the anisotropic pressure. The GShE problem employs the pressure coupling scheme and includes the dominant diagonal terms and non-diagonal corrections to the standard pressure tensor. The anisotropic tensor elements are obtained via the distribution function represented in the factorized form via the constants of motion. Consideredmore » effects on the plasma equilibrium are estimated analytically, if possible, to understand their importance for GShE tokamak plasma problem.« less
Motion streaks do not influence the perceived position of stationary flashed objects.
Pavan, Andrea; Bellacosa Marotti, Rosilari
2012-01-01
In the present study, we investigated whether motion streaks, produced by fast moving dots Geisler 1999, distort the positional map of stationary flashed objects producing the well-known motion-induced position shift illusion (MIPS). The illusion relies on motion-processing mechanisms that induce local distortions in the positional map of the stimulus which is derived by shape-processing mechanisms. To measure the MIPS, two horizontally offset Gaussian blobs, placed above and below a central fixation point, were flashed over two fields of dots moving in opposite directions. Subjects judged the position of the top Gaussian blob relative to the bottom one. The results showed that neither fast (motion streaks) nor slow moving dots influenced the perceived spatial position of the stationary flashed objects, suggesting that background motion does not interact with the shape-processing mechanisms involved in MIPS.
NASA Astrophysics Data System (ADS)
Zhou, Q.; Tong, X.; Liu, S.; Lu, X.; Liu, S.; Chen, P.; Jin, Y.; Xie, H.
2017-07-01
Visual Odometry (VO) is a critical component for planetary robot navigation and safety. It estimates the ego-motion using stereo images frame by frame. Feature points extraction and matching is one of the key steps for robotic motion estimation which largely influences the precision and robustness. In this work, we choose the Oriented FAST and Rotated BRIEF (ORB) features by considering both accuracy and speed issues. For more robustness in challenging environment e.g., rough terrain or planetary surface, this paper presents a robust outliers elimination method based on Euclidean Distance Constraint (EDC) and Random Sample Consensus (RANSAC) algorithm. In the matching process, a set of ORB feature points are extracted from the current left and right synchronous images and the Brute Force (BF) matcher is used to find the correspondences between the two images for the Space Intersection. Then the EDC and RANSAC algorithms are carried out to eliminate mismatches whose distances are beyond a predefined threshold. Similarly, when the left image of the next time matches the feature points with the current left images, the EDC and RANSAC are iteratively performed. After the above mentioned, there are exceptional remaining mismatched points in some cases, for which the third time RANSAC is applied to eliminate the effects of those outliers in the estimation of the ego-motion parameters (Interior Orientation and Exterior Orientation). The proposed approach has been tested on a real-world vehicle dataset and the result benefits from its high robustness.
Measurement of angular velocity in the perception of rotation.
Barraza, José F; Grzywacz, Norberto M
2002-09-01
Humans are sensitive to the parameters of translational motion, namely, direction and speed. At the same time, people have special mechanisms to deal with more complex motions, such as rotations and expansions. One wonders whether people may also be sensitive to the parameters of these complex motions. Here, we report on a series of experiments that explore whether human subjects can use angular velocity to evaluate how fast a rotational motion is. In four experiments, subjects were required to perform a task of speed-of-rotation discrimination by comparing two annuli of different radii in a temporal 2AFC paradigm. Results showed that humans could rely on a sensitive measurement of angular velocity to perform this discrimination task. This was especially true when the quality of the rotational signal was high (given by the number of dots composing the annulus). When the signal quality decreased, a bias towards linear velocity of 5-80% appeared, suggesting the existence of separate mechanisms for angular and linear velocity. This bias was independent from the reference radius. Finally, we asked whether the measurement of angular velocity required a rigid rotation, that is, whether the visual system makes only one global estimate of angular velocity. For this purpose, a random-dot disk was built such that all the dots were rotating with the same tangential speed, irrespectively of radius. Results showed that subjects do not estimate a unique global angular velocity, but that they perceive a non-rigid disk, with angular velocity falling inversely proportionally with radius.
A head motion estimation algorithm for motion artifact correction in dental CT imaging
NASA Astrophysics Data System (ADS)
Hernandez, Daniel; Elsayed Eldib, Mohamed; Hegazy, Mohamed A. A.; Hye Cho, Myung; Cho, Min Hyoung; Lee, Soo Yeol
2018-03-01
A small head motion of the patient can compromise the image quality in a dental CT, in which a slow cone-beam scan is adopted. We introduce a retrospective head motion estimation method by which we can estimate the motion waveform from the projection images without employing any external motion monitoring devices. We compute the cross-correlation between every two successive projection images, which results in a sinusoid-like displacement curve over the projection view when there is no patient motion. However, the displacement curve deviates from the sinusoid-like form when patient motion occurs. We develop a method to estimate the motion waveform with a single parameter derived from the displacement curve with aid of image entropy minimization. To verify the motion estimation method, we use a lab-built micro-CT that can emulate major head motions during dental CT scans, such as tilting and nodding, in a controlled way. We find that the estimated motion waveform conforms well to the actual motion waveform. To further verify the motion estimation method, we correct the motion artifacts with the estimated motion waveform. After motion artifact correction, the corrected images look almost identical to the reference images, with structural similarity index values greater than 0.81 in the phantom and rat imaging studies.
Nanoscopic dynamics in hybrid hydroxyapatite-CTAB composite
NASA Astrophysics Data System (ADS)
Dubey, P. S.; Sharma, V. K.; Mitra, S.; Verma, G.; Hassan, P. A.; Dutta, B.; Johnson, M.; Mukhopadhyay, R.
2017-06-01
Synthetic hydroxyapatite (HAp) is an important material in biomedical engineering due to its excellent biocompatibility and bioactivity. HAp nanoparticles were synthesized by the co-precipitation method using cetyltrimethylammonium bromide (CTAB) micelles as a template and are characterized using x-ray diffraction, electron microscopy, and thermal gravimetric measurements. Transmission electron microscope (TEM) demonstrates the formation of rod-shaped HAp. Dynamics of CTAB in HAp-CTAB composite as studied by using quasielastic neutron scattering (QENS) technique is reported here. HAp-CTAB composite provides an ideal system for studying the dynamics of CTAB micelles without any aqueous media. QENS data indicate that the observed dynamics are reminiscent of localized motions in ionic micellar systems, consisting of segmental and fast torsional motions. Segmental dynamics has been described with a model, in which hydrogen atoms in the alkyl chain undergoes localized translation diffusion and the CH3 unit associated with the head group undergo 3-fold jump rotation. Within this model, the hydrogen atoms in the alkyl chain undergo diffusion within spherical domains having different radii and diffusivities. A simple linear distribution of the radius and diffusivity has been assumed, in which the CH2 unit nearest to the head group has the least value and the ones furthest from the head group, that is, at the end of the alkyl chain has the largest value. The fast torsional motion is described by a 2-fold jump rotation model. Quantitative estimate of the different parameters characterizing various dynamical motions active within the time scale of the instrument is also presented. We have provided a detailed description of the observed dynamical features in hybrid HAp-CTAB composite, a potential candidate for biomedical applications.
Fast Effects of Efferent Stimulation on Basilar Membrane Motion
NASA Astrophysics Data System (ADS)
Guinan, J. J.; Cooper, N. P.
2003-02-01
To aid in understanding the mechanisms by which medial olivocochlear efferents produce their effects, we measured basilar membrane (BM) motion in response to tones in the basal turn of guinea pigs, with and without electrical stimulation of efferents, using a paradigm that selected only efferent fast effects. As previously reported, efferents produced (1) a reduction in BM motion for low-level tones near the charactristic frequency (CF), (2) an enhancement of BM motion for high-level tones above-CF, and (3) at most small effects for tones an octave or more below CF. In addition, we found consistent changes in BM phase: (1) a phase lead at CF increasing to about 45 degrees above CF, and (2) below CF, small phase lags at low levels, sometimes becoming phase leads at high levels. We hypothesize that the efferent enhancement of BM motion is due to the reduction of one of two out-of-phase components of BM motion.
Further SEASAT SAR coastal ocean wave analysis
NASA Technical Reports Server (NTRS)
Kasischke, E. S.; Shuchman, R. A.; Meadows, G. A.; Jackson, P. L.; Tseng, Y.
1981-01-01
Analysis techniques used to exploit SEASAT synthetic aperture radar (SAR) data of gravity waves are discussed and the SEASAT SAR's ability to monitor large scale variations in gravity wave fields in both deep and shallow water is evaluated. The SAR analysis techniques investigated included motion compensation adjustments and the semicausal model for spectral analysis of SAR wave data. It was determined that spectra generated from fast Fourier transform analysis (FFT) of SAR wave data were not significantly altered when either range telerotation adjustments or azimuth focus shifts were used during processing of the SAR signal histories, indicating that SEASAT imagery of gravity waves is not significantly improved or degraded by motion compensation adjustments. Evaluation of the semicausal (SC) model using SEASAT SAR data from Rev. 974 indicates that the SC spectral estimates were not significantly better than the FFT results.
Using Tectonic Tremor to Constrain Seismic-wave Attenuation in Cascadia
NASA Astrophysics Data System (ADS)
Littel, G.; Thomas, A.; Baltay, A.
2017-12-01
In addition to fast, seismic slip, many subduction zones also host slow, largely aseismic slip, accompanied by a weak seismic signal known as tectonic tremor. Tremor is a small amplitude, low-frequency seismic signal that originates at the plate interface, down-dip of where large earthquakes typically occur. The Cascadia subduction zone has not seen a large megathrust earthquake since 1700, yet its recurrence interval of 350-500 years motivates heightened interest in understanding the seismic hazard of the region. Of great importance is to understand the degree to which waves are attenuated as they leave the plate interface and travel towards populated regions of interest. Ground motion prediction equations (GMPEs) relate ground motion to a number of parameters, including earthquake magnitude, depth, style of faulting, and anelastic attenuation, and are typically determined empirically from earthquake ground motion recordings. In Cascadia, however, earthquakes of the moderate size typically used to constrain GMPEs occur relatively infrequently compared to tectonic tremor events, which, in contrast, occur periodically approximately every 10-19 months. Studies have shown that the abundant tectonic tremor in Cascadia, despite its small amplitudes, can be used to constrain seismic wave attenuation in GMPEs. Here we quantify seismic wave attenuation and determine its spatial variations in Cascadia by performing an inversion using tremor ground motion amplitudes, taken as peak ground acceleration (PGA) and peak ground velocity (PGV) from 1 min window waveforms of each individual tremor event. We estimate the anelastic attenuation parameter for varying regional sections along the Cascadia margin. Changes in seismic-wave attenuation along the Cascadia Subduction Zone could result in significantly different ground motions in the event of a very large earthquake, hence quantifying attenuation may help to better estimate the severity of shaking in densely populated metropolitan areas such as Vancouver, Seattle and Portland.
An algorithm of adaptive scale object tracking in occlusion
NASA Astrophysics Data System (ADS)
Zhao, Congmei
2017-05-01
Although the correlation filter-based trackers achieve the competitive results both on accuracy and robustness, there are still some problems in handling scale variations, object occlusion, fast motions and so on. In this paper, a multi-scale kernel correlation filter algorithm based on random fern detector was proposed. The tracking task was decomposed into the target scale estimation and the translation estimation. At the same time, the Color Names features and HOG features were fused in response level to further improve the overall tracking performance of the algorithm. In addition, an online random fern classifier was trained to re-obtain the target after the target was lost. By comparing with some algorithms such as KCF, DSST, TLD, MIL, CT and CSK, experimental results show that the proposed approach could estimate the object state accurately and handle the object occlusion effectively.
Kontaxis, C; Bol, G H; Stemkens, B; Glitzner, M; Prins, F M; Kerkmeijer, L G W; Lagendijk, J J W; Raaymakers, B W
2017-08-21
The hybrid MRI-radiotherapy machines, like the MR-linac (Elekta AB, Stockholm, Sweden) installed at the UMC Utrecht (Utrecht, The Netherlands), will be able to provide real-time patient imaging during treatment. In order to take advantage of the system's capabilities and enable online adaptive treatments, a new generation of software should be developed, ranging from motion estimation to treatment plan adaptation. In this work we present a proof of principle adaptive pipeline designed for high precision stereotactic body radiation therapy (SBRT) suitable for sites affected by respiratory motion, like renal cell carcinoma (RCC). We utilized our research MRL treatment planning system (MRLTP) to simulate a single fraction 25 Gy free-breathing SBRT treatment for RCC by performing inter-beam replanning for two patients and one volunteer. The simulated pipeline included a combination of (pre-beam) 4D-MRI and (online) 2D cine-MR acquisitions. The 4DMRI was used to generate the mid-position reference volume, while the cine-MRI, via an in-house motion model, provided three-dimensional (3D) deformable vector fields (DVFs) describing the anatomical changes during treatment. During the treatment fraction, at an inter-beam interval, the mid-position volume of the patient was updated and the delivered dose was accurately reconstructed on the underlying motion calculated by the model. Fast online replanning, targeting the latest anatomy and incorporating the previously delivered dose was then simulated with MRLTP. The adaptive treatment was compared to a conventional mid-position SBRT plan with a 3 mm planning target volume margin reconstructed on the same motion trace. We demonstrate that our system produced tighter dose distributions and thus spared the healthy tissue, while delivering more dose to the target. The pipeline was able to account for baseline variations/drifts that occurred during treatment ensuring target coverage at the end of the treatment fraction.
NASA Astrophysics Data System (ADS)
Kontaxis, C.; Bol, G. H.; Stemkens, B.; Glitzner, M.; Prins, F. M.; Kerkmeijer, L. G. W.; Lagendijk, J. J. W.; Raaymakers, B. W.
2017-09-01
The hybrid MRI-radiotherapy machines, like the MR-linac (Elekta AB, Stockholm, Sweden) installed at the UMC Utrecht (Utrecht, The Netherlands), will be able to provide real-time patient imaging during treatment. In order to take advantage of the system’s capabilities and enable online adaptive treatments, a new generation of software should be developed, ranging from motion estimation to treatment plan adaptation. In this work we present a proof of principle adaptive pipeline designed for high precision stereotactic body radiation therapy (SBRT) suitable for sites affected by respiratory motion, like renal cell carcinoma (RCC). We utilized our research MRL treatment planning system (MRLTP) to simulate a single fraction 25 Gy free-breathing SBRT treatment for RCC by performing inter-beam replanning for two patients and one volunteer. The simulated pipeline included a combination of (pre-beam) 4D-MRI and (online) 2D cine-MR acquisitions. The 4DMRI was used to generate the mid-position reference volume, while the cine-MRI, via an in-house motion model, provided three-dimensional (3D) deformable vector fields (DVFs) describing the anatomical changes during treatment. During the treatment fraction, at an inter-beam interval, the mid-position volume of the patient was updated and the delivered dose was accurately reconstructed on the underlying motion calculated by the model. Fast online replanning, targeting the latest anatomy and incorporating the previously delivered dose was then simulated with MRLTP. The adaptive treatment was compared to a conventional mid-position SBRT plan with a 3 mm planning target volume margin reconstructed on the same motion trace. We demonstrate that our system produced tighter dose distributions and thus spared the healthy tissue, while delivering more dose to the target. The pipeline was able to account for baseline variations/drifts that occurred during treatment ensuring target coverage at the end of the treatment fraction.
Smith predictor-based robot control for ultrasound-guided teleoperated beating-heart surgery.
Bowthorpe, Meaghan; Tavakoli, Mahdi; Becher, Harald; Howe, Robert
2014-01-01
Performing surgery on fast-moving heart structures while the heart is freely beating is next to impossible. Nevertheless, the ability to do this would greatly benefit patients. By controlling a teleoperated robot to continuously follow the heart's motion, the heart can be made to appear stationary. The surgeon will then be able to operate on a seemingly stationary heart when in reality it is freely beating. The heart's motion is measured from ultrasound images and thus involves a non-negligible delay due to image acquisition and processing, estimated to be 150 ms that, if not compensated for, can cause the teleoperated robot's end-effector (i.e., the surgical tool) to collide with and puncture the heart. This research proposes the use of a Smith predictor to compensate for this time delay in calculating the reference position for the teleoperated robot. The results suggest that heart motion tracking is improved as the introduction of the Smith predictor significantly decreases the mean absolute error, which is the error in making the distance between the robot's end-effector and the heart follow the surgeon's motion, and the mean integrated square error.
Faber, G S; Chang, C C; Kingma, I; Dennerlein, J T; van Dieën, J H
2016-04-11
Inertial motion capture (IMC) systems have become increasingly popular for ambulatory movement analysis. However, few studies have attempted to use these measurement techniques to estimate kinetic variables, such as joint moments and ground reaction forces (GRFs). Therefore, we investigated the performance of a full-body ambulatory IMC system in estimating 3D L5/S1 moments and GRFs during symmetric, asymmetric and fast trunk bending, performed by nine male participants. Using an ambulatory IMC system (Xsens/MVN), L5/S1 moments were estimated based on the upper-body segment kinematics using a top-down inverse dynamics analysis, and GRFs were estimated based on full-body segment accelerations. As a reference, a laboratory measurement system was utilized: GRFs were measured with Kistler force plates (FPs), and L5/S1 moments were calculated using a bottom-up inverse dynamics model based on FP data and lower-body kinematics measured with an optical motion capture system (OMC). Correspondence between the OMC+FP and IMC systems was quantified by calculating root-mean-square errors (RMSerrors) of moment/force time series and the interclass correlation (ICC) of the absolute peak moments/forces. Averaged over subjects, L5/S1 moment RMSerrors remained below 10Nm (about 5% of the peak extension moment) and 3D GRF RMSerrors remained below 20N (about 2% of the peak vertical force). ICCs were high for the peak L5/S1 extension moment (0.971) and vertical GRF (0.998). Due to lower amplitudes, smaller ICCs were found for the peak asymmetric L5/S1 moments (0.690-0.781) and horizontal GRFs (0.559-0.948). In conclusion, close correspondence was found between the ambulatory IMC-based and laboratory-based estimates of back load. Copyright © 2015 Elsevier Ltd. All rights reserved.
Non-Orthogonality of Seafloor Spreading: A New Look at Fast Spreading Centers
NASA Astrophysics Data System (ADS)
Zhang, T.; Gordon, R. G.
2015-12-01
Most of Earth's surface is created by seafloor spreading. While most seafloor spreading is orthogonal, that is, the strike of mid-ocean ridge segments is perpendicular to nearby transform faults, examples of significant non-orthogonality have been noted since the 1970s, in particular in regions of slow seafloor spreading such as the western Gulf of Aden with non-orthogonality up to 45°. In contrast, here we focus on fast and ultra-fast seafloor spreading along the East Pacific Rise. To estimate non-orthogonality, we compare ridge-segment strikes with the direction of plate motion determined from the angular velocity that best fits all the data along the boundary of a single plate pair [DeMets et al., 2010]. The advantages of this approach include greater accuracy and the ability to estimate non-orthogonality where there are no nearby transform faults. Estimating the strikes of fast-spreading mid-ocean ridge segments present several challenges as non-transform offsets on various scales affect the estimate of the strike. While spreading is orthogonal or nearly orthogonal along much of the East Pacific Rise, some ridge segments along the Pacific-Nazca boundary near 30°S and near 16°S-22°S deviate from orthogonality by as much as 6°-12° even when we exclude the portions of mid-ocean ridge segments involved in overlapping spreading centers. Thus modest but significant non-orthogonality occurs where seafloor spreading is the fastest on the planet. If a plume lies near the ridge segment, we assume it contributes to magma overpressure along the ridge segment [Abelson & Agnon, 1997]. We further assume that the contribution to magma overpressure is proportional to the buoyancy flux of the plume [Sleep, 1990] and inversely proportional to the distance between the mid-ocean ridge segment and a given plume. We find that the non-orthogonal angle tends to decrease with increasing spreading rate and with increasing distance between ridge segment and plume.
Propulsion of a fin whale (Balaenoptera physalus): why the fin whale is a fast swimmer.
Bose, N; Lien, J
1989-07-22
Measurements of an immature fin whale (Balaenoptera physalus), which died as a result of entrapment in fishing gear near Frenchmans Cove, Newfoundland (47 degrees 9' N, 55 degrees 25' W), were made to obtain estimates of volume and surface area of the animal. Detailed measurements of the flukes, both planform and sections, were also obtained. A strip theory was developed to calculate the hydrodynamic performance of the whale's flukes as an oscillating propeller. This method is based on linear, two-dimensional, small-amplitude, unsteady hydrofoil theory with correction factors used to account for the effects of finite span and finite amplitude motion. These correction factors were developed from theoretical results of large-amplitude heaving motion and unsteady lifting-surface theory. A model that makes an estimate of the effects of viscous flow on propeller performance was superimposed on the potential-flow results. This model estimates the drag of the hydrofoil sections by assuming that the drag is similar to that of a hydrofoil section in steady flow. The performance characteristics of the flukes of the fin whale were estimated by using this method. The effects of the different correction factors, and of the frictional drag of the fluke sections, are emphasized. Frictional effects in particular were found to reduce the hydrodynamic efficiency of the flukes significantly. The results are discussed and compared with the known characteristics of fin-whale swimming.
Miyajima, Saori; Tanaka, Takayuki; Imamura, Yumeko; Kusaka, Takashi
2015-01-01
We estimate lumbar torque based on motion measurement using only three inertial sensors. First, human motion is measured by a 6-axis motion tracking device that combines a 3-axis accelerometer and a 3-axis gyroscope placed on the shank, thigh, and back. Next, the lumbar joint torque during the motion is estimated by kinematic musculoskeletal simulation. The conventional method for estimating joint torque uses full body motion data measured by an optical motion capture system. However, in this research, joint torque is estimated by using only three link angles of the body, thigh, and shank. The utility of our method was verified by experiments. We measured motion of bendung knee and waist simultaneously. As the result, we were able to estimate the lumbar joint torque from measured motion.
SIR-B ocean-wave enhancement with fast Fourier transform techniques
NASA Technical Reports Server (NTRS)
Tilley, David G.
1987-01-01
Shuttle Imaging Radar (SIR-B) imagery is Fourier filtered to remove the estimated system-transfer function, reduce speckle noise, and produce ocean scenes with a gray scale that is proportional to wave height. The SIR-B system response to speckled scenes of uniform surfaces yields an estimate of the stationary wavenumber response of the imaging radar, modeled by the 15 even terms of an eighth-order two-dimensional polynomial. Speckle can also be used to estimate the dynamic wavenumber response of the system due to surface motion during the aperture synthesis period, modeled with a single adaptive parameter describing an exponential correlation along track. A Fourier filter can then be devised to correct for the wavenumber response of the remote sensor and scene correlation, with subsequent subtraction of an estimate of the speckle noise component. A linearized velocity bunching model, combined with a surface tilt and hydrodynamic model, is incorporated in the Fourier filter to derive estimates of wave height from the radar intensities corresponding to individual picture elements.
Jing, Fulong; Jiao, Shuhong; Hou, Changbo; Si, Weijian; Wang, Yu
2017-06-21
For targets with complex motion, such as ships fluctuating with oceanic waves and high maneuvering airplanes, azimuth echo signals can be modeled as multicomponent quadratic frequency modulation (QFM) signals after migration compensation and phase adjustment. For the QFM signal model, the chirp rate (CR) and the quadratic chirp rate (QCR) are two important physical quantities, which need to be estimated. For multicomponent QFM signals, the cross terms create a challenge for detection, which needs to be addressed. In this paper, by employing a novel multi-scale parametric symmetric self-correlation function (PSSF) and modified scaled Fourier transform (mSFT), an effective parameter estimation algorithm is proposed-referred to as the Two-Dimensional product modified Lv's distribution (2D-PMLVD)-for QFM signals. The 2D-PMLVD is simple and can be easily implemented by using fast Fourier transform (FFT) and complex multiplication. These measures are analyzed in the paper, including the principle, the cross term, anti-noise performance, and computational complexity. Compared to the other three representative methods, the 2D-PMLVD can achieve better anti-noise performance. The 2D-PMLVD, which is free of searching and has no identifiability problems, is more suitable for multicomponent situations. Through several simulations and analyses, the effectiveness of the proposed estimation algorithm is verified.
Linearized motion estimation for articulated planes.
Datta, Ankur; Sheikh, Yaser; Kanade, Takeo
2011-04-01
In this paper, we describe the explicit application of articulation constraints for estimating the motion of a system of articulated planes. We relate articulations to the relative homography between planes and show that these articulations translate into linearized equality constraints on a linear least-squares system, which can be solved efficiently using a Karush-Kuhn-Tucker system. The articulation constraints can be applied for both gradient-based and feature-based motion estimation algorithms and to illustrate this, we describe a gradient-based motion estimation algorithm for an affine camera and a feature-based motion estimation algorithm for a projective camera that explicitly enforces articulation constraints. We show that explicit application of articulation constraints leads to numerically stable estimates of motion. The simultaneous computation of motion estimates for all of the articulated planes in a scene allows us to handle scene areas where there is limited texture information and areas that leave the field of view. Our results demonstrate the wide applicability of the algorithm in a variety of challenging real-world cases such as human body tracking, motion estimation of rigid, piecewise planar scenes, and motion estimation of triangulated meshes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, C; Jiang, R; Chow, J
2015-06-15
Purpose: We developed a method to predict the change of DVH for PTV due to interfraction organ motion in prostate VMAT without repeating the CT scan and treatment planning. The method is based on a pre-calculated patient database with DVH curves of PTV modelled by the Gaussian error function (GEF). Methods: For a group of 30 patients with different prostate sizes, their VMAT plans were recalculated by shifting their PTVs 1 cm with 10 increments in the anterior-posterior, left-right and superior-inferior directions. The DVH curve of PTV in each replan was then fitted by the GEF to determine parameters describingmore » the shape of curve. Information of parameters, varying with the DVH change due to prostate motion for different prostate sizes, was analyzed and stored in a database of a program written by MATLAB. Results: To predict a new DVH for PTV due to prostate interfraction motion, prostate size and shift distance with direction were input to the program. Parameters modelling the DVH for PTV were determined based on the pre-calculated patient dataset. From the new parameters, DVH curves of PTVs with and without considering the prostate motion were plotted for comparison. The program was verified with different prostate cases involving interfraction prostate shifts and replans. Conclusion: Variation of DVH for PTV in prostate VMAT can be predicted using a pre-calculated patient database with DVH curve fitting. The computing time is fast because CT rescan and replan are not required. This quick DVH estimation can help radiation staff to determine if the changed PTV coverage due to prostate shift is tolerable in the treatment. However, it should be noted that the program can only consider prostate interfraction motions along three axes, and is restricted to prostate VMAT plan using the same plan script in the treatment planning system.« less
Crowell, Brendan; Schmidt, David; Bodin, Paul; Vidale, John; Gomberg, Joan S.; Hartog, Renate; Kress, Victor; Melbourne, Tim; Santillian, Marcelo; Minson, Sarah E.; Jamison, Dylan
2016-01-01
A prototype earthquake early warning (EEW) system is currently in development in the Pacific Northwest. We have taken a two‐stage approach to EEW: (1) detection and initial characterization using strong‐motion data with the Earthquake Alarm Systems (ElarmS) seismic early warning package and (2) the triggering of geodetic modeling modules using Global Navigation Satellite Systems data that help provide robust estimates of large‐magnitude earthquakes. In this article we demonstrate the performance of the latter, the Geodetic First Approximation of Size and Time (G‐FAST) geodetic early warning system, using simulated displacements for the 2001Mw 6.8 Nisqually earthquake. We test the timing and performance of the two G‐FAST source characterization modules, peak ground displacement scaling, and Centroid Moment Tensor‐driven finite‐fault‐slip modeling under ideal, latent, noisy, and incomplete data conditions. We show good agreement between source parameters computed by G‐FAST with previously published and postprocessed seismic and geodetic results for all test cases and modeling modules, and we discuss the challenges with integration into the U.S. Geological Survey’s ShakeAlert EEW system.
Tiny Pores Observed by New Solar Telescope and Hinode
NASA Astrophysics Data System (ADS)
Cho, KyungSuk; Bong, S.; Chae, J.; Kim, Y.; Park, Y.; Ahn, K.; Katsukawa, Y.
2011-05-01
Seoul National University and Korea Astronomy and Space Science Institute installed Fast Imaging Solar Spectrograph (FISS) in the Cude room of the 1.6 m New Solar Telescope (NST) at Big Bear Solar Observatory on May 14, 2010. FISS is a unique system that can do imaging of H-alpha and Ca II 8542 band simultaneously, which is quite suitable for studying of dynamics of chromosphere. To investigate the relationship between the photospheric and low-chromospheric motions at the pore region, we took a coordinate observation with NST/FISS and Hinode/SOT for new emerging active region (AR11117) on October 26, 2010. In the observed region, we could find two tiny pores and two small magnetic concentrations (SMCs), which have similar magnetic flux with the pores but do not look dark. Magnetic flux density and Doppler velocities at the photosphere are estimated by applying the center-of-gravity (COG) method to the HINODE/spectropolarimeter (SP) data. The line-of-sight motions above the photosphere are determined by adopting the bisector method to the wing spectra of Ha and CaII 8542 lines. As results, we found the followings. (1)There are upflow motion on the pores and downflow motion on the SMCs. (2)Towards the CaII 8542 line center, upflow motion decrease and turn to downward motion in pores, while the speed of down flow motion increases in the SMCs. (3)There is oscillating motion above pores and the SMCs, and this motion keep its pattern along the height. (4) As height increase, there is a general tendency of the speed shift to downward on pores and the SMCs. In this poster, we will present preliminary understanding of the coupling of pore dynamics between the photosphere and the low-chromosphere.
NASA Astrophysics Data System (ADS)
Håkansson, Pär; Westlund, Per-Olof
2005-01-01
This paper discusses the process of energy migration transfer within reorientating chromophores using the stochastic master equation (SME) and the stochastic Liouville equation (SLE) of motion. We have found that the SME over-estimates the rate of the energy migration compared to the SLE solution for a case of weakly interacting chromophores. This discrepancy between SME and SLE is caused by a memory effect occurring when fluctuations in the dipole-dipole Hamiltonian ( H( t)) are on the same timescale as the intrinsic fast transverse relaxation rate characterized by (1/ T2). Thus the timescale critical for energy-transfer experiments is T2≈10 -13 s. An extended SME is constructed, accounting for the memory effect of the dipole-dipole Hamiltonian dynamics. The influence of memory on the interpretation of experiments is discussed.
Radio and white-light observations of coronal transients
NASA Technical Reports Server (NTRS)
Dulk, G. A.
1980-01-01
Optical, radio and X-ray evidence of violent mass motions in the corona has existed for some years but only recently have the form, nature, frequency and implication of the transients become obvious. In this paper the observed properties of coronal transients are reviewed, with concentration on the white-light and radio manifestations. The classification according to speeds seems to be meaningful, with the slow transients having thermal emissions at radio wavelengths and the fast ones nonthermal. The possible mechanisms involved in the radio bursts are then discussed and estimates of various forms of energy are reviewed. It appears that the magnetic energy transported from the sun by the transient exceeds that of any other form, and that magnetic forces dominate in the dynamics of the motions. The conversion of magnetic energy into mechanical energy, by expansion of the field, provides a possible driving force for the coronal and interplanetary shock waves.
NASA Astrophysics Data System (ADS)
Murillo, Sergio; Pattichis, Marios; Soliz, Peter; Barriga, Simon; Loizou, C. P.; Pattichis, C. S.
2010-03-01
Motion estimation from digital video is an ill-posed problem that requires a regularization approach. Regularization introduces a smoothness constraint that can reduce the resolution of the velocity estimates. The problem is further complicated for ultrasound videos (US), where speckle noise levels can be significant. Motion estimation using optical flow models requires the modification of several parameters to satisfy the optical flow constraint as well as the level of imposed smoothness. Furthermore, except in simulations or mostly unrealistic cases, there is no ground truth to use for validating the velocity estimates. This problem is present in all real video sequences that are used as input to motion estimation algorithms. It is also an open problem in biomedical applications like motion analysis of US of carotid artery (CA) plaques. In this paper, we study the problem of obtaining reliable ultrasound video motion estimates for atherosclerotic plaques for use in clinical diagnosis. A global optimization framework for motion parameter optimization is presented. This framework uses actual carotid artery motions to provide optimal parameter values for a variety of motions and is tested on ten different US videos using two different motion estimation techniques.
Velocity-based motion categorization by pigeons.
Cook, Robert G; Beale, Kevin; Koban, Angie
2011-04-01
To examine if animals could learn action-like categorizations in a manner similar to noun-based categories, eight pigeons were trained to categorize rates of object motion. Testing 40 different objects in a go/no-go discrimination, pigeons were first trained to discriminate between fast and slow rates of object rotation around their central y-axis. They easily learned this velocity discrimination and transferred it to novel objects and rates. This discrimination also transferred to novel types of motions including the other two axes of rotation and two new translations around the display. Comparable tests with rapid and slow changes in the objects' size, color, and shape failed to support comparable transfer. This difference in discrimination transfer between motion-based and property-based changes suggests the pigeons had learned motion concept rather than one based on change per se. The results provide evidence that pigeons can acquire an understanding of motion-based actions, at least with regard to the property of object velocity. This may be similar to our use of verbs and adverbs to categorize different classes of behavior or motion (e.g., walking, jogging, or running slow vs. fast).
Nonlinear circuits for naturalistic visual motion estimation
Fitzgerald, James E; Clark, Damon A
2015-01-01
Many animals use visual signals to estimate motion. Canonical models suppose that animals estimate motion by cross-correlating pairs of spatiotemporally separated visual signals, but recent experiments indicate that humans and flies perceive motion from higher-order correlations that signify motion in natural environments. Here we show how biologically plausible processing motifs in neural circuits could be tuned to extract this information. We emphasize how known aspects of Drosophila's visual circuitry could embody this tuning and predict fly behavior. We find that segregating motion signals into ON/OFF channels can enhance estimation accuracy by accounting for natural light/dark asymmetries. Furthermore, a diversity of inputs to motion detecting neurons can provide access to more complex higher-order correlations. Collectively, these results illustrate how non-canonical computations improve motion estimation with naturalistic inputs. This argues that the complexity of the fly's motion computations, implemented in its elaborate circuits, represents a valuable feature of its visual motion estimator. DOI: http://dx.doi.org/10.7554/eLife.09123.001 PMID:26499494
Robotic Prostate Biopsy in Closed MRI Scanner
2009-02-01
radioactive seeds or diagnosis by harvesting tissue samples inside the mag- net bore, under remote control of the physician without mov- ing the patient out...and allows fast removal for reloading brachytherapy needles or col- lecting harvested biopsy tissue. The primary actuated motions of the robot...include two prismatic motions and two rotational motions for aligning the needle axis. In addition to these base motions, application-specific motions are
Breaking cover: neural responses to slow and fast camouflage-breaking motion.
Yin, Jiapeng; Gong, Hongliang; An, Xu; Chen, Zheyuan; Lu, Yiliang; Andolina, Ian M; McLoughlin, Niall; Wang, Wei
2015-08-22
Primates need to detect and recognize camouflaged animals in natural environments. Camouflage-breaking movements are often the only visual cue available to accomplish this. Specifically, sudden movements are often detected before full recognition of the camouflaged animal is made, suggesting that initial processing of motion precedes the recognition of motion-defined contours or shapes. What are the neuronal mechanisms underlying this initial processing of camouflaged motion in the primate visual brain? We investigated this question using intrinsic-signal optical imaging of macaque V1, V2 and V4, along with computer simulations of the neural population responses. We found that camouflaged motion at low speed was processed as a direction signal by both direction- and orientation-selective neurons, whereas at high-speed camouflaged motion was encoded as a motion-streak signal primarily by orientation-selective neurons. No population responses were found to be invariant to the camouflage contours. These results suggest that the initial processing of camouflaged motion at low and high speeds is encoded as direction and motion-streak signals in primate early visual cortices. These processes are consistent with a spatio-temporal filter mechanism that provides for fast processing of motion signals, prior to full recognition of camouflage-breaking animals. © 2015 The Authors.
Breaking cover: neural responses to slow and fast camouflage-breaking motion
Yin, Jiapeng; Gong, Hongliang; An, Xu; Chen, Zheyuan; Lu, Yiliang; Andolina, Ian M.; McLoughlin, Niall; Wang, Wei
2015-01-01
Primates need to detect and recognize camouflaged animals in natural environments. Camouflage-breaking movements are often the only visual cue available to accomplish this. Specifically, sudden movements are often detected before full recognition of the camouflaged animal is made, suggesting that initial processing of motion precedes the recognition of motion-defined contours or shapes. What are the neuronal mechanisms underlying this initial processing of camouflaged motion in the primate visual brain? We investigated this question using intrinsic-signal optical imaging of macaque V1, V2 and V4, along with computer simulations of the neural population responses. We found that camouflaged motion at low speed was processed as a direction signal by both direction- and orientation-selective neurons, whereas at high-speed camouflaged motion was encoded as a motion-streak signal primarily by orientation-selective neurons. No population responses were found to be invariant to the camouflage contours. These results suggest that the initial processing of camouflaged motion at low and high speeds is encoded as direction and motion-streak signals in primate early visual cortices. These processes are consistent with a spatio-temporal filter mechanism that provides for fast processing of motion signals, prior to full recognition of camouflage-breaking animals. PMID:26269500
Thermally triggered polyrotaxane translational motion helps proton transfer.
Ge, Xiaolin; He, Yubin; Liang, Xian; Wu, Liang; Zhu, Yuan; Yang, Zhengjin; Hu, Min; Xu, Tongwen
2018-06-12
Synthetic polyelectrolytes, capable of fast transporting protons, represent a challenging target for membrane engineering in so many fields, for example, fuel cells, redox flow batteries, etc. Inspired by the fast advance in molecular machines, here we report a rotaxane based polymer entity assembled via host-guest interaction and prove that by exploiting the thermally triggered translational motion (although not in a controlled manner) of mechanically bonded rotaxane, exceptionally fast proton transfer can be fulfilled at an external thermal input. The relative motion of the sulfonated axle to the ring in rotaxane happens at ~60 °C in our cases and because of that a proton conductivity (indicating proton transfer rate) of 260.2 mS cm -1 , which is much higher than that in the state-of-the-art Nafion, is obtained at a relatively low ion-exchange capacity (representing the amount of proton transfer groups) of 0.73 mmol g -1 .
Rotary fast tool servo system and methods
Montesanti, Richard C.; Trumper, David L.
2007-10-02
A high bandwidth rotary fast tool servo provides tool motion in a direction nominally parallel to the surface-normal of a workpiece at the point of contact between the cutting tool and workpiece. Three or more flexure blades having all ends fixed are used to form an axis of rotation for a swing arm that carries a cutting tool at a set radius from the axis of rotation. An actuator rotates a swing arm assembly such that a cutting tool is moved in and away from the lathe-mounted, rotating workpiece in a rapid and controlled manner in order to machine the workpiece. A pair of position sensors provides rotation and position information for a swing arm to a control system. A control system commands and coordinates motion of the fast tool servo with the motion of a spindle, rotating table, cross-feed slide, and in-feed slide of a precision lathe.
Rotary fast tool servo system and methods
Montesanti, Richard C [Cambridge, MA; Trumper, David L [Plaistow, NH; Kirtley, Jr., James L.
2009-08-18
A high bandwidth rotary fast tool servo provides tool motion in a direction nominally parallel to the surface-normal of a workpiece at the point of contact between the cutting tool and workpiece. Three or more flexure blades having all ends fixed are used to form an axis of rotation for a swing arm that carries a cutting tool at a set radius from the axis of rotation. An actuator rotates a swing arm assembly such that a cutting tool is moved in and away from the lathe-mounted, rotating workpiece in a rapid and controlled manner in order to machine the workpiece. One or more position sensors provides rotation and position information for a swing arm to a control system. A control system commands and coordinates motion of the fast tool servo with the motion of a spindle, rotating table, cross-feed slide, and in-feed slide of a precision lathe.
Fast Computation of Ground Motion Shaking Map base on the Modified Stochastic Finite Fault Modeling
NASA Astrophysics Data System (ADS)
Shen, W.; Zhong, Q.; Shi, B.
2012-12-01
Rapidly regional MMI mapping soon after a moderate-large earthquake is crucial to loss estimation, emergency services and planning of emergency action by the government. In fact, many countries show different degrees of attention on the technology of rapid estimation of MMI , and this technology has made significant progress in earthquake-prone countries. In recent years, numerical modeling of strong ground motion has been well developed with the advances of computation technology and earthquake science. The computational simulation of strong ground motion caused by earthquake faulting has become an efficient way to estimate the regional MMI distribution soon after earthquake. In China, due to the lack of strong motion observation in network sparse or even completely missing areas, the development of strong ground motion simulation method has become an important means of quantitative estimation of strong motion intensity. In many of the simulation models, stochastic finite fault model is preferred to rapid MMI estimating for its time-effectiveness and accuracy. In finite fault model, a large fault is divided into N subfaults, and each subfault is considered as a small point source. The ground motions contributed by each subfault are calculated by the stochastic point source method which is developed by Boore, and then summed at the observation point to obtain the ground motion from the entire fault with a proper time delay. Further, Motazedian and Atkinson proposed the concept of Dynamic Corner Frequency, with the new approach, the total radiated energy from the fault and the total seismic moment are conserved independent of subfault size over a wide range of subfault sizes. In current study, the program EXSIM developed by Motazedian and Atkinson has been modified for local or regional computations of strong motion parameters such as PGA, PGV and PGD, which are essential for MMI estimating. To make the results more reasonable, we consider the impact of V30 for the ground shaking intensity, and the results of the comparisons between the simulated and observed MMI for the 2004 Mw 6.0 Parkfield earthquake, the 2008 Mw 7.9Wenchuan earthquake and the 1976 Mw 7.6Tangshan earthquake is fairly well. Take Parkfield earthquake as example, the simulative result reflect the directivity effect and the influence of the shallow velocity structure well. On the other hand, the simulative data is in good agreement with the network data and NGA (Next Generation Attenuation). The consumed time depends on the number of the subfaults and the number of the grid point. For the 2004 Mw 6.0 Parkfield earthquake, the grid size we calculated is 2.5° × 2.5°, the grid space is 0.025°, and the total time consumed is about 1.3hours. For the 2008 Mw 7.9 Wenchuan earthquake, the grid size calculated is 10° × 10°, the grid space is 0.05°, the total number of grid point is more than 40,000, and the total time consumed is about 7.5 hours. For t the 1976 Mw 7.6 Tangshan earthquake, the grid size we calculated is 4° × 6°, the grid space is 0.05°, and the total time consumed is about 2.1 hours. The CPU we used is 3.40GHz, and such computational time could further reduce by using GPU computing technique and other parallel computing technique. This is also our next focus.
Genetic Algorithm-Based Motion Estimation Method using Orientations and EMGs for Robot Controls
Chae, Jeongsook; Jin, Yong; Sung, Yunsick
2018-01-01
Demand for interactive wearable devices is rapidly increasing with the development of smart devices. To accurately utilize wearable devices for remote robot controls, limited data should be analyzed and utilized efficiently. For example, the motions by a wearable device, called Myo device, can be estimated by measuring its orientation, and calculating a Bayesian probability based on these orientation data. Given that Myo device can measure various types of data, the accuracy of its motion estimation can be increased by utilizing these additional types of data. This paper proposes a motion estimation method based on weighted Bayesian probability and concurrently measured data, orientations and electromyograms (EMG). The most probable motion among estimated is treated as a final estimated motion. Thus, recognition accuracy can be improved when compared to the traditional methods that employ only a single type of data. In our experiments, seven subjects perform five predefined motions. When orientation is measured by the traditional methods, the sum of the motion estimation errors is 37.3%; likewise, when only EMG data are used, the error in motion estimation by the proposed method was also 37.3%. The proposed combined method has an error of 25%. Therefore, the proposed method reduces motion estimation errors by 12%. PMID:29324641
Development of real-time motion capture system for 3D on-line games linked with virtual character
NASA Astrophysics Data System (ADS)
Kim, Jong Hyeong; Ryu, Young Kee; Cho, Hyung Suck
2004-10-01
Motion tracking method is being issued as essential part of the entertainment, medical, sports, education and industry with the development of 3-D virtual reality. Virtual human character in the digital animation and game application has been controlled by interfacing devices; mouse, joysticks, midi-slider, and so on. Those devices could not enable virtual human character to move smoothly and naturally. Furthermore, high-end human motion capture systems in commercial market are expensive and complicated. In this paper, we proposed a practical and fast motion capturing system consisting of optic sensors, and linked the data with 3-D game character with real time. The prototype experiment setup is successfully applied to a boxing game which requires very fast movement of human character.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Wenpei; Wu, Jianbo; Yoon, Aram
Atomic motion at grain boundaries is essential to microstructure development, growth and stability of catalysts and other nanostructured materials. However, boundary atomic motion is often too fast to observe in a conventional transmission electron microscope (TEM) and too slow for ultrafast electron microscopy. We report on the entire transformation process of strained Pt icosahedral nanoparticles (ICNPs) into larger FCC crystals, captured at 2.5 ms time resolution using a fast electron camera. Results show slow diffusive dislocation motion at nm/s inside ICNPs and fast surface transformation at μm/s. By characterizing nanoparticle strain, we show that the fast transformation is driven bymore » inhomogeneous surface stress. And interaction with pre-existing defects led to the slowdown of the transformation front inside the nanoparticles. Particle coalescence, assisted by oxygen-induced surface migration at T ≥ 300°C, also played a critical role. Thus by studying transformation in the Pt ICNPs at high time and spatial resolution, we obtain critical insights into the transformation mechanisms in strained Pt nanoparticles.« less
Orientation tuning of contrast masking caused by motion streaks.
Apthorp, Deborah; Cass, John; Alais, David
2010-08-01
We investigated whether the oriented trails of blur left by fast-moving dots (i.e., "motion streaks") effectively mask grating targets. Using a classic overlay masking paradigm, we varied mask contrast and target orientation to reveal underlying tuning. Fast-moving Gaussian blob arrays elevated thresholds for detection of static gratings, both monoptically and dichoptically. Monoptic masking at high mask (i.e., streak) contrasts is tuned for orientation and exhibits a similar bandwidth to masking functions obtained with grating stimuli (∼30 degrees). Dichoptic masking fails to show reliable orientation-tuned masking, but dichoptic masks at very low contrast produce a narrowly tuned facilitation (∼17 degrees). For iso-oriented streak masks and grating targets, we also explored masking as a function of mask contrast. Interestingly, dichoptic masking shows a classic "dipper"-like TVC function, whereas monoptic masking shows no dip and a steeper "handle". There is a very strong unoriented component to the masking, which we attribute to transiently biased temporal frequency masking. Fourier analysis of "motion streak" images shows interesting differences between dichoptic and monoptic functions and the information in the stimulus. Our data add weight to the growing body of evidence that the oriented blur of motion streaks contributes to the processing of fast motion signals.
NASA Astrophysics Data System (ADS)
Talukder, Ashit; Morookian, John M.; Monacos, Steve P.; Lam, Raymond K.; Lebaw, C.; Bond, A.
2004-04-01
Eyetracking is one of the latest technologies that has shown potential in several areas including human-computer interaction for people with and without disabilities, and for noninvasive monitoring, detection, and even diagnosis of physiological and neurological problems in individuals. Current non-invasive eyetracking methods achieve a 30 Hz rate with possibly low accuracy in gaze estimation, that is insufficient for many applications. We propose a new non-invasive visual eyetracking system that is capable of operating at speeds as high as 6-12 KHz. A new CCD video camera and hardware architecture is used, and a novel fast image processing algorithm leverages specific features of the input CCD camera to yield a real-time eyetracking system. A field programmable gate array (FPGA) is used to control the CCD camera and execute the image processing operations. Initial results show the excellent performance of our system under severe head motion and low contrast conditions.
Archer fish fast hunting maneuver may be guided by directionally selective retinal ganglion cells.
Tsvilling, Vadim; Donchin, Opher; Shamir, Maoz; Segev, Ronen
2012-02-01
Archer fish are known for their unique hunting method, where one fish in a group shoots down an insect with a jet of water while all the other fish are observing the prey's motion. To reap its reward, the archer fish must reach the prey before its competitors. This requires fast computation of the direction of motion of the prey, which enables the fish to initiate a turn towards the prey with an accuracy of 99%, at about 100 ms after the prey is shot. We explored the hypothesis that direction-selective retinal ganglion cells may underlie this rapid processing. We quantified the degree of directional selectivity of ganglion cells in the archer fish retina. The cells could be categorized into three groups: sharply (5%), broadly (37%) and non-tuned (58%) directionally selective cells. To relate the electrophysiological data to the behavioral results we studied a computational model and estimated the time required to accumulate sufficient directional information to match the decision accuracy of the fish. The computational model is based on two direction-selective populations that race against each other until one reaches the threshold and drives the decision. We found that this competition model can account for the observed response time at the required accuracy. Thus, our results are consistent with the hypothesis that the fast response behavior of the archer fish relies on retinal identification of movement direction. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Estimation of multiple accelerated motions using chirp-Fourier transform and clustering.
Alexiadis, Dimitrios S; Sergiadis, George D
2007-01-01
Motion estimation in the spatiotemporal domain has been extensively studied and many methodologies have been proposed, which, however, cannot handle both time-varying and multiple motions. Extending previously published ideas, we present an efficient method for estimating multiple, linearly time-varying motions. It is shown that the estimation of accelerated motions is equivalent to the parameter estimation of superpositioned chirp signals. From this viewpoint, one can exploit established signal processing tools such as the chirp-Fourier transform. It is shown that accelerated motion results in energy concentration along planes in the 4-D space: spatial frequencies-temporal frequency-chirp rate. Using fuzzy c-planes clustering, we estimate the plane/motion parameters. The effectiveness of our method is verified on both synthetic as well as real sequences and its advantages are highlighted.
Feghali, Rosario; Mitiche, Amar
2004-11-01
The purpose of this study is to investigate a method of tracking moving objects with a moving camera. This method estimates simultaneously the motion induced by camera movement. The problem is formulated as a Bayesian motion-based partitioning problem in the spatiotemporal domain of the image quence. An energy functional is derived from the Bayesian formulation. The Euler-Lagrange descent equations determine imultaneously an estimate of the image motion field induced by camera motion and an estimate of the spatiotemporal motion undary surface. The Euler-Lagrange equation corresponding to the surface is expressed as a level-set partial differential equation for topology independence and numerically stable implementation. The method can be initialized simply and can track multiple objects with nonsimultaneous motions. Velocities on motion boundaries can be estimated from geometrical properties of the motion boundary. Several examples of experimental verification are given using synthetic and real-image sequences.
Challenges for implementing Earthquake Early Warning: A Case Study in Nicaragua
NASA Astrophysics Data System (ADS)
Massin, F.; Clinton, J. F.; Boese, M.; Cauzzi, C.; Strauch, W.
2017-12-01
Earthquake early warning (EEW) systems aim at providing fast and accurate estimates of event parameters or local ground shaking over wide ranges of source dimensions and epicentral distances. The Swiss Seismological Service (SED) has integrated EEW solutions into the SeisComP3 (SC3) professional earthquake monitoring software. VS(SC3) provides fast magnitude estimates for network-based point-sources using conventional triggering and phases association techniques, while FinDer(SC3) matches the evolving patterns of ground motion to track on-going rupture extent, and can provide accurate ground motion predictions for finite fault ruptures. SC3 is widely used, including in Central America, and at INETER in Nicaragua. In 2016, SED and INETER started a joint project to assess the feasibility of EEW in Nicaragua and Central America and to set up a prototype EEW system. We test VS(SC3) and FinDer(SC3) softwares at INETER since 2016. Excellent relations between regional seismic networks mean broadband and strong motion seismic data are exchanged across Central America in real time, which means the network is sufficient to warrant investigation into its potential for EEW. We report on the successes and challenges of operating an EEW system where seismicity is high, but infrastructure is fragile and the design and operation of a seismic network is challenging (in Nicaragua, on average 50% of all stations do not work effectively for EEW). The current best EEW delays for on-shore earthquakes in Nicaragua is in the order of 20s and 40s offshore. However, the current network should be able to provide EEW in 10 to 15s on-shore and 20 to 25s off-shore which correspond to potential EEW intensities over or equal to VII. We compare the performances of EEW in Nicaragua with an ideal setting, featuring optimized data availability. We evaluate improvements strategies of the Nicaraguan and the Joint Central American Seismic Networks for EEW. And we discuss how to combine real-time EEW reports from VS(SC3) and FinDer(SC3) algorithms to provide a single EEW using existing probabilistic ground motion comparison methods. The project is funded by the Swiss Development Agency and supported by Nicaragua.
Motion and Seasickness of Fast Warships
2004-10-01
Motion and Seasickness of Fast Warships Riola J.M. (1), Esteban S. (2), Giron-Sierra J.M. (2) & Aranda J. (3) (1) Canal de Experiencias ...5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Canal de Experiencias Hidrodinámicas de ...Bretschneider Sp bability Density of Waves /λ, with H being the wave height (twice the wave a in a seakeeping basin Canal de Experiencias Hid r waves with
Bi, Sheng; Zeng, Xiao; Tang, Xin; Qin, Shujia; Lai, King Wai Chiu
2016-01-01
Compressive sensing (CS) theory has opened up new paths for the development of signal processing applications. Based on this theory, a novel single pixel camera architecture has been introduced to overcome the current limitations and challenges of traditional focal plane arrays. However, video quality based on this method is limited by existing acquisition and recovery methods, and the method also suffers from being time-consuming. In this paper, a multi-frame motion estimation algorithm is proposed in CS video to enhance the video quality. The proposed algorithm uses multiple frames to implement motion estimation. Experimental results show that using multi-frame motion estimation can improve the quality of recovered videos. To further reduce the motion estimation time, a block match algorithm is used to process motion estimation. Experiments demonstrate that using the block match algorithm can reduce motion estimation time by 30%. PMID:26950127
Power, Jonathan D; Plitt, Mark; Kundu, Prantik; Bandettini, Peter A; Martin, Alex
2017-01-01
Head motion can be estimated at any point of fMRI image processing. Processing steps involving temporal interpolation (e.g., slice time correction or outlier replacement) often precede motion estimation in the literature. From first principles it can be anticipated that temporal interpolation will alter head motion in a scan. Here we demonstrate this effect and its consequences in five large fMRI datasets. Estimated head motion was reduced by 10-50% or more following temporal interpolation, and reductions were often visible to the naked eye. Such reductions make the data seem to be of improved quality. Such reductions also degrade the sensitivity of analyses aimed at detecting motion-related artifact and can cause a dataset with artifact to falsely appear artifact-free. These reduced motion estimates will be particularly problematic for studies needing estimates of motion in time, such as studies of dynamics. Based on these findings, it is sensible to obtain motion estimates prior to any image processing (regardless of subsequent processing steps and the actual timing of motion correction procedures, which need not be changed). We also find that outlier replacement procedures change signals almost entirely during times of motion and therefore have notable similarities to motion-targeting censoring strategies (which withhold or replace signals entirely during times of motion).
Plitt, Mark; Kundu, Prantik; Bandettini, Peter A.; Martin, Alex
2017-01-01
Head motion can be estimated at any point of fMRI image processing. Processing steps involving temporal interpolation (e.g., slice time correction or outlier replacement) often precede motion estimation in the literature. From first principles it can be anticipated that temporal interpolation will alter head motion in a scan. Here we demonstrate this effect and its consequences in five large fMRI datasets. Estimated head motion was reduced by 10–50% or more following temporal interpolation, and reductions were often visible to the naked eye. Such reductions make the data seem to be of improved quality. Such reductions also degrade the sensitivity of analyses aimed at detecting motion-related artifact and can cause a dataset with artifact to falsely appear artifact-free. These reduced motion estimates will be particularly problematic for studies needing estimates of motion in time, such as studies of dynamics. Based on these findings, it is sensible to obtain motion estimates prior to any image processing (regardless of subsequent processing steps and the actual timing of motion correction procedures, which need not be changed). We also find that outlier replacement procedures change signals almost entirely during times of motion and therefore have notable similarities to motion-targeting censoring strategies (which withhold or replace signals entirely during times of motion). PMID:28880888
Pettorossi, V E; Panichi, R; Botti, F M; Kyriakareli, A; Ferraresi, A; Faralli, M; Schieppati, M; Bronstein, A M
2013-04-01
Self-motion perception and the vestibulo-ocular reflex (VOR) were investigated in healthy subjects during asymmetric whole body yaw plane oscillations while standing on a platform in the dark. Platform oscillation consisted of two half-sinusoidal cycles of the same amplitude (40°) but different duration, featuring a fast (FHC) and a slow half-cycle (SHC). Rotation consisted of four or 20 consecutive cycles to probe adaptation further with the longer duration protocol. Self-motion perception was estimated by subjects tracking with a pointer the remembered position of an earth-fixed visual target. VOR was measured by electro-oculography. The asymmetric stimulation pattern consistently induced a progressive increase of asymmetry in motion perception, whereby the gain of the tracking response gradually increased during FHCs and decreased during SHCs. The effect was observed already during the first few cycles and further increased during 20 cycles, leading to a totally distorted location of the initial straight-ahead. In contrast, after some initial interindividual variability, the gain of the slow phase VOR became symmetric, decreasing for FHCs and increasing for SHCs. These oppositely directed adaptive effects in motion perception and VOR persisted for nearly an hour. Control conditions using prolonged but symmetrical stimuli produced no adaptive effects on either motion perception or VOR. These findings show that prolonged asymmetric activation of the vestibular system leads to opposite patterns of adaptation of self-motion perception and VOR. The results provide strong evidence that semicircular canal inputs are processed centrally by independent mechanisms for perception of body motion and eye movement control. These divergent adaptation mechanisms enhance awareness of movement toward the faster body rotation, while improving the eye stabilizing properties of the VOR.
Pettorossi, V E; Panichi, R; Botti, F M; Kyriakareli, A; Ferraresi, A; Faralli, M; Schieppati, M; Bronstein, A M
2013-01-01
Self-motion perception and the vestibulo-ocular reflex (VOR) were investigated in healthy subjects during asymmetric whole body yaw plane oscillations while standing on a platform in the dark. Platform oscillation consisted of two half-sinusoidal cycles of the same amplitude (40°) but different duration, featuring a fast (FHC) and a slow half-cycle (SHC). Rotation consisted of four or 20 consecutive cycles to probe adaptation further with the longer duration protocol. Self-motion perception was estimated by subjects tracking with a pointer the remembered position of an earth-fixed visual target. VOR was measured by electro-oculography. The asymmetric stimulation pattern consistently induced a progressive increase of asymmetry in motion perception, whereby the gain of the tracking response gradually increased during FHCs and decreased during SHCs. The effect was observed already during the first few cycles and further increased during 20 cycles, leading to a totally distorted location of the initial straight-ahead. In contrast, after some initial interindividual variability, the gain of the slow phase VOR became symmetric, decreasing for FHCs and increasing for SHCs. These oppositely directed adaptive effects in motion perception and VOR persisted for nearly an hour. Control conditions using prolonged but symmetrical stimuli produced no adaptive effects on either motion perception or VOR. These findings show that prolonged asymmetric activation of the vestibular system leads to opposite patterns of adaptation of self-motion perception and VOR. The results provide strong evidence that semicircular canal inputs are processed centrally by independent mechanisms for perception of body motion and eye movement control. These divergent adaptation mechanisms enhance awareness of movement toward the faster body rotation, while improving the eye stabilizing properties of the VOR. PMID:23318876
Improved frame-based estimation of head motion in PET brain imaging.
Mukherjee, J M; Lindsay, C; Mukherjee, A; Olivier, P; Shao, L; King, M A; Licho, R
2016-05-01
Head motion during PET brain imaging can cause significant degradation of image quality. Several authors have proposed ways to compensate for PET brain motion to restore image quality and improve quantitation. Head restraints can reduce movement but are unreliable; thus the need for alternative strategies such as data-driven motion estimation or external motion tracking. Herein, the authors present a data-driven motion estimation method using a preprocessing technique that allows the usage of very short duration frames, thus reducing the intraframe motion problem commonly observed in the multiple frame acquisition method. The list mode data for PET acquisition is uniformly divided into 5-s frames and images are reconstructed without attenuation correction. Interframe motion is estimated using a 3D multiresolution registration algorithm and subsequently compensated for. For this study, the authors used 8 PET brain studies that used F-18 FDG as the tracer and contained minor or no initial motion. After reconstruction and prior to motion estimation, known motion was introduced to each frame to simulate head motion during a PET acquisition. To investigate the trade-off in motion estimation and compensation with respect to frames of different length, the authors summed 5-s frames accordingly to produce 10 and 60 s frames. Summed images generated from the motion-compensated reconstructed frames were then compared to the original PET image reconstruction without motion compensation. The authors found that our method is able to compensate for both gradual and step-like motions using frame times as short as 5 s with a spatial accuracy of 0.2 mm on average. Complex volunteer motion involving all six degrees of freedom was estimated with lower accuracy (0.3 mm on average) than the other types investigated. Preprocessing of 5-s images was necessary for successful image registration. Since their method utilizes nonattenuation corrected frames, it is not susceptible to motion introduced between CT and PET acquisitions. The authors have shown that they can estimate motion for frames with time intervals as short as 5 s using nonattenuation corrected reconstructed FDG PET brain images. Intraframe motion in 60-s frames causes degradation of accuracy to about 2 mm based on the motion type.
On Inertial Body Tracking in the Presence of Model Calibration Errors
Miezal, Markus; Taetz, Bertram; Bleser, Gabriele
2016-01-01
In inertial body tracking, the human body is commonly represented as a biomechanical model consisting of rigid segments with known lengths and connecting joints. The model state is then estimated via sensor fusion methods based on data from attached inertial measurement units (IMUs). This requires the relative poses of the IMUs w.r.t. the segments—the IMU-to-segment calibrations, subsequently called I2S calibrations—to be known. Since calibration methods based on static poses, movements and manual measurements are still the most widely used, potentially large human-induced calibration errors have to be expected. This work compares three newly developed/adapted extended Kalman filter (EKF) and optimization-based sensor fusion methods with an existing EKF-based method w.r.t. their segment orientation estimation accuracy in the presence of model calibration errors with and without using magnetometer information. While the existing EKF-based method uses a segment-centered kinematic chain biomechanical model and a constant angular acceleration motion model, the newly developed/adapted methods are all based on a free segments model, where each segment is represented with six degrees of freedom in the global frame. Moreover, these methods differ in the assumed motion model (constant angular acceleration, constant angular velocity, inertial data as control input), the state representation (segment-centered, IMU-centered) and the estimation method (EKF, sliding window optimization). In addition to the free segments representation, the optimization-based method also represents each IMU with six degrees of freedom in the global frame. In the evaluation on simulated and real data from a three segment model (an arm), the optimization-based method showed the smallest mean errors, standard deviations and maximum errors throughout all tests. It also showed the lowest dependency on magnetometer information and motion agility. Moreover, it was insensitive w.r.t. I2S position and segment length errors in the tested ranges. Errors in the I2S orientations were, however, linearly propagated into the estimated segment orientations. In the absence of magnetic disturbances, severe model calibration errors and fast motion changes, the newly developed IMU centered EKF-based method yielded comparable results with lower computational complexity. PMID:27455266
NASA Astrophysics Data System (ADS)
Okumura, K.
2011-12-01
Accurate location and geometry of seismic sources are critical to estimate strong ground motion. Complete and precise rupture history is also critical to estimate the probability of the future events. In order to better forecast future earthquakes and to reduce seismic hazards, we should consider over all options and choose the most likely parameter. Multiple options for logic trees are acceptable only after thorough examination of contradicting estimates and should not be a result from easy compromise or epoche. In the process of preparation and revisions of Japanese probabilistic and deterministic earthquake hazard maps by Headquarters for Earthquake Research Promotion since 1996, many decisions were made to select plausible parameters, but many contradicting estimates have been left without thorough examinations. There are several highly-active faults in central Japan such as Itoigawa-Shizuoka Tectonic Line active fault system (ISTL), West Nagano Basin fault system (WNBF), Inadani fault system (INFS), and Atera fault system (ATFS). The highest slip rate and the shortest recurrence interval are respectively ~1 cm/yr and 500 to 800 years, and estimated maximum magnitude is 7.5 to 8.5. Those faults are very hazardous because almost entire population and industries are located above the fault within tectonic depressions. As to the fault location, most uncertainties arises from interpretation of geomorphic features. Geomorphological interpretation without geological and structural insight often leads to wrong mapping. Though non-existent longer fault may be a safer estimate, incorrectness harm reliability of the forecast. Also this does not greatly affect strong motion estimates, but misleading to surface displacement issues. Fault geometry, on the other hand, is very important to estimate intensity distribution. For the middle portion of the ISTL, fast-moving left-lateral strike-slip up to 1 cm/yr is obvious. Recent seismicity possibly induced by 2011 Tohoku earthquake show pure strike-slip. However, thrusts are modeled from seismic profiles and gravity anomalies. Therefore, two contradicting models are presented for strong motion estimates. There should be a unique solution of the geometry, which will be discussed. As to the rupture history, there is plenty of paleoseismological evidence that supports segmentation of those faults above. However, in most fault zones, the largest and sometimes possibly less frequent earthquakes are modeled. Segmentation and modeling of coming earthquakes should be more carefully examined without leaving them in contradictions.
Badachhape, Andrew A; Okamoto, Ruth J; Johnson, Curtis L; Bayly, Philip V
2018-05-17
The objective of this study was to characterize the relationships between motion in the scalp, skull, and brain. In vivo estimates of motion transmission from the skull to the brain may illuminate the mechanics of traumatic brain injury. Because of challenges in directly sensing skull motion, it is useful to know how well motion of soft tissue of the head, i.e., the scalp, can approximate skull motion or predict brain tissue deformation. In this study, motion of the scalp and brain were measured using magnetic resonance elastography (MRE) and separated into components due to rigid-body displacement and dynamic deformation. Displacement estimates in the scalp were calculated using low motion-encoding gradient strength in order to reduce "phase wrapping" (an ambiguity in displacement estimates caused by the 2 π-periodicity of MRE phase contrast). MRE estimates of scalp and brain motion were compared to skull motion estimated from three tri-axial accelerometers. Comparison of the relative amplitudes and phases of harmonic motion in the scalp, skull, and brain of six human subjects indicate that data from scalp-based sensors should be used with caution to estimate skull kinematics, but that fairly consistent relationships exist between scalp, skull, and brain motion. In addition, the measured amplitude and phase relationships of scalp, skull, and brain can be used to evaluate and improve mathematical models of head biomechanics. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, W; Yin, F; Zhang, Y
Purpose: To investigate the feasibility of using structure-based principal component analysis (PCA) motion-modeling and weighted free-form deformation to estimate on-board 4D-CBCT using prior information and extremely limited angle projections for potential 4D target verification of lung radiotherapy. Methods: A technique for lung 4D-CBCT reconstruction has been previously developed using a deformation field map (DFM)-based strategy. In the previous method, each phase of the 4D-CBCT was generated by deforming a prior CT volume. The DFM was solved by a motion-model extracted by global PCA and a free-form deformation (GMM-FD) technique, using data fidelity constraint and the deformation energy minimization. In thismore » study, a new structural-PCA method was developed to build a structural motion-model (SMM) by accounting for potential relative motion pattern changes between different anatomical structures from simulation to treatment. The motion model extracted from planning 4DCT was divided into two structures: tumor and body excluding tumor, and the parameters of both structures were optimized together. Weighted free-form deformation (WFD) was employed afterwards to introduce flexibility in adjusting the weightings of different structures in the data fidelity constraint based on clinical interests. XCAT (computerized patient model) simulation with a 30 mm diameter lesion was simulated with various anatomical and respirational changes from planning 4D-CT to onboard volume. The estimation accuracy was evaluated by the Volume-Percent-Difference (VPD)/Center-of-Mass-Shift (COMS) between lesions in the estimated and “ground-truth” on board 4D-CBCT. Results: Among 6 different XCAT scenarios corresponding to respirational and anatomical changes from planning CT to on-board using single 30° on-board projections, the VPD/COMS for SMM-WFD was reduced to 10.64±3.04%/1.20±0.45mm from 21.72±9.24%/1.80±0.53mm for GMM-FD. Using 15° orthogonal projections, the VPD/COMS was further reduced to 1.91±0.86%/0.31±0.42mm based on SMM-WFD. Conclusion: Compared to GMM-FD technique, the SMM-WFD technique can substantially improve the 4D-CBCT estimation accuracy using extremely small scan angles to provide ultra-fast 4D verification. This work was supported by the National Institutes of Health under Grant No. R01-CA184173 and a research grant from Varian Medical Systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stemkens, B; Glitzner, M; Kontaxis, C
Purpose: To assess the dose deposition in simulated single-fraction MR-Linac treatments of renal cell carcinoma, when inter-cycle respiratory motion variation is taken into account using online MRI. Methods: Three motion characterization methods, with increasing complexity, were compared to evaluate the effect of inter-cycle motion variation and drifts on the accumulated dose for an SBRT kidney MR-Linac treatment: 1) STATIC, in which static anatomy was assumed, 2) AVG-RESP, in which 4D-MRI phase-volumes were time-weighted, based on the respiratory phase and 3) PCA, in which 3D volumes were generated using a PCA-model, enabling the detection of inter-cycle variations and drifts. An experimentalmore » ITV-based kidney treatment was simulated in a 1.5T magnetic field on three volunteer datasets. For each volunteer a retrospectively sorted 4D-MRI (ten respiratory phases) and fast 2D cine-MR images (temporal resolution = 476ms) were acquired to simulate MR-imaging during radiation. For each method, the high spatio-temporal resolution 3D volumes were non-rigidly registered to obtain deformation vector fields (DVFs). Using the DVFs, pseudo-CTs (generated from the 4D-MRI) were deformed and the dose was accumulated for the entire treatment. The accuracies of all methods were independently determined using an additional, orthogonal 2D-MRI slice. Results: Motion was most accurately estimated using the PCA method, which correctly estimated drifts and inter-cycle variations (RMSE=3.2, 2.2, 1.1mm on average for STATIC, AVG-RESP and PCA, compared to the 2DMRI slice). Dose-volume parameters on the ITV showed moderate changes (D99=35.2, 32.5, 33.8Gy for STATIC, AVG-RESP and PCA). AVG-RESP showed distinct hot/cold spots outside the ITV margin, which were more distributed for the PCA scenario, since inter-cycle variations were not modeled by the AVG-RESP method. Conclusion: Dose differences were observed when inter-cycle variations were taken into account. The increased inter-cycle randomness in motion as captured by the PCA model mitigates the local (erroneous) hotspots estimated by the AVG-RESP method.« less
Hardware architecture design of a fast global motion estimation method
NASA Astrophysics Data System (ADS)
Liang, Chaobing; Sang, Hongshi; Shen, Xubang
2015-12-01
VLSI implementation of gradient-based global motion estimation (GME) faces two main challenges: irregular data access and high off-chip memory bandwidth requirement. We previously proposed a fast GME method that reduces computational complexity by choosing certain number of small patches containing corners and using them in a gradient-based framework. A hardware architecture is designed to implement this method and further reduce off-chip memory bandwidth requirement. On-chip memories are used to store coordinates of the corners and template patches, while the Gaussian pyramids of both the template and reference frame are stored in off-chip SDRAMs. By performing geometric transform only on the coordinates of the center pixel of a 3-by-3 patch in the template image, a 5-by-5 area containing the warped 3-by-3 patch in the reference image is extracted from the SDRAMs by burst read. Patched-based and burst mode data access helps to keep the off-chip memory bandwidth requirement at the minimum. Although patch size varies at different pyramid level, all patches are processed in term of 3x3 patches, so the utilization of the patch-processing circuit reaches 100%. FPGA implementation results show that the design utilizes 24,080 bits on-chip memory and for a sequence with resolution of 352x288 and frequency of 60Hz, the off-chip bandwidth requirement is only 3.96Mbyte/s, compared with 243.84Mbyte/s of the original gradient-based GME method. This design can be used in applications like video codec, video stabilization, and super-resolution, where real-time GME is a necessity and minimum memory bandwidth requirement is appreciated.
Estimating satellite pose and motion parameters using a novelty filter and neural net tracker
NASA Technical Reports Server (NTRS)
Lee, Andrew J.; Casasent, David; Vermeulen, Pieter; Barnard, Etienne
1989-01-01
A system for determining the position, orientation and motion of a satellite with respect to a robotic spacecraft using video data is advanced. This system utilizes two levels of pose and motion estimation: an initial system which provides coarse estimates of pose and motion, and a second system which uses the coarse estimates and further processing to provide finer pose and motion estimates. The present paper emphasizes the initial coarse pose and motion estimation sybsystem. This subsystem utilizes novelty detection and filtering for locating novel parts and a neural net tracker to track these parts over time. Results of using this system on a sequence of images of a spin stabilized satellite are presented.
Fast Markerless Tracking for Augmented Reality in Planar Environment
NASA Astrophysics Data System (ADS)
Basori, Ahmad Hoirul; Afif, Fadhil Noer; Almazyad, Abdulaziz S.; AbuJabal, Hamza Ali S.; Rehman, Amjad; Alkawaz, Mohammed Hazim
2015-12-01
Markerless tracking for augmented reality should not only be accurate but also fast enough to provide a seamless synchronization between real and virtual beings. Current reported methods showed that a vision-based tracking is accurate but requires high computational power. This paper proposes a real-time hybrid-based method for tracking unknown environments in markerless augmented reality. The proposed method provides collaboration of vision-based approach with accelerometers and gyroscopes sensors as camera pose predictor. To align the augmentation relative to camera motion, the tracking method is done by substituting feature-based camera estimation with combination of inertial sensors with complementary filter to provide more dynamic response. The proposed method managed to track unknown environment with faster processing time compared to available feature-based approaches. Moreover, the proposed method can sustain its estimation in a situation where feature-based tracking loses its track. The collaboration of sensor tracking managed to perform the task for about 22.97 FPS, up to five times faster than feature-based tracking method used as comparison. Therefore, the proposed method can be used to track unknown environments without depending on amount of features on scene, while requiring lower computational cost.
Human joint motion estimation for electromyography (EMG)-based dynamic motion control.
Zhang, Qin; Hosoda, Ryo; Venture, Gentiane
2013-01-01
This study aims to investigate a joint motion estimation method from Electromyography (EMG) signals during dynamic movement. In most EMG-based humanoid or prosthetics control systems, EMG features were directly or indirectly used to trigger intended motions. However, both physiological and nonphysiological factors can influence EMG characteristics during dynamic movements, resulting in subject-specific, non-stationary and crosstalk problems. Particularly, when motion velocity and/or joint torque are not constrained, joint motion estimation from EMG signals are more challenging. In this paper, we propose a joint motion estimation method based on muscle activation recorded from a pair of agonist and antagonist muscles of the joint. A linear state-space model with multi input single output is proposed to map the muscle activity to joint motion. An adaptive estimation method is proposed to train the model. The estimation performance is evaluated in performing a single elbow flexion-extension movement in two subjects. All the results in two subjects at two load levels indicate the feasibility and suitability of the proposed method in joint motion estimation. The estimation root-mean-square error is within 8.3% ∼ 10.6%, which is lower than that being reported in several previous studies. Moreover, this method is able to overcome subject-specific problem and compensate non-stationary EMG properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jiajia; Wang, Yuming; McIntosh, Scott W.
We combine observations of the Coronal Multi-channel Polarimeter and the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory to study the characteristic properties of (propagating) Alfvénic motions and quasi-periodic intensity disturbances in polar plumes. This unique combination of instruments highlights the physical richness of the processes taking place at the base of the (fast) solar wind. The (parallel) intensity perturbations with intensity enhancements around 1% have an apparent speed of 120 km s{sup −1} (in both the 171 and 193 Å passbands) and a periodicity of 15 minutes, while the (perpendicular) Alfvénic wave motions have a velocity amplitude ofmore » 0.5 km s{sup −1}, a phase speed of 830 km s{sup −1}, and a shorter period of 5 minutes on the same structures. These observations illustrate a scenario where the excited Alfvénic motions are propagating along an inhomogeneously loaded magnetic field structure such that the combination could be a potential progenitor of the magnetohydrodynamic turbulence required to accelerate the fast solar wind.« less
Towards an SEMG-based tele-operated robot for masticatory rehabilitation.
Kalani, Hadi; Moghimi, Sahar; Akbarzadeh, Alireza
2016-08-01
This paper proposes a real-time trajectory generation for a masticatory rehabilitation robot based on surface electromyography (SEMG) signals. We used two Gough-Stewart robots. The first robot was used as a rehabilitation robot while the second robot was developed to model the human jaw system. The legs of the rehabilitation robot were controlled by the SEMG signals of a tele-operator to reproduce the masticatory motion in the human jaw, supposedly mounted on the moving platform, through predicting the location of a reference point. Actual jaw motions and the SEMG signals from the masticatory muscles were recorded and used as output and input, respectively. Three different methods, namely time-delayed neural networks, time delayed fast orthogonal search, and time-delayed Laguerre expansion technique, were employed and compared to predict the kinematic parameters. The optimal model structures as well as the input delays were obtained for each model and each subject through a genetic algorithm. Equations of motion were obtained by the virtual work method. Fuzzy method was employed to develop a fuzzy impedance controller. Moreover, a jaw model was developed to demonstrate the time-varying behavior of the muscle lengths during the rehabilitation process. The three modeling methods were capable of providing reasonably accurate estimations of the kinematic parameters, although the accuracy and training/validation speed of time-delayed fast orthogonal search were higher than those of the other two aforementioned methods. Also, during a simulation study, the fuzzy impedance scheme proved successful in controlling the moving platform for the accurate navigation of the reference point in the desired trajectory. SEMG has been widely used as a control command for prostheses and exoskeleton robots. However, in the current study by employing the proposed rehabilitation robot the complete continuous profile of the clenching motion was reproduced in the sagittal plane. Copyright © 2016. Published by Elsevier Ltd.
Three-dimensional liver motion tracking using real-time two-dimensional MRI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brix, Lau, E-mail: lau.brix@stab.rm.dk; Ringgaard, Steffen; Sørensen, Thomas Sangild
2014-04-15
Purpose: Combined magnetic resonance imaging (MRI) systems and linear accelerators for radiotherapy (MR-Linacs) are currently under development. MRI is noninvasive and nonionizing and can produce images with high soft tissue contrast. However, new tracking methods are required to obtain fast real-time spatial target localization. This study develops and evaluates a method for tracking three-dimensional (3D) respiratory liver motion in two-dimensional (2D) real-time MRI image series with high temporal and spatial resolution. Methods: The proposed method for 3D tracking in 2D real-time MRI series has three steps: (1) Recording of a 3D MRI scan and selection of a blood vessel (ormore » tumor) structure to be tracked in subsequent 2D MRI series. (2) Generation of a library of 2D image templates oriented parallel to the 2D MRI image series by reslicing and resampling the 3D MRI scan. (3) 3D tracking of the selected structure in each real-time 2D image by finding the template and template position that yield the highest normalized cross correlation coefficient with the image. Since the tracked structure has a known 3D position relative to each template, the selection and 2D localization of a specific template translates into quantification of both the through-plane and in-plane position of the structure. As a proof of principle, 3D tracking of liver blood vessel structures was performed in five healthy volunteers in two 5.4 Hz axial, sagittal, and coronal real-time 2D MRI series of 30 s duration. In each 2D MRI series, the 3D localization was carried out twice, using nonoverlapping template libraries, which resulted in a total of 12 estimated 3D trajectories per volunteer. Validation tests carried out to support the tracking algorithm included quantification of the breathing induced 3D liver motion and liver motion directionality for the volunteers, and comparison of 2D MRI estimated positions of a structure in a watermelon with the actual positions. Results: Axial, sagittal, and coronal 2D MRI series yielded 3D respiratory motion curves for all volunteers. The motion directionality and amplitude were very similar when measured directly as in-plane motion or estimated indirectly as through-plane motion. The mean peak-to-peak breathing amplitude was 1.6 mm (left-right), 11.0 mm (craniocaudal), and 2.5 mm (anterior-posterior). The position of the watermelon structure was estimated in 2D MRI images with a root-mean-square error of 0.52 mm (in-plane) and 0.87 mm (through-plane). Conclusions: A method for 3D tracking in 2D MRI series was developed and demonstrated for liver tracking in volunteers. The method would allow real-time 3D localization with integrated MR-Linac systems.« less
Improved frame-based estimation of head motion in PET brain imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukherjee, J. M., E-mail: joyeeta.mitra@umassmed.edu; Lindsay, C.; King, M. A.
Purpose: Head motion during PET brain imaging can cause significant degradation of image quality. Several authors have proposed ways to compensate for PET brain motion to restore image quality and improve quantitation. Head restraints can reduce movement but are unreliable; thus the need for alternative strategies such as data-driven motion estimation or external motion tracking. Herein, the authors present a data-driven motion estimation method using a preprocessing technique that allows the usage of very short duration frames, thus reducing the intraframe motion problem commonly observed in the multiple frame acquisition method. Methods: The list mode data for PET acquisition ismore » uniformly divided into 5-s frames and images are reconstructed without attenuation correction. Interframe motion is estimated using a 3D multiresolution registration algorithm and subsequently compensated for. For this study, the authors used 8 PET brain studies that used F-18 FDG as the tracer and contained minor or no initial motion. After reconstruction and prior to motion estimation, known motion was introduced to each frame to simulate head motion during a PET acquisition. To investigate the trade-off in motion estimation and compensation with respect to frames of different length, the authors summed 5-s frames accordingly to produce 10 and 60 s frames. Summed images generated from the motion-compensated reconstructed frames were then compared to the original PET image reconstruction without motion compensation. Results: The authors found that our method is able to compensate for both gradual and step-like motions using frame times as short as 5 s with a spatial accuracy of 0.2 mm on average. Complex volunteer motion involving all six degrees of freedom was estimated with lower accuracy (0.3 mm on average) than the other types investigated. Preprocessing of 5-s images was necessary for successful image registration. Since their method utilizes nonattenuation corrected frames, it is not susceptible to motion introduced between CT and PET acquisitions. Conclusions: The authors have shown that they can estimate motion for frames with time intervals as short as 5 s using nonattenuation corrected reconstructed FDG PET brain images. Intraframe motion in 60-s frames causes degradation of accuracy to about 2 mm based on the motion type.« less
Improved frame-based estimation of head motion in PET brain imaging
Mukherjee, J. M.; Lindsay, C.; Mukherjee, A.; Olivier, P.; Shao, L.; King, M. A.; Licho, R.
2016-01-01
Purpose: Head motion during PET brain imaging can cause significant degradation of image quality. Several authors have proposed ways to compensate for PET brain motion to restore image quality and improve quantitation. Head restraints can reduce movement but are unreliable; thus the need for alternative strategies such as data-driven motion estimation or external motion tracking. Herein, the authors present a data-driven motion estimation method using a preprocessing technique that allows the usage of very short duration frames, thus reducing the intraframe motion problem commonly observed in the multiple frame acquisition method. Methods: The list mode data for PET acquisition is uniformly divided into 5-s frames and images are reconstructed without attenuation correction. Interframe motion is estimated using a 3D multiresolution registration algorithm and subsequently compensated for. For this study, the authors used 8 PET brain studies that used F-18 FDG as the tracer and contained minor or no initial motion. After reconstruction and prior to motion estimation, known motion was introduced to each frame to simulate head motion during a PET acquisition. To investigate the trade-off in motion estimation and compensation with respect to frames of different length, the authors summed 5-s frames accordingly to produce 10 and 60 s frames. Summed images generated from the motion-compensated reconstructed frames were then compared to the original PET image reconstruction without motion compensation. Results: The authors found that our method is able to compensate for both gradual and step-like motions using frame times as short as 5 s with a spatial accuracy of 0.2 mm on average. Complex volunteer motion involving all six degrees of freedom was estimated with lower accuracy (0.3 mm on average) than the other types investigated. Preprocessing of 5-s images was necessary for successful image registration. Since their method utilizes nonattenuation corrected frames, it is not susceptible to motion introduced between CT and PET acquisitions. Conclusions: The authors have shown that they can estimate motion for frames with time intervals as short as 5 s using nonattenuation corrected reconstructed FDG PET brain images. Intraframe motion in 60-s frames causes degradation of accuracy to about 2 mm based on the motion type. PMID:27147355
Motion compensation for cone-beam CT using Fourier consistency conditions
NASA Astrophysics Data System (ADS)
Berger, M.; Xia, Y.; Aichinger, W.; Mentl, K.; Unberath, M.; Aichert, A.; Riess, C.; Hornegger, J.; Fahrig, R.; Maier, A.
2017-09-01
In cone-beam CT, involuntary patient motion and inaccurate or irreproducible scanner motion substantially degrades image quality. To avoid artifacts this motion needs to be estimated and compensated during image reconstruction. In previous work we showed that Fourier consistency conditions (FCC) can be used in fan-beam CT to estimate motion in the sinogram domain. This work extends the FCC to 3\\text{D} cone-beam CT. We derive an efficient cost function to compensate for 3\\text{D} motion using 2\\text{D} detector translations. The extended FCC method have been tested with five translational motion patterns, using a challenging numerical phantom. We evaluated the root-mean-square-error and the structural-similarity-index between motion corrected and motion-free reconstructions. Additionally, we computed the mean-absolute-difference (MAD) between the estimated and the ground-truth motion. The practical applicability of the method is demonstrated by application to respiratory motion estimation in rotational angiography, but also to motion correction for weight-bearing imaging of knees. Where the latter makes use of a specifically modified FCC version which is robust to axial truncation. The results show a great reduction of motion artifacts. Accurate estimation results were achieved with a maximum MAD value of 708 μm and 1184 μm for motion along the vertical and horizontal detector direction, respectively. The image quality of reconstructions obtained with the proposed method is close to that of motion corrected reconstructions based on the ground-truth motion. Simulations using noise-free and noisy data demonstrate that FCC are robust to noise. Even high-frequency motion was accurately estimated leading to a considerable reduction of streaking artifacts. The method is purely image-based and therefore independent of any auxiliary data.
Sedimentation of a sphere in a fluid channel
NASA Astrophysics Data System (ADS)
Pitois, Olivier; Fritz, Christelle; Pasol, Laurentiu; Vignes-Adler, Michèle
2009-10-01
We studied both experimentally and numerically the sedimentation velocity of small solid particles through liquid channels merging at the intersection of three soap films. The wall mobility induces a nontrivial behavior for the particle drag coefficient, providing particular transport properties that are not observed for channels with rigid walls. It is shown that for sufficiently small particles, slow and fast motions are observed for the particle along the channel, depending on the particle position within the channel cross section and the sphere/channel size ratio. The velocity corresponding to fast motions can be as high as twice the Stokes velocity in an unbounded fluid. Moreover, the fast motions are not observed anymore when the size ratio exceeds a critical value, which has been found to be approximately equal to 0.5. As another major difference with the solid wall channel, the sphere velocity does not vanish when the size ratio reaches unity. Instead, the smallest value is found to be 1/4 of the Stokes velocity.
Use of a genetic algorithm for the analysis of eye movements from the linear vestibulo-ocular reflex
NASA Technical Reports Server (NTRS)
Shelhamer, M.
2001-01-01
It is common in vestibular and oculomotor testing to use a single-frequency (sine) or combination of frequencies [sum-of-sines (SOS)] stimulus for head or target motion. The resulting eye movements typically contain a smooth tracking component, which follows the stimulus, in which are interspersed rapid eye movements (saccades or fast phases). The parameters of the smooth tracking--the amplitude and phase of each component frequency--are of interest; many methods have been devised that attempt to identify and remove the fast eye movements from the smooth. We describe a new approach to this problem, tailored to both single-frequency and sum-of-sines stimulation of the human linear vestibulo-ocular reflex. An approximate derivative is used to identify fast movements, which are then omitted from further analysis. The remaining points form a series of smooth tracking segments. A genetic algorithm is used to fit these segments together to form a smooth (but disconnected) wave form, by iteratively removing biases due to the missing fast phases. A genetic algorithm is an iterative optimization procedure; it provides a basis for extending this approach to more complex stimulus-response situations. In the SOS case, the genetic algorithm estimates the amplitude and phase values of the component frequencies as well as removing biases.
NASA Astrophysics Data System (ADS)
Paganelli, Chiara; Lee, Danny; Greer, Peter B.; Baroni, Guido; Riboldi, Marco; Keall, Paul
2015-09-01
The quantification of tumor motion in sites affected by respiratory motion is of primary importance to improve treatment accuracy. To account for motion, different studies analyzed the translational component only, without focusing on the rotational component, which was quantified in a few studies on the prostate with implanted markers. The aim of our study was to propose a tool able to quantify lung tumor rotation without the use of internal markers, thus providing accurate motion detection close to critical structures such as the heart or liver. Specifically, we propose the use of an automatic feature extraction method in combination with the acquisition of fast orthogonal cine MRI images of nine lung patients. As a preliminary test, we evaluated the performance of the feature extraction method by applying it on regions of interest around (i) the diaphragm and (ii) the tumor and comparing the estimated motion with that obtained by (i) the extraction of the diaphragm profile and (ii) the segmentation of the tumor, respectively. The results confirmed the capability of the proposed method in quantifying tumor motion. Then, a point-based rigid registration was applied to the extracted tumor features between all frames to account for rotation. The median lung rotation values were -0.6 ± 2.3° and -1.5 ± 2.7° in the sagittal and coronal planes respectively, confirming the need to account for tumor rotation along with translation to improve radiotherapy treatment.
"Chew on This": An Interview with Charles Wilson
ERIC Educational Resources Information Center
Curriculum Review, 2007
2007-01-01
When the award-winning journalist Eric Schlosser's groundbreaking book "Fast Food Nation" was published for adults, many called for his insights and research to be shared with young readers. And, when "Fast Food Nation" gained popularity as a fictional, yet factual motion picture, the buzz continued. Children, after all, are the fast-food…
NASA Astrophysics Data System (ADS)
Wulansari, I. H.; Wibowo, W. E.; Pawiro, S. A.
2017-05-01
In lung cancer cases, there exists a difficulty for the Treatment Planning System (TPS) to predict the dose at or near the mass interface. This error prediction might influence the minimum or maximum dose received by lung cancer. In addition to target motion, the target dose prediction error also contributes in the combined error during the course of treatment. The objective of this work was to verify dose plan calculated by adaptive convolution algorithm in Pinnacle3 at the mass interface against a set of measurement. The measurement was performed using Gafchromic EBT 3 film in static and dynamic CIRS phantom with amplitudes of 5 mm, 10 mm, and 20 mm in superior-inferior motion direction. Static and dynamic phantom were scanned with fast CT and slow CT before planned. The results showed that adaptive convolution algorithm mostly predicted mass interface dose lower than the measured dose in a range of -0,63% to 8,37% for static phantom in fast CT scanning and -0,27% to 15,9% for static phantom in slow CT scanning. In dynamic phantom, this algorithm was predicted mass interface dose higher than measured dose up to -89% for fast CT and varied from -17% until 37% for slow CT. This interface of dose differences caused the dose mass decreased in fast CT, except for 10 mm motion amplitude, and increased in slow CT for the greater amplitude of motion.
NASA Astrophysics Data System (ADS)
Liu, Hongfei; Pan, Gaofeng; Lin, Zhong; Liu, Cheng; Zhu, Wenbai; Nan, Rendong; Li, Chunsheng; Gao, Guanjun; Luo, Wenyong; Jin, Chengjin; Song, Jinyou
2017-11-01
The construction of FAST telescope was completed in Guizhou province of China in September 2016, and a kind of novel high-stability 48-core bendable and movable optical cable was developed and applied in analog data optical transmission system of FAST. Novel structure and selective material of this optical cable ensure high stability of optical power in the process of cables round-trip motion when telescope is tracking a radio source. The 105 times bend and stretch accelerated experiment for this optical cable was implemented, and real-time optical and RF signal power fluctuation were measured. The physical structure of optical cables after 105 times round-trip motion is in good condition; the real-time optical power attenuation fluctuation is smaller than 0.044 dB; the real-time RF power fluctuation is smaller than 0.12 dB. The optical cable developed in this letter meets the requirement of FAST and has been applied in FAST telescope.
NoRMCorre: An online algorithm for piecewise rigid motion correction of calcium imaging data.
Pnevmatikakis, Eftychios A; Giovannucci, Andrea
2017-11-01
Motion correction is a challenging pre-processing problem that arises early in the analysis pipeline of calcium imaging data sequences. The motion artifacts in two-photon microscopy recordings can be non-rigid, arising from the finite time of raster scanning and non-uniform deformations of the brain medium. We introduce an algorithm for fast Non-Rigid Motion Correction (NoRMCorre) based on template matching. NoRMCorre operates by splitting the field of view (FOV) into overlapping spatial patches along all directions. The patches are registered at a sub-pixel resolution for rigid translation against a regularly updated template. The estimated alignments are subsequently up-sampled to create a smooth motion field for each frame that can efficiently approximate non-rigid artifacts in a piecewise-rigid manner. Existing approaches either do not scale well in terms of computational performance or are targeted to non-rigid artifacts arising just from the finite speed of raster scanning, and thus cannot correct for non-rigid motion observable in datasets from a large FOV. NoRMCorre can be run in an online mode resulting in comparable to or even faster than real time motion registration of streaming data. We evaluate its performance with simple yet intuitive metrics and compare against other non-rigid registration methods on simulated data and in vivo two-photon calcium imaging datasets. Open source Matlab and Python code is also made available. The proposed method and accompanying code can be useful for solving large scale image registration problems in calcium imaging, especially in the presence of non-rigid deformations. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
Rotational Fourier tracking of diffusing polygons.
Mayoral, Kenny; Kennair, Terry P; Zhu, Xiaoming; Milazzo, James; Ngo, Kathy; Fryd, Michael M; Mason, Thomas G
2011-11-01
We use optical microscopy to measure the rotational Brownian motion of polygonal platelets that are dispersed in a liquid and confined by depletion attractions near a wall. The depletion attraction inhibits out-of-plane translational and rotational Brownian fluctuations, thereby facilitating in-plane imaging and video analysis. By taking fast Fourier transforms (FFTs) of the images and analyzing the angular position of rays in the FFTs, we determine an isolated particle's rotational trajectory, independent of its position. The measured in-plane rotational diffusion coefficients are significantly smaller than estimates for the bulk; this difference is likely due to the close proximity of the particles to the wall arising from the depletion attraction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Gorkom, L.C.; Horvath, L.I.; Hemminga, M.A.
The major coat protein of M13 bacteriophage has been incorporated into bilayers of 1,2-dimyristoyl-sn-glycero-3-phosphocholine, deuterated in the trimethyl segments of the choline headgroup (DMPC-d9). Two-component deuterium and phosphorus-31 NMR spectra have been observed from bilayer complexes containing the coat protein, indicating slow exchange (on the deuterium quadrupole anisotropy and phosphorus-31 chemical shift averaging time scales) of lipid molecules of less than 10(3) Hz between two motionally distinct environments in the complexes. The fraction of the isotropic spectral component increases with increasing M13 protein concentration, and this component is attributed to lipid headgroups, which are disordered relative to their order inmore » protein-free bilayers. The activation energy of the fast local motions of the trimethyl groups of the choline residue in the headgroup decreases from 23 kJ mol-1 in the pure lipid bilayers to 20 kJ mol-1 for the protein-associated lipid headgroups. The chemical exchange rate of lipid molecules between the two motionally distinct environments has been estimated to be 20-50 Hz by steady-state line-shape simulations of the deuterium spectra of DMPC-d9/M13 coat protein complexes using exchange-coupled modified Bloch equations. The off-rate was, as expected from one-to-one exchange, independent of the L/P ratio; tau off -1 = 0.23 kHz. It is suggested that the protein-associated lipid may be trapped between closely packed parallel aggregates of M13 coat protein and that the high local concentration of protein in a one-dimensional arrangement in lipid bilayers may be required for the fast reassembly of phage particles before release from an infected cell.« less
Precise Image-Based Motion Estimation for Autonomous Small Body Exploration
NASA Technical Reports Server (NTRS)
Johnson, Andrew E.; Matthies, Larry H.
1998-01-01
Space science and solar system exploration are driving NASA to develop an array of small body missions ranging in scope from near body flybys to complete sample return. This paper presents an algorithm for onboard motion estimation that will enable the precision guidance necessary for autonomous small body landing. Our techniques are based on automatic feature tracking between a pair of descent camera images followed by two frame motion estimation and scale recovery using laser altimetry data. The output of our algorithm is an estimate of rigid motion (attitude and position) and motion covariance between frames. This motion estimate can be passed directly to the spacecraft guidance and control system to enable rapid execution of safe and precise trajectories.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, T; Ma, C
Purpose: To compare and quantify respiratory motion artifacts in images from free breathing 4D-CT-on-Rails(CTOR) and those from MV-Cone-beam-CT(MVCB) and facilitate respiratory motion guided radiation therapy. Methods: 4D-CTOR: Siemens Somatom CT-on-Rails system with Anzai belt loaded with pressure sensor load cells. 4D scans were performed in helical mode, pitch 0.1, gantry rotation time 0.5s, 1.5mm slice thickness, 120kVp, 400 mAs. Normal and fast breathing (>12rpm) scanning protocols were investigated. Helical scan, AIP(average intensity projection) and MIP(maximum intensity projection) were generated from 4D-CTOR scans with amplitude sorting into 10 phases.MVCB: Siemens Artiste diamond view(1MV)MVCB was performed with 5MU thorax protocol with 60more » second of full rotation.Phantom: Anzai AZ-733V respiratory phantom. The settings were set to normal and resp. modes with repetition rates at 15 rpm and 10 rpm. Surgical clips, acrylic, wooden, rubber and lung density, total six mock-ups were scanned and compared in this study.Signal-to-noise ratio(SNR), contrast-to-noise ratio(CNR) and reconstructed motion volume were compared to different respiratory setups for the mock-ups. Results: Reconstructed motion volume was compared to the real object volume for the six test mock-ups. It shows that free breathing helical in all instances underestimates the object excursions largest to −67.4% and least −6.3%. Under normal breathing settings, MIP can predict very precise motion volume with minimum 0.4% and largest −13.9%. MVCB shows underestimate of the motion volume with −1.11% minimum and −18.0% maximum. With fast breathing, AIP provides bad representation of the object motion; however, the MIP can predict the motion volume with −2.0% to −11.4% underestimate. Conclusion: Respiratory motion guided radiation therapy requires good motion recording. This study shows that regular CTOR helical scans provides bad guidance, 4D CTOR AIP cannot represent the fast breathing pattern, MIP can represent the best motion volume, MVCBCT can only be used for normal breathing with acceptable uncertainties.« less
NASA Astrophysics Data System (ADS)
Kaburaki, Kaori; Mozumi, Michiya; Hasegawa, Hideyuki
2018-07-01
Methods for the estimation of two-dimensional (2D) velocity and displacement of physiological tissues are necessary for quantitative diagnosis. In echocardiography with a phased array probe, the accuracy in the estimation of the lateral motion is lower than that of the axial motion. To improve the accuracy in the estimation of the lateral motion, in the present study, the coordinate system for ultrasonic beamforming was changed from the conventional polar coordinate to the Cartesian coordinate. In a basic experiment, the motion velocity of a phantom, which was moved at a constant speed, was estimated by the conventional and proposed methods. The proposed method reduced the bias error and standard deviation in the estimated motion velocities. In an in vivo measurement, intracardiac blood flow was analyzed by the proposed method.
Gambarota, Giulio; Hitti, Eric; Leporq, Benjamin; Saint-Jalmes, Hervé; Beuf, Olivier
2017-01-01
Tissue perfusion measurements using intravoxel incoherent motion (IVIM) diffusion-MRI are of interest for investigations of liver pathologies. A confounding factor in the perfusion quantification is the partial volume between liver tissue and large blood vessels. The aim of this study was to assess and correct for this partial volume effect in the estimation of the perfusion fraction. MRI experiments were performed at 3 Tesla with a diffusion-MRI sequence at 12 b-values. Diffusion signal decays in liver were analyzed using the non-negative least square (NNLS) method and the biexponential fitting approach. In some voxels, the NNLS analysis yielded a very fast-decaying component that was assigned to partial volume with the blood flowing in large vessels. Partial volume correction was performed by biexponential curve fitting, where the first data point (b = 0 s/mm 2 ) was eliminated in voxels with a very fast-decaying component. Biexponential fitting with partial volume correction yielded parametric maps with perfusion fraction values smaller than biexponential fitting without partial volume correction. The results of the current study indicate that the NNLS analysis in combination with biexponential curve fitting allows to correct for partial volume effects originating from blood flow in IVIM perfusion fraction measurements. Magn Reson Med 77:310-317, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
On The Origin Of Hyper-Fast Pulsars
NASA Astrophysics Data System (ADS)
Gvaramadze, V. V.
2006-08-01
Recent proper motion and parallax measurements for the pulsar PSR B1508+55 gave the highest (transverse) velocity (~1100 km/s) ever measured for a neutron star (Chatterjee et al. 2005). The spin-down characteristics of PSR B1508+55 (typical of non-recycled pulsars) imply that the high velocity of this pulsar cannot be solely due to disruption of a tight massive binary system. A possible way to account for the high velocity of PSR B1508+55 is to assume that at least a part of this velocity is due to a natal or post-natal kick (Chatterjee et al. 2005). We propose an alternative explanation for the origin of hyper-fast pulsars. We suggest that PSR B1508+55 could be the remnant of a (symmetric) supernova explosion of the helium core of a massive star expelled at high velocity from the dense core of a young massive stellar cluster by an intermediate-mass (binary) black hole. The maximum peculiar velocity of the helium core is limited by the parabolic velocity on its surface and could be as large as ~2000 km/s. Thus, one can account not only for the high velocity measured for PSR B1508+55, but also for the even higher velocity of ~1600 km/s inferred for the pulsar PSR B2224+65 (Guitar; Chatterjee & Cordes 2004) on the basis of its proper motion and the dispersion measure distance estimate.
Direction-dependent regularization for improved estimation of liver and lung motion in 4D image data
NASA Astrophysics Data System (ADS)
Schmidt-Richberg, Alexander; Ehrhardt, Jan; Werner, René; Handels, Heinz
2010-03-01
The estimation of respiratory motion is a fundamental requisite for many applications in the field of 4D medical imaging, for example for radiotherapy of thoracic and abdominal tumors. It is usually done using non-linear registration of time frames of the sequence without further modelling of physiological motion properties. In this context, the accurate calculation of liver und lung motion is especially challenging because the organs are slipping along the surrounding tissue (i.e. the rib cage) during the respiratory cycle, which leads to discontinuities in the motion field. Without incorporating this specific physiological characteristic, common smoothing mechanisms cause an incorrect estimation along the object borders. In this paper, we present an extended diffusion-based model for incorporating physiological knowledge in image registration. By decoupling normal- and tangential-directed smoothing, we are able to estimate slipping motion at the organ borders while preventing gaps and ensuring smooth motion fields inside. We evaluate our model for the estimation of lung and liver motion on the basis of publicly accessible 4D CT and 4D MRI data. The results show a considerable increase of registration accuracy with respect to the target registration error and a more plausible motion estimation.
Frank, Lawrence R.; Jung, Youngkyoo; Inati, Souheil; Tyszka, J. Michael; Wong, Eric C.
2009-01-01
We present an acquisition and reconstruction method designed to acquire high resolution 3D fast spin echo diffusion tensor images while mitigating the major sources of artifacts in DTI - field distortions, eddy currents and motion. The resulting images, being 3D, are of high SNR, and being fast spin echoes, exhibit greatly reduced field distortions. This sequence utilizes variable density spiral acquisition gradients, which allow for the implementation of a self-navigation scheme by which both eddy current and motion artifacts are removed. The result is that high resolution 3D DTI images are produced without the need for eddy current compensating gradients or B0 field correction. In addition, a novel method for fast and accurate reconstruction of the non-Cartesian data is employed. Results are demonstrated in the brains of normal human volunteers. PMID:19778618
Agradient velocity, vortical motion and gravity waves in a rotating shallow-water model
NASA Astrophysics Data System (ADS)
Sutyrin Georgi, G.
2004-07-01
A new approach to modelling slow vortical motion and fast inertia-gravity waves is suggested within the rotating shallow-water primitive equations with arbitrary topography. The velocity is exactly expressed as a sum of the gradient wind, described by the Bernoulli function,B, and the remaining agradient part, proportional to the velocity tendency. Then the equation for inverse potential vorticity,Q, as well as momentum equations for agradient velocity include the same source of intrinsic flow evolution expressed as a single term J (B, Q), where J is the Jacobian operator (for any steady state J (B, Q) = 0). Two components of agradient velocity are responsible for the fast inertia-gravity wave propagation similar to the traditionally used divergence and ageostrophic vorticity. This approach allows for the construction of balance relations for vortical dynamics and potential vorticity inversion schemes even for moderate Rossby and Froude numbers assuming the characteristic value of |J(B, Q)| = to be small. The components of agradient velocity are used as the fast variables slaved to potential vorticity that allows for diagnostic estimates of the velocity tendency, the direct potential vorticity inversion with the accuracy of 2 and the corresponding potential vorticity-conserving agradient velocity balance model (AVBM). The ultimate limitations of constructing the balance are revealed in the form of the ellipticity condition for balanced tendency of the Bernoulli function which incorporates both known criteria of the formal stability: the gradient wind modified by the characteristic vortical Rossby wave phase speed should be subcritical. The accuracy of the AVBM is illustrated by considering the linear normal modes and coastal Kelvin waves in the f-plane channel with topography.
Anderson, Dennis E; Madigan, Michael L
2014-03-21
Limited plantar flexor strength and hip extension range of motion (ROM) in older adults are believed to underlie common age-related differences in gait. However, no studies of age-related differences in gait have quantified the percentage of strength and ROM used during gait. We examined peak hip angles, hip torques and plantar flexor torques, and corresponding estimates of functional capacity utilized (FCU), which we define as the percentage of available strength or joint ROM used, in 10 young and 10 older healthy adults walking under self-selected and controlled (slow and fast) conditions. Older adults walked with about 30% smaller hip extension angle, 28% larger hip flexion angle, 34% more hip extensor torque in the slow condition, and 12% less plantar flexor torque in the fast condition than young adults. Older adults had higher FCU than young adults for hip flexion angle (47% vs. 34%) and hip extensor torque (48% vs. 27%). FCUs for plantar flexor torque (both age groups) and hip extension angle (older adults in all conditions; young adults in self-selected gait) were not significantly <100%, and were higher than for other measures examined. Older adults lacked sufficient hip extension ROM to walk with a hip extension angle as large as that of young adults. Similarly, in the fast gait condition older adults lacked the strength to match the plantar flexor torque produced by young adults. This supports the hypothesis that hip extension ROM and plantar flexor strength are limiting factors in gait and contribute to age-related differences in gait. Copyright © 2014 Elsevier Ltd. All rights reserved.
Estimation of slipping organ motion by registration with direction-dependent regularization.
Schmidt-Richberg, Alexander; Werner, René; Handels, Heinz; Ehrhardt, Jan
2012-01-01
Accurate estimation of respiratory motion is essential for many applications in medical 4D imaging, for example for radiotherapy of thoracic and abdominal tumors. It is usually done by non-linear registration of image scans at different states of the breathing cycle but without further modeling of specific physiological motion properties. In this context, the accurate computation of respiration-driven lung motion is especially challenging because this organ is sliding along the surrounding tissue during the breathing cycle, leading to discontinuities in the motion field. Without considering this property in the registration model, common intensity-based algorithms cause incorrect estimation along the object boundaries. In this paper, we present a model for incorporating slipping motion in image registration. Extending the common diffusion registration by distinguishing between normal- and tangential-directed motion, we are able to estimate slipping motion at the organ boundaries while preventing gaps and ensuring smooth motion fields inside and outside. We further present an algorithm for a fully automatic detection of discontinuities in the motion field, which does not rely on a prior segmentation of the organ. We evaluate the approach for the estimation of lung motion based on 23 inspiration/expiration pairs of thoracic CT images. The results show a visually more plausible motion estimation. Moreover, the target registration error is quantified using manually defined landmarks and a significant improvement over the standard diffusion regularization is shown. Copyright © 2011 Elsevier B.V. All rights reserved.
Losses to single-family housing from ground motions in the 1994 Northridge, California, earthquake
Wesson, R.L.; Perkins, D.M.; Leyendecker, E.V.; Roth, R.J.; Petersen, M.D.
2004-01-01
The distributions of insured losses to single-family housing following the 1994 Northridge, California, earthquake for 234 ZIP codes can be satisfactorily modeled with gamma distributions. Regressions of the parameters in the gamma distribution on estimates of ground motion, derived from ShakeMap estimates or from interpolated observations, provide a basis for developing curves of conditional probability of loss given a ground motion. Comparison of the resulting estimates of aggregate loss with the actual aggregate loss gives satisfactory agreement for several different ground-motion parameters. Estimates of loss based on a deterministic spatial model of the earthquake ground motion, using standard attenuation relationships and NEHRP soil factors, give satisfactory results for some ground-motion parameters if the input ground motions are increased about one and one-half standard deviations above the median, reflecting the fact that the ground motions for the Northridge earthquake tended to be higher than the median ground motion for other earthquakes with similar magnitude. The results give promise for making estimates of insured losses to a similar building stock under future earthquake loading. ?? 2004, Earthquake Engineering Research Institute.
Feasibility of Measuring Mean Vertical Motion for Estimating Advection. Chapter 6
NASA Technical Reports Server (NTRS)
Vickers, Dean; Mahrt, L.
2005-01-01
Numerous recent studies calculate horizontal and vertical advection terms for budget studies of net ecosystem exchange of carbon. One potential uncertainty in such studies is the estimate of mean vertical motion. This work addresses the reliability of vertical advection estimates by contrasting the vertical motion obtained from the standard practise of measuring the vertical velocity and applying a tilt correction, to the vertical motion calculated from measurements of the horizontal divergence of the flow using a network of towers. Results are compared for three different tilt correction methods. Estimates of mean vertical motion are sensitive to the choice of tilt correction method. The short-term mean (10 to 60 minutes) vertical motion based on the horizontal divergence is more realistic compared to the estimates derived from the standard practise. The divergence shows long-term mean (days to months) sinking motion at the site, apparently due to the surface roughness change. Because all the tilt correction methods rely on the assumption that the long-term mean vertical motion is zero for a given wind direction, they fail to reproduce the vertical motion based on the divergence.
Efficient Wide Baseline Structure from Motion
NASA Astrophysics Data System (ADS)
Michelini, Mario; Mayer, Helmut
2016-06-01
This paper presents a Structure from Motion approach for complex unorganized image sets. To achieve high accuracy and robustness, image triplets are employed and (an approximate) camera calibration is assumed to be known. The focus lies on a complete linking of images even in case of large image distortions, e.g., caused by wide baselines, as well as weak baselines. A method for embedding image descriptors into Hamming space is proposed for fast image similarity ranking. The later is employed to limit the number of pairs to be matched by a wide baseline method. An iterative graph-based approach is proposed formulating image linking as the search for a terminal Steiner minimum tree in a line graph. Finally, additional links are determined and employed to improve the accuracy of the pose estimation. By this means, loops in long image sequences are implicitly closed. The potential of the proposed approach is demonstrated by results for several complex image sets also in comparison with VisualSFM.
Adaptive Strategies for Controls of Flexible Arms. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Yuan, Bau-San
1989-01-01
An adaptive controller for a modern manipulator has been designed based on asymptotical stability via the Lyapunov criterion with the output error between the system and a reference model used as the actuating control signal. Computer simulations were carried out to test the design. The combination of the adaptive controller and a system vibration and mode shape estimator show that the flexible arm should move along a pre-defined trajectory with high-speed motion and fast vibration setting time. An existing computer-controlled prototype two link manipulator, RALF (Robotic Arm, Large Flexible), with a parallel mechanism driven by hydraulic actuators was used to verify the mathematical analysis. The experimental results illustrate that assumed modes found from finite element techniques can be used to derive the equations of motion with acceptable accuracy. The robust adaptive (modal) control is implemented to compensate for unmodelled modes and nonlinearities and is compared with the joint feedback control in additional experiments. Preliminary results show promise for the experimental control algorithm.
Seeing blur: 'motion sharpening' without motion.
Georgeson, Mark A; Hammett, Stephen T
2002-01-01
It is widely supposed that things tend to look blurred when they are moving fast. Previous work has shown that this is true for sharp edges but, paradoxically, blurred edges look sharper when they are moving than when stationary. This is 'motion sharpening'. We show that blurred edges also look up to 50% sharper when they are presented briefly (8-24 ms) than at longer durations (100-500 ms) without motion. This argues strongly against high-level models of sharpening based specifically on compensation for motion blur. It also argues against a recent, low-level, linear filter model that requires motion to produce sharpening. No linear filter model can explain our finding that sharpening was similar for sinusoidal and non-sinusoidal gratings, since linear filters can never distort sine waves. We also conclude that the idea of a 'default' assumption of sharpness is not supported by experimental evidence. A possible source of sharpening is a nonlinearity in the contrast response of early visual mechanisms to fast or transient temporal changes, perhaps based on the magnocellular (M-cell) pathway. Our finding that sharpening is not diminished at low contrast sets strong constraints on the nature of the nonlinearity. PMID:12137571
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, X; Sisniega, A; Zbijewski, W
Purpose: Visualization and quantification of coronary artery calcification and atherosclerotic plaque benefits from coronary artery motion (CAM) artifact elimination. This work applies a rigid linear motion model to a Volume of Interest (VoI) for estimating motion estimation and compensation of image degradation in Coronary Computed Tomography Angiography (CCTA). Methods: In both simulation and testbench experiments, translational CAM was generated by displacement of the imaging object (i.e. simulated coronary artery and explanted human heart) by ∼8 mm, approximating the motion of a main coronary branch. Rotation was assumed to be negligible. A motion degraded region containing a calcification was selected asmore » the VoI. Local residual motion was assumed to be rigid and linear over the acquisition window, simulating motion observed during diastasis. The (negative) magnitude of the image gradient of the reconstructed VoI was chosen as the motion estimation objective and was minimized with Covariance Matrix Adaptation Evolution Strategy (CMAES). Results: Reconstruction incorporated the estimated CAM yielded signification recovery of fine calcification structures as well as reduced motion artifacts within the selected local region. The compensated reconstruction was further evaluated using two image similarity metrics, the structural similarity index (SSIM) and Root Mean Square Error (RMSE). At the calcification site, the compensated data achieved a 3% increase in SSIM and a 91.2% decrease in RMSE in comparison with the uncompensated reconstruction. Conclusion: Results demonstrate the feasibility of our image-based motion estimation method exploiting a local rigid linear model for CAM compensation. The method shows promising preliminary results for the application of such estimation in CCTA. Further work will involve motion estimation of complex motion corrupted patient data acquired from clinical CT scanner.« less
Fast Paleogene Motion of the Pacific Hotspots from Revised Global Plate Circuit Constraints
NASA Technical Reports Server (NTRS)
Raymond, C.; Stock, J.; Cande, S.
2000-01-01
Major improvements in late Cretaceous-early Tertiary Pacific-Antarctica plate reconstructions, and new East-West Antarctica rotations, allow a more definitive test of the relative motion between hotspots using global plate circuit reconstructions with quantitative uncertainties.
Sliding-mode control combined with improved adaptive feedforward for wafer scanner
NASA Astrophysics Data System (ADS)
Li, Xiaojie; Wang, Yiguang
2018-03-01
In this paper, a sliding-mode control method combined with improved adaptive feedforward is proposed for wafer scanner to improve the tracking performance of the closed-loop system. Particularly, In addition to the inverse model, the nonlinear force ripple effect which may degrade the tracking accuracy of permanent magnet linear motor (PMLM) is considered in the proposed method. The dominant position periodicity of force ripple is determined by using the Fast Fourier Transform (FFT) analysis for experimental data and the improved feedforward control is achieved by the online recursive least-squares (RLS) estimation of the inverse model and the force ripple. The improved adaptive feedforward is given in a general form of nth-order model with force ripple effect. This proposed method is motivated by the motion controller design of the long-stroke PMLM and short-stroke voice coil motor for wafer scanner. The stability of the closed-loop control system and the convergence of the motion tracking are guaranteed by the proposed sliding-mode feedback and adaptive feedforward methods theoretically. Comparative experiments on a precision linear motion platform can verify the correctness and effectiveness of the proposed method. The experimental results show that comparing to traditional method the proposed one has better performance of rapidity and robustness, especially for high speed motion trajectory. And, the improvements on both tracking accuracy and settling time can be achieved.
Vrooijink, Gustaaf J.; Abayazid, Momen; Patil, Sachin; Alterovitz, Ron; Misra, Sarthak
2015-01-01
Needle insertion is commonly performed in minimally invasive medical procedures such as biopsy and radiation cancer treatment. During such procedures, accurate needle tip placement is critical for correct diagnosis or successful treatment. Accurate placement of the needle tip inside tissue is challenging, especially when the target moves and anatomical obstacles must be avoided. We develop a needle steering system capable of autonomously and accurately guiding a steerable needle using two-dimensional (2D) ultrasound images. The needle is steered to a moving target while avoiding moving obstacles in a three-dimensional (3D) non-static environment. Using a 2D ultrasound imaging device, our system accurately tracks the needle tip motion in 3D space in order to estimate the tip pose. The needle tip pose is used by a rapidly exploring random tree-based motion planner to compute a feasible needle path to the target. The motion planner is sufficiently fast such that replanning can be performed repeatedly in a closed-loop manner. This enables the system to correct for perturbations in needle motion, and movement in obstacle and target locations. Our needle steering experiments in a soft-tissue phantom achieves maximum targeting errors of 0.86 ± 0.35 mm (without obstacles) and 2.16 ± 0.88 mm (with a moving obstacle). PMID:26279600
Piecewise-Planar StereoScan: Sequential Structure and Motion using Plane Primitives.
Raposo, Carolina; Antunes, Michel; P Barreto, Joao
2017-08-09
The article describes a pipeline that receives as input a sequence of stereo images, and outputs the camera motion and a Piecewise-Planar Reconstruction (PPR) of the scene. The pipeline, named Piecewise-Planar StereoScan (PPSS), works as follows: the planes in the scene are detected for each stereo view using semi-dense depth estimation; the relative pose is computed by a new closed-form minimal algorithm that only uses point correspondences whenever plane detections do not fully constrain the motion; the camera motion and the PPR are jointly refined by alternating between discrete optimization and continuous bundle adjustment; and, finally, the detected 3D planes are segmented in images using a new framework that handles low texture and visibility issues. PPSS is extensively validated in indoor and outdoor datasets, and benchmarked against two popular point-based SfM pipelines. The experiments confirm that plane-based visual odometry is resilient to situations of small image overlap, poor texture, specularity, and perceptual aliasing where the fast LIBVISO2 pipeline fails. The comparison against VisualSfM+CMVS/PMVS shows that, for a similar computational complexity, PPSS is more accurate and provides much more compelling and visually pleasant 3D models. These results strongly suggest that plane primitives are an advantageous alternative to point correspondences for applications of SfM and 3D reconstruction in man-made environments.
Peressutti, Devis; Penney, Graeme P; Housden, R James; Kolbitsch, Christoph; Gomez, Alberto; Rijkhorst, Erik-Jan; Barratt, Dean C; Rhode, Kawal S; King, Andrew P
2013-05-01
In image-guided cardiac interventions, respiratory motion causes misalignments between the pre-procedure roadmap of the heart used for guidance and the intra-procedure position of the heart, reducing the accuracy of the guidance information and leading to potentially dangerous consequences. We propose a novel technique for motion-correcting the pre-procedural information that combines a probabilistic MRI-derived affine motion model with intra-procedure real-time 3D echocardiography (echo) images in a Bayesian framework. The probabilistic model incorporates a measure of confidence in its motion estimates which enables resolution of the potentially conflicting information supplied by the model and the echo data. Unlike models proposed so far, our method allows the final motion estimate to deviate from the model-produced estimate according to the information provided by the echo images, so adapting to the complex variability of respiratory motion. The proposed method is evaluated using gold-standard MRI-derived motion fields and simulated 3D echo data for nine volunteers and real 3D live echo images for four volunteers. The Bayesian method is compared to 5 other motion estimation techniques and results show mean/max improvements in estimation accuracy of 10.6%/18.9% for simulated echo images and 20.8%/41.5% for real 3D live echo data, over the best comparative estimation method. Copyright © 2013 Elsevier B.V. All rights reserved.
Identification of Piecewise Linear Uniform Motion Blur
NASA Astrophysics Data System (ADS)
Patanukhom, Karn; Nishihara, Akinori
A motion blur identification scheme is proposed for nonlinear uniform motion blurs approximated by piecewise linear models which consist of more than one linear motion component. The proposed scheme includes three modules that are a motion direction estimator, a motion length estimator and a motion combination selector. In order to identify the motion directions, the proposed scheme is based on a trial restoration by using directional forward ramp motion blurs along different directions and an analysis of directional information via frequency domain by using a Radon transform. Autocorrelation functions of image derivatives along several directions are employed for estimation of the motion lengths. A proper motion combination is identified by analyzing local autocorrelation functions of non-flat component of trial restored results. Experimental examples of simulated and real world blurred images are given to demonstrate a promising performance of the proposed scheme.
An Unscented Kalman-Particle Hybrid Filter for Space Object Tracking
NASA Astrophysics Data System (ADS)
Raihan A. V, Dilshad; Chakravorty, Suman
2018-03-01
Optimal and consistent estimation of the state of space objects is pivotal to surveillance and tracking applications. However, probabilistic estimation of space objects is made difficult by the non-Gaussianity and nonlinearity associated with orbital mechanics. In this paper, we present an unscented Kalman-particle hybrid filtering framework for recursive Bayesian estimation of space objects. The hybrid filtering scheme is designed to provide accurate and consistent estimates when measurements are sparse without incurring a large computational cost. It employs an unscented Kalman filter (UKF) for estimation when measurements are available. When the target is outside the field of view (FOV) of the sensor, it updates the state probability density function (PDF) via a sequential Monte Carlo method. The hybrid filter addresses the problem of particle depletion through a suitably designed filter transition scheme. To assess the performance of the hybrid filtering approach, we consider two test cases of space objects that are assumed to undergo full three dimensional orbital motion under the effects of J 2 and atmospheric drag perturbations. It is demonstrated that the hybrid filters can furnish fast, accurate and consistent estimates outperforming standard UKF and particle filter (PF) implementations.
Facial motion parameter estimation and error criteria in model-based image coding
NASA Astrophysics Data System (ADS)
Liu, Yunhai; Yu, Lu; Yao, Qingdong
2000-04-01
Model-based image coding has been given extensive attention due to its high subject image quality and low bit-rates. But the estimation of object motion parameter is still a difficult problem, and there is not a proper error criteria for the quality assessment that are consistent with visual properties. This paper presents an algorithm of the facial motion parameter estimation based on feature point correspondence and gives the motion parameter error criteria. The facial motion model comprises of three parts. The first part is the global 3-D rigid motion of the head, the second part is non-rigid translation motion in jaw area, and the third part consists of local non-rigid expression motion in eyes and mouth areas. The feature points are automatically selected by a function of edges, brightness and end-node outside the blocks of eyes and mouth. The numbers of feature point are adjusted adaptively. The jaw translation motion is tracked by the changes of the feature point position of jaw. The areas of non-rigid expression motion can be rebuilt by using block-pasting method. The estimation approach of motion parameter error based on the quality of reconstructed image is suggested, and area error function and the error function of contour transition-turn rate are used to be quality criteria. The criteria reflect the image geometric distortion caused by the error of estimated motion parameters properly.
The application of mean field theory to image motion estimation.
Zhang, J; Hanauer, G G
1995-01-01
Previously, Markov random field (MRF) model-based techniques have been proposed for image motion estimation. Since motion estimation is usually an ill-posed problem, various constraints are needed to obtain a unique and stable solution. The main advantage of the MRF approach is its capacity to incorporate such constraints, for instance, motion continuity within an object and motion discontinuity at the boundaries between objects. In the MRF approach, motion estimation is often formulated as an optimization problem, and two frequently used optimization methods are simulated annealing (SA) and iterative-conditional mode (ICM). Although the SA is theoretically optimal in the sense of finding the global optimum, it usually takes many iterations to converge. The ICM, on the other hand, converges quickly, but its results are often unsatisfactory due to its "hard decision" nature. Previously, the authors have applied the mean field theory to image segmentation and image restoration problems. It provides results nearly as good as SA but with much faster convergence. The present paper shows how the mean field theory can be applied to MRF model-based motion estimation. This approach is demonstrated on both synthetic and real-world images, where it produced good motion estimates.
Seismic azimuthal anisotropy beneath the eastern United States and its geodynamic implications
NASA Astrophysics Data System (ADS)
Yang, Bin B.; Liu, Yunhua; Dahm, Haider; Liu, Kelly H.; Gao, Stephen S.
2017-03-01
Systematic spatial variations of anisotropic characteristics are revealed beneath the eastern U.S. using seismic data recorded between 1988 and 2016 by 785 stations. The resulting fast polarization orientations of the 5613 measurements are generally subparallel to the absolute plate motion (APM) and are inconsistent with the strike of major tectonic features. This inconsistency, together with the results of depth estimation using the spatial coherency of the splitting parameters, suggests a mostly asthenospheric origin of the observed azimuthal anisotropy. The observations can be explained by a combined effect of APM-induced mantle fabric and a flow system deflected horizontally around the edges of the keel of the North American continent. Beneath the southern and northeastern portions of the study area, the E-W keel-deflected flow enhances APM-induced fabric and produces mostly E-W fast orientations with large splitting times, while beneath the southeastern U.S., anisotropy from the N-S oriented flow is weakened by the APM.
Advanced Respiratory Motion Compensation for Coronary MR Angiography
Henningsson, Markus; Botnar, Rene M.
2013-01-01
Despite technical advances, respiratory motion remains a major impediment in a substantial amount of patients undergoing coronary magnetic resonance angiography (CMRA). Traditionally, respiratory motion compensation has been performed with a one-dimensional respiratory navigator positioned on the right hemi-diaphragm, using a motion model to estimate and correct for the bulk respiratory motion of the heart. Recent technical advancements has allowed for direct respiratory motion estimation of the heart, with improved motion compensation performance. Some of these new methods, particularly using image-based navigators or respiratory binning, allow for more advanced motion correction which enables CMRA data acquisition throughout most or all of the respiratory cycle, thereby significantly reducing scan time. This review describes the three components typically involved in most motion compensation strategies for CMRA, including respiratory motion estimation, gating and correction, and how these processes can be utilized to perform advanced respiratory motion compensation. PMID:23708271
Infrared video based gas leak detection method using modified FAST features
NASA Astrophysics Data System (ADS)
Wang, Min; Hong, Hanyu; Huang, Likun
2018-03-01
In order to detect the invisible leaking gas that is usually dangerous and easily leads to fire or explosion in time, many new technologies have arisen in the recent years, among which the infrared video based gas leak detection is widely recognized as a viable tool. However, all the moving regions of a video frame can be detected as leaking gas regions by the existing infrared video based gas leak detection methods, without discriminating the property of each detected region, e.g., a walking person in a video frame may be also detected as gas by the current gas leak detection methods.To solve this problem, we propose a novel infrared video based gas leak detection method in this paper, which is able to effectively suppress strong motion disturbances.Firstly, the Gaussian mixture model(GMM) is used to establish the background model.Then due to the observation that the shapes of gas regions are different from most rigid moving objects, we modify the Features From Accelerated Segment Test (FAST) algorithm and use the modified FAST (mFAST) features to describe each connected component. In view of the fact that the statistical property of the mFAST features extracted from gas regions is different from that of other motion regions, we propose the Pixel-Per-Points (PPP) condition to further select candidate connected components.Experimental results show that the algorithm is able to effectively suppress most strong motion disturbances and achieve real-time leaking gas detection.
Adaptive temporal compressive sensing for video with motion estimation
NASA Astrophysics Data System (ADS)
Wang, Yeru; Tang, Chaoying; Chen, Yueting; Feng, Huajun; Xu, Zhihai; Li, Qi
2018-04-01
In this paper, we present an adaptive reconstruction method for temporal compressive imaging with pixel-wise exposure. The motion of objects is first estimated from interpolated images with a designed coding mask. With the help of motion estimation, image blocks are classified according to the degree of motion and reconstructed with the corresponding dictionary, which was trained beforehand. Both the simulation and experiment results show that the proposed method can obtain accurate motion information before reconstruction and efficiently reconstruct compressive video.
Test suite for image-based motion estimation of the brain and tongue
NASA Astrophysics Data System (ADS)
Ramsey, Jordan; Prince, Jerry L.; Gomez, Arnold D.
2017-03-01
Noninvasive analysis of motion has important uses as qualitative markers for organ function and to validate biomechanical computer simulations relative to experimental observations. Tagged MRI is considered the gold standard for noninvasive tissue motion estimation in the heart, and this has inspired multiple studies focusing on other organs, including the brain under mild acceleration and the tongue during speech. As with other motion estimation approaches, using tagged MRI to measure 3D motion includes several preprocessing steps that affect the quality and accuracy of estimation. Benchmarks, or test suites, are datasets of known geometries and displacements that act as tools to tune tracking parameters or to compare different motion estimation approaches. Because motion estimation was originally developed to study the heart, existing test suites focus on cardiac motion. However, many fundamental differences exist between the heart and other organs, such that parameter tuning (or other optimization) with respect to a cardiac database may not be appropriate. Therefore, the objective of this research was to design and construct motion benchmarks by adopting an "image synthesis" test suite to study brain deformation due to mild rotational accelerations, and a benchmark to model motion of the tongue during speech. To obtain a realistic representation of mechanical behavior, kinematics were obtained from finite-element (FE) models. These results were combined with an approximation of the acquisition process of tagged MRI (including tag generation, slice thickness, and inconsistent motion repetition). To demonstrate an application of the presented methodology, the effect of motion inconsistency on synthetic measurements of head- brain rotation and deformation was evaluated. The results indicated that acquisition inconsistency is roughly proportional to head rotation estimation error. Furthermore, when evaluating non-rigid deformation, the results suggest that inconsistent motion can yield "ghost" shear strains, which are a function of slice acquisition viability as opposed to a true physical deformation.
Test Suite for Image-Based Motion Estimation of the Brain and Tongue
Ramsey, Jordan; Prince, Jerry L.; Gomez, Arnold D.
2017-01-01
Noninvasive analysis of motion has important uses as qualitative markers for organ function and to validate biomechanical computer simulations relative to experimental observations. Tagged MRI is considered the gold standard for noninvasive tissue motion estimation in the heart, and this has inspired multiple studies focusing on other organs, including the brain under mild acceleration and the tongue during speech. As with other motion estimation approaches, using tagged MRI to measure 3D motion includes several preprocessing steps that affect the quality and accuracy of estimation. Benchmarks, or test suites, are datasets of known geometries and displacements that act as tools to tune tracking parameters or to compare different motion estimation approaches. Because motion estimation was originally developed to study the heart, existing test suites focus on cardiac motion. However, many fundamental differences exist between the heart and other organs, such that parameter tuning (or other optimization) with respect to a cardiac database may not be appropriate. Therefore, the objective of this research was to design and construct motion benchmarks by adopting an “image synthesis” test suite to study brain deformation due to mild rotational accelerations, and a benchmark to model motion of the tongue during speech. To obtain a realistic representation of mechanical behavior, kinematics were obtained from finite-element (FE) models. These results were combined with an approximation of the acquisition process of tagged MRI (including tag generation, slice thickness, and inconsistent motion repetition). To demonstrate an application of the presented methodology, the effect of motion inconsistency on synthetic measurements of head-brain rotation and deformation was evaluated. The results indicated that acquisition inconsistency is roughly proportional to head rotation estimation error. Furthermore, when evaluating non-rigid deformation, the results suggest that inconsistent motion can yield “ghost” shear strains, which are a function of slice acquisition viability as opposed to a true physical deformation. PMID:28781414
Thoracic respiratory motion estimation from MRI using a statistical model and a 2-D image navigator.
King, A P; Buerger, C; Tsoumpas, C; Marsden, P K; Schaeffter, T
2012-01-01
Respiratory motion models have potential application for estimating and correcting the effects of motion in a wide range of applications, for example in PET-MR imaging. Given that motion cycles caused by breathing are only approximately repeatable, an important quality of such models is their ability to capture and estimate the intra- and inter-cycle variability of the motion. In this paper we propose and describe a technique for free-form nonrigid respiratory motion correction in the thorax. Our model is based on a principal component analysis of the motion states encountered during different breathing patterns, and is formed from motion estimates made from dynamic 3-D MRI data. We apply our model using a data-driven technique based on a 2-D MRI image navigator. Unlike most previously reported work in the literature, our approach is able to capture both intra- and inter-cycle motion variability. In addition, the 2-D image navigator can be used to estimate how applicable the current motion model is, and hence report when more imaging data is required to update the model. We also use the motion model to decide on the best positioning for the image navigator. We validate our approach using MRI data acquired from 10 volunteers and demonstrate improvements of up to 40.5% over other reported motion modelling approaches, which corresponds to 61% of the overall respiratory motion present. Finally we demonstrate one potential application of our technique: MRI-based motion correction of real-time PET data for simultaneous PET-MRI acquisition. Copyright © 2011 Elsevier B.V. All rights reserved.
A revised ground-motion and intensity interpolation scheme for shakemap
Worden, C.B.; Wald, D.J.; Allen, T.I.; Lin, K.; Garcia, D.; Cua, G.
2010-01-01
We describe a weighted-average approach for incorporating various types of data (observed peak ground motions and intensities and estimates from groundmotion prediction equations) into the ShakeMap ground motion and intensity mapping framework. This approach represents a fundamental revision of our existing ShakeMap methodology. In addition, the increased availability of near-real-time macroseismic intensity data, the development of newrelationships between intensity and peak ground motions, and new relationships to directly predict intensity from earthquake source information have facilitated the inclusion of intensity measurements directly into ShakeMap computations. Our approach allows for the combination of (1) direct observations (ground-motion measurements or reported intensities), (2) observations converted from intensity to ground motion (or vice versa), and (3) estimated ground motions and intensities from prediction equations or numerical models. Critically, each of the aforementioned data types must include an estimate of its uncertainties, including those caused by scaling the influence of observations to surrounding grid points and those associated with estimates given an unknown fault geometry. The ShakeMap ground-motion and intensity estimates are an uncertainty-weighted combination of these various data and estimates. A natural by-product of this interpolation process is an estimate of total uncertainty at each point on the map, which can be vital for comprehensive inventory loss calculations. We perform a number of tests to validate this new methodology and find that it produces a substantial improvement in the accuracy of ground-motion predictions over empirical prediction equations alone.
Visual Odometry Based on Structural Matching of Local Invariant Features Using Stereo Camera Sensor
Núñez, Pedro; Vázquez-Martín, Ricardo; Bandera, Antonio
2011-01-01
This paper describes a novel sensor system to estimate the motion of a stereo camera. Local invariant image features are matched between pairs of frames and linked into image trajectories at video rate, providing the so-called visual odometry, i.e., motion estimates from visual input alone. Our proposal conducts two matching sessions: the first one between sets of features associated to the images of the stereo pairs and the second one between sets of features associated to consecutive frames. With respect to previously proposed approaches, the main novelty of this proposal is that both matching algorithms are conducted by means of a fast matching algorithm which combines absolute and relative feature constraints. Finding the largest-valued set of mutually consistent matches is equivalent to finding the maximum-weighted clique on a graph. The stereo matching allows to represent the scene view as a graph which emerge from the features of the accepted clique. On the other hand, the frame-to-frame matching defines a graph whose vertices are features in 3D space. The efficiency of the approach is increased by minimizing the geometric and algebraic errors to estimate the final displacement of the stereo camera between consecutive acquired frames. The proposed approach has been tested for mobile robotics navigation purposes in real environments and using different features. Experimental results demonstrate the performance of the proposal, which could be applied in both industrial and service robot fields. PMID:22164016
Self-calibrated correlation imaging with k-space variant correlation functions.
Li, Yu; Edalati, Masoud; Du, Xingfu; Wang, Hui; Cao, Jie J
2018-03-01
Correlation imaging is a previously developed high-speed MRI framework that converts parallel imaging reconstruction into the estimate of correlation functions. The presented work aims to demonstrate this framework can provide a speed gain over parallel imaging by estimating k-space variant correlation functions. Because of Fourier encoding with gradients, outer k-space data contain higher spatial-frequency image components arising primarily from tissue boundaries. As a result of tissue-boundary sparsity in the human anatomy, neighboring k-space data correlation varies from the central to the outer k-space. By estimating k-space variant correlation functions with an iterative self-calibration method, correlation imaging can benefit from neighboring k-space data correlation associated with both coil sensitivity encoding and tissue-boundary sparsity, thereby providing a speed gain over parallel imaging that relies only on coil sensitivity encoding. This new approach is investigated in brain imaging and free-breathing neonatal cardiac imaging. Correlation imaging performs better than existing parallel imaging techniques in simulated brain imaging acceleration experiments. The higher speed enables real-time data acquisition for neonatal cardiac imaging in which physiological motion is fast and non-periodic. With k-space variant correlation functions, correlation imaging gives a higher speed than parallel imaging and offers the potential to image physiological motion in real-time. Magn Reson Med 79:1483-1494, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Javaid, Abdul Q; Ashouri, Hazar; Dorier, Alexis; Etemadi, Mozziyar; Heller, J Alex; Roy, Shuvo; Inan, Omer T
2017-06-01
Our objective is to provide a framework for extracting signals of interest from the wearable seismocardiogram (SCG) measured during walking at normal (subject's preferred pace) and moderately fast (1.34-1.45 m/s) speeds. We demonstrate, using empirical mode decomposition (EMD) and feature tracking algorithms, that the pre-ejection period (PEP) can be accurately estimated from a wearable patch that simultaneously measures electrocardiogram and sternal acceleration signals. We also provide a method to determine the minimum number of heartbeats required for an accurate estimate to be obtained for the PEP from the accelerometer signals during walking. The EMD-based denoising approach provides a statistically significant increase in the signal-to-noise ratio of wearable SCG signals and also improves estimation of PEP during walking. The algorithms described in this paper can be used to provide hemodynamic assessment from wearable SCG during walking. A major limitation in the use of the SCG, a measure of local chest vibrations caused by cardiac ejection of blood in the vasculature, is that a user must remain completely still for high-quality measurements. The motion can create artifacts and practically render the signal unreadable. Addressing this limitation could allow, for the first time, SCG measurements to be obtained reliably during movement-aside from increasing the coverage throughout the day of cardiovascular monitoring, analyzing SCG signals during movement would quantify the cardiovascular system's response to stress (exercise), and thus provide a more holistic assessment of overall health.
Harris, Wendy; Zhang, You; Yin, Fang-Fang; Ren, Lei
2017-01-01
Purpose To investigate the feasibility of using structural-based principal component analysis (PCA) motion-modeling and weighted free-form deformation to estimate on-board 4D-CBCT using prior information and extremely limited angle projections for potential 4D target verification of lung radiotherapy. Methods A technique for lung 4D-CBCT reconstruction has been previously developed using a deformation field map (DFM)-based strategy. In the previous method, each phase of the 4D-CBCT was generated by deforming a prior CT volume. The DFM was solved by a motion-model extracted by global PCA and free-form deformation (GMM-FD) technique, using a data fidelity constraint and deformation energy minimization. In this study, a new structural-PCA method was developed to build a structural motion-model (SMM) by accounting for potential relative motion pattern changes between different anatomical structures from simulation to treatment. The motion model extracted from planning 4DCT was divided into two structures: tumor and body excluding tumor, and the parameters of both structures were optimized together. Weighted free-form deformation (WFD) was employed afterwards to introduce flexibility in adjusting the weightings of different structures in the data fidelity constraint based on clinical interests. XCAT (computerized patient model) simulation with a 30 mm diameter lesion was simulated with various anatomical and respirational changes from planning 4D-CT to onboard volume to evaluate the method. The estimation accuracy was evaluated by the Volume-Percent-Difference (VPD)/Center-of-Mass-Shift (COMS) between lesions in the estimated and “ground-truth” on board 4D-CBCT. Different onboard projection acquisition scenarios and projection noise levels were simulated to investigate their effects on the estimation accuracy. The method was also evaluated against 3 lung patients. Results The SMM-WFD method achieved substantially better accuracy than the GMM-FD method for CBCT estimation using extremely small scan angles or projections. Using orthogonal 15° scanning angles, the VPD/COMS were 3.47±2.94% and 0.23±0.22mm for SMM-WFD and 25.23±19.01% and 2.58±2.54mm for GMM-FD among all 8 XCAT scenarios. Compared to GMM-FD, SMM-WFD was more robust against reduction of the scanning angles down to orthogonal 10° with VPD/COMS of 6.21±5.61% and 0.39±0.49mm, and more robust against reduction of projection numbers down to only 8 projections in total for both orthogonal-view 30° and orthogonal-view 15° scan angles. SMM-WFD method was also more robust than the GMM-FD method against increasing levels of noise in the projection images. Additionally, the SMM-WFD technique provided better tumor estimation for all three lung patients compared to the GMM-FD technique. Conclusion Compared to the GMM-FD technique, the SMM-WFD technique can substantially improve the 4D-CBCT estimation accuracy using extremely small scan angles and low number of projections to provide fast low dose 4D target verification. PMID:28079267
Revised motion estimation algorithm for PROPELLER MRI.
Pipe, James G; Gibbs, Wende N; Li, Zhiqiang; Karis, John P; Schar, Michael; Zwart, Nicholas R
2014-08-01
To introduce a new algorithm for estimating data shifts (used for both rotation and translation estimates) for motion-corrected PROPELLER MRI. The method estimates shifts for all blades jointly, emphasizing blade-pair correlations that are both strong and more robust to noise. The heads of three volunteers were scanned using a PROPELLER acquisition while they exhibited various amounts of motion. All data were reconstructed twice, using motion estimates from the original and new algorithm. Two radiologists independently and blindly compared 216 image pairs from these scans, ranking the left image as substantially better or worse than, slightly better or worse than, or equivalent to the right image. In the aggregate of 432 scores, the new method was judged substantially better than the old method 11 times, and was never judged substantially worse. The new algorithm compared favorably with the old in its ability to estimate bulk motion in a limited study of volunteer motion. A larger study of patients is planned for future work. Copyright © 2013 Wiley Periodicals, Inc.
The effect of concurrent hand movement on estimated time to contact in a prediction motion task.
Zheng, Ran; Maraj, Brian K V
2018-04-27
In many activities, we need to predict the arrival of an occluded object. This action is called prediction motion or motion extrapolation. Previous researchers have found that both eye tracking and the internal clocking model are involved in the prediction motion task. Additionally, it is reported that concurrent hand movement facilitates the eye tracking of an externally generated target in a tracking task, even if the target is occluded. The present study examined the effect of concurrent hand movement on the estimated time to contact in a prediction motion task. We found different (accurate/inaccurate) concurrent hand movements had the opposite effect on the eye tracking accuracy and estimated TTC in the prediction motion task. That is, the accurate concurrent hand tracking enhanced eye tracking accuracy and had the trend to increase the precision of estimated TTC, but the inaccurate concurrent hand tracking decreased eye tracking accuracy and disrupted estimated TTC. However, eye tracking accuracy does not determine the precision of estimated TTC.
NASA Astrophysics Data System (ADS)
Bruschetta, M.; Maran, F.; Beghi, A.
2017-06-01
The use of dynamic driving simulators is constantly increasing in the automotive community, with applications ranging from vehicle development to rehab and driver training. The effectiveness of such devices is related to their capabilities of well reproducing the driving sensations, hence it is crucial that the motion control strategies generate both realistic and feasible inputs to the platform. Such strategies are called motion cueing algorithms (MCAs). In recent years several MCAs based on model predictive control (MPC) techniques have been proposed. The main drawback associated with the use of MPC is its computational burden, that may limit their application to high performance dynamic simulators. In the paper, a fast, real-time implementation of an MPC-based MCA for 9 DOF, high performance platform is proposed. Effectiveness of the approach in managing the available working area is illustrated by presenting experimental results from an implementation on a real device with a 200 Hz control frequency.
A Very Simple Method to Calculate the (Positive) Largest Lyapunov Exponent Using Interval Extensions
NASA Astrophysics Data System (ADS)
Mendes, Eduardo M. A. M.; Nepomuceno, Erivelton G.
2016-12-01
In this letter, a very simple method to calculate the positive Largest Lyapunov Exponent (LLE) based on the concept of interval extensions and using the original equations of motion is presented. The exponent is estimated from the slope of the line derived from the lower bound error when considering two interval extensions of the original system. It is shown that the algorithm is robust, fast and easy to implement and can be considered as alternative to other algorithms available in the literature. The method has been successfully tested in five well-known systems: Logistic, Hénon, Lorenz and Rössler equations and the Mackey-Glass system.
Intrinsic mobility limit for anisotropic electron transport in Alq3.
Drew, A J; Pratt, F L; Hoppler, J; Schulz, L; Malik-Kumar, V; Morley, N A; Desai, P; Shakya, P; Kreouzis, T; Gillin, W P; Kim, K W; Dubroka, A; Scheuermann, R
2008-03-21
Muon spin relaxation has been used to probe the charge carrier motion in the molecular conductor Alq3 (tris[8-hydroxy-quinoline] aluminum). At 290 K, the magnetic field dependence of the muon spin relaxation corresponds to that expected for highly anisotropic intermolecular electron hopping. Intermolecular mobility in the fast hopping direction has been found to be 0.23+/-0.03 cm2 V-1 s(-1) in the absence of an electric- field gradient, increasing to 0.32+/-0.06 cm2 V-1 s(-1) in an electric field gradient of 1 MV m(-1). These intrinsic mobility values provide an estimate of the upper limit for mobility achievable in bulk material.
Motion estimation in the frequency domain using fuzzy c-planes clustering.
Erdem, C E; Karabulut, G Z; Yanmaz, E; Anarim, E
2001-01-01
A recent work explicitly models the discontinuous motion estimation problem in the frequency domain where the motion parameters are estimated using a harmonic retrieval approach. The vertical and horizontal components of the motion are independently estimated from the locations of the peaks of respective periodogram analyses and they are paired to obtain the motion vectors using a procedure proposed. In this paper, we present a more efficient method that replaces the motion component pairing task and hence eliminates the problems of the pairing method described. The method described in this paper uses the fuzzy c-planes (FCP) clustering approach to fit planes to three-dimensional (3-D) frequency domain data obtained from the peaks of the periodograms. Experimental results are provided to demonstrate the effectiveness of the proposed method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myronakis, M; Cai, W; Dhou, S
Purpose: To determine if 4DCT-based motion modeling and external surrogate motion measured during treatment simulation can enhance prediction of residual tumor motion and duty cycle during treatment delivery. Methods: This experiment was conducted using simultaneously recorded tumor and external surrogate motion acquired over multiple fractions of lung cancer radiotherapy. These breathing traces were combined with the XCAT phantom to simulate CT images. Data from the first day was used to estimate the residual tumor motion and duty cycle both directly from the 4DCT (the current clinical standard), and from external-surrogate based motion modeling. The accuracy of these estimated residual tumormore » motions and duty cycles are evaluated by comparing to the measured internal/external motions from other treatment days. Results: All calculations were done for 25% and 50% duty cycles. The results indicated that duty cycle derived from 4DCT information alone is not enough to accurately predict duty cycles during treatment. Residual tumor motion was determined from the recorded data and compared with the estimated residual tumor motion from 4DCT. Relative differences in residual tumor motion varied from −30% to 55%, suggesting that more information is required to properly predict residual tumor motion. Compared to estimations made from 4DCT, in three out of four patients examined, the 30 seconds of motion modeling data was able to predict the duty cycle with better accuracy than 4DCT. No improvement was observed in prediction of residual tumor motion for this dataset. Conclusion: Motion modeling during simulation has the potential to enhance 4DCT and provide more information about target motion, duty cycles, and delivered dose. Based on these four patients, 30 seconds of motion modeling data produced improve duty cycle estimations but showed no measurable improvement in residual tumor motion prediction. More patient data is needed to verify this Result. I would like to acknowledge funding from MRA, VARIAN Medical Systems, Inc.« less
Modeling rate sensitivity of exercise transient responses to limb motion.
Yamashiro, Stanley M; Kato, Takahide
2014-10-01
Transient responses of ventilation (V̇e) to limb motion can exhibit predictive characteristics. In response to a change in limb motion, a rapid change in V̇e is commonly observed with characteristics different than during a change in workload. This rapid change has been attributed to a feed-forward or adaptive response. Rate sensitivity was explored as a specific hypothesis to explain predictive V̇e responses to limb motion. A simple model assuming an additive feed-forward summation of V̇e proportional to the rate of change of limb motion was studied. This model was able to successfully account for the adaptive phase correction observed during human sinusoidal changes in limb motion. Adaptation of rate sensitivity might also explain the reduction of the fast component of V̇e responses previously reported following sudden exercise termination. Adaptation of the fast component of V̇e response could occur by reduction of rate sensitivity. Rate sensitivity of limb motion was predicted by the model to reduce the phase delay between limb motion and V̇e response without changing the steady-state response to exercise load. In this way, V̇e can respond more quickly to an exercise change without interfering with overall feedback control. The asymmetry between responses to an incremental and decremental ramp change in exercise can also be accounted for by the proposed model. Rate sensitivity leads to predicted behavior, which resembles responses observed in exercise tied to expiratory reserve volume. Copyright © 2014 the American Physiological Society.
Spin relaxation of radicals in cryptochrome and its role in avian magnetoreception
DOE Office of Scientific and Technical Information (OSTI.GOV)
Worster, Susannah; Kattnig, Daniel R.; Hore, P. J., E-mail: peter.hore@chem.ox.ac.uk
2016-07-21
Long-lived spin coherence and rotationally ordered radical pairs have previously been identified as key requirements for the radical pair mechanism of the avian magnetic compass sense. Both criteria are hard to meet in a biological environment, where thermal motion of the radicals creates dynamic disorder and drives efficient spin relaxation. This has long been cited as a major stumbling block of the radical pair hypothesis. Here we combine Redfield relaxation theory with analytical solutions to a rotational diffusion equation to assess the impact of restricted rotational motion of the radicals on the operation of the compass. The effects of suchmore » motions are first investigated generally in small, model systems and are then critically examined in the magnetically sensitive flavin-tryptophan radical pair that is formed photochemically in the proposed magnetoreceptor protein, cryptochrome. We conclude that relaxation is slowest when rotational motion of the radicals within the protein is fast and highly constrained; that in a regime of slow relaxation, the motional averaging of hyperfine interactions has the potential to improve the sensitivity of the compass; and that consideration of motional effects can significantly alter the design criteria for an optimal compass. In addition, we demonstrate that motion of the flavin radical is likely to be compatible with its role as a component of a functioning radical-pair compass, whereas the motion of the tryptophan radical is less ideal, unless it is particularly fast.« less
Kim, Seung-Cheol; Dong, Xiao-Bin; Kwon, Min-Woo; Kim, Eun-Soo
2013-05-06
A novel approach for fast generation of video holograms of three-dimensional (3-D) moving objects using a motion compensation-based novel-look-up-table (MC-N-LUT) method is proposed. Motion compensation has been widely employed in compression of conventional 2-D video data because of its ability to exploit high temporal correlation between successive video frames. Here, this concept of motion-compensation is firstly applied to the N-LUT based on its inherent property of shift-invariance. That is, motion vectors of 3-D moving objects are extracted between the two consecutive video frames, and with them motions of the 3-D objects at each frame are compensated. Then, through this process, 3-D object data to be calculated for its video holograms are massively reduced, which results in a dramatic increase of the computational speed of the proposed method. Experimental results with three kinds of 3-D video scenarios reveal that the average number of calculated object points and the average calculation time for one object point of the proposed method, have found to be reduced down to 86.95%, 86.53% and 34.99%, 32.30%, respectively compared to those of the conventional N-LUT and temporal redundancy-based N-LUT (TR-N-LUT) methods.
1981 Image II Conference Proceedings.
1981-11-01
rapid motion of terrain detail across the display requires fast display processors. Other difficulties are perceptual: the visual displays must convey...has been a continuing effort by Vought in the last decade. Early systems were restricted by the unavailability of video bulk storage with fast random...each photograph. The calculations aided in the proper sequencing of the scanned scenes on the tape recorder and eventually facilitated fast random
NASA Technical Reports Server (NTRS)
Rees, D.; Conboy, J.; Heinz, W.; Heppner, J. P.
1985-01-01
Observations of four shaped charge releases from rockets launched from Alaska are described. Results demonstrate that imaging and Doppler imaging instruments, based on exploiting the imaging photon detector, provide additional insight into the motion and development of low intensity targets such as the fast ion jets produced by shaped charge releases. It is possible to trace the motion of fast ion jets to very great distances, of the order of 50,000 km, outward along the Earth's magnetic field, when the conditions are suitable for the outward (upward) motion and/or acceleration of such ion jets. It is shown that ion jets, which fade below the lower sensitivity threshold of previous instruments, do not always disappear. There is no evidence of an abrupt field-aligned shear-type acceleration.
Video Salient Object Detection via Fully Convolutional Networks.
Wang, Wenguan; Shen, Jianbing; Shao, Ling
This paper proposes a deep learning model to efficiently detect salient regions in videos. It addresses two important issues: 1) deep video saliency model training with the absence of sufficiently large and pixel-wise annotated video data and 2) fast video saliency training and detection. The proposed deep video saliency network consists of two modules, for capturing the spatial and temporal saliency information, respectively. The dynamic saliency model, explicitly incorporating saliency estimates from the static saliency model, directly produces spatiotemporal saliency inference without time-consuming optical flow computation. We further propose a novel data augmentation technique that simulates video training data from existing annotated image data sets, which enables our network to learn diverse saliency information and prevents overfitting with the limited number of training videos. Leveraging our synthetic video data (150K video sequences) and real videos, our deep video saliency model successfully learns both spatial and temporal saliency cues, thus producing accurate spatiotemporal saliency estimate. We advance the state-of-the-art on the densely annotated video segmentation data set (MAE of .06) and the Freiburg-Berkeley Motion Segmentation data set (MAE of .07), and do so with much improved speed (2 fps with all steps).This paper proposes a deep learning model to efficiently detect salient regions in videos. It addresses two important issues: 1) deep video saliency model training with the absence of sufficiently large and pixel-wise annotated video data and 2) fast video saliency training and detection. The proposed deep video saliency network consists of two modules, for capturing the spatial and temporal saliency information, respectively. The dynamic saliency model, explicitly incorporating saliency estimates from the static saliency model, directly produces spatiotemporal saliency inference without time-consuming optical flow computation. We further propose a novel data augmentation technique that simulates video training data from existing annotated image data sets, which enables our network to learn diverse saliency information and prevents overfitting with the limited number of training videos. Leveraging our synthetic video data (150K video sequences) and real videos, our deep video saliency model successfully learns both spatial and temporal saliency cues, thus producing accurate spatiotemporal saliency estimate. We advance the state-of-the-art on the densely annotated video segmentation data set (MAE of .06) and the Freiburg-Berkeley Motion Segmentation data set (MAE of .07), and do so with much improved speed (2 fps with all steps).
Learning Motion Features for Example-Based Finger Motion Estimation for Virtual Characters
NASA Astrophysics Data System (ADS)
Mousas, Christos; Anagnostopoulos, Christos-Nikolaos
2017-09-01
This paper presents a methodology for estimating the motion of a character's fingers based on the use of motion features provided by a virtual character's hand. In the presented methodology, firstly, the motion data is segmented into discrete phases. Then, a number of motion features are computed for each motion segment of a character's hand. The motion features are pre-processed using restricted Boltzmann machines, and by using the different variations of semantically similar finger gestures in a support vector machine learning mechanism, the optimal weights for each feature assigned to a metric are computed. The advantages of the presented methodology in comparison to previous solutions are the following: First, we automate the computation of optimal weights that are assigned to each motion feature counted in our metric. Second, the presented methodology achieves an increase (about 17%) in correctly estimated finger gestures in comparison to a previous method.
An error-based micro-sensor capture system for real-time motion estimation
NASA Astrophysics Data System (ADS)
Yang, Lin; Ye, Shiwei; Wang, Zhibo; Huang, Zhipei; Wu, Jiankang; Kong, Yongmei; Zhang, Li
2017-10-01
A wearable micro-sensor motion capture system with 16 IMUs and an error-compensatory complementary filter algorithm for real-time motion estimation has been developed to acquire accurate 3D orientation and displacement in real life activities. In the proposed filter algorithm, the gyroscope bias error, orientation error and magnetic disturbance error are estimated and compensated, significantly reducing the orientation estimation error due to sensor noise and drift. Displacement estimation, especially for activities such as jumping, has been the challenge in micro-sensor motion capture. An adaptive gait phase detection algorithm has been developed to accommodate accurate displacement estimation in different types of activities. The performance of this system is benchmarked with respect to the results of VICON optical capture system. The experimental results have demonstrated effectiveness of the system in daily activities tracking, with estimation error 0.16 ± 0.06 m for normal walking and 0.13 ± 0.11 m for jumping motions. Research supported by the National Natural Science Foundation of China (Nos. 61431017, 81272166).
Wilms, M; Werner, R; Blendowski, M; Ortmüller, J; Handels, H
2014-01-01
A major problem associated with the irradiation of thoracic and abdominal tumors is respiratory motion. In clinical practice, motion compensation approaches are frequently steered by low-dimensional breathing signals (e.g., spirometry) and patient-specific correspondence models, which are used to estimate the sought internal motion given a signal measurement. Recently, the use of multidimensional signals derived from range images of the moving skin surface has been proposed to better account for complex motion patterns. In this work, a simulation study is carried out to investigate the motion estimation accuracy of such multidimensional signals and the influence of noise, the signal dimensionality, and different sampling patterns (points, lines, regions). A diffeomorphic correspondence modeling framework is employed to relate multidimensional breathing signals derived from simulated range images to internal motion patterns represented by diffeomorphic non-linear transformations. Furthermore, an automatic approach for the selection of optimal signal combinations/patterns within this framework is presented. This simulation study focuses on lung motion estimation and is based on 28 4D CT data sets. The results show that the use of multidimensional signals instead of one-dimensional signals significantly improves the motion estimation accuracy, which is, however, highly affected by noise. Only small differences exist between different multidimensional sampling patterns (lines and regions). Automatically determined optimal combinations of points and lines do not lead to accuracy improvements compared to results obtained by using all points or lines. Our results show the potential of multidimensional breathing signals derived from range images for the model-based estimation of respiratory motion in radiation therapy.
NASA Astrophysics Data System (ADS)
Chen, Kejie; Liu, Zhen; Liang, Cunren; Song, Y. Tony
2018-06-01
Dense strong motion and high-rate Global Navigation Satellite Systems (GNSS) networks have been deployed in central Italy for rapid seismic source determination and corresponding hazard mitigation. Different from previous studies for the consistency between two kinds of sensor at collocated stations, here we focus on the combination of high-rate GNSS displacement waveforms with collocated seismic strong motion accelerators, and investigate its application to image rupture history. Taking the 2016 August 24 Mw 6.1 Central Italy earthquake as a case study, we first generate more accurate and longer period seismogeodetic displacement waveforms by a Kalman filter, then model the rupture behaviour through a joint inversion including seismogeodetic waveforms and InSAR observations. Our results reveal that strong motion data alone can overestimate the magnitude and mismatch the GNSS observations, while 1 Hz sampling rate GNSS is insufficient and the displacement is too noisy to depict rupture process. By contrast, seismogeodetic data enhances temporal resolution and maintains the static offsets that provide vital constraint to the reliable estimation of earthquake magnitude. The obtained model is close to the jointly inverted one. Our work demonstrates the unique usefulness of seismogeodesy for fast seismic hazard response.
Estimation of bio-signal based on human motion for integrated visualization of daily-life.
Umetani, Tomohiro; Matsukawa, Tsuyoshi; Yokoyama, Kiyoko
2007-01-01
This paper describes a method for the estimation of bio-signals based on human motion in daily life for an integrated visualization system. The recent advancement of computers and measurement technology has facilitated the integrated visualization of bio-signals and human motion data. It is desirable to obtain a method to understand the activities of muscles based on human motion data and evaluate the change in physiological parameters according to human motion for visualization applications. We suppose that human motion is generated by the activities of muscles reflected from the brain to bio-signals such as electromyograms. This paper introduces a method for the estimation of bio-signals based on neural networks. This method can estimate the other physiological parameters based on the same procedure. The experimental results show the feasibility of the proposed method.
Numerical Solution of Dyson Brownian Motion and a Sampling Scheme for Invariant Matrix Ensembles
NASA Astrophysics Data System (ADS)
Li, Xingjie Helen; Menon, Govind
2013-12-01
The Dyson Brownian Motion (DBM) describes the stochastic evolution of N points on the line driven by an applied potential, a Coulombic repulsion and identical, independent Brownian forcing at each point. We use an explicit tamed Euler scheme to numerically solve the Dyson Brownian motion and sample the equilibrium measure for non-quadratic potentials. The Coulomb repulsion is too singular for the SDE to satisfy the hypotheses of rigorous convergence proofs for tamed Euler schemes (Hutzenthaler et al. in Ann. Appl. Probab. 22(4):1611-1641, 2012). Nevertheless, in practice the scheme is observed to be stable for time steps of O(1/ N 2) and to relax exponentially fast to the equilibrium measure with a rate constant of O(1) independent of N. Further, this convergence rate appears to improve with N in accordance with O(1/ N) relaxation of local statistics of the Dyson Brownian motion. This allows us to use the Dyson Brownian motion to sample N× N Hermitian matrices from the invariant ensembles. The computational cost of generating M independent samples is O( MN 4) with a naive scheme, and O( MN 3log N) when a fast multipole method is used to evaluate the Coulomb interaction.
Terrain Measurement with SAR/InSAR
NASA Astrophysics Data System (ADS)
Li, Deren; Liao, Mingsheng; Balz, Timo; Zhang, Lu; Yang, Tianliang
2016-08-01
Terrain measurement and surface motion estimation are the most important applications for commercial and scientific SAR missions. In Dragon-3, we worked on these applications, especially regarding DEM generation, surface motion estimation with SAR time- series for urban subsidence monitoring and landslide motion estimation, as well as developing tomographic SAR processing methods in urban areas.
Simultaneous motion estimation and image reconstruction (SMEIR) for 4D cone-beam CT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jing; Gu, Xuejun
2013-10-15
Purpose: Image reconstruction and motion model estimation in four-dimensional cone-beam CT (4D-CBCT) are conventionally handled as two sequential steps. Due to the limited number of projections at each phase, the image quality of 4D-CBCT is degraded by view aliasing artifacts, and the accuracy of subsequent motion modeling is decreased by the inferior 4D-CBCT. The objective of this work is to enhance both the image quality of 4D-CBCT and the accuracy of motion model estimation with a novel strategy enabling simultaneous motion estimation and image reconstruction (SMEIR).Methods: The proposed SMEIR algorithm consists of two alternating steps: (1) model-based iterative image reconstructionmore » to obtain a motion-compensated primary CBCT (m-pCBCT) and (2) motion model estimation to obtain an optimal set of deformation vector fields (DVFs) between the m-pCBCT and other 4D-CBCT phases. The motion-compensated image reconstruction is based on the simultaneous algebraic reconstruction technique (SART) coupled with total variation minimization. During the forward- and backprojection of SART, measured projections from an entire set of 4D-CBCT are used for reconstruction of the m-pCBCT by utilizing the updated DVF. The DVF is estimated by matching the forward projection of the deformed m-pCBCT and measured projections of other phases of 4D-CBCT. The performance of the SMEIR algorithm is quantitatively evaluated on a 4D NCAT phantom. The quality of reconstructed 4D images and the accuracy of tumor motion trajectory are assessed by comparing with those resulting from conventional sequential 4D-CBCT reconstructions (FDK and total variation minimization) and motion estimation (demons algorithm). The performance of the SMEIR algorithm is further evaluated by reconstructing a lung cancer patient 4D-CBCT.Results: Image quality of 4D-CBCT is greatly improved by the SMEIR algorithm in both phantom and patient studies. When all projections are used to reconstruct a 3D-CBCT by FDK, motion-blurring artifacts are present, leading to a 24.4% relative reconstruction error in the NACT phantom. View aliasing artifacts are present in 4D-CBCT reconstructed by FDK from 20 projections, with a relative error of 32.1%. When total variation minimization is used to reconstruct 4D-CBCT, the relative error is 18.9%. Image quality of 4D-CBCT is substantially improved by using the SMEIR algorithm and relative error is reduced to 7.6%. The maximum error (MaxE) of tumor motion determined from the DVF obtained by demons registration on a FDK-reconstructed 4D-CBCT is 3.0, 2.3, and 7.1 mm along left–right (L-R), anterior–posterior (A-P), and superior–inferior (S-I) directions, respectively. From the DVF obtained by demons registration on 4D-CBCT reconstructed by total variation minimization, the MaxE of tumor motion is reduced to 1.5, 0.5, and 5.5 mm along L-R, A-P, and S-I directions. From the DVF estimated by SMEIR algorithm, the MaxE of tumor motion is further reduced to 0.8, 0.4, and 1.5 mm along L-R, A-P, and S-I directions, respectively.Conclusions: The proposed SMEIR algorithm is able to estimate a motion model and reconstruct motion-compensated 4D-CBCT. The SMEIR algorithm improves image reconstruction accuracy of 4D-CBCT and tumor motion trajectory estimation accuracy as compared to conventional sequential 4D-CBCT reconstruction and motion estimation.« less
Optical and Acoustic Sensor-Based 3D Ball Motion Estimation for Ball Sport Simulators †.
Seo, Sang-Woo; Kim, Myunggyu; Kim, Yejin
2018-04-25
Estimation of the motion of ball-shaped objects is essential for the operation of ball sport simulators. In this paper, we propose an estimation system for 3D ball motion, including speed and angle of projection, by using acoustic vector and infrared (IR) scanning sensors. Our system is comprised of three steps to estimate a ball motion: sound-based ball firing detection, sound source localization, and IR scanning for motion analysis. First, an impulsive sound classification based on the mel-frequency cepstrum and feed-forward neural network is introduced to detect the ball launch sound. An impulsive sound source localization using a 2D microelectromechanical system (MEMS) microphones and delay-and-sum beamforming is presented to estimate the firing position. The time and position of a ball in 3D space is determined from a high-speed infrared scanning method. Our experimental results demonstrate that the estimation of ball motion based on sound allows a wider activity area than similar camera-based methods. Thus, it can be practically applied to various simulations in sports such as soccer and baseball.
Model and parametric uncertainty in source-based kinematic models of earthquake ground motion
Hartzell, Stephen; Frankel, Arthur; Liu, Pengcheng; Zeng, Yuehua; Rahman, Shariftur
2011-01-01
Four independent ground-motion simulation codes are used to model the strong ground motion for three earthquakes: 1994 Mw 6.7 Northridge, 1989 Mw 6.9 Loma Prieta, and 1999 Mw 7.5 Izmit. These 12 sets of synthetics are used to make estimates of the variability in ground-motion predictions. In addition, ground-motion predictions over a grid of sites are used to estimate parametric uncertainty for changes in rupture velocity. We find that the combined model uncertainty and random variability of the simulations is in the same range as the variability of regional empirical ground-motion data sets. The majority of the standard deviations lie between 0.5 and 0.7 natural-log units for response spectra and 0.5 and 0.8 for Fourier spectra. The estimate of model epistemic uncertainty, based on the different model predictions, lies between 0.2 and 0.4, which is about one-half of the estimates for the standard deviation of the combined model uncertainty and random variability. Parametric uncertainty, based on variation of just the average rupture velocity, is shown to be consistent in amplitude with previous estimates, showing percentage changes in ground motion from 50% to 300% when rupture velocity changes from 2.5 to 2.9 km/s. In addition, there is some evidence that mean biases can be reduced by averaging ground-motion estimates from different methods.
Rhythmic Extended Kalman Filter for Gait Rehabilitation Motion Estimation and Segmentation.
Joukov, Vladimir; Bonnet, Vincent; Karg, Michelle; Venture, Gentiane; Kulic, Dana
2018-02-01
This paper proposes a method to enable the use of non-intrusive, small, wearable, and wireless sensors to estimate the pose of the lower body during gait and other periodic motions and to extract objective performance measures useful for physiotherapy. The Rhythmic Extended Kalman Filter (Rhythmic-EKF) algorithm is developed to estimate the pose, learn an individualized model of periodic movement over time, and use the learned model to improve pose estimation. The proposed approach learns a canonical dynamical system model of the movement during online observation, which is used to accurately model the acceleration during pose estimation. The canonical dynamical system models the motion as a periodic signal. The estimated phase and frequency of the motion also allow the proposed approach to segment the motion into repetitions and extract useful features, such as gait symmetry, step length, and mean joint movement and variance. The algorithm is shown to outperform the extended Kalman filter in simulation, on healthy participant data, and stroke patient data. For the healthy participant marching dataset, the Rhythmic-EKF improves joint acceleration and velocity estimates over regular EKF by 40% and 37%, respectively, estimates joint angles with 2.4° root mean squared error, and segments the motion into repetitions with 96% accuracy.
NASA Astrophysics Data System (ADS)
Suzuki, Yuki; Fung, George S. K.; Shen, Zeyang; Otake, Yoshito; Lee, Okkyun; Ciuffo, Luisa; Ashikaga, Hiroshi; Sato, Yoshinobu; Taguchi, Katsuyuki
2017-03-01
Cardiac motion (or functional) analysis has shown promise not only for non-invasive diagnosis of cardiovascular diseases but also for prediction of cardiac future events. Current imaging modalities has limitations that could degrade the accuracy of the analysis indices. In this paper, we present a projection-based motion estimation method for x-ray CT that estimates cardiac motion with high spatio-temporal resolution using projection data and a reference 3D volume image. The experiment using a synthesized digital phantom showed promising results for motion analysis.
NASA Astrophysics Data System (ADS)
Pei, Youbin; Xiang, Nong; Hu, Youjun; Todo, Y.; Li, Guoqiang; Shen, Wei; Xu, Liqing
2017-03-01
Kinetic-MagnetoHydroDynamic hybrid simulations are carried out to investigate fishbone modes excited by fast ions on the Experimental Advanced Superconducting Tokamak. The simulations use realistic equilibrium reconstructed from experiment data with the constraint of the q = 1 surface location (q is the safety factor). Anisotropic slowing down distribution is used to model the distribution of the fast ions from neutral beam injection. The resonance condition is used to identify the interaction between the fishbone mode and the fast ions, which shows that the fishbone mode is simultaneously in resonance with the bounce motion of the trapped particles and the transit motion of the passing particles. Both the passing and trapped particles are important in destabilizing the fishbone mode. The simulations show that the mode frequency chirps down as the mode reaches the nonlinear stage, during which there is a substantial flattening of the perpendicular pressure of fast ions, compared with that of the parallel pressure. For passing particles, the resonance remains within the q = 1 surface, while, for trapped particles, the resonant location moves out radially during the nonlinear evolution. In addition, parameter scanning is performed to examine the dependence of the linear frequency and growth rate of fishbones on the pressure and injection velocity of fast ions.
Efficient low-bit-rate adaptive mesh-based motion compensation technique
NASA Astrophysics Data System (ADS)
Mahmoud, Hanan A.; Bayoumi, Magdy A.
2001-08-01
This paper proposes a two-stage global motion estimation method using a novel quadtree block-based motion estimation technique and an active mesh model. In the first stage, motion parameters are estimated by fitting block-based motion vectors computed using a new efficient quadtree technique, that divides a frame into equilateral triangle blocks using the quad-tree structure. Arbitrary partition shapes are achieved by allowing 4-to-1, 3-to-1 and 2-1 merge/combine of sibling blocks having the same motion vector . In the second stage, the mesh is constructed using an adaptive triangulation procedure that places more triangles over areas with high motion content, these areas are estimated during the first stage. finally the motion compensation is achieved by using a novel algorithm that is carried by both the encoder and the decoder to determine the optimal triangulation of the resultant partitions followed by affine mapping at the encoder. Computer simulation results show that the proposed method gives better performance that the conventional ones in terms of the peak signal-to-noise ration (PSNR) and the compression ratio (CR).
Ubiquitous human upper-limb motion estimation using wearable sensors.
Zhang, Zhi-Qiang; Wong, Wai-Choong; Wu, Jian-Kang
2011-07-01
Human motion capture technologies have been widely used in a wide spectrum of applications, including interactive game and learning, animation, film special effects, health care, navigation, and so on. The existing human motion capture techniques, which use structured multiple high-resolution cameras in a dedicated studio, are complicated and expensive. With the rapid development of microsensors-on-chip, human motion capture using wearable microsensors has become an active research topic. Because of the agility in movement, upper-limb motion estimation has been regarded as the most difficult problem in human motion capture. In this paper, we take the upper limb as our research subject and propose a novel ubiquitous upper-limb motion estimation algorithm, which concentrates on modeling the relationship between upper-arm movement and forearm movement. A link structure with 5 degrees of freedom (DOF) is proposed to model the human upper-limb skeleton structure. Parameters are defined according to Denavit-Hartenberg convention, forward kinematics equations are derived, and an unscented Kalman filter is deployed to estimate the defined parameters. The experimental results have shown that the proposed upper-limb motion capture and analysis algorithm outperforms other fusion methods and provides accurate results in comparison to the BTS optical motion tracker.
Markerless motion estimation for motion-compensated clinical brain imaging
NASA Astrophysics Data System (ADS)
Kyme, Andre Z.; Se, Stephen; Meikle, Steven R.; Fulton, Roger R.
2018-05-01
Motion-compensated brain imaging can dramatically reduce the artifacts and quantitative degradation associated with voluntary and involuntary subject head motion during positron emission tomography (PET), single photon emission computed tomography (SPECT) and computed tomography (CT). However, motion-compensated imaging protocols are not in widespread clinical use for these modalities. A key reason for this seems to be the lack of a practical motion tracking technology that allows for smooth and reliable integration of motion-compensated imaging protocols in the clinical setting. We seek to address this problem by investigating the feasibility of a highly versatile optical motion tracking method for PET, SPECT and CT geometries. The method requires no attached markers, relying exclusively on the detection and matching of distinctive facial features. We studied the accuracy of this method in 16 volunteers in a mock imaging scenario by comparing the estimated motion with an accurate marker-based method used in applications such as image guided surgery. A range of techniques to optimize performance of the method were also studied. Our results show that the markerless motion tracking method is highly accurate (<2 mm discrepancy against a benchmarking system) on an ethnically diverse range of subjects and, moreover, exhibits lower jitter and estimation of motion over a greater range than some marker-based methods. Our optimization tests indicate that the basic pose estimation algorithm is very robust but generally benefits from rudimentary background masking. Further marginal gains in accuracy can be achieved by accounting for non-rigid motion of features. Efficiency gains can be achieved by capping the number of features used for pose estimation provided that these features adequately sample the range of head motion encountered in the study. These proof-of-principle data suggest that markerless motion tracking is amenable to motion-compensated brain imaging and holds good promise for a practical implementation in clinical PET, SPECT and CT systems.
Feng, Tao; Wang, Jizhe; Tsui, Benjamin M W
2018-04-01
The goal of this study was to develop and evaluate four post-reconstruction respiratory and cardiac (R&C) motion vector field (MVF) estimation methods for cardiac 4D PET data. In Method 1, the dual R&C motions were estimated directly from the dual R&C gated images. In Method 2, respiratory motion (RM) and cardiac motion (CM) were separately estimated from the respiratory gated only and cardiac gated only images. The effects of RM on CM estimation were modeled in Method 3 by applying an image-based RM correction on the cardiac gated images before CM estimation, the effects of CM on RM estimation were neglected. Method 4 iteratively models the mutual effects of RM and CM during dual R&C motion estimations. Realistic simulation data were generated for quantitative evaluation of four methods. Almost noise-free PET projection data were generated from the 4D XCAT phantom with realistic R&C MVF using Monte Carlo simulation. Poisson noise was added to the scaled projection data to generate additional datasets of two more different noise levels. All the projection data were reconstructed using a 4D image reconstruction method to obtain dual R&C gated images. The four dual R&C MVF estimation methods were applied to the dual R&C gated images and the accuracy of motion estimation was quantitatively evaluated using the root mean square error (RMSE) of the estimated MVFs. Results show that among the four estimation methods, Methods 2 performed the worst for noise-free case while Method 1 performed the worst for noisy cases in terms of quantitative accuracy of the estimated MVF. Methods 4 and 3 showed comparable results and achieved RMSE lower by up to 35% than that in Method 1 for noisy cases. In conclusion, we have developed and evaluated 4 different post-reconstruction R&C MVF estimation methods for use in 4D PET imaging. Comparison of the performance of four methods on simulated data indicates separate R&C estimation with modeling of RM before CM estimation (Method 3) to be the best option for accurate estimation of dual R&C motion in clinical situation. © 2018 American Association of Physicists in Medicine.
A multistage motion vector processing method for motion-compensated frame interpolation.
Huang, Ai- Mei; Nguyen, Truong Q
2008-05-01
In this paper, a novel, low-complexity motion vector processing algorithm at the decoder is proposed for motion-compensated frame interpolation or frame rate up-conversion. We address the problems of having broken edges and deformed structures in an interpolated frame by hierarchically refining motion vectors on different block sizes. Our method explicitly considers the reliability of each received motion vector and has the capability of preserving the structure information. This is achieved by analyzing the distribution of residual energies and effectively merging blocks that have unreliable motion vectors. The motion vector reliability information is also used as a prior knowledge in motion vector refinement using a constrained vector median filter to avoid choosing identical unreliable one. We also propose using chrominance information in our method. Experimental results show that the proposed scheme has better visual quality and is also robust, even in video sequences with complex scenes and fast motion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, D; Neylon, J; Dou, T
Purpose: A recently proposed 4D-CT protocol uses deformable registration of free-breathing fast-helical CT scans to generate a breathing motion model. In order to allow accurate registration, free-breathing images are required to be free of doubling-artifacts, which arise when tissue motion is greater than scan speed. This work identifies the minimum scanner parameters required to successfully generate free-breathing fast-helical scans without doubling-artifacts. Methods: 10 patients were imaged under free breathing conditions 25 times in alternating directions with a 64-slice CT scanner using a low dose fast helical protocol. A high temporal resolution (0.1s) 4D-CT was generated using a patient specific motionmore » model and patient breathing waveforms, and used as the input for a scanner simulation. Forward projections were calculated using helical cone-beam geometry (800 projections per rotation) and a GPU accelerated reconstruction algorithm was implemented. Various CT scanner detector widths and rotation times were simulated, and verified using a motion phantom. Doubling-artifacts were quantified in patient images using structural similarity maps to determine the similarity between axial slices. Results: Increasing amounts of doubling-artifacts were observed with increasing rotation times > 0.2s for 16×1mm slice scan geometry. No significant increase in doubling artifacts was observed for 64×1mm slice scan geometry up to 1.0s rotation time although blurring artifacts were observed >0.6s. Using a 16×1mm slice scan geometry, a rotation time of less than 0.3s (53mm/s scan speed) would be required to produce images of similar quality to a 64×1mm slice scan geometry. Conclusion: The current generation of 16 slice CT scanners, which are present in most Radiation Oncology departments, are not capable of generating free-breathing sorting-artifact-free images in the majority of patients. The next generation of CT scanners should be capable of at least 53mm/s scan speed in order to use a fast-helical 4D-CT protocol to generate a motion-artifact free 4D-CT. NIH R01CA096679.« less
Automatic acquisition of motion trajectories: tracking hockey players
NASA Astrophysics Data System (ADS)
Okuma, Kenji; Little, James J.; Lowe, David
2003-12-01
Computer systems that have the capability of analyzing complex and dynamic scenes play an essential role in video annotation. Scenes can be complex in such a way that there are many cluttered objects with different colors, shapes and sizes, and can be dynamic with multiple interacting moving objects and a constantly changing background. In reality, there are many scenes that are complex, dynamic, and challenging enough for computers to describe. These scenes include games of sports, air traffic, car traffic, street intersections, and cloud transformations. Our research is about the challenge of inventing a descriptive computer system that analyzes scenes of hockey games where multiple moving players interact with each other on a constantly moving background due to camera motions. Ultimately, such a computer system should be able to acquire reliable data by extracting the players" motion as their trajectories, querying them by analyzing the descriptive information of data, and predict the motions of some hockey players based on the result of the query. Among these three major aspects of the system, we primarily focus on visual information of the scenes, that is, how to automatically acquire motion trajectories of hockey players from video. More accurately, we automatically analyze the hockey scenes by estimating parameters (i.e., pan, tilt, and zoom) of the broadcast cameras, tracking hockey players in those scenes, and constructing a visual description of the data by displaying trajectories of those players. Many technical problems in vision such as fast and unpredictable players' motions and rapid camera motions make our challenge worth tackling. To the best of our knowledge, there have not been any automatic video annotation systems for hockey developed in the past. Although there are many obstacles to overcome, our efforts and accomplishments would hopefully establish the infrastructure of the automatic hockey annotation system and become a milestone for research in automatic video annotation in this domain.
Flies and humans share a motion estimation strategy that exploits natural scene statistics
Clark, Damon A.; Fitzgerald, James E.; Ales, Justin M.; Gohl, Daryl M.; Silies, Marion A.; Norcia, Anthony M.; Clandinin, Thomas R.
2014-01-01
Sighted animals extract motion information from visual scenes by processing spatiotemporal patterns of light falling on the retina. The dominant models for motion estimation exploit intensity correlations only between pairs of points in space and time. Moving natural scenes, however, contain more complex correlations. Here we show that fly and human visual systems encode the combined direction and contrast polarity of moving edges using triple correlations that enhance motion estimation in natural environments. Both species extract triple correlations with neural substrates tuned for light or dark edges, and sensitivity to specific triple correlations is retained even as light and dark edge motion signals are combined. Thus, both species separately process light and dark image contrasts to capture motion signatures that can improve estimation accuracy. This striking convergence argues that statistical structures in natural scenes have profoundly affected visual processing, driving a common computational strategy over 500 million years of evolution. PMID:24390225
The Estimation of a Rigid Body Motion in the Presence of Noise.
1987-07-31
Rigid Body Motion in the Presence of Noise 12. PERSONAL AUTHOR(S) 1S. AYOFDREPRTy 13b.e ad COVRE C4. 10AOUTE OF FUNPING NUBERSlAE...8217, .,_, .,,.. .\\ ..: ., : ’ *-: ,:,.,,. .’ 4 /. .’.’ ’, ’ ,. 9) 7 TRACT The problem of estimating a rigid body motion from two noisy images of an...SI ... ... Cs . I ,-’ ’".’ 1 -, ED 1, D:;.;i,1q L HARVARD UNIVERSITY DzPAILTMNT OP STATIMCS THE ESTIMATION OF A RIGID BODY MOTION IN THE
A Fourier approach to cloud motion estimation
NASA Technical Reports Server (NTRS)
Arking, A.; Lo, R. C.; Rosenfield, A.
1977-01-01
A Fourier technique is described for estimating cloud motion from pairs of pictures using the phase of the cross spectral density. The method allows motion estimates to be made for individual spatial frequencies, which are related to cloud pattern dimensions. Results obtained are presented and compared with the results of a Fourier domain cross correlation scheme. Using both artificial and real cloud data show that the technique is relatively sensitive to the presence of mixtures of motions, changes in cloud shape, and edge effects.
Fast cine-magnetic resonance imaging point tracking for prostate cancer radiation therapy planning
NASA Astrophysics Data System (ADS)
Dowling, J.; Dang, K.; Fox, Chris D.; Chandra, S.; Gill, Suki; Kron, T.; Pham, D.; Foroudi, F.
2014-03-01
The analysis of intra-fraction organ motion is important for improving the precision of radiation therapy treatment delivery. One method to quantify this motion is for one or more observers to manually identify anatomic points of interest (POIs) on each slice of a cine-MRI sequence. However this is labour intensive and inter- and intra- observer variation can introduce uncertainty. In this paper a fast method for non-rigid registration based point tracking in cine-MRI sagittal and coronal series is described which identifies POIs in 0.98 seconds per sagittal slice and 1.35 seconds per coronal slice. The manual and automatic points were highly correlated (r>0.99, p<0.001) for all organs and the difference generally less than 1mm. For prostate planning peristalsis and rectal gas can result in unpredictable out of plane motion, suggesting the results may require manual verification.
Total Motion Across the East African Rift Viewed From the Southwest Indian Ridge
NASA Astrophysics Data System (ADS)
Royer, J.; Gordon, R. G.
2005-05-01
The Nubian plate is known to have been separating from the Somalian plate along the East African Rift since Oligocene time. Recent works have shown that the spreading rates and spreading directions since 11 Ma along the Southwest Indian Ridge (SWIR) record Nubia-Antarctica motion west of the Andrew Bain Fracture Zone complex (ABFZ; between 25E and 35E) and Somalia-Antarctica motion east of it. Nubia-Somalia motion can be determined by differencing Nubia-Antarctica and Somalia-Antarctica motion. To estimate the total motion across the East African Rift, we estimated and differenced Nubia-Antarctica motion and Somalia-Antarctica motion for times that preceded the initiation of Nubia-Somalia motion. We analyze anomalies 24n.3o (53 Ma), 21o (48 Ma), 18o (40 Ma) and 13o (34 Ma). Preliminary results show that the poles of the finite rotations that describe the Nubia-Somalia motions cluster near 30E, 42S. Angles of rotation range from 2.7 to 4.0 degrees. The uncertainty regions are large. The lower estimate predicts a total extension of 245 km at the latitude of the Ethiopian rift (41E, 9N) in a direction N104, perpendicular to the mean trend of the rift. Assuming an age of 34 Ma for the initiation of rifting, the average rate of motion would be 7 mm/a, near the 9 mm/a deduced from present-day geodetic measurements [e.g. synthesis of Fernandes et al., 2004]. Although these results require further analysis, particularly on the causes of the large uncertainties, they represent the first independent estimate of the total extension across the rift. Among other remaining questions are the following: How significant are the differences between these estimates and those for younger chrons (5 or 6 ; respectively 11 and 20 Ma), i.e. is the start of extension datable? Is the region east of the ABFZ part of the Somalian plate or does it form a distinct component plate of Somalia, as postulated by Hartnady (2004)? How has motion between two or more component plates within the African composite plate affected estimates of India-Eurasia motion and of Pacific-North America motion?
Human Age Estimation Method Robust to Camera Sensor and/or Face Movement
Nguyen, Dat Tien; Cho, So Ra; Pham, Tuyen Danh; Park, Kang Ryoung
2015-01-01
Human age can be employed in many useful real-life applications, such as customer service systems, automatic vending machines, entertainment, etc. In order to obtain age information, image-based age estimation systems have been developed using information from the human face. However, limitations exist for current age estimation systems because of the various factors of camera motion and optical blurring, facial expressions, gender, etc. Motion blurring can usually be presented on face images by the movement of the camera sensor and/or the movement of the face during image acquisition. Therefore, the facial feature in captured images can be transformed according to the amount of motion, which causes performance degradation of age estimation systems. In this paper, the problem caused by motion blurring is addressed and its solution is proposed in order to make age estimation systems robust to the effects of motion blurring. Experiment results show that our method is more efficient for enhancing age estimation performance compared with systems that do not employ our method. PMID:26334282
High-Frame-Rate Speckle-Tracking Echocardiography.
Joos, Philippe; Poree, Jonathan; Liebgott, Herve; Vray, Didier; Baudet, Mathilde; Faurie, Julia; Tournoux, Francois; Cloutier, Guy; Nicolas, Barbara; Garcia, Damien; Baudet, Mathilde; Tournoux, Francois; Joos, Philippe; Poree, Jonathan; Cloutier, Guy; Liebgott, Herve; Faurie, Julia; Vray, Didier; Nicolas, Barbara; Garcia, Damien
2018-05-01
Conventional echocardiography is the leading modality for noninvasive cardiac imaging. It has been recently illustrated that high-frame-rate echocardiography using diverging waves could improve cardiac assessment. The spatial resolution and contrast associated with this method are commonly improved by coherent compounding of steered beams. However, owing to fast tissue velocities in the myocardium, the summation process of successive diverging waves can lead to destructive interferences if motion compensation (MoCo) is not considered. Coherent compounding methods based on MoCo have demonstrated their potential to provide high-contrast B-mode cardiac images. Ultrafast speckle-tracking echocardiography (STE) based on common speckle-tracking algorithms could substantially benefit from this original approach. In this paper, we applied STE on high-frame-rate B-mode images obtained with a specific MoCo technique to quantify the 2-D motion and tissue velocities of the left ventricle. The method was first validated in vitro and then evaluated in vivo in the four-chamber view of 10 volunteers. High-contrast high-resolution B-mode images were constructed at 500 frames/s. The sequences were generated with a Verasonics scanner and a 2.5-MHz phased array. The 2-D motion was estimated with standard cross correlation combined with three different subpixel adjustment techniques. The estimated in vitro velocity vectors derived from STE were consistent with the expected values, with normalized errors ranging from 4% to 12% in the radial direction and from 10% to 20% in the cross-range direction. Global longitudinal strain of the left ventricle was also obtained from STE in 10 subjects and compared to the results provided by a clinical scanner: group means were not statistically different ( value = 0.33). The in vitro and in vivo results showed that MoCo enables preservation of the myocardial speckles and in turn allows high-frame-rate STE.
Fast computation of derivative based sensitivities of PSHA models via algorithmic differentiation
NASA Astrophysics Data System (ADS)
Leövey, Hernan; Molkenthin, Christian; Scherbaum, Frank; Griewank, Andreas; Kuehn, Nicolas; Stafford, Peter
2015-04-01
Probabilistic seismic hazard analysis (PSHA) is the preferred tool for estimation of potential ground-shaking hazard due to future earthquakes at a site of interest. A modern PSHA represents a complex framework which combines different models with possible many inputs. Sensitivity analysis is a valuable tool for quantifying changes of a model output as inputs are perturbed, identifying critical input parameters and obtaining insight in the model behavior. Differential sensitivity analysis relies on calculating first-order partial derivatives of the model output with respect to its inputs. Moreover, derivative based global sensitivity measures (Sobol' & Kucherenko '09) can be practically used to detect non-essential inputs of the models, thus restricting the focus of attention to a possible much smaller set of inputs. Nevertheless, obtaining first-order partial derivatives of complex models with traditional approaches can be very challenging, and usually increases the computation complexity linearly with the number of inputs appearing in the models. In this study we show how Algorithmic Differentiation (AD) tools can be used in a complex framework such as PSHA to successfully estimate derivative based sensitivities, as is the case in various other domains such as meteorology or aerodynamics, without no significant increase in the computation complexity required for the original computations. First we demonstrate the feasibility of the AD methodology by comparing AD derived sensitivities to analytically derived sensitivities for a basic case of PSHA using a simple ground-motion prediction equation. In a second step, we derive sensitivities via AD for a more complex PSHA study using a ground motion attenuation relation based on a stochastic method to simulate strong motion. The presented approach is general enough to accommodate more advanced PSHA studies of higher complexity.
Werner, René; Ehrhardt, Jan; Schmidt-Richberg, Alexander; Heiss, Anabell; Handels, Heinz
2010-11-01
Motivated by radiotherapy of lung cancer non- linear registration is applied to estimate 3D motion fields for local lung motion analysis in thoracic 4D CT images. Reliability of analysis results depends on the registration accuracy. Therefore, our study consists of two parts: optimization and evaluation of a non-linear registration scheme for motion field estimation, followed by a registration-based analysis of lung motion patterns. The study is based on 4D CT data of 17 patients. Different distance measures and force terms for thoracic CT registration are implemented and compared: sum of squared differences versus a force term related to Thirion's demons registration; masked versus unmasked force computation. The most accurate approach is applied to local lung motion analysis. Masked Thirion forces outperform the other force terms. The mean target registration error is 1.3 ± 0.2 mm, which is in the order of voxel size. Based on resulting motion fields and inter-patient normalization of inner lung coordinates and breathing depths a non-linear dependency between inner lung position and corresponding strength of motion is identified. The dependency is observed for all patients without or with only small tumors. Quantitative evaluation of the estimated motion fields indicates high spatial registration accuracy. It allows for reliable registration-based local lung motion analysis. The large amount of information encoded in the motion fields makes it possible to draw detailed conclusions, e.g., to identify the dependency of inner lung localization and motion. Our examinations illustrate the potential of registration-based motion analysis.
Iino, Yoichi; Kojima, Takeji
2012-08-01
This study investigated the validity of the top-down approach of inverse dynamics analysis in fast and large rotational movements of the trunk about three orthogonal axes of the pelvis for nine male collegiate students. The maximum angles of the upper trunk relative to the pelvis were approximately 47°, 49°, 32°, and 55° for lateral bending, flexion, extension, and axial rotation, respectively, with maximum angular velocities of 209°/s, 201°/s, 145°/s, and 288°/s, respectively. The pelvic moments about the axes during the movements were determined using the top-down and bottom-up approaches of inverse dynamics and compared between the two approaches. Three body segment inertial parameter sets were estimated using anthropometric data sets (Ae et al., Biomechanism 11, 1992; De Leva, J Biomech, 1996; Dumas et al., J Biomech, 2007). The root-mean-square errors of the moments and the absolute errors of the peaks of the moments were generally smaller than 10 N·m. The results suggest that the pelvic moment in motions involving fast and large trunk movements can be determined with a certain level of validity using the top-down approach in which the trunk is modeled as two or three rigid-link segments.
How fast do stock prices adjust to market efficiency? Evidence from a detrended fluctuation analysis
NASA Astrophysics Data System (ADS)
Reboredo, Juan C.; Rivera-Castro, Miguel A.; Miranda, José G. V.; García-Rubio, Raquel
2013-04-01
In this paper we analyse price fluctuations with the aim of measuring how long the market takes to adjust prices to weak-form efficiency, i.e., how long it takes for prices to adjust to a fractional Brownian motion with a Hurst exponent of 0.5. The Hurst exponent is estimated for different time horizons using detrended fluctuation analysis-a method suitable for non-stationary series with trends-in order to identify at which time scale the Hurst exponent is consistent with the efficient market hypothesis. Using high-frequency share price, exchange rate and stock data, we show how price dynamics exhibited important deviations from efficiency for time periods of up to 15 min; thereafter, price dynamics was consistent with a geometric Brownian motion. The intraday behaviour of the series also indicated that price dynamics at trade opening and close was hardly consistent with efficiency, which would enable investors to exploit price deviations from fundamental values. This result is consistent with intraday volume, volatility and transaction time duration patterns.
Harris, Wendy; Zhang, You; Yin, Fang-Fang; Ren, Lei
2017-03-01
To investigate the feasibility of using structural-based principal component analysis (PCA) motion-modeling and weighted free-form deformation to estimate on-board 4D-CBCT using prior information and extremely limited angle projections for potential 4D target verification of lung radiotherapy. A technique for lung 4D-CBCT reconstruction has been previously developed using a deformation field map (DFM)-based strategy. In the previous method, each phase of the 4D-CBCT was generated by deforming a prior CT volume. The DFM was solved by a motion model extracted by a global PCA and free-form deformation (GMM-FD) technique, using a data fidelity constraint and deformation energy minimization. In this study, a new structural PCA method was developed to build a structural motion model (SMM) by accounting for potential relative motion pattern changes between different anatomical structures from simulation to treatment. The motion model extracted from planning 4DCT was divided into two structures: tumor and body excluding tumor, and the parameters of both structures were optimized together. Weighted free-form deformation (WFD) was employed afterwards to introduce flexibility in adjusting the weightings of different structures in the data fidelity constraint based on clinical interests. XCAT (computerized patient model) simulation with a 30 mm diameter lesion was simulated with various anatomical and respiratory changes from planning 4D-CT to on-board volume to evaluate the method. The estimation accuracy was evaluated by the volume percent difference (VPD)/center-of-mass-shift (COMS) between lesions in the estimated and "ground-truth" on-board 4D-CBCT. Different on-board projection acquisition scenarios and projection noise levels were simulated to investigate their effects on the estimation accuracy. The method was also evaluated against three lung patients. The SMM-WFD method achieved substantially better accuracy than the GMM-FD method for CBCT estimation using extremely small scan angles or projections. Using orthogonal 15° scanning angles, the VPD/COMS were 3.47 ± 2.94% and 0.23 ± 0.22 mm for SMM-WFD and 25.23 ± 19.01% and 2.58 ± 2.54 mm for GMM-FD among all eight XCAT scenarios. Compared to GMM-FD, SMM-WFD was more robust against reduction of the scanning angles down to orthogonal 10° with VPD/COMS of 6.21 ± 5.61% and 0.39 ± 0.49 mm, and more robust against reduction of projection numbers down to only 8 projections in total for both orthogonal-view 30° and orthogonal-view 15° scan angles. SMM-WFD method was also more robust than the GMM-FD method against increasing levels of noise in the projection images. Additionally, the SMM-WFD technique provided better tumor estimation for all three lung patients compared to the GMM-FD technique. Compared to the GMM-FD technique, the SMM-WFD technique can substantially improve the 4D-CBCT estimation accuracy using extremely small scan angles and low number of projections to provide fast low dose 4D target verification. © 2017 American Association of Physicists in Medicine.
Very fast motion planning for highly dexterous-articulated robots
NASA Technical Reports Server (NTRS)
Challou, Daniel J.; Gini, Maria; Kumar, Vipin
1994-01-01
Due to the inherent danger of space exploration, the need for greater use of teleoperated and autonomous robotic systems in space-based applications has long been apparent. Autonomous and semi-autonomous robotic devices have been proposed for carrying out routine functions associated with scientific experiments aboard the shuttle and space station. Finally, research into the use of such devices for planetary exploration continues. To accomplish their assigned tasks, all such autonomous and semi-autonomous devices will require the ability to move themselves through space without hitting themselves or the objects which surround them. In space it is important to execute the necessary motions correctly when they are first attempted because repositioning is expensive in terms of both time and resources (e.g., fuel). Finally, such devices will have to function in a variety of different environments. Given these constraints, a means for fast motion planning to insure the correct movement of robotic devices would be ideal. Unfortunately, motion planning algorithms are rarely used in practice because of their computational complexity. Fast methods have been developed for detecting imminent collisions, but the more general problem of motion planning remains computationally intractable. However, in this paper we show how the use of multicomputers and appropriate parallel algorithms can substantially reduce the time required to synthesize paths for dexterous articulated robots with a large number of joints. We have developed a parallel formulation of the Randomized Path Planner proposed by Barraquand and Latombe. We have shown that our parallel formulation is capable of formulating plans in a few seconds or less on various parallel architectures including: the nCUBE2 multicomputer with up to 1024 processors (nCUBE2 is a registered trademark of the nCUBE corporation), and a network of workstations.
Kinematic Patterns Associated with the Vertical Force Produced during the Eggbeater Kick.
Oliveira, Nuno; Chiu, Chuang-Yuan; Sanders, Ross H
2015-01-01
The purpose of this study was to determine the kinematic patterns that maximized the vertical force produced during the water polo eggbeater kick. Twelve water polo players were tested executing the eggbeater kick with the trunk aligned vertically and with the upper limbs above water while trying to maintain as high a position as possible out of the water for nine eggbeater kick cycles. Lower limb joint angular kinematics, pitch angles and speed of the feet were calculated. The vertical force produced during the eggbeater kick cycle was calculated using inverse dynamics for the independent lower body segments and combined upper body segments, and a participant-specific second-degree regression equation for the weight and buoyancy contributions. Vertical force normalized to body weight was associated with hip flexion (average, r = 0.691; maximum, r = 0.791; range of motion, r = 0.710), hip abduction (maximum, r = 0.654), knee flexion (average, r = 0.716; minimum, r = 0.653) and knee flexion-extension angular velocity (r = 0.758). Effective orientation of the hips resulted in fast horizontal motion of the feet with positive pitch angles. Vertical motion of the feet was negatively associated with vertical force. A multiple regression model comprising the non-collinear variables of maximum hip abduction, hip flexion range of motion and knee flexion angular velocity accounted for 81% of the variance in normalized vertical force. For high performance in the water polo, eggbeater kick players should execute fast horizontal motion with the feet by having large abduction and flexion of the hips, and fast extension and flexion of the knees.
Kesler, Kyle; Dillon, Neal P; Fichera, Loris; Labadie, Robert F
2017-09-01
Objectives Document human motions associated with cochlear implant electrode insertion at different speeds and determine the lower limit of continuous insertion speed by a human. Study Design Observational. Setting Academic medical center. Subjects and Methods Cochlear implant forceps were coupled to a frame containing reflective fiducials, which enabled optical tracking of the forceps' tip position in real time. Otolaryngologists (n = 14) performed mock electrode insertions at different speeds based on recommendations from the literature: "fast" (96 mm/min), "stable" (as slow as possible without stopping), and "slow" (15 mm/min). For each insertion, the following metrics were calculated from the tracked position data: percentage of time at prescribed speed, percentage of time the surgeon stopped moving forward, and number of direction reversals (ie, going from forward to backward motion). Results Fast insertion trials resulted in better adherence to the prescribed speed (45.4% of the overall time), no motion interruptions, and no reversals, as compared with slow insertions (18.6% of time at prescribed speed, 15.7% stopped time, and an average of 18.6 reversals per trial). These differences were statistically significant for all metrics ( P < .01). The metrics for the fast and stable insertions were comparable; however, stable insertions were performed 44% slower on average. The mean stable insertion speed was 52 ± 19.3 mm/min. Conclusion Results indicate that continuous insertion of a cochlear implant electrode at 15 mm/min is not feasible for human operators. The lower limit of continuous forward insertion is 52 mm/min on average. Guidelines on manual insertion kinematics should consider this practical limit of human motion.
Oscillation of the velvet worm slime jet by passive hydrodynamic instability
Concha, Andrés; Mellado, Paula; Morera-Brenes, Bernal; Sampaio Costa, Cristiano; Mahadevan, L; Monge-Nájera, Julián
2015-01-01
The rapid squirt of a proteinaceous slime jet endows velvet worms (Onychophora) with a unique mechanism for defence from predators and for capturing prey by entangling them in a disordered web that immobilizes their target. However, to date, neither qualitative nor quantitative descriptions have been provided for this unique adaptation. Here we investigate the fast oscillatory motion of the oral papillae and the exiting liquid jet that oscillates with frequencies f~30–60 Hz. Using anatomical images, high-speed videography, theoretical analysis and a physical simulacrum, we show that this fast oscillatory motion is the result of an elastohydrodynamic instability driven by the interplay between the elasticity of oral papillae and the fast unsteady flow during squirting. Our results demonstrate how passive strategies can be cleverly harnessed by organisms, while suggesting future oscillating microfluidic devices, as well as novel ways for micro and nanofibre production using bioinspired strategies. PMID:25780995
Wang, Zhen; Antoniou, Dimitri; Schwartz, Steven D.; Schramm, Vern L.
2016-01-01
Escherichia coli dihydrofolate reductase (ecDHFR) is used to study fundamental principles of enzyme catalysis. It remains controversial whether fast protein motions are coupled to the hydride transfer catalyzed by ecDHFR. Previous studies with heavy ecDHFR proteins labeled with 13C, 15N, and nonexchangeable 2H reported enzyme mass-dependent hydride transfer kinetics for ecDHFR. Here, we report refined experimental and computational studies to establish that hydride transfer is independent of protein mass. Instead, we found the rate constant for substrate dissociation to be faster for heavy DHFR. Previously reported kinetic differences between light and heavy DHFRs likely arise from kinetic steps other than the chemical step. This study confirms that fast (femtosecond to picosecond) protein motions in ecDHFR are not coupled to hydride transfer and provides an integrative computational and experimental approach to resolve fast dynamics coupled to chemical steps in enzyme catalysis. PMID:26652185
SU-F-I-15: Evaluation of a New MR-Compatible Respiratory Motion Device at 3T
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soliman, A; Sunnybrook Health Sciences Centre, Toronto, ON; Chugh, B
Purpose: Recent advances in MRI-guided radiotherapy has inspired the development of MRI-compatible motion devices that simulate patient periodic motion in the scanner, particularly respiratory motion. Most commercial devices rely on non MR-safe ferromagnetic stepper motors which are not practical for regular QA testing. This work evaluates the motion performance of a new fully MRI compatible respiratory motion device at 3T. Methods: The QUASAR™ MRI-compatible respiratory motion phantom has been recently developed by Modus QA Inc., London, ON, Canada. The prototype is constructed from diamagnetic materials with linear motion generated using MRI-compatible piezoelectric motors that can be safely inserted in themore » scanner bore. The tumor was represented by a fillable sphere and is attached to the linear motion generator. The spherical tumor-representative and its surroundings were filled with different concentrations of MnCl2 to produce realistic relaxation times. The motion was generated along the longitudinal (H/F) axis of the bore using sinusoidal reference waveform (amplitude = 15 mm, frequency 0.25 Hz). Imaging was then performed on 3T Philips Achieva using a 32-channel cardiac coil. Fast 2D spoiled gradient-echo was used with a spatial resolution of 1.8 × 1.8 mm{sup 2} and slice thickness of 4 mm. The motion waveform was then measured on the resultant image series by tracking the centroid of the sphere through the time series. This image-derived measured motion was compared to the software-generated reference waveform. Results: No visible distortions from the device were observed on the images. Excellent agreement between the measured and the reference waveforms were obtained. Negligible motion was observed in the lateral (R/L) direction. Conclusion: Our investigation demonstrates that this piezo-electric motor design is effective at simulating periodic motion and is a potential candidate for MRI-radiotherapy respiratory motion simulation. Future work should focus on evaluating non-sinusoidal waveforms, fast 3D pulse sequences, and perform dosimetric QA.« less
Cardiac motion correction based on partial angle reconstructed images in x-ray CT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Seungeon; Chang, Yongjin; Ra, Jong Beom, E-mail: jbra@kaist.ac.kr
2015-05-15
Purpose: Cardiac x-ray CT imaging is still challenging due to heart motion, which cannot be ignored even with the current rotation speed of the equipment. In response, many algorithms have been developed to compensate remaining motion artifacts by estimating the motion using projection data or reconstructed images. In these algorithms, accurate motion estimation is critical to the compensated image quality. In addition, since the scan range is directly related to the radiation dose, it is preferable to minimize the scan range in motion estimation. In this paper, the authors propose a novel motion estimation and compensation algorithm using a sinogrammore » with a rotation angle of less than 360°. The algorithm estimates the motion of the whole heart area using two opposite 3D partial angle reconstructed (PAR) images and compensates the motion in the reconstruction process. Methods: A CT system scans the thoracic area including the heart over an angular range of 180° + α + β, where α and β denote the detector fan angle and an additional partial angle, respectively. The obtained cone-beam projection data are converted into cone-parallel geometry via row-wise fan-to-parallel rebinning. Two conjugate 3D PAR images, whose center projection angles are separated by 180°, are then reconstructed with an angular range of β, which is considerably smaller than a short scan range of 180° + α. Although these images include limited view angle artifacts that disturb accurate motion estimation, they have considerably better temporal resolution than a short scan image. Hence, after preprocessing these artifacts, the authors estimate a motion model during a half rotation for a whole field of view via nonrigid registration between the images. Finally, motion-compensated image reconstruction is performed at a target phase by incorporating the estimated motion model. The target phase is selected as that corresponding to a view angle that is orthogonal to the center view angles of two conjugate PAR images. To evaluate the proposed algorithm, digital XCAT and physical dynamic cardiac phantom datasets are used. The XCAT phantom datasets were generated with heart rates of 70 and 100 bpm, respectively, by assuming a system rotation time of 300 ms. A physical dynamic cardiac phantom was scanned using a slowly rotating XCT system so that the effective heart rate will be 70 bpm for a system rotation speed of 300 ms. Results: In the XCAT phantom experiment, motion-compensated 3D images obtained from the proposed algorithm show coronary arteries with fewer motion artifacts for all phases. Moreover, object boundaries contaminated by motion are well restored. Even though object positions and boundary shapes are still somewhat different from the ground truth in some cases, the authors see that visibilities of coronary arteries are improved noticeably and motion artifacts are reduced considerably. The physical phantom study also shows that the visual quality of motion-compensated images is greatly improved. Conclusions: The authors propose a novel PAR image-based cardiac motion estimation and compensation algorithm. The algorithm requires an angular scan range of less than 360°. The excellent performance of the proposed algorithm is illustrated by using digital XCAT and physical dynamic cardiac phantom datasets.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, David, E-mail: dhthomas@mednet.ucla.edu; Lamb, James; White, Benjamin
2014-05-01
Purpose: To develop a novel 4-dimensional computed tomography (4D-CT) technique that exploits standard fast helical acquisition, a simultaneous breathing surrogate measurement, deformable image registration, and a breathing motion model to remove sorting artifacts. Methods and Materials: Ten patients were imaged under free-breathing conditions 25 successive times in alternating directions with a 64-slice CT scanner using a low-dose fast helical protocol. An abdominal bellows was used as a breathing surrogate. Deformable registration was used to register the first image (defined as the reference image) to the subsequent 24 segmented images. Voxel-specific motion model parameters were determined using a breathing motion model. Themore » tissue locations predicted by the motion model in the 25 images were compared against the deformably registered tissue locations, allowing a model prediction error to be evaluated. A low-noise image was created by averaging the 25 images deformed to the first image geometry, reducing statistical image noise by a factor of 5. The motion model was used to deform the low-noise reference image to any user-selected breathing phase. A voxel-specific correction was applied to correct the Hounsfield units for lung parenchyma density as a function of lung air filling. Results: Images produced using the model at user-selected breathing phases did not suffer from sorting artifacts common to conventional 4D-CT protocols. The mean prediction error across all patients between the breathing motion model predictions and the measured lung tissue positions was determined to be 1.19 ± 0.37 mm. Conclusions: The proposed technique can be used as a clinical 4D-CT technique. It is robust in the presence of irregular breathing and allows the entire imaging dose to contribute to the resulting image quality, providing sorting artifact–free images at a patient dose similar to or less than current 4D-CT techniques.« less
Thomas, David; Lamb, James; White, Benjamin; Jani, Shyam; Gaudio, Sergio; Lee, Percy; Ruan, Dan; McNitt-Gray, Michael; Low, Daniel
2014-05-01
To develop a novel 4-dimensional computed tomography (4D-CT) technique that exploits standard fast helical acquisition, a simultaneous breathing surrogate measurement, deformable image registration, and a breathing motion model to remove sorting artifacts. Ten patients were imaged under free-breathing conditions 25 successive times in alternating directions with a 64-slice CT scanner using a low-dose fast helical protocol. An abdominal bellows was used as a breathing surrogate. Deformable registration was used to register the first image (defined as the reference image) to the subsequent 24 segmented images. Voxel-specific motion model parameters were determined using a breathing motion model. The tissue locations predicted by the motion model in the 25 images were compared against the deformably registered tissue locations, allowing a model prediction error to be evaluated. A low-noise image was created by averaging the 25 images deformed to the first image geometry, reducing statistical image noise by a factor of 5. The motion model was used to deform the low-noise reference image to any user-selected breathing phase. A voxel-specific correction was applied to correct the Hounsfield units for lung parenchyma density as a function of lung air filling. Images produced using the model at user-selected breathing phases did not suffer from sorting artifacts common to conventional 4D-CT protocols. The mean prediction error across all patients between the breathing motion model predictions and the measured lung tissue positions was determined to be 1.19 ± 0.37 mm. The proposed technique can be used as a clinical 4D-CT technique. It is robust in the presence of irregular breathing and allows the entire imaging dose to contribute to the resulting image quality, providing sorting artifact-free images at a patient dose similar to or less than current 4D-CT techniques. Copyright © 2014 Elsevier Inc. All rights reserved.
Seismic anisotropy in eastern Africa, mantle flow, and the African superplume
NASA Astrophysics Data System (ADS)
Bagley, Brian; Nyblade, Andrew A.
2013-04-01
New estimates of seismic anisotropy from shear wave splitting measurements in eastern Africa reveal a pattern of seismic anisotropy dominated by a NE alignment of fast polarization directions with local changes around the thick Archean lithosphere of the Tanzania craton. The overall pattern is consistent with mantle flow from the African superplume but not with absolute plate motion, a plume head, or fossil anisotropy in the lithosphere. In combination with tomographic images of the African superplume, this finding suggests that plateau uplift, volcanism, and continental breakup along the Afro-Arabian rift system is strongly influenced by flow from the lower mantle and indicates a connection between lower mantle processes and the tectonic deformation of the Earth's surface.
Hofmann, Hannes G; Keck, Benjamin; Rohkohl, Christopher; Hornegger, Joachim
2011-01-01
Interventional reconstruction of 3-D volumetric data from C-arm CT projections is a computationally demanding task. Hardware optimization is not an option but mandatory for interventional image processing and, in particular, for image reconstruction due to the high demands on performance. Several groups have published fast analytical 3-D reconstruction on highly parallel hardware such as GPUs to mitigate this issue. The authors show that the performance of modern CPU-based systems is in the same order as current GPUs for static 3-D reconstruction and outperforms them for a recent motion compensated (3-D+time) image reconstruction algorithm. This work investigates two algorithms: Static 3-D reconstruction as well as a recent motion compensated algorithm. The evaluation was performed using a standardized reconstruction benchmark, RABBITCT, to get comparable results and two additional clinical data sets. The authors demonstrate for a parametric B-spline motion estimation scheme that the derivative computation, which requires many write operations to memory, performs poorly on the GPU and can highly benefit from modern CPU architectures with large caches. Moreover, on a 32-core Intel Xeon server system, the authors achieve linear scaling with the number of cores used and reconstruction times almost in the same range as current GPUs. Algorithmic innovations in the field of motion compensated image reconstruction may lead to a shift back to CPUs in the future. For analytical 3-D reconstruction, the authors show that the gap between GPUs and CPUs became smaller. It can be performed in less than 20 s (on-the-fly) using a 32-core server.
Dikbas, Salih; Altunbasak, Yucel
2013-08-01
In this paper, a new low-complexity true-motion estimation (TME) algorithm is proposed for video processing applications, such as motion-compensated temporal frame interpolation (MCTFI) or motion-compensated frame rate up-conversion (MCFRUC). Regular motion estimation, which is often used in video coding, aims to find the motion vectors (MVs) to reduce the temporal redundancy, whereas TME aims to track the projected object motion as closely as possible. TME is obtained by imposing implicit and/or explicit smoothness constraints on the block-matching algorithm. To produce better quality-interpolated frames, the dense motion field at interpolation time is obtained for both forward and backward MVs; then, bidirectional motion compensation using forward and backward MVs is applied by mixing both elegantly. Finally, the performance of the proposed algorithm for MCTFI is demonstrated against recently proposed methods and smoothness constraint optical flow employed by a professional video production suite. Experimental results show that the quality of the interpolated frames using the proposed method is better when compared with the MCFRUC techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O’Shea, T; Bamber, J; Harris, E
Purpose: For ultrasound speckle tracking there is some evidence that the envelope-detected signal (the main step in B-mode image formation) may be more accurate than raw ultrasound data for tracking larger inter-frame tissue motion. This study investigates the accuracy of raw radio-frequency (RF) versus non-logarithmic compressed envelope-detected (B-mode) data for ultrasound speckle tracking in the context of image-guided radiation therapy. Methods: Transperineal ultrasound RF data was acquired (with a 7.5 MHz linear transducer operating at a 12 Hz frame rate) from a speckle phantom moving with realistic intra-fraction prostate motion derived from a commercial tracking system. A normalised cross-correlation templatemore » matching algorithm was used to track speckle motion at the focus using (i) the RF signal and (ii) the B-mode signal. A range of imaging rates (0.5 to 12 Hz) were simulated by decimating the imaging sequences, therefore simulating larger to smaller inter-frame displacements. Motion estimation accuracy was quantified by comparison with known phantom motion. Results: The differences between RF and B-mode motion estimation accuracy (2D mean and 95% errors relative to ground truth displacements) were less than 0.01 mm for stable and persistent motion types and 0.2 mm for transient motion for imaging rates of 0.5 to 12 Hz. The mean correlation for all motion types and imaging rates was 0.851 and 0.845 for RF and B-mode data, respectively. Data type is expected to have most impact on axial (Superior-Inferior) motion estimation. Axial differences were <0.004 mm for stable and persistent motion and <0.3 mm for transient motion (axial mean errors were lowest for B-mode in all cases). Conclusions: Using the RF or B-mode signal for speckle motion estimation is comparable for translational prostate motion. B-mode image formation may involve other signal-processing steps which also influence motion estimation accuracy. A similar study for respiratory-induced motion would also be prudent. This work is support by Cancer Research UK Programme Grant C33589/A19727.« less
Bubble driven quasioscillatory translational motion of catalytic micromotors.
Manjare, Manoj; Yang, Bo; Zhao, Y-P
2012-09-21
A new quasioscillatory translational motion has been observed for big Janus catalytic micromotors with a fast CCD camera. Such motional behavior is found to coincide with both the bubble growth and burst processes resulting from the catalytic reaction, and the competition of the two processes generates a net forward motion. Detailed physical models have been proposed to describe the above processes. It is suggested that the bubble growth process imposes a growth force moving the micromotor forward, while the burst process induces an instantaneous local pressure depression pulling the micromotor backward. The theoretic predictions are consistent with the experimental data.
Bubble Driven Quasioscillatory Translational Motion of Catalytic Micromotors
NASA Astrophysics Data System (ADS)
Manjare, Manoj; Yang, Bo; Zhao, Y.-P.
2012-09-01
A new quasioscillatory translational motion has been observed for big Janus catalytic micromotors with a fast CCD camera. Such motional behavior is found to coincide with both the bubble growth and burst processes resulting from the catalytic reaction, and the competition of the two processes generates a net forward motion. Detailed physical models have been proposed to describe the above processes. It is suggested that the bubble growth process imposes a growth force moving the micromotor forward, while the burst process induces an instantaneous local pressure depression pulling the micromotor backward. The theoretic predictions are consistent with the experimental data.
4D cone-beam CT reconstruction using multi-organ meshes for sliding motion modeling
NASA Astrophysics Data System (ADS)
Zhong, Zichun; Gu, Xuejun; Mao, Weihua; Wang, Jing
2016-02-01
A simultaneous motion estimation and image reconstruction (SMEIR) strategy was proposed for 4D cone-beam CT (4D-CBCT) reconstruction and showed excellent results in both phantom and lung cancer patient studies. In the original SMEIR algorithm, the deformation vector field (DVF) was defined on voxel grid and estimated by enforcing a global smoothness regularization term on the motion fields. The objective of this work is to improve the computation efficiency and motion estimation accuracy of SMEIR for 4D-CBCT through developing a multi-organ meshing model. Feature-based adaptive meshes were generated to reduce the number of unknowns in the DVF estimation and accurately capture the organ shapes and motion. Additionally, the discontinuity in the motion fields between different organs during respiration was explicitly considered in the multi-organ mesh model. This will help with the accurate visualization and motion estimation of the tumor on the organ boundaries in 4D-CBCT. To further improve the computational efficiency, a GPU-based parallel implementation was designed. The performance of the proposed algorithm was evaluated on a synthetic sliding motion phantom, a 4D NCAT phantom, and four lung cancer patients. The proposed multi-organ mesh based strategy outperformed the conventional Feldkamp-Davis-Kress, iterative total variation minimization, original SMEIR and single meshing method based on both qualitative and quantitative evaluations.
4D cone-beam CT reconstruction using multi-organ meshes for sliding motion modeling.
Zhong, Zichun; Gu, Xuejun; Mao, Weihua; Wang, Jing
2016-02-07
A simultaneous motion estimation and image reconstruction (SMEIR) strategy was proposed for 4D cone-beam CT (4D-CBCT) reconstruction and showed excellent results in both phantom and lung cancer patient studies. In the original SMEIR algorithm, the deformation vector field (DVF) was defined on voxel grid and estimated by enforcing a global smoothness regularization term on the motion fields. The objective of this work is to improve the computation efficiency and motion estimation accuracy of SMEIR for 4D-CBCT through developing a multi-organ meshing model. Feature-based adaptive meshes were generated to reduce the number of unknowns in the DVF estimation and accurately capture the organ shapes and motion. Additionally, the discontinuity in the motion fields between different organs during respiration was explicitly considered in the multi-organ mesh model. This will help with the accurate visualization and motion estimation of the tumor on the organ boundaries in 4D-CBCT. To further improve the computational efficiency, a GPU-based parallel implementation was designed. The performance of the proposed algorithm was evaluated on a synthetic sliding motion phantom, a 4D NCAT phantom, and four lung cancer patients. The proposed multi-organ mesh based strategy outperformed the conventional Feldkamp-Davis-Kress, iterative total variation minimization, original SMEIR and single meshing method based on both qualitative and quantitative evaluations.
4D cone-beam CT reconstruction using multi-organ meshes for sliding motion modeling
Zhong, Zichun; Gu, Xuejun; Mao, Weihua; Wang, Jing
2016-01-01
A simultaneous motion estimation and image reconstruction (SMEIR) strategy was proposed for 4D cone-beam CT (4D-CBCT) reconstruction and showed excellent results in both phantom and lung cancer patient studies. In the original SMEIR algorithm, the deformation vector field (DVF) was defined on voxel grid and estimated by enforcing a global smoothness regularization term on the motion fields. The objective of this work is to improve the computation efficiency and motion estimation accuracy of SMEIR for 4D-CBCT through developing a multi-organ meshing model. Feature-based adaptive meshes were generated to reduce the number of unknowns in the DVF estimation and accurately capture the organ shapes and motion. Additionally, the discontinuity in the motion fields between different organs during respiration was explicitly considered in the multi-organ mesh model. This will help with the accurate visualization and motion estimation of the tumor on the organ boundaries in 4D-CBCT. To further improve the computational efficiency, a GPU-based parallel implementation was designed. The performance of the proposed algorithm was evaluated on a synthetic sliding motion phantom, a 4D NCAT phantom, and four lung cancer patients. The proposed multi-organ mesh based strategy outperformed the conventional Feldkamp–Davis–Kress, iterative total variation minimization, original SMEIR and single meshing method based on both qualitative and quantitative evaluations. PMID:26758496
NASA Astrophysics Data System (ADS)
Cao, L.; Kao, H.; Wang, K.; Wang, Z.
2016-12-01
Haida Gwaii is located along the transpressive Queen Charlotte margin between the Pacific (PA) and North America (NA) plates. The highly oblique relative plate motion is partitioned, with the strike-slip component accommodated by the Queen Charlotte Fault (QCF) and the convergent component by a thrust fault offshore. To understand how the presence of a obliquely subducting slab influences shear deformation of the plate boundary, we investigate mantle anisotropy by analyzing shear-wave splitting of teleseismic SKS phases recorded at 17 seismic stations in and around Haida Gwaii. We used the MFAST program to determine the polarization direction of the fast wave (φ) and the delay time (δt) between the fast and slow phases. The fast directions derived from stations on Haida Gwaii and two stations to the north on the Alaska Panhandle are predominantly margin-parallel (NNW). However, away from the plate boundary, the fast direction transitions to WSW-trending, very oblique or perpendicular to the plate boundary. Because the average delay time of 0.6-2.45 s is much larger than values based on an associated local S phase splitting analysis in the same study area, it is reasonable to infer that most of the anisotropy from our SKS analysis originates from the upper mantle and is associated with lattice-preferred orientation of anisotropic minerals. The margin-parallel fast direction within about 100 km of the QCF (average φ = -40º and δt = 1.2 s) is likely induced by the PA-NA shear motion. The roughly margin-normal fast directions farther away, although more scatterd, are consistent with that previously observed in the NA continent and are attributed to the absolute motion of the NA plate. However, the transition between the two regimes based on our SKS analysis appears to be gradual, suggesting that the plate boundary shear influences a much broader region at mantle depths than would be inferred from the surface trace of the QCF. We think this is due to the presence of a subducted portion of the Pacific plate. Because the slab travels mostly in the strike direction, it is expected to induce margin-parallel shear deformation of the mantle material. This result has importance implications to the geodynamics of transpressive plate margins.
Three-Dimensional Motion Estimation Using Shading Information in Multiple Frames
1989-09-01
j. Threle-D.imensionai GO Motion Estimation U sing, Shadin g Ilnformation in Multiple Frames- IJean-Pierre Schotf MIT Artifi -cial intelligence...vision 3-D structure 3-D vision- shape from shading multiple frames 20. ABSTRACT (Cofrn11,00 an reysrf* OWd Of Rssss00n7 Ad 4111111& F~ block f)nseq See...motion and shading have been treated as two disjoint problems. On the one hand, researchers studying motion or structure from motion often assume
Zhang, Zhijun; Ashraf, Muhammad; Sahn, David J; Song, Xubo
2014-05-01
Quantitative analysis of cardiac motion is important for evaluation of heart function. Three dimensional (3D) echocardiography is among the most frequently used imaging modalities for motion estimation because it is convenient, real-time, low-cost, and nonionizing. However, motion estimation from 3D echocardiographic sequences is still a challenging problem due to low image quality and image corruption by noise and artifacts. The authors have developed a temporally diffeomorphic motion estimation approach in which the velocity field instead of the displacement field was optimized. The optimal velocity field optimizes a novel similarity function, which we call the intensity consistency error, defined as multiple consecutive frames evolving to each time point. The optimization problem is solved by using the steepest descent method. Experiments with simulated datasets, images of anex vivo rabbit phantom, images of in vivo open-chest pig hearts, and healthy human images were used to validate the authors' method. Simulated and real cardiac sequences tests showed that results in the authors' method are more accurate than other competing temporal diffeomorphic methods. Tests with sonomicrometry showed that the tracked crystal positions have good agreement with ground truth and the authors' method has higher accuracy than the temporal diffeomorphic free-form deformation (TDFFD) method. Validation with an open-access human cardiac dataset showed that the authors' method has smaller feature tracking errors than both TDFFD and frame-to-frame methods. The authors proposed a diffeomorphic motion estimation method with temporal smoothness by constraining the velocity field to have maximum local intensity consistency within multiple consecutive frames. The estimated motion using the authors' method has good temporal consistency and is more accurate than other temporally diffeomorphic motion estimation methods.
Waite, Gregory P.; Schutt, D.L.; Smith, Robert B.
2005-01-01
Teleseismic shear wave splitting measured at 56 continuous and temporary seismographs deployed in a 500 km by 600 km area around the Yellowstone hot spot indicates that fast anisotropy in the mantle is parallel to the direction of plate motion under most of the array. The average split time from all stations of 0.9 s is typical of continental stations. There is little evidence for plume-induced radial strain, suggesting that any contribution of gravitationally spreading plume material is undetectably small with respect to the plate motion velocity. Two stations within Yellowstone have splitting measurements indicating the apparent fast anisotropy direction (ϕ) is nearly perpendicular to plate motion. These stations are ∼30 km from stations with ϕ parallel to plate motion. The 70° rotation over 30 km suggests a shallow source of anisotropy; however, split times for these stations are more than 2 s. We suggest melt-filled, stress-oriented cracks in the lithosphere are responsible for the anomalous ϕ orientations within Yellowstone. Stations southeast of Yellowstone have measurements of ϕ oriented NNW to WNW at high angles to the plate motion direction. The Archean lithosphere beneath these stations may have significant anisotropy capable of producing the observed splitting.
Dense motion estimation using regularization constraints on local parametric models.
Patras, Ioannis; Worring, Marcel; van den Boomgaard, Rein
2004-11-01
This paper presents a method for dense optical flow estimation in which the motion field within patches that result from an initial intensity segmentation is parametrized with models of different order. We propose a novel formulation which introduces regularization constraints between the model parameters of neighboring patches. In this way, we provide the additional constraints for very small patches and for patches whose intensity variation cannot sufficiently constrain the estimation of their motion parameters. In order to preserve motion discontinuities, we use robust functions as a regularization mean. We adopt a three-frame approach and control the balance between the backward and forward constraints by a real-valued direction field on which regularization constraints are applied. An iterative deterministic relaxation method is employed in order to solve the corresponding optimization problem. Experimental results show that the proposed method deals successfully with motions large in magnitude, motion discontinuities, and produces accurate piecewise-smooth motion fields.
Velocity Estimates of Fast-Moving Outlet Glaciers on the Greenland Ice Sheet
NASA Technical Reports Server (NTRS)
Abdalati, Waleed; Krabill, W. B.
1998-01-01
In recent years, airborne laser altimetry has been used with great success to investigate the mass balance characteristics of the Greenland ice sheet. One spinoff of this activity has been the application of these measurements to the study of surface velocities in some of Greenland's fast-moving drainage glaciers. This is accomplished by tracking the motion of elevation features, primarily crevasses, in pairs of aircraft laser altimetry surveys. Detailed elevation measurements are made along or across glaciers of interest with a scanning swath of 150 to 200 meters, and the surveys are repeated several days later, typically to within better than 50 meters of the previous flight line. Surface elevation features are identified in each image, and their offsets are compared yielding detailed velocities over narrow regions. During the 1998 field season, repeat flights were made over three glaciers for the purpose of estimating their surface velocities. These were the Kangerdlugssuaq and Helheim glaciers on the east coast and the Jakobshavn Isbrae on the west coast. Each flows at such high speeds (on the order of a few kilometers per year) that their flow rates are difficult to assess by means of radar interferometry. The flexibility of the aircraft platform, however, allows for detailed measurements of the elevation and flow of these drainage areas, which are responsible for a significant portion of the ice discharge from the Greenland ice sheet. Velocity estimates for transects that span these glaciers will be presented, and where the ice thickness values are available (provided by researchers from the University of Kansas) the fluxes will be calculated.
NASA Astrophysics Data System (ADS)
Santos, C. Almeida; Costa, C. Oliveira; Batista, J.
2016-05-01
The paper describes a kinematic model-based solution to estimate simultaneously the calibration parameters of the vision system and the full-motion (6-DOF) of large civil engineering structures, namely of long deck suspension bridges, from a sequence of stereo images captured by digital cameras. Using an arbitrary number of images and assuming a smooth structure motion, an Iterated Extended Kalman Filter is used to recursively estimate the projection matrices of the cameras and the structure full-motion (displacement and rotation) over time, helping to meet the structure health monitoring fulfilment. Results related to the performance evaluation, obtained by numerical simulation and with real experiments, are reported. The real experiments were carried out in indoor and outdoor environment using a reduced structure model to impose controlled motions. In both cases, the results obtained with a minimum setup comprising only two cameras and four non-coplanar tracking points, showed a high accuracy results for on-line camera calibration and structure full motion estimation.
Enhancing Physics Demos Using iPhone Slow Motion
ERIC Educational Resources Information Center
Lincoln, James
2017-01-01
Slow motion video enhances our ability to perceive and experience the physical world. This can help students and teachers especially in cases of fast moving objects or detailed events that happen too quickly for the eye to follow. As often as possible, demonstrations should be performed by the students themselves and luckily many of them will…
Lagrangian speckle model and tissue-motion estimation--theory.
Maurice, R L; Bertrand, M
1999-07-01
It is known that when a tissue is subjected to movements such as rotation, shearing, scaling, etc., changes in speckle patterns that result act as a noise source, often responsible for most of the displacement-estimate variance. From a modeling point of view, these changes can be thought of as resulting from two mechanisms: one is the motion of the speckles and the other, the alterations of their morphology. In this paper, we propose a new tissue-motion estimator to counteract these speckle decorrelation effects. The estimator is based on a Lagrangian description of the speckle motion. This description allows us to follow local characteristics of the speckle field as if they were a material property. This method leads to an analytical description of the decorrelation in a way which enables the derivation of an appropriate inverse filter for speckle restoration. The filter is appropriate for linear geometrical transformation of the scattering function (LT), i.e., a constant-strain region of interest (ROI). As the LT itself is a parameter of the filter, a tissue-motion estimator can be formulated as a nonlinear minimization problem, seeking the best match between the pre-tissue-motion image and a restored-speckle post-motion image. The method is tested, using simulated radio-frequency (RF) images of tissue undergoing axial shear.
NASA Astrophysics Data System (ADS)
Gao, Bin; Liu, Wanyu; Wang, Liang; Liu, Zhengjun; Croisille, Pierre; Delachartre, Philippe; Clarysse, Patrick
2016-12-01
Cine-MRI is widely used for the analysis of cardiac function in clinical routine, because of its high soft tissue contrast and relatively short acquisition time in comparison with other cardiac MRI techniques. The gray level distribution in cardiac cine-MRI is relatively homogenous within the myocardium, and can therefore make motion quantification difficult. To ensure that the motion estimation problem is well posed, more image features have to be considered. This work is inspired by a method previously developed for color image processing. The monogenic signal provides a framework to estimate the local phase, orientation, and amplitude, of an image, three features which locally characterize the 2D intensity profile. The independent monogenic features are combined into a 3D matrix for motion estimation. To improve motion estimation accuracy, we chose the zero-mean normalized cross-correlation as a matching measure, and implemented a bilateral filter for denoising and edge-preservation. The monogenic features distance is used in lieu of the color space distance in the bilateral filter. Results obtained from four realistic simulated sequences outperformed two other state of the art methods even in the presence of noise. The motion estimation errors (end point error) using our proposed method were reduced by about 20% in comparison with those obtained by the other tested methods. The new methodology was evaluated on four clinical sequences from patients presenting with cardiac motion dysfunctions and one healthy volunteer. The derived strain fields were analyzed favorably in their ability to identify myocardial regions with impaired motion.
The effect of heart motion on parameter bias in dynamic cardiac SPECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ross, S.G.; Gullberg, G.T.; Huesman, R.H.
1996-12-31
Dynamic cardiac SPECT can be used to estimate kinetic rate parameters which describe the wash-in and wash-out of tracer activity between the blood and the myocardial tissue. These kinetic parameters can in turn be correlated to myocardial perfusion. There are, however, many physical aspects associated with dynamic SPECT which can introduce errors into the estimates. This paper describes a study which investigates the effect of heart motion on kinetic parameter estimates. Dynamic SPECT simulations are performed using a beating version of the MCAT phantom. The results demonstrate that cardiac motion has a significant effect on the blood, tissue, and backgroundmore » content of regions of interest. This in turn affects estimates of wash-in, while it has very little effect on estimates of wash-out. The effect of cardiac motion on parameter estimates appears not to be as great as effects introduced by photon noise and geometric collimator response. It is also shown that cardiac motion results in little extravascular contamination of the left ventricle blood region of interest.« less
Inertial sensor-based smoother for gait analysis.
Suh, Young Soo
2014-12-17
An off-line smoother algorithm is proposed to estimate foot motion using an inertial sensor unit (three-axis gyroscopes and accelerometers) attached to a shoe. The smoother gives more accurate foot motion estimation than filter-based algorithms by using all of the sensor data instead of using the current sensor data. The algorithm consists of two parts. In the first part, a Kalman filter is used to obtain initial foot motion estimation. In the second part, the error in the initial estimation is compensated using a smoother, where the problem is formulated in the quadratic optimization problem. An efficient solution of the quadratic optimization problem is given using the sparse structure. Through experiments, it is shown that the proposed algorithm can estimate foot motion more accurately than a filter-based algorithm with reasonable computation time. In particular, there is significant improvement in the foot motion estimation when the foot is moving off the floor: the z-axis position error squared sum (total time: 3.47 s) when the foot is in the air is 0.0807 m2 (Kalman filter) and 0.0020 m2 (the proposed smoother).
Navigation Aiding by a Hybrid Laser-Camera Motion Estimator for Micro Aerial Vehicles.
Atman, Jamal; Popp, Manuel; Ruppelt, Jan; Trommer, Gert F
2016-09-16
Micro Air Vehicles (MAVs) equipped with various sensors are able to carry out autonomous flights. However, the self-localization of autonomous agents is mostly dependent on Global Navigation Satellite Systems (GNSS). In order to provide an accurate navigation solution in absence of GNSS signals, this article presents a hybrid sensor. The hybrid sensor is a deep integration of a monocular camera and a 2D laser rangefinder so that the motion of the MAV is estimated. This realization is expected to be more flexible in terms of environments compared to laser-scan-matching approaches. The estimated ego-motion is then integrated in the MAV's navigation system. However, first, the knowledge about the pose between both sensors is obtained by proposing an improved calibration method. For both calibration and ego-motion estimation, 3D-to-2D correspondences are used and the Perspective-3-Point (P3P) problem is solved. Moreover, the covariance estimation of the relative motion is presented. The experiments show very accurate calibration and navigation results.
Optimization of intra-voxel incoherent motion imaging at 3.0 Tesla for fast liver examination.
Leporq, Benjamin; Saint-Jalmes, Hervé; Rabrait, Cecile; Pilleul, Frank; Guillaud, Olivier; Dumortier, Jérôme; Scoazec, Jean-Yves; Beuf, Olivier
2015-05-01
Optimization of multi b-values MR protocol for fast intra-voxel incoherent motion imaging of the liver at 3.0 Tesla. A comparison of four different acquisition protocols were carried out based on estimated IVIM (DSlow , DFast , and f) and ADC-parameters in 25 healthy volunteers. The effects of respiratory gating compared with free breathing acquisition then diffusion gradient scheme (simultaneous or sequential) and finally use of weighted averaging for different b-values were assessed. An optimization study based on Cramer-Rao lower bound theory was then performed to minimize the number of b-values required for a suitable quantification. The duration-optimized protocol was evaluated on 12 patients with chronic liver diseases No significant differences of IVIM parameters were observed between the assessed protocols. Only four b-values (0, 12, 82, and 1310 s.mm(-2) ) were found mandatory to perform a suitable quantification of IVIM parameters. DSlow and DFast significantly decreased between nonadvanced and advanced fibrosis (P < 0.05 and P < 0.01) whereas perfusion fraction and ADC variations were not found to be significant. Results showed that IVIM could be performed in free breathing, with a weighted-averaging procedure, a simultaneous diffusion gradient scheme and only four optimized b-values (0, 10, 80, and 800) reducing scan duration by a factor of nine compared with a nonoptimized protocol. Preliminary results have shown that parameters such as DSlow and DFast based on optimized IVIM protocol can be relevant biomarkers to distinguish between nonadvanced and advanced fibrosis. © 2014 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Schoch, Rafael L.; Barel, Itay; Brown, Frank L. H.; Haran, Gilad
2018-03-01
Supported lipid bilayers (SLBs) have been studied extensively as simple but powerful models for cellular membranes. Yet, potential differences in the dynamics of the two leaflets of a SLB remain poorly understood. Here, using single particle tracking, we obtain a detailed picture of bilayer dynamics. We observe two clearly separate diffusing populations, fast and slow, that we associate with motion in the distal and proximal leaflets of the SLB, respectively, based on fluorescence quenching experiments. We estimate diffusion coefficients using standard techniques as well as a new method based on the blur of images due to motion. Fitting the observed diffusion coefficients to a two-leaflet membrane hydrodynamic model allows for the simultaneous determination of the intermonolayer friction coefficient and the substrate-membrane friction coefficient, without any prior assumptions on the strengths of the relevant interactions. Remarkably, our calculations suggest that the viscosity of the interfacial water confined between the membrane and the substrate is elevated by ˜104 as compared to bulk water. Using hidden Markov model analysis, we then obtain insight into the transbilayer movement of lipids. We find that lipid flip-flop dynamics are very fast, with half times in the range of seconds. Importantly, we find little evidence for membrane defect mediated lipid flip-flop for SLBs at temperatures well above the solid-to-liquid transition, though defects seem to be involved when the SLBs are cooled down. Our work thus shows that the combination of single particle tracking and advanced hydrodynamic modeling provides a powerful means to obtain insight into membrane dynamics.
Estimation of contour motion and deformation for nonrigid object tracking
NASA Astrophysics Data System (ADS)
Shao, Jie; Porikli, Fatih; Chellappa, Rama
2007-08-01
We present an algorithm for nonrigid contour tracking in heavily cluttered background scenes. Based on the properties of nonrigid contour movements, a sequential framework for estimating contour motion and deformation is proposed. We solve the nonrigid contour tracking problem by decomposing it into three subproblems: motion estimation, deformation estimation, and shape regulation. First, we employ a particle filter to estimate the global motion parameters of the affine transform between successive frames. Then we generate a probabilistic deformation map to deform the contour. To improve robustness, multiple cues are used for deformation probability estimation. Finally, we use a shape prior model to constrain the deformed contour. This enables us to retrieve the occluded parts of the contours and accurately track them while allowing shape changes specific to the given object types. Our experiments show that the proposed algorithm significantly improves the tracker performance.
NASA Astrophysics Data System (ADS)
Nguyen, D. T.; Bertholet, J.; Kim, J.-H.; O'Brien, R.; Booth, J. T.; Poulsen, P. R.; Keall, P. J.
2018-01-01
Increasing evidence suggests that intrafraction tumour motion monitoring needs to include both 3D translations and 3D rotations. Presently, methods to estimate the rotation motion require the 3D translation of the target to be known first. However, ideally, translation and rotation should be estimated concurrently. We present the first method to directly estimate six-degree-of-freedom (6DoF) motion from the target’s projection on a single rotating x-ray imager in real-time. This novel method is based on the linear correlations between the superior-inferior translations and the motion in the other five degrees-of-freedom. The accuracy of the method was evaluated in silico with 81 liver tumour motion traces from 19 patients with three implanted markers. The ground-truth motion was estimated using the current gold standard method where each marker’s 3D position was first estimated using a Gaussian probability method, and the 6DoF motion was then estimated from the 3D positions using an iterative method. The 3D position of each marker was projected onto a gantry-mounted imager with an imaging rate of 11 Hz. After an initial 110° gantry rotation (200 images), a correlation model between the superior-inferior translations and the five other DoFs was built using a least square method. The correlation model was then updated after each subsequent frame to estimate 6DoF motion in real-time. The proposed algorithm had an accuracy (±precision) of -0.03 ± 0.32 mm, -0.01 ± 0.13 mm and 0.03 ± 0.52 mm for translations in the left-right (LR), superior-inferior (SI) and anterior-posterior (AP) directions respectively; and, 0.07 ± 1.18°, 0.07 ± 1.00° and 0.06 ± 1.32° for rotations around the LR, SI and AP axes respectively on the dataset. The first method to directly estimate real-time 6DoF target motion from segmented marker positions on a 2D imager was devised. The algorithm was evaluated using 81 motion traces from 19 liver patients and was found to have sub-mm and sub-degree accuracy.
Robust Parallel Motion Estimation and Mapping with Stereo Cameras in Underground Infrastructure
NASA Astrophysics Data System (ADS)
Liu, Chun; Li, Zhengning; Zhou, Yuan
2016-06-01
Presently, we developed a novel robust motion estimation method for localization and mapping in underground infrastructure using a pre-calibrated rigid stereo camera rig. Localization and mapping in underground infrastructure is important to safety. Yet it's also nontrivial since most underground infrastructures have poor lighting condition and featureless structure. Overcoming these difficulties, we discovered that parallel system is more efficient than the EKF-based SLAM approach since parallel system divides motion estimation and 3D mapping tasks into separate threads, eliminating data-association problem which is quite an issue in SLAM. Moreover, the motion estimation thread takes the advantage of state-of-art robust visual odometry algorithm which is highly functional under low illumination and provides accurate pose information. We designed and built an unmanned vehicle and used the vehicle to collect a dataset in an underground garage. The parallel system was evaluated by the actual dataset. Motion estimation results indicated a relative position error of 0.3%, and 3D mapping results showed a mean position error of 13cm. Off-line process reduced position error to 2cm. Performance evaluation by actual dataset showed that our system is capable of robust motion estimation and accurate 3D mapping in poor illumination and featureless underground environment.
Regional cardiac wall motion from gated myocardial perfusion SPECT studies
NASA Astrophysics Data System (ADS)
Smith, M. F.; Brigger, P.; Ferrand, S. K.; Dilsizian, V.; Bacharach, S. L.
1999-06-01
A method for estimating regional epicardial and endocardial wall motion from gated myocardial perfusion SPECT studies has been developed. The method uses epicardial and endocardial boundaries determined from four long-axis slices at each gate of the cardiac cycle. The epicardial and endocardial wall position at each time gate is computed with respect to stationary reference ellipsoids, and wall motion is measured along lines normal to these ellipsoids. An initial quantitative evaluation of the method was made using the beating heart from the dynamic mathematical cardiac torso (MCAT) phantom, with and without a 1.5-cm FWHM Gaussian blurring filter. Epicardial wall motion was generally well-estimated within a fraction of a 3.56-mm voxel, although apical motion was overestimated with the Gaussian filter. Endocardial wall motion was underestimated by about two voxels with and without the Gaussian filter. The MCAT heart phantom was modified to model hypokinetic and dyskinetic wall motion. The wall motion analysis method enabled this abnormal motion to be differentiated from normal motion. Regional cardiac wall motion also was analyzed for /sup 201/Tl patient studies. Estimated wall motion was consistent with a nuclear medicine physician's visual assessment of motion from gated long-axis slices for male and female study examples. Additional research is required for a comprehensive evaluation of the applicability of the method to patient studies with normal and abnormal wall motion.
Direct Parametric Reconstruction With Joint Motion Estimation/Correction for Dynamic Brain PET Data.
Jiao, Jieqing; Bousse, Alexandre; Thielemans, Kris; Burgos, Ninon; Weston, Philip S J; Schott, Jonathan M; Atkinson, David; Arridge, Simon R; Hutton, Brian F; Markiewicz, Pawel; Ourselin, Sebastien
2017-01-01
Direct reconstruction of parametric images from raw photon counts has been shown to improve the quantitative analysis of dynamic positron emission tomography (PET) data. However it suffers from subject motion which is inevitable during the typical acquisition time of 1-2 hours. In this work we propose a framework to jointly estimate subject head motion and reconstruct the motion-corrected parametric images directly from raw PET data, so that the effects of distorted tissue-to-voxel mapping due to subject motion can be reduced in reconstructing the parametric images with motion-compensated attenuation correction and spatially aligned temporal PET data. The proposed approach is formulated within the maximum likelihood framework, and efficient solutions are derived for estimating subject motion and kinetic parameters from raw PET photon count data. Results from evaluations on simulated [ 11 C]raclopride data using the Zubal brain phantom and real clinical [ 18 F]florbetapir data of a patient with Alzheimer's disease show that the proposed joint direct parametric reconstruction motion correction approach can improve the accuracy of quantifying dynamic PET data with large subject motion.
Precise Aperture-Dependent Motion Compensation with Frequency Domain Fast Back-Projection Algorithm.
Zhang, Man; Wang, Guanyong; Zhang, Lei
2017-10-26
Precise azimuth-variant motion compensation (MOCO) is an essential and difficult task for high-resolution synthetic aperture radar (SAR) imagery. In conventional post-filtering approaches, residual azimuth-variant motion errors are generally compensated through a set of spatial post-filters, where the coarse-focused image is segmented into overlapped blocks concerning the azimuth-dependent residual errors. However, image domain post-filtering approaches, such as precise topography- and aperture-dependent motion compensation algorithm (PTA), have difficulty of robustness in declining, when strong motion errors are involved in the coarse-focused image. In this case, in order to capture the complete motion blurring function within each image block, both the block size and the overlapped part need necessary extension leading to degeneration of efficiency and robustness inevitably. Herein, a frequency domain fast back-projection algorithm (FDFBPA) is introduced to deal with strong azimuth-variant motion errors. FDFBPA disposes of the azimuth-variant motion errors based on a precise azimuth spectrum expression in the azimuth wavenumber domain. First, a wavenumber domain sub-aperture processing strategy is introduced to accelerate computation. After that, the azimuth wavenumber spectrum is partitioned into a set of wavenumber blocks, and each block is formed into a sub-aperture coarse resolution image via the back-projection integral. Then, the sub-aperture images are straightforwardly fused together in azimuth wavenumber domain to obtain a full resolution image. Moreover, chirp-Z transform (CZT) is also introduced to implement the sub-aperture back-projection integral, increasing the efficiency of the algorithm. By disusing the image domain post-filtering strategy, robustness of the proposed algorithm is improved. Both simulation and real-measured data experiments demonstrate the effectiveness and superiority of the proposal.
Kalantari, Faraz; Li, Tianfang; Jin, Mingwu; Wang, Jing
2016-01-01
In conventional 4D positron emission tomography (4D-PET), images from different frames are reconstructed individually and aligned by registration methods. Two issues that arise with this approach are as follows: 1) the reconstruction algorithms do not make full use of projection statistics; and 2) the registration between noisy images can result in poor alignment. In this study, we investigated the use of simultaneous motion estimation and image reconstruction (SMEIR) methods for motion estimation/correction in 4D-PET. A modified ordered-subset expectation maximization algorithm coupled with total variation minimization (OSEM-TV) was used to obtain a primary motion-compensated PET (pmc-PET) from all projection data, using Demons derived deformation vector fields (DVFs) as initial motion vectors. A motion model update was performed to obtain an optimal set of DVFs in the pmc-PET and other phases, by matching the forward projection of the deformed pmc-PET with measured projections from other phases. The OSEM-TV image reconstruction was repeated using updated DVFs, and new DVFs were estimated based on updated images. A 4D-XCAT phantom with typical FDG biodistribution was generated to evaluate the performance of the SMEIR algorithm in lung and liver tumors with different contrasts and different diameters (10 to 40 mm). The image quality of the 4D-PET was greatly improved by the SMEIR algorithm. When all projections were used to reconstruct 3D-PET without motion compensation, motion blurring artifacts were present, leading up to 150% tumor size overestimation and significant quantitative errors, including 50% underestimation of tumor contrast and 59% underestimation of tumor uptake. Errors were reduced to less than 10% in most images by using the SMEIR algorithm, showing its potential in motion estimation/correction in 4D-PET. PMID:27385378
NASA Astrophysics Data System (ADS)
Kalantari, Faraz; Li, Tianfang; Jin, Mingwu; Wang, Jing
2016-08-01
In conventional 4D positron emission tomography (4D-PET), images from different frames are reconstructed individually and aligned by registration methods. Two issues that arise with this approach are as follows: (1) the reconstruction algorithms do not make full use of projection statistics; and (2) the registration between noisy images can result in poor alignment. In this study, we investigated the use of simultaneous motion estimation and image reconstruction (SMEIR) methods for motion estimation/correction in 4D-PET. A modified ordered-subset expectation maximization algorithm coupled with total variation minimization (OSEM-TV) was used to obtain a primary motion-compensated PET (pmc-PET) from all projection data, using Demons derived deformation vector fields (DVFs) as initial motion vectors. A motion model update was performed to obtain an optimal set of DVFs in the pmc-PET and other phases, by matching the forward projection of the deformed pmc-PET with measured projections from other phases. The OSEM-TV image reconstruction was repeated using updated DVFs, and new DVFs were estimated based on updated images. A 4D-XCAT phantom with typical FDG biodistribution was generated to evaluate the performance of the SMEIR algorithm in lung and liver tumors with different contrasts and different diameters (10-40 mm). The image quality of the 4D-PET was greatly improved by the SMEIR algorithm. When all projections were used to reconstruct 3D-PET without motion compensation, motion blurring artifacts were present, leading up to 150% tumor size overestimation and significant quantitative errors, including 50% underestimation of tumor contrast and 59% underestimation of tumor uptake. Errors were reduced to less than 10% in most images by using the SMEIR algorithm, showing its potential in motion estimation/correction in 4D-PET.
Huang, Ai-Mei; Nguyen, Truong
2009-04-01
In this paper, we address the problems of unreliable motion vectors that cause visual artifacts but cannot be detected by high residual energy or bidirectional prediction difference in motion-compensated frame interpolation. A correlation-based motion vector processing method is proposed to detect and correct those unreliable motion vectors by explicitly considering motion vector correlation in the motion vector reliability classification, motion vector correction, and frame interpolation stages. Since our method gradually corrects unreliable motion vectors based on their reliability, we can effectively discover the areas where no motion is reliable to be used, such as occlusions and deformed structures. We also propose an adaptive frame interpolation scheme for the occlusion areas based on the analysis of their surrounding motion distribution. As a result, the interpolated frames using the proposed scheme have clearer structure edges and ghost artifacts are also greatly reduced. Experimental results show that our interpolated results have better visual quality than other methods. In addition, the proposed scheme is robust even for those video sequences that contain multiple and fast motions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ali, I; Jaskowiak, J; Ahmad, S
Purpose: To investigate quantitatively the displacement-vector-fields (DVF) obtained from different deformable image registration algorithms (DIR) in helical (HCT), axial (ACT) and cone-beam CT (CBCT) to register CT images of a mobile phantom and its correlation with motion amplitudes and frequencies. Methods: HCT, ACT and CBCT are used to image a mobile phantom which includes three targets with different sizes that are manufactured from water-equivalent material and embedded in low density foam. The phantom is moved with controlled motion patterns where a range of motion amplitudes (0–40mm) and frequencies (0.125–0.5Hz) are used. The CT images obtained from scanning of the mobilemore » phantom are registered with the stationary CT-images using four deformable image registration algorithms including demons, fast-demons, Horn-Schunk and Locas-Kanade from DIRART software. Results: The DVF calculated by the different algorithms correlate well with the motion amplitudes that are applied on the mobile phantom where maximal DVF increase linearly with the motion amplitudes of the mobile phantom in CBCT. Similarly in HCT, DVF increase linearly with motion amplitude, however, its correlation is weaker than CBCT. In ACT, the DVF’s do not correlate well with the motion amplitudes where motion induces strong image artifacts and DIR algorithms are not able to deform the ACT image of the mobile targets to the stationary targets. Three DIR-algorithms produce comparable values and patterns of the DVF for certain CT imaging modality. However, DVF from fast-demons deviated strongly from other algorithms at large motion amplitudes. Conclusion: In CBCT and HCT, the DVF correlate well with the motion amplitude of the mobile phantom. However, in ACT, DVF do not correlate with motion amplitudes. Correlations of DVF with motion amplitude as in CBCT and HCT imaging techniques can provide information about unknown motion parameters of the mobile organs in real patients as demonstrated in this phantom visibility study.« less
Conditioned feeding suppression in rats produced by cross-coupled and simple motions
NASA Technical Reports Server (NTRS)
Fox, R. A.; Daunton, N. G.
1982-01-01
Results are presented of an experiment on the induction of motion sickness in rats by the use of cross-coupled accelerations of magnitudes similar to those used in human experiments. Accelerations were produced in a seesaw apparatus with rotating disks supporting the animal cages mounted on each seesaw arm, and motion sickness was assessed according to the consumption of a sweet food previously offered to the animals immediately before the motion treatment. During a 1-hour test session 72 h after motion treatment and after a 24-h fast, rats having undergone cross-coupled vertical sinusoidal and rotational motion are observed to consume less food than those having experienced either type of motion alone, or no motion. The ordering of the conditioned suppressive feeding effects is consistent with the amounts of vestibular stimulation produced by the respective motions. The results support the existence of motion sickness effects in rats, even though they are unable to vomit.
NASA Astrophysics Data System (ADS)
Lin, Jyh-Miin; Patterson, Andrew J.; Chao, Tzu-Cheng; Zhu, Chengcheng; Chang, Hing-Chiu; Mendes, Jason; Chung, Hsiao-Wen; Gillard, Jonathan H.; Graves, Martin J.
2017-05-01
The paper reports a free-breathing black-blood CINE fast-spin echo (FSE) technique for measuring abdominal aortic wall motion. The free-breathing CINE FSE includes the following MR techniques: (1) variable-density sampling with fast iterative reconstruction; (2) inner-volume imaging; and (3) a blood-suppression preparation pulse. The proposed technique was evaluated in eight healthy subjects. The inner-volume imaging significantly reduced the intraluminal artifacts of respiratory motion (p = 0.015). The quantitative measurements were a diameter of 16.3 ± 2.8 mm and wall distensibility of 2.0 ± 0.4 mm (12.5 ± 3.4%) and 0.7 ± 0.3 mm (4.1 ± 1.0%) for the anterior and posterior walls, respectively. The cyclic cross-sectional distensibility was 35 ± 15% greater in the systolic phase than in the diastolic phase. In conclusion, we developed a feasible CINE FSE method to measure the motion of the abdominal aortic wall, which will enable clinical scientists to study the elasticity of the abdominal aorta.
The fern sporangium: an ultrafast natural catapult
NASA Astrophysics Data System (ADS)
Noblin, Xavier; Argentina, Mederic; Westbrook, Jared; Llorens, Coraline; Rojas, Nicolas; Dumais, Jacques
2012-02-01
Plants have developed fascinating mechanisms to create ultra fast movements that often reach the upper limit allowed by physical laws. Inspiration for new technologies is one of the reasons for the strong interest for these mechanisms, along with the deep interest of understanding complex, natural systems. The fern sporangium is a capsule that contains the spores, it is surrounded by a row of cells called the annulus which acts as a beam. Due to the water evaporation from its cells, the annulus bends strongly and induces elastic energy storage during an opening phase. The tension in the cells breaks when cavitation bubbles appear in the cells, leading to a fast release of the elastic energy. The fern sporangium then acts as a catapult which ejects rapidly its spores by closing back to the initial closed shape. We have analyzed the slow opening motion and the fast catapulting mechanism. We found that the catapult motion involves two time scales, showing a very original behavior. In man-made catapults, the recoil motion needs to be arrested by a cross bar so that the projectile is released from the arm. We show here that the fern sporangium replaces the essential cross bar by an elegant poroelastic damping, leading to a completely autonomous, efficient device.
Motion Estimation Using the Firefly Algorithm in Ultrasonic Image Sequence of Soft Tissue
Chao, Chih-Feng; Horng, Ming-Huwi; Chen, Yu-Chan
2015-01-01
Ultrasonic image sequence of the soft tissue is widely used in disease diagnosis; however, the speckle noises usually influenced the image quality. These images usually have a low signal-to-noise ratio presentation. The phenomenon gives rise to traditional motion estimation algorithms that are not suitable to measure the motion vectors. In this paper, a new motion estimation algorithm is developed for assessing the velocity field of soft tissue in a sequence of ultrasonic B-mode images. The proposed iterative firefly algorithm (IFA) searches for few candidate points to obtain the optimal motion vector, and then compares it to the traditional iterative full search algorithm (IFSA) via a series of experiments of in vivo ultrasonic image sequences. The experimental results show that the IFA can assess the vector with better efficiency and almost equal estimation quality compared to the traditional IFSA method. PMID:25873987
Motion estimation using the firefly algorithm in ultrasonic image sequence of soft tissue.
Chao, Chih-Feng; Horng, Ming-Huwi; Chen, Yu-Chan
2015-01-01
Ultrasonic image sequence of the soft tissue is widely used in disease diagnosis; however, the speckle noises usually influenced the image quality. These images usually have a low signal-to-noise ratio presentation. The phenomenon gives rise to traditional motion estimation algorithms that are not suitable to measure the motion vectors. In this paper, a new motion estimation algorithm is developed for assessing the velocity field of soft tissue in a sequence of ultrasonic B-mode images. The proposed iterative firefly algorithm (IFA) searches for few candidate points to obtain the optimal motion vector, and then compares it to the traditional iterative full search algorithm (IFSA) via a series of experiments of in vivo ultrasonic image sequences. The experimental results show that the IFA can assess the vector with better efficiency and almost equal estimation quality compared to the traditional IFSA method.
A Compact VLSI System for Bio-Inspired Visual Motion Estimation.
Shi, Cong; Luo, Gang
2018-04-01
This paper proposes a bio-inspired visual motion estimation algorithm based on motion energy, along with its compact very-large-scale integration (VLSI) architecture using low-cost embedded systems. The algorithm mimics motion perception functions of retina, V1, and MT neurons in a primate visual system. It involves operations of ternary edge extraction, spatiotemporal filtering, motion energy extraction, and velocity integration. Moreover, we propose the concept of confidence map to indicate the reliability of estimation results on each probing location. Our algorithm involves only additions and multiplications during runtime, which is suitable for low-cost hardware implementation. The proposed VLSI architecture employs multiple (frame, pixel, and operation) levels of pipeline and massively parallel processing arrays to boost the system performance. The array unit circuits are optimized to minimize hardware resource consumption. We have prototyped the proposed architecture on a low-cost field-programmable gate array platform (Zynq 7020) running at 53-MHz clock frequency. It achieved 30-frame/s real-time performance for velocity estimation on 160 × 120 probing locations. A comprehensive evaluation experiment showed that the estimated velocity by our prototype has relatively small errors (average endpoint error < 0.5 pixel and angular error < 10°) for most motion cases.
NASA Astrophysics Data System (ADS)
Furtado, H.; Gendrin, C.; Spoerk, J.; Steiner, E.; Underwood, T.; Kuenzler, T.; Georg, D.; Birkfellner, W.
2016-03-01
Radiotherapy treatments have changed at a tremendously rapid pace. Dose delivered to the tumor has escalated while organs at risk (OARs) are better spared. The impact of moving tumors during dose delivery has become higher due to very steep dose gradients. Intra-fractional tumor motion has to be managed adequately to reduce errors in dose delivery. For tumors with large motion such as tumors in the lung, tracking is an approach that can reduce position uncertainty. Tumor tracking approaches range from purely image intensity based techniques to motion estimation based on surrogate tracking. Research efforts are often based on custom designed software platforms which take too much time and effort to develop. To address this challenge we have developed an open software platform especially focusing on tumor motion management. FLIRT is a freely available open-source software platform. The core method for tumor tracking is purely intensity based 2D/3D registration. The platform is written in C++ using the Qt framework for the user interface. The performance critical methods are implemented on the graphics processor using the CUDA extension. One registration can be as fast as 90ms (11Hz). This is suitable to track tumors moving due to respiration (~0.3Hz) or heartbeat (~1Hz). Apart from focusing on high performance, the platform is designed to be flexible and easy to use. Current use cases range from tracking feasibility studies, patient positioning and method validation. Such a framework has the potential of enabling the research community to rapidly perform patient studies or try new methods.
Simulating Astro-H Observations of Sloshing Gas Motions in the Cores of Galaxy Clusters
NASA Astrophysics Data System (ADS)
ZuHone, J. A.; Miller, E. D.; Simionescu, A.; Bautz, M. W.
2016-04-01
Astro-H will be the first X-ray observatory to employ a high-resolution microcalorimeter, capable of measuring the shift and width of individual spectral lines to the precision necessary for estimating the velocity of the diffuse plasma in galaxy clusters. This new capability is expected to bring significant progress in understanding the dynamics, and therefore the physics, of the intracluster medium. However, because this plasma is optically thin, projection effects will be an important complicating factor in interpreting future Astro-H measurements. To study these effects in detail, we performed an analysis of the velocity field from simulations of a galaxy cluster experiencing gas sloshing and generated synthetic X-ray spectra, convolved with model Astro-H Soft X-ray Spectrometer (SXS) responses. We find that the sloshing motions produce velocity signatures that will be observable by Astro-H in nearby clusters: the shifting of the line centroid produced by the fast-moving cold gas underneath the front surface, and line broadening produced by the smooth variation of this motion along the line of sight. The line shapes arising from inviscid or strongly viscous simulations are very similar, indicating that placing constraints on the gas viscosity from these measurements will be difficult. Our spectroscopic analysis demonstrates that, for adequate exposures, Astro-H will be able to recover the first two moments of the velocity distribution of these motions accurately, and in some cases multiple velocity components may be discerned. The simulations also confirm the importance of accurate treatment of point-spread function scattering in the interpretation of Astro-H/SXS spectra of cluster plasmas.
Repurposing video recordings for structure motion estimations
NASA Astrophysics Data System (ADS)
Khaloo, Ali; Lattanzi, David
2016-04-01
Video monitoring of public spaces is becoming increasingly ubiquitous, particularly near essential structures and facilities. During any hazard event that dynamically excites a structure, such as an earthquake or hurricane, proximal video cameras may inadvertently capture the motion time-history of the structure during the event. If this dynamic time-history could be extracted from the repurposed video recording it would become a valuable forensic analysis tool for engineers performing post-disaster structural evaluations. The difficulty is that almost all potential video cameras are not installed to monitor structure motions, leading to camera perspective distortions and other associated challenges. This paper presents a method for extracting structure motions from videos using a combination of computer vision techniques. Images from a video recording are first reprojected into synthetic images that eliminate perspective distortion, using as-built knowledge of a structure for calibration. The motion of the camera itself during an event is also considered. Optical flow, a technique for tracking per-pixel motion, is then applied to these synthetic images to estimate the building motion. The developed method was validated using the experimental records of the NEESHub earthquake database. The results indicate that the technique is capable of estimating structural motions, particularly the frequency content of the response. Further work will evaluate variants and alternatives to the optical flow algorithm, as well as study the impact of video encoding artifacts on motion estimates.
The Influence of Head Motion on Intrinsic Functional Connectivity MRI
Van Dijk, Koene R.A.; Sabuncu, Mert R.; Buckner, Randy L.
2011-01-01
Functional connectivity MRI (fcMRI) has been widely applied to explore group and individual differences. A confounding factor is head motion. Children move more than adults, older adults more than younger adults, and patients more than controls. Head motion varies considerably among individuals within the same population. Here we explored the influence of head motion on fcMRI estimates. Mean head displacement, maximum head displacement, the number of micro movements (> 0.1 mm), and head rotation were estimated in 1000 healthy, young adult subjects each scanned for two resting-state runs on matched 3T scanners. The majority of fcMRI variation across subjects was not linked to estimated head motion. However, head motion had significant, systematic effects on fcMRI network measures. Head motion was associated with decreased functional coupling in the default and frontoparietal control networks – two networks characterized by coupling among distributed regions of association cortex. Other network measures increased with motion including estimates of local functional coupling and coupling between left and right motor regions – a region pair sometimes used as a control in studies to establish specificity. Comparisons between groups of individuals with subtly different levels of head motion yielded difference maps that could be mistaken for neuronal effects in other contexts. These effects are important to consider when interpreting variation between groups and across individuals. PMID:21810475
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mao, W; Hrycushko, B; Yan, Y
Purpose: Traditional external beam radiotherapy for cervical cancer requires setup by external skin marks. In order to improve treatment accuracy and reduce planning margin for more conformal therapy, it is essential to monitor tumor positions interfractionally and intrafractionally. We demonstrate feasibility of monitoring cervical tumor motion online using EPID imaging from Beam’s Eye View. Methods: Prior to treatment, 1∼2 cylindrical radio opaque markers were implanted into inferior aspect of cervix tumor. During external beam treatments on a Varian 2100C by 4-field 3D plans, treatment beam images were acquired continuously by an EPID. A Matlab program was developed to locate internalmore » markers on MV images. Based on 2D marker positions obtained from different treatment fields, their 3D positions were estimated for every treatment fraction. Results: There were 398 images acquired during different treatment fractions of three cervical cancer patients. Markers were successfully located on every frame of image at an analysis speed of about 1 second per frame. Intrafraction motions were evaluated by comparing marker positions relative to the position on the first frame of image. The maximum intrafraction motion of the markers was 1.6 mm. Interfraction motions were evaluated by comparing 3D marker positions at different treatment fractions. The maximum interfraction motion was up to 10 mm. Careful comparison found that this is due to patient positioning since the bony structures shifted with the markers. Conclusion: This method provides a cost-free and simple solution for online tumor tracking for cervical cancer treatment since it is feasible to acquire and export EPID images with fast analysis in real time. This method does not need any extra equipment or deliver extra dose to patients. The online tumor motion information will be very useful to reduce planning margins and improve treatment accuracy, which is particularly important for SBRT treatment with long delivery time.« less
Stout, Jeffrey N; Tisdall, M Dylan; McDaniel, Patrick; Gagoski, Borjan; Bolar, Divya S; Grant, Patricia Ellen; Adalsteinsson, Elfar
2017-12-01
Subject motion may cause errors in estimates of blood T 2 when using the T 2 -relaxation under spin tagging (TRUST) technique on noncompliant subjects like neonates. By incorporating 3D volume navigators (vNavs) into the TRUST pulse sequence, independent measurements of motion during scanning permit evaluation of these errors. The effects of integrated vNavs on TRUST-based T 2 estimates were evaluated using simulations and in vivo subject data. Two subjects were scanned with the TRUST+vNav sequence during prescribed movements. Mean motion scores were derived from vNavs and TRUST images, along with a metric of exponential fit quality. Regression analysis was performed between T 2 estimates and mean motion scores. Also, motion scores were determined from independent neonatal scans. vNavs negligibly affected venous blood T 2 estimates and better detected subject motion than fit quality metrics. Regression analysis showed that T 2 is biased upward by 4.1 ms per 1 mm of mean motion score. During neonatal scans, mean motion scores of 0.6 to 2.0 mm were detected. Motion during TRUST causes an overestimate of T 2 , which suggests a cautious approach when comparing TRUST-based cerebral oxygenation measurements of noncompliant subjects. Magn Reson Med 78:2283-2289, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
MRI-assisted PET motion correction for neurologic studies in an integrated MR-PET scanner.
Catana, Ciprian; Benner, Thomas; van der Kouwe, Andre; Byars, Larry; Hamm, Michael; Chonde, Daniel B; Michel, Christian J; El Fakhri, Georges; Schmand, Matthias; Sorensen, A Gregory
2011-01-01
Head motion is difficult to avoid in long PET studies, degrading the image quality and offsetting the benefit of using a high-resolution scanner. As a potential solution in an integrated MR-PET scanner, the simultaneously acquired MRI data can be used for motion tracking. In this work, a novel algorithm for data processing and rigid-body motion correction (MC) for the MRI-compatible BrainPET prototype scanner is described, and proof-of-principle phantom and human studies are presented. To account for motion, the PET prompt and random coincidences and sensitivity data for postnormalization were processed in the line-of-response (LOR) space according to the MRI-derived motion estimates. The processing time on the standard BrainPET workstation is approximately 16 s for each motion estimate. After rebinning in the sinogram space, the motion corrected data were summed, and the PET volume was reconstructed using the attenuation and scatter sinograms in the reference position. The accuracy of the MC algorithm was first tested using a Hoffman phantom. Next, human volunteer studies were performed, and motion estimates were obtained using 2 high-temporal-resolution MRI-based motion-tracking techniques. After accounting for the misalignment between the 2 scanners, perfectly coregistered MRI and PET volumes were reproducibly obtained. The MRI output gates inserted into the PET list-mode allow the temporal correlation of the 2 datasets within 0.2 ms. The Hoffman phantom volume reconstructed by processing the PET data in the LOR space was similar to the one obtained by processing the data using the standard methods and applying the MC in the image space, demonstrating the quantitative accuracy of the procedure. In human volunteer studies, motion estimates were obtained from echo planar imaging and cloverleaf navigator sequences every 3 s and 20 ms, respectively. Motion-deblurred PET images, with excellent delineation of specific brain structures, were obtained using these 2 MRI-based estimates. An MRI-based MC algorithm was implemented for an integrated MR-PET scanner. High-temporal-resolution MRI-derived motion estimates (obtained while simultaneously acquiring anatomic or functional MRI data) can be used for PET MC. An MRI-based MC method has the potential to improve PET image quality, increasing its reliability, reproducibility, and quantitative accuracy, and to benefit many neurologic applications.
A novel CT acquisition and analysis technique for breathing motion modeling
NASA Astrophysics Data System (ADS)
Low, Daniel A.; White, Benjamin M.; Lee, Percy P.; Thomas, David H.; Gaudio, Sergio; Jani, Shyam S.; Wu, Xiao; Lamb, James M.
2013-06-01
To report on a novel technique for providing artifact-free quantitative four-dimensional computed tomography (4DCT) image datasets for breathing motion modeling. Commercial clinical 4DCT methods have difficulty managing irregular breathing. The resulting images contain motion-induced artifacts that can distort structures and inaccurately characterize breathing motion. We have developed a novel scanning and analysis method for motion-correlated CT that utilizes standard repeated fast helical acquisitions, a simultaneous breathing surrogate measurement, deformable image registration, and a published breathing motion model. The motion model differs from the CT-measured motion by an average of 0.65 mm, indicating the precision of the motion model. The integral of the divergence of one of the motion model parameters is predicted to be a constant 1.11 and is found in this case to be 1.09, indicating the accuracy of the motion model. The proposed technique shows promise for providing motion-artifact free images at user-selected breathing phases, accurate Hounsfield units, and noise characteristics similar to non-4D CT techniques, at a patient dose similar to or less than current 4DCT techniques.
Dynamic estimation of three-dimensional cerebrovascular deformation from rotational angiography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Chong; Villa-Uriol, Maria-Cruz; De Craene, Mathieu
2011-03-15
Purpose: The objective of this study is to investigate the feasibility of detecting and quantifying 3D cerebrovascular wall motion from a single 3D rotational x-ray angiography (3DRA) acquisition within a clinically acceptable time and computing from the estimated motion field for the further biomechanical modeling of the cerebrovascular wall. Methods: The whole motion cycle of the cerebral vasculature is modeled using a 4D B-spline transformation, which is estimated from a 4D to 2D+t image registration framework. The registration is performed by optimizing a single similarity metric between the entire 2D+t measured projection sequence and the corresponding forward projections of themore » deformed volume at their exact time instants. The joint use of two acceleration strategies, together with their implementation on graphics processing units, is also proposed so as to reach computation times close to clinical requirements. For further characterizing vessel wall properties, an approximation of the wall thickness changes is obtained through a strain calculation. Results: Evaluation on in silico and in vitro pulsating phantom aneurysms demonstrated an accurate estimation of wall motion curves. In general, the error was below 10% of the maximum pulsation, even in the situation when substantial inhomogeneous intensity pattern was present. Experiments on in vivo data provided realistic aneurysm and vessel wall motion estimates, whereas in regions where motion was neither visible nor anatomically possible, no motion was detected. The use of the acceleration strategies enabled completing the estimation process for one entire cycle in 5-10 min without degrading the overall performance. The strain map extracted from our motion estimation provided a realistic deformation measure of the vessel wall. Conclusions: The authors' technique has demonstrated that it can provide accurate and robust 4D estimates of cerebrovascular wall motion within a clinically acceptable time, although it has to be applied to a larger patient population prior to possible wide application to routine endovascular procedures. In particular, for the first time, this feasibility study has shown that in vivo cerebrovascular motion can be obtained intraprocedurally from a 3DRA acquisition. Results have also shown the potential of performing strain analysis using this imaging modality, thus making possible for the future modeling of biomechanical properties of the vascular wall.« less
An Unconventional Approach to Photomobile Composite Polymer Films.
Castagna, Riccardo; Nucara, Luca; Simoni, Francesco; Greci, Lucedio; Rippa, Massimo; Petti, Lucia; Lucchetta, Daniele E
2017-04-01
Photomobile polymer (Pmp) films are fabricated by using a cheap and fast process. The working mechanism of the Pmp-film motion under illumination is explained. Details concerning the film structure and formation are given. Two related applications regarding light-induced caterpillar-miming motion and photocontrolled electrical switches are proposed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Richardson-Lucy deblurring for the star scene under a thinning motion path
NASA Astrophysics Data System (ADS)
Su, Laili; Shao, Xiaopeng; Wang, Lin; Wang, Haixin; Huang, Yining
2015-05-01
This paper puts emphasis on how to model and correct image blur that arises from a camera's ego motion while observing a distant star scene. Concerning the significance of accurate estimation of point spread function (PSF), a new method is employed to obtain blur kernel by thinning star motion path. In particular, how the blurred star image can be corrected to reconstruct the clear scene with a thinning motion blur model which describes the camera's path is presented. This thinning motion path to build blur kernel model is more effective at modeling the spatially motion blur introduced by camera's ego motion than conventional blind estimation of kernel-based PSF parameterization. To gain the reconstructed image, firstly, an improved thinning algorithm is used to obtain the star point trajectory, so as to extract the blur kernel of the motion-blurred star image. Then how motion blur model can be incorporated into the Richardson-Lucy (RL) deblurring algorithm, which reveals its overall effectiveness, is detailed. In addition, compared with the conventional estimated blur kernel, experimental results show that the proposed method of using thinning algorithm to get the motion blur kernel is of less complexity, higher efficiency and better accuracy, which contributes to better restoration of the motion-blurred star images.
NASA Astrophysics Data System (ADS)
Baka, N.; Lelieveldt, B. P. F.; Schultz, C.; Niessen, W.; van Walsum, T.
2015-05-01
During percutaneous coronary interventions (PCI) catheters and arteries are visualized by x-ray angiography (XA) sequences, using brief contrast injections to show the coronary arteries. If we could continue visualizing the coronary arteries after the contrast agent passed (thus in non-contrast XA frames), we could potentially lower contrast use, which is advantageous due to the toxicity of the contrast agent. This paper explores the possibility of such visualization in mono-plane XA acquisitions with a special focus on respiratory based coronary artery motion estimation. We use the patient specific coronary artery centerlines from pre-interventional 3D CTA images to project on the XA sequence for artery visualization. To achieve this, a framework for registering the 3D centerlines with the mono-plane 2D + time XA sequences is presented. During the registration the patient specific cardiac and respiratory motion is learned. We investigate several respiratory motion estimation strategies with respect to accuracy, plausibility and ease of use for motion prediction in XA frames with and without contrast. The investigated strategies include diaphragm motion based prediction, and respiratory motion extraction from the guiding catheter tip motion. We furthermore compare translational and rigid respiratory based heart motion. We validated the accuracy of the 2D/3D registration and the respiratory and cardiac motion estimations on XA sequences of 12 interventions. The diaphragm based motion model and the catheter tip derived motion achieved 1.58 mm and 1.83 mm median 2D accuracy, respectively. On a subset of four interventions we evaluated the artery visualization accuracy for non-contrast cases. Both diaphragm, and catheter tip based prediction performed similarly, with about half of the cases providing satisfactory accuracy (median error < 2 mm).
Storm-time Convection Dynamics Viewed from Optical Auroras: from Streamer to Patchy Pulsating Aurora
NASA Astrophysics Data System (ADS)
Yang, B.; Donovan, E.; Liang, J.; Grono, E.
2016-12-01
In a series of statistical and event studies we have demonstrated that the motion of patches in regions of Patchy Pulsating Aurora (PPA) is very close to if not exactly convection. Thus, 2D maps of PPA motion provides us the opportunity to remote sense magnetospheric convection with relatively high space and time resolution, subject to uncertainties associated with mapping between the ionosphere and magnetosphere. In this study, we use THEMIS ASI aurora observations (streamers and patchy pulsating aurora) combined with SuperDARN convection measurements, Swarm ion drift velocity measurements, and RBSP electric field measurements to explore the convection dynamics in storm time. From 0500 UT to 0600 UT on March 19 2015, convection observations across 5 magnetic local time (MLT) inferred from the motion of PPA patches and SuperDARN measurements show that a westward SAPS (Subauroral Polarized Streams) enhancement occurs after an auroral streamer. This suggests that plasma sheet fast flows can affect the inner magnetospheric convection, and possibly trigger very fast flows in the inner magnetosphere.
Electromagnetic variable degrees of freedom actuator systems and methods
Montesanti, Richard C [Pleasanton, CA; Trumper, David L [Plaistow, NH; Kirtley, Jr., James L.
2009-02-17
The present invention provides a variable reluctance actuator system and method that can be adapted for simultaneous rotation and translation of a moving element by applying a normal-direction magnetic flux on the moving element. In a beneficial example arrangement, the moving element includes a swing arm that carries a cutting tool at a set radius from an axis of rotation so as to produce a rotary fast tool servo that provides a tool motion in a direction substantially parallel to the surface-normal of a workpiece at the point of contact between the cutting tool and workpiece. An actuator rotates a swing arm such that a cutting tool moves toward and away from a mounted rotating workpiece in a controlled manner in order to machine the workpiece. Position sensors provide rotation and displacement information for a swing arm to a control system. A control system commands and coordinates motion of the fast tool servo with the motion of a spindle, rotating table, cross-feed slide, and in feed slide of a precision lathe.
Apparatus and method for non-invasive diagnosis and control of motor operated valve condition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyon, R.H.; Chai, J.; Lang, J.H.
1997-01-14
An apparatus compares the torque from an MOV motor with the valve displacement, and from the comparison assesses MOV operating condition. A transducer measures the vibration of the housing of an MOV. The vibrations are due to the motions of the rotating elements within the housing, which motions are directly related to the motion of the valve relative to its seat. Signal processing apparatus analyzes the vibrations to recover the rotations of the rotating elements and thus the motion of the valve plug. Lost motion can also be determined (if a lost motion connection exists) by demodulating the vibration signalmore » and thus taking into account also the lost motion. Simultaneously, the forces applied to the valve are estimated by estimating the torque between the stator and the rotor of the motor. Such torque can be estimated from measuring the input current and voltage alone, using a forgetting factor and a correction for the forgetting factor. A signature derived from relating the torque to the valve position can be used to assess the condition of the MOV, by comparing the signature to signatures for MOVs of known conditions. The vibration analysis components generate signals that relate to the position of elements in the operator. Similarly, the torque estimator estimates the torque output by any type of electric motor, whether or not part of an MOV analysis unit. 28 figs.« less
Apparatus and method for non-invasive diagnosis and control of motor operated valve condition
Lyon, R.H.; Chai, J.; Lang, J.H.; Hagman, W.H.; Umans, S.D.; Saarela, O.J.
1997-01-14
An apparatus compares the torque from an MOV motor with the valve displacement, and from the comparison assesses MOV operating condition. A transducer measures the vibration of the housing of an MOV. The vibrations are due to the motions of the rotating elements within the housing, which motions are directly related to the motion of the valve relative to its seat. Signal processing apparatus analyzes the vibrations to recover the rotations of the rotating elements and thus the motion of the valve plug. Lost motion can also be determined (if a lost motion connection exists) by demodulating the vibration signal and thus taking into account also the lost motion. Simultaneously, the forces applied to the valve are estimated by estimating the torque between the stator and the rotor of the motor. Such torque can be estimated from measuring the input current and voltage alone, using a forgetting factor and a correction for the forgetting factor. A signature derived from relating the torque to the valve position can be used to assess the condition of the MOV, by comparing the signature to signatures for MOVs of known conditions. The vibration analysis components generate signals that relate to the position of elements in the operator. Similarly, the torque estimator estimates the torque output by any type of electric motor, whether or not part of an MOV analysis unit. 28 figs.
Apparatus and method for non-invasive diagnosis and control of motor operated valve condition
Lyon, Richard H.; Chai, Jangbom; Lang, Jeffrey H.; Hagman, Wayne H.; Umans, Stephen D.; Saarela, Olli J.
1997-01-01
An apparatus compares the torque from an MOV motor with the valve displacement, and from the comparison assesses MOV operating condition. A transducer measures the vibration of the housing of an MOV. The vibrations are due to the motions of the rotating elements within the housing, which motions are directly related to the motion of the valve relative to its seat. Signal processing apparatus analyzes the vibrations to recover the rotations of the rotating elements and thus the motion of the valve plug. Lost motion can also be determined (if a lost motion connection exists) by demodulating the vibration signal and thus taking into account also the lost motion. Simultaneously, the forces applied to the valve are estimated by estimating the torque between the stator and the rotor of the motor. Such torque can be estimated from measuring the input current and voltage alone, using a forgetting factor and a correction for the forgetting factor. A signature derived from relating the torque to the valve position can be used to assess the condition of the MOV, by comparing the signature to signatures for MOVs of known conditions. The vibration analysis components generate signals that relate to the position of elements in the operator. Similarly, the torque estimator estimates the torque output by any type of electric motor, whether or not part of an MOV analysis unit.
Sensitivity analysis of the GNSS derived Victoria plate motion
NASA Astrophysics Data System (ADS)
Apolinário, João; Fernandes, Rui; Bos, Machiel
2014-05-01
Fernandes et al. (2013) estimated the angular velocity of the Victoria tectonic block from geodetic data (GNSS derived velocities) only.. GNSS observations are sparse in this region and it is therefore of the utmost importance to use the available data (5 sites) in the most optimal way. Unfortunately, the existing time-series were/are affected by missing data and offsets. In addition, some time-series were close to the considered minimal threshold value to compute one reliable velocity solution: 2.5-3.0 years. In this research, we focus on the sensitivity of the derived angular velocity to changes in the data (longer data-span for some stations) by extending the used data-span: Fernandes et al. (2013) used data until September 2011. We also investigate the effect of adding other stations to the solution, which is now possible since more stations became available in the region. In addition, we study if the conventional power-law plus white noise model is indeed the best stochastic model. In this respect, we apply different noise models using HECTOR (Bos et al. (2013), which can use different noise models and estimate offsets and seasonal signals simultaneously. The seasonal signal estimation is also other important parameter, since the time-series are rather short or have large data spans at some stations, which implies that the seasonal signals still can have some effect on the estimated trends as shown by Blewitt and Lavellee (2002) and Bos et al. (2010). We also quantify the magnitude of such differences in the estimation of the secular velocity and their effect in the derived angular velocity. Concerning the offsets, we investigate how they can, detected and undetected, influence the estimated plate motion. The time of offsets has been determined by visual inspection of the time-series. The influence of undetected offsets has been done by adding small synthetic random walk signals that are too small to be detected visually but might have an effect on the estimated trend (Williams 2003, Langbein 2012). Finally, our preferable angular velocity estimation is used to evaluate the consequences on the kinematics of the Victoria block, namely the magnitude and azimuth of the relative motions with respect to the Nubia and Somalia plates and their tectonic implications. References Agnew, D. C. (2013). Realistic simulations of geodetic network data: The Fakenet package, Seismol. Res. Lett., 84 , 426-432, doi:10.1785/0220120185. Blewitt, G. & Lavallee, D., (2002). Effect of annual signals on geodetic velocity, J. geophys. Res., 107(B7), doi:10.1029/2001JB000570. Bos, M.S., R.M.S. Fernandes, S. Williams, L. Bastos (2012) Fast Error Analysis of Continuous GNSS Observations with Missing Data, Journal of Geodesy, doi: 10.1007/s00190-012-0605-0. Bos, M.S., L. Bastos, R.M.S. Fernandes, (2009). The influence of seasonal signals on the estimation of the tectonic motion in short continuous GPS time-series, J. of Geodynamics, j.jog.2009.10.005. Fernandes, R.M.S., J. M. Miranda, D. Delvaux, D. S. Stamps and E. Saria (2013). Re-evaluation of the kinematics of Victoria Block using continuous GNSS data, Geophysical Journal International, doi:10.1093/gji/ggs071. Langbein, J. (2012). Estimating rate uncertainty with maximum likelihood: differences between power-law and flicker-random-walk models, Journal of Geodesy, Volume 86, Issue 9, pp 775-783, Williams, S. D. P. (2003). Offsets in Global Positioning System time series, J. Geophys. Res., 108, 2310, doi:10.1029/2002JB002156, B6.
On the fast zonal transport of the STS-121 space shuttle exhaust plume in the lower thermosphere
NASA Astrophysics Data System (ADS)
Yue, Jia; Liu, Han-Li; Meier, R. R.; Chang, Loren; Gu, Sheng-Yang; Russell, James, III
2013-03-01
Meier et al. (2011) reported rapid eastward transport of the STS-121 space shuttle (launch: July 4, 2006) main engine plume in the lower thermosphere, observed in hydrogen Lyman α images by the GUVI instrument onboard the TIMED satellite. In order to study the mechanism of the rapid zonal transport, diagnostic tracer calculations are performed using winds from the Thermosphere Ionosphere Mesosphere Electrodynamics General Circulation Model (TIME-GCM) simulation of July, 2006. It is found that the strong eastward jet at heights of 100-110 km, where the exhaust plume was deposited, results in a persistent eastward tracer motion with an average velocity of 45 m/s. This is generally consistent with, though faster than, the prevailing eastward shuttle plume movement with daily mean velocity of 30 m/s deduced from the STS-121 GUVI observation. The quasi-two-day wave (QTDW) was not included in the numerical simulation because it was found not to be large. Its absence, however, might be partially responsible for insufficient meridional transport to move the tracers away from the fast jet in the simulation. The current study and our model results from Yue and Liu (2010) explain two very different shuttle plume transport scenarios (STS-121 and STS-107 (launch: January 16, 2003), respectively): we conclude that lower thermospheric dynamics is sufficient to account for both very fast zonal motion (zonal jet in the case of STS-121) and very fast meridional motion to polar regions (large QTDW in the case of STS-107).
Shared sensory estimates for human motion perception and pursuit eye movements.
Mukherjee, Trishna; Battifarano, Matthew; Simoncini, Claudio; Osborne, Leslie C
2015-06-03
Are sensory estimates formed centrally in the brain and then shared between perceptual and motor pathways or is centrally represented sensory activity decoded independently to drive awareness and action? Questions about the brain's information flow pose a challenge because systems-level estimates of environmental signals are only accessible indirectly as behavior. Assessing whether sensory estimates are shared between perceptual and motor circuits requires comparing perceptual reports with motor behavior arising from the same sensory activity. Extrastriate visual cortex both mediates the perception of visual motion and provides the visual inputs for behaviors such as smooth pursuit eye movements. Pursuit has been a valuable testing ground for theories of sensory information processing because the neural circuits and physiological response properties of motion-responsive cortical areas are well studied, sensory estimates of visual motion signals are formed quickly, and the initiation of pursuit is closely coupled to sensory estimates of target motion. Here, we analyzed variability in visually driven smooth pursuit and perceptual reports of target direction and speed in human subjects while we manipulated the signal-to-noise level of motion estimates. Comparable levels of variability throughout viewing time and across conditions provide evidence for shared noise sources in the perception and action pathways arising from a common sensory estimate. We found that conditions that create poor, low-gain pursuit create a discrepancy between the precision of perception and that of pursuit. Differences in pursuit gain arising from differences in optic flow strength in the stimulus reconcile much of the controversy on this topic. Copyright © 2015 the authors 0270-6474/15/358515-16$15.00/0.
Shared Sensory Estimates for Human Motion Perception and Pursuit Eye Movements
Mukherjee, Trishna; Battifarano, Matthew; Simoncini, Claudio
2015-01-01
Are sensory estimates formed centrally in the brain and then shared between perceptual and motor pathways or is centrally represented sensory activity decoded independently to drive awareness and action? Questions about the brain's information flow pose a challenge because systems-level estimates of environmental signals are only accessible indirectly as behavior. Assessing whether sensory estimates are shared between perceptual and motor circuits requires comparing perceptual reports with motor behavior arising from the same sensory activity. Extrastriate visual cortex both mediates the perception of visual motion and provides the visual inputs for behaviors such as smooth pursuit eye movements. Pursuit has been a valuable testing ground for theories of sensory information processing because the neural circuits and physiological response properties of motion-responsive cortical areas are well studied, sensory estimates of visual motion signals are formed quickly, and the initiation of pursuit is closely coupled to sensory estimates of target motion. Here, we analyzed variability in visually driven smooth pursuit and perceptual reports of target direction and speed in human subjects while we manipulated the signal-to-noise level of motion estimates. Comparable levels of variability throughout viewing time and across conditions provide evidence for shared noise sources in the perception and action pathways arising from a common sensory estimate. We found that conditions that create poor, low-gain pursuit create a discrepancy between the precision of perception and that of pursuit. Differences in pursuit gain arising from differences in optic flow strength in the stimulus reconcile much of the controversy on this topic. PMID:26041919
FPGA-based architecture for motion recovering in real-time
NASA Astrophysics Data System (ADS)
Arias-Estrada, Miguel; Maya-Rueda, Selene E.; Torres-Huitzil, Cesar
2002-03-01
A key problem in the computer vision field is the measurement of object motion in a scene. The main goal is to compute an approximation of the 3D motion from the analysis of an image sequence. Once computed, this information can be used as a basis to reach higher level goals in different applications. Motion estimation algorithms pose a significant computational load for the sequential processors limiting its use in practical applications. In this work we propose a hardware architecture for motion estimation in real time based on FPGA technology. The technique used for motion estimation is Optical Flow due to its accuracy, and the density of velocity estimation, however other techniques are being explored. The architecture is composed of parallel modules working in a pipeline scheme to reach high throughput rates near gigaflops. The modules are organized in a regular structure to provide a high degree of flexibility to cover different applications. Some results will be presented and the real-time performance will be discussed and analyzed. The architecture is prototyped in an FPGA board with a Virtex device interfaced to a digital imager.
NASA Astrophysics Data System (ADS)
Hahn, Markus; Barrois, Björn; Krüger, Lars; Wöhler, Christian; Sagerer, Gerhard; Kummert, Franz
2010-09-01
This study introduces an approach to model-based 3D pose estimation and instantaneous motion analysis of the human hand-forearm limb in the application context of safe human-robot interaction. 3D pose estimation is performed using two approaches: The Multiocular Contracting Curve Density (MOCCD) algorithm is a top-down technique based on pixel statistics around a contour model projected into the images from several cameras. The Iterative Closest Point (ICP) algorithm is a bottom-up approach which uses a motion-attributed 3D point cloud to estimate the object pose. Due to their orthogonal properties, a fusion of these algorithms is shown to be favorable. The fusion is performed by a weighted combination of the extracted pose parameters in an iterative manner. The analysis of object motion is based on the pose estimation result and the motion-attributed 3D points belonging to the hand-forearm limb using an extended constraint-line approach which does not rely on any temporal filtering. A further refinement is obtained using the Shape Flow algorithm, a temporal extension of the MOCCD approach, which estimates the temporal pose derivative based on the current and the two preceding images, corresponding to temporal filtering with a short response time of two or at most three frames. Combining the results of the two motion estimation stages provides information about the instantaneous motion properties of the object. Experimental investigations are performed on real-world image sequences displaying several test persons performing different working actions typically occurring in an industrial production scenario. In all example scenes, the background is cluttered, and the test persons wear various kinds of clothes. For evaluation, independently obtained ground truth data are used. [Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Miyajo, Akira; Hasegawa, Hideyuki
2018-07-01
At present, the speckle tracking method is widely used as a two- or three-dimensional (2D or 3D) motion estimator for the measurement of cardiovascular dynamics. However, this method requires high-level interpolation of a function, which evaluates the similarity between ultrasonic echo signals in two frames, to estimate a subsample small displacement in high-frame-rate ultrasound, which results in a high computational cost. To overcome this problem, a 2D motion estimator using the 2D Fourier transform, which does not require any interpolation process, was proposed by our group. In this study, we compared the accuracies of the speckle tracking method and our method using a 2D motion estimator, and applied the proposed method to the measurement of motion of a human carotid arterial wall. The bias error and standard deviation in the lateral velocity estimates obtained by the proposed method were 0.048 and 0.282 mm/s, respectively, which were significantly better than those (‑0.366 and 1.169 mm/s) obtained by the speckle tracking method. The calculation time of the proposed phase-sensitive method was 97% shorter than the speckle tracking method. Furthermore, the in vivo experimental results showed that a characteristic change in velocity around the carotid bifurcation could be detected by the proposed method.
Mancisidor, Aitziber; Zubizarreta, Asier; Cabanes, Itziar; Bengoa, Pablo; Jung, Je Hyung
2017-07-01
In order to enhance the performance of rehabilitation robots, it is imperative to know both force and motion caused by the interaction between user and robot. However, common direct measurement of both signals through force and motion sensors not only increases the complexity of the system but also impedes affordability of the system. As an alternative of the direct measurement, in this work, we present new force and motion estimators for the proper control of the upper-limb rehabilitation Universal Haptic Pantograph (UHP) robot. The estimators are based on the kinematic and dynamic model of the UHP and the use of signals measured by means of common low-cost sensors. In order to demonstrate the effectiveness of the estimators, several experimental tests were carried out. The force and impedance control of the UHP was implemented first by directly measuring the interaction force using accurate extra sensors and the robot performance was compared to the case where the proposed estimators replace the direct measured values. The experimental results reveal that the controller based on the estimators has similar performance to that using direct measurement (less than 1 N difference in root mean square error between two cases), indicating that the proposed force and motion estimators can facilitate implementation of interactive controller for the UHP in robotmediated rehabilitation trainings.
Separation of Dynamics in the Free Energy Landscape
NASA Astrophysics Data System (ADS)
Ekimoto, Toru; Odagaki, Takashi; Yoshimori, Akira
2008-02-01
The dynamics of a representative point in a model free energy landscape (FEL) is analyzed by the Langevin equation with the FEL as the driving potential. From the detailed analysis of the generalized susceptibility, fast, slow and Johari-Goldstein (JG) processes are shown to be well described by the FEL. Namely, the fast process is determined by the stochastic motion confined in a basin of the FEL and the relaxation time is related to the curvature of the FEL at the bottom of the basin. The jump motion among basins gives rise to the slow relaxation whose relaxation time is determined by the distribution of the barriers in the FEL and the JG process is produced by weak modulation of the FEL.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krempasky, J.; Flechsig, U.; Korhonen, T.
Synchronous monochromator and insertion device energy scans were implemented at the Surfaces/Interfaces:Microscopy (SIM) beamline in order to provide the users fast X-ray magnetic dichroism studies (XMCD). A simple software control scheme is proposed based on a fast monochromator run-time energy readback which quickly updates the insertion device requested energy during an on-the-fly X-ray absorption scan (XAS). In this scheme the Plain Grating Monochromator (PGM) motion control, being much slower compared with the insertion device (APPLE-II type undulator), acts as a 'master' controlling the undulator 'slave' energy position. This master-slave software implementation exploits EPICS distributed device control over computer network andmore » allows for a quasi-synchronous motion control combined with data acquisition needed for the XAS or XMCD experiment.« less
Survey of Motion Tracking Methods Based on Inertial Sensors: A Focus on Upper Limb Human Motion
Filippeschi, Alessandro; Schmitz, Norbert; Miezal, Markus; Bleser, Gabriele; Ruffaldi, Emanuele; Stricker, Didier
2017-01-01
Motion tracking based on commercial inertial measurements units (IMUs) has been widely studied in the latter years as it is a cost-effective enabling technology for those applications in which motion tracking based on optical technologies is unsuitable. This measurement method has a high impact in human performance assessment and human-robot interaction. IMU motion tracking systems are indeed self-contained and wearable, allowing for long-lasting tracking of the user motion in situated environments. After a survey on IMU-based human tracking, five techniques for motion reconstruction were selected and compared to reconstruct a human arm motion. IMU based estimation was matched against motion tracking based on the Vicon marker-based motion tracking system considered as ground truth. Results show that all but one of the selected models perform similarly (about 35 mm average position estimation error). PMID:28587178
Adaptive vehicle motion estimation and prediction
NASA Astrophysics Data System (ADS)
Zhao, Liang; Thorpe, Chuck E.
1999-01-01
Accurate motion estimation and reliable maneuver prediction enable an automated car to react quickly and correctly to the rapid maneuvers of the other vehicles, and so allow safe and efficient navigation. In this paper, we present a car tracking system which provides motion estimation, maneuver prediction and detection of the tracked car. The three strategies employed - adaptive motion modeling, adaptive data sampling, and adaptive model switching probabilities - result in an adaptive interacting multiple model algorithm (AIMM). The experimental results on simulated and real data demonstrate that our tracking system is reliable, flexible, and robust. The adaptive tracking makes the system intelligent and useful in various autonomous driving tasks.
Navigation Aiding by a Hybrid Laser-Camera Motion Estimator for Micro Aerial Vehicles
Atman, Jamal; Popp, Manuel; Ruppelt, Jan; Trommer, Gert F.
2016-01-01
Micro Air Vehicles (MAVs) equipped with various sensors are able to carry out autonomous flights. However, the self-localization of autonomous agents is mostly dependent on Global Navigation Satellite Systems (GNSS). In order to provide an accurate navigation solution in absence of GNSS signals, this article presents a hybrid sensor. The hybrid sensor is a deep integration of a monocular camera and a 2D laser rangefinder so that the motion of the MAV is estimated. This realization is expected to be more flexible in terms of environments compared to laser-scan-matching approaches. The estimated ego-motion is then integrated in the MAV’s navigation system. However, first, the knowledge about the pose between both sensors is obtained by proposing an improved calibration method. For both calibration and ego-motion estimation, 3D-to-2D correspondences are used and the Perspective-3-Point (P3P) problem is solved. Moreover, the covariance estimation of the relative motion is presented. The experiments show very accurate calibration and navigation results. PMID:27649203
Zhang, Zhijun; Zhu, Meihua; Ashraf, Muhammad; Broberg, Craig S; Sahn, David J; Song, Xubo
2014-12-01
Quantitative analysis of right ventricle (RV) motion is important for study of the mechanism of congenital and acquired diseases. Unlike left ventricle (LV), motion estimation of RV is more difficult because of its complex shape and thin myocardium. Although attempts of finite element models on MR images and speckle tracking on echocardiography have shown promising results on RV strain analysis, these methods can be improved since the temporal smoothness of the motion is not considered. The authors have proposed a temporally diffeomorphic motion estimation method in which a spatiotemporal transformation is estimated by optimization of a registration energy functional of the velocity field in their earlier work. The proposed motion estimation method is a fully automatic process for general image sequences. The authors apply the method by combining with a semiautomatic myocardium segmentation method to the RV strain analysis of three-dimensional (3D) echocardiographic sequences of five open-chest pigs under different steady states. The authors compare the peak two-point strains derived by their method with those estimated from the sonomicrometry, the results show that they have high correlation. The motion of the right ventricular free wall is studied by using segmental strains. The baseline sequence results show that the segmental strains in their methods are consistent with results obtained by other image modalities such as MRI. The image sequences of pacing steady states show that segments with the largest strain variation coincide with the pacing sites. The high correlation of the peak two-point strains of their method and sonomicrometry under different steady states demonstrates that their RV motion estimation has high accuracy. The closeness of the segmental strain of their method to those from MRI shows the feasibility of their method in the study of RV function by using 3D echocardiography. The strain analysis of the pacing steady states shows the potential utility of their method in study on RV diseases.
3D shape measurement of moving object with FFT-based spatial matching
NASA Astrophysics Data System (ADS)
Guo, Qinghua; Ruan, Yuxi; Xi, Jiangtao; Song, Limei; Zhu, Xinjun; Yu, Yanguang; Tong, Jun
2018-03-01
This work presents a new technique for 3D shape measurement of moving object in translational motion, which finds applications in online inspection, quality control, etc. A low-complexity 1D fast Fourier transform (FFT)-based spatial matching approach is devised to obtain accurate object displacement estimates, and it is combined with single shot fringe pattern prolometry (FPP) techniques to achieve high measurement performance with multiple captured images through coherent combining. The proposed technique overcomes some limitations of existing ones. Specifically, the placement of marks on object surface and synchronization between projector and camera are not needed, the velocity of the moving object is not required to be constant, and there is no restriction on the movement trajectory. Both simulation and experimental results demonstrate the effectiveness of the proposed technique.
Image Motion Detection And Estimation: The Modified Spatio-Temporal Gradient Scheme
NASA Astrophysics Data System (ADS)
Hsin, Cheng-Ho; Inigo, Rafael M.
1990-03-01
The detection and estimation of motion are generally involved in computing a velocity field of time-varying images. A completely new modified spatio-temporal gradient scheme to determine motion is proposed. This is derived by using gradient methods and properties of biological vision. A set of general constraints is proposed to derive motion constraint equations. The constraints are that the second directional derivatives of image intensity at an edge point in the smoothed image will be constant at times t and t+L . This scheme basically has two stages: spatio-temporal filtering, and velocity estimation. Initially, image sequences are processed by a set of oriented spatio-temporal filters which are designed using a Gaussian derivative model. The velocity is then estimated for these filtered image sequences based on the gradient approach. From a computational stand point, this scheme offers at least three advantages over current methods. The greatest advantage of the modified spatio-temporal gradient scheme over the traditional ones is that an infinite number of motion constraint equations are derived instead of only one. Therefore, it solves the aperture problem without requiring any additional assumptions and is simply a local process. The second advantage is that because of the spatio-temporal filtering, the direct computation of image gradients (discrete derivatives) is avoided. Therefore the error in gradients measurement is reduced significantly. The third advantage is that during the processing of motion detection and estimation algorithm, image features (edges) are produced concurrently with motion information. The reliable range of detected velocity is determined by parameters of the oriented spatio-temporal filters. Knowing the velocity sensitivity of a single motion detection channel, a multiple-channel mechanism for estimating image velocity, seldom addressed by other motion schemes in machine vision, can be constructed by appropriately choosing and combining different sets of parameters. By applying this mechanism, a great range of velocity can be detected. The scheme has been tested for both synthetic and real images. The results of simulations are very satisfactory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O’Shea, Tuathan P., E-mail: tuathan.oshea@icr.ac.uk; Bamber, Jeffrey C.; Harris, Emma J.
Purpose: Ultrasound-based motion estimation is an expanding subfield of image-guided radiation therapy. Although ultrasound can detect tissue motion that is a fraction of a millimeter, its accuracy is variable. For controlling linear accelerator tracking and gating, ultrasound motion estimates must remain highly accurate throughout the imaging sequence. This study presents a temporal regularization method for correlation-based template matching which aims to improve the accuracy of motion estimates. Methods: Liver ultrasound sequences (15–23 Hz imaging rate, 2.5–5.5 min length) from ten healthy volunteers under free breathing were used. Anatomical features (blood vessels) in each sequence were manually annotated for comparison withmore » normalized cross-correlation based template matching. Five sequences from a Siemens Acuson™ scanner were used for algorithm development (training set). Results from incremental tracking (IT) were compared with a temporal regularization method, which included a highly specific similarity metric and state observer, known as the α–β filter/similarity threshold (ABST). A further five sequences from an Elekta Clarity™ system were used for validation, without alteration of the tracking algorithm (validation set). Results: Overall, the ABST method produced marked improvements in vessel tracking accuracy. For the training set, the mean and 95th percentile (95%) errors (defined as the difference from manual annotations) were 1.6 and 1.4 mm, respectively (compared to 6.2 and 9.1 mm, respectively, for IT). For each sequence, the use of the state observer leads to improvement in the 95% error. For the validation set, the mean and 95% errors for the ABST method were 0.8 and 1.5 mm, respectively. Conclusions: Ultrasound-based motion estimation has potential to monitor liver translation over long time periods with high accuracy. Nonrigid motion (strain) and the quality of the ultrasound data are likely to have an impact on tracking performance. A future study will investigate spatial uniformity of motion and its effect on the motion estimation errors.« less
Lobb, M L; Stern, J A
1986-08-01
Sequential patterns of eye and eyelid motion were identified in seven subjects performing a modified serial probe recognition task under drowsy conditions. Using simultaneous EOG and video recordings, eyelid motion was divided into components above, within, and below the pupil and the durations in sequence were recorded. A serial probe recognition task was modified to allow for distinguishing decision errors from attention errors. Decision errors were found to be more frequent following a downward shift in the gaze angle which the eyelid closing sequence was reduced from a five element to a three element sequence. The velocity of the eyelid moving over the pupil during decision errors was slow in the closing and fast in the reopening phase, while on decision correct trials it was fast in closing and slower in reopening. Due to the high variability of eyelid motion under drowsy conditions these findings were only marginally significant. When a five element blink occurred, the velocity of the lid over pupil motion component of these endogenous eye blinks was significantly faster on decision correct than on decision error trials. Furthermore, the highly variable, long duration closings associated with the decision response produced slow eye movements in the horizontal plane (SEM) which were more frequent and significantly longer in duration on decision error versus decision correct responses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hongjuan; Liu, Siqing; Gong, Jiancun
2015-06-01
We numerically study the detailed evolutionary features of the wave-like disturbance and its propagation in the eruption. This work is a follow-up to Wang et al., using significantly upgraded new simulations. We focus on the contribution of the velocity vortices and the fast shock reflection and refraction in the solar corona to the formation of the EUV waves. Following the loss of equilibrium in the coronal magnetic structure, the flux rope exhibits rapid motions and invokes the fast-mode shock at the front of the rope, which then produces a type II radio burst. The expansion of the fast shock, whichmore » is associated with outward motion, takes place in various directions, and the downward expansion shows the reflection and the refraction as a result of the non-uniform background plasma. The reflected component of the fast shock propagates upward and the refracted component propagates downward. As the refracted component reaches the boundary surface, a weak echo is excited. The Moreton wave is invoked as the fast shock touches the bottom boundary, so the Moreton wave lags the type II burst. A secondary echo occurs in the area where reflection of the fast shock encounters the slow-mode shock, and the nearby magnetic field lines are further distorted because of the interaction between the secondary echo and the velocity vortices. Our results indicate that the EUV wave may arise from various processes that are revealed in the new simulations.« less
Liquid-Spray Formulation Of Scopolamine
NASA Technical Reports Server (NTRS)
Putcha, Lakshmi; Cintron, Nitza M.
1992-01-01
Scopolamine, fast-acting anticholinergic drug, formulated into drops administered intranasally. Formulation very useful for people who need immediate relief from motion sickness, and they can administer it to themselves. Also used in other clinical situations in which fast-acting anticholinergic medication required. Modified into such other forms as gel preparation, aqueous-base ointment, or aerosol spray or mist; also dispensed in metered-dose delivery system.
NASA Astrophysics Data System (ADS)
Aviles, Angelica I.; Widlak, Thomas; Casals, Alicia; Nillesen, Maartje M.; Ammari, Habib
2017-06-01
Cardiac motion estimation is an important diagnostic tool for detecting heart diseases and it has been explored with modalities such as MRI and conventional ultrasound (US) sequences. US cardiac motion estimation still presents challenges because of complex motion patterns and the presence of noise. In this work, we propose a novel approach to estimate cardiac motion using ultrafast ultrasound data. Our solution is based on a variational formulation characterized by the L 2-regularized class. Displacement is represented by a lattice of b-splines and we ensure robustness, in the sense of eliminating outliers, by applying a maximum likelihood type estimator. While this is an important part of our solution, the main object of this work is to combine low-rank data representation with topology preservation. Low-rank data representation (achieved by finding the k-dominant singular values of a Casorati matrix arranged from the data sequence) speeds up the global solution and achieves noise reduction. On the other hand, topology preservation (achieved by monitoring the Jacobian determinant) allows one to radically rule out distortions while carefully controlling the size of allowed expansions and contractions. Our variational approach is carried out on a realistic dataset as well as on a simulated one. We demonstrate how our proposed variational solution deals with complex deformations through careful numerical experiments. The low-rank constraint speeds up the convergence of the optimization problem while topology preservation ensures a more accurate displacement. Beyond cardiac motion estimation, our approach is promising for the analysis of other organs that exhibit motion.
Bio-inspired microfluidics: The case of the velvet worm
NASA Astrophysics Data System (ADS)
Concha, Andres; Mellado, Paula; Morera-Brenes, Bernal; Sampaio-Costa, Cristiano; Mahadevan, L.; Monge-Najera, Julian
The rapid squirt of a proteinaceous slime jet endow velvet worms (Onychophora) with a unique mechanism for defense from predators and for capturing prey by entangling them in a disordered web that immobilizes their target. However, to date neither qualitative nor quantitative descriptions have been provided for this unique adaptation. We have investigated the mechanism that allows velvet worms the fast oscillatory motion of their oral papillae and the exiting liquid jet that oscillates with frequencies f ~ 30 - 60 Hz. Using anatomical images and high speed videography, we show that even without fast muscular action of the papilla, a strong contraction of the slime reservoir and the geometry of the reservoir-papilla system suffices to accelerate the slime to speeds up to v ~ 5 m /s in about Δt ~ 60 ms. A theoretical analysis and a physical simulacrum allow us to infer that this fast oscillatory motion is the result of an elastohydrodynamic instability driven by the interplay between the elasticity of oral papillae and the fast unsteady flow during squirting. We propose several applications that can be implemented using this instability, ranging from high-throughput droplet production, printing, and micro-nanofiber production among others. A.C was partially supported by Fondecyt Grant 11130075.
Global velocity constrained cloud motion prediction for short-term solar forecasting
NASA Astrophysics Data System (ADS)
Chen, Yanjun; Li, Wei; Zhang, Chongyang; Hu, Chuanping
2016-09-01
Cloud motion is the primary reason for short-term solar power output fluctuation. In this work, a new cloud motion estimation algorithm using a global velocity constraint is proposed. Compared to the most used Particle Image Velocity (PIV) algorithm, which assumes the homogeneity of motion vectors, the proposed method can capture the accurate motion vector for each cloud block, including both the motional tendency and morphological changes. Specifically, global velocity derived from PIV is first calculated, and then fine-grained cloud motion estimation can be achieved by global velocity based cloud block researching and multi-scale cloud block matching. Experimental results show that the proposed global velocity constrained cloud motion prediction achieves comparable performance to the existing PIV and filtered PIV algorithms, especially in a short prediction horizon.
Coupling reconstruction and motion estimation for dynamic MRI through optical flow constraint
NASA Astrophysics Data System (ADS)
Zhao, Ningning; O'Connor, Daniel; Gu, Wenbo; Ruan, Dan; Basarab, Adrian; Sheng, Ke
2018-03-01
This paper addresses the problem of dynamic magnetic resonance image (DMRI) reconstruction and motion estimation jointly. Because of the inherent anatomical movements in DMRI acquisition, reconstruction of DMRI using motion estimation/compensation (ME/MC) has been explored under the compressed sensing (CS) scheme. In this paper, by embedding the intensity based optical flow (OF) constraint into the traditional CS scheme, we are able to couple the DMRI reconstruction and motion vector estimation. Moreover, the OF constraint is employed in a specific coarse resolution scale in order to reduce the computational complexity. The resulting optimization problem is then solved using a primal-dual algorithm due to its efficiency when dealing with nondifferentiable problems. Experiments on highly accelerated dynamic cardiac MRI with multiple receiver coils validate the performance of the proposed algorithm.
Moreno, Javier; Clotet, Eduard; Lupiañez, Ruben; Tresanchez, Marcel; Martínez, Dani; Pallejà, Tomàs; Casanovas, Jordi; Palacín, Jordi
2016-10-10
This paper presents the design, implementation and validation of the three-wheel holonomic motion system of a mobile robot designed to operate in homes. The holonomic motion system is described in terms of mechanical design and electronic control. The paper analyzes the kinematics of the motion system and validates the estimation of the trajectory comparing the displacement estimated with the internal odometry of the motors and the displacement estimated with a SLAM procedure based on LIDAR information. Results obtained in different experiments have shown a difference on less than 30 mm between the position estimated with the SLAM and odometry, and a difference in the angular orientation of the mobile robot lower than 5° in absolute displacements up to 1000 mm.
Using Passive Sensing to Estimate Relative Energy Expenditure for Eldercare Monitoring
2012-01-01
This paper describes ongoing work in analyzing sensor data logged in the homes of seniors. An estimation of relative energy expenditure is computed using motion density from passive infrared motion sensors mounted in the environment. We introduce a new algorithm for detecting visitors in the home using motion sensor data and a set of fuzzy rules. The visitor algorithm, as well as a previous algorithm for identifying time-away-from-home (TAFH), are used to filter the logged motion sensor data. Thus, the energy expenditure estimate uses data collected only when the resident is home alone. Case studies are included from TigerPlace, an Aging in Place community, to illustrate how the relative energy expenditure estimate can be used to track health conditions over time. PMID:25266777
Moreno, Javier; Clotet, Eduard; Lupiañez, Ruben; Tresanchez, Marcel; Martínez, Dani; Pallejà, Tomàs; Casanovas, Jordi; Palacín, Jordi
2016-01-01
This paper presents the design, implementation and validation of the three-wheel holonomic motion system of a mobile robot designed to operate in homes. The holonomic motion system is described in terms of mechanical design and electronic control. The paper analyzes the kinematics of the motion system and validates the estimation of the trajectory comparing the displacement estimated with the internal odometry of the motors and the displacement estimated with a SLAM procedure based on LIDAR information. Results obtained in different experiments have shown a difference on less than 30 mm between the position estimated with the SLAM and odometry, and a difference in the angular orientation of the mobile robot lower than 5° in absolute displacements up to 1000 mm. PMID:27735857
Motion direction estimation based on active RFID with changing environment
NASA Astrophysics Data System (ADS)
Jie, Wu; Minghua, Zhu; Wei, He
2018-05-01
The gate system is used to estimate the direction of RFID tags carriers when they are going through the gate. Normally, it is difficult to achieve and keep a high accuracy in estimating motion direction of RFID tags because the received signal strength of tag changes sharply according to the changing electromagnetic environment. In this paper, a method of motion direction estimation for RFID tags is presented. To improve estimation accuracy, the machine leaning algorithm is used to get the fitting function of the received data by readers which are deployed inside and outside gate respectively. Then the fitted data are sampled to get the standard vector. We compare the stand vector with template vectors to get the motion direction estimation result. Then the corresponding template vector is updated according to the surrounding environment. We conducted the simulation and implement of the proposed method and the result shows that the proposed method in this work can improve and keep a high accuracy under the condition of the constantly changing environment.
NASA Astrophysics Data System (ADS)
Basu, U.; Powell, C. A.
2017-12-01
Lateral depth variations of the Mohorovicic discontinuity, Pn velocities, and anisotropy features at uppermost mantle depths below the central U.S. are determined using Pn tomography. Excellent raypath coverage throughout the northern Mississippi Embayment (ME) is obtained using the NELE (Northern Embayment Lithosphere Experiment) and US TA (Transportable Array) datasets. High Pn velocities are present below the northern portion of the Reelfoot Rift and the New Madrid seismic zone. Prominent regions of low velocity are present to the east and north of the ME, in agreement with recent teleseismic tomography studies indicating the presence of low P- and S-wave velocities in the uppermost mantle. A prominent region of low velocity coincides with the southwestern portion of the Illinois Basin. Higher velocities are located west of the Illinois Basin and west of the Ozark Plateau. Crustal thicknesses obtained from the Pn station delays indicate thinner crust in the southern Coastal Plain and ME and thicker crust north of the ME. Strong Pn anisotropy and rotation of the fast directions are associated with the northern ME. Fast directions differ from present absolute plate motion directions and from fast directions determined from SKS splitting, suggesting the presence of multiple anisotropic layers. Parameter errors estimated using the bootstrap method are all less than 0.1 km/s for velocity and magnitude of the anisotropy.
Multiple-stage ambiguity in motion perception reveals global computation of local motion directions.
Rider, Andrew T; Nishida, Shin'ya; Johnston, Alan
2016-12-01
The motion of a 1D image feature, such as a line, seen through a small aperture, or the small receptive field of a neural motion sensor, is underconstrained, and it is not possible to derive the true motion direction from a single local measurement. This is referred to as the aperture problem. How the visual system solves the aperture problem is a fundamental question in visual motion research. In the estimation of motion vectors through integration of ambiguous local motion measurements at different positions, conventional theories assume that the object motion is a rigid translation, with motion signals sharing a common motion vector within the spatial region over which the aperture problem is solved. However, this strategy fails for global rotation. Here we show that the human visual system can estimate global rotation directly through spatial pooling of locally ambiguous measurements, without an intervening step that computes local motion vectors. We designed a novel ambiguous global flow stimulus, which is globally as well as locally ambiguous. The global ambiguity implies that the stimulus is simultaneously consistent with both a global rigid translation and an infinite number of global rigid rotations. By the standard view, the motion should always be seen as a global translation, but it appears to shift from translation to rotation as observers shift fixation. This finding indicates that the visual system can estimate local vectors using a global rotation constraint, and suggests that local motion ambiguity may not be resolved until consistencies with multiple global motion patterns are assessed.
SU-E-J-191: Motion Prediction Using Extreme Learning Machine in Image Guided Radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jia, J; Cao, R; Pei, X
Purpose: Real-time motion tracking is a critical issue in image guided radiotherapy due to the time latency caused by image processing and system response. It is of great necessity to fast and accurately predict the future position of the respiratory motion and the tumor location. Methods: The prediction of respiratory position was done based on the positioning and tracking module in ARTS-IGRT system which was developed by FDS Team (www.fds.org.cn). An approach involving with the extreme learning machine (ELM) was adopted to predict the future respiratory position as well as the tumor’s location by training the past trajectories. For themore » training process, a feed-forward neural network with one single hidden layer was used for the learning. First, the number of hidden nodes was figured out for the single layered feed forward network (SLFN). Then the input weights and hidden layer biases of the SLFN were randomly assigned to calculate the hidden neuron output matrix. Finally, the predicted movement were obtained by applying the output weights and compared with the actual movement. Breathing movement acquired from the external infrared markers was used to test the prediction accuracy. And the implanted marker movement for the prostate cancer was used to test the implementation of the tumor motion prediction. Results: The accuracy of the predicted motion and the actual motion was tested. Five volunteers with different breathing patterns were tested. The average prediction time was 0.281s. And the standard deviation of prediction accuracy was 0.002 for the respiratory motion and 0.001 for the tumor motion. Conclusion: The extreme learning machine method can provide an accurate and fast prediction of the respiratory motion and the tumor location and therefore can meet the requirements of real-time tumor-tracking in image guided radiotherapy.« less
Chen, Mingqing; Zheng, Yefeng; Wang, Yang; Mueller, Kerstin; Lauritsch, Guenter
2013-01-01
Compared to pre-operative imaging modalities, it is more convenient to estimate the current cardiac physiological status from C-arm angiocardiography since C-arm is a widely used intra-operative imaging modality to guide many cardiac interventions. The 3D shape and motion of the left ventricle (LV) estimated from rotational angiocardiography provide important cardiac function measurements, e.g., ejection fraction and myocardium motion dyssynchrony. However, automatic estimation of the 3D LV motion is difficult since all anatomical structures overlap on the 2D X-ray projections and the nearby confounding strong image boundaries (e.g., pericardium) often cause ambiguities to LV endocardium boundary detection. In this paper, a new framework is proposed to overcome the aforementioned difficulties: (1) A new learning-based boundary detector is developed by training a boosting boundary classifier combined with the principal component analysis of a local image patch; (2) The prior LV motion model is learned from a set of dynamic cardiac computed tomography (CT) sequences to provide a good initial estimate of the 3D LV shape of different cardiac phases; (3) The 3D motion trajectory is learned for each mesh point; (4) All these components are integrated into a multi-surface graph optimization method to extract the globally coherent motion. The method is tested on seven patient scans, showing significant improvement on the ambiguous boundary cases with a detection accuracy of 2.87 +/- 1.00 mm on LV endocardium boundary delineation in the 2D projections.
NASA Astrophysics Data System (ADS)
Saylor, Dicy; Lepine, Sebastien; Crossfield, Ian; Petigura, Erik A.
2018-01-01
The K2 mission is targeting large numbers of nearby (d < 100 pc) GKM dwarfs selected from the SUPERBLINK proper motion survey (μ > 40 mas yr‑1, V < 20). Additionally, the mission is targeting low-mass, high proper motion stars associated with the local (d < 500 pc) Galactic halo population also selected from SUPERBLINK. K2 campaigns 0 through 8 monitored a total of 26,518 of these cool main-sequence stars. We used the auto-correlation function to search for fast rotators by identifying short-period photometric modulations in the K2 light curves. We identified 481 candidate fast rotators with rotation periods <4 days that show light-curve modulations consistent with starspots. Their kinematics show low average transverse velocities, suggesting that they are part of the young disk population. A subset (13) of the fast rotators is found among those targets with colors and kinematics consistent with the local Galactic halo population and may represent stars spun up by tidal interactions in close binary systems. We further demonstrate that the M dwarf fast rotators selected from the K2 light curves are significantly more likely to have UV excess and discuss the potential of the K2 mission to identify new nearby young GKM dwarfs on the basis of their fast rotation rates. Finally, we discuss the possible use of local halo stars as fiducial, non-variable sources in the Kepler fields.
NASA Astrophysics Data System (ADS)
DeMets, C.; Merkouriev, S.
2016-10-01
Large gaps and inconsistencies remain in published estimates of Nubia-Somalia plate motion based on reconstructions of seafloor spreading data around Africa. Herein, we use newly available reconstructions of the Southwest Indian Ridge at ˜1-Myr intervals since 20 Ma to estimate Nubia-Somalia plate motion farther back in time than previously achieved and with an unprecedented degree of temporal resolution. At the northern end of the East African rift, our new estimates of Nubia-Somalia motion for six times from 0.78 Ma to 5.2 Ma differ by only 2 per cent from the rift-normal component of motion that is extrapolated from a recently estimated GPS angular velocity. The rate of rift-normal extension thus appears to have remained steady since at least 5.2 Ma. Our new rotations indicate that the two plates have moved relative to each other since at least 16 Ma and possibly longer. Motion has either been steady since at least 16 Ma or accelerated modestly between 6 and 5.2 Ma. Our Nubia-Somalia rotations predict 42.5 ± 3.8 km of rift-normal extension since 10.6 Ma across the well-studied, northern segment of the Main Ethiopian Rift, consistent with 40-50 km estimates for extension since 10.6 Myr based on seismological surveys of this narrow part of the plate boundary. Nubia-Somalia rotations are also derived by combining newly estimated Somalia-Arabia rotations that reconstruct the post-20-Ma opening of the Gulf of Aden with Nubia-Arabia rotations estimated via a probabilistic analysis of plausible opening scenarios for the Red Sea. These rotations predict Nubia-Somalia motion since 5.2 Myr that is consistent with that determined from Southwest Indian Ridge data and also predict 40 ± 3 km of rift-normal extension since 10.6 Ma across the Main Ethiopian Rift, consistent with our 42.5 ± 3.8 km Southwest Indian Ridge estimate. Our new rotations exclude at high confidence level previous estimates of 12 ± 13 and 123 ± 14 km for rift-normal extensions across the Main Ethiopian Rift since 10.6 Ma based on reconstructions of Chron 5n.2 along the Southwest Indian Ridge. Sparse coverage of magnetic reversals older than 16 Ma along the western third of the Southwest Indian Ridge precludes reliable determinations of Nubia-Somalia plate motion before 16 Ma, leaving unanswered the key question of when the motion between the two plates began.
Indovina, Iole; Maffei, Vincenzo; Lacquaniti, Francesco
2013-09-01
By simulating self-motion on a virtual rollercoaster, we investigated whether acceleration cued by the optic flow affected the estimate of time-to-passage (TTP) to a target. In particular, we studied the role of a visual acceleration (1 g = 9.8 m/s(2)) simulating the effects of gravity in the scene, by manipulating motion law (accelerated or decelerated at 1 g, constant speed) and motion orientation (vertical, horizontal). Thus, 1-g-accelerated motion in the downward direction or decelerated motion in the upward direction was congruent with the effects of visual gravity. We found that acceleration (positive or negative) is taken into account but is overestimated in module in the calculation of TTP, independently of orientation. In addition, participants signaled TTP earlier when the rollercoaster accelerated downward at 1 g (as during free fall), with respect to when the same acceleration occurred along the horizontal orientation. This time shift indicates an influence of the orientation relative to visual gravity on response timing that could be attributed to the anticipation of the effects of visual gravity on self-motion along the vertical, but not the horizontal orientation. Finally, precision in TTP estimates was higher during vertical fall than when traveling at constant speed along the vertical orientation, consistent with a higher noise in TTP estimates when the motion violates gravity constraints.
Re-arrangements of Global Plate Motion: Role of True Polar Wander (TPW)
NASA Astrophysics Data System (ADS)
Bostrom, R. C.
2004-12-01
Plate-motion models constructed by R.G. Gordon and D.M. Jurdy (1986) and at Harvard by R.J. O'Connell et al. (1991), further developed by O. Cadek and V. Ricard (1992), show that in sum Cenozoic plate motion has been concentrated around the degree 1 harmonic spectral component, representing net lithosphere rotation (NLR) about the contemporary Pole. Participants allowed for uncertainties in using hotspots as benchmarks. In the absence of an alternative to tidal action to account for perennial convection asymmetry, otherwise enigmatic (D. Bercovici 2003), plate motion under the observed degree 1 system is here compared with the regime to be expected under geocentric plus external gravity. Mantle convection takes place under a minute westward tilt in globally-averaged g, contributed by a tidal component having the value -2.16° identified by G.J.R. MacDonald (1964). Previously impossible, R.D. Ray et al. (2001) recently have combined satellite tracking data and Topex/Poseidon altimetry to separate the solid-earth fraction of the associated dissipation, 110 +/- 25 GW, from the obscuring marine signal. Hitherto, in model construction it has been necessary to assume almost perfect elasticity. Surprisingly large in terms of earlier estimates of the dissipation factor 1/Q, the value obtained conforms notably with supposition as per Cadek and Ricard, that the upper mantle remains constantly at the point of failure representing advance, in precisely this mode, of the internally driven convection basically responsible for global tectonics. The regime is self-reinforcing and prone to be stable. How might it be interrupted? Some 25 years ago P.A. Rona and E.S. Richardson (1978) identified the global plate reorganization which took place in the Lower Cenozoic. Essentially, reorganization was directional in nature, characterized by supplantation of basic geotectonic features such as seafloor spreading and subduction having a N-S orientation, by similar features oriented E-W. It may now be significant that with increased understanding of the paleomagnetic record (M. Prevot et al. 2000; J. Besse and V. Courtillot 2002), shift of Earth's pole of rotation (TPW) has become a well demonstrated occurrence, although agreement is far from universal as to its modus operandi. Prior to -130 Ma interpretation still is subject to much uncertainty, the major subsequent event having been the end of the -130 to -60 Ma period of relatively fast polar wander. Standstill may have set in as from about -50 Ma. An earlier period of standstill, currently estimated to extend from -200Ma to about -150 Ma, was co-extensive with the Jurassic, being replaced by the highly TPW-active Cretaceous. Agreement has not been reached as to the rapidity of a 20° ultra-fast episode or `jump' culminating at around -115 Ma, at the time of most active break-up of Gondwana into its constituent continents and formation of such ranges as the Rockies and European Alps. If the Cadek/Ricard summary of plate motion or one similar is sound, TPW entails equivalent change in the direction 'west'. The liberty is now taken to suggest that rather than being subsidiary to unexplained reorganizations of global tectonics, TPW is causative and primary. Thermodynamics requires that under TPW, junctures must occur at which Earth's heat efflux is effected most efficiently via convection compliant with a greatly different Pole location, compelling the occurrence of a fast episode or `jump' of the ilk reported by Prevot et al. Within the grossly inhomogeneous, convective Earth, the operation of the conjugate factors NLR and TPW seems basic; of which, the latter has constituted the primary geotectonic determinant.
Shioiri, Satoshi; Matsumiya, Kazumichi
2009-05-29
We investigated spatiotemporal characteristics of motion mechanisms using a new type of motion aftereffect (MAE) we found. Our stimulus comprised two superimposed sinusoidal gratings with different spatial frequencies. After exposure to the moving stimulus, observers perceived the MAE in the static test in the direction opposite to that of the high spatial frequency grating even when low spatial frequency motion was perceived during adaptation. In contrast, in the flicker test, the MAE was perceived in the direction opposite to that of the low spatial frequency grating. These MAEs indicate that two different motion systems contribute to motion perception and can be isolated by using different test stimuli. Using a psychophysical technique based on the MAE, we investigated the differences between the two motion mechanisms. The results showed that the static MAE is the aftereffect of the motion system with a high spatial and low temporal frequency tuning (slow motion detector) and the flicker MAE is the aftereffect of the motion system with a low spatial and high temporal frequency tuning (fast motion detector). We also revealed that the two motion detectors differ in orientation tuning, temporal frequency tuning, and sensitivity to relative motion.
Simplified bionic solutions: a simple bio-inspired vehicle collision detection system.
Hartbauer, Manfred
2017-02-15
Modern cars are equipped with both active and passive sensor systems that can detect potential collisions. In contrast, locusts avoid collisions solely by responding to certain visual cues that are associated with object looming. In neurophysiological experiments, I investigated the possibility that the 'collision-detector neurons' of locusts respond to impending collisions in films recorded with dashboard cameras of fast driving cars. In a complementary modelling approach, I developed a simple algorithm to reproduce the neuronal response that was recorded during object approach. Instead of applying elaborate algorithms that factored in object recognition and optic flow discrimination, I tested the hypothesis that motion detection restricted to a 'danger zone', in which frontal collisions on the motorways are most likely, is sufficient to estimate the risk of a collision. Furthermore, I investigated whether local motion vectors, obtained from the differential excitation of simulated direction-selective networks, could be used to predict evasive steering maneuvers and prevent undesired responses to motion artifacts. The results of the study demonstrate that the risk of impending collisions in real traffic scenes is mirrored in the excitation of the collision-detecting neuron (DCMD) of locusts. The modelling approach was able to reproduce this neuronal response even when the vehicle was driving at high speeds and image resolution was low (about 200 × 100 pixels). Furthermore, evasive maneuvers that involved changing the steering direction and steering force could be planned by comparing the differences in the overall excitation levels of the simulated right and left direction-selective networks. Additionally, it was possible to suppress undesired responses of the algorithm to translatory movements, camera shake and ground shadows by evaluating local motion vectors. These estimated collision risk values and evasive steering vectors could be used as input for a driving assistant, converting the first into braking force and the latter into steering responses to avoid collisions. Since many processing steps were computed on the level of pixels and involved elements of direction-selective networks, this algorithm can be implemented in hardware so that parallel computations enhance the processing speed significantly.
Simplified bionic solutions: a simple bio-inspired vehicle collision detection system
Hartbauer, Manfred
2018-01-01
Modern cars are equipped with both active and passive sensor systems that can detect potential collisions. In contrast, locusts avoid collisions solely by responding to certain visual cues that are associated with object looming. In neurophysiological experiments, I investigated the possibility that the ‘collision-detector neurons’ of locusts respond to impending collisions in films recorded with dashboard cameras of fast driving cars. In a complementary modelling approach, I developed a simple algorithm to reproduce the neuronal response that was recorded during object approach. Instead of applying elaborate algorithms that factored in object recognition and optic flow discrimination, I tested the hypothesis that motion detection restricted to a ‘danger zone’, in which frontal collisions on the motorways are most likely, is sufficient to estimate the risk of a collision. Furthermore, I investigated whether local motion vectors, obtained from the differential excitation of simulated direction-selective networks, could be used to predict evasive steering maneuvers and prevent undesired responses to motion artifacts. The results of the study demonstrate that the risk of impending collisions in real traffic scenes is mirrored in the excitation of the collision-detecting neuron (DCMD) of locusts. The modelling approach was able to reproduce this neuronal response even when the vehicle was driving at high speeds and image resolution was low (about 200 × 100 pixels). Furthermore, evasive maneuvers that involved changing the steering direction and steering force could be planned by comparing the differences in the overall excitation levels of the simulated right and left direction-selective networks. Additionally, it was possible to suppress undesired responses of the algorithm to translatory movements, camera shake and ground shadows by evaluating local motion vectors. These estimated collision risk values and evasive steering vectors could be used as input for a driving assistant, converting the first into braking force and the latter into steering responses to avoid collisions. Since many processing steps were computed on the level of pixels and involved elements of direction-selective networks, this algorithm can be implemented in hardware so that parallel computations enhance the processing speed significantly. PMID:28091394
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, J; Nguyen, D; O’Brien, R
Purpose: Kilovoltage intrafraction monitoring (KIM) scheme has been successfully used to simultaneously monitor 3D tumor motion during radiotherapy. Recently, an iterative closest point (ICP) algorithm was implemented in KIM to also measure rotations about three axes, enabling real-time tracking of tumor motion in six degrees-of-freedom (DoF). This study aims to evaluate the accuracy of the six DoF motion estimates of KIM by comparing it with the corresponding motion (i) measured by the Calypso; and (ii) derived from kV/MV triangulation. Methods: (i) Various motions (static and dynamic) were applied to a CIRS phantom with three embedded electromagnetic transponders (Calypso Medical) usingmore » a 5D motion platform (HexaMotion) and a rotating treatment couch while both KIM and Calypso were used to concurrently track the phantom motion in six DoF. (ii) KIM was also used to retrospectively estimate six DoF motion from continuous sets of kV projections of a prostate, implanted with three gold fiducial markers (2 patients with 80 fractions in total), acquired during the treatment. Corresponding motion was obtained from kV/MV triangulation using a closed form least squares method based on three markers’ positions. Only the frames where all three markers were present were used in the analysis. The mean differences between the corresponding motion estimates were calculated for each DoF. Results: Experimental results showed that the mean of absolute differences in six DoF phantom motion measured by Calypso and KIM were within 1.1° and 0.7 mm. kV/MV triangulation derived six DoF prostate tumor better agreed with KIM estimated motion with the mean (s.d.) difference of up to 0.2° (1.36°) and 0.2 (0.25) mm for rotation and translation, respectively. Conclusion: These results suggest that KIM can provide an accurate six DoF intrafraction tumor during radiotherapy.« less
Incompressible Deformation Estimation Algorithm (IDEA) from Tagged MR Images
Liu, Xiaofeng; Abd-Elmoniem, Khaled Z.; Stone, Maureen; Murano, Emi Z.; Zhuo, Jiachen; Gullapalli, Rao P.; Prince, Jerry L.
2013-01-01
Measuring the three-dimensional motion of muscular tissues, e.g., the heart or the tongue, using magnetic resonance (MR) tagging is typically carried out by interpolating the two-dimensional motion information measured on orthogonal stacks of images. The incompressibility of muscle tissue is an important constraint on the reconstructed motion field and can significantly help to counter the sparsity and incompleteness of the available motion information. Previous methods utilizing this fact produced incompressible motions with limited accuracy. In this paper, we present an incompressible deformation estimation algorithm (IDEA) that reconstructs a dense representation of the three-dimensional displacement field from tagged MR images and the estimated motion field is incompressible to high precision. At each imaged time frame, the tagged images are first processed to determine components of the displacement vector at each pixel relative to the reference time. IDEA then applies a smoothing, divergence-free, vector spline to interpolate velocity fields at intermediate discrete times such that the collection of velocity fields integrate over time to match the observed displacement components. Through this process, IDEA yields a dense estimate of a three-dimensional displacement field that matches our observations and also corresponds to an incompressible motion. The method was validated with both numerical simulation and in vivo human experiments on the heart and the tongue. PMID:21937342
Peng, Bo; Wang, Yuqi; Hall, Timothy J; Jiang, Jingfeng
2017-04-01
Our primary objective of this paper was to extend a previously published 2-D coupled subsample tracking algorithm for 3-D speckle tracking in the framework of ultrasound breast strain elastography. In order to overcome heavy computational cost, we investigated the use of a graphic processing unit (GPU) to accelerate the 3-D coupled subsample speckle tracking method. The performance of the proposed GPU implementation was tested using a tissue-mimicking phantom and in vivo breast ultrasound data. The performance of this 3-D subsample tracking algorithm was compared with the conventional 3-D quadratic subsample estimation algorithm. On the basis of these evaluations, we concluded that the GPU implementation of this 3-D subsample estimation algorithm can provide high-quality strain data (i.e., high correlation between the predeformation and the motion-compensated postdeformation radio frequency echo data and high contrast-to-noise ratio strain images), as compared with the conventional 3-D quadratic subsample algorithm. Using the GPU implementation of the 3-D speckle tracking algorithm, volumetric strain data can be achieved relatively fast (approximately 20 s per volume [2.5 cm ×2.5 cm ×2.5 cm]).
Aerial video mosaicking using binary feature tracking
NASA Astrophysics Data System (ADS)
Minnehan, Breton; Savakis, Andreas
2015-05-01
Unmanned Aerial Vehicles are becoming an increasingly attractive platform for many applications, as their cost decreases and their capabilities increase. Creating detailed maps from aerial data requires fast and accurate video mosaicking methods. Traditional mosaicking techniques rely on inter-frame homography estimations that are cascaded through the video sequence. Computationally expensive keypoint matching algorithms are often used to determine the correspondence of keypoints between frames. This paper presents a video mosaicking method that uses an object tracking approach for matching keypoints between frames to improve both efficiency and robustness. The proposed tracking method matches local binary descriptors between frames and leverages the spatial locality of the keypoints to simplify the matching process. Our method is robust to cascaded errors by determining the homography between each frame and the ground plane rather than the prior frame. The frame-to-ground homography is calculated based on the relationship of each point's image coordinates and its estimated location on the ground plane. Robustness to moving objects is integrated into the homography estimation step through detecting anomalies in the motion of keypoints and eliminating the influence of outliers. The resulting mosaics are of high accuracy and can be computed in real time.
Charge separation and transport of the n=2 instability in C-2 FRC plasmas
NASA Astrophysics Data System (ADS)
Deng, Bihe; Sun, Xuan; Tuszewski, Michel
2012-10-01
Charge separation is critical in the positive feedback loop for gravitational type instabilities to grow [1], such as in the case of the n=2 mode in the C-2 field reversed configuration (FRC) experiment [2]. A fast time response Langmuir probe with minimum perturbation to the plasma is inserted into the edge of the C-2 plasma to measure the plasma floating potential. With the combined plasma wobble motion and spin motion, 2-D scans of the plasma floating potential are obtained, and evidence of charge separation associated with the n=2 instability is observed. The transport due to charge separation is estimated. Charge neutralization can provide an alternative method to stabilize the n=2 mode. An experiment is proposed to test this method with two probes inserted into the plasma from two azimuthally separated ports and an external shorting circuit, to constantly neutralize the charge separation, thus suppress the growth of the n=2 mode. [4pt] [1] R.J. Goldston and P.H. Rutherford, Introduction to Plasma Physics (Institute of Physics Publishing, Bristol, 2000).[0pt] [2]. M.W. Binderbauer et al, Phys. Rev. Lett. 105, 045003 (2010).
A Freehand Ultrasound Elastography System with Tracking for In-vivo Applications
Foroughi, Pezhman; Kang, Hyun-Jae; Carnegie, Daniel A.; van Vledder, Mark G.; Choti, Michael A.; Hager, Gregory D.; Boctor, Emad M.
2012-01-01
Ultrasound transducers are commonly tracked in modern ultrasound navigation/guidance systems. In this paper, we demonstrate the advantages of incorporating tracking information into ultrasound elastography for clinical applications. First, we address a common limitation of freehand palpation: speckle decorrelation due to out-of-plane probe motion. We show that by automatically selecting pairs of radio frequency (RF) frames with minimal lateral and out-of-plane motions combined with a fast and robust displacement estimation technique greatly improves in-vivo elastography results. We also use tracking information and image quality measure to fuse multiple images with similar strain that are taken roughly from the same location to obtain a high quality elastography image. Finally, we show that tracking information can be used to give the user partial control over the rate of compression. Our methods are tested on tissue mimicking phantom and experiments have been conducted on intra-operative data acquired during animal and human experiments involving liver ablation. Our results suggest that in challenging clinical conditions, our proposed method produces reliable strain images and eliminates the need for a manual search through the ultrasound data in order to find RF pairs suitable for elastography. PMID:23257351
Dynamics of the functional link between area MT LFPs and motion detection
Smith, Jackson E. T.; Beliveau, Vincent; Schoen, Alan; Remz, Jordana; Zhan, Chang'an A.
2015-01-01
The evolution of a visually guided perceptual decision results from multiple neural processes, and recent work suggests that signals with different neural origins are reflected in separate frequency bands of the cortical local field potential (LFP). Spike activity and LFPs in the middle temporal area (MT) have a functional link with the perception of motion stimuli (referred to as neural-behavioral correlation). To cast light on the different neural origins that underlie this functional link, we compared the temporal dynamics of the neural-behavioral correlations of MT spikes and LFPs. Wide-band activity was simultaneously recorded from two locations of MT from monkeys performing a threshold, two-stimuli, motion pulse detection task. Shortly after the motion pulse occurred, we found that high-gamma (100–200 Hz) LFPs had a fast, positive correlation with detection performance that was similar to that of the spike response. Beta (10–30 Hz) LFPs were negatively correlated with detection performance, but their dynamics were much slower, peaked late, and did not depend on stimulus configuration or reaction time. A late change in the correlation of all LFPs across the two recording electrodes suggests that a common input arrived at both MT locations prior to the behavioral response. Our results support a framework in which early high-gamma LFPs likely reflected fast, bottom-up, sensory processing that was causally linked to perception of the motion pulse. In comparison, late-arriving beta and high-gamma LFPs likely reflected slower, top-down, sources of neural-behavioral correlation that originated after the perception of the motion pulse. PMID:25948867
Probing Motion of Fast Radio Burst Sources by Timing Strongly Lensed Repeaters
NASA Astrophysics Data System (ADS)
Dai, Liang; Lu, Wenbin
2017-09-01
Given the possible repetitive nature of fast radio bursts (FRBs), their cosmological origin, and their high occurrence, detection of strongly lensed sources due to intervening galaxy lenses is possible with forthcoming radio surveys. We show that if multiple images of a repeating source are resolved with VLBI, using a method independent of lens modeling, accurate timing could reveal non-uniform motion, either physical or apparent, of the emission spot. This can probe the physical nature of FRBs and their surrounding environments, constraining scenarios including orbital motion around a stellar companion if FRBs require a compact star in a special system, and jet-medium interactions for which the location of the emission spot may randomly vary. The high timing precision possible for FRBs (˜ms) compared with the typical time delays between images in galaxy lensing (≳10 days) enables the measurement of tiny fractional changes in the delays (˜ {10}-9) and hence the detection of time-delay variations induced by relative motions between the source, the lens, and the Earth. We show that uniform cosmic peculiar velocities only cause the delay time to drift linearly, and that the effect from the Earth’s orbital motion can be accurately subtracted, thus enabling a search for non-trivial source motion. For a timing accuracy of ˜1 ms and a repetition rate (of detected bursts) of ˜0.05 per day of a single FRB source, non-uniform displacement ≳0.1-1 au of the emission spot perpendicular to the line of sight is detectable if repetitions are seen over a period of hundreds of days.
NASA Astrophysics Data System (ADS)
Abdellah, Skoudarli; Mokhtar, Nibouche; Amina, Serir
2015-11-01
The H.264/AVC video coding standard is used in a wide range of applications from video conferencing to high-definition television according to its high compression efficiency. This efficiency is mainly acquired from the newly allowed prediction schemes including variable block modes. However, these schemes require a high complexity to select the optimal mode. Consequently, complexity reduction in the H.264/AVC encoder has recently become a very challenging task in the video compression domain, especially when implementing the encoder in real-time applications. Fast mode decision algorithms play an important role in reducing the overall complexity of the encoder. In this paper, we propose an adaptive fast intermode algorithm based on motion activity, temporal stationarity, and spatial homogeneity. This algorithm predicts the motion activity of the current macroblock from its neighboring blocks and identifies temporal stationary regions and spatially homogeneous regions using adaptive threshold values based on content video features. Extensive experimental work has been done in high profile, and results show that the proposed source-coding algorithm effectively reduces the computational complexity by 53.18% on average compared with the reference software encoder, while maintaining the high-coding efficiency of H.264/AVC by incurring only 0.097 dB in total peak signal-to-noise ratio and 0.228% increment on the total bit rate.
Enhancing physics demos using iPhone slow motion
NASA Astrophysics Data System (ADS)
Lincoln, James
2017-12-01
Slow motion video enhances our ability to perceive and experience the physical world. This can help students and teachers especially in cases of fast moving objects or detailed events that happen too quickly for the eye to follow. As often as possible, demonstrations should be performed by the students themselves and luckily many of them will already have this technology in their pockets. The "S" series of iPhone has the slow motion video feature standard, which also includes simultaneous sound recording (somewhat unusual among slow motion cameras). In this article I share some of my experiences using this feature and provide advice on how to successfully use this technology in the classroom.
NASA Technical Reports Server (NTRS)
Cetinkunt, Sabri; Book, Wayne J.
1990-01-01
The performance limitations of manipulators under joint variable-feedback control are studied as a function of the mechanical flexibility inherent in the manipulator structure. A finite-dimensional time-domain dynamic model of a two-link two-joint planar manipulator is used in the study. Emphasis is placed on determining the limitations of control algorithms that use only joint variable-feedback information in calculations of control decisions, since most motion control systems in practice are of this kind. Both fine and gross motion cases are studied. Results for fine motion agree well with previously reported results in the literature and are also helpful in explaining the performance limitations in fast gross motions.
Macro-motion detection using ultra-wideband impulse radar.
Xin Li; Dengyu Qiao; Ye Li
2014-01-01
Radar has the advantage of being able to detect hidden individuals, which can be used in homeland security, disaster rescue, and healthcare monitoring-related applications. Human macro-motion detection using ultra-wideband impulse radar is studied in this paper. First, a frequency domain analysis is carried out to show that the macro-motion yields a bandpass signal in slow-time. Second, the FTFW (fast-time frequency windowing), which has the advantage of avoiding the measuring range reduction, and the HLF (high-pass linear-phase filter), which can preserve the motion signal effectively, are proposed to preprocess the radar echo. Last, a threshold decision method, based on the energy detector structure, is presented.
Temperature, ordering, and equilibrium with time-dependent confining forces
Schiffer, J. P.; Drewsen, M.; Hangst, J. S.; Hornekær, L.
2000-01-01
The concepts of temperature and equilibrium are not well defined in systems of particles with time-varying external forces. An example is a radio frequency ion trap, with the ions laser cooled into an ordered solid, characteristic of sub-mK temperatures, whereas the kinetic energies associated with the fast coherent motion in the trap are up to 7 orders of magnitude higher. Simulations with 1,000 ions reach equilibrium between the degrees of freedom when only aperiodic displacements (secular motion) are considered. The coupling of the periodic driven motion associated with the confinement to the nonperiodic random motion of the ions is very small at low temperatures and increases quadratically with temperature. PMID:10995471
Differences in attenuation among the stable continental regions
Bakun, W.H.; McGarr, A.
2002-01-01
There are systematic differences in the attenuation of damaging earthquake ground motions between different stable continental regions (SCRs). Seismic intensity and weak-motion data show that the attenuation in seismic waves for eastern North America (ENA) is less than for India, Africa, Australia, and northwest Europe. If ENA ground-motion attenuation relations are used in seismic hazard models for other SCRs, as is commonly done, then the estimated ground motions and resulting hazard may be too large. If an attenuation model that averages observations from ENA and the other SCRs is used to estimate the magnitudes of large historical earthquakes in ENA, as is the case for recent estimates of M for the 1811-1812 New Madrid, Missouri and the 1886 Charleston, South Carolina events, then the magnitude estimates for these events will be too large, as will be the resulting hazard.
Research on Radar Micro-Doppler Feature Parameter Estimation of Propeller Aircraft
NASA Astrophysics Data System (ADS)
He, Zhihua; Tao, Feixiang; Duan, Jia; Luo, Jingsheng
2018-01-01
The micro-motion modulation effect of the rotated propellers to radar echo can be a steady feature for aircraft target recognition. Thus, micro-Doppler feature parameter estimation is a key to accurate target recognition. In this paper, the radar echo of rotated propellers is modelled and simulated. Based on which, the distribution characteristics of the micro-motion modulation energy in time, frequency and time-frequency domain are analyzed. The micro-motion modulation energy produced by the scattering points of rotating propellers is accumulated using the Inverse-Radon (I-Radon) transform, which can be used to accomplish the estimation of micro-modulation parameter. Finally, it is proved that the proposed parameter estimation method is effective with measured data. The micro-motion parameters of aircraft can be used as the features of radar target recognition.
NASA Astrophysics Data System (ADS)
Yang, Xiaolin; Wu, Zhongliang; Jiang, Changsheng; Xia, Min
2011-05-01
One of the important issues in macroseismology and engineering seismology is how to get as much intensity and/or strong motion data as possible. We collected and studied several cases in the May 12, 2008, Wenchuan earthquake, exploring the possibility of estimating intensities and/or strong ground motion parameters using civilian monitoring videos which were deployed originally for security purposes. We used 53 video recordings in different places to determine the intensity distribution of the earthquake, which is shown to be consistent with the intensity distribution mapped by field investigation, and even better than that given by the Community Internet Intensity Map. In some of the videos, the seismic wave propagation is clearly visible, and can be measured with the reference of some artificial objects such as cars and/or trucks. By measuring the propagating wave, strong motion parameters can be roughly but quantitatively estimated. As a demonstration of this `propagating-wave method', we used a series of civilian videos recorded in different parts of Sichuan and Shaanxi and estimated the local PGAs. The estimate is compared with the measurement reported by strong motion instruments. The result shows that civilian monitoring video provide a practical way of collecting and estimating intensity and/or strong motion parameters, having the advantage of being dynamic, and being able to be played back for further analysis, reflecting a new trend for macroseismology in our digital era.
Brindal, Emily; Wilson, Carlene; Mohr, Philip; Wittert, Gary
2012-02-01
To assess Australian consumers' perception of portion size of fast-food items and their ability to estimate energy content. Cross-sectional computer-based survey. Australia. Fast-food consumers (168 male, 324 female) were asked to recall the items eaten at the most recent visit to a fast-food restaurant, rate the prospective satiety and estimate the energy content of seven fast-food or 'standard' meals relative to a 9000 kJ Guideline Daily Amount. Nine dietitians also completed the energy estimation task. Ratings of prospective satiety generally aligned with the actual size of the meals and indicated that consumers perceived all meals to provide an adequate amount of food, although this differed by gender. The magnitude of the error in energy estimation by consumers was three to ten times that of the dietitians. In both males and females, the average error in energy estimation for the fast-food meals (females: mean 3911 (sd 1998) kJ; males: mean 3382 (sd 1957) kJ) was significantly (P < 0·001) larger than for the standard meals (females: mean 2607 (sd 1623) kJ; males: mean 2754 (sd 1652) kJ). In women, error in energy estimation for fast-food items predicted actual energy intake from fast-food items (β = 0·16, P < 0·01). Knowledge of the energy content of standard and fast-food meals in fast-food consumers in Australia is poor. Awareness of dietary energy should be a focus of health promotion if nutrition information, in its current format, is going to alter behaviour.
Motion immune diffusion imaging using augmented MUSE (AMUSE) for high-resolution multi-shot EPI
Guhaniyogi, Shayan; Chu, Mei-Lan; Chang, Hing-Chiu; Song, Allen W.; Chen, Nan-kuei
2015-01-01
Purpose To develop new techniques for reducing the effects of microscopic and macroscopic patient motion in diffusion imaging acquired with high-resolution multi-shot EPI. Theory The previously reported Multiplexed Sensitivity Encoding (MUSE) algorithm is extended to account for macroscopic pixel misregistrations as well as motion-induced phase errors in a technique called Augmented MUSE (AMUSE). Furthermore, to obtain more accurate quantitative DTI measures in the presence of subject motion, we also account for the altered diffusion encoding among shots arising from macroscopic motion. Methods MUSE and AMUSE were evaluated on simulated and in vivo motion-corrupted multi-shot diffusion data. Evaluations were made both on the resulting imaging quality and estimated diffusion tensor metrics. Results AMUSE was found to reduce image blurring resulting from macroscopic subject motion compared to MUSE, but yielded inaccurate tensor estimations when neglecting the altered diffusion encoding. Including the altered diffusion encoding in AMUSE produced better estimations of diffusion tensors. Conclusion The use of AMUSE allows for improved image quality and diffusion tensor accuracy in the presence of macroscopic subject motion during multi-shot diffusion imaging. These techniques should facilitate future high-resolution diffusion imaging. PMID:25762216
Analysis of 3-D Tongue Motion From Tagged and Cine Magnetic Resonance Images
Woo, Jonghye; Lee, Junghoon; Murano, Emi Z.; Stone, Maureen; Prince, Jerry L.
2016-01-01
Purpose Measuring tongue deformation and internal muscle motion during speech has been a challenging task because the tongue deforms in 3 dimensions, contains interdigitated muscles, and is largely hidden within the vocal tract. In this article, a new method is proposed to analyze tagged and cine magnetic resonance images of the tongue during speech in order to estimate 3-dimensional tissue displacement and deformation over time. Method The method involves computing 2-dimensional motion components using a standard tag-processing method called harmonic phase, constructing superresolution tongue volumes using cine magnetic resonance images, segmenting the tongue region using a random-walker algorithm, and estimating 3-dimensional tongue motion using an incompressible deformation estimation algorithm. Results Evaluation of the method is presented with a control group and a group of people who had received a glossectomy carrying out a speech task. A 2-step principal-components analysis is then used to reveal the unique motion patterns of the subjects. Azimuth motion angles and motion on the mirrored hemi-tongues are analyzed. Conclusion Tests of the method with a various collection of subjects show its capability of capturing patient motion patterns and indicate its potential value in future speech studies. PMID:27295428
Image deblurring by motion estimation for remote sensing
NASA Astrophysics Data System (ADS)
Chen, Yueting; Wu, Jiagu; Xu, Zhihai; Li, Qi; Feng, Huajun
2010-08-01
The imagery resolution of imaging systems for remote sensing is often limited by image degradation resulting from unwanted motion disturbances of the platform during image exposures. Since the form of the platform vibration can be arbitrary, the lack of priori knowledge about the motion function (the PSF) suggests blind restoration approaches. A deblurring method which combines motion estimation and image deconvolution both for area-array and TDI remote sensing has been proposed in this paper. The image motion estimation is accomplished by an auxiliary high-speed detector and a sub-pixel correlation algorithm. The PSF is then reconstructed from estimated image motion vectors. Eventually, the clear image can be recovered by the Richardson-Lucy (RL) iterative deconvolution algorithm from the blurred image of the prime camera with the constructed PSF. The image deconvolution for the area-array detector is direct. While for the TDICCD detector, an integral distortion compensation step and a row-by-row deconvolution scheme are applied. Theoretical analyses and experimental results show that, the performance of the proposed concept is convincing. Blurred and distorted images can be properly recovered not only for visual observation, but also with significant objective evaluation increment.
Multiple-camera/motion stereoscopy for range estimation in helicopter flight
NASA Technical Reports Server (NTRS)
Smith, Phillip N.; Sridhar, Banavar; Suorsa, Raymond E.
1993-01-01
Aiding the pilot to improve safety and reduce pilot workload by detecting obstacles and planning obstacle-free flight paths during low-altitude helicopter flight is desirable. Computer vision techniques provide an attractive method of obstacle detection and range estimation for objects within a large field of view ahead of the helicopter. Previous research has had considerable success by using an image sequence from a single moving camera to solving this problem. The major limitations of single camera approaches are that no range information can be obtained near the instantaneous direction of motion or in the absence of motion. These limitations can be overcome through the use of multiple cameras. This paper presents a hybrid motion/stereo algorithm which allows range refinement through recursive range estimation while avoiding loss of range information in the direction of travel. A feature-based approach is used to track objects between image frames. An extended Kalman filter combines knowledge of the camera motion and measurements of a feature's image location to recursively estimate the feature's range and to predict its location in future images. Performance of the algorithm will be illustrated using an image sequence, motion information, and independent range measurements from a low-altitude helicopter flight experiment.
Multi-scale AM-FM motion analysis of ultrasound videos of carotid artery plaques
NASA Astrophysics Data System (ADS)
Murillo, Sergio; Murray, Victor; Loizou, C. P.; Pattichis, C. S.; Pattichis, Marios; Barriga, E. Simon
2012-03-01
An estimated 82 million American adults have one or more type of cardiovascular diseases (CVD). CVD is the leading cause of death (1 of every 3 deaths) in the United States. When considered separately from other CVDs, stroke ranks third among all causes of death behind diseases of the heart and cancer. Stroke accounts for 1 out of every 18 deaths and is the leading cause of serious long-term disability in the United States. Motion estimation of ultrasound videos (US) of carotid artery (CA) plaques provides important information regarding plaque deformation that should be considered for distinguishing between symptomatic and asymptomatic plaques. In this paper, we present the development of verifiable methods for the estimation of plaque motion. Our methodology is tested on a set of 34 (5 symptomatic and 29 asymptomatic) ultrasound videos of carotid artery plaques. Plaque and wall motion analysis provides information about plaque instability and is used in an attempt to differentiate between symptomatic and asymptomatic cases. The final goal for motion estimation and analysis is to identify pathological conditions that can be detected from motion changes due to changes in tissue stiffness.
2008-02-01
97 3.3.2 Steady-state solutions ..... ........................ 100 3.4 Ecosystem dynamics ...... ............................. 102 3.4.1 Fast ...zooplankton motion is decoupled from biological ac- tivities, as calculated in Flier] et al. (1999). When the diffusion rate is fast compared to phytoplankton...homogenize the zooplankton distribution, which remains spatially more intermit - tent than a passive scalar field. The last panel shows the index for
Slow Manifold and Hannay Angle in the Spinning Top
ERIC Educational Resources Information Center
Berry, M. V.; Shukla, P.
2011-01-01
The spin of a top can be regarded as a fast variable, coupled to the motion of the axis which is slow. In pure precession, the rotation of the axis round a cone (without nutation), can be considered as the result of a reaction from the fast spin. The resulting restriction of the total state space of the top is an illustrative example, at…
Skillington, S Andrew; Brophy, Robert H; Wright, Rick W; Smith, Matthew V
2017-05-01
The windmill pitching motion has been associated with risk for shoulder injury. Because there are no pitching limits on youth fast-pitch softball pitchers, these athletes often pitch multiple games across consecutive days. Strength changes, fatigue levels, and shoulder pain that develop among female fast-pitch pitchers over the course of consecutive days of pitching have not been investigated. Over the course of 2- and 3-day fast-pitch softball tournaments, pitchers will develop progressive objective weakness and increased subjective shoulder fatigue and pain without complete recovery between days. Cross-sectional study; Level of evidence, 3. Fourteen female fast-pitch softball pitchers between the ages of 14 and 18 years were evaluated for strength and fatigue changes across 2- and 3-day tournaments. At the beginning and end of each day of tournament play, pitchers were asked to quantify shoulder fatigue and shoulder pain levels of their dominant throwing arm using a 10-point visual analog scale (VAS). Shoulder abduction, flexion, external rotation, internal rotation, elbow flexion, and elbow extension strength measurements were gathered using a handheld dynamometer. Over the course of an average single day of tournament participation, pitchers developed significant increases in VAS scores for shoulder fatigue (median, 2.0; 95% CI, 1.3-3.0) and pain (median, 1.3; 95% CI, 0.5-2.3) and significant strength loss in all tested motions. Pitchers also developed significant increases in VAS shoulder fatigue (median, 3.5; 95% CI, 1.5-5.5), VAS shoulder pain (median, 2.5; 95% CI, 1.0-4.5), and strength loss in all tested motions over the entire tournament. Shoulder pain, fatigue, and strength do not fully recover between days. The accumulation of subjective shoulder pain and fatigue over the course of tournament play were closely correlated. Among youth female fast-pitch softball pitchers, there is a progressive increase in shoulder fatigue, pain, and weakness over the course of 2- and 3-day tournaments without full recovery between consecutive days of pitching.
Mukherjee, Joyeeta Mitra; Hutton, Brian F; Johnson, Karen L; Pretorius, P Hendrik; King, Michael A
2014-01-01
Motion estimation methods in single photon emission computed tomography (SPECT) can be classified into methods which depend on just the emission data (data-driven), or those that use some other source of information such as an external surrogate. The surrogate-based methods estimate the motion exhibited externally which may not correlate exactly with the movement of organs inside the body. The accuracy of data-driven strategies on the other hand is affected by the type and timing of motion occurrence during acquisition, the source distribution, and various degrading factors such as attenuation, scatter, and system spatial resolution. The goal of this paper is to investigate the performance of two data-driven motion estimation schemes based on the rigid-body registration of projections of motion-transformed source distributions to the acquired projection data for cardiac SPECT studies. Comparison is also made of six intensity based registration metrics to an external surrogate-based method. In the data-driven schemes, a partially reconstructed heart is used as the initial source distribution. The partially-reconstructed heart has inaccuracies due to limited angle artifacts resulting from using only a part of the SPECT projections acquired while the patient maintained the same pose. The performance of different cost functions in quantifying consistency with the SPECT projection data in the data-driven schemes was compared for clinically realistic patient motion occurring as discrete pose changes, one or two times during acquisition. The six intensity-based metrics studied were mean-squared difference (MSD), mutual information (MI), normalized mutual information (NMI), pattern intensity (PI), normalized cross-correlation (NCC) and entropy of the difference (EDI). Quantitative and qualitative analysis of the performance is reported using Monte-Carlo simulations of a realistic heart phantom including degradation factors such as attenuation, scatter and system spatial resolution. Further the visual appearance of motion-corrected images using data-driven motion estimates was compared to that obtained using the external motion-tracking system in patient studies. Pattern intensity and normalized mutual information cost functions were observed to have the best performance in terms of lowest average position error and stability with degradation of image quality of the partial reconstruction in simulations. In all patients, the visual quality of PI-based estimation was either significantly better or comparable to NMI-based estimation. Best visual quality was obtained with PI-based estimation in 1 of the 5 patient studies, and with external-surrogate based correction in 3 out of 5 patients. In the remaining patient study there was little motion and all methods yielded similar visual image quality. PMID:24107647
Contrast and assimilation in motion perception and smooth pursuit eye movements.
Spering, Miriam; Gegenfurtner, Karl R
2007-09-01
The analysis of visual motion serves many different functions ranging from object motion perception to the control of self-motion. The perception of visual motion and the oculomotor tracking of a moving object are known to be closely related and are assumed to be controlled by shared brain areas. We compared perceived velocity and the velocity of smooth pursuit eye movements in human observers in a paradigm that required the segmentation of target object motion from context motion. In each trial, a pursuit target and a visual context were independently perturbed simultaneously to briefly increase or decrease in speed. Observers had to accurately track the target and estimate target speed during the perturbation interval. Here we show that the same motion signals are processed in fundamentally different ways for perception and steady-state smooth pursuit eye movements. For the computation of perceived velocity, motion of the context was subtracted from target motion (motion contrast), whereas pursuit velocity was determined by the motion average (motion assimilation). We conclude that the human motion system uses these computations to optimally accomplish different functions: image segmentation for object motion perception and velocity estimation for the control of smooth pursuit eye movements.
A Fast Robot Identification and Mapping Algorithm Based on Kinect Sensor.
Zhang, Liang; Shen, Peiyi; Zhu, Guangming; Wei, Wei; Song, Houbing
2015-08-14
Internet of Things (IoT) is driving innovation in an ever-growing set of application domains such as intelligent processing for autonomous robots. For an autonomous robot, one grand challenge is how to sense its surrounding environment effectively. The Simultaneous Localization and Mapping with RGB-D Kinect camera sensor on robot, called RGB-D SLAM, has been developed for this purpose but some technical challenges must be addressed. Firstly, the efficiency of the algorithm cannot satisfy real-time requirements; secondly, the accuracy of the algorithm is unacceptable. In order to address these challenges, this paper proposes a set of novel improvement methods as follows. Firstly, the ORiented Brief (ORB) method is used in feature detection and descriptor extraction. Secondly, a bidirectional Fast Library for Approximate Nearest Neighbors (FLANN) k-Nearest Neighbor (KNN) algorithm is applied to feature match. Then, the improved RANdom SAmple Consensus (RANSAC) estimation method is adopted in the motion transformation. In the meantime, high precision General Iterative Closest Points (GICP) is utilized to register a point cloud in the motion transformation optimization. To improve the accuracy of SLAM, the reduced dynamic covariance scaling (DCS) algorithm is formulated as a global optimization problem under the G2O framework. The effectiveness of the improved algorithm has been verified by testing on standard data and comparing with the ground truth obtained on Freiburg University's datasets. The Dr Robot X80 equipped with a Kinect camera is also applied in a building corridor to verify the correctness of the improved RGB-D SLAM algorithm. With the above experiments, it can be seen that the proposed algorithm achieves higher processing speed and better accuracy.
Leem, Seong Kyu; Khan, Faheem; Cho, Sung Ho
2017-05-30
In order to avoid car crashes, active safety systems are becoming more and more important. Many crashes are caused due to driver drowsiness or mobile phone usage. Detecting the drowsiness of the driver is very important for the safety of a car. Monitoring of vital signs such as respiration rate and heart rate is important to determine the occurrence of driver drowsiness. In this paper, robust vital signs monitoring through impulse radio ultra-wideband (IR-UWB) radar is discussed. We propose a new algorithm that can estimate the vital signs even if there is motion caused by the driving activities. We analyzed the whole fast time vital detection region and found the signals at those fast time locations that have useful information related to the vital signals. We segmented those signals into sub-signals and then constructed the desired vital signal using the correlation method. In this way, the vital signs of the driver can be monitored noninvasively, which can be used by researchers to detect the drowsiness of the driver which is related to the vital signs i.e., respiration and heart rate. In addition, texting on a mobile phone during driving may cause visual, manual or cognitive distraction of the driver. In order to reduce accidents caused by a distracted driver, we proposed an algorithm that can detect perfectly a driver's mobile phone usage even if there are various motions of the driver in the car or changes in background objects. These novel techniques, which monitor vital signs associated with drowsiness and detect phone usage before a driver makes a mistake, may be very helpful in developing techniques for preventing a car crash.
Leem, Seong Kyu; Khan, Faheem; Cho, Sung Ho
2017-01-01
In order to avoid car crashes, active safety systems are becoming more and more important. Many crashes are caused due to driver drowsiness or mobile phone usage. Detecting the drowsiness of the driver is very important for the safety of a car. Monitoring of vital signs such as respiration rate and heart rate is important to determine the occurrence of driver drowsiness. In this paper, robust vital signs monitoring through impulse radio ultra-wideband (IR-UWB) radar is discussed. We propose a new algorithm that can estimate the vital signs even if there is motion caused by the driving activities. We analyzed the whole fast time vital detection region and found the signals at those fast time locations that have useful information related to the vital signals. We segmented those signals into sub-signals and then constructed the desired vital signal using the correlation method. In this way, the vital signs of the driver can be monitored noninvasively, which can be used by researchers to detect the drowsiness of the driver which is related to the vital signs i.e., respiration and heart rate. In addition, texting on a mobile phone during driving may cause visual, manual or cognitive distraction of the driver. In order to reduce accidents caused by a distracted driver, we proposed an algorithm that can detect perfectly a driver's mobile phone usage even if there are various motions of the driver in the car or changes in background objects. These novel techniques, which monitor vital signs associated with drowsiness and detect phone usage before a driver makes a mistake, may be very helpful in developing techniques for preventing a car crash. PMID:28556818
VO2 estimation using 6-axis motion sensor with sports activity classification.
Nagata, Takashi; Nakamura, Naoteru; Miyatake, Masato; Yuuki, Akira; Yomo, Hiroyuki; Kawabata, Takashi; Hara, Shinsuke
2016-08-01
In this paper, we focus on oxygen consumption (VO2) estimation using 6-axis motion sensor (3-axis accelerometer and 3-axis gyroscope) for people playing sports with diverse intensities. The VO2 estimated with a small motion sensor can be used to calculate the energy expenditure, however, its accuracy depends on the intensities of various types of activities. In order to achieve high accuracy over a wide range of intensities, we employ an estimation framework that first classifies activities with a simple machine-learning based classification algorithm. We prepare different coefficients of linear regression model for different types of activities, which are determined with training data obtained by experiments. The best-suited model is used for each type of activity when VO2 is estimated. The accuracy of the employed framework depends on the trade-off between the degradation due to classification errors and improvement brought by applying separate, optimum model to VO2 estimation. Taking this trade-off into account, we evaluate the accuracy of the employed estimation framework by using a set of experimental data consisting of VO2 and motion data of people with a wide range of intensities of exercises, which were measured by a VO2 meter and motion sensor, respectively. Our numerical results show that the employed framework can improve the estimation accuracy in comparison to a reference method that uses a common regression model for all types of activities.
Self-motion facilitates echo-acoustic orientation in humans
Wallmeier, Ludwig; Wiegrebe, Lutz
2014-01-01
The ability of blind humans to navigate complex environments through echolocation has received rapidly increasing scientific interest. However, technical limitations have precluded a formal quantification of the interplay between echolocation and self-motion. Here, we use a novel virtual echo-acoustic space technique to formally quantify the influence of self-motion on echo-acoustic orientation. We show that both the vestibular and proprioceptive components of self-motion contribute significantly to successful echo-acoustic orientation in humans: specifically, our results show that vestibular input induced by whole-body self-motion resolves orientation-dependent biases in echo-acoustic cues. Fast head motions, relative to the body, provide additional proprioceptive cues which allow subjects to effectively assess echo-acoustic space referenced against the body orientation. These psychophysical findings clearly demonstrate that human echolocation is well suited to drive precise locomotor adjustments. Our data shed new light on the sensory–motor interactions, and on possible optimization strategies underlying echolocation in humans. PMID:26064556
Human motion analysis with detection of subpart deformations
NASA Astrophysics Data System (ADS)
Wang, Juhui; Lorette, Guy; Bouthemy, Patrick
1992-06-01
One essential constraint used in 3-D motion estimation from optical projections is the rigidity assumption. Because of muscle deformations in human motion, this rigidity requirement is often violated for some regions on the human body. Global methods usually fail to bring stable solutions. This paper presents a model-based approach to combating the effect of muscle deformations in human motion analysis. The approach developed is based on two main stages. In the first stage, the human body is partitioned into different areas, where each area is consistent with a general motion model (not necessarily corresponding to a physical existing motion pattern). In the second stage, the regions are eliminated under the hypothesis that they are not induced by a specific human motion pattern. Each hypothesis is generated by making use of specific knowledge about human motion. A global method is used to estimate the 3-D motion parameters in basis of valid segments. Experiments based on a cycling motion sequence are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalantari, F; Wang, J; Li, T
2015-06-15
Purpose: In conventional 4D-PET, images from different frames are reconstructed individually and aligned by registration methods. Two issues with these approaches are: 1) Reconstruction algorithms do not make full use of all projections statistics; and 2) Image registration between noisy images can Result in poor alignment. In this study we investigated the use of simultaneous motion estimation and image reconstruction (SMEIR) method for cone beam CT for motion estimation/correction in 4D-PET. Methods: Modified ordered-subset expectation maximization algorithm coupled with total variation minimization (OSEM- TV) is used to obtain a primary motion-compensated PET (pmc-PET) from all projection data using Demons derivedmore » deformation vector fields (DVFs) as initial. Motion model update is done to obtain an optimal set of DVFs between the pmc-PET and other phases by matching the forward projection of the deformed pmc-PET and measured projections of other phases. Using updated DVFs, OSEM- TV image reconstruction is repeated and new DVFs are estimated based on updated images. 4D XCAT phantom with typical FDG biodistribution and a 10mm diameter tumor was used to evaluate the performance of the SMEIR algorithm. Results: Image quality of 4D-PET is greatly improved by the SMEIR algorithm. When all projections are used to reconstruct a 3D-PET, motion blurring artifacts are present, leading to a more than 5 times overestimation of the tumor size and 54% tumor to lung contrast ratio underestimation. This error reduced to 37% and 20% for post reconstruction registration methods and SMEIR respectively. Conclusion: SMEIR method can be used for motion estimation/correction in 4D-PET. The statistics is greatly improved since all projection data are combined together to update the image. The performance of the SMEIR algorithm for 4D-PET is sensitive to smoothness control parameters in the DVF estimation step.« less
NASA Astrophysics Data System (ADS)
Becherer, Nico; Hesser, Jürgen; Kornmesser, Ulrike; Schranz, Dietmar; Männer, Reinhard
2007-03-01
Simulation systems are becoming increasingly essential in medical education. Hereby, capturing the physical behaviour of the real world requires a sophisticated modelling of instruments within the virtual environment. Most models currently used are not capable of user interactive simulations due to the computation of the complex underlying analytical equations. Alternatives are often based on simplifying mass-spring systems, being able to deliver high update rates that come at the cost of less realistic motion. In addition, most techniques are limited to narrow and tubular vessel structures or restrict shape alterations to two degrees of freedom, not allowing instrument deformations like torsion. In contrast, our approach combines high update rates with highly realistic motion and can in addition be used with respect to arbitrary structures like vessels or cavities (e.g. atrium, ventricle) without limiting the degrees of freedom. Based on energy minimization, bending energies and vessel structures are considered as linear elastic elements; energies are evaluated at regularly spaced points on the instrument, while the distance of the points is fixed, i.e. we simulate an articulated structure of joints with fixed connections between them. Arbitrary tissue structures are modeled through adaptive distance fields and are connected by nodes via an undirected graph system. The instrument points are linked to nodes by a system of rules. Energy minimization uses a Quasi Newton method without preconditioning and, hereby, gradients are estimated using a combination of analytical and numerical terms. Results show a high quality in motion simulation when compared to a phantom model. The approach is also robust and fast. Simulating an instrument with 100 joints runs at 100 Hz on a 3 GHz PC.
Pattern-based integer sample motion search strategies in the context of HEVC
NASA Astrophysics Data System (ADS)
Maier, Georg; Bross, Benjamin; Grois, Dan; Marpe, Detlev; Schwarz, Heiko; Veltkamp, Remco C.; Wiegand, Thomas
2015-09-01
The H.265/MPEG-H High Efficiency Video Coding (HEVC) standard provides a significant increase in coding efficiency compared to its predecessor, the H.264/MPEG-4 Advanced Video Coding (AVC) standard, which however comes at the cost of a high computational burden for a compliant encoder. Motion estimation (ME), which is a part of the inter-picture prediction process, typically consumes a high amount of computational resources, while significantly increasing the coding efficiency. In spite of the fact that both H.265/MPEG-H HEVC and H.264/MPEG-4 AVC standards allow processing motion information on a fractional sample level, the motion search algorithms based on the integer sample level remain to be an integral part of ME. In this paper, a flexible integer sample ME framework is proposed, thereby allowing to trade off significant reduction of ME computation time versus coding efficiency penalty in terms of bit rate overhead. As a result, through extensive experimentation, an integer sample ME algorithm that provides a good trade-off is derived, incorporating a combination and optimization of known predictive, pattern-based and early termination techniques. The proposed ME framework is implemented on a basis of the HEVC Test Model (HM) reference software, further being compared to the state-of-the-art fast search algorithm, which is a native part of HM. It is observed that for high resolution sequences, the integer sample ME process can be speed-up by factors varying from 3.2 to 7.6, resulting in the bit-rate overhead of 1.5% and 0.6% for Random Access (RA) and Low Delay P (LDP) configurations, respectively. In addition, the similar speed-up is observed for sequences with mainly Computer-Generated Imagery (CGI) content while trading off the bit rate overhead of up to 5.2%.
Calabro, Finnegan J.; Beardsley, Scott A.; Vaina, Lucia M.
2012-01-01
Estimation of time-to-arrival for moving objects is critical to obstacle interception and avoidance, as well as to timing actions such as reaching and grasping moving objects. The source of motion information that conveys arrival time varies with the trajectory of the object raising the question of whether multiple context-dependent mechanisms are involved in this computation. To address this question we conducted a series of psychophysical studies to measure observers’ performance on time-to-arrival estimation when object trajectory was specified by angular motion (“gap closure” trajectories in the frontoparallel plane), looming (colliding trajectories, TTC) or both (passage courses, TTP). We measured performance of time-to-arrival judgments in the presence of irrelevant motion, in which a perpendicular motion vector was added to the object trajectory. Data were compared to models of expected performance based on the use of different components of optical information. Our results demonstrate that for gap closure, performance depended only on the angular motion, whereas for TTC and TTP, both angular and looming motion affected performance. This dissociation of inputs suggests that gap closures are mediated by a separate mechanism than that used for the detection of time-to-collision and time-to-passage. We show that existing models of TTC and TTP estimation make systematic errors in predicting subject performance, and suggest that a model which weights motion cues by their relative time-to-arrival provides a better account of performance. PMID:22056519
Plate Motion and Crustal Deformation Estimated with Geodetic Data from the Global Positioning System
NASA Technical Reports Server (NTRS)
Argus, Donald F.; Heflin, Michael B.
1995-01-01
We use geodetic data taken over four years with the Global Positioning System (GPS) to estimate: (1) motion between six major plates and (2) motion relative to these plates of ten sites in plate boundary zones. The degree of consistency between geodetic velocities and rigid plates requires the (one-dimensional) standard errors in horizontal velocities to be approx. 2 mm/yr. Each of the 15 angular velocities describing motion between plate pairs that we estimate with GPS differs insignificantly from the corresponding angular velocity in global plate motion model NUVEL-1A, which averages motion over the past 3 m.y. The motion of the Pacific plate relative to both the Eurasian and North American plates is observed to be faster than predicted by NUVEL-1A, supporting the inference from Very Long B ase- line Interferometry (VLBI) that motion of the Pacific plate has speed up over the past few m.y. The Eurasia-North America pole of rotation is estimated to be north of NUVEL-1A, consistent with the independent hypothesis that the pole has recently migrated northward across northeast Asia to near the Lena River delta. Victoria, which lies above the main thrust at the Cascadia subduction zone, moves relative to the interior of the overriding plate at 30% of the velocity of the subducting plate, reinforcing the conclusion that the thrust there is locked beneath the continental shelf and slope.
NASA Astrophysics Data System (ADS)
Babaie Mahani, A.; Eaton, D. W.
2013-12-01
Ground Motion Prediction Equations (GMPEs) are widely used in Probabilistic Seismic Hazard Assessment (PSHA) to estimate ground-motion amplitudes at Earth's surface as a function of magnitude and distance. Certain applications, such as hazard assessment for caprock integrity in the case of underground storage of CO2, waste disposal sites, and underground pipelines, require subsurface estimates of ground motion; at present, such estimates depend upon theoretical modeling and simulations. The objective of this study is to derive correction factors for GMPEs to enable estimation of amplitudes in the subsurface. We use a semi-analytic approach along with finite-difference simulations of ground-motion amplitudes for surface and underground motions. Spectral ratios of underground to surface motions are used to calculate the correction factors. Two predictive methods are used. The first is a semi-analytic approach based on a quarter-wavelength method that is widely used for earthquake site-response investigations; the second is a numerical approach based on elastic finite-difference simulations of wave propagation. Both methods are evaluated using recordings of regional earthquakes by broadband seismometers installed at the surface and at depths of 1400 m and 2100 m in the Sudbury Neutrino Observatory, Canada. Overall, both methods provide a reasonable fit to the peaks and troughs observed in the ratios of real data. The finite-difference method, however, has the capability to simulate ground motion ratios more accurately than the semi-analytic approach.
3-D scapular kinematics during arm elevation: effect of motion velocity.
Fayad, F; Hoffmann, G; Hanneton, S; Yazbeck, C; Lefevre-Colau, M M; Poiraudeau, S; Revel, M; Roby-Brami, A
2006-11-01
No three-dimensional (3-D) data exist on the influence of motion velocity on scapular kinematics. The effect of arm elevation velocity has been studied only in a two-dimensional setting. Thirty healthy subjects performed dominant (right) arm elevation in two planes, sagittal and frontal, and at slow and fast self-selected arm speed. Scapular orientation and humeral elevation were measured at 30 Hz recording frequency with use of a 6-degree-of-freedom electromagnetic system (Polhemus Fastraka). Motion was computed according to the International Society of Biomechanics standards. Scapular orientation was also determined with the arm held in different static positions. We obtained a full 3-D kinematic description of scapula achieving a reliable, complex 3-D motion during humeral elevation and lowering. The maximal sagittal arm elevation showed a characteristic "M"-shape pattern of protraction/retraction curve. Scapular rotations did not differ significantly between slow and fast movements. Moreover, protraction/retraction and tilt angular values did not differ significantly between static and dynamic tasks. However, scapular lateral rotation values differed between static and dynamic measurements during sagittal and frontal arm elevation. Lateral scapular rotation appears to be less in static than in dynamic measurement, particularly in the sagittal plane. Interpolation of statically recorded positions of the bones cannot reflect the kinematics of the scapula.
Lumbar contribution to the trunk forward bending and backward return; age-related differences.
Vazirian, Milad; Shojaei, Iman; Agarwal, Anuj; Bazrgari, Babak
2017-07-01
Age-related differences in lumbar contribution to the trunk motion in the sagittal plane were investigated. Sixty individuals between 20-70 years old in five gender-balanced age groups performed forward bending and backward return with slow and fast paces. Individuals older than 50 years old, irrespective of the gender or pace, had smaller lumbar contribution than those younger than this age. The lumbar contribution to trunk motion was also smaller in female participants than male participants, and under fast pace than under the slow pace. Age-related differences in lumbar contributions suggest the synergy between the active and passive lower back tissues is different between those above and under 50 years old, differences that are likely to affect the lower back mechanics. Therefore, detailed modelling should be conducted in future to find the age-related differences in the lower back mechanics for tasks involving large trunk motion. Practitioner Summary: Lumbar contribution to the sagittal trunk motion was observed to be smaller in individuals above 50 years old than those below this age. This could be an indication of a likely change in the synergy between the active and passive lower back tissues, which may disturb the lower back mechanics.
Mode extraction on wind turbine blades via phase-based video motion estimation
NASA Astrophysics Data System (ADS)
Sarrafi, Aral; Poozesh, Peyman; Niezrecki, Christopher; Mao, Zhu
2017-04-01
In recent years, image processing techniques are being applied more often for structural dynamics identification, characterization, and structural health monitoring. Although as a non-contact and full-field measurement method, image processing still has a long way to go to outperform other conventional sensing instruments (i.e. accelerometers, strain gauges, laser vibrometers, etc.,). However, the technologies associated with image processing are developing rapidly and gaining more attention in a variety of engineering applications including structural dynamics identification and modal analysis. Among numerous motion estimation and image-processing methods, phase-based video motion estimation is considered as one of the most efficient methods regarding computation consumption and noise robustness. In this paper, phase-based video motion estimation is adopted for structural dynamics characterization on a 2.3-meter long Skystream wind turbine blade, and the modal parameters (natural frequencies, operating deflection shapes) are extracted. Phase-based video processing adopted in this paper provides reliable full-field 2-D motion information, which is beneficial for manufacturing certification and model updating at the design stage. The phase-based video motion estimation approach is demonstrated through processing data on a full-scale commercial structure (i.e. a wind turbine blade) with complex geometry and properties, and the results obtained have a good correlation with the modal parameters extracted from accelerometer measurements, especially for the first four bending modes, which have significant importance in blade characterization.
A robust motion estimation system for minimal invasive laparoscopy
NASA Astrophysics Data System (ADS)
Marcinczak, Jan Marek; von Öhsen, Udo; Grigat, Rolf-Rainer
2012-02-01
Laparoscopy is a reliable imaging method to examine the liver. However, due to the limited field of view, a lot of experience is required from the surgeon to interpret the observed anatomy. Reconstruction of organ surfaces provide valuable additional information to the surgeon for a reliable diagnosis. Without an additional external tracking system the structure can be recovered from feature correspondences between different frames. In laparoscopic images blurred frames, specular reflections and inhomogeneous illumination make feature tracking a challenging task. We propose an ego-motion estimation system for minimal invasive laparoscopy that can cope with specular reflection, inhomogeneous illumination and blurred frames. To obtain robust feature correspondence, the approach combines SIFT and specular reflection segmentation with a multi-frame tracking scheme. The calibrated five-point algorithm is used with the MSAC robust estimator to compute the motion of the endoscope from multi-frame correspondence. The algorithm is evaluated using endoscopic videos of a phantom. The small incisions and the rigid endoscope limit the motion in minimal invasive laparoscopy. These limitations are considered in our evaluation and are used to analyze the accuracy of pose estimation that can be achieved by our approach. The endoscope is moved by a robotic system and the ground truth motion is recorded. The evaluation on typical endoscopic motion gives precise results and demonstrates the practicability of the proposed pose estimation system.
NASA Technical Reports Server (NTRS)
2005-01-01
Topics covered include: Scheme for Entering Binary Data Into a Quantum Computer; Encryption for Remote Control via Internet or Intranet; Coupled Receiver/Decoders for Low-Rate Turbo Codes; Processing GPS Occultation Data To Characterize Atmosphere; Displacing Unpredictable Nulls in Antenna Radiation Patterns; Integrated Pointing and Signal Detector for Optical Receiver; Adaptive Thresholding and Parameter Estimation for PPM; Data-Driven Software Framework for Web-Based ISS Telescience; Software for Secondary-School Learning About Robotics; Fuzzy Logic Engine; Telephone-Directory Program; Simulating a Direction-Finder Search for an ELT; Formulating Precursors for Coating Metals and Ceramics; Making Macroscopic Assemblies of Aligned Carbon Nanotubes; Ball Bearings Equipped for In Situ Lubrication on Demand; Synthetic Bursae for Robots; Robot Forearm and Dexterous Hand; Making a Metal-Lined Composite-Overwrapped Pressure Vessel; Ex Vivo Growth of Bioengineered Ligaments and Other Tissues; Stroboscopic Goggles for Reduction of Motion Sickness; Articulating Support for Horizontal Resistive Exercise; Modified Penning-Malmberg Trap for Storing Antiprotons; Tumbleweed Rovers; Two-Photon Fluorescence Microscope for Microgravity Research; Biased Randomized Algorithm for Fast Model-Based Diagnosis; Fast Algorithms for Model-Based Diagnosis; Simulations of Evaporating Multicomponent Fuel Drops; Formation Flying of Tethered and Nontethered Spacecraft; and Two Methods for Efficient Solution of the Hitting- Set Problem.
The algorithm of motion blur image restoration based on PSF half-blind estimation
NASA Astrophysics Data System (ADS)
Chen, Da-Ke; Lin, Zhe
2011-08-01
A novel algorithm of motion blur image restoration based on PSF half-blind estimation with Hough transform was introduced on the basis of full analysis of the principle of TDICCD camera, with the problem that vertical uniform linear motion estimation used by IBD algorithm as the original value of PSF led to image restoration distortion. Firstly, the mathematical model of image degradation was established with the transcendental information of multi-frame images, and then two parameters (movement blur length and angle) that have crucial influence on PSF estimation was set accordingly. Finally, the ultimate restored image can be acquired through multiple iterative of the initial value of PSF estimation in Fourier domain, which the initial value was gained by the above method. Experimental results show that the proposal algorithm can not only effectively solve the image distortion problem caused by relative motion between TDICCD camera and movement objects, but also the details characteristics of original image are clearly restored.
The role of human ventral visual cortex in motion perception
Saygin, Ayse P.; Lorenzi, Lauren J.; Egan, Ryan; Rees, Geraint; Behrmann, Marlene
2013-01-01
Visual motion perception is fundamental to many aspects of visual perception. Visual motion perception has long been associated with the dorsal (parietal) pathway and the involvement of the ventral ‘form’ (temporal) visual pathway has not been considered critical for normal motion perception. Here, we evaluated this view by examining whether circumscribed damage to ventral visual cortex impaired motion perception. The perception of motion in basic, non-form tasks (motion coherence and motion detection) and complex structure-from-motion, for a wide range of motion speeds, all centrally displayed, was assessed in five patients with a circumscribed lesion to either the right or left ventral visual pathway. Patients with a right, but not with a left, ventral visual lesion displayed widespread impairments in central motion perception even for non-form motion, for both slow and for fast speeds, and this held true independent of the integrity of areas MT/V5, V3A or parietal regions. In contrast with the traditional view in which only the dorsal visual stream is critical for motion perception, these novel findings implicate a more distributed circuit in which the integrity of the right ventral visual pathway is also necessary even for the perception of non-form motion. PMID:23983030
Phase-linking and the perceived motion during off-vertical axis rotation.
Holly, Jan E; Wood, Scott J; McCollum, Gin
2010-01-01
Human off-vertical axis rotation (OVAR) in the dark typically produces perceived motion about a cone, the amplitude of which changes as a function of frequency. This perception is commonly attributed to the fact that both the OVAR and the conical motion have a gravity vector that rotates about the subject. Little-known, however, is that this rotating-gravity explanation for perceived conical motion is inconsistent with basic observations about self-motion perception: (a) that the perceived vertical moves toward alignment with the gravito-inertial acceleration (GIA) and (b) that perceived translation arises from perceived linear acceleration, as derived from the portion of the GIA not associated with gravity. Mathematically proved in this article is the fact that during OVAR these properties imply mismatched phase of perceived tilt and translation, in contrast to the common perception of matched phases which correspond to conical motion with pivot at the bottom. This result demonstrates that an additional perceptual rule is required to explain perception in OVAR. This study investigates, both analytically and computationally, the phase relationship between tilt and translation at different stimulus rates-slow (45 degrees /s) and fast (180 degrees /s), and the three-dimensional shape of predicted perceived motion, under different sets of hypotheses about self-motion perception. We propose that for human motion perception, there is a phase-linking of tilt and translation movements to construct a perception of one's overall motion path. Alternative hypotheses to achieve the phase match were tested with three-dimensional computational models, comparing the output with published experimental reports. The best fit with experimental data was the hypothesis that the phase of perceived translation was linked to perceived tilt, while the perceived tilt was determined by the GIA. This hypothesis successfully predicted the bottom-pivot cone commonly reported and a reduced sense of tilt during fast OVAR. Similar considerations apply to the hilltop illusion often reported during horizontal linear oscillation. Known response properties of central neurons are consistent with this ability to phase-link translation with tilt. In addition, the competing "standard" model was mathematically proved to be unable to predict the bottom-pivot cone regardless of the values used for parameters in the model.
Motion robust high resolution 3D free-breathing pulmonary MRI using dynamic 3D image self-navigator.
Jiang, Wenwen; Ong, Frank; Johnson, Kevin M; Nagle, Scott K; Hope, Thomas A; Lustig, Michael; Larson, Peder E Z
2018-06-01
To achieve motion robust high resolution 3D free-breathing pulmonary MRI utilizing a novel dynamic 3D image navigator derived directly from imaging data. Five-minute free-breathing scans were acquired with a 3D ultrashort echo time (UTE) sequence with 1.25 mm isotropic resolution. From this data, dynamic 3D self-navigating images were reconstructed under locally low rank (LLR) constraints and used for motion compensation with one of two methods: a soft-gating technique to penalize the respiratory motion induced data inconsistency, and a respiratory motion-resolved technique to provide images of all respiratory motion states. Respiratory motion estimation derived from the proposed dynamic 3D self-navigator of 7.5 mm isotropic reconstruction resolution and a temporal resolution of 300 ms was successful for estimating complex respiratory motion patterns. This estimation improved image quality compared to respiratory belt and DC-based navigators. Respiratory motion compensation with soft-gating and respiratory motion-resolved techniques provided good image quality from highly undersampled data in volunteers and clinical patients. An optimized 3D UTE sequence combined with the proposed reconstruction methods can provide high-resolution motion robust pulmonary MRI. Feasibility was shown in patients who had irregular breathing patterns in which our approach could depict clinically relevant pulmonary pathologies. Magn Reson Med 79:2954-2967, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Convergence of sampling in protein simulations
NASA Astrophysics Data System (ADS)
Hess, Berk
2002-03-01
With molecular dynamics protein dynamics can be simulated in atomic detail. Current computers are not fast enough to probe all available conformations, but fluctuations around one conformation can be sampled to a reasonable extent. The motions with the largest fluctuations can be filtered out of a simulation using covariance or principal component analysis. A problem with this analysis is that random diffusion can appear as correlated motion. An analysis is presented of how long a simulation should be to obtain relevant results for global motions. The analysis reveals that the cosine content of the principal components is a good indicator for bad sampling.
Motion Estimation and Compensation Strategies in Dynamic Computerized Tomography
NASA Astrophysics Data System (ADS)
Hahn, Bernadette N.
2017-12-01
A main challenge in computerized tomography consists in imaging moving objects. Temporal changes during the measuring process lead to inconsistent data sets, and applying standard reconstruction techniques causes motion artefacts which can severely impose a reliable diagnostics. Therefore, novel reconstruction techniques are required which compensate for the dynamic behavior. This article builds on recent results from a microlocal analysis of the dynamic setting, which enable us to formulate efficient analytic motion compensation algorithms for contour extraction. Since these methods require information about the dynamic behavior, we further introduce a motion estimation approach which determines parameters of affine and certain non-affine deformations directly from measured motion-corrupted Radon-data. Our methods are illustrated with numerical examples for both types of motion.
Motion-induced phase error estimation and correction in 3D diffusion tensor imaging.
Van, Anh T; Hernando, Diego; Sutton, Bradley P
2011-11-01
A multishot data acquisition strategy is one way to mitigate B0 distortion and T2∗ blurring for high-resolution diffusion-weighted magnetic resonance imaging experiments. However, different object motions that take place during different shots cause phase inconsistencies in the data, leading to significant image artifacts. This work proposes a maximum likelihood estimation and k-space correction of motion-induced phase errors in 3D multishot diffusion tensor imaging. The proposed error estimation is robust, unbiased, and approaches the Cramer-Rao lower bound. For rigid body motion, the proposed correction effectively removes motion-induced phase errors regardless of the k-space trajectory used and gives comparable performance to the more computationally expensive 3D iterative nonlinear phase error correction method. The method has been extended to handle multichannel data collected using phased-array coils. Simulation and in vivo data are shown to demonstrate the performance of the method.
Investigation of fast ion pressure effects in ASDEX Upgrade by spectral MSE measurements
NASA Astrophysics Data System (ADS)
Reimer, René; Dinklage, Andreas; Wolf, Robert; Dunne, Mike; Geiger, Benedikt; Hobirk, Jörg; Reich, Matthias; ASDEX Upgrade Team; McCarthy, Patrick J.
2017-04-01
High precision measurements of fast ion effects on the magnetic equilibrium in the ASDEX Upgrade tokamak have been conducted in a high-power (10 MW) neutral-beam injection discharge. An improved analysis of the spectral motional Stark effect data based on forward-modeling, including the Zeeman effect, fine-structure and non-statistical sub-level distribution, revealed changes in the order of 1% in |B| . The results were found to be consistent with results from the equilibrium solver CLISTE. The measurements allowed us to derive the fast ion pressure fraction to be Δ {{p}\\text{FI}}/{{p}\\text{mhd}}≈ 10 % and variations of the fast ion pressure are consistent with calculations of the transport code TRANSP. The results advance the understanding of fast ion confinement and magneto-hydrodynamic stability in the presence of fast ions.
Hemispheric asymmetry of ERPs and MMNs evoked by slow, fast and abrupt auditory motion.
Shestopalova, L B; Petropavlovskaia, E A; Vaitulevich, S Ph; Nikitin, N I
2016-10-01
The current MMN study investigates whether brain lateralization during automatic discrimination of sound stimuli moving at different velocities is consistent with one of the three models of asymmetry: the right-hemispheric dominance model, the contralateral dominance model, or the neglect model. Auditory event-related potentials (ERPs) were recorded for three patterns of sound motion produced by linear or abrupt changes of interaural time differences. The slow motion (450deg/s) was used as standard, and the fast motion (620deg/s) and the abrupt sound shift served as deviants in the oddball blocks. All stimuli had the same onset/offset spatial positions. We compared the effects of the recording side (left, right) and of the direction of sound displacement (ipsi- or contralateral with reference to the side of recording) on the ERPs and mismatch negativity (MMN). Our results indicated different patterns of asymmetry for the ERPs and MMN responses. The ERPs showed a velocity-independent right-hemispheric dominance that emerged at the descending limb of N1 wave (at around 120-160ms) and could be related to overall context of the preattentive spatial perception. The MMNs elicited in the left hemisphere (at around 230-270ms) exhibited a contralateral dominance, whereas the right-hemispheric MMNs were insensitive to the direction of sound displacement. These differences in contralaterality between MMN responses produced by the left and the right hemisphere favour the neglect model of the preattentive motion processing indexed by MMN. Copyright © 2016 Elsevier Ltd. All rights reserved.
Real-time soft tissue motion estimation for lung tumors during radiotherapy delivery.
Rottmann, Joerg; Keall, Paul; Berbeco, Ross
2013-09-01
To provide real-time lung tumor motion estimation during radiotherapy treatment delivery without the need for implanted fiducial markers or additional imaging dose to the patient. 2D radiographs from the therapy beam's-eye-view (BEV) perspective are captured at a frame rate of 12.8 Hz with a frame grabber allowing direct RAM access to the image buffer. An in-house developed real-time soft tissue localization algorithm is utilized to calculate soft tissue displacement from these images in real-time. The system is tested with a Varian TX linear accelerator and an AS-1000 amorphous silicon electronic portal imaging device operating at a resolution of 512 × 384 pixels. The accuracy of the motion estimation is verified with a dynamic motion phantom. Clinical accuracy was tested on lung SBRT images acquired at 2 fps. Real-time lung tumor motion estimation from BEV images without fiducial markers is successfully demonstrated. For the phantom study, a mean tracking error <1.0 mm [root mean square (rms) error of 0.3 mm] was observed. The tracking rms accuracy on BEV images from a lung SBRT patient (≈20 mm tumor motion range) is 1.0 mm. The authors demonstrate for the first time real-time markerless lung tumor motion estimation from BEV images alone. The described system can operate at a frame rate of 12.8 Hz and does not require prior knowledge to establish traceable landmarks for tracking on the fly. The authors show that the geometric accuracy is similar to (or better than) previously published markerless algorithms not operating in real-time.
Modeling and Parameter Estimation of Spacecraft Fuel Slosh with Diaphragms Using Pendulum Analogs
NASA Technical Reports Server (NTRS)
Chatman, Yadira; Gangadharan, Sathya; Schlee, Keith; Ristow, James; Suderman, James; Walker, Charles; Hubert, Carl
2007-01-01
Prediction and control of liquid slosh in moving containers is an important consideration in the design of spacecraft and launch vehicle control systems. Even with modern computing systems, CFD type simulations are not fast enough to allow for large scale Monte Carlo analyses of spacecraft and launch vehicle dynamic behavior with slosh included. It is still desirable to use some type of simplified mechanical analog for the slosh to shorten computation time. Analytic determination of the slosh analog parameters has met with mixed success and is made even more difficult by the introduction of propellant management devices such as elastomeric diaphragms. By subjecting full-sized fuel tanks with actual flight fuel loads to motion similar to that experienced in flight and measuring the forces experienced by the tanks, these parameters can be determined experimentally. Currently, the identification of the model parameters is a laborious trial-and-error process in which the hand-derived equations of motion for the mechanical analog are evaluated and their results compared with the experimental results. This paper will describe efforts by the university component of a team comprised of NASA's Launch Services Program, Embry Riddle Aeronautical University, Southwest Research Institute and Hubert Astronautics to improve the accuracy and efficiency of modeling techniques used to predict these types of motions. Of particular interest is the effect of diaphragms and bladders on the slosh dynamics and how best to model these devices. The previous research was an effort to automate the process of slosh model parameter identification using a MATLAB/SimMechanics-based computer simulation. These results are the first step in applying the same computer estimation to a full-size tank and vehicle propulsion system. The introduction of diaphragms to this experimental set-up will aid in a better and more complete prediction of fuel slosh characteristics and behavior. Automating the parameter identification process will save time and thus allow earlier identification of potential vehicle performance problems.
Refined modeling of Seattle basin amplification
NASA Astrophysics Data System (ADS)
Vidale, J. E.; Wirth, E. A.; Frankel, A. D.; Baker, B.; Thompson, M.; Han, J.; Nasser, M.; Stephenson, W. J.
2016-12-01
The Seattle Basin has long been recognized to modulate shaking in western Washington earthquakes (e.g., Frankel, 2007 USGS OFR). The amplification of shaking in such deep sedimentary basins is a challenge to estimate and incorporate into mitigation plans. This project aims to (1) study the influence of basin edges on trapping and amplifying seismic waves, and (2) using the latest earthquake data to refine our models of basin structure. To interrogate the influence of basin edges on ground motion, we use the numerical codes SpecFEM3D and Disfd (finite-difference code from Pengcheng Liu), and an update of the basin model of Stephenson et al. (2007), to calculate synthetic ground motions at frequencies up to 1 Hz. The figure below, for example, shows the amplification relative to a simple 1/r amplitude decay for four sources around of the Seattle Basin (red dots), with an EW-striking 45°-dipping thrust mechanism at 10 km depth. We test the difficulty of simulating motions in the presence of slow materials near the basin edge. Running SpecFEM3D with attenuation is about a third as fast as the finite difference code, and cannot represent sub-element structure (e.g., slow surficial materials) in comparable detail to the finer FD grid, but has the advantages of being able to incorporate topography and water. Modeling 1 Hz energy in the presence of shear wave velocities with a floor of 600 m/s, factor of 2 to 3 velocity contrasts, and sharp basin edges is fraught, both in calculating synthetics and estimating real structure. We plan to incorporate interpretations of local recordings including basin-bottom S-to-P conversions, noise-correlation waveforms, and teleseismic-P-wave reverberations to refine the basin model. Our long-term goal is to reassess with greater accuracy and resolution the spatial pattern of hazard across the Seattle Basin, which includes several quite vulnerable neighborhoods.
Sasaki, Ryo; Angelaki, Dora E.
2017-01-01
We use visual image motion to judge the movement of objects, as well as our own movements through the environment. Generally, image motion components caused by object motion and self-motion are confounded in the retinal image. Thus, to estimate heading, the brain would ideally marginalize out the effects of object motion (or vice versa), but little is known about how this is accomplished neurally. Behavioral studies suggest that vestibular signals play a role in dissociating object motion and self-motion, and recent computational work suggests that a linear decoder can approximate marginalization by taking advantage of diverse multisensory representations. By measuring responses of MSTd neurons in two male rhesus monkeys and by applying a recently-developed method to approximate marginalization by linear population decoding, we tested the hypothesis that vestibular signals help to dissociate self-motion and object motion. We show that vestibular signals stabilize tuning for heading in neurons with congruent visual and vestibular heading preferences, whereas they stabilize tuning for object motion in neurons with discrepant preferences. Thus, vestibular signals enhance the separability of joint tuning for object motion and self-motion. We further show that a linear decoder, designed to approximate marginalization, allows the population to represent either self-motion or object motion with good accuracy. Decoder weights are broadly consistent with a readout strategy, suggested by recent computational work, in which responses are decoded according to the vestibular preferences of multisensory neurons. These results demonstrate, at both single neuron and population levels, that vestibular signals help to dissociate self-motion and object motion. SIGNIFICANCE STATEMENT The brain often needs to estimate one property of a changing environment while ignoring others. This can be difficult because multiple properties of the environment may be confounded in sensory signals. The brain can solve this problem by marginalizing over irrelevant properties to estimate the property-of-interest. We explore this problem in the context of self-motion and object motion, which are inherently confounded in the retinal image. We examine how diversity in a population of multisensory neurons may be exploited to decode self-motion and object motion from the population activity of neurons in macaque area MSTd. PMID:29030435
Portus, Marc R; Lloyd, David G; Elliott, Bruce C; Trama, Neil L
2011-05-01
The measurement of lumbar spine motion is an important step for injury prevention research during complex and high impact activities, such as cricket fast bowling or javelin throwing. This study examined the performance of two designs of a lumbar rig, previously used in gait research, during a controlled high impact bench jump task. An 8-camera retro-reflective motion analysis system was used to track the lumbar rig. Eleven athletes completed the task wearing the two different lumbar rig designs. Flexion extension data were analyzed using a fast Fourier transformation to assess the signal power of these data during the impact phase of the jump. The lumbar rig featuring an increased and pliable base of support recorded moderately less signal power through the 0-60 Hz spectrum, with statistically less magnitudes at the 0-5 Hz (p = .039), 5-10 Hz (p = .005) and 10-20 Hz (p = .006) frequency bins. A lumbar rig of this design would seem likely to provide less noisy lumbar motion data during high impact tasks.
Son, Minjung; Park, Kyu Hyung; Yoon, Min-Chul; Kim, Pyosang; Kim, Dongho
2015-06-18
Broadband laser pulses with ultrashort duration are capable of triggering impulsive excitation of the superposition of vibrational eigenstates, giving rise to quantum beating signals originating from coherent wave packet motions along the potential energy surface. In this work, coherent vibrational wave packet dynamics of an N,N'-bis(2,6-dimethylphenyl)perylene bisimide (DMP-PBI) were investigated by femtosecond broadband pump-probe spectroscopy which features fast and balanced data acquisition with a wide spectral coverage of >200 nm. Clear modulations were observed in the envelope of the stimulated emission decay profiles of DMP-PBI with the oscillation frequencies of 140 and 275 cm(-1). Fast Fourier transform analysis of each oscillatory mode revealed characteristic phase jumps near the maxima of the steady-state fluorescence, indicating that the observed vibrational coherence originates from an excited-state wave packet motion. Quantum calculations of the normal modes at the low-frequency region suggest that low-frequency C-C (C═C) stretching motions accompanied by deformation of the dimethylphenyl substituents are responsible for the manifestation of such coherent wave packet dynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaskowiak, J; Ahmad, S; Ali, I
Purpose: To investigate quantitatively the performance of different deformable-image-registration algorithms (DIR) with helical (HCT), axial (ACT) and cone-beam CT (CBCT) by evaluating the variations in the CT-numbers and lengths of targets moving with controlled motion-patterns. Methods: Four DIR-algorithms including demons, fast-demons, Horn-Schunk and Locas-Kanade from the DIRART-software are used to register CT-images of a mobile-phantom. A mobile-phantom is scanned with different imaging techniques that include helical, axial and cone-beam CT. The phantom includes three targets with different lengths that are made from water-equivalent material and inserted in low-density-foam which is moved with adjustable motion-amplitudes and frequencies. Results: Most of themore » DIR-algorithms are able to produce the lengths of the stationary-targets, however, they do not produce the CT-number values in CBCT. The image-artifacts induced by motion are more regular in CBCT imaging where the mobile-target elongation increases linearly with motion-amplitude. In ACT and HCT, the motion-artifacts are irregular where some mobile -targets are elongated or shrunk depending on the motion-phase during imaging. The DIR-algorithms are successful in deforming the images of the mobile-targets to the images of the stationary-targets producing the CT-number values and length of the target for motion-amplitudes < 20 mm. Similarly in ACT, all DIR-algorithms produced the actual CT-number and length of the stationary-targets for motion-amplitudes < 15 mm. As stronger motion-artifacts are induced in HCT and ACT, DIR-algorithms fail to produce CT-values and shape of the stationary-targets and fast-demons-algorithm has worst performance. Conclusion: Most of DIR-algorithms produce the CT-number values and lengths of the stationary-targets in HCT and ACT images that has motion-artifacts induced by small motion-amplitudes. As motion-amplitudes increase, the DIR-algorithms fail to deform mobile-target images to the stationary-images in HCT and ACT. In CBCT, DIR-algorithms are successful in producing length and shape of the stationary-targets, however, they fail to produce the accurate CT-number level.« less
Triboelectrification based motion sensor for human-machine interfacing.
Yang, Weiqing; Chen, Jun; Wen, Xiaonan; Jing, Qingshen; Yang, Jin; Su, Yuanjie; Zhu, Guang; Wu, Wenzuo; Wang, Zhong Lin
2014-05-28
We present triboelectrification based, flexible, reusable, and skin-friendly dry biopotential electrode arrays as motion sensors for tracking muscle motion and human-machine interfacing (HMI). The independently addressable, self-powered sensor arrays have been utilized to record the electric output signals as a mapping figure to accurately identify the degrees of freedom as well as directions and magnitude of muscle motions. A fast Fourier transform (FFT) technique was employed to analyse the frequency spectra of the obtained electric signals and thus to determine the motion angular velocities. Moreover, the motion sensor arrays produced a short-circuit current density up to 10.71 mA/m(2), and an open-circuit voltage as high as 42.6 V with a remarkable signal-to-noise ratio up to 1000, which enables the devices as sensors to accurately record and transform the motions of the human joints, such as elbow, knee, heel, and even fingers, and thus renders it a superior and unique invention in the field of HMI.
LAGEOS geodetic analysis-SL7.1
NASA Technical Reports Server (NTRS)
Smith, D. E.; Kolenkiewicz, R.; Dunn, P. J.; Klosko, S. M.; Robbins, J. W.; Torrence, M. H.; Williamson, R. G.; Pavlis, E. C.; Douglas, N. B.; Fricke, S. K.
1991-01-01
Laser ranging measurements to the LAGEOS satellite from 1976 through 1989 are related via geodetic and orbital theories to a variety of geodetic and geodynamic parameters. The SL7.1 analyses are explained of this data set including the estimation process for geodetic parameters such as Earth's gravitational constant (GM), those describing the Earth's elasticity properties (Love numbers), and the temporally varying geodetic parameters such as Earth's orientation (polar motion and Delta UT1) and tracking site horizontal tectonic motions. Descriptions of the reference systems, tectonic models, and adopted geodetic constants are provided; these are the framework within which the SL7.1 solution takes place. Estimates of temporal variations in non-conservative force parameters are included in these SL7.1 analyses as well as parameters describing the orbital states at monthly epochs. This information is useful in further refining models used to describe close-Earth satellite behavior. Estimates of intersite motions and individual tracking site motions computed through the network adjustment scheme are given. Tabulations of tracking site eccentricities, data summaries, estimated monthly orbital and force model parameters, polar motion, Earth rotation, and tracking station coordinate results are also provided.
Lee, Benjamin C; Moody, Jonathan B; Poitrasson-Rivière, Alexis; Melvin, Amanda C; Weinberg, Richard L; Corbett, James R; Ficaro, Edward P; Murthy, Venkatesh L
2018-03-23
Patient motion can lead to misalignment of left ventricular volumes of interest and subsequently inaccurate quantification of myocardial blood flow (MBF) and flow reserve (MFR) from dynamic PET myocardial perfusion images. We aimed to identify the prevalence of patient motion in both blood and tissue phases and analyze the effects of this motion on MBF and MFR estimates. We selected 225 consecutive patients that underwent dynamic stress/rest rubidium-82 chloride ( 82 Rb) PET imaging. Dynamic image series were iteratively reconstructed with 5- to 10-second frame durations over the first 2 minutes for the blood phase and 10 to 80 seconds for the tissue phase. Motion shifts were assessed by 3 physician readers from the dynamic series and analyzed for frequency, magnitude, time, and direction of motion. The effects of this motion isolated in time, direction, and magnitude on global and regional MBF and MFR estimates were evaluated. Flow estimates derived from the motion corrected images were used as the error references. Mild to moderate motion (5-15 mm) was most prominent in the blood phase in 63% and 44% of the stress and rest studies, respectively. This motion was observed with frequencies of 75% in the septal and inferior directions for stress and 44% in the septal direction for rest. Images with blood phase isolated motion had mean global MBF and MFR errors of 2%-5%. Isolating blood phase motion in the inferior direction resulted in mean MBF and MFR errors of 29%-44% in the RCA territory. Flow errors due to tissue phase isolated motion were within 1%. Patient motion was most prevalent in the blood phase and MBF and MFR errors increased most substantially with motion in the inferior direction. Motion correction focused on these motions is needed to reduce MBF and MFR errors.
Simulating intrafraction prostate motion with a random walk model.
Pommer, Tobias; Oh, Jung Hun; Munck Af Rosenschöld, Per; Deasy, Joseph O
2017-01-01
Prostate motion during radiation therapy (ie, intrafraction motion) can cause unwanted loss of radiation dose to the prostate and increased dose to the surrounding organs at risk. A compact but general statistical description of this motion could be useful for simulation of radiation therapy delivery or margin calculations. We investigated whether prostate motion could be modeled with a random walk model. Prostate motion recorded during 548 radiation therapy fractions in 17 patients was analyzed and used for input in a random walk prostate motion model. The recorded motion was categorized on the basis of whether any transient excursions (ie, rapid prostate motion in the anterior and superior direction followed by a return) occurred in the trace and transient motion. This was separately modeled as a large step in the anterior/superior direction followed by a returning large step. Random walk simulations were conducted with and without added artificial transient motion using either motion data from all observed traces or only traces without transient excursions as model input, respectively. A general estimate of motion was derived with reasonable agreement between simulated and observed traces, especially during the first 5 minutes of the excursion-free simulations. Simulated and observed diffusion coefficients agreed within 0.03, 0.2 and 0.3 mm 2 /min in the left/right, superior/inferior, and anterior/posterior directions, respectively. A rapid increase in variance at the start of observed traces was difficult to reproduce and seemed to represent the patient's need to adjust before treatment. This could be estimated somewhat using artificial transient motion. Random walk modeling is feasible and recreated the characteristics of the observed prostate motion. Introducing artificial transient motion did not improve the overall agreement, although the first 30 seconds of the traces were better reproduced. The model provides a simple estimate of prostate motion during delivery of radiation therapy.
NASA Technical Reports Server (NTRS)
Demets, Charles; Gordon, Richard G.; Stein, Seth; Argus, Donald F.
1987-01-01
Marine magnetic profiles from the Gulf of Californa are studied in order to revise the estimate of Pacific-North America motion. It is found that since 3 Ma spreading has averaged 48 mm/yr, consistent with a new global plate motion model derived without any data. The present data suggest that strike-slip motion on faults west of the San Andreas is less than previously thought, reducing the San Andreas discrepancy with geodetic, seismological, and other geologic observations.
Fidelity of the ensemble code for visual motion in primate retina.
Frechette, E S; Sher, A; Grivich, M I; Petrusca, D; Litke, A M; Chichilnisky, E J
2005-07-01
Sensory experience typically depends on the ensemble activity of hundreds or thousands of neurons, but little is known about how populations of neurons faithfully encode behaviorally important sensory information. We examined how precisely speed of movement is encoded in the population activity of magnocellular-projecting parasol retinal ganglion cells (RGCs) in macaque monkey retina. Multi-electrode recordings were used to measure the activity of approximately 100 parasol RGCs simultaneously in isolated retinas stimulated with moving bars. To examine how faithfully the retina signals motion, stimulus speed was estimated directly from recorded RGC responses using an optimized algorithm that resembles models of motion sensing in the brain. RGC population activity encoded speed with a precision of approximately 1%. The elementary motion signal was conveyed in approximately 10 ms, comparable to the interspike interval. Temporal structure in spike trains provided more precise speed estimates than time-varying firing rates. Correlated activity between RGCs had little effect on speed estimates. The spatial dispersion of RGC receptive fields along the axis of motion influenced speed estimates more strongly than along the orthogonal direction, as predicted by a simple model based on RGC response time variability and optimal pooling. on and off cells encoded speed with similar and statistically independent variability. Simulation of downstream speed estimation using populations of speed-tuned units showed that peak (winner take all) readout provided more precise speed estimates than centroid (vector average) readout. These findings reveal how faithfully the retinal population code conveys information about stimulus speed and the consequences for motion sensing in the brain.
Janson, Lucas; Schmerling, Edward; Clark, Ashley; Pavone, Marco
2015-01-01
In this paper we present a novel probabilistic sampling-based motion planning algorithm called the Fast Marching Tree algorithm (FMT*). The algorithm is specifically aimed at solving complex motion planning problems in high-dimensional configuration spaces. This algorithm is proven to be asymptotically optimal and is shown to converge to an optimal solution faster than its state-of-the-art counterparts, chiefly PRM* and RRT*. The FMT* algorithm performs a “lazy” dynamic programming recursion on a predetermined number of probabilistically-drawn samples to grow a tree of paths, which moves steadily outward in cost-to-arrive space. As such, this algorithm combines features of both single-query algorithms (chiefly RRT) and multiple-query algorithms (chiefly PRM), and is reminiscent of the Fast Marching Method for the solution of Eikonal equations. As a departure from previous analysis approaches that are based on the notion of almost sure convergence, the FMT* algorithm is analyzed under the notion of convergence in probability: the extra mathematical flexibility of this approach allows for convergence rate bounds—the first in the field of optimal sampling-based motion planning. Specifically, for a certain selection of tuning parameters and configuration spaces, we obtain a convergence rate bound of order O(n−1/d+ρ), where n is the number of sampled points, d is the dimension of the configuration space, and ρ is an arbitrarily small constant. We go on to demonstrate asymptotic optimality for a number of variations on FMT*, namely when the configuration space is sampled non-uniformly, when the cost is not arc length, and when connections are made based on the number of nearest neighbors instead of a fixed connection radius. Numerical experiments over a range of dimensions and obstacle configurations confirm our the-oretical and heuristic arguments by showing that FMT*, for a given execution time, returns substantially better solutions than either PRM* or RRT*, especially in high-dimensional configuration spaces and in scenarios where collision-checking is expensive. PMID:27003958
2015-01-22
applications in fast single photon sources, quantum repeater circuitry, and high fidelity remote entanglement of atoms for quantum information protocols. We...fluorescence for motion/force sensors through Doppler velocimetry; and for the efficient collection of single photons from trapped ions for...Doppler velocimetry; and for the efficient collection of single photons from trapped ions for applications in fast single photon sources, quantum
Fast Object Motion Estimation Based on Dynamic Stixels.
Morales, Néstor; Morell, Antonio; Toledo, Jonay; Acosta, Leopoldo
2016-07-28
The stixel world is a simplification of the world in which obstacles are represented as vertical instances, called stixels, standing on a surface assumed to be planar. In this paper, previous approaches for stixel tracking are extended using a two-level scheme. In the first level, stixels are tracked by matching them between frames using a bipartite graph in which edges represent a matching cost function. Then, stixels are clustered into sets representing objects in the environment. These objects are matched based on the number of stixels paired inside them. Furthermore, a faster, but less accurate approach is proposed in which only the second level is used. Several configurations of our method are compared to an existing state-of-the-art approach to show how our methodology outperforms it in several areas, including an improvement in the quality of the depth reconstruction.
Wei, Xiang; Camino, Acner; Pi, Shaohua; Cepurna, William; Huang, David; Morrison, John C; Jia, Yali
2018-05-01
Phase-based optical coherence tomography (OCT), such as OCT angiography (OCTA) and Doppler OCT, is sensitive to the confounding phase shift introduced by subject bulk motion. Traditional bulk motion compensation methods are limited by their accuracy and computing cost-effectiveness. In this Letter, to the best of our knowledge, we present a novel bulk motion compensation method for phase-based functional OCT. Bulk motion associated phase shift can be directly derived by solving its equation using a standard deviation of phase-based OCTA and Doppler OCT flow signals. This method was evaluated on rodent retinal images acquired by a prototype visible light OCT and human retinal images acquired by a commercial system. The image quality and computational speed were significantly improved, compared to two conventional phase compensation methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hutchings, L J; Foxall, W; Rambo, J
2005-02-14
Yucca Mountain licensing will require estimation of ground motions from probabilistic seismic hazard analyses (PSHA) with annual probabilities of exceedance on the order of 10{sup -6} to 10{sup -7} per year or smaller, which correspond to much longer earthquake return periods than most previous PSHA studies. These long return periods for the Yucca Mountain PSHA result in estimates of ground motion that are extremely high ({approx} 10 g) and that are believed to be physically unrealizable. However, there is at present no generally accepted method to bound ground motions either by showing that the physical properties of materials cannot maintainmore » such extreme motions, or the energy release by the source for such large motions is physically impossible. The purpose of this feasibility study is to examine recorded ground motion and rock property data from nuclear explosions to determine its usefulness for studying the ground motion from extreme earthquakes. The premise is that nuclear explosions are an extreme energy density source, and that the recorded ground motion will provide useful information about the limits of ground motion from extreme earthquakes. The data were categorized by the source and rock properties, and evaluated as to what extent non-linearity in the material has affected the recordings. They also compiled existing results of non-linear dynamic modeling of the explosions carried out by LLNL and other institutions. They conducted an extensive literature review to outline current understanding of extreme ground motion. They also analyzed the data in terms of estimating maximum ground motions at Yucca Mountain.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hutchings, L H; Foxall, W; Rambo, J
2005-03-09
Yucca Mountain licensing will require estimation of ground motions from probabilistic seismic hazard analyses (PSHA) with annual probabilities of exceedance on the order of 10{sup -6} to 10{sup -7} per year or smaller, which correspond to much longer earthquake return periods than most previous PSHA studies. These long return periods for the Yucca Mountain PSHA result in estimates of ground motion that are extremely high ({approx} 10 g) and that are believed to be physically unrealizable. However, there is at present no generally accepted method to bound ground motions either by showing that the physical properties of materials cannot maintainmore » such extreme motions, or the energy release by the source for such large motions is physically impossible. The purpose of this feasibility study is to examine recorded ground motion and rock property data from nuclear explosions to determine its usefulness for studying the ground motion from extreme earthquakes. The premise is that nuclear explosions are an extreme energy density source, and that the recorded ground motion will provide useful information about the limits of ground motion from extreme earthquakes. The data were categorized by the source and rock properties, and evaluated as to what extent non-linearity in the material has affected the recordings. They also compiled existing results of non-linear dynamic modeling of the explosions carried out by LLNL and other institutions. They conducted an extensive literature review to outline current understanding of extreme ground motion. They also analyzed the data in terms of estimating maximum ground motions at Yucca Mountain.« less
NASA Astrophysics Data System (ADS)
Tang, Jing; Wang, Xinhui; Gao, Xiangzhen; Segars, W. Paul; Lodge, Martin A.; Rahmim, Arman
2017-06-01
ECG gated cardiac PET imaging measures functional parameters such as left ventricle (LV) ejection fraction (EF), providing diagnostic and prognostic information for management of patients with coronary artery disease (CAD). Respiratory motion degrades spatial resolution and affects the accuracy in measuring the LV volumes for EF calculation. The goal of this study is to systematically investigate the effect of respiratory motion correction on the estimation of end-diastolic volume (EDV), end-systolic volume (ESV), and EF, especially on the separation of normal and abnormal EFs. We developed a respiratory motion incorporated 4D PET image reconstruction technique which uses all gated-frame data to acquire a motion-suppressed image. Using the standard XCAT phantom and two individual-specific volunteer XCAT phantoms, we simulated dual-gated myocardial perfusion imaging data for normally and abnormally beating hearts. With and without respiratory motion correction, we measured the EDV, ESV, and EF from the cardiac-gated reconstructed images. For all the phantoms, the estimated volumes increased and the biases significantly reduced with motion correction compared with those without. Furthermore, the improvement of ESV measurement in the abnormally beating heart led to better separation of normal and abnormal EFs. The simulation study demonstrated the significant effect of respiratory motion correction on cardiac imaging data with motion amplitude as small as 0.7 cm. The larger the motion amplitude the more improvement respiratory motion correction brought about on the EF measurement. Using data-driven respiratory gating, we also demonstrated the effect of respiratory motion correction on estimating the above functional parameters from list mode patient data. Respiratory motion correction has been shown to improve the accuracy of EF measurement in clinical cardiac PET imaging.
Human Pose Estimation from Monocular Images: A Comprehensive Survey
Gong, Wenjuan; Zhang, Xuena; Gonzàlez, Jordi; Sobral, Andrews; Bouwmans, Thierry; Tu, Changhe; Zahzah, El-hadi
2016-01-01
Human pose estimation refers to the estimation of the location of body parts and how they are connected in an image. Human pose estimation from monocular images has wide applications (e.g., image indexing). Several surveys on human pose estimation can be found in the literature, but they focus on a certain category; for example, model-based approaches or human motion analysis, etc. As far as we know, an overall review of this problem domain has yet to be provided. Furthermore, recent advancements based on deep learning have brought novel algorithms for this problem. In this paper, a comprehensive survey of human pose estimation from monocular images is carried out including milestone works and recent advancements. Based on one standard pipeline for the solution of computer vision problems, this survey splits the problem into several modules: feature extraction and description, human body models, and modeling methods. Problem modeling methods are approached based on two means of categorization in this survey. One way to categorize includes top-down and bottom-up methods, and another way includes generative and discriminative methods. Considering the fact that one direct application of human pose estimation is to provide initialization for automatic video surveillance, there are additional sections for motion-related methods in all modules: motion features, motion models, and motion-based methods. Finally, the paper also collects 26 publicly available data sets for validation and provides error measurement methods that are frequently used. PMID:27898003
Towards denoising XMCD movies of fast magnetization dynamics using extended Kalman filter.
Kopp, M; Harmeling, S; Schütz, G; Schölkopf, B; Fähnle, M
2015-01-01
The Kalman filter is a well-established approach to get information on the time-dependent state of a system from noisy observations. It was developed in the context of the Apollo project to see the deviation of the true trajectory of a rocket from the desired trajectory. Afterwards it was applied to many different systems with small numbers of components of the respective state vector (typically about 10). In all cases the equation of motion for the state vector was known exactly. The fast dissipative magnetization dynamics is often investigated by x-ray magnetic circular dichroism movies (XMCD movies), which are often very noisy. In this situation the number of components of the state vector is extremely large (about 10(5)), and the equation of motion for the dissipative magnetization dynamics (especially the values of the material parameters of this equation) is not well known. In the present paper it is shown by theoretical considerations that - nevertheless - there is no principle problem for the use of the Kalman filter to denoise XMCD movies of fast dissipative magnetization dynamics. Copyright © 2014 Elsevier B.V. All rights reserved.
Inverse dynamics of adaptive structures used as space cranes
NASA Technical Reports Server (NTRS)
Das, S. K.; Utku, S.; Wada, B. K.
1990-01-01
As a precursor to the real-time control of fast moving adaptive structures used as space cranes, a formulation is given for the flexibility induced motion relative to the nominal motion (i.e., the motion that assumes no flexibility) and for obtaining the open loop time varying driving forces. An algorithm is proposed for the computation of the relative motion and driving forces. The governing equations are given in matrix form with explicit functional dependencies. A simulator is developed to implement the algorithm on a digital computer. In the formulations, the distributed mass of the crane is lumped by two schemes, vz., 'trapezoidal' lumping and 'Simpson's rule' lumping. The effects of the mass lumping schemes are shown by simulator runs.
Beyond SaGMRotI: Conversion to SaArb, SaSN, and SaMaxRot
Watson-Lamprey, J. A.; Boore, D.M.
2007-01-01
In the seismic design of structures, estimates of design forces are usually provided to the engineer in the form of elastic response spectra. Predictive equations for elastic response spectra are derived from empirical recordings of ground motion. The geometric mean of the two orthogonal horizontal components of motion is often used as the response value in these predictive equations, although it is not necessarily the most relevant estimate of forces within the structure. For some applications it is desirable to estimate the response value on a randomly chosen single component of ground motion, and in other applications the maximum response in a single direction is required. We give adjustment factors that allow converting the predictions of geometric-mean ground-motion predictions into either of these other two measures of seismic ground-motion intensity. In addition, we investigate the relation of the strike-normal component of ground motion to the maximum response values. We show that the strike-normal component of ground motion seldom corresponds to the maximum horizontal-component response value (in particular, at distances greater than about 3 km from faults), and that focusing on this case in exclusion of others can result in the underestimation of the maximum component. This research provides estimates of the maximum response value of a single component for all cases, not just near-fault strike-normal components. We provide modification factors that can be used to convert predictions of ground motions in terms of the geometric mean to the maximum spectral acceleration (SaMaxRot) and the random component of spectral acceleration (SaArb). Included are modification factors for both the mean and the aleatory standard deviation of the logarithm of the motions.
Constrained motion estimation-based error resilient coding for HEVC
NASA Astrophysics Data System (ADS)
Guo, Weihan; Zhang, Yongfei; Li, Bo
2018-04-01
Unreliable communication channels might lead to packet losses and bit errors in the videos transmitted through it, which will cause severe video quality degradation. This is even worse for HEVC since more advanced and powerful motion estimation methods are introduced to further remove the inter-frame dependency and thus improve the coding efficiency. Once a Motion Vector (MV) is lost or corrupted, it will cause distortion in the decoded frame. More importantly, due to motion compensation, the error will propagate along the motion prediction path, accumulate over time, and significantly degrade the overall video presentation quality. To address this problem, we study the problem of encoder-sider error resilient coding for HEVC and propose a constrained motion estimation scheme to mitigate the problem of error propagation to subsequent frames. The approach is achieved by cutting off MV dependencies and limiting the block regions which are predicted by temporal motion vector. The experimental results show that the proposed method can effectively suppress the error propagation caused by bit errors of motion vector and can improve the robustness of the stream in the bit error channels. When the bit error probability is 10-5, an increase of the decoded video quality (PSNR) by up to1.310dB and on average 0.762 dB can be achieved, compared to the reference HEVC.
Motion estimation under location uncertainty for turbulent fluid flows
NASA Astrophysics Data System (ADS)
Cai, Shengze; Mémin, Etienne; Dérian, Pierre; Xu, Chao
2018-01-01
In this paper, we propose a novel optical flow formulation for estimating two-dimensional velocity fields from an image sequence depicting the evolution of a passive scalar transported by a fluid flow. This motion estimator relies on a stochastic representation of the flow allowing to incorporate naturally a notion of uncertainty in the flow measurement. In this context, the Eulerian fluid flow velocity field is decomposed into two components: a large-scale motion field and a small-scale uncertainty component. We define the small-scale component as a random field. Subsequently, the data term of the optical flow formulation is based on a stochastic transport equation, derived from the formalism under location uncertainty proposed in Mémin (Geophys Astrophys Fluid Dyn 108(2):119-146, 2014) and Resseguier et al. (Geophys Astrophys Fluid Dyn 111(3):149-176, 2017a). In addition, a specific regularization term built from the assumption of constant kinetic energy involves the very same diffusion tensor as the one appearing in the data transport term. Opposite to the classical motion estimators, this enables us to devise an optical flow method dedicated to fluid flows in which the regularization parameter has now a clear physical interpretation and can be easily estimated. Experimental evaluations are presented on both synthetic and real world image sequences. Results and comparisons indicate very good performance of the proposed formulation for turbulent flow motion estimation.
On-line 3D motion estimation using low resolution MRI
NASA Astrophysics Data System (ADS)
Glitzner, M.; de Senneville, B. Denis; Lagendijk, J. J. W.; Raaymakers, B. W.; Crijns, S. P. M.
2015-08-01
Image processing such as deformable image registration finds its way into radiotherapy as a means to track non-rigid anatomy. With the advent of magnetic resonance imaging (MRI) guided radiotherapy, intrafraction anatomy snapshots become technically feasible. MRI provides the needed tissue signal for high-fidelity image registration. However, acquisitions, especially in 3D, take a considerable amount of time. Pushing towards real-time adaptive radiotherapy, MRI needs to be accelerated without degrading the quality of information. In this paper, we investigate the impact of image resolution on the quality of motion estimations. Potentially, spatially undersampled images yield comparable motion estimations. At the same time, their acquisition times would reduce greatly due to the sparser sampling. In order to substantiate this hypothesis, exemplary 4D datasets of the abdomen were downsampled gradually. Subsequently, spatiotemporal deformations are extracted consistently using the same motion estimation for each downsampled dataset. Errors between the original and the respectively downsampled version of the dataset are then evaluated. Compared to ground-truth, results show high similarity of deformations estimated from downsampled image data. Using a dataset with {{≤ft(2.5 \\text{mm}\\right)}3} voxel size, deformation fields could be recovered well up to a downsampling factor of 2, i.e. {{≤ft(5 \\text{mm}\\right)}3} . In a therapy guidance scenario MRI, imaging speed could accordingly increase approximately fourfold, with acceptable loss of estimated motion quality.
Building and using a statistical 3D motion atlas for analyzing myocardial contraction in MRI
NASA Astrophysics Data System (ADS)
Rougon, Nicolas F.; Petitjean, Caroline; Preteux, Francoise J.
2004-05-01
We address the issue of modeling and quantifying myocardial contraction from 4D MR sequences, and present an unsupervised approach for building and using a statistical 3D motion atlas for the normal heart. This approach relies on a state-of-the-art variational non rigid registration (NRR) technique using generalized information measures, which allows for robust intra-subject motion estimation and inter-subject anatomical alignment. The atlas is built from a collection of jointly acquired tagged and cine MR exams in short- and long-axis views. Subject-specific non parametric motion estimates are first obtained by incremental NRR of tagged images onto the end-diastolic (ED) frame. Individual motion data are then transformed into the coordinate system of a reference subject using subject-to-reference mappings derived by NRR of cine ED images. Finally, principal component analysis of aligned motion data is performed for each cardiac phase, yielding a mean model and a set of eigenfields encoding kinematic ariability. The latter define an organ-dedicated hierarchical motion basis which enables parametric motion measurement from arbitrary tagged MR exams. To this end, the atlas is transformed into subject coordinates by reference-to-subject NRR of ED cine frames. Atlas-based motion estimation is then achieved by parametric NRR of tagged images onto the ED frame, yielding a compact description of myocardial contraction during diastole.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meenakumari, V.; Premkumar, S.; Benial, A. Milton Franklin, E-mail: miltonfranklin@yahoo.com
The Electron spin resonance studies on the reduction process of nitroxyl spin probes were carried out for 1mM {sup 14}N- labeled nitroxyl radicals in pure water and 1 mM concentration of ascorbic acid as a function of time. The electron spin resonance parameters, such as line width, hyperfine coupling constant, g-factor, signal intensity ratio and rotational correlation time were estimated. The 3-carbamoyl-PROXYL radical has narrowest line width and fast tumbling motion compared with 3-carboxy-PROXYL, 4-methoxy-TEMPO, and 4-acetamido-TEMPO radicals. The half life time and decay rate were estimated for 1mM concentration of {sup 14}N- labeled nitroxyl radicals in 1 mM concentration ofmore » ascorbic acid. From the results, the 3-carbamoyl-PROXYL has long half life time and high stability compared with 3-carboxy-PROXYL, 4-methoxy-TEMPO and 4-acetamido-TEMPO radicals. Therefore, this study reveals that the 3-carbamoyl-PROXYL radical can act as a good redox sensitive spin probe for Overhauser-enhanced Magnetic Resonance Imaging.« less
NASA Astrophysics Data System (ADS)
Zhang, Jianqiao; Ye, Dong; Sun, Zhaowei; Liu, Chuang
2018-02-01
This paper presents a robust adaptive controller integrated with an extended state observer (ESO) to solve coupled spacecraft tracking maneuver in the presence of model uncertainties, external disturbances, actuator uncertainties including magnitude deviation and misalignment, and even actuator saturation. More specifically, employing the exponential coordinates on the Lie group SE(3) to describe configuration tracking errors, the coupled six-degrees-of-freedom (6-DOF) dynamics are developed for spacecraft relative motion, in which a generic fully actuated thruster distribution is considered and the lumped disturbances are reconstructed by using anti-windup technique. Then, a novel ESO, developed via second order sliding mode (SOSM) technique and adding linear correction terms to improve the performance, is designed firstly to estimate the disturbances in finite time. Based on the estimated information, an adaptive fast terminal sliding mode (AFTSM) controller is developed to guarantee the almost global asymptotic stability of the resulting closed-loop system such that the trajectory can be tracked with all the aforementioned drawbacks addressed simultaneously. Finally, the effectiveness of the controller is illustrated through numerical examples.
NASA Astrophysics Data System (ADS)
Meenakumari, V.; Jawahar, A.; Premkumar, S.; Benial, A. Milton Franklin
2016-05-01
The Electron spin resonance studies on the reduction process of nitroxyl spin probes were carried out for 1mM 14N- labeled nitroxyl radicals in pure water and 1 mM concentration of ascorbic acid as a function of time. The electron spin resonance parameters, such as line width, hyperfine coupling constant, g-factor, signal intensity ratio and rotational correlation time were estimated. The 3-carbamoyl-PROXYL radical has narrowest line width and fast tumbling motion compared with 3-carboxy-PROXYL, 4-methoxy-TEMPO, and 4-acetamido-TEMPO radicals. The half life time and decay rate were estimated for 1mM concentration of 14N- labeled nitroxyl radicals in 1 mM concentration of ascorbic acid. From the results, the 3-carbamoyl-PROXYL has long half life time and high stability compared with 3-carboxy-PROXYL, 4-methoxy-TEMPO and 4-acetamido-TEMPO radicals. Therefore, this study reveals that the 3-carbamoyl-PROXYL radical can act as a good redox sensitive spin probe for Overhauser-enhanced Magnetic Resonance Imaging.
Iterative motion compensation approach for ultrasonic thermal imaging
NASA Astrophysics Data System (ADS)
Fleming, Ioana; Hager, Gregory; Guo, Xiaoyu; Kang, Hyun Jae; Boctor, Emad
2015-03-01
As thermal imaging attempts to estimate very small tissue motion (on the order of tens of microns), it can be negatively influenced by signal decorrelation. Patient's breathing and cardiac cycle generate shifts in the RF signal patterns. Other sources of movement could be found outside the patient's body, like transducer slippage or small vibrations due to environment factors like electronic noise. Here, we build upon a robust displacement estimation method for ultrasound elastography and we investigate an iterative motion compensation algorithm, which can detect and remove non-heat induced tissue motion at every step of the ablation procedure. The validation experiments are performed on laboratory induced ablation lesions in ex-vivo tissue. The ultrasound probe is either held by the operator's hand or supported by a robotic arm. We demonstrate the ability to detect and remove non-heat induced tissue motion in both settings. We show that removing extraneous motion helps unmask the effects of heating. Our strain estimation curves closely mirror the temperature changes within the tissue. While previous results in the area of motion compensation were reported for experiments lasting less than 10 seconds, our algorithm was tested on experiments that lasted close to 20 minutes.
Alert Response to Motion Onset in the Retina
Chen, Eric Y.; Marre, Olivier; Fisher, Clark; Schwartz, Greg; Levy, Joshua; da Silveira, Rava Azeredo
2013-01-01
Previous studies have shown that motion onset is very effective at capturing attention and is more salient than smooth motion. Here, we find that this salience ranking is present already in the firing rate of retinal ganglion cells. By stimulating the retina with a bar that appears, stays still, and then starts moving, we demonstrate that a subset of salamander retinal ganglion cells, fast OFF cells, responds significantly more strongly to motion onset than to smooth motion. We refer to this phenomenon as an alert response to motion onset. We develop a computational model that predicts the time-varying firing rate of ganglion cells responding to the appearance, onset, and smooth motion of a bar. This model, termed the adaptive cascade model, consists of a ganglion cell that receives input from a layer of bipolar cells, represented by individual rectified subunits. Additionally, both the bipolar and ganglion cells have separate contrast gain control mechanisms. This model captured the responses to our different motion stimuli over a wide range of contrasts, speeds, and locations. The alert response to motion onset, together with its computational model, introduces a new mechanism of sophisticated motion processing that occurs early in the visual system. PMID:23283327
Sun, Zhihua; Luo, Junhua; Zhang, Shuquan; Ji, Chengmin; Zhou, Lei; Li, Shenhui; Deng, Feng; Hong, Maochun
2013-08-14
Exceptional nonlinear optical (NLO) switching behavior, including an extremely large contrast (on/off) of ∼35 and high NLO coefficients, is displayed by a solid-state reversible quadratic NLO switch. The favorable results, induced by very fast molecular motion and anionic ordering, provides impetus for the design of a novel second-harmonic-generation switch involving molecular motion. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Voluntary EMG-to-force estimation with a multi-scale physiological muscle model
2013-01-01
Background EMG-to-force estimation based on muscle models, for voluntary contraction has many applications in human motion analysis. The so-called Hill model is recognized as a standard model for this practical use. However, it is a phenomenological model whereby muscle activation, force-length and force-velocity properties are considered independently. Perreault reported Hill modeling errors were large for different firing frequencies, level of activation and speed of contraction. It may be due to the lack of coupling between activation and force-velocity properties. In this paper, we discuss EMG-force estimation with a multi-scale physiology based model, which has a link to underlying crossbridge dynamics. Differently from the Hill model, the proposed method provides dual dynamics of recruitment and calcium activation. Methods The ankle torque was measured for the plantar flexion along with EMG measurements of the medial gastrocnemius (GAS) and soleus (SOL). In addition to Hill representation of the passive elements, three models of the contractile parts have been compared. Using common EMG signals during isometric contraction in four able-bodied subjects, torque was estimated by the linear Hill model, the nonlinear Hill model and the multi-scale physiological model that refers to Huxley theory. The comparison was made in normalized scale versus the case in maximum voluntary contraction. Results The estimation results obtained with the multi-scale model showed the best performances both in fast-short and slow-long term contraction in randomized tests for all the four subjects. The RMS errors were improved with the nonlinear Hill model compared to linear Hill, however it showed limitations to account for the different speed of contractions. Average error was 16.9% with the linear Hill model, 9.3% with the modified Hill model. In contrast, the error in the multi-scale model was 6.1% while maintaining a uniform estimation performance in both fast and slow contractions schemes. Conclusions We introduced a novel approach that allows EMG-force estimation based on a multi-scale physiology model integrating Hill approach for the passive elements and microscopic cross-bridge representations for the contractile element. The experimental evaluation highlights estimation improvements especially a larger range of contraction conditions with integration of the neural activation frequency property and force-velocity relationship through cross-bridge dynamics consideration. PMID:24007560
Syryamina, Victoria N; Isaev, Nikolay P; Peggion, Cristina; Formaggio, Fernando; Toniolo, Claudio; Raap, Jan; Dzuba, Sergei A
2010-09-30
Trichogin GA IV is a lipopeptide antibiotic of fungal origin, which is known to be able to modify the membrane permeability. TOAC nitroxide spin-labeled analogues of this membrane active peptide were investigated in hydrated bilayers of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) by electron spin echo (ESE) spectroscopy. Because the TOAC nitroxide spin label is rigidly attached to the peptide backbone, it may report on the backbone orientational dynamics. The ESE signal in this system is observed below ∼150 K. Previously, three-pulse stimulated ESE was found to be sensitive to two types of orientational motion of spin-labeled POPC lipid bilayers at these temperatures. The first type is fast stochastic librations, with a correlation time on the nanosecond scale (which also manifests itself in a two-pulse primary ESE experiment). The second type is slow millisecond inertial rotations. In the present work, we find that at low molar peptide to lipid ratio (1:200), where the individual peptide molecules are randomly distributed at the membrane surface, the spin labels show only a fast type of motion. At the high molar peptide to lipid ratio (1:20), a slow motion is also observed. Because at this high concentration trichogin GA IV is known to change its orientation from the in-plane topology to the transmembrane disposition, the observed onset of a slow motion may be safely attributed to the dynamics of peptides, which are elongated along the lipid molecules of the membrane. The possible interrelation between this backbone rotational motion of the peptide antibiotic and the membrane leakage is discussed.
Frequency of gamma oscillations in humans is modulated by velocity of visual motion
Butorina, Anna V.; Sysoeva, Olga V.; Prokofyev, Andrey O.; Nikolaeva, Anastasia Yu.; Stroganova, Tatiana A.
2015-01-01
Gamma oscillations are generated in networks of inhibitory fast-spiking (FS) parvalbumin-positive (PV) interneurons and pyramidal cells. In animals, gamma frequency is modulated by the velocity of visual motion; the effect of velocity has not been evaluated in humans. In this work, we have studied velocity-related modulations of gamma frequency in children using MEG/EEG. We also investigated whether such modulations predict the prominence of the “spatial suppression” effect (Tadin D, Lappin JS, Gilroy LA, Blake R. Nature 424: 312-315, 2003) that is thought to depend on cortical center-surround inhibitory mechanisms. MEG/EEG was recorded in 27 normal boys aged 8–15 yr while they watched high-contrast black-and-white annular gratings drifting with velocities of 1.2, 3.6, and 6.0°/s and performed a simple detection task. The spatial suppression effect was assessed in a separate psychophysical experiment. MEG gamma oscillation frequency increased while power decreased with increasing velocity of visual motion. In EEG, the effects were less reliable. The frequencies of the velocity-specific gamma peaks were 64.9, 74.8, and 87.1 Hz for the slow, medium, and fast motions, respectively. The frequency of the gamma response elicited during slow and medium velocity of visual motion decreased with subject age, whereas the range of gamma frequency modulation by velocity increased with age. The frequency modulation range predicted spatial suppression even after controlling for the effect of age. We suggest that the modulation of the MEG gamma frequency by velocity of visual motion reflects excitability of cortical inhibitory circuits and can be used to investigate their normal and pathological development in the human brain. PMID:25925324
Magnitude Estimation for the 2011 Tohoku-Oki Earthquake Based on Ground Motion Prediction Equations
NASA Astrophysics Data System (ADS)
Eshaghi, Attieh; Tiampo, Kristy F.; Ghofrani, Hadi; Atkinson, Gail M.
2015-08-01
This study investigates whether real-time strong ground motion data from seismic stations could have been used to provide an accurate estimate of the magnitude of the 2011 Tohoku-Oki earthquake in Japan. Ultimately, such an estimate could be used as input data for a tsunami forecast and would lead to more robust earthquake and tsunami early warning. We collected the strong motion accelerograms recorded by borehole and free-field (surface) Kiban Kyoshin network stations that registered this mega-thrust earthquake in order to perform an off-line test to estimate the magnitude based on ground motion prediction equations (GMPEs). GMPEs for peak ground acceleration and peak ground velocity (PGV) from a previous study by Eshaghi et al. in the Bulletin of the Seismological Society of America 103. (2013) derived using events with moment magnitude ( M) ≥ 5.0, 1998-2010, were used to estimate the magnitude of this event. We developed new GMPEs using a more complete database (1998-2011), which added only 1 year but approximately twice as much data to the initial catalog (including important large events), to improve the determination of attenuation parameters and magnitude scaling. These new GMPEs were used to estimate the magnitude of the Tohoku-Oki event. The estimates obtained were compared with real time magnitude estimates provided by the existing earthquake early warning system in Japan. Unlike the current operational magnitude estimation methods, our method did not saturate and can provide robust estimates of moment magnitude within ~100 s after earthquake onset for both catalogs. It was found that correcting for average shear-wave velocity in the uppermost 30 m () improved the accuracy of magnitude estimates from surface recordings, particularly for magnitude estimates of PGV (Mpgv). The new GMPEs also were used to estimate the magnitude of all earthquakes in the new catalog with at least 20 records. Results show that the magnitude estimate from PGV values using borehole recordings had the smallest standard deviation among the estimated magnitudes and produced more stable and robust magnitude estimates. This suggests that incorporating borehole strong ground-motion records immediately available after the occurrence of large earthquakes can provide robust and accurate magnitude estimation.
Quirk, S; Becker, N; Smith, W L
2012-07-01
Respiratory motion complicates radiotherapy treatment of thoracic and abdominal tumours. Simplified respiratory motions such as sinusoidal and single patient traces are often used to determine the impact of motion on respiratory management techniques in radiotherapy. Such simplifications only accurately model a small portion of patients, as most patients exhibit variability and irregularity beyond these models. We have preformed a comprehensive analysis of respiratory motion and developed a software tool that allows for explicit inclusion of variability. We utilize our realistic respiratory generator to customize respiratory traces to test the robustness of the estimate of internal gross target volumes (IGTV) by 4DCT and CBCT. We confirmed that good agreement is found between 4DCT and CBCT for regular breathing motion. When amplitude variability was introduced the accuracy of the estimate slightly, but the absolute differences were still < 3 mm for both modalities. Poor agreement was shown with the addition of baseline drifts. Both modalities were found to underestimate the IGTV by as much as 30% for 4DCT and 25% for CBCT. Both large and small drifts deteriorated the estimate accuracy. The respiratory trace generator was advantageous for examining the difference between 4DCT and CBCT IGTV estimation under variable motions. It provided useful implementation abilities to test specific attributes of respiratory motion and detected issues that were not seen with the regular motion studies. This is just one example of how the respiratory trace generator can be utilized to test applications of respiratory management techniques. © 2012 American Association of Physicists in Medicine.
Motion compensation and noise tolerance in phase-shifting digital in-line holography.
Stenner, Michael D; Neifeld, Mark A
2006-05-15
We present a technique for phase-shifting digital in-line holography which compensates for lateral object motion. By collecting two frames of interference between object and reference fields with identical reference phase, one can estimate the lateral motion that occurred between frames using the cross-correlation. We also describe a very general linear framework for phase-shifting holographic reconstruction which minimizes additive white Gaussian noise (AWGN) for an arbitrary set of reference field amplitudes and phases. We analyze the technique's sensitivity to noise (AWGN, quantization, and shot), errors in the reference fields, errors in motion estimation, resolution, and depth of field. We also present experimental motion-compensated images achieving the expected resolution.
Fast Auroral Snapshot performance using a multi-body dynamic simulation
NASA Technical Reports Server (NTRS)
Zimbelman, Darrell; Walker, Mary
1993-01-01
This paper examines the complex dynamic interaction between two 2.6 m long stacer booms, four 30 m long flexible wire booms and the attitude control system of the Fast Auroral SnapshoT (FAST) spacecraft. The FAST vehicle will nominally operate as a negative orbit spinner, positioned in a 83 deg inclination, 350 x 4200 km orbit. For this study, a three-axis, non-linear, seven body dynamic simulation is developed using the TREETOPS software package. The significance of this approach is the ability to model each component of the FAST spacecraft as an individual member and connect them together in order to better understand the dynamic coupling between structures and the control system. Both the wire and stacer booms are modeled as separate bodies attached to a rigid central body. The wire booms are oriented perpendicular to the spin axis at right angles relative to each other, whereas the stacer booms are aligned with the spin axis. The analysis consists of a comparison between the simulated in-plane and out-of-plane boom motions with theoretically derived frequencies, and an examination of the dynamic coupling between the control system and boom oscillations. Results show that boom oscillations of up to 0.36 deg are acceptable in order to meet the performance requirements. The dynamic motion is well behaved when the precession coil is operating, however, activation of the spin coil produces an erratic trend in the spin rate which approaches the spin rate requirement.
1987-04-01
capabilities. The antennas are mounted to two-dimensional scanning mechanisms (gimbal) which provide fast and accurate motion of the antennas over...important for the ovet—all antenna weight which should be as low as possible to allow fast scanning). The slots in the waveguide walls are fed by the...degree of beam flexibility and the fast reconfigurability required for hopping and scanning beams with TDMA. Ultimately, BFNs are expected to include
VizieR Online Data Catalog: New proper motion stars with pm>=0.18"/yr (Boyd+, 2011)
NASA Astrophysics Data System (ADS)
Boyd, M. R.; Henry, T. J.; Jao, W.-C.; Subasavage, J. P.; Hambly, N. C.
2012-11-01
Here we present 1584 new southern proper motion systems with μ>=0.18"/yr and 16.5>R59F>=18.0. This search complements the six previous SuperCOSMOS-RECONS (SCR) proper motion searches of the southern sky for stars within the same proper motion range, but with R59F<=16.5. As in previous papers, we present distance estimates for these systems and find that three systems are estimated to be within 25pc, including one, SCR 1546-5534, possibly within the RECONS 10pc horizon at 6.7pc, making it the second nearest discovery of the searches. We find 97 white dwarf candidates with distance estimates between 10 and 120pc, as well as 557 cool subdwarf candidates. (5 data files).
NASA Astrophysics Data System (ADS)
DeMets, C.; Merkuryev, S. A.
2015-12-01
We estimate Nubia-Somalia rotations at ~1-Myr intervals for the past 20 Myr from newly available, high-resolution reconstructions of the Southwest Indian Ridge and reconstructions of the Red Sea and Gulf of Aden. The former rotations are based on many more data, extend farther back in time, and have more temporal resolution than has previously been the case. Nubia-Somalia plate motion has remained remarkably steady since 5.2 Ma. For example, at the northern end of the East Africa rift, our Nubia-Somalia plate motion estimates at six different times between 0.78 Ma and 5.2 Ma agree to within 3% with the rift-normal component of motion that is extrapolated from the recently estimated Saria et al. (2014) GPS angular velocity. Over the past 10.6 Myr, the Nubia-Somalia rotations predict 42±4 km of rift-normal extension across the northern segment of the Main Ethiopian Rift. This agrees with approximate minimum and maximum estimates of 40 km and 53 km for post-10.6-Myr extension from seismological surveys of this narrow part of the plate boundary and is also close to 55-km and 48±3 km estimates from published and our own reconstructions of the Nubia-Arabia and Somalia-Arabia seafloorspreading histories for the Red Sea and Gulf of Aden. Our new rotations exclude at high confidence level two previously published estimates of Nubia-Somalia motion based on inversions of Chron 5n.2 along the Southwest Indian Ridge, which predict rift-normal extensions of 13±14 km and 129±16 km across the Main Ethiopian Rift since 11 Ma. Constraints on Nubia-Somalia motion before ~15 Ma are weaker due to sparse coverage of pre-15-Myr magnetic reversals along the Nubia-Antarctic plate boundary, but appear to require motion before 15 Ma. Nubia-Somalia rotations that we estimate from a probabilistic analysis of geometric and age constraints from the Red Sea and Gulf of Aden are consistent with those determined from Southwest Indian Ridge data, particularly for the past 11 Myr. Nubia-Somalia rotations determined from the Red Sea/Gulf of Aden rotations and Southwest Indian Ridge rotations independently predict that motion during its oldest phase was highly oblique to the rift and a factor-of-two or more faster than at present, although large uncertainties remain in the rotation estimates for times before ~15 Ma.
A diagnostic model to estimate winds and small-scale drag from Mars Observer PMIRR data
NASA Technical Reports Server (NTRS)
Barnes, J. R.
1993-01-01
Theoretical and modeling studies indicate that small-scale drag due to breaking gravity waves is likely to be of considerable importance for the circulation in the middle atmospheric region (approximately 40-100 km altitude) on Mars. Recent earth-based spectroscopic observations have provided evidence for the existence of circulation features, in particular, a warm winter polar region, associated with gravity wave drag. Since the Mars Observer PMIRR experiment will obtain temperature profiles extending from the surface up to about 80 km altitude, it will be extensively sampling middle atmospheric regions in which gravity wave drag may play a dominant role. Estimating the drag then becomes crucial to the estimation of the atmospheric winds from the PMIRR-observed temperatures. An interative diagnostic model based upon one previously developed and tested with earth satellite temperature data will be applied to the PMIRR measurements to produce estimates of the small-scale zonal drag and three-dimensional wind fields in the Mars middle atmosphere. This model is based on the primitive equations, and can allow for time dependence (the time tendencies used may be based upon those computed in a Fast Fourier Mapping procedure). The small-scale zonal drag is estimated as the residual in the zonal momentum equation; the horizontal winds having first been estimated from the meridional momentum equation and the continuity equation. The scheme estimates the vertical motions from the thermodynamic equation, and thus needs estimates of the diabatic heating based upon the observed temperatures. The latter will be generated using a radiative model. It is hoped that the diagnostic scheme will be able to produce good estimates of the zonal gravity wave drag in the Mars middle atmosphere, estimates that can then be used in other diagnostic or assimilation efforts, as well as more theoretical studies.
Vision System Measures Motions of Robot and External Objects
NASA Technical Reports Server (NTRS)
Talukder, Ashit; Matthies, Larry
2008-01-01
A prototype of an advanced robotic vision system both (1) measures its own motion with respect to a stationary background and (2) detects other moving objects and estimates their motions, all by use of visual cues. Like some prior robotic and other optoelectronic vision systems, this system is based partly on concepts of optical flow and visual odometry. Whereas prior optoelectronic visual-odometry systems have been limited to frame rates of no more than 1 Hz, a visual-odometry subsystem that is part of this system operates at a frame rate of 60 to 200 Hz, given optical-flow estimates. The overall system operates at an effective frame rate of 12 Hz. Moreover, unlike prior machine-vision systems for detecting motions of external objects, this system need not remain stationary: it can detect such motions while it is moving (even vibrating). The system includes a stereoscopic pair of cameras mounted on a moving robot. The outputs of the cameras are digitized, then processed to extract positions and velocities. The initial image-data-processing functions of this system are the same as those of some prior systems: Stereoscopy is used to compute three-dimensional (3D) positions for all pixels in the camera images. For each pixel of each image, optical flow between successive image frames is used to compute the two-dimensional (2D) apparent relative translational motion of the point transverse to the line of sight of the camera. The challenge in designing this system was to provide for utilization of the 3D information from stereoscopy in conjunction with the 2D information from optical flow to distinguish between motion of the camera pair and motions of external objects, compute the motion of the camera pair in all six degrees of translational and rotational freedom, and robustly estimate the motions of external objects, all in real time. To meet this challenge, the system is designed to perform the following image-data-processing functions: The visual-odometry subsystem (the subsystem that estimates the motion of the camera pair relative to the stationary background) utilizes the 3D information from stereoscopy and the 2D information from optical flow. It computes the relationship between the 3D and 2D motions and uses a least-mean-squares technique to estimate motion parameters. The least-mean-squares technique is suitable for real-time implementation when the number of external-moving-object pixels is smaller than the number of stationary-background pixels.
Wind estimates from cloud motions: Phase 1 of an in situ aircraft verification experiment
NASA Technical Reports Server (NTRS)
Hasler, A. F.; Shenk, W. E.; Skillman, W.
1974-01-01
An initial experiment was conducted to verify geostationary satellite derived cloud motion wind estimates with in situ aircraft wind velocity measurements. Case histories of one-half hour to two hours were obtained for 3-10km diameter cumulus cloud systems on 6 days. Also, one cirrus cloud case was obtained. In most cases the clouds were discrete enough that both the cloud motion and the ambient wind could be measured with the same aircraft Inertial Navigation System (INS). Since the INS drift error is the same for both the cloud motion and wind measurements, the drift error subtracts out of the relative motion determinations. The magnitude of the vector difference between the cloud motion and the ambient wind at the cloud base averaged 1.2 m/sec. The wind vector at higher levels in the cloud layer differed by about 3 m/sec to 5 m/sec from the cloud motion vector.
syris: a flexible and efficient framework for X-ray imaging experiments simulation.
Faragó, Tomáš; Mikulík, Petr; Ershov, Alexey; Vogelgesang, Matthias; Hänschke, Daniel; Baumbach, Tilo
2017-11-01
An open-source framework for conducting a broad range of virtual X-ray imaging experiments, syris, is presented. The simulated wavefield created by a source propagates through an arbitrary number of objects until it reaches a detector. The objects in the light path and the source are time-dependent, which enables simulations of dynamic experiments, e.g. four-dimensional time-resolved tomography and laminography. The high-level interface of syris is written in Python and its modularity makes the framework very flexible. The computationally demanding parts behind this interface are implemented in OpenCL, which enables fast calculations on modern graphics processing units. The combination of flexibility and speed opens new possibilities for studying novel imaging methods and systematic search of optimal combinations of measurement conditions and data processing parameters. This can help to increase the success rates and efficiency of valuable synchrotron beam time. To demonstrate the capabilities of the framework, various experiments have been simulated and compared with real data. To show the use case of measurement and data processing parameter optimization based on simulation, a virtual counterpart of a high-speed radiography experiment was created and the simulated data were used to select a suitable motion estimation algorithm; one of its parameters was optimized in order to achieve the best motion estimation accuracy when applied on the real data. syris was also used to simulate tomographic data sets under various imaging conditions which impact the tomographic reconstruction accuracy, and it is shown how the accuracy may guide the selection of imaging conditions for particular use cases.
NASA Astrophysics Data System (ADS)
Accardo, N.; Wiens, D. A.; Hernandez, S.; Aster, R. C.; Nyblade, A.; Anandakrishnan, S.; Huerta, A. D.; Wilson, T. J.
2011-12-01
We constrain azimuthal anisotropy in the Antarctic upper mantle using shear wave splitting parameters obtained from teleseismic SKS, SKKS, and PKS phases recorded at 30 broad-band seismometers deployed in West Antarctica, and the Transantarctic Mountains as a part of POLENET/ANET. The first seismometers were deployed in late 2007 and additional seismometers were deployed in 2008 and 2009. The seismometers generally operate year-round using solar power, insulated boxes, and either rechargeable AGM or primary lithium batteries. We used an eigenvalue technique to linearize the rotated and shifted shear wave particle motions and determine the best splitting parameters. Robust windows around the individual phases were chosen using the Teanby cluster-analysis algorithm. We visually inspected all results and assigned a quality rating based on factors including signal-to-noise ratios, particle motions, and error contours. The best results for each station were then stacked to get an average splitting direction and delay time. The delay times range from 0.33 to 1.33 s, but generally average about 1 s. We conclude that the splitting results from anisotropy in the upper mantle, since the large splitting times cannot be accumulated in the relatively thin crust (20-30 km) of the region. Overall, fast directions in West Antarctica are at large angles to the direction of Antarctic absolute plate motion in either hotspot or no-net rotation frameworks, showing that the anisotropic fabric does not result from shear associated with the motion of Antarctica over the mantle. The West Antarctic fast directions are also much different than those found in East Antarctica by previous studies. We suggest that the East Antarctic splitting results from anisotropy frozen into the cold cratonic continental lithosphere, whereas West Antarctic splitting is related to Cenozoic tectonism. Stations within the West Antarctic Rift System (WARS), a region of Cenozoic extension, show fast directions subparallel to the inferred WARS extension direction. Stations located in the Ellsworth-Whitmore Mountains (EWM) show fast directions parallel to those found within WARS. Furthermore, results from WARS and from EWM all show relatively large splitting times of 0.6 - 1.33 s. These results suggest upper mantle anisotropy that results from mantle flow and deformation related to the extensional deformation of the region. Two stations were installed in the Pensacola Mountains which are located grid-north of the EWM. The results from this region deviate from the dominant fast orientation seen in WARS but appear to be approximately perpendicular to the strike of the mountain range. Stations in Marie Byrd Land (MBL) show inconsistent fast directions and a wide range of delay times (0.3 - 0.9 s), perhaps as a result of complex mantle fabric related to a possible MBL hotspot.
An Integrated Processing Strategy for Mountain Glacier Motion Monitoring Based on SAR Images
NASA Astrophysics Data System (ADS)
Ruan, Z.; Yan, S.; Liu, G.; LV, M.
2017-12-01
Mountain glacier dynamic variables are important parameters in studies of environment and climate change in High Mountain Asia. Due to the increasing events of abnormal glacier-related hazards, research of monitoring glacier movements has attracted more interest during these years. Glacier velocities are sensitive and changing fast under complex conditions of high mountain regions, which implies that analysis of glacier dynamic changes requires comprehensive and frequent observations with relatively high accuracy. Synthetic aperture radar (SAR) has been successfully exploited to detect glacier motion in a number of previous studies, usually with pixel-tracking and interferometry methods. However, the traditional algorithms applied to mountain glacier regions are constrained by the complex terrain and diverse glacial motion types. Interferometry techniques are prone to fail in mountain glaciers because of their narrow size and the steep terrain, while pixel-tracking algorithm, which is more robust in high mountain areas, is subject to accuracy loss. In order to derive glacier velocities continually and efficiently, we propose a modified strategy to exploit SAR data information for mountain glaciers. In our approach, we integrate a set of algorithms for compensating non-glacial-motion-related signals which exist in the offset values retrieved by sub-pixel cross-correlation of SAR image pairs. We exploit modified elastic deformation model to remove the offsets associated with orbit and sensor attitude, and for the topographic residual offset we utilize a set of operations including DEM-assisted compensation algorithm and wavelet-based algorithm. At the last step of the flow, an integrated algorithm combining phase and intensity information of SAR images will be used to improve regional motion results failed in cross-correlation related processing. The proposed strategy is applied to the West Kunlun Mountain and Muztagh Ata region in western China using ALOS/PALSAR data. The results show that the strategy can effectively improve the accuracy of velocity estimation by reducing the mean and standard deviation values from 0.32 m and 0.4 m to 0.16 m. It is proved to be highly appropriate for monitoring glacier motion over a widely varying range of ice velocities with a relatively high accuracy.
A unified analysis of crustal motion in Southern California, 1970-2004: The SCEC crustal motion map
NASA Astrophysics Data System (ADS)
Shen, Z.-K.; King, R. W.; Agnew, D. C.; Wang, M.; Herring, T. A.; Dong, D.; Fang, P.
2011-11-01
To determine crustal motions in and around southern California, we have processed and combined trilateration data collected from 1970 to 1992, VLBI data from 1979 to 1992, and GPS data from 1986 to 2004: a long temporal coverage required in part by the occurrence of several large earthquakes in this region. From a series of solutions for station positions, we have estimated interseismic velocities, coseismic displacements, and postseismic motions. Within the region from 31°N to 38°N. and east to 114°W, the final product includes estimated horizontal velocities for 1009 GPS, 190 trilateration, and 16 VLBI points, with ties between some of these used to stabilize the solution. All motions are relative to the Stable North American Reference Frame (SNARF) as realized through the velocities of 20 GPS stations. This provides a relatively dense set of horizontal velocity estimates, with well-tested errors, for the past quarter century over the plate boundary from 31°N to 36.5°N. These velocities agree well with those from the Plate Boundary Observatory, which apply to a later time period. We also estimated vertical velocities, 533 of which have errors below 2 mm/yr. Most of these velocities are less than 1 mm/yr, but they show 2-4 mm/yr subsidence in the Ventura and Los Angeles basins and in the Salton Trough. Our analysis also included estimates of coseismic and postseismic motions related to the 1992 Landers, 1994 Northridge, 1999 Hector Mine, and 2003 San Simeon earthquakes. Postseismic motions increase logarithmically over time with a time constant of about 10 days, and generally mimic the direction and relative amplitude of the coseismic offsets.
Cluster membership probability: polarimetric approach
NASA Astrophysics Data System (ADS)
Medhi, Biman J.; Tamura, Motohide
2013-04-01
Interstellar polarimetric data of the six open clusters Hogg 15, NGC 6611, NGC 5606, NGC 6231, NGC 5749 and NGC 6250 have been used to estimate the membership probability for the stars within them. For proper-motion member stars, the membership probability estimated using the polarimetric data is in good agreement with the proper-motion cluster membership probability. However, for proper-motion non-member stars, the membership probability estimated by the polarimetric method is in total disagreement with the proper-motion cluster membership probability. The inconsistencies in the determined memberships may be because of the fundamental differences between the two methods of determination: one is based on stellar proper motion in space and the other is based on selective extinction of the stellar output by the asymmetric aligned dust grains present in the interstellar medium. The results and analysis suggest that the scatter of the Stokes vectors q (per cent) and u (per cent) for the proper-motion member stars depends on the interstellar and intracluster differential reddening in the open cluster. It is found that this method could be used to estimate the cluster membership probability if we have additional polarimetric and photometric information for a star to identify it as a probable member/non-member of a particular cluster, such as the maximum wavelength value (λmax), the unit weight error of the fit (σ1), the dispersion in the polarimetric position angles (overline{ɛ }), reddening (E(B - V)) or the differential intracluster reddening (ΔE(B - V)). This method could also be used to estimate the membership probability of known member stars having no membership probability as well as to resolve disagreements about membership among different proper-motion surveys.
Real-time soft tissue motion estimation for lung tumors during radiotherapy delivery
Rottmann, Joerg; Keall, Paul; Berbeco, Ross
2013-01-01
Purpose: To provide real-time lung tumor motion estimation during radiotherapy treatment delivery without the need for implanted fiducial markers or additional imaging dose to the patient. Methods: 2D radiographs from the therapy beam's-eye-view (BEV) perspective are captured at a frame rate of 12.8 Hz with a frame grabber allowing direct RAM access to the image buffer. An in-house developed real-time soft tissue localization algorithm is utilized to calculate soft tissue displacement from these images in real-time. The system is tested with a Varian TX linear accelerator and an AS-1000 amorphous silicon electronic portal imaging device operating at a resolution of 512 × 384 pixels. The accuracy of the motion estimation is verified with a dynamic motion phantom. Clinical accuracy was tested on lung SBRT images acquired at 2 fps. Results: Real-time lung tumor motion estimation from BEV images without fiducial markers is successfully demonstrated. For the phantom study, a mean tracking error <1.0 mm [root mean square (rms) error of 0.3 mm] was observed. The tracking rms accuracy on BEV images from a lung SBRT patient (≈20 mm tumor motion range) is 1.0 mm. Conclusions: The authors demonstrate for the first time real-time markerless lung tumor motion estimation from BEV images alone. The described system can operate at a frame rate of 12.8 Hz and does not require prior knowledge to establish traceable landmarks for tracking on the fly. The authors show that the geometric accuracy is similar to (or better than) previously published markerless algorithms not operating in real-time. PMID:24007146
Westneat; Hale; Mchenry; Long
1998-11-01
The fast-start escape response is a rapid, powerful body motion used to generate high accelerations of the body in virtually all fishes. Although the neurobiology and behavior of the fast-start are often studied, the patterns of muscle activity and muscle force production during escape are less well understood. We studied the fast-starts of two basal actinopterygian fishes (Amia calva and Polypterus palmas) to investigate the functional morphology of the fast-start and the role of intramuscular pressure (IMP) in escape behavior. Our goals were to determine whether IMP increases during fast starts, to look for associations between muscle activity and elevated IMP, and to determine the functional role of IMP in the mechanics of the escape response. We simultaneously recorded the kinematics, muscle activity patterns and IMP of four A. calva and three P. palmas during the escape response. Both species generated high IMPs of up to 90 kPa (nearly 1 atmosphere) above ambient during the fast-start. The two species showed similar pressure magnitudes but had significantly different motor patterns and escape performance. Stage 1 of the fast-start was generated by simultaneous contraction of locomotor muscle on both sides of the body, although electromyogram amplitudes on the contralateral (convex) side of the fish were significantly lower than on the ipsilateral (concave) side. Simultaneous recordings of IMP, escape motion and muscle activity suggest that pressure change is caused by the contraction and radial swelling of cone-shaped myomeres. We develop a model of IMP production that incorporates myomere geometry, the concept of constant-volume muscular hydrostats, the relationship between fiber angle and muscle force, and the forces that muscle fibers produce. The timing profile of pressure change, behavior and muscle action indicates that elevated muscle pressure is a mechanism of stiffening the body and functions in force transmission during the escape response.
Multiple feature fusion via covariance matrix for visual tracking
NASA Astrophysics Data System (ADS)
Jin, Zefenfen; Hou, Zhiqiang; Yu, Wangsheng; Wang, Xin; Sun, Hui
2018-04-01
Aiming at the problem of complicated dynamic scenes in visual target tracking, a multi-feature fusion tracking algorithm based on covariance matrix is proposed to improve the robustness of the tracking algorithm. In the frame-work of quantum genetic algorithm, this paper uses the region covariance descriptor to fuse the color, edge and texture features. It also uses a fast covariance intersection algorithm to update the model. The low dimension of region covariance descriptor, the fast convergence speed and strong global optimization ability of quantum genetic algorithm, and the fast computation of fast covariance intersection algorithm are used to improve the computational efficiency of fusion, matching, and updating process, so that the algorithm achieves a fast and effective multi-feature fusion tracking. The experiments prove that the proposed algorithm can not only achieve fast and robust tracking but also effectively handle interference of occlusion, rotation, deformation, motion blur and so on.
Offline Performance of the Filter Bank EEW Algorithm in the 2014 M6.0 South Napa Earthquake
NASA Astrophysics Data System (ADS)
Meier, M. A.; Heaton, T. H.; Clinton, J. F.
2014-12-01
Medium size events like the M6.0 South Napa earthquake are very challenging for EEW: the damage such events produce can be severe, but it is generally confined to relatively small zones around the epicenter and the shaking duration is short. This leaves a very short window for timely EEW alerts. Algorithms that wait for several stations to trigger before sending out EEW alerts are typically not fast enough for these kind of events because their blind zone (the zone where strong ground motions start before the warnings arrive) typically covers all or most of the area that experiences strong ground motions. At the same time, single station algorithms are often too unreliable to provide useful alerts. The filter bank EEW algorithm is a new algorithm that is designed to provide maximally accurate and precise earthquake parameter estimates with minimum data input, with the goal of producing reliable EEW alerts when only a very small number of stations have been reached by the p-wave. It combines the strengths of single station and network based algorithms in that it starts parameter estimates as soon as 0.5 seconds of data are available from the first station, but then perpetually incorporates additional data from the same or from any number of other stations. The algorithm analyzes the time dependent frequency content of real time waveforms with a filter bank. It then uses an extensive training data set to find earthquake records from the past that have had similar frequency content at a given time since the p-wave onset. The source parameters of the most similar events are used to parameterize a likelihood function for the source parameters of the ongoing event, which can then be maximized to find the most likely parameter estimates. Our preliminary results show that the filter bank EEW algorithm correctly estimated the magnitude of the South Napa earthquake to be ~M6 with only 1 second worth of data at the nearest station to the epicenter. This estimate is then confirmed when updates based on more data from stations at farther distances become available. Because these early estimates saturate at ~M6.5, however, the magnitude estimate might have had to be considered a minimum bound.
A Robust Method for Ego-Motion Estimation in Urban Environment Using Stereo Camera.
Ci, Wenyan; Huang, Yingping
2016-10-17
Visual odometry estimates the ego-motion of an agent (e.g., vehicle and robot) using image information and is a key component for autonomous vehicles and robotics. This paper proposes a robust and precise method for estimating the 6-DoF ego-motion, using a stereo rig with optical flow analysis. An objective function fitted with a set of feature points is created by establishing the mathematical relationship between optical flow, depth and camera ego-motion parameters through the camera's 3-dimensional motion and planar imaging model. Accordingly, the six motion parameters are computed by minimizing the objective function, using the iterative Levenberg-Marquard method. One of key points for visual odometry is that the feature points selected for the computation should contain inliers as much as possible. In this work, the feature points and their optical flows are initially detected by using the Kanade-Lucas-Tomasi (KLT) algorithm. A circle matching is followed to remove the outliers caused by the mismatching of the KLT algorithm. A space position constraint is imposed to filter out the moving points from the point set detected by the KLT algorithm. The Random Sample Consensus (RANSAC) algorithm is employed to further refine the feature point set, i.e., to eliminate the effects of outliers. The remaining points are tracked to estimate the ego-motion parameters in the subsequent frames. The approach presented here is tested on real traffic videos and the results prove the robustness and precision of the method.
A Robust Method for Ego-Motion Estimation in Urban Environment Using Stereo Camera
Ci, Wenyan; Huang, Yingping
2016-01-01
Visual odometry estimates the ego-motion of an agent (e.g., vehicle and robot) using image information and is a key component for autonomous vehicles and robotics. This paper proposes a robust and precise method for estimating the 6-DoF ego-motion, using a stereo rig with optical flow analysis. An objective function fitted with a set of feature points is created by establishing the mathematical relationship between optical flow, depth and camera ego-motion parameters through the camera’s 3-dimensional motion and planar imaging model. Accordingly, the six motion parameters are computed by minimizing the objective function, using the iterative Levenberg–Marquard method. One of key points for visual odometry is that the feature points selected for the computation should contain inliers as much as possible. In this work, the feature points and their optical flows are initially detected by using the Kanade–Lucas–Tomasi (KLT) algorithm. A circle matching is followed to remove the outliers caused by the mismatching of the KLT algorithm. A space position constraint is imposed to filter out the moving points from the point set detected by the KLT algorithm. The Random Sample Consensus (RANSAC) algorithm is employed to further refine the feature point set, i.e., to eliminate the effects of outliers. The remaining points are tracked to estimate the ego-motion parameters in the subsequent frames. The approach presented here is tested on real traffic videos and the results prove the robustness and precision of the method. PMID:27763508
NASA Technical Reports Server (NTRS)
Parker, D. E.; Wood, D. L.; Gulledge, W. L.; Goodrich, R. L.
1979-01-01
Two types of experiments concerning the estimated magnitude of self-motion during exposure to linear oscillation on a parallel swing are described in this paper. Experiment I examined changes in magnitude estimation as a function of variation of the subject's head orientation, and Experiments II a, II b, and II c assessed changes in magnitude estimation performance following exposure to sustained, 'intense' linear oscillation (fatigue-inducting stimulation). The subjects' performance was summarized employing Stevens' power law R = k x S to the nth, where R is perceived self-motion magnitude, k is a constant, S is amplitude of linear oscillation, and n is an exponent). The results of Experiment I indicated that the exponents, n, for the magnitude estimation functions varied with head orientation and were greatest when the head was oriented 135 deg off the vertical. In Experiments II a-c, the magnitude estimation function exponents were increased following fatigue. Both types of experiments suggest ways in which the vestibular system's contribution to a spatial orientation perceptual system may vary. This variability may be a contributing factor to the development of pilot/astronaut disorientation and may also be implicated in the occurrence of motion sickness.
NASA Astrophysics Data System (ADS)
Oohashi, K.; Akasegawa, K.; Hasebe, N.; Miura, K.; Minomo, Y.
2017-12-01
Luminescence dating methods such as OSL and TL are mainly used to characterize an age of sediments based on trapping of electron by natural radiation exposure. Recent research suggests its potential applicability for direct age measurement of faulting. The idea behind to the luminescence dating for a determination of paleo-earthquake event is the accumulated natural radiation damage in intra-fault materials becomes to zero by the frictional heating and/or grinding. However, a relationship between fault motion and annihilation of luminescence signals, and its mechanism has not been understood. In this study, we conduct low- to high-velocity friction experiments using quartz gouge under various displacements and moisture conditions to establish an empirical relationship of OSL signal change upon shearing. In the friction experiments, we used quartz grains of <150 μm separated from the Cretaceous granite, taken from the east wall of the Nojima fault Ogura trench site, western Japan, as an analogue gouge. Our results of the OSL measurements are (1) <75 μm fraction of sheared gouge have high fast component ratio than the pre-sheared grains, (2) the fast component ratio of <75 μm fraction increases with increasing slip rate from 200 μm/s to 0.13 m, (3) OSL signal becomes to zero in the experiment sheared under 0.65 m/s. The increase of the fast component ratio found in relatively low slip-rate experiments may be caused by addition of ionized electrons, that emitted from newly formed fracture surface during comminution, in electron center. The signal zeroing observed in the high-velocity friction experiment is attributable to rapid frictional heating up to 700 °C estimated by temperature measurement and calculation. Based on the calculation of frictional energy we added to the experiment sheared under 0.65 m/s, we estimated the zeroing depth in natural conditions of earthquake (1.6 m in displacement) to 192 m.
MR-assisted PET Motion Correction for eurological Studies in an Integrated MR-PET Scanner
Catana, Ciprian; Benner, Thomas; van der Kouwe, Andre; Byars, Larry; Hamm, Michael; Chonde, Daniel B.; Michel, Christian J.; El Fakhri, Georges; Schmand, Matthias; Sorensen, A. Gregory
2011-01-01
Head motion is difficult to avoid in long PET studies, degrading the image quality and offsetting the benefit of using a high-resolution scanner. As a potential solution in an integrated MR-PET scanner, the simultaneously acquired MR data can be used for motion tracking. In this work, a novel data processing and rigid-body motion correction (MC) algorithm for the MR-compatible BrainPET prototype scanner is described and proof-of-principle phantom and human studies are presented. Methods To account for motion, the PET prompts and randoms coincidences as well as the sensitivity data are processed in the line or response (LOR) space according to the MR-derived motion estimates. After sinogram space rebinning, the corrected data are summed and the motion corrected PET volume is reconstructed from these sinograms and the attenuation and scatter sinograms in the reference position. The accuracy of the MC algorithm was first tested using a Hoffman phantom. Next, human volunteer studies were performed and motion estimates were obtained using two high temporal resolution MR-based motion tracking techniques. Results After accounting for the physical mismatch between the two scanners, perfectly co-registered MR and PET volumes are reproducibly obtained. The MR output gates inserted in to the PET list-mode allow the temporal correlation of the two data sets within 0.2 s. The Hoffman phantom volume reconstructed processing the PET data in the LOR space was similar to the one obtained processing the data using the standard methods and applying the MC in the image space, demonstrating the quantitative accuracy of the novel MC algorithm. In human volunteer studies, motion estimates were obtained from echo planar imaging and cloverleaf navigator sequences every 3 seconds and 20 ms, respectively. Substantially improved PET images with excellent delineation of specific brain structures were obtained after applying the MC using these MR-based estimates. Conclusion A novel MR-based MC algorithm was developed for the integrated MR-PET scanner. High temporal resolution MR-derived motion estimates (obtained while simultaneously acquiring anatomical or functional MR data) can be used for PET MC. An MR-based MC has the potential to improve PET as a quantitative method, increasing its reliability and reproducibility which could benefit a large number of neurological applications. PMID:21189415
Molecular dynamics simulation of nonlinear spectroscopies of intermolecular motions in liquid water.
Yagasaki, Takuma; Saito, Shinji
2009-09-15
Water is the most extensively studied of liquids because of both its ubiquity and its anomalous thermodynamic and dynamic properties. The properties of water are dominated by hydrogen bonds and hydrogen bond network rearrangements. Fundamental information on the dynamics of liquid water has been provided by linear infrared (IR), Raman, and neutron-scattering experiments; molecular dynamics simulations have also provided insights. Recently developed higher-order nonlinear spectroscopies open new windows into the study of the hydrogen bond dynamics of liquid water. For example, the vibrational lifetimes of stretches and a bend, intramolecular features of water dynamics, can be accurately measured and are found to be on the femtosecond time scale at room temperature. Higher-order nonlinear spectroscopy is expressed by a multitime correlation function, whereas traditional linear spectroscopy is given by a one-time correlation function. Thus, nonlinear spectroscopy yields more detailed information on the dynamics of condensed media than linear spectroscopy. In this Account, we describe the theoretical background and methods for calculating higher order nonlinear spectroscopy; equilibrium and nonequilibrium molecular dynamics simulations, and a combination of both, are used. We also present the intermolecular dynamics of liquid water revealed by fifth-order two-dimensional (2D) Raman spectroscopy and third-order IR spectroscopy. 2D Raman spectroscopy is sensitive to couplings between modes; the calculated 2D Raman signal of liquid water shows large anharmonicity in the translational motion and strong coupling between the translational and librational motions. Third-order IR spectroscopy makes it possible to examine the time-dependent couplings. The 2D IR spectra and three-pulse photon echo peak shift show the fast frequency modulation of the librational motion. A significant effect of the translational motion on the fast frequency modulation of the librational motion is elucidated by introducing the "translation-free" molecular dynamics simulation. The isotropic pump-probe signal and the polarization anisotropy decay show fast transfer of the librational energy to the surrounding water molecules, followed by relaxation to the hot ground state. These theoretical methods do not require frequently used assumptions and can thus be called ab initio methods; together with multidimensional nonlinear spectroscopies, they provide powerful methods for examining the inter- and intramolecular details of water dynamics.
Dependence of muscle moment arms on in-vivo three-dimensional kinematics of the knee
Navacchia, Alessandro; Kefala, Vasiliki; Shelburne, Kevin B.
2016-01-01
Quantification of muscle moment arms is important for clinical evaluation of muscle pathology and treatment, and for estimating muscle and joint forces in musculoskeletal models. Moment arms estimated with musculoskeletal models often assume a default motion of the knee derived from measurements of passive cadaveric flexion. However, knee kinematics are unique to each person and activity. The objective of this study was to estimate moment arms of the knee muscles with in vivo subject- and activity-specific kinematics from seven healthy subjects performing seated knee extension and single-leg lunge to show changes between subjects and activities. 3D knee motion was measured with a high-speed stereo-radiography system. Moment arms of ten muscles were estimated in OpenSim by replacing the default knee motion with in vivo measurements. Estimated inter-subject moment arm variability was similar to previously reported in vitro measurements. RMS deviations up to 9.0 mm (35.2% of peak value) were observed between moment arms estimated with subject-specific knee extension and passive cadaveric motion. The degrees of freedom that most impacted inter-activity differences were superior/inferior and anterior/posterior translations. Musculoskeletal simulations used to estimate in vivo muscle forces and joint loads may provide significantly different results when subject- and activity-specific kinematics are implemented. PMID:27620064
Dependence of Muscle Moment Arms on In Vivo Three-Dimensional Kinematics of the Knee.
Navacchia, Alessandro; Kefala, Vasiliki; Shelburne, Kevin B
2017-03-01
Quantification of muscle moment arms is important for clinical evaluation of muscle pathology and treatment, and for estimating muscle and joint forces in musculoskeletal models. Moment arms estimated with musculoskeletal models often assume a default motion of the knee derived from measurements of passive cadaveric flexion. However, knee kinematics are unique to each person and activity. The objective of this study was to estimate moment arms of the knee muscles with in vivo subject- and activity-specific kinematics from seven healthy subjects performing seated knee extension and single-leg lunge to show changes between subjects and activities. 3D knee motion was measured with a high-speed stereo-radiography system. Moment arms of ten muscles were estimated in OpenSim by replacing the default knee motion with in vivo measurements. Estimated inter-subject moment arm variability was similar to previously reported in vitro measurements. RMS deviations up to 9.0 mm (35.2% of peak value) were observed between moment arms estimated with subject-specific knee extension and passive cadaveric motion. The degrees of freedom that most impacted inter-activity differences were superior/inferior and anterior/posterior translations. Musculoskeletal simulations used to estimate in vivo muscle forces and joint loads may provide significantly different results when subject- and activity-specific kinematics are implemented.
Deblurring for spatial and temporal varying motion with optical computing
NASA Astrophysics Data System (ADS)
Xiao, Xiao; Xue, Dongfeng; Hui, Zhao
2016-05-01
A way to estimate and remove spatially and temporally varying motion blur is proposed, which is based on an optical computing system. The translation and rotation motion can be independently estimated from the joint transform correlator (JTC) system without iterative optimization. The inspiration comes from the fact that the JTC system is immune to rotation motion in a Cartesian coordinate system. The work scheme of the JTC system is designed to keep switching between the Cartesian coordinate system and polar coordinate system in different time intervals with the ping-pang handover. In the ping interval, the JTC system works in the Cartesian coordinate system to obtain a translation motion vector with optical computing speed. In the pang interval, the JTC system works in the polar coordinate system. The rotation motion is transformed to the translation motion through coordinate transformation. Then the rotation motion vector can also be obtained from JTC instantaneously. To deal with continuous spatially variant motion blur, submotion vectors based on the projective motion path blur model are proposed. The submotion vectors model is more effective and accurate at modeling spatially variant motion blur than conventional methods. The simulation and real experiment results demonstrate its overall effectiveness.
Aging and the Visual Perception of Motion Direction: Solving the Aperture Problem.
Shain, Lindsey M; Norman, J Farley
2018-07-01
An experiment required younger and older adults to estimate coherent visual motion direction from multiple motion signals, where each motion signal was locally ambiguous with respect to the true direction of pattern motion. Thus, accurate performance required the successful integration of motion signals across space (i.e., accurate performance required solution of the aperture problem) . The observers viewed arrays of either 64 or 9 moving line segments; because these lines moved behind apertures, their individual local motions were ambiguous with respect to direction (i.e., were subject to the aperture problem). Following 2.4 seconds of pattern motion on each trial (true motion directions ranged over the entire range of 360° in the fronto-parallel plane), the observers estimated the coherent direction of motion. There was an effect of direction, such that cardinal directions of pattern motion were judged with less error than oblique directions. In addition, a large effect of aging occurred-The average absolute errors of the older observers were 46% and 30.4% higher in magnitude than those exhibited by the younger observers for the 64 and 9 aperture conditions, respectively. Finally, the observers' precision markedly deteriorated as the number of apertures was reduced from 64 to 9.
Superfast 3D shape measurement of a flapping flight process with motion based segmentation
NASA Astrophysics Data System (ADS)
Li, Beiwen
2018-02-01
Flapping flight has drawn interests from different fields including biology, aerodynamics and robotics. For such research, the digital fringe projection technology using defocused binary image projection has superfast (e.g. several kHz) measurement capabilities with digital-micromirror-device, yet its measurement quality is still subject to the motion of flapping flight. This research proposes a novel computational framework for dynamic 3D shape measurement of a flapping flight process. The fast and slow motion parts are separately reconstructed with Fourier transform and phase shifting. Experiments demonstrate its success by measuring a flapping wing robot (image acquisition rate: 5000 Hz; flapping speed: 25 cycles/second).
Extreme fluctuations of active Brownian motion
NASA Astrophysics Data System (ADS)
Pietzonka, Patrick; Kleinbeck, Kevin; Seifert, Udo
2016-05-01
In active Brownian motion, an internal propulsion mechanism interacts with translational and rotational thermal noise and other internal fluctuations to produce directed motion. We derive the distribution of its extreme fluctuations and identify its universal properties using large deviation theory. The limits of slow and fast internal dynamics give rise to a kink-like and parabolic behavior of the corresponding rate functions, respectively. For dipolar Janus particles in two- and three-dimensions interacting with a field, we predict a novel symmetry akin to, but different from, the one related to entropy production. Measurements of these extreme fluctuations could thus be used to infer properties of the underlying, often hidden, network of states.
NASA Astrophysics Data System (ADS)
Lee, K. C.
2013-02-01
Multifractional Brownian motions have become popular as flexible models in describing real-life signals of high-frequency features in geoscience, microeconomics, and turbulence, to name a few. The time-changing Hurst exponent, which describes regularity levels depending on time measurements, and variance, which relates to an energy level, are two parameters that characterize multifractional Brownian motions. This research suggests a combined method of estimating the time-changing Hurst exponent and variance using the local variation of sampled paths of signals. The method consists of two phases: initially estimating global variance and then accurately estimating the time-changing Hurst exponent. A simulation study shows its performance in estimation of the parameters. The proposed method is applied to characterization of atmospheric stability in which descriptive statistics from the estimated time-changing Hurst exponent and variance classify stable atmosphere flows from unstable ones.
Sasaki, Ryo; Angelaki, Dora E; DeAngelis, Gregory C
2017-11-15
We use visual image motion to judge the movement of objects, as well as our own movements through the environment. Generally, image motion components caused by object motion and self-motion are confounded in the retinal image. Thus, to estimate heading, the brain would ideally marginalize out the effects of object motion (or vice versa), but little is known about how this is accomplished neurally. Behavioral studies suggest that vestibular signals play a role in dissociating object motion and self-motion, and recent computational work suggests that a linear decoder can approximate marginalization by taking advantage of diverse multisensory representations. By measuring responses of MSTd neurons in two male rhesus monkeys and by applying a recently-developed method to approximate marginalization by linear population decoding, we tested the hypothesis that vestibular signals help to dissociate self-motion and object motion. We show that vestibular signals stabilize tuning for heading in neurons with congruent visual and vestibular heading preferences, whereas they stabilize tuning for object motion in neurons with discrepant preferences. Thus, vestibular signals enhance the separability of joint tuning for object motion and self-motion. We further show that a linear decoder, designed to approximate marginalization, allows the population to represent either self-motion or object motion with good accuracy. Decoder weights are broadly consistent with a readout strategy, suggested by recent computational work, in which responses are decoded according to the vestibular preferences of multisensory neurons. These results demonstrate, at both single neuron and population levels, that vestibular signals help to dissociate self-motion and object motion. SIGNIFICANCE STATEMENT The brain often needs to estimate one property of a changing environment while ignoring others. This can be difficult because multiple properties of the environment may be confounded in sensory signals. The brain can solve this problem by marginalizing over irrelevant properties to estimate the property-of-interest. We explore this problem in the context of self-motion and object motion, which are inherently confounded in the retinal image. We examine how diversity in a population of multisensory neurons may be exploited to decode self-motion and object motion from the population activity of neurons in macaque area MSTd. Copyright © 2017 the authors 0270-6474/17/3711204-16$15.00/0.
Panichi, R; Faralli, M; Bruni, R; Kiriakarely, A; Occhigrossi, C; Ferraresi, A; Bronstein, A M; Pettorossi, V E
2017-11-01
Self-motion perception was studied in patients with unilateral vestibular lesions (UVL) due to acute vestibular neuritis at 1 wk and 4, 8, and 12 mo after the acute episode. We assessed vestibularly mediated self-motion perception by measuring the error in reproducing the position of a remembered visual target at the end of four cycles of asymmetric whole-body rotation. The oscillatory stimulus consists of a slow (0.09 Hz) and a fast (0.38 Hz) half cycle. A large error was present in UVL patients when the slow half cycle was delivered toward the lesion side, but minimal toward the healthy side. This asymmetry diminished over time, but it remained abnormally large at 12 mo. In contrast, vestibulo-ocular reflex responses showed a large direction-dependent error only initially, then they normalized. Normalization also occurred for conventional reflex vestibular measures (caloric tests, subjective visual vertical, and head shaking nystagmus) and for perceptual function during symmetric rotation. Vestibular-related handicap, measured with the Dizziness Handicap Inventory (DHI) at 12 mo correlated with self-motion perception asymmetry but not with abnormalities in vestibulo-ocular function. We conclude that 1 ) a persistent self-motion perceptual bias is revealed by asymmetric rotation in UVLs despite vestibulo-ocular function becoming symmetric over time, 2 ) this dissociation is caused by differential perceptual-reflex adaptation to high- and low-frequency rotations when these are combined as with our asymmetric stimulus, 3 ) the findings imply differential central compensation for vestibuloperceptual and vestibulo-ocular reflex functions, and 4 ) self-motion perception disruption may mediate long-term vestibular-related handicap in UVL patients. NEW & NOTEWORTHY A novel vestibular stimulus, combining asymmetric slow and fast sinusoidal half cycles, revealed persistent vestibuloperceptual dysfunction in unilateral vestibular lesion (UVL) patients. The compensation of motion perception after UVL was slower than that of vestibulo-ocular reflex. Perceptual but not vestibulo-ocular reflex deficits correlated with dizziness-related handicap. Copyright © 2017 the American Physiological Society.
Bounded Kalman filter method for motion-robust, non-contact heart rate estimation
Prakash, Sakthi Kumar Arul; Tucker, Conrad S.
2018-01-01
The authors of this work present a real-time measurement of heart rate across different lighting conditions and motion categories. This is an advancement over existing remote Photo Plethysmography (rPPG) methods that require a static, controlled environment for heart rate detection, making them impractical for real-world scenarios wherein a patient may be in motion, or remotely connected to a healthcare provider through telehealth technologies. The algorithm aims to minimize motion artifacts such as blurring and noise due to head movements (uniform, random) by employing i) a blur identification and denoising algorithm for each frame and ii) a bounded Kalman filter technique for motion estimation and feature tracking. A case study is presented that demonstrates the feasibility of the algorithm in non-contact estimation of the pulse rate of subjects performing everyday head and body movements. The method in this paper outperforms state of the art rPPG methods in heart rate detection, as revealed by the benchmarked results. PMID:29552419
Angelaki, Dora E
2017-01-01
Brainstem and cerebellar neurons implement an internal model to accurately estimate self-motion during externally generated (‘passive’) movements. However, these neurons show reduced responses during self-generated (‘active’) movements, indicating that predicted sensory consequences of motor commands cancel sensory signals. Remarkably, the computational processes underlying sensory prediction during active motion and their relationship to internal model computations during passive movements remain unknown. We construct a Kalman filter that incorporates motor commands into a previously established model of optimal passive self-motion estimation. The simulated sensory error and feedback signals match experimentally measured neuronal responses during active and passive head and trunk rotations and translations. We conclude that a single sensory internal model can combine motor commands with vestibular and proprioceptive signals optimally. Thus, although neurons carrying sensory prediction error or feedback signals show attenuated modulation, the sensory cues and internal model are both engaged and critically important for accurate self-motion estimation during active head movements. PMID:29043978
Li, Dachuan; Li, Qing; Cheng, Nong; Song, Jingyan
2014-11-18
This paper presents a real-time motion planning approach for autonomous vehicles with complex dynamics and state uncertainty. The approach is motivated by the motion planning problem for autonomous vehicles navigating in GPS-denied dynamic environments, which involves non-linear and/or non-holonomic vehicle dynamics, incomplete state estimates, and constraints imposed by uncertain and cluttered environments. To address the above motion planning problem, we propose an extension of the closed-loop rapid belief trees, the closed-loop random belief trees (CL-RBT), which incorporates predictions of the position estimation uncertainty, using a factored form of the covariance provided by the Kalman filter-based estimator. The proposed motion planner operates by incrementally constructing a tree of dynamically feasible trajectories using the closed-loop prediction, while selecting candidate paths with low uncertainty using efficient covariance update and propagation. The algorithm can operate in real-time, continuously providing the controller with feasible paths for execution, enabling the vehicle to account for dynamic and uncertain environments. Simulation results demonstrate that the proposed approach can generate feasible trajectories that reduce the state estimation uncertainty, while handling complex vehicle dynamics and environment constraints.
Li, Dachuan; Li, Qing; Cheng, Nong; Song, Jingyan
2014-01-01
This paper presents a real-time motion planning approach for autonomous vehicles with complex dynamics and state uncertainty. The approach is motivated by the motion planning problem for autonomous vehicles navigating in GPS-denied dynamic environments, which involves non-linear and/or non-holonomic vehicle dynamics, incomplete state estimates, and constraints imposed by uncertain and cluttered environments. To address the above motion planning problem, we propose an extension of the closed-loop rapid belief trees, the closed-loop random belief trees (CL-RBT), which incorporates predictions of the position estimation uncertainty, using a factored form of the covariance provided by the Kalman filter-based estimator. The proposed motion planner operates by incrementally constructing a tree of dynamically feasible trajectories using the closed-loop prediction, while selecting candidate paths with low uncertainty using efficient covariance update and propagation. The algorithm can operate in real-time, continuously providing the controller with feasible paths for execution, enabling the vehicle to account for dynamic and uncertain environments. Simulation results demonstrate that the proposed approach can generate feasible trajectories that reduce the state estimation uncertainty, while handling complex vehicle dynamics and environment constraints. PMID:25412217
Zhang, Yi; Chen, Lihan
2016-01-01
Recent studies of brain plasticity that pertain to time perception have shown that fast training of temporal discrimination in one modality, for example, the auditory modality, can improve performance of temporal discrimination in another modality, such as the visual modality. We here examined whether the perception of visual Ternus motion could be recalibrated through fast crossmodal statistical binding of temporal information and stimuli properties binding. We conducted two experiments, composed of three sessions each: pre-test, learning, and post-test. In both the pre-test and the post-test, participants classified the Ternus display as either “element motion” or “group motion.” For the training session in Experiment 1, we constructed two types of temporal structures, in which two consecutively presented sound beeps were dominantly (80%) flanked by one leading visual Ternus frame and by one lagging visual Ternus frame (VAAV) or dominantly inserted by two Ternus visual frames (AVVA). Participants were required to respond which interval (auditory vs. visual) was longer. In Experiment 2, we presented only a single auditory–visual pair but with similar temporal configurations as in Experiment 1, and asked participants to perform an audio–visual temporal order judgment. The results of these two experiments support that statistical binding of temporal information and stimuli properties can quickly and selectively recalibrate the sensitivity of perceiving visual motion, according to the protocols of the specific bindings. PMID:27065910
Slama, Matous; Benes, Peter M.; Bila, Jiri
2015-01-01
During radiotherapy treatment for thoracic and abdomen cancers, for example, lung cancers, respiratory motion moves the target tumor and thus badly affects the accuracy of radiation dose delivery into the target. A real-time image-guided technique can be used to monitor such lung tumor motion for accurate dose delivery, but the system latency up to several hundred milliseconds for repositioning the radiation beam also affects the accuracy. In order to compensate the latency, neural network prediction technique with real-time retraining can be used. We have investigated real-time prediction of 3D time series of lung tumor motion on a classical linear model, perceptron model, and on a class of higher-order neural network model that has more attractive attributes regarding its optimization convergence and computational efficiency. The implemented static feed-forward neural architectures are compared when using gradient descent adaptation and primarily the Levenberg-Marquardt batch algorithm as the ones of the most common and most comprehensible learning algorithms. The proposed technique resulted in fast real-time retraining, so the total computational time on a PC platform was equal to or even less than the real treatment time. For one-second prediction horizon, the proposed techniques achieved accuracy less than one millimeter of 3D mean absolute error in one hundred seconds of total treatment time. PMID:25893194
Bukovsky, Ivo; Homma, Noriyasu; Ichiji, Kei; Cejnek, Matous; Slama, Matous; Benes, Peter M; Bila, Jiri
2015-01-01
During radiotherapy treatment for thoracic and abdomen cancers, for example, lung cancers, respiratory motion moves the target tumor and thus badly affects the accuracy of radiation dose delivery into the target. A real-time image-guided technique can be used to monitor such lung tumor motion for accurate dose delivery, but the system latency up to several hundred milliseconds for repositioning the radiation beam also affects the accuracy. In order to compensate the latency, neural network prediction technique with real-time retraining can be used. We have investigated real-time prediction of 3D time series of lung tumor motion on a classical linear model, perceptron model, and on a class of higher-order neural network model that has more attractive attributes regarding its optimization convergence and computational efficiency. The implemented static feed-forward neural architectures are compared when using gradient descent adaptation and primarily the Levenberg-Marquardt batch algorithm as the ones of the most common and most comprehensible learning algorithms. The proposed technique resulted in fast real-time retraining, so the total computational time on a PC platform was equal to or even less than the real treatment time. For one-second prediction horizon, the proposed techniques achieved accuracy less than one millimeter of 3D mean absolute error in one hundred seconds of total treatment time.
Whole-Body Human Inverse Dynamics with Distributed Micro-Accelerometers, Gyros and Force Sensing †
Latella, Claudia; Kuppuswamy, Naveen; Romano, Francesco; Traversaro, Silvio; Nori, Francesco
2016-01-01
Human motion tracking is a powerful tool used in a large range of applications that require human movement analysis. Although it is a well-established technique, its main limitation is the lack of estimation of real-time kinetics information such as forces and torques during the motion capture. In this paper, we present a novel approach for a human soft wearable force tracking for the simultaneous estimation of whole-body forces along with the motion. The early stage of our framework encompasses traditional passive marker based methods, inertial and contact force sensor modalities and harnesses a probabilistic computational technique for estimating dynamic quantities, originally proposed in the domain of humanoid robot control. We present experimental analysis on subjects performing a two degrees-of-freedom bowing task, and we estimate the motion and kinetics quantities. The results demonstrate the validity of the proposed method. We discuss the possible use of this technique in the design of a novel soft wearable force tracking device and its potential applications. PMID:27213394
Autonomous Landmark Calibration Method for Indoor Localization
Kim, Jae-Hoon; Kim, Byoung-Seop
2017-01-01
Machine-generated data expansion is a global phenomenon in recent Internet services. The proliferation of mobile communication and smart devices has increased the utilization of machine-generated data significantly. One of the most promising applications of machine-generated data is the estimation of the location of smart devices. The motion sensors integrated into smart devices generate continuous data that can be used to estimate the location of pedestrians in an indoor environment. We focus on the estimation of the accurate location of smart devices by determining the landmarks appropriately for location error calibration. In the motion sensor-based location estimation, the proposed threshold control method determines valid landmarks in real time to avoid the accumulation of errors. A statistical method analyzes the acquired motion sensor data and proposes a valid landmark for every movement of the smart devices. Motion sensor data used in the testbed are collected from the actual measurements taken throughout a commercial building to demonstrate the practical usefulness of the proposed method. PMID:28837071
The lucky image-motion prediction for simple scene observation based soft-sensor technology
NASA Astrophysics Data System (ADS)
Li, Yan; Su, Yun; Hu, Bin
2015-08-01
High resolution is important to earth remote sensors, while the vibration of the platforms of the remote sensors is a major factor restricting high resolution imaging. The image-motion prediction and real-time compensation are key technologies to solve this problem. For the reason that the traditional autocorrelation image algorithm cannot meet the demand for the simple scene image stabilization, this paper proposes to utilize soft-sensor technology in image-motion prediction, and focus on the research of algorithm optimization in imaging image-motion prediction. Simulations results indicate that the improving lucky image-motion stabilization algorithm combining the Back Propagation Network (BP NN) and support vector machine (SVM) is the most suitable for the simple scene image stabilization. The relative error of the image-motion prediction based the soft-sensor technology is below 5%, the training computing speed of the mathematical predication model is as fast as the real-time image stabilization in aerial photography.