Sample records for fast multicore processor

  1. Performance evaluation of throughput computing workloads using multi-core processors and graphics processors

    NASA Astrophysics Data System (ADS)

    Dave, Gaurav P.; Sureshkumar, N.; Blessy Trencia Lincy, S. S.

    2017-11-01

    Current trend in processor manufacturing focuses on multi-core architectures rather than increasing the clock speed for performance improvement. Graphic processors have become as commodity hardware for providing fast co-processing in computer systems. Developments in IoT, social networking web applications, big data created huge demand for data processing activities and such kind of throughput intensive applications inherently contains data level parallelism which is more suited for SIMD architecture based GPU. This paper reviews the architectural aspects of multi/many core processors and graphics processors. Different case studies are taken to compare performance of throughput computing applications using shared memory programming in OpenMP and CUDA API based programming.

  2. Efficiency of static core turn-off in a system-on-a-chip with variation

    DOEpatents

    Cher, Chen-Yong; Coteus, Paul W; Gara, Alan; Kursun, Eren; Paulsen, David P; Schuelke, Brian A; Sheets, II, John E; Tian, Shurong

    2013-10-29

    A processor-implemented method for improving efficiency of a static core turn-off in a multi-core processor with variation, the method comprising: conducting via a simulation a turn-off analysis of the multi-core processor at the multi-core processor's design stage, wherein the turn-off analysis of the multi-core processor at the multi-core processor's design stage includes a first output corresponding to a first multi-core processor core to turn off; conducting a turn-off analysis of the multi-core processor at the multi-core processor's testing stage, wherein the turn-off analysis of the multi-core processor at the multi-core processor's testing stage includes a second output corresponding to a second multi-core processor core to turn off; comparing the first output and the second output to determine if the first output is referring to the same core to turn off as the second output; outputting a third output corresponding to the first multi-core processor core if the first output and the second output are both referring to the same core to turn off.

  3. Enabling Future Robotic Missions with Multicore Processors

    NASA Technical Reports Server (NTRS)

    Powell, Wesley A.; Johnson, Michael A.; Wilmot, Jonathan; Some, Raphael; Gostelow, Kim P.; Reeves, Glenn; Doyle, Richard J.

    2011-01-01

    Recent commercial developments in multicore processors (e.g. Tilera, Clearspeed, HyperX) have provided an option for high performance embedded computing that rivals the performance attainable with FPGA-based reconfigurable computing architectures. Furthermore, these processors offer more straightforward and streamlined application development by allowing the use of conventional programming languages and software tools in lieu of hardware design languages such as VHDL and Verilog. With these advantages, multicore processors can significantly enhance the capabilities of future robotic space missions. This paper will discuss these benefits, along with onboard processing applications where multicore processing can offer advantages over existing or competing approaches. This paper will also discuss the key artchitecural features of current commercial multicore processors. In comparison to the current art, the features and advancements necessary for spaceflight multicore processors will be identified. These include power reduction, radiation hardening, inherent fault tolerance, and support for common spacecraft bus interfaces. Lastly, this paper will explore how multicore processors might evolve with advances in electronics technology and how avionics architectures might evolve once multicore processors are inserted into NASA robotic spacecraft.

  4. Multi-Core Processor Memory Contention Benchmark Analysis Case Study

    NASA Technical Reports Server (NTRS)

    Simon, Tyler; McGalliard, James

    2009-01-01

    Multi-core processors dominate current mainframe, server, and high performance computing (HPC) systems. This paper provides synthetic kernel and natural benchmark results from an HPC system at the NASA Goddard Space Flight Center that illustrate the performance impacts of multi-core (dual- and quad-core) vs. single core processor systems. Analysis of processor design, application source code, and synthetic and natural test results all indicate that multi-core processors can suffer from significant memory subsystem contention compared to similar single-core processors.

  5. Case for a field-programmable gate array multicore hybrid machine for an image-processing application

    NASA Astrophysics Data System (ADS)

    Rakvic, Ryan N.; Ives, Robert W.; Lira, Javier; Molina, Carlos

    2011-01-01

    General purpose computer designers have recently begun adding cores to their processors in order to increase performance. For example, Intel has adopted a homogeneous quad-core processor as a base for general purpose computing. PlayStation3 (PS3) game consoles contain a multicore heterogeneous processor known as the Cell, which is designed to perform complex image processing algorithms at a high level. Can modern image-processing algorithms utilize these additional cores? On the other hand, modern advancements in configurable hardware, most notably field-programmable gate arrays (FPGAs) have created an interesting question for general purpose computer designers. Is there a reason to combine FPGAs with multicore processors to create an FPGA multicore hybrid general purpose computer? Iris matching, a repeatedly executed portion of a modern iris-recognition algorithm, is parallelized on an Intel-based homogeneous multicore Xeon system, a heterogeneous multicore Cell system, and an FPGA multicore hybrid system. Surprisingly, the cheaper PS3 slightly outperforms the Intel-based multicore on a core-for-core basis. However, both multicore systems are beaten by the FPGA multicore hybrid system by >50%.

  6. Concurrent and Accurate Short Read Mapping on Multicore Processors.

    PubMed

    Martínez, Héctor; Tárraga, Joaquín; Medina, Ignacio; Barrachina, Sergio; Castillo, Maribel; Dopazo, Joaquín; Quintana-Ortí, Enrique S

    2015-01-01

    We introduce a parallel aligner with a work-flow organization for fast and accurate mapping of RNA sequences on servers equipped with multicore processors. Our software, HPG Aligner SA (HPG Aligner SA is an open-source application. The software is available at http://www.opencb.org, exploits a suffix array to rapidly map a large fraction of the RNA fragments (reads), as well as leverages the accuracy of the Smith-Waterman algorithm to deal with conflictive reads. The aligner is enhanced with a careful strategy to detect splice junctions based on an adaptive division of RNA reads into small segments (or seeds), which are then mapped onto a number of candidate alignment locations, providing crucial information for the successful alignment of the complete reads. The experimental results on a platform with Intel multicore technology report the parallel performance of HPG Aligner SA, on RNA reads of 100-400 nucleotides, which excels in execution time/sensitivity to state-of-the-art aligners such as TopHat 2+Bowtie 2, MapSplice, and STAR.

  7. Application of Advanced Multi-Core Processor Technologies to Oceanographic Research

    DTIC Science & Technology

    2013-09-30

    STM32 NXP LPC series No Proprietary Microchip PIC32/DSPIC No > 500 mW; < 5 W ARM Cortex TI OMAP TI Sitara Broadcom BCM2835 Varies FPGA...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Application of Advanced Multi-Core Processor Technologies...state-of-the-art information processing architectures. OBJECTIVES Next-generation processor architectures (multi-core, multi-threaded) hold the

  8. Network Coding on Heterogeneous Multi-Core Processors for Wireless Sensor Networks

    PubMed Central

    Kim, Deokho; Park, Karam; Ro, Won W.

    2011-01-01

    While network coding is well known for its efficiency and usefulness in wireless sensor networks, the excessive costs associated with decoding computation and complexity still hinder its adoption into practical use. On the other hand, high-performance microprocessors with heterogeneous multi-cores would be used as processing nodes of the wireless sensor networks in the near future. To this end, this paper introduces an efficient network coding algorithm developed for the heterogenous multi-core processors. The proposed idea is fully tested on one of the currently available heterogeneous multi-core processors referred to as the Cell Broadband Engine. PMID:22164053

  9. CQPSO scheduling algorithm for heterogeneous multi-core DAG task model

    NASA Astrophysics Data System (ADS)

    Zhai, Wenzheng; Hu, Yue-Li; Ran, Feng

    2017-07-01

    Efficient task scheduling is critical to achieve high performance in a heterogeneous multi-core computing environment. The paper focuses on the heterogeneous multi-core directed acyclic graph (DAG) task model and proposes a novel task scheduling method based on an improved chaotic quantum-behaved particle swarm optimization (CQPSO) algorithm. A task priority scheduling list was built. A processor with minimum cumulative earliest finish time (EFT) was acted as the object of the first task assignment. The task precedence relationships were satisfied and the total execution time of all tasks was minimized. The experimental results show that the proposed algorithm has the advantage of optimization abilities, simple and feasible, fast convergence, and can be applied to the task scheduling optimization for other heterogeneous and distributed environment.

  10. Using a Multicore Processor for Rover Autonomous Science

    NASA Technical Reports Server (NTRS)

    Bornstein, Benjamin; Estlin, Tara; Clement, Bradley; Springer, Paul

    2011-01-01

    Multicore processing promises to be a critical component of future spacecraft. It provides immense increases in onboard processing power and provides an environment for directly supporting fault-tolerant computing. This paper discusses using a state-of-the-art multicore processor to efficiently perform image analysis onboard a Mars rover in support of autonomous science activities.

  11. Fault Mitigation Schemes for Future Spaceflight Multicore Processors

    NASA Technical Reports Server (NTRS)

    Some, Rafi; Gostelow, Kim P.; Lai, John; Reder, Leonard; Alexander, James; Clement, Brad

    2012-01-01

    The goal of this work is to achieve fail-operational and graceful-degradation behavior in realistic flight mission scenarios, of multicore processors such as Mars Entry-Descent-Landing (EDL) and Primitive Body proximity operations.

  12. RTEMS SMP and MTAPI for Efficient Multi-Core Space Applications on LEON3/LEON4 Processors

    NASA Astrophysics Data System (ADS)

    Cederman, Daniel; Hellstrom, Daniel; Sherrill, Joel; Bloom, Gedare; Patte, Mathieu; Zulianello, Marco

    2015-09-01

    This paper presents the final result of an European Space Agency (ESA) activity aimed at improving the software support for LEON processors used in SMP configurations. One of the benefits of using a multicore system in a SMP configuration is that in many instances it is possible to better utilize the available processing resources by load balancing between cores. This however comes with the cost of having to synchronize operations between cores, leading to increased complexity. While in an AMP system one can use multiple instances of operating systems that are only uni-processor capable, a SMP system requires the operating system to be written to support multicore systems. In this activity we have improved and extended the SMP support of the RTEMS real-time operating system and ensured that it fully supports the multicore capable LEON processors. The targeted hardware in the activity has been the GR712RC, a dual-core core LEON3FT processor, and the functional prototype of ESA's Next Generation Multiprocessor (NGMP), a quad core LEON4 processor. The final version of the NGMP is now available as a product under the name GR740. An implementation of the Multicore Task Management API (MTAPI) has been developed as part of this activity to aid in the parallelization of applications for RTEMS SMP. It allows for simplified development of parallel applications using the task-based programming model. An existing space application, the Gaia Video Processing Unit, has been ported to RTEMS SMP using the MTAPI implementation to demonstrate the feasibility and usefulness of multicore processors for space payload software. The activity is funded by ESA under contract 4000108560/13/NL/JK. Gedare Bloom is supported in part by NSF CNS-0934725.

  13. Parallelizing Compiler Framework and API for Power Reduction and Software Productivity of Real-Time Heterogeneous Multicores

    NASA Astrophysics Data System (ADS)

    Hayashi, Akihiro; Wada, Yasutaka; Watanabe, Takeshi; Sekiguchi, Takeshi; Mase, Masayoshi; Shirako, Jun; Kimura, Keiji; Kasahara, Hironori

    Heterogeneous multicores have been attracting much attention to attain high performance keeping power consumption low in wide spread of areas. However, heterogeneous multicores force programmers very difficult programming. The long application program development period lowers product competitiveness. In order to overcome such a situation, this paper proposes a compilation framework which bridges a gap between programmers and heterogeneous multicores. In particular, this paper describes the compilation framework based on OSCAR compiler. It realizes coarse grain task parallel processing, data transfer using a DMA controller, power reduction control from user programs with DVFS and clock gating on various heterogeneous multicores from different vendors. This paper also evaluates processing performance and the power reduction by the proposed framework on a newly developed 15 core heterogeneous multicore chip named RP-X integrating 8 general purpose processor cores and 3 types of accelerator cores which was developed by Renesas Electronics, Hitachi, Tokyo Institute of Technology and Waseda University. The framework attains speedups up to 32x for an optical flow program with eight general purpose processor cores and four DRP(Dynamically Reconfigurable Processor) accelerator cores against sequential execution by a single processor core and 80% of power reduction for the real-time AAC encoding.

  14. Efficient Multicriteria Protein Structure Comparison on Modern Processor Architectures

    PubMed Central

    Manolakos, Elias S.

    2015-01-01

    Fast increasing computational demand for all-to-all protein structures comparison (PSC) is a result of three confounding factors: rapidly expanding structural proteomics databases, high computational complexity of pairwise protein comparison algorithms, and the trend in the domain towards using multiple criteria for protein structures comparison (MCPSC) and combining results. We have developed a software framework that exploits many-core and multicore CPUs to implement efficient parallel MCPSC in modern processors based on three popular PSC methods, namely, TMalign, CE, and USM. We evaluate and compare the performance and efficiency of the two parallel MCPSC implementations using Intel's experimental many-core Single-Chip Cloud Computer (SCC) as well as Intel's Core i7 multicore processor. We show that the 48-core SCC is more efficient than the latest generation Core i7, achieving a speedup factor of 42 (efficiency of 0.9), making many-core processors an exciting emerging technology for large-scale structural proteomics. We compare and contrast the performance of the two processors on several datasets and also show that MCPSC outperforms its component methods in grouping related domains, achieving a high F-measure of 0.91 on the benchmark CK34 dataset. The software implementation for protein structure comparison using the three methods and combined MCPSC, along with the developed underlying rckskel algorithmic skeletons library, is available via GitHub. PMID:26605332

  15. Efficient Multicriteria Protein Structure Comparison on Modern Processor Architectures.

    PubMed

    Sharma, Anuj; Manolakos, Elias S

    2015-01-01

    Fast increasing computational demand for all-to-all protein structures comparison (PSC) is a result of three confounding factors: rapidly expanding structural proteomics databases, high computational complexity of pairwise protein comparison algorithms, and the trend in the domain towards using multiple criteria for protein structures comparison (MCPSC) and combining results. We have developed a software framework that exploits many-core and multicore CPUs to implement efficient parallel MCPSC in modern processors based on three popular PSC methods, namely, TMalign, CE, and USM. We evaluate and compare the performance and efficiency of the two parallel MCPSC implementations using Intel's experimental many-core Single-Chip Cloud Computer (SCC) as well as Intel's Core i7 multicore processor. We show that the 48-core SCC is more efficient than the latest generation Core i7, achieving a speedup factor of 42 (efficiency of 0.9), making many-core processors an exciting emerging technology for large-scale structural proteomics. We compare and contrast the performance of the two processors on several datasets and also show that MCPSC outperforms its component methods in grouping related domains, achieving a high F-measure of 0.91 on the benchmark CK34 dataset. The software implementation for protein structure comparison using the three methods and combined MCPSC, along with the developed underlying rckskel algorithmic skeletons library, is available via GitHub.

  16. Options for Parallelizing a Planning and Scheduling Algorithm

    NASA Technical Reports Server (NTRS)

    Clement, Bradley J.; Estlin, Tara A.; Bornstein, Benjamin D.

    2011-01-01

    Space missions have a growing interest in putting multi-core processors onboard spacecraft. For many missions processing power significantly slows operations. We investigate how continual planning and scheduling algorithms can exploit multi-core processing and outline different potential design decisions for a parallelized planning architecture. This organization of choices and challenges helps us with an initial design for parallelizing the CASPER planning system for a mesh multi-core processor. This work extends that presented at another workshop with some preliminary results.

  17. FAST: framework for heterogeneous medical image computing and visualization.

    PubMed

    Smistad, Erik; Bozorgi, Mohammadmehdi; Lindseth, Frank

    2015-11-01

    Computer systems are becoming increasingly heterogeneous in the sense that they consist of different processors, such as multi-core CPUs and graphic processing units. As the amount of medical image data increases, it is crucial to exploit the computational power of these processors. However, this is currently difficult due to several factors, such as driver errors, processor differences, and the need for low-level memory handling. This paper presents a novel FrAmework for heterogeneouS medical image compuTing and visualization (FAST). The framework aims to make it easier to simultaneously process and visualize medical images efficiently on heterogeneous systems. FAST uses common image processing programming paradigms and hides the details of memory handling from the user, while enabling the use of all processors and cores on a system. The framework is open-source, cross-platform and available online. Code examples and performance measurements are presented to show the simplicity and efficiency of FAST. The results are compared to the insight toolkit (ITK) and the visualization toolkit (VTK) and show that the presented framework is faster with up to 20 times speedup on several common medical imaging algorithms. FAST enables efficient medical image computing and visualization on heterogeneous systems. Code examples and performance evaluations have demonstrated that the toolkit is both easy to use and performs better than existing frameworks, such as ITK and VTK.

  18. Fast multi-core based multimodal registration of 2D cross-sections and 3D datasets.

    PubMed

    Scharfe, Michael; Pielot, Rainer; Schreiber, Falk

    2010-01-11

    Solving bioinformatics tasks often requires extensive computational power. Recent trends in processor architecture combine multiple cores into a single chip to improve overall performance. The Cell Broadband Engine (CBE), a heterogeneous multi-core processor, provides power-efficient and cost-effective high-performance computing. One application area is image analysis and visualisation, in particular registration of 2D cross-sections into 3D image datasets. Such techniques can be used to put different image modalities into spatial correspondence, for example, 2D images of histological cuts into morphological 3D frameworks. We evaluate the CBE-driven PlayStation 3 as a high performance, cost-effective computing platform by adapting a multimodal alignment procedure to several characteristic hardware properties. The optimisations are based on partitioning, vectorisation, branch reducing and loop unrolling techniques with special attention to 32-bit multiplies and limited local storage on the computing units. We show how a typical image analysis and visualisation problem, the multimodal registration of 2D cross-sections and 3D datasets, benefits from the multi-core based implementation of the alignment algorithm. We discuss several CBE-based optimisation methods and compare our results to standard solutions. More information and the source code are available from http://cbe.ipk-gatersleben.de. The results demonstrate that the CBE processor in a PlayStation 3 accelerates computational intensive multimodal registration, which is of great importance in biological/medical image processing. The PlayStation 3 as a low cost CBE-based platform offers an efficient option to conventional hardware to solve computational problems in image processing and bioinformatics.

  19. Interactive high-resolution isosurface ray casting on multicore processors.

    PubMed

    Wang, Qin; JaJa, Joseph

    2008-01-01

    We present a new method for the interactive rendering of isosurfaces using ray casting on multi-core processors. This method consists of a combination of an object-order traversal that coarsely identifies possible candidate 3D data blocks for each small set of contiguous pixels, and an isosurface ray casting strategy tailored for the resulting limited-size lists of candidate 3D data blocks. While static screen partitioning is widely used in the literature, our scheme performs dynamic allocation of groups of ray casting tasks to ensure almost equal loads among the different threads running on multi-cores while maintaining spatial locality. We also make careful use of memory management environment commonly present in multi-core processors. We test our system on a two-processor Clovertown platform, each consisting of a Quad-Core 1.86-GHz Intel Xeon Processor, for a number of widely different benchmarks. The detailed experimental results show that our system is efficient and scalable, and achieves high cache performance and excellent load balancing, resulting in an overall performance that is superior to any of the previous algorithms. In fact, we achieve an interactive isosurface rendering on a 1024(2) screen for all the datasets tested up to the maximum size of the main memory of our platform.

  20. Energy Efficient Real-Time Scheduling Using DPM on Mobile Sensors with a Uniform Multi-Cores

    PubMed Central

    Kim, Youngmin; Lee, Chan-Gun

    2017-01-01

    In wireless sensor networks (WSNs), sensor nodes are deployed for collecting and analyzing data. These nodes use limited energy batteries for easy deployment and low cost. The use of limited energy batteries is closely related to the lifetime of the sensor nodes when using wireless sensor networks. Efficient-energy management is important to extending the lifetime of the sensor nodes. Most effort for improving power efficiency in tiny sensor nodes has focused mainly on reducing the power consumed during data transmission. However, recent emergence of sensor nodes equipped with multi-cores strongly requires attention to be given to the problem of reducing power consumption in multi-cores. In this paper, we propose an energy efficient scheduling method for sensor nodes supporting a uniform multi-cores. We extend the proposed T-Ler plane based scheduling for global optimal scheduling of a uniform multi-cores and multi-processors to enable power management using dynamic power management. In the proposed approach, processor selection for a scheduling and mapping method between the tasks and processors is proposed to efficiently utilize dynamic power management. Experiments show the effectiveness of the proposed approach compared to other existing methods. PMID:29240695

  1. Multicore Considerations for Legacy Flight Software Migration

    NASA Technical Reports Server (NTRS)

    Vines, Kenneth; Day, Len

    2013-01-01

    In this paper we will discuss potential benefits and pitfalls when considering a migration from an existing single core code base to a multicore processor implementation. The results of this study present options that should be considered before migrating fault managers, device handlers and tasks with time-constrained requirements to a multicore flight software environment. Possible future multicore test bed demonstrations are also discussed.

  2. Document Image Parsing and Understanding using Neuromorphic Architecture

    DTIC Science & Technology

    2015-03-01

    processing speed at different layers. In the pattern matching layer, the computing power of multicore processors is explored to reduce the processing...developed to reduce the processing speed at different layers. In the pattern matching layer, the computing power of multicore processors is explored... cortex where the complex data is reduced to abstract representations. The abstract representation is compared to stored patterns in massively parallel

  3. Fast multi-core based multimodal registration of 2D cross-sections and 3D datasets

    PubMed Central

    2010-01-01

    Background Solving bioinformatics tasks often requires extensive computational power. Recent trends in processor architecture combine multiple cores into a single chip to improve overall performance. The Cell Broadband Engine (CBE), a heterogeneous multi-core processor, provides power-efficient and cost-effective high-performance computing. One application area is image analysis and visualisation, in particular registration of 2D cross-sections into 3D image datasets. Such techniques can be used to put different image modalities into spatial correspondence, for example, 2D images of histological cuts into morphological 3D frameworks. Results We evaluate the CBE-driven PlayStation 3 as a high performance, cost-effective computing platform by adapting a multimodal alignment procedure to several characteristic hardware properties. The optimisations are based on partitioning, vectorisation, branch reducing and loop unrolling techniques with special attention to 32-bit multiplies and limited local storage on the computing units. We show how a typical image analysis and visualisation problem, the multimodal registration of 2D cross-sections and 3D datasets, benefits from the multi-core based implementation of the alignment algorithm. We discuss several CBE-based optimisation methods and compare our results to standard solutions. More information and the source code are available from http://cbe.ipk-gatersleben.de. Conclusions The results demonstrate that the CBE processor in a PlayStation 3 accelerates computational intensive multimodal registration, which is of great importance in biological/medical image processing. The PlayStation 3 as a low cost CBE-based platform offers an efficient option to conventional hardware to solve computational problems in image processing and bioinformatics. PMID:20064262

  4. Computational performance of a smoothed particle hydrodynamics simulation for shared-memory parallel computing

    NASA Astrophysics Data System (ADS)

    Nishiura, Daisuke; Furuichi, Mikito; Sakaguchi, Hide

    2015-09-01

    The computational performance of a smoothed particle hydrodynamics (SPH) simulation is investigated for three types of current shared-memory parallel computer devices: many integrated core (MIC) processors, graphics processing units (GPUs), and multi-core CPUs. We are especially interested in efficient shared-memory allocation methods for each chipset, because the efficient data access patterns differ between compute unified device architecture (CUDA) programming for GPUs and OpenMP programming for MIC processors and multi-core CPUs. We first introduce several parallel implementation techniques for the SPH code, and then examine these on our target computer architectures to determine the most effective algorithms for each processor unit. In addition, we evaluate the effective computing performance and power efficiency of the SPH simulation on each architecture, as these are critical metrics for overall performance in a multi-device environment. In our benchmark test, the GPU is found to produce the best arithmetic performance as a standalone device unit, and gives the most efficient power consumption. The multi-core CPU obtains the most effective computing performance. The computational speed of the MIC processor on Xeon Phi approached that of two Xeon CPUs. This indicates that using MICs is an attractive choice for existing SPH codes on multi-core CPUs parallelized by OpenMP, as it gains computational acceleration without the need for significant changes to the source code.

  5. Self-powered information measuring wireless networks using the distribution of tasks within multicore processors

    NASA Astrophysics Data System (ADS)

    Zhuravska, Iryna M.; Koretska, Oleksandra O.; Musiyenko, Maksym P.; Surtel, Wojciech; Assembay, Azat; Kovalev, Vladimir; Tleshova, Akmaral

    2017-08-01

    The article contains basic approaches to develop the self-powered information measuring wireless networks (SPIM-WN) using the distribution of tasks within multicore processors critical applying based on the interaction of movable components - as in the direction of data transmission as wireless transfer of energy coming from polymetric sensors. Base mathematic model of scheduling tasks within multiprocessor systems was modernized to schedule and allocate tasks between cores of one-crystal computer (SoC) to increase energy efficiency SPIM-WN objects.

  6. An embedded multi-core parallel model for real-time stereo imaging

    NASA Astrophysics Data System (ADS)

    He, Wenjing; Hu, Jian; Niu, Jingyu; Li, Chuanrong; Liu, Guangyu

    2018-04-01

    The real-time processing based on embedded system will enhance the application capability of stereo imaging for LiDAR and hyperspectral sensor. The task partitioning and scheduling strategies for embedded multiprocessor system starts relatively late, compared with that for PC computer. In this paper, aimed at embedded multi-core processing platform, a parallel model for stereo imaging is studied and verified. After analyzing the computing amount, throughout capacity and buffering requirements, a two-stage pipeline parallel model based on message transmission is established. This model can be applied to fast stereo imaging for airborne sensors with various characteristics. To demonstrate the feasibility and effectiveness of the parallel model, a parallel software was designed using test flight data, based on the 8-core DSP processor TMS320C6678. The results indicate that the design performed well in workload distribution and had a speed-up ratio up to 6.4.

  7. Modern multicore and manycore architectures: Modelling, optimisation and benchmarking a multiblock CFD code

    NASA Astrophysics Data System (ADS)

    Hadade, Ioan; di Mare, Luca

    2016-08-01

    Modern multicore and manycore processors exhibit multiple levels of parallelism through a wide range of architectural features such as SIMD for data parallel execution or threads for core parallelism. The exploitation of multi-level parallelism is therefore crucial for achieving superior performance on current and future processors. This paper presents the performance tuning of a multiblock CFD solver on Intel SandyBridge and Haswell multicore CPUs and the Intel Xeon Phi Knights Corner coprocessor. Code optimisations have been applied on two computational kernels exhibiting different computational patterns: the update of flow variables and the evaluation of the Roe numerical fluxes. We discuss at great length the code transformations required for achieving efficient SIMD computations for both kernels across the selected devices including SIMD shuffles and transpositions for flux stencil computations and global memory transformations. Core parallelism is expressed through threading based on a number of domain decomposition techniques together with optimisations pertaining to alleviating NUMA effects found in multi-socket compute nodes. Results are correlated with the Roofline performance model in order to assert their efficiency for each distinct architecture. We report significant speedups for single thread execution across both kernels: 2-5X on the multicore CPUs and 14-23X on the Xeon Phi coprocessor. Computations at full node and chip concurrency deliver a factor of three speedup on the multicore processors and up to 24X on the Xeon Phi manycore coprocessor.

  8. Enhancing Image Processing Performance for PCID in a Heterogeneous Network of Multi-core Processors

    DTIC Science & Technology

    2009-09-01

    TFLOPS of Playstation 3 (PS3) nodes with IBM Cell Broadband Engine multi-cores and 15 dual-quad Xeon head nodes. The interconnect fabric includes... 4   3. INFORMATION MANAGEMENT FOR PARALLELIZATION AND...STREAMING............................................................. 7  4 . RESULTS

  9. Exact diagonalization of quantum lattice models on coprocessors

    NASA Astrophysics Data System (ADS)

    Siro, T.; Harju, A.

    2016-10-01

    We implement the Lanczos algorithm on an Intel Xeon Phi coprocessor and compare its performance to a multi-core Intel Xeon CPU and an NVIDIA graphics processor. The Xeon and the Xeon Phi are parallelized with OpenMP and the graphics processor is programmed with CUDA. The performance is evaluated by measuring the execution time of a single step in the Lanczos algorithm. We study two quantum lattice models with different particle numbers, and conclude that for small systems, the multi-core CPU is the fastest platform, while for large systems, the graphics processor is the clear winner, reaching speedups of up to 7.6 compared to the CPU. The Xeon Phi outperforms the CPU with sufficiently large particle number, reaching a speedup of 2.5.

  10. CMS Readiness for Multi-Core Workload Scheduling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perez-Calero Yzquierdo, A.; Balcas, J.; Hernandez, J.

    In the present run of the LHC, CMS data reconstruction and simulation algorithms benefit greatly from being executed as multiple threads running on several processor cores. The complexity of the Run 2 events requires parallelization of the code to reduce the memory-per- core footprint constraining serial execution programs, thus optimizing the exploitation of present multi-core processor architectures. The allocation of computing resources for multi-core tasks, however, becomes a complex problem in itself. The CMS workload submission infrastructure employs multi-slot partitionable pilots, built on HTCondor and GlideinWMS native features, to enable scheduling of single and multi-core jobs simultaneously. This provides amore » solution for the scheduling problem in a uniform way across grid sites running a diversity of gateways to compute resources and batch system technologies. This paper presents this strategy and the tools on which it has been implemented. The experience of managing multi-core resources at the Tier-0 and Tier-1 sites during 2015, along with the deployment phase to Tier-2 sites during early 2016 is reported. The process of performance monitoring and optimization to achieve efficient and flexible use of the resources is also described.« less

  11. CMS readiness for multi-core workload scheduling

    NASA Astrophysics Data System (ADS)

    Perez-Calero Yzquierdo, A.; Balcas, J.; Hernandez, J.; Aftab Khan, F.; Letts, J.; Mason, D.; Verguilov, V.

    2017-10-01

    In the present run of the LHC, CMS data reconstruction and simulation algorithms benefit greatly from being executed as multiple threads running on several processor cores. The complexity of the Run 2 events requires parallelization of the code to reduce the memory-per- core footprint constraining serial execution programs, thus optimizing the exploitation of present multi-core processor architectures. The allocation of computing resources for multi-core tasks, however, becomes a complex problem in itself. The CMS workload submission infrastructure employs multi-slot partitionable pilots, built on HTCondor and GlideinWMS native features, to enable scheduling of single and multi-core jobs simultaneously. This provides a solution for the scheduling problem in a uniform way across grid sites running a diversity of gateways to compute resources and batch system technologies. This paper presents this strategy and the tools on which it has been implemented. The experience of managing multi-core resources at the Tier-0 and Tier-1 sites during 2015, along with the deployment phase to Tier-2 sites during early 2016 is reported. The process of performance monitoring and optimization to achieve efficient and flexible use of the resources is also described.

  12. Fast and Accurate Simulation of the Cray XMT Multithreaded Supercomputer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villa, Oreste; Tumeo, Antonino; Secchi, Simone

    Irregular applications, such as data mining and analysis or graph-based computations, show unpredictable memory/network access patterns and control structures. Highly multithreaded architectures with large processor counts, like the Cray MTA-1, MTA-2 and XMT, appear to address their requirements better than commodity clusters. However, the research on highly multithreaded systems is currently limited by the lack of adequate architectural simulation infrastructures due to issues such as size of the machines, memory footprint, simulation speed, accuracy and customization. At the same time, Shared-memory MultiProcessors (SMPs) with multi-core processors have become an attractive platform to simulate large scale machines. In this paper, wemore » introduce a cycle-level simulator of the highly multithreaded Cray XMT supercomputer. The simulator runs unmodified XMT applications. We discuss how we tackled the challenges posed by its development, detailing the techniques introduced to make the simulation as fast as possible while maintaining a high accuracy. By mapping XMT processors (ThreadStorm with 128 hardware threads) to host computing cores, the simulation speed remains constant as the number of simulated processors increases, up to the number of available host cores. The simulator supports zero-overhead switching among different accuracy levels at run-time and includes a network model that takes into account contention. On a modern 48-core SMP host, our infrastructure simulates a large set of irregular applications 500 to 2000 times slower than real time when compared to a 128-processor XMT, while remaining within 10\\% of accuracy. Emulation is only from 25 to 200 times slower than real time.« less

  13. Parallelization of combinatorial search when solving knapsack optimization problem on computing systems based on multicore processors

    NASA Astrophysics Data System (ADS)

    Rahman, P. A.

    2018-05-01

    This scientific paper deals with the model of the knapsack optimization problem and method of its solving based on directed combinatorial search in the boolean space. The offered by the author specialized mathematical model of decomposition of the search-zone to the separate search-spheres and the algorithm of distribution of the search-spheres to the different cores of the multi-core processor are also discussed. The paper also provides an example of decomposition of the search-zone to the several search-spheres and distribution of the search-spheres to the different cores of the quad-core processor. Finally, an offered by the author formula for estimation of the theoretical maximum of the computational acceleration, which can be achieved due to the parallelization of the search-zone to the search-spheres on the unlimited number of the processor cores, is also given.

  14. Multicore Challenges and Benefits for High Performance Scientific Computing

    DOE PAGES

    Nielsen, Ida M. B.; Janssen, Curtis L.

    2008-01-01

    Until recently, performance gains in processors were achieved largely by improvements in clock speeds and instruction level parallelism. Thus, applications could obtain performance increases with relatively minor changes by upgrading to the latest generation of computing hardware. Currently, however, processor performance improvements are realized by using multicore technology and hardware support for multiple threads within each core, and taking full advantage of this technology to improve the performance of applications requires exposure of extreme levels of software parallelism. We will here discuss the architecture of parallel computers constructed from many multicore chips as well as techniques for managing the complexitymore » of programming such computers, including the hybrid message-passing/multi-threading programming model. We will illustrate these ideas with a hybrid distributed memory matrix multiply and a quantum chemistry algorithm for energy computation using Møller–Plesset perturbation theory.« less

  15. Electronic Structure Calculations and Adaptation Scheme in Multi-core Computing Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seshagiri, Lakshminarasimhan; Sosonkina, Masha; Zhang, Zhao

    2009-05-20

    Multi-core processing environments have become the norm in the generic computing environment and are being considered for adding an extra dimension to the execution of any application. The T2 Niagara processor is a very unique environment where it consists of eight cores having a capability of running eight threads simultaneously in each of the cores. Applications like General Atomic and Molecular Electronic Structure (GAMESS), used for ab-initio molecular quantum chemistry calculations, can be good indicators of the performance of such machines and would be a guideline for both hardware designers and application programmers. In this paper we try to benchmarkmore » the GAMESS performance on a T2 Niagara processor for a couple of molecules. We also show the suitability of using a middleware based adaptation algorithm on GAMESS on such a multi-core environment.« less

  16. Coding for parallel execution of hardware-in-the-loop millimeter-wave scene generation models on multicore SIMD processor architectures

    NASA Astrophysics Data System (ADS)

    Olson, Richard F.

    2013-05-01

    Rendering of point scatterer based radar scenes for millimeter wave (mmW) seeker tests in real-time hardware-in-the-loop (HWIL) scene generation requires efficient algorithms and vector-friendly computer architectures for complex signal synthesis. New processor technology from Intel implements an extended 256-bit vector SIMD instruction set (AVX, AVX2) in a multi-core CPU design providing peak execution rates of hundreds of GigaFLOPS (GFLOPS) on one chip. Real world mmW scene generation code can approach peak SIMD execution rates only after careful algorithm and source code design. An effective software design will maintain high computing intensity emphasizing register-to-register SIMD arithmetic operations over data movement between CPU caches or off-chip memories. Engineers at the U.S. Army Aviation and Missile Research, Development and Engineering Center (AMRDEC) applied two basic parallel coding methods to assess new 256-bit SIMD multi-core architectures for mmW scene generation in HWIL. These include use of POSIX threads built on vector library functions and more portable, highlevel parallel code based on compiler technology (e.g. OpenMP pragmas and SIMD autovectorization). Since CPU technology is rapidly advancing toward high processor core counts and TeraFLOPS peak SIMD execution rates, it is imperative that coding methods be identified which produce efficient and maintainable parallel code. This paper describes the algorithms used in point scatterer target model rendering, the parallelization of those algorithms, and the execution performance achieved on an AVX multi-core machine using the two basic parallel coding methods. The paper concludes with estimates for scale-up performance on upcoming multi-core technology.

  17. IGA-ADS: Isogeometric analysis FEM using ADS solver

    NASA Astrophysics Data System (ADS)

    Łoś, Marcin M.; Woźniak, Maciej; Paszyński, Maciej; Lenharth, Andrew; Hassaan, Muhamm Amber; Pingali, Keshav

    2017-08-01

    In this paper we present a fast explicit solver for solution of non-stationary problems using L2 projections with isogeometric finite element method. The solver has been implemented within GALOIS framework. It enables parallel multi-core simulations of different time-dependent problems, in 1D, 2D, or 3D. We have prepared the solver framework in a way that enables direct implementation of the selected PDE and corresponding boundary conditions. In this paper we describe the installation, implementation of exemplary three PDEs, and execution of the simulations on multi-core Linux cluster nodes. We consider three case studies, including heat transfer, linear elasticity, as well as non-linear flow in heterogeneous media. The presented package generates output suitable for interfacing with Gnuplot and ParaView visualization software. The exemplary simulations show near perfect scalability on Gilbert shared-memory node with four Intel® Xeon® CPU E7-4860 processors, each possessing 10 physical cores (for a total of 40 cores).

  18. Hardware design and implementation of fast DOA estimation method based on multicore DSP

    NASA Astrophysics Data System (ADS)

    Guo, Rui; Zhao, Yingxiao; Zhang, Yue; Lin, Qianqiang; Chen, Zengping

    2016-10-01

    In this paper, we present a high-speed real-time signal processing hardware platform based on multicore digital signal processor (DSP). The real-time signal processing platform shows several excellent characteristics including high performance computing, low power consumption, large-capacity data storage and high speed data transmission, which make it able to meet the constraint of real-time direction of arrival (DOA) estimation. To reduce the high computational complexity of DOA estimation algorithm, a novel real-valued MUSIC estimator is used. The algorithm is decomposed into several independent steps and the time consumption of each step is counted. Based on the statistics of the time consumption, we present a new parallel processing strategy to distribute the task of DOA estimation to different cores of the real-time signal processing hardware platform. Experimental results demonstrate that the high processing capability of the signal processing platform meets the constraint of real-time direction of arrival (DOA) estimation.

  19. A Parallel Framework with Block Matrices of a Discrete Fourier Transform for Vector-Valued Discrete-Time Signals.

    PubMed

    Soto-Quiros, Pablo

    2015-01-01

    This paper presents a parallel implementation of a kind of discrete Fourier transform (DFT): the vector-valued DFT. The vector-valued DFT is a novel tool to analyze the spectra of vector-valued discrete-time signals. This parallel implementation is developed in terms of a mathematical framework with a set of block matrix operations. These block matrix operations contribute to analysis, design, and implementation of parallel algorithms in multicore processors. In this work, an implementation and experimental investigation of the mathematical framework are performed using MATLAB with the Parallel Computing Toolbox. We found that there is advantage to use multicore processors and a parallel computing environment to minimize the high execution time. Additionally, speedup increases when the number of logical processors and length of the signal increase.

  20. Real-Time Spatio-Temporal Twice Whitening for MIMO Energy Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humble, Travis S; Mitra, Pramita; Barhen, Jacob

    2010-01-01

    While many techniques exist for local spectrum sensing of a primary user, each represents a computationally demanding task to secondary user receivers. In software-defined radio, computational complexity lengthens the time for a cognitive radio to recognize changes in the transmission environment. This complexity is even more significant for spatially multiplexed receivers, e.g., in SIMO and MIMO, where the spatio-temporal data sets grow in size with the number of antennae. Limits on power and space for the processor hardware further constrain SDR performance. In this report, we discuss improvements in spatio-temporal twice whitening (STTW) for real-time local spectrum sensing by demonstratingmore » a form of STTW well suited for MIMO environments. We implement STTW on the Coherent Logix hx3100 processor, a multicore processor intended for low-power, high-throughput software-defined signal processing. These results demonstrate how coupling the novel capabilities of emerging multicore processors with algorithmic advances can enable real-time, software-defined processing of large spatio-temporal data sets.« less

  1. A highly efficient multi-core algorithm for clustering extremely large datasets

    PubMed Central

    2010-01-01

    Background In recent years, the demand for computational power in computational biology has increased due to rapidly growing data sets from microarray and other high-throughput technologies. This demand is likely to increase. Standard algorithms for analyzing data, such as cluster algorithms, need to be parallelized for fast processing. Unfortunately, most approaches for parallelizing algorithms largely rely on network communication protocols connecting and requiring multiple computers. One answer to this problem is to utilize the intrinsic capabilities in current multi-core hardware to distribute the tasks among the different cores of one computer. Results We introduce a multi-core parallelization of the k-means and k-modes cluster algorithms based on the design principles of transactional memory for clustering gene expression microarray type data and categorial SNP data. Our new shared memory parallel algorithms show to be highly efficient. We demonstrate their computational power and show their utility in cluster stability and sensitivity analysis employing repeated runs with slightly changed parameters. Computation speed of our Java based algorithm was increased by a factor of 10 for large data sets while preserving computational accuracy compared to single-core implementations and a recently published network based parallelization. Conclusions Most desktop computers and even notebooks provide at least dual-core processors. Our multi-core algorithms show that using modern algorithmic concepts, parallelization makes it possible to perform even such laborious tasks as cluster sensitivity and cluster number estimation on the laboratory computer. PMID:20370922

  2. Mobile Thread Task Manager

    NASA Technical Reports Server (NTRS)

    Clement, Bradley J.; Estlin, Tara A.; Bornstein, Benjamin J.

    2013-01-01

    The Mobile Thread Task Manager (MTTM) is being applied to parallelizing existing flight software to understand the benefits and to develop new techniques and architectural concepts for adapting software to multicore architectures. It allocates and load-balances tasks for a group of threads that migrate across processors to improve cache performance. In order to balance-load across threads, the MTTM augments a basic map-reduce strategy to draw jobs from a global queue. In a multicore processor, memory may be "homed" to the cache of a specific processor and must be accessed from that processor. The MTTB architecture wraps access to data with thread management to move threads to the home processor for that data so that the computation follows the data in an attempt to avoid L2 cache misses. Cache homing is also handled by a memory manager that translates identifiers to processor IDs where the data will be homed (according to rules defined by the user). The user can also specify the number of threads and processors separately, which is important for tuning performance for different patterns of computation and memory access. MTTM efficiently processes tasks in parallel on a multiprocessor computer. It also provides an interface to make it easier to adapt existing software to a multiprocessor environment.

  3. Using Multi-Core Systems for Rover Autonomy

    NASA Technical Reports Server (NTRS)

    Clement, Brad; Estlin, Tara; Bornstein, Benjamin; Springer, Paul; Anderson, Robert C.

    2010-01-01

    Task Objectives are: (1) Develop and demonstrate key capabilities for rover long-range science operations using multi-core computing, (a) Adapt three rover technologies to execute on SOA multi-core processor (b) Illustrate performance improvements achieved (c) Demonstrate adapted capabilities with rover hardware, (2) Targeting three high-level autonomy technologies (a) Two for onboard data analysis (b) One for onboard command sequencing/planning, (3) Technologies identified as enabling for future missions, (4)Benefits will be measured along several metrics: (a) Execution time / Power requirements (b) Number of data products processed per unit time (c) Solution quality

  4. The parallel algorithm for the 2D discrete wavelet transform

    NASA Astrophysics Data System (ADS)

    Barina, David; Najman, Pavel; Kleparnik, Petr; Kula, Michal; Zemcik, Pavel

    2018-04-01

    The discrete wavelet transform can be found at the heart of many image-processing algorithms. Until now, the transform on general-purpose processors (CPUs) was mostly computed using a separable lifting scheme. As the lifting scheme consists of a small number of operations, it is preferred for processing using single-core CPUs. However, considering a parallel processing using multi-core processors, this scheme is inappropriate due to a large number of steps. On such architectures, the number of steps corresponds to the number of points that represent the exchange of data. Consequently, these points often form a performance bottleneck. Our approach appropriately rearranges calculations inside the transform, and thereby reduces the number of steps. In other words, we propose a new scheme that is friendly to parallel environments. When evaluating on multi-core CPUs, we consistently overcome the original lifting scheme. The evaluation was performed on 61-core Intel Xeon Phi and 8-core Intel Xeon processors.

  5. Energy Efficient Image/Video Data Transmission on Commercial Multi-Core Processors

    PubMed Central

    Lee, Sungju; Kim, Heegon; Chung, Yongwha; Park, Daihee

    2012-01-01

    In transmitting image/video data over Video Sensor Networks (VSNs), energy consumption must be minimized while maintaining high image/video quality. Although image/video compression is well known for its efficiency and usefulness in VSNs, the excessive costs associated with encoding computation and complexity still hinder its adoption for practical use. However, it is anticipated that high-performance handheld multi-core devices will be used as VSN processing nodes in the near future. In this paper, we propose a way to improve the energy efficiency of image and video compression with multi-core processors while maintaining the image/video quality. We improve the compression efficiency at the algorithmic level or derive the optimal parameters for the combination of a machine and compression based on the tradeoff between the energy consumption and the image/video quality. Based on experimental results, we confirm that the proposed approach can improve the energy efficiency of the straightforward approach by a factor of 2∼5 without compromising image/video quality. PMID:23202181

  6. Parallel Agent-Based Simulations on Clusters of GPUs and Multi-Core Processors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aaby, Brandon G; Perumalla, Kalyan S; Seal, Sudip K

    2010-01-01

    An effective latency-hiding mechanism is presented in the parallelization of agent-based model simulations (ABMS) with millions of agents. The mechanism is designed to accommodate the hierarchical organization as well as heterogeneity of current state-of-the-art parallel computing platforms. We use it to explore the computation vs. communication trade-off continuum available with the deep computational and memory hierarchies of extant platforms and present a novel analytical model of the tradeoff. We describe our implementation and report preliminary performance results on two distinct parallel platforms suitable for ABMS: CUDA threads on multiple, networked graphical processing units (GPUs), and pthreads on multi-core processors. Messagemore » Passing Interface (MPI) is used for inter-GPU as well as inter-socket communication on a cluster of multiple GPUs and multi-core processors. Results indicate the benefits of our latency-hiding scheme, delivering as much as over 100-fold improvement in runtime for certain benchmark ABMS application scenarios with several million agents. This speed improvement is obtained on our system that is already two to three orders of magnitude faster on one GPU than an equivalent CPU-based execution in a popular simulator in Java. Thus, the overall execution of our current work is over four orders of magnitude faster when executed on multiple GPUs.« less

  7. Multi-Core Processors: An Enabling Technology for Embedded Distributed Model-Based Control (Postprint)

    DTIC Science & Technology

    2008-07-01

    generation of process partitioning, a thread pipelining becomes possible. In this paper we briefly summarize the requirements and trends for FADEC based... FADEC environment, presenting a hypothetical realization of an example application. Finally we discuss the application of Time-Triggered...based control applications of the future. 15. SUBJECT TERMS Gas turbine, FADEC , Multi-core processing technology, disturbed based control

  8. Neural simulations on multi-core architectures.

    PubMed

    Eichner, Hubert; Klug, Tobias; Borst, Alexander

    2009-01-01

    Neuroscience is witnessing increasing knowledge about the anatomy and electrophysiological properties of neurons and their connectivity, leading to an ever increasing computational complexity of neural simulations. At the same time, a rather radical change in personal computer technology emerges with the establishment of multi-cores: high-density, explicitly parallel processor architectures for both high performance as well as standard desktop computers. This work introduces strategies for the parallelization of biophysically realistic neural simulations based on the compartmental modeling technique and results of such an implementation, with a strong focus on multi-core architectures and automation, i.e. user-transparent load balancing.

  9. Neural Simulations on Multi-Core Architectures

    PubMed Central

    Eichner, Hubert; Klug, Tobias; Borst, Alexander

    2009-01-01

    Neuroscience is witnessing increasing knowledge about the anatomy and electrophysiological properties of neurons and their connectivity, leading to an ever increasing computational complexity of neural simulations. At the same time, a rather radical change in personal computer technology emerges with the establishment of multi-cores: high-density, explicitly parallel processor architectures for both high performance as well as standard desktop computers. This work introduces strategies for the parallelization of biophysically realistic neural simulations based on the compartmental modeling technique and results of such an implementation, with a strong focus on multi-core architectures and automation, i.e. user-transparent load balancing. PMID:19636393

  10. Progress Towards a Rad-Hydro Code for Modern Computing Architectures LA-UR-10-02825

    NASA Astrophysics Data System (ADS)

    Wohlbier, J. G.; Lowrie, R. B.; Bergen, B.; Calef, M.

    2010-11-01

    We are entering an era of high performance computing where data movement is the overwhelming bottleneck to scalable performance, as opposed to the speed of floating-point operations per processor. All multi-core hardware paradigms, whether heterogeneous or homogeneous, be it the Cell processor, GPGPU, or multi-core x86, share this common trait. In multi-physics applications such as inertial confinement fusion or astrophysics, one may be solving multi-material hydrodynamics with tabular equation of state data lookups, radiation transport, nuclear reactions, and charged particle transport in a single time cycle. The algorithms are intensely data dependent, e.g., EOS, opacity, nuclear data, and multi-core hardware memory restrictions are forcing code developers to rethink code and algorithm design. For the past two years LANL has been funding a small effort referred to as Multi-Physics on Multi-Core to explore ideas for code design as pertaining to inertial confinement fusion and astrophysics applications. The near term goals of this project are to have a multi-material radiation hydrodynamics capability, with tabular equation of state lookups, on cartesian and curvilinear block structured meshes. In the longer term we plan to add fully implicit multi-group radiation diffusion and material heat conduction, and block structured AMR. We will report on our progress to date.

  11. A fast CT reconstruction scheme for a general multi-core PC.

    PubMed

    Zeng, Kai; Bai, Erwei; Wang, Ge

    2007-01-01

    Expensive computational cost is a severe limitation in CT reconstruction for clinical applications that need real-time feedback. A primary example is bolus-chasing computed tomography (CT) angiography (BCA) that we have been developing for the past several years. To accelerate the reconstruction process using the filtered backprojection (FBP) method, specialized hardware or graphics cards can be used. However, specialized hardware is expensive and not flexible. The graphics processing unit (GPU) in a current graphic card can only reconstruct images in a reduced precision and is not easy to program. In this paper, an acceleration scheme is proposed based on a multi-core PC. In the proposed scheme, several techniques are integrated, including utilization of geometric symmetry, optimization of data structures, single-instruction multiple-data (SIMD) processing, multithreaded computation, and an Intel C++ compilier. Our scheme maintains the original precision and involves no data exchange between the GPU and CPU. The merits of our scheme are demonstrated in numerical experiments against the traditional implementation. Our scheme achieves a speedup of about 40, which can be further improved by several folds using the latest quad-core processors.

  12. A Fast CT Reconstruction Scheme for a General Multi-Core PC

    PubMed Central

    Zeng, Kai; Bai, Erwei; Wang, Ge

    2007-01-01

    Expensive computational cost is a severe limitation in CT reconstruction for clinical applications that need real-time feedback. A primary example is bolus-chasing computed tomography (CT) angiography (BCA) that we have been developing for the past several years. To accelerate the reconstruction process using the filtered backprojection (FBP) method, specialized hardware or graphics cards can be used. However, specialized hardware is expensive and not flexible. The graphics processing unit (GPU) in a current graphic card can only reconstruct images in a reduced precision and is not easy to program. In this paper, an acceleration scheme is proposed based on a multi-core PC. In the proposed scheme, several techniques are integrated, including utilization of geometric symmetry, optimization of data structures, single-instruction multiple-data (SIMD) processing, multithreaded computation, and an Intel C++ compilier. Our scheme maintains the original precision and involves no data exchange between the GPU and CPU. The merits of our scheme are demonstrated in numerical experiments against the traditional implementation. Our scheme achieves a speedup of about 40, which can be further improved by several folds using the latest quad-core processors. PMID:18256731

  13. High-throughput Bayesian Network Learning using Heterogeneous Multicore Computers

    PubMed Central

    Linderman, Michael D.; Athalye, Vivek; Meng, Teresa H.; Asadi, Narges Bani; Bruggner, Robert; Nolan, Garry P.

    2017-01-01

    Aberrant intracellular signaling plays an important role in many diseases. The causal structure of signal transduction networks can be modeled as Bayesian Networks (BNs), and computationally learned from experimental data. However, learning the structure of Bayesian Networks (BNs) is an NP-hard problem that, even with fast heuristics, is too time consuming for large, clinically important networks (20–50 nodes). In this paper, we present a novel graphics processing unit (GPU)-accelerated implementation of a Monte Carlo Markov Chain-based algorithm for learning BNs that is up to 7.5-fold faster than current general-purpose processor (GPP)-based implementations. The GPU-based implementation is just one of several implementations within the larger application, each optimized for a different input or machine configuration. We describe the methodology we use to build an extensible application, assembled from these variants, that can target a broad range of heterogeneous systems, e.g., GPUs, multicore GPPs. Specifically we show how we use the Merge programming model to efficiently integrate, test and intelligently select among the different potential implementations. PMID:28819655

  14. A fast ultrasonic simulation tool based on massively parallel implementations

    NASA Astrophysics Data System (ADS)

    Lambert, Jason; Rougeron, Gilles; Lacassagne, Lionel; Chatillon, Sylvain

    2014-02-01

    This paper presents a CIVA optimized ultrasonic inspection simulation tool, which takes benefit of the power of massively parallel architectures: graphical processing units (GPU) and multi-core general purpose processors (GPP). This tool is based on the classical approach used in CIVA: the interaction model is based on Kirchoff, and the ultrasonic field around the defect is computed by the pencil method. The model has been adapted and parallelized for both architectures. At this stage, the configurations addressed by the tool are : multi and mono-element probes, planar specimens made of simple isotropic materials, planar rectangular defects or side drilled holes of small diameter. Validations on the model accuracy and performances measurements are presented.

  15. Fault-Tolerant, Real-Time, Multi-Core Computer System

    NASA Technical Reports Server (NTRS)

    Gostelow, Kim P.

    2012-01-01

    A document discusses a fault-tolerant, self-aware, low-power, multi-core computer for space missions with thousands of simple cores, achieving speed through concurrency. The proposed machine decides how to achieve concurrency in real time, rather than depending on programmers. The driving features of the system are simple hardware that is modular in the extreme, with no shared memory, and software with significant runtime reorganizing capability. The document describes a mechanism for moving ongoing computations and data that is based on a functional model of execution. Because there is no shared memory, the processor connects to its neighbors through a high-speed data link. Messages are sent to a neighbor switch, which in turn forwards that message on to its neighbor until reaching the intended destination. Except for the neighbor connections, processors are isolated and independent of each other. The processors on the periphery also connect chip-to-chip, thus building up a large processor net. There is no particular topology to the larger net, as a function at each processor allows it to forward a message in the correct direction. Some chip-to-chip connections are not necessarily nearest neighbors, providing short cuts for some of the longer physical distances. The peripheral processors also provide the connections to sensors, actuators, radios, science instruments, and other devices with which the computer system interacts.

  16. Fault Mitigation Schemes for Future Spaceflight Multicore Processors

    NASA Technical Reports Server (NTRS)

    Alexander, James W.; Clement, Bradley J.; Gostelow, Kim P.; Lai, John Y.

    2012-01-01

    Future planetary exploration missions demand significant advances in on-board computing capabilities over current avionics architectures based on a single-core processing element. The state-of-the-art multi-core processor provides much promise in meeting such challenges while introducing new fault tolerance problems when applied to space missions. Software-based schemes are being presented in this paper that can achieve system-level fault mitigation beyond that provided by radiation-hard-by-design (RHBD). For mission and time critical applications such as the Terrain Relative Navigation (TRN) for planetary or small body navigation, and landing, a range of fault tolerance methods can be adapted by the application. The software methods being investigated include Error Correction Code (ECC) for data packet routing between cores, virtual network routing, Triple Modular Redundancy (TMR), and Algorithm-Based Fault Tolerance (ABFT). A robust fault tolerance framework that provides fail-operational behavior under hard real-time constraints and graceful degradation will be demonstrated using TRN executing on a commercial Tilera(R) processor with simulated fault injections.

  17. A high performance load balance strategy for real-time multicore systems.

    PubMed

    Cho, Keng-Mao; Tsai, Chun-Wei; Chiu, Yi-Shiuan; Yang, Chu-Sing

    2014-01-01

    Finding ways to distribute workloads to each processor core and efficiently reduce power consumption is of vital importance, especially for real-time systems. In this paper, a novel scheduling algorithm is proposed for real-time multicore systems to balance the computation loads and save power. The developed algorithm simultaneously considers multiple criteria, a novel factor, and task deadline, and is called power and deadline-aware multicore scheduling (PDAMS). Experiment results show that the proposed algorithm can greatly reduce energy consumption by up to 54.2% and the deadline times missed, as compared to the other scheduling algorithms outlined in this paper.

  18. A High Performance Load Balance Strategy for Real-Time Multicore Systems

    PubMed Central

    Cho, Keng-Mao; Tsai, Chun-Wei; Chiu, Yi-Shiuan; Yang, Chu-Sing

    2014-01-01

    Finding ways to distribute workloads to each processor core and efficiently reduce power consumption is of vital importance, especially for real-time systems. In this paper, a novel scheduling algorithm is proposed for real-time multicore systems to balance the computation loads and save power. The developed algorithm simultaneously considers multiple criteria, a novel factor, and task deadline, and is called power and deadline-aware multicore scheduling (PDAMS). Experiment results show that the proposed algorithm can greatly reduce energy consumption by up to 54.2% and the deadline times missed, as compared to the other scheduling algorithms outlined in this paper. PMID:24955382

  19. Orthorectification by Using Gpgpu Method

    NASA Astrophysics Data System (ADS)

    Sahin, H.; Kulur, S.

    2012-07-01

    Thanks to the nature of the graphics processing, the newly released products offer highly parallel processing units with high-memory bandwidth and computational power of more than teraflops per second. The modern GPUs are not only powerful graphic engines but also they are high level parallel programmable processors with very fast computing capabilities and high-memory bandwidth speed compared to central processing units (CPU). Data-parallel computations can be shortly described as mapping data elements to parallel processing threads. The rapid development of GPUs programmability and capabilities attracted the attentions of researchers dealing with complex problems which need high level calculations. This interest has revealed the concepts of "General Purpose Computation on Graphics Processing Units (GPGPU)" and "stream processing". The graphic processors are powerful hardware which is really cheap and affordable. So the graphic processors became an alternative to computer processors. The graphic chips which were standard application hardware have been transformed into modern, powerful and programmable processors to meet the overall needs. Especially in recent years, the phenomenon of the usage of graphics processing units in general purpose computation has led the researchers and developers to this point. The biggest problem is that the graphics processing units use different programming models unlike current programming methods. Therefore, an efficient GPU programming requires re-coding of the current program algorithm by considering the limitations and the structure of the graphics hardware. Currently, multi-core processors can not be programmed by using traditional programming methods. Event procedure programming method can not be used for programming the multi-core processors. GPUs are especially effective in finding solution for repetition of the computing steps for many data elements when high accuracy is needed. Thus, it provides the computing process more quickly and accurately. Compared to the GPUs, CPUs which perform just one computing in a time according to the flow control are slower in performance. This structure can be evaluated for various applications of computer technology. In this study covers how general purpose parallel programming and computational power of the GPUs can be used in photogrammetric applications especially direct georeferencing. The direct georeferencing algorithm is coded by using GPGPU method and CUDA (Compute Unified Device Architecture) programming language. Results provided by this method were compared with the traditional CPU programming. In the other application the projective rectification is coded by using GPGPU method and CUDA programming language. Sample images of various sizes, as compared to the results of the program were evaluated. GPGPU method can be used especially in repetition of same computations on highly dense data, thus finding the solution quickly.

  20. Energy-aware Thread and Data Management in Heterogeneous Multi-core, Multi-memory Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Chun-Yi

    By 2004, microprocessor design focused on multicore scaling—increasing the number of cores per die in each generation—as the primary strategy for improving performance. These multicore processors typically equip multiple memory subsystems to improve data throughput. In addition, these systems employ heterogeneous processors such as GPUs and heterogeneous memories like non-volatile memory to improve performance, capacity, and energy efficiency. With the increasing volume of hardware resources and system complexity caused by heterogeneity, future systems will require intelligent ways to manage hardware resources. Early research to improve performance and energy efficiency on heterogeneous, multi-core, multi-memory systems focused on tuning a single primitivemore » or at best a few primitives in the systems. The key limitation of past efforts is their lack of a holistic approach to resource management that balances the tradeoff between performance and energy consumption. In addition, the shift from simple, homogeneous systems to these heterogeneous, multicore, multi-memory systems requires in-depth understanding of efficient resource management for scalable execution, including new models that capture the interchange between performance and energy, smarter resource management strategies, and novel low-level performance/energy tuning primitives and runtime systems. Tuning an application to control available resources efficiently has become a daunting challenge; managing resources in automation is still a dark art since the tradeoffs among programming, energy, and performance remain insufficiently understood. In this dissertation, I have developed theories, models, and resource management techniques to enable energy-efficient execution of parallel applications through thread and data management in these heterogeneous multi-core, multi-memory systems. I study the effect of dynamic concurrent throttling on the performance and energy of multi-core, non-uniform memory access (NUMA) systems. I use critical path analysis to quantify memory contention in the NUMA memory system and determine thread mappings. In addition, I implement a runtime system that combines concurrent throttling and a novel thread mapping algorithm to manage thread resources and improve energy efficient execution in multi-core, NUMA systems.« less

  1. Computational multicore on two-layer 1D shallow water equations for erodible dambreak

    NASA Astrophysics Data System (ADS)

    Simanjuntak, C. A.; Bagustara, B. A. R. H.; Gunawan, P. H.

    2018-03-01

    The simulation of erodible dambreak using two-layer shallow water equations and SCHR scheme are elaborated in this paper. The results show that the two-layer SWE model in a good agreement with the data experiment which is performed by Louvain-la-Neuve Université Catholique de Louvain. Moreover, the parallel algorithm with multicore architecture are given in the results. The results show that Computer I with processor Intel(R) Core(TM) i5-2500 CPU Quad-Core has the best performance to accelerate the computational time. Moreover, Computer III with processor AMD A6-5200 APU Quad-Core is observed has higher speedup and efficiency. The speedup and efficiency of Computer III with number of grids 3200 are 3.716050530 times and 92.9% respectively.

  2. Multiple core computer processor with globally-accessible local memories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shalf, John; Donofrio, David; Oliker, Leonid

    A multi-core computer processor including a plurality of processor cores interconnected in a Network-on-Chip (NoC) architecture, a plurality of caches, each of the plurality of caches being associated with one and only one of the plurality of processor cores, and a plurality of memories, each of the plurality of memories being associated with a different set of at least one of the plurality of processor cores and each of the plurality of memories being configured to be visible in a global memory address space such that the plurality of memories are visible to two or more of the plurality ofmore » processor cores.« less

  3. Multi-Core Programming Design Patterns: Stream Processing Algorithms for Dynamic Scene Perceptions

    DTIC Science & Technology

    2014-05-01

    processor developed by IBM and other companies , incorpo- rates the verb—POWER5— processor as the Power Processor Element (PPE), one of the early general...deliver an power efficient single-precision peak performance of more than 256 GFlops. Substantially more raw power became available later, when nVIDIA ...algorithms, including IBM’s Cell/B.E., GPUs from NVidia and AMD and many-core CPUs from Intel.27 The vast growth of digital video content has been a

  4. T-L Plane Abstraction-Based Energy-Efficient Real-Time Scheduling for Multi-Core Wireless Sensors.

    PubMed

    Kim, Youngmin; Lee, Ki-Seong; Pham, Ngoc-Son; Lee, Sun-Ro; Lee, Chan-Gun

    2016-07-08

    Energy efficiency is considered as a critical requirement for wireless sensor networks. As more wireless sensor nodes are equipped with multi-cores, there are emerging needs for energy-efficient real-time scheduling algorithms. The T-L plane-based scheme is known to be an optimal global scheduling technique for periodic real-time tasks on multi-cores. Unfortunately, there has been a scarcity of studies on extending T-L plane-based scheduling algorithms to exploit energy-saving techniques. In this paper, we propose a new T-L plane-based algorithm enabling energy-efficient real-time scheduling on multi-core sensor nodes with dynamic power management (DPM). Our approach addresses the overhead of processor mode transitions and reduces fragmentations of the idle time, which are inherent in T-L plane-based algorithms. Our experimental results show the effectiveness of the proposed algorithm compared to other energy-aware scheduling methods on T-L plane abstraction.

  5. Extending Automatic Parallelization to Optimize High-Level Abstractions for Multicore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, C; Quinlan, D J; Willcock, J J

    2008-12-12

    Automatic introduction of OpenMP for sequential applications has attracted significant attention recently because of the proliferation of multicore processors and the simplicity of using OpenMP to express parallelism for shared-memory systems. However, most previous research has only focused on C and Fortran applications operating on primitive data types. C++ applications using high-level abstractions, such as STL containers and complex user-defined types, are largely ignored due to the lack of research compilers that are readily able to recognize high-level object-oriented abstractions and leverage their associated semantics. In this paper, we automatically parallelize C++ applications using ROSE, a multiple-language source-to-source compiler infrastructuremore » which preserves the high-level abstractions and gives us access to their semantics. Several representative parallelization candidate kernels are used to explore semantic-aware parallelization strategies for high-level abstractions, combined with extended compiler analyses. Those kernels include an array-base computation loop, a loop with task-level parallelism, and a domain-specific tree traversal. Our work extends the applicability of automatic parallelization to modern applications using high-level abstractions and exposes more opportunities to take advantage of multicore processors.« less

  6. Optimization of the coherence function estimation for multi-core central processing unit

    NASA Astrophysics Data System (ADS)

    Cheremnov, A. G.; Faerman, V. A.; Avramchuk, V. S.

    2017-02-01

    The paper considers use of parallel processing on multi-core central processing unit for optimization of the coherence function evaluation arising in digital signal processing. Coherence function along with other methods of spectral analysis is commonly used for vibration diagnosis of rotating machinery and its particular nodes. An algorithm is given for the function evaluation for signals represented with digital samples. The algorithm is analyzed for its software implementation and computational problems. Optimization measures are described, including algorithmic, architecture and compiler optimization, their results are assessed for multi-core processors from different manufacturers. Thus, speeding-up of the parallel execution with respect to sequential execution was studied and results are presented for Intel Core i7-4720HQ и AMD FX-9590 processors. The results show comparatively high efficiency of the optimization measures taken. In particular, acceleration indicators and average CPU utilization have been significantly improved, showing high degree of parallelism of the constructed calculating functions. The developed software underwent state registration and will be used as a part of a software and hardware solution for rotating machinery fault diagnosis and pipeline leak location with acoustic correlation method.

  7. Parallelization of the preconditioned IDR solver for modern multicore computer systems

    NASA Astrophysics Data System (ADS)

    Bessonov, O. A.; Fedoseyev, A. I.

    2012-10-01

    This paper present the analysis, parallelization and optimization approach for the large sparse matrix solver CNSPACK for modern multicore microprocessors. CNSPACK is an advanced solver successfully used for coupled solution of stiff problems arising in multiphysics applications such as CFD, semiconductor transport, kinetic and quantum problems. It employs iterative IDR algorithm with ILU preconditioning (user chosen ILU preconditioning order). CNSPACK has been successfully used during last decade for solving problems in several application areas, including fluid dynamics and semiconductor device simulation. However, there was a dramatic change in processor architectures and computer system organization in recent years. Due to this, performance criteria and methods have been revisited, together with involving the parallelization of the solver and preconditioner using Open MP environment. Results of the successful implementation for efficient parallelization are presented for the most advances computer system (Intel Core i7-9xx or two-processor Xeon 55xx/56xx).

  8. Early Student Support for Application of Advanced Multi-Core Processor Technologies to Oceanographic Research

    DTIC Science & Technology

    2016-05-07

    REPORT DOCUMENTATION PAGE I . ... ... .. . ,...,.., ............. OMB No. 0704-0188 The public reporting burden for this collection of...Student Support for Appl ication of Advanced Multi- Core Processor N00014-12-1-0298 Technologies to Oceanographic Research Sb. GRANT NUMBER Sc...communications protocols (i.e. UART, I2C, and SPI), through the , ’ . handing off of the data to the server APis. By providing a common set of tools

  9. Accelerating 3D Elastic Wave Equations on Knights Landing based Intel Xeon Phi processors

    NASA Astrophysics Data System (ADS)

    Sourouri, Mohammed; Birger Raknes, Espen

    2017-04-01

    In advanced imaging methods like reverse-time migration (RTM) and full waveform inversion (FWI) the elastic wave equation (EWE) is numerically solved many times to create the seismic image or the elastic parameter model update. Thus, it is essential to optimize the solution time for solving the EWE as this will have a major impact on the total computational cost in running RTM or FWI. From a computational point of view applications implementing EWEs are associated with two major challenges. The first challenge is the amount of memory-bound computations involved, while the second challenge is the execution of such computations over very large datasets. So far, multi-core processors have not been able to tackle these two challenges, which eventually led to the adoption of accelerators such as Graphics Processing Units (GPUs). Compared to conventional CPUs, GPUs are densely populated with many floating-point units and fast memory, a type of architecture that has proven to map well to many scientific computations. Despite its architectural advantages, full-scale adoption of accelerators has yet to materialize. First, accelerators require a significant programming effort imposed by programming models such as CUDA or OpenCL. Second, accelerators come with a limited amount of memory, which also require explicit data transfers between the CPU and the accelerator over the slow PCI bus. The second generation of the Xeon Phi processor based on the Knights Landing (KNL) architecture, promises the computational capabilities of an accelerator but require the same programming effort as traditional multi-core processors. The high computational performance is realized through many integrated cores (number of cores and tiles and memory varies with the model) organized in tiles that are connected via a 2D mesh based interconnect. In contrary to accelerators, KNL is a self-hosted system, meaning explicit data transfers over the PCI bus are no longer required. However, like most accelerators, KNL sports a memory subsystem consisting of low-level caches and 16GB of high-bandwidth MCDRAM memory. For capacity computing, up to 400GB of conventional DDR4 memory is provided. Such a strict hierarchical memory layout means that data locality is imperative if the true potential of this product is to be harnessed. In this work, we study a series of optimizations specifically targeting KNL for our EWE based application to reduce the time-to-solution time for the following 3D model sizes in grid points: 1283, 2563 and 5123. We compare the results with an optimized version for multi-core CPUs running on a dual-socket Xeon E5 2680v3 system using OpenMP. Our initial naive implementation on the KNL is roughly 20% faster than the multi-core version, but by using only one thread per core and careful memory placement using the memkind library, we could achieve higher speedups. Additionally, by using the MCDRAM as cache for problem sizes that are smaller than 16 GB further performance improvements were unlocked. Depending on the problem size, our overall results indicate that the KNL based system is approximately 2.2x faster than the 24-core Xeon E5 2680v3 system, with only modest changes to the code.

  10. On-line surface inspection using cylindrical lens-based spectral domain low-coherence interferometry.

    PubMed

    Tang, Dawei; Gao, Feng; Jiang, X

    2014-08-20

    We present a spectral domain low-coherence interferometry (SD-LCI) method that is effective for applications in on-line surface inspection because it can obtain a surface profile in a single shot. It has an advantage over existing spectral interferometry techniques by using cylindrical lenses as the objective lenses in a Michelson interferometric configuration to enable the measurement of long profiles. Combined with a modern high-speed CCD camera, general-purpose graphics processing unit, and multicore processors computing technology, fast measurement can be achieved. By translating the tested sample during the measurement procedure, real-time surface inspection was implemented, which is proved by the large-scale 3D surface measurement in this paper. ZEMAX software is used to simulate the SD-LCI system and analyze the alignment errors. Two step height surfaces were measured, and the captured interferograms were analyzed using a fast Fourier transform algorithm. Both 2D profile results and 3D surface maps closely align with the calibrated specifications given by the manufacturer.

  11. Thread mapping using system-level model for shared memory multicores

    NASA Astrophysics Data System (ADS)

    Mitra, Reshmi

    Exploring thread-to-core mapping options for a parallel application on a multicore architecture is computationally very expensive. For the same algorithm, the mapping strategy (MS) with the best response time may change with data size and thread counts. The primary challenge is to design a fast, accurate and automatic framework for exploring these MSs for large data-intensive applications. This is to ensure that the users can explore the design space within reasonable machine hours, without thorough understanding on how the code interacts with the platform. Response time is related to the cycles per instructions retired (CPI), taking into account both active and sleep states of the pipeline. This work establishes a hybrid approach, based on Markov Chain Model (MCM) and Model Tree (MT) for system-level steady state CPI prediction. It is designed for shared memory multicore processors with coarse-grained multithreading. The thread status is represented by the MCM states. The program characteristics are modeled as the transition probabilities, representing the system moving between active and suspended thread states. The MT model extrapolates these probabilities for the actual application size (AS) from the smaller AS performance. This aspect of the framework, along with, the use of mathematical expressions for the actual AS performance information, results in a tremendous reduction in the CPI prediction time. The framework is validated using an electromagnetics application. The average performance prediction error for steady state CPI results with 12 different MSs is less than 1%. The total run time of model is of the order of minutes, whereas the actual application execution time is in terms of days.

  12. A Scalable Multicore Architecture With Heterogeneous Memory Structures for Dynamic Neuromorphic Asynchronous Processors (DYNAPs).

    PubMed

    Moradi, Saber; Qiao, Ning; Stefanini, Fabio; Indiveri, Giacomo

    2018-02-01

    Neuromorphic computing systems comprise networks of neurons that use asynchronous events for both computation and communication. This type of representation offers several advantages in terms of bandwidth and power consumption in neuromorphic electronic systems. However, managing the traffic of asynchronous events in large scale systems is a daunting task, both in terms of circuit complexity and memory requirements. Here, we present a novel routing methodology that employs both hierarchical and mesh routing strategies and combines heterogeneous memory structures for minimizing both memory requirements and latency, while maximizing programming flexibility to support a wide range of event-based neural network architectures, through parameter configuration. We validated the proposed scheme in a prototype multicore neuromorphic processor chip that employs hybrid analog/digital circuits for emulating synapse and neuron dynamics together with asynchronous digital circuits for managing the address-event traffic. We present a theoretical analysis of the proposed connectivity scheme, describe the methods and circuits used to implement such scheme, and characterize the prototype chip. Finally, we demonstrate the use of the neuromorphic processor with a convolutional neural network for the real-time classification of visual symbols being flashed to a dynamic vision sensor (DVS) at high speed.

  13. T-L Plane Abstraction-Based Energy-Efficient Real-Time Scheduling for Multi-Core Wireless Sensors

    PubMed Central

    Kim, Youngmin; Lee, Ki-Seong; Pham, Ngoc-Son; Lee, Sun-Ro; Lee, Chan-Gun

    2016-01-01

    Energy efficiency is considered as a critical requirement for wireless sensor networks. As more wireless sensor nodes are equipped with multi-cores, there are emerging needs for energy-efficient real-time scheduling algorithms. The T-L plane-based scheme is known to be an optimal global scheduling technique for periodic real-time tasks on multi-cores. Unfortunately, there has been a scarcity of studies on extending T-L plane-based scheduling algorithms to exploit energy-saving techniques. In this paper, we propose a new T-L plane-based algorithm enabling energy-efficient real-time scheduling on multi-core sensor nodes with dynamic power management (DPM). Our approach addresses the overhead of processor mode transitions and reduces fragmentations of the idle time, which are inherent in T-L plane-based algorithms. Our experimental results show the effectiveness of the proposed algorithm compared to other energy-aware scheduling methods on T-L plane abstraction. PMID:27399722

  14. Multicore: Fallout from a Computing Evolution

    ScienceCinema

    Yelick, Kathy [Director, NERSC

    2017-12-09

    July 22, 2008 Berkeley Lab lecture: Parallel computing used to be reserved for big science and engineering projects, but in two years that's all changed. Even laptops and hand-helds use parallel processors. Unfortunately, the software hasn't kept pace. Kathy Yelick, Director of the National Energy Research Scientific Computing Center at Berkeley Lab, describes the resulting chaos and the computing community's efforts to develop exciting applications that take advantage of tens or hundreds of processors on a single chip.

  15. Multicore Education through Simulation

    ERIC Educational Resources Information Center

    Ozturk, O.

    2011-01-01

    A project-oriented course for advanced undergraduate and graduate students is described for simulating multiple processor cores. Simics, a free simulator for academia, was utilized to enable students to explore computer architecture, operating systems, and hardware/software cosimulation. Motivation for including this course in the curriculum is…

  16. A FAST ITERATIVE METHOD FOR SOLVING THE EIKONAL EQUATION ON TRIANGULATED SURFACES*

    PubMed Central

    Fu, Zhisong; Jeong, Won-Ki; Pan, Yongsheng; Kirby, Robert M.; Whitaker, Ross T.

    2012-01-01

    This paper presents an efficient, fine-grained parallel algorithm for solving the Eikonal equation on triangular meshes. The Eikonal equation, and the broader class of Hamilton–Jacobi equations to which it belongs, have a wide range of applications from geometric optics and seismology to biological modeling and analysis of geometry and images. The ability to solve such equations accurately and efficiently provides new capabilities for exploring and visualizing parameter spaces and for solving inverse problems that rely on such equations in the forward model. Efficient solvers on state-of-the-art, parallel architectures require new algorithms that are not, in many cases, optimal, but are better suited to synchronous updates of the solution. In previous work [W. K. Jeong and R. T. Whitaker, SIAM J. Sci. Comput., 30 (2008), pp. 2512–2534], the authors proposed the fast iterative method (FIM) to efficiently solve the Eikonal equation on regular grids. In this paper we extend the fast iterative method to solve Eikonal equations efficiently on triangulated domains on the CPU and on parallel architectures, including graphics processors. We propose a new local update scheme that provides solutions of first-order accuracy for both architectures. We also propose a novel triangle-based update scheme and its corresponding data structure for efficient irregular data mapping to parallel single-instruction multiple-data (SIMD) processors. We provide detailed descriptions of the implementations on a single CPU, a multicore CPU with shared memory, and SIMD architectures with comparative results against state-of-the-art Eikonal solvers. PMID:22641200

  17. GPU accelerated dynamic functional connectivity analysis for functional MRI data.

    PubMed

    Akgün, Devrim; Sakoğlu, Ünal; Esquivel, Johnny; Adinoff, Bryon; Mete, Mutlu

    2015-07-01

    Recent advances in multi-core processors and graphics card based computational technologies have paved the way for an improved and dynamic utilization of parallel computing techniques. Numerous applications have been implemented for the acceleration of computationally-intensive problems in various computational science fields including bioinformatics, in which big data problems are prevalent. In neuroimaging, dynamic functional connectivity (DFC) analysis is a computationally demanding method used to investigate dynamic functional interactions among different brain regions or networks identified with functional magnetic resonance imaging (fMRI) data. In this study, we implemented and analyzed a parallel DFC algorithm based on thread-based and block-based approaches. The thread-based approach was designed to parallelize DFC computations and was implemented in both Open Multi-Processing (OpenMP) and Compute Unified Device Architecture (CUDA) programming platforms. Another approach developed in this study to better utilize CUDA architecture is the block-based approach, where parallelization involves smaller parts of fMRI time-courses obtained by sliding-windows. Experimental results showed that the proposed parallel design solutions enabled by the GPUs significantly reduce the computation time for DFC analysis. Multicore implementation using OpenMP on 8-core processor provides up to 7.7× speed-up. GPU implementation using CUDA yielded substantial accelerations ranging from 18.5× to 157× speed-up once thread-based and block-based approaches were combined in the analysis. Proposed parallel programming solutions showed that multi-core processor and CUDA-supported GPU implementations accelerated the DFC analyses significantly. Developed algorithms make the DFC analyses more practical for multi-subject studies with more dynamic analyses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Multicore Hardware Experiments in Software Producibility

    DTIC Science & Technology

    2009-06-01

    processors. 15. SUBJECT TERMS Multi-core, Real - time Systems , Testing, Software Modernization 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF... real ‐ time   systems .   The  inputs to the dgclocalnav component are the path plan (received from highlevelplanner, discussed  next), the drivable grid... time   systems , robotics, and software. As frequently observed in cyber‐physical systems,  the  system  designers  may  need  experience  in  multiple

  19. Multicore: Fallout From a Computing Evolution (LBNL Summer Lecture Series)

    ScienceCinema

    Yelick, Kathy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)

    2018-05-07

    Summer Lecture Series 2008: Parallel computing used to be reserved for big science and engineering projects, but in two years that's all changed. Even laptops and hand-helds use parallel processors. Unfortunately, the software hasn't kept pace. Kathy Yelick, Director of the National Energy Research Scientific Computing Center at Berkeley Lab, describes the resulting chaos and the computing community's efforts to develop exciting applications that take advantage of tens or hundreds of processors on a single chip.

  20. Dynamic Voltage-Frequency and Workload Joint Scaling Power Management for Energy Harvesting Multi-Core WSN Node SoC

    PubMed Central

    Li, Xiangyu; Xie, Nijie; Tian, Xinyue

    2017-01-01

    This paper proposes a scheduling and power management solution for energy harvesting heterogeneous multi-core WSN node SoC such that the system continues to operate perennially and uses the harvested energy efficiently. The solution consists of a heterogeneous multi-core system oriented task scheduling algorithm and a low-complexity dynamic workload scaling and configuration optimization algorithm suitable for light-weight platforms. Moreover, considering the power consumption of most WSN applications have the characteristic of data dependent behavior, we introduce branches handling mechanism into the solution as well. The experimental result shows that the proposed algorithm can operate in real-time on a lightweight embedded processor (MSP430), and that it can make a system do more valuable works and make more than 99.9% use of the power budget. PMID:28208730

  1. Dynamic Voltage-Frequency and Workload Joint Scaling Power Management for Energy Harvesting Multi-Core WSN Node SoC.

    PubMed

    Li, Xiangyu; Xie, Nijie; Tian, Xinyue

    2017-02-08

    This paper proposes a scheduling and power management solution for energy harvesting heterogeneous multi-core WSN node SoC such that the system continues to operate perennially and uses the harvested energy efficiently. The solution consists of a heterogeneous multi-core system oriented task scheduling algorithm and a low-complexity dynamic workload scaling and configuration optimization algorithm suitable for light-weight platforms. Moreover, considering the power consumption of most WSN applications have the characteristic of data dependent behavior, we introduce branches handling mechanism into the solution as well. The experimental result shows that the proposed algorithm can operate in real-time on a lightweight embedded processor (MSP430), and that it can make a system do more valuable works and make more than 99.9% use of the power budget.

  2. Evolution of CMS workload management towards multicore job support

    NASA Astrophysics Data System (ADS)

    Pérez-Calero Yzquierdo, A.; Hernández, J. M.; Khan, F. A.; Letts, J.; Majewski, K.; Rodrigues, A. M.; McCrea, A.; Vaandering, E.

    2015-12-01

    The successful exploitation of multicore processor architectures is a key element of the LHC distributed computing system in the coming era of the LHC Run 2. High-pileup complex-collision events represent a challenge for the traditional sequential programming in terms of memory and processing time budget. The CMS data production and processing framework is introducing the parallel execution of the reconstruction and simulation algorithms to overcome these limitations. CMS plans to execute multicore jobs while still supporting singlecore processing for other tasks difficult to parallelize, such as user analysis. The CMS strategy for job management thus aims at integrating single and multicore job scheduling across the Grid. This is accomplished by employing multicore pilots with internal dynamic partitioning of the allocated resources, capable of running payloads of various core counts simultaneously. An extensive test programme has been conducted to enable multicore scheduling with the various local batch systems available at CMS sites, with the focus on the Tier-0 and Tier-1s, responsible during 2015 of the prompt data reconstruction. Scale tests have been run to analyse the performance of this scheduling strategy and ensure an efficient use of the distributed resources. This paper presents the evolution of the CMS job management and resource provisioning systems in order to support this hybrid scheduling model, as well as its deployment and performance tests, which will enable CMS to transition to a multicore production model for the second LHC run.

  3. Evolution of CMS Workload Management Towards Multicore Job Support

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perez-Calero Yzquierdo, A.; Hernández, J. M.; Khan, F. A.

    The successful exploitation of multicore processor architectures is a key element of the LHC distributed computing system in the coming era of the LHC Run 2. High-pileup complex-collision events represent a challenge for the traditional sequential programming in terms of memory and processing time budget. The CMS data production and processing framework is introducing the parallel execution of the reconstruction and simulation algorithms to overcome these limitations. CMS plans to execute multicore jobs while still supporting singlecore processing for other tasks difficult to parallelize, such as user analysis. The CMS strategy for job management thus aims at integrating single andmore » multicore job scheduling across the Grid. This is accomplished by employing multicore pilots with internal dynamic partitioning of the allocated resources, capable of running payloads of various core counts simultaneously. An extensive test programme has been conducted to enable multicore scheduling with the various local batch systems available at CMS sites, with the focus on the Tier-0 and Tier-1s, responsible during 2015 of the prompt data reconstruction. Scale tests have been run to analyse the performance of this scheduling strategy and ensure an efficient use of the distributed resources. This paper presents the evolution of the CMS job management and resource provisioning systems in order to support this hybrid scheduling model, as well as its deployment and performance tests, which will enable CMS to transition to a multicore production model for the second LHC run.« less

  4. Parallel, stochastic measurement of molecular surface area.

    PubMed

    Juba, Derek; Varshney, Amitabh

    2008-08-01

    Biochemists often wish to compute surface areas of proteins. A variety of algorithms have been developed for this task, but they are designed for traditional single-processor architectures. The current trend in computer hardware is towards increasingly parallel architectures for which these algorithms are not well suited. We describe a parallel, stochastic algorithm for molecular surface area computation that maps well to the emerging multi-core architectures. Our algorithm is also progressive, providing a rough estimate of surface area immediately and refining this estimate as time goes on. Furthermore, the algorithm generates points on the molecular surface which can be used for point-based rendering. We demonstrate a GPU implementation of our algorithm and show that it compares favorably with several existing molecular surface computation programs, giving fast estimates of the molecular surface area with good accuracy.

  5. Vascular system modeling in parallel environment - distributed and shared memory approaches

    PubMed Central

    Jurczuk, Krzysztof; Kretowski, Marek; Bezy-Wendling, Johanne

    2011-01-01

    The paper presents two approaches in parallel modeling of vascular system development in internal organs. In the first approach, new parts of tissue are distributed among processors and each processor is responsible for perfusing its assigned parts of tissue to all vascular trees. Communication between processors is accomplished by passing messages and therefore this algorithm is perfectly suited for distributed memory architectures. The second approach is designed for shared memory machines. It parallelizes the perfusion process during which individual processing units perform calculations concerning different vascular trees. The experimental results, performed on a computing cluster and multi-core machines, show that both algorithms provide a significant speedup. PMID:21550891

  6. A hybrid algorithm for parallel molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Mangiardi, Chris M.; Meyer, R.

    2017-10-01

    This article describes algorithms for the hybrid parallelization and SIMD vectorization of molecular dynamics simulations with short-range forces. The parallelization method combines domain decomposition with a thread-based parallelization approach. The goal of the work is to enable efficient simulations of very large (tens of millions of atoms) and inhomogeneous systems on many-core processors with hundreds or thousands of cores and SIMD units with large vector sizes. In order to test the efficiency of the method, simulations of a variety of configurations with up to 74 million atoms have been performed. Results are shown that were obtained on multi-core systems with Sandy Bridge and Haswell processors as well as systems with Xeon Phi many-core processors.

  7. MILC Code Performance on High End CPU and GPU Supercomputer Clusters

    NASA Astrophysics Data System (ADS)

    DeTar, Carleton; Gottlieb, Steven; Li, Ruizi; Toussaint, Doug

    2018-03-01

    With recent developments in parallel supercomputing architecture, many core, multi-core, and GPU processors are now commonplace, resulting in more levels of parallelism, memory hierarchy, and programming complexity. It has been necessary to adapt the MILC code to these new processors starting with NVIDIA GPUs, and more recently, the Intel Xeon Phi processors. We report on our efforts to port and optimize our code for the Intel Knights Landing architecture. We consider performance of the MILC code with MPI and OpenMP, and optimizations with QOPQDP and QPhiX. For the latter approach, we concentrate on the staggered conjugate gradient and gauge force. We also consider performance on recent NVIDIA GPUs using the QUDA library.

  8. Fast Automatic Segmentation of White Matter Streamlines Based on a Multi-Subject Bundle Atlas.

    PubMed

    Labra, Nicole; Guevara, Pamela; Duclap, Delphine; Houenou, Josselin; Poupon, Cyril; Mangin, Jean-François; Figueroa, Miguel

    2017-01-01

    This paper presents an algorithm for fast segmentation of white matter bundles from massive dMRI tractography datasets using a multisubject atlas. We use a distance metric to compare streamlines in a subject dataset to labeled centroids in the atlas, and label them using a per-bundle configurable threshold. In order to reduce segmentation time, the algorithm first preprocesses the data using a simplified distance metric to rapidly discard candidate streamlines in multiple stages, while guaranteeing that no false negatives are produced. The smaller set of remaining streamlines is then segmented using the original metric, thus eliminating any false positives from the preprocessing stage. As a result, a single-thread implementation of the algorithm can segment a dataset of almost 9 million streamlines in less than 6 minutes. Moreover, parallel versions of our algorithm for multicore processors and graphics processing units further reduce the segmentation time to less than 22 seconds and to 5 seconds, respectively. This performance enables the use of the algorithm in truly interactive applications for visualization, analysis, and segmentation of large white matter tractography datasets.

  9. Computing NLTE Opacities -- Node Level Parallel Calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holladay, Daniel

    Presentation. The goal: to produce a robust library capable of computing reasonably accurate opacities inline with the assumption of LTE relaxed (non-LTE). Near term: demonstrate acceleration of non-LTE opacity computation. Far term (if funded): connect to application codes with in-line capability and compute opacities. Study science problems. Use efficient algorithms that expose many levels of parallelism and utilize good memory access patterns for use on advanced architectures. Portability to multiple types of hardware including multicore processors, manycore processors such as KNL, GPUs, etc. Easily coupled to radiation hydrodynamics and thermal radiative transfer codes.

  10. Considerations for Future Climate Data Stewardship

    NASA Astrophysics Data System (ADS)

    Halem, M.; Nguyen, P. T.; Chapman, D. R.

    2009-12-01

    In this talk, we will describe the lessons learned based on processing and generating a decade of gridded AIRS and MODIS IR sounding data. We describe the challenges faced in accessing and sharing very large data sets, maintaining data provenance under evolving technologies, obtaining access to legacy calibration data and the permanent preservation of Earth science data records for on demand services. These lessons suggest a new approach to data stewardship will be required for the next decade of hyper spectral instruments combined with cloud resolving models. It will not be sufficient for stewards of future data centers to just provide the public with access to archived data but our experience indicates that data needs to reside close to computers with ultra large disc farms and tens of thousands of processors to deliver complex services on demand over very high speed networks much like the offerings of search engines today. Over the first decade of the 21st century, petabyte data records were acquired from the AIRS instrument on Aqua and the MODIS instrument on Aqua and Terra. NOAA data centers also maintain petabytes of operational IR sounders collected over the past four decades. The UMBC Multicore Computational Center (MC2) developed a Service Oriented Atmospheric Radiance gridding system (SOAR) to allow users to select IR sounding instruments from multiple archives and choose space-time- spectral periods of Level 1B data to download, grid, visualize and analyze on demand. Providing this service requires high data rate bandwidth access to the on line disks at Goddard. After 10 years, cost effective disk storage technology finally caught up with the MODIS data volume making it possible for Level 1B MODIS data to be available on line. However, 10Ge fiber optic networks to access large volumes of data are still not available from CSFC to serve the broader community. Data transfer rates are well below 10MB/s limiting their usefulness for climate studies. During this decade, processor performance hit a power wall leading computer vendors to design multicore processor chips. High performance computer systems obtained petaflop performance by clustering tens of thousands of multicore processor chips. Thus, power consumption and autonomic recovery from processor and disc failures have become major cost and technical considerations for future data archives. To address these new architecture requirements, a transparent parallel programming paradigm, the Hadoop MapReduce cloud computing system, became available as an open S/W system. In addition, the Hadoop File System and manages the distribution of data to these processors as well as backs up the processing in the event of any processor or disc failure. However, to employ this paradigm, the data needs to be stored on the computer system. We conclude this talk with a climate data preservation approach that addresses the scalability crisis to exabyte data requirements for the next decade based on projections of processor, disc data density and bandwidth doubling rates.

  11. Tomo3D 2.0--exploitation of advanced vector extensions (AVX) for 3D reconstruction.

    PubMed

    Agulleiro, Jose-Ignacio; Fernandez, Jose-Jesus

    2015-02-01

    Tomo3D is a program for fast tomographic reconstruction on multicore computers. Its high speed stems from code optimization, vectorization with Streaming SIMD Extensions (SSE), multithreading and optimization of disk access. Recently, Advanced Vector eXtensions (AVX) have been introduced in the x86 processor architecture. Compared to SSE, AVX double the number of simultaneous operations, thus pointing to a potential twofold gain in speed. However, in practice, achieving this potential is extremely difficult. Here, we provide a technical description and an assessment of the optimizations included in Tomo3D to take advantage of AVX instructions. Tomo3D 2.0 allows huge reconstructions to be calculated in standard computers in a matter of minutes. Thus, it will be a valuable tool for electron tomography studies with increasing resolution needs. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Investigation of Large Scale Cortical Models on Clustered Multi-Core Processors

    DTIC Science & Technology

    2013-02-01

    with the bias node ( gray ) denoted as ww and the weights associated with the remaining first layer nodes (black) denoted as W. In forming the overall...Implementation of RBF network on GPU Platform 3.5.1 The Cholesky decomposition algorithm We need to invert the matrix multiplication GTG to

  13. Improving the performance of heterogeneous multi-core processors by modifying the cache coherence protocol

    NASA Astrophysics Data System (ADS)

    Fang, Juan; Hao, Xiaoting; Fan, Qingwen; Chang, Zeqing; Song, Shuying

    2017-05-01

    In the Heterogeneous multi-core architecture, CPU and GPU processor are integrated on the same chip, which poses a new challenge to the last-level cache management. In this architecture, the CPU application and the GPU application execute concurrently, accessing the last-level cache. CPU and GPU have different memory access characteristics, so that they have differences in the sensitivity of last-level cache (LLC) capacity. For many CPU applications, a reduced share of the LLC could lead to significant performance degradation. On the contrary, GPU applications can tolerate increase in memory access latency when there is sufficient thread-level parallelism. Taking into account the GPU program memory latency tolerance characteristics, this paper presents a method that let GPU applications can access to memory directly, leaving lots of LLC space for CPU applications, in improving the performance of CPU applications and does not affect the performance of GPU applications. When the CPU application is cache sensitive, and the GPU application is insensitive to the cache, the overall performance of the system is improved significantly.

  14. Multicore Programming Challenges

    NASA Astrophysics Data System (ADS)

    Perrone, Michael

    The computer industry is facing fundamental challenges that are driving a major change in the design of computer processors. Due to restrictions imposed by quantum physics, one historical path to higher computer processor performance - by increased clock frequency - has come to an end. Increasing clock frequency now leads to power consumption costs that are too high to justify. As a result, we have seen in recent years that the processor frequencies have peaked and are receding from their high point. At the same time, competitive market conditions are giving business advantage to those companies that can field new streaming applications, handle larger data sets, and update their models to market conditions faster. The desire for newer, faster and larger is driving continued demand for higher computer performance.

  15. Real-time implementations of image segmentation algorithms on shared memory multicore architecture: a survey (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Akil, Mohamed

    2017-05-01

    The real-time processing is getting more and more important in many image processing applications. Image segmentation is one of the most fundamental tasks image analysis. As a consequence, many different approaches for image segmentation have been proposed. The watershed transform is a well-known image segmentation tool. The watershed transform is a very data intensive task. To achieve acceleration and obtain real-time processing of watershed algorithms, parallel architectures and programming models for multicore computing have been developed. This paper focuses on the survey of the approaches for parallel implementation of sequential watershed algorithms on multicore general purpose CPUs: homogeneous multicore processor with shared memory. To achieve an efficient parallel implementation, it's necessary to explore different strategies (parallelization/distribution/distributed scheduling) combined with different acceleration and optimization techniques to enhance parallelism. In this paper, we give a comparison of various parallelization of sequential watershed algorithms on shared memory multicore architecture. We analyze the performance measurements of each parallel implementation and the impact of the different sources of overhead on the performance of the parallel implementations. In this comparison study, we also discuss the advantages and disadvantages of the parallel programming models. Thus, we compare the OpenMP (an application programming interface for multi-Processing) with Ptheads (POSIX Threads) to illustrate the impact of each parallel programming model on the performance of the parallel implementations.

  16. Computer-intensive simulation of solid-state NMR experiments using SIMPSON.

    PubMed

    Tošner, Zdeněk; Andersen, Rasmus; Stevensson, Baltzar; Edén, Mattias; Nielsen, Niels Chr; Vosegaard, Thomas

    2014-09-01

    Conducting large-scale solid-state NMR simulations requires fast computer software potentially in combination with efficient computational resources to complete within a reasonable time frame. Such simulations may involve large spin systems, multiple-parameter fitting of experimental spectra, or multiple-pulse experiment design using parameter scan, non-linear optimization, or optimal control procedures. To efficiently accommodate such simulations, we here present an improved version of the widely distributed open-source SIMPSON NMR simulation software package adapted to contemporary high performance hardware setups. The software is optimized for fast performance on standard stand-alone computers, multi-core processors, and large clusters of identical nodes. We describe the novel features for fast computation including internal matrix manipulations, propagator setups and acquisition strategies. For efficient calculation of powder averages, we implemented interpolation method of Alderman, Solum, and Grant, as well as recently introduced fast Wigner transform interpolation technique. The potential of the optimal control toolbox is greatly enhanced by higher precision gradients in combination with the efficient optimization algorithm known as limited memory Broyden-Fletcher-Goldfarb-Shanno. In addition, advanced parallelization can be used in all types of calculations, providing significant time reductions. SIMPSON is thus reflecting current knowledge in the field of numerical simulations of solid-state NMR experiments. The efficiency and novel features are demonstrated on the representative simulations. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Photonic-Networks-on-Chip for High Performance Radiation Survivable Multi-Core Processor Systems

    DTIC Science & Technology

    2013-12-01

    Loss Spectra” Proceedings of SPIE 8255, (2012) and in a journal publication: M. T. Crowley, D. Murrell, N. Patel, M. Breivik , C.-Y. Lin, Y. Li, B.-O...Crowley, D. Murrell, N. Patel, M. Breivik , C.-Y. Lin, Y. Li, B.-O. Fimland and L. F. Lester, "Analytical Modeling of the Temperature Performance of

  18. Fast data reconstructed method of Fourier transform imaging spectrometer based on multi-core CPU

    NASA Astrophysics Data System (ADS)

    Yu, Chunchao; Du, Debiao; Xia, Zongze; Song, Li; Zheng, Weijian; Yan, Min; Lei, Zhenggang

    2017-10-01

    Imaging spectrometer can gain two-dimensional space image and one-dimensional spectrum at the same time, which shows high utility in color and spectral measurements, the true color image synthesis, military reconnaissance and so on. In order to realize the fast reconstructed processing of the Fourier transform imaging spectrometer data, the paper designed the optimization reconstructed algorithm with OpenMP parallel calculating technology, which was further used for the optimization process for the HyperSpectral Imager of `HJ-1' Chinese satellite. The results show that the method based on multi-core parallel computing technology can control the multi-core CPU hardware resources competently and significantly enhance the calculation of the spectrum reconstruction processing efficiency. If the technology is applied to more cores workstation in parallel computing, it will be possible to complete Fourier transform imaging spectrometer real-time data processing with a single computer.

  19. Cache Energy Optimization Techniques For Modern Processors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mittal, Sparsh

    2013-01-01

    Modern multicore processors are employing large last-level caches, for example Intel's E7-8800 processor uses 24MB L3 cache. Further, with each CMOS technology generation, leakage energy has been dramatically increasing and hence, leakage energy is expected to become a major source of energy dissipation, especially in last-level caches (LLCs). The conventional schemes of cache energy saving either aim at saving dynamic energy or are based on properties specific to first-level caches, and thus these schemes have limited utility for last-level caches. Further, several other techniques require offline profiling or per-application tuning and hence are not suitable for product systems. In thismore » book, we present novel cache leakage energy saving schemes for single-core and multicore systems; desktop, QoS, real-time and server systems. Also, we present cache energy saving techniques for caches designed with both conventional SRAM devices and emerging non-volatile devices such as STT-RAM (spin-torque transfer RAM). We present software-controlled, hardware-assisted techniques which use dynamic cache reconfiguration to configure the cache to the most energy efficient configuration while keeping the performance loss bounded. To profile and test a large number of potential configurations, we utilize low-overhead, micro-architecture components, which can be easily integrated into modern processor chips. We adopt a system-wide approach to save energy to ensure that cache reconfiguration does not increase energy consumption of other components of the processor. We have compared our techniques with state-of-the-art techniques and have found that our techniques outperform them in terms of energy efficiency and other relevant metrics. The techniques presented in this book have important applications in improving energy-efficiency of higher-end embedded, desktop, QoS, real-time, server processors and multitasking systems. This book is intended to be a valuable guide for both newcomers and veterans in the field of cache power management. It will help graduate students, CAD tool developers and designers in understanding the need of energy efficiency in modern computing systems. Further, it will be useful for researchers in gaining insights into algorithms and techniques for micro-architectural and system-level energy optimization using dynamic cache reconfiguration. We sincerely believe that the ``food for thought'' presented in this book will inspire the readers to develop even better ideas for designing ``green'' processors of tomorrow.« less

  20. Scaling Support Vector Machines On Modern HPC Platforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, Yang; Fu, Haohuan; Song, Shuaiwen

    2015-02-01

    We designed and implemented MIC-SVM, a highly efficient parallel SVM for x86 based multicore and many-core architectures, such as the Intel Ivy Bridge CPUs and Intel Xeon Phi co-processor (MIC). We propose various novel analysis methods and optimization techniques to fully utilize the multilevel parallelism provided by these architectures and serve as general optimization methods for other machine learning tools.

  1. MIT Lincoln Laboratory Takes the Mystery Out of Supercomupting

    DTIC Science & Technology

    2017-01-18

    analysis, designing sensors, and developing algorithms. In 2008, the Lincoln demonstrated the largest single problem ever run on a computer using ... computation . As we design and prototype these devices, the use of leading–edge engineering practices have become the de facto standard. This includes...MIT Lincoln Laboratory Takes the Mystery Out of Supercomputing By Dr. Jeremy Kepner 1 The introduction of multicore and manycore processors

  2. NeuroFlow: A General Purpose Spiking Neural Network Simulation Platform using Customizable Processors.

    PubMed

    Cheung, Kit; Schultz, Simon R; Luk, Wayne

    2015-01-01

    NeuroFlow is a scalable spiking neural network simulation platform for off-the-shelf high performance computing systems using customizable hardware processors such as Field-Programmable Gate Arrays (FPGAs). Unlike multi-core processors and application-specific integrated circuits, the processor architecture of NeuroFlow can be redesigned and reconfigured to suit a particular simulation to deliver optimized performance, such as the degree of parallelism to employ. The compilation process supports using PyNN, a simulator-independent neural network description language, to configure the processor. NeuroFlow supports a number of commonly used current or conductance based neuronal models such as integrate-and-fire and Izhikevich models, and the spike-timing-dependent plasticity (STDP) rule for learning. A 6-FPGA system can simulate a network of up to ~600,000 neurons and can achieve a real-time performance of 400,000 neurons. Using one FPGA, NeuroFlow delivers a speedup of up to 33.6 times the speed of an 8-core processor, or 2.83 times the speed of GPU-based platforms. With high flexibility and throughput, NeuroFlow provides a viable environment for large-scale neural network simulation.

  3. NeuroFlow: A General Purpose Spiking Neural Network Simulation Platform using Customizable Processors

    PubMed Central

    Cheung, Kit; Schultz, Simon R.; Luk, Wayne

    2016-01-01

    NeuroFlow is a scalable spiking neural network simulation platform for off-the-shelf high performance computing systems using customizable hardware processors such as Field-Programmable Gate Arrays (FPGAs). Unlike multi-core processors and application-specific integrated circuits, the processor architecture of NeuroFlow can be redesigned and reconfigured to suit a particular simulation to deliver optimized performance, such as the degree of parallelism to employ. The compilation process supports using PyNN, a simulator-independent neural network description language, to configure the processor. NeuroFlow supports a number of commonly used current or conductance based neuronal models such as integrate-and-fire and Izhikevich models, and the spike-timing-dependent plasticity (STDP) rule for learning. A 6-FPGA system can simulate a network of up to ~600,000 neurons and can achieve a real-time performance of 400,000 neurons. Using one FPGA, NeuroFlow delivers a speedup of up to 33.6 times the speed of an 8-core processor, or 2.83 times the speed of GPU-based platforms. With high flexibility and throughput, NeuroFlow provides a viable environment for large-scale neural network simulation. PMID:26834542

  4. Development of small scale cluster computer for numerical analysis

    NASA Astrophysics Data System (ADS)

    Zulkifli, N. H. N.; Sapit, A.; Mohammed, A. N.

    2017-09-01

    In this study, two units of personal computer were successfully networked together to form a small scale cluster. Each of the processor involved are multicore processor which has four cores in it, thus made this cluster to have eight processors. Here, the cluster incorporate Ubuntu 14.04 LINUX environment with MPI implementation (MPICH2). Two main tests were conducted in order to test the cluster, which is communication test and performance test. The communication test was done to make sure that the computers are able to pass the required information without any problem and were done by using simple MPI Hello Program where the program written in C language. Additional, performance test was also done to prove that this cluster calculation performance is much better than single CPU computer. In this performance test, four tests were done by running the same code by using single node, 2 processors, 4 processors, and 8 processors. The result shows that with additional processors, the time required to solve the problem decrease. Time required for the calculation shorten to half when we double the processors. To conclude, we successfully develop a small scale cluster computer using common hardware which capable of higher computing power when compare to single CPU processor, and this can be beneficial for research that require high computing power especially numerical analysis such as finite element analysis, computational fluid dynamics, and computational physics analysis.

  5. Spiking neural networks on high performance computer clusters

    NASA Astrophysics Data System (ADS)

    Chen, Chong; Taha, Tarek M.

    2011-09-01

    In this paper we examine the acceleration of two spiking neural network models on three clusters of multicore processors representing three categories of processors: x86, STI Cell, and NVIDIA GPGPUs. The x86 cluster utilized consists of 352 dualcore AMD Opterons, the Cell cluster consists of 320 Sony Playstation 3s, while the GPGPU cluster contains 32 NVIDIA Tesla S1070 systems. The results indicate that the GPGPU platform can dominate in performance compared to the Cell and x86 platforms examined. From a cost perspective, the GPGPU is more expensive in terms of neuron/s throughput. If the cost of GPGPUs go down in the future, this platform will become very cost effective for these models.

  6. An accuracy aware low power wireless EEG unit with information content based adaptive data compression.

    PubMed

    Tolbert, Jeremy R; Kabali, Pratik; Brar, Simeranjit; Mukhopadhyay, Saibal

    2009-01-01

    We present a digital system for adaptive data compression for low power wireless transmission of Electroencephalography (EEG) data. The proposed system acts as a base-band processor between the EEG analog-to-digital front-end and RF transceiver. It performs a real-time accuracy energy trade-off for multi-channel EEG signal transmission by controlling the volume of transmitted data. We propose a multi-core digital signal processor for on-chip processing of EEG signals, to detect signal information of each channel and perform real-time adaptive compression. Our analysis shows that the proposed approach can provide significant savings in transmitter power with minimal impact on the overall signal accuracy.

  7. LIBS data analysis using a predictor-corrector based digital signal processor algorithm

    NASA Astrophysics Data System (ADS)

    Sanders, Alex; Griffin, Steven T.; Robinson, Aaron

    2012-06-01

    There are many accepted sensor technologies for generating spectra for material classification. Once the spectra are generated, communication bandwidth limitations favor local material classification with its attendant reduction in data transfer rates and power consumption. Transferring sensor technologies such as Cavity Ring-Down Spectroscopy (CRDS) and Laser Induced Breakdown Spectroscopy (LIBS) require effective material classifiers. A result of recent efforts has been emphasis on Partial Least Squares - Discriminant Analysis (PLS-DA) and Principle Component Analysis (PCA). Implementation of these via general purpose computers is difficult in small portable sensor configurations. This paper addresses the creation of a low mass, low power, robust hardware spectra classifier for a limited set of predetermined materials in an atmospheric matrix. Crucial to this is the incorporation of PCA or PLS-DA classifiers into a predictor-corrector style implementation. The system configuration guarantees rapid convergence. Software running on multi-core Digital Signal Processor (DSPs) simulates a stream-lined plasma physics model estimator, reducing Analog-to-Digital (ADC) power requirements. This paper presents the results of a predictorcorrector model implemented on a low power multi-core DSP to perform substance classification. This configuration emphasizes the hardware system and software design via a predictor corrector model that simultaneously decreases the sample rate while performing the classification.

  8. Accelerating Climate Simulations Through Hybrid Computing

    NASA Technical Reports Server (NTRS)

    Zhou, Shujia; Sinno, Scott; Cruz, Carlos; Purcell, Mark

    2009-01-01

    Unconventional multi-core processors (e.g., IBM Cell B/E and NYIDIDA GPU) have emerged as accelerators in climate simulation. However, climate models typically run on parallel computers with conventional processors (e.g., Intel and AMD) using MPI. Connecting accelerators to this architecture efficiently and easily becomes a critical issue. When using MPI for connection, we identified two challenges: (1) identical MPI implementation is required in both systems, and; (2) existing MPI code must be modified to accommodate the accelerators. In response, we have extended and deployed IBM Dynamic Application Virtualization (DAV) in a hybrid computing prototype system (one blade with two Intel quad-core processors, two IBM QS22 Cell blades, connected with Infiniband), allowing for seamlessly offloading compute-intensive functions to remote, heterogeneous accelerators in a scalable, load-balanced manner. Currently, a climate solar radiation model running with multiple MPI processes has been offloaded to multiple Cell blades with approx.10% network overhead.

  9. Comparing an FPGA to a Cell for an Image Processing Application

    NASA Astrophysics Data System (ADS)

    Rakvic, Ryan N.; Ngo, Hau; Broussard, Randy P.; Ives, Robert W.

    2010-12-01

    Modern advancements in configurable hardware, most notably Field-Programmable Gate Arrays (FPGAs), have provided an exciting opportunity to discover the parallel nature of modern image processing algorithms. On the other hand, PlayStation3 (PS3) game consoles contain a multicore heterogeneous processor known as the Cell, which is designed to perform complex image processing algorithms at a high performance. In this research project, our aim is to study the differences in performance of a modern image processing algorithm on these two hardware platforms. In particular, Iris Recognition Systems have recently become an attractive identification method because of their extremely high accuracy. Iris matching, a repeatedly executed portion of a modern iris recognition algorithm, is parallelized on an FPGA system and a Cell processor. We demonstrate a 2.5 times speedup of the parallelized algorithm on the FPGA system when compared to a Cell processor-based version.

  10. Bin-Hash Indexing: A Parallel Method for Fast Query Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bethel, Edward W; Gosink, Luke J.; Wu, Kesheng

    2008-06-27

    This paper presents a new parallel indexing data structure for answering queries. The index, called Bin-Hash, offers extremely high levels of concurrency, and is therefore well-suited for the emerging commodity of parallel processors, such as multi-cores, cell processors, and general purpose graphics processing units (GPU). The Bin-Hash approach first bins the base data, and then partitions and separately stores the values in each bin as a perfect spatial hash table. To answer a query, we first determine whether or not a record satisfies the query conditions based on the bin boundaries. For the bins with records that can not bemore » resolved, we examine the spatial hash tables. The procedures for examining the bin numbers and the spatial hash tables offer the maximum possible level of concurrency; all records are able to be evaluated by our procedure independently in parallel. Additionally, our Bin-Hash procedures access much smaller amounts of data than similar parallel methods, such as the projection index. This smaller data footprint is critical for certain parallel processors, like GPUs, where memory resources are limited. To demonstrate the effectiveness of Bin-Hash, we implement it on a GPU using the data-parallel programming language CUDA. The concurrency offered by the Bin-Hash index allows us to fully utilize the GPU's massive parallelism in our work; over 12,000 records can be simultaneously evaluated at any one time. We show that our new query processing method is an order of magnitude faster than current state-of-the-art CPU-based indexing technologies. Additionally, we compare our performance to existing GPU-based projection index strategies.« less

  11. Evaluating Multi-core Architectures through Accelerating the Three-Dimensional Lax–Wendroff Correction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, Yang; Fu, Haohuan; Song, Shuaiwen

    2014-07-18

    Wave propagation forward modeling is a widely used computational method in oil and gas exploration. The iterative stencil loops in such problems have broad applications in scientific computing. However, executing such loops can be highly time time-consuming, which greatly limits application’s performance and power efficiency. In this paper, we accelerate the forward modeling technique on the latest multi-core and many-core architectures such as Intel Sandy Bridge CPUs, NVIDIA Fermi C2070 GPU, NVIDIA Kepler K20x GPU, and the Intel Xeon Phi Co-processor. For the GPU platforms, we propose two parallel strategies to explore the performance optimization opportunities for our stencil kernels.more » For Sandy Bridge CPUs and MIC, we also employ various optimization techniques in order to achieve the best.« less

  12. Multicore and GPU algorithms for Nussinov RNA folding

    PubMed Central

    2014-01-01

    Background One segment of a RNA sequence might be paired with another segment of the same RNA sequence due to the force of hydrogen bonds. This two-dimensional structure is called the RNA sequence's secondary structure. Several algorithms have been proposed to predict an RNA sequence's secondary structure. These algorithms are referred to as RNA folding algorithms. Results We develop cache efficient, multicore, and GPU algorithms for RNA folding using Nussinov's algorithm. Conclusions Our cache efficient algorithm provides a speedup between 1.6 and 3.0 relative to a naive straightforward single core code. The multicore version of the cache efficient single core algorithm provides a speedup, relative to the naive single core algorithm, between 7.5 and 14.0 on a 6 core hyperthreaded CPU. Our GPU algorithm for the NVIDIA C2050 is up to 1582 times as fast as the naive single core algorithm and between 5.1 and 11.2 times as fast as the fastest previously known GPU algorithm for Nussinov RNA folding. PMID:25082539

  13. Cache Hardware Approaches to Multiple Independent Levels of Security (MILS)

    DTIC Science & Technology

    2012-10-01

    systems that require that several multicore processors be connected together in a single system. However, no such boards were available on the market ...available concerning each module. However, the availability of modules seems to significantly lag the time when the corresponding hardware hits the market ...version of real mode often referred to as “Unreal mode” can be entered by loading a Local Descriptor Table (LDT) and Global Descriptor Table (GDT

  14. Efficient computation of the phylogenetic likelihood function on multi-gene alignments and multi-core architectures.

    PubMed

    Stamatakis, Alexandros; Ott, Michael

    2008-12-27

    The continuous accumulation of sequence data, for example, due to novel wet-laboratory techniques such as pyrosequencing, coupled with the increasing popularity of multi-gene phylogenies and emerging multi-core processor architectures that face problems of cache congestion, poses new challenges with respect to the efficient computation of the phylogenetic maximum-likelihood (ML) function. Here, we propose two approaches that can significantly speed up likelihood computations that typically represent over 95 per cent of the computational effort conducted by current ML or Bayesian inference programs. Initially, we present a method and an appropriate data structure to efficiently compute the likelihood score on 'gappy' multi-gene alignments. By 'gappy' we denote sampling-induced gaps owing to missing sequences in individual genes (partitions), i.e. not real alignment gaps. A first proof-of-concept implementation in RAXML indicates that this approach can accelerate inferences on large and gappy alignments by approximately one order of magnitude. Moreover, we present insights and initial performance results on multi-core architectures obtained during the transition from an OpenMP-based to a Pthreads-based fine-grained parallelization of the ML function.

  15. Performance implications from sizing a VM on multi-core systems: A Data analytic application s view

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Seung-Hwan; Horey, James L; Begoli, Edmon

    In this paper, we present a quantitative performance analysis of data analytics applications running on multi-core virtual machines. Such environments form the core of cloud computing. In addition, data analytics applications, such as Cassandra and Hadoop, are becoming increasingly popular on cloud computing platforms. This convergence necessitates a better understanding of the performance and cost implications of such hybrid systems. For example, the very rst step in hosting applications in virtualized environments, requires the user to con gure the number of virtual processors and the size of memory. To understand performance implications of this step, we benchmarked three Yahoo Cloudmore » Serving Benchmark (YCSB) workloads in a virtualized multi-core environment. Our measurements indicate that the performance of Cassandra for YCSB workloads does not heavily depend on the processing capacity of a system, while the size of the data set is critical to performance relative to allocated memory. We also identi ed a strong relationship between the running time of workloads and various hardware events (last level cache loads, misses, and CPU migrations). From this analysis, we provide several suggestions to improve the performance of data analytics applications running on cloud computing environments.« less

  16. Flood predictions using the parallel version of distributed numerical physical rainfall-runoff model TOPKAPI

    NASA Astrophysics Data System (ADS)

    Boyko, Oleksiy; Zheleznyak, Mark

    2015-04-01

    The original numerical code TOPKAPI-IMMS of the distributed rainfall-runoff model TOPKAPI ( Todini et al, 1996-2014) is developed and implemented in Ukraine. The parallel version of the code has been developed recently to be used on multiprocessors systems - multicore/processors PC and clusters. Algorithm is based on binary-tree decomposition of the watershed for the balancing of the amount of computation for all processors/cores. Message passing interface (MPI) protocol is used as a parallel computing framework. The numerical efficiency of the parallelization algorithms is demonstrated for the case studies for the flood predictions of the mountain watersheds of the Ukrainian Carpathian regions. The modeling results is compared with the predictions based on the lumped parameters models.

  17. A Tutorial on Parallel and Concurrent Programming in Haskell

    NASA Astrophysics Data System (ADS)

    Peyton Jones, Simon; Singh, Satnam

    This practical tutorial introduces the features available in Haskell for writing parallel and concurrent programs. We first describe how to write semi-explicit parallel programs by using annotations to express opportunities for parallelism and to help control the granularity of parallelism for effective execution on modern operating systems and processors. We then describe the mechanisms provided by Haskell for writing explicitly parallel programs with a focus on the use of software transactional memory to help share information between threads. Finally, we show how nested data parallelism can be used to write deterministically parallel programs which allows programmers to use rich data types in data parallel programs which are automatically transformed into flat data parallel versions for efficient execution on multi-core processors.

  18. 3D environment modeling and location tracking using off-the-shelf components

    NASA Astrophysics Data System (ADS)

    Luke, Robert H.

    2016-05-01

    The remarkable popularity of smartphones over the past decade has led to a technological race for dominance in market share. This has resulted in a flood of new processors and sensors that are inexpensive, low power and high performance. These sensors include accelerometers, gyroscope, barometers and most importantly cameras. This sensor suite, coupled with multicore processors, allows a new community of researchers to build small, high performance platforms for low cost. This paper describes a system using off-the-shelf components to perform position tracking as well as environment modeling. The system relies on tracking using stereo vision and inertial navigation to determine movement of the system as well as create a model of the environment sensed by the system.

  19. A FAST ITERATIVE METHOD FOR SOLVING THE EIKONAL EQUATION ON TETRAHEDRAL DOMAINS

    PubMed Central

    Fu, Zhisong; Kirby, Robert M.; Whitaker, Ross T.

    2014-01-01

    Generating numerical solutions to the eikonal equation and its many variations has a broad range of applications in both the natural and computational sciences. Efficient solvers on cutting-edge, parallel architectures require new algorithms that may not be theoretically optimal, but that are designed to allow asynchronous solution updates and have limited memory access patterns. This paper presents a parallel algorithm for solving the eikonal equation on fully unstructured tetrahedral meshes. The method is appropriate for the type of fine-grained parallelism found on modern massively-SIMD architectures such as graphics processors and takes into account the particular constraints and capabilities of these computing platforms. This work builds on previous work for solving these equations on triangle meshes; in this paper we adapt and extend previous two-dimensional strategies to accommodate three-dimensional, unstructured, tetrahedralized domains. These new developments include a local update strategy with data compaction for tetrahedral meshes that provides solutions on both serial and parallel architectures, with a generalization to inhomogeneous, anisotropic speed functions. We also propose two new update schemes, specialized to mitigate the natural data increase observed when moving to three dimensions, and the data structures necessary for efficiently mapping data to parallel SIMD processors in a way that maintains computational density. Finally, we present descriptions of the implementations for a single CPU, as well as multicore CPUs with shared memory and SIMD architectures, with comparative results against state-of-the-art eikonal solvers. PMID:25221418

  20. Enabling Next-Generation Multicore Platforms in Embedded Applications

    DTIC Science & Technology

    2014-04-01

    mapping to sets 129 − 256 ) to the second page in memory, color 2 (sets 257 − 384) to the third page, and so on. Then, after the 32nd page, all 212 sets...the Real-Time Nested Locking Protocol (RNLP) [56], a recently developed multiprocessor real-time locking protocol that optimally supports the...RELEASE; DISTRIBUTION UNLIMITED 15 In general, the problems of optimally assigning tasks to processors and colors to tasks are both NP-hard in the

  1. Cache Sharing and Isolation Tradeoffs in Multicore Mixed-Criticality Systems

    DTIC Science & Technology

    2015-05-01

    of lockdown registers, to provide way-based partitioning. These alternatives are illustrated in Fig. 1 with respect to a quad-core ARM Cortex A9...presented a cache-partitioning scheme that allows multiple tasks to share the same cache partition on a single processor (as we do for Level-A and...sets and determined the fraction that were schedulable on our target hardware platform, the quad-core ARM Cortex A9 machine mentioned earlier, the LLC

  2. Static and Dynamic Frequency Scaling on Multicore CPUs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bao, Wenlei; Hong, Changwan; Chunduri, Sudheer

    2016-12-28

    Dynamic voltage and frequency scaling (DVFS) adapts CPU power consumption by modifying a processor’s operating frequency (and the associated voltage). Typical approaches employing DVFS involve default strategies such as running at the lowest or the highest frequency, or observing the CPU’s runtime behavior and dynamically adapting the voltage/frequency configuration based on CPU usage. In this paper, we argue that many previous approaches suffer from inherent limitations, such as not account- ing for processor-specific impact of frequency changes on energy for different workload types. We first propose a lightweight runtime-based approach to automatically adapt the frequency based on the CPU workload,more » that is agnostic of the processor characteristics. We then show that further improvements can be achieved for affine kernels in the application, using a compile-time characterization instead of run-time monitoring to select the frequency and number of CPU cores to use. Our framework relies on a one-time energy characterization of CPU-specific DVFS profiles followed by a compile-time categorization of loop-based code segments in the application. These are combined to determine a priori of the frequency and the number of cores to use to execute the application so as to optimize energy or energy-delay product, outperforming runtime approach. Extensive evaluation on 60 benchmarks and five multi-core CPUs show that our approach systematically outperforms the powersave Linux governor, while improving overall performance.« less

  3. High performance ultrasonic field simulation on complex geometries

    NASA Astrophysics Data System (ADS)

    Chouh, H.; Rougeron, G.; Chatillon, S.; Iehl, J. C.; Farrugia, J. P.; Ostromoukhov, V.

    2016-02-01

    Ultrasonic field simulation is a key ingredient for the design of new testing methods as well as a crucial step for NDT inspection simulation. As presented in a previous paper [1], CEA-LIST has worked on the acceleration of these simulations focusing on simple geometries (planar interfaces, isotropic materials). In this context, significant accelerations were achieved on multicore processors and GPUs (Graphics Processing Units), bringing the execution time of realistic computations in the 0.1 s range. In this paper, we present recent works that aim at similar performances on a wider range of configurations. We adapted the physical model used by the CIVA platform to design and implement a new algorithm providing a fast ultrasonic field simulation that yields nearly interactive results for complex cases. The improvements over the CIVA pencil-tracing method include adaptive strategies for pencil subdivisions to achieve a good refinement of the sensor geometry while keeping a reasonable number of ray-tracing operations. Also, interpolation of the times of flight was used to avoid time consuming computations in the impulse response reconstruction stage. To achieve the best performance, our algorithm runs on multi-core superscalar CPUs and uses high performance specialized libraries such as Intel Embree for ray-tracing, Intel MKL for signal processing and Intel TBB for parallelization. We validated the simulation results by comparing them to the ones produced by CIVA on identical test configurations including mono-element and multiple-element transducers, homogeneous, meshed 3D CAD specimens, isotropic and anisotropic materials and wave paths that can involve several interactions with interfaces. We show performance results on complete simulations that achieve computation times in the 1s range.

  4. Geospace simulations on the Cell BE processor

    NASA Astrophysics Data System (ADS)

    Germaschewski, K.; Raeder, J.; Larson, D.

    2008-12-01

    OpenGGCM (Open Geospace General circulation Model) is an established numerical code that simulates the Earth's space environment. The most computing intensive part is the MHD (magnetohydrodynamics) solver that models the plasma surrounding Earth and its interaction with Earth's magnetic field and the solar wind flowing in from the sun. Like other global magnetosphere codes, OpenGGCM's realism is limited by computational constraints on grid resolution. We investigate porting of the MHD solver to the Cell BE architecture, a novel inhomogeneous multicore architecture capable of up to 230 GFlops per processor. Realizing this high performance on the Cell processor is a programming challenge, though. We implemented the MHD solver using a multi-level parallel approach: On the coarsest level, the problem is distributed to processors based upon the usual domain decomposition approach. Then, on each processor, the problem is divided into 3D columns, each of which is handled by the memory limited SPEs (synergistic processing elements) slice by slice. Finally, SIMD instructions are used to fully exploit the vector/SIMD FPUs in each SPE. Memory management needs to be handled explicitly by the code, using DMA to move data from main memory to the per-SPE local store and vice versa. We obtained excellent performance numbers, a speed-up of a factor of 25 compared to just using the main processor, while still keeping the numerical implementation details of the code maintainable.

  5. Cache Sharing and Isolation Tradeoffs in Multicore Mixed-Criticality Systems

    DTIC Science & Technology

    2015-05-01

    form of lockdown registers, to provide way-based partitioning. These alternatives are illustrated in Fig. 1 with respect to a quad-core ARM Cortex A9... processor (as we do for Level-A and -B tasks), but they did not consider MC systems. Altmeyer et al. [1] considered uniprocessor scheduling on a system with a...framework. We randomly generated task sets and determined the fraction that were schedulable on our target hardware platform, the quad-core ARM Cortex A9

  6. Application of Advanced Multi-Core Processor Technologies to Oceanographic Research

    DTIC Science & Technology

    2014-09-30

    Jordan Stanway are taking on the work of analyzing their code, and we are working on the Robot Operating System (ROS) and MOOS-DB systems to evaluate...Linux/GNU operating system that should reduce the time required to build the kernel and userspace significantly. This part of the work is vital to...the platform to be used not only as a service, but also as a private deployable package. As much as possible, this system was built using operating

  7. Performance of an MPI-only semiconductor device simulator on a quad socket/quad core InfiniBand platform.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shadid, John Nicolas; Lin, Paul Tinphone

    2009-01-01

    This preliminary study considers the scaling and performance of a finite element (FE) semiconductor device simulator on a capacity cluster with 272 compute nodes based on a homogeneous multicore node architecture utilizing 16 cores. The inter-node communication backbone for this Tri-Lab Linux Capacity Cluster (TLCC) machine is comprised of an InfiniBand interconnect. The nonuniform memory access (NUMA) nodes consist of 2.2 GHz quad socket/quad core AMD Opteron processors. The performance results for this study are obtained with a FE semiconductor device simulation code (Charon) that is based on a fully-coupled Newton-Krylov solver with domain decomposition and multilevel preconditioners. Scaling andmore » multicore performance results are presented for large-scale problems of 100+ million unknowns on up to 4096 cores. A parallel scaling comparison is also presented with the Cray XT3/4 Red Storm capability platform. The results indicate that an MPI-only programming model for utilizing the multicore nodes is reasonably efficient on all 16 cores per compute node. However, the results also indicated that the multilevel preconditioner, which is critical for large-scale capability type simulations, scales better on the Red Storm machine than the TLCC machine.« less

  8. An Energy-Aware Runtime Management of Multi-Core Sensory Swarms.

    PubMed

    Kim, Sungchan; Yang, Hoeseok

    2017-08-24

    In sensory swarms, minimizing energy consumption under performance constraint is one of the key objectives. One possible approach to this problem is to monitor application workload that is subject to change at runtime, and to adjust system configuration adaptively to satisfy the performance goal. As today's sensory swarms are usually implemented using multi-core processors with adjustable clock frequency, we propose to monitor the CPU workload periodically and adjust the task-to-core allocation or clock frequency in an energy-efficient way in response to the workload variations. In doing so, we present an online heuristic that determines the most energy-efficient adjustment that satisfies the performance requirement. The proposed method is based on a simple yet effective energy model that is built upon performance prediction using IPC (instructions per cycle) measured online and power equation derived empirically. The use of IPC accounts for memory intensities of a given workload, enabling the accurate prediction of execution time. Hence, the model allows us to rapidly and accurately estimate the effect of the two control knobs, clock frequency adjustment and core allocation. The experiments show that the proposed technique delivers considerable energy saving of up to 45%compared to the state-of-the-art multi-core energy management technique.

  9. An Energy-Aware Runtime Management of Multi-Core Sensory Swarms

    PubMed Central

    Kim, Sungchan

    2017-01-01

    In sensory swarms, minimizing energy consumption under performance constraint is one of the key objectives. One possible approach to this problem is to monitor application workload that is subject to change at runtime, and to adjust system configuration adaptively to satisfy the performance goal. As today’s sensory swarms are usually implemented using multi-core processors with adjustable clock frequency, we propose to monitor the CPU workload periodically and adjust the task-to-core allocation or clock frequency in an energy-efficient way in response to the workload variations. In doing so, we present an online heuristic that determines the most energy-efficient adjustment that satisfies the performance requirement. The proposed method is based on a simple yet effective energy model that is built upon performance prediction using IPC (instructions per cycle) measured online and power equation derived empirically. The use of IPC accounts for memory intensities of a given workload, enabling the accurate prediction of execution time. Hence, the model allows us to rapidly and accurately estimate the effect of the two control knobs, clock frequency adjustment and core allocation. The experiments show that the proposed technique delivers considerable energy saving of up to 45%compared to the state-of-the-art multi-core energy management technique. PMID:28837094

  10. Parallelization of interpolation, solar radiation and water flow simulation modules in GRASS GIS using OpenMP

    NASA Astrophysics Data System (ADS)

    Hofierka, Jaroslav; Lacko, Michal; Zubal, Stanislav

    2017-10-01

    In this paper, we describe the parallelization of three complex and computationally intensive modules of GRASS GIS using the OpenMP application programming interface for multi-core computers. These include the v.surf.rst module for spatial interpolation, the r.sun module for solar radiation modeling and the r.sim.water module for water flow simulation. We briefly describe the functionality of the modules and parallelization approaches used in the modules. Our approach includes the analysis of the module's functionality, identification of source code segments suitable for parallelization and proper application of OpenMP parallelization code to create efficient threads processing the subtasks. We document the efficiency of the solutions using the airborne laser scanning data representing land surface in the test area and derived high-resolution digital terrain model grids. We discuss the performance speed-up and parallelization efficiency depending on the number of processor threads. The study showed a substantial increase in computation speeds on a standard multi-core computer while maintaining the accuracy of results in comparison to the output from original modules. The presented parallelization approach showed the simplicity and efficiency of the parallelization of open-source GRASS GIS modules using OpenMP, leading to an increased performance of this geospatial software on standard multi-core computers.

  11. Fast l₁-SPIRiT compressed sensing parallel imaging MRI: scalable parallel implementation and clinically feasible runtime.

    PubMed

    Murphy, Mark; Alley, Marcus; Demmel, James; Keutzer, Kurt; Vasanawala, Shreyas; Lustig, Michael

    2012-06-01

    We present l₁-SPIRiT, a simple algorithm for auto calibrating parallel imaging (acPI) and compressed sensing (CS) that permits an efficient implementation with clinically-feasible runtimes. We propose a CS objective function that minimizes cross-channel joint sparsity in the wavelet domain. Our reconstruction minimizes this objective via iterative soft-thresholding, and integrates naturally with iterative self-consistent parallel imaging (SPIRiT). Like many iterative magnetic resonance imaging reconstructions, l₁-SPIRiT's image quality comes at a high computational cost. Excessively long runtimes are a barrier to the clinical use of any reconstruction approach, and thus we discuss our approach to efficiently parallelizing l₁-SPIRiT and to achieving clinically-feasible runtimes. We present parallelizations of l₁-SPIRiT for both multi-GPU systems and multi-core CPUs, and discuss the software optimization and parallelization decisions made in our implementation. The performance of these alternatives depends on the processor architecture, the size of the image matrix, and the number of parallel imaging channels. Fundamentally, achieving fast runtime requires the correct trade-off between cache usage and parallelization overheads. We demonstrate image quality via a case from our clinical experimentation, using a custom 3DFT spoiled gradient echo (SPGR) sequence with up to 8× acceleration via Poisson-disc undersampling in the two phase-encoded directions.

  12. Fast ℓ1-SPIRiT Compressed Sensing Parallel Imaging MRI: Scalable Parallel Implementation and Clinically Feasible Runtime

    PubMed Central

    Murphy, Mark; Alley, Marcus; Demmel, James; Keutzer, Kurt; Vasanawala, Shreyas; Lustig, Michael

    2012-01-01

    We present ℓ1-SPIRiT, a simple algorithm for auto calibrating parallel imaging (acPI) and compressed sensing (CS) that permits an efficient implementation with clinically-feasible runtimes. We propose a CS objective function that minimizes cross-channel joint sparsity in the Wavelet domain. Our reconstruction minimizes this objective via iterative soft-thresholding, and integrates naturally with iterative Self-Consistent Parallel Imaging (SPIRiT). Like many iterative MRI reconstructions, ℓ1-SPIRiT’s image quality comes at a high computational cost. Excessively long runtimes are a barrier to the clinical use of any reconstruction approach, and thus we discuss our approach to efficiently parallelizing ℓ1-SPIRiT and to achieving clinically-feasible runtimes. We present parallelizations of ℓ1-SPIRiT for both multi-GPU systems and multi-core CPUs, and discuss the software optimization and parallelization decisions made in our implementation. The performance of these alternatives depends on the processor architecture, the size of the image matrix, and the number of parallel imaging channels. Fundamentally, achieving fast runtime requires the correct trade-off between cache usage and parallelization overheads. We demonstrate image quality via a case from our clinical experimentation, using a custom 3DFT Spoiled Gradient Echo (SPGR) sequence with up to 8× acceleration via poisson-disc undersampling in the two phase-encoded directions. PMID:22345529

  13. A Wideband Fast Multipole Method for the two-dimensional complex Helmholtz equation

    NASA Astrophysics Data System (ADS)

    Cho, Min Hyung; Cai, Wei

    2010-12-01

    A Wideband Fast Multipole Method (FMM) for the 2D Helmholtz equation is presented. It can evaluate the interactions between N particles governed by the fundamental solution of 2D complex Helmholtz equation in a fast manner for a wide range of complex wave number k, which was not easy with the original FMM due to the instability of the diagonalized conversion operator. This paper includes the description of theoretical backgrounds, the FMM algorithm, software structures, and some test runs. Program summaryProgram title: 2D-WFMM Catalogue identifier: AEHI_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHI_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 4636 No. of bytes in distributed program, including test data, etc.: 82 582 Distribution format: tar.gz Programming language: C Computer: Any Operating system: Any operating system with gcc version 4.2 or newer Has the code been vectorized or parallelized?: Multi-core processors with shared memory RAM: Depending on the number of particles N and the wave number k Classification: 4.8, 4.12 External routines: OpenMP ( http://openmp.org/wp/) Nature of problem: Evaluate interaction between N particles governed by the fundamental solution of 2D Helmholtz equation with complex k. Solution method: Multilevel Fast Multipole Algorithm in a hierarchical quad-tree structure with cutoff level which combines low frequency method and high frequency method. Running time: Depending on the number of particles N, wave number k, and number of cores in CPU. CPU time increases as N log N.

  14. Data Parallel Bin-Based Indexing for Answering Queries on Multi-Core Architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gosink, Luke; Wu, Kesheng; Bethel, E. Wes

    2009-06-02

    The multi-core trend in CPUs and general purpose graphics processing units (GPUs) offers new opportunities for the database community. The increase of cores at exponential rates is likely to affect virtually every server and client in the coming decade, and presents database management systems with a huge, compelling disruption that will radically change how processing is done. This paper presents a new parallel indexing data structure for answering queries that takes full advantage of the increasing thread-level parallelism emerging in multi-core architectures. In our approach, our Data Parallel Bin-based Index Strategy (DP-BIS) first bins the base data, and then partitionsmore » and stores the values in each bin as a separate, bin-based data cluster. In answering a query, the procedures for examining the bin numbers and the bin-based data clusters offer the maximum possible level of concurrency; each record is evaluated by a single thread and all threads are processed simultaneously in parallel. We implement and demonstrate the effectiveness of DP-BIS on two multi-core architectures: a multi-core CPU and a GPU. The concurrency afforded by DP-BIS allows us to fully utilize the thread-level parallelism provided by each architecture--for example, our GPU-based DP-BIS implementation simultaneously evaluates over 12,000 records with an equivalent number of concurrently executing threads. In comparing DP-BIS's performance across these architectures, we show that the GPU-based DP-BIS implementation requires significantly less computation time to answer a query than the CPU-based implementation. We also demonstrate in our analysis that DP-BIS provides better overall performance than the commonly utilized CPU and GPU-based projection index. Finally, due to data encoding, we show that DP-BIS accesses significantly smaller amounts of data than index strategies that operate solely on a column's base data; this smaller data footprint is critical for parallel processors that possess limited memory resources (e.g., GPUs).« less

  15. Development and validation of a two-dimensional fast-response flood estimation model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Judi, David R; Mcpherson, Timothy N; Burian, Steven J

    2009-01-01

    A finite difference formulation of the shallow water equations using an upwind differencing method was developed maintaining computational efficiency and accuracy such that it can be used as a fast-response flood estimation tool. The model was validated using both laboratory controlled experiments and an actual dam breach. Through the laboratory experiments, the model was shown to give good estimations of depth and velocity when compared to the measured data, as well as when compared to a more complex two-dimensional model. Additionally, the model was compared to high water mark data obtained from the failure of the Taum Sauk dam. Themore » simulated inundation extent agreed well with the observed extent, with the most notable differences resulting from the inability to model sediment transport. The results of these validation studies complex two-dimensional model. Additionally, the model was compared to high water mark data obtained from the failure of the Taum Sauk dam. The simulated inundation extent agreed well with the observed extent, with the most notable differences resulting from the inability to model sediment transport. The results of these validation studies show that a relatively numerical scheme used to solve the complete shallow water equations can be used to accurately estimate flood inundation. Future work will focus on further reducing the computation time needed to provide flood inundation estimates for fast-response analyses. This will be accomplished through the efficient use of multi-core, multi-processor computers coupled with an efficient domain-tracking algorithm, as well as an understanding of the impacts of grid resolution on model results.« less

  16. A Survey of Recent MARTe Based Systems

    NASA Astrophysics Data System (ADS)

    Neto, André C.; Alves, Diogo; Boncagni, Luca; Carvalho, Pedro J.; Valcarcel, Daniel F.; Barbalace, Antonio; De Tommasi, Gianmaria; Fernandes, Horácio; Sartori, Filippo; Vitale, Enzo; Vitelli, Riccardo; Zabeo, Luca

    2011-08-01

    The Multithreaded Application Real-Time executor (MARTe) is a data driven framework environment for the development and deployment of real-time control algorithms. The main ideas which led to the present version of the framework were to standardize the development of real-time control systems, while providing a set of strictly bounded standard interfaces to the outside world and also accommodating a collection of facilities which promote the speed and ease of development, commissioning and deployment of such systems. At the core of every MARTe based application, is a set of independent inter-communicating software blocks, named Generic Application Modules (GAM), orchestrated by a real-time scheduler. The platform independence of its core library provides MARTe the necessary robustness and flexibility for conveniently testing applications in different environments including non-real-time operating systems. MARTe is already being used in several machines, each with its own peculiarities regarding hardware interfacing, supervisory control configuration, operating system and target control application. This paper presents and compares the most recent results of systems using MARTe: the JET Vertical Stabilization system, which uses the Real Time Application Interface (RTAI) operating system on Intel multi-core processors; the COMPASS plasma control system, driven by Linux RT also on Intel multi-core processors; ISTTOK real-time tomography equilibrium reconstruction which shares the same support configuration of COMPASS; JET error field correction coils based on VME, PowerPC and VxWorks; FTU LH reflected power system running on VME, Intel with RTAI.

  17. Rapid Onboard Data Product Generation with Multicore Processors and FPGA

    NASA Astrophysics Data System (ADS)

    Mandl, D.; Sohlberg, R. A.; Cappelaere, P. G.; Frye, S. W.; Ly, V.; Handy, M.; Ambrosia, V. G.; Sullivan, D. V.; Bland, G.; Pastor, E.; Crago, S.; Flatley, C.; Shah, N.; Bronston, J.; Creech, T.

    2012-12-01

    The Intelligent Payload Module (IPM) is an experimental testbed with multicore processors and Field Programmable Gate Array (FPGA). This effort is being funded by the NASA Earth Science Technology Office as part of an Advanced Information Systems Technology (AIST) 2011 research grant to investigate the use of high performance onboard processing to create an onboard data processing pipeline that can rapidly process a subset of onboard imaging spectrometer data (1) through radiance to reflectance conversion (2) atmospheric correction (3) geolocation and co-registration and (4) level 2 data product generation. The requirements are driven by the mission concept for the HyspIRI NASA Decadal mission, although other NASA Decadal missions could use the same concept. The system is being set up to make use of the same ground and flight software being used by other satellites at NASA/GSFC. Furthermore, a Web Coverage Processing Service (WCPS) is installed as part of the flight software which enables a user on the ground to specify the desired algorithm to run onboard against the data in realtime. Benchmark demonstrations are being run and will be run through the three year effort on various platforms including a helicopter and various airplane platforms with various instruments to demonstrate various configurations that would be compatible with the HyspIRI mission and other similar missions. This presentation will lay out the demonstrations conducted to date along with any benchmark performance metrics and future demonstration efforts and objectives.Initial IPM Test Box

  18. Compute Element and Interface Box for the Hazard Detection System

    NASA Technical Reports Server (NTRS)

    Villalpando, Carlos Y.; Khanoyan, Garen; Stern, Ryan A.; Some, Raphael R.; Bailey, Erik S.; Carson, John M.; Vaughan, Geoffrey M.; Werner, Robert A.; Salomon, Phil M.; Martin, Keith E.; hide

    2013-01-01

    The Autonomous Landing and Hazard Avoidance Technology (ALHAT) program is building a sensor that enables a spacecraft to evaluate autonomously a potential landing area to generate a list of hazardous and safe landing sites. It will also provide navigation inputs relative to those safe sites. The Hazard Detection System Compute Element (HDS-CE) box combines a field-programmable gate array (FPGA) board for sensor integration and timing, with a multicore computer board for processing. The FPGA does system-level timing and data aggregation, and acts as a go-between, removing the real-time requirements from the processor and labeling events with a high resolution time. The processor manages the behavior of the system, controls the instruments connected to the HDS-CE, and services the "heavy lifting" computational requirements for analyzing the potential landing spots.

  19. A pluggable framework for parallel pairwise sequence search.

    PubMed

    Archuleta, Jeremy; Feng, Wu-chun; Tilevich, Eli

    2007-01-01

    The current and near future of the computing industry is one of multi-core and multi-processor technology. Most existing sequence-search tools have been designed with a focus on single-core, single-processor systems. This discrepancy between software design and hardware architecture substantially hinders sequence-search performance by not allowing full utilization of the hardware. This paper presents a novel framework that will aid the conversion of serial sequence-search tools into a parallel version that can take full advantage of the available hardware. The framework, which is based on a software architecture called mixin layers with refined roles, enables modules to be plugged into the framework with minimal effort. The inherent modular design improves maintenance and extensibility, thus opening up a plethora of opportunities for advanced algorithmic features to be developed and incorporated while routine maintenance of the codebase persists.

  20. MPIGeneNet: Parallel Calculation of Gene Co-Expression Networks on Multicore Clusters.

    PubMed

    Gonzalez-Dominguez, Jorge; Martin, Maria J

    2017-10-10

    In this work we present MPIGeneNet, a parallel tool that applies Pearson's correlation and Random Matrix Theory to construct gene co-expression networks. It is based on the state-of-the-art sequential tool RMTGeneNet, which provides networks with high robustness and sensitivity at the expenses of relatively long runtimes for large scale input datasets. MPIGeneNet returns the same results as RMTGeneNet but improves the memory management, reduces the I/O cost, and accelerates the two most computationally demanding steps of co-expression network construction by exploiting the compute capabilities of common multicore CPU clusters. Our performance evaluation on two different systems using three typical input datasets shows that MPIGeneNet is significantly faster than RMTGeneNet. As an example, our tool is up to 175.41 times faster on a cluster with eight nodes, each one containing two 12-core Intel Haswell processors. Source code of MPIGeneNet, as well as a reference manual, are available at https://sourceforge.net/projects/mpigenenet/.

  1. ParallelStructure: A R Package to Distribute Parallel Runs of the Population Genetics Program STRUCTURE on Multi-Core Computers

    PubMed Central

    Besnier, Francois; Glover, Kevin A.

    2013-01-01

    This software package provides an R-based framework to make use of multi-core computers when running analyses in the population genetics program STRUCTURE. It is especially addressed to those users of STRUCTURE dealing with numerous and repeated data analyses, and who could take advantage of an efficient script to automatically distribute STRUCTURE jobs among multiple processors. It also consists of additional functions to divide analyses among combinations of populations within a single data set without the need to manually produce multiple projects, as it is currently the case in STRUCTURE. The package consists of two main functions: MPI_structure() and parallel_structure() as well as an example data file. We compared the performance in computing time for this example data on two computer architectures and showed that the use of the present functions can result in several-fold improvements in terms of computation time. ParallelStructure is freely available at https://r-forge.r-project.org/projects/parallstructure/. PMID:23923012

  2. FPGA Acceleration of the phylogenetic likelihood function for Bayesian MCMC inference methods.

    PubMed

    Zierke, Stephanie; Bakos, Jason D

    2010-04-12

    Likelihood (ML)-based phylogenetic inference has become a popular method for estimating the evolutionary relationships among species based on genomic sequence data. This method is used in applications such as RAxML, GARLI, MrBayes, PAML, and PAUP. The Phylogenetic Likelihood Function (PLF) is an important kernel computation for this method. The PLF consists of a loop with no conditional behavior or dependencies between iterations. As such it contains a high potential for exploiting parallelism using micro-architectural techniques. In this paper, we describe a technique for mapping the PLF and supporting logic onto a Field Programmable Gate Array (FPGA)-based co-processor. By leveraging the FPGA's on-chip DSP modules and the high-bandwidth local memory attached to the FPGA, the resultant co-processor can accelerate ML-based methods and outperform state-of-the-art multi-core processors. We use the MrBayes 3 tool as a framework for designing our co-processor. For large datasets, we estimate that our accelerated MrBayes, if run on a current-generation FPGA, achieves a 10x speedup relative to software running on a state-of-the-art server-class microprocessor. The FPGA-based implementation achieves its performance by deeply pipelining the likelihood computations, performing multiple floating-point operations in parallel, and through a natural log approximation that is chosen specifically to leverage a deeply pipelined custom architecture. Heterogeneous computing, which combines general-purpose processors with special-purpose co-processors such as FPGAs and GPUs, is a promising approach for high-performance phylogeny inference as shown by the growing body of literature in this field. FPGAs in particular are well-suited for this task because of their low power consumption as compared to many-core processors and Graphics Processor Units (GPUs).

  3. Rubus: A compiler for seamless and extensible parallelism.

    PubMed

    Adnan, Muhammad; Aslam, Faisal; Nawaz, Zubair; Sarwar, Syed Mansoor

    2017-01-01

    Nowadays, a typical processor may have multiple processing cores on a single chip. Furthermore, a special purpose processing unit called Graphic Processing Unit (GPU), originally designed for 2D/3D games, is now available for general purpose use in computers and mobile devices. However, the traditional programming languages which were designed to work with machines having single core CPUs, cannot utilize the parallelism available on multi-core processors efficiently. Therefore, to exploit the extraordinary processing power of multi-core processors, researchers are working on new tools and techniques to facilitate parallel programming. To this end, languages like CUDA and OpenCL have been introduced, which can be used to write code with parallelism. The main shortcoming of these languages is that programmer needs to specify all the complex details manually in order to parallelize the code across multiple cores. Therefore, the code written in these languages is difficult to understand, debug and maintain. Furthermore, to parallelize legacy code can require rewriting a significant portion of code in CUDA or OpenCL, which can consume significant time and resources. Thus, the amount of parallelism achieved is proportional to the skills of the programmer and the time spent in code optimizations. This paper proposes a new open source compiler, Rubus, to achieve seamless parallelism. The Rubus compiler relieves the programmer from manually specifying the low-level details. It analyses and transforms a sequential program into a parallel program automatically, without any user intervention. This achieves massive speedup and better utilization of the underlying hardware without a programmer's expertise in parallel programming. For five different benchmarks, on average a speedup of 34.54 times has been achieved by Rubus as compared to Java on a basic GPU having only 96 cores. Whereas, for a matrix multiplication benchmark the average execution speedup of 84 times has been achieved by Rubus on the same GPU. Moreover, Rubus achieves this performance without drastically increasing the memory footprint of a program.

  4. Rubus: A compiler for seamless and extensible parallelism

    PubMed Central

    Adnan, Muhammad; Aslam, Faisal; Sarwar, Syed Mansoor

    2017-01-01

    Nowadays, a typical processor may have multiple processing cores on a single chip. Furthermore, a special purpose processing unit called Graphic Processing Unit (GPU), originally designed for 2D/3D games, is now available for general purpose use in computers and mobile devices. However, the traditional programming languages which were designed to work with machines having single core CPUs, cannot utilize the parallelism available on multi-core processors efficiently. Therefore, to exploit the extraordinary processing power of multi-core processors, researchers are working on new tools and techniques to facilitate parallel programming. To this end, languages like CUDA and OpenCL have been introduced, which can be used to write code with parallelism. The main shortcoming of these languages is that programmer needs to specify all the complex details manually in order to parallelize the code across multiple cores. Therefore, the code written in these languages is difficult to understand, debug and maintain. Furthermore, to parallelize legacy code can require rewriting a significant portion of code in CUDA or OpenCL, which can consume significant time and resources. Thus, the amount of parallelism achieved is proportional to the skills of the programmer and the time spent in code optimizations. This paper proposes a new open source compiler, Rubus, to achieve seamless parallelism. The Rubus compiler relieves the programmer from manually specifying the low-level details. It analyses and transforms a sequential program into a parallel program automatically, without any user intervention. This achieves massive speedup and better utilization of the underlying hardware without a programmer’s expertise in parallel programming. For five different benchmarks, on average a speedup of 34.54 times has been achieved by Rubus as compared to Java on a basic GPU having only 96 cores. Whereas, for a matrix multiplication benchmark the average execution speedup of 84 times has been achieved by Rubus on the same GPU. Moreover, Rubus achieves this performance without drastically increasing the memory footprint of a program. PMID:29211758

  5. Fault-Tolerant Software-Defined Radio on Manycore

    NASA Technical Reports Server (NTRS)

    Ricketts, Scott

    2015-01-01

    Software-defined radio (SDR) platforms generally rely on field-programmable gate arrays (FPGAs) and digital signal processors (DSPs), but such architectures require significant software development. In addition, application demands for radiation mitigation and fault tolerance exacerbate programming challenges. MaXentric Technologies, LLC, has developed a manycore-based SDR technology that provides 100 times the throughput of conventional radiationhardened general purpose processors. Manycore systems (30-100 cores and beyond) have the potential to provide high processing performance at error rates that are equivalent to current space-deployed uniprocessor systems. MaXentric's innovation is a highly flexible radio, providing over-the-air reconfiguration; adaptability; and uninterrupted, real-time, multimode operation. The technology is also compliant with NASA's Space Telecommunications Radio System (STRS) architecture. In addition to its many uses within NASA communications, the SDR can also serve as a highly programmable research-stage prototyping device for new waveforms and other communications technologies. It can also support noncommunication codes on its multicore processor, collocated with the communications workload-reducing the size, weight, and power of the overall system by aggregating processing jobs to a single board computer.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sancho Pitarch, Jose Carlos; Kerbyson, Darren; Lang, Mike

    Increasing the core-count on current and future processors is posing critical challenges to the memory subsystem to efficiently handle concurrent memory requests. The current trend to cope with this challenge is to increase the number of memory channels available to the processor's memory controller. In this paper we investigate the effectiveness of this approach on the performance of parallel scientific applications. Specifically, we explore the trade-off between employing multiple memory channels per memory controller and the use of multiple memory controllers. Experiments conducted on two current state-of-the-art multicore processors, a 6-core AMD Istanbul and a 4-core Intel Nehalem-EP, for amore » wide range of production applications shows that there is a diminishing return when increasing the number of memory channels per memory controller. In addition, we show that this performance degradation can be efficiently addressed by increasing the ratio of memory controllers to channels while keeping the number of memory channels constant. Significant performance improvements can be achieved in this scheme, up to 28%, in the case of using two memory controllers with each with one channel compared with one controller with two memory channels.« less

  7. Nuflood, Version 1.x

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tasseff, Byron

    2016-07-29

    NUFLOOD Version 1.x is a surface-water hydrodynamic package designed for the simulation of overland flow of fluids. It consists of various routines to address a wide range of applications (e.g., rainfall-runoff, tsunami, storm surge) and real time, interactive visualization tools. NUFLOOD has been designed for general-purpose computers and workstations containing multi-core processors and/or graphics processing units. The software is easy to use and extensible, constructed in mind for instructors, students, and practicing engineers. NUFLOOD is intended to assist the water resource community in planning against water-related natural disasters.

  8. Parallel Lattice Basis Reduction Using a Multi-threaded Schnorr-Euchner LLL Algorithm

    NASA Astrophysics Data System (ADS)

    Backes, Werner; Wetzel, Susanne

    In this paper, we introduce a new parallel variant of the LLL lattice basis reduction algorithm. Our new, multi-threaded algorithm is the first to provide an efficient, parallel implementation of the Schorr-Euchner algorithm for today’s multi-processor, multi-core computer architectures. Experiments with sparse and dense lattice bases show a speed-up factor of about 1.8 for the 2-thread and about factor 3.2 for the 4-thread version of our new parallel lattice basis reduction algorithm in comparison to the traditional non-parallel algorithm.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madduri, Kamesh; Im, Eun-Jin; Ibrahim, Khaled Z.

    The next decade of high-performance computing (HPC) systems will see a rapid evolution and divergence of multi- and manycore architectures as power and cooling constraints limit increases in microprocessor clock speeds. Understanding efficient optimization methodologies on diverse multicore designs in the context of demanding numerical methods is one of the greatest challenges faced today by the HPC community. In this paper, we examine the efficient multicore optimization of GTC, a petascale gyrokinetic toroidal fusion code for studying plasma microturbulence in tokamak devices. For GTC’s key computational components (charge deposition and particle push), we explore efficient parallelization strategies across a broadmore » range of emerging multicore designs, including the recently-released Intel Nehalem-EX, the AMD Opteron Istanbul, and the highly multithreaded Sun UltraSparc T2+. We also present the first study on tuning gyrokinetic particle-in-cell (PIC) algorithms for graphics processors, using the NVIDIA C2050 (Fermi). Our work discusses several novel optimization approaches for gyrokinetic PIC, including mixed-precision computation, particle binning and decomposition strategies, grid replication, SIMDized atomic floating-point operations, and effective GPU texture memory utilization. Overall, we achieve significant performance improvements of 1.3–4.7× on these complex PIC kernels, despite the inherent challenges of data dependency and locality. Finally, our work also points to several architectural and programming features that could significantly enhance PIC performance and productivity on next-generation architectures.« less

  10. A FPGA-Based, Granularity-Variable Neuromorphic Processor and Its Application in a MIMO Real-Time Control System.

    PubMed

    Zhang, Zhen; Ma, Cheng; Zhu, Rong

    2017-08-23

    Artificial Neural Networks (ANNs), including Deep Neural Networks (DNNs), have become the state-of-the-art methods in machine learning and achieved amazing success in speech recognition, visual object recognition, and many other domains. There are several hardware platforms for developing accelerated implementation of ANN models. Since Field Programmable Gate Array (FPGA) architectures are flexible and can provide high performance per watt of power consumption, they have drawn a number of applications from scientists. In this paper, we propose a FPGA-based, granularity-variable neuromorphic processor (FBGVNP). The traits of FBGVNP can be summarized as granularity variability, scalability, integrated computing, and addressing ability: first, the number of neurons is variable rather than constant in one core; second, the multi-core network scale can be extended in various forms; third, the neuron addressing and computing processes are executed simultaneously. These make the processor more flexible and better suited for different applications. Moreover, a neural network-based controller is mapped to FBGVNP and applied in a multi-input, multi-output, (MIMO) real-time, temperature-sensing and control system. Experiments validate the effectiveness of the neuromorphic processor. The FBGVNP provides a new scheme for building ANNs, which is flexible, highly energy-efficient, and can be applied in many areas.

  11. A FPGA-Based, Granularity-Variable Neuromorphic Processor and Its Application in a MIMO Real-Time Control System

    PubMed Central

    Zhang, Zhen; Zhu, Rong

    2017-01-01

    Artificial Neural Networks (ANNs), including Deep Neural Networks (DNNs), have become the state-of-the-art methods in machine learning and achieved amazing success in speech recognition, visual object recognition, and many other domains. There are several hardware platforms for developing accelerated implementation of ANN models. Since Field Programmable Gate Array (FPGA) architectures are flexible and can provide high performance per watt of power consumption, they have drawn a number of applications from scientists. In this paper, we propose a FPGA-based, granularity-variable neuromorphic processor (FBGVNP). The traits of FBGVNP can be summarized as granularity variability, scalability, integrated computing, and addressing ability: first, the number of neurons is variable rather than constant in one core; second, the multi-core network scale can be extended in various forms; third, the neuron addressing and computing processes are executed simultaneously. These make the processor more flexible and better suited for different applications. Moreover, a neural network-based controller is mapped to FBGVNP and applied in a multi-input, multi-output, (MIMO) real-time, temperature-sensing and control system. Experiments validate the effectiveness of the neuromorphic processor. The FBGVNP provides a new scheme for building ANNs, which is flexible, highly energy-efficient, and can be applied in many areas. PMID:28832522

  12. MULTI-CORE AND OPTICAL PROCESSOR RELATED APPLICATIONS RESEARCH AT OAK RIDGE NATIONAL LABORATORY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barhen, Jacob; Kerekes, Ryan A; ST Charles, Jesse Lee

    2008-01-01

    High-speed parallelization of common tasks holds great promise as a low-risk approach to achieving the significant increases in signal processing and computational performance required for next generation innovations in reconfigurable radio systems. Researchers at the Oak Ridge National Laboratory have been working on exploiting the parallelization offered by this emerging technology and applying it to a variety of problems. This paper will highlight recent experience with four different parallel processors applied to signal processing tasks that are directly relevant to signal processing required for SDR/CR waveforms. The first is the EnLight Optical Core Processor applied to matched filter (MF) correlationmore » processing via fast Fourier transform (FFT) of broadband Dopplersensitive waveforms (DSW) using active sonar arrays for target tracking. The second is the IBM CELL Broadband Engine applied to 2-D discrete Fourier transform (DFT) kernel for image processing and frequency domain processing. And the third is the NVIDIA graphical processor applied to document feature clustering. EnLight Optical Core Processor. Optical processing is inherently capable of high-parallelism that can be translated to very high performance, low power dissipation computing. The EnLight 256 is a small form factor signal processing chip (5x5 cm2) with a digital optical core that is being developed by an Israeli startup company. As part of its evaluation of foreign technology, ORNL's Center for Engineering Science Advanced Research (CESAR) had access to a precursor EnLight 64 Alpha hardware for a preliminary assessment of capabilities in terms of large Fourier transforms for matched filter banks and on applications related to Doppler-sensitive waveforms. This processor is optimized for array operations, which it performs in fixed-point arithmetic at the rate of 16 TeraOPS at 8-bit precision. This is approximately 1000 times faster than the fastest DSP available today. The optical core performs the matrix-vector multiplications, where the nominal matrix size is 256x256. The system clock is 125MHz. At each clock cycle, 128K multiply-and-add operations per second (OPS) are carried out, which yields a peak performance of 16 TeraOPS. IBM Cell Broadband Engine. The Cell processor is the extraordinary resulting product of 5 years of sustained, intensive R&D collaboration (involving over $400M investment) between IBM, Sony, and Toshiba. Its architecture comprises one multithreaded 64-bit PowerPC processor element (PPE) with VMX capabilities and two levels of globally coherent cache, and 8 synergistic processor elements (SPEs). Each SPE consists of a processor (SPU) designed for streaming workloads, local memory, and a globally coherent direct memory access (DMA) engine. Computations are performed in 128-bit wide single instruction multiple data streams (SIMD). An integrated high-bandwidth element interconnect bus (EIB) connects the nine processors and their ports to external memory and to system I/O. The Applied Software Engineering Research (ASER) Group at the ORNL is applying the Cell to a variety of text and image analysis applications. Research on Cell-equipped PlayStation3 (PS3) consoles has led to the development of a correlation-based image recognition engine that enables a single PS3 to process images at more than 10X the speed of state-of-the-art single-core processors. NVIDIA Graphics Processing Units. The ASER group is also employing the latest NVIDIA graphical processing units (GPUs) to accelerate clustering of thousands of text documents using recently developed clustering algorithms such as document flocking and affinity propagation.« less

  13. Parallel programming with Easy Java Simulations

    NASA Astrophysics Data System (ADS)

    Esquembre, F.; Christian, W.; Belloni, M.

    2018-01-01

    Nearly all of today's processors are multicore, and ideally programming and algorithm development utilizing the entire processor should be introduced early in the computational physics curriculum. Parallel programming is often not introduced because it requires a new programming environment and uses constructs that are unfamiliar to many teachers. We describe how we decrease the barrier to parallel programming by using a java-based programming environment to treat problems in the usual undergraduate curriculum. We use the easy java simulations programming and authoring tool to create the program's graphical user interface together with objects based on those developed by Kaminsky [Building Parallel Programs (Course Technology, Boston, 2010)] to handle common parallel programming tasks. Shared-memory parallel implementations of physics problems, such as time evolution of the Schrödinger equation, are available as source code and as ready-to-run programs from the AAPT-ComPADRE digital library.

  14. Adaptive MCMC in Bayesian phylogenetics: an application to analyzing partitioned data in BEAST.

    PubMed

    Baele, Guy; Lemey, Philippe; Rambaut, Andrew; Suchard, Marc A

    2017-06-15

    Advances in sequencing technology continue to deliver increasingly large molecular sequence datasets that are often heavily partitioned in order to accurately model the underlying evolutionary processes. In phylogenetic analyses, partitioning strategies involve estimating conditionally independent models of molecular evolution for different genes and different positions within those genes, requiring a large number of evolutionary parameters that have to be estimated, leading to an increased computational burden for such analyses. The past two decades have also seen the rise of multi-core processors, both in the central processing unit (CPU) and Graphics processing unit processor markets, enabling massively parallel computations that are not yet fully exploited by many software packages for multipartite analyses. We here propose a Markov chain Monte Carlo (MCMC) approach using an adaptive multivariate transition kernel to estimate in parallel a large number of parameters, split across partitioned data, by exploiting multi-core processing. Across several real-world examples, we demonstrate that our approach enables the estimation of these multipartite parameters more efficiently than standard approaches that typically use a mixture of univariate transition kernels. In one case, when estimating the relative rate parameter of the non-coding partition in a heterochronous dataset, MCMC integration efficiency improves by > 14-fold. Our implementation is part of the BEAST code base, a widely used open source software package to perform Bayesian phylogenetic inference. guy.baele@kuleuven.be. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  15. Accelerated Adaptive MGS Phase Retrieval

    NASA Technical Reports Server (NTRS)

    Lam, Raymond K.; Ohara, Catherine M.; Green, Joseph J.; Bikkannavar, Siddarayappa A.; Basinger, Scott A.; Redding, David C.; Shi, Fang

    2011-01-01

    The Modified Gerchberg-Saxton (MGS) algorithm is an image-based wavefront-sensing method that can turn any science instrument focal plane into a wavefront sensor. MGS characterizes optical systems by estimating the wavefront errors in the exit pupil using only intensity images of a star or other point source of light. This innovative implementation of MGS significantly accelerates the MGS phase retrieval algorithm by using stream-processing hardware on conventional graphics cards. Stream processing is a relatively new, yet powerful, paradigm to allow parallel processing of certain applications that apply single instructions to multiple data (SIMD). These stream processors are designed specifically to support large-scale parallel computing on a single graphics chip. Computationally intensive algorithms, such as the Fast Fourier Transform (FFT), are particularly well suited for this computing environment. This high-speed version of MGS exploits commercially available hardware to accomplish the same objective in a fraction of the original time. The exploit involves performing matrix calculations in nVidia graphic cards. The graphical processor unit (GPU) is hardware that is specialized for computationally intensive, highly parallel computation. From the software perspective, a parallel programming model is used, called CUDA, to transparently scale multicore parallelism in hardware. This technology gives computationally intensive applications access to the processing power of the nVidia GPUs through a C/C++ programming interface. The AAMGS (Accelerated Adaptive MGS) software takes advantage of these advanced technologies, to accelerate the optical phase error characterization. With a single PC that contains four nVidia GTX-280 graphic cards, the new implementation can process four images simultaneously to produce a JWST (James Webb Space Telescope) wavefront measurement 60 times faster than the previous code.

  16. Matrix Algebra for GPU and Multicore Architectures (MAGMA) for Large Petascale Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dongarra, Jack J.; Tomov, Stanimire

    2014-03-24

    The goal of the MAGMA project is to create a new generation of linear algebra libraries that achieve the fastest possible time to an accurate solution on hybrid Multicore+GPU-based systems, using all the processing power that future high-end systems can make available within given energy constraints. Our efforts at the University of Tennessee achieved the goals set in all of the five areas identified in the proposal: 1. Communication optimal algorithms; 2. Autotuning for GPU and hybrid processors; 3. Scheduling and memory management techniques for heterogeneity and scale; 4. Fault tolerance and robustness for large scale systems; 5. Building energymore » efficiency into software foundations. The University of Tennessee’s main contributions, as proposed, were the research and software development of new algorithms for hybrid multi/many-core CPUs and GPUs, as related to two-sided factorizations and complete eigenproblem solvers, hybrid BLAS, and energy efficiency for dense, as well as sparse, operations. Furthermore, as proposed, we investigated and experimented with various techniques targeting the five main areas outlined.« less

  17. Research of real-time video processing system based on 6678 multi-core DSP

    NASA Astrophysics Data System (ADS)

    Li, Xiangzhen; Xie, Xiaodan; Yin, Xiaoqiang

    2017-10-01

    In the information age, the rapid development in the direction of intelligent video processing, complex algorithm proposed the powerful challenge on the performance of the processor. In this article, through the FPGA + TMS320C6678 frame structure, the image to fog, merge into an organic whole, to stabilize the image enhancement, its good real-time, superior performance, break through the traditional function of video processing system is simple, the product defects such as single, solved the video application in security monitoring, video, etc. Can give full play to the video monitoring effectiveness, improve enterprise economic benefits.

  18. Gyrokinetic particle-in-cell optimization on emerging multi- and manycore platforms

    DOE PAGES

    Madduri, Kamesh; Im, Eun-Jin; Ibrahim, Khaled Z.; ...

    2011-03-02

    The next decade of high-performance computing (HPC) systems will see a rapid evolution and divergence of multi- and manycore architectures as power and cooling constraints limit increases in microprocessor clock speeds. Understanding efficient optimization methodologies on diverse multicore designs in the context of demanding numerical methods is one of the greatest challenges faced today by the HPC community. In this paper, we examine the efficient multicore optimization of GTC, a petascale gyrokinetic toroidal fusion code for studying plasma microturbulence in tokamak devices. For GTC’s key computational components (charge deposition and particle push), we explore efficient parallelization strategies across a broadmore » range of emerging multicore designs, including the recently-released Intel Nehalem-EX, the AMD Opteron Istanbul, and the highly multithreaded Sun UltraSparc T2+. We also present the first study on tuning gyrokinetic particle-in-cell (PIC) algorithms for graphics processors, using the NVIDIA C2050 (Fermi). Our work discusses several novel optimization approaches for gyrokinetic PIC, including mixed-precision computation, particle binning and decomposition strategies, grid replication, SIMDized atomic floating-point operations, and effective GPU texture memory utilization. Overall, we achieve significant performance improvements of 1.3–4.7× on these complex PIC kernels, despite the inherent challenges of data dependency and locality. Finally, our work also points to several architectural and programming features that could significantly enhance PIC performance and productivity on next-generation architectures.« less

  19. muBLASTP: database-indexed protein sequence search on multicore CPUs.

    PubMed

    Zhang, Jing; Misra, Sanchit; Wang, Hao; Feng, Wu-Chun

    2016-11-04

    The Basic Local Alignment Search Tool (BLAST) is a fundamental program in the life sciences that searches databases for sequences that are most similar to a query sequence. Currently, the BLAST algorithm utilizes a query-indexed approach. Although many approaches suggest that sequence search with a database index can achieve much higher throughput (e.g., BLAT, SSAHA, and CAFE), they cannot deliver the same level of sensitivity as the query-indexed BLAST, i.e., NCBI BLAST, or they can only support nucleotide sequence search, e.g., MegaBLAST. Due to different challenges and characteristics between query indexing and database indexing, the existing techniques for query-indexed search cannot be used into database indexed search. muBLASTP, a novel database-indexed BLAST for protein sequence search, delivers identical hits returned to NCBI BLAST. On Intel Haswell multicore CPUs, for a single query, the single-threaded muBLASTP achieves up to a 4.41-fold speedup for alignment stages, and up to a 1.75-fold end-to-end speedup over single-threaded NCBI BLAST. For a batch of queries, the multithreaded muBLASTP achieves up to a 5.7-fold speedups for alignment stages, and up to a 4.56-fold end-to-end speedup over multithreaded NCBI BLAST. With a newly designed index structure for protein database and associated optimizations in BLASTP algorithm, we re-factored BLASTP algorithm for modern multicore processors that achieves much higher throughput with acceptable memory footprint for the database index.

  20. Equalizer: a scalable parallel rendering framework.

    PubMed

    Eilemann, Stefan; Makhinya, Maxim; Pajarola, Renato

    2009-01-01

    Continuing improvements in CPU and GPU performances as well as increasing multi-core processor and cluster-based parallelism demand for flexible and scalable parallel rendering solutions that can exploit multipipe hardware accelerated graphics. In fact, to achieve interactive visualization, scalable rendering systems are essential to cope with the rapid growth of data sets. However, parallel rendering systems are non-trivial to develop and often only application specific implementations have been proposed. The task of developing a scalable parallel rendering framework is even more difficult if it should be generic to support various types of data and visualization applications, and at the same time work efficiently on a cluster with distributed graphics cards. In this paper we introduce a novel system called Equalizer, a toolkit for scalable parallel rendering based on OpenGL which provides an application programming interface (API) to develop scalable graphics applications for a wide range of systems ranging from large distributed visualization clusters and multi-processor multipipe graphics systems to single-processor single-pipe desktop machines. We describe the system architecture, the basic API, discuss its advantages over previous approaches, present example configurations and usage scenarios as well as scalability results.

  1. Geospace simulations using modern accelerator processor technology

    NASA Astrophysics Data System (ADS)

    Germaschewski, K.; Raeder, J.; Larson, D. J.

    2009-12-01

    OpenGGCM (Open Geospace General Circulation Model) is a well-established numerical code simulating the Earth's space environment. The most computing intensive part is the MHD (magnetohydrodynamics) solver that models the plasma surrounding Earth and its interaction with Earth's magnetic field and the solar wind flowing in from the sun. Like other global magnetosphere codes, OpenGGCM's realism is currently limited by computational constraints on grid resolution. OpenGGCM has been ported to make use of the added computational powerof modern accelerator based processor architectures, in particular the Cell processor. The Cell architecture is a novel inhomogeneous multicore architecture capable of achieving up to 230 GFLops on a single chip. The University of New Hampshire recently acquired a PowerXCell 8i based computing cluster, and here we will report initial performance results of OpenGGCM. Realizing the high theoretical performance of the Cell processor is a programming challenge, though. We implemented the MHD solver using a multi-level parallelization approach: On the coarsest level, the problem is distributed to processors based upon the usual domain decomposition approach. Then, on each processor, the problem is divided into 3D columns, each of which is handled by the memory limited SPEs (synergistic processing elements) slice by slice. Finally, SIMD instructions are used to fully exploit the SIMD FPUs in each SPE. Memory management needs to be handled explicitly by the code, using DMA to move data from main memory to the per-SPE local store and vice versa. We use a modern technique, automatic code generation, which shields the application programmer from having to deal with all of the implementation details just described, keeping the code much more easily maintainable. Our preliminary results indicate excellent performance, a speed-up of a factor of 30 compared to the unoptimized version.

  2. Multicore-based 3D-DWT video encoder

    NASA Astrophysics Data System (ADS)

    Galiano, Vicente; López-Granado, Otoniel; Malumbres, Manuel P.; Migallón, Hector

    2013-12-01

    Three-dimensional wavelet transform (3D-DWT) encoders are good candidates for applications like professional video editing, video surveillance, multi-spectral satellite imaging, etc. where a frame must be reconstructed as quickly as possible. In this paper, we present a new 3D-DWT video encoder based on a fast run-length coding engine. Furthermore, we present several multicore optimizations to speed-up the 3D-DWT computation. An exhaustive evaluation of the proposed encoder (3D-GOP-RL) has been performed, and we have compared the evaluation results with other video encoders in terms of rate/distortion (R/D), coding/decoding delay, and memory consumption. Results show that the proposed encoder obtains good R/D results for high-resolution video sequences with nearly in-place computation using only the memory needed to store a group of pictures. After applying the multicore optimization strategies over the 3D DWT, the proposed encoder is able to compress a full high-definition video sequence in real-time.

  3. Genotype Imputation with Millions of Reference Samples

    PubMed Central

    Browning, Brian L.; Browning, Sharon R.

    2016-01-01

    We present a genotype imputation method that scales to millions of reference samples. The imputation method, based on the Li and Stephens model and implemented in Beagle v.4.1, is parallelized and memory efficient, making it well suited to multi-core computer processors. It achieves fast, accurate, and memory-efficient genotype imputation by restricting the probability model to markers that are genotyped in the target samples and by performing linear interpolation to impute ungenotyped variants. We compare Beagle v.4.1 with Impute2 and Minimac3 by using 1000 Genomes Project data, UK10K Project data, and simulated data. All three methods have similar accuracy but different memory requirements and different computation times. When imputing 10 Mb of sequence data from 50,000 reference samples, Beagle’s throughput was more than 100× greater than Impute2’s throughput on our computer servers. When imputing 10 Mb of sequence data from 200,000 reference samples in VCF format, Minimac3 consumed 26× more memory per computational thread and 15× more CPU time than Beagle. We demonstrate that Beagle v.4.1 scales to much larger reference panels by performing imputation from a simulated reference panel having 5 million samples and a mean marker density of one marker per four base pairs. PMID:26748515

  4. Real-time 3D adaptive filtering for portable imaging systems

    NASA Astrophysics Data System (ADS)

    Bockenbach, Olivier; Ali, Murtaza; Wainwright, Ian; Nadeski, Mark

    2015-03-01

    Portable imaging devices have proven valuable for emergency medical services both in the field and hospital environments and are becoming more prevalent in clinical settings where the use of larger imaging machines is impractical. 3D adaptive filtering is one of the most advanced techniques aimed at noise reduction and feature enhancement, but is computationally very demanding and hence often not able to run with sufficient performance on a portable platform. In recent years, advanced multicore DSPs have been introduced that attain high processing performance while maintaining low levels of power dissipation. These processors enable the implementation of complex algorithms like 3D adaptive filtering, improving the image quality of portable medical imaging devices. In this study, the performance of a 3D adaptive filtering algorithm on a digital signal processor (DSP) is investigated. The performance is assessed by filtering a volume of size 512x256x128 voxels sampled at a pace of 10 MVoxels/sec.

  5. High performance in silico virtual drug screening on many-core processors.

    PubMed

    McIntosh-Smith, Simon; Price, James; Sessions, Richard B; Ibarra, Amaurys A

    2015-05-01

    Drug screening is an important part of the drug development pipeline for the pharmaceutical industry. Traditional, lab-based methods are increasingly being augmented with computational methods, ranging from simple molecular similarity searches through more complex pharmacophore matching to more computationally intensive approaches, such as molecular docking. The latter simulates the binding of drug molecules to their targets, typically protein molecules. In this work, we describe BUDE, the Bristol University Docking Engine, which has been ported to the OpenCL industry standard parallel programming language in order to exploit the performance of modern many-core processors. Our highly optimized OpenCL implementation of BUDE sustains 1.43 TFLOP/s on a single Nvidia GTX 680 GPU, or 46% of peak performance. BUDE also exploits OpenCL to deliver effective performance portability across a broad spectrum of different computer architectures from different vendors, including GPUs from Nvidia and AMD, Intel's Xeon Phi and multi-core CPUs with SIMD instruction sets.

  6. High performance in silico virtual drug screening on many-core processors

    PubMed Central

    Price, James; Sessions, Richard B; Ibarra, Amaurys A

    2015-01-01

    Drug screening is an important part of the drug development pipeline for the pharmaceutical industry. Traditional, lab-based methods are increasingly being augmented with computational methods, ranging from simple molecular similarity searches through more complex pharmacophore matching to more computationally intensive approaches, such as molecular docking. The latter simulates the binding of drug molecules to their targets, typically protein molecules. In this work, we describe BUDE, the Bristol University Docking Engine, which has been ported to the OpenCL industry standard parallel programming language in order to exploit the performance of modern many-core processors. Our highly optimized OpenCL implementation of BUDE sustains 1.43 TFLOP/s on a single Nvidia GTX 680 GPU, or 46% of peak performance. BUDE also exploits OpenCL to deliver effective performance portability across a broad spectrum of different computer architectures from different vendors, including GPUs from Nvidia and AMD, Intel’s Xeon Phi and multi-core CPUs with SIMD instruction sets. PMID:25972727

  7. Center for Technology for Advanced Scientific Componet Software (TASCS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Govindaraju, Madhusudhan

    Advanced Scientific Computing Research Computer Science FY 2010Report Center for Technology for Advanced Scientific Component Software: Distributed CCA State University of New York, Binghamton, NY, 13902 Summary The overall objective of Binghamton's involvement is to work on enhancements of the CCA environment, motivated by the applications and research initiatives discussed in the proposal. This year we are working on re-focusing our design and development efforts to develop proof-of-concept implementations that have the potential to significantly impact scientific components. We worked on developing parallel implementations for non-hydrostatic code and worked on a model coupling interface for biogeochemical computations coded in MATLAB.more » We also worked on the design and implementation modules that will be required for the emerging MapReduce model to be effective for scientific applications. Finally, we focused on optimizing the processing of scientific datasets on multi-core processors. Research Details We worked on the following research projects that we are working on applying to CCA-based scientific applications. 1. Non-Hydrostatic Hydrodynamics: Non-static hydrodynamics are significantly more accurate at modeling internal waves that may be important in lake ecosystems. Non-hydrostatic codes, however, are significantly more computationally expensive, often prohibitively so. We have worked with Chin Wu at the University of Wisconsin to parallelize non-hydrostatic code. We have obtained a speed up of about 26 times maximum. Although this is significant progress, we hope to improve the performance further, such that it becomes a practical alternative to hydrostatic codes. 2. Model-coupling for water-based ecosystems: To answer pressing questions about water resources requires that physical models (hydrodynamics) be coupled with biological and chemical models. Most hydrodynamics codes are written in Fortran, however, while most ecologists work in MATLAB. This disconnect creates a great barrier. To address this, we are working on a model coupling interface that will allow biogeochemical computations written in MATLAB to couple with Fortran codes. This will greatly improve the productivity of ecosystem scientists. 2. Low overhead and Elastic MapReduce Implementation Optimized for Memory and CPU-Intensive Applications: Since its inception, MapReduce has frequently been associated with Hadoop and large-scale datasets. Its deployment at Amazon in the cloud, and its applications at Yahoo! for large-scale distributed document indexing and database building, among other tasks, have thrust MapReduce to the forefront of the data processing application domain. The applicability of the paradigm however extends far beyond its use with data intensive applications and diskbased systems, and can also be brought to bear in processing small but CPU intensive distributed applications. MapReduce however carries its own burdens. Through experiments using Hadoop in the context of diverse applications, we uncovered latencies and delay conditions potentially inhibiting the expected performance of a parallel execution in CPU-intensive applications. Furthermore, as it currently stands, MapReduce is favored for data-centric applications, and as such tends to be solely applied to disk-based applications. The paradigm, falls short in bringing its novelty to diskless systems dedicated to in-memory applications, and compute intensive programs processing much smaller data, but requiring intensive computations. In this project, we focused both on the performance of processing large-scale hierarchical data in distributed scientific applications, as well as the processing of smaller but demanding input sizes primarily used in diskless, and memory resident I/O systems. We designed LEMO-MR [1], a Low overhead, elastic, configurable for in- memory applications, and on-demand fault tolerance, an optimized implementation of MapReduce, for both on disk and in memory applications. We conducted experiments to identify not only the necessary components of this model, but also trade offs and factors to be considered. We have initial results to show the efficacy of our implementation in terms of potential speedup that can be achieved for representative data sets used by cloud applications. We have quantified the performance gains exhibited by our MapReduce implementation over Apache Hadoop in a compute intensive environment. 3. Cache Performance Optimization for Processing XML and HDF-based Application Data on Multi-core Processors: It is important to design and develop scientific middleware libraries to harness the opportunities presented by emerging multi-core processors. Implementations of scientific middleware and applications that do not adapt to the programming paradigm when executing on emerging processors can severely impact the overall performance. In this project, we focused on the utilization of the L2 cache, which is a critical shared resource on chip multiprocessors (CMP). The access pattern of the shared L2 cache, which is dependent on how the application schedules and assigns processing work to each thread, can either enhance or hurt the ability to hide memory latency on a multi-core processor. Therefore, while processing scientific datasets such as HDF5, it is essential to conduct fine-grained analysis of cache utilization, to inform scheduling decisions in multi-threaded programming. In this project, using the TAU toolkit for performance feedback from dual- and quad-core machines, we conducted performance analysis and recommendations on how processing threads can be scheduled on multi-core nodes to enhance the performance of a class of scientific applications that requires processing of HDF5 data. In particular, we quantified the gains associated with the use of the adaptations we have made to the Cache-Affinity and Balanced-Set scheduling algorithms to improve L2 cache performance, and hence the overall application execution time [2]. References: 1. Zacharia Fadika, Madhusudhan Govindaraju, ``MapReduce Implementation for Memory-Based and Processing Intensive Applications'', accepted in 2nd IEEE International Conference on Cloud Computing Technology and Science, Indianapolis, USA, Nov 30 - Dec 3, 2010. 2. Rajdeep Bhowmik, Madhusudhan Govindaraju, ``Cache Performance Optimization for Processing XML-based Application Data on Multi-core Processors'', in proceedings of The 10th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, May 17-20, 2010, Melbourne, Victoria, Australia. Contact Information: Madhusudhan Govindaraju Binghamton University State University of New York (SUNY) mgovinda@cs.binghamton.edu Phone: 607-777-4904« less

  8. The New Feedback Control System of RFX-mod Based on the MARTe Real-Time Framework

    NASA Astrophysics Data System (ADS)

    Manduchi, G.; Luchetta, A.; Soppelsa, A.; Taliercio, C.

    2014-06-01

    A real-time system has been successfully used since 2004 in the RFX-mod nuclear fusion experiment to control the position of the plasma and its Magneto Hydrodynamic (MHD) modes. However, its latency and the limited computation power of the used processors prevented the usage of more aggressive control algorithms. Therefore a new hardware and software architecture has been designed to overcome such limitations and to provide a shorter latency and a much increased computation power. The new system is based on a Linux multi-core server and uses MARTe, a framework for real-time control which is gaining interest in the fusion community.

  9. Diderot: a Domain-Specific Language for Portable Parallel Scientific Visualization and Image Analysis.

    PubMed

    Kindlmann, Gordon; Chiw, Charisee; Seltzer, Nicholas; Samuels, Lamont; Reppy, John

    2016-01-01

    Many algorithms for scientific visualization and image analysis are rooted in the world of continuous scalar, vector, and tensor fields, but are programmed in low-level languages and libraries that obscure their mathematical foundations. Diderot is a parallel domain-specific language that is designed to bridge this semantic gap by providing the programmer with a high-level, mathematical programming notation that allows direct expression of mathematical concepts in code. Furthermore, Diderot provides parallel performance that takes advantage of modern multicore processors and GPUs. The high-level notation allows a concise and natural expression of the algorithms and the parallelism allows efficient execution on real-world datasets.

  10. Software Graphics Processing Unit (sGPU) for Deep Space Applications

    NASA Technical Reports Server (NTRS)

    McCabe, Mary; Salazar, George; Steele, Glen

    2015-01-01

    A graphics processing capability will be required for deep space missions and must include a range of applications, from safety-critical vehicle health status to telemedicine for crew health. However, preliminary radiation testing of commercial graphics processing cards suggest they cannot operate in the deep space radiation environment. Investigation into an Software Graphics Processing Unit (sGPU)comprised of commercial-equivalent radiation hardened/tolerant single board computers, field programmable gate arrays, and safety-critical display software shows promising results. Preliminary performance of approximately 30 frames per second (FPS) has been achieved. Use of multi-core processors may provide a significant increase in performance.

  11. Interaction sorting method for molecular dynamics on multi-core SIMD CPU architecture.

    PubMed

    Matvienko, Sergey; Alemasov, Nikolay; Fomin, Eduard

    2015-02-01

    Molecular dynamics (MD) is widely used in computational biology for studying binding mechanisms of molecules, molecular transport, conformational transitions, protein folding, etc. The method is computationally expensive; thus, the demand for the development of novel, much more efficient algorithms is still high. Therefore, the new algorithm designed in 2007 and called interaction sorting (IS) clearly attracted interest, as it outperformed the most efficient MD algorithms. In this work, a new IS modification is proposed which allows the algorithm to utilize SIMD processor instructions. This paper shows that the improvement provides an additional gain in performance, 9% to 45% in comparison to the original IS method.

  12. Multi-element germanium detectors for synchrotron applications

    NASA Astrophysics Data System (ADS)

    Rumaiz, A. K.; Kuczewski, A. J.; Mead, J.; Vernon, E.; Pinelli, D.; Dooryhee, E.; Ghose, S.; Caswell, T.; Siddons, D. P.; Miceli, A.; Baldwin, J.; Almer, J.; Okasinski, J.; Quaranta, O.; Woods, R.; Krings, T.; Stock, S.

    2018-04-01

    We have developed a series of monolithic multi-element germanium detectors, based on sensor arrays produced by the Forschungzentrum Julich, and on Application-specific integrated circuits (ASICs) developed at Brookhaven. Devices have been made with element counts ranging from 64 to 384. These detectors are being used at NSLS-II and APS for a range of diffraction experiments, both monochromatic and energy-dispersive. Compact and powerful readout systems have been developed, based on the new generation of FPGA system-on-chip devices, which provide closely coupled multi-core processors embedded in large gate arrays. We will discuss the technical details of the systems, and present some of the results from them.

  13. Parallel processing architecture for H.264 deblocking filter on multi-core platforms

    NASA Astrophysics Data System (ADS)

    Prasad, Durga P.; Sonachalam, Sekar; Kunchamwar, Mangesh K.; Gunupudi, Nageswara Rao

    2012-03-01

    Massively parallel computing (multi-core) chips offer outstanding new solutions that satisfy the increasing demand for high resolution and high quality video compression technologies such as H.264. Such solutions not only provide exceptional quality but also efficiency, low power, and low latency, previously unattainable in software based designs. While custom hardware and Application Specific Integrated Circuit (ASIC) technologies may achieve lowlatency, low power, and real-time performance in some consumer devices, many applications require a flexible and scalable software-defined solution. The deblocking filter in H.264 encoder/decoder poses difficult implementation challenges because of heavy data dependencies and the conditional nature of the computations. Deblocking filter implementations tend to be fixed and difficult to reconfigure for different needs. The ability to scale up for higher quality requirements such as 10-bit pixel depth or a 4:2:2 chroma format often reduces the throughput of a parallel architecture designed for lower feature set. A scalable architecture for deblocking filtering, created with a massively parallel processor based solution, means that the same encoder or decoder will be deployed in a variety of applications, at different video resolutions, for different power requirements, and at higher bit-depths and better color sub sampling patterns like YUV, 4:2:2, or 4:4:4 formats. Low power, software-defined encoders/decoders may be implemented using a massively parallel processor array, like that found in HyperX technology, with 100 or more cores and distributed memory. The large number of processor elements allows the silicon device to operate more efficiently than conventional DSP or CPU technology. This software programing model for massively parallel processors offers a flexible implementation and a power efficiency close to that of ASIC solutions. This work describes a scalable parallel architecture for an H.264 compliant deblocking filter for multi core platforms such as HyperX technology. Parallel techniques such as parallel processing of independent macroblocks, sub blocks, and pixel row level are examined in this work. The deblocking architecture consists of a basic cell called deblocking filter unit (DFU) and dependent data buffer manager (DFM). The DFU can be used in several instances, catering to different performance needs the DFM serves the data required for the different number of DFUs, and also manages all the neighboring data required for future data processing of DFUs. This approach achieves the scalability, flexibility, and performance excellence required in deblocking filters.

  14. Fast, Massively Parallel Data Processors

    NASA Technical Reports Server (NTRS)

    Heaton, Robert A.; Blevins, Donald W.; Davis, ED

    1994-01-01

    Proposed fast, massively parallel data processor contains 8x16 array of processing elements with efficient interconnection scheme and options for flexible local control. Processing elements communicate with each other on "X" interconnection grid with external memory via high-capacity input/output bus. This approach to conditional operation nearly doubles speed of various arithmetic operations.

  15. Shared Memory Parallelism for 3D Cartesian Discrete Ordinates Solver

    NASA Astrophysics Data System (ADS)

    Moustafa, Salli; Dutka-Malen, Ivan; Plagne, Laurent; Ponçot, Angélique; Ramet, Pierre

    2014-06-01

    This paper describes the design and the performance of DOMINO, a 3D Cartesian SN solver that implements two nested levels of parallelism (multicore+SIMD) on shared memory computation nodes. DOMINO is written in C++, a multi-paradigm programming language that enables the use of powerful and generic parallel programming tools such as Intel TBB and Eigen. These two libraries allow us to combine multi-thread parallelism with vector operations in an efficient and yet portable way. As a result, DOMINO can exploit the full power of modern multi-core processors and is able to tackle very large simulations, that usually require large HPC clusters, using a single computing node. For example, DOMINO solves a 3D full core PWR eigenvalue problem involving 26 energy groups, 288 angular directions (S16), 46 × 106 spatial cells and 1 × 1012 DoFs within 11 hours on a single 32-core SMP node. This represents a sustained performance of 235 GFlops and 40:74% of the SMP node peak performance for the DOMINO sweep implementation. The very high Flops/Watt ratio of DOMINO makes it a very interesting building block for a future many-nodes nuclear simulation tool.

  16. A Programming Model Performance Study Using the NAS Parallel Benchmarks

    DOE PAGES

    Shan, Hongzhang; Blagojević, Filip; Min, Seung-Jai; ...

    2010-01-01

    Harnessing the power of multicore platforms is challenging due to the additional levels of parallelism present. In this paper we use the NAS Parallel Benchmarks to study three programming models, MPI, OpenMP and PGAS to understand their performance and memory usage characteristics on current multicore architectures. To understand these characteristics we use the Integrated Performance Monitoring tool and other ways to measure communication versus computation time, as well as the fraction of the run time spent in OpenMP. The benchmarks are run on two different Cray XT5 systems and an Infiniband cluster. Our results show that in general the threemore » programming models exhibit very similar performance characteristics. In a few cases, OpenMP is significantly faster because it explicitly avoids communication. For these particular cases, we were able to re-write the UPC versions and achieve equal performance to OpenMP. Using OpenMP was also the most advantageous in terms of memory usage. Also we compare performance differences between the two Cray systems, which have quad-core and hex-core processors. We show that at scale the performance is almost always slower on the hex-core system because of increased contention for network resources.« less

  17. Parallelized Kalman-Filter-Based Reconstruction of Particle Tracks on Many-Core Processors and GPUs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cerati, Giuseppe; Elmer, Peter; Krutelyov, Slava

    2017-01-01

    For over a decade now, physical and energy constraints have limited clock speed improvements in commodity microprocessors. Instead, chipmakers have been pushed into producing lower-power, multi-core processors such as Graphical Processing Units (GPU), ARM CPUs, and Intel MICs. Broad-based efforts from manufacturers and developers have been devoted to making these processors user-friendly enough to perform general computations. However, extracting performance from a larger number of cores, as well as specialized vector or SIMD units, requires special care in algorithm design and code optimization. One of the most computationally challenging problems in high-energy particle experiments is finding and fitting the charged-particlemore » tracks during event reconstruction. This is expected to become by far the dominant problem at the High-Luminosity Large Hadron Collider (HL-LHC), for example. Today the most common track finding methods are those based on the Kalman filter. Experience with Kalman techniques on real tracking detector systems has shown that they are robust and provide high physics performance. This is why they are currently in use at the LHC, both in the trigger and offine. Previously we reported on the significant parallel speedups that resulted from our investigations to adapt Kalman filters to track fitting and track building on Intel Xeon and Xeon Phi. Here, we discuss our progresses toward the understanding of these processors and the new developments to port the Kalman filter to NVIDIA GPUs.« less

  18. Parallelized Kalman-Filter-Based Reconstruction of Particle Tracks on Many-Core Processors and GPUs

    NASA Astrophysics Data System (ADS)

    Cerati, Giuseppe; Elmer, Peter; Krutelyov, Slava; Lantz, Steven; Lefebvre, Matthieu; Masciovecchio, Mario; McDermott, Kevin; Riley, Daniel; Tadel, Matevž; Wittich, Peter; Würthwein, Frank; Yagil, Avi

    2017-08-01

    For over a decade now, physical and energy constraints have limited clock speed improvements in commodity microprocessors. Instead, chipmakers have been pushed into producing lower-power, multi-core processors such as Graphical Processing Units (GPU), ARM CPUs, and Intel MICs. Broad-based efforts from manufacturers and developers have been devoted to making these processors user-friendly enough to perform general computations. However, extracting performance from a larger number of cores, as well as specialized vector or SIMD units, requires special care in algorithm design and code optimization. One of the most computationally challenging problems in high-energy particle experiments is finding and fitting the charged-particle tracks during event reconstruction. This is expected to become by far the dominant problem at the High-Luminosity Large Hadron Collider (HL-LHC), for example. Today the most common track finding methods are those based on the Kalman filter. Experience with Kalman techniques on real tracking detector systems has shown that they are robust and provide high physics performance. This is why they are currently in use at the LHC, both in the trigger and offine. Previously we reported on the significant parallel speedups that resulted from our investigations to adapt Kalman filters to track fitting and track building on Intel Xeon and Xeon Phi. Here, we discuss our progresses toward the understanding of these processors and the new developments to port the Kalman filter to NVIDIA GPUs.

  19. Spaceborne Processor Array

    NASA Technical Reports Server (NTRS)

    Chow, Edward T.; Schatzel, Donald V.; Whitaker, William D.; Sterling, Thomas

    2008-01-01

    A Spaceborne Processor Array in Multifunctional Structure (SPAMS) can lower the total mass of the electronic and structural overhead of spacecraft, resulting in reduced launch costs, while increasing the science return through dynamic onboard computing. SPAMS integrates the multifunctional structure (MFS) and the Gilgamesh Memory, Intelligence, and Network Device (MIND) multi-core in-memory computer architecture into a single-system super-architecture. This transforms every inch of a spacecraft into a sharable, interconnected, smart computing element to increase computing performance while simultaneously reducing mass. The MIND in-memory architecture provides a foundation for high-performance, low-power, and fault-tolerant computing. The MIND chip has an internal structure that includes memory, processing, and communication functionality. The Gilgamesh is a scalable system comprising multiple MIND chips interconnected to operate as a single, tightly coupled, parallel computer. The array of MIND components shares a global, virtual name space for program variables and tasks that are allocated at run time to the distributed physical memory and processing resources. Individual processor- memory nodes can be activated or powered down at run time to provide active power management and to configure around faults. A SPAMS system is comprised of a distributed Gilgamesh array built into MFS, interfaces into instrument and communication subsystems, a mass storage interface, and a radiation-hardened flight computer.

  20. Implementation and Optimization of miniGMG - a Compact Geometric Multigrid Benchmark

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Samuel; Kalamkar, Dhiraj; Singh, Amik

    2012-12-01

    Multigrid methods are widely used to accelerate the convergence of iterative solvers for linear systems used in a number of different application areas. In this report, we describe miniGMG, our compact geometric multigrid benchmark designed to proxy the multigrid solves found in AMR applications. We explore optimization techniques for geometric multigrid on existing and emerging multicore systems including the Opteron-based Cray XE6, Intel Sandy Bridge and Nehalem-based Infiniband clusters, as well as manycore-based architectures including NVIDIA's Fermi and Kepler GPUs and Intel's Knights Corner (KNC) co-processor. This report examines a variety of novel techniques including communication-aggregation, threaded wavefront-based DRAM communication-avoiding,more » dynamic threading decisions, SIMDization, and fusion of operators. We quantify performance through each phase of the V-cycle for both single-node and distributed-memory experiments and provide detailed analysis for each class of optimization. Results show our optimizations yield significant speedups across a variety of subdomain sizes while simultaneously demonstrating the potential of multi- and manycore processors to dramatically accelerate single-node performance. However, our analysis also indicates that improvements in networks and communication will be essential to reap the potential of manycore processors in large-scale multigrid calculations.« less

  1. A Parallel Point Matching Algorithm for Landmark Based Image Registration Using Multicore Platform

    PubMed Central

    Yang, Lin; Gong, Leiguang; Zhang, Hong; Nosher, John L.; Foran, David J.

    2013-01-01

    Point matching is crucial for many computer vision applications. Establishing the correspondence between a large number of data points is a computationally intensive process. Some point matching related applications, such as medical image registration, require real time or near real time performance if applied to critical clinical applications like image assisted surgery. In this paper, we report a new multicore platform based parallel algorithm for fast point matching in the context of landmark based medical image registration. We introduced a non-regular data partition algorithm which utilizes the K-means clustering algorithm to group the landmarks based on the number of available processing cores, which optimize the memory usage and data transfer. We have tested our method using the IBM Cell Broadband Engine (Cell/B.E.) platform. The results demonstrated a significant speed up over its sequential implementation. The proposed data partition and parallelization algorithm, though tested only on one multicore platform, is generic by its design. Therefore the parallel algorithm can be extended to other computing platforms, as well as other point matching related applications. PMID:24308014

  2. MIMO signal progressing with RLSCMA algorithm for multi-mode multi-core optical transmission system

    NASA Astrophysics Data System (ADS)

    Bi, Yuan; Liu, Bo; Zhang, Li-jia; Xin, Xiang-jun; Zhang, Qi; Wang, Yong-jun; Tian, Qing-hua; Tian, Feng; Mao, Ya-ya

    2018-01-01

    In the process of transmitting signals of multi-mode multi-core fiber, there will be mode coupling between modes. The mode dispersion will also occur because each mode has different transmission speed in the link. Mode coupling and mode dispersion will cause damage to the useful signal in the transmission link, so the receiver needs to deal received signal with digital signal processing, and compensate the damage in the link. We first analyzes the influence of mode coupling and mode dispersion in the process of transmitting signals of multi-mode multi-core fiber, then presents the relationship between the coupling coefficient and dispersion coefficient. Then we carry out adaptive signal processing with MIMO equalizers based on recursive least squares constant modulus algorithm (RLSCMA). The MIMO equalization algorithm offers adaptive equalization taps according to the degree of crosstalk in cores or modes, which eliminates the interference among different modes and cores in space division multiplexing(SDM) transmission system. The simulation results show that the distorted signals are restored efficiently with fast convergence speed.

  3. Efficient Aho-Corasick String Matching on Emerging Multicore Architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tumeo, Antonino; Villa, Oreste; Secchi, Simone

    String matching algorithms are critical to several scientific fields. Beside text processing and databases, emerging applications such as DNA protein sequence analysis, data mining, information security software, antivirus, ma- chine learning, all exploit string matching algorithms [3]. All these applica- tions usually process large quantity of textual data, require high performance and/or predictable execution times. Among all the string matching algorithms, one of the most studied, especially for text processing and security applica- tions, is the Aho-Corasick algorithm. 1 2 Book title goes here Aho-Corasick is an exact, multi-pattern string matching algorithm which performs the search in a time linearlymore » proportional to the length of the input text independently from pattern set size. However, depending on the imple- mentation, when the number of patterns increase, the memory occupation may raise drastically. In turn, this can lead to significant variability in the performance, due to the memory access times and the caching effects. This is a significant concern for many mission critical applications and modern high performance architectures. For example, security applications such as Network Intrusion Detection Systems (NIDS), must be able to scan network traffic against very large dictionaries in real time. Modern Ethernet links reach up to 10 Gbps, and malicious threats are already well over 1 million, and expo- nentially growing [28]. When performing the search, a NIDS should not slow down the network, or let network packets pass unchecked. Nevertheless, on the current state-of-the-art cache based processors, there may be a large per- formance variability when dealing with big dictionaries and inputs that have different frequencies of matching patterns. In particular, when few patterns are matched and they are all in the cache, the procedure is fast. Instead, when they are not in the cache, often because many patterns are matched and the caches are continuously thrashed, they should be retrieved from the system memory and the procedure is slowed down by the increased latency. Efficient implementations of string matching algorithms have been the fo- cus of several works, targeting Field Programmable Gate Arrays [4, 25, 15, 5], highly multi-threaded solutions like the Cray XMT [34], multicore proces- sors [19] or heterogeneous processors like the Cell Broadband Engine [35, 22]. Recently, several researchers have also started to investigate the use Graphic Processing Units (GPUs) for string matching algorithms in security applica- tions [20, 10, 32, 33]. Most of these approaches mainly focus on reaching high peak performance, or try to optimize the memory occupation, rather than looking at performance stability. However, hardware solutions supports only small dictionary sizes due to lack of memory and are difficult to customize, while platforms such as the Cell/B.E. are very complex to program.« less

  4. GoCxx: a tool to easily leverage C++ legacy code for multicore-friendly Go libraries and frameworks

    NASA Astrophysics Data System (ADS)

    Binet, Sébastien

    2012-12-01

    Current HENP libraries and frameworks were written before multicore systems became widely deployed and used. From this environment, a ‘single-thread’ processing model naturally emerged but the implicit assumptions it encouraged are greatly impairing our abilities to scale in a multicore/manycore world. Writing scalable code in C++ for multicore architectures, while doable, is no panacea. Sure, C++11 will improve on the current situation (by standardizing on std::thread, introducing lambda functions and defining a memory model) but it will do so at the price of complicating further an already quite sophisticated language. This level of sophistication has probably already strongly motivated analysis groups to migrate to CPython, hoping for its current limitations with respect to multicore scalability to be either lifted (Grand Interpreter Lock removal) or for the advent of a new Python VM better tailored for this kind of environment (PyPy, Jython, …) Could HENP migrate to a language with none of the deficiencies of C++ (build time, deployment, low level tools for concurrency) and with the fast turn-around time, simplicity and ease of coding of Python? This paper will try to make the case for Go - a young open source language with built-in facilities to easily express and expose concurrency - being such a language. We introduce GoCxx, a tool leveraging gcc-xml's output to automatize the tedious work of creating Go wrappers for foreign languages, a critical task for any language wishing to leverage legacy and field-tested code. We will conclude with the first results of applying GoCxx to real C++ code.

  5. MetAlign 3.0: performance enhancement by efficient use of advances in computer hardware.

    PubMed

    Lommen, Arjen; Kools, Harrie J

    2012-08-01

    A new, multi-threaded version of the GC-MS and LC-MS data processing software, metAlign, has been developed which is able to utilize multiple cores on one PC. This new version was tested using three different multi-core PCs with different operating systems. The performance of noise reduction, baseline correction and peak-picking was 8-19 fold faster compared to the previous version on a single core machine from 2008. The alignment was 5-10 fold faster. Factors influencing the performance enhancement are discussed. Our observations show that performance scales with the increase in processor core numbers we currently see in consumer PC hardware development.

  6. Extreme-scale Algorithms and Solver Resilience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dongarra, Jack

    A widening gap exists between the peak performance of high-performance computers and the performance achieved by complex applications running on these platforms. Over the next decade, extreme-scale systems will present major new challenges to algorithm development that could amplify this mismatch in such a way that it prevents the productive use of future DOE Leadership computers due to the following; Extreme levels of parallelism due to multicore processors; An increase in system fault rates requiring algorithms to be resilient beyond just checkpoint/restart; Complex memory hierarchies and costly data movement in both energy and performance; Heterogeneous system architectures (mixing CPUs, GPUs,more » etc.); and Conflicting goals of performance, resilience, and power requirements.« less

  7. Genotype Imputation with Millions of Reference Samples.

    PubMed

    Browning, Brian L; Browning, Sharon R

    2016-01-07

    We present a genotype imputation method that scales to millions of reference samples. The imputation method, based on the Li and Stephens model and implemented in Beagle v.4.1, is parallelized and memory efficient, making it well suited to multi-core computer processors. It achieves fast, accurate, and memory-efficient genotype imputation by restricting the probability model to markers that are genotyped in the target samples and by performing linear interpolation to impute ungenotyped variants. We compare Beagle v.4.1 with Impute2 and Minimac3 by using 1000 Genomes Project data, UK10K Project data, and simulated data. All three methods have similar accuracy but different memory requirements and different computation times. When imputing 10 Mb of sequence data from 50,000 reference samples, Beagle's throughput was more than 100× greater than Impute2's throughput on our computer servers. When imputing 10 Mb of sequence data from 200,000 reference samples in VCF format, Minimac3 consumed 26× more memory per computational thread and 15× more CPU time than Beagle. We demonstrate that Beagle v.4.1 scales to much larger reference panels by performing imputation from a simulated reference panel having 5 million samples and a mean marker density of one marker per four base pairs. Copyright © 2016 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  8. A 60 GOPS/W, -1.8 V to 0.9 V body bias ULP cluster in 28 nm UTBB FD-SOI technology

    NASA Astrophysics Data System (ADS)

    Rossi, Davide; Pullini, Antonio; Loi, Igor; Gautschi, Michael; Gürkaynak, Frank K.; Bartolini, Andrea; Flatresse, Philippe; Benini, Luca

    2016-03-01

    Ultra-low power operation and extreme energy efficiency are strong requirements for a number of high-growth application areas, such as E-health, Internet of Things, and wearable Human-Computer Interfaces. A promising approach to achieve up to one order of magnitude of improvement in energy efficiency over current generation of integrated circuits is near-threshold computing. However, frequency degradation due to aggressive voltage scaling may not be acceptable across all performance-constrained applications. Thread-level parallelism over multiple cores can be used to overcome the performance degradation at low voltage. Moreover, enabling the processors to operate on-demand and over a wide supply voltage and body bias ranges allows to achieve the best possible energy efficiency while satisfying a large spectrum of computational demands. In this work we present the first ever implementation of a 4-core cluster fabricated using conventional-well 28 nm UTBB FD-SOI technology. The multi-core architecture we present in this work is able to operate on a wide range of supply voltages starting from 0.44 V to 1.2 V. In addition, the architecture allows a wide range of body bias to be applied from -1.8 V to 0.9 V. The peak energy efficiency 60 GOPS/W is achieved at 0.5 V supply voltage and 0.5 V forward body bias. Thanks to the extended body bias range of conventional-well FD-SOI technology, high energy efficiency can be guaranteed for a wide range of process and environmental conditions. We demonstrate the ability to compensate for up to 99.7% of chips for process variation with only ±0.2 V of body biasing, and compensate temperature variation in the range -40 °C to 120 °C exploiting -1.1 V to 0.8 V body biasing. When compared to leading-edge near-threshold RISC processors optimized for extremely low power applications, the multi-core architecture we propose has 144× more performance at comparable energy efficiency levels. Even when compared to other low-power processors with comparable performance, including those implemented in 28 nm technology, our platform provides 1.4× to 3.7× better energy efficiency.

  9. Computational Particle Dynamic Simulations on Multicore Processors (CPDMu) Final Report Phase I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmalz, Mark S

    2011-07-24

    Statement of Problem - Department of Energy has many legacy codes for simulation of computational particle dynamics and computational fluid dynamics applications that are designed to run on sequential processors and are not easily parallelized. Emerging high-performance computing architectures employ massively parallel multicore architectures (e.g., graphics processing units) to increase throughput. Parallelization of legacy simulation codes is a high priority, to achieve compatibility, efficiency, accuracy, and extensibility. General Statement of Solution - A legacy simulation application designed for implementation on mainly-sequential processors has been represented as a graph G. Mathematical transformations, applied to G, produce a graph representation {und G}more » for a high-performance architecture. Key computational and data movement kernels of the application were analyzed/optimized for parallel execution using the mapping G {yields} {und G}, which can be performed semi-automatically. This approach is widely applicable to many types of high-performance computing systems, such as graphics processing units or clusters comprised of nodes that contain one or more such units. Phase I Accomplishments - Phase I research decomposed/profiled computational particle dynamics simulation code for rocket fuel combustion into low and high computational cost regions (respectively, mainly sequential and mainly parallel kernels), with analysis of space and time complexity. Using the research team's expertise in algorithm-to-architecture mappings, the high-cost kernels were transformed, parallelized, and implemented on Nvidia Fermi GPUs. Measured speedups (GPU with respect to single-core CPU) were approximately 20-32X for realistic model parameters, without final optimization. Error analysis showed no loss of computational accuracy. Commercial Applications and Other Benefits - The proposed research will constitute a breakthrough in solution of problems related to efficient parallel computation of particle and fluid dynamics simulations. These problems occur throughout DOE, military and commercial sectors: the potential payoff is high. We plan to license or sell the solution to contractors for military and domestic applications such as disaster simulation (aerodynamic and hydrodynamic), Government agencies (hydrological and environmental simulations), and medical applications (e.g., in tomographic image reconstruction). Keywords - High-performance Computing, Graphic Processing Unit, Fluid/Particle Simulation. Summary for Members of Congress - Department of Energy has many simulation codes that must compute faster, to be effective. The Phase I research parallelized particle/fluid simulations for rocket combustion, for high-performance computing systems.« less

  10. High-performance computing for airborne applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinn, Heather M; Manuzzato, Andrea; Fairbanks, Tom

    2010-06-28

    Recently, there has been attempts to move common satellite tasks to unmanned aerial vehicles (UAVs). UAVs are significantly cheaper to buy than satellites and easier to deploy on an as-needed basis. The more benign radiation environment also allows for an aggressive adoption of state-of-the-art commercial computational devices, which increases the amount of data that can be collected. There are a number of commercial computing devices currently available that are well-suited to high-performance computing. These devices range from specialized computational devices, such as field-programmable gate arrays (FPGAs) and digital signal processors (DSPs), to traditional computing platforms, such as microprocessors. Even thoughmore » the radiation environment is relatively benign, these devices could be susceptible to single-event effects. In this paper, we will present radiation data for high-performance computing devices in a accelerated neutron environment. These devices include a multi-core digital signal processor, two field-programmable gate arrays, and a microprocessor. From these results, we found that all of these devices are suitable for many airplane environments without reliability problems.« less

  11. Parallel halftoning technique using dot diffusion optimization

    NASA Astrophysics Data System (ADS)

    Molina-Garcia, Javier; Ponomaryov, Volodymyr I.; Reyes-Reyes, Rogelio; Cruz-Ramos, Clara

    2017-05-01

    In this paper, a novel approach for halftone images is proposed and implemented for images that are obtained by the Dot Diffusion (DD) method. Designed technique is based on an optimization of the so-called class matrix used in DD algorithm and it consists of generation new versions of class matrix, which has no baron and near-baron in order to minimize inconsistencies during the distribution of the error. Proposed class matrix has different properties and each is designed for two different applications: applications where the inverse-halftoning is necessary, and applications where this method is not required. The proposed method has been implemented in GPU (NVIDIA GeForce GTX 750 Ti), multicore processors (AMD FX(tm)-6300 Six-Core Processor and in Intel core i5-4200U), using CUDA and OpenCV over a PC with linux. Experimental results have shown that novel framework generates a good quality of the halftone images and the inverse halftone images obtained. The simulation results using parallel architectures have demonstrated the efficiency of the novel technique when it is implemented in real-time processing.

  12. Fault Tolerance Middleware for a Multi-Core System

    NASA Technical Reports Server (NTRS)

    Some, Raphael R.; Springer, Paul L.; Zima, Hans P.; James, Mark; Wagner, David A.

    2012-01-01

    Fault Tolerance Middleware (FTM) provides a framework to run on a dedicated core of a multi-core system and handles detection of single-event upsets (SEUs), and the responses to those SEUs, occurring in an application running on multiple cores of the processor. This software was written expressly for a multi-core system and can support different kinds of fault strategies, such as introspection, algorithm-based fault tolerance (ABFT), and triple modular redundancy (TMR). It focuses on providing fault tolerance for the application code, and represents the first step in a plan to eventually include fault tolerance in message passing and the FTM itself. In the multi-core system, the FTM resides on a single, dedicated core, separate from the cores used by the application. This is done in order to isolate the FTM from application faults and to allow it to swap out any application core for a substitute. The structure of the FTM consists of an interface to a fault tolerant strategy module, a responder module, a fault manager module, an error factory, and an error mapper that determines the severity of the error. In the present reference implementation, the only fault tolerant strategy implemented is introspection. The introspection code waits for an application node to send an error notification to it. It then uses the error factory to create an error object, and at this time, a severity level is assigned to the error. The introspection code uses its built-in knowledge base to generate a recommended response to the error. Responses might include ignoring the error, logging it, rolling back the application to a previously saved checkpoint, swapping in a new node to replace a bad one, or restarting the application. The original error and recommended response are passed to the top-level fault manager module, which invokes the response. The responder module also notifies the introspection module of the generated response. This provides additional information to the introspection module that it can use in generating its next response. For example, if the responder triggers an application rollback and errors are still occurring, the introspection module may decide to recommend an application restart.

  13. Processing techniques for software based SAR processors

    NASA Technical Reports Server (NTRS)

    Leung, K.; Wu, C.

    1983-01-01

    Software SAR processing techniques defined to treat Shuttle Imaging Radar-B (SIR-B) data are reviewed. The algorithms are devised for the data processing procedure selection, SAR correlation function implementation, multiple array processors utilization, cornerturning, variable reference length azimuth processing, and range migration handling. The Interim Digital Processor (IDP) originally implemented for handling Seasat SAR data has been adapted for the SIR-B, and offers a resolution of 100 km using a processing procedure based on the Fast Fourier Transformation fast correlation approach. Peculiarities of the Seasat SAR data processing requirements are reviewed, along with modifications introduced for the SIR-B. An Advanced Digital SAR Processor (ADSP) is under development for use with the SIR-B in the 1986 time frame as an upgrade for the IDP, which will be in service in 1984-5.

  14. A Faster Parallel Algorithm and Efficient Multithreaded Implementations for Evaluating Betweenness Centrality on Massive Datasets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madduri, Kamesh; Ediger, David; Jiang, Karl

    2009-02-15

    We present a new lock-free parallel algorithm for computing betweenness centralityof massive small-world networks. With minor changes to the data structures, ouralgorithm also achieves better spatial cache locality compared to previous approaches. Betweenness centrality is a key algorithm kernel in HPCS SSCA#2, a benchmark extensively used to evaluate the performance of emerging high-performance computing architectures for graph-theoretic computations. We design optimized implementations of betweenness centrality and the SSCA#2 benchmark for two hardware multithreaded systems: a Cray XMT system with the Threadstorm processor, and a single-socket Sun multicore server with the UltraSPARC T2 processor. For a small-world network of 134 millionmore » vertices and 1.073 billion edges, the 16-processor XMT system and the 8-core Sun Fire T5120 server achieve TEPS scores (an algorithmic performance count for the SSCA#2 benchmark) of 160 million and 90 million respectively, which corresponds to more than a 2X performance improvement over the previous parallel implementations. To better characterize the performance of these multithreaded systems, we correlate the SSCA#2 performance results with data from the memory-intensive STREAM and RandomAccess benchmarks. Finally, we demonstrate the applicability of our implementation to analyze massive real-world datasets by computing approximate betweenness centrality for a large-scale IMDb movie-actor network.« less

  15. A Faster Parallel Algorithm and Efficient Multithreaded Implementations for Evaluating Betweenness Centrality on Massive Datasets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madduri, Kamesh; Ediger, David; Jiang, Karl

    2009-05-29

    We present a new lock-free parallel algorithm for computing betweenness centrality of massive small-world networks. With minor changes to the data structures, our algorithm also achieves better spatial cache locality compared to previous approaches. Betweenness centrality is a key algorithm kernel in the HPCS SSCA#2 Graph Analysis benchmark, which has been extensively used to evaluate the performance of emerging high-performance computing architectures for graph-theoretic computations. We design optimized implementations of betweenness centrality and the SSCA#2 benchmark for two hardware multithreaded systems: a Cray XMT system with the ThreadStorm processor, and a single-socket Sun multicore server with the UltraSparc T2 processor.more » For a small-world network of 134 million vertices and 1.073 billion edges, the 16-processor XMT system and the 8-core Sun Fire T5120 server achieve TEPS scores (an algorithmic performance count for the SSCA#2 benchmark) of 160 million and 90 million respectively, which corresponds to more than a 2X performance improvement over the previous parallel implementations. To better characterize the performance of these multithreaded systems, we correlate the SSCA#2 performance results with data from the memory-intensive STREAM and RandomAccess benchmarks. Finally, we demonstrate the applicability of our implementation to analyze massive real-world datasets by computing approximate betweenness centrality for a large-scale IMDb movie-actor network.« less

  16. Multi-element germanium detectors for synchrotron applications

    DOE PAGES

    Rumaiz, A. K.; Kuczewski, A. J.; Mead, J.; ...

    2018-04-27

    In this paper, we have developed a series of monolithic multi-element germanium detectors, based on sensor arrays produced by the Forschungzentrum Julich, and on Application-specific integrated circuits (ASICs) developed at Brookhaven. Devices have been made with element counts ranging from 64 to 384. These detectors are being used at NSLS-II and APS for a range of diffraction experiments, both monochromatic and energy-dispersive. Compact and powerful readout systems have been developed, based on the new generation of FPGA system-on-chip devices, which provide closely coupled multi-core processors embedded in large gate arrays. Finally, we will discuss the technical details of the systems,more » and present some of the results from them.« less

  17. Multi-element germanium detectors for synchrotron applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rumaiz, A. K.; Kuczewski, A. J.; Mead, J.

    In this paper, we have developed a series of monolithic multi-element germanium detectors, based on sensor arrays produced by the Forschungzentrum Julich, and on Application-specific integrated circuits (ASICs) developed at Brookhaven. Devices have been made with element counts ranging from 64 to 384. These detectors are being used at NSLS-II and APS for a range of diffraction experiments, both monochromatic and energy-dispersive. Compact and powerful readout systems have been developed, based on the new generation of FPGA system-on-chip devices, which provide closely coupled multi-core processors embedded in large gate arrays. Finally, we will discuss the technical details of the systems,more » and present some of the results from them.« less

  18. Portable LQCD Monte Carlo code using OpenACC

    NASA Astrophysics Data System (ADS)

    Bonati, Claudio; Calore, Enrico; Coscetti, Simone; D'Elia, Massimo; Mesiti, Michele; Negro, Francesco; Fabio Schifano, Sebastiano; Silvi, Giorgio; Tripiccione, Raffaele

    2018-03-01

    Varying from multi-core CPU processors to many-core GPUs, the present scenario of HPC architectures is extremely heterogeneous. In this context, code portability is increasingly important for easy maintainability of applications; this is relevant in scientific computing where code changes are numerous and frequent. In this talk we present the design and optimization of a state-of-the-art production level LQCD Monte Carlo application, using the OpenACC directives model. OpenACC aims to abstract parallel programming to a descriptive level, where programmers do not need to specify the mapping of the code on the target machine. We describe the OpenACC implementation and show that the same code is able to target different architectures, including state-of-the-art CPUs and GPUs.

  19. A pipeline VLSI design of fast singular value decomposition processor for real-time EEG system based on on-line recursive independent component analysis.

    PubMed

    Huang, Kuan-Ju; Shih, Wei-Yeh; Chang, Jui Chung; Feng, Chih Wei; Fang, Wai-Chi

    2013-01-01

    This paper presents a pipeline VLSI design of fast singular value decomposition (SVD) processor for real-time electroencephalography (EEG) system based on on-line recursive independent component analysis (ORICA). Since SVD is used frequently in computations of the real-time EEG system, a low-latency and high-accuracy SVD processor is essential. During the EEG system process, the proposed SVD processor aims to solve the diagonal, inverse and inverse square root matrices of the target matrices in real time. Generally, SVD requires a huge amount of computation in hardware implementation. Therefore, this work proposes a novel design concept for data flow updating to assist the pipeline VLSI implementation. The SVD processor can greatly improve the feasibility of real-time EEG system applications such as brain computer interfaces (BCIs). The proposed architecture is implemented using TSMC 90 nm CMOS technology. The sample rate of EEG raw data adopts 128 Hz. The core size of the SVD processor is 580×580 um(2), and the speed of operation frequency is 20MHz. It consumes 0.774mW of power during the 8-channel EEG system per execution time.

  20. Using all of your CPU's in HIPE

    NASA Astrophysics Data System (ADS)

    Jacobson, J. D.; Fadda, D.

    2012-09-01

    Modern computer architectures increasingly feature multi-core CPU's. For example, the MacbookPro features the Intel quad-core i7 processors. Through the use of hyper-threading, where each core can execute two threads simultaneously, the quad-core i7 can support eight simultaneous processing threads. All this on your laptop! This CPU power can now be put into service by scientists to perform data reduction tasks, but only if the software has been designed to take advantage of the multiple processor architectures. Up to now, software written for Herschel data reduction (HIPE), written in Jython and JAVA, is single-threaded and can only utilize a single processor. Users of HIPE do not get any advantage from the additional processors. Why not put all of the CPU resources to work reducing your data? We present a multi-threaded software application that corrects long-term transients in the signal from the PACS unchopped spectroscopy line scan mode. In this poster, we present a multi-threaded software framework to achieve performance improvements from parallel execution. We will show how a task to correct transients in the PACS Spectroscopy Pipeline for the un-chopped line scan mode, has been threaded. This computation-intensive task uses either a one-parameter or a three parameter exponential function, to characterize the transient. The task uses a JAVA implementation of Minpack, translated from the C (Moshier) and IDL (Markwardt) by the authors, to optimize the correction parameters. We also explain how to determine if a task can benefit from threading (Amdahl's Law), and if it is safe to thread. The design and implementation, using the JAVA concurrency package completions service is described. Pitfalls, timing bugs, thread safety, resource control, testing and performance improvements are described and plotted.

  1. Hierarchical fractional-step approximations and parallel kinetic Monte Carlo algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arampatzis, Giorgos, E-mail: garab@math.uoc.gr; Katsoulakis, Markos A., E-mail: markos@math.umass.edu; Plechac, Petr, E-mail: plechac@math.udel.edu

    2012-10-01

    We present a mathematical framework for constructing and analyzing parallel algorithms for lattice kinetic Monte Carlo (KMC) simulations. The resulting algorithms have the capacity to simulate a wide range of spatio-temporal scales in spatially distributed, non-equilibrium physiochemical processes with complex chemistry and transport micro-mechanisms. Rather than focusing on constructing exactly the stochastic trajectories, our approach relies on approximating the evolution of observables, such as density, coverage, correlations and so on. More specifically, we develop a spatial domain decomposition of the Markov operator (generator) that describes the evolution of all observables according to the kinetic Monte Carlo algorithm. This domain decompositionmore » corresponds to a decomposition of the Markov generator into a hierarchy of operators and can be tailored to specific hierarchical parallel architectures such as multi-core processors or clusters of Graphical Processing Units (GPUs). Based on this operator decomposition, we formulate parallel Fractional step kinetic Monte Carlo algorithms by employing the Trotter Theorem and its randomized variants; these schemes, (a) are partially asynchronous on each fractional step time-window, and (b) are characterized by their communication schedule between processors. The proposed mathematical framework allows us to rigorously justify the numerical and statistical consistency of the proposed algorithms, showing the convergence of our approximating schemes to the original serial KMC. The approach also provides a systematic evaluation of different processor communicating schedules. We carry out a detailed benchmarking of the parallel KMC schemes using available exact solutions, for example, in Ising-type systems and we demonstrate the capabilities of the method to simulate complex spatially distributed reactions at very large scales on GPUs. Finally, we discuss work load balancing between processors and propose a re-balancing scheme based on probabilistic mass transport methods.« less

  2. Efficient Geometric Sound Propagation Using Visibility Culling

    NASA Astrophysics Data System (ADS)

    Chandak, Anish

    2011-07-01

    Simulating propagation of sound can improve the sense of realism in interactive applications such as video games and can lead to better designs in engineering applications such as architectural acoustics. In this thesis, we present geometric sound propagation techniques which are faster than prior methods and map well to upcoming parallel multi-core CPUs. We model specular reflections by using the image-source method and model finite-edge diffraction by using the well-known Biot-Tolstoy-Medwin (BTM) model. We accelerate the computation of specular reflections by applying novel visibility algorithms, FastV and AD-Frustum, which compute visibility from a point. We accelerate finite-edge diffraction modeling by applying a novel visibility algorithm which computes visibility from a region. Our visibility algorithms are based on frustum tracing and exploit recent advances in fast ray-hierarchy intersections, data-parallel computations, and scalable, multi-core algorithms. The AD-Frustum algorithm adapts its computation to the scene complexity and allows small errors in computing specular reflection paths for higher computational efficiency. FastV and our visibility algorithm from a region are general, object-space, conservative visibility algorithms that together significantly reduce the number of image sources compared to other techniques while preserving the same accuracy. Our geometric propagation algorithms are an order of magnitude faster than prior approaches for modeling specular reflections and two to ten times faster for modeling finite-edge diffraction. Our algorithms are interactive, scale almost linearly on multi-core CPUs, and can handle large, complex, and dynamic scenes. We also compare the accuracy of our sound propagation algorithms with other methods. Once sound propagation is performed, it is desirable to listen to the propagated sound in interactive and engineering applications. We can generate smooth, artifact-free output audio signals by applying efficient audio-processing algorithms. We also present the first efficient audio-processing algorithm for scenarios with simultaneously moving source and moving receiver (MS-MR) which incurs less than 25% overhead compared to static source and moving receiver (SS-MR) or moving source and static receiver (MS-SR) scenario.

  3. Recent advances and future prospects for Monte Carlo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Forrest B

    2010-01-01

    The history of Monte Carlo methods is closely linked to that of computers: The first known Monte Carlo program was written in 1947 for the ENIAC; a pre-release of the first Fortran compiler was used for Monte Carlo In 1957; Monte Carlo codes were adapted to vector computers in the 1980s, clusters and parallel computers in the 1990s, and teraflop systems in the 2000s. Recent advances include hierarchical parallelism, combining threaded calculations on multicore processors with message-passing among different nodes. With the advances In computmg, Monte Carlo codes have evolved with new capabilities and new ways of use. Production codesmore » such as MCNP, MVP, MONK, TRIPOLI and SCALE are now 20-30 years old (or more) and are very rich in advanced featUres. The former 'method of last resort' has now become the first choice for many applications. Calculations are now routinely performed on office computers, not just on supercomputers. Current research and development efforts are investigating the use of Monte Carlo methods on FPGAs. GPUs, and many-core processors. Other far-reaching research is exploring ways to adapt Monte Carlo methods to future exaflop systems that may have 1M or more concurrent computational processes.« less

  4. On the utility of graphics cards to perform massively parallel simulation of advanced Monte Carlo methods

    PubMed Central

    Lee, Anthony; Yau, Christopher; Giles, Michael B.; Doucet, Arnaud; Holmes, Christopher C.

    2011-01-01

    We present a case-study on the utility of graphics cards to perform massively parallel simulation of advanced Monte Carlo methods. Graphics cards, containing multiple Graphics Processing Units (GPUs), are self-contained parallel computational devices that can be housed in conventional desktop and laptop computers and can be thought of as prototypes of the next generation of many-core processors. For certain classes of population-based Monte Carlo algorithms they offer massively parallel simulation, with the added advantage over conventional distributed multi-core processors that they are cheap, easily accessible, easy to maintain, easy to code, dedicated local devices with low power consumption. On a canonical set of stochastic simulation examples including population-based Markov chain Monte Carlo methods and Sequential Monte Carlo methods, we nd speedups from 35 to 500 fold over conventional single-threaded computer code. Our findings suggest that GPUs have the potential to facilitate the growth of statistical modelling into complex data rich domains through the availability of cheap and accessible many-core computation. We believe the speedup we observe should motivate wider use of parallelizable simulation methods and greater methodological attention to their design. PMID:22003276

  5. High performance 3D adaptive filtering for DSP based portable medical imaging systems

    NASA Astrophysics Data System (ADS)

    Bockenbach, Olivier; Ali, Murtaza; Wainwright, Ian; Nadeski, Mark

    2015-03-01

    Portable medical imaging devices have proven valuable for emergency medical services both in the field and hospital environments and are becoming more prevalent in clinical settings where the use of larger imaging machines is impractical. Despite their constraints on power, size and cost, portable imaging devices must still deliver high quality images. 3D adaptive filtering is one of the most advanced techniques aimed at noise reduction and feature enhancement, but is computationally very demanding and hence often cannot be run with sufficient performance on a portable platform. In recent years, advanced multicore digital signal processors (DSP) have been developed that attain high processing performance while maintaining low levels of power dissipation. These processors enable the implementation of complex algorithms on a portable platform. In this study, the performance of a 3D adaptive filtering algorithm on a DSP is investigated. The performance is assessed by filtering a volume of size 512x256x128 voxels sampled at a pace of 10 MVoxels/sec with an Ultrasound 3D probe. Relative performance and power is addressed between a reference PC (Quad Core CPU) and a TMS320C6678 DSP from Texas Instruments.

  6. Implementation and simulations of the sphere solution in FAST

    NASA Astrophysics Data System (ADS)

    Murgolo, F. P.; Schirone, M. G.; Lattanzi, M.; Bernacca, P. L.

    1989-06-01

    The details of the implementation of the sphere solution software in the Fundamental Astronomy by Space Techniques (FAST) consortium, are described. The simulation results for realistic data sets, both with and without grid-step errors are given. Expected errors on the astrometric parameters of the primary stars and the precision of the reference great circle zero points, are provided as a function of mission duration. The design matrix, the diagrams of the context processor and the processors experimental results are given.

  7. Exploiting multicore compute resources in the CMS experiment

    NASA Astrophysics Data System (ADS)

    Ramírez, J. E.; Pérez-Calero Yzquierdo, A.; Hernández, J. M.; CMS Collaboration

    2016-10-01

    CMS has developed a strategy to efficiently exploit the multicore architecture of the compute resources accessible to the experiment. A coherent use of the multiple cores available in a compute node yields substantial gains in terms of resource utilization. The implemented approach makes use of the multithreading support of the event processing framework and the multicore scheduling capabilities of the resource provisioning system. Multicore slots are acquired and provisioned by means of multicore pilot agents which internally schedule and execute single and multicore payloads. Multicore scheduling and multithreaded processing are currently used in production for online event selection and prompt data reconstruction. More workflows are being adapted to run in multicore mode. This paper presents a review of the experience gained in the deployment and operation of the multicore scheduling and processing system, the current status and future plans.

  8. Scalable Triadic Analysis of Large-Scale Graphs: Multi-Core vs. Multi-Processor vs. Multi-Threaded Shared Memory Architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chin, George; Marquez, Andres; Choudhury, Sutanay

    2012-09-01

    Triadic analysis encompasses a useful set of graph mining methods that is centered on the concept of a triad, which is a subgraph of three nodes and the configuration of directed edges across the nodes. Such methods are often applied in the social sciences as well as many other diverse fields. Triadic methods commonly operate on a triad census that counts the number of triads of every possible edge configuration in a graph. Like other graph algorithms, triadic census algorithms do not scale well when graphs reach tens of millions to billions of nodes. To enable the triadic analysis ofmore » large-scale graphs, we developed and optimized a triad census algorithm to efficiently execute on shared memory architectures. We will retrace the development and evolution of a parallel triad census algorithm. Over the course of several versions, we continually adapted the code’s data structures and program logic to expose more opportunities to exploit parallelism on shared memory that would translate into improved computational performance. We will recall the critical steps and modifications that occurred during code development and optimization. Furthermore, we will compare the performances of triad census algorithm versions on three specific systems: Cray XMT, HP Superdome, and AMD multi-core NUMA machine. These three systems have shared memory architectures but with markedly different hardware capabilities to manage parallelism.« less

  9. Stochastic first passage time accelerated with CUDA

    NASA Astrophysics Data System (ADS)

    Pierro, Vincenzo; Troiano, Luigi; Mejuto, Elena; Filatrella, Giovanni

    2018-05-01

    The numerical integration of stochastic trajectories to estimate the time to pass a threshold is an interesting physical quantity, for instance in Josephson junctions and atomic force microscopy, where the full trajectory is not accessible. We propose an algorithm suitable for efficient implementation on graphical processing unit in CUDA environment. The proposed approach for well balanced loads achieves almost perfect scaling with the number of available threads and processors, and allows an acceleration of about 400× with a GPU GTX980 respect to standard multicore CPU. This method allows with off the shell GPU to challenge problems that are otherwise prohibitive, as thermal activation in slowly tilted potentials. In particular, we demonstrate that it is possible to simulate the switching currents distributions of Josephson junctions in the timescale of actual experiments.

  10. High-performance dynamic quantum clustering on graphics processors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wittek, Peter, E-mail: peterwittek@acm.org

    2013-01-15

    Clustering methods in machine learning may benefit from borrowing metaphors from physics. Dynamic quantum clustering associates a Gaussian wave packet with the multidimensional data points and regards them as eigenfunctions of the Schroedinger equation. The clustering structure emerges by letting the system evolve and the visual nature of the algorithm has been shown to be useful in a range of applications. Furthermore, the method only uses matrix operations, which readily lend themselves to parallelization. In this paper, we develop an implementation on graphics hardware and investigate how this approach can accelerate the computations. We achieve a speedup of up tomore » two magnitudes over a multicore CPU implementation, which proves that quantum-like methods and acceleration by graphics processing units have a great relevance to machine learning.« less

  11. Active Flash: Performance-Energy Tradeoffs for Out-of-Core Processing on Non-Volatile Memory Devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boboila, Simona; Kim, Youngjae; Vazhkudai, Sudharshan S

    2012-01-01

    In this abstract, we study the performance and energy tradeoffs involved in migrating data analysis into the flash device, a process we refer to as Active Flash. The Active Flash paradigm is similar to 'active disks', which has received considerable attention. Active Flash allows us to move processing closer to data, thereby minimizing data movement costs and reducing power consumption. It enables true out-of-core computation. The conventional definition of out-of-core solvers refers to an approach to process data that is too large to fit in the main memory and, consequently, requires access to disk. However, in Active Flash, processing outsidemore » the host CPU literally frees the core and achieves real 'out-of-core' analysis. Moving analysis to data has long been desirable, not just at this level, but at all levels of the system hierarchy. However, this requires a detailed study on the tradeoffs involved in achieving analysis turnaround under an acceptable energy envelope. To this end, we first need to evaluate if there is enough computing power on the flash device to warrant such an exploration. Flash processors require decent computing power to run the internal logic pertaining to the Flash Translation Layer (FTL), which is responsible for operations such as address translation, garbage collection (GC) and wear-leveling. Modern SSDs are composed of multiple packages and several flash chips within a package. The packages are connected using multiple I/O channels to offer high I/O bandwidth. SSD computing power is also expected to be high enough to exploit such inherent internal parallelism within the drive to increase the bandwidth and to handle fast I/O requests. More recently, SSD devices are being equipped with powerful processing units and are even embedded with multicore CPUs (e.g. ARM Cortex-A9 embedded processor is advertised to reach 2GHz frequency and deliver 5000 DMIPS; OCZ RevoDrive X2 SSD has 4 SandForce controllers, each with 780MHz max frequency Tensilica core). Efforts that take advantage of the available computing cycles on the processors on SSDs to run auxiliary tasks other than actual I/O requests are beginning to emerge. Kim et al. investigate database scan operations in the context of processing on the SSDs, and propose dedicated hardware logic to speed up scans. Also, cluster architectures have been explored, which consist of low-power embedded CPUs coupled with small local flash to achieve fast, parallel access to data. Processor utilization on SSD is highly dependent on workloads and, therefore, they can be idle during periods with no I/O accesses. We propose to use the available processing capability on the SSD to run tasks that can be offloaded from the host. This paper makes the following contributions: (1) We have investigated Active Flash and its potential to optimize the total energy cost, including power consumption on the host and the flash device; (2) We have developed analytical models to analyze the performance-energy tradeoffs for Active Flash, by treating the SSD as a blackbox, this is particularly valuable due to the proprietary nature of the SSD internal hardware; and (3) We have enhanced a well-known SSD simulator (from MSR) to implement 'on-the-fly' data compression using Active Flash. Our results provide a window into striking a balance between energy consumption and application performance.« less

  12. Parallel processing in a host plus multiple array processor system for radar

    NASA Technical Reports Server (NTRS)

    Barkan, B. Z.

    1983-01-01

    Host plus multiple array processor architecture is demonstrated to yield a modular, fast, and cost-effective system for radar processing. Software methodology for programming such a system is developed. Parallel processing with pipelined data flow among the host, array processors, and discs is implemented. Theoretical analysis of performance is made and experimentally verified. The broad class of problems to which the architecture and methodology can be applied is indicated.

  13. Addressing the challenges of standalone multi-core simulations in molecular dynamics

    NASA Astrophysics Data System (ADS)

    Ocaya, R. O.; Terblans, J. J.

    2017-07-01

    Computational modelling in material science involves mathematical abstractions of force fields between particles with the aim to postulate, develop and understand materials by simulation. The aggregated pairwise interactions of the material's particles lead to a deduction of its macroscopic behaviours. For practically meaningful macroscopic scales, a large amount of data are generated, leading to vast execution times. Simulation times of hours, days or weeks for moderately sized problems are not uncommon. The reduction of simulation times, improved result accuracy and the associated software and hardware engineering challenges are the main motivations for many of the ongoing researches in the computational sciences. This contribution is concerned mainly with simulations that can be done on a "standalone" computer based on Message Passing Interfaces (MPI), parallel code running on hardware platforms with wide specifications, such as single/multi- processor, multi-core machines with minimal reconfiguration for upward scaling of computational power. The widely available, documented and standardized MPI library provides this functionality through the MPI_Comm_size (), MPI_Comm_rank () and MPI_Reduce () functions. A survey of the literature shows that relatively little is written with respect to the efficient extraction of the inherent computational power in a cluster. In this work, we discuss the main avenues available to tap into this extra power without compromising computational accuracy. We also present methods to overcome the high inertia encountered in single-node-based computational molecular dynamics. We begin by surveying the current state of the art and discuss what it takes to achieve parallelism, efficiency and enhanced computational accuracy through program threads and message passing interfaces. Several code illustrations are given. The pros and cons of writing raw code as opposed to using heuristic, third-party code are also discussed. The growing trend towards graphical processor units and virtual computing clouds for high-performance computing is also discussed. Finally, we present the comparative results of vacancy formation energy calculations using our own parallelized standalone code called Verlet-Stormer velocity (VSV) operating on 30,000 copper atoms. The code is based on the Sutton-Chen implementation of the Finnis-Sinclair pairwise embedded atom potential. A link to the code is also given.

  14. Demonstration of Qubit Operations Below a Rigorous Fault Tolerance Threshold With Gate Set Tomography (Open Access, Publisher’s Version)

    DTIC Science & Technology

    2017-02-15

    Maunz2 Quantum information processors promise fast algorithms for problems inaccessible to classical computers. But since qubits are noisy and error-prone...information processors have been demonstrated experimentally using superconducting circuits1–3, electrons in semiconductors4–6, trapped atoms and...qubit quantum information processor has been realized14, and single- qubit gates have demonstrated randomized benchmarking (RB) infidelities as low as 10

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aliaga, José I., E-mail: aliaga@uji.es; Alonso, Pedro; Badía, José M.

    We introduce a new iterative Krylov subspace-based eigensolver for the simulation of macromolecular motions on desktop multithreaded platforms equipped with multicore processors and, possibly, a graphics accelerator (GPU). The method consists of two stages, with the original problem first reduced into a simpler band-structured form by means of a high-performance compute-intensive procedure. This is followed by a memory-intensive but low-cost Krylov iteration, which is off-loaded to be computed on the GPU by means of an efficient data-parallel kernel. The experimental results reveal the performance of the new eigensolver. Concretely, when applied to the simulation of macromolecules with a few thousandsmore » degrees of freedom and the number of eigenpairs to be computed is small to moderate, the new solver outperforms other methods implemented as part of high-performance numerical linear algebra packages for multithreaded architectures.« less

  16. Real time processor for array speckle interferometry

    NASA Astrophysics Data System (ADS)

    Chin, Gordon; Florez, Jose; Borelli, Renan; Fong, Wai; Miko, Joseph; Trujillo, Carlos

    1989-02-01

    The authors are constructing a real-time processor to acquire image frames, perform array flat-fielding, execute a 64 x 64 element two-dimensional complex FFT (fast Fourier transform) and average the power spectrum, all within the 25 ms coherence time for speckles at near-IR (infrared) wavelength. The processor will be a compact unit controlled by a PC with real-time display and data storage capability. This will provide the ability to optimize observations and obtain results on the telescope rather than waiting several weeks before the data can be analyzed and viewed with offline methods. The image acquisition and processing, design criteria, and processor architecture are described.

  17. Real time processor for array speckle interferometry

    NASA Technical Reports Server (NTRS)

    Chin, Gordon; Florez, Jose; Borelli, Renan; Fong, Wai; Miko, Joseph; Trujillo, Carlos

    1989-01-01

    The authors are constructing a real-time processor to acquire image frames, perform array flat-fielding, execute a 64 x 64 element two-dimensional complex FFT (fast Fourier transform) and average the power spectrum, all within the 25 ms coherence time for speckles at near-IR (infrared) wavelength. The processor will be a compact unit controlled by a PC with real-time display and data storage capability. This will provide the ability to optimize observations and obtain results on the telescope rather than waiting several weeks before the data can be analyzed and viewed with offline methods. The image acquisition and processing, design criteria, and processor architecture are described.

  18. Adapting wave-front algorithms to efficiently utilize systems with deep communication hierarchies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerbyson, Darren J; Lang, Michael; Pakin, Scott

    2009-01-01

    Large-scale systems increasingly exhibit a differential between intra-chip and inter-chip communication performance. Processor-cores on the same socket are able to communicate at lower latencies, and with higher bandwidths, than cores on different sockets either within the same node or between nodes. A key challenge is to efficiently use this communication hierarchy and hence optimize performance. We consider here the class of applications that contain wave-front processing. In these applications data can only be processed after their upstream neighbors have been processed. Similar dependencies result between processors in which communication is required to pass boundary data downstream and whose cost ismore » typically impacted by the slowest communication channel in use. In this work we develop a novel hierarchical wave-front approach that reduces the use of slower communications in the hierarchy but at the cost of additional computation and higher use of on-chip communications. This tradeoff is explored using a performance model and an implementation on the Petascale Roadrunner system demonstrates a 27% performance improvement at full system-scale on a kernel application. The approach is generally applicable to large-scale multi-core and accelerated systems where a differential in system communication performance exists.« less

  19. Incentive Compatible Online Scheduling of Malleable Parallel Jobs with Individual Deadlines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carroll, Thomas E.; Grosu, Daniel

    2010-09-13

    We consider the online scheduling of malleable jobs on parallel systems, such as clusters, symmetric multiprocessing computers, and multi-core processor computers. Malleable jobs is a model of parallel processing in which jobs adapt to the number of processors assigned to them. This model permits the scheduler and resource manager to make more efficient use of the available resources. Each malleable job is characterized by arrival time, deadline, and value. If the job completes by its deadline, the user earns the payoff indicated by the value; otherwise, she earns a payoff of zero. The scheduling objective is to maximize the summore » of the values of the jobs that complete by their associated deadlines. Complicating the matter is that users in the real world are rational and they will attempt to manipulate the scheduler by misreporting their jobs’ parameters if it benefits them to do so. To mitigate this behavior, we design an incentive compatible online scheduling mechanism. Incentive compatibility assures us that the users will obtain the maximum payoff only if they truthfully report their jobs’ parameters to the scheduler. Finally, we simulate and study the mechanism to show the effects of misreports on the cheaters and on the system.« less

  20. Quantum Chemical Calculations Using Accelerators: Migrating Matrix Operations to the NVIDIA Kepler GPU and the Intel Xeon Phi.

    PubMed

    Leang, Sarom S; Rendell, Alistair P; Gordon, Mark S

    2014-03-11

    Increasingly, modern computer systems comprise a multicore general-purpose processor augmented with a number of special purpose devices or accelerators connected via an external interface such as a PCI bus. The NVIDIA Kepler Graphical Processing Unit (GPU) and the Intel Phi are two examples of such accelerators. Accelerators offer peak performances that can be well above those of the host processor. How to exploit this heterogeneous environment for legacy application codes is not, however, straightforward. This paper considers how matrix operations in typical quantum chemical calculations can be migrated to the GPU and Phi systems. Double precision general matrix multiply operations are endemic in electronic structure calculations, especially methods that include electron correlation, such as density functional theory, second order perturbation theory, and coupled cluster theory. The use of approaches that automatically determine whether to use the host or an accelerator, based on problem size, is explored, with computations that are occurring on the accelerator and/or the host. For data-transfers over PCI-e, the GPU provides the best overall performance for data sizes up to 4096 MB with consistent upload and download rates between 5-5.6 GB/s and 5.4-6.3 GB/s, respectively. The GPU outperforms the Phi for both square and nonsquare matrix multiplications.

  1. Design and optimization of a portable LQCD Monte Carlo code using OpenACC

    NASA Astrophysics Data System (ADS)

    Bonati, Claudio; Coscetti, Simone; D'Elia, Massimo; Mesiti, Michele; Negro, Francesco; Calore, Enrico; Schifano, Sebastiano Fabio; Silvi, Giorgio; Tripiccione, Raffaele

    The present panorama of HPC architectures is extremely heterogeneous, ranging from traditional multi-core CPU processors, supporting a wide class of applications but delivering moderate computing performance, to many-core Graphics Processor Units (GPUs), exploiting aggressive data-parallelism and delivering higher performances for streaming computing applications. In this scenario, code portability (and performance portability) become necessary for easy maintainability of applications; this is very relevant in scientific computing where code changes are very frequent, making it tedious and prone to error to keep different code versions aligned. In this work, we present the design and optimization of a state-of-the-art production-level LQCD Monte Carlo application, using the directive-based OpenACC programming model. OpenACC abstracts parallel programming to a descriptive level, relieving programmers from specifying how codes should be mapped onto the target architecture. We describe the implementation of a code fully written in OpenAcc, and show that we are able to target several different architectures, including state-of-the-art traditional CPUs and GPUs, with the same code. We also measure performance, evaluating the computing efficiency of our OpenACC code on several architectures, comparing with GPU-specific implementations and showing that a good level of performance-portability can be reached.

  2. Integral Fast Reactor fuel pin processor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levinskas, D.

    1993-01-01

    This report discusses the pin processor which receives metal alloy pins cast from recycled Integral Fast Reactor (IFR) fuel and prepares them for assembly into new IFR fuel elements. Either full length as-cast or precut pins are fed to the machine from a magazine, cut if necessary, and measured for length, weight, diameter and deviation from straightness. Accepted pins are loaded into cladding jackets located in a magazine, while rejects and cutting scraps are separated into trays. The magazines, trays, and the individual modules that perform the different machine functions are assembled and removed using remote manipulators and master-slaves.

  3. Integral Fast Reactor fuel pin processor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levinskas, D.

    1993-03-01

    This report discusses the pin processor which receives metal alloy pins cast from recycled Integral Fast Reactor (IFR) fuel and prepares them for assembly into new IFR fuel elements. Either full length as-cast or precut pins are fed to the machine from a magazine, cut if necessary, and measured for length, weight, diameter and deviation from straightness. Accepted pins are loaded into cladding jackets located in a magazine, while rejects and cutting scraps are separated into trays. The magazines, trays, and the individual modules that perform the different machine functions are assembled and removed using remote manipulators and master-slaves.

  4. Magnetophoretic separation ICP-MS immunoassay using Cs-doped multicore magnetic nanoparticles for the determination of salmonella typhimurium.

    PubMed

    Jeong, Arong; Lim, H B

    2018-02-01

    In this work, a magnetophoretic separation ICP-MS immunoassay using newly synthesized multicore magnetic nanoparticles (MMNPs) was developed for the determination of salmonella typhimurium (typhi). The uniqueness of this method was the use of MMNPs doped with Cs for both separation and detection, which enable us to achieve fast analysis, high sensitivity, and good reliability. For demonstration, heat-killed typhi in a phosphate buffer solution was determined by ICP-MS after the MMNP-typhi reaction product was separated from unreacted MMNPs in a micropipette tip filled with 25% polyethylene glycol through magnetophoretic separation. The calibration curve obtained by plotting 133 Cs intensity vs. the number of synthetic standard, showed a coefficient of determination (R 2 ) of 0.94 with a limit of detection (LOD) of 102 cells/mL without cell culturing. Excellent recoveries, between 98-100%, were obtained from four replicates and compared with a sandwich-type ICP-MS immunoassay for further confirmation. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Recent progress in InP/polymer-based devices for telecom and data center applications

    NASA Astrophysics Data System (ADS)

    Kleinert, Moritz; Zhang, Ziyang; de Felipe, David; Zawadzki, Crispin; Maese Novo, Alejandro; Brinker, Walter; Möhrle, Martin; Keil, Norbert

    2015-02-01

    Recent progress on polymer-based photonic devices and hybrid photonic integration technology using InP-based active components is presented. High performance thermo-optic components, including compact polymer variable optical attenuators and switches are powerful tools to regulate and control the light flow in the optical backbone. Polymer arrayed waveguide gratings integrated with InP laser and detector arrays function as low-cost optical line terminals (OLTs) in the WDM-PON network. External cavity tunable lasers combined with C/L band thinfilm filter, on-chip U-groove and 45° mirrors construct a compact, bi-directional and color-less optical network unit (ONU). A tunable laser integrated with VOAs, TFEs and two 90° hybrids builds the optical front-end of a colorless, dual-polarization coherent receiver. Multicore polymer waveguides and multi-step 45°mirrors are demonstrated as bridging devices between the spatialdivision- multiplexing transmission technology using multi-core fibers and the conventional PLCbased photonic platforms, appealing to the fast development of dense 3D photonic integration.

  6. Evaluation and application of a fast module in a PLC based interlock and control system

    NASA Astrophysics Data System (ADS)

    Zaera-Sanz, M.

    2009-08-01

    The LHC Beam Interlock system requires a controller performing a simple matrix function to collect the different beam dump requests. To satisfy the expected safety level of the Interlock, the system should be robust and reliable. The PLC is a promising candidate to fulfil both aspects but too slow to meet the expected response time which is of the order of μseconds. Siemens has introduced a ``so called'' fast module (FM352-5 Boolean Processor). It provides independent and extremely fast control of a process within a larger control system using an onboard processor, a Field Programmable Gate Array (FPGA), to execute code in parallel which results in extremely fast scan times. It is interesting to investigate its features and to evaluate it as a possible candidate for the beam interlock system. This paper publishes the results of this study. As well, this paper could be useful for other applications requiring fast processing using a PLC.

  7. The impact of Moore's Law and loss of Dennard scaling: Are DSP SoCs an energy efficient alternative to x86 SoCs?

    NASA Astrophysics Data System (ADS)

    Johnsson, L.; Netzer, G.

    2016-10-01

    Moore's law, the doubling of transistors per unit area for each CMOS technology generation, is expected to continue throughout the decade, while Dennard voltage scaling resulting in constant power per unit area stopped about a decade ago. The semiconductor industry's response to the loss of Dennard scaling and the consequent challenges in managing power distribution and dissipation has been leveled off clock rates, a die performance gain reduced from about a factor of 2.8 to 1.4 per technology generation, and multi-core processor dies with increased cache sizes. Increased caches sizes offers performance benefits for many applications as well as energy savings. Accessing data in cache is considerably more energy efficient than main memory accesses. Further, caches consume less power than a corresponding amount of functional logic. As feature sizes continue to be scaled down an increasing fraction of the die must be “underutilized” or “dark” due to power constraints. With power being a prime design constraint there is a concerted effort to find significantly more energy efficient chip architectures than dominant in servers today, with chips potentially incorporating several types of cores to cover a range of applications, or different functions in an application, as is already common for the mobile processor market. Digital Signal Processors (DSPs), largely targeting the embedded and mobile processor markets, typically have been designed for a power consumption of 10% or less of a typical x86 CPU, yet with much more than 10% of the floating-point capability of the same technology generation x86 CPUs. Thus, DSPs could potentially offer an energy efficient alternative to x86 CPUs. Here we report an assessment of the Texas Instruments TMS320C6678 DSP in regards to its energy efficiency for two common HPC benchmarks: STREAM (memory system benchmark) and HPL (CPU benchmark)

  8. Parallel processing data network of master and slave transputers controlled by a serial control network

    DOEpatents

    Crosetto, D.B.

    1996-12-31

    The present device provides for a dynamically configurable communication network having a multi-processor parallel processing system having a serial communication network and a high speed parallel communication network. The serial communication network is used to disseminate commands from a master processor to a plurality of slave processors to effect communication protocol, to control transmission of high density data among nodes and to monitor each slave processor`s status. The high speed parallel processing network is used to effect the transmission of high density data among nodes in the parallel processing system. Each node comprises a transputer, a digital signal processor, a parallel transfer controller, and two three-port memory devices. A communication switch within each node connects it to a fast parallel hardware channel through which all high density data arrives or leaves the node. 6 figs.

  9. Fast Neural Solution Of A Nonlinear Wave Equation

    NASA Technical Reports Server (NTRS)

    Barhen, Jacob; Toomarian, Nikzad

    1996-01-01

    Neural algorithm for simulation of class of nonlinear wave phenomena devised. Numerically solves special one-dimensional case of Korteweg-deVries equation. Intended to be executed rapidly by neural network implemented as charge-coupled-device/charge-injection device, very-large-scale integrated-circuit analog data processor of type described in "CCD/CID Processors Would Offer Greater Precision" (NPO-18972).

  10. Ring-array processor distribution topology for optical interconnects

    NASA Technical Reports Server (NTRS)

    Li, Yao; Ha, Berlin; Wang, Ting; Wang, Sunyu; Katz, A.; Lu, X. J.; Kanterakis, E.

    1992-01-01

    The existing linear and rectangular processor distribution topologies for optical interconnects, although promising in many respects, cannot solve problems such as clock skews, the lack of supporting elements for efficient optical implementation, etc. The use of a ring-array processor distribution topology, however, can overcome these problems. Here, a study of the ring-array topology is conducted with an aim of implementing various fast clock rate, high-performance, compact optical networks for digital electronic multiprocessor computers. Practical design issues are addressed. Some proof-of-principle experimental results are included.

  11. New Modular Ultrasonic Signal Processing Building Blocks for Real-Time Data Acquisition and Post Processing

    NASA Astrophysics Data System (ADS)

    Weber, Walter H.; Mair, H. Douglas; Jansen, Dion

    2003-03-01

    A suite of basic signal processors has been developed. These basic building blocks can be cascaded together to form more complex processors without the need for programming. The data structures between each of the processors are handled automatically. This allows a processor built for one purpose to be applied to any type of data such as images, waveform arrays and single values. The processors are part of Winspect Data Acquisition software. The new processors are fast enough to work on A-scan signals live while scanning. Their primary use is to extract features, reduce noise or to calculate material properties. The cascaded processors work equally well on live A-scan displays, live gated data or as a post-processing engine on saved data. Researchers are able to call their own MATLAB or C-code from anywhere within the processor structure. A built-in formula node processor that uses a simple algebraic editor may make external user programs unnecessary. This paper also discusses the problems associated with ad hoc software development and how graphical programming languages can tie up researchers writing software rather than designing experiments.

  12. Automatic detection and classification of obstacles with applications in autonomous mobile robots

    NASA Astrophysics Data System (ADS)

    Ponomaryov, Volodymyr I.; Rosas-Miranda, Dario I.

    2016-04-01

    Hardware implementation of an automatic detection and classification of objects that can represent an obstacle for an autonomous mobile robot using stereo vision algorithms is presented. We propose and evaluate a new method to detect and classify objects for a mobile robot in outdoor conditions. This method is divided in two parts, the first one is the object detection step based on the distance from the objects to the camera and a BLOB analysis. The second part is the classification step that is based on visuals primitives and a SVM classifier. The proposed method is performed in GPU in order to reduce the processing time values. This is performed with help of hardware based on multi-core processors and GPU platform, using a NVIDIA R GeForce R GT640 graphic card and Matlab over a PC with Windows 10.

  13. Accelerating Large Scale Image Analyses on Parallel, CPU-GPU Equipped Systems

    PubMed Central

    Teodoro, George; Kurc, Tahsin M.; Pan, Tony; Cooper, Lee A.D.; Kong, Jun; Widener, Patrick; Saltz, Joel H.

    2014-01-01

    The past decade has witnessed a major paradigm shift in high performance computing with the introduction of accelerators as general purpose processors. These computing devices make available very high parallel computing power at low cost and power consumption, transforming current high performance platforms into heterogeneous CPU-GPU equipped systems. Although the theoretical performance achieved by these hybrid systems is impressive, taking practical advantage of this computing power remains a very challenging problem. Most applications are still deployed to either GPU or CPU, leaving the other resource under- or un-utilized. In this paper, we propose, implement, and evaluate a performance aware scheduling technique along with optimizations to make efficient collaborative use of CPUs and GPUs on a parallel system. In the context of feature computations in large scale image analysis applications, our evaluations show that intelligently co-scheduling CPUs and GPUs can significantly improve performance over GPU-only or multi-core CPU-only approaches. PMID:25419545

  14. A study of the parallel algorithm for large-scale DC simulation of nonlinear systems

    NASA Astrophysics Data System (ADS)

    Cortés Udave, Diego Ernesto; Ogrodzki, Jan; Gutiérrez de Anda, Miguel Angel

    Newton-Raphson DC analysis of large-scale nonlinear circuits may be an extremely time consuming process even if sparse matrix techniques and bypassing of nonlinear models calculation are used. A slight decrease in the time required for this task may be enabled on multi-core, multithread computers if the calculation of the mathematical models for the nonlinear elements as well as the stamp management of the sparse matrix entries are managed through concurrent processes. This numerical complexity can be further reduced via the circuit decomposition and parallel solution of blocks taking as a departure point the BBD matrix structure. This block-parallel approach may give a considerable profit though it is strongly dependent on the system topology and, of course, on the processor type. This contribution presents the easy-parallelizable decomposition-based algorithm for DC simulation and provides a detailed study of its effectiveness.

  15. Experiments with a Parallel Multi-Objective Evolutionary Algorithm for Scheduling

    NASA Technical Reports Server (NTRS)

    Brown, Matthew; Johnston, Mark D.

    2013-01-01

    Evolutionary multi-objective algorithms have great potential for scheduling in those situations where tradeoffs among competing objectives represent a key requirement. One challenge, however, is runtime performance, as a consequence of evolving not just a single schedule, but an entire population, while attempting to sample the Pareto frontier as accurately and uniformly as possible. The growing availability of multi-core processors in end user workstations, and even laptops, has raised the question of the extent to which such hardware can be used to speed up evolutionary algorithms. In this paper we report on early experiments in parallelizing a Generalized Differential Evolution (GDE) algorithm for scheduling long-range activities on NASA's Deep Space Network. Initial results show that significant speedups can be achieved, but that performance does not necessarily improve as more cores are utilized. We describe our preliminary results and some initial suggestions from parallelizing the GDE algorithm. Directions for future work are outlined.

  16. Adaptive thresholding algorithm based on SAR images and wind data to segment oil spills along the northwest coast of the Iberian Peninsula.

    PubMed

    Mera, David; Cotos, José M; Varela-Pet, José; Garcia-Pineda, Oscar

    2012-10-01

    Satellite Synthetic Aperture Radar (SAR) has been established as a useful tool for detecting hydrocarbon spillage on the ocean's surface. Several surveillance applications have been developed based on this technology. Environmental variables such as wind speed should be taken into account for better SAR image segmentation. This paper presents an adaptive thresholding algorithm for detecting oil spills based on SAR data and a wind field estimation as well as its implementation as a part of a functional prototype. The algorithm was adapted to an important shipping route off the Galician coast (northwest Iberian Peninsula) and was developed on the basis of confirmed oil spills. Image testing revealed 99.93% pixel labelling accuracy. By taking advantage of multi-core processor architecture, the prototype was optimized to get a nearly 30% improvement in processing time. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. 2nd Generation QUATARA Flight Computer Project

    NASA Technical Reports Server (NTRS)

    Falker, Jay; Keys, Andrew; Fraticelli, Jose Molina; Capo-Iugo, Pedro; Peeples, Steven

    2015-01-01

    Single core flight computer boards have been designed, developed, and tested (DD&T) to be flown in small satellites for the last few years. In this project, a prototype flight computer will be designed as a distributed multi-core system containing four microprocessors running code in parallel. This flight computer will be capable of performing multiple computationally intensive tasks such as processing digital and/or analog data, controlling actuator systems, managing cameras, operating robotic manipulators and transmitting/receiving from/to a ground station. In addition, this flight computer will be designed to be fault tolerant by creating both a robust physical hardware connection and by using a software voting scheme to determine the processor's performance. This voting scheme will leverage on the work done for the Space Launch System (SLS) flight software. The prototype flight computer will be constructed with Commercial Off-The-Shelf (COTS) components which are estimated to survive for two years in a low-Earth orbit.

  18. Bristol Ridge: A 28-nm $$\\times$$ 86 Performance-Enhanced Microprocessor Through System Power Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sundaram, Sriram; Grenat, Aaron; Naffziger, Samuel

    Power management techniques can be effective at extracting more performance and energy efficiency out of mature systems on chip (SoCs). For instance, the peak performance of microprocessors is often limited by worst case technology (Vmax), infrastructure (thermal/electrical), and microprocessor usage assumptions. Performance/watt of microprocessors also typically suffers from guard bands associated with the test and binning processes as well as worst case aging/lifetime degradation. Similarly, on multicore processors, shared voltage rails tend to limit the peak performance achievable in low thread count workloads. In this paper, we describe five power management techniques that maximize the per-part performance under the before-mentionedmore » constraints. Using these techniques, we demonstrate a net performance increase of up to 15% depending on the application and TDP of the SoC, implemented on 'Bristol Ridge,' a 28-nm CMOS, dual-core x 86 accelerated processing unit.« less

  19. Parallel Computation of the Jacobian Matrix for Nonlinear Equation Solvers Using MATLAB

    NASA Technical Reports Server (NTRS)

    Rose, Geoffrey K.; Nguyen, Duc T.; Newman, Brett A.

    2017-01-01

    Demonstrating speedup for parallel code on a multicore shared memory PC can be challenging in MATLAB due to underlying parallel operations that are often opaque to the user. This can limit potential for improvement of serial code even for the so-called embarrassingly parallel applications. One such application is the computation of the Jacobian matrix inherent to most nonlinear equation solvers. Computation of this matrix represents the primary bottleneck in nonlinear solver speed such that commercial finite element (FE) and multi-body-dynamic (MBD) codes attempt to minimize computations. A timing study using MATLAB's Parallel Computing Toolbox was performed for numerical computation of the Jacobian. Several approaches for implementing parallel code were investigated while only the single program multiple data (spmd) method using composite objects provided positive results. Parallel code speedup is demonstrated but the goal of linear speedup through the addition of processors was not achieved due to PC architecture.

  20. Software defined multi-spectral imaging for Arctic sensor networks

    NASA Astrophysics Data System (ADS)

    Siewert, Sam; Angoth, Vivek; Krishnamurthy, Ramnarayan; Mani, Karthikeyan; Mock, Kenrick; Singh, Surjith B.; Srivistava, Saurav; Wagner, Chris; Claus, Ryan; Vis, Matthew Demi

    2016-05-01

    Availability of off-the-shelf infrared sensors combined with high definition visible cameras has made possible the construction of a Software Defined Multi-Spectral Imager (SDMSI) combining long-wave, near-infrared and visible imaging. The SDMSI requires a real-time embedded processor to fuse images and to create real-time depth maps for opportunistic uplink in sensor networks. Researchers at Embry Riddle Aeronautical University working with University of Alaska Anchorage at the Arctic Domain Awareness Center and the University of Colorado Boulder have built several versions of a low-cost drop-in-place SDMSI to test alternatives for power efficient image fusion. The SDMSI is intended for use in field applications including marine security, search and rescue operations and environmental surveys in the Arctic region. Based on Arctic marine sensor network mission goals, the team has designed the SDMSI to include features to rank images based on saliency and to provide on camera fusion and depth mapping. A major challenge has been the design of the camera computing system to operate within a 10 to 20 Watt power budget. This paper presents a power analysis of three options: 1) multi-core, 2) field programmable gate array with multi-core, and 3) graphics processing units with multi-core. For each test, power consumed for common fusion workloads has been measured at a range of frame rates and resolutions. Detailed analyses from our power efficiency comparison for workloads specific to stereo depth mapping and sensor fusion are summarized. Preliminary mission feasibility results from testing with off-the-shelf long-wave infrared and visible cameras in Alaska and Arizona are also summarized to demonstrate the value of the SDMSI for applications such as ice tracking, ocean color, soil moisture, animal and marine vessel detection and tracking. The goal is to select the most power efficient solution for the SDMSI for use on UAVs (Unoccupied Aerial Vehicles) and other drop-in-place installations in the Arctic. The prototype selected will be field tested in Alaska in the summer of 2016.

  1. Parallel and pipeline computation of fast unitary transforms

    NASA Technical Reports Server (NTRS)

    Fino, B. J.; Algazi, V. R.

    1975-01-01

    The letter discusses the parallel and pipeline organization of fast-unitary-transform algorithms such as the fast Fourier transform, and points out the efficiency of a combined parallel-pipeline processor of a transform such as the Haar transform, in which (2 to the n-th power) -1 hardware 'butterflies' generate a transform of order 2 to the n-th power every computation cycle.

  2. Parallel Index and Query for Large Scale Data Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, Jerry; Wu, Kesheng; Ruebel, Oliver

    2011-07-18

    Modern scientific datasets present numerous data management and analysis challenges. State-of-the-art index and query technologies are critical for facilitating interactive exploration of large datasets, but numerous challenges remain in terms of designing a system for process- ing general scientific datasets. The system needs to be able to run on distributed multi-core platforms, efficiently utilize underlying I/O infrastructure, and scale to massive datasets. We present FastQuery, a novel software framework that address these challenges. FastQuery utilizes a state-of-the-art index and query technology (FastBit) and is designed to process mas- sive datasets on modern supercomputing platforms. We apply FastQuery to processing ofmore » a massive 50TB dataset generated by a large scale accelerator modeling code. We demonstrate the scalability of the tool to 11,520 cores. Motivated by the scientific need to search for inter- esting particles in this dataset, we use our framework to reduce search time from hours to tens of seconds.« less

  3. Method for fast start of a fuel processor

    DOEpatents

    Ahluwalia, Rajesh K [Burr Ridge, IL; Ahmed, Shabbir [Naperville, IL; Lee, Sheldon H. D. [Willowbrook, IL

    2008-01-29

    An improved fuel processor for fuel cells is provided whereby the startup time of the processor is less than sixty seconds and can be as low as 30 seconds, if not less. A rapid startup time is achieved by either igniting or allowing a small mixture of air and fuel to react over and warm up the catalyst of an autothermal reformer (ATR). The ATR then produces combustible gases to be subsequently oxidized on and simultaneously warm up water-gas shift zone catalysts. After normal operating temperature has been achieved, the proportion of air included with the fuel is greatly diminished.

  4. Parallel processing data network of master and slave transputers controlled by a serial control network

    DOEpatents

    Crosetto, Dario B.

    1996-01-01

    The present device provides for a dynamically configurable communication network having a multi-processor parallel processing system having a serial communication network and a high speed parallel communication network. The serial communication network is used to disseminate commands from a master processor (100) to a plurality of slave processors (200) to effect communication protocol, to control transmission of high density data among nodes and to monitor each slave processor's status. The high speed parallel processing network is used to effect the transmission of high density data among nodes in the parallel processing system. Each node comprises a transputer (104), a digital signal processor (114), a parallel transfer controller (106), and two three-port memory devices. A communication switch (108) within each node (100) connects it to a fast parallel hardware channel (70) through which all high density data arrives or leaves the node.

  5. Hierarchical Parallelization of Gene Differential Association Analysis

    PubMed Central

    2011-01-01

    Background Microarray gene differential expression analysis is a widely used technique that deals with high dimensional data and is computationally intensive for permutation-based procedures. Microarray gene differential association analysis is even more computationally demanding and must take advantage of multicore computing technology, which is the driving force behind increasing compute power in recent years. In this paper, we present a two-layer hierarchical parallel implementation of gene differential association analysis. It takes advantage of both fine- and coarse-grain (with granularity defined by the frequency of communication) parallelism in order to effectively leverage the non-uniform nature of parallel processing available in the cutting-edge systems of today. Results Our results show that this hierarchical strategy matches data sharing behavior to the properties of the underlying hardware, thereby reducing the memory and bandwidth needs of the application. The resulting improved efficiency reduces computation time and allows the gene differential association analysis code to scale its execution with the number of processors. The code and biological data used in this study are downloadable from http://www.urmc.rochester.edu/biostat/people/faculty/hu.cfm. Conclusions The performance sweet spot occurs when using a number of threads per MPI process that allows the working sets of the corresponding MPI processes running on the multicore to fit within the machine cache. Hence, we suggest that practitioners follow this principle in selecting the appropriate number of MPI processes and threads within each MPI process for their cluster configurations. We believe that the principles of this hierarchical approach to parallelization can be utilized in the parallelization of other computationally demanding kernels. PMID:21936916

  6. Hierarchical parallelization of gene differential association analysis.

    PubMed

    Needham, Mark; Hu, Rui; Dwarkadas, Sandhya; Qiu, Xing

    2011-09-21

    Microarray gene differential expression analysis is a widely used technique that deals with high dimensional data and is computationally intensive for permutation-based procedures. Microarray gene differential association analysis is even more computationally demanding and must take advantage of multicore computing technology, which is the driving force behind increasing compute power in recent years. In this paper, we present a two-layer hierarchical parallel implementation of gene differential association analysis. It takes advantage of both fine- and coarse-grain (with granularity defined by the frequency of communication) parallelism in order to effectively leverage the non-uniform nature of parallel processing available in the cutting-edge systems of today. Our results show that this hierarchical strategy matches data sharing behavior to the properties of the underlying hardware, thereby reducing the memory and bandwidth needs of the application. The resulting improved efficiency reduces computation time and allows the gene differential association analysis code to scale its execution with the number of processors. The code and biological data used in this study are downloadable from http://www.urmc.rochester.edu/biostat/people/faculty/hu.cfm. The performance sweet spot occurs when using a number of threads per MPI process that allows the working sets of the corresponding MPI processes running on the multicore to fit within the machine cache. Hence, we suggest that practitioners follow this principle in selecting the appropriate number of MPI processes and threads within each MPI process for their cluster configurations. We believe that the principles of this hierarchical approach to parallelization can be utilized in the parallelization of other computationally demanding kernels.

  7. A parallel and sensitive software tool for methylation analysis on multicore platforms.

    PubMed

    Tárraga, Joaquín; Pérez, Mariano; Orduña, Juan M; Duato, José; Medina, Ignacio; Dopazo, Joaquín

    2015-10-01

    DNA methylation analysis suffers from very long processing time, as the advent of Next-Generation Sequencers has shifted the bottleneck of genomic studies from the sequencers that obtain the DNA samples to the software that performs the analysis of these samples. The existing software for methylation analysis does not seem to scale efficiently neither with the size of the dataset nor with the length of the reads to be analyzed. As it is expected that the sequencers will provide longer and longer reads in the near future, efficient and scalable methylation software should be developed. We present a new software tool, called HPG-Methyl, which efficiently maps bisulphite sequencing reads on DNA, analyzing DNA methylation. The strategy used by this software consists of leveraging the speed of the Burrows-Wheeler Transform to map a large number of DNA fragments (reads) rapidly, as well as the accuracy of the Smith-Waterman algorithm, which is exclusively employed to deal with the most ambiguous and shortest reads. Experimental results on platforms with Intel multicore processors show that HPG-Methyl significantly outperforms in both execution time and sensitivity state-of-the-art software such as Bismark, BS-Seeker or BSMAP, particularly for long bisulphite reads. Software in the form of C libraries and functions, together with instructions to compile and execute this software. Available by sftp to anonymous@clariano.uv.es (password 'anonymous'). juan.orduna@uv.es or jdopazo@cipf.es. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Programming for 1.6 Millon cores: Early experiences with IBM's BG/Q SMP architecture

    NASA Astrophysics Data System (ADS)

    Glosli, James

    2013-03-01

    With the stall in clock cycle improvements a decade ago, the drive for computational performance has continues along a path of increasing core counts on a processor. The multi-core evolution has been expressed in both a symmetric multi processor (SMP) architecture and cpu/GPU architecture. Debates rage in the high performance computing (HPC) community which architecture best serves HPC. In this talk I will not attempt to resolve that debate but perhaps fuel it. I will discuss the experience of exploiting Sequoia, a 98304 node IBM Blue Gene/Q SMP at Lawrence Livermore National Laboratory. The advantages and challenges of leveraging the computational power BG/Q will be detailed through the discussion of two applications. The first application is a Molecular Dynamics code called ddcMD. This is a code developed over the last decade at LLNL and ported to BG/Q. The second application is a cardiac modeling code called Cardioid. This is a code that was recently designed and developed at LLNL to exploit the fine scale parallelism of BG/Q's SMP architecture. Through the lenses of these efforts I'll illustrate the need to rethink how we express and implement our computational approaches. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  9. Kalman Filter Tracking on Parallel Architectures

    NASA Astrophysics Data System (ADS)

    Cerati, Giuseppe; Elmer, Peter; Krutelyov, Slava; Lantz, Steven; Lefebvre, Matthieu; McDermott, Kevin; Riley, Daniel; Tadel, Matevž; Wittich, Peter; Würthwein, Frank; Yagil, Avi

    2016-11-01

    Power density constraints are limiting the performance improvements of modern CPUs. To address this we have seen the introduction of lower-power, multi-core processors such as GPGPU, ARM and Intel MIC. In order to achieve the theoretical performance gains of these processors, it will be necessary to parallelize algorithms to exploit larger numbers of lightweight cores and specialized functions like large vector units. Track finding and fitting is one of the most computationally challenging problems for event reconstruction in particle physics. At the High-Luminosity Large Hadron Collider (HL-LHC), for example, this will be by far the dominant problem. The need for greater parallelism has driven investigations of very different track finding techniques such as Cellular Automata or Hough Transforms. The most common track finding techniques in use today, however, are those based on a Kalman filter approach. Significant experience has been accumulated with these techniques on real tracking detector systems, both in the trigger and offline. They are known to provide high physics performance, are robust, and are in use today at the LHC. Given the utility of the Kalman filter in track finding, we have begun to port these algorithms to parallel architectures, namely Intel Xeon and Xeon Phi. We report here on our progress towards an end-to-end track reconstruction algorithm fully exploiting vectorization and parallelization techniques in a simplified experimental environment.

  10. Evaluation of a Multicore-Optimized Implementation for Tomographic Reconstruction

    PubMed Central

    Agulleiro, Jose-Ignacio; Fernández, José Jesús

    2012-01-01

    Tomography allows elucidation of the three-dimensional structure of an object from a set of projection images. In life sciences, electron microscope tomography is providing invaluable information about the cell structure at a resolution of a few nanometres. Here, large images are required to combine wide fields of view with high resolution requirements. The computational complexity of the algorithms along with the large image size then turns tomographic reconstruction into a computationally demanding problem. Traditionally, high-performance computing techniques have been applied to cope with such demands on supercomputers, distributed systems and computer clusters. In the last few years, the trend has turned towards graphics processing units (GPUs). Here we present a detailed description and a thorough evaluation of an alternative approach that relies on exploitation of the power available in modern multicore computers. The combination of single-core code optimization, vector processing, multithreading and efficient disk I/O operations succeeds in providing fast tomographic reconstructions on standard computers. The approach turns out to be competitive with the fastest GPU-based solutions thus far. PMID:23139768

  11. Development of hardware accelerator for molecular dynamics simulations: a computation board that calculates nonbonded interactions in cooperation with fast multipole method.

    PubMed

    Amisaki, Takashi; Toyoda, Shinjiro; Miyagawa, Hiroh; Kitamura, Kunihiro

    2003-04-15

    Evaluation of long-range Coulombic interactions still represents a bottleneck in the molecular dynamics (MD) simulations of biological macromolecules. Despite the advent of sophisticated fast algorithms, such as the fast multipole method (FMM), accurate simulations still demand a great amount of computation time due to the accuracy/speed trade-off inherently involved in these algorithms. Unless higher order multipole expansions, which are extremely expensive to evaluate, are employed, a large amount of the execution time is still spent in directly calculating particle-particle interactions within the nearby region of each particle. To reduce this execution time for pair interactions, we developed a computation unit (board), called MD-Engine II, that calculates nonbonded pairwise interactions using a specially designed hardware. Four custom arithmetic-processors and a processor for memory manipulation ("particle processor") are mounted on the computation board. The arithmetic processors are responsible for calculation of the pair interactions. The particle processor plays a central role in realizing efficient cooperation with the FMM. The results of a series of 50-ps MD simulations of a protein-water system (50,764 atoms) indicated that a more stringent setting of accuracy in FMM computation, compared with those previously reported, was required for accurate simulations over long time periods. Such a level of accuracy was efficiently achieved using the cooperative calculations of the FMM and MD-Engine II. On an Alpha 21264 PC, the FMM computation at a moderate but tolerable level of accuracy was accelerated by a factor of 16.0 using three boards. At a high level of accuracy, the cooperative calculation achieved a 22.7-fold acceleration over the corresponding conventional FMM calculation. In the cooperative calculations of the FMM and MD-Engine II, it was possible to achieve more accurate computation at a comparable execution time by incorporating larger nearby regions. Copyright 2003 Wiley Periodicals, Inc. J Comput Chem 24: 582-592, 2003

  12. 1981 Image II Conference Proceedings.

    DTIC Science & Technology

    1981-11-01

    rapid motion of terrain detail across the display requires fast display processors. Other difficulties are perceptual: the visual displays must convey...has been a continuing effort by Vought in the last decade. Early systems were restricted by the unavailability of video bulk storage with fast random...each photograph. The calculations aided in the proper sequencing of the scanned scenes on the tape recorder and eventually facilitated fast random

  13. A note on parallel and pipeline computation of fast unitary transforms

    NASA Technical Reports Server (NTRS)

    Fino, B. J.; Algazi, V. R.

    1974-01-01

    The parallel and pipeline organization of fast unitary transform algorithms such as the Fast Fourier Transform are discussed. The efficiency is pointed out of a combined parallel-pipeline processor of a transform such as the Haar transform in which 2 to the n minus 1 power hardware butterflies generate a transform of order 2 to the n power every computation cycle.

  14. Development of Improved Modeling and Analysis Techniques for Dynamics of Shell Structures

    DTIC Science & Technology

    1991-07-24

    Engineering Sciences and Center for Space Structures and Control University of Colorado,Campus Box 429 Boulder, Colorado 80309 Accesion :or -.... ... i...system architecture ; third, to implement a decomposi- tion/mapping procedure that matches as far as possible the layout of the processors to the...element computations. In particular. we address issues that are related to the processor memory size. to the SIMD architecture and to the fast

  15. Parallel processing approach to transform-based image coding

    NASA Astrophysics Data System (ADS)

    Normile, James O.; Wright, Dan; Chu, Ken; Yeh, Chia L.

    1991-06-01

    This paper describes a flexible parallel processing architecture designed for use in real time video processing. The system consists of floating point DSP processors connected to each other via fast serial links, each processor has access to a globally shared memory. A multiple bus architecture in combination with a dual ported memory allows communication with a host control processor. The system has been applied to prototyping of video compression and decompression algorithms. The decomposition of transform based algorithms for decompression into a form suitable for parallel processing is described. A technique for automatic load balancing among the processors is developed and discussed, results ar presented with image statistics and data rates. Finally techniques for accelerating the system throughput are analyzed and results from the application of one such modification described.

  16. Fast particles identification in programmable form at level-0 trigger by means of the 3D-Flow system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crosetto, Dario B.

    1998-10-30

    The 3D-Flow Processor system is a new, technology-independent concept in very fast, real-time system architectures. Based on either an FPGA or an ASIC implementation, it can address, in a fully programmable manner, applications where commercially available processors would fail because of throughput requirements. Possible applications include filtering-algorithms (pattern recognition) from the input of multiple sensors, as well as moving any input validated by these filtering-algorithms to a single output channel. Both operations can easily be implemented on a 3D-Flow system to achieve a real-time processing system with a very short lag time. This system can be built either with off-the-shelfmore » FPGAs or, for higher data rates, with CMOS chips containing 4 to 16 processors each. The basic building block of the system, a 3D-Flow processor, has been successfully designed in VHDL code written in ''Generic HDL'' (mostly made of reusable blocks that are synthesizable in different technologies, or FPGAs), to produce a netlist for a four-processor ASIC featuring 0.35 micron CBA (Ceil Base Array) technology at 3.3 Volts, 884 mW power dissipation at 60 MHz and 63.75 mm sq. die size. The same VHDL code has been targeted to three FPGA manufacturers (Altera EPF10K250A, ORCA-Lucent Technologies 0R3T165 and Xilinx XCV1000). A complete set of software tools, the 3D-Flow System Manager, equally applicable to ASIC or FPGA implementations, has been produced to provide full system simulation, application development, real-time monitoring, and run-time fault recovery. Today's technology can accommodate 16 processors per chip in a medium size die, at a cost per processor of less than $5 based on the current silicon die/size technology cost.« less

  17. A fast, parallel algorithm to solve the basic fluvial erosion/transport equations

    NASA Astrophysics Data System (ADS)

    Braun, J.

    2012-04-01

    Quantitative models of landform evolution are commonly based on the solution of a set of equations representing the processes of fluvial erosion, transport and deposition, which leads to predict the geometry of a river channel network and its evolution through time. The river network is often regarded as the backbone of any surface processes model (SPM) that might include other physical processes acting at a range of spatial and temporal scales along hill slopes. The basic laws of fluvial erosion requires the computation of local (slope) and non-local (drainage area) quantities at every point of a given landscape, a computationally expensive operation which limits the resolution of most SPMs. I present here an algorithm to compute the various components required in the parameterization of fluvial erosion (and transport) and thus solve the basic fluvial geomorphic equation, that is very efficient because it is O(n) (the number of required arithmetic operations is linearly proportional to the number of nodes defining the landscape), and is fully parallelizable (the computation cost decreases in a direct inverse proportion to the number of processors used to solve the problem). The algorithm is ideally suited for use on latest multi-core processors. Using this new technique, geomorphic problems can be solved at an unprecedented resolution (typically of the order of 10,000 X 10,000 nodes) while keeping the computational cost reasonable (order 1 sec per time step). Furthermore, I will show that the algorithm is applicable to any regular or irregular representation of the landform, and is such that the temporal evolution of the landform can be discretized by a fully implicit time-marching algorithm, making it unconditionally stable. I will demonstrate that such an efficient algorithm is ideally suited to produce a fully predictive SPM that links observationally based parameterizations of small-scale processes to the evolution of large-scale features of the landscapes on geological time scales. It can also be used to model surface processes at the continental or planetary scale and be linked to lithospheric or mantle flow models to predict the potential interactions between tectonics driving surface uplift in orogenic areas, mantle flow producing dynamic topography on continental scales and surface processes.

  18. Cross talk analysis in multicore optical fibers by supermode theory.

    PubMed

    Szostkiewicz, Lukasz; Napierala, Marek; Ziolowicz, Anna; Pytel, Anna; Tenderenda, Tadeusz; Nasilowski, Tomasz

    2016-08-15

    We discuss the theoretical aspects of core-to-core power transfer in multicore fibers relying on supermode theory. Based on a dual core fiber model, we investigate the consequences of this approach, such as the influence of initial excitation conditions on cross talk. Supermode interpretation of power coupling proves to be intuitive and thus may lead to new concepts of multicore fiber-based devices. As a conclusion, we propose a definition of a uniform cross talk parameter that describes multicore fiber design.

  19. Scheduling multicore workload on shared multipurpose clusters

    NASA Astrophysics Data System (ADS)

    Templon, J. A.; Acosta-Silva, C.; Flix Molina, J.; Forti, A. C.; Pérez-Calero Yzquierdo, A.; Starink, R.

    2015-12-01

    With the advent of workloads containing explicit requests for multiple cores in a single grid job, grid sites faced a new set of challenges in workload scheduling. The most common batch schedulers deployed at HEP computing sites do a poor job at multicore scheduling when using only the native capabilities of those schedulers. This paper describes how efficient multicore scheduling was achieved at the sites the authors represent, by implementing dynamically-sized multicore partitions via a minimalistic addition to the Torque/Maui batch system already in use at those sites. The paper further includes example results from use of the system in production, as well as measurements on the dependence of performance (especially the ramp-up in throughput for multicore jobs) on node size and job size.

  20. The MIDAS processor. [Multivariate Interactive Digital Analysis System for multispectral scanner data

    NASA Technical Reports Server (NTRS)

    Kriegler, F. J.; Gordon, M. F.; Mclaughlin, R. H.; Marshall, R. E.

    1975-01-01

    The MIDAS (Multivariate Interactive Digital Analysis System) processor is a high-speed processor designed to process multispectral scanner data (from Landsat, EOS, aircraft, etc.) quickly and cost-effectively to meet the requirements of users of remote sensor data, especially from very large areas. MIDAS consists of a fast multipipeline preprocessor and classifier, an interactive color display and color printer, and a medium scale computer system for analysis and control. The system is designed to process data having as many as 16 spectral bands per picture element at rates of 200,000 picture elements per second into as many as 17 classes using a maximum likelihood decision rule.

  1. Optimization of sparse matrix-vector multiplication on emerging multicore platforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Samuel; Oliker, Leonid; Vuduc, Richard

    2007-01-01

    We are witnessing a dramatic change in computer architecture due to the multicore paradigm shift, as every electronic device from cell phones to supercomputers confronts parallelism of unprecedented scale. To fully unleash the potential of these systems, the HPC community must develop multicore specific optimization methodologies for important scientific computations. In this work, we examine sparse matrix-vector multiply (SpMV) - one of the most heavily used kernels in scientific computing - across a broad spectrum of multicore designs. Our experimental platform includes the homogeneous AMD dual-core and Intel quad-core designs, the heterogeneous STI Cell, as well as the first scientificmore » study of the highly multithreaded Sun Niagara2. We present several optimization strategies especially effective for the multicore environment, and demonstrate significant performance improvements compared to existing state-of-the-art serial and parallel SpMV implementations. Additionally, we present key insights into the architectural tradeoffs of leading multicore design strategies, in the context of demanding memory-bound numerical algorithms.« less

  2. A fast adaptive convex hull algorithm on two-dimensional processor arrays with a reconfigurable BUS system

    NASA Technical Reports Server (NTRS)

    Olariu, S.; Schwing, J.; Zhang, J.

    1991-01-01

    A bus system that can change dynamically to suit computational needs is referred to as reconfigurable. We present a fast adaptive convex hull algorithm on a two-dimensional processor array with a reconfigurable bus system (2-D PARBS, for short). Specifically, we show that computing the convex hull of a planar set of n points taken O(log n/log m) time on a 2-D PARBS of size mn x n with 3 less than or equal to m less than or equal to n. Our result implies that the convex hull of n points in the plane can be computed in O(1) time in a 2-D PARBS of size n(exp 1.5) x n.

  3. Fast semivariogram computation using FPGA architectures

    NASA Astrophysics Data System (ADS)

    Lagadapati, Yamuna; Shirvaikar, Mukul; Dong, Xuanliang

    2015-02-01

    The semivariogram is a statistical measure of the spatial distribution of data and is based on Markov Random Fields (MRFs). Semivariogram analysis is a computationally intensive algorithm that has typically seen applications in the geosciences and remote sensing areas. Recently, applications in the area of medical imaging have been investigated, resulting in the need for efficient real time implementation of the algorithm. The semivariogram is a plot of semivariances for different lag distances between pixels. A semi-variance, γ(h), is defined as the half of the expected squared differences of pixel values between any two data locations with a lag distance of h. Due to the need to examine each pair of pixels in the image or sub-image being processed, the base algorithm complexity for an image window with n pixels is O(n2). Field Programmable Gate Arrays (FPGAs) are an attractive solution for such demanding applications due to their parallel processing capability. FPGAs also tend to operate at relatively modest clock rates measured in a few hundreds of megahertz, but they can perform tens of thousands of calculations per clock cycle while operating in the low range of power. This paper presents a technique for the fast computation of the semivariogram using two custom FPGA architectures. The design consists of several modules dedicated to the constituent computational tasks. A modular architecture approach is chosen to allow for replication of processing units. This allows for high throughput due to concurrent processing of pixel pairs. The current implementation is focused on isotropic semivariogram computations only. Anisotropic semivariogram implementation is anticipated to be an extension of the current architecture, ostensibly based on refinements to the current modules. The algorithm is benchmarked using VHDL on a Xilinx XUPV5-LX110T development Kit, which utilizes the Virtex5 FPGA. Medical image data from MRI scans are utilized for the experiments. Computational speedup is measured with respect to Matlab implementation on a personal computer with an Intel i7 multi-core processor. Preliminary simulation results indicate that a significant advantage in speed can be attained by the architectures, making the algorithm viable for implementation in medical devices

  4. Parameters that affect parallel processing for computational electromagnetic simulation codes on high performance computing clusters

    NASA Astrophysics Data System (ADS)

    Moon, Hongsik

    What is the impact of multicore and associated advanced technologies on computational software for science? Most researchers and students have multicore laptops or desktops for their research and they need computing power to run computational software packages. Computing power was initially derived from Central Processing Unit (CPU) clock speed. That changed when increases in clock speed became constrained by power requirements. Chip manufacturers turned to multicore CPU architectures and associated technological advancements to create the CPUs for the future. Most software applications benefited by the increased computing power the same way that increases in clock speed helped applications run faster. However, for Computational ElectroMagnetics (CEM) software developers, this change was not an obvious benefit - it appeared to be a detriment. Developers were challenged to find a way to correctly utilize the advancements in hardware so that their codes could benefit. The solution was parallelization and this dissertation details the investigation to address these challenges. Prior to multicore CPUs, advanced computer technologies were compared with the performance using benchmark software and the metric was FLoting-point Operations Per Seconds (FLOPS) which indicates system performance for scientific applications that make heavy use of floating-point calculations. Is FLOPS an effective metric for parallelized CEM simulation tools on new multicore system? Parallel CEM software needs to be benchmarked not only by FLOPS but also by the performance of other parameters related to type and utilization of the hardware, such as CPU, Random Access Memory (RAM), hard disk, network, etc. The codes need to be optimized for more than just FLOPs and new parameters must be included in benchmarking. In this dissertation, the parallel CEM software named High Order Basis Based Integral Equation Solver (HOBBIES) is introduced. This code was developed to address the needs of the changing computer hardware platforms in order to provide fast, accurate and efficient solutions to large, complex electromagnetic problems. The research in this dissertation proves that the performance of parallel code is intimately related to the configuration of the computer hardware and can be maximized for different hardware platforms. To benchmark and optimize the performance of parallel CEM software, a variety of large, complex projects are created and executed on a variety of computer platforms. The computer platforms used in this research are detailed in this dissertation. The projects run as benchmarks are also described in detail and results are presented. The parameters that affect parallel CEM software on High Performance Computing Clusters (HPCC) are investigated. This research demonstrates methods to maximize the performance of parallel CEM software code.

  5. A microcomputer based frequency-domain processor for laser Doppler anemometry

    NASA Technical Reports Server (NTRS)

    Horne, W. Clifton; Adair, Desmond

    1988-01-01

    A prototype multi-channel laser Doppler anemometry (LDA) processor was assembled using a wideband transient recorder and a microcomputer with an array processor for fast Fourier transform (FFT) computations. The prototype instrument was used to acquire, process, and record signals from a three-component wind tunnel LDA system subject to various conditions of noise and flow turbulence. The recorded data was used to evaluate the effectiveness of burst acceptance criteria, processing algorithms, and selection of processing parameters such as record length. The recorded signals were also used to obtain comparative estimates of signal-to-noise ratio between time-domain and frequency-domain signal detection schemes. These comparisons show that the FFT processing scheme allows accurate processing of signals for which the signal-to-noise ratio is 10 to 15 dB less than is practical using counter processors.

  6. Fast parallel algorithm for slicing STL based on pipeline

    NASA Astrophysics Data System (ADS)

    Ma, Xulong; Lin, Feng; Yao, Bo

    2016-05-01

    In Additive Manufacturing field, the current researches of data processing mainly focus on a slicing process of large STL files or complicated CAD models. To improve the efficiency and reduce the slicing time, a parallel algorithm has great advantages. However, traditional algorithms can't make full use of multi-core CPU hardware resources. In the paper, a fast parallel algorithm is presented to speed up data processing. A pipeline mode is adopted to design the parallel algorithm. And the complexity of the pipeline algorithm is analyzed theoretically. To evaluate the performance of the new algorithm, effects of threads number and layers number are investigated by a serial of experiments. The experimental results show that the threads number and layers number are two remarkable factors to the speedup ratio. The tendency of speedup versus threads number reveals a positive relationship which greatly agrees with the Amdahl's law, and the tendency of speedup versus layers number also keeps a positive relationship agreeing with Gustafson's law. The new algorithm uses topological information to compute contours with a parallel method of speedup. Another parallel algorithm based on data parallel is used in experiments to show that pipeline parallel mode is more efficient. A case study at last shows a suspending performance of the new parallel algorithm. Compared with the serial slicing algorithm, the new pipeline parallel algorithm can make full use of the multi-core CPU hardware, accelerate the slicing process, and compared with the data parallel slicing algorithm, the new slicing algorithm in this paper adopts a pipeline parallel model, and a much higher speedup ratio and efficiency is achieved.

  7. FastGCN: A GPU Accelerated Tool for Fast Gene Co-Expression Networks

    PubMed Central

    Liang, Meimei; Zhang, Futao; Jin, Gulei; Zhu, Jun

    2015-01-01

    Gene co-expression networks comprise one type of valuable biological networks. Many methods and tools have been published to construct gene co-expression networks; however, most of these tools and methods are inconvenient and time consuming for large datasets. We have developed a user-friendly, accelerated and optimized tool for constructing gene co-expression networks that can fully harness the parallel nature of GPU (Graphic Processing Unit) architectures. Genetic entropies were exploited to filter out genes with no or small expression changes in the raw data preprocessing step. Pearson correlation coefficients were then calculated. After that, we normalized these coefficients and employed the False Discovery Rate to control the multiple tests. At last, modules identification was conducted to construct the co-expression networks. All of these calculations were implemented on a GPU. We also compressed the coefficient matrix to save space. We compared the performance of the GPU implementation with those of multi-core CPU implementations with 16 CPU threads, single-thread C/C++ implementation and single-thread R implementation. Our results show that GPU implementation largely outperforms single-thread C/C++ implementation and single-thread R implementation, and GPU implementation outperforms multi-core CPU implementation when the number of genes increases. With the test dataset containing 16,000 genes and 590 individuals, we can achieve greater than 63 times the speed using a GPU implementation compared with a single-thread R implementation when 50 percent of genes were filtered out and about 80 times the speed when no genes were filtered out. PMID:25602758

  8. FastGCN: a GPU accelerated tool for fast gene co-expression networks.

    PubMed

    Liang, Meimei; Zhang, Futao; Jin, Gulei; Zhu, Jun

    2015-01-01

    Gene co-expression networks comprise one type of valuable biological networks. Many methods and tools have been published to construct gene co-expression networks; however, most of these tools and methods are inconvenient and time consuming for large datasets. We have developed a user-friendly, accelerated and optimized tool for constructing gene co-expression networks that can fully harness the parallel nature of GPU (Graphic Processing Unit) architectures. Genetic entropies were exploited to filter out genes with no or small expression changes in the raw data preprocessing step. Pearson correlation coefficients were then calculated. After that, we normalized these coefficients and employed the False Discovery Rate to control the multiple tests. At last, modules identification was conducted to construct the co-expression networks. All of these calculations were implemented on a GPU. We also compressed the coefficient matrix to save space. We compared the performance of the GPU implementation with those of multi-core CPU implementations with 16 CPU threads, single-thread C/C++ implementation and single-thread R implementation. Our results show that GPU implementation largely outperforms single-thread C/C++ implementation and single-thread R implementation, and GPU implementation outperforms multi-core CPU implementation when the number of genes increases. With the test dataset containing 16,000 genes and 590 individuals, we can achieve greater than 63 times the speed using a GPU implementation compared with a single-thread R implementation when 50 percent of genes were filtered out and about 80 times the speed when no genes were filtered out.

  9. Multi-core processing and scheduling performance in CMS

    NASA Astrophysics Data System (ADS)

    Hernández, J. M.; Evans, D.; Foulkes, S.

    2012-12-01

    Commodity hardware is going many-core. We might soon not be able to satisfy the job memory needs per core in the current single-core processing model in High Energy Physics. In addition, an ever increasing number of independent and incoherent jobs running on the same physical hardware not sharing resources might significantly affect processing performance. It will be essential to effectively utilize the multi-core architecture. CMS has incorporated support for multi-core processing in the event processing framework and the workload management system. Multi-core processing jobs share common data in memory, such us the code libraries, detector geometry and conditions data, resulting in a much lower memory usage than standard single-core independent jobs. Exploiting this new processing model requires a new model in computing resource allocation, departing from the standard single-core allocation for a job. The experiment job management system needs to have control over a larger quantum of resource since multi-core aware jobs require the scheduling of multiples cores simultaneously. CMS is exploring the approach of using whole nodes as unit in the workload management system where all cores of a node are allocated to a multi-core job. Whole-node scheduling allows for optimization of the data/workflow management (e.g. I/O caching, local merging) but efficient utilization of all scheduled cores is challenging. Dedicated whole-node queues have been setup at all Tier-1 centers for exploring multi-core processing workflows in CMS. We present the evaluation of the performance scheduling and executing multi-core workflows in whole-node queues compared to the standard single-core processing workflows.

  10. Optimization of Sparse Matrix-Vector Multiplication on Emerging Multicore Platforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Samuel; Oliker, Leonid; Vuduc, Richard

    2008-10-16

    We are witnessing a dramatic change in computer architecture due to the multicore paradigm shift, as every electronic device from cell phones to supercomputers confronts parallelism of unprecedented scale. To fully unleash the potential of these systems, the HPC community must develop multicore specific-optimization methodologies for important scientific computations. In this work, we examine sparse matrix-vector multiply (SpMV) - one of the most heavily used kernels in scientific computing - across a broad spectrum of multicore designs. Our experimental platform includes the homogeneous AMD quad-core, AMD dual-core, and Intel quad-core designs, the heterogeneous STI Cell, as well as one ofmore » the first scientific studies of the highly multithreaded Sun Victoria Falls (a Niagara2 SMP). We present several optimization strategies especially effective for the multicore environment, and demonstrate significant performance improvements compared to existing state-of-the-art serial and parallel SpMV implementations. Additionally, we present key insights into the architectural trade-offs of leading multicore design strategies, in the context of demanding memory-bound numerical algorithms.« less

  11. Parallel definition of tear film maps on distributed-memory clusters for the support of dry eye diagnosis.

    PubMed

    González-Domínguez, Jorge; Remeseiro, Beatriz; Martín, María J

    2017-02-01

    The analysis of the interference patterns on the tear film lipid layer is a useful clinical test to diagnose dry eye syndrome. This task can be automated with a high degree of accuracy by means of the use of tear film maps. However, the time required by the existing applications to generate them prevents a wider acceptance of this method by medical experts. Multithreading has been previously successfully employed by the authors to accelerate the tear film map definition on multicore single-node machines. In this work, we propose a hybrid message-passing and multithreading parallel approach that further accelerates the generation of tear film maps by exploiting the computational capabilities of distributed-memory systems such as multicore clusters and supercomputers. The algorithm for drawing tear film maps is parallelized using Message Passing Interface (MPI) for inter-node communications and the multithreading support available in the C++11 standard for intra-node parallelization. The original algorithm is modified to reduce the communications and increase the scalability. The hybrid method has been tested on 32 nodes of an Intel cluster (with two 12-core Haswell 2680v3 processors per node) using 50 representative images. Results show that maximum runtime is reduced from almost two minutes using the previous only-multithreaded approach to less than ten seconds using the hybrid method. The hybrid MPI/multithreaded implementation can be used by medical experts to obtain tear film maps in only a few seconds, which will significantly accelerate and facilitate the diagnosis of the dry eye syndrome. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Development of an extensible dual-core wireless sensing node for cyber-physical systems

    NASA Astrophysics Data System (ADS)

    Kane, Michael; Zhu, Dapeng; Hirose, Mitsuhito; Dong, Xinjun; Winter, Benjamin; Häckell, Mortiz; Lynch, Jerome P.; Wang, Yang; Swartz, A.

    2014-04-01

    The introduction of wireless telemetry into the design of monitoring and control systems has been shown to reduce system costs while simplifying installations. To date, wireless nodes proposed for sensing and actuation in cyberphysical systems have been designed using microcontrollers with one computational pipeline (i.e., single-core microcontrollers). While concurrent code execution can be implemented on single-core microcontrollers, concurrency is emulated by splitting the pipeline's resources to support multiple threads of code execution. For many applications, this approach to multi-threading is acceptable in terms of speed and function. However, some applications such as feedback controls demand deterministic timing of code execution and maximum computational throughput. For these applications, the adoption of multi-core processor architectures represents one effective solution. Multi-core microcontrollers have multiple computational pipelines that can execute embedded code in parallel and can be interrupted independent of one another. In this study, a new wireless platform named Martlet is introduced with a dual-core microcontroller adopted in its design. The dual-core microcontroller design allows Martlet to dedicate one core to standard wireless sensor operations while the other core is reserved for embedded data processing and real-time feedback control law execution. Another distinct feature of Martlet is a standardized hardware interface that allows specialized daughter boards (termed wing boards) to be interfaced to the Martlet baseboard. This extensibility opens opportunity to encapsulate specialized sensing and actuation functions in a wing board without altering the design of Martlet. In addition to describing the design of Martlet, a few example wings are detailed, along with experiments showing the Martlet's ability to monitor and control physical systems such as wind turbines and buildings.

  13. Thermal Hotspots in CPU Die and It's Future Architecture

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Hu, Fu-Yuan

    Owing to the increasing core frequency and chip integration and the limited die dimension, the power densities in CPU chip have been increasing fastly. The high temperature on chip resulted by power densities threats the processor's performance and chip's reliability. This paper analyzed the thermal hotspots in die and their properties. A new architecture of function units in die - - hot units distributed architecture is suggested to cope with the problems of high power densities for future processor chip.

  14. HeinzelCluster: accelerated reconstruction for FORE and OSEM3D.

    PubMed

    Vollmar, S; Michel, C; Treffert, J T; Newport, D F; Casey, M; Knöss, C; Wienhard, K; Liu, X; Defrise, M; Heiss, W D

    2002-08-07

    Using iterative three-dimensional (3D) reconstruction techniques for reconstruction of positron emission tomography (PET) is not feasible on most single-processor machines due to the excessive computing time needed, especially so for the large sinogram sizes of our high-resolution research tomograph (HRRT). In our first approach to speed up reconstruction time we transform the 3D scan into the format of a two-dimensional (2D) scan with sinograms that can be reconstructed independently using Fourier rebinning (FORE) and a fast 2D reconstruction method. On our dedicated reconstruction cluster (seven four-processor systems, Intel PIII@700 MHz, switched fast ethernet and Myrinet, Windows NT Server), we process these 2D sinograms in parallel. We have achieved a speedup > 23 using 26 processors and also compared results for different communication methods (RPC, Syngo, Myrinet GM). The other approach is to parallelize OSEM3D (implementation of C Michel), which has produced the best results for HRRT data so far and is more suitable for an adequate treatment of the sinogram gaps that result from the detector geometry of the HRRT. We have implemented two levels of parallelization for four dedicated cluster (a shared memory fine-grain level on each node utilizing all four processors and a coarse-grain level allowing for 15 nodes) reducing the time for one core iteration from over 7 h to about 35 min.

  15. A Low-Power High-Speed Smart Sensor Design for Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Fang, Wai-Chi

    1997-01-01

    A low-power high-speed smart sensor system based on a large format active pixel sensor (APS) integrated with a programmable neural processor for space exploration missions is presented. The concept of building an advanced smart sensing system is demonstrated by a system-level microchip design that is composed with an APS sensor, a programmable neural processor, and an embedded microprocessor in a SOI CMOS technology. This ultra-fast smart sensor system-on-a-chip design mimics what is inherent in biological vision systems. Moreover, it is programmable and capable of performing ultra-fast machine vision processing in all levels such as image acquisition, image fusion, image analysis, scene interpretation, and control functions. The system provides about one tera-operation-per-second computing power which is a two order-of-magnitude increase over that of state-of-the-art microcomputers. Its high performance is due to massively parallel computing structures, high data throughput rates, fast learning capabilities, and advanced VLSI system-on-a-chip implementation.

  16. High-performance sparse matrix-matrix products on Intel KNL and multicore architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagasaka, Y; Matsuoka, S; Azad, A

    Sparse matrix-matrix multiplication (SpGEMM) is a computational primitive that is widely used in areas ranging from traditional numerical applications to recent big data analysis and machine learning. Although many SpGEMM algorithms have been proposed, hardware specific optimizations for multi- and many-core processors are lacking and a detailed analysis of their performance under various use cases and matrices is not available. We firstly identify and mitigate multiple bottlenecks with memory management and thread scheduling on Intel Xeon Phi (Knights Landing or KNL). Specifically targeting multi- and many-core processors, we develop a hash-table-based algorithm and optimize a heap-based shared-memory SpGEMM algorithm. Wemore » examine their performance together with other publicly available codes. Different from the literature, our evaluation also includes use cases that are representative of real graph algorithms, such as multi-source breadth-first search or triangle counting. Our hash-table and heap-based algorithms are showing significant speedups from libraries in the majority of the cases while different algorithms dominate the other scenarios with different matrix size, sparsity, compression factor and operation type. We wrap up in-depth evaluation results and make a recipe to give the best SpGEMM algorithm for target scenario. A critical finding is that hash-table-based SpGEMM gets a significant performance boost if the nonzeros are not required to be sorted within each row of the output matrix.« less

  17. Traditional Tracking with Kalman Filter on Parallel Architectures

    NASA Astrophysics Data System (ADS)

    Cerati, Giuseppe; Elmer, Peter; Lantz, Steven; MacNeill, Ian; McDermott, Kevin; Riley, Dan; Tadel, Matevž; Wittich, Peter; Würthwein, Frank; Yagil, Avi

    2015-05-01

    Power density constraints are limiting the performance improvements of modern CPUs. To address this, we have seen the introduction of lower-power, multi-core processors, but the future will be even more exciting. In order to stay within the power density limits but still obtain Moore's Law performance/price gains, it will be necessary to parallelize algorithms to exploit larger numbers of lightweight cores and specialized functions like large vector units. Example technologies today include Intel's Xeon Phi and GPGPUs. Track finding and fitting is one of the most computationally challenging problems for event reconstruction in particle physics. At the High Luminosity LHC, for example, this will be by far the dominant problem. The most common track finding techniques in use today are however those based on the Kalman Filter. Significant experience has been accumulated with these techniques on real tracking detector systems, both in the trigger and offline. We report the results of our investigations into the potential and limitations of these algorithms on the new parallel hardware.

  18. LOSITAN: a workbench to detect molecular adaptation based on a Fst-outlier method.

    PubMed

    Antao, Tiago; Lopes, Ana; Lopes, Ricardo J; Beja-Pereira, Albano; Luikart, Gordon

    2008-07-28

    Testing for selection is becoming one of the most important steps in the analysis of multilocus population genetics data sets. Existing applications are difficult to use, leaving many non-trivial, error-prone tasks to the user. Here we present LOSITAN, a selection detection workbench based on a well evaluated Fst-outlier detection method. LOSITAN greatly facilitates correct approximation of model parameters (e.g., genome-wide average, neutral Fst), provides data import and export functions, iterative contour smoothing and generation of graphics in a easy to use graphical user interface. LOSITAN is able to use modern multi-core processor architectures by locally parallelizing fdist, reducing computation time by half in current dual core machines and with almost linear performance gains in machines with more cores. LOSITAN makes selection detection feasible to a much wider range of users, even for large population genomic datasets, by both providing an easy to use interface and essential functionality to complete the whole selection detection process.

  19. A streaming multi-GPU implementation of image simulation algorithms for scanning transmission electron microscopy

    DOE PAGES

    Pryor, Alan; Ophus, Colin; Miao, Jianwei

    2017-10-25

    Simulation of atomic-resolution image formation in scanning transmission electron microscopy can require significant computation times using traditional methods. A recently developed method, termed plane-wave reciprocal-space interpolated scattering matrix (PRISM), demonstrates potential for significant acceleration of such simulations with negligible loss of accuracy. In this paper, we present a software package called Prismatic for parallelized simulation of image formation in scanning transmission electron microscopy (STEM) using both the PRISM and multislice methods. By distributing the workload between multiple CUDA-enabled GPUs and multicore processors, accelerations as high as 1000 × for PRISM and 15 × for multislice are achieved relative to traditionalmore » multislice implementations using a single 4-GPU machine. We demonstrate a potentially important application of Prismatic, using it to compute images for atomic electron tomography at sufficient speeds to include in the reconstruction pipeline. Prismatic is freely available both as an open-source CUDA/C++ package with a graphical user interface and as a Python package, PyPrismatic.« less

  20. Low-power, transparent optical network interface for high bandwidth off-chip interconnects.

    PubMed

    Liboiron-Ladouceur, Odile; Wang, Howard; Garg, Ajay S; Bergman, Keren

    2009-04-13

    The recent emergence of multicore architectures and chip multiprocessors (CMPs) has accelerated the bandwidth requirements in high-performance processors for both on-chip and off-chip interconnects. For next generation computing clusters, the delivery of scalable power efficient off-chip communications to each compute node has emerged as a key bottleneck to realizing the full computational performance of these systems. The power dissipation is dominated by the off-chip interface and the necessity to drive high-speed signals over long distances. We present a scalable photonic network interface approach that fully exploits the bandwidth capacity offered by optical interconnects while offering significant power savings over traditional E/O and O/E approaches. The power-efficient interface optically aggregates electronic serial data streams into a multiple WDM channel packet structure at time-of-flight latencies. We demonstrate a scalable optical network interface with 70% improvement in power efficiency for a complete end-to-end PCI Express data transfer.

  1. A streaming multi-GPU implementation of image simulation algorithms for scanning transmission electron microscopy.

    PubMed

    Pryor, Alan; Ophus, Colin; Miao, Jianwei

    2017-01-01

    Simulation of atomic-resolution image formation in scanning transmission electron microscopy can require significant computation times using traditional methods. A recently developed method, termed plane-wave reciprocal-space interpolated scattering matrix (PRISM), demonstrates potential for significant acceleration of such simulations with negligible loss of accuracy. Here, we present a software package called Prismatic for parallelized simulation of image formation in scanning transmission electron microscopy (STEM) using both the PRISM and multislice methods. By distributing the workload between multiple CUDA-enabled GPUs and multicore processors, accelerations as high as 1000 × for PRISM and 15 × for multislice are achieved relative to traditional multislice implementations using a single 4-GPU machine. We demonstrate a potentially important application of Prismatic , using it to compute images for atomic electron tomography at sufficient speeds to include in the reconstruction pipeline. Prismatic is freely available both as an open-source CUDA/C++ package with a graphical user interface and as a Python package, PyPrismatic .

  2. A method of boundary equations for unsteady hyperbolic problems in 3D

    NASA Astrophysics Data System (ADS)

    Petropavlovsky, S.; Tsynkov, S.; Turkel, E.

    2018-07-01

    We consider interior and exterior initial boundary value problems for the three-dimensional wave (d'Alembert) equation. First, we reduce a given problem to an equivalent operator equation with respect to unknown sources defined only at the boundary of the original domain. In doing so, the Huygens' principle enables us to obtain the operator equation in a form that involves only finite and non-increasing pre-history of the solution in time. Next, we discretize the resulting boundary equation and solve it efficiently by the method of difference potentials (MDP). The overall numerical algorithm handles boundaries of general shape using regular structured grids with no deterioration of accuracy. For long simulation times it offers sub-linear complexity with respect to the grid dimension, i.e., is asymptotically cheaper than the cost of a typical explicit scheme. In addition, our algorithm allows one to share the computational cost between multiple similar problems. On multi-processor (multi-core) platforms, it benefits from what can be considered an effective parallelization in time.

  3. A streaming multi-GPU implementation of image simulation algorithms for scanning transmission electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pryor, Alan; Ophus, Colin; Miao, Jianwei

    Simulation of atomic-resolution image formation in scanning transmission electron microscopy can require significant computation times using traditional methods. A recently developed method, termed plane-wave reciprocal-space interpolated scattering matrix (PRISM), demonstrates potential for significant acceleration of such simulations with negligible loss of accuracy. In this paper, we present a software package called Prismatic for parallelized simulation of image formation in scanning transmission electron microscopy (STEM) using both the PRISM and multislice methods. By distributing the workload between multiple CUDA-enabled GPUs and multicore processors, accelerations as high as 1000 × for PRISM and 15 × for multislice are achieved relative to traditionalmore » multislice implementations using a single 4-GPU machine. We demonstrate a potentially important application of Prismatic, using it to compute images for atomic electron tomography at sufficient speeds to include in the reconstruction pipeline. Prismatic is freely available both as an open-source CUDA/C++ package with a graphical user interface and as a Python package, PyPrismatic.« less

  4. Parallel Discrete Molecular Dynamics Simulation With Speculation and In-Order Commitment*†

    PubMed Central

    Khan, Md. Ashfaquzzaman; Herbordt, Martin C.

    2011-01-01

    Discrete molecular dynamics simulation (DMD) uses simplified and discretized models enabling simulations to advance by event rather than by timestep. DMD is an instance of discrete event simulation and so is difficult to scale: even in this multi-core era, all reported DMD codes are serial. In this paper we discuss the inherent difficulties of scaling DMD and present our method of parallelizing DMD through event-based decomposition. Our method is microarchitecture inspired: speculative processing of events exposes parallelism, while in-order commitment ensures correctness. We analyze the potential of this parallelization method for shared-memory multiprocessors. Achieving scalability required extensive experimentation with scheduling and synchronization methods to mitigate serialization. The speed-up achieved for a variety of system sizes and complexities is nearly 6× on an 8-core and over 9× on a 12-core processor. We present and verify analytical models that account for the achieved performance as a function of available concurrency and architectural limitations. PMID:21822327

  5. Parallel Discrete Molecular Dynamics Simulation With Speculation and In-Order Commitment.

    PubMed

    Khan, Md Ashfaquzzaman; Herbordt, Martin C

    2011-07-20

    Discrete molecular dynamics simulation (DMD) uses simplified and discretized models enabling simulations to advance by event rather than by timestep. DMD is an instance of discrete event simulation and so is difficult to scale: even in this multi-core era, all reported DMD codes are serial. In this paper we discuss the inherent difficulties of scaling DMD and present our method of parallelizing DMD through event-based decomposition. Our method is microarchitecture inspired: speculative processing of events exposes parallelism, while in-order commitment ensures correctness. We analyze the potential of this parallelization method for shared-memory multiprocessors. Achieving scalability required extensive experimentation with scheduling and synchronization methods to mitigate serialization. The speed-up achieved for a variety of system sizes and complexities is nearly 6× on an 8-core and over 9× on a 12-core processor. We present and verify analytical models that account for the achieved performance as a function of available concurrency and architectural limitations.

  6. On Designing Multicore-Aware Simulators for Systems Biology Endowed with OnLine Statistics

    PubMed Central

    Calcagno, Cristina; Coppo, Mario

    2014-01-01

    The paper arguments are on enabling methodologies for the design of a fully parallel, online, interactive tool aiming to support the bioinformatics scientists .In particular, the features of these methodologies, supported by the FastFlow parallel programming framework, are shown on a simulation tool to perform the modeling, the tuning, and the sensitivity analysis of stochastic biological models. A stochastic simulation needs thousands of independent simulation trajectories turning into big data that should be analysed by statistic and data mining tools. In the considered approach the two stages are pipelined in such a way that the simulation stage streams out the partial results of all simulation trajectories to the analysis stage that immediately produces a partial result. The simulation-analysis workflow is validated for performance and effectiveness of the online analysis in capturing biological systems behavior on a multicore platform and representative proof-of-concept biological systems. The exploited methodologies include pattern-based parallel programming and data streaming that provide key features to the software designers such as performance portability and efficient in-memory (big) data management and movement. Two paradigmatic classes of biological systems exhibiting multistable and oscillatory behavior are used as a testbed. PMID:25050327

  7. A Review of High-Performance Computational Strategies for Modeling and Imaging of Electromagnetic Induction Data

    NASA Astrophysics Data System (ADS)

    Newman, Gregory A.

    2014-01-01

    Many geoscientific applications exploit electrostatic and electromagnetic fields to interrogate and map subsurface electrical resistivity—an important geophysical attribute for characterizing mineral, energy, and water resources. In complex three-dimensional geologies, where many of these resources remain to be found, resistivity mapping requires large-scale modeling and imaging capabilities, as well as the ability to treat significant data volumes, which can easily overwhelm single-core and modest multicore computing hardware. To treat such problems requires large-scale parallel computational resources, necessary for reducing the time to solution to a time frame acceptable to the exploration process. The recognition that significant parallel computing processes must be brought to bear on these problems gives rise to choices that must be made in parallel computing hardware and software. In this review, some of these choices are presented, along with the resulting trade-offs. We also discuss future trends in high-performance computing and the anticipated impact on electromagnetic (EM) geophysics. Topics discussed in this review article include a survey of parallel computing platforms, graphics processing units to multicore CPUs with a fast interconnect, along with effective parallel solvers and associated solver libraries effective for inductive EM modeling and imaging.

  8. On designing multicore-aware simulators for systems biology endowed with OnLine statistics.

    PubMed

    Aldinucci, Marco; Calcagno, Cristina; Coppo, Mario; Damiani, Ferruccio; Drocco, Maurizio; Sciacca, Eva; Spinella, Salvatore; Torquati, Massimo; Troina, Angelo

    2014-01-01

    The paper arguments are on enabling methodologies for the design of a fully parallel, online, interactive tool aiming to support the bioinformatics scientists .In particular, the features of these methodologies, supported by the FastFlow parallel programming framework, are shown on a simulation tool to perform the modeling, the tuning, and the sensitivity analysis of stochastic biological models. A stochastic simulation needs thousands of independent simulation trajectories turning into big data that should be analysed by statistic and data mining tools. In the considered approach the two stages are pipelined in such a way that the simulation stage streams out the partial results of all simulation trajectories to the analysis stage that immediately produces a partial result. The simulation-analysis workflow is validated for performance and effectiveness of the online analysis in capturing biological systems behavior on a multicore platform and representative proof-of-concept biological systems. The exploited methodologies include pattern-based parallel programming and data streaming that provide key features to the software designers such as performance portability and efficient in-memory (big) data management and movement. Two paradigmatic classes of biological systems exhibiting multistable and oscillatory behavior are used as a testbed.

  9. CPU architecture for a fast and energy-saving calculation of convolution neural networks

    NASA Astrophysics Data System (ADS)

    Knoll, Florian J.; Grelcke, Michael; Czymmek, Vitali; Holtorf, Tim; Hussmann, Stephan

    2017-06-01

    One of the most difficult problem in the use of artificial neural networks is the computational capacity. Although large search engine companies own specially developed hardware to provide the necessary computing power, for the conventional user only remains the state of the art method, which is the use of a graphic processing unit (GPU) as a computational basis. Although these processors are well suited for large matrix computations, they need massive energy. Therefore a new processor on the basis of a field programmable gate array (FPGA) has been developed and is optimized for the application of deep learning. This processor is presented in this paper. The processor can be adapted for a particular application (in this paper to an organic farming application). The power consumption is only a fraction of a GPU application and should therefore be well suited for energy-saving applications.

  10. A GaAs vector processor based on parallel RISC microprocessors

    NASA Astrophysics Data System (ADS)

    Misko, Tim A.; Rasset, Terry L.

    A vector processor architecture based on the development of a 32-bit microprocessor using gallium arsenide (GaAs) technology has been developed. The McDonnell Douglas vector processor (MVP) will be fabricated completely from GaAs digital integrated circuits. The MVP architecture includes a vector memory of 1 megabyte, a parallel bus architecture with eight processing elements connected in parallel, and a control processor. The processing elements consist of a reduced instruction set CPU (RISC) with four floating-point coprocessor units and necessary memory interface functions. This architecture has been simulated for several benchmark programs including complex fast Fourier transform (FFT), complex inner product, trigonometric functions, and sort-merge routine. The results of this study indicate that the MVP can process a 1024-point complex FFT at a speed of 112 microsec (389 megaflops) while consuming approximately 618 W of power in a volume of approximately 0.1 ft-cubed.

  11. Efficient provisioning for multi-core applications with LSF

    NASA Astrophysics Data System (ADS)

    Dal Pra, Stefano

    2015-12-01

    Tier-1 sites providing computing power for HEP experiments are usually tightly designed for high throughput performances. This is pursued by reducing the variety of supported use cases and tuning for performances those ones, the most important of which have been that of singlecore jobs. Moreover, the usual workload is saturation: each available core in the farm is in use and there are queued jobs waiting for their turn to run. Enabling multi-core jobs thus requires dedicating a number of hosts where to run, and waiting for them to free the needed number of cores. This drain-time introduces a loss of computing power driven by the number of unusable empty cores. As an increasing demand for multi-core capable resources have emerged, a Task Force have been constituted in WLCG, with the goal to define a simple and efficient multi-core resource provisioning model. This paper details the work done at the INFN Tier-1 to enable multi-core support for the LSF batch system, with the intent of reducing to the minimum the average number of unused cores. The adopted strategy has been that of dedicating to multi-core a dynamic set of nodes, whose dimension is mainly driven by the number of pending multi-core requests and fair-share priority of the submitting user. The node status transition, from single to multi core et vice versa, is driven by a finite state machine which is implemented in a custom multi-core director script, running in the cluster. After describing and motivating both the implementation and the details specific to the LSF batch system, results about performance are reported. Factors having positive and negative impact on the overall efficiency are discussed and solutions to reduce at most the negative ones are proposed.

  12. Multi-core processing and scheduling performance in CMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez, J. M.; Evans, D.; Foulkes, S.

    2012-01-01

    Commodity hardware is going many-core. We might soon not be able to satisfy the job memory needs per core in the current single-core processing model in High Energy Physics. In addition, an ever increasing number of independent and incoherent jobs running on the same physical hardware not sharing resources might significantly affect processing performance. It will be essential to effectively utilize the multi-core architecture. CMS has incorporated support for multi-core processing in the event processing framework and the workload management system. Multi-core processing jobs share common data in memory, such us the code libraries, detector geometry and conditions data, resultingmore » in a much lower memory usage than standard single-core independent jobs. Exploiting this new processing model requires a new model in computing resource allocation, departing from the standard single-core allocation for a job. The experiment job management system needs to have control over a larger quantum of resource since multi-core aware jobs require the scheduling of multiples cores simultaneously. CMS is exploring the approach of using whole nodes as unit in the workload management system where all cores of a node are allocated to a multi-core job. Whole-node scheduling allows for optimization of the data/workflow management (e.g. I/O caching, local merging) but efficient utilization of all scheduled cores is challenging. Dedicated whole-node queues have been setup at all Tier-1 centers for exploring multi-core processing workflows in CMS. We present the evaluation of the performance scheduling and executing multi-core workflows in whole-node queues compared to the standard single-core processing workflows.« less

  13. Influence of fibre design and curvature on crosstalk in multi-core fibre

    NASA Astrophysics Data System (ADS)

    Egorova, O. N.; Astapovich, M. S.; Melnikov, L. A.; Salganskii, M. Yu; Mishkin, V. P.; Nishchev, K. N.; Semjonov, S. L.; Dianov, E. M.

    2016-03-01

    We have studied the influence of cross-sectional structure and bends on optical cross-talk in a multicore fibre. A reduced refractive index layer produced between the cores of such fibre with a small centre-to-centre spacing between neighbouring cores (27 μm) reduces optical cross-talk by 20 dB. The cross-talk level achieved, 30 dB per kilometre of the length of the multicore fibre, is acceptable for a number of applications where relatively small lengths of fibre are needed. Moreover, a significant decrease in optical cross-talk has been ensured by reducing the winding diameter of multicore fibres with identical cores.

  14. On the Performance of an Algebraic MultigridSolver on Multicore Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, A H; Schulz, M; Yang, U M

    2010-04-29

    Algebraic multigrid (AMG) solvers have proven to be extremely efficient on distributed-memory architectures. However, when executed on modern multicore cluster architectures, we face new challenges that can significantly harm AMG's performance. We discuss our experiences on such an architecture and present a set of techniques that help users to overcome the associated problems, including thread and process pinning and correct memory associations. We have implemented most of the techniques in a MultiCore SUPport library (MCSup), which helps to map OpenMP applications to multicore machines. We present results using both an MPI-only and a hybrid MPI/OpenMP model.

  15. Computing effective properties of random heterogeneous materials on heterogeneous parallel processors

    NASA Astrophysics Data System (ADS)

    Leidi, Tiziano; Scocchi, Giulio; Grossi, Loris; Pusterla, Simone; D'Angelo, Claudio; Thiran, Jean-Philippe; Ortona, Alberto

    2012-11-01

    In recent decades, finite element (FE) techniques have been extensively used for predicting effective properties of random heterogeneous materials. In the case of very complex microstructures, the choice of numerical methods for the solution of this problem can offer some advantages over classical analytical approaches, and it allows the use of digital images obtained from real material samples (e.g., using computed tomography). On the other hand, having a large number of elements is often necessary for properly describing complex microstructures, ultimately leading to extremely time-consuming computations and high memory requirements. With the final objective of reducing these limitations, we improved an existing freely available FE code for the computation of effective conductivity (electrical and thermal) of microstructure digital models. To allow execution on hardware combining multi-core CPUs and a GPU, we first translated the original algorithm from Fortran to C, and we subdivided it into software components. Then, we enhanced the C version of the algorithm for parallel processing with heterogeneous processors. With the goal of maximizing the obtained performances and limiting resource consumption, we utilized a software architecture based on stream processing, event-driven scheduling, and dynamic load balancing. The parallel processing version of the algorithm has been validated using a simple microstructure consisting of a single sphere located at the centre of a cubic box, yielding consistent results. Finally, the code was used for the calculation of the effective thermal conductivity of a digital model of a real sample (a ceramic foam obtained using X-ray computed tomography). On a computer equipped with dual hexa-core Intel Xeon X5670 processors and an NVIDIA Tesla C2050, the parallel application version features near to linear speed-up progression when using only the CPU cores. It executes more than 20 times faster when additionally using the GPU.

  16. Evaluating Food Safety Knowledge and Practices of Food Processors and Sellers Working in Food Facilities in Hanoi, Vietnam.

    PubMed

    Tran, Bach Xuan; DO, Hoa Thi; Nguyen, Luong Thanh; Boggiano, Victoria; LE, Huong Thi; LE, Xuan Thanh Thi; Trinh, Ngoc Bao; DO, Khanh Nam; Nguyen, Cuong Tat; Nguyen, Thanh Trung; Dang, Anh Kim; Mai, Hue Thi; Nguyen, Long Hoang; Than, Selena; Latkin, Carl A

    2018-04-01

    Consumption of fast food and street food is increasingly common among Vietnamese, particularly in large cities. The high daily demand for these convenient food services, together with a poor management system, has raised concerns about food hygiene and safety (FHS). This study aimed to examine the FHS knowledge and practices of food processors and sellers in food facilities in Hanoi, Vietnam, and to identify their associated factors. A cross-sectional study was conducted with 1,760 food processors and sellers in restaurants, fast food stores, food stalls, and street vendors in Hanoi in 2015. We assessed each participant's FHS knowledge using a self-report questionnaire and their FHS practices using a checklist. Tobit regression was used to determine potential factors associated with FHS knowledge and practices, including demographics, training experience, and frequency of health examination. Overall, we observed a lack of FHS knowledge among respondents across three domains, including standard requirements for food facilities (18%), food processing procedures (29%), and food poisoning prevention (11%). Only 25.9 and 38.1% of participants used caps and masks, respectively, and 12.8% of food processors reported direct hand contact with food. After adjusting for socioeconomic characteristics, these factors significantly predicted increased FHS knowledge and practice scores: (i) working at restaurants and food stalls, (ii) having FHS training, (iii) having had a physical examination, and (iv) having taken a stool test within the last year. These findings highlight the need of continuous training to improve FHS knowledge and practices among food processors and food sellers. Moreover, regular monitoring of food facilities, combined with medical examination of their staff, should be performed to ensure food safety.

  17. Fast Fourier Transform Co-Processor (FFTC)- Towards Embedded GFLOPs

    NASA Astrophysics Data System (ADS)

    Kuehl, Christopher; Liebstueckel, Uwe; Tejerina, Isaac; Uemminghaus, Michael; Wite, Felix; Kolb, Michael; Suess, Martin; Weigand, Roland

    2012-08-01

    Many signal processing applications and algorithms perform their operations on the data in the transform domain to gain efficiency. The Fourier Transform Co- Processor has been developed with the aim to offload General Purpose Processors from performing these transformations and therefore to boast the overall performance of a processing module. The IP of the commercial PowerFFT processor has been selected and adapted to meet the constraints of the space environment.In frame of the ESA activity “Fast Fourier Transform DSP Co-processor (FFTC)” (ESTEC/Contract No. 15314/07/NL/LvH/ma) the objectives were the following:Production of prototypes of a space qualified version of the commercial PowerFFT chip called FFTC based on the PowerFFT IP.The development of a stand-alone FFTC Accelerator Board (FTAB) based on the FFTC including the Controller FPGA and SpaceWire Interfaces to verify the FFTC function and performance.The FFTC chip performs its calculations with floating point precision. Stand alone it is capable computing FFTs of up to 1K complex samples in length in only 10μsec. This corresponds to an equivalent processing performance of 4.7 GFlops. In this mode the maximum sustained data throughput reaches 6.4Gbit/s. When connected to up to 4 EDAC protected SDRAM memory banks the FFTC can perform long FFTs with up to 1M complex samples in length or multidimensional FFT- based processing tasks.A Controller FPGA on the FTAB takes care of the SDRAM addressing. The instructions commanded via the Controller FPGA are used to set up the data flow and generate the memory addresses.The presentation will give and overview on the project, including the results of the validation of the FFTC ASIC prototypes.

  18. Fast Fourier Transform Co-processor (FFTC), towards embedded GFLOPs

    NASA Astrophysics Data System (ADS)

    Kuehl, Christopher; Liebstueckel, Uwe; Tejerina, Isaac; Uemminghaus, Michael; Witte, Felix; Kolb, Michael; Suess, Martin; Weigand, Roland; Kopp, Nicholas

    2012-10-01

    Many signal processing applications and algorithms perform their operations on the data in the transform domain to gain efficiency. The Fourier Transform Co-Processor has been developed with the aim to offload General Purpose Processors from performing these transformations and therefore to boast the overall performance of a processing module. The IP of the commercial PowerFFT processor has been selected and adapted to meet the constraints of the space environment. In frame of the ESA activity "Fast Fourier Transform DSP Co-processor (FFTC)" (ESTEC/Contract No. 15314/07/NL/LvH/ma) the objectives were the following: • Production of prototypes of a space qualified version of the commercial PowerFFT chip called FFTC based on the PowerFFT IP. • The development of a stand-alone FFTC Accelerator Board (FTAB) based on the FFTC including the Controller FPGA and SpaceWire Interfaces to verify the FFTC function and performance. The FFTC chip performs its calculations with floating point precision. Stand alone it is capable computing FFTs of up to 1K complex samples in length in only 10μsec. This corresponds to an equivalent processing performance of 4.7 GFlops. In this mode the maximum sustained data throughput reaches 6.4Gbit/s. When connected to up to 4 EDAC protected SDRAM memory banks the FFTC can perform long FFTs with up to 1M complex samples in length or multidimensional FFT-based processing tasks. A Controller FPGA on the FTAB takes care of the SDRAM addressing. The instructions commanded via the Controller FPGA are used to set up the data flow and generate the memory addresses. The paper will give an overview on the project, including the results of the validation of the FFTC ASIC prototypes.

  19. Toshiba TDF-500 High Resolution Viewing And Analysis System

    NASA Astrophysics Data System (ADS)

    Roberts, Barry; Kakegawa, M.; Nishikawa, M.; Oikawa, D.

    1988-06-01

    A high resolution, operator interactive, medical viewing and analysis system has been developed by Toshiba and Bio-Imaging Research. This system provides many advanced features including high resolution displays, a very large image memory and advanced image processing capability. In particular, the system provides CRT frame buffers capable of update in one frame period, an array processor capable of image processing at operator interactive speeds, and a memory system capable of updating multiple frame buffers at frame rates whilst supporting multiple array processors. The display system provides 1024 x 1536 display resolution at 40Hz frame and 80Hz field rates. In particular, the ability to provide whole or partial update of the screen at the scanning rate is a key feature. This allows multiple viewports or windows in the display buffer with both fixed and cine capability. To support image processing features such as windowing, pan, zoom, minification, filtering, ROI analysis, multiplanar and 3D reconstruction, a high performance CPU is integrated into the system. This CPU is an array processor capable of up to 400 million instructions per second. To support the multiple viewer and array processors' instantaneous high memory bandwidth requirement, an ultra fast memory system is used. This memory system has a bandwidth capability of 400MB/sec and a total capacity of 256MB. This bandwidth is more than adequate to support several high resolution CRT's and also the fast processing unit. This fully integrated approach allows effective real time image processing. The integrated design of viewing system, memory system and array processor are key to the imaging system. It is the intention to describe the architecture of the image system in this paper.

  20. Multi-mode sensor processing on a dynamically reconfigurable massively parallel processor array

    NASA Astrophysics Data System (ADS)

    Chen, Paul; Butts, Mike; Budlong, Brad; Wasson, Paul

    2008-04-01

    This paper introduces a novel computing architecture that can be reconfigured in real time to adapt on demand to multi-mode sensor platforms' dynamic computational and functional requirements. This 1 teraOPS reconfigurable Massively Parallel Processor Array (MPPA) has 336 32-bit processors. The programmable 32-bit communication fabric provides streamlined inter-processor connections with deterministically high performance. Software programmability, scalability, ease of use, and fast reconfiguration time (ranging from microseconds to milliseconds) are the most significant advantages over FPGAs and DSPs. This paper introduces the MPPA architecture, its programming model, and methods of reconfigurability. An MPPA platform for reconfigurable computing is based on a structural object programming model. Objects are software programs running concurrently on hundreds of 32-bit RISC processors and memories. They exchange data and control through a network of self-synchronizing channels. A common application design pattern on this platform, called a work farm, is a parallel set of worker objects, with one input and one output stream. Statically configured work farms with homogeneous and heterogeneous sets of workers have been used in video compression and decompression, network processing, and graphics applications.

  1. Fast neural net simulation with a DSP processor array.

    PubMed

    Muller, U A; Gunzinger, A; Guggenbuhl, W

    1995-01-01

    This paper describes the implementation of a fast neural net simulator on a novel parallel distributed-memory computer. A 60-processor system, named MUSIC (multiprocessor system with intelligent communication), is operational and runs the backpropagation algorithm at a speed of 330 million connection updates per second (continuous weight update) using 32-b floating-point precision. This is equal to 1.4 Gflops sustained performance. The complete system with 3.8 Gflops peak performance consumes less than 800 W of electrical power and fits into a 19-in rack. While reaching the speed of modern supercomputers, MUSIC still can be used as a personal desktop computer at a researcher's own disposal. In neural net simulation, this gives a computing performance to a single user which was unthinkable before. The system's real-time interfaces make it especially useful for embedded applications.

  2. FPGA wavelet processor design using language for instruction-set architectures (LISA)

    NASA Astrophysics Data System (ADS)

    Meyer-Bäse, Uwe; Vera, Alonzo; Rao, Suhasini; Lenk, Karl; Pattichis, Marios

    2007-04-01

    The design of an microprocessor is a long, tedious, and error-prone task consisting of typically three design phases: architecture exploration, software design (assembler, linker, loader, profiler), architecture implementation (RTL generation for FPGA or cell-based ASIC) and verification. The Language for instruction-set architectures (LISA) allows to model a microprocessor not only from instruction-set but also from architecture description including pipelining behavior that allows a design and development tool consistency over all levels of the design. To explore the capability of the LISA processor design platform a.k.a. CoWare Processor Designer we present in this paper three microprocessor designs that implement a 8/8 wavelet transform processor that is typically used in today's FBI fingerprint compression scheme. We have designed a 3 stage pipelined 16 bit RISC processor (NanoBlaze). Although RISC μPs are usually considered "fast" processors due to design concept like constant instruction word size, deep pipelines and many general purpose registers, it turns out that DSP operations consume essential processing time in a RISC processor. In a second step we have used design principles from programmable digital signal processor (PDSP) to improve the throughput of the DWT processor. A multiply-accumulate operation along with indirect addressing operation were the key to achieve higher throughput. A further improvement is possible with today's FPGA technology. Today's FPGAs offer a large number of embedded array multipliers and it is now feasible to design a "true" vector processor (TVP). A multiplication of two vectors can be done in just one clock cycle with our TVP, a complete scalar product in two clock cycles. Code profiling and Xilinx FPGA ISE synthesis results are provided that demonstrate the essential improvement that a TVP has compared with traditional RISC or PDSP designs.

  3. Influence of fibre design and curvature on crosstalk in multi-core fibre

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egorova, O N; Astapovich, M S; Semjonov, S L

    2016-03-31

    We have studied the influence of cross-sectional structure and bends on optical cross-talk in a multicore fibre. A reduced refractive index layer produced between the cores of such fibre with a small centre-to-centre spacing between neighbouring cores (27 μm) reduces optical cross-talk by 20 dB. The cross-talk level achieved, 30 dB per kilometre of the length of the multicore fibre, is acceptable for a number of applications where relatively small lengths of fibre are needed. Moreover, a significant decrease in optical cross-talk has been ensured by reducing the winding diameter of multicore fibres with identical cores. (fiber optics)

  4. MUTILS - a set of efficient modeling tools for multi-core CPUs implemented in MEX

    NASA Astrophysics Data System (ADS)

    Krotkiewski, Marcin; Dabrowski, Marcin

    2013-04-01

    The need for computational performance is common in scientific applications, and in particular in numerical simulations, where high resolution models require efficient processing of large amounts of data. Especially in the context of geological problems the need to increase the model resolution to resolve physical and geometrical complexities seems to have no limits. Alas, the performance of new generations of CPUs does not improve any longer by simply increasing clock speeds. Current industrial trends are to increase the number of computational cores. As a result, parallel implementations are required in order to fully utilize the potential of new processors, and to study more complex models. We target simulations on small to medium scale shared memory computers: laptops and desktop PCs with ~8 CPU cores and up to tens of GB of memory to high-end servers with ~50 CPU cores and hundereds of GB of memory. In this setting MATLAB is often the environment of choice for scientists that want to implement their own models with little effort. It is a useful general purpose mathematical software package, but due to its versatility some of its functionality is not as efficient as it could be. In particular, the challanges of modern multi-core architectures are not fully addressed. We have developed MILAMIN 2 - an efficient FEM modeling environment written in native MATLAB. Amongst others, MILAMIN provides functions to define model geometry, generate and convert structured and unstructured meshes (also through interfaces to external mesh generators), compute element and system matrices, apply boundary conditions, solve the system of linear equations, address non-linear and transient problems, and perform post-processing. MILAMIN strives to combine the ease of code development and the computational efficiency. Where possible, the code is optimized and/or parallelized within the MATLAB framework. Native MATLAB is augmented with the MUTILS library - a set of MEX functions that implement the computationally intensive, performance critical parts of the code, which we have identified to be bottlenecks. Here, we discuss the functionality and performance of the MUTILS library. Currently, it includes: 1. time and memory efficient assembly of sparse matrices for FEM simulations 2. parallel sparse matrix - vector product with optimizations speficic to symmetric matrices and multiple degrees of freedom per node 3. parallel point in triangle location and point in tetrahedron location for unstructured, adaptive 2D and 3D meshes (useful for 'marker in cell' type of methods) 4. parallel FEM interpolation for 2D and 3D meshes of elements of different types and orders, and for different number of degrees of freedom per node 5. a stand-alone, MEX implementation of the Conjugate Gradients iterative solver 6. interface to METIS graph partitioning and a fast implementation of RCM reordering

  5. GeauxDock: Accelerating Structure-Based Virtual Screening with Heterogeneous Computing

    PubMed Central

    Fang, Ye; Ding, Yun; Feinstein, Wei P.; Koppelman, David M.; Moreno, Juana; Jarrell, Mark; Ramanujam, J.; Brylinski, Michal

    2016-01-01

    Computational modeling of drug binding to proteins is an integral component of direct drug design. Particularly, structure-based virtual screening is often used to perform large-scale modeling of putative associations between small organic molecules and their pharmacologically relevant protein targets. Because of a large number of drug candidates to be evaluated, an accurate and fast docking engine is a critical element of virtual screening. Consequently, highly optimized docking codes are of paramount importance for the effectiveness of virtual screening methods. In this communication, we describe the implementation, tuning and performance characteristics of GeauxDock, a recently developed molecular docking program. GeauxDock is built upon the Monte Carlo algorithm and features a novel scoring function combining physics-based energy terms with statistical and knowledge-based potentials. Developed specifically for heterogeneous computing platforms, the current version of GeauxDock can be deployed on modern, multi-core Central Processing Units (CPUs) as well as massively parallel accelerators, Intel Xeon Phi and NVIDIA Graphics Processing Unit (GPU). First, we carried out a thorough performance tuning of the high-level framework and the docking kernel to produce a fast serial code, which was then ported to shared-memory multi-core CPUs yielding a near-ideal scaling. Further, using Xeon Phi gives 1.9× performance improvement over a dual 10-core Xeon CPU, whereas the best GPU accelerator, GeForce GTX 980, achieves a speedup as high as 3.5×. On that account, GeauxDock can take advantage of modern heterogeneous architectures to considerably accelerate structure-based virtual screening applications. GeauxDock is open-sourced and publicly available at www.brylinski.org/geauxdock and https://figshare.com/articles/geauxdock_tar_gz/3205249. PMID:27420300

  6. GeauxDock: Accelerating Structure-Based Virtual Screening with Heterogeneous Computing.

    PubMed

    Fang, Ye; Ding, Yun; Feinstein, Wei P; Koppelman, David M; Moreno, Juana; Jarrell, Mark; Ramanujam, J; Brylinski, Michal

    2016-01-01

    Computational modeling of drug binding to proteins is an integral component of direct drug design. Particularly, structure-based virtual screening is often used to perform large-scale modeling of putative associations between small organic molecules and their pharmacologically relevant protein targets. Because of a large number of drug candidates to be evaluated, an accurate and fast docking engine is a critical element of virtual screening. Consequently, highly optimized docking codes are of paramount importance for the effectiveness of virtual screening methods. In this communication, we describe the implementation, tuning and performance characteristics of GeauxDock, a recently developed molecular docking program. GeauxDock is built upon the Monte Carlo algorithm and features a novel scoring function combining physics-based energy terms with statistical and knowledge-based potentials. Developed specifically for heterogeneous computing platforms, the current version of GeauxDock can be deployed on modern, multi-core Central Processing Units (CPUs) as well as massively parallel accelerators, Intel Xeon Phi and NVIDIA Graphics Processing Unit (GPU). First, we carried out a thorough performance tuning of the high-level framework and the docking kernel to produce a fast serial code, which was then ported to shared-memory multi-core CPUs yielding a near-ideal scaling. Further, using Xeon Phi gives 1.9× performance improvement over a dual 10-core Xeon CPU, whereas the best GPU accelerator, GeForce GTX 980, achieves a speedup as high as 3.5×. On that account, GeauxDock can take advantage of modern heterogeneous architectures to considerably accelerate structure-based virtual screening applications. GeauxDock is open-sourced and publicly available at www.brylinski.org/geauxdock and https://figshare.com/articles/geauxdock_tar_gz/3205249.

  7. Compiler-Driven Performance Optimization and Tuning for Multicore Architectures

    DTIC Science & Technology

    2015-04-10

    develop a powerful system for auto-tuning of library routines and compute-intensive kernels, driven by the Pluto system for multicores that we are...kernels, driven by the Pluto system for multicores that we are developing. The work here is motivated by recent advances in two major areas of...automatic C-to-CUDA code generator using a polyhedral compiler transformation framework. We have used and adapted PLUTO (our state-of-the-art tool

  8. Design Tools for Accelerating Development and Usage of Multi-Core Computing Platforms

    DTIC Science & Technology

    2014-04-01

    Government formulated or supplied the drawings, specifications, or other data does not license the holder or any other person or corporation ; or convey...multicore PDSP platforms. The GPU- based capabilities of TDIF are currently oriented towards NVIDIA GPUs, based on the Compute Unified Device Architecture...CUDA) programming language [ NVIDIA 2007], which can be viewed as an extension of C. The multicore PDSP capabilities currently in TDIF are oriented

  9. Reducing Response Time Bounds for DAG-Based Task Systems on Heterogeneous Multicore Platforms

    DTIC Science & Technology

    2016-01-01

    synchronous parallel tasks on multicore platforms. In 25th ECRTS, 2013. [10] U. Devi. Soft Real - Time Scheduling on Multiprocessors. PhD thesis...report, Washington University in St Louis, 2014. [18] C. Liu and J. Anderson. Supporting soft real - time DAG-based sys- tems on multiprocessors with...analysis for DAG-based real - time task systems im- plemented on heterogeneous multicore platforms. The spe- cific analysis problem that is considered was

  10. Bit-parallel arithmetic in a massively-parallel associative processor

    NASA Technical Reports Server (NTRS)

    Scherson, Isaac D.; Kramer, David A.; Alleyne, Brian D.

    1992-01-01

    A simple but powerful new architecture based on a classical associative processor model is presented. Algorithms for performing the four basic arithmetic operations both for integer and floating point operands are described. For m-bit operands, the proposed architecture makes it possible to execute complex operations in O(m) cycles as opposed to O(m exp 2) for bit-serial machines. A word-parallel, bit-parallel, massively-parallel computing system can be constructed using this architecture with VLSI technology. The operation of this system is demonstrated for the fast Fourier transform and matrix multiplication.

  11. Using the automata processor for fast pattern recognition in high energy physics experiments. A proof of concept

    DOE PAGES

    Michael H. L. S. Wang; Cancelo, Gustavo; Green, Christopher; ...

    2016-06-25

    Here, we explore the Micron Automata Processor (AP) as a suitable commodity technology that can address the growing computational needs of pattern recognition in High Energy Physics (HEP) experiments. A toy detector model is developed for which an electron track confirmation trigger based on the Micron AP serves as a test case. Although primarily meant for high speed text-based searches, we demonstrate a proof of concept for the use of the Micron AP in a HEP trigger application.

  12. SIGPROC: Pulsar Signal Processing Programs

    NASA Astrophysics Data System (ADS)

    Lorimer, D. R.

    2011-07-01

    SIGPROC is a package designed to standardize the initial analysis of the many types of fast-sampled pulsar data. Currently recognized machines are the Wide Band Arecibo Pulsar Processor (WAPP), the Penn State Pulsar Machine (PSPM), the Arecibo Observatory Fourier Transform Machine (AOFTM), the Berkeley Pulsar Processors (BPP), the Parkes/Jodrell 1-bit filterbanks (SCAMP) and the filterbank at the Ooty radio telescope (OOTY). The SIGPROC tools should help users look at their data quickly, without the need to write (yet) another routine to read data or worry about big/little endian compatibility (byte swapping is handled automatically).

  13. Using the automata processor for fast pattern recognition in high energy physics experiments. A proof of concept

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael H. L. S. Wang; Cancelo, Gustavo; Green, Christopher

    Here, we explore the Micron Automata Processor (AP) as a suitable commodity technology that can address the growing computational needs of pattern recognition in High Energy Physics (HEP) experiments. A toy detector model is developed for which an electron track confirmation trigger based on the Micron AP serves as a test case. Although primarily meant for high speed text-based searches, we demonstrate a proof of concept for the use of the Micron AP in a HEP trigger application.

  14. A Future Accelerated Cognitive Distributed Hybrid Testbed for Big Data Science Analytics

    NASA Astrophysics Data System (ADS)

    Halem, M.; Prathapan, S.; Golpayegani, N.; Huang, Y.; Blattner, T.; Dorband, J. E.

    2016-12-01

    As increased sensor spectral data volumes from current and future Earth Observing satellites are assimilated into high-resolution climate models, intensive cognitive machine learning technologies are needed to data mine, extract and intercompare model outputs. It is clear today that the next generation of computers and storage, beyond petascale cluster architectures, will be data centric. They will manage data movement and process data in place. Future cluster nodes have been announced that integrate multiple CPUs with high-speed links to GPUs and MICS on their backplanes with massive non-volatile RAM and access to active flash RAM disk storage. Active Ethernet connected key value store disk storage drives with 10Ge or higher are now available through the Kinetic Open Storage Alliance. At the UMBC Center for Hybrid Multicore Productivity Research, a future state-of-the-art Accelerated Cognitive Computer System (ACCS) for Big Data science is being integrated into the current IBM iDataplex computational system `bluewave'. Based on the next gen IBM 200 PF Sierra processor, an interim two node IBM Power S822 testbed is being integrated with dual Power 8 processors with 10 cores, 1TB Ram, a PCIe to a K80 GPU and an FPGA Coherent Accelerated Processor Interface card to 20TB Flash Ram. This system is to be updated to the Power 8+, an NVlink 1.0 with the Pascal GPU late in 2016. Moreover, the Seagate 96TB Kinetic Disk system with 24 Ethernet connected active disks is integrated into the ACCS storage system. A Lightweight Virtual File System developed at the NASA GSFC is installed on bluewave. Since remote access to publicly available quantum annealing computers is available at several govt labs, the ACCS will offer an in-line Restricted Boltzmann Machine optimization capability to the D-Wave 2X quantum annealing processor over the campus high speed 100 Gb network to Internet 2 for large files. As an evaluation test of the cognitive functionality of the architecture, the following studies utilizing all the system components will be presented; (i) a near real time climate change study generating CO2 fluxes and (ii) a deep dive capability into an 8000 x8000 pixel image pyramid display and (iii) Large dense and sparse eigenvalue decomposition.

  15. Energy-efficient fault tolerance in multiprocessor real-time systems

    NASA Astrophysics Data System (ADS)

    Guo, Yifeng

    The recent progress in the multiprocessor/multicore systems has important implications for real-time system design and operation. From vehicle navigation to space applications as well as industrial control systems, the trend is to deploy multiple processors in real-time systems: systems with 4 -- 8 processors are common, and it is expected that many-core systems with dozens of processing cores will be available in near future. For such systems, in addition to general temporal requirement common for all real-time systems, two additional operational objectives are seen as critical: energy efficiency and fault tolerance. An intriguing dimension of the problem is that energy efficiency and fault tolerance are typically conflicting objectives, due to the fact that tolerating faults (e.g., permanent/transient) often requires extra resources with high energy consumption potential. In this dissertation, various techniques for energy-efficient fault tolerance in multiprocessor real-time systems have been investigated. First, the Reliability-Aware Power Management (RAPM) framework, which can preserve the system reliability with respect to transient faults when Dynamic Voltage Scaling (DVS) is applied for energy savings, is extended to support parallel real-time applications with precedence constraints. Next, the traditional Standby-Sparing (SS) technique for dual processor systems, which takes both transient and permanent faults into consideration while saving energy, is generalized to support multiprocessor systems with arbitrary number of identical processors. Observing the inefficient usage of slack time in the SS technique, a Preference-Oriented Scheduling Framework is designed to address the problem where tasks are given preferences for being executed as soon as possible (ASAP) or as late as possible (ALAP). A preference-oriented earliest deadline (POED) scheduler is proposed and its application in multiprocessor systems for energy-efficient fault tolerance is investigated, where tasks' main copies are executed ASAP while backup copies ALAP to reduce the overlapped execution of main and backup copies of the same task and thus reduce energy consumption. All proposed techniques are evaluated through extensive simulations and compared with other state-of-the-art approaches. The simulation results confirm that the proposed schemes can preserve the system reliability while still achieving substantial energy savings. Finally, for both SS and POED based Energy-Efficient Fault-Tolerant (EEFT) schemes, a series of recovery strategies are designed when more than one (transient and permanent) faults need to be tolerated.

  16. Resource and Performance Evaluations of Fixed Point QRD-RLS Systolic Array through FPGA Implementation

    NASA Astrophysics Data System (ADS)

    Yokoyama, Yoshiaki; Kim, Minseok; Arai, Hiroyuki

    At present, when using space-time processing techniques with multiple antennas for mobile radio communication, real-time weight adaptation is necessary. Due to the progress of integrated circuit technology, dedicated processor implementation with ASIC or FPGA can be employed to implement various wireless applications. This paper presents a resource and performance evaluation of the QRD-RLS systolic array processor based on fixed-point CORDIC algorithm with FPGA. In this paper, to save hardware resources, we propose the shared architecture of a complex CORDIC processor. The required precision of internal calculation, the circuit area for the number of antenna elements and wordlength, and the processing speed will be evaluated. The resource estimation provides a possible processor configuration with a current FPGA on the market. Computer simulations assuming a fading channel will show a fast convergence property with a finite number of training symbols. The proposed architecture has also been implemented and its operation was verified by beamforming evaluation through a radio propagation experiment.

  17. Software design and implementation of ship heave motion monitoring system based on MBD method

    NASA Astrophysics Data System (ADS)

    Yu, Yan; Li, Yuhan; Zhang, Chunwei; Kang, Won-Hee; Ou, Jinping

    2015-03-01

    Marine transportation plays a significant role in the modern transport sector due to its advantage of low cost, large capacity. It is being attached enormous importance to all over the world. Nowadays the related areas of product development have become an existing hot spot. DSP signal processors feature micro volume, low cost, high precision, fast processing speed, which has been widely used in all kinds of monitoring systems. But traditional DSP code development process is time-consuming, inefficiency, costly and difficult. MathWorks company proposed Model-based Design (MBD) to overcome these defects. By calling the target board modules in simulink library to compile and generate the corresponding code for the target processor. And then automatically call DSP integrated development environment CCS for algorithm validation on the target processor. This paper uses the MDB to design the algorithm for the ship heave motion monitoring system. It proves the effectiveness of the MBD run successfully on the processor.

  18. Advances in optical information processing IV; Proceedings of the Meeting, Orlando, FL, Apr. 18-20, 1990

    NASA Astrophysics Data System (ADS)

    Pape, Dennis R.

    1990-09-01

    The present conference discusses topics in optical image processing, optical signal processing, acoustooptic spectrum analyzer systems and components, and optical computing. Attention is given to tradeoffs in nonlinearly recorded matched filters, miniature spatial light modulators, detection and classification using higher-order statistics of optical matched filters, rapid traversal of an image data base using binary synthetic discriminant filters, wideband signal processing for emitter location, an acoustooptic processor for autonomous SAR guidance, and sampling of Fresnel transforms. Also discussed are an acoustooptic RF signal-acquisition system, scanning acoustooptic spectrum analyzers, the effects of aberrations on acoustooptic systems, fast optical digital arithmetic processors, information utilization in analog and digital processing, optical processors for smart structures, and a self-organizing neural network for unsupervised learning.

  19. A fast parallel 3D Poisson solver with longitudinal periodic and transverse open boundary conditions for space-charge simulations

    NASA Astrophysics Data System (ADS)

    Qiang, Ji

    2017-10-01

    A three-dimensional (3D) Poisson solver with longitudinal periodic and transverse open boundary conditions can have important applications in beam physics of particle accelerators. In this paper, we present a fast efficient method to solve the Poisson equation using a spectral finite-difference method. This method uses a computational domain that contains the charged particle beam only and has a computational complexity of O(Nu(logNmode)) , where Nu is the total number of unknowns and Nmode is the maximum number of longitudinal or azimuthal modes. This saves both the computational time and the memory usage of using an artificial boundary condition in a large extended computational domain. The new 3D Poisson solver is parallelized using a message passing interface (MPI) on multi-processor computers and shows a reasonable parallel performance up to hundreds of processor cores.

  20. Micromagnetics on high-performance workstation and mobile computational platforms

    NASA Astrophysics Data System (ADS)

    Fu, S.; Chang, R.; Couture, S.; Menarini, M.; Escobar, M. A.; Kuteifan, M.; Lubarda, M.; Gabay, D.; Lomakin, V.

    2015-05-01

    The feasibility of using high-performance desktop and embedded mobile computational platforms is presented, including multi-core Intel central processing unit, Nvidia desktop graphics processing units, and Nvidia Jetson TK1 Platform. FastMag finite element method-based micromagnetic simulator is used as a testbed, showing high efficiency on all the platforms. Optimization aspects of improving the performance of the mobile systems are discussed. The high performance, low cost, low power consumption, and rapid performance increase of the embedded mobile systems make them a promising candidate for micromagnetic simulations. Such architectures can be used as standalone systems or can be built as low-power computing clusters.

  1. A High Performance Block Eigensolver for Nuclear Configuration Interaction Calculations

    DOE PAGES

    Aktulga, Hasan Metin; Afibuzzaman, Md.; Williams, Samuel; ...

    2017-06-01

    As on-node parallelism increases and the performance gap between the processor and the memory system widens, achieving high performance in large-scale scientific applications requires an architecture-aware design of algorithms and solvers. We focus on the eigenvalue problem arising in nuclear Configuration Interaction (CI) calculations, where a few extreme eigenpairs of a sparse symmetric matrix are needed. Here, we consider a block iterative eigensolver whose main computational kernels are the multiplication of a sparse matrix with multiple vectors (SpMM), and tall-skinny matrix operations. We then present techniques to significantly improve the SpMM and the transpose operation SpMM T by using themore » compressed sparse blocks (CSB) format. We achieve 3-4× speedup on the requisite operations over good implementations with the commonly used compressed sparse row (CSR) format. We develop a performance model that allows us to correctly estimate the performance of our SpMM kernel implementations, and we identify cache bandwidth as a potential performance bottleneck beyond DRAM. We also analyze and optimize the performance of LOBPCG kernels (inner product and linear combinations on multiple vectors) and show up to 15× speedup over using high performance BLAS libraries for these operations. The resulting high performance LOBPCG solver achieves 1.4× to 1.8× speedup over the existing Lanczos solver on a series of CI computations on high-end multicore architectures (Intel Xeons). We also analyze the performance of our techniques on an Intel Xeon Phi Knights Corner (KNC) processor.« less

  2. Thread-Level Parallelization and Optimization of NWChem for the Intel MIC Architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shan, Hongzhang; Williams, Samuel; Jong, Wibe de

    In the multicore era it was possible to exploit the increase in on-chip parallelism by simply running multiple MPI processes per chip. Unfortunately, manycore processors' greatly increased thread- and data-level parallelism coupled with a reduced memory capacity demand an altogether different approach. In this paper we explore augmenting two NWChem modules, triples correction of the CCSD(T) and Fock matrix construction, with OpenMP in order that they might run efficiently on future manycore architectures. As the next NERSC machine will be a self-hosted Intel MIC (Xeon Phi) based supercomputer, we leverage an existing MIC testbed at NERSC to evaluate our experiments.more » In order to proxy the fact that future MIC machines will not have a host processor, we run all of our experiments in tt native mode. We found that while straightforward application of OpenMP to the deep loop nests associated with the tensor contractions of CCSD(T) was sufficient in attaining high performance, significant effort was required to safely and efficiently thread the TEXAS integral package when constructing the Fock matrix. Ultimately, our new MPI OpenMP hybrid implementations attain up to 65x better performance for the triples part of the CCSD(T) due in large part to the fact that the limited on-card memory limits the existing MPI implementation to a single process per card. Additionally, we obtain up to 1.6x better performance on Fock matrix constructions when compared with the best MPI implementations running multiple processes per card.« less

  3. Thread-level parallelization and optimization of NWChem for the Intel MIC architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shan, Hongzhang; Williams, Samuel; de Jong, Wibe

    In the multicore era it was possible to exploit the increase in on-chip parallelism by simply running multiple MPI processes per chip. Unfortunately, manycore processors' greatly increased thread- and data-level parallelism coupled with a reduced memory capacity demand an altogether different approach. In this paper we explore augmenting two NWChem modules, triples correction of the CCSD(T) and Fock matrix construction, with OpenMP in order that they might run efficiently on future manycore architectures. As the next NERSC machine will be a self-hosted Intel MIC (Xeon Phi) based supercomputer, we leverage an existing MIC testbed at NERSC to evaluate our experiments.more » In order to proxy the fact that future MIC machines will not have a host processor, we run all of our experiments in native mode. We found that while straightforward application of OpenMP to the deep loop nests associated with the tensor contractions of CCSD(T) was sufficient in attaining high performance, significant e ort was required to safely and efeciently thread the TEXAS integral package when constructing the Fock matrix. Ultimately, our new MPI+OpenMP hybrid implementations attain up to 65× better performance for the triples part of the CCSD(T) due in large part to the fact that the limited on-card memory limits the existing MPI implementation to a single process per card. Additionally, we obtain up to 1.6× better performance on Fock matrix constructions when compared with the best MPI implementations running multiple processes per card.« less

  4. SpaceCubeX: A Framework for Evaluating Hybrid Multi-Core CPU FPGA DSP Architectures

    NASA Technical Reports Server (NTRS)

    Schmidt, Andrew G.; Weisz, Gabriel; French, Matthew; Flatley, Thomas; Villalpando, Carlos Y.

    2017-01-01

    The SpaceCubeX project is motivated by the need for high performance, modular, and scalable on-board processing to help scientists answer critical 21st century questions about global climate change, air quality, ocean health, and ecosystem dynamics, while adding new capabilities such as low-latency data products for extreme event warnings. These goals translate into on-board processing throughput requirements that are on the order of 100-1,000 more than those of previous Earth Science missions for standard processing, compression, storage, and downlink operations. To study possible future architectures to achieve these performance requirements, the SpaceCubeX project provides an evolvable testbed and framework that enables a focused design space exploration of candidate hybrid CPU/FPGA/DSP processing architectures. The framework includes ArchGen, an architecture generator tool populated with candidate architecture components, performance models, and IP cores, that allows an end user to specify the type, number, and connectivity of a hybrid architecture. The framework requires minimal extensions to integrate new processors, such as the anticipated High Performance Spaceflight Computer (HPSC), reducing time to initiate benchmarking by months. To evaluate the framework, we leverage a wide suite of high performance embedded computing benchmarks and Earth science scenarios to ensure robust architecture characterization. We report on our projects Year 1 efforts and demonstrate the capabilities across four simulation testbed models, a baseline SpaceCube 2.0 system, a dual ARM A9 processor system, a hybrid quad ARM A53 and FPGA system, and a hybrid quad ARM A53 and DSP system.

  5. Layout finishing of a 28nm, 3 billions transistors, multi-core processor

    NASA Astrophysics Data System (ADS)

    Morey-Chaisemartin, Philippe; Beisser, Eric

    2013-06-01

    Designing a fully new 256 cores processor is a great challenge for a fabless startup. In addition to all architecture, functionalities and timing issues, the layout by itself is a bottleneck due to all the process constraints of a 28nm technology. As developers of advanced layout finishing solutions, we were involved in the design flow of this huge chip with its 3 billions transistors. We had to face the issue of dummy patterns instantiation with respect to design constraints. All the design rules to generate the "dummies" are clearly defined in the Design Rule Manual, and some automatic procedures are provided by the foundry itself, but these routines don't take care of the designer requests. Such a chip, embeds both digital parts and analog modules for clock and power management. These two different type of designs have each their own set of constraints. In both cases, the insertion of dummies should not introduce unexpected variations leading to malfunctions. For example, on digital parts were signal race conditions are critical on long wires or bus, introduction of uncontrolled parasitic along these nets are highly critical. For analog devices such as high frequency and high sensitivity comparators, the exact symmetry of the two parts of a current mirror generator should be guaranteed. Thanks to the easily customizable features of our dummies insertion tool, we were able to configure it in order to meet all the designer requirements as well as the process constraints. This paper will present all these advanced key features as well as the layout tricks used to fulfill all requirements.

  6. A High Performance Block Eigensolver for Nuclear Configuration Interaction Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aktulga, Hasan Metin; Afibuzzaman, Md.; Williams, Samuel

    As on-node parallelism increases and the performance gap between the processor and the memory system widens, achieving high performance in large-scale scientific applications requires an architecture-aware design of algorithms and solvers. We focus on the eigenvalue problem arising in nuclear Configuration Interaction (CI) calculations, where a few extreme eigenpairs of a sparse symmetric matrix are needed. Here, we consider a block iterative eigensolver whose main computational kernels are the multiplication of a sparse matrix with multiple vectors (SpMM), and tall-skinny matrix operations. We then present techniques to significantly improve the SpMM and the transpose operation SpMM T by using themore » compressed sparse blocks (CSB) format. We achieve 3-4× speedup on the requisite operations over good implementations with the commonly used compressed sparse row (CSR) format. We develop a performance model that allows us to correctly estimate the performance of our SpMM kernel implementations, and we identify cache bandwidth as a potential performance bottleneck beyond DRAM. We also analyze and optimize the performance of LOBPCG kernels (inner product and linear combinations on multiple vectors) and show up to 15× speedup over using high performance BLAS libraries for these operations. The resulting high performance LOBPCG solver achieves 1.4× to 1.8× speedup over the existing Lanczos solver on a series of CI computations on high-end multicore architectures (Intel Xeons). We also analyze the performance of our techniques on an Intel Xeon Phi Knights Corner (KNC) processor.« less

  7. Fast CPU-based Monte Carlo simulation for radiotherapy dose calculation.

    PubMed

    Ziegenhein, Peter; Pirner, Sven; Ph Kamerling, Cornelis; Oelfke, Uwe

    2015-08-07

    Monte-Carlo (MC) simulations are considered to be the most accurate method for calculating dose distributions in radiotherapy. Its clinical application, however, still is limited by the long runtimes conventional implementations of MC algorithms require to deliver sufficiently accurate results on high resolution imaging data. In order to overcome this obstacle we developed the software-package PhiMC, which is capable of computing precise dose distributions in a sub-minute time-frame by leveraging the potential of modern many- and multi-core CPU-based computers. PhiMC is based on the well verified dose planning method (DPM). We could demonstrate that PhiMC delivers dose distributions which are in excellent agreement to DPM. The multi-core implementation of PhiMC scales well between different computer architectures and achieves a speed-up of up to 37[Formula: see text] compared to the original DPM code executed on a modern system. Furthermore, we could show that our CPU-based implementation on a modern workstation is between 1.25[Formula: see text] and 1.95[Formula: see text] faster than a well-known GPU implementation of the same simulation method on a NVIDIA Tesla C2050. Since CPUs work on several hundreds of GB RAM the typical GPU memory limitation does not apply for our implementation and high resolution clinical plans can be calculated.

  8. 2005 6th Annual Science and Engineering Technology Conference

    DTIC Science & Technology

    2005-04-21

    BioFAC VBAIDS Hybrid: PCR/Immuno Fast PCR Fast Immunoassay Mass Spec (Pyrolysis) SIBS UV -LIF IR Fluorochrome Charge Detect. BioCADS Trigger Advanced...Weights Beam forming Signal Processing mapped to GPU architecture Vector Processor STAP (STAP-BOY) GaN High Frequency Transistor (WBG-RF) UV Laser...Service anti- counterfeiting • Embedded security strips Technology Limitations and Barriers • Training and cost (training intensive) Land Borders North Land

  9. Exploiting Vector and Multicore Parallelsim for Recursive, Data- and Task-Parallel Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Bin; Krishnamoorthy, Sriram; Agrawal, Kunal

    Modern hardware contains parallel execution resources that are well-suited for data-parallelism-vector units-and task parallelism-multicores. However, most work on parallel scheduling focuses on one type of hardware or the other. In this work, we present a scheduling framework that allows for a unified treatment of task- and data-parallelism. Our key insight is an abstraction, task blocks, that uniformly handles data-parallel iterations and task-parallel tasks, allowing them to be scheduled on vector units or executed independently as multicores. Our framework allows us to define schedulers that can dynamically select between executing task- blocks on vector units or multicores. We show that thesemore » schedulers are asymptotically optimal, and deliver the maximum amount of parallelism available in computation trees. To evaluate our schedulers, we develop program transformations that can convert mixed data- and task-parallel pro- grams into task block-based programs. Using a prototype instantiation of our scheduling framework, we show that, on an 8-core system, we can simultaneously exploit vector and multicore parallelism to achieve 14×-108× speedup over sequential baselines.« less

  10. F2Dock: Fast Fourier Protein-Protein Docking

    PubMed Central

    Bajaj, Chandrajit; Chowdhury, Rezaul; Siddavanahalli, Vinay

    2009-01-01

    The functions of proteins is often realized through their mutual interactions. Determining a relative transformation for a pair of proteins and their conformations which form a stable complex, reproducible in nature, is known as docking. It is an important step in drug design, structure determination and understanding function and structure relationships. In this paper we extend our non-uniform fast Fourier transform docking algorithm to include an adaptive search phase (both translational and rotational) and thereby speed up its execution. We have also implemented a multithreaded version of the adaptive docking algorithm for even faster execution on multicore machines. We call this protein-protein docking code F2Dock (F2 = Fast Fourier). We have calibrated F2Dock based on an extensive experimental study on a list of benchmark complexes and conclude that F2Dock works very well in practice. Though all docking results reported in this paper use shape complementarity and Coulombic potential based scores only, F2Dock is structured to incorporate Lennard-Jones potential and re-ranking docking solutions based on desolvation energy. PMID:21071796

  11. Proceedings of the Interservice/Industry Training Systems Conference (9th), Held at Washington, DC, on 30 November - 2 December 1987

    DTIC Science & Technology

    1987-12-01

    requires much more data, but holds fast to the idea that the FV approach, or some other model, is critical if the job analysis process is to have its...Ada compiled code executes twice as fast as Microsoft’s Fortran compiled code. This conclusion is at variance with the results obtained from...finish is not so important. Hence, if a design methodology produces coda that will not execute fast enough on processors suitable for flight

  12. Software Coherence in Multiprocessor Memory Systems. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Bolosky, William Joseph

    1993-01-01

    Processors are becoming faster and multiprocessor memory interconnection systems are not keeping up. Therefore, it is necessary to have threads and the memory they access as near one another as possible. Typically, this involves putting memory or caches with the processors, which gives rise to the problem of coherence: if one processor writes an address, any other processor reading that address must see the new value. This coherence can be maintained by the hardware or with software intervention. Systems of both types have been built in the past; the hardware-based systems tended to outperform the software ones. However, the ratio of processor to interconnect speed is now so high that the extra overhead of the software systems may no longer be significant. This issue is explored both by implementing a software maintained system and by introducing and using the technique of offline optimal analysis of memory reference traces. It finds that in properly built systems, software maintained coherence can perform comparably to or even better than hardware maintained coherence. The architectural features necessary for efficient software coherence to be profitable include a small page size, a fast trap mechanism, and the ability to execute instructions while remote memory references are outstanding.

  13. Software for embedded processors: Problems and solutions

    NASA Astrophysics Data System (ADS)

    Bogaerts, J. A. C.

    1990-08-01

    Data Acquistion systems in HEP experiments use a wide spectrum of computers to cope with two major problems: high event rates and a large data volume. They do this by using special fast trigger processors at the source to reduce the event rate by several orders of magnitude. The next stage of a data acquisition system consists of a network of fast but conventional microprocessors which are embedded in high speed bus systems where data is still further reduced, filtered and merged. In the final stage complete events are farmed out to a another collection of processors, which reconstruct the events and perhaps achieve a further event rejection by a small factor, prior to recording onto magnetic tape. Detectors are monitored by analyzing a fraction of the data. This may be done for individual detectors at an early state of the data acquisition or it may be delayed till the complete events are available. A network of workstations is used for monitoring, displays and run control. Software for trigger processors must have a simple structure. Rejection algorithms are carefully optimized, and overheads introduced by system software cannot be tolerated. The embedded microprocessors have to co-operate, and need to be synchronized with the preceding and following stages. Real time kernels are typically used to solve synchronization and communication problems. Applications are usually coded in C, which is reasonably efficient and allows direct control over low level hardware functions. Event reconstruction software is very similar or even identical to offline software, predominantly written in FORTRAN. With the advent of powerful RISC processors, and with manufacturers tending to adopt open bus architectures, there is a move towards commercial processors and hence the introduction of the UNIX operating system. Building and controlling such a heterogeneous data acquisition system puts a heavy strain on the software. Communications is now as important as CPU capacity and I/O bandwidth, the traditional key parameters of a HEP data acquisition system. Software engineering and real time system simulation tools are becoming indispensible for the design of future data acquisition systems.

  14. An implementation of a tree code on a SIMD, parallel computer

    NASA Technical Reports Server (NTRS)

    Olson, Kevin M.; Dorband, John E.

    1994-01-01

    We describe a fast tree algorithm for gravitational N-body simulation on SIMD parallel computers. The tree construction uses fast, parallel sorts. The sorted lists are recursively divided along their x, y and z coordinates. This data structure is a completely balanced tree (i.e., each particle is paired with exactly one other particle) and maintains good spatial locality. An implementation of this tree-building algorithm on a 16k processor Maspar MP-1 performs well and constitutes only a small fraction (approximately 15%) of the entire cycle of finding the accelerations. Each node in the tree is treated as a monopole. The tree search and the summation of accelerations also perform well. During the tree search, node data that is needed from another processor is simply fetched. Roughly 55% of the tree search time is spent in communications between processors. We apply the code to two problems of astrophysical interest. The first is a simulation of the close passage of two gravitationally, interacting, disk galaxies using 65,636 particles. We also simulate the formation of structure in an expanding, model universe using 1,048,576 particles. Our code attains speeds comparable to one head of a Cray Y-MP, so single instruction, multiple data (SIMD) type computers can be used for these simulations. The cost/performance ratio for SIMD machines like the Maspar MP-1 make them an extremely attractive alternative to either vector processors or large multiple instruction, multiple data (MIMD) type parallel computers. With further optimizations (e.g., more careful load balancing), speeds in excess of today's vector processing computers should be possible.

  15. Semivariogram Analysis of Bone Images Implemented on FPGA Architectures.

    PubMed

    Shirvaikar, Mukul; Lagadapati, Yamuna; Dong, Xuanliang

    2017-03-01

    Osteoporotic fractures are a major concern for the healthcare of elderly and female populations. Early diagnosis of patients with a high risk of osteoporotic fractures can be enhanced by introducing second-order statistical analysis of bone image data using techniques such as variogram analysis. Such analysis is computationally intensive thereby creating an impediment for introduction into imaging machines found in common clinical settings. This paper investigates the fast implementation of the semivariogram algorithm, which has been proven to be effective in modeling bone strength, and should be of interest to readers in the areas of computer-aided diagnosis and quantitative image analysis. The semivariogram is a statistical measure of the spatial distribution of data, and is based on Markov Random Fields (MRFs). Semivariogram analysis is a computationally intensive algorithm that has typically seen applications in the geosciences and remote sensing areas. Recently, applications in the area of medical imaging have been investigated, resulting in the need for efficient real time implementation of the algorithm. A semi-variance, γ ( h ), is defined as the half of the expected squared differences of pixel values between any two data locations with a lag distance of h . Due to the need to examine each pair of pixels in the image or sub-image being processed, the base algorithm complexity for an image window with n pixels is O ( n 2 ) Field Programmable Gate Arrays (FPGAs) are an attractive solution for such demanding applications due to their parallel processing capability. FPGAs also tend to operate at relatively modest clock rates measured in a few hundreds of megahertz. This paper presents a technique for the fast computation of the semivariogram using two custom FPGA architectures. A modular architecture approach is chosen to allow for replication of processing units. This allows for high throughput due to concurrent processing of pixel pairs. The current implementation is focused on isotropic semivariogram computations only. The algorithm is benchmarked using VHDL on a Xilinx XUPV5-LX110T development Kit, which utilizes the Virtex5 FPGA. Medical image data from DXA scans are utilized for the experiments. Implementation results show that a significant advantage in computational speed is attained by the architectures with respect to implementation on a personal computer with an Intel i7 multi-core processor.

  16. Semivariogram Analysis of Bone Images Implemented on FPGA Architectures

    PubMed Central

    Shirvaikar, Mukul; Lagadapati, Yamuna; Dong, Xuanliang

    2016-01-01

    Osteoporotic fractures are a major concern for the healthcare of elderly and female populations. Early diagnosis of patients with a high risk of osteoporotic fractures can be enhanced by introducing second-order statistical analysis of bone image data using techniques such as variogram analysis. Such analysis is computationally intensive thereby creating an impediment for introduction into imaging machines found in common clinical settings. This paper investigates the fast implementation of the semivariogram algorithm, which has been proven to be effective in modeling bone strength, and should be of interest to readers in the areas of computer-aided diagnosis and quantitative image analysis. The semivariogram is a statistical measure of the spatial distribution of data, and is based on Markov Random Fields (MRFs). Semivariogram analysis is a computationally intensive algorithm that has typically seen applications in the geosciences and remote sensing areas. Recently, applications in the area of medical imaging have been investigated, resulting in the need for efficient real time implementation of the algorithm. A semi-variance, γ(h), is defined as the half of the expected squared differences of pixel values between any two data locations with a lag distance of h. Due to the need to examine each pair of pixels in the image or sub-image being processed, the base algorithm complexity for an image window with n pixels is O (n2) Field Programmable Gate Arrays (FPGAs) are an attractive solution for such demanding applications due to their parallel processing capability. FPGAs also tend to operate at relatively modest clock rates measured in a few hundreds of megahertz. This paper presents a technique for the fast computation of the semivariogram using two custom FPGA architectures. A modular architecture approach is chosen to allow for replication of processing units. This allows for high throughput due to concurrent processing of pixel pairs. The current implementation is focused on isotropic semivariogram computations only. The algorithm is benchmarked using VHDL on a Xilinx XUPV5-LX110T development Kit, which utilizes the Virtex5 FPGA. Medical image data from DXA scans are utilized for the experiments. Implementation results show that a significant advantage in computational speed is attained by the architectures with respect to implementation on a personal computer with an Intel i7 multi-core processor. PMID:28428829

  17. Monitoring Evolution at CERN

    NASA Astrophysics Data System (ADS)

    Andrade, P.; Fiorini, B.; Murphy, S.; Pigueiras, L.; Santos, M.

    2015-12-01

    Over the past two years, the operation of the CERN Data Centres went through significant changes with the introduction of new mechanisms for hardware procurement, new services for cloud provisioning and configuration management, among other improvements. These changes resulted in an increase of resources being operated in a more dynamic environment. Today, the CERN Data Centres provide over 11000 multi-core processor servers, 130 PB disk servers, 100 PB tape robots, and 150 high performance tape drives. To cope with these developments, an evolution of the data centre monitoring tools was also required. This modernisation was based on a number of guiding rules: sustain the increase of resources, adapt to the new dynamic nature of the data centres, make monitoring data easier to share, give more flexibility to Service Managers on how they publish and consume monitoring metrics and logs, establish a common repository of monitoring data, optimise the handling of monitoring notifications, and replace the previous toolset by new open source technologies with large adoption and community support. This contribution describes how these improvements were delivered, present the architecture and technologies of the new monitoring tools, and review the experience of its production deployment.

  18. PARALLELISATION OF THE MODEL-BASED ITERATIVE RECONSTRUCTION ALGORITHM DIRA.

    PubMed

    Örtenberg, A; Magnusson, M; Sandborg, M; Alm Carlsson, G; Malusek, A

    2016-06-01

    New paradigms for parallel programming have been devised to simplify software development on multi-core processors and many-core graphical processing units (GPU). Despite their obvious benefits, the parallelisation of existing computer programs is not an easy task. In this work, the use of the Open Multiprocessing (OpenMP) and Open Computing Language (OpenCL) frameworks is considered for the parallelisation of the model-based iterative reconstruction algorithm DIRA with the aim to significantly shorten the code's execution time. Selected routines were parallelised using OpenMP and OpenCL libraries; some routines were converted from MATLAB to C and optimised. Parallelisation of the code with the OpenMP was easy and resulted in an overall speedup of 15 on a 16-core computer. Parallelisation with OpenCL was more difficult owing to differences between the central processing unit and GPU architectures. The resulting speedup was substantially lower than the theoretical peak performance of the GPU; the cause was explained. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. ParDRe: faster parallel duplicated reads removal tool for sequencing studies.

    PubMed

    González-Domínguez, Jorge; Schmidt, Bertil

    2016-05-15

    Current next generation sequencing technologies often generate duplicated or near-duplicated reads that (depending on the application scenario) do not provide any interesting biological information but can increase memory requirements and computational time of downstream analysis. In this work we present ParDRe, a de novo parallel tool to remove duplicated and near-duplicated reads through the clustering of Single-End or Paired-End sequences from fasta or fastq files. It uses a novel bitwise approach to compare the suffixes of DNA strings and employs hybrid MPI/multithreading to reduce runtime on multicore systems. We show that ParDRe is up to 27.29 times faster than Fulcrum (a representative state-of-the-art tool) on a platform with two 8-core Sandy-Bridge processors. Source code in C ++ and MPI running on Linux systems as well as a reference manual are available at https://sourceforge.net/projects/pardre/ jgonzalezd@udc.es. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. permGPU: Using graphics processing units in RNA microarray association studies.

    PubMed

    Shterev, Ivo D; Jung, Sin-Ho; George, Stephen L; Owzar, Kouros

    2010-06-16

    Many analyses of microarray association studies involve permutation, bootstrap resampling and cross-validation, that are ideally formulated as embarrassingly parallel computing problems. Given that these analyses are computationally intensive, scalable approaches that can take advantage of multi-core processor systems need to be developed. We have developed a CUDA based implementation, permGPU, that employs graphics processing units in microarray association studies. We illustrate the performance and applicability of permGPU within the context of permutation resampling for a number of test statistics. An extensive simulation study demonstrates a dramatic increase in performance when using permGPU on an NVIDIA GTX 280 card compared to an optimized C/C++ solution running on a conventional Linux server. permGPU is available as an open-source stand-alone application and as an extension package for the R statistical environment. It provides a dramatic increase in performance for permutation resampling analysis in the context of microarray association studies. The current version offers six test statistics for carrying out permutation resampling analyses for binary, quantitative and censored time-to-event traits.

  1. Parallelization of elliptic solver for solving 1D Boussinesq model

    NASA Astrophysics Data System (ADS)

    Tarwidi, D.; Adytia, D.

    2018-03-01

    In this paper, a parallel implementation of an elliptic solver in solving 1D Boussinesq model is presented. Numerical solution of Boussinesq model is obtained by implementing a staggered grid scheme to continuity, momentum, and elliptic equation of Boussinesq model. Tridiagonal system emerging from numerical scheme of elliptic equation is solved by cyclic reduction algorithm. The parallel implementation of cyclic reduction is executed on multicore processors with shared memory architectures using OpenMP. To measure the performance of parallel program, large number of grids is varied from 28 to 214. Two test cases of numerical experiment, i.e. propagation of solitary and standing wave, are proposed to evaluate the parallel program. The numerical results are verified with analytical solution of solitary and standing wave. The best speedup of solitary and standing wave test cases is about 2.07 with 214 of grids and 1.86 with 213 of grids, respectively, which are executed by using 8 threads. Moreover, the best efficiency of parallel program is 76.2% and 73.5% for solitary and standing wave test cases, respectively.

  2. Roofline model toolkit: A practical tool for architectural and program analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lo, Yu Jung; Williams, Samuel; Van Straalen, Brian

    We present preliminary results of the Roofline Toolkit for multicore, many core, and accelerated architectures. This paper focuses on the processor architecture characterization engine, a collection of portable instrumented micro benchmarks implemented with Message Passing Interface (MPI), and OpenMP used to express thread-level parallelism. These benchmarks are specialized to quantify the behavior of different architectural features. Compared to previous work on performance characterization, these microbenchmarks focus on capturing the performance of each level of the memory hierarchy, along with thread-level parallelism, instruction-level parallelism and explicit SIMD parallelism, measured in the context of the compilers and run-time environments. We also measuremore » sustained PCIe throughput with four GPU memory managed mechanisms. By combining results from the architecture characterization with the Roofline model based solely on architectural specifications, this work offers insights for performance prediction of current and future architectures and their software systems. To that end, we instrument three applications and plot their resultant performance on the corresponding Roofline model when run on a Blue Gene/Q architecture.« less

  3. Aeroacoustic Codes For Rotor Harmonic and BVI Noise--CAMRAD.Mod1/HIRES

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.; Boyd, D. Douglas, Jr.; Burley, Casey L.; Jolly, J. Ralph, Jr.

    1996-01-01

    This paper presents a status of non-CFD aeroacoustic codes at NASA Langley Research Center for the prediction of helicopter harmonic and Blade-Vortex Interaction (BVI) noise. The prediction approach incorporates three primary components: CAMRAD.Mod1 - a substantially modified version of the performance/trim/wake code CAMRAD; HIRES - a high resolution blade loads post-processor; and WOPWOP - an acoustic code. The functional capabilities and physical modeling in CAMRAD.Mod1/HIRES will be summarized and illustrated. A new multi-core roll-up wake modeling approach is introduced and validated. Predictions of rotor wake and radiated noise are compared with to the results of the HART program, a model BO-105 windtunnel test at the DNW in Europe. Additional comparisons are made to results from a DNW test of a contemporary design four-bladed rotor, as well as from a Langley test of a single proprotor (tiltrotor) three-bladed model configuration. Because the method is shown to help eliminate the necessity of guesswork in setting code parameters between different rotor configurations, it should prove useful as a rotor noise design tool.

  4. Advanced Software V&V for Civil Aviation and Autonomy

    NASA Technical Reports Server (NTRS)

    Brat, Guillaume P.

    2017-01-01

    With the advances in high-computing platform (e.g., advanced graphical processing units or multi-core processors), computationally-intensive software techniques such as the ones used in artificial intelligence or formal methods have provided us with an opportunity to further increase safety in the aviation industry. Some of these techniques have facilitated building safety at design time, like in aircraft engines or software verification and validation, and others can introduce safety benefits during operations as long as we adapt our processes. In this talk, I will present how NASA is taking advantage of these new software techniques to build in safety at design time through advanced software verification and validation, which can be applied earlier and earlier in the design life cycle and thus help also reduce the cost of aviation assurance. I will then show how run-time techniques (such as runtime assurance or data analytics) offer us a chance to catch even more complex problems, even in the face of changing and unpredictable environments. These new techniques will be extremely useful as our aviation systems become more complex and more autonomous.

  5. Multicore Architecture-aware Scientific Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srinivasa, Avinash

    Modern high performance systems are becoming increasingly complex and powerful due to advancements in processor and memory architecture. In order to keep up with this increasing complexity, applications have to be augmented with certain capabilities to fully exploit such systems. These may be at the application level, such as static or dynamic adaptations or at the system level, like having strategies in place to override some of the default operating system polices, the main objective being to improve computational performance of the application. The current work proposes two such capabilites with respect to multi-threaded scientific applications, in particular a largemore » scale physics application computing ab-initio nuclear structure. The first involves using a middleware tool to invoke dynamic adaptations in the application, so as to be able to adjust to the changing computational resource availability at run-time. The second involves a strategy for effective placement of data in main memory, to optimize memory access latencies and bandwidth. These capabilties when included were found to have a significant impact on the application performance, resulting in average speedups of as much as two to four times.« less

  6. Real-Time Three-Dimensional Cell Segmentation in Large-Scale Microscopy Data of Developing Embryos.

    PubMed

    Stegmaier, Johannes; Amat, Fernando; Lemon, William C; McDole, Katie; Wan, Yinan; Teodoro, George; Mikut, Ralf; Keller, Philipp J

    2016-01-25

    We present the Real-time Accurate Cell-shape Extractor (RACE), a high-throughput image analysis framework for automated three-dimensional cell segmentation in large-scale images. RACE is 55-330 times faster and 2-5 times more accurate than state-of-the-art methods. We demonstrate the generality of RACE by extracting cell-shape information from entire Drosophila, zebrafish, and mouse embryos imaged with confocal and light-sheet microscopes. Using RACE, we automatically reconstructed cellular-resolution tissue anisotropy maps across developing Drosophila embryos and quantified differences in cell-shape dynamics in wild-type and mutant embryos. We furthermore integrated RACE with our framework for automated cell lineaging and performed joint segmentation and cell tracking in entire Drosophila embryos. RACE processed these terabyte-sized datasets on a single computer within 1.4 days. RACE is easy to use, as it requires adjustment of only three parameters, takes full advantage of state-of-the-art multi-core processors and graphics cards, and is available as open-source software for Windows, Linux, and Mac OS. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. A Stream Tilling Approach to Surface Area Estimation for Large Scale Spatial Data in a Shared Memory System

    NASA Astrophysics Data System (ADS)

    Liu, Jiping; Kang, Xiaochen; Dong, Chun; Xu, Shenghua

    2017-12-01

    Surface area estimation is a widely used tool for resource evaluation in the physical world. When processing large scale spatial data, the input/output (I/O) can easily become the bottleneck in parallelizing the algorithm due to the limited physical memory resources and the very slow disk transfer rate. In this paper, we proposed a stream tilling approach to surface area estimation that first decomposed a spatial data set into tiles with topological expansions. With these tiles, the one-to-one mapping relationship between the input and the computing process was broken. Then, we realized a streaming framework towards the scheduling of the I/O processes and computing units. Herein, each computing unit encapsulated a same copy of the estimation algorithm, and multiple asynchronous computing units could work individually in parallel. Finally, the performed experiment demonstrated that our stream tilling estimation can efficiently alleviate the heavy pressures from the I/O-bound work, and the measured speedup after being optimized have greatly outperformed the directly parallel versions in shared memory systems with multi-core processors.

  8. Job-mix modeling and system analysis of an aerospace multiprocessor.

    NASA Technical Reports Server (NTRS)

    Mallach, E. G.

    1972-01-01

    An aerospace guidance computer organization, consisting of multiple processors and memory units attached to a central time-multiplexed data bus, is described. A job mix for this type of computer is obtained by analysis of Apollo mission programs. Multiprocessor performance is then analyzed using: 1) queuing theory, under certain 'limiting case' assumptions; 2) Markov process methods; and 3) system simulation. Results of the analyses indicate: 1) Markov process analysis is a useful and efficient predictor of simulation results; 2) efficient job execution is not seriously impaired even when the system is so overloaded that new jobs are inordinately delayed in starting; 3) job scheduling is significant in determining system performance; and 4) a system having many slow processors may or may not perform better than a system of equal power having few fast processors, but will not perform significantly worse.

  9. Efficiently Scheduling Multi-core Guest Virtual Machines on Multi-core Hosts in Network Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoginath, Srikanth B; Perumalla, Kalyan S

    2011-01-01

    Virtual machine (VM)-based simulation is a method used by network simulators to incorporate realistic application behaviors by executing actual VMs as high-fidelity surrogates for simulated end-hosts. A critical requirement in such a method is the simulation time-ordered scheduling and execution of the VMs. Prior approaches such as time dilation are less efficient due to the high degree of multiplexing possible when multiple multi-core VMs are simulated on multi-core host systems. We present a new simulation time-ordered scheduler to efficiently schedule multi-core VMs on multi-core real hosts, with a virtual clock realized on each virtual core. The distinguishing features of ourmore » approach are: (1) customizable granularity of the VM scheduling time unit on the simulation time axis, (2) ability to take arbitrary leaps in virtual time by VMs to maximize the utilization of host (real) cores when guest virtual cores idle, and (3) empirically determinable optimality in the tradeoff between total execution (real) time and time-ordering accuracy levels. Experiments show that it is possible to get nearly perfect time-ordered execution, with a slight cost in total run time, relative to optimized non-simulation VM schedulers. Interestingly, with our time-ordered scheduler, it is also possible to reduce the time-ordering error from over 50% of non-simulation scheduler to less than 1% realized by our scheduler, with almost the same run time efficiency as that of the highly efficient non-simulation VM schedulers.« less

  10. DIALIGN P: fast pair-wise and multiple sequence alignment using parallel processors.

    PubMed

    Schmollinger, Martin; Nieselt, Kay; Kaufmann, Michael; Morgenstern, Burkhard

    2004-09-09

    Parallel computing is frequently used to speed up computationally expensive tasks in Bioinformatics. Herein, a parallel version of the multi-alignment program DIALIGN is introduced. We propose two ways of dividing the program into independent sub-routines that can be run on different processors: (a) pair-wise sequence alignments that are used as a first step to multiple alignment account for most of the CPU time in DIALIGN. Since alignments of different sequence pairs are completely independent of each other, they can be distributed to multiple processors without any effect on the resulting output alignments. (b) For alignments of large genomic sequences, we use a heuristics by splitting up sequences into sub-sequences based on a previously introduced anchored alignment procedure. For our test sequences, this combined approach reduces the program running time of DIALIGN by up to 97%. By distributing sub-routines to multiple processors, the running time of DIALIGN can be crucially improved. With these improvements, it is possible to apply the program in large-scale genomics and proteomics projects that were previously beyond its scope.

  11. An FPGA computing demo core for space charge simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Jinyuan; Huang, Yifei; /Fermilab

    2009-01-01

    In accelerator physics, space charge simulation requires large amount of computing power. In a particle system, each calculation requires time/resource consuming operations such as multiplications, divisions, and square roots. Because of the flexibility of field programmable gate arrays (FPGAs), we implemented this task with efficient use of the available computing resources and completely eliminated non-calculating operations that are indispensable in regular micro-processors (e.g. instruction fetch, instruction decoding, etc.). We designed and tested a 16-bit demo core for computing Coulomb's force in an Altera Cyclone II FPGA device. To save resources, the inverse square-root cube operation in our design is computedmore » using a memory look-up table addressed with nine to ten most significant non-zero bits. At 200 MHz internal clock, our demo core reaches a throughput of 200 M pairs/s/core, faster than a typical 2 GHz micro-processor by about a factor of 10. Temperature and power consumption of FPGAs were also lower than those of micro-processors. Fast and convenient, FPGAs can serve as alternatives to time-consuming micro-processors for space charge simulation.« less

  12. A low power biomedical signal processor ASIC based on hardware software codesign.

    PubMed

    Nie, Z D; Wang, L; Chen, W G; Zhang, T; Zhang, Y T

    2009-01-01

    A low power biomedical digital signal processor ASIC based on hardware and software codesign methodology was presented in this paper. The codesign methodology was used to achieve higher system performance and design flexibility. The hardware implementation included a low power 32bit RISC CPU ARM7TDMI, a low power AHB-compatible bus, and a scalable digital co-processor that was optimized for low power Fast Fourier Transform (FFT) calculations. The co-processor could be scaled for 8-point, 16-point and 32-point FFTs, taking approximate 50, 100 and 150 clock circles, respectively. The complete design was intensively simulated using ARM DSM model and was emulated by ARM Versatile platform, before conducted to silicon. The multi-million-gate ASIC was fabricated using SMIC 0.18 microm mixed-signal CMOS 1P6M technology. The die area measures 5,000 microm x 2,350 microm. The power consumption was approximately 3.6 mW at 1.8 V power supply and 1 MHz clock rate. The power consumption for FFT calculations was less than 1.5 % comparing with the conventional embedded software-based solution.

  13. Real-time trajectory optimization on parallel processors

    NASA Technical Reports Server (NTRS)

    Psiaki, Mark L.

    1993-01-01

    A parallel algorithm has been developed for rapidly solving trajectory optimization problems. The goal of the work has been to develop an algorithm that is suitable to do real-time, on-line optimal guidance through repeated solution of a trajectory optimization problem. The algorithm has been developed on an INTEL iPSC/860 message passing parallel processor. It uses a zero-order-hold discretization of a continuous-time problem and solves the resulting nonlinear programming problem using a custom-designed augmented Lagrangian nonlinear programming algorithm. The algorithm achieves parallelism of function, derivative, and search direction calculations through the principle of domain decomposition applied along the time axis. It has been encoded and tested on 3 example problems, the Goddard problem, the acceleration-limited, planar minimum-time to the origin problem, and a National Aerospace Plane minimum-fuel ascent guidance problem. Execution times as fast as 118 sec of wall clock time have been achieved for a 128-stage Goddard problem solved on 32 processors. A 32-stage minimum-time problem has been solved in 151 sec on 32 processors. A 32-stage National Aerospace Plane problem required 2 hours when solved on 32 processors. A speed-up factor of 7.2 has been achieved by using 32-nodes instead of 1-node to solve a 64-stage Goddard problem.

  14. Efficient Sorting on the Tilera Manycore Architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morari, Alessandro; Tumeo, Antonino; Villa, Oreste

    e present an efficient implementation of the radix sort algo- rithm for the Tilera TILEPro64 processor. The TILEPro64 is one of the first successful commercial manycore processors. It is com- posed of 64 tiles interconnected through multiple fast Networks- on-chip and features a fully coherent, shared distributed cache. The architecture has a large degree of flexibility, and allows various optimization strategies. We describe how we mapped the algorithm to this architecture. We present an in-depth analysis of the optimizations for each phase of the algorithm with respect to the processor’s sustained performance. We discuss the overall throughput reached by ourmore » radix sort implementation (up to 132 MK/s) and show that it provides comparable or better performance-per-watt with respect to state-of-the art implemen- tations on x86 processors and graphic processing units.« less

  15. Feasibility study, software design, layout and simulation of a two-dimensional Fast Fourier Transform machine for use in optical array interferometry

    NASA Technical Reports Server (NTRS)

    Boriakoff, Valentin

    1994-01-01

    The goal of this project was the feasibility study of a particular architecture of a digital signal processing machine operating in real time which could do in a pipeline fashion the computation of the fast Fourier transform (FFT) of a time-domain sampled complex digital data stream. The particular architecture makes use of simple identical processors (called inner product processors) in a linear organization called a systolic array. Through computer simulation the new architecture to compute the FFT with systolic arrays was proved to be viable, and computed the FFT correctly and with the predicted particulars of operation. Integrated circuits to compute the operations expected of the vital node of the systolic architecture were proven feasible, and even with a 2 micron VLSI technology can execute the required operations in the required time. Actual construction of the integrated circuits was successful in one variant (fixed point) and unsuccessful in the other (floating point).

  16. Real-time calibration-free C-scan images of the eye fundus using Master Slave swept source optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Bradu, Adrian; Kapinchev, Konstantin; Barnes, Fred; Garway-Heath, David F.; Rajendram, Ranjan; Keane, Pearce; Podoleanu, Adrian G.

    2015-03-01

    Recently, we introduced a novel Optical Coherence Tomography (OCT) method, termed as Master Slave OCT (MS-OCT), specialized for delivering en-face images. This method uses principles of spectral domain interfereometry in two stages. MS-OCT operates like a time domain OCT, selecting only signals from a chosen depth only while scanning the laser beam across the eye. Time domain OCT allows real time production of an en-face image, although relatively slowly. As a major advance, the Master Slave method allows collection of signals from any number of depths, as required by the user. The tremendous advantage in terms of parallel provision of data from numerous depths could not be fully employed by using multi core processors only. The data processing required to generate images at multiple depths simultaneously is not achievable with commodity multicore processors only. We compare here the major improvement in processing and display, brought about by using graphic cards. We demonstrate images obtained with a swept source at 100 kHz (which determines an acquisition time [Ta] for a frame of 200×200 pixels2 of Ta =1.6 s). By the end of the acquired frame being scanned, using our computing capacity, 4 simultaneous en-face images could be created in T = 0.8 s. We demonstrate that by using graphic cards, 32 en-face images can be displayed in Td 0.3 s. Other faster swept source engines can be used with no difference in terms of Td. With 32 images (or more), volumes can be created for 3D display, using en-face images, as opposed to the current technology where volumes are created using cross section OCT images.

  17. On-Line Temperature Estimation for Noisy Thermal Sensors Using a Smoothing Filter-Based Kalman Predictor

    PubMed Central

    Li, Zhi; Wei, Henglu; Zhou, Wei; Duan, Zhemin

    2018-01-01

    Dynamic thermal management (DTM) mechanisms utilize embedded thermal sensors to collect fine-grained temperature information for monitoring the real-time thermal behavior of multi-core processors. However, embedded thermal sensors are very susceptible to a variety of sources of noise, including environmental uncertainty and process variation. This causes the discrepancies between actual temperatures and those observed by on-chip thermal sensors, which seriously affect the efficiency of DTM. In this paper, a smoothing filter-based Kalman prediction technique is proposed to accurately estimate the temperatures from noisy sensor readings. For the multi-sensor estimation scenario, the spatial correlations among different sensor locations are exploited. On this basis, a multi-sensor synergistic calibration algorithm (known as MSSCA) is proposed to improve the simultaneous prediction accuracy of multiple sensors. Moreover, an infrared imaging-based temperature measurement technique is also proposed to capture the thermal traces of an advanced micro devices (AMD) quad-core processor in real time. The acquired real temperature data are used to evaluate our prediction performance. Simulation shows that the proposed synergistic calibration scheme can reduce the root-mean-square error (RMSE) by 1.2 ∘C and increase the signal-to-noise ratio (SNR) by 15.8 dB (with a very small average runtime overhead) compared with assuming the thermal sensor readings to be ideal. Additionally, the average false alarm rate (FAR) of the corrected sensor temperature readings can be reduced by 28.6%. These results clearly demonstrate that if our approach is used to perform temperature estimation, the response mechanisms of DTM can be triggered to adjust the voltages, frequencies, and cooling fan speeds at more appropriate times. PMID:29393862

  18. On-Line Temperature Estimation for Noisy Thermal Sensors Using a Smoothing Filter-Based Kalman Predictor.

    PubMed

    Li, Xin; Ou, Xingtao; Li, Zhi; Wei, Henglu; Zhou, Wei; Duan, Zhemin

    2018-02-02

    Dynamic thermal management (DTM) mechanisms utilize embedded thermal sensors to collect fine-grained temperature information for monitoring the real-time thermal behavior of multi-core processors. However, embedded thermal sensors are very susceptible to a variety of sources of noise, including environmental uncertainty and process variation. This causes the discrepancies between actual temperatures and those observed by on-chip thermal sensors, which seriously affect the efficiency of DTM. In this paper, a smoothing filter-based Kalman prediction technique is proposed to accurately estimate the temperatures from noisy sensor readings. For the multi-sensor estimation scenario, the spatial correlations among different sensor locations are exploited. On this basis, a multi-sensor synergistic calibration algorithm (known as MSSCA) is proposed to improve the simultaneous prediction accuracy of multiple sensors. Moreover, an infrared imaging-based temperature measurement technique is also proposed to capture the thermal traces of an advanced micro devices (AMD) quad-core processor in real time. The acquired real temperature data are used to evaluate our prediction performance. Simulation shows that the proposed synergistic calibration scheme can reduce the root-mean-square error (RMSE) by 1.2 ∘ C and increase the signal-to-noise ratio (SNR) by 15.8 dB (with a very small average runtime overhead) compared with assuming the thermal sensor readings to be ideal. Additionally, the average false alarm rate (FAR) of the corrected sensor temperature readings can be reduced by 28.6%. These results clearly demonstrate that if our approach is used to perform temperature estimation, the response mechanisms of DTM can be triggered to adjust the voltages, frequencies, and cooling fan speeds at more appropriate times.

  19. Fast Image Subtraction Using Multi-cores and GPUs

    NASA Astrophysics Data System (ADS)

    Hartung, Steven; Shukla, H.

    2013-01-01

    Many important image processing techniques in astronomy require a massive number of computations per pixel. Among them is an image differencing technique known as Optimal Image Subtraction (OIS), which is very useful for detecting and characterizing transient phenomena. Like many image processing routines, OIS computations increase proportionally with the number of pixels being processed, and the number of pixels in need of processing is increasing rapidly. Utilizing many-core graphical processing unit (GPU) technology in a hybrid conjunction with multi-core CPU and computer clustering technologies, this work presents a new astronomy image processing pipeline architecture. The chosen OIS implementation focuses on the 2nd order spatially-varying kernel with the Dirac delta function basis, a powerful image differencing method that has seen limited deployment in part because of the heavy computational burden. This tool can process standard image calibration and OIS differencing in a fashion that is scalable with the increasing data volume. It employs several parallel processing technologies in a hierarchical fashion in order to best utilize each of their strengths. The Linux/Unix based application can operate on a single computer, or on an MPI configured cluster, with or without GPU hardware. With GPU hardware available, even low-cost commercial video cards, the OIS convolution and subtraction times for large images can be accelerated by up to three orders of magnitude.

  20. Multiphase complete exchange: A theoretical analysis

    NASA Technical Reports Server (NTRS)

    Bokhari, Shahid H.

    1993-01-01

    Complete Exchange requires each of N processors to send a unique message to each of the remaining N-1 processors. For a circuit switched hypercube with N = 2(sub d) processors, the Direct and Standard algorithms for Complete Exchange are optimal for very large and very small message sizes, respectively. For intermediate sizes, a hybrid Multiphase algorithm is better. This carries out Direct exchanges on a set of subcubes whose dimensions are a partition of the integer d. The best such algorithm for a given message size m could hitherto only be found by enumerating all partitions of d. The Multiphase algorithm is analyzed assuming a high performance communication network. It is proved that only algorithms corresponding to equipartitions of d (partitions in which the maximum and minimum elements differ by at most 1) can possibly be optimal. The run times of these algorithms plotted against m form a hull of optimality. It is proved that, although there is an exponential number of partitions, (1) the number of faces on this hull is Theta(square root of d), (2) the hull can be found in theta(square root of d) time, and (3) once it has been found, the optimal algorithm for any given m can be found in Theta(log d) time. These results provide a very fast technique for minimizing communication overhead in many important applications, such as matrix transpose, Fast Fourier transform, and ADI.

  1. Compact propane fuel processor for auxiliary power unit application

    NASA Astrophysics Data System (ADS)

    Dokupil, M.; Spitta, C.; Mathiak, J.; Beckhaus, P.; Heinzel, A.

    With focus on mobile applications a fuel cell auxiliary power unit (APU) using liquefied petroleum gas (LPG) is currently being developed at the Centre for Fuel Cell Technology (Zentrum für BrennstoffzellenTechnik, ZBT gGmbH). The system is consisting of an integrated compact and lightweight fuel processor and a low temperature PEM fuel cell for an electric power output of 300 W. This article is presenting the current status of development of the fuel processor which is designed for a nominal hydrogen output of 1 k Wth,H2 within a load range from 50 to 120%. A modular setup was chosen defining a reformer/burner module and a CO-purification module. Based on the performance specifications, thermodynamic simulations, benchmarking and selection of catalysts the modules have been developed and characterised simultaneously and then assembled to the complete fuel processor. Automated operation results in a cold startup time of about 25 min for nominal load and carbon monoxide output concentrations below 50 ppm for steady state and dynamic operation. Also fast transient response of the fuel processor at load changes with low fluctuations of the reformate gas composition have been achieved. Beside the development of the main reactors the transfer of the fuel processor to an autonomous system is of major concern. Hence, concepts for packaging have been developed resulting in a volume of 7 l and a weight of 3 kg. Further a selection of peripheral components has been tested and evaluated regarding to the substitution of the laboratory equipment.

  2. Multi-Threaded DNA Tag/Anti-Tag Library Generator for Multi-Core Platforms

    DTIC Science & Technology

    2009-05-01

    base pair)  Watson ‐ Crick  strand pairs that bind perfectly within pairs, but poorly across pairs. A variety  of  DNA  strand hybridization metrics...AFRL-RI-RS-TR-2009-131 Final Technical Report May 2009 MULTI-THREADED DNA TAG/ANTI-TAG LIBRARY GENERATOR FOR MULTI-CORE PLATFORMS...TYPE Final 3. DATES COVERED (From - To) Jun 08 – Feb 09 4. TITLE AND SUBTITLE MULTI-THREADED DNA TAG/ANTI-TAG LIBRARY GENERATOR FOR MULTI-CORE

  3. Coupled-mode propagation in multicore fibers characterized by optical low-coherence reflectometry.

    PubMed

    Salathé, R P; Gilgen, H; Bodmer, G

    1996-07-01

    A fiber-optical low-coherence ref lectometer has been used to probe a multicore fiber locally at a wavelength of 1.3 microm. This technique allows one to determine the group index of refraction of the modes in the multicore fiber with high accuracy. Light propagation that is due to noncoherent coupling of energy from one fiber core to adjacent cores through cladding modes can be distinguished quantitatively from light propagating in coherently coupled modes. Intercore coupling constants in the range of 0.6-2 mm(-1) have been evaluated for the coupled modes.

  4. Core-to-core uniformity improvement in multi-core fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Lindley, Emma; Min, Seong-Sik; Leon-Saval, Sergio; Cvetojevic, Nick; Jovanovic, Nemanja; Bland-Hawthorn, Joss; Lawrence, Jon; Gris-Sanchez, Itandehui; Birks, Tim; Haynes, Roger; Haynes, Dionne

    2014-07-01

    Multi-core fiber Bragg gratings (MCFBGs) will be a valuable tool not only in communications but also various astronomical, sensing and industry applications. In this paper we address some of the technical challenges of fabricating effective multi-core gratings by simulating improvements to the writing method. These methods allow a system designed for inscribing single-core fibers to cope with MCFBG fabrication with only minor, passive changes to the writing process. Using a capillary tube that was polished on one side, the field entering the fiber was flattened which improved the coverage and uniformity of all cores.

  5. Design and Test of a 65nm CMOS Front-End with Zero Dead Time for Next Generation Pixel Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaioni, L.; Braga, D.; Christian, D.

    This work is concerned with the experimental characterization of a synchronous analog processor with zero dead time developed in a 65 nm CMOS technology, conceived for pixel detectors at the HL-LHC experiment upgrades. It includes a low noise, fast charge sensitive amplifier with detector leakage compensation circuit, and a compact, single ended comparator able to correctly process hits belonging to two consecutive bunch crossing periods. A 2-bit Flash ADC is exploited for digital conversion immediately after the preamplifier. A description of the circuits integrated in the front-end processor and the initial characterization results are provided

  6. An efficient 3-dim FFT for plane wave electronic structure calculations on massively parallel machines composed of multiprocessor nodes

    NASA Astrophysics Data System (ADS)

    Goedecker, Stefan; Boulet, Mireille; Deutsch, Thierry

    2003-08-01

    Three-dimensional Fast Fourier Transforms (FFTs) are the main computational task in plane wave electronic structure calculations. Obtaining a high performance on a large numbers of processors is non-trivial on the latest generation of parallel computers that consist of nodes made up of a shared memory multiprocessors. A non-dogmatic method for obtaining high performance for such 3-dim FFTs in a combined MPI/OpenMP programming paradigm will be presented. Exploiting the peculiarities of plane wave electronic structure calculations, speedups of up to 160 and speeds of up to 130 Gflops were obtained on 256 processors.

  7. Analysis and Implementation of Particle-to-Particle (P2P) Graphics Processor Unit (GPU) Kernel for Black-Box Adaptive Fast Multipole Method

    DTIC Science & Technology

    2015-06-01

    5110P and 16 dx360M4 nodes each with one NVIDIA Kepler K20M/K40M GPU. Each node contained dual Intel Xeon E5-2670 (Sandy Bridge) central processing...kernel and as such does not employ multiple processors. This work makes use of a single processing core and a single NVIDIA Kepler K40 GK110...bandwidth (2 × 16 slot), 7.877 GFloat/s; Kepler K40 peak, 4,290 × 1 billion floating-point operations (GFLOPs), and 288 GB/s Kepler K40 memory

  8. Extremely Fast Numerical Integration of Ocean Surface Wave Dynamics

    DTIC Science & Technology

    2007-09-30

    sub-processor must be added as shown in the blue box of Fig. 1. We first consider the Kadomtsev - Petviashvili (KP) equation ηt + coηx +αηηx + βη ...analytic integration of the so-called “soliton equations ,” I have discovered how the GFT can be used to solved higher order equations for which study...analytical study and extremely fast numerical integration of the extended nonlinear Schroedinger equation for fully three dimensional wave motion

  9. Writing Bragg Gratings in Multicore Fibers.

    PubMed

    Lindley, Emma Y; Min, Seong-Sik; Leon-Saval, Sergio G; Cvetojevic, Nick; Lawrence, Jon; Ellis, Simon C; Bland-Hawthorn, Joss

    2016-04-20

    Fiber Bragg gratings in multicore fibers can be used as compact and robust filters in astronomical and other research and commercial applications. Strong suppression at a single wavelength requires that all cores have matching transmission profiles. These gratings cannot be inscribed using the same method as for single-core fibers because the curved surface of the cladding acts as a lens, focusing the incoming UV laser beam and causing variations in exposure between cores. Therefore we use an additional optical element to ensure that the beam shape does not change while passing through the cross-section of the multicore fiber. This consists of a glass capillary tube which has been polished flat on one side, which is then placed over the section of the fiber to be inscribed. The laser beam enters the fiber through the flat surface of the capillary tube and hence maintains its original dimensions. This paper demonstrates the improvements in core-to-core uniformity for a 7-core fiber using this method. The technique can be generalized to larger multicore fibers.

  10. Writing Bragg Gratings in Multicore Fibers

    PubMed Central

    Lindley, Emma Y.; Min, Seong-sik; Leon-Saval, Sergio G.; Cvetojevic, Nick; Lawrence, Jon; Ellis, Simon C.; Bland-Hawthorn, Joss

    2016-01-01

    Fiber Bragg gratings in multicore fibers can be used as compact and robust filters in astronomical and other research and commercial applications. Strong suppression at a single wavelength requires that all cores have matching transmission profiles. These gratings cannot be inscribed using the same method as for single-core fibers because the curved surface of the cladding acts as a lens, focusing the incoming UV laser beam and causing variations in exposure between cores. Therefore we use an additional optical element to ensure that the beam shape does not change while passing through the cross-section of the multicore fiber. This consists of a glass capillary tube which has been polished flat on one side, which is then placed over the section of the fiber to be inscribed. The laser beam enters the fiber through the flat surface of the capillary tube and hence maintains its original dimensions. This paper demonstrates the improvements in core-to-core uniformity for a 7-core fiber using this method. The technique can be generalized to larger multicore fibers. PMID:27167576

  11. OSCAR API for Real-Time Low-Power Multicores and Its Performance on Multicores and SMP Servers

    NASA Astrophysics Data System (ADS)

    Kimura, Keiji; Mase, Masayoshi; Mikami, Hiroki; Miyamoto, Takamichi; Shirako, Jun; Kasahara, Hironori

    OSCAR (Optimally Scheduled Advanced Multiprocessor) API has been designed for real-time embedded low-power multicores to generate parallel programs for various multicores from different vendors by using the OSCAR parallelizing compiler. The OSCAR API has been developed by Waseda University in collaboration with Fujitsu Laboratory, Hitachi, NEC, Panasonic, Renesas Technology, and Toshiba in an METI/NEDO project entitled "Multicore Technology for Realtime Consumer Electronics." By using the OSCAR API as an interface between the OSCAR compiler and backend compilers, the OSCAR compiler enables hierarchical multigrain parallel processing with memory optimization under capacity restriction for cache memory, local memory, distributed shared memory, and on-chip/off-chip shared memory; data transfer using a DMA controller; and power reduction control using DVFS (Dynamic Voltage and Frequency Scaling), clock gating, and power gating for various embedded multicores. In addition, a parallelized program automatically generated by the OSCAR compiler with OSCAR API can be compiled by the ordinary OpenMP compilers since the OSCAR API is designed on a subset of the OpenMP. This paper describes the OSCAR API and its compatibility with the OSCAR compiler by showing code examples. Performance evaluations of the OSCAR compiler and the OSCAR API are carried out using an IBM Power5+ workstation, an IBM Power6 high-end SMP server, and a newly developed consumer electronics multicore chip RP2 by Renesas, Hitachi and Waseda. From the results of scalability evaluation, it is found that on an average, the OSCAR compiler with the OSCAR API can exploit 5.8 times speedup over the sequential execution on the Power5+ workstation with eight cores and 2.9 times speedup on RP2 with four cores, respectively. In addition, the OSCAR compiler can accelerate an IBM XL Fortran compiler up to 3.3 times on the Power6 SMP server. Due to low-power optimization on RP2, the OSCAR compiler with the OSCAR API achieves a maximum power reduction of 84% in the real-time execution mode.

  12. The Mercury System: Embedding Computation into Disk Drives

    DTIC Science & Technology

    2004-08-20

    enabling technologies to build extremely fast data search engines . We do this by moving the search closer to the data, and performing it in hardware...engine searches in parallel across a disk or disk surface 2. System Parallelism: Searching is off-loaded to search engines and main processor can

  13. Searching for New Double Stars with a Computer

    NASA Astrophysics Data System (ADS)

    Bryant, T. V.

    2015-04-01

    The advent of computers with large amounts of RAM memory and fast processors, as well as easy internet access to large online astronomical databases, has made computer searches based on astrometric data practicable for most researchers. This paper describes one such search that has uncovered hitherto unrecognized double stars.

  14. S-HARP: A parallel dynamic spectral partitioner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sohn, A.; Simon, H.

    1998-01-01

    Computational science problems with adaptive meshes involve dynamic load balancing when implemented on parallel machines. This dynamic load balancing requires fast partitioning of computational meshes at run time. The authors present in this report a fast parallel dynamic partitioner, called S-HARP. The underlying principles of S-HARP are the fast feature of inertial partitioning and the quality feature of spectral partitioning. S-HARP partitions a graph from scratch, requiring no partition information from previous iterations. Two types of parallelism have been exploited in S-HARP, fine grain loop level parallelism and coarse grain recursive parallelism. The parallel partitioner has been implemented in Messagemore » Passing Interface on Cray T3E and IBM SP2 for portability. Experimental results indicate that S-HARP can partition a mesh of over 100,000 vertices into 256 partitions in 0.2 seconds on a 64 processor Cray T3E. S-HARP is much more scalable than other dynamic partitioners, giving over 15 fold speedup on 64 processors while ParaMeTiS1.0 gives a few fold speedup. Experimental results demonstrate that S-HARP is three to 10 times faster than the dynamic partitioners ParaMeTiS and Jostle on six computational meshes of size over 100,000 vertices.« less

  15. Single-step generation of metal-plasma polymer multicore@shell nanoparticles from the gas phase.

    PubMed

    Solař, Pavel; Polonskyi, Oleksandr; Olbricht, Ansgar; Hinz, Alexander; Shelemin, Artem; Kylián, Ondřej; Choukourov, Andrei; Faupel, Franz; Biederman, Hynek

    2017-08-17

    Nanoparticles composed of multiple silver cores and a plasma polymer shell (multicore@shell) were prepared in a single step with a gas aggregation cluster source operating with Ar/hexamethyldisiloxane mixtures and optionally oxygen. The size distribution of the metal inclusions as well as the chemical composition and the thickness of the shells were found to be controlled by the composition of the working gas mixture. Shell matrices ranging from organosilicon plasma polymer to nearly stoichiometric SiO 2 were obtained. The method allows facile fabrication of multicore@shell nanoparticles with tailored functional properties, as demonstrated here with the optical response.

  16. Editing wild points in isolation - Fast agreement for reliable systems (Preliminary version)

    NASA Technical Reports Server (NTRS)

    Kearns, Phil; Evans, Carol

    1989-01-01

    Consideration is given to the intuitively appealing notion of discarding sensor values which are strongly suspected of being erroneous in a modified approximate agreement protocol. Approximate agreement with editing imposes a time bound upon the convergence of the protocol - no such bound was possible for the original approximate agreement protocol. This new approach is potentially useful in the construction of asynchronous fault tolerant systems. The main result is that a wild-point replacement technique called t-worst editing can be shown to guarantee convergence of the approximate agreement protocol to a valid agreement value. Results are presented for a four-processor synchronous system in which a single processor may be faulty.

  17. Ordered fast Fourier transforms on a massively parallel hypercube multiprocessor

    NASA Technical Reports Server (NTRS)

    Tong, Charles; Swarztrauber, Paul N.

    1991-01-01

    The present evaluation of alternative, massively parallel hypercube processor-applicable designs for ordered radix-2 decimation-in-frequency FFT algorithms gives attention to the reduction of computation time-dominating communication. A combination of the order and computational phases of the FFT is accordingly employed, in conjunction with sequence-to-processor maps which reduce communication. Two orderings, 'standard' and 'cyclic', in which the order of the transform is the same as that of the input sequence, can be implemented with ease on the Connection Machine (where orderings are determined by geometries and priorities. A parallel method for trigonometric coefficient computation is presented which does not employ trigonometric functions or interprocessor communication.

  18. Numerical study of the vortex tube reconnection using vortex particle method on many graphics cards

    NASA Astrophysics Data System (ADS)

    Kudela, Henryk; Kosior, Andrzej

    2014-08-01

    Vortex Particle Methods are one of the most convenient ways of tracking the vorticity evolution. In the article we presented numerical recreation of the real life experiment concerning head-on collision of two vortex rings. In the experiment the evolution and reconnection of the vortex structures is tracked with passive markers (paint particles) which in viscous fluid does not follow the evolution of vorticity field. In numerical computations we showed the difference between vorticity evolution and movement of passive markers. The agreement with the experiment was very good. Due to problems with very long time of computations on a single processor the Vortex-in-Cell method was implemented on the multicore architecture of the graphics cards (GPUs). Vortex Particle Methods are very well suited for parallel computations. As there are myriads of particles in the flow and for each of them the same equations of motion have to be solved the SIMD architecture used in GPUs seems to be perfect. The main disadvantage in this case is the small amount of the RAM memory. To overcome this problem we created a multiGPU implementation of the VIC method. Some remarks on parallel computing are given in the article.

  19. PyNEST: A Convenient Interface to the NEST Simulator.

    PubMed

    Eppler, Jochen Martin; Helias, Moritz; Muller, Eilif; Diesmann, Markus; Gewaltig, Marc-Oliver

    2008-01-01

    The neural simulation tool NEST (http://www.nest-initiative.org) is a simulator for heterogeneous networks of point neurons or neurons with a small number of compartments. It aims at simulations of large neural systems with more than 10(4) neurons and 10(7) to 10(9) synapses. NEST is implemented in C++ and can be used on a large range of architectures from single-core laptops over multi-core desktop computers to super-computers with thousands of processor cores. Python (http://www.python.org) is a modern programming language that has recently received considerable attention in Computational Neuroscience. Python is easy to learn and has many extension modules for scientific computing (e.g. http://www.scipy.org). In this contribution we describe PyNEST, the new user interface to NEST. PyNEST combines NEST's efficient simulation kernel with the simplicity and flexibility of Python. Compared to NEST's native simulation language SLI, PyNEST makes it easier to set up simulations, generate stimuli, and analyze simulation results. We describe how PyNEST connects NEST and Python and how it is implemented. With a number of examples, we illustrate how it is used.

  20. Scheduling for energy and reliability management on multiprocessor real-time systems

    NASA Astrophysics Data System (ADS)

    Qi, Xuan

    Scheduling algorithms for multiprocessor real-time systems have been studied for years with many well-recognized algorithms proposed. However, it is still an evolving research area and many problems remain open due to their intrinsic complexities. With the emergence of multicore processors, it is necessary to re-investigate the scheduling problems and design/develop efficient algorithms for better system utilization, low scheduling overhead, high energy efficiency, and better system reliability. Focusing cluster schedulings with optimal global schedulers, we study the utilization bound and scheduling overhead for a class of cluster-optimal schedulers. Then, taking energy/power consumption into consideration, we developed energy-efficient scheduling algorithms for real-time systems, especially for the proliferating embedded systems with limited energy budget. As the commonly deployed energy-saving technique (e.g. dynamic voltage frequency scaling (DVFS)) will significantly affect system reliability, we study schedulers that have intelligent mechanisms to recuperate system reliability to satisfy the quality assurance requirements. Extensive simulation is conducted to evaluate the performance of the proposed algorithms on reduction of scheduling overhead, energy saving, and reliability improvement. The simulation results show that the proposed reliability-aware power management schemes could preserve the system reliability while still achieving substantial energy saving.

  1. Self-organized synchronization of digital phase-locked loops with delayed coupling in theory and experiment

    PubMed Central

    Wetzel, Lucas; Jörg, David J.; Pollakis, Alexandros; Rave, Wolfgang; Fettweis, Gerhard; Jülicher, Frank

    2017-01-01

    Self-organized synchronization occurs in a variety of natural and technical systems but has so far only attracted limited attention as an engineering principle. In distributed electronic systems, such as antenna arrays and multi-core processors, a common time reference is key to coordinate signal transmission and processing. Here we show how the self-organized synchronization of mutually coupled digital phase-locked loops (DPLLs) can provide robust clocking in large-scale systems. We develop a nonlinear phase description of individual and coupled DPLLs that takes into account filter impulse responses and delayed signal transmission. Our phase model permits analytical expressions for the collective frequencies of synchronized states, the analysis of stability properties and the time scale of synchronization. In particular, we find that signal filtering introduces stability transitions that are not found in systems without filtering. To test our theoretical predictions, we designed and carried out experiments using networks of off-the-shelf DPLL integrated circuitry. We show that the phase model can quantitatively predict the existence, frequency, and stability of synchronized states. Our results demonstrate that mutually delay-coupled DPLLs can provide robust and self-organized synchronous clocking in electronic systems. PMID:28207779

  2. PyNEST: A Convenient Interface to the NEST Simulator

    PubMed Central

    Eppler, Jochen Martin; Helias, Moritz; Muller, Eilif; Diesmann, Markus; Gewaltig, Marc-Oliver

    2008-01-01

    The neural simulation tool NEST (http://www.nest-initiative.org) is a simulator for heterogeneous networks of point neurons or neurons with a small number of compartments. It aims at simulations of large neural systems with more than 104 neurons and 107 to 109 synapses. NEST is implemented in C++ and can be used on a large range of architectures from single-core laptops over multi-core desktop computers to super-computers with thousands of processor cores. Python (http://www.python.org) is a modern programming language that has recently received considerable attention in Computational Neuroscience. Python is easy to learn and has many extension modules for scientific computing (e.g. http://www.scipy.org). In this contribution we describe PyNEST, the new user interface to NEST. PyNEST combines NEST's efficient simulation kernel with the simplicity and flexibility of Python. Compared to NEST's native simulation language SLI, PyNEST makes it easier to set up simulations, generate stimuli, and analyze simulation results. We describe how PyNEST connects NEST and Python and how it is implemented. With a number of examples, we illustrate how it is used. PMID:19198667

  3. MSAProbs-MPI: parallel multiple sequence aligner for distributed-memory systems.

    PubMed

    González-Domínguez, Jorge; Liu, Yongchao; Touriño, Juan; Schmidt, Bertil

    2016-12-15

    MSAProbs is a state-of-the-art protein multiple sequence alignment tool based on hidden Markov models. It can achieve high alignment accuracy at the expense of relatively long runtimes for large-scale input datasets. In this work we present MSAProbs-MPI, a distributed-memory parallel version of the multithreaded MSAProbs tool that is able to reduce runtimes by exploiting the compute capabilities of common multicore CPU clusters. Our performance evaluation on a cluster with 32 nodes (each containing two Intel Haswell processors) shows reductions in execution time of over one order of magnitude for typical input datasets. Furthermore, MSAProbs-MPI using eight nodes is faster than the GPU-accelerated QuickProbs running on a Tesla K20. Another strong point is that MSAProbs-MPI can deal with large datasets for which MSAProbs and QuickProbs might fail due to time and memory constraints, respectively. Source code in C ++ and MPI running on Linux systems as well as a reference manual are available at http://msaprobs.sourceforge.net CONTACT: jgonzalezd@udc.esSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. A macrochip interconnection network enabled by silicon nanophotonic devices.

    PubMed

    Zheng, Xuezhe; Cunningham, John E; Koka, Pranay; Schwetman, Herb; Lexau, Jon; Ho, Ron; Shubin, Ivan; Krishnamoorthy, Ashok V; Yao, Jin; Mekis, Attila; Pinguet, Thierry

    2010-03-01

    We present an advanced wavelength-division multiplexing point-to-point network enabled by silicon nanophotonic devices. This network offers strictly non-blocking all-to-all connectivity while maximizing bisection bandwidth, making it ideal for multi-core and multi-processor interconnections. We introduce one of the key components, the nanophotonic grating coupler, and discuss, for the first time, how this device can be useful for practical implementations of the wavelength-division multiplexing network using optical proximity communications. Finite difference time-domain simulation of the nanophotonic grating coupler device indicates that it can be made compact (20 microm x 50 microm), low loss (3.8 dB), and broadband (100 nm). These couplers require subwavelength material modulation at the nanoscale to achieve the desired functionality. We show that optical proximity communication provides unmatched optical I/O bandwidth density to electrical chips, which enables the application of wavelength-division multiplexing point-to-point network in macrochip with unprecedented bandwidth-density. The envisioned physical implementation is discussed. The benefits of such an interconnect network include a 5-6x improvement in latency when compared to a purely electronic implementation. Performance analysis shows that the wavelength-division multiplexing point-to-point network offers better overall performance over other optical network architectures.

  5. Six-port optical switch for cluster-mesh photonic network-on-chip

    NASA Astrophysics Data System (ADS)

    Jia, Hao; Zhou, Ting; Zhao, Yunchou; Xia, Yuhao; Dai, Jincheng; Zhang, Lei; Ding, Jianfeng; Fu, Xin; Yang, Lin

    2018-05-01

    Photonic network-on-chip for high-performance multi-core processors has attracted substantial interest in recent years as it offers a systematic method to meet the demand of large bandwidth, low latency and low power dissipation. In this paper we demonstrate a non-blocking six-port optical switch for cluster-mesh photonic network-on-chip. The architecture is constructed by substituting three optical switching units of typical Spanke-Benes network to optical waveguide crossings. Compared with Spanke-Benes network, the number of optical switching units is reduced by 20%, while the connectivity of routing path is maintained. By this way the footprint and power consumption can be reduced at the expense of sacrificing the network latency performance in some cases. The device is realized by 12 thermally tuned silicon Mach-Zehnder optical switching units. Its theoretical spectral responses are evaluated by establishing a numerical model. The experimental spectral responses are also characterized, which indicates that the optical signal-to-noise ratios of the optical switch are larger than 13.5 dB in the wavelength range from 1525 nm to 1565 nm. Data transmission experiment with the data rate of 32 Gbps is implemented for each optical link.

  6. Hybrid multicore/vectorisation technique applied to the elastic wave equation on a staggered grid

    NASA Astrophysics Data System (ADS)

    Titarenko, Sofya; Hildyard, Mark

    2017-07-01

    In modern physics it has become common to find the solution of a problem by solving numerically a set of PDEs. Whether solving them on a finite difference grid or by a finite element approach, the main calculations are often applied to a stencil structure. In the last decade it has become usual to work with so called big data problems where calculations are very heavy and accelerators and modern architectures are widely used. Although CPU and GPU clusters are often used to solve such problems, parallelisation of any calculation ideally starts from a single processor optimisation. Unfortunately, it is impossible to vectorise a stencil structured loop with high level instructions. In this paper we suggest a new approach to rearranging the data structure which makes it possible to apply high level vectorisation instructions to a stencil loop and which results in significant acceleration. The suggested method allows further acceleration if shared memory APIs are used. We show the effectiveness of the method by applying it to an elastic wave propagation problem on a finite difference grid. We have chosen Intel architecture for the test problem and OpenMP (Open Multi-Processing) since they are extensively used in many applications.

  7. Inline inspection of textured plastics surfaces

    NASA Astrophysics Data System (ADS)

    Michaeli, Walter; Berdel, Klaus

    2011-02-01

    This article focuses on the inspection of plastics web materials exhibiting irregular textures such as imitation wood or leather. They are produced in a continuous process at high speed. In this process, various defects occur sporadically. However, current inspection systems for plastics surfaces are able to inspect unstructured products or products with regular, i.e., highly periodic, textures, only. The proposed inspection algorithm uses the local binary pattern operator for texture feature extraction. For classification, semisupervised as well as supervised approaches are used. A simple concept for semisupervised classification is presented and applied for defect detection. The resulting defect-maps are presented to the operator. He assigns class labels that are used to train the supervised classifier in order to distinguish between different defect types. A concept for parallelization is presented allowing the efficient use of standard multicore processor PC hardware. Experiments with images of a typical product acquired in an industrial setting show a detection rate of 97% while achieving a false alarm rate below 1%. Real-time tests show that defects can be reliably detected even at haul-off speeds of 30 m/min. Further applications of the presented concept can be found in the inspection of other materials.

  8. Research on Key Technologies of Cloud Computing

    NASA Astrophysics Data System (ADS)

    Zhang, Shufen; Yan, Hongcan; Chen, Xuebin

    With the development of multi-core processors, virtualization, distributed storage, broadband Internet and automatic management, a new type of computing mode named cloud computing is produced. It distributes computation task on the resource pool which consists of massive computers, so the application systems can obtain the computing power, the storage space and software service according to its demand. It can concentrate all the computing resources and manage them automatically by the software without intervene. This makes application offers not to annoy for tedious details and more absorbed in his business. It will be advantageous to innovation and reduce cost. It's the ultimate goal of cloud computing to provide calculation, services and applications as a public facility for the public, So that people can use the computer resources just like using water, electricity, gas and telephone. Currently, the understanding of cloud computing is developing and changing constantly, cloud computing still has no unanimous definition. This paper describes three main service forms of cloud computing: SAAS, PAAS, IAAS, compared the definition of cloud computing which is given by Google, Amazon, IBM and other companies, summarized the basic characteristics of cloud computing, and emphasized on the key technologies such as data storage, data management, virtualization and programming model.

  9. DiSCaMB: a software library for aspherical atom model X-ray scattering factor calculations with CPUs and GPUs.

    PubMed

    Chodkiewicz, Michał L; Migacz, Szymon; Rudnicki, Witold; Makal, Anna; Kalinowski, Jarosław A; Moriarty, Nigel W; Grosse-Kunstleve, Ralf W; Afonine, Pavel V; Adams, Paul D; Dominiak, Paulina Maria

    2018-02-01

    It has been recently established that the accuracy of structural parameters from X-ray refinement of crystal structures can be improved by using a bank of aspherical pseudoatoms instead of the classical spherical model of atomic form factors. This comes, however, at the cost of increased complexity of the underlying calculations. In order to facilitate the adoption of this more advanced electron density model by the broader community of crystallographers, a new software implementation called DiSCaMB , 'densities in structural chemistry and molecular biology', has been developed. It addresses the challenge of providing for high performance on modern computing architectures. With parallelization options for both multi-core processors and graphics processing units (using CUDA), the library features calculation of X-ray scattering factors and their derivatives with respect to structural parameters, gives access to intermediate steps of the scattering factor calculations (thus allowing for experimentation with modifications of the underlying electron density model), and provides tools for basic structural crystallographic operations. Permissively (MIT) licensed, DiSCaMB is an open-source C++ library that can be embedded in both academic and commercial tools for X-ray structure refinement.

  10. Prefiltering Model for Homology Detection Algorithms on GPU.

    PubMed

    Retamosa, Germán; de Pedro, Luis; González, Ivan; Tamames, Javier

    2016-01-01

    Homology detection has evolved over the time from heavy algorithms based on dynamic programming approaches to lightweight alternatives based on different heuristic models. However, the main problem with these algorithms is that they use complex statistical models, which makes it difficult to achieve a relevant speedup and find exact matches with the original results. Thus, their acceleration is essential. The aim of this article was to prefilter a sequence database. To make this work, we have implemented a groundbreaking heuristic model based on NVIDIA's graphics processing units (GPUs) and multicore processors. Depending on the sensitivity settings, this makes it possible to quickly reduce the sequence database by factors between 50% and 95%, while rejecting no significant sequences. Furthermore, this prefiltering application can be used together with multiple homology detection algorithms as a part of a next-generation sequencing system. Extensive performance and accuracy tests have been carried out in the Spanish National Centre for Biotechnology (NCB). The results show that GPU hardware can accelerate the execution times of former homology detection applications, such as National Centre for Biotechnology Information (NCBI), Basic Local Alignment Search Tool for Proteins (BLASTP), up to a factor of 4.

  11. Power splitting of 1 × 16 in multicore photonic crystal fibers

    NASA Astrophysics Data System (ADS)

    Malka, Dror; Peled, Aaron

    2017-09-01

    A novel concept of 1 × 16 power splitter based on a variable multicore photonic crystal fiber (PCF) structure is described. Numerical simulations showed how the optical signal can be split in a PCF structure having dimensions of 60 μm × 60 μm × 3.582 mm. The coupled mode analysis and beam propagation method (BPM) was used for analyzing the multicore PCF based 1 × 16 splitter. The input optical signal at a wavelength of 1.55 μm inserted into the central core was divided into sixteen output cores, each with a 6.25% of the total power. The full width half maximum (FWHM) bandwidth found for each core was 100 nm.

  12. A Real-Time Marker-Based Visual Sensor Based on a FPGA and a Soft Core Processor

    PubMed Central

    Tayara, Hilal; Ham, Woonchul; Chong, Kil To

    2016-01-01

    This paper introduces a real-time marker-based visual sensor architecture for mobile robot localization and navigation. A hardware acceleration architecture for post video processing system was implemented on a field-programmable gate array (FPGA). The pose calculation algorithm was implemented in a System on Chip (SoC) with an Altera Nios II soft-core processor. For every frame, single pass image segmentation and Feature Accelerated Segment Test (FAST) corner detection were used for extracting the predefined markers with known geometries in FPGA. Coplanar PosIT algorithm was implemented on the Nios II soft-core processor supplied with floating point hardware for accelerating floating point operations. Trigonometric functions have been approximated using Taylor series and cubic approximation using Lagrange polynomials. Inverse square root method has been implemented for approximating square root computations. Real time results have been achieved and pixel streams have been processed on the fly without any need to buffer the input frame for further implementation. PMID:27983714

  13. Particle simulation of plasmas on the massively parallel processor

    NASA Technical Reports Server (NTRS)

    Gledhill, I. M. A.; Storey, L. R. O.

    1987-01-01

    Particle simulations, in which collective phenomena in plasmas are studied by following the self consistent motions of many discrete particles, involve several highly repetitive sets of calculations that are readily adaptable to SIMD parallel processing. A fully electromagnetic, relativistic plasma simulation for the massively parallel processor is described. The particle motions are followed in 2 1/2 dimensions on a 128 x 128 grid, with periodic boundary conditions. The two dimensional simulation space is mapped directly onto the processor network; a Fast Fourier Transform is used to solve the field equations. Particle data are stored according to an Eulerian scheme, i.e., the information associated with each particle is moved from one local memory to another as the particle moves across the spatial grid. The method is applied to the study of the nonlinear development of the whistler instability in a magnetospheric plasma model, with an anisotropic electron temperature. The wave distribution function is included as a new diagnostic to allow simulation results to be compared with satellite observations.

  14. A programmable systolic array correlator as a trigger processor for electron pairs in rich (ring image Cherenkov) counters

    NASA Astrophysics Data System (ADS)

    Männer, R.

    1989-12-01

    This paper describes a systolic array processor for a ring image Cherenkov counter which is capable of identifying pairs of electron circles with a known radius and a certain minimum distance within 15 μs. The processor is a very flexible and fast device. It consists of 128 x 128 processing elements (PEs), where one PE is assigned to each pixel of the image. All PEs run synchronously at 40 MHz. The identification of electron circles is done by correlating the detector image with the proper circle circumference. Circle centers are found by peak detection in the correlation result. A second correlation with a circle disc allows circles of closed electron pairs to be rejected. The trigger decision is generated if a pseudo adder detects at least two remaining circles. The device is controlled by a freely programmable sequencer. A VLSI chip containing 8 x 8 PEs is being developed using a VENUS design system and will be produced in 2μ CMOS technology.

  15. A Real-Time Marker-Based Visual Sensor Based on a FPGA and a Soft Core Processor.

    PubMed

    Tayara, Hilal; Ham, Woonchul; Chong, Kil To

    2016-12-15

    This paper introduces a real-time marker-based visual sensor architecture for mobile robot localization and navigation. A hardware acceleration architecture for post video processing system was implemented on a field-programmable gate array (FPGA). The pose calculation algorithm was implemented in a System on Chip (SoC) with an Altera Nios II soft-core processor. For every frame, single pass image segmentation and Feature Accelerated Segment Test (FAST) corner detection were used for extracting the predefined markers with known geometries in FPGA. Coplanar PosIT algorithm was implemented on the Nios II soft-core processor supplied with floating point hardware for accelerating floating point operations. Trigonometric functions have been approximated using Taylor series and cubic approximation using Lagrange polynomials. Inverse square root method has been implemented for approximating square root computations. Real time results have been achieved and pixel streams have been processed on the fly without any need to buffer the input frame for further implementation.

  16. Airborne optical tracking control system design study

    NASA Astrophysics Data System (ADS)

    1992-09-01

    The Kestrel LOS Tracking Program involves the development of a computer and algorithms for use in passive tracking of airborne targets from a high altitude balloon platform. The computer receivers track error signals from a video tracker connected to one of the imaging sensors. In addition, an on-board IRU (gyro), accelerometers, a magnetometer, and a two-axis inclinometer provide inputs which are used for initial acquisitions and course and fine tracking. Signals received by the control processor from the video tracker, IRU, accelerometers, magnetometer, and inclinometer are utilized by the control processor to generate drive signals for the payload azimuth drive, the Gimballed Mirror System (GMS), and the Fast Steering Mirror (FSM). The hardware which will be procured under the LOS tracking activity is the Controls Processor (CP), the IRU, and the FSM. The performance specifications for the GMS and the payload canister azimuth driver are established by the LOS tracking design team in an effort to achieve a tracking jitter of less than 3 micro-rad, 1 sigma for one axis.

  17. Novel Optical Processor for Phased Array Antenna.

    DTIC Science & Technology

    1992-10-20

    parallel glass slide into the signal beam optical loop. The parallel glass acts like a variable phase shifter to the signal beam simulating phase drift...A list of possible designs are given as follows , _ _ Velocity fa (100dB/cm) Lumit Wavelength I M2I1 TeO2 Longi 4.2 /m/ns about 3 GHz 1.4 4m 34 Fast...subject to achievable acoustic frequency, the preferred materials are the slow shear wave in TeO2 , the fast shear wave in TeO2 or the shear waves in

  18. Large-Constraint-Length, Fast Viterbi Decoder

    NASA Technical Reports Server (NTRS)

    Collins, O.; Dolinar, S.; Hsu, In-Shek; Pollara, F.; Olson, E.; Statman, J.; Zimmerman, G.

    1990-01-01

    Scheme for efficient interconnection makes VLSI design feasible. Concept for fast Viterbi decoder provides for processing of convolutional codes of constraint length K up to 15 and rates of 1/2 to 1/6. Fully parallel (but bit-serial) architecture developed for decoder of K = 7 implemented in single dedicated VLSI circuit chip. Contains six major functional blocks. VLSI circuits perform branch metric computations, add-compare-select operations, and then store decisions in traceback memory. Traceback processor reads appropriate memory locations and puts out decoded bits. Used as building block for decoders of larger K.

  19. Application of Kevin-Voigt Model in Quantifying Whey Protein Adsorption on Polyethersulfone Using QCM-D

    USDA-ARS?s Scientific Manuscript database

    The study of protein adsorption on the membrane surface is of great importance to cheese-making processors that use polymeric membrane-based processes to recover whey protein from the process waste streams. Quartz crystal microbalance with dissipation (QCM-D) is a lab-scale, fast analytical techniq...

  20. [Development of a video image system for wireless capsule endoscopes based on DSP].

    PubMed

    Yang, Li; Peng, Chenglin; Wu, Huafeng; Zhao, Dechun; Zhang, Jinhua

    2008-02-01

    A video image recorder to record video picture for wireless capsule endoscopes was designed. TMS320C6211 DSP of Texas Instruments Inc. is the core processor of this system. Images are periodically acquired from Composite Video Broadcast Signal (CVBS) source and scaled by video decoder (SAA7114H). Video data is transported from high speed buffer First-in First-out (FIFO) to Digital Signal Processor (DSP) under the control of Complex Programmable Logic Device (CPLD). This paper adopts JPEG algorithm for image coding, and the compressed data in DSP was stored to Compact Flash (CF) card. TMS320C6211 DSP is mainly used for image compression and data transporting. Fast Discrete Cosine Transform (DCT) algorithm and fast coefficient quantization algorithm are used to accelerate operation speed of DSP and decrease the executing code. At the same time, proper address is assigned for each memory, which has different speed;the memory structure is also optimized. In addition, this system uses plenty of Extended Direct Memory Access (EDMA) to transport and process image data, which results in stable and high performance.

  1. Novel Designs and Coupling Schemes for Affordable High Energy Laser Modules

    DTIC Science & Technology

    2007-09-28

    possibility of single polarization operation of phase- locked multicore fiber lasers and amplifiers. 5.5. UV...transverse direction (propagation and polarization vectors shown as solid arrows and dashed lines, respectively) having a dipole-like wave front from an...31 5.4. Phase Locking in Monolithic Multicore Fiber Laser..................................................... 38 5.5. UV

  2. Implications of Multi-Core Architectures on the Development of Multiple Independent Levels of Security (MILS) Compliant Systems

    DTIC Science & Technology

    2012-10-01

    REPORT 3. DATES COVERED (From - To) MAR 2010 – APR 2012 4 . TITLE AND SUBTITLE IMPLICATIONS OF MULT-CORE ARCHITECTURES ON THE DEVELOPMENT OF...Framework for Multicore Information Flow Analysis ...................................... 23 4 4.1 A Hypothetical Reference Architecture... 4 Figure 2: Pentium II Block Diagram

  3. "Photonic lantern" spectral filters in multi-core Fiber.

    PubMed

    Birks, T A; Mangan, B J; Díez, A; Cruz, J L; Murphy, D F

    2012-06-18

    Fiber Bragg gratings are written across all 120 single-mode cores of a multi-core optical Fiber. The Fiber is interfaced to multimode ports by tapering it within a depressed-index glass jacket. The result is a compact multimode "photonic lantern" filter with astrophotonic applications. The tapered structure is also an effective mode scrambler.

  4. Lattice Boltzmann Simulation Optimization on Leading Multicore Platforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Samuel; Carter, Jonathan; Oliker, Leonid

    2008-02-01

    We present an auto-tuning approach to optimize application performance on emerging multicore architectures. The methodology extends the idea of search-based performance optimizations, popular in linear algebra and FFT libraries, to application-specific computational kernels. Our work applies this strategy to a lattice Boltzmann application (LBMHD) that historically has made poor use of scalar microprocessors due to its complex data structures and memory access patterns. We explore one of the broadest sets of multicore architectures in the HPC literature, including the Intel Clovertown, AMD Opteron X2, Sun Niagara2, STI Cell, as well as the single core Intel Itanium2. Rather than hand-tuning LBMHDmore » for each system, we develop a code generator that allows us identify a highly optimized version for each platform, while amortizing the human programming effort. Results show that our auto-tuned LBMHD application achieves up to a 14x improvement compared with the original code. Additionally, we present detailed analysis of each optimization, which reveal surprising hardware bottlenecks and software challenges for future multicore systems and applications.« less

  5. Lattice Boltzmann simulation optimization on leading multicore platforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, S.; Carter, J.; Oliker, L.

    2008-01-01

    We present an auto-tuning approach to optimize application performance on emerging multicore architectures. The methodology extends the idea of searchbased performance optimizations, popular in linear algebra and FFT libraries, to application-specific computational kernels. Our work applies this strategy to a lattice Boltzmann application (LBMHD) that historically has made poor use of scalar microprocessors due to its complex data structures and memory access patterns. We explore one of the broadest sets of multicore architectures in the HPC literature, including the Intel Clovertown, AMD Opteron X2, Sun Niagara2, STI Cell, as well as the single core Intel Itanium2. Rather than hand-tuning LBMHDmore » for each system, we develop a code generator that allows us identify a highly optimized version for each platform, while amortizing the human programming effort. Results show that our autotuned LBMHD application achieves up to a 14 improvement compared with the original code. Additionally, we present detailed analysis of each optimization, which reveal surprising hardware bottlenecks and software challenges for future multicore systems and applications.« less

  6. PERI - Auto-tuning Memory Intensive Kernels for Multicore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bailey, David H; Williams, Samuel; Datta, Kaushik

    2008-06-24

    We present an auto-tuning approach to optimize application performance on emerging multicore architectures. The methodology extends the idea of search-based performance optimizations, popular in linear algebra and FFT libraries, to application-specific computational kernels. Our work applies this strategy to Sparse Matrix Vector Multiplication (SpMV), the explicit heat equation PDE on a regular grid (Stencil), and a lattice Boltzmann application (LBMHD). We explore one of the broadest sets of multicore architectures in the HPC literature, including the Intel Xeon Clovertown, AMD Opteron Barcelona, Sun Victoria Falls, and the Sony-Toshiba-IBM (STI) Cell. Rather than hand-tuning each kernel for each system, we developmore » a code generator for each kernel that allows us to identify a highly optimized version for each platform, while amortizing the human programming effort. Results show that our auto-tuned kernel applications often achieve a better than 4X improvement compared with the original code. Additionally, we analyze a Roofline performance model for each platform to reveal hardware bottlenecks and software challenges for future multicore systems and applications.« less

  7. VLBI-resolution radio-map algorithms: Performance analysis of different levels of data-sharing on multi-socket, multi-core architectures

    NASA Astrophysics Data System (ADS)

    Tabik, S.; Romero, L. F.; Mimica, P.; Plata, O.; Zapata, E. L.

    2012-09-01

    A broad area in astronomy focuses on simulating extragalactic objects based on Very Long Baseline Interferometry (VLBI) radio-maps. Several algorithms in this scope simulate what would be the observed radio-maps if emitted from a predefined extragalactic object. This work analyzes the performance and scaling of this kind of algorithms on multi-socket, multi-core architectures. In particular, we evaluate a sharing approach, a privatizing approach and a hybrid approach on systems with complex memory hierarchy that includes shared Last Level Cache (LLC). In addition, we investigate which manual processes can be systematized and then automated in future works. The experiments show that the data-privatizing model scales efficiently on medium scale multi-socket, multi-core systems (up to 48 cores) while regardless of algorithmic and scheduling optimizations, the sharing approach is unable to reach acceptable scalability on more than one socket. However, the hybrid model with a specific level of data-sharing provides the best scalability over all used multi-socket, multi-core systems.

  8. General purpose pulse shape analysis for fast scintillators implemented in digital readout electronics

    NASA Astrophysics Data System (ADS)

    Asztalos, Stephen J.; Hennig, Wolfgang; Warburton, William K.

    2016-01-01

    Pulse shape discrimination applied to certain fast scintillators is usually performed offline. In sufficiently high-event rate environments data transfer and storage become problematic, which suggests a different analysis approach. In response, we have implemented a general purpose pulse shape analysis algorithm in the XIA Pixie-500 and Pixie-500 Express digital spectrometers. In this implementation waveforms are processed in real time, reducing the pulse characteristics to a few pulse shape analysis parameters and eliminating time-consuming waveform transfer and storage. We discuss implementation of these features, their advantages, necessary trade-offs and performance. Measurements from bench top and experimental setups using fast scintillators and XIA processors are presented.

  9. Multitasking domain decomposition fast Poisson solvers on the Cray Y-MP

    NASA Technical Reports Server (NTRS)

    Chan, Tony F.; Fatoohi, Rod A.

    1990-01-01

    The results of multitasking implementation of a domain decomposition fast Poisson solver on eight processors of the Cray Y-MP are presented. The object of this research is to study the performance of domain decomposition methods on a Cray supercomputer and to analyze the performance of different multitasking techniques using highly parallel algorithms. Two implementations of multitasking are considered: macrotasking (parallelism at the subroutine level) and microtasking (parallelism at the do-loop level). A conventional FFT-based fast Poisson solver is also multitasked. The results of different implementations are compared and analyzed. A speedup of over 7.4 on the Cray Y-MP running in a dedicated environment is achieved for all cases.

  10. A digitally implemented preambleless demodulator for maritime and mobile data communications

    NASA Astrophysics Data System (ADS)

    Chalmers, Harvey; Shenoy, Ajit; Verahrami, Farhad B.

    The hardware design and software algorithms for a low-bit-rate, low-cost, all-digital preambleless demodulator are described. The demodulator operates under severe high-noise conditions, fast Doppler frequency shifts, large frequency offsets, and multipath fading. Sophisticated algorithms, including a fast Fourier transform (FFT)-based burst acquisition algorithm, a cycle-slip resistant carrier phase tracker, an innovative Doppler tracker, and a fast acquisition symbol synchronizer, were developed and extensively simulated for reliable burst reception. The compact digital signal processor (DSP)-based demodulator hardware uses a unique personal computer test interface for downloading test data files. The demodulator test results demonstrate a near-ideal performance within 0.2 dB of theory.

  11. Analysis of scalability of high-performance 3D image processing platform for virtual colonoscopy

    NASA Astrophysics Data System (ADS)

    Yoshida, Hiroyuki; Wu, Yin; Cai, Wenli

    2014-03-01

    One of the key challenges in three-dimensional (3D) medical imaging is to enable the fast turn-around time, which is often required for interactive or real-time response. This inevitably requires not only high computational power but also high memory bandwidth due to the massive amount of data that need to be processed. For this purpose, we previously developed a software platform for high-performance 3D medical image processing, called HPC 3D-MIP platform, which employs increasingly available and affordable commodity computing systems such as the multicore, cluster, and cloud computing systems. To achieve scalable high-performance computing, the platform employed size-adaptive, distributable block volumes as a core data structure for efficient parallelization of a wide range of 3D-MIP algorithms, supported task scheduling for efficient load distribution and balancing, and consisted of a layered parallel software libraries that allow image processing applications to share the common functionalities. We evaluated the performance of the HPC 3D-MIP platform by applying it to computationally intensive processes in virtual colonoscopy. Experimental results showed a 12-fold performance improvement on a workstation with 12-core CPUs over the original sequential implementation of the processes, indicating the efficiency of the platform. Analysis of performance scalability based on the Amdahl's law for symmetric multicore chips showed the potential of a high performance scalability of the HPC 3DMIP platform when a larger number of cores is available.

  12. Digital signal processor and processing method for GPS receivers

    NASA Technical Reports Server (NTRS)

    Thomas, Jr., Jess B. (Inventor)

    1989-01-01

    A digital signal processor and processing method therefor for use in receivers of the NAVSTAR/GLOBAL POSITIONING SYSTEM (GPS) employs a digital carrier down-converter, digital code correlator and digital tracking processor. The digital carrier down-converter and code correlator consists of an all-digital, minimum bit implementation that utilizes digital chip and phase advancers, providing exceptional control and accuracy in feedback phase and in feedback delay. Roundoff and commensurability errors can be reduced to extremely small values (e.g., less than 100 nanochips and 100 nanocycles roundoff errors and 0.1 millichip and 1 millicycle commensurability errors). The digital tracking processor bases the fast feedback for phase and for group delay in the C/A, P.sub.1, and P.sub.2 channels on the L.sub.1 C/A carrier phase thereby maintaining lock at lower signal-to-noise ratios, reducing errors in feedback delays, reducing the frequency of cycle slips and in some cases obviating the need for quadrature processing in the P channels. Simple and reliable methods are employed for data bit synchronization, data bit removal and cycle counting. Improved precision in averaged output delay values is provided by carrier-aided data-compression techniques. The signal processor employs purely digital operations in the sense that exactly the same carrier phase and group delay measurements are obtained, to the last decimal place, every time the same sampled data (i.e., exactly the same bits) are processed.

  13. Efficiently modeling neural networks on massively parallel computers

    NASA Technical Reports Server (NTRS)

    Farber, Robert M.

    1993-01-01

    Neural networks are a very useful tool for analyzing and modeling complex real world systems. Applying neural network simulations to real world problems generally involves large amounts of data and massive amounts of computation. To efficiently handle the computational requirements of large problems, we have implemented at Los Alamos a highly efficient neural network compiler for serial computers, vector computers, vector parallel computers, and fine grain SIMD computers such as the CM-2 connection machine. This paper describes the mapping used by the compiler to implement feed-forward backpropagation neural networks for a SIMD (Single Instruction Multiple Data) architecture parallel computer. Thinking Machines Corporation has benchmarked our code at 1.3 billion interconnects per second (approximately 3 gigaflops) on a 64,000 processor CM-2 connection machine (Singer 1990). This mapping is applicable to other SIMD computers and can be implemented on MIMD computers such as the CM-5 connection machine. Our mapping has virtually no communications overhead with the exception of the communications required for a global summation across the processors (which has a sub-linear runtime growth on the order of O(log(number of processors)). We can efficiently model very large neural networks which have many neurons and interconnects and our mapping can extend to arbitrarily large networks (within memory limitations) by merging the memory space of separate processors with fast adjacent processor interprocessor communications. This paper will consider the simulation of only feed forward neural network although this method is extendable to recurrent networks.

  14. Ultrathin endoscopes based on multicore fibers and adaptive optics: a status review and perspectives.

    PubMed

    Andresen, Esben Ravn; Sivankutty, Siddharth; Tsvirkun, Viktor; Bouwmans, Géraud; Rigneault, Hervé

    2016-12-01

    We take stock of the progress that has been made into developing ultrathin endoscopes assisted by wave front shaping. We focus our review on multicore fiber-based lensless endoscopes intended for multiphoton imaging applications. We put the work into perspective by comparing with alternative approaches and by outlining the challenges that lie ahead.

  15. Amplification and noise properties of an erbium-doped multicore fiber amplifier.

    PubMed

    Abedin, K S; Taunay, T F; Fishteyn, M; Yan, M F; Zhu, B; Fini, J M; Monberg, E M; Dimarcello, F V; Wisk, P W

    2011-08-15

    A multicore erbium-doped fiber (MC-EDF) amplifier for simultaneous amplification in the 7-cores has been developed, and the gain and noise properties of individual cores have been studied. The pump and signal radiation were coupled to individual cores of MC-EDF using two tapered fiber bundled (TFB) couplers with low insertion loss. For a pump power of 146 mW, the average gain achieved in the MC-EDF fiber was 30 dB, and noise figure was less than 4 dB. The net useful gain from the multicore-amplifier, after taking into consideration of all the passive losses, was about 23-27 dB. Pump induced ASE noise transfer between the neighboring channel was negligible. © 2011 Optical Society of America

  16. Digital Platform for Wafer-Level MEMS Testing and Characterization Using Electrical Response

    PubMed Central

    Brito, Nuno; Ferreira, Carlos; Alves, Filipe; Cabral, Jorge; Gaspar, João; Monteiro, João; Rocha, Luís

    2016-01-01

    The uniqueness of microelectromechanical system (MEMS) devices, with their multiphysics characteristics, presents some limitations to the borrowed test methods from traditional integrated circuits (IC) manufacturing. Although some improvements have been performed, this specific area still lags behind when compared to the design and manufacturing competencies developed over the last decades by the IC industry. A complete digital solution for fast testing and characterization of inertial sensors with built-in actuation mechanisms is presented in this paper, with a fast, full-wafer test as a leading ambition. The full electrical approach and flexibility of modern hardware design technologies allow a fast adaptation for other physical domains with minimum effort. The digital system encloses a processor and the tailored signal acquisition, processing, control, and actuation hardware control modules, capable of the structure position and response analysis when subjected to controlled actuation signals in real time. The hardware performance, together with the simplicity of the sequential programming on a processor, results in a flexible and powerful tool to evaluate the newest and fastest control algorithms. The system enables measurement of resonant frequency (Fr), quality factor (Q), and pull-in voltage (Vpi) within 1.5 s with repeatability better than 5 ppt (parts per thousand). A full-wafer with 420 devices under test (DUTs) has been evaluated detecting the faulty devices and providing important design specification feedback to the designers. PMID:27657087

  17. An 81.6 μW FastICA processor for epileptic seizure detection.

    PubMed

    Yang, Chia-Hsiang; Shih, Yi-Hsin; Chiueh, Herming

    2015-02-01

    To improve the performance of epileptic seizure detection, independent component analysis (ICA) is applied to multi-channel signals to separate artifacts and signals of interest. FastICA is an efficient algorithm to compute ICA. To reduce the energy dissipation, eigenvalue decomposition (EVD) is utilized in the preprocessing stage to reduce the convergence time of iterative calculation of ICA components. EVD is computed efficiently through an array structure of processing elements running in parallel. Area-efficient EVD architecture is realized by leveraging the approximate Jacobi algorithm, leading to a 77.2% area reduction. By choosing proper memory element and reduced wordlength, the power and area of storage memory are reduced by 95.6% and 51.7%, respectively. The chip area is minimized through fixed-point implementation and architectural transformations. Given a latency constraint of 0.1 s, an 86.5% area reduction is achieved compared to the direct-mapped architecture. Fabricated in 90 nm CMOS, the core area of the chip is 0.40 mm(2). The FastICA processor, part of an integrated epileptic control SoC, dissipates 81.6 μW at 0.32 V. The computation delay of a frame of 256 samples for 8 channels is 84.2 ms. Compared to prior work, 0.5% power dissipation, 26.7% silicon area, and 3.4 × computation speedup are achieved. The performance of the chip was verified by human dataset.

  18. Digital Platform for Wafer-Level MEMS Testing and Characterization Using Electrical Response.

    PubMed

    Brito, Nuno; Ferreira, Carlos; Alves, Filipe; Cabral, Jorge; Gaspar, João; Monteiro, João; Rocha, Luís

    2016-09-21

    The uniqueness of microelectromechanical system (MEMS) devices, with their multiphysics characteristics, presents some limitations to the borrowed test methods from traditional integrated circuits (IC) manufacturing. Although some improvements have been performed, this specific area still lags behind when compared to the design and manufacturing competencies developed over the last decades by the IC industry. A complete digital solution for fast testing and characterization of inertial sensors with built-in actuation mechanisms is presented in this paper, with a fast, full-wafer test as a leading ambition. The full electrical approach and flexibility of modern hardware design technologies allow a fast adaptation for other physical domains with minimum effort. The digital system encloses a processor and the tailored signal acquisition, processing, control, and actuation hardware control modules, capable of the structure position and response analysis when subjected to controlled actuation signals in real time. The hardware performance, together with the simplicity of the sequential programming on a processor, results in a flexible and powerful tool to evaluate the newest and fastest control algorithms. The system enables measurement of resonant frequency (Fr), quality factor (Q), and pull-in voltage (Vpi) within 1.5 s with repeatability better than 5 ppt (parts per thousand). A full-wafer with 420 devices under test (DUTs) has been evaluated detecting the faulty devices and providing important design specification feedback to the designers.

  19. Fast reconstruction of optical properties for complex segmentations in near infrared imaging

    NASA Astrophysics Data System (ADS)

    Jiang, Jingjing; Wolf, Martin; Sánchez Majos, Salvador

    2017-04-01

    The intrinsic ill-posed nature of the inverse problem in near infrared imaging makes the reconstruction of fine details of objects deeply embedded in turbid media challenging even for the large amounts of data provided by time-resolved cameras. In addition, most reconstruction algorithms for this type of measurements are only suitable for highly symmetric geometries and rely on a linear approximation to the diffusion equation since a numerical solution of the fully non-linear problem is computationally too expensive. In this paper, we will show that a problem of practical interest can be successfully addressed making efficient use of the totality of the information supplied by time-resolved cameras. We set aside the goal of achieving high spatial resolution for deep structures and focus on the reconstruction of complex arrangements of large regions. We show numerical results based on a combined approach of wavelength-normalized data and prior geometrical information, defining a fully parallelizable problem in arbitrary geometries for time-resolved measurements. Fast reconstructions are obtained using a diffusion approximation and Monte-Carlo simulations, parallelized in a multicore computer and a GPU respectively.

  20. Treecode with a Special-Purpose Processor

    NASA Astrophysics Data System (ADS)

    Makino, Junichiro

    1991-08-01

    We describe an implementation of the modified Barnes-Hut tree algorithm for a gravitational N-body calculation on a GRAPE (GRAvity PipE) backend processor. GRAPE is a special-purpose computer for N-body calculations. It receives the positions and masses of particles from a host computer and then calculates the gravitational force at each coordinate specified by the host. To use this GRAPE processor with the hierarchical tree algorithm, the host computer must maintain a list of all nodes that exert force on a particle. If we create this list for each particle of the system at each timestep, the number of floating-point operations on the host and that on GRAPE would become comparable, and the increased speed obtained by using GRAPE would be small. In our modified algorithm, we create a list of nodes for many particles. Thus, the amount of the work required of the host is significantly reduced. This algorithm was originally developed by Barnes in order to vectorize the force calculation on a Cyber 205. With this algorithm, the computing time of the force calculation becomes comparable to that of the tree construction, if the GRAPE backend processor is sufficiently fast. The obtained speed-up factor is 30 to 50 for a RISC-based host computer and GRAPE-1A with a peak speed of 240 Mflops.

  1. XVis: Visualization for the Extreme-Scale Scientific-Computation Ecosystem: Mid-year report FY17 Q2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreland, Kenneth D.; Pugmire, David; Rogers, David

    The XVis project brings together the key elements of research to enable scientific discovery at extreme scale. Scientific computing will no longer be purely about how fast computations can be performed. Energy constraints, processor changes, and I/O limitations necessitate significant changes in both the software applications used in scientific computation and the ways in which scientists use them. Components for modeling, simulation, analysis, and visualization must work together in a computational ecosystem, rather than working independently as they have in the past. This project provides the necessary research and infrastructure for scientific discovery in this new computational ecosystem by addressingmore » four interlocking challenges: emerging processor technology, in situ integration, usability, and proxy analysis.« less

  2. XVis: Visualization for the Extreme-Scale Scientific-Computation Ecosystem: Year-end report FY17.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreland, Kenneth D.; Pugmire, David; Rogers, David

    The XVis project brings together the key elements of research to enable scientific discovery at extreme scale. Scientific computing will no longer be purely about how fast computations can be performed. Energy constraints, processor changes, and I/O limitations necessitate significant changes in both the software applications used in scientific computation and the ways in which scientists use them. Components for modeling, simulation, analysis, and visualization must work together in a computational ecosystem, rather than working independently as they have in the past. This project provides the necessary research and infrastructure for scientific discovery in this new computational ecosystem by addressingmore » four interlocking challenges: emerging processor technology, in situ integration, usability, and proxy analysis.« less

  3. XVis: Visualization for the Extreme-Scale Scientific-Computation Ecosystem. Mid-year report FY16 Q2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreland, Kenneth D.; Sewell, Christopher; Childs, Hank

    The XVis project brings together the key elements of research to enable scientific discovery at extreme scale. Scientific computing will no longer be purely about how fast computations can be performed. Energy constraints, processor changes, and I/O limitations necessitate significant changes in both the software applications used in scientific computation and the ways in which scientists use them. Components for modeling, simulation, analysis, and visualization must work together in a computational ecosystem, rather than working independently as they have in the past. This project provides the necessary research and infrastructure for scientific discovery in this new computational ecosystem by addressingmore » four interlocking challenges: emerging processor technology, in situ integration, usability, and proxy analysis.« less

  4. XVis: Visualization for the Extreme-Scale Scientific-Computation Ecosystem: Year-end report FY15 Q4.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreland, Kenneth D.; Sewell, Christopher; Childs, Hank

    The XVis project brings together the key elements of research to enable scientific discovery at extreme scale. Scientific computing will no longer be purely about how fast computations can be performed. Energy constraints, processor changes, and I/O limitations necessitate significant changes in both the software applications used in scientific computation and the ways in which scientists use them. Components for modeling, simulation, analysis, and visualization must work together in a computational ecosystem, rather than working independently as they have in the past. This project provides the necessary research and infrastructure for scientific discovery in this new computational ecosystem by addressingmore » four interlocking challenges: emerging processor technology, in situ integration, usability, and proxy analysis.« less

  5. 27ps DFT Molecular Dynamics Simulation of a-maltose: A Reduced Basis Set Study.

    USDA-ARS?s Scientific Manuscript database

    DFT molecular dynamics simulations are time intensive when carried out on carbohydrates such as alpha-maltose, requiring up to three or more weeks on a fast 16-processor computer to obtain just 5ps of constant energy dynamics. In a recent publication [1] forces for dynamics were generated from B3LY...

  6. Processor Units Reduce Satellite Construction Costs

    NASA Technical Reports Server (NTRS)

    2014-01-01

    As part of the effort to build the Fast Affordable Science and Technology Satellite (FASTSAT), Marshall Space Flight Center developed a low-cost telemetry unit which is used to facilitate communication between a satellite and its receiving station. Huntsville, Alabama-based Orbital Telemetry Inc. has licensed the NASA technology and is offering to install the cost-cutting units on commercial satellites.

  7. AESS: Accelerated Exact Stochastic Simulation

    NASA Astrophysics Data System (ADS)

    Jenkins, David D.; Peterson, Gregory D.

    2011-12-01

    The Stochastic Simulation Algorithm (SSA) developed by Gillespie provides a powerful mechanism for exploring the behavior of chemical systems with small species populations or with important noise contributions. Gene circuit simulations for systems biology commonly employ the SSA method, as do ecological applications. This algorithm tends to be computationally expensive, so researchers seek an efficient implementation of SSA. In this program package, the Accelerated Exact Stochastic Simulation Algorithm (AESS) contains optimized implementations of Gillespie's SSA that improve the performance of individual simulation runs or ensembles of simulations used for sweeping parameters or to provide statistically significant results. Program summaryProgram title: AESS Catalogue identifier: AEJW_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJW_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: University of Tennessee copyright agreement No. of lines in distributed program, including test data, etc.: 10 861 No. of bytes in distributed program, including test data, etc.: 394 631 Distribution format: tar.gz Programming language: C for processors, CUDA for NVIDIA GPUs Computer: Developed and tested on various x86 computers and NVIDIA C1060 Tesla and GTX 480 Fermi GPUs. The system targets x86 workstations, optionally with multicore processors or NVIDIA GPUs as accelerators. Operating system: Tested under Ubuntu Linux OS and CentOS 5.5 Linux OS Classification: 3, 16.12 Nature of problem: Simulation of chemical systems, particularly with low species populations, can be accurately performed using Gillespie's method of stochastic simulation. Numerous variations on the original stochastic simulation algorithm have been developed, including approaches that produce results with statistics that exactly match the chemical master equation (CME) as well as other approaches that approximate the CME. Solution method: The Accelerated Exact Stochastic Simulation (AESS) tool provides implementations of a wide variety of popular variations on the Gillespie method. Users can select the specific algorithm considered most appropriate. Comparisons between the methods and with other available implementations indicate that AESS provides the fastest known implementation of Gillespie's method for a variety of test models. Users may wish to execute ensembles of simulations to sweep parameters or to obtain better statistical results, so AESS supports acceleration of ensembles of simulation using parallel processing with MPI, SSE vector units on x86 processors, and/or using NVIDIA GPUs with CUDA.

  8. Creating a Parallel Version of VisIt for Microsoft Windows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitlock, B J; Biagas, K S; Rawson, P L

    2011-12-07

    VisIt is a popular, free interactive parallel visualization and analysis tool for scientific data. Users can quickly generate visualizations from their data, animate them through time, manipulate them, and save the resulting images or movies for presentations. VisIt was designed from the ground up to work on many scales of computers from modest desktops up to massively parallel clusters. VisIt is comprised of a set of cooperating programs. All programs can be run locally or in client/server mode in which some run locally and some run remotely on compute clusters. The VisIt program most able to harness today's computing powermore » is the VisIt compute engine. The compute engine is responsible for reading simulation data from disk, processing it, and sending results or images back to the VisIt viewer program. In a parallel environment, the compute engine runs several processes, coordinating using the Message Passing Interface (MPI) library. Each MPI process reads some subset of the scientific data and filters the data in various ways to create useful visualizations. By using MPI, VisIt has been able to scale well into the thousands of processors on large computers such as dawn and graph at LLNL. The advent of multicore CPU's has made parallelism the 'new' way to achieve increasing performance. With today's computers having at least 2 cores and in many cases up to 8 and beyond, it is more important than ever to deploy parallel software that can use that computing power not only on clusters but also on the desktop. We have created a parallel version of VisIt for Windows that uses Microsoft's MPI implementation (MSMPI) to process data in parallel on the Windows desktop as well as on a Windows HPC cluster running Microsoft Windows Server 2008. Initial desktop parallel support for Windows was deployed in VisIt 2.4.0. Windows HPC cluster support has been completed and will appear in the VisIt 2.5.0 release. We plan to continue supporting parallel VisIt on Windows so our users will be able to take full advantage of their multicore resources.« less

  9. SequenceL: Automated Parallel Algorithms Derived from CSP-NT Computational Laws

    NASA Technical Reports Server (NTRS)

    Cooke, Daniel; Rushton, Nelson

    2013-01-01

    With the introduction of new parallel architectures like the cell and multicore chips from IBM, Intel, AMD, and ARM, as well as the petascale processing available for highend computing, a larger number of programmers will need to write parallel codes. Adding the parallel control structure to the sequence, selection, and iterative control constructs increases the complexity of code development, which often results in increased development costs and decreased reliability. SequenceL is a high-level programming language that is, a programming language that is closer to a human s way of thinking than to a machine s. Historically, high-level languages have resulted in decreased development costs and increased reliability, at the expense of performance. In recent applications at JSC and in industry, SequenceL has demonstrated the usual advantages of high-level programming in terms of low cost and high reliability. SequenceL programs, however, have run at speeds typically comparable with, and in many cases faster than, their counterparts written in C and C++ when run on single-core processors. Moreover, SequenceL is able to generate parallel executables automatically for multicore hardware, gaining parallel speedups without any extra effort from the programmer beyond what is required to write the sequen tial/singlecore code. A SequenceL-to-C++ translator has been developed that automatically renders readable multithreaded C++ from a combination of a SequenceL program and sample data input. The SequenceL language is based on two fundamental computational laws, Consume-Simplify- Produce (CSP) and Normalize-Trans - pose (NT), which enable it to automate the creation of parallel algorithms from high-level code that has no annotations of parallelism whatsoever. In our anecdotal experience, SequenceL development has been in every case less costly than development of the same algorithm in sequential (that is, single-core, single process) C or C++, and an order of magnitude less costly than development of comparable parallel code. Moreover, SequenceL not only automatically parallelizes the code, but since it is based on CSP-NT, it is provably race free, thus eliminating the largest quality challenge the parallelized software developer faces.

  10. Tuning iteration space slicing based tiled multi-core code implementing Nussinov's RNA folding.

    PubMed

    Palkowski, Marek; Bielecki, Wlodzimierz

    2018-01-15

    RNA folding is an ongoing compute-intensive task of bioinformatics. Parallelization and improving code locality for this kind of algorithms is one of the most relevant areas in computational biology. Fortunately, RNA secondary structure approaches, such as Nussinov's recurrence, involve mathematical operations over affine control loops whose iteration space can be represented by the polyhedral model. This allows us to apply powerful polyhedral compilation techniques based on the transitive closure of dependence graphs to generate parallel tiled code implementing Nussinov's RNA folding. Such techniques are within the iteration space slicing framework - the transitive dependences are applied to the statement instances of interest to produce valid tiles. The main problem at generating parallel tiled code is defining a proper tile size and tile dimension which impact parallelism degree and code locality. To choose the best tile size and tile dimension, we first construct parallel parametric tiled code (parameters are variables defining tile size). With this purpose, we first generate two nonparametric tiled codes with different fixed tile sizes but with the same code structure and then derive a general affine model, which describes all integer factors available in expressions of those codes. Using this model and known integer factors present in the mentioned expressions (they define the left-hand side of the model), we find unknown integers in this model for each integer factor available in the same fixed tiled code position and replace in this code expressions, including integer factors, with those including parameters. Then we use this parallel parametric tiled code to implement the well-known tile size selection (TSS) technique, which allows us to discover in a given search space the best tile size and tile dimension maximizing target code performance. For a given search space, the presented approach allows us to choose the best tile size and tile dimension in parallel tiled code implementing Nussinov's RNA folding. Experimental results, received on modern Intel multi-core processors, demonstrate that this code outperforms known closely related implementations when the length of RNA strands is bigger than 2500.

  11. VLITE-Fast: A Real-time, 350 MHz Commensal VLA Survey for Fast Transients

    NASA Astrophysics Data System (ADS)

    Kerr, Matthew; Ray, Paul S.; Kassim, Namir E.; Clarke, Tracy; Deneva, Julia; Polisensky, Emil

    2018-01-01

    The VLITE (VLA Low Band Ionosphere and Transient Experiment; http://vlite.nrao.edu) program operates commensally during all Very Large Array observations, collecting data from 320 to 384 MHz. Recently expanded to include 16 antennas, the large field of view and huge time on sky offer good coverage of the transient, low-frequency sky. We describe the VLITE-Fast system, a GPU-based signal processor capable of detecting short (<1s) transients in real time and triggering recording of baseband voltage for offline imaging. In the case of Fast Radio Bursts, this offers the opportunity for discovering host galaxies of non-repeating FRBs, and in the case of single pulses, the identification of pulsar positions for dedicated follow-up. We describe the observing system, techniques for mitigating interference, and initial results from searches for FRBs.

  12. Fast generation of computer-generated hologram by graphics processing unit

    NASA Astrophysics Data System (ADS)

    Matsuda, Sho; Fujii, Tomohiko; Yamaguchi, Takeshi; Yoshikawa, Hiroshi

    2009-02-01

    A cylindrical hologram is well known to be viewable in 360 deg. This hologram depends high pixel resolution.Therefore, Computer-Generated Cylindrical Hologram (CGCH) requires huge calculation amount.In our previous research, we used look-up table method for fast calculation with Intel Pentium4 2.8 GHz.It took 480 hours to calculate high resolution CGCH (504,000 x 63,000 pixels and the average number of object points are 27,000).To improve quality of CGCH reconstructed image, fringe pattern requires higher spatial frequency and resolution.Therefore, to increase the calculation speed, we have to change the calculation method. In this paper, to reduce the calculation time of CGCH (912,000 x 108,000 pixels), we employ Graphics Processing Unit (GPU).It took 4,406 hours to calculate high resolution CGCH on Xeon 3.4 GHz.Since GPU has many streaming processors and a parallel processing structure, GPU works as the high performance parallel processor.In addition, GPU gives max performance to 2 dimensional data and streaming data.Recently, GPU can be utilized for the general purpose (GPGPU).For example, NVIDIA's GeForce7 series became a programmable processor with Cg programming language.Next GeForce8 series have CUDA as software development kit made by NVIDIA.Theoretically, calculation ability of GPU is announced as 500 GFLOPS. From the experimental result, we have achieved that 47 times faster calculation compared with our previous work which used CPU.Therefore, CGCH can be generated in 95 hours.So, total time is 110 hours to calculate and print the CGCH.

  13. Results of SEI Independent Research and Development Projects

    DTIC Science & Technology

    2009-12-01

    Achieving Predictable Performance in Multicore Embedded Real - Time Systems Dionisio de Niz, Jeffrey Hansen, Gabriel Moreno, Daniel Plakosh, Jorgen Hanson...Description Languages.‖ Fourth Congress on Embedded Real - Time Systems (ERTS), January 2008. [Hansson 2008b] J. Hansson, P. H. Feiler, & J. Morley...Predictable Performance in Multicore Embedded Real - Time Systems Dionisio de Niz, Jeffrey Hansen, Gabriel Moreno, Daniel Plakosh, Jorgen Hanson, Mark

  14. A Real-Time Linux for Multicore Platforms

    DTIC Science & Technology

    2013-12-20

    under ARO support) to obtain a fully-functional OS for supporting real-time workloads on multicore platforms. This system, called LITMUS -RT...to be specified as plugin components. LITMUS -RT is open-source software (available at The views, opinions and/or findings contained in this report... LITMUS -RT (LInux Testbed for MUltiprocessor Scheduling in Real-Time systems), allows different multiprocessor real-time scheduling and

  15. Nonlinear Light Dynamics in Multi-Core Structures

    DTIC Science & Technology

    2017-02-27

    be generated in continuous- discrete optical media such as multi-core optical fiber or waveguide arrays; localisation dynamics in a continuous... discrete nonlinear system. Detailed theoretical analysis is presented of the existence and stability of the discrete -continuous light bullets using a very...and pulse compression using wave collapse (self-focusing) energy localisation dynamics in a continuous- discrete nonlinear system, as implemented in a

  16. A Client/Server Architecture for Supporting Science Data Using EPICS Version 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalesio, Leo

    2015-04-21

    The Phase 1 grant that serves as a precursor to this proposal, prototyped complex storage techniques for high speed structured data that is being produced in accelerator diagnostics and beam line experiments. It demonstrates the technologies that can be used to archive and retrieve complex data structures and provide the performance required by our new accelerators, instrumentations, and detectors. Phase 2 is proposed to develop a high-performance platform for data acquisition and analysis to provide physicists and operators a better understanding of the beam dynamics. This proposal includes developing a platform for reading 109 MHz data at 10 KHz ratesmore » through a multicore front end processor, archiving the data to an archive repository that is then indexed for fast retrieval. The data is then retrieved from this data archive, integrated with the scalar data, to provide data sets to client applications for analysis, use in feedback, and to aid in identifying problem with the instrumentation, plant, beam steering, or model. This development is built on EPICS version 4 , which is being successfully deployed to implement physics applications. Through prior SBIR grants, EPICS version 4 has a solid communication protocol for middle layer services (PVAccess), structured data representation and methods for efficient transportation and access (PVData), an operational hierarchical record environment (JAVA IOC), and prototypes for standard structured data (Normative Types). This work was further developed through project funding to successfully deploy the first service based physics application environment with demonstrated services that provide arbitrary object views, save sets, model, lattice, and unit conversion. Thin client physics applications have been developed in Python that implement quad centering, orbit display, bump control, and slow orbit feedback. This service based architecture has provided a very modular and robust environment that enables commissioning teams to rapidly develop and deploy small scripts that build on powerful services. These services are all built on relational database data stores and scalar data. The work proposed herein, builds on these previous successes to provide data acquisition of high speed data for online analysis clients.« less

  17. Second generation OH suppression filters using multicore fibers

    NASA Astrophysics Data System (ADS)

    Haynes, R.; Birks, T. A.; Bland-Hawthorn, J.; Cruz, J. L.; Diez, A.; Ellis, S. C.; Haynes, D.; Krämer, R. G.; Mangan, B. J.; Min, S.; Murphy, D. F.; Nolte, S.; Olaya, J. C.; Thomas, J. U.; Trinh, C. Q.; Tünnermann, A.; Voigtländer, Christian

    2012-09-01

    Ground based near-infrared observations have long been plagued by poor sensitivity when compared to visible observations as a result of the bright narrow line emission from atmospheric OH molecules. The GNOSIS instrument recently commissioned at the Australian Astronomical Observatory uses Photonic Lanterns in combination with individually printed single mode fibre Bragg gratings to filter out the brightest OH-emission lines between 1.47 and 1.70μm. GNOSIS, reported in a separate paper in this conference, demonstrates excellent OH-suppression, providing very “clean” filtering of the lines. It represents a major step forward in the goal to improve the sensitivity of ground based near-infrared observation to that possible at visible wavelengths, however, the filter units are relatively bulky and costly to produce. The 2nd generation fibre OH-Suppression filters based on multicore fibres are currently under development. The development aims to produce high quality, cost effective, compact and robust OH-Suppression units in a single optical fibre with numerous isolated single mode cores that replicate the function and performance of the current generation of “conventional” photonic lantern based devices. In this paper we present the early results from the multicore fibre development and multicore fibre Bragg grating imprinting process.

  18. Myalgia as the revealing symptom of multicore disease and fibre type disproportion myopathy

    PubMed Central

    Sobreira*, C; Marques, W; Barreira, A

    2003-01-01

    Objective: To report the occurrence of myalgia as the revealing symptom of multicore disease and fibre type disproportion myopathy. Methods: The clinical cases of three patients with fibre type disproportion myopathy and one with multicore disease are described. Skeletal muscle biopsies were processed for routine histological and histochemical studies. Results: The clinical picture was unusual in that the symptoms were of late onset and the predominant complaint was muscle pain exacerbated by exercise. Muscle weakness was found in only a single patient, the mother of a patient with fibre type disproportion myopathy. Physical examination was unremarkable in the other patients. Muscle biopsies from patients 1 and 2 contained type I fibres that were considerably smaller than the type II fibres, supporting the diagnosis of fibre type disproportion myopathy. Skeletal muscle of patient 4 showed multiple areas, predominantly but not exclusively in the type I fibres, from which oxidative enzyme activities were absent, as seen in multicore disease. Conclusions: Muscle pain was the main clinical manifestation in our patients. Recognition of the broader clinical expression of these myopathies is important for prognostic reasons and for genetic counselling of the family members. PMID:12933945

  19. Optimization of a Lattice Boltzmann Computation on State-of-the-Art Multicore Platforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Samuel; Carter, Jonathan; Oliker, Leonid

    2009-04-10

    We present an auto-tuning approach to optimize application performance on emerging multicore architectures. The methodology extends the idea of search-based performance optimizations, popular in linear algebra and FFT libraries, to application-specific computational kernels. Our work applies this strategy to a lattice Boltzmann application (LBMHD) that historically has made poor use of scalar microprocessors due to its complex data structures and memory access patterns. We explore one of the broadest sets of multicore architectures in the HPC literature, including the Intel Xeon E5345 (Clovertown), AMD Opteron 2214 (Santa Rosa), AMD Opteron 2356 (Barcelona), Sun T5140 T2+ (Victoria Falls), as well asmore » a QS20 IBM Cell Blade. Rather than hand-tuning LBMHD for each system, we develop a code generator that allows us to identify a highly optimized version for each platform, while amortizing the human programming effort. Results show that our auto-tuned LBMHD application achieves up to a 15x improvement compared with the original code at a given concurrency. Additionally, we present detailed analysis of each optimization, which reveal surprising hardware bottlenecks and software challenges for future multicore systems and applications.« less

  20. A Study on Fast Gates for Large-Scale Quantum Simulation with Trapped Ions

    PubMed Central

    Taylor, Richard L.; Bentley, Christopher D. B.; Pedernales, Julen S.; Lamata, Lucas; Solano, Enrique; Carvalho, André R. R.; Hope, Joseph J.

    2017-01-01

    Large-scale digital quantum simulations require thousands of fundamental entangling gates to construct the simulated dynamics. Despite success in a variety of small-scale simulations, quantum information processing platforms have hitherto failed to demonstrate the combination of precise control and scalability required to systematically outmatch classical simulators. We analyse how fast gates could enable trapped-ion quantum processors to achieve the requisite scalability to outperform classical computers without error correction. We analyze the performance of a large-scale digital simulator, and find that fidelity of around 70% is realizable for π-pulse infidelities below 10−5 in traps subject to realistic rates of heating and dephasing. This scalability relies on fast gates: entangling gates faster than the trap period. PMID:28401945

  1. A Study on Fast Gates for Large-Scale Quantum Simulation with Trapped Ions.

    PubMed

    Taylor, Richard L; Bentley, Christopher D B; Pedernales, Julen S; Lamata, Lucas; Solano, Enrique; Carvalho, André R R; Hope, Joseph J

    2017-04-12

    Large-scale digital quantum simulations require thousands of fundamental entangling gates to construct the simulated dynamics. Despite success in a variety of small-scale simulations, quantum information processing platforms have hitherto failed to demonstrate the combination of precise control and scalability required to systematically outmatch classical simulators. We analyse how fast gates could enable trapped-ion quantum processors to achieve the requisite scalability to outperform classical computers without error correction. We analyze the performance of a large-scale digital simulator, and find that fidelity of around 70% is realizable for π-pulse infidelities below 10 -5 in traps subject to realistic rates of heating and dephasing. This scalability relies on fast gates: entangling gates faster than the trap period.

  2. A fast, programmable hardware architecture for spaceborne SAR processing

    NASA Technical Reports Server (NTRS)

    Bennett, J. R.; Cumming, I. G.; Lim, J.; Wedding, R. M.

    1983-01-01

    The launch of spaceborne SARs during the 1980's is discussed. The satellite SARs require high quality and high throughput ground processors. Compression ratios in range and azimuth of greater than 500 and 150 respectively lead to frequency domain processing and data computation rates in excess of 2000 million real operations per second for C-band SARs under consideration. Various hardware architectures are examined and two promising candidates and proceeds to recommend a fast, programmable hardware architecture for spaceborne SAR processing are selected. Modularity and programmability are introduced as desirable attributes for the purpose of HTSP hardware selection.

  3. Active Acoustics using Bellhop-DRDC: Run Time Tests and Suggested Configurations for a Tracking Exercise in Shallow Scotian Waters

    DTIC Science & Technology

    2005-05-01

    simulée d’essai pour obtenir les diagrammes de perte de transmission et de réverbération pour 18 éléments (une source, un réseau remorqué et 16 bouées...were recorded using a 1.5GHz Pentium 4 processor. The test results indicate that the Bellhop program runs fast enough to provide the required acoustic...was determined that the Bellhop program will be fast enough for these clients. Future Plans It is intended to integrate further enhancements that

  4. Zonal methods for the parallel execution of range-limited N-body simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowers, Kevin J.; Dror, Ron O.; Shaw, David E.

    2007-01-20

    Particle simulations in fields ranging from biochemistry to astrophysics require the evaluation of interactions between all pairs of particles separated by less than some fixed interaction radius. The applicability of such simulations is often limited by the time required for calculation, but the use of massive parallelism to accelerate these computations is typically limited by inter-processor communication requirements. Recently, Snir [M. Snir, A note on N-body computations with cutoffs, Theor. Comput. Syst. 37 (2004) 295-318] and Shaw [D.E. Shaw, A fast, scalable method for the parallel evaluation of distance-limited pairwise particle interactions, J. Comput. Chem. 26 (2005) 1318-1328] independently introducedmore » two distinct methods that offer asymptotic reductions in the amount of data transferred between processors. In the present paper, we show that these schemes represent special cases of a more general class of methods, and introduce several new algorithms in this class that offer practical advantages over all previously described methods for a wide range of problem parameters. We also show that several of these algorithms approach an approximate lower bound on inter-processor data transfer.« less

  5. Plural-wavelength flame detector that discriminates between direct and reflected radiation

    NASA Technical Reports Server (NTRS)

    Hall, Gregory H. (Inventor); Barnes, Heidi L. (Inventor); Medelius, Pedro J. (Inventor); Simpson, Howard J. (Inventor); Smith, Harvey S. (Inventor)

    1997-01-01

    A flame detector employs a plurality of wavelength selective radiation detectors and a digital signal processor programmed to analyze each of the detector signals, and determine whether radiation is received directly from a small flame source that warrants generation of an alarm. The processor's algorithm employs a normalized cross-correlation analysis of the detector signals to discriminate between radiation received directly from a flame and radiation received from a reflection of a flame to insure that reflections will not trigger an alarm. In addition, the algorithm employs a Fast Fourier Transform (FFT) frequency spectrum analysis of one of the detector signals to discriminate between flames of different sizes. In a specific application, the detector incorporates two infrared (IR) detectors and one ultraviolet (UV) detector for discriminating between a directly sensed small hydrogen flame, and reflections from a large hydrogen flame. The signals generated by each of the detectors are sampled and digitized for analysis by the digital signal processor, preferably 250 times a second. A sliding time window of approximately 30 seconds of detector data is created using FIFO memories.

  6. Photonic Crystal Fibers

    DTIC Science & Technology

    2005-12-01

    passive and active versions of each fiber designed under this task. Crystal Fibre shall provide characteristics of the fiber fabricated to include core...passive version of multicore fiber iteration 2. 15. SUBJECT TERMS EOARD, Laser physics, Fibre Lasers, Photonic Crystal, Multicore, Fiber Laser 16...9 00* 0 " CRYSTAL FIBRE INT ODUCTION This report describes the photonic crystal fibers developed under agreement No FA8655-o5-a- 3046. All

  7. Efficient Helicopter Aerodynamic and Aeroacoustic Predictions on Parallel Computers

    NASA Technical Reports Server (NTRS)

    Wissink, Andrew M.; Lyrintzis, Anastasios S.; Strawn, Roger C.; Oliker, Leonid; Biswas, Rupak

    1996-01-01

    This paper presents parallel implementations of two codes used in a combined CFD/Kirchhoff methodology to predict the aerodynamics and aeroacoustics properties of helicopters. The rotorcraft Navier-Stokes code, TURNS, computes the aerodynamic flowfield near the helicopter blades and the Kirchhoff acoustics code computes the noise in the far field, using the TURNS solution as input. The overall parallel strategy adds MPI message passing calls to the existing serial codes to allow for communication between processors. As a result, the total code modifications required for parallel execution are relatively small. The biggest bottleneck in running the TURNS code in parallel comes from the LU-SGS algorithm that solves the implicit system of equations. We use a new hybrid domain decomposition implementation of LU-SGS to obtain good parallel performance on the SP-2. TURNS demonstrates excellent parallel speedups for quasi-steady and unsteady three-dimensional calculations of a helicopter blade in forward flight. The execution rate attained by the code on 114 processors is six times faster than the same cases run on one processor of the Cray C-90. The parallel Kirchhoff code also shows excellent parallel speedups and fast execution rates. As a performance demonstration, unsteady acoustic pressures are computed at 1886 far-field observer locations for a sample acoustics problem. The calculation requires over two hundred hours of CPU time on one C-90 processor but takes only a few hours on 80 processors of the SP2. The resultant far-field acoustic field is analyzed with state of-the-art audio and video rendering of the propagating acoustic signals.

  8. FPGA-based distributed computing microarchitecture for complex physical dynamics investigation.

    PubMed

    Borgese, Gianluca; Pace, Calogero; Pantano, Pietro; Bilotta, Eleonora

    2013-09-01

    In this paper, we present a distributed computing system, called DCMARK, aimed at solving partial differential equations at the basis of many investigation fields, such as solid state physics, nuclear physics, and plasma physics. This distributed architecture is based on the cellular neural network paradigm, which allows us to divide the differential equation system solving into many parallel integration operations to be executed by a custom multiprocessor system. We push the number of processors to the limit of one processor for each equation. In order to test the present idea, we choose to implement DCMARK on a single FPGA, designing the single processor in order to minimize its hardware requirements and to obtain a large number of easily interconnected processors. This approach is particularly suited to study the properties of 1-, 2- and 3-D locally interconnected dynamical systems. In order to test the computing platform, we implement a 200 cells, Korteweg-de Vries (KdV) equation solver and perform a comparison between simulations conducted on a high performance PC and on our system. Since our distributed architecture takes a constant computing time to solve the equation system, independently of the number of dynamical elements (cells) of the CNN array, it allows us to reduce the elaboration time more than other similar systems in the literature. To ensure a high level of reconfigurability, we design a compact system on programmable chip managed by a softcore processor, which controls the fast data/control communication between our system and a PC Host. An intuitively graphical user interface allows us to change the calculation parameters and plot the results.

  9. Multivariate interactive digital analysis system /MIDAS/ - A new fast multispectral recognition system

    NASA Technical Reports Server (NTRS)

    Kriegler, F.; Marshall, R.; Lampert, S.; Gordon, M.; Cornell, C.; Kistler, R.

    1973-01-01

    The MIDAS system is a prototype, multiple-pipeline digital processor mechanizing the multivariate-Gaussian, maximum-likelihood decision algorithm operating at 200,000 pixels/second. It incorporates displays and film printer equipment under control of a general purpose midi-computer and possesses sufficient flexibility that operational versions of the equipment may be subsequently specified as subsets of the system.

  10. Performance evaluation of GPU parallelization, space-time adaptive algorithms, and their combination for simulating cardiac electrophysiology.

    PubMed

    Sachetto Oliveira, Rafael; Martins Rocha, Bernardo; Burgarelli, Denise; Meira, Wagner; Constantinides, Christakis; Weber Dos Santos, Rodrigo

    2018-02-01

    The use of computer models as a tool for the study and understanding of the complex phenomena of cardiac electrophysiology has attained increased importance nowadays. At the same time, the increased complexity of the biophysical processes translates into complex computational and mathematical models. To speed up cardiac simulations and to allow more precise and realistic uses, 2 different techniques have been traditionally exploited: parallel computing and sophisticated numerical methods. In this work, we combine a modern parallel computing technique based on multicore and graphics processing units (GPUs) and a sophisticated numerical method based on a new space-time adaptive algorithm. We evaluate each technique alone and in different combinations: multicore and GPU, multicore and GPU and space adaptivity, multicore and GPU and space adaptivity and time adaptivity. All the techniques and combinations were evaluated under different scenarios: 3D simulations on slabs, 3D simulations on a ventricular mouse mesh, ie, complex geometry, sinus-rhythm, and arrhythmic conditions. Our results suggest that multicore and GPU accelerate the simulations by an approximate factor of 33×, whereas the speedups attained by the space-time adaptive algorithms were approximately 48. Nevertheless, by combining all the techniques, we obtained speedups that ranged between 165 and 498. The tested methods were able to reduce the execution time of a simulation by more than 498× for a complex cellular model in a slab geometry and by 165× in a realistic heart geometry simulating spiral waves. The proposed methods will allow faster and more realistic simulations in a feasible time with no significant loss of accuracy. Copyright © 2017 John Wiley & Sons, Ltd.

  11. Development of seismic tomography software for hybrid supercomputers

    NASA Astrophysics Data System (ADS)

    Nikitin, Alexandr; Serdyukov, Alexandr; Duchkov, Anton

    2015-04-01

    Seismic tomography is a technique used for computing velocity model of geologic structure from first arrival travel times of seismic waves. The technique is used in processing of regional and global seismic data, in seismic exploration for prospecting and exploration of mineral and hydrocarbon deposits, and in seismic engineering for monitoring the condition of engineering structures and the surrounding host medium. As a consequence of development of seismic monitoring systems and increasing volume of seismic data, there is a growing need for new, more effective computational algorithms for use in seismic tomography applications with improved performance, accuracy and resolution. To achieve this goal, it is necessary to use modern high performance computing systems, such as supercomputers with hybrid architecture that use not only CPUs, but also accelerators and co-processors for computation. The goal of this research is the development of parallel seismic tomography algorithms and software package for such systems, to be used in processing of large volumes of seismic data (hundreds of gigabytes and more). These algorithms and software package will be optimized for the most common computing devices used in modern hybrid supercomputers, such as Intel Xeon CPUs, NVIDIA Tesla accelerators and Intel Xeon Phi co-processors. In this work, the following general scheme of seismic tomography is utilized. Using the eikonal equation solver, arrival times of seismic waves are computed based on assumed velocity model of geologic structure being analyzed. In order to solve the linearized inverse problem, tomographic matrix is computed that connects model adjustments with travel time residuals, and the resulting system of linear equations is regularized and solved to adjust the model. The effectiveness of parallel implementations of existing algorithms on target architectures is considered. During the first stage of this work, algorithms were developed for execution on supercomputers using multicore CPUs only, with preliminary performance tests showing good parallel efficiency on large numerical grids. Porting of the algorithms to hybrid supercomputers is currently ongoing.

  12. SweeD: likelihood-based detection of selective sweeps in thousands of genomes.

    PubMed

    Pavlidis, Pavlos; Živkovic, Daniel; Stamatakis, Alexandros; Alachiotis, Nikolaos

    2013-09-01

    The advent of modern DNA sequencing technology is the driving force in obtaining complete intra-specific genomes that can be used to detect loci that have been subject to positive selection in the recent past. Based on selective sweep theory, beneficial loci can be detected by examining the single nucleotide polymorphism patterns in intraspecific genome alignments. In the last decade, a plethora of algorithms for identifying selective sweeps have been developed. However, the majority of these algorithms have not been designed for analyzing whole-genome data. We present SweeD (Sweep Detector), an open-source tool for the rapid detection of selective sweeps in whole genomes. It analyzes site frequency spectra and represents a substantial extension of the widely used SweepFinder program. The sequential version of SweeD is up to 22 times faster than SweepFinder and, more importantly, is able to analyze thousands of sequences. We also provide a parallel implementation of SweeD for multi-core processors. Furthermore, we implemented a checkpointing mechanism that allows to deploy SweeD on cluster systems with queue execution time restrictions, as well as to resume long-running analyses after processor failures. In addition, the user can specify various demographic models via the command-line to calculate their theoretically expected site frequency spectra. Therefore, (in contrast to SweepFinder) the neutral site frequencies can optionally be directly calculated from a given demographic model. We show that an increase of sample size results in more precise detection of positive selection. Thus, the ability to analyze substantially larger sample sizes by using SweeD leads to more accurate sweep detection. We validate SweeD via simulations and by scanning the first chromosome from the 1000 human Genomes project for selective sweeps. We compare SweeD results with results from a linkage-disequilibrium-based approach and identify common outliers.

  13. Method of developing all-optical trinary JK, D-type, and T-type flip-flops using semiconductor optical amplifiers.

    PubMed

    Garai, Sisir Kumar

    2012-04-10

    To meet the demand of very fast and agile optical networks, the optical processors in a network system should have a very fast execution rate, large information handling, and large information storage capacities. Multivalued logic operations and multistate optical flip-flops are the basic building blocks for such fast running optical computing and data processing systems. In the past two decades, many methods of implementing all-optical flip-flops have been proposed. Most of these suffer from speed limitations because of the low switching response of active devices. The frequency encoding technique has been used because of its many advantages. It can preserve its identity throughout data communication irrespective of loss of light energy due to reflection, refraction, attenuation, etc. The action of polarization-rotation-based very fast switching of semiconductor optical amplifiers increases processing speed. At the same time, tristate optical flip-flops increase information handling capacity.

  14. Experimental investigation of inter-core crosstalk tolerance of MIMO-OFDM/OQAM radio over multicore fiber system.

    PubMed

    He, Jiale; Li, Borui; Deng, Lei; Tang, Ming; Gan, Lin; Fu, Songnian; Shum, Perry Ping; Liu, Deming

    2016-06-13

    In this paper, the feasibility of space division multiplexing for optical wireless fronthaul systems is experimentally demonstrated by implementing high speed MIMO-OFDM/OQAM radio signals over 20km 7-core fiber and 0.4m wireless link. Moreover, the impact of optical inter-core crosstalk in multicore fibers on the proposed MIMO-OFDM/OQAM radio over fiber system is experimentally evaluated in both SISO and MIMO configurations for comparison. The experimental results show that the inter-core crosstalk tolerance of the proposed radio over fiber system can be relaxed to -10 dB by using the proposed MIMO-OFDM/OQAM processing. These results could guide high density multicore fiber design to support a large number of antenna modules and a higher density of radio-access points for potential applications in 5G cellular system.

  15. The design of multi-core DSP parallel model based on message passing and multi-level pipeline

    NASA Astrophysics Data System (ADS)

    Niu, Jingyu; Hu, Jian; He, Wenjing; Meng, Fanrong; Li, Chuanrong

    2017-10-01

    Currently, the design of embedded signal processing system is often based on a specific application, but this idea is not conducive to the rapid development of signal processing technology. In this paper, a parallel processing model architecture based on multi-core DSP platform is designed, and it is mainly suitable for the complex algorithms which are composed of different modules. This model combines the ideas of multi-level pipeline parallelism and message passing, and summarizes the advantages of the mainstream model of multi-core DSP (the Master-Slave model and the Data Flow model), so that it has better performance. This paper uses three-dimensional image generation algorithm to validate the efficiency of the proposed model by comparing with the effectiveness of the Master-Slave and the Data Flow model.

  16. OpenMP GNU and Intel Fortran programs for solving the time-dependent Gross-Pitaevskii equation

    NASA Astrophysics Data System (ADS)

    Young-S., Luis E.; Muruganandam, Paulsamy; Adhikari, Sadhan K.; Lončar, Vladimir; Vudragović, Dušan; Balaž, Antun

    2017-11-01

    We present Open Multi-Processing (OpenMP) version of Fortran 90 programs for solving the Gross-Pitaevskii (GP) equation for a Bose-Einstein condensate in one, two, and three spatial dimensions, optimized for use with GNU and Intel compilers. We use the split-step Crank-Nicolson algorithm for imaginary- and real-time propagation, which enables efficient calculation of stationary and non-stationary solutions, respectively. The present OpenMP programs are designed for computers with multi-core processors and optimized for compiling with both commercially-licensed Intel Fortran and popular free open-source GNU Fortran compiler. The programs are easy to use and are elaborated with helpful comments for the users. All input parameters are listed at the beginning of each program. Different output files provide physical quantities such as energy, chemical potential, root-mean-square sizes, densities, etc. We also present speedup test results for new versions of the programs. Program files doi:http://dx.doi.org/10.17632/y8zk3jgn84.2 Licensing provisions: Apache License 2.0 Programming language: OpenMP GNU and Intel Fortran 90. Computer: Any multi-core personal computer or workstation with the appropriate OpenMP-capable Fortran compiler installed. Number of processors used: All available CPU cores on the executing computer. Journal reference of previous version: Comput. Phys. Commun. 180 (2009) 1888; ibid.204 (2016) 209. Does the new version supersede the previous version?: Not completely. It does supersede previous Fortran programs from both references above, but not OpenMP C programs from Comput. Phys. Commun. 204 (2016) 209. Nature of problem: The present Open Multi-Processing (OpenMP) Fortran programs, optimized for use with commercially-licensed Intel Fortran and free open-source GNU Fortran compilers, solve the time-dependent nonlinear partial differential (GP) equation for a trapped Bose-Einstein condensate in one (1d), two (2d), and three (3d) spatial dimensions for six different trap symmetries: axially and radially symmetric traps in 3d, circularly symmetric traps in 2d, fully isotropic (spherically symmetric) and fully anisotropic traps in 2d and 3d, as well as 1d traps, where no spatial symmetry is considered. Solution method: We employ the split-step Crank-Nicolson algorithm to discretize the time-dependent GP equation in space and time. The discretized equation is then solved by imaginary- or real-time propagation, employing adequately small space and time steps, to yield the solution of stationary and non-stationary problems, respectively. Reasons for the new version: Previously published Fortran programs [1,2] have now become popular tools [3] for solving the GP equation. These programs have been translated to the C programming language [4] and later extended to the more complex scenario of dipolar atoms [5]. Now virtually all computers have multi-core processors and some have motherboards with more than one physical computer processing unit (CPU), which may increase the number of available CPU cores on a single computer to several tens. The C programs have been adopted to be very fast on such multi-core modern computers using general-purpose graphic processing units (GPGPU) with Nvidia CUDA and computer clusters using Message Passing Interface (MPI) [6]. Nevertheless, previously developed Fortran programs are also commonly used for scientific computation and most of them use a single CPU core at a time in modern multi-core laptops, desktops, and workstations. Unless the Fortran programs are made aware and capable of making efficient use of the available CPU cores, the solution of even a realistic dynamical 1d problem, not to mention the more complicated 2d and 3d problems, could be time consuming using the Fortran programs. Previously, we published auto-parallel Fortran programs [2] suitable for Intel (but not GNU) compiler for solving the GP equation. Hence, a need for the full OpenMP version of the Fortran programs to reduce the execution time cannot be overemphasized. To address this issue, we provide here such OpenMP Fortran programs, optimized for both Intel and GNU Fortran compilers and capable of using all available CPU cores, which can significantly reduce the execution time. Summary of revisions: Previous Fortran programs [1] for solving the time-dependent GP equation in 1d, 2d, and 3d with different trap symmetries have been parallelized using the OpenMP interface to reduce the execution time on multi-core processors. There are six different trap symmetries considered, resulting in six programs for imaginary-time propagation and six for real-time propagation, totaling to 12 programs included in BEC-GP-OMP-FOR software package. All input data (number of atoms, scattering length, harmonic oscillator trap length, trap anisotropy, etc.) are conveniently placed at the beginning of each program, as before [2]. Present programs introduce a new input parameter, which is designated by Number_of_Threads and defines the number of CPU cores of the processor to be used in the calculation. If one sets the value 0 for this parameter, all available CPU cores will be used. For the most efficient calculation it is advisable to leave one CPU core unused for the background system's jobs. For example, on a machine with 20 CPU cores such that we used for testing, it is advisable to use up to 19 CPU cores. However, the total number of used CPU cores can be divided into more than one job. For instance, one can run three simulations simultaneously using 10, 4, and 5 CPU cores, respectively, thus totaling to 19 used CPU cores on a 20-core computer. The Fortran source programs are located in the directory src, and can be compiled by the make command using the makefile in the root directory BEC-GP-OMP-FOR of the software package. The examples of produced output files can be found in the directory output, although some large density files are omitted, to save space. The programs calculate the values of actually used dimensionless nonlinearities from the physical input parameters, where the input parameters correspond to the identical nonlinearity values as in the previously published programs [1], so that the output files of the old and new programs can be directly compared. The output files are conveniently named such that their contents can be easily identified, following the naming convention introduced in Ref. [2]. For example, a file named -out.txt, where is a name of the individual program, represents the general output file containing input data, time and space steps, nonlinearity, energy and chemical potential, and was named fort.7 in the old Fortran version of programs [1]. A file named -den.txt is the output file with the condensate density, which had the names fort.3 and fort.4 in the old Fortran version [1] for imaginary- and real-time propagation programs, respectively. Other possible density outputs, such as the initial density, are commented out in the programs to have a simpler set of output files, but users can uncomment and re-enable them, if needed. In addition, there are output files for reduced (integrated) 1d and 2d densities for different programs. In the real-time programs there is also an output file reporting the dynamics of evolution of root-mean-square sizes after a perturbation is introduced. The supplied real-time programs solve the stationary GP equation, and then calculate the dynamics. As the imaginary-time programs are more accurate than the real-time programs for the solution of a stationary problem, one can first solve the stationary problem using the imaginary-time programs, adapt the real-time programs to read the pre-calculated wave function and then study the dynamics. In that case the parameter NSTP in the real-time programs should be set to zero and the space mesh and nonlinearity parameters should be identical in both programs. The reader is advised to consult our previous publication where a complete description of the output files is given [2]. A readme.txt file, included in the root directory, explains the procedure to compile and run the programs. We tested our programs on a workstation with two 10-core Intel Xeon E5-2650 v3 CPUs. The parameters used for testing are given in sample input files, provided in the corresponding directory together with the programs. In Table 1 we present wall-clock execution times for runs on 1, 6, and 19 CPU cores for programs compiled using Intel and GNU Fortran compilers. The corresponding columns "Intel speedup" and "GNU speedup" give the ratio of wall-clock execution times of runs on 1 and 19 CPU cores, and denote the actual measured speedup for 19 CPU cores. In all cases and for all numbers of CPU cores, although the GNU Fortran compiler gives excellent results, the Intel Fortran compiler turns out to be slightly faster. Note that during these tests we always ran only a single simulation on a workstation at a time, to avoid any possible interference issues. Therefore, the obtained wall-clock times are more reliable than the ones that could be measured with two or more jobs running simultaneously. We also studied the speedup of the programs as a function of the number of CPU cores used. The performance of the Intel and GNU Fortran compilers is illustrated in Fig. 1, where we plot the speedup and actual wall-clock times as functions of the number of CPU cores for 2d and 3d programs. We see that the speedup increases monotonically with the number of CPU cores in all cases and has large values (between 10 and 14 for 3d programs) for the maximal number of cores. This fully justifies the development of OpenMP programs, which enable much faster and more efficient solving of the GP equation. However, a slow saturation in the speedup with the further increase in the number of CPU cores is observed in all cases, as expected. The speedup tends to increase for programs in higher dimensions, as they become more complex and have to process more data. This is why the speedups of the supplied 2d and 3d programs are larger than those of 1d programs. Also, for a single program the speedup increases with the size of the spatial grid, i.e., with the number of spatial discretization points, since this increases the amount of calculations performed by the program. To demonstrate this, we tested the supplied real2d-th program and varied the number of spatial discretization points NX=NY from 20 to 1000. The measured speedup obtained when running this program on 19 CPU cores as a function of the number of discretization points is shown in Fig. 2. The speedup first increases rapidly with the number of discretization points and eventually saturates. Additional comments: Example inputs provided with the programs take less than 30 minutes to run on a workstation with two Intel Xeon E5-2650 v3 processors (2 QPI links, 10 CPU cores, 25 MB cache, 2.3 GHz).

  17. Multicore Architectures for Multiple Independent Levels of Security Applications

    DTIC Science & Technology

    2012-09-01

    to bolster the MILS effort. However, current MILS operating systems are not designed for multi-core platforms. They do not have the hardware support...current MILS operating systems are not designed for multi‐core platforms. They do not have the hardware support to ensure that the separation...the availability of information at different security classification levels while increasing the overall security of the computing system . Due to the

  18. Reconfigurable SDM Switching Using Novel Silicon Photonic Integrated Circuit.

    PubMed

    Ding, Yunhong; Kamchevska, Valerija; Dalgaard, Kjeld; Ye, Feihong; Asif, Rameez; Gross, Simon; Withford, Michael J; Galili, Michael; Morioka, Toshio; Oxenløwe, Leif Katsuo

    2016-12-21

    Space division multiplexing using multicore fibers is becoming a more and more promising technology. In space-division multiplexing fiber network, the reconfigurable switch is one of the most critical components in network nodes. In this paper we for the first time demonstrate reconfigurable space-division multiplexing switching using silicon photonic integrated circuit, which is fabricated on a novel silicon-on-insulator platform with buried Al mirror. The silicon photonic integrated circuit is composed of a 7 × 7 switch and low loss grating coupler array based multicore fiber couplers. Thanks to the Al mirror, grating couplers with ultra-low coupling loss with optical multicore fibers is achieved. The lowest total insertion loss of the silicon integrated circuit is as low as 4.5 dB, with low crosstalk lower than -30 dB. Excellent performances in terms of low insertion loss and low crosstalk are obtained for the whole C-band. 1 Tb/s/core transmission over a 2-km 7-core fiber and space-division multiplexing switching is demonstrated successfully. Bit error rate performance below 10 -9 is obtained for all spatial channels with low power penalty. The proposed design can be easily upgraded to reconfigurable optical add/drop multiplexer capable of switching several multicore fibers.

  19. Reconfigurable SDM Switching Using Novel Silicon Photonic Integrated Circuit

    NASA Astrophysics Data System (ADS)

    Ding, Yunhong; Kamchevska, Valerija; Dalgaard, Kjeld; Ye, Feihong; Asif, Rameez; Gross, Simon; Withford, Michael J.; Galili, Michael; Morioka, Toshio; Oxenløwe, Leif Katsuo

    2016-12-01

    Space division multiplexing using multicore fibers is becoming a more and more promising technology. In space-division multiplexing fiber network, the reconfigurable switch is one of the most critical components in network nodes. In this paper we for the first time demonstrate reconfigurable space-division multiplexing switching using silicon photonic integrated circuit, which is fabricated on a novel silicon-on-insulator platform with buried Al mirror. The silicon photonic integrated circuit is composed of a 7 × 7 switch and low loss grating coupler array based multicore fiber couplers. Thanks to the Al mirror, grating couplers with ultra-low coupling loss with optical multicore fibers is achieved. The lowest total insertion loss of the silicon integrated circuit is as low as 4.5 dB, with low crosstalk lower than -30 dB. Excellent performances in terms of low insertion loss and low crosstalk are obtained for the whole C-band. 1 Tb/s/core transmission over a 2-km 7-core fiber and space-division multiplexing switching is demonstrated successfully. Bit error rate performance below 10-9 is obtained for all spatial channels with low power penalty. The proposed design can be easily upgraded to reconfigurable optical add/drop multiplexer capable of switching several multicore fibers.

  20. Polytopol computing for multi-core and distributed systems

    NASA Astrophysics Data System (ADS)

    Spaanenburg, Henk; Spaanenburg, Lambert; Ranefors, Johan

    2009-05-01

    Multi-core computing provides new challenges to software engineering. The paper addresses such issues in the general setting of polytopol computing, that takes multi-core problems in such widely differing areas as ambient intelligence sensor networks and cloud computing into account. It argues that the essence lies in a suitable allocation of free moving tasks. Where hardware is ubiquitous and pervasive, the network is virtualized into a connection of software snippets judiciously injected to such hardware that a system function looks as one again. The concept of polytopol computing provides a further formalization in terms of the partitioning of labor between collector and sensor nodes. Collectors provide functions such as a knowledge integrator, awareness collector, situation displayer/reporter, communicator of clues and an inquiry-interface provider. Sensors provide functions such as anomaly detection (only communicating singularities, not continuous observation), they are generally powered or self-powered, amorphous (not on a grid) with generation-and-attrition, field re-programmable, and sensor plug-and-play-able. Together the collector and the sensor are part of the skeleton injector mechanism, added to every node, and give the network the ability to organize itself into some of many topologies. Finally we will discuss a number of applications and indicate how a multi-core architecture supports the security aspects of the skeleton injector.

  1. Reconfigurable SDM Switching Using Novel Silicon Photonic Integrated Circuit

    PubMed Central

    Ding, Yunhong; Kamchevska, Valerija; Dalgaard, Kjeld; Ye, Feihong; Asif, Rameez; Gross, Simon; Withford, Michael J.; Galili, Michael; Morioka, Toshio; Oxenløwe, Leif Katsuo

    2016-01-01

    Space division multiplexing using multicore fibers is becoming a more and more promising technology. In space-division multiplexing fiber network, the reconfigurable switch is one of the most critical components in network nodes. In this paper we for the first time demonstrate reconfigurable space-division multiplexing switching using silicon photonic integrated circuit, which is fabricated on a novel silicon-on-insulator platform with buried Al mirror. The silicon photonic integrated circuit is composed of a 7 × 7 switch and low loss grating coupler array based multicore fiber couplers. Thanks to the Al mirror, grating couplers with ultra-low coupling loss with optical multicore fibers is achieved. The lowest total insertion loss of the silicon integrated circuit is as low as 4.5 dB, with low crosstalk lower than −30 dB. Excellent performances in terms of low insertion loss and low crosstalk are obtained for the whole C-band. 1 Tb/s/core transmission over a 2-km 7-core fiber and space-division multiplexing switching is demonstrated successfully. Bit error rate performance below 10−9 is obtained for all spatial channels with low power penalty. The proposed design can be easily upgraded to reconfigurable optical add/drop multiplexer capable of switching several multicore fibers. PMID:28000735

  2. Using Coarrays to Parallelize Legacy Fortran Applications: Strategy and Case Study

    DOE PAGES

    Radhakrishnan, Hari; Rouson, Damian W. I.; Morris, Karla; ...

    2015-01-01

    This paper summarizes a strategy for parallelizing a legacy Fortran 77 program using the object-oriented (OO) and coarray features that entered Fortran in the 2003 and 2008 standards, respectively. OO programming (OOP) facilitates the construction of an extensible suite of model-verification and performance tests that drive the development. Coarray parallel programming facilitates a rapid evolution from a serial application to a parallel application capable of running on multicore processors and many-core accelerators in shared and distributed memory. We delineate 17 code modernization steps used to refactor and parallelize the program and study the resulting performance. Our initial studies were donemore » using the Intel Fortran compiler on a 32-core shared memory server. Scaling behavior was very poor, and profile analysis using TAU showed that the bottleneck in the performance was due to our implementation of a collective, sequential summation procedure. We were able to improve the scalability and achieve nearly linear speedup by replacing the sequential summation with a parallel, binary tree algorithm. We also tested the Cray compiler, which provides its own collective summation procedure. Intel provides no collective reductions. With Cray, the program shows linear speedup even in distributed-memory execution. We anticipate similar results with other compilers once they support the new collective procedures proposed for Fortran 2015.« less

  3. Snowflake: A Lightweight Portable Stencil DSL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Nathan; Driscoll, Michael; Markley, Charles

    Stencil computations are not well optimized by general-purpose production compilers and the increased use of multicore, manycore, and accelerator-based systems makes the optimization problem even more challenging. In this paper we present Snowflake, a Domain Specific Language (DSL) for stencils that uses a 'micro-compiler' approach, i.e., small, focused, domain-specific code generators. The approach is similar to that used in image processing stencils, but Snowflake handles the much more complex stencils that arise in scientific computing, including complex boundary conditions, higher-order operators (larger stencils), higher dimensions, variable coefficients, non-unit-stride iteration spaces, and multiple input or output meshes. Snowflake is embedded inmore » the Python language, allowing it to interoperate with popular scientific tools like SciPy and iPython; it also takes advantage of built-in Python libraries for powerful dependence analysis as part of a just-in-time compiler. We demonstrate the power of the Snowflake language and the micro-compiler approach with a complex scientific benchmark, HPGMG, that exercises the generality of stencil support in Snowflake. By generating OpenMP comparable to, and OpenCL within a factor of 2x of hand-optimized HPGMG, Snowflake demonstrates that a micro-compiler can support diverse processor architectures and is performance-competitive whilst preserving a high-level Python implementation.« less

  4. Adapting Wave-front Algorithms to Efficiently Utilize Systems with Deep Communication Hierarchies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerbyson, Darren J.; Lang, Michael; Pakin, Scott

    2011-09-30

    Large-scale systems increasingly exhibit a differential between intra-chip and inter-chip communication performance especially in hybrid systems using accelerators. Processorcores on the same socket are able to communicate at lower latencies, and with higher bandwidths, than cores on different sockets either within the same node or between nodes. A key challenge is to efficiently use this communication hierarchy and hence optimize performance. We consider here the class of applications that contains wavefront processing. In these applications data can only be processed after their upstream neighbors have been processed. Similar dependencies result between processors in which communication is required to pass boundarymore » data downstream and whose cost is typically impacted by the slowest communication channel in use. In this work we develop a novel hierarchical wave-front approach that reduces the use of slower communications in the hierarchy but at the cost of additional steps in the parallel computation and higher use of on-chip communications. This tradeoff is explored using a performance model. An implementation using the Reverse-acceleration programming model on the petascale Roadrunner system demonstrates a 27% performance improvement at full system-scale on a kernel application. The approach is generally applicable to large-scale multi-core and accelerated systems where a differential in system communication performance exists.« less

  5. Multi-Kepler GPU vs. multi-Intel MIC for spin systems simulations

    NASA Astrophysics Data System (ADS)

    Bernaschi, M.; Bisson, M.; Salvadore, F.

    2014-10-01

    We present and compare the performances of two many-core architectures: the Nvidia Kepler and the Intel MIC both in a single system and in cluster configuration for the simulation of spin systems. As a benchmark we consider the time required to update a single spin of the 3D Heisenberg spin glass model by using the Over-relaxation algorithm. We present data also for a traditional high-end multi-core architecture: the Intel Sandy Bridge. The results show that although on the two Intel architectures it is possible to use basically the same code, the performances of a Intel MIC change dramatically depending on (apparently) minor details. Another issue is that to obtain a reasonable scalability with the Intel Phi coprocessor (Phi is the coprocessor that implements the MIC architecture) in a cluster configuration it is necessary to use the so-called offload mode which reduces the performances of the single system. As to the GPU, the Kepler architecture offers a clear advantage with respect to the previous Fermi architecture maintaining exactly the same source code. Scalability of the multi-GPU implementation remains very good by using the CPU as a communication co-processor of the GPU. All source codes are provided for inspection and for double-checking the results.

  6. Snowflake: A Lightweight Portable Stencil DSL

    DOE PAGES

    Zhang, Nathan; Driscoll, Michael; Markley, Charles; ...

    2017-05-01

    Stencil computations are not well optimized by general-purpose production compilers and the increased use of multicore, manycore, and accelerator-based systems makes the optimization problem even more challenging. In this paper we present Snowflake, a Domain Specific Language (DSL) for stencils that uses a 'micro-compiler' approach, i.e., small, focused, domain-specific code generators. The approach is similar to that used in image processing stencils, but Snowflake handles the much more complex stencils that arise in scientific computing, including complex boundary conditions, higher-order operators (larger stencils), higher dimensions, variable coefficients, non-unit-stride iteration spaces, and multiple input or output meshes. Snowflake is embedded inmore » the Python language, allowing it to interoperate with popular scientific tools like SciPy and iPython; it also takes advantage of built-in Python libraries for powerful dependence analysis as part of a just-in-time compiler. We demonstrate the power of the Snowflake language and the micro-compiler approach with a complex scientific benchmark, HPGMG, that exercises the generality of stencil support in Snowflake. By generating OpenMP comparable to, and OpenCL within a factor of 2x of hand-optimized HPGMG, Snowflake demonstrates that a micro-compiler can support diverse processor architectures and is performance-competitive whilst preserving a high-level Python implementation.« less

  7. P-HS-SFM: a parallel harmony search algorithm for the reproduction of experimental data in the continuous microscopic crowd dynamic models

    NASA Astrophysics Data System (ADS)

    Jaber, Khalid Mohammad; Alia, Osama Moh'd.; Shuaib, Mohammed Mahmod

    2018-03-01

    Finding the optimal parameters that can reproduce experimental data (such as the velocity-density relation and the specific flow rate) is a very important component of the validation and calibration of microscopic crowd dynamic models. Heavy computational demand during parameter search is a known limitation that exists in a previously developed model known as the Harmony Search-Based Social Force Model (HS-SFM). In this paper, a parallel-based mechanism is proposed to reduce the computational time and memory resource utilisation required to find these parameters. More specifically, two MATLAB-based multicore techniques (parfor and create independent jobs) using shared memory are developed by taking advantage of the multithreading capabilities of parallel computing, resulting in a new framework called the Parallel Harmony Search-Based Social Force Model (P-HS-SFM). The experimental results show that the parfor-based P-HS-SFM achieved a better computational time of about 26 h, an efficiency improvement of ? 54% and a speedup factor of 2.196 times in comparison with the HS-SFM sequential processor. The performance of the P-HS-SFM using the create independent jobs approach is also comparable to parfor with a computational time of 26.8 h, an efficiency improvement of about 30% and a speedup of 2.137 times.

  8. Impact of Recent Hardware and Software Trends on High Performance Transaction Processing and Analytics

    NASA Astrophysics Data System (ADS)

    Mohan, C.

    In this paper, I survey briefly some of the recent and emerging trends in hardware and software features which impact high performance transaction processing and data analytics applications. These features include multicore processor chips, ultra large main memories, flash storage, storage class memories, database appliances, field programmable gate arrays, transactional memory, key-value stores, and cloud computing. While some applications, e.g., Web 2.0 ones, were initially built without traditional transaction processing functionality in mind, slowly system architects and designers are beginning to address such previously ignored issues. The availability, analytics and response time requirements of these applications were initially given more importance than ACID transaction semantics and resource consumption characteristics. A project at IBM Almaden is studying the implications of phase change memory on transaction processing, in the context of a key-value store. Bitemporal data management has also become an important requirement, especially for financial applications. Power consumption and heat dissipation properties are also major considerations in the emergence of modern software and hardware architectural features. Considerations relating to ease of configuration, installation, maintenance and monitoring, and improvement of total cost of ownership have resulted in database appliances becoming very popular. The MapReduce paradigm is now quite popular for large scale data analysis, in spite of the major inefficiencies associated with it.

  9. A New Network Modeling Tool for the Ground-based Nuclear Explosion Monitoring Community

    NASA Astrophysics Data System (ADS)

    Merchant, B. J.; Chael, E. P.; Young, C. J.

    2013-12-01

    Network simulations have long been used to assess the performance of monitoring networks to detect events for such purposes as planning station deployments and network resilience to outages. The standard tool has been the SAIC-developed NetSim package. With correct parameters, NetSim can produce useful simulations; however, the package has several shortcomings: an older language (FORTRAN), an emphasis on seismic monitoring with limited support for other technologies, limited documentation, and a limited parameter set. Thus, we are developing NetMOD (Network Monitoring for Optimal Detection), a Java-based tool designed to assess the performance of ground-based networks. NetMOD's advantages include: coded in a modern language that is multi-platform, utilizes modern computing performance (e.g. multi-core processors), incorporates monitoring technologies other than seismic, and includes a well-validated default parameter set for the IMS stations. NetMOD is designed to be extendable through a plugin infrastructure, so new phenomenological models can be added. Development of the Seismic Detection Plugin is being pursued first. Seismic location and infrasound and hydroacoustic detection plugins will follow. By making NetMOD an open-release package, it can hopefully provide a common tool that the monitoring community can use to produce assessments of monitoring networks and to verify assessments made by others.

  10. Toward GEOS-6, A Global Cloud System Resolving Atmospheric Model

    NASA Technical Reports Server (NTRS)

    Putman, William M.

    2010-01-01

    NASA is committed to observing and understanding the weather and climate of our home planet through the use of multi-scale modeling systems and space-based observations. Global climate models have evolved to take advantage of the influx of multi- and many-core computing technologies and the availability of large clusters of multi-core microprocessors. GEOS-6 is a next-generation cloud system resolving atmospheric model that will place NASA at the forefront of scientific exploration of our atmosphere and climate. Model simulations with GEOS-6 will produce a realistic representation of our atmosphere on the scale of typical satellite observations, bringing a visual comprehension of model results to a new level among the climate enthusiasts. In preparation for GEOS-6, the agency's flagship Earth System Modeling Framework [JDl] has been enhanced to support cutting-edge high-resolution global climate and weather simulations. Improvements include a cubed-sphere grid that exposes parallelism; a non-hydrostatic finite volume dynamical core, and algorithm designed for co-processor technologies, among others. GEOS-6 represents a fundamental advancement in the capability of global Earth system models. The ability to directly compare global simulations at the resolution of spaceborne satellite images will lead to algorithm improvements and better utilization of space-based observations within the GOES data assimilation system

  11. Time-efficient simulations of tight-binding electronic structures with Intel Xeon PhiTM many-core processors

    NASA Astrophysics Data System (ADS)

    Ryu, Hoon; Jeong, Yosang; Kang, Ji-Hoon; Cho, Kyu Nam

    2016-12-01

    Modelling of multi-million atomic semiconductor structures is important as it not only predicts properties of physically realizable novel materials, but can accelerate advanced device designs. This work elaborates a new Technology-Computer-Aided-Design (TCAD) tool for nanoelectronics modelling, which uses a sp3d5s∗ tight-binding approach to describe multi-million atomic structures, and simulate electronic structures with high performance computing (HPC), including atomic effects such as alloy and dopant disorders. Being named as Quantum simulation tool for Advanced Nanoscale Devices (Q-AND), the tool shows nice scalability on traditional multi-core HPC clusters implying the strong capability of large-scale electronic structure simulations, particularly with remarkable performance enhancement on latest clusters of Intel Xeon PhiTM coprocessors. A review of the recent modelling study conducted to understand an experimental work of highly phosphorus-doped silicon nanowires, is presented to demonstrate the utility of Q-AND. Having been developed via Intel Parallel Computing Center project, Q-AND will be open to public to establish a sound framework of nanoelectronics modelling with advanced HPC clusters of a many-core base. With details of the development methodology and exemplary study of dopant electronics, this work will present a practical guideline for TCAD development to researchers in the field of computational nanoelectronics.

  12. Implementing Molecular Dynamics on Hybrid High Performance Computers - Particle-Particle Particle-Mesh

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, W Michael; Kohlmeyer, Axel; Plimpton, Steven J

    The use of accelerators such as graphics processing units (GPUs) has become popular in scientific computing applications due to their low cost, impressive floating-point capabilities, high memory bandwidth, and low electrical power requirements. Hybrid high-performance computers, machines with nodes containing more than one type of floating-point processor (e.g. CPU and GPU), are now becoming more prevalent due to these advantages. In this paper, we present a continuation of previous work implementing algorithms for using accelerators into the LAMMPS molecular dynamics software for distributed memory parallel hybrid machines. In our previous work, we focused on acceleration for short-range models with anmore » approach intended to harness the processing power of both the accelerator and (multi-core) CPUs. To augment the existing implementations, we present an efficient implementation of long-range electrostatic force calculation for molecular dynamics. Specifically, we present an implementation of the particle-particle particle-mesh method based on the work by Harvey and De Fabritiis. We present benchmark results on the Keeneland InfiniBand GPU cluster. We provide a performance comparison of the same kernels compiled with both CUDA and OpenCL. We discuss limitations to parallel efficiency and future directions for improving performance on hybrid or heterogeneous computers.« less

  13. DKIST Adaptive Optics System: Simulation Results

    NASA Astrophysics Data System (ADS)

    Marino, Jose; Schmidt, Dirk

    2016-05-01

    The 4 m class Daniel K. Inouye Solar Telescope (DKIST), currently under construction, will be equipped with an ultra high order solar adaptive optics (AO) system. The requirements and capabilities of such a solar AO system are beyond those of any other solar AO system currently in operation. We must rely on solar AO simulations to estimate and quantify its performance.We present performance estimation results of the DKIST AO system obtained with a new solar AO simulation tool. This simulation tool is a flexible and fast end-to-end solar AO simulator which produces accurate solar AO simulations while taking advantage of current multi-core computer technology. It relies on full imaging simulations of the extended field Shack-Hartmann wavefront sensor (WFS), which directly includes important secondary effects such as field dependent distortions and varying contrast of the WFS sub-aperture images.

  14. Image Display and Manipulation System (IDAMS) program documentation, Appendixes A-D. [including routines, convolution filtering, image expansion, and fast Fourier transformation

    NASA Technical Reports Server (NTRS)

    Cecil, R. W.; White, R. A.; Szczur, M. R.

    1972-01-01

    The IDAMS Processor is a package of task routines and support software that performs convolution filtering, image expansion, fast Fourier transformation, and other operations on a digital image tape. A unique task control card for that program, together with any necessary parameter cards, selects each processing technique to be applied to the input image. A variable number of tasks can be selected for execution by including the proper task and parameter cards in the input deck. An executive maintains control of the run; it initiates execution of each task in turn and handles any necessary error processing.

  15. Fast Pixel Buffer For Processing With Lookup Tables

    NASA Technical Reports Server (NTRS)

    Fisher, Timothy E.

    1992-01-01

    Proposed scheme for buffering data on intensities of picture elements (pixels) of image increases rate or processing beyond that attainable when data read, one pixel at time, from main image memory. Scheme applied in design of specialized image-processing circuitry. Intended to optimize performance of processor in which electronic equivalent of address-lookup table used to address those pixels in main image memory required for processing.

  16. RASSP signal processing architectures

    NASA Astrophysics Data System (ADS)

    Shirley, Fred; Bassett, Bob; Letellier, J. P.

    1995-06-01

    The rapid prototyping of application specific signal processors (RASSP) program is an ARPA/tri-service effort to dramatically improve the process by which complex digital systems, particularly embedded signal processors, are specified, designed, documented, manufactured, and supported. The domain of embedded signal processing was chosen because it is important to a variety of military and commercial applications as well as for the challenge it presents in terms of complexity and performance demands. The principal effort is being performed by two major contractors, Lockheed Sanders (Nashua, NH) and Martin Marietta (Camden, NJ). For both, improvements in methodology are to be exercised and refined through the performance of individual 'Demonstration' efforts. The Lockheed Sanders' Demonstration effort is to develop an infrared search and track (IRST) processor. In addition, both contractors' results are being measured by a series of externally administered (by Lincoln Labs) six-month Benchmark programs that measure process improvement as a function of time. The first two Benchmark programs are designing and implementing a synthetic aperture radar (SAR) processor. Our demonstration team is using commercially available VME modules from Mercury Computer to assemble a multiprocessor system scalable from one to hundreds of Intel i860 microprocessors. Custom modules for the sensor interface and display driver are also being developed. This system implements either proprietary or Navy owned algorithms to perform the compute-intensive IRST function in real time in an avionics environment. Our Benchmark team is designing custom modules using commercially available processor ship sets, communication submodules, and reconfigurable logic devices. One of the modules contains multiple vector processors optimized for fast Fourier transform processing. Another module is a fiberoptic interface that accepts high-rate input data from the sensors and provides video-rate output data to a display. This paper discusses the impact of simulation on choosing signal processing algorithms and architectures, drawing from the experiences of the Demonstration and Benchmark inter-company teams at Lockhhed Sanders, Motorola, Hughes, and ISX.

  17. Discrimination of Temperature and Strain in Brillouin Optical Time Domain Analysis Using a Multicore Optical Fiber

    PubMed Central

    Zaghloul, Mohamed A. S.; Wang, Mohan; Milione, Giovanni; Li, Ming-Jun; Li, Shenping; Huang, Yue-Kai; Wang, Ting; Chen, Kevin P.

    2018-01-01

    Brillouin optical time domain analysis is the sensing of temperature and strain changes along an optical fiber by measuring the frequency shift changes of Brillouin backscattering. Because frequency shift changes are a linear combination of temperature and strain changes, their discrimination is a challenge. Here, a multicore optical fiber that has two cores is fabricated. The differences between the cores’ temperature and strain coefficients are such that temperature (strain) changes can be discriminated with error amplification factors of 4.57 °C/MHz (69.11 μϵ/MHz), which is 2.63 (3.67) times lower than previously demonstrated. As proof of principle, using the multicore optical fiber and a commercial Brillouin optical time domain analyzer, the temperature (strain) changes of a thermally expanding metal cylinder are discriminated with an error of 0.24% (3.7%). PMID:29649148

  18. Optimization of multicore-shell Fe3O4-SiO2 magnetic nanocomposites synthesis and retention in cellulose pulp

    NASA Astrophysics Data System (ADS)

    Buteica, Dan; Borbath, Istvan; Nicolae, Ionel Valentin; Turcu, Rodica; Marinica, Oana; Socoliuc, Vlad

    2017-12-01

    The use of magnetite nanoparticles to produce magnetic paper has a severe effect on the color of the paper, which is worth searching means to alleviate. Multicore-shell Fe3O4-SiO2 magnetic nanocomposites were synthesized. The nanocomposite powder was dispersed in cellulose pulp and paper was produced by dehydration on a Rapid Kothen machine. The nanocomposite retention efficiency was investigated in correlation with nanocomposite shell thickness, the resinous vs. deciduous fiber content of the cellulose pulp, the long and short fibers' grinding degree, the cationic starch and polymeric retention agent content of the pulp. The whiteness and magnetization was measured for all paper samples. It was proved that the use of multi-core shell magnetic nanocomposites leads to weaker paper coloring. This effect is enhanced by increasing the polymeric retention agent content of the pulp, in spite of higher composite content.

  19. Discrimination of Temperature and Strain in Brillouin Optical Time Domain Analysis Using a Multicore Optical Fiber.

    PubMed

    Zaghloul, Mohamed A S; Wang, Mohan; Milione, Giovanni; Li, Ming-Jun; Li, Shenping; Huang, Yue-Kai; Wang, Ting; Chen, Kevin P

    2018-04-12

    Brillouin optical time domain analysis is the sensing of temperature and strain changes along an optical fiber by measuring the frequency shift changes of Brillouin backscattering. Because frequency shift changes are a linear combination of temperature and strain changes, their discrimination is a challenge. Here, a multicore optical fiber that has two cores is fabricated. The differences between the cores' temperature and strain coefficients are such that temperature (strain) changes can be discriminated with error amplification factors of 4.57 °C/MHz (69.11 μ ϵ /MHz), which is 2.63 (3.67) times lower than previously demonstrated. As proof of principle, using the multicore optical fiber and a commercial Brillouin optical time domain analyzer, the temperature (strain) changes of a thermally expanding metal cylinder are discriminated with an error of 0.24% (3.7%).

  20. Enhancing Image Processing Performance for PCID in a Heterogeneous Network of Multi-code Processors

    NASA Astrophysics Data System (ADS)

    Linderman, R.; Spetka, S.; Fitzgerald, D.; Emeny, S.

    The Physically-Constrained Iterative Deconvolution (PCID) image deblurring code is being ported to heterogeneous networks of multi-core systems, including Intel Xeons and IBM Cell Broadband Engines. This paper reports results from experiments using the JAWS supercomputer at MHPCC (60 TFLOPS of dual-dual Xeon nodes linked with Infiniband) and the Cell Cluster at AFRL in Rome, NY. The Cell Cluster has 52 TFLOPS of Playstation 3 (PS3) nodes with IBM Cell Broadband Engine multi-cores and 15 dual-quad Xeon head nodes. The interconnect fabric includes Infiniband, 10 Gigabit Ethernet and 1 Gigabit Ethernet to each of the 336 PS3s. The results compare approaches to parallelizing FFT executions across the Xeons and the Cell's Synergistic Processing Elements (SPEs) for frame-level image processing. The experiments included Intel's Performance Primitives and Math Kernel Library, FFTW3.2, and Carnegie Mellon's SPIRAL. Optimization of FFTs in the PCID code led to a decrease in relative processing time for FFTs. Profiling PCID version 6.2, about one year ago, showed the 13 functions that accounted for the highest percentage of processing were all FFT processing functions. They accounted for over 88% of processing time in one run on Xeons. FFT optimizations led to improvement in the current PCID version 8.0. A recent profile showed that only two of the 19 functions with the highest processing time were FFT processing functions. Timing measurements showed that FFT processing for PCID version 8.0 has been reduced to less than 19% of overall processing time. We are working toward a goal of scaling to 200-400 cores per job (1-2 imagery frames/core). Running a pair of cores on each set of frames reduces latency by implementing parallel FFT processing. Our current results show scaling well out to 100 pairs of cores. These results support the next higher level of parallelism in PCID, where groups of several hundred frames each producing one resolved image are sent to cliques of several hundred cores in a round robin fashion. Current efforts toward further performance enhancement for PCID are shifting toward using the Playstations in conjunction with the Xeons to take advantage of outstanding price/performance as well as the Flops/Watt cost advantage. We are fine-tuning the PCID parallization strategy to balance processing over Xeons and Cell BEs to find an optimal partitioning of PCID over the heterogeneous processors. A high performance information management system that exploits native Infiniband multicast is used to improve latency among the head nodes. Using a publication/subscription oriented information management system to implement a unified communications platform makes runs on large HPCs with thousands of intercommunicating cores more flexible and more fault tolerant. It features a loose couplingof publishers to subscribers through intervening brokers. We are also working on enhancing performance for both Xeons and Cell BEs, buy moving selected operations to single precision. Techniques for adapting the code to single precision and performance results are reported.

  1. General-purpose interface bus for multiuser, multitasking computer system

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R.; Roth, Don J.; Stang, David B.

    1990-01-01

    The architecture of a multiuser, multitasking, virtual-memory computer system intended for the use by a medium-size research group is described. There are three central processing units (CPU) in the configuration, each with 16 MB memory, and two 474 MB hard disks attached. CPU 1 is designed for data analysis and contains an array processor for fast-Fourier transformations. In addition, CPU 1 shares display images viewed with the image processor. CPU 2 is designed for image analysis and display. CPU 3 is designed for data acquisition and contains 8 GPIB channels and an analog-to-digital conversion input/output interface with 16 channels. Up to 9 users can access the third CPU simultaneously for data acquisition. Focus is placed on the optimization of hardware interfaces and software, facilitating instrument control, data acquisition, and processing.

  2. Combustor air flow control method for fuel cell apparatus

    DOEpatents

    Clingerman, Bruce J.; Mowery, Kenneth D.; Ripley, Eugene V.

    2001-01-01

    A method for controlling the heat output of a combustor in a fuel cell apparatus to a fuel processor where the combustor has dual air inlet streams including atmospheric air and fuel cell cathode effluent containing oxygen depleted air. In all operating modes, an enthalpy balance is provided by regulating the quantity of the air flow stream to the combustor to support fuel cell processor heat requirements. A control provides a quick fast forward change in an air valve orifice cross section in response to a calculated predetermined air flow, the molar constituents of the air stream to the combustor, the pressure drop across the air valve, and a look up table of the orifice cross sectional area and valve steps. A feedback loop fine tunes any error between the measured air flow to the combustor and the predetermined air flow.

  3. Spectral efficiency in crosstalk-impaired multi-core fiber links

    NASA Astrophysics Data System (ADS)

    Luís, Ruben S.; Puttnam, Benjamin J.; Rademacher, Georg; Klaus, Werner; Agrell, Erik; Awaji, Yoshinari; Wada, Naoya

    2018-02-01

    We review the latest advances on ultra-high throughput transmission using crosstalk-limited single-mode multicore fibers and compare these with the theoretical spectral efficiency of such systems. We relate the crosstalkimposed spectral efficiency limits with fiber parameters, such as core diameter, core pitch, and trench design. Furthermore, we investigate the potential of techniques such as direction interleaving and high-order MIMO to improve the throughput or reach of these systems when using various modulation formats.

  4. Cognitive and neural foundations of discrete sequence skill: a TMS study.

    PubMed

    Ruitenberg, Marit F L; Verwey, Willem B; Schutter, Dennis J L G; Abrahamse, Elger L

    2014-04-01

    Executing discrete movement sequences typically involves a shift with practice from a relatively slow, stimulus-based mode to a fast mode in which performance is based on retrieving and executing entire motor chunks. The dual processor model explains the performance of (skilled) discrete key-press sequences in terms of an interplay between a cognitive processor and a motor system. In the present study, we tested and confirmed the core assumptions of this model at the behavioral level. In addition, we explored the involvement of the pre-supplementary motor area (pre-SMA) in discrete sequence skill by applying inhibitory 20 min 1-Hz off-line repetitive transcranial magnetic stimulation (rTMS). Based on previous work, we predicted pre-SMA involvement in the selection/initiation of motor chunks, and this was confirmed by our results. The pre-SMA was further observed to be more involved in more complex than in simpler sequences, while no evidence was found for pre-SMA involvement in direct stimulus-response translations or associative learning processes. In conclusion, support is provided for the dual processor model, and for pre-SMA involvement in the initiation of motor chunks. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Design and test of a regenerative satellite transmultiplexer

    NASA Astrophysics Data System (ADS)

    Hung, Kenny King-Ming

    1993-05-01

    In a multiple access scheme for regenerative satellite communications, the bulk frequency division multiple access (FDMA) uplink signal is demodulated on board the satellite and then remodulated for time division multiplexing (TDM) downlink transmission. Conversion from frequency to time division multiplex format requires that the uplink signal be frequency demultiplexed and each individual carrier be subsequently demodulated. For thin-route application which consists of a large number of channels with fixed data rate, multicarrier demodulation can be accomplished efficiently by a digital transmultiplexer (TMUX) using a fast Fourier transform processor followed by a bank of per-channel processors. A time domain description of the TMUX algorithm is derived which elucidates how the TMUX functions. The per-channel processor performs timing and carrier recovery for optimum and coherent data detection. Timing recovery is necessarily achieved asynchronously by a filter coefficient interpolation. Carrier recovery is performed using an all-digital phase-locked loop. The combination of both timing and carrier loops is investigated for a multi-user system. The performance of the overall system is assessed over a multi-user, additive white Gaussian noise channel for a bit energy to noise power spectral density ratio down to zero dB.

  6. Early MIMD experience on the CRAY X-MP

    NASA Astrophysics Data System (ADS)

    Rhoades, Clifford E.; Stevens, K. G.

    1985-07-01

    This paper describes some early experience with converting four physics simulation programs to the CRAY X-MP, a current Multiple Instruction, Multiple Data (MIMD) computer consisting of two processors each with an architecture similar to that of the CRAY-1. As a multi-processor, the CRAY X-MP together with the high speed Solid-state Storage Device (SSD) in an ideal machine upon which to study MIMD algorithms for solving the equations of mathematical physics because it is fast enough to run real problems. The computer programs used in this study are all FORTRAN versions of original production codes. They range in sophistication from a one-dimensional numerical simulation of collisionless plasma to a two-dimensional hydrodynamics code with heat flow to a couple of three-dimensional fluid dynamics codes with varying degrees of viscous modeling. Early research with a dual processor configuration has shown speed-ups ranging from 1.55 to 1.98. It has been observed that a few simple extensions to FORTRAN allow a typical programmer to achieve a remarkable level of efficiency. These extensions involve the concept of memory local to a concurrent subprogram and memory common to all concurrent subprograms.

  7. Image matrix processor for fast multi-dimensional computations

    DOEpatents

    Roberson, George P.; Skeate, Michael F.

    1996-01-01

    An apparatus for multi-dimensional computation which comprises a computation engine, including a plurality of processing modules. The processing modules are configured in parallel and compute respective contributions to a computed multi-dimensional image of respective two dimensional data sets. A high-speed, parallel access storage system is provided which stores the multi-dimensional data sets, and a switching circuit routes the data among the processing modules in the computation engine and the storage system. A data acquisition port receives the two dimensional data sets representing projections through an image, for reconstruction algorithms such as encountered in computerized tomography. The processing modules include a programmable local host, by which they may be configured to execute a plurality of different types of multi-dimensional algorithms. The processing modules thus include an image manipulation processor, which includes a source cache, a target cache, a coefficient table, and control software for executing image transformation routines using data in the source cache and the coefficient table and loading resulting data in the target cache. The local host processor operates to load the source cache with a two dimensional data set, loads the coefficient table, and transfers resulting data out of the target cache to the storage system, or to another destination.

  8. Real-Time Data Processing in the muon system of the D0 detector.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neeti Parashar et al.

    2001-07-03

    This paper presents a real-time application of the 16-bit fixed point Digital Signal Processors (DSPs), in the Muon System of the D0 detector located at the Fermilab Tevatron, presently the world's highest-energy hadron collider. As part of the Upgrade for a run beginning in the year 2000, the system is required to process data at an input event rate of 10 KHz without incurring significant deadtime in readout. The ADSP21csp01 processor has high I/O bandwidth, single cycle instruction execution and fast task switching support to provide efficient multisignal processing. The processor's internal memory consists of 4K words of Program Memorymore » and 4K words of Data Memory. In addition there is an external memory of 32K words for general event buffering and 16K words of Dual port Memory for input data queuing. This DSP fulfills the requirement of the Muon subdetector systems for data readout. All error handling, buffering, formatting and transferring of the data to the various trigger levels of the data acquisition system is done in software. The algorithms developed for the system complete these tasks in about 20 {micro}s per event.« less

  9. Tunable inter-qubit coupling as a resource for gate based quantum computing with superconducting circuits

    NASA Astrophysics Data System (ADS)

    Chiaro, B.; Neill, C.; Chen, Z.; Dunsworth, A.; Foxen, B.; Quintana, C.; Wenner, J.; Martinis, J. M.; Google Quantum Hardware Team

    Fast, high fidelity two qubit gates are an essential requirement of a quantum processor. In this talk, we discuss how the tunable coupling of the gmon architecture provides a pathway for an improved two qubit controlled-Z gate. The maximum inter-qubit coupling strength gmax = 60 MHz is sufficient for fast adiabatic two qubit gates to be performed as quickly as single qubit gates, reducing dephasing errors. Additionally, the ability to turn the coupling off allows all qubits to idle at low magnetic flux sensitivity, further reducing susceptibility to noise. However, the flexibility that this platform offers comes at the expense of increased control complexity. We describe our strategy for addressing the control challenges of the gmon architecture and show experimental progress toward fast, high fidelity controlled-Z gates with gmon qubits.

  10. Numerical aerodynamic simulation facility preliminary study, volume 2 and appendices

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Data to support results obtained in technology assessment studies are presented. Objectives, starting points, and future study tasks are outlined. Key design issues discussed in appendices include: data allocation, transposition network design, fault tolerance and trustworthiness, logic design, processing element of existing components, number of processors, the host system, alternate data base memory designs, number representation, fast div 521 instruction, architectures, and lockstep array versus synchronizable array machine comparison.

  11. Combustor Simulation

    NASA Technical Reports Server (NTRS)

    Norris, Andrew

    2003-01-01

    The goal was to perform 3D simulation of GE90 combustor, as part of full turbofan engine simulation. Requirements of high fidelity as well as fast turn-around time require massively parallel code. National Combustion Code (NCC) was chosen for this task as supports up to 999 processors and includes state-of-the-art combustion models. Also required is ability to take inlet conditions from compressor code and give exit conditions to turbine code.

  12. A miniaturized glucose biosensor for in vitro and in vivo studies.

    PubMed

    Yang, Yang-Li; Huang, Jian-Feng; Tseng, Ta-Feng; Lin, Chia-Ching; Lou, Shyh-Liang

    2008-01-01

    A miniaturized wireless glucose biosensor has been developed to perform in vitro and in vivo studies. It consists of an external control subsystem and an implant sensing subsystem. The implant subsystem consists of a micro-processor, which coordinates circuitries of radio frequency, power regulator, command demodulator, glucose sensing trigger and signal read-out. Except for a set of sensing electrodes, the micro-processor, the circuitries and a receiving coil were hermetically sealed with polydimethylsiloxane. The electrode set is a substrate of silicon oxide coated with platinum, which includes a working electrode and a reference electrode. Glucose oxidase was immobilized on the surface of the working electrode. The implant subsystem bi-directionally communicates with the external subsystem via radio frequency technologies. The external subsystem wirelessly supplies electricity to power the implant, issues commands to the implant to perform tasks, receives the glucose responses detected by the electrode, and relays the response signals to a computer through a RS-232 connection. Studies of in vitro and in vivo were performed to evaluate the biosensor. The linear response of the biosensor is up to 15 mM of glucose in vitro. The results of in vivo study show significant glucose variations measured from the interstitial tissue fluid of a diabetes rat in fasting and non-fasting periods.

  13. A web-based institutional DICOM distribution system with the integration of the Clinical Trial Processor (CTP).

    PubMed

    Aryanto, K Y E; Broekema, A; Langenhuysen, R G A; Oudkerk, M; van Ooijen, P M A

    2015-05-01

    To develop and test a fast and easy rule-based web-environment with optional de-identification of imaging data to facilitate data distribution within a hospital environment. A web interface was built using Hypertext Preprocessor (PHP), an open source scripting language for web development, and Java with SQL Server to handle the database. The system allows for the selection of patient data and for de-identifying these when necessary. Using the services provided by the RSNA Clinical Trial Processor (CTP), the selected images were pushed to the appropriate services using a protocol based on the module created for the associated task. Five pipelines, each performing a different task, were set up in the server. In a 75 month period, more than 2,000,000 images are transferred and de-identified in a proper manner while 20,000,000 images are moved from one node to another without de-identification. While maintaining a high level of security and stability, the proposed system is easy to setup, it integrate well with our clinical and research practice and it provides a fast and accurate vendor-neutral process of transferring, de-identifying, and storing DICOM images. Its ability to run different de-identification processes in parallel pipelines is a major advantage in both clinical and research setting.

  14. Ordered fast fourier transforms on a massively parallel hypercube multiprocessor

    NASA Technical Reports Server (NTRS)

    Tong, Charles; Swarztrauber, Paul N.

    1989-01-01

    Design alternatives for ordered Fast Fourier Transformation (FFT) algorithms were examined on massively parallel hypercube multiprocessors such as the Connection Machine. Particular emphasis is placed on reducing communication which is known to dominate the overall computing time. To this end, the order and computational phases of the FFT were combined, and the sequence to processor maps that reduce communication were used. The class of ordered transforms is expanded to include any FFT in which the order of the transform is the same as that of the input sequence. Two such orderings are examined, namely, standard-order and A-order which can be implemented with equal ease on the Connection Machine where orderings are determined by geometries and priorities. If the sequence has N = 2 exp r elements and the hypercube has P = 2 exp d processors, then a standard-order FFT can be implemented with d + r/2 + 1 parallel transmissions. An A-order sequence can be transformed with 2d - r/2 parallel transmissions which is r - d + 1 fewer than the standard order. A parallel method for computing the trigonometric coefficients is presented that does not use trigonometric functions or interprocessor communication. A performance of 0.9 GFLOPS was obtained for an A-order transform on the Connection Machine.

  15. Fast decision algorithms in low-power embedded processors for quality-of-service based connectivity of mobile sensors in heterogeneous wireless sensor networks.

    PubMed

    Jaraíz-Simón, María D; Gómez-Pulido, Juan A; Vega-Rodríguez, Miguel A; Sánchez-Pérez, Juan M

    2012-01-01

    When a mobile wireless sensor is moving along heterogeneous wireless sensor networks, it can be under the coverage of more than one network many times. In these situations, the Vertical Handoff process can happen, where the mobile sensor decides to change its connection from a network to the best network among the available ones according to their quality of service characteristics. A fitness function is used for the handoff decision, being desirable to minimize it. This is an optimization problem which consists of the adjustment of a set of weights for the quality of service. Solving this problem efficiently is relevant to heterogeneous wireless sensor networks in many advanced applications. Numerous works can be found in the literature dealing with the vertical handoff decision, although they all suffer from the same shortfall: a non-comparable efficiency. Therefore, the aim of this work is twofold: first, to develop a fast decision algorithm that explores the entire space of possible combinations of weights, searching that one that minimizes the fitness function; and second, to design and implement a system on chip architecture based on reconfigurable hardware and embedded processors to achieve several goals necessary for competitive mobile terminals: good performance, low power consumption, low economic cost, and small area integration.

  16. Validity of the iPhone M7 motion co-processor as a pedometer for able-bodied ambulation.

    PubMed

    Major, Matthew J; Alford, Micah

    2016-12-01

    Physical activity benefits for disease prevention are well-established. Smartphones offer a convenient platform for community-based step count estimation to monitor and encourage physical activity. Accuracy is dependent on hardware-software platforms, creating a recurring challenge for validation, but the Apple iPhone® M7 motion co-processor provides a standardised method that helps address this issue. Validity of the M7 to record step count for level-ground, able-bodied walking at three self-selected speeds, and agreement with the StepWatch TM was assessed. Steps were measured concurrently with the iPhone® (custom application to extract step count), StepWatch TM and manual count. Agreement between iPhone® and manual/StepWatch TM count was estimated through Pearson correlation and Bland-Altman analyses. Data from 20 participants suggested that iPhone® step count correlations with manual and StepWatch TM were strong for customary (1.3 ± 0.1 m/s) and fast (1.8 ± 0.2 m/s) speeds, but weak for the slow (1.0 ± 0.1 m/s) speed. Mean absolute error (manual-iPhone®) was 21%, 8% and 4% for the slow, customary and fast speeds, respectively. The M7 accurately records step count during customary and fast walking speeds, but is prone to considerable inaccuracies at slow speeds which has important implications for certain patient groups. The iPhone® may be a suitable alternative to the StepWatch TM for only faster walking speeds.

  17. 3D Kirchhoff depth migration algorithm: A new scalable approach for parallelization on multicore CPU based cluster

    NASA Astrophysics Data System (ADS)

    Rastogi, Richa; Londhe, Ashutosh; Srivastava, Abhishek; Sirasala, Kirannmayi M.; Khonde, Kiran

    2017-03-01

    In this article, a new scalable 3D Kirchhoff depth migration algorithm is presented on state of the art multicore CPU based cluster. Parallelization of 3D Kirchhoff depth migration is challenging due to its high demand of compute time, memory, storage and I/O along with the need of their effective management. The most resource intensive modules of the algorithm are traveltime calculations and migration summation which exhibit an inherent trade off between compute time and other resources. The parallelization strategy of the algorithm largely depends on the storage of calculated traveltimes and its feeding mechanism to the migration process. The presented work is an extension of our previous work, wherein a 3D Kirchhoff depth migration application for multicore CPU based parallel system had been developed. Recently, we have worked on improving parallel performance of this application by re-designing the parallelization approach. The new algorithm is capable to efficiently migrate both prestack and poststack 3D data. It exhibits flexibility for migrating large number of traces within the available node memory and with minimal requirement of storage, I/O and inter-node communication. The resultant application is tested using 3D Overthrust data on PARAM Yuva II, which is a Xeon E5-2670 based multicore CPU cluster with 16 cores/node and 64 GB shared memory. Parallel performance of the algorithm is studied using different numerical experiments and the scalability results show striking improvement over its previous version. An impressive 49.05X speedup with 76.64% efficiency is achieved for 3D prestack data and 32.00X speedup with 50.00% efficiency for 3D poststack data, using 64 nodes. The results also demonstrate the effectiveness and robustness of the improved algorithm with high scalability and efficiency on a multicore CPU cluster.

  18. A multicore compound glass optical fiber for neutron imaging

    NASA Astrophysics Data System (ADS)

    Moore, Michael; Zhang, Xiaodong; Feng, Xian; Brambilla, Gilberto; Hayward, Jason

    2017-04-01

    Optical fibers have been successfully utilized for point sensors targeting physical quantities (stress, strain, rotation, acceleration), chemical compounds (humidity, oil, nitrates, alcohols, DNA) or radiation fields (X-rays, β particles, γ-rays). Similarly, bundles of fibers have been extremely successful in imaging visible wavelengths for medical endoscopy and industrial boroscopy. This work presents the progress in the fabrication and experimental evaluation of multicore fiber as neutron scattering instrumentation designed to detect and image neutrons with micron level spatial resolution.

  19. Evaluation of SuperLU on multicore architectures

    NASA Astrophysics Data System (ADS)

    Li, X. S.

    2008-07-01

    The Chip Multiprocessor (CMP) will be the basic building block for computer systems ranging from laptops to supercomputers. New software developments at all levels are needed to fully utilize these systems. In this work, we evaluate performance of different high-performance sparse LU factorization and triangular solution algorithms on several representative multicore machines. We included both Pthreads and MPI implementations in this study and found that the Pthreads implementation consistently delivers good performance and that a left-looking algorithm is usually superior.

  20. A multi-core fiber based interferometer for high temperature sensing

    NASA Astrophysics Data System (ADS)

    Zhou, Song; Huang, Bo; Shu, Xuewen

    2017-04-01

    In this paper, we have verified and implemented a Mach-Zehnder interferometer based on seven-core fiber for high temperature sensing application. This proposed structure is based on a multi-mode-multi-core-multi-mode fiber structure sandwiched by a single mode fiber. Between the single-mode and multi-core fiber, a 3 mm long multi-mode fiber is formed for lead-in and lead-out light. The basic operation principle of this device is the use of multi-core modes, single-mode and multi-mode interference coupling is also utilized. Experimental results indicate that this interferometer sensor is capable of accurate measurements of temperatures up to 800 °C, and the temperature sensitivity of the proposed sensor is as high as 170.2 pm/°C, which is much higher than the current existing MZI based temperature sensors (109 pm/°C). This type of sensor is promising for practical high temperature applications due to its advantages including high sensitivity, simple fabrication process, low cost and compactness.

Top