Science.gov

Sample records for fast multipole boundary

  1. A new simple multidomain fast multipole boundary element method

    NASA Astrophysics Data System (ADS)

    Huang, S.; Liu, Y. J.

    2016-09-01

    A simple multidomain fast multipole boundary element method (BEM) for solving potential problems is presented in this paper, which can be applied to solve a true multidomain problem or a large-scale single domain problem using the domain decomposition technique. In this multidomain BEM, the coefficient matrix is formed simply by assembling the coefficient matrices of each subdomain and the interface conditions between subdomains without eliminating any unknown variables on the interfaces. Compared with other conventional multidomain BEM approaches, this new approach is more efficient with the fast multipole method, regardless how the subdomains are connected. Instead of solving the linear system of equations directly, the entire coefficient matrix is partitioned and decomposed using Schur complement in this new approach. Numerical results show that the new multidomain fast multipole BEM uses fewer iterations in most cases with the iterative equation solver and less CPU time than the traditional fast multipole BEM in solving large-scale BEM models. A large-scale fuel cell model with more than 6 million elements was solved successfully on a cluster within 3 h using the new multidomain fast multipole BEM.

  2. A fast multipole boundary element method for solving two-dimensional thermoelasticity problems

    NASA Astrophysics Data System (ADS)

    Liu, Y. J.; Li, Y. X.; Huang, S.

    2014-09-01

    A fast multipole boundary element method (BEM) for solving general uncoupled steady-state thermoelasticity problems in two dimensions is presented in this paper. The fast multipole BEM is developed to handle the thermal term in the thermoelasticity boundary integral equation involving temperature and heat flux distributions on the boundary of the problem domain. Fast multipole expansions, local expansions and related translations for the thermal term are derived using complex variables. Several numerical examples are presented to show the accuracy and effectiveness of the developed fast multipole BEM in calculating the displacement and stress fields for 2-D elastic bodies under various thermal loads, including thin structure domains that are difficult to mesh using the finite element method (FEM). The BEM results using constant elements are found to be accurate compared with the analytical solutions, and the accuracy of the BEM results is found to be comparable to that of the FEM with linear elements. In addition, the BEM offers the ease of use in generating the mesh for a thin structure domain or a domain with complicated geometry, such as a perforated plate with randomly distributed holes for which the FEM fails to provide an adequate mesh. These results clearly demonstrate the potential of the developed fast multipole BEM for solving 2-D thermoelasticity problems.

  3. A wideband fast multipole boundary element method for half-space/plane-symmetric acoustic wave problems

    NASA Astrophysics Data System (ADS)

    Zheng, Chang-Jun; Chen, Hai-Bo; Chen, Lei-Lei

    2013-04-01

    This paper presents a novel wideband fast multipole boundary element approach to 3D half-space/plane-symmetric acoustic wave problems. The half-space fundamental solution is employed in the boundary integral equations so that the tree structure required in the fast multipole algorithm is constructed for the boundary elements in the real domain only. Moreover, a set of symmetric relations between the multipole expansion coefficients of the real and image domains are derived, and the half-space fundamental solution is modified for the purpose of applying such relations to avoid calculating, translating and saving the multipole/local expansion coefficients of the image domain. The wideband adaptive multilevel fast multipole algorithm associated with the iterative solver GMRES is employed so that the present method is accurate and efficient for both lowand high-frequency acoustic wave problems. As for exterior acoustic problems, the Burton-Miller method is adopted to tackle the fictitious eigenfrequency problem involved in the conventional boundary integral equation method. Details on the implementation of the present method are described, and numerical examples are given to demonstrate its accuracy and efficiency.

  4. Acoustic coupled fluid-structure interactions using a unified fast multipole boundary element method.

    PubMed

    Wilkes, Daniel R; Duncan, Alec J

    2015-04-01

    This paper presents a numerical model for the acoustic coupled fluid-structure interaction (FSI) of a submerged finite elastic body using the fast multipole boundary element method (FMBEM). The Helmholtz and elastodynamic boundary integral equations (BIEs) are, respectively, employed to model the exterior fluid and interior solid domains, and the pressure and displacement unknowns are coupled between conforming meshes at the shared boundary interface to achieve the acoustic FSI. The low frequency FMBEM is applied to both BIEs to reduce the algorithmic complexity of the iterative solution from O(N(2)) to O(N(1.5)) operations per matrix-vector product for N boundary unknowns. Numerical examples are presented to demonstrate the algorithmic and memory complexity of the method, which are shown to be in good agreement with the theoretical estimates, while the solution accuracy is comparable to that achieved by a conventional finite element-boundary element FSI model.

  5. Acoustic coupled fluid-structure interactions using a unified fast multipole boundary element method.

    PubMed

    Wilkes, Daniel R; Duncan, Alec J

    2015-04-01

    This paper presents a numerical model for the acoustic coupled fluid-structure interaction (FSI) of a submerged finite elastic body using the fast multipole boundary element method (FMBEM). The Helmholtz and elastodynamic boundary integral equations (BIEs) are, respectively, employed to model the exterior fluid and interior solid domains, and the pressure and displacement unknowns are coupled between conforming meshes at the shared boundary interface to achieve the acoustic FSI. The low frequency FMBEM is applied to both BIEs to reduce the algorithmic complexity of the iterative solution from O(N(2)) to O(N(1.5)) operations per matrix-vector product for N boundary unknowns. Numerical examples are presented to demonstrate the algorithmic and memory complexity of the method, which are shown to be in good agreement with the theoretical estimates, while the solution accuracy is comparable to that achieved by a conventional finite element-boundary element FSI model. PMID:25920865

  6. An Adaptive Fast Multipole Boundary Element Method for Poisson-Boltzmann Electrostatics

    SciTech Connect

    Lu, Benzhuo; Cheng, Xiaolin; Huang, Jingfang; McCammon, Jonathan

    2009-01-01

    The numerical solution of the Poisson Boltzmann (PB) equation is a useful but a computationally demanding tool for studying electrostatic solvation effects in chemical and biomolecular systems. Recently, we have described a boundary integral equation-based PB solver accelerated by a new version of the fast multipole method (FMM). The overall algorithm shows an order N complexity in both the computational cost and memory usage. Here, we present an updated version of the solver by using an adaptive FMM for accelerating the convolution type matrix-vector multiplications. The adaptive algorithm, when compared to our previous nonadaptive one, not only significantly improves the performance of the overall memory usage but also remarkably speeds the calculation because of an improved load balancing between the local- and far-field calculations. We have also implemented a node-patch discretization scheme that leads to a reduction of unknowns by a factor of 2 relative to the constant element method without sacrificing accuracy. As a result of these improvements, the new solver makes the PB calculation truly feasible for large-scale biomolecular systems such as a 30S ribosome molecule even on a typical 2008 desktop computer.

  7. A pragmatic overview of fast multipole methods

    SciTech Connect

    Strickland, J.H.; Baty, R.S.

    1995-12-01

    A number of physics problems can be modeled by a set of N elements which have pair-wise interactions with one another. A direct solution technique requires computational effort which is O(N{sup 2}). Fast multipole methods (FMM) have been widely used in recent years to obtain solutions to these problems requiring a computational effort of only 0 (N lnN) or O (N). In this paper we present an overview of several variations of the fast multipole method along with examples of its use in solving a variety of physical problems.

  8. An overview of fast multipole methods

    SciTech Connect

    Strickland, J.H.; Baty, R.S.

    1995-11-01

    A number of physics problems may be cast in terms of Hilbert-Schmidt integral equations. In many cases, the integrals tend to be zero over a large portion of the domain of interest. All of the information is contained in compact regions of the domain which renders their use very attractive from the standpoint of efficient numerical computation. Discrete representation of these integrals leads to a system of N elements which have pair-wise interactions with one another. A direct solution technique requires computational effort which is O(N{sup 2}). Fast multipole methods (FMM) have been widely used in recent years to obtain solutions to these problems requiring a computational effort of only O(Nln N) or O(N). In this paper we present an overview of several variations of the fast multipole method along with examples of its use in solving a variety of physical problems.

  9. Fast Multipole Accelerated Multiscale Analysis on the Sphere

    NASA Astrophysics Data System (ADS)

    Gutting, M.

    2013-12-01

    Spherical wavelets allow a space-frequency decomposition of many geophysical quantities on the sphere. Moreover, due to their localizing properties regional modeling or the improvement of a global model in a part of the sphere is possible. Certain types of spherical wavelets allow the acceleration of the spherical convolution by the fast multipole method. The main idea of the fast multipole algorithm consists of a hierarchical decomposition of the computational domain into cubes and a kernel approximation for the more distant points. The kernel evaluation is performed directly only for points in neighboring cubes on the finest level. The contributions of the other points are transferred into a set of coefficients. The kernel approximation in terms of inner and outer harmonics is applied on the coarsest possible level using translations of these coefficients. This reduces the numerical effort of the spherical convolution for a prescribed accuracy of the kernel approximation. Wavelet methods on the sphere come along with a tree algorithm that allows the computation of the lower frequency scales from a starting scale that contains the highest frequency parts of the signal. The application of the fast multipole method can accelerate the computation of this starting point as well as the tree algorithm itself. Applications to gravitational field modeling and spherical denoising are presented and finally, the extension to boundary value problems is considered where the boundary is the known surface of the Earth itself.

  10. Hierarchical Fast Multipole Simulation of Magnetic Colloids

    NASA Astrophysics Data System (ADS)

    Günal, Yüksel; Visscher, Pieter

    1997-03-01

    We have extended the well-known "fast multipole"footnote L. F. Greengard and V. Rokhlin, J. Comp. Phys. 73 p. 325, 1987. methods for molecular-dynamics simulation of large systems of point charges to continuum systems, such as magnetic films or particulate suspensions. (These methods reduce the computational labor from O(N^2) to O(N log N) or O(N), the number of particles). We apply the method to the particular case of a colloidal dispersion of magnetized cylindrical particles. Our method is fully hierarchical, both upward and downward from the particle size scale. The force on each particle is calculated by grouping distant particles into large clusters, nearer particles into smaller clusters, and dividing the nearest particles into segments. The fineness with which the particles are divided is controlled by an error tolerance parameter. The field of each cluster or segment is computed from a multipole expansion. Distant periodic images are also treated as multipoles - this is much faster than standard Fourier-transform or Ewald summation techniques.

  11. Magnetostatic solution by hybrid technique and fast multipole method

    NASA Astrophysics Data System (ADS)

    Gruosso, G.; Repetto, M.

    2008-02-01

    The use of fast multipole method (FMM) in the solution of a magnetostatic problem is presented. The magnetostatic solution strategy is based on finite formulation of electromagnetic field coupled with an integral formulation for the definition of boundary conditions on the external surface of the unstructured mesh. Due to the hypothesis of micromagnetic problem, the resulting matrix structure is sparse and integral terms are only on the RHS. Magnetic surface charge is used as source of these integral terms and is localized on the faces between tetrahedra. The computation of the integral terms can be performed by analytical formulas for the near field contributes and by FMM for far field ones.

  12. A fast multipole transformation for global climate calculations

    SciTech Connect

    Holmes, J.A.; Wang, Z.; Drake, J.B.; Lyon, B.F.; Chen, W.T.

    1996-01-01

    A fast multipole transformation is adapted to the evaluation of summations that occur in global climate calculations when transforming between spatial and spherical harmonic representations. For each summation, the timing of the fast multipole transformation scales linearly with the number of latitude gridpoints, but the timing for direct evaluations scales quadratically. In spite of a larger computational overhead, this scaling advantage renders the fast multipole method faster than direct evaluation for transformations involving greater than approximately 300 to 500 gridpoints. Convergence of the fast multipole transformation is accurate to machine precision. As the resolution in global climate calculations continues to increase, an increasingly large fraction of the computational work involves the transformation between spatial and spherical harmonic representations. The fast multipole transformation offers a significant reduction in computational time for these high-resolution cases.

  13. The fast multipole method for solving integral equations ofthree-dimensional topography and basin problems

    NASA Astrophysics Data System (ADS)

    Fujiwara, Hiroyuki

    2000-01-01

    The fast multipole method is developed for the solution of the boundary integral equations arising in wave scattering problems involving 3-D topography and 3-D basin problems. When coupled with an iterative solver for linear equations, the fast multipole method can significantly reduce memory requirements. The order of operations for the product of the matrix obtained from the discretization of the integral kernel and a vector is reduced from N2 to the order of pα N, where p is the order of the multipole expansion and α depends on the details of the implementation. In order to achieve efficient implementation the translation operators for the multipole expansion need to be used in the diagonal form based on a spherical wave decomposition. For problems with topography, the number of iterations required of the linear equation solver to achieve convergence is small and no preconditioning is necessary. However, for a basin problem, block-diagonal preconditioning is essential in the application of the iterative solver. Both the memory requirements and the CPU time are considerably reduced for topography problems. Although the memory requirement is reduced for a basin problem used in this numerical experiment, the CPU time would be still longer than that for the ordinary boundary element method if sufficient memory were available. These results indicate that the fast multipole method might be much more efficient than the ordinary method for 3-D elastic wave scattering problems with more than several tens of thousands of unknown variables.

  14. Application of Fast Multipole Methods to the NASA Fast Scattering Code

    NASA Technical Reports Server (NTRS)

    Dunn, Mark H.; Tinetti, Ana F.

    2008-01-01

    The NASA Fast Scattering Code (FSC) is a versatile noise prediction program designed to conduct aeroacoustic noise reduction studies. The equivalent source method is used to solve an exterior Helmholtz boundary value problem with an impedance type boundary condition. The solution process in FSC v2.0 requires direct manipulation of a large, dense system of linear equations, limiting the applicability of the code to small scales and/or moderate excitation frequencies. Recent advances in the use of Fast Multipole Methods (FMM) for solving scattering problems, coupled with sparse linear algebra techniques, suggest that a substantial reduction in computer resource utilization over conventional solution approaches can be obtained. Implementation of the single level FMM (SLFMM) and a variant of the Conjugate Gradient Method (CGM) into the FSC is discussed in this paper. The culmination of this effort, FSC v3.0, was used to generate solutions for three configurations of interest. Benchmarking against previously obtained simulations indicate that a twenty-fold reduction in computational memory and up to a four-fold reduction in computer time have been achieved on a single processor.

  15. Object-Oriented Fast Multipole Simulation: Magnetic Colloids

    NASA Astrophysics Data System (ADS)

    Visscher, Pieter; Günal, Yüksel

    1997-08-01

    In simulating a system of N particles, if the interaction is long-ranged all pair interactions must be calculated, requiring CPU time of order N^2. Recently-developed ``fast multipole'' methods (FMM) can reduce this time to order N, at the cost of considerable programming complexity. We have developed an object-oriented approach which uses similar ideas but is conceptually much simpler. The system is represented by a hierarchical tree whose root is the entire system and whose lowest nodes are the particles. The entire calculation of the particle interactions consists of a single call to a recursive function CalculateInteractions(A,B) with A=B=root, which uses a simple opening-angle criterion to choose between multipole expansion and calling itself (subdividing A and B.) The resulting algorithm is essentially equivalent to the FMM, but the choice of when to subdivide (which is laboriously hard-wired in FMM) is made automatically. We will discuss the implementation of periodic BCs and the application of the method to continuum systems (cylindrical magnetic particles).

  16. A Massively Parallel Adaptive Fast Multipole Method on Heterogeneous Architectures

    SciTech Connect

    Lashuk, Ilya; Chandramowlishwaran, Aparna; Langston, Harper; Nguyen, Tuan-Anh; Sampath, Rahul S; Shringarpure, Aashay; Vuduc, Richard; Ying, Lexing; Zorin, Denis; Biros, George

    2012-01-01

    We describe a parallel fast multipole method (FMM) for highly nonuniform distributions of particles. We employ both distributed memory parallelism (via MPI) and shared memory parallelism (via OpenMP and GPU acceleration) to rapidly evaluate two-body nonoscillatory potentials in three dimensions on heterogeneous high performance computing architectures. We have performed scalability tests with up to 30 billion particles on 196,608 cores on the AMD/CRAY-based Jaguar system at ORNL. On a GPU-enabled system (NSF's Keeneland at Georgia Tech/ORNL), we observed 30x speedup over a single core CPU and 7x speedup over a multicore CPU implementation. By combining GPUs with MPI, we achieve less than 10 ns/particle and six digits of accuracy for a run with 48 million nonuniformly distributed particles on 192 GPUs.

  17. AFMPB: An adaptive fast multipole Poisson-Boltzmann solver for calculating electrostatics in biomolecular systems

    NASA Astrophysics Data System (ADS)

    Lu, Benzhuo; Cheng, Xiaolin; Huang, Jingfang; McCammon, J. Andrew

    2010-06-01

    A Fortran program package is introduced for rapid evaluation of the electrostatic potentials and forces in biomolecular systems modeled by the linearized Poisson-Boltzmann equation. The numerical solver utilizes a well-conditioned boundary integral equation (BIE) formulation, a node-patch discretization scheme, a Krylov subspace iterative solver package with reverse communication protocols, and an adaptive new version of fast multipole method in which the exponential expansions are used to diagonalize the multipole-to-local translations. The program and its full description, as well as several closely related libraries and utility tools are available at http://lsec.cc.ac.cn/~lubz/afmpb.html and a mirror site at http://mccammon.ucsd.edu/. This paper is a brief summary of the program: the algorithms, the implementation and the usage. Program summaryProgram title: AFMPB: Adaptive fast multipole Poisson-Boltzmann solver Catalogue identifier: AEGB_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGB_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GPL 2.0 No. of lines in distributed program, including test data, etc.: 453 649 No. of bytes in distributed program, including test data, etc.: 8 764 754 Distribution format: tar.gz Programming language: Fortran Computer: Any Operating system: Any RAM: Depends on the size of the discretized biomolecular system Classification: 3 External routines: Pre- and post-processing tools are required for generating the boundary elements and for visualization. Users can use MSMS ( http://www.scripps.edu/~sanner/html/msms_home.html) for pre-processing, and VMD ( http://www.ks.uiuc.edu/Research/vmd/) for visualization. Sub-programs included: An iterative Krylov subspace solvers package from SPARSKIT by Yousef Saad ( http://www-users.cs.umn.edu/~saad/software/SPARSKIT/sparskit.html), and the fast multipole methods subroutines from FMMSuite ( http

  18. AFMPB: An adaptive fast multipole Poisson-Boltzmann solver for calculating electrostatics in biomolecular systems

    NASA Astrophysics Data System (ADS)

    Lu, Benzhuo; Cheng, Xiaolin; Huang, Jingfang; McCammon, J. Andrew

    2013-11-01

    A Fortran program package is introduced for rapid evaluation of the electrostatic potentials and forces in biomolecular systems modeled by the linearized Poisson-Boltzmann equation. The numerical solver utilizes a well-conditioned boundary integral equation (BIE) formulation, a node-patch discretization scheme, a Krylov subspace iterative solver package with reverse communication protocols, and an adaptive new version of the fast multipole method in which the exponential expansions are used to diagonalize the multipole-to-local translations. The program and its full description, as well as several closely related libraries and utility tools are available at http://lsec.cc.ac.cn/~lubz/afmpb.html and a mirror site at http://mccammon.ucsd.edu/. This paper is a brief summary of the program: the algorithms, the implementation and the usage. Restrictions: Only three or six significant digits options are provided in this version. Unusual features: Most of the codes are in Fortran77 style. Memory allocation functions from Fortran90 and above are used in a few subroutines. Additional comments: The current version of the codes is designed and written for single core/processor desktop machines. Check http://lsec.cc.ac.cn/lubz/afmpb.html for updates and changes. Running time: The running time varies with the number of discretized elements (N) in the system and their distributions. In most cases, it scales linearly as a function of N.

  19. Multilevel fast multipole method based on a potential formulation for 3D electromagnetic scattering problems.

    PubMed

    Fall, Mandiaye; Boutami, Salim; Glière, Alain; Stout, Brian; Hazart, Jerome

    2013-06-01

    A combination of the multilevel fast multipole method (MLFMM) and boundary element method (BEM) can solve large scale photonics problems of arbitrary geometry. Here, MLFMM-BEM algorithm based on a scalar and vector potential formulation, instead of the more conventional electric and magnetic field formulations, is described. The method can deal with multiple lossy or lossless dielectric objects of arbitrary geometry, be they nested, in contact, or dispersed. Several examples are used to demonstrate that this method is able to efficiently handle 3D photonic scatterers involving large numbers of unknowns. Absorption, scattering, and extinction efficiencies of gold nanoparticle spheres, calculated by the MLFMM, are compared with Mie's theory. MLFMM calculations of the bistatic radar cross section (RCS) of a gold sphere near the plasmon resonance and of a silica coated gold sphere are also compared with Mie theory predictions. Finally, the bistatic RCS of a nanoparticle gold-silver heterodimer calculated with MLFMM is compared with unmodified BEM calculations.

  20. Linearly scaling and almost Hamiltonian dielectric continuum molecular dynamics simulations through fast multipole expansions

    SciTech Connect

    Lorenzen, Konstantin; Mathias, Gerald; Tavan, Paul

    2015-11-14

    Hamiltonian Dielectric Solvent (HADES) is a recent method [S. Bauer et al., J. Chem. Phys. 140, 104103 (2014)] which enables atomistic Hamiltonian molecular dynamics (MD) simulations of peptides and proteins in dielectric solvent continua. Such simulations become rapidly impractical for large proteins, because the computational effort of HADES scales quadratically with the number N of atoms. If one tries to achieve linear scaling by applying a fast multipole method (FMM) to the computation of the HADES electrostatics, the Hamiltonian character (conservation of total energy, linear, and angular momenta) may get lost. Here, we show that the Hamiltonian character of HADES can be almost completely preserved, if the structure-adapted fast multipole method (SAMM) as recently redesigned by Lorenzen et al. [J. Chem. Theory Comput. 10, 3244-3259 (2014)] is suitably extended and is chosen as the FMM module. By this extension, the HADES/SAMM forces become exact gradients of the HADES/SAMM energy. Their translational and rotational invariance then guarantees (within the limits of numerical accuracy) the exact conservation of the linear and angular momenta. Also, the total energy is essentially conserved—up to residual algorithmic noise, which is caused by the periodically repeated SAMM interaction list updates. These updates entail very small temporal discontinuities of the force description, because the employed SAMM approximations represent deliberately balanced compromises between accuracy and efficiency. The energy-gradient corrected version of SAMM can also be applied, of course, to MD simulations of all-atom solvent-solute systems enclosed by periodic boundary conditions. However, as we demonstrate in passing, this choice does not offer any serious advantages.

  1. Linearly scaling and almost Hamiltonian dielectric continuum molecular dynamics simulations through fast multipole expansions.

    PubMed

    Lorenzen, Konstantin; Mathias, Gerald; Tavan, Paul

    2015-11-14

    Hamiltonian Dielectric Solvent (HADES) is a recent method [S. Bauer et al., J. Chem. Phys. 140, 104103 (2014)] which enables atomistic Hamiltonian molecular dynamics (MD) simulations of peptides and proteins in dielectric solvent continua. Such simulations become rapidly impractical for large proteins, because the computational effort of HADES scales quadratically with the number N of atoms. If one tries to achieve linear scaling by applying a fast multipole method (FMM) to the computation of the HADES electrostatics, the Hamiltonian character (conservation of total energy, linear, and angular momenta) may get lost. Here, we show that the Hamiltonian character of HADES can be almost completely preserved, if the structure-adapted fast multipole method (SAMM) as recently redesigned by Lorenzen et al. [J. Chem. Theory Comput. 10, 3244-3259 (2014)] is suitably extended and is chosen as the FMM module. By this extension, the HADES/SAMM forces become exact gradients of the HADES/SAMM energy. Their translational and rotational invariance then guarantees (within the limits of numerical accuracy) the exact conservation of the linear and angular momenta. Also, the total energy is essentially conserved-up to residual algorithmic noise, which is caused by the periodically repeated SAMM interaction list updates. These updates entail very small temporal discontinuities of the force description, because the employed SAMM approximations represent deliberately balanced compromises between accuracy and efficiency. The energy-gradient corrected version of SAMM can also be applied, of course, to MD simulations of all-atom solvent-solute systems enclosed by periodic boundary conditions. However, as we demonstrate in passing, this choice does not offer any serious advantages. PMID:26567653

  2. A Fourier-series-based kernel-independent fast multipole method

    SciTech Connect

    Zhang Bo; Huang Jingfang; Pitsianis, Nikos P.; Sun Xiaobai

    2011-07-01

    We present in this paper a new kernel-independent fast multipole method (FMM), named as FKI-FMM, for pairwise particle interactions with translation-invariant kernel functions. FKI-FMM creates, using numerical techniques, sufficiently accurate and compressive representations of a given kernel function over multi-scale interaction regions in the form of a truncated Fourier series. It provides also economic operators for the multipole-to-multipole, multipole-to-local, and local-to-local translations that are typical and essential in the FMM algorithms. The multipole-to-local translation operator, in particular, is readily diagonal and does not dominate in arithmetic operations. FKI-FMM provides an alternative and competitive option, among other kernel-independent FMM algorithms, for an efficient application of the FMM, especially for applications where the kernel function consists of multi-physics and multi-scale components as those arising in recent studies of biological systems. We present the complexity analysis and demonstrate with experimental results the FKI-FMM performance in accuracy and efficiency.

  3. Comparing precorrected-FFT and fast multipole algorithms for solving three-dimensional potential integral equations

    SciTech Connect

    White, J.; Phillips, J.R.; Korsmeyer, T.

    1994-12-31

    Mixed first- and second-kind surface integral equations with (1/r) and {partial_derivative}/{partial_derivative} (1/r) kernels are generated by a variety of three-dimensional engineering problems. For such problems, Nystroem type algorithms can not be used directly, but an expansion for the unknown, rather than for the entire integrand, can be assumed and the product of the singular kernal and the unknown integrated analytically. Combining such an approach with a Galerkin or collocation scheme for computing the expansion coefficients is a general approach, but generates dense matrix problems. Recently developed fast algorithms for solving these dense matrix problems have been based on multipole-accelerated iterative methods, in which the fast multipole algorithm is used to rapidly compute the matrix-vector products in a Krylov-subspace based iterative method. Another approach to rapidly computing the dense matrix-vector products associated with discretized integral equations follows more along the lines of a multigrid algorithm, and involves projecting the surface unknowns onto a regular grid, then computing using the grid, and finally interpolating the results from the regular grid back to the surfaces. Here, the authors describe a precorrectted-FFT approach which can replace the fast multipole algorithm for accelerating the dense matrix-vector product associated with discretized potential integral equations. The precorrected-FFT method, described below, is an order n log(n) algorithm, and is asymptotically slower than the order n fast multipole algorithm. However, initial experimental results indicate the method may have a significant constant factor advantage for a variety of engineering problems.

  4. Fast inverse scattering solutions using the distorted Born iterative method and the multilevel fast multipole algorithm

    PubMed Central

    Hesford, Andrew J.; Chew, Weng C.

    2010-01-01

    The distorted Born iterative method (DBIM) computes iterative solutions to nonlinear inverse scattering problems through successive linear approximations. By decomposing the scattered field into a superposition of scattering by an inhomogeneous background and by a material perturbation, large or high-contrast variations in medium properties can be imaged through iterations that are each subject to the distorted Born approximation. However, the need to repeatedly compute forward solutions still imposes a very heavy computational burden. To ameliorate this problem, the multilevel fast multipole algorithm (MLFMA) has been applied as a forward solver within the DBIM. The MLFMA computes forward solutions in linear time for volumetric scatterers. The typically regular distribution and shape of scattering elements in the inverse scattering problem allow the method to take advantage of data redundancy and reduce the computational demands of the normally expensive MLFMA setup. Additional benefits are gained by employing Kaczmarz-like iterations, where partial measurements are used to accelerate convergence. Numerical results demonstrate both the efficiency of the forward solver and the successful application of the inverse method to imaging problems with dimensions in the neighborhood of ten wavelengths. PMID:20707438

  5. Multilevel fast multipole algorithm for elastic wave scattering by large three-dimensional objects

    NASA Astrophysics Data System (ADS)

    Tong, Mei Song; Chew, Weng Cho

    2009-02-01

    Multilevel fast multipole algorithm (MLFMA) is developed for solving elastic wave scattering by large three-dimensional (3D) objects. Since the governing set of boundary integral equations (BIE) for the problem includes both compressional and shear waves with different wave numbers in one medium, the double-tree structure for each medium is used in the MLFMA implementation. When both the object and surrounding media are elastic, four wave numbers in total and thus four FMA trees are involved. We employ Nyström method to discretize the BIE and generate the corresponding matrix equation. The MLFMA is used to accelerate the solution process by reducing the complexity of matrix-vector product from O(N2) to O(NlogN) in iterative solvers. The multiple-tree structure differs from the single-tree frame in electromagnetics (EM) and acoustics, and greatly complicates the MLFMA implementation due to the different definitions for well-separated groups in different FMA trees. Our Nyström method has made use of the cancellation of leading terms in the series expansion of integral kernels to handle hyper singularities in near terms. This feature is kept in the MLFMA by seeking the common near patches in different FMA trees and treating the involved near terms synergistically. Due to the high cost of the multiple-tree structure, our numerical examples show that we can only solve the elastic wave scattering problems with 0.3-0.4 millions of unknowns on our Dell Precision 690 workstation using one core.

  6. An efficient blocking M2L translation for low-frequency fast multipole method in three dimensions

    NASA Astrophysics Data System (ADS)

    Takahashi, Toru; Shimba, Yuta; Isakari, Hiroshi; Matsumoto, Toshiro

    2016-05-01

    We propose an efficient scheme to perform the multipole-to-local (M2L) translation in the three-dimensional low-frequency fast multipole method (LFFMM). Our strategy is to combine a group of matrix-vector products associated with M2L translation into a matrix-matrix product in order to diminish the memory traffic. For this purpose, we first developed a grouping method (termed as internal blocking) based on the congruent transformations (rotational and reflectional symmetries) of M2L-translators for each target box in the FMM hierarchy (adaptive octree). Next, we considered another method of grouping (termed as external blocking) that was able to handle M2L translations for multiple target boxes collectively by using the translational invariance of the M2L translation. By combining these internal and external blockings, the M2L translation can be performed efficiently whilst preservingthe numerical accuracy exactly. We assessed the proposed blocking scheme numerically and applied it to the boundary integral equation method to solve electromagnetic scattering problems for perfectly electrical conductor. From the numerical results, it was found that the proposed M2L scheme achieved a few times speedup compared to the non-blocking scheme.

  7. Coupling of the ultra-weak variational formulation and an integral representation using a fast multipole method in electromagnetism

    NASA Astrophysics Data System (ADS)

    Darrigrand, E.; Monk, P.

    2007-07-01

    Many different methods have been developed for the solution of the time-harmonic Maxwell equations in exterior domains at high frequency. Volume-based methods have the drawback of needing an artificial boundary far from the obstacle. Integral formulations enable one to avoid this difficulty by solving a problem on the surface of the obstacle. However, integral operators imply dense systems with bad condition numbers. The ultra-weak variational formulation (UWVF) is a volume-based method using plane wave basis functions that allows the use of a coarser mesh in comparison with more classical low order finite element methods. However, the UWVF still involves the problem of the artificial boundary. In this paper, we suggest the use of an integral representation of the unknown field to obtain an exact artificial boundary condition. In this way the distance between the obstacle and the artificial boundary can be reduced. The use of the fast multipole method ensures a low cost for the calculation of various integral operators used in the representation. In this paper we describe the combined algorithm, demonstrate its accuracy on a model problem and discuss the complexity of the algorithm.

  8. An accurate and efficient acoustic eigensolver based on a fast multipole BEM and a contour integral method

    NASA Astrophysics Data System (ADS)

    Zheng, Chang-Jun; Gao, Hai-Feng; Du, Lei; Chen, Hai-Bo; Zhang, Chuanzeng

    2016-01-01

    An accurate numerical solver is developed in this paper for eigenproblems governed by the Helmholtz equation and formulated through the boundary element method. A contour integral method is used to convert the nonlinear eigenproblem into an ordinary eigenproblem, so that eigenvalues can be extracted accurately by solving a set of standard boundary element systems of equations. In order to accelerate the solution procedure, the parameters affecting the accuracy and efficiency of the method are studied and two contour paths are compared. Moreover, a wideband fast multipole method is implemented with a block IDR (s) solver to reduce the overall solution cost of the boundary element systems of equations with multiple right-hand sides. The Burton-Miller formulation is employed to identify the fictitious eigenfrequencies of the interior acoustic problems with multiply connected domains. The actual effect of the Burton-Miller formulation on tackling the fictitious eigenfrequency problem is investigated and the optimal choice of the coupling parameter as α = i / k is confirmed through exterior sphere examples. Furthermore, the numerical eigenvalues obtained by the developed method are compared with the results obtained by the finite element method to show the accuracy and efficiency of the developed method.

  9. FMM-Yukawa: An adaptive fast multipole method for screened Coulomb interactions

    NASA Astrophysics Data System (ADS)

    Huang, Jingfang; Jia, Jun; Zhang, Bo

    2009-11-01

    A Fortran program package is introduced for the rapid evaluation of the screened Coulomb interactions of N particles in three dimensions. The method utilizes an adaptive oct-tree structure, and is based on the new version of fast multipole method in which the exponential expansions are used to diagonalize the multipole-to-local translations. The program and its full description, as well as several closely related packages are also available at http://www.fastmultipole.org/. This paper is a brief review of the program and its performance. Catalogue identifier: AEEQ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEQ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GPL 2.0 No. of lines in distributed program, including test data, etc.: 12 385 No. of bytes in distributed program, including test data, etc.: 79 222 Distribution format: tar.gz Programming language: Fortran77 and Fortran90 Computer: Any Operating system: Any RAM: Depends on the number of particles, their distribution, and the adaptive tree structure Classification: 4.8, 4.12 Nature of problem: To evaluate the screened Coulomb potential and force field of N charged particles, and to evaluate a convolution type integral where the Green's function is the fundamental solution of the modified Helmholtz equation. Solution method: An adaptive oct-tree is generated, and a new version of fast multipole method is applied in which the "multipole-to-local" translation operator is diagonalized. Restrictions: Only three and six significant digits accuracy options are provided in this version. Unusual features: Most of the codes are written in

  10. A Wideband Fast Multipole Method for the two-dimensional complex Helmholtz equation

    NASA Astrophysics Data System (ADS)

    Cho, Min Hyung; Cai, Wei

    2010-12-01

    A Wideband Fast Multipole Method (FMM) for the 2D Helmholtz equation is presented. It can evaluate the interactions between N particles governed by the fundamental solution of 2D complex Helmholtz equation in a fast manner for a wide range of complex wave number k, which was not easy with the original FMM due to the instability of the diagonalized conversion operator. This paper includes the description of theoretical backgrounds, the FMM algorithm, software structures, and some test runs. Program summaryProgram title: 2D-WFMM Catalogue identifier: AEHI_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHI_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 4636 No. of bytes in distributed program, including test data, etc.: 82 582 Distribution format: tar.gz Programming language: C Computer: Any Operating system: Any operating system with gcc version 4.2 or newer Has the code been vectorized or parallelized?: Multi-core processors with shared memory RAM: Depending on the number of particles N and the wave number k Classification: 4.8, 4.12 External routines: OpenMP ( http://openmp.org/wp/) Nature of problem: Evaluate interaction between N particles governed by the fundamental solution of 2D Helmholtz equation with complex k. Solution method: Multilevel Fast Multipole Algorithm in a hierarchical quad-tree structure with cutoff level which combines low frequency method and high frequency method. Running time: Depending on the number of particles N, wave number k, and number of cores in CPU. CPU time increases as N log N.

  11. The fast multipole method on parallel clusters, multicore processors, and graphics processing units

    NASA Astrophysics Data System (ADS)

    Darve, Eric; Cecka, Cris; Takahashi, Toru

    2011-02-01

    In this article, we discuss how the fast multipole method (FMM) can be implemented on modern parallel computers, ranging from computer clusters to multicore processors and graphics cards (GPU). The FMM is a somewhat difficult application for parallel computing because of its tree structure and the fact that it requires many complex operations which are not regularly structured. Computational linear algebra with dense matrices for example allows many optimizations that leverage the regular computation pattern. FMM can be similarly optimized but we will see that the complexity of the optimization steps is greater. The discussion will start with a general presentation of FMMs. We briefly discuss parallel methods for the FMM, such as building the FMM tree in parallel, and reducing communication during the FMM procedure. Finally, we will focus on porting and optimizing the FMM on GPUs.

  12. A Massively Parallel Adaptive Fast-Multipole Method on Heterogeneous Architectures

    SciTech Connect

    Lashuk, Ilya; Chandramowlishwaran, Aparna; Langston, Harper; Nguyen, Tuan-Anh; Sampath, Rahul S; Shringarpure, Aashay; Vuduc, Richard; Ying, Lexing; Zorin, Denis; Biros, George

    2009-01-01

    We present new scalable algorithms and an implementation of the kernel-independent fast multiple method (KIFMM), employing hybrid distributed memory message passing (via MPI) and shared memory/streaming using graphics processing unit (GPU) acceleration to rapidly evaluate two-body non-oscillatory potentials. On traditional CPU-only systems, our implementation scales well up to 30 billion unknowns on 65k cores (AMD/CRAY-based Kraken system at NSF/NICS) on tree data structures with 25 levels between leaves. On GPU-enabled systems, we achieve 30 x speedup for problems of up to 256 million points on 256 GPUs (Lincoln at NSF/NCSA) over a comparable CPU-only implementation. Both of these demonstrations represent the largest and fastest of their kind of which we are aware. We achieve scalability at extreme core counts by extending the initial work of Ying et al. (ACM/IEEE SC 03) with a new approach to scalable MPI-based tree construction and partitioning. For the sub-components of KIFMM, which direct- and approximate-interactions, target evaluation, and source-to-multipole translations, we use CUDA-based GPU-acceleration to achieve excellent performance. To do so requires carefully constructed data structure transformations, which we describe, and whose cost we show is minor. Taken together, these components show promise for ultrascalable FMM in the petascale era and beyond.

  13. Utilizing fast multipole expansions for efficient and accurate quantum-classical molecular dynamics simulations.

    PubMed

    Schwörer, Magnus; Lorenzen, Konstantin; Mathias, Gerald; Tavan, Paul

    2015-03-14

    Recently, a novel approach to hybrid quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations has been suggested [Schwörer et al., J. Chem. Phys. 138, 244103 (2013)]. Here, the forces acting on the atoms are calculated by grid-based density functional theory (DFT) for a solute molecule and by a polarizable molecular mechanics (PMM) force field for a large solvent environment composed of several 10(3)-10(5) molecules as negative gradients of a DFT/PMM hybrid Hamiltonian. The electrostatic interactions are efficiently described by a hierarchical fast multipole method (FMM). Adopting recent progress of this FMM technique [Lorenzen et al., J. Chem. Theory Comput. 10, 3244 (2014)], which particularly entails a strictly linear scaling of the computational effort with the system size, and adapting this revised FMM approach to the computation of the interactions between the DFT and PMM fragments of a simulation system, here, we show how one can further enhance the efficiency and accuracy of such DFT/PMM-MD simulations. The resulting gain of total performance, as measured for alanine dipeptide (DFT) embedded in water (PMM) by the product of the gains in efficiency and accuracy, amounts to about one order of magnitude. We also demonstrate that the jointly parallelized implementation of the DFT and PMM-MD parts of the computation enables the efficient use of high-performance computing systems. The associated software is available online. PMID:25770527

  14. Utilizing fast multipole expansions for efficient and accurate quantum-classical molecular dynamics simulations

    SciTech Connect

    Schwörer, Magnus; Lorenzen, Konstantin; Mathias, Gerald; Tavan, Paul

    2015-03-14

    Recently, a novel approach to hybrid quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations has been suggested [Schwörer et al., J. Chem. Phys. 138, 244103 (2013)]. Here, the forces acting on the atoms are calculated by grid-based density functional theory (DFT) for a solute molecule and by a polarizable molecular mechanics (PMM) force field for a large solvent environment composed of several 10{sup 3}-10{sup 5} molecules as negative gradients of a DFT/PMM hybrid Hamiltonian. The electrostatic interactions are efficiently described by a hierarchical fast multipole method (FMM). Adopting recent progress of this FMM technique [Lorenzen et al., J. Chem. Theory Comput. 10, 3244 (2014)], which particularly entails a strictly linear scaling of the computational effort with the system size, and adapting this revised FMM approach to the computation of the interactions between the DFT and PMM fragments of a simulation system, here, we show how one can further enhance the efficiency and accuracy of such DFT/PMM-MD simulations. The resulting gain of total performance, as measured for alanine dipeptide (DFT) embedded in water (PMM) by the product of the gains in efficiency and accuracy, amounts to about one order of magnitude. We also demonstrate that the jointly parallelized implementation of the DFT and PMM-MD parts of the computation enables the efficient use of high-performance computing systems. The associated software is available online.

  15. Computation of radiation pressure force on arbitrary shaped homogenous particles by multilevel fast multipole algorithm.

    PubMed

    Yang, Minglin; Ren, Kuan Fang; Gou, Mingjiang; Sheng, Xinqing

    2013-06-01

    A full-wave numerical method based on the surface integral equation for computing radiation pressure force (RPF) exerted by a shaped light beam on arbitrary shaped homogenous particles is presented. The multilevel fast multipole algorithm is employed to reduce memory requirement and to improve its capability. The resultant matrix equation is solved by using an iterative solver to obtain equivalent electric and magnetic currents. Then RPF is computed by vector flux of the Maxwell's stress tensor over a spherical surface tightly enclosing the particle. So the analytical expressions for electromagnetic fields of incident beam in near region are used. Some numerical results are performed to illustrate the validity and capability of the developed method. Good agreements between our method and the Lorenz-Mie theory for spherical and small spheroidal particle are found while our method has powerful capability for computing RPF of any shaped beam on a relatively large particle of complex shape. Tests for ellipsoidal and red blood cell-like particles illuminated by Gaussian beam have shown that the size of the particle can be as large as 50-100 wavelengths, respectively, for the relative refractive of 1.33 and 1.1.

  16. Revision of FMM-Yukawa: An adaptive fast multipole method for screened Coulomb interactions

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Huang, Jingfang; Pitsianis, Nikos P.; Sun, Xiaobai

    2010-12-01

    FMM-YUKAWA is a mathematical software package primarily for rapid evaluation of the screened Coulomb interactions of N particles in three dimensional space. Since its release, we have revised and re-organized the data structure, software architecture, and user interface, for the purpose of enabling more flexible, broader and easier use of the package. The package and its documentation are available at http://www.fastmultipole.org/, along with a few other closely related mathematical software packages. New version program summaryProgram title: FMM-Yukawa Catalogue identifier: AEEQ_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEQ_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU GPL 2.0 No. of lines in distributed program, including test data, etc.: 78 704 No. of bytes in distributed program, including test data, etc.: 854 265 Distribution format: tar.gz Programming language: FORTRAN 77, FORTRAN 90, and C. Requires gcc and gfortran version 4.4.3 or later Computer: All Operating system: Any Classification: 4.8, 4.12 Catalogue identifier of previous version: AEEQ_v1_0 Journal reference of previous version: Comput. Phys. Comm. 180 (2009) 2331 Does the new version supersede the previous version?: Yes Nature of problem: To evaluate the screened Coulomb potential and force field of N charged particles, and to evaluate a convolution type integral where the Green's function is the fundamental solution of the modified Helmholtz equation. Solution method: The new version of fast multipole method (FMM) that diagonalizes the multipole-to-local translation operator is applied with the tree structure adaptive to sample particle locations. Reasons for new version: To handle much larger particle ensembles, to enable the iterative use of the subroutines in a solver, and to remove potential contention in assignments for parallelization. Summary of revisions: The software package FMM-Yukawa has been

  17. Preinflationary and inflationary fast-roll eras and their signatures in the low CMB multipoles

    SciTech Connect

    Destri, C.; Vega, H. J. de; Sanchez, N. G.

    2010-03-15

    the fall to the center. Precisely, the fluctuations exhibit logarithmic behavior describing the fall to t=t{sub *}. The power spectrum gets dynamically modified by the effect of the fast-roll eras and the choice of Bunch-Davies initial conditions at a finite time through the transfer function D(k) of initial conditions. The power spectrum vanishes at k=0.D(k) presents a first peak for k{approx}2/{eta}{sub 0} ({eta}{sub 0} being the conformal initial time), then oscillates with decreasing amplitude and vanishes asymptotically for k{yields}{infinity}. The transfer function D(k) affects the low cosmic microwave background multipoles C{sub l}: the change {Delta}C{sub l}/C{sub l} for 1{<=}l{<=}5 is computed as a function of the starting instant of the fluctuations t{sub 0}. Cosmic microwave background quadrupole observations indicate large suppressions, which are well reproduced for the range t{sub 0}-t{sub *} > or approx. 0.05/m{approx_equal}10 100t{sub Planck}.

  18. The fast multipole method in the differential algebra framework for the calculation of 3D space charge fields

    NASA Astrophysics Data System (ADS)

    Zhang, He

    2013-01-01

    The space charge effect is one of the most important collective effects in beam dynamic studies. In many cases, numerical simulations are inevitable in order to get a clear understanding of this effect. The particle-particle interaction algorithms and the article-in-cell algorithms are widely used in space charge effect simulations. But they both have difficulties in dealing with highly correlated beams with abnormal distributions or complicated geometries. We developed a new algorithm to calculate the three dimensional self-field between charged particles by combining the differential algebra (DA) techniques with the fast multi-pole method (FMM). The FMM hierarchically decomposes the whole charged domain into many small regions. For each region it uses multipole expansions to represent the potential/field contributions from the particles far away from the region and then converts the multipole expansions into a local expansion inside the region. The potential/field due to the far away particles is calculated from the expansions and the potential/field due to the nearby particles is calculated from the Coulomb force law. The DA techniques are used in the calculation, translation and converting of the expansions. The new algorithm scales linearly with the total number of particles and it is suitable for any arbitrary charge distribution. Using the DA techniques, we can calculate both the potential/field and its high order derivatives, which will be useful for the purpose of including the space charge effect into transfer maps in the future. We first present the single level FMM, which decomposes the whole domain into boxes of the same size. It works best for charge distributions that are not overly non-uniform. Then we present the multilevel fast multipole algorithm (MLFMA), which decomposes the whole domain into different sized boxes according to the charge density. Finer boxes are generated where the higher charge density exists; thus the algorithm works for any

  19. Density functional theory for molecular and periodic systems using density fitting and continuous fast multipole method: Analytical gradients.

    PubMed

    Łazarski, Roman; Burow, Asbjörn Manfred; Grajciar, Lukáš; Sierka, Marek

    2016-10-30

    A full implementation of analytical energy gradients for molecular and periodic systems is reported in the TURBOMOLE program package within the framework of Kohn-Sham density functional theory using Gaussian-type orbitals as basis functions. Its key component is a combination of density fitting (DF) approximation and continuous fast multipole method (CFMM) that allows for an efficient calculation of the Coulomb energy gradient. For exchange-correlation part the hierarchical numerical integration scheme (Burow and Sierka, Journal of Chemical Theory and Computation 2011, 7, 3097) is extended to energy gradients. Computational efficiency and asymptotic O(N) scaling behavior of the implementation is demonstrated for various molecular and periodic model systems, with the largest unit cell of hematite containing 640 atoms and 19,072 basis functions. The overall computational effort of energy gradient is comparable to that of the Kohn-Sham matrix formation. © 2016 Wiley Periodicals, Inc.

  20. Combined fast multipole-QR compression technique for solving electrically small to large structures for broadband applications

    NASA Technical Reports Server (NTRS)

    Jandhyala, Vikram (Inventor); Chowdhury, Indranil (Inventor)

    2011-01-01

    An approach that efficiently solves for a desired parameter of a system or device that can include both electrically large fast multipole method (FMM) elements, and electrically small QR elements. The system or device is setup as an oct-tree structure that can include regions of both the FMM type and the QR type. An iterative solver is then used to determine a first matrix vector product for any electrically large elements, and a second matrix vector product for any electrically small elements that are included in the structure. These matrix vector products for the electrically large elements and the electrically small elements are combined, and a net delta for a combination of the matrix vector products is determined. The iteration continues until a net delta is obtained that is within predefined limits. The matrix vector products that were last obtained are used to solve for the desired parameter.

  1. An improved fast multipole method for electrostatic potential calculations in a class of coarse-grained molecular simulations

    NASA Astrophysics Data System (ADS)

    Poursina, Mohammad; Anderson, Kurt S.

    2014-08-01

    This paper presents a novel algorithm to approximate the long-range electrostatic potential field in the Cartesian coordinates applicable to 3D coarse-grained simulations of biopolymers. In such models, coarse-grained clusters are formed via treating groups of atoms as rigid and/or flexible bodies connected together via kinematic joints. Therefore, multibody dynamic techniques are used to form and solve the equations of motion of such coarse-grained systems. In this article, the approximations for the potential fields due to the interaction between a highly negatively/positively charged pseudo-atom and charged particles, as well as the interaction between clusters of charged particles, are presented. These approximations are expressed in terms of physical and geometrical properties of the bodies such as the entire charge, the location of the center of charge, and the pseudo-inertia tensor about the center of charge of the clusters. Further, a novel substructuring scheme is introduced to implement the presented far-field potential evaluations in a binary tree framework as opposed to the existing quadtree and octree strategies of implementing fast multipole method. Using the presented Lagrangian grids, the electrostatic potential is recursively calculated via sweeping two passes: assembly and disassembly. In the assembly pass, adjacent charged bodies are combined together to form new clusters. Then, the potential field of each cluster due to its interaction with faraway resulting clusters is recursively calculated in the disassembly pass. The method is highly compatible with multibody dynamic schemes to model coarse-grained biopolymers. Since the proposed method takes advantage of constant physical and geometrical properties of rigid clusters, improvement in the overall computational cost is observed comparing to the tradition application of fast multipole method.

  2. Fast image restoration without boundary artifacts.

    PubMed

    Reeves, Stanley J

    2005-10-01

    Fast Fourier transform (FFT)-based restorations are fast, but at the expense of assuming that the blurring and deblurring are based on circular convolution. Unfortunately, when the opposite sides of the image do not match up well in intensity, this assumption can create significant artifacts across the image. If the pixels outside the measured image window are modeled as unknown values in the restored image, boundary artifacts are avoided. However, this approach destroys the structure that makes the use of the FFT directly applicable, since the unknown image is no longer the same size as the measured image. Thus, the restoration methods available for this problem no longer have the computational efficiency of the FFT. We propose a new restoration method for the unknown boundary approach that can be implemented in a fast and flexible manner. We decompose the restoration into a sum of two independent restorations. One restoration yields an image that comes directly from a modified FFT-based approach. The other restoration involves a set of unknowns whose number equals that of the unknown boundary values. By summing the two, the artifacts are canceled. Because the second restoration has a significantly reduced set of unknowns, it can be calculated very efficiently even though no circular convolution structure exists. PMID:16238051

  3. An O(N) and parallel approach to integral problems by a kernel-independent fast multipole method: Application to polarization and magnetization of interacting particles

    NASA Astrophysics Data System (ADS)

    Jiang, Xikai; Li, Jiyuan; Zhao, Xujun; Qin, Jian; Karpeev, Dmitry; Hernandez-Ortiz, Juan; de Pablo, Juan J.; Heinonen, Olle

    2016-08-01

    Large classes of materials systems in physics and engineering are governed by magnetic and electrostatic interactions. Continuum or mesoscale descriptions of such systems can be cast in terms of integral equations, whose direct computational evaluation requires O(N2) operations, where N is the number of unknowns. Such a scaling, which arises from the many-body nature of the relevant Green's function, has precluded wide-spread adoption of integral methods for solution of large-scale scientific and engineering problems. In this work, a parallel computational approach is presented that relies on using scalable open source libraries and utilizes a kernel-independent Fast Multipole Method (FMM) to evaluate the integrals in O(N) operations, with O(N) memory cost, thereby substantially improving the scalability and efficiency of computational integral methods. We demonstrate the accuracy, efficiency, and scalability of our approach in the context of two examples. In the first, we solve a boundary value problem for a ferroelectric/ferromagnetic volume in free space. In the second, we solve an electrostatic problem involving polarizable dielectric bodies in an unbounded dielectric medium. The results from these test cases show that our proposed parallel approach, which is built on a kernel-independent FMM, can enable highly efficient and accurate simulations and allow for considerable flexibility in a broad range of applications.

  4. Fast Multipole Methods for Three-Dimensional N-body Problems

    NASA Technical Reports Server (NTRS)

    Koumoutsakos, P.

    1995-01-01

    We are developing computational tools for the simulations of three-dimensional flows past bodies undergoing arbitrary motions. High resolution viscous vortex methods have been developed that allow for extended simulations of two-dimensional configurations such as vortex generators. Our objective is to extend this methodology to three dimensions and develop a robust computational scheme for the simulation of such flows. A fundamental issue in the use of vortex methods is the ability of employing efficiently large numbers of computational elements to resolve the large range of scales that exist in complex flows. The traditional cost of the method scales as Omicron (N(sup 2)) as the N computational elements/particles induce velocities at each other, making the method unacceptable for simulations involving more than a few tens of thousands of particles. In the last decade fast methods have been developed that have operation counts of Omicron (N log N) or Omicron (N) (referred to as BH and GR respectively) depending on the details of the algorithm. These methods are based on the observation that the effect of a cluster of particles at a certain distance may be approximated by a finite series expansion. In order to exploit this observation we need to decompose the element population spatially into clusters of particles and build a hierarchy of clusters (a tree data structure) - smaller neighboring clusters combine to form a cluster of the next size up in the hierarchy and so on. This hierarchy of clusters allows one to determine efficiently when the approximation is valid. This algorithm is an N-body solver that appears in many fields of engineering and science. Some examples of its diverse use are in astrophysics, molecular dynamics, micro-magnetics, boundary element simulations of electromagnetic problems, and computer animation. More recently these N-body solvers have been implemented and applied in simulations involving vortex methods. Koumoutsakos and Leonard (1995

  5. Quantum slow-roll and quantum fast-roll inflationary initial conditions: CMB quadrupole suppression and further effects on the low CMB multipoles

    SciTech Connect

    Cao, F. J.; Vega, H. J. de; Sanchez, N. G.

    2008-10-15

    Quantum fast-roll initial conditions for the inflaton which are different from the classical fast-roll conditions and from the quantum slow-roll conditions can lead to inflation that lasts long enough. These quantum fast-roll initial conditions for the inflaton allow for kinetic energies of the same order of the potential energies and nonperturbative inflaton modes with nonzero wave numbers. Their evolution starts with a transitory epoch where the redshift due to the expansion succeeds to assemble the quantum excited modes of the inflaton in a homogeneous (zero mode) condensate, and the large value of the Hubble parameter succeeds to overdamp the fast roll of the redshifted inflaton modes. After this transitory stage the effective classical slow-roll epoch is reached. Most of the e-folds are produced during the slow-roll epoch, and we recover the classical slow-roll results for the scalar and tensor metric perturbations plus corrections. These corrections are important if scales which are horizon size today exited the horizon by the end of the transitory stage and, as a consequence, the lower cosmic microwave background (CMB) multipoles get suppressed or enhanced. Both for scalar and tensor metric perturbations, fast roll leads to a suppression of the amplitude of the perturbations (and of the low CMB multipoles), while the quantum precondensate epoch gives an enhancement of the amplitude of the perturbations (and of the low CMB multipoles). These two types of corrections can compete and combine in a scale dependent manner. They turn out to be smaller in new inflation than in chaotic inflation. These corrections arise as natural consequences of the quantum nonperturbative inflaton dynamics, and can allow a further improvement of the fitting of inflation plus the {lambda}CMB model to the observed CMB spectra. In addition, the corrections to the tensor metric perturbations will provide an independent test of this model. Thus, the effects of quantum inflaton fast

  6. The differential algebra based multiple level fast multipole algorithm for 3D space charge field calculation and photoemission simulation

    DOE PAGES

    None, None

    2015-09-28

    Coulomb interaction between charged particles inside a bunch is one of the most importance collective effects in beam dynamics, becoming even more significant as the energy of the particle beam is lowered to accommodate analytical and low-Z material imaging purposes such as in the time resolved Ultrafast Electron Microscope (UEM) development currently underway at Michigan State University. In addition, space charge effects are the key limiting factor in the development of ultrafast atomic resolution electron imaging and diffraction technologies and are also correlated with an irreversible growth in rms beam emittance due to fluctuating components of the nonlinear electron dynamics.more » In the short pulse regime used in the UEM, space charge effects also lead to virtual cathode formation in which the negative charge of the electrons emitted at earlier times, combined with the attractive surface field, hinders further emission of particles and causes a degradation of the pulse properties. Space charge and virtual cathode effects and their remediation are core issues for the development of the next generation of high-brightness UEMs. Since the analytical models are only applicable for special cases, numerical simulations, in addition to experiments, are usually necessary to accurately understand the space charge effect. In this paper we will introduce a grid-free differential algebra based multiple level fast multipole algorithm, which calculates the 3D space charge field for n charged particles in arbitrary distribution with an efficiency of O(n), and the implementation of the algorithm to a simulation code for space charge dominated photoemission processes.« less

  7. The differential algebra based multiple level fast multipole algorithm for 3D space charge field calculation and photoemission simulation

    SciTech Connect

    None, None

    2015-09-28

    Coulomb interaction between charged particles inside a bunch is one of the most importance collective effects in beam dynamics, becoming even more significant as the energy of the particle beam is lowered to accommodate analytical and low-Z material imaging purposes such as in the time resolved Ultrafast Electron Microscope (UEM) development currently underway at Michigan State University. In addition, space charge effects are the key limiting factor in the development of ultrafast atomic resolution electron imaging and diffraction technologies and are also correlated with an irreversible growth in rms beam emittance due to fluctuating components of the nonlinear electron dynamics. In the short pulse regime used in the UEM, space charge effects also lead to virtual cathode formation in which the negative charge of the electrons emitted at earlier times, combined with the attractive surface field, hinders further emission of particles and causes a degradation of the pulse properties. Space charge and virtual cathode effects and their remediation are core issues for the development of the next generation of high-brightness UEMs. Since the analytical models are only applicable for special cases, numerical simulations, in addition to experiments, are usually necessary to accurately understand the space charge effect. In this paper we will introduce a grid-free differential algebra based multiple level fast multipole algorithm, which calculates the 3D space charge field for n charged particles in arbitrary distribution with an efficiency of O(n), and the implementation of the algorithm to a simulation code for space charge dominated photoemission processes.

  8. A Fast Multipole Method and a Metropolis Method for Coarse-grained Brownian Dynamics Simulations of a DNA with Hydrodynamic Interactions

    NASA Astrophysics Data System (ADS)

    Fu, Szu-Pei; Young, Yuan-Nan; Jiang, Shidong

    2014-11-01

    The coarse-grained molecular dynamics (MD) or Brownian dynamics (BD) simulation is a particle-based approach that has been applied to a wide range of biological problems that involve interaction with water molecules. The simulations are often numerically expensive for exploring long-time dynamics over meso-scales due to the amount of water molecules needed for capturing the non-local hydrodynamic interactions (HIs). In this paper a fast multipole method for computing the HIs and a metropolis method for molecular dynamics are validated by comparing against both experiments and simulations of a single DNA molecule in linear flow. In addition, it is shown that the Metropolis integration scheme for self-adjoint diffusions can be used to expedite the time it takes to prepare the initial configuration of the macromolecule for the BD simulations. Further numerical tests show that the fast multipole method scales linearly to the total number N of beads for the long-chain molecule when N >~ O (103) while other numerical algorithms scale to O (N2) (at least). Y.-N. Young acknowledges support from NSF under Grant DMS-1222550.

  9. Polynomial interpretation of multipole vectors

    NASA Astrophysics Data System (ADS)

    Katz, Gabriel; Weeks, Jeff

    2004-09-01

    Copi, Huterer, Starkman, and Schwarz introduced multipole vectors in a tensor context and used them to demonstrate that the first-year Wilkinson microwave anisotropy probe (WMAP) quadrupole and octopole planes align at roughly the 99.9% confidence level. In the present article, the language of polynomials provides a new and independent derivation of the multipole vector concept. Bézout’s theorem supports an elementary proof that the multipole vectors exist and are unique (up to rescaling). The constructive nature of the proof leads to a fast, practical algorithm for computing multipole vectors. We illustrate the algorithm by finding exact solutions for some simple toy examples and numerical solutions for the first-year WMAP quadrupole and octopole. We then apply our algorithm to Monte Carlo skies to independently reconfirm the estimate that the WMAP quadrupole and octopole planes align at the 99.9% level.

  10. Multiple multipole program computation of periodic structures

    NASA Astrophysics Data System (ADS)

    Hafner, Ch.

    1995-05-01

    The three-dimensional multiple multipole program (MMP) code based on the generalized multipole technique is outlined for readers who are not familiar with its concepts. This code was originally designed for computational electromagnetics. Rayleigh expansions and periodic boundary conditions are two new features that make MMP computations of arbitrary periodic structures efficient and that at the same time allow us to take advantage of the benefits of other MMP features, including surface impedance boundary conditions and a variety of available basis functions for modeling the electromagnetic field. The application of three-dimensional MMP to a simple grating of highly conducting wires with rectangular cross sections illustrates the high accuracy and the fast convergence of the method as well as the use of surface impedance boundary conditions. A more complicated biperiodic array of helical antennas demonstrates the application of thin-wire expansions in conjunction with regular MMP expansions. This model can be considered a simulation of a thin, anisotropic chiral slab with interesting characteristics.

  11. Fast wave evanescence in filamentary boundary plasmas

    SciTech Connect

    Myra, J. R.

    2014-02-15

    Radio frequency waves for heating and current drive of plasmas in tokamaks and other magnetic confinement devices must first traverse the scrape-off-layer (SOL) before they can be put to their intended use. The SOL plasma is strongly turbulent and intermittent in space and time. These turbulent properties of the SOL, which are not routinely taken into account in wave propagation codes, can have an important effect on the coupling of waves through an evanescent SOL or edge plasma region. The effective scale length for fast wave (FW) evanescence in the presence of short-scale field-aligned filamentary plasma turbulence is addressed in this paper. It is shown that although the FW wavelength or evanescent scale length is long compared with the dimensions of the turbulence, the FW does not simply average over the turbulent density; rather, the average is over the exponentiation rate. Implications for practical situations are discussed.

  12. Development of hardware accelerator for molecular dynamics simulations: a computation board that calculates nonbonded interactions in cooperation with fast multipole method.

    PubMed

    Amisaki, Takashi; Toyoda, Shinjiro; Miyagawa, Hiroh; Kitamura, Kunihiro

    2003-04-15

    Evaluation of long-range Coulombic interactions still represents a bottleneck in the molecular dynamics (MD) simulations of biological macromolecules. Despite the advent of sophisticated fast algorithms, such as the fast multipole method (FMM), accurate simulations still demand a great amount of computation time due to the accuracy/speed trade-off inherently involved in these algorithms. Unless higher order multipole expansions, which are extremely expensive to evaluate, are employed, a large amount of the execution time is still spent in directly calculating particle-particle interactions within the nearby region of each particle. To reduce this execution time for pair interactions, we developed a computation unit (board), called MD-Engine II, that calculates nonbonded pairwise interactions using a specially designed hardware. Four custom arithmetic-processors and a processor for memory manipulation ("particle processor") are mounted on the computation board. The arithmetic processors are responsible for calculation of the pair interactions. The particle processor plays a central role in realizing efficient cooperation with the FMM. The results of a series of 50-ps MD simulations of a protein-water system (50,764 atoms) indicated that a more stringent setting of accuracy in FMM computation, compared with those previously reported, was required for accurate simulations over long time periods. Such a level of accuracy was efficiently achieved using the cooperative calculations of the FMM and MD-Engine II. On an Alpha 21264 PC, the FMM computation at a moderate but tolerable level of accuracy was accelerated by a factor of 16.0 using three boards. At a high level of accuracy, the cooperative calculation achieved a 22.7-fold acceleration over the corresponding conventional FMM calculation. In the cooperative calculations of the FMM and MD-Engine II, it was possible to achieve more accurate computation at a comparable execution time by incorporating larger nearby

  13. Optimal construction of a fast and accurate polarisable water potential based on multipole moments trained by machine learning.

    PubMed

    Handley, Chris M; Hawe, Glenn I; Kell, Douglas B; Popelier, Paul L A

    2009-08-14

    To model liquid water correctly and to reproduce its structural, dynamic and thermodynamic properties warrants models that account accurately for electronic polarisation. We have previously demonstrated that polarisation can be represented by fluctuating multipole moments (derived by quantum chemical topology) predicted by multilayer perceptrons (MLPs) in response to the local structure of the cluster. Here we further develop this methodology of modeling polarisation enabling control of the balance between accuracy, in terms of errors in Coulomb energy and computing time. First, the predictive ability and speed of two additional machine learning methods, radial basis function neural networks (RBFNN) and Kriging, are assessed with respect to our previous MLP based polarisable water models, for water dimer, trimer, tetramer, pentamer and hexamer clusters. Compared to MLPs, we find that RBFNNs achieve a 14-26% decrease in median Coulomb energy error, with a factor 2.5-3 slowdown in speed, whilst Kriging achieves a 40-67% decrease in median energy error with a 6.5-8.5 factor slowdown in speed. Then, these compromises between accuracy and speed are improved upon through a simple multi-objective optimisation to identify Pareto-optimal combinations. Compared to the Kriging results, combinations are found that are no less accurate (at the 90th energy error percentile), yet are 58% faster for the dimer, and 26% faster for the pentamer.

  14. Fast-sausage oscillations in coronal loops with smooth boundary

    NASA Astrophysics Data System (ADS)

    Lopin, I.; Nagorny, I.

    2014-12-01

    Aims: The effect of the transition layer (shell) in nonuniform coronal loops with a continuous radial density profile on the properties of fast-sausage modes are studied analytically and numerically. Methods: We modeled the coronal waveguide as a structured tube consisting of a cord and a transition region (shell) embedded within a magnetic uniform environment. The derived general dispersion relation was investigated analytically and numerically in the context of frequency, cut-off wave number, and the damping rate of fast-sausage oscillations for various values of loop parameters. Results: The frequency of the global fast-sausage mode in the loops with a diffuse (or smooth) boundary is determined mainly by the external Alfvén speed and longitudinal wave number. The damping rate of such a mode can be relatively low. The model of coronal loop with diffuse boundary can support a comparatively low-frequency, global fast-sausage mode of detectable quality without involving extremely low values of the density contrast. The effect of thin transition layer (corresponds to the loops with steep boundary) is negligible and produces small reductions of oscillation frequency and relative damping rate in comparison with the case of step-function density profile. Seismological application of obtained results gives the estimated Alfvén speed outside the flaring loop about 3.25 Mm/s.

  15. Fast and Computationally Efficient Boundary Detection Technique for Medical Images

    NASA Astrophysics Data System (ADS)

    Das, Arpita; Goswami, Partha; Sen, Susanta

    2011-03-01

    Detection of edge is a fundamental procedure of image processing. Many edge detection algorithms have been developed based on computation of the intensity gradient. In medical images, boundaries of the objects are vague for gradual change of intensities. Therefore need exists to develop a computationally efficient and accurate edge detection approach. We have presented such algorithm using modified global threshold technique. In our work, the boundaries are highlighted from the background by selecting a threshold (T) that separates object and background. In the image, where object to background or vice-verse transition occurs, pixel intensity either rises greater or equal to T (background to object transition) or falls less than T (object to background). We have marked these transition regions as object boundary and enhanced the corresponding intensity. The value of T may be specified heuristically or by following specific algorithm. Conventional global threshold algorithm computes the value of T automatically. But this approach is not computationally efficient and required a large memory. In this study, we have proposed a parameter for which computation of T is very easy and fast. We have also proved that a fixed size memory [ 256 × 4 Byte] is enough to compute this algorithm.

  16. Enhancement of the computational efficiency of the near-to-far field mapping in the finite-difference method and ray-by-ray method with the fast multi-pole plane wave expansion approach

    NASA Astrophysics Data System (ADS)

    Tang, Guanglin; Yang, Ping; Sun, Bingqiang; Panetta, R. Lee; Kattawar, George W.

    2016-06-01

    The finite-difference time-domain (FDTD) and ray-by-ray (RBR) methods are techniques used to calculate the optical properties of nonspherical particles for small-to-moderate and large size parameters, respectively. The former is a rigorous method, and the latter is an approximate geometric-physical optics-hybrid method that takes advantage of both high efficiency of the geometric optics approach and high accuracy of the physical optics approach. In these two methods, the far field is calculated by mapping the near field to the far field with consideration of the phase interference. The mapping computation is more time-consuming than the near-field simulation when multiple scattering directions are involved, particularly in the case of the RBR implementation. To overcome the difficulty, in this study the fast multi-pole method is applied to both FDTD and RBR towards accelerating the far-field calculation, without degrading the accuracy of the simulation results.

  17. Theory and application of plane elliptic multipoles for static magnetic fields

    NASA Astrophysics Data System (ADS)

    Schnizer, P.; Schnizer, B.; Akishin, P.; Fischer, E.

    2009-08-01

    Standard textbooks on beam dynamics study the impact of the magnetic field quality on the beam using field representations based on circular multipoles. Iron dominated magnets, however, typically provide a good field region with a non-circular aspect ratio (i.e. an ellipse whose axis a is significantly larger than the axis b); a boundary not ideal for circular multipoles. The development of superconductors, originally driven to reach fields above ≈2 T, allows using them today in completely different fields: iron dominated DC magnets, to save the energy for coil powering as well as repeatedly fast ramped magnets. The cold mass of magnets, housed in common cryostats sectors, makes it tedious to implement additional correction magnets at a later stage, as it requires to warm up the sections where the magnets should be installed as well as unwelding the cryostat. Thus the field homogeneity of the magnets and its influence on the beam has to be thoroughly studied during the project planning phase. Elliptic multipoles, a new type of field expansion for static or quasi-static (here magnetic) two-dimensional fields, are proposed and investigated, which are particular solutions of the potential equation in plane elliptic coordinates obtained by the method of separation. The proper subsets of these particular solutions appropriate for representing static real or complex fields regular within an ellipse are identified. Formulas are given for computing expansion coefficients from given fields. The advantage of this new approach is that the expansion is valid, convergent and accurate in a larger domain, namely in an ellipse circumscribed to the reference circle of the common circular multipoles in polar coordinates. Formulas are derived for calculating the circular multipoles from the elliptical ones. The effectiveness of the approach was tested on many different magnet designs and is illustrated here on the dipole design chosen for the core synchrotron (SIS 100) of the FAIR

  18. Modeling and Optimizing RF Multipole Ion Traps

    NASA Astrophysics Data System (ADS)

    Fanghaenel, Sven; Asvany, Oskar; Schlemmer, Stephan

    2016-06-01

    Radio frequency (rf) ion traps are very well suited for spectroscopy experiments thanks to the long time storage of the species of interest in a well defined volume. The electrical potential of the ion trap is determined by the geometry of its electrodes and the applied voltages. In order to understand the behavior of trapped ions in realistic multipole traps it is necessary to characterize these trapping potentials. Commercial programs like SIMION or COMSOL, employing the finite difference and/or finite element method, are often used to model the electrical fields of the trap in order to design traps for various purposes, e.g. introducing light from a laser into the trap volume. For a controlled trapping of ions, e.g. for low temperature trapping, the time dependent electrical fields need to be known to high accuracy especially at the minimum of the effective (mechanical) potential. The commercial programs are not optimized for these applications and suffer from a number of limitations. Therefore, in our approach the boundary element method (BEM) has been employed in home-built programs to generate numerical solutions of real trap geometries, e.g. from CAD drawings. In addition the resulting fields are described by appropriate multipole expansions. As a consequence, the quality of a trap can be characterized by a small set of multipole parameters which are used to optimize the trap design. In this presentation a few example calculations will be discussed. In particular the accuracy of the method and the benefits of describing the trapping potentials via multipole expansions will be illustrated. As one important application heating effects of cold ions arising from non-ideal multipole fields can now be understood as a consequence of imperfect field configurations.

  19. Superconducting multipole corrector magnet

    SciTech Connect

    Kashikhin, Vladimir; /Fermilab

    2004-10-01

    A novel concept of superconducting multipole corrector magnet is discussed. This magnet assembled from 12 identical racetrack type coils and can generate any combination of dipole, quadrupole and sextupole magnetic fields. The coil groups are powered from separate power supplies. In the case of normal dipole, quadrupole and sextupole fields the total field is symmetrical relatively the magnet median plane and there are only five powered separately coil groups. This type multipole corrector magnet was proposed for BTeV, Fermilab project and has following advantages: universal configuration, simple manufacturing and high mechanical stability. The results of magnetic design including the field quality and magnetic forces in comparison with known shell type superconducting correctors are presented.

  20. High beta multipoles

    SciTech Connect

    Prager, S C

    1982-05-01

    Multipoles are being employed as devices to study fusion issues and plasma phenomena at high values of beta (plasma pressure/magnetic pressure) in a controlled manner. Due to their large volume, low magnetic field (low synchrotron radiation) region, they are also under consideration as potential steady state advanced fuel (low neutron yield) reactors. Present experiments are investigating neoclassical (bootstrap and Pfirsch-Schlueter) currents and plasma stability at extremely high beta.

  1. HPAM: Hirshfeld Partitioned Atomic Multipoles.

    PubMed

    Elking, Dennis M; Perera, Lalith; Pedersen, Lee G

    2012-02-01

    An implementation of the Hirshfeld (HD) and Hirshfeld-Iterated (HD-I) atomic charge density partitioning schemes is described. Atomic charges and atomic multipoles are calculated from the HD and HD-I atomic charge densities for arbitrary atomic multipole rank l(max) on molecules of arbitrary shape and size. The HD and HD-I atomic charges/multipoles are tested by comparing molecular multipole moments and the electrostatic potential (ESP) surrounding a molecule with their reference ab initio values. In general, the HD-I atomic charges/multipoles are found to better reproduce ab initio electrostatic properties over HD atomic charges/multipoles. A systematic increase in precision for reproducing ab initio electrostatic properties is demonstrated by increasing the atomic multipole rank from l(max) = 0 (atomic charges) to l(max) = 4 (atomic hexadecapoles). Both HD and HD-I atomic multipoles up to rank l(max) are shown to exactly reproduce ab initio molecular multipole moments of rank L for L ≤ l(max). In addition, molecular dipole moments calculated by HD, HD-I, and ChelpG atomic charges only (l(max) = 0) are compared with reference ab initio values. Significant errors in reproducing ab initio molecular dipole moments are found if only HD or HD-I atomic charges used.

  2. Multipole nonlinearity of metamaterials

    SciTech Connect

    Petschulat, J.; Chipouline, A.; Tuennermann, A.; Pertsch, T.; Menzel, C.; Rockstuhl, C.; Lederer, F.

    2009-12-15

    We report on the linear and nonlinear optical response of metamaterials evoked by first- and second-order multipoles. The analytical ground on which our approach is based permits for new insights into the functionality of metamaterials. For the sake of clarity we focus here on a key geometry, namely, the split-ring resonator, although the introduced formalism can be applied to arbitrary structures. We derive the equations that describe linear and nonlinear light propagation where special emphasis is put on second-harmonic generation. This contribution basically aims at stretching versatile and existing concepts to describe light propagation in nonlinear media toward the realm of metamaterials.

  3. Multipole Structure and Coordinate Systems

    ERIC Educational Resources Information Center

    Burko, Lior M.

    2007-01-01

    Multipole expansions depend on the coordinate system, so that coefficients of multipole moments can be set equal to zero by an appropriate choice of coordinates. Therefore, it is meaningless to say that a physical system has a nonvanishing quadrupole moment, say, without specifying which coordinate system is used. (Except if this moment is the…

  4. Linear-scaling multipole-accelerated Gaussian and finite-element Coulomb method

    NASA Astrophysics Data System (ADS)

    Watson, Mark A.; Kurashige, Yuki; Nakajima, Takahito; Hirao, Kimihiko

    2008-02-01

    A linear-scaling implementation of the Gaussian and finite-element Coulomb (GFC) method is presented for the rapid computation of the electronic Coulomb potential. The current work utilizes the fast multipole method (FMM) for the evaluation of the Poisson equation boundary condition. The FMM affords significant savings for small- and medium-sized systems and overcomes the bottleneck in the GFC method for very large systems. Compared to an exact analytical treatment of the boundary, more than 100-fold speedups are observed for systems with more than 1000 basis functions without any significant loss of accuracy. We present CPU times to demonstrate the effectiveness of the linear-scaling GFC method for both one-dimensional polyalanine chains and the challenging case of three-dimensional diamond fragments.

  5. Interactive retinal vessel centreline extraction and boundary delineation using anisotropic fast marching and intensities consistency.

    PubMed

    Da Chen; Cohen, Laurent D

    2015-08-01

    In this paper, we propose a new interactive retinal vessels extraction method with anisotropic fast marching (AFM) based on the observation that one vessel may have the property of local intensities consistency. Our goal is to extract both the centrelines and boundaries between two given points. The proposed method consists of two stages: the first stage aims to finding the vessel centrelines using AFM and local intensities consistency roughly, while the second stage is to refine the centrelines from the previous stage using constrained Riemannian metric based AFM, and get the boundaries of the vessels simultaneously. Experiments show that results of our method outperform the classical minimal path method [1]. PMID:26737257

  6. Orientation measurement based on magnetic inductance by the extended distributed multi-pole model.

    PubMed

    Wu, Fang; Moon, Seung Ki; Son, Hungsun

    2014-06-27

    This paper presents a novel method to calculate magnetic inductance with a fast-computing magnetic field model referred to as the extended distributed multi-pole (eDMP) model. The concept of mutual inductance has been widely applied for position/orientation tracking systems and applications, yet it is still challenging due to the high demands in robust modeling and efficient computation in real-time applications. Recently, numerical methods have been utilized in design and analysis of magnetic fields, but this often requires heavy computation and its accuracy relies on geometric modeling and meshing that limit its usage. On the other hand, an analytical method provides simple and fast-computing solutions but is also flawed due to its difficulties in handling realistic and complex geometries such as complicated designs and boundary conditions, etc. In this paper, the extended distributed multi-pole model (eDMP) is developed to characterize a time-varying magnetic field based on an existing DMP model analyzing static magnetic fields. The method has been further exploited to compute the mutual inductance between coils at arbitrary locations and orientations. Simulation and experimental results of various configurations of the coils are presented. Comparison with the previously published data shows not only good performance in accuracy, but also effectiveness in computation.

  7. Orientation Measurement Based on Magnetic Inductance by the Extended Distributed Multi-Pole Model

    PubMed Central

    Wu, Fang; Moon, Seung Ki; Son, Hungsun

    2014-01-01

    This paper presents a novel method to calculate magnetic inductance with a fast-computing magnetic field model referred to as the extended distributed multi-pole (eDMP) model. The concept of mutual inductance has been widely applied for position/orientation tracking systems and applications, yet it is still challenging due to the high demands in robust modeling and efficient computation in real-time applications. Recently, numerical methods have been utilized in design and analysis of magnetic fields, but this often requires heavy computation and its accuracy relies on geometric modeling and meshing that limit its usage. On the other hand, an analytical method provides simple and fast-computing solutions but is also flawed due to its difficulties in handling realistic and complex geometries such as complicated designs and boundary conditions, etc. In this paper, the extended distributed multi-pole model (eDMP) is developed to characterize a time-varying magnetic field based on an existing DMP model analyzing static magnetic fields. The method has been further exploited to compute the mutual inductance between coils at arbitrary locations and orientations. Simulation and experimental results of various configurations of the coils are presented. Comparison with the previously published data shows not only good performance in accuracy, but also effectiveness in computation. PMID:24977389

  8. Multipole expansions and intense fields

    NASA Astrophysics Data System (ADS)

    Reiss, Howard R.

    1984-02-01

    In the context of two-body bound-state systems subjected to a plane-wave electromagnetic field, it is shown that high field intensity introduces a distinction between long-wavelength approximation and electric dipole approximation. This distinction is gauge dependent, since it is absent in Coulomb gauge, whereas in "completed" gauges of Göppert-Mayer type the presence of high field intensity makes electric quadrupole and magnetic dipole terms of importance equal to electric dipole at long wavelengths. Another consequence of high field intensity is that multipole expansions lose their utility in view of the equivalent importance of a number of low-order multipole terms and the appearance of large-magnitude terms which defy multipole categorization. This loss of the multipole expansion is gauge independent. Also gauge independent is another related consequence of high field intensity, which is the intimate coupling of center-of-mass and relative coordinate motions in a two-body system.

  9. A fast region-based active contour model for boundary detection of echocardiographic images.

    PubMed

    Saini, Kalpana; Dewal, M L; Rohit, Manojkumar

    2012-04-01

    This paper presents the boundary detection of atrium and ventricle in echocardiographic images. In case of mitral regurgitation, atrium and ventricle may get dilated. To examine this, doctors draw the boundary manually. Here the aim of this paper is to evolve the automatic boundary detection for carrying out segmentation of echocardiography images. Active contour method is selected for this purpose. There is an enhancement of Chan-Vese paper on active contours without edges. Our algorithm is based on Chan-Vese paper active contours without edges, but it is much faster than Chan-Vese model. Here we have developed a method by which it is possible to detect much faster the echocardiographic boundaries. The method is based on the region information of an image. The region-based force provides a global segmentation with variational flow robust to noise. Implementation is based on level set theory so it easy to deal with topological changes. In this paper, Newton-Raphson method is used which makes possible the fast boundary detection.

  10. Boundary-equilibrium bifurcations in piecewise-smooth slow-fast systems.

    PubMed

    Kowalczyk, P; Glendinning, P

    2011-06-01

    In this paper we study the qualitative dynamics of piecewise-smooth slow-fast systems (singularly perturbed systems) which are everywhere continuous. We consider phase space topology of systems with one-dimensional slow dynamics and one-dimensional fast dynamics. The slow manifold of the reduced system is formed by a piecewise-continuous curve, and the differentiability is lost across the switching surface. In the full system the slow manifold is no longer continuous, and there is an O(ɛ) discontinuity across the switching manifold, but the discontinuity cannot qualitatively alter system dynamics. Revealed phase space topology is used to unfold qualitative dynamics of planar slow-fast systems with an equilibrium point on the switching surface. In this case the local dynamics corresponds to so-called boundary-equilibrium bifurcations, and four qualitative phase portraits are uncovered. Our results are then used to investigate the dynamics of a box model of a thermohaline circulation, and the presence of a boundary-equilibrium bifurcation of a fold type is shown.

  11. Boundary-equilibrium bifurcations in piecewise-smooth slow-fast systems.

    PubMed

    Kowalczyk, P; Glendinning, P

    2011-06-01

    In this paper we study the qualitative dynamics of piecewise-smooth slow-fast systems (singularly perturbed systems) which are everywhere continuous. We consider phase space topology of systems with one-dimensional slow dynamics and one-dimensional fast dynamics. The slow manifold of the reduced system is formed by a piecewise-continuous curve, and the differentiability is lost across the switching surface. In the full system the slow manifold is no longer continuous, and there is an O(ɛ) discontinuity across the switching manifold, but the discontinuity cannot qualitatively alter system dynamics. Revealed phase space topology is used to unfold qualitative dynamics of planar slow-fast systems with an equilibrium point on the switching surface. In this case the local dynamics corresponds to so-called boundary-equilibrium bifurcations, and four qualitative phase portraits are uncovered. Our results are then used to investigate the dynamics of a box model of a thermohaline circulation, and the presence of a boundary-equilibrium bifurcation of a fold type is shown. PMID:21721768

  12. Fast IIR isotropic 2-D complex Gabor filters with boundary initialization.

    PubMed

    Bernardino, Alexandre; Santos-Victor, José

    2006-11-01

    Gabor filters are widely applied in image analysis and computer vision applications. This paper describes a fast algorithm for isotropic complex Gabor filtering that outperforms existing implementations. The main computational improvement arises from the decomposition of Gabor filtering into more efficient Gaussian filtering and sinusoidal modulations. Appropriate filter initial conditions are derived to avoid boundary transients, without requiring explicit image border extension. Our proposal reduces up to 39% the number of required operations with respect to state-of-the-art approaches. A full C++ implementation of the method is publicly available.

  13. Radiation reaction of multipole moments

    SciTech Connect

    Kazinski, P. O.

    2007-08-15

    A Poincare-invariant description is proposed for the effective dynamics of a localized system of charged particles in classical electrodynamics in terms of the intrinsic multipole moments of the system. A relativistic-invariant definition for the intrinsic multipole moments of a system of charged particles is given. A new generally covariant action functional for a relativistic perfect fluid is proposed. In the case of relativistic charged dust, it is proven that the description of the problem of radiation reaction of multipole moments by the model of particles is equivalent to the description of this problem by a hydrodynamic model. An effective model is obtained for a pointlike neutral system of charged particles that possesses an intrinsic dipole moment, and the free dynamics of this system is described. The bound momentum of a point dipole is found.

  14. Radiation reaction of multipole moments

    NASA Astrophysics Data System (ADS)

    Kazinski, P. O.

    2007-08-01

    A Poincaré-invariant description is proposed for the effective dynamics of a localized system of charged particles in classical electrodynamics in terms of the intrinsic multipole moments of the system. A relativistic-invariant definition for the intrinsic multipole moments of a system of charged particles is given. A new generally covariant action functional for a relativistic perfect fluid is proposed. In the case of relativistic charged dust, it is proven that the description of the problem of radiation reaction of multipole moments by the model of particles is equivalent to the description of this problem by a hydrodynamic model. An effective model is obtained for a pointlike neutral system of charged particles that possesses an intrinsic dipole moment, and the free dynamics of this system is described. The bound momentum of a point dipole is found.

  15. Superconductivity in magnetic multipole states

    NASA Astrophysics Data System (ADS)

    Sumita, Shuntaro; Yanase, Youichi

    2016-06-01

    Stimulated by recent studies of superconductivity and magnetism with local and global broken inversion symmetry, we investigate the superconductivity in magnetic multipole states in locally noncentrosymmetric metals. We consider a one-dimensional zigzag chain with sublattice-dependent antisymmetric spin-orbit coupling and suppose three magnetic multipole orders: monopole order, dipole order, and quadrupole order. It is demonstrated that the Bardeen-Cooper-Schrieffer state, the pair-density wave (PDW) state, and the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state are stabilized by these multipole orders, respectively. We show that the PDW state is a topological superconducting state specified by the nontrivial Z2 number and winding number. The origin of the FFLO state without macroscopic magnetic moment is attributed to the asymmetric band structure induced by the magnetic quadrupole order and spin-orbit coupling.

  16. Multipole expansion method for supernova neutrino oscillations

    SciTech Connect

    Duan, Huaiyu; Shalgar, Shashank E-mail: shashankshalgar@unm.edu

    2014-10-01

    We demonstrate a multipole expansion method to calculate collective neutrino oscillations in supernovae using the neutrino bulb model. We show that it is much more efficient to solve multi-angle neutrino oscillations in multipole basis than in angle basis. The multipole expansion method also provides interesting insights into multi-angle calculations that were accomplished previously in angle basis.

  17. HPAM: Hirshfeld partitioned atomic multipoles

    NASA Astrophysics Data System (ADS)

    Elking, Dennis M.; Perera, Lalith; Pedersen, Lee G.

    2012-02-01

    An implementation of the Hirshfeld (HD) and Hirshfeld-Iterated (HD-I) atomic charge density partitioning schemes is described. Atomic charges and atomic multipoles are calculated from the HD and HD-I atomic charge densities for arbitrary atomic multipole rank l on molecules of arbitrary shape and size. The HD and HD-I atomic charges/multipoles are tested by comparing molecular multipole moments and the electrostatic potential (ESP) surrounding a molecule with their reference ab initio values. In general, the HD-I atomic charges/multipoles are found to better reproduce ab initio electrostatic properties over HD atomic charges/multipoles. A systematic increase in precision for reproducing ab initio electrostatic properties is demonstrated by increasing the atomic multipole rank from l=0 (atomic charges) to l=4 (atomic hexadecapoles). Both HD and HD-I atomic multipoles up to rank l are shown to exactly reproduce ab initio molecular multipole moments of rank L for L⩽l. In addition, molecular dipole moments calculated by HD, HD-I, and ChelpG atomic charges only ( l=0) are compared with reference ab initio values. Significant errors in reproducing ab initio molecular dipole moments are found if only HD or HD-I atomic charges used. Program summaryProgram title: HPAM Catalogue identifier: AEKP_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKP_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License v2 No. of lines in distributed program, including test data, etc.: 500 809 No. of bytes in distributed program, including test data, etc.: 13 424 494 Distribution format: tar.gz Programming language: C Computer: Any Operating system: Linux RAM: Typically, a few hundred megabytes Classification: 16.13 External routines: The program requires 'formatted checkpoint' files obtained from the Gaussian 03 or Gaussian 09 quantum chemistry program. Nature of problem: An ab initio

  18. A fast numerical solution of scattering by a cylinder: Spectral method for the boundary integral equations

    NASA Technical Reports Server (NTRS)

    Hu, Fang Q.

    1994-01-01

    It is known that the exact analytic solutions of wave scattering by a circular cylinder, when they exist, are not in a closed form but in infinite series which converges slowly for high frequency waves. In this paper, we present a fast number solution for the scattering problem in which the boundary integral equations, reformulated from the Helmholtz equation, are solved using a Fourier spectral method. It is shown that the special geometry considered here allows the implementation of the spectral method to be simple and very efficient. The present method differs from previous approaches in that the singularities of the integral kernels are removed and dealt with accurately. The proposed method preserves the spectral accuracy and is shown to have an exponential rate of convergence. Aspects of efficient implementation using FFT are discussed. Moreover, the boundary integral equations of combined single and double-layer representation are used in the present paper. This ensures the uniqueness of the numerical solution for the scattering problem at all frequencies. Although a strongly singular kernel is encountered for the Neumann boundary conditions, we show that the hypersingularity can be handled easily in the spectral method. Numerical examples that demonstrate the validity of the method are also presented.

  19. Boundary identification in EBSD data with a generalization of fast multiscale clustering.

    PubMed

    McMahon, Cullen; Soe, Brian; Loeb, Andrew; Vemulkar, Ayyappa; Ferry, Michael; Bassman, Lori

    2013-10-01

    Electron backscatter diffraction (EBSD) studies of cellular or subgrain microstructures present problems beyond those in the study of coarse-grained polycrystalline aggregates. In particular, identification of boundaries delineating some subgrain structures, such as microbands, cannot be accomplished simply with pixel-to-pixel misorientation thresholding because many of the boundaries are gradual transitions in crystallographic orientation. Fast multiscale clustering (FMC) is an established data segmentation technique that is combined here with quaternion representation of orientation to segment EBSD data with gradual transitions. This implementation of FMC addresses a common problem with segmentation algorithms, handling data sets with both high and low magnitude boundaries, by using a novel distance function that is a modification of Mahalanobis distance. It accommodates data representations, such as quaternions, whose features are not necessarily linearly correlated but have known distance functions. To maintain the linear run time of FMC with such data, the method requires a novel variance update rule. Although FMC was originally an algorithm for two-dimensional data segmentation, it can be generalized to analyze three-dimensional data sets. As examples, several segmentations of quaternion EBSD data sets are presented. PMID:23751208

  20. Development of Fast Algorithms Using Recursion, Nesting and Iterations for Computational Electromagnetics

    NASA Technical Reports Server (NTRS)

    Chew, W. C.; Song, J. M.; Lu, C. C.; Weedon, W. H.

    1995-01-01

    In the first phase of our work, we have concentrated on laying the foundation to develop fast algorithms, including the use of recursive structure like the recursive aggregate interaction matrix algorithm (RAIMA), the nested equivalence principle algorithm (NEPAL), the ray-propagation fast multipole algorithm (RPFMA), and the multi-level fast multipole algorithm (MLFMA). We have also investigated the use of curvilinear patches to build a basic method of moments code where these acceleration techniques can be used later. In the second phase, which is mainly reported on here, we have concentrated on implementing three-dimensional NEPAL on a massively parallel machine, the Connection Machine CM-5, and have been able to obtain some 3D scattering results. In order to understand the parallelization of codes on the Connection Machine, we have also studied the parallelization of 3D finite-difference time-domain (FDTD) code with PML material absorbing boundary condition (ABC). We found that simple algorithms like the FDTD with material ABC can be parallelized very well allowing us to solve within a minute a problem of over a million nodes. In addition, we have studied the use of the fast multipole method and the ray-propagation fast multipole algorithm to expedite matrix-vector multiplication in a conjugate-gradient solution to integral equations of scattering. We find that these methods are faster than LU decomposition for one incident angle, but are slower than LU decomposition when many incident angles are needed as in the monostatic RCS calculations.

  1. Boundary-artifact-free phase retrieval with the transport of intensity equation: fast solution with use of discrete cosine transform.

    PubMed

    Zuo, Chao; Chen, Qian; Asundi, Anand

    2014-04-21

    The transport of intensity equation (TIE) is a two-dimensional second order elliptic partial differential equation that must be solved under appropriate boundary conditions. However, the boundary conditions are difficult to obtain in practice. The fast Fourier transform (FFT) based TIE solutions are widely adopted for its speed and simplicity. However, it implies periodic boundary conditions, which lead to significant boundary artifacts when the imposed assumption is violated. In this work, TIE phase retrieval is considered as an inhomogeneous Neumann boundary value problem with the boundary values experimentally measurable around a hard-edged aperture, without any assumption or prior knowledge about the test object and the setup. The analytic integral solution via Green's function is given, as well as a fast numerical implementation for a rectangular region using the discrete cosine transform. This approach is applicable for the case of non-uniform intensity distribution with no extra effort to extract the boundary values from the intensity derivative signals. Its efficiency and robustness have been verified by several numerical simulations even when the objects are complex and the intensity measurements are noisy. This method promises to be an effective fast TIE solver for quantitative phase imaging applications. PMID:24787811

  2. A fast boundary element method for the scattering analysis of high-intensity focused ultrasound.

    PubMed

    van 't Wout, Elwin; Gélat, Pierre; Betcke, Timo; Arridge, Simon

    2015-11-01

    High-intensity focused ultrasound (HIFU) techniques are promising modalities for the non-invasive treatment of cancer. For HIFU therapies of, e.g., liver cancer, one of the main challenges is the accurate focusing of the acoustic field inside a ribcage. Computational methods can play an important role in the patient-specific planning of these transcostal HIFU treatments. This requires the accurate modeling of acoustic scattering at ribcages. The use of a boundary element method (BEM) is an effective approach for this purpose because only the boundaries of the ribs have to be discretized instead of the standard approach to model the entire volume around the ribcage. This paper combines fast algorithms that improve the efficiency of BEM specifically for the high-frequency range necessary for transcostal HIFU applications. That is, a Galerkin discretized Burton-Miller formulation is used in combination with preconditioning and matrix compression techniques. In particular, quick convergence is achieved with the operator preconditioner that has been designed with on-surface radiation conditions for the high-frequency approximation of the Neumann-to-Dirichlet map. Realistic computations of acoustic scattering at 1 MHz on a human ribcage model demonstrate the effectiveness of this dedicated BEM algorithm for HIFU scattering analysis. PMID:26627749

  3. Polarizable atomic multipole X-ray refinement: application to peptide crystals

    SciTech Connect

    Schnieders, Michael J.; Fenn, Timothy D.; Pande, Vijay S.; Brunger, Axel T.

    2009-09-01

    A method to accelerate the computation of structure factors from an electron density described by anisotropic and aspherical atomic form factors via fast Fourier transformation is described for the first time. Recent advances in computational chemistry have produced force fields based on a polarizable atomic multipole description of biomolecular electrostatics. In this work, the Atomic Multipole Optimized Energetics for Biomolecular Applications (AMOEBA) force field is applied to restrained refinement of molecular models against X-ray diffraction data from peptide crystals. A new formalism is also developed to compute anisotropic and aspherical structure factors using fast Fourier transformation (FFT) of Cartesian Gaussian multipoles. Relative to direct summation, the FFT approach can give a speedup of more than an order of magnitude for aspherical refinement of ultrahigh-resolution data sets. Use of a sublattice formalism makes the method highly parallelizable. Application of the Cartesian Gaussian multipole scattering model to a series of four peptide crystals using multipole coefficients from the AMOEBA force field demonstrates that AMOEBA systematically underestimates electron density at bond centers. For the trigonal and tetrahedral bonding geometries common in organic chemistry, an atomic multipole expansion through hexadecapole order is required to explain bond electron density. Alternatively, the addition of interatomic scattering (IAS) sites to the AMOEBA-based density captured bonding effects with fewer parameters. For a series of four peptide crystals, the AMOEBA–IAS model lowered R{sub free} by 20–40% relative to the original spherically symmetric scattering model.

  4. An exterior Poisson solver using fast direct methods and boundary integral equations with applications to nonlinear potential flow

    NASA Technical Reports Server (NTRS)

    Young, D. P.; Woo, A. C.; Bussoletti, J. E.; Johnson, F. T.

    1986-01-01

    A general method is developed combining fast direct methods and boundary integral equation methods to solve Poisson's equation on irregular exterior regions. The method requires O(N log N) operations where N is the number of grid points. Error estimates are given that hold for regions with corners and other boundary irregularities. Computational results are given in the context of computational aerodynamics for a two-dimensional lifting airfoil. Solutions of boundary integral equations for lifting and nonlifting aerodynamic configurations using preconditioned conjugate gradient are examined for varying degrees of thinness.

  5. Hybrid Finite Element-Fast Spectral Domain Multilayer Boundary Integral Modeling of Doubly Periodic Structures

    SciTech Connect

    T.F. Eibert; J.L. Volakis; Y.E. Erdemli

    2002-03-03

    Hybrid finite element (FE)--boundary integral (BI) analysis of infinite periodic arrays is extended to include planar multilayered Green's functions. In this manner, a portion of the volumetric dielectric region can be modeled via the finite element method whereas uniform multilayered regions can be modeled using a multilayered Green's function. As such, thick uniform substrates can be modeled without loss of efficiency and accuracy. The multilayered Green's function is analytically computed in the spectral domain and the resulting BI matrix-vector products are evaluated via the fast spectral domain algorithm (FSDA). As a result, the computational cost of the matrix-vector products is kept at O(N). Furthermore, the number of Floquet modes in the expansion are kept very few by placing the BI surfaces within the computational unit cell. Examples of frequency selective surface (FSS) arrays are analyzed with this method to demonstrate the accuracy and capability of the approach. One example involves complicated multilayered substrates above and below an inhomogeneous filter element and the other is an optical ring-slot array on a substrate several hundred wavelengths in thickness. Comparisons with measurements are included.

  6. Atomic forces for geometry-dependent point multipole and gaussian multipole models.

    PubMed

    Elking, Dennis M; Perera, Lalith; Duke, Robert; Darden, Thomas; Pedersen, Lee G

    2010-11-30

    In standard treatments of atomic multipole models, interaction energies, total molecular forces, and total molecular torques are given for multipolar interactions between rigid molecules. However, if the molecules are assumed to be flexible, two additional multipolar atomic forces arise because of (1) the transfer of torque between neighboring atoms and (2) the dependence of multipole moment on internal geometry (bond lengths, bond angles, etc.) for geometry-dependent multipole models. In this study, atomic force expressions for geometry-dependent multipoles are presented for use in simulations of flexible molecules. The atomic forces are derived by first proposing a new general expression for Wigner function derivatives partial derivative D(m'm)(l)/partial derivative Omega. The force equations can be applied to electrostatic models based on atomic point multipoles or gaussian multipole charge density. Hydrogen-bonded dimers are used to test the intermolecular electrostatic energies and atomic forces calculated by geometry-dependent multipoles fit to the ab initio electrostatic potential. The electrostatic energies and forces are compared with their reference ab initio values. It is shown that both static and geometry-dependent multipole models are able to reproduce total molecular forces and torques with respect to ab initio, whereas geometry-dependent multipoles are needed to reproduce ab initio atomic forces. The expressions for atomic force can be used in simulations of flexible molecules with atomic multipoles. In addition, the results presented in this work should lead to further development of next generation force fields composed of geometry-dependent multipole models.

  7. Smooth Teeth: Why Multipoles Are Perfect Gears

    NASA Astrophysics Data System (ADS)

    Schönke, Johannes

    2015-12-01

    A type of gear is proposed based on the interaction of individual multipoles. The underlying principle relies on previously unknown continuous degenerate ground states for pairs of interacting multipoles which are free to rotate around specific axes. These special rotation axes, in turn, form a one-parameter family of possible configurations. This allows for the construction of magnetic bevel gears with any desired inclination angle between the in- and output axes. Further, the design of gear systems with more than two multipoles is possible and facilitates tailored applications. Ultimately, an analogy between multipoles and mechanical gears is revealed. In contrast to the mechanical case, the multipole "teeth" mesh smoothly. As an illustrative application, the example of a quadrupole-dipole interaction is then used to construct a 1 ∶2 gear ratio.

  8. A single-site multipole model for liquid water.

    PubMed

    Tran, Kelly N; Tan, Ming-Liang; Ichiye, Toshiko

    2016-07-21

    Accurate and efficient empirical potential energy models that describe the atomistic interactions between water molecules in the liquid phase are essential for computer simulations of many problems in physics, chemistry, and biology, especially when long length or time scales are important. However, while models with non-polarizable partial charges at four or five sites in a water molecule give remarkably good values for certain properties, deficiencies have been noted in other properties and increasing the number of sites decreases computational efficiency. An alternate approach is to utilize a multipole expansion of the electrostatic potential due to the molecular charge distribution, which is exact outside the charge distribution in the limits of infinite distances or infinite orders of multipoles while partial charges are a qualitative representation of electron density as point charges. Here, a single-site multipole model of water is presented, which is as fast computationally as three-site models but is also more accurate than four- and five-site models. The dipole, quadrupole, and octupole moments are from quantum mechanical-molecular mechanical calculations so that they account for the average polarization in the liquid phase, and represent both the in-plane and out-of-plane electrostatic potentials of a water molecule in the liquid phase. This model gives accurate thermodynamic, dynamic, and dielectric properties at 298 K and 1 atm, as well as good temperature and pressure dependence of these properties.

  9. A single-site multipole model for liquid water

    NASA Astrophysics Data System (ADS)

    Tran, Kelly N.; Tan, Ming-Liang; Ichiye, Toshiko

    2016-07-01

    Accurate and efficient empirical potential energy models that describe the atomistic interactions between water molecules in the liquid phase are essential for computer simulations of many problems in physics, chemistry, and biology, especially when long length or time scales are important. However, while models with non-polarizable partial charges at four or five sites in a water molecule give remarkably good values for certain properties, deficiencies have been noted in other properties and increasing the number of sites decreases computational efficiency. An alternate approach is to utilize a multipole expansion of the electrostatic potential due to the molecular charge distribution, which is exact outside the charge distribution in the limits of infinite distances or infinite orders of multipoles while partial charges are a qualitative representation of electron density as point charges. Here, a single-site multipole model of water is presented, which is as fast computationally as three-site models but is also more accurate than four- and five-site models. The dipole, quadrupole, and octupole moments are from quantum mechanical-molecular mechanical calculations so that they account for the average polarization in the liquid phase, and represent both the in-plane and out-of-plane electrostatic potentials of a water molecule in the liquid phase. This model gives accurate thermodynamic, dynamic, and dielectric properties at 298 K and 1 atm, as well as good temperature and pressure dependence of these properties.

  10. A single-site multipole model for liquid water.

    PubMed

    Tran, Kelly N; Tan, Ming-Liang; Ichiye, Toshiko

    2016-07-21

    Accurate and efficient empirical potential energy models that describe the atomistic interactions between water molecules in the liquid phase are essential for computer simulations of many problems in physics, chemistry, and biology, especially when long length or time scales are important. However, while models with non-polarizable partial charges at four or five sites in a water molecule give remarkably good values for certain properties, deficiencies have been noted in other properties and increasing the number of sites decreases computational efficiency. An alternate approach is to utilize a multipole expansion of the electrostatic potential due to the molecular charge distribution, which is exact outside the charge distribution in the limits of infinite distances or infinite orders of multipoles while partial charges are a qualitative representation of electron density as point charges. Here, a single-site multipole model of water is presented, which is as fast computationally as three-site models but is also more accurate than four- and five-site models. The dipole, quadrupole, and octupole moments are from quantum mechanical-molecular mechanical calculations so that they account for the average polarization in the liquid phase, and represent both the in-plane and out-of-plane electrostatic potentials of a water molecule in the liquid phase. This model gives accurate thermodynamic, dynamic, and dielectric properties at 298 K and 1 atm, as well as good temperature and pressure dependence of these properties. PMID:27448890

  11. Windowed multipole for cross section Doppler broadening

    NASA Astrophysics Data System (ADS)

    Josey, C.; Ducru, P.; Forget, B.; Smith, K.

    2016-02-01

    This paper presents an in-depth analysis on the accuracy and performance of the windowed multipole Doppler broadening method. The basic theory behind cross section data is described, along with the basic multipole formalism followed by the approximations leading to windowed multipole method and the algorithm used to efficiently evaluate Doppler broadened cross sections. The method is tested by simulating the BEAVRS benchmark with a windowed multipole library composed of 70 nuclides. Accuracy of the method is demonstrated on a single assembly case where total neutron production rates and 238U capture rates compare within 0.1% to ACE format files at the same temperature. With regards to performance, clock cycle counts and cache misses were measured for single temperature ACE table lookup and for windowed multipole. The windowed multipole method was found to require 39.6% more clock cycles to evaluate, translating to a 7.9% performance loss overall. However, the algorithm has significantly better last-level cache performance, with 3 fewer misses per evaluation, or a 65% reduction in last-level misses. This is due to the small memory footprint of the windowed multipole method and better memory access pattern of the algorithm.

  12. Acoustic scattering by multiple elliptical cylinders using collocation multipole method

    NASA Astrophysics Data System (ADS)

    Lee, Wei-Ming

    2012-05-01

    This paper presents the collocation multipole method for the acoustic scattering induced by multiple elliptical cylinders subjected to an incident plane sound wave. To satisfy the Helmholtz equation in the elliptical coordinate system, the scattered acoustic field is formulated in terms of angular and radial Mathieu functions which also satisfy the radiation condition at infinity. The sound-soft or sound-hard boundary condition is satisfied by uniformly collocating points on the boundaries. For the sound-hard or Neumann conditions, the normal derivative of the acoustic pressure is determined by using the appropriate directional derivative without requiring the addition theorem of Mathieu functions. By truncating the multipole expansion, a finite linear algebraic system is derived and the scattered field can then be determined according to the given incident acoustic wave. Once the total field is calculated as the sum of the incident field and the scattered field, the near field acoustic pressure along the scatterers and the far field scattering pattern can be determined. For the acoustic scattering of one elliptical cylinder, the proposed results match well with the analytical solutions. The proposed scattered fields induced by two and three elliptical-cylindrical scatterers are critically compared with those provided by the boundary element method to validate the present method. Finally, the effects of the convexity of an elliptical scatterer, the separation between scatterers and the incident wave number and angle on the acoustic scattering are investigated.

  13. Magnetic Multipoles in Theory and Practice.

    ERIC Educational Resources Information Center

    Smith, D. G.

    1980-01-01

    A magnetic multipole apparatus suitable for the physics teaching laboratory is described. The apparatus enables the student to measure the magnetic field configuration of a single large coil, and of systems of one or more small coils. (Author/DS)

  14. 15 cm multipole gas ion thruster

    NASA Technical Reports Server (NTRS)

    Isaacson, G. C.; Kaufman, H. R.

    1976-01-01

    A 15-cm multipole thruster was operated on argon and xenon. The multipole approach used has been shown capable of low discharge losses and flat ion beam profiles with a minimum of redesign. This approach employs low magnetic field strengths and flat or cylindrical sheet-metal parts, hence is suited to rapid optimization and scaling. Only refractory metal cathodes were used in this investigation.

  15. A fast Cauchy-Riemann solver. [differential equation solution for boundary conditions by finite difference approximation

    NASA Technical Reports Server (NTRS)

    Ghil, M.; Balgovind, R.

    1979-01-01

    The inhomogeneous Cauchy-Riemann equations in a rectangle are discretized by a finite difference approximation. Several different boundary conditions are treated explicitly, leading to algorithms which have overall second-order accuracy. All boundary conditions with either u or v prescribed along a side of the rectangle can be treated by similar methods. The algorithms presented here have nearly minimal time and storage requirements and seem suitable for development into a general-purpose direct Cauchy-Riemann solver for arbitrary boundary conditions.

  16. Atomic Forces for Geometry-Dependent Point Multipole and Gaussian Multipole Models

    PubMed Central

    Elking, Dennis M.; Perera, Lalith; Duke, Robert; Darden, Thomas; Pedersen, Lee G.

    2010-01-01

    In standard treatments of atomic multipole models, interaction energies, total molecular forces, and total molecular torques are given for multipolar interactions between rigid molecules. However, if the molecules are assumed to be flexible, two additional multipolar atomic forces arise due to 1) the transfer of torque between neighboring atoms, and 2) the dependence of multipole moment on internal geometry (bond lengths, bond angles, etc.) for geometry-dependent multipole models. In the current study, atomic force expressions for geometry-dependent multipoles are presented for use in simulations of flexible molecules. The atomic forces are derived by first proposing a new general expression for Wigner function derivatives ∂Dlm′m/∂Ω. The force equations can be applied to electrostatic models based on atomic point multipoles or Gaussian multipole charge density. Hydrogen bonded dimers are used to test the inter-molecular electrostatic energies and atomic forces calculated by geometry-dependent multipoles fit to the ab initio electrostatic potential (ESP). The electrostatic energies and forces are compared to their reference ab initio values. It is shown that both static and geometry-dependent multipole models are able to reproduce total molecular forces and torques with respect to ab initio, while geometry-dependent multipoles are needed to reproduce ab initio atomic forces. The expressions for atomic force can be used in simulations of flexible molecules with atomic multipoles. In addition, the results presented in this work should lead to further development of next generation force fields composed of geometry-dependent multipole models. PMID:20839297

  17. Analysis of Electric Field Induced by ELF Magnetic Field Utilizing Generalized Equivalent Multipole-Moment Method

    NASA Astrophysics Data System (ADS)

    Hamada, Shoji; Yamamoto, Osamu; Kobayashi, Tetsuo

    This paper presents a generalized equivalent multipole-moment method for calculating three-dimensional Laplacian fields in multi-spherical system. The Greengard & Rokhlin's M2M, M2L, and L2L formulae enable the multipole-moment method to calculate the fields in general arrangement of multi-spheres, which involve exclusive and multi-layered spherical arrangement. We applied this method to electric field calculation in biological structures induced by ELF magnetic fields. The induced electric fields in a three eccentric and exclusive spheres system, which models human head with two eyeballs, are calculated under the application of homogeneous and magnetic-dipole fields. The validity of this method is successfully confirmed by comparing the calculated fields with those by the fast-multipole surface-charge-simulation method.

  18. Particle-particle, particle-scaling function algorithm for electrostatic problems in free boundary conditions.

    PubMed

    Neelov, Alexey; Ghasemi, S Alireza; Goedecker, Stefan

    2007-07-14

    An algorithm for fast calculation of the Coulombic forces and energies of point particles with free boundary conditions is proposed. Its calculation time scales as N log N for N particles. This novel method has lower crossover point with the full O(N(2)) direct summation than the fast multipole method. The forces obtained by our algorithm are analytical derivatives of the energy which guarantees energy conservation during a molecular dynamics simulation. Our algorithm is very simple. A version of the code parallelized with the Message Passing Interface can be downloaded under the GNU General Public License from the website of our group.

  19. Dynamic Adaptive Runtime Systems for Advanced Multipole Method-based Science Achievement

    NASA Astrophysics Data System (ADS)

    Debuhr, Jackson; Anderson, Matthew; Sterling, Thomas; Zhang, Bo

    2015-04-01

    Multipole methods are a key computational kernel for a large class of scientific applications spanning multiple disciplines. Yet many of these applications are strong scaling constrained when using conventional programming practices. Hardware parallelism continues to grow, emphasizing medium and fine-grained thread parallelism rather than the coarse-grained process parallelism favored by conventional programming practices. Emerging, dynamic task management execution models can go beyond these conventional practices to significantly improve both efficiency and scalability for algorithms like multipole methods which exhibit irregular and time-varying execution properties. We present a new scientific library, DASHMM, built on the ParalleX HPX-5 runtime system, which explores the use of dynamic adaptive runtime techniques to improve scalability and efficiency for multipole-method based scientific computing. DASHMM allows application scientists to rapidly create custom, scalable, and efficient multipole methods, especially targeting the Fast Multipole Method and the Barnes-Hut N-body algorithm. After a discussion of the system and its goals, some application examples will be presented.

  20. Mirror modes and fast magnetoacoustic waves near the magnetic pileup boundary of comet P/Halley

    NASA Technical Reports Server (NTRS)

    Glassmeier, Karl-Heintz; Motschmann, Uwe; Mazelle, C.; Neubauer, Fritz M.; Sauer, K.; Fuselier, S. A.; Acuna, M. H.

    1993-01-01

    Large-amplitude ultralow-frequency wave structure observed on both sides of the magnetic pileup boundary of comet P/Halley during the flyby of the Giotto spacecraft have been analyzed using suprathermal electron density and magnetic field observations. Upstream of the boundary, electron density and magnetic field magnitude variations are anticorrelated, while in the pileup region these quantities are clearly correlated. Both in front of and behind the pileup boundary the observed waves are quasi-perpendicular wave structures as a minimum variance analysis shows. A detailed comparison of our observations in the prepileup region with theoretical and numerical results shows that the mirror mode mode waves may have been generated by a mirror instability driven by the pressure anisotropy of the ring-type distributions of the heavy (water group) pickup cometary ions.

  1. Wavelet multiresolution analyses adapted for the fast solution of boundary value ordinary differential equations

    NASA Technical Reports Server (NTRS)

    Jawerth, Bjoern; Sweldens, Wim

    1993-01-01

    We present ideas on how to use wavelets in the solution of boundary value ordinary differential equations. Rather than using classical wavelets, we adapt their construction so that they become (bi)orthogonal with respect to the inner product defined by the operator. The stiffness matrix in a Galerkin method then becomes diagonal and can thus be trivially inverted. We show how one can construct an O(N) algorithm for various constant and variable coefficient operators.

  2. Permanent multipole magnets with adjustable strength

    SciTech Connect

    Halbach, K.

    1983-03-01

    Preceded by a short discussion of the motives for using permanent magnets in accelerators, a new type of permanent magnet for use in accelerators is presented. The basic design and most important properties of a quadrupole will be described that uses both steel and permanent magnet material. The field gradient produced by this magnet can be adjusted without changing any other aspect of the field produced by this quadrupole. The generalization of this concept to produce other multipole fields, or combination of multipole fields, will also be presented.

  3. The Multipole Structure of Earth's STEP Signal

    NASA Technical Reports Server (NTRS)

    Nordtvedt, Kenneth

    2003-01-01

    If there is an interaction in physical law which differentially accelerates the test bodies in a STEP satellite, then the di.erent elements that compose the Earth will most likely have source strengths for this interaction which are not proportional to their mass densities. The rotational flattening of Earth and geographical irregularities of our planet's crust then produces a multipole structure for the Equivalence Principle violating force field which differs from the multipole structure of Earth's ordinary gravity field. Measuring these differences yields key information about the new interaction in physical law which is not attainable by solely measuring differences of test body accelerations.

  4. Multipole modes in deformed nuclei within the finite amplitude method

    NASA Astrophysics Data System (ADS)

    Kortelainen, M.; Hinohara, N.; Nazarewicz, W.

    2015-11-01

    Background: To access selected excited states of nuclei, within the framework of nuclear density functional theory, the quasiparticle random phase approximation (QRPA) is commonly used. Purpose: We present a computationally efficient, fully self-consistent framework to compute the QRPA transition strength function of an arbitrary multipole operator in axially deformed superfluid nuclei. Methods: The method is based on the finite amplitude method (FAM) QRPA, allowing fast iterative solution of QRPA equations. A numerical implementation of the FAM-QRPA solver module has been carried out for deformed nuclei. Results: The practical feasibility of the deformed FAM module has been demonstrated. In particular, we calculate the quadrupole and octupole strengths in a heavy deformed nucleus 240Pu, without any truncations in the quasiparticle space. To demonstrate the capability to calculate individual QRPA modes, we also compute low-lying negative-parity collective states in 154Sm. Conclusions: The new FAM implementation enables calculations of the QRPA strength function throughout the nuclear landscape. This will facilitate global surveys of multipole modes and β decays and will open new avenues for constraining the nuclear energy density functional.

  5. A fast multigrid-based electromagnetic eigensolver for curved metal boundaries on the Yee mesh

    SciTech Connect

    Bauer, Carl A.; Werner, Gregory R.; Cary, John R.

    2013-10-15

    For embedded boundary electromagnetics using the Dey–Mittra (Dey and Mittra, 1997) [1] algorithm, a special grad–div matrix constructed in this work allows use of multigrid methods for efficient inversion of Maxwell’s curl–curl matrix. Efficient curl–curl inversions are demonstrated within a shift-and-invert Krylov-subspace eigensolver (open-sourced at ([ofortt]https://github.com/bauerca/maxwell[cfortt])) on the spherical cavity and the 9-cell TESLA superconducting accelerator cavity. The accuracy of the Dey–Mittra algorithm is also examined: frequencies converge with second-order error, and surface fields are found to converge with nearly second-order error. In agreement with previous work (Nieter et al., 2009) [2], neglecting some boundary-cut cell faces (as is required in the time domain for numerical stability) reduces frequency convergence to first-order and surface-field convergence to zeroth-order (i.e. surface fields do not converge). Additionally and importantly, neglecting faces can reduce accuracy by an order of magnitude at low resolutions.

  6. Fast, Kinetically self-consistent simulation of RF modulated plasma boundary sheaths

    NASA Astrophysics Data System (ADS)

    Shihab, Mohammed; Brinkmann, Ralf Peter

    2012-10-01

    A mathematical model is presented which enables the efficent, kinetically self-consistent simulation of RF modulated plasma boundary sheaths in all technically relevant discharge regimes. The model consists of a set of kinetic equations for the ions, Boltzmann's relation for the electrons and Poisson's equation for the electrical field. Boundary conditions specify the ion flux at a point deep in the bulk and a periodically modulated sheath voltage or sheath charge. The equations are solved in a statistical sense. However, it is not the well-known particle-in-cell (PIC) scheme that is employed, but an alternative iterative algorithm termed ensemble-in-spacetime (EST). Three modules are called in a sequence: a Monte Carlo module, a harmonic analysis module, and a field module. The iteration is started with the potential values of a self-consistent fluid model and terminates when the updates become sufficiently small, i.e. when self-consistency is achieved. A drastic reduction of the computational effort compared with PIC calculations is achieved. As a first application of the new model, the influence of ion inertia on the dynamics of a collisionless sheath is studied and a comparison of the simulated ion energy distribution with published analytical solutions is performed.

  7. A fast multigrid-based electromagnetic eigensolver for curved metal boundaries on the Yee mesh

    NASA Astrophysics Data System (ADS)

    Bauer, Carl A.; Werner, Gregory R.; Cary, John R.

    2013-10-01

    For embedded boundary electromagnetics using the Dey-Mittra (Dey and Mittra, 1997) [1] algorithm, a special grad-div matrix constructed in this work allows use of multigrid methods for efficient inversion of Maxwell's curl-curl matrix. Efficient curl-curl inversions are demonstrated within a shift-and-invert Krylov-subspace eigensolver (open-sourced at [ofortt]https://github.com/bauerca/maxwell[cfortt]) on the spherical cavity and the 9-cell TESLA superconducting accelerator cavity. The accuracy of the Dey-Mittra algorithm is also examined: frequencies converge with second-order error, and surface fields are found to converge with nearly second-order error. In agreement with previous work (Nieter et al., 2009) [2], neglecting some boundary-cut cell faces (as is required in the time domain for numerical stability) reduces frequency convergence to first-order and surface-field convergence to zeroth-order (i.e. surface fields do not converge). Additionally and importantly, neglecting faces can reduce accuracy by an order of magnitude at low resolutions.

  8. Switched RC Multi-Pole Filter

    NASA Technical Reports Server (NTRS)

    Shuler, Robert L.

    1999-01-01

    The design and experimental verification of a switched RC multi-pole filter is presented. This highly compact circuit easily obtains sub-Hz, adjustable response utilizing reasonable sized on-chip components, and multiplexing the main resistor and op amp among filter stages. Design considerations for anti-aliasing, noise avoidance, and dynamic op amp compensation are presented.

  9. Real space electrostatics for multipoles. III. Dielectric properties

    NASA Astrophysics Data System (ADS)

    Lamichhane, Madan; Parsons, Thomas; Newman, Kathie E.; Gezelter, J. Daniel

    2016-08-01

    In Papers I and II, we developed new shifted potential, gradient shifted force, and Taylor shifted force real-space methods for multipole interactions in condensed phase simulations. Here, we discuss the dielectric properties of fluids that emerge from simulations using these methods. Most electrostatic methods (including the Ewald sum) require correction to the conducting boundary fluctuation formula for the static dielectric constants, and we discuss the derivation of these corrections for the new real space methods. For quadrupolar fluids, the analogous material property is the quadrupolar susceptibility. As in the dipolar case, the fluctuation formula for the quadrupolar susceptibility has corrections that depend on the electrostatic method being utilized. One of the most important effects measured by both the static dielectric and quadrupolar susceptibility is the ability to screen charges embedded in the fluid. We use potentials of mean force between solvated ions to discuss how geometric factors can lead to distance-dependent screening in both quadrupolar and dipolar fluids.

  10. Multipole analysis of circular cylindrical magnetic systems

    NASA Astrophysics Data System (ADS)

    Selvaggi, Jerry P.

    This thesis deals with an alternate method for computing the external magnetic field from a circular cylindrical magnetic source. The primary objective is to characterize the magnetic source in terms of its equivalent multipole distribution. This multipole distribution must be valid at points close to the cylindrical source and a spherical multipole expansion is ill-equipped to handle this problem; therefore a new method must be introduced. This method, based upon the free-space Green's function in cylindrical coordinates, is developed as an alternative to the more familiar spherical harmonic expansion. A family of special functions, called the toroidal functions or Q-functions, are found to exhibit the necessary properties for analyzing circular cylindrical geometries. In particular, the toroidal function of zeroth order, which comes from the integral formulation of the free-space Green's function in cylindrical coordinates, is employed to handle magnetic sources which exhibit circular cylindrical symmetry. The toroidal functions, also called Q-functions, are the weighting coefficients in a "Fourier series-like" expansion which represents the free-space Green's function. It is also called a toroidal expansion. This expansion can be directly employed in electrostatic, magnetostatic, and electrodynamic problems which exhibit cylindrical symmetry. Also, it is shown that they can be used as an alternative to the Elliptic integral formulation. In fact, anywhere that an Elliptic integral appears, one can replace it with its corresponding Q-function representation. A number of problems, using the toroidal expansion formulation, are analyzed and compared to existing known methods in order to validate the results. Also, the equivalent multipole distribution is found for most of the solved problems along with its corresponding physical interpretation. The main application is to characterize the external magnetic field due to a six-pole permanent magnet motor in terms of its

  11. Multipole Analysis of Circular Cylindircal Magnetic Systems

    SciTech Connect

    Selvaggi, Jerry P.

    2005-12-01

    This thesis deals with an alternate method for computing the external magnetic field from a circular cylindrical magnetic source. The primary objective is to characterize the magnetic source in terms of its equivalent multipole distribution. This multipole distribution must be valid at points close to the cylindrical source and a spherical multipole expansion is ill-equipped to handle this problem; therefore a new method must be introduced. This method, based upon the free-space Green's function in cylindrical coordinates, is developed as an alternative to the more familiar spherical harmonic expansion. A family of special functions, called the toroidal functions or Q-functions, are found to exhibit the necessary properties for analyzing circular cylindrical geometries. In particular, the toroidal function of zeroth order, which comes from the integral formulation of the free-space Green's function in cylindrical coordinates, is employed to handle magnetic sources which exhibit circular cylindrical symmetry. The toroidal functions, also called Q-functions, are the weighting coefficients in a ''Fourier series-like'' expansion which represents the free-space Green's function. It is also called a toroidal expansion. This expansion can be directly employed in electrostatic, magnetostatic, and electrodynamic problems which exhibit cylindrical symmetry. Also, it is shown that they can be used as an alternative to the Elliptic integral formulation. In fact, anywhere that an Elliptic integral appears, one can replace it with its corresponding Q-function representation. A number of problems, using the toroidal expansion formulation, are analyzed and compared to existing known methods in order to validate the results. Also, the equivalent multipole distribution is found for most of the solved problems along with its corresponding physical interpretation. The main application is to characterize the external magnetic field due to a six-pole permanent magnet motor in terms of

  12. Fast, kinetically self-consistent simulation of RF modulated plasma boundary sheaths

    NASA Astrophysics Data System (ADS)

    Shihab, Mohammed; Ziegler, Dennis; Brinkmann, Ralf Peter

    2012-05-01

    A mathematical model is presented which enables the efficient, kinetically self-consistent simulation of RF modulated plasma boundary sheaths in all technically relevant discharge regimes. It is defined on a one-dimensional geometry where a Cartesian x-axis points from the electrode or wall at xE ≡ 0 towards the plasma bulk. An arbitrary endpoint xB is chosen ‘deep in the bulk’. The model consists of a set of kinetic equations for the ions, Boltzmann's relation for the electrons and Poisson's equation for the electrical field. Boundary conditions specify the ion flux at xB and a periodically—not necessarily harmonically—modulated sheath voltage V(t) or sheath charge Q(t). The equations are solved in a statistical sense. However, it is not the well-known particle-in-cell (PIC) scheme that is employed, but an alternative iterative algorithm termed ensemble-in-spacetime (EST). The basis of the scheme is a discretization of the spacetime, the product of the domain [xE, xB] and the RF period [0, T]. Three modules are called in a sequence. A Monte Carlo module calculates the trajectories of a large set of ions from their start at xB until they reach the electrode at xE, utilizing the potential values on the nodes of the spatio-temporal grid. A harmonic analysis module reconstructs the Fourier modes nim(x) of the ion density ni(x, t) from the calculated trajectories. A field module finally solves the Boltzmann-Poisson equation with the calculated ion densities to generate an updated set of potential values for the spatio-temporal grid. The iteration is started with the potential values of a self-consistent fluid model and terminates when the updates become sufficiently small, i.e. when self-consistency is achieved. A subsequent post-processing determines important quantities, in particular the phase-resolved and phase-averaged values of the ion energy and angular distributions and the total energy flux at the electrode. A drastic reduction of the computational

  13. A model of magneto-electric multipoles

    NASA Astrophysics Data System (ADS)

    Lovesey, S. W.; Balcar, E.

    2015-03-01

    A long-known Hamiltonian of electrons with entangled spin and orbital degrees of freedom is re-examined as a model of magneto-electric multipoles (MEs). In the model, a magnetic charge and simple quantum rotator are tightly locked in action, some might say they are enslaved entities. It is shown that MEs almost perfectly accord with those inferred from an analysis of magnetic neutron diffraction data on a ceramic superconductor (YBCO) in the pseudo-gap phase. Nigh on perfection between Stone's model and inferred MEs is achieved by addition to the original model of a crystal-field potential appropriate for the magnetic space group used in the published data analysis. An impression of thermal properties of multipoles is sought from a molecular-field model.

  14. Hydrodynamic Object Recognition: When Multipoles Count

    NASA Astrophysics Data System (ADS)

    Sichert, Andreas B.; Bamler, Robert; van Hemmen, J. Leo

    2009-02-01

    The lateral-line system is a unique mechanosensory facility of aquatic animals that enables them not only to localize prey, predator, obstacles, and conspecifics, but also to recognize hydrodynamic objects. Here we present an explicit model explaining how aquatic animals such as fish can distinguish differently shaped submerged moving objects. Our model is based on the hydrodynamic multipole expansion and uses the unambiguous set of multipole components to identify the corresponding object. Furthermore, we show that within the natural range of one fish length the velocity field contains far more information than that due to a dipole. Finally, the model we present is easy to implement both neuronally and technically, and agrees well with available neuronal, physiological, and behavioral data on the lateral-line system.

  15. Poloidal OHMIC heating in a multipole

    SciTech Connect

    Holly, D.J.

    1982-01-01

    The feasibility of using poloidal currents to heat plasmas confined by a multipole field has been examined experimentaly in Tokapole II. The machine is operated as a toroidal octupole, with a time-varying toroidal magnetic field driving poloidal plasma currents I/sub plasma/ - 20 kA to give densities n/sub e/ - 10/sup 13/ cm/sup -3/ and temperatures T/sub e/ - 30 eV.

  16. Multipole Algorithms for Molecular Dynamics Simulation on High Performance Computers.

    NASA Astrophysics Data System (ADS)

    Elliott, William Dewey

    1995-01-01

    A fundamental problem in modeling large molecular systems with molecular dynamics (MD) simulations is the underlying N-body problem of computing the interactions between all pairs of N atoms. The simplest algorithm to compute pair-wise atomic interactions scales in runtime {cal O}(N^2), making it impractical for interesting biomolecular systems, which can contain millions of atoms. Recently, several algorithms have become available that solve the N-body problem by computing the effects of all pair-wise interactions while scaling in runtime less than {cal O}(N^2). One algorithm, which scales {cal O}(N) for a uniform distribution of particles, is called the Greengard-Rokhlin Fast Multipole Algorithm (FMA). This work describes an FMA-like algorithm called the Molecular Dynamics Multipole Algorithm (MDMA). The algorithm contains several features that are new to N-body algorithms. MDMA uses new, efficient series expansion equations to compute general 1/r^{n } potentials to arbitrary accuracy. In particular, the 1/r Coulomb potential and the 1/r^6 portion of the Lennard-Jones potential are implemented. The new equations are based on multivariate Taylor series expansions. In addition, MDMA uses a cell-to-cell interaction region of cells that is closely tied to worst case error bounds. The worst case error bounds for MDMA are derived in this work also. These bounds apply to other multipole algorithms as well. Several implementation enhancements are described which apply to MDMA as well as other N-body algorithms such as FMA and tree codes. The mathematics of the cell -to-cell interactions are converted to the Fourier domain for reduced operation count and faster computation. A relative indexing scheme was devised to locate cells in the interaction region which allows efficient pre-computation of redundant information and prestorage of much of the cell-to-cell interaction. Also, MDMA was integrated into the MD program SIgMA to demonstrate the performance of the program over

  17. Source integrals of multipole moments for static space–times

    NASA Astrophysics Data System (ADS)

    Hernández-Pastora, J. L.; Martín-Martín, J.; Ruiz, E.

    2016-11-01

    The definition of Komar for the mass of a relativistic source is used as a starting point to introduce volume integrals for relativistic multipole moments. A certain generalisation of the classical Gauss theorem is used to rewrite these multipole moments as integrals over a surface at infinity. It is shown that this generalisation leads to asymptotic relativistic multipole moments, recovering the multipoles of Geroch or Thorne, when the integrals are evaluated in asympotically cartesian harmonic coordinates. Relationships between this result and the Thorne definition and the classical theory of moments are shown.

  18. Transformation properties of spheroidal multipole moments and potentials

    NASA Astrophysics Data System (ADS)

    Jansen, Georg

    2000-02-01

    Introducing definitions of solid spheroidal harmonics which contain those of solid spherical harmonics as special cases for vanishing ellipticity it is shown that the formalism of the multipole expansion of a 1/R -potential can be consistently extended to incorporate prolate and oblate spheroidal multipole moments. For finite ellipticity one can transform between regular solid spheroidal and spherical harmonics and multipole moments through simple relations given before and independently proven here. Corresponding relations between irregular solid spheroidal and spherical harmonics are presented for the first time, together with an investigation of the convergence properties of the resulting series expansions. Explicit formulae are derived for the transformations between spheroidal multipoles calculated in coordinate systems of different ellipticity, origin and orientation. These fromulae can be utilized to calculate the energy of interaction between two arbitrarily oriented spheroidal charge or mass distributions of different ellipticity. The performance of spheroidal multipole expansions is illustrated with some numerical examples.

  19. Revising the Multipole Moments of Numerical Spacetimes and its Consequences

    NASA Astrophysics Data System (ADS)

    Pappas, George; Apostolatos, Theocharis A.

    2012-06-01

    Identifying the relativistic multipole moments of a spacetime of an astrophysical object that has been constructed numerically is of major interest, both because the multipole moments are intimately related to the internal structure of the object, and because the construction of a suitable analytic metric that mimics a numerical metric should be based on the multipole moments of the latter one in order to yield a reliable representation. In this Letter, we show that there has been a widespread delusion in the way the multipole moments of a numerical metric are read from the asymptotic expansion of the metric functions. We show how one should read correctly the first few multipole moments (starting from the quadrupole mass moment) and how these corrected moments improve the efficiency of describing the metric functions with analytic metrics that have already been used in the literature, as well as other consequences of using the correct moments.

  20. Mechanistic studies of multipole storage assisted dissociation.

    PubMed

    Håkansson, K; Axelsson, J; Palmblad, M; Håkansson, P

    2000-03-01

    The degree and onset of fragmentation in multipole storage assisted dissociation (MSAD) have been investigated as functions of several hexapole parameters. Strict studies of hexapole charge density (number of ions injected) and hexapole storage time were made possible by placing a pulsed shutter in front of the entrance to the mass spectrometer. The results obtained show that the charge density is the most critical parameter, but also dependencies on storage time, radio-frequency (rf) -amplitude, and pressure are seen. From these data, and from simulations of the ion trajectories inside the hexapole, a mechanism for MSAD, similar to the ones for sustained off-resonance irradiation (SORI), and for low energy collisionally induced dissociation in the collision multipole of a triple quadrupole mass spectrometer, is proposed. It is believed that, at higher charge densities, ions are pushed to larger hexapole radii where the electric potential created by the rf field is higher, forcing the ions to oscillate radially to higher amplitudes and thereby reach higher (but still relatively low) kinetic energies. Multiple collisions with residual gas molecules at these elevated energies then heat up the molecules to their dissociation threshold. Further support for this mechanism is obtained from a comparison of MSAD and SORI spectra which are almost identical in appearance.

  1. Real space electrostatics for multipoles. III. Dielectric properties.

    PubMed

    Lamichhane, Madan; Parsons, Thomas; Newman, Kathie E; Gezelter, J Daniel

    2016-08-21

    In Papers I and II, we developed new shifted potential, gradient shifted force, and Taylor shifted force real-space methods for multipole interactions in condensed phase simulations. Here, we discuss the dielectric properties of fluids that emerge from simulations using these methods. Most electrostatic methods (including the Ewald sum) require correction to the conducting boundary fluctuation formula for the static dielectric constants, and we discuss the derivation of these corrections for the new real space methods. For quadrupolar fluids, the analogous material property is the quadrupolar susceptibility. As in the dipolar case, the fluctuation formula for the quadrupolar susceptibility has corrections that depend on the electrostatic method being utilized. One of the most important effects measured by both the static dielectric and quadrupolar susceptibility is the ability to screen charges embedded in the fluid. We use potentials of mean force between solvated ions to discuss how geometric factors can lead to distance-dependent screening in both quadrupolar and dipolar fluids. PMID:27544088

  2. Collisionless spectral-kinetic Simulation of the Multipole Resonance Probe

    NASA Astrophysics Data System (ADS)

    Dobrygin, Wladislaw; Szeremley, Daniel; Schilling, Christian; Oberrath, Jens; Eremin, Denis; Mussenbrock, Thomas; Brinkmann, Ralf Peter

    2012-10-01

    Plasma resonance spectroscopy is a well established plasma diagnostic method realized in several designs. One of these designs is the multipole resonance probe (MRP). In its idealized - geometrically simplified - version it consists of two dielectrically shielded, hemispherical electrodes to which an RF signal is applied. A numerical tool is under development, which is capable of simulating the dynamics of the plasma surrounding the MRP in electrostatic approximation. In the simulation the potential is separeted in an inner and a vacuum potential. The inner potential is influenced by the charged partilces and is calculated by a specialized Poisson solver. The vacuum potential fulfills Laplace's equetion and consists of the applied voltage of the probe as boundary condition. Both potentials are expanded in spherical harmonics. For a practical particle pusher implementation, the expansion must be appropriately truncated. Compared to a PIC simulation a grid is unnecessary to calculate the force on the particles. This work purpose is a collisionless kinetic simulation, which can be used to investigate kinetic effects on the resonance behavior of the MRP.[4pt] [1] M. Lapke et al., Appl. Phys. Lett. 93, 2008, 051502.

  3. The reduced-cell multipole method for Ewald summations

    NASA Astrophysics Data System (ADS)

    Ding, Chris H. Q.

    1997-08-01

    The recently developed reduced-cell multipole method^1 (RCMM) for calculating electrostatic interactions in periodic systems is analyized and compared to the particle mesh Ewald method^2 (PME). RCMM reduces the distant millon atom unit cells into cells of 35 fictitious atoms on which the Ewald summations are trivially calculated and then combines them with the nearby unit cells via a varient of the fast multiple method (FMM). PME approximates the reciprocal space sum into a formulation with two FFTs. Accuracy in both methods can be systematically improved, although PME appear to be slightly better. Both scale like N*logN, but RCMM is better because Ewald summations on reduced-cell is entirely negligible. Overhead due to the system being periodic (vs. isolated system) is about 27Implementation of RCMM is simple modifications of an existing FMM for isolated systems; it is entirely new formulation for PME. 1. H.Q. Ding, et al., Chem.Phys.Lett. 196, 6 (1992); J.Chem.Phys. 97, 4309 (1992). 2. T. Darden, et al., J. Chem. Phys. 98, 10089 (1993); 103, 8577 (1995).

  4. On the angular-spectrum representation of multipole wave fields.

    PubMed

    Borghi, Riccardo

    2004-09-01

    The closed-form expression of the angular spectrum of multipole fields, both scalar and vectorial, of any order and degree, evaluated across a plane orthogonal to an arbitrary (fixed) direction, is provided. Such a result has been obtained by starting from the Weyl representation of multipole fields and using suitable transformation rules. Moreover, as far as the vectorial case is concerned, knowledge of the (vectorial) transverse angular spectrum allows one to gain some insight into the polarization structure of the multipole fields evaluated across a typical plane. Such information could be useful, for instance, in those problems dealing with the interaction between planar partially reflecting surfaces and waves.

  5. Transferable Atomic Multipole Machine Learning Models for Small Organic Molecules.

    PubMed

    Bereau, Tristan; Andrienko, Denis; von Lilienfeld, O Anatole

    2015-07-14

    Accurate representation of the molecular electrostatic potential, which is often expanded in distributed multipole moments, is crucial for an efficient evaluation of intermolecular interactions. Here we introduce a machine learning model for multipole coefficients of atom types H, C, O, N, S, F, and Cl in any molecular conformation. The model is trained on quantum-chemical results for atoms in varying chemical environments drawn from thousands of organic molecules. Multipoles in systems with neutral, cationic, and anionic molecular charge states are treated with individual models. The models' predictive accuracy and applicability are illustrated by evaluating intermolecular interaction energies of nearly 1,000 dimers and the cohesive energy of the benzene crystal.

  6. Acoustic multipole sources for the lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Viggen, Erlend Magnus

    2013-02-01

    By including an oscillating particle source term, acoustic multipole sources can be implemented in the lattice Boltzmann method. The effect of this source term on the macroscopic conservation equations is found using a Chapman-Enskog expansion. In a lattice with q particle velocities, the source term can be decomposed into q orthogonal multipoles. More complex sources may be formed by superposing these basic multipoles. Analytical solutions found from the macroscopic equations and an analytical lattice Boltzmann wavenumber are compared with inviscid multipole simulations, finding very good agreement except close to singularities in the analytical solutions. Unlike the BGK operator, the regularized collision operator is proven capable of accurately simulating two-dimensional acoustic generation and propagation at zero viscosity.

  7. GRID3O: Computer program for fast generation of multilevel, three-dimensional boundary-conforming O-type computational grids

    NASA Technical Reports Server (NTRS)

    Dulikravich, D. S.

    1981-01-01

    A fast algorithm was developed for accurately generating boundary-conforming, three-dimensional, consecutively refined computational grids applicable to arbitrary wing-body and axial turbomachinery geometries. The method is based on using an analytic function to generate two-dimensional grids on a number of coaxial axisymmetric surfaces positioned between the centerbody and the outer radial boundary. These grids are of the O-type and are characterized by quasi-orthogonality, geometric periodicity, and an adequate resolution throughout the flow field. Because the built-in nonorthogonal coordinate stretching and shearing cause the grid lines leaving the blade or wing trailing edge to end at downstream infinity, the numerical treatment of the three-dimensional trailing vortex sheets is simplified.

  8. FAST TRACK COMMUNICATION: An analytical approximation scheme to two-point boundary value problems of ordinary differential equations

    NASA Astrophysics Data System (ADS)

    Boisseau, Bruno; Forgács, Péter; Giacomini, Hector

    2007-03-01

    A new (algebraic) approximation scheme to find global solutions of two-point boundary value problems of ordinary differential equations (ODEs) is presented. The method is applicable for both linear and nonlinear (coupled) ODEs whose solutions are analytic near one of the boundary points. It is based on replacing the original ODEs by a sequence of auxiliary first-order polynomial ODEs with constant coefficients. The coefficients in the auxiliary ODEs are uniquely determined from the local behaviour of the solution in the neighbourhood of one of the boundary points. The problem of obtaining the parameters of the global (connecting) solutions, analytic at one of the boundary points, reduces to find the appropriate zeros of algebraic equations. The power of the method is illustrated by computing the approximate values of the 'connecting parameters' for a number of nonlinear ODEs arising in various problems in field theory. We treat in particular the static and rotationally symmetric global vortex, the skyrmion, the Abrikosov-Nielsen-Olesen vortex, as well as the 't Hooft-Polyakov magnetic monopole. The total energy of the skyrmion and of the monopole is also computed by the new method. We also consider some ODEs coming from the exact renormalization group. The ground-state energy level of the anharmonic oscillator is also computed for arbitrary coupling strengths with good precision.

  9. Multipole moments of bumpy black holes

    SciTech Connect

    Vigeland, Sarah J.

    2010-11-15

    General relativity predicts the existence of black holes, compact objects whose spacetimes depend only on their mass, spin, and charge in vacuum (the 'no-hair' theorem). As various observations probe deeper into the strong fields of black hole candidates, it is becoming possible to test this prediction. Previous work suggested that such tests can be performed by measuring whether the multipolar structure of black hole candidates has the form that general relativity demands, and introduced a family of 'bumpy black hole' spacetimes to be used for making these measurements. These spacetimes have generalized multipoles, where the deviation from the Kerr metric depends on the spacetime's 'bumpiness'. In this paper, we show how to compute the Geroch-Hansen moments of a bumpy black hole, demonstrating that there is a clean mapping between the deviations used in the bumpy black hole formalism and the Geroch-Hansen moments. We also extend our previous results to define bumpy black holes whose current moments, analogous to magnetic moments of electrodynamics, deviate from the canonical Kerr value.

  10. Electromagnetic treatment of the multipole resonance probe

    NASA Astrophysics Data System (ADS)

    Lapke, Martin; Mussenbrock, Thomas; Brinkmann, Ralf Peter

    2009-10-01

    We present an electromagnetic model of the ``multipole resonance probe'' (MRP)-- a diagnostic concept which enables the simultaneous determination of plasma density, electron temperature, and collision rate in low-pressure gas discharges. The MRP is a radio-frequency driven probe of particular spherical design. In an idealized version the probe consists of two dielectrically shielded, conducting hemispheres. Driven by a radio-frequency source, the hemispheres are powered symmetrically. An analysis of the absorption spectrum shows a multitude of resonances, which allows for an analytical evaluation of the measured signal. The signal provides information on the distribution of the plasma in the probe's vicinity, from which the values of electron density, electron temperature and collision rate can be inferred. In this contribution the MRP will be modeled electromagnetically. Based on a comparision between full electromagnetic and electrostatic treatment, we show that a previously presented electrostatic treatment [1] was well justified.[4pt] [1] M.Lapke et al., Appl. Phys. Lett. 93, 051502 (2008)

  11. Plasmon excitation in metal slab by fast point charge: The role of additional boundary conditions in quantum hydrodynamic model

    SciTech Connect

    Zhang, Ying-Ying; An, Sheng-Bai; Song, Yuan-Hong Wang, You-Nian; Kang, Naijing; Mišković, Z. L.

    2014-10-15

    We study the wake effect in the induced potential and the stopping power due to plasmon excitation in a metal slab by a point charge moving inside the slab. Nonlocal effects in the response of the electron gas in the metal are described by a quantum hydrodynamic model, where the equation of electronic motion contains both a quantum pressure term and a gradient correction from the Bohm quantum potential, resulting in a fourth-order differential equation for the perturbed electron density. Thus, besides using the condition that the normal component of the electron velocity should vanish at the impenetrable boundary of the metal, a consistent inclusion of the gradient correction is shown to introduce two possibilities for an additional boundary condition for the perturbed electron density. We show that using two different sets of boundary conditions only gives rise to differences in the wake potential at large distances behind the charged particle. On the other hand, the gradient correction in the quantum hydrodynamic model is seen to cause a reduction in the depth of the potential well closest to the particle, and a reduction of its stopping power. Even for a particle moving in the center of the slab, we observe nonlocal effects in the induced potential and the stopping power due to reduction of the slab thickness, which arise from the gradient correction in the quantum hydrodynamic model.

  12. Fast and selective determination of total protein in milk powder via titration of moving reaction boundary electrophoresis.

    PubMed

    Guo, Cheng-ye; Wang, Hou-yu; Liu, Xiao-ping; Fan, Liu-yin; Zhang, Lei; Cao, Cheng-xi

    2013-05-01

    In this paper, moving reaction boundary titration (MRBT) was developed for rapid and accurate quantification of total protein in infant milk powder, from the concept of moving reaction boundary (MRB) electrophoresis. In the method, the MRB was formed by the hydroxide ions and the acidic residues of milk proteins immobilized via cross-linked polyacrylamide gel (PAG), an acid-base indicator was used to denote the boundary motion. As a proof of concept, we chose five brands of infant milk powders to study the feasibility of MRBT method. The calibration curve of MRB velocity versus logarithmic total protein content of infant milk powder sample was established based on the visual signal of MRB motion as a function of logarithmic milk protein content. Weak influence of nonprotein nitrogen (NPN) reagents (e.g., melamine and urea) on MRBT method was observed, due to the fact that MRB was formed with hydroxide ions and the acidic residues of captured milk proteins, rather than the alkaline residues or the NPN reagents added. The total protein contents in infant milk powder samples detected via the MRBT method were in good agreement with those achieved by the classic Kjeldahl method. In addition, the developed method had much faster measuring speed compared with the Kjeldahl method.

  13. A fast Galerkin-based method for eigenfrequencies in acoustics of small rooms with slanted boundary planes

    NASA Astrophysics Data System (ADS)

    Sumbatyan, Mezhlum A.; Lannie, Michael Yu.; Zampoli, Vittorio

    2016-04-01

    This paper proposes a Galerkin-type numerical algorithm for an efficient calculation of low eigenfrequencies for rectangular parallelepiped rooms with slanted boundary planes, in the frequency interval (0 , 200) Hz, with the volume V ≤ 200m3. The main idea of the algorithm is to apply a system of Galerkin's basis functions which are orthogonal, after a certain change of variables, in a unit cube. As a result, the problem is reduced to a classical problem of the computational algebra about eigenvalues of a symmetric matrix. If applied to any parallelepiped of non-splayed geometry, the algorithm automatically gives the known classical modes. For rooms with the splayed planes, the sought mode frequencies can precisely be calculated in real time on a personal computer, by taking from 11 to 13 basis functions along each coordinate axis. Some particular examples are considered, in order to demonstrate the capability of the proposed algorithm, as well as its precision with a change of basis functions. It is also seen from the discussed examples that splaying the boundary planes can indeed make more uniform distribution of the low natural frequencies.

  14. Excitation of Multipole Plasmons by Optical Vortex Beams

    PubMed Central

    Sakai, Kyosuke; Nomura, Kensuke; Yamamoto, Takeaki; Sasaki, Keiji

    2015-01-01

    Localized surface plasmon resonance (LSPR) has been shown to exhibit a strong potential for nanoscale electromagnetic field manipulation beyond the diffraction limit. Particularly dark mode plasmons circumvent radiation loss and store the energy long in time, which raise the prospect of interesting plasmonics applications, for example biochemical sensing and nanoscale lasing. Here we theoretically investigate a method of exciting multipole plasmons, including dark modes, using normally incident light. By performing numerical calculations, we show that multipole plasmons in metal nanodisks can be selectively excited by circularly-polarized optical vortex beams. We study the electromagnetic fields of the beam cross-sections and their correspondence with the excited multipole plasmon modes with respect to spin and orbital angular momenta. The transfer of angular momentum between photons and plasmons is also discussed. PMID:25672226

  15. A genetic algorithm for optimizing multi-pole Debye models of tissue dielectric properties.

    PubMed

    Clegg, J; Robinson, M P

    2012-10-01

    Models of tissue dielectric properties (permittivity and conductivity) enable the interactions of tissues and electromagnetic fields to be simulated, which has many useful applications in microwave imaging, radio propagation, and non-ionizing radiation dosimetry. Parametric formulae are available, based on a multi-pole model of tissue dispersions, but although they give the dielectric properties over a wide frequency range, they do not convert easily to the time domain. An alternative is the multi-pole Debye model which works well in both time and frequency domains. Genetic algorithms are an evolutionary approach to optimization, and we found that this technique was effective at finding the best values of the multi-Debye parameters. Our genetic algorithm optimized these parameters to fit to either a Cole-Cole model or to measured data, and worked well over wide or narrow frequency ranges. Over 10 Hz-10 GHz the best fits for muscle, fat or bone were each found for ten dispersions or poles in the multi-Debye model. The genetic algorithm is a fast and effective method of developing tissue models that compares favourably with alternatives such as the rational polynomial fit.

  16. The China Clipper - Fast advective transport of radon-rich air from the Asian boundary layer to the upper troposphere near California

    NASA Technical Reports Server (NTRS)

    Kritz, Mark A.; Le Roulley, Jean-Claude; Danielsen, Edwin F.

    1990-01-01

    A series of upper tropospheric radon concentration measurements made over the eastern Pacific and west coast of the U.S. during the summers of 1983 and 1984 has revealed the occurrence of unexpectedly high radon concentrations for 9 of the 61 measurements. A frequency distribution plot of the set of 61 observations shows a distinct bimodal distribution, with approximately 2/5 of the observations falling close to 1 pCi/SCM, and 3/5 falling in a high concentration mode centered at about 11 pCi/SCM. Trajectory and synoptic analyses for two of the flights on which such high radon concentrations were observed indicate that this radon-rich air originated in the Asian boundary layer, ascended in cumulus updrafts, and was carried eastward in the fast moving air on the anticyclonic side of the upper tropospheric jet. The results suggest that the combination of rapid vertical transport from the surface boundary layer to the upper troposphere, followed by rapid horizontal transport eastward represents an efficient mode of long-transport for other, chemically reactive atmospheric trace constituents.

  17. Fast generation of three-dimensional computational boundary-conforming periodic grids of C-type. [for turbine blades and propellers

    NASA Technical Reports Server (NTRS)

    Dulikravich, D. S.

    1982-01-01

    A fast computer program, GRID3C, was developed to generate multilevel three dimensional, C type, periodic, boundary conforming grids for the calculation of realistic turbomachinery and propeller flow fields. The technique is based on two analytic functions that conformally map a cascade of semi-infinite slits to a cascade of doubly infinite strips on different Riemann sheets. Up to four consecutively refined three dimensional grids are automatically generated and permanently stored on four different computer tapes. Grid nonorthogonality is introduced by a separate coordinate shearing and stretching performed in each of three coordinate directions. The grids are easily clustered closer to the blade surface, the trailing and leading edges and the hub or shroud regions by changing appropriate input parameters. Hub and duct (or outer free boundary) have different axisymmetric shapes. A vortex sheet of arbitrary thickness emanating smoothly from the blade trailing edge is generated automatically by GRID3C. Blade cross sectional shape, chord length, twist angle, sweep angle, and dihedral angle can vary in an arbitrary smooth fashion in the spanwise direction.

  18. Fast inversion scheme for the linearized problem in optical absorption tomography on objects with radially symmetric boundaries

    NASA Astrophysics Data System (ADS)

    Hampel, Uwe; Freyer, Richard

    1996-12-01

    We present a reconstruction scheme which solves the inverse linear problem in optical absorption tomography for radially symmetric objects. This is a relevant geometry for optical diagnosis in soft tissues, e.g. breast, testis and even head. The algorithm utilizes an invariance property of the linear imaging operator in homogeneously scattering media. The inverse problem is solved in the Fourier space of the angular component leading to a considerable dimension reduction which allows to compute the inverse in a direct way using singular value decomposition. There are two major advantages of this approach. First the inverse operator can be stored in computer memory and the computation of the inverse problem comprises only a few matrix multiplications. This makes the algorithm very fast and suitable for parallel execution. On the other hand we obtain the spectrum of the imaging operator that allows conclusions about reconstruction limits in the presence of noise and gives a termination criterion for image synthesis. To demonstrate the capabilities of this scheme reconstruction results from synthetic and phantom data are presented.

  19. Description of Multipole in f-Electron Systems

    NASA Astrophysics Data System (ADS)

    Kusunose, Hiroaki

    2008-06-01

    A systematic description of multipole degrees of freedom is discussed on the basis of the Stevens’ operator-equivalent technique. The generalized Stevens’ multiplicative factors are derived for all of the electric and the magnetic multipoles relevant to f-electron systems. With extensive use of the Stevens’ factors, we express the spatial dependences of the electric and the magnetic fields, and the electric and the magnetic charge densities of localized f electrons. The latter is utilized to draw wave functions including their magnetic profile in addition to their shape with the charge density. The definite relation between the operators as quantum-mechanical variables in a multipole exchange model and the multipole moments in expansion of electromagnetic fields is given. The general treatments for the exchange model with the random-phase-approximation (RPA) susceptibility and the Ginzburg-Landau free-energy expansion are discussed, using CexLa1-xB6 as a typical example. The representative formula of the vector spherical harmonics are summarized, which are suitable basis for vector fields in the spherical expansion.

  20. Multipole moments for embedding potentials: Exploring different atomic allocation algorithms.

    PubMed

    S Nørby, Morten; Magnus Haugaard Olsen, Jógvan; Kongsted, Jacob; Aagard Jensen, Hans Jørgen

    2016-07-01

    Polarizable quantum mechanical (QM)/molecular mechanics (MM)-embedding methods are currently among the most promising methods for computationally feasible, yet reliable, production calculations of localized excitations and molecular response properties of large molecular complexes, such as proteins and RNA/DNA, and of molecules in solution. Our aim is to develop a computational methodology for distributed multipole moments and their associated multipole polarizabilities which is accurate, computationally efficient, and with smooth convergence with respect to multipole order. As the first step toward this goal, we herein investigate different ways of obtaining distributed atom-centered multipole moments that are used in the construction of the electrostatic part of the embedding potential. Our objective is methods that not only are accurate and computationally efficient, but which can be consistently extended with site polarizabilities including internal charge transfer terms. We present a new way of dealing with well-known problems in relation to the use of basis sets with diffuse functions in conventional atomic allocation algorithms, avoiding numerical integration schemes. Using this approach, we show that the classical embedding potential can be systematically improved, also when using basis sets with diffuse functions, and that very accurate embedding potentials suitable for QM/MM embedding calculations can be acquired. © 2016 Wiley Periodicals, Inc. PMID:27187063

  1. A Guide to Electronic Multipoles in Photon Scattering and Absorption

    NASA Astrophysics Data System (ADS)

    Lovesey, Stephen William; Balcar, Ewald

    2013-02-01

    The practice of replacing matrix elements in atomic calculations by those of convenient operators with strong physical appeal has a long history, and in condensed matter physics it is perhaps best known through use of operator equivalents in electron resonance by Elliott and Stevens. Likewise, electronic multipoles, created with irreducible spherical-tensors, to represent charge-like and magnetic-like quantities are widespread in modern physics. Examples in recent headlines include a magnetic charge (a monopole), an anapole (a dipole) and a triakontadipole (a magnetic-like atomic multipole of rank 5). In this communication, we aim to guide the reader through use of atomic, spherical multipoles in photon scattering, and resonant Bragg diffraction and dichroic signals in particular. Applications to copper oxide CuO and neptunium dioxide (NpO2) are described. In keeping with it being a simple guide, there is sparse use in the communication of algebra and expressions are gathered from the published literature and not derived, even when central to the exposition. An exception is a thorough grounding, contained in an Appendix, for an appropriate version of the photon scattering length based on quantum electrodynamics. A theme of the guide is application of symmetry in scattering, in particular constraints imposed on results by symmetry in crystals. To this end, a second Appendix catalogues constraints on multipoles imposed by symmetry in crystal point-groups.

  2. Prediction of conformationally dependent atomic multipole moments in carbohydrates.

    PubMed

    Cardamone, Salvatore; Popelier, Paul L A

    2015-12-15

    The conformational flexibility of carbohydrates is challenging within the field of computational chemistry. This flexibility causes the electron density to change, which leads to fluctuating atomic multipole moments. Quantum Chemical Topology (QCT) allows for the partitioning of an "atom in a molecule," thus localizing electron density to finite atomic domains, which permits the unambiguous evaluation of atomic multipole moments. By selecting an ensemble of physically realistic conformers of a chemical system, one evaluates the various multipole moments at defined points in configuration space. The subsequent implementation of the machine learning method kriging delivers the evaluation of an analytical function, which smoothly interpolates between these points. This allows for the prediction of atomic multipole moments at new points in conformational space, not trained for but within prediction range. In this work, we demonstrate that the carbohydrates erythrose and threose are amenable to the above methodology. We investigate how kriging models respond when the training ensemble incorporating multiple energy minima and their environment in conformational space. Additionally, we evaluate the gains in predictive capacity of our models as the size of the training ensemble increases. We believe this approach to be entirely novel within the field of carbohydrates. For a modest training set size of 600, more than 90% of the external test configurations have an error in the total (predicted) electrostatic energy (relative to ab initio) of maximum 1 kJ mol(-1) for open chains and just over 90% an error of maximum 4 kJ mol(-1) for rings.

  3. Specification of multipole tolerances for the APS quadrupole magnet

    SciTech Connect

    Kramer, S.L.

    1988-08-01

    This note will address a proposed method for specifying the multipole tolerance for the design and production of APS quadrupole magnets. The tolerances for the multipole components for the quadrupole magnets will be set to that level which reduces the dynamic aperture by about 10--15% from the ideal machine dynamic aperture (as specified in CDR-87). This level may appear rather stringent, especially compared to the 50--60% reduction resulting from quad placement errors. However, when all tolerances are taken together, the residual dynamic aperture would be prohibitively small and commissioning would be difficult if these tolerances were at twice this level. The dynamic aperture was determined using the numerical tracking program RACETRACK.

  4. Cosmic microwave background multipole alignments in slab topologies

    NASA Astrophysics Data System (ADS)

    Cresswell, James G.; Liddle, Andrew R.; Mukherjee, Pia; Riazuelo, Alain

    2006-02-01

    Several analyses of the microwave sky maps from the Wilkinson Microwave Anisotropy Probe (WMAP) have drawn attention to alignments amongst the low-order multipoles. Amongst the various possible explanations, an effect of cosmic topology has been invoked by several authors. We focus on an alignment of the first four multipoles (ℓ=2 to 5) found by Land and Magueijo (2005), and investigate the distribution of their alignment statistic for a set of simulated cosmic microwave background maps for cosmologies with slablike topology. We find that this topology does offer a modest increase in the probability of the observed value, but that even for the smallest topology considered the probability of the observed value remains below 1%.

  5. Closed expressions for the magnetic field of toroidal multipole configurations

    SciTech Connect

    Sheffield, G.V.

    1983-04-01

    Closed analytic expressions for the vector potential and the magnetic field for the lower order toroidal multipoles are presented. These expressions can be applied in the study of tokamak plasma cross section shaping. An example of such an application is included. These expressions also allow the vacuum fields required for plasma equilibrium to be specified in a general form independent of a particular coil configuration.

  6. The multipole resonance probe: characterization of a prototype

    NASA Astrophysics Data System (ADS)

    Lapke, Martin; Oberrath, Jens; Schulz, Christian; Storch, Robert; Styrnoll, Tim; Zietz, Christian; Awakowicz, Peter; Brinkmann, Ralf Peter; Musch, Thomas; Mussenbrock, Thomas; Rolfes, Ilona

    2011-08-01

    The multipole resonance probe (MRP) was recently proposed as an economical and industry compatible plasma diagnostic device (Lapke et al 2008 Appl. Phys. Lett. 93 051502). This communication reports the experimental characterization of a first MRP prototype in an inductively coupled argon/nitrogen plasma at 10 Pa. The behavior of the device follows the predictions of both an analytical model and a numerical simulation. The obtained electron densities are in excellent agreement with the results of Langmuir probe measurements.

  7. Polarizable Atomic Multipole Solutes in a Generalized Kirkwood Continuum.

    PubMed

    Schnieders, Michael J; Ponder, Jay W

    2007-11-01

    The generalized Born (GB) model of continuum electrostatics is an analytic approximation to the Poisson equation useful for predicting the electrostatic component of the solvation free energy for solutes ranging in size from small organic molecules to large macromolecular complexes. This work presents a new continuum electrostatics model based on Kirkwood's analytic result for the electrostatic component of the solvation free energy for a solute with arbitrary charge distribution. Unlike GB, which is limited to monopoles, our generalized Kirkwood (GK) model can treat solute electrostatics represented by any combination of permanent and induced atomic multipole moments of arbitrary degree. Here we apply the GK model to the newly developed Atomic Multipole Optimized Energetics for Biomolecular Applications (AMOEBA) force field, which includes permanent atomic multipoles through the quadrupole and treats polarization via induced dipoles. A derivation of the GK gradient is presented, which enables energy minimization or molecular dynamics of an AMOEBA solute within a GK continuum. For a series of 55 proteins, GK electrostatic solvation free energies are compared to the Polarizable Multipole Poisson-Boltzmann (PMPB) model and yield a mean unsigned relative difference of 0.9%. Additionally, the reaction field of GK compares well to that of the PMPB model, as shown by a mean unsigned relative difference of 2.7% in predicting the total solvated dipole moment for each protein in this test set. The CPU time needed for GK relative to vacuum AMOEBA calculations is approximately a factor of 3, making it suitable for applications that require significant sampling of configuration space.

  8. MEASUREMENT OF MULTIPOLE STRENGTHS FROM RHIC BPM DATA.

    SciTech Connect

    TOMAS,R.BAI,M.FISCHER,W.ET AL.

    2004-07-05

    Recently resonance driving terms were successfully measured in the CERN SPS and the BNL RHIC from the Fourier spectrum of BPM data. Based on these measurements a new analysis has been derived to extract multipole strengths. In this paper we present experimental measurements of sextupolar and skew quadrupolar strengths carried out at RHIC. A non-destructive measurement using an AC dipole is also presented.

  9. Prediction of conformationally dependent atomic multipole moments in carbohydrates

    PubMed Central

    Cardamone, Salvatore

    2015-01-01

    The conformational flexibility of carbohydrates is challenging within the field of computational chemistry. This flexibility causes the electron density to change, which leads to fluctuating atomic multipole moments. Quantum Chemical Topology (QCT) allows for the partitioning of an “atom in a molecule,” thus localizing electron density to finite atomic domains, which permits the unambiguous evaluation of atomic multipole moments. By selecting an ensemble of physically realistic conformers of a chemical system, one evaluates the various multipole moments at defined points in configuration space. The subsequent implementation of the machine learning method kriging delivers the evaluation of an analytical function, which smoothly interpolates between these points. This allows for the prediction of atomic multipole moments at new points in conformational space, not trained for but within prediction range. In this work, we demonstrate that the carbohydrates erythrose and threose are amenable to the above methodology. We investigate how kriging models respond when the training ensemble incorporating multiple energy minima and their environment in conformational space. Additionally, we evaluate the gains in predictive capacity of our models as the size of the training ensemble increases. We believe this approach to be entirely novel within the field of carbohydrates. For a modest training set size of 600, more than 90% of the external test configurations have an error in the total (predicted) electrostatic energy (relative to ab initio) of maximum 1 kJ mol−1 for open chains and just over 90% an error of maximum 4 kJ mol−1 for rings. © 2015 Wiley Periodicals, Inc. PMID:26547500

  10. Protein Influence on Electronic Spectra Modeled by Multipoles and Polarizabilities.

    PubMed

    Söderhjelm, Pär; Husberg, Charlotte; Strambi, Angela; Olivucci, Massimo; Ryde, Ulf

    2009-03-10

    We have developed automatic methods to calculate multipoles and anisotropic polarizabilities for all atoms and bond centers in a protein and to include such a model in the calculation of electronic properties at any level of quantum mechanical theory. This approach is applied for the calculation of the electronic spectra of retinal in rhodopsin at the CASPT2//CASSCF level (second-order multiconfigurational perturbation theory) for the wild-type protein, as well as two mutants and isorhodopsin in QM/MM structures based on two crystal structures. We also perform a detailed investigation of the importance and distance dependence of the multipoles and the polarizabilities for both the absolute and the relative absorption energies. It is shown that the model of the surrounding protein strongly influences the spectrum and that different models give widely different results. For example, the Amber 1994 and 2003 force fields give excitation energies that differ by up to 16 kJ/mol. For accurate excitation energies, multipoles up to quadrupoles and anisotropic polarizabilities are needed. However, interactions with residues more than 10 Å from the chromophore can be treated with a standard polarizable force field without any dipoles or quadrupoles.

  11. Measurements of diurnal variations and eddy covariance (EC) fluxes of glyoxal in the tropical marine boundary layer: description of the Fast LED-CE-DOAS instrument

    NASA Astrophysics Data System (ADS)

    Coburn, S.; Ortega, I.; Thalman, R.; Blomquist, B.; Fairall, C. W.; Volkamer, R.

    2014-10-01

    Here we present first eddy covariance (EC) measurements of fluxes of glyoxal, the smallest α-dicarbonyl product of hydrocarbon oxidation, and a precursor for secondary organic aerosol (SOA). The unique physical and chemical properties of glyoxal - i.e., high solubility in water (effective Henry's law constant, KH = 4.2 × 105 M atm-1) and short atmospheric lifetime (~2 h at solar noon) - make it a unique indicator species for organic carbon oxidation in the marine atmosphere. Previous reports of elevated glyoxal over oceans remain unexplained by atmospheric models. Here we describe a Fast Light-Emitting Diode Cavity-Enhanced Differential Optical Absorption Spectroscopy (Fast LED-CE-DOAS) instrument to measure diurnal variations and EC fluxes of glyoxal and inform about its unknown sources. The fast in situ sensor is described, and first results are presented from a cruise deployment over the eastern tropical Pacific Ocean (20° N to 10° S; 133 to 85° W) as part of the Tropical Ocean tRoposphere Exchange of Reactive halogens and Oxygenated VOCs (TORERO) field experiment (January to March 2012). The Fast LED-CE-DOAS is a multispectral sensor that selectively and simultaneously measures glyoxal (CHOCHO), nitrogen dioxide (NO2), oxygen dimers (O4), and water vapor (H2O) with ~2 Hz time resolution (Nyquist frequency ~1 Hz) and a precision of ~40 pptv Hz-0.5 for glyoxal. The instrument is demonstrated to be a "white-noise" sensor suitable for EC flux measurements. Fluxes of glyoxal are calculated, along with fluxes of NO2, H2O, and O4, which are used to aid the interpretation of the glyoxal fluxes. Further, highly sensitive and inherently calibrated glyoxal measurements are obtained from temporal averaging of data (e.g., detection limit smaller than 2.5 pptv in an hour). The campaign average mixing ratio in the Southern Hemisphere (SH) is found to be 43 ± 9 pptv glyoxal, which is higher than the Northern Hemisphere (NH) average of 32 ± 6 pptv (error reflects

  12. Cluster-Based Multipolling Sequencing Algorithm for Collecting RFID Data in Wireless LANs

    NASA Astrophysics Data System (ADS)

    Choi, Woo-Yong; Chatterjee, Mainak

    2015-03-01

    With the growing use of RFID (Radio Frequency Identification), it is becoming important to devise ways to read RFID tags in real time. Access points (APs) of IEEE 802.11-based wireless Local Area Networks (LANs) are being integrated with RFID networks that can efficiently collect real-time RFID data. Several schemes, such as multipolling methods based on the dynamic search algorithm and random sequencing, have been proposed. However, as the number of RFID readers associated with an AP increases, it becomes difficult for the dynamic search algorithm to derive the multipolling sequence in real time. Though multipolling methods can eliminate the polling overhead, we still need to enhance the performance of the multipolling methods based on random sequencing. To that extent, we propose a real-time cluster-based multipolling sequencing algorithm that drastically eliminates more than 90% of the polling overhead, particularly so when the dynamic search algorithm fails to derive the multipolling sequence in real time.

  13. Generalization of the Gaussian electrostatic model: Extension to arbitrary angular momentum, distributed multipoles, and speedup with reciprocal space methods

    PubMed Central

    Cisneros, G. Andrés; Piquemal, Jean-Philip; Darden, Thomas A.

    2007-01-01

    The simulation of biological systems by means of current empirical force fields presents shortcomings due to their lack of accuracy, especially in the description of the nonbonded terms. We have previously introduced a force field based on density fitting termed the Gaussian electrostatic model-0 (GEM-0) J.-P. Piquemal et al. [J. Chem. Phys. 124, 104101 (2006)] that improves the description of the nonbonded interactions. GEM-0 relies on density fitting methodology to reproduce each contribution of the constrained space orbital variation (CSOV) energy decomposition scheme, by expanding the electronic density of the molecule in s-type Gaussian functions centered at specific sites. In the present contribution we extend the Coulomb and exchange components of the force field to auxiliary basis sets of arbitrary angular momentum. Since the basis functions with higher angular momentum have directionality, a reference molecular frame (local frame) formalism is employed for the rotation of the fitted expansion coefficients. In all cases the intermolecular interaction energies are calculated by means of Hermite Gaussian functions using the McMurchie-Davidson [J. Comput. Phys. 26, 218 (1978)] recursion to calculate all the required integrals. Furthermore, the use of Hermite Gaussian functions allows a point multipole decomposition determination at each expansion site. Additionally, the issue of computational speed is investigated by reciprocal space based formalisms which include the particle mesh Ewald (PME) and fast Fourier-Poisson (FFP) methods. Frozen-core (Coulomb and exchange-repulsion) intermolecular interaction results for ten stationary points on the water dimer potential-energy surface, as well as a one-dimensional surface scan for the canonical water dimer, formamide, stacked benzene, and benzene water dimers, are presented. All results show reasonable agreement with the corresponding CSOV calculated reference contributions, around 0.1 and 0.15 kcal/mol error for

  14. Generalization of the Gaussian electrostatic model: extension to arbitrary angular momentum, distributed multipoles, and speedup with reciprocal space methods.

    PubMed

    Cisneros, G Andrés; Piquemal, Jean-Philip; Darden, Thomas A

    2006-11-14

    The simulation of biological systems by means of current empirical force fields presents shortcomings due to their lack of accuracy, especially in the description of the nonbonded terms. We have previously introduced a force field based on density fitting termed the Gaussian electrostatic model-0 (GEM-0) J.-P. Piquemal et al. [J. Chem. Phys. 124, 104101 (2006)] that improves the description of the nonbonded interactions. GEM-0 relies on density fitting methodology to reproduce each contribution of the constrained space orbital variation (CSOV) energy decomposition scheme, by expanding the electronic density of the molecule in s-type Gaussian functions centered at specific sites. In the present contribution we extend the Coulomb and exchange components of the force field to auxiliary basis sets of arbitrary angular momentum. Since the basis functions with higher angular momentum have directionality, a reference molecular frame (local frame) formalism is employed for the rotation of the fitted expansion coefficients. In all cases the intermolecular interaction energies are calculated by means of Hermite Gaussian functions using the McMurchie-Davidson [J. Comput. Phys. 26, 218 (1978)] recursion to calculate all the required integrals. Furthermore, the use of Hermite Gaussian functions allows a point multipole decomposition determination at each expansion site. Additionally, the issue of computational speed is investigated by reciprocal space based formalisms which include the particle mesh Ewald (PME) and fast Fourier-Poisson (FFP) methods. Frozen-core (Coulomb and exchange-repulsion) intermolecular interaction results for ten stationary points on the water dimer potential-energy surface, as well as a one-dimensional surface scan for the canonical water dimer, formamide, stacked benzene, and benzene water dimers, are presented. All results show reasonable agreement with the corresponding CSOV calculated reference contributions, around 0.1 and 0.15 kcal/mol error for

  15. Generalization of the Gaussian electrostatic model: Extension to arbitrary angular momentum, distributed multipoles, and speedup with reciprocal space methods

    NASA Astrophysics Data System (ADS)

    Cisneros, G. Andrés; Piquemal, Jean-Philip; Darden, Thomas A.

    2006-11-01

    The simulation of biological systems by means of current empirical force fields presents shortcomings due to their lack of accuracy, especially in the description of the nonbonded terms. We have previously introduced a force field based on density fitting termed the Gaussian electrostatic model-0 (GEM-0) J.-P. Piquemal et al. [J. Chem. Phys. 124, 104101 (2006)] that improves the description of the nonbonded interactions. GEM-0 relies on density fitting methodology to reproduce each contribution of the constrained space orbital variation (CSOV) energy decomposition scheme, by expanding the electronic density of the molecule in s-type Gaussian functions centered at specific sites. In the present contribution we extend the Coulomb and exchange components of the force field to auxiliary basis sets of arbitrary angular momentum. Since the basis functions with higher angular momentum have directionality, a reference molecular frame (local frame) formalism is employed for the rotation of the fitted expansion coefficients. In all cases the intermolecular interaction energies are calculated by means of Hermite Gaussian functions using the McMurchie-Davidson [J. Comput. Phys. 26, 218 (1978)] recursion to calculate all the required integrals. Furthermore, the use of Hermite Gaussian functions allows a point multipole decomposition determination at each expansion site. Additionally, the issue of computational speed is investigated by reciprocal space based formalisms which include the particle mesh Ewald (PME) and fast Fourier-Poisson (FFP) methods. Frozen-core (Coulomb and exchange-repulsion) intermolecular interaction results for ten stationary points on the water dimer potential-energy surface, as well as a one-dimensional surface scan for the canonical water dimer, formamide, stacked benzene, and benzene water dimers, are presented. All results show reasonable agreement with the corresponding CSOV calculated reference contributions, around 0.1 and 0.15kcal/mol error for

  16. Critical loss radius in a Penning trap subject to multipole fields

    SciTech Connect

    Fajans, J.; Madsen, N.; Robicheaux, F.

    2008-03-15

    When particles in a Penning trap are subject to a magnetic multipole field, those beyond a critical radius will be lost. The critical radius depends on the history by which the field is applied, and can be much smaller if the particles are injected into a preexisting multipole than if the particles are subject to a ramped multipole. Both cases are relevant to ongoing experiments designed to trap antihydrogen.

  17. Fast Domain Partitioning Method for dynamic boundary integral equations applicable to non-planar faults dipping in 3-D elastic half-space

    NASA Astrophysics Data System (ADS)

    Ando, Ryosuke

    2016-11-01

    The elastodynamic boundary integral equation method (BIEM) in real space and in the temporal domain is an accurate semi-analytical tool to investigate the earthquake rupture dynamics on non-planar faults. However, its heavy computational demand for a historic integral generally increases with a time complexity of O(MN3)for the number of time steps N and elements M due to volume integration in the causality cone. In this study, we introduce an efficient BIEM, termed the `Fast Domain Partitioning Method' (FDPM), which enables us to reduce the computation time to the order of the surface integral, O(MN2), without degrading the accuracy. The memory requirement is also reduced to O(M2) from O(M2N). FDPM uses the physical nature of Green's function for stress to partition the causality cone into the domains of the P and S wave fronts, the domain in-between the P and S wave fronts, and the domain of the static equilibrium, where the latter two domains exhibit simpler dependences on time and/or space. The scalability of this method is demonstrated on the large-scale parallel computing environments of distributed memory systems. It is also shown that FDPM enables an efficient use of memory storage, which makes it possible to reduce computation times to a previously unprecedented level. We thus present FDPM as a powerful tool to break through the current fundamental difficulties in running dynamic simulations of coseismic ruptures and earthquake cycles under realistic conditions of fault geometries.

  18. Analytical expressions for fringe fields in multipole magnets

    NASA Astrophysics Data System (ADS)

    Muratori, B. D.; Jones, J. K.; Wolski, A.

    2015-06-01

    Fringe fields in multipole magnets can have a variety of effects on the linear and nonlinear dynamics of particles moving along an accelerator beam line. An accurate model of an accelerator must include realistic models of the magnet fringe fields. Fringe fields for dipoles are well understood and can be modeled at an early stage of accelerator design in such codes as mad8, madx, gpt or elegant. Existing techniques for quadrupole and higher order multipoles rely either on the use of a numerical field map, or on a description of the field in the form of a series expansion about a chosen axis. Usually, it is not until the later stages of a design project that such descriptions (based on magnet modeling or measurement) become available. Furthermore, series expansions rely on the assumption that the beam travels more or less on axis throughout the beam line; but in some types of machines (for example, Fixed Field Alternating Gradients or FFAGs) this is not a good assumption. Furthermore, some tracking codes, such as gpt, use methods for including space charge effects that require fields to vary smoothly and continuously along a beam line: in such cases, realistic fringe field models are of significant importance. In this paper, a method for constructing analytical expressions for multipole fringe fields is presented. Such expressions allow fringe field effects to be included in beam dynamics simulations from the start of an accelerator design project, even before detailed magnet design work has been undertaken. The magnetostatic Maxwell equations are solved analytically and a solution that fits all orders of multipoles is derived. Quadrupole fringe fields are considered in detail as these are the ones that give the strongest effects. The analytic expressions for quadrupole fringe fields are compared with data obtained from numerical modeling codes in two cases: a magnet in the high luminosity upgrade of the Large Hadron Collider inner triplet, and a magnet in the

  19. Tests of planar permanent magnet multipole focusing elements

    SciTech Connect

    Cobb, J.; Tatchyn, R.

    1993-08-01

    In recent work, planar configurations of permanent magnets were proposed as substitutes for conventional current-driven iron quadrupoles in applications limited by small aperture sizes and featuring small beam occupation diameters. Important examples include the configuring of focusing lattices in small-gap insertion devices, and the implementation of compact mini-beta sections on linear or circular machines. In subsequent analysis, this approach was extended to sextupoles and higher-order multipoles. In this paper we report on initial measurements conducted at the Stanford Linear Accelerator Center on recently fabricated planar permanent magnet quadrupoles and sextupoles configured out of SmCo and NdFe/B.

  20. Experimental demonstration of a surface-electrode multipole ion trap

    NASA Astrophysics Data System (ADS)

    Maurice, Mark; Allen, Curtis; Green, Dylan; Farr, Andrew; Burke, Timothy; Hilleke, Russell; Clark, Robert

    2015-08-01

    We report on the design and experimental characterization of a surface-electrode multipole ion trap. Individual microscopic sugar particles are confined in the trap. The trajectories of driven particle motion are compared with a theoretical model, both to verify qualitative predictions of the model and to measure the charge-to-mass ratio of the confined particle. The generation of harmonics of the driving frequency is observed as a key signature of the nonlinear nature of the trap. We remark on possible applications of our traps, including to mass spectrometry.

  1. FURTHER EXPERIENCE WITH SLC PERMANENT MAGNETIC (PM) MULTIPOLES

    SciTech Connect

    Spencer, James E.

    2003-05-29

    PM multipoles have been used in the SLAC damping rings (DR) and their injection and extraction lines since 1985. Due to upgrades of the DR vacuum chambers for higher currents in 1993, there was an opportunity to check some of these magnets[1]. Nothing more was done until a program of real-time radiation measurements was begun in the electron ring to determine causes, levels and effects of integrated gamma and neutron doses on the strengths and harmonic contents for NLC purposes. We discuss results of the latest magnetic measurements, radiation measurement program, semiconductor dosimeters and a few unexpected but interesting conclusions.

  2. Deriving static atomic multipoles from the electrostatic potential.

    PubMed

    Kramer, Christian; Bereau, Tristan; Spinn, Alexander; Liedl, Klaus R; Gedeck, Peter; Meuwly, Markus

    2013-12-23

    The description of molecular systems using multipolar electrostatics calls for automated methods to fit the necessary parameters. In this paper, we describe an open-source software package that allows fitting atomic multipoles (MTPs) from the ab initio electrostatic potential by adequate atom typing and judicious assignment of the local axis system. By enabling the simultaneous fit of several molecules and/or conformations, the package addresses issues of parameter transferability and lack of sampling for buried atoms. We illustrate the method by studying a series of small alcohol molecules, as well as various conformations of protonated butylamine.

  3. Dipole and higher multipole particle creation in the steady state universe

    NASA Astrophysics Data System (ADS)

    Liboff, Richard L.

    1994-08-01

    The birth of a particle in an otherwise empty universe is studied. The particle is a sphere is a sphere of radius a, with unifrom mass density and surface charge density corresponding to a point dipole p, at the origin. Consistent with equsions of general relativity and Maxwell's equations, gravity and dipole fields propagate away from the particle's initiation with the speed of light. Field energies are supplied by the particle's mass which subsequently decays in time. Asmotic solution to a nonlinear equation for the remaining mass gives the following criterion for the mass to survive the expanding fields: mzero c2 greater than u p, where up is identically = p2/3a3 is the self-energy of the dipole particle. A similar relation is derived for all higher order multipole particles resulting in a parallel inequality with u p replaced by the self-energy of the multipole particle. In all such events, from the monopole to all higher multipole particles, it is found that if the multipole component of self-energy is equated to the starting rest-mass energy of the particle, then the final stae of the system includes a massless multipole particle with its corresponding multipole potential field. As such particles are not observed in nature, it is concluded that for consistency of the steady state universe, the starting rest mass of a multipole particle must exceed the multipole component of its self-energy.

  4. Optimal design of a new multipole bilayer magnetorheological brake

    NASA Astrophysics Data System (ADS)

    Shiao, Yaojung; Ngoc, Nguyen Anh; Lai, Chien-Hung

    2016-11-01

    This article presents a new high-torque multipole bilayer magneto-rheological brake (MRB). This MRB has a unique structural design with multiple electromagnetic poles and multiple media layers of magnetorheological fluid (MRF). The MRB has two rotors located on the outer and inner sides of a six-pole stator, and therefore, it can provide higher torque and a larger torque-to-volume ratio (TVR) than conventional single- or multipole single-layer MRBs can. Moreover, the problem of potential MRF leakage is solved by using cylindrical separator rings around the stator. In this study, first, the structure of the proposed MRB is introduced. An analog magnetic circuit was built for the MRB to investigate the effects of the MRB parameters on the magnetic field intensity of the MRF layers. In addition, a 3D electromagnetic model of the MRB was developed to simulate and examine the magnetic flux intensity and corresponding braking torque. An approximate optimization method was then applied to obtain the optimal geometric dimensions for the major dimensional parameters of the MRB. The MRB was manufactured and tested to validate its torque and dynamic characteristics. The results showed that the proposed MRB exhibited great enhancement of the braking torque and TVR.

  5. Vanadium magnetoelectric multipoles in V2O3

    NASA Astrophysics Data System (ADS)

    Lovesey, S. W.; Fernández-Rodríguez, J.; Blanco, J. A.; Sivia, D. S.; Knight, K. S.; Paolasini, L.

    2007-01-01

    We establish the contributions made by the vanadium anapole, and other magnetoelectric multipoles, to the electron ground state of V2O3 in its antiferromagnetic modification. To this end, observations made by resonant x-ray Bragg diffraction are analyzed in terms of a scattering amplitude derived within the atomic model. The amplitude is a coherent sum of E1-E2 and E2-E2 resonance events that is fully compliant with the established chemical (I2/a) and magnetic space groups. One set of values for the V multipoles are found to give a totally satisfactory account of all data collected at two space-group forbidden Bragg reflections in the two polarization channels σ'σ and π'σ ( σ primary polarization, and σ' and π' secondary polarizations). Derived estimates of the V anapole (E1-E2) and V octupole (E2-E2) are good to within a few percent, and the E1-E2 event alone is shown not to adequately describe the diffraction data.

  6. A Multipole Expansion Method for Analyzing Lightning Field Changes

    NASA Technical Reports Server (NTRS)

    Koshak, William J.; Krider, E. Philip; Murphy, Martin J.

    1999-01-01

    Changes in the surface electric field are frequently used to infer the locations and magnitudes of lightning-caused changes in thundercloud charge distributions. The traditional procedure is to assume that the charges that are effectively deposited by the flash can be modeled either as a single point charge (the Q model) or a point dipole (the P model). The Q model has four unknown parameters and provides a good description of many cloud-to-ground (CG) flashes. The P model has six unknown parameters and describes many intracloud (IC) discharges. In this paper we introduce a new analysis method that assumes that the change in the cloud charge can be described by a truncated multipole expansion, i.e., there are both monopole and dipole terms in the unknown source distribution, and both terms are applied simultaneously. This method can be used to analyze CG flashes that are accompanied by large changes in the cloud dipole moment and complex IC discharges. If there is enough information content in the measurements, the model can also be generalized to include quadrupole and higher order terms. The parameters of the charge moments are determined using a dme-dimensional grid search in combination with a linear inversion, and because of this, local minima in the error function and the associated solution ambiguities are avoided. The multipole method has been tested on computer-simulated sources and on natural lightning at the NASA Kennedy Space Center and U.S. Air Force Eastern Range.

  7. Multipole mixing ratios and substate populations in Rn-219

    NASA Astrophysics Data System (ADS)

    Jones, G. D.

    2016-08-01

    Historical alpha-gamma angular correlation data for the decay of 223Ra into excited states of 219Rn have been analysed, using the correct spins of the states involved, for the first time. The analyses produced multipole mixing ratios (E2/M1) of δ (144)=-0.11\\+/- 0.03, δ (154)=0, δ (158)=-0.205\\+/- 0.018 and δ (269)=-0.149\\+/- 0.004 where the nominal transition energies, in keV, are given in brackets. These values are consistent with published values obtained from internal conversion electron spectroscopy. It is also found that δ (324)=0 and δ (338)=-0.235\\+/- 0.030 (where both values differ from current tabulations) and that the sign of the multipole mixing ratio for the 122 keV transition is negative. The 158, 269 and 338 keV states are found to be aligned with high population of M=+/- 3/2 substates and the 127 keV state is believed to have undergone spin relaxation.

  8. Rogue Mode Shileding in NSLS-II Multipole Vacuum Chambers

    SciTech Connect

    Ferreira, M.; Blednykh, A.; Bacha, B.; Borrelli, A.; Hseuh, H.-C.; Kosciuk, B.; Krinsky, S.; Singh, O.; Vetter, K.

    2011-03-28

    Modes with transverse electric field (TE-modes) in the NSLS-II multipole vacuum chamber can be generated at frequencies above 450MHz due to its geometric dimensions. Since the NSLS-II BPM system monitors signals within 10 MHz band at RF frequency of 500 MHz, frequencies of higher-order modes (HOM) can be generated within the transmission band of the band pass filter. In order to avoid systematic errors in the NSLS-II BPM system, we introduced frequency shift of HOMs by using RF metal shielding located in the antechamber slot. We demonstrated numerical modeling and experimental studies of the spurious TE modes in the NSLS-II vacuum chambers with antechamber slot. Calculated frequencies of TE-modes in considered chambers with and without RF shielding were verified experimentally. Flexible BeCu RF shielding inside each chamber at proper location shifts frequencies of H{sub 10p}-modes above {approx}900MHz, except chambers S6 odd and even. These chambers need special attention because of synchrotron radiation from downstream magnets. S6 odd multipole vacuum chamber needs to be measured and the RF shielding length has to be optimized. RF shielding looks adequate for baseline design. Fifty percent of open space provides adequate pumping speed.

  9. Artificially Structured Boundary For Antihydrogen Studies

    SciTech Connect

    Ordonez, C. A.

    2011-06-01

    It may be possible to confine antiprotons using an artificially structured boundary, as part of a process for synthesizing antihydrogen. An artificially structured boundary is defined at present as one that produces a spatially periodic static field, such that the spatial period and range of the field is much smaller than the dimensions of a cloud, plasma or beam of charged particles that is confined by the boundary. A modified Kingdon trap could employ an artificially structured boundary at the location of inner electrodes. The artificially structured boundary would produce a multipole magnetic field that keeps confined particles from reaching the inner electrodes. The magnetic field would be sufficiently short in range to affect the particle trajectories only in close proximity to the inner electrodes. The conditions for producing such a magnetic field have been assessed. The results indicate that the magnetic field must be an octupole or higher order field.

  10. Cell multipole method for molecular simulations in bulk and confined systems

    NASA Astrophysics Data System (ADS)

    Zheng, Jie; Balasundaram, Ramkumar; Gehrke, Stevin H.; Heffelfinger, Grant S.; Goddard, William A.; Jiang, Shaoyi

    2003-03-01

    One of the bottlenecks in molecular simulations is to treat large systems involving electrostatic interactions. Computational time in conventional molecular simulation methods scales with O(N2), where N is the number of atoms. With the emergence of new simulations methodologies, such as the cell multipole method (CMM), and massively parallel supercomputers, simulations of 10-million atoms or more have been performed. In this work, the optimal hierarchical cell level and the algorithm for Taylor expansion were recommended for fast and efficient molecular dynamics simulations of three-dimensional (3D) systems. CMM was then extended to treat quasi-two-dimensional (2D) systems, which is very important for condensed matter physics problems. In addition, CMM was applied to grand canonical ensemble Monte Carlo simulations for both 3D and 2D systems. Under the optimal conditions, our results show that computational time is approximately linear with N for large systems, average error in total potential energy is about 0.05% for 3D and 0.32% for 2D systems, and the RMS force error is 0.27% for 3D and 0.43% for 2D systems when compared with the Ewald summation.

  11. Cell multipole method for molecular simulations in bulk and confined systems

    SciTech Connect

    Zheng, Jie; Balasundaram, Ramkumar; Gehrke, Stevin H.; Heffelfinger, Grant S.; Goddard, William A. III; Jiang, Shaoyi

    2002-08-01

    One of the bottlenecks in molecular simulations is to treat large systems involving electrostatic interactions. Computational time in conventional molecular simulation methods scales with O(N{sup 2}), where N is the number of atoms. With the emergence of the cell multipole method (CMM) and massively parallel supercomputers, simulations of 10 million atoms have been performed. In this work, the optimal hierarchy cell level and the algorithm for Taylor expansion were recommended for fast and accurate molecular dynamics (MD) simulations of three-dimensional (3D) systems. CMM was then extended to treat quasi-two-dimensional (2D) systems, which is very important for condensed matter physics problems. In addition, CMM was applied to grand canonical ensemble Monte Carlo (GCMC) simulations for both 3D and 2D systems. Under the optimal conditions, the results show that computational time is approximately linear with N for large systems, average error in total potential energy is less than {approx}1%, and RMS force is about 0.015 for 3D and 2D systems when compared with the Ewald summation.

  12. Systematic Improvement of Potential-Derived Atomic Multipoles and Redundancy of the Electrostatic Parameter Space.

    PubMed

    Jakobsen, Sofie; Jensen, Frank

    2014-12-01

    We assess the accuracy of force field (FF) electrostatics at several levels of approximation from the standard model using fixed partial charges to conformational specific multipole fits including up to quadrupole moments. Potential-derived point charges and multipoles are calculated using least-squares methods for a total of ∼1000 different conformations of the 20 natural amino acids. Opposed to standard charge fitting schemes the procedure presented in the current work employs fitting points placed on a single isodensity surface, since the electrostatic potential (ESP) on such a surface determines the ESP at all points outside this surface. We find that the effect of multipoles beyond partial atomic charges is of the same magnitude as the effect due to neglecting conformational dependency (i.e., polarizability), suggesting that the two effects should be included at the same level in FF development. The redundancy at both the partial charge and multipole levels of approximation is quantified. We present an algorithm which stepwise reduces or increases the dimensionality of the charge or multipole parameter space and provides an upper limit of the ESP error that can be obtained at a given truncation level. Thereby, we can identify a reduced set of multipole moments corresponding to ∼40% of the total number of multipoles. This subset of parameters provides a significant improvement in the representation of the ESP compared to the simple point charge model and close to the accuracy obtained using the complete multipole parameter space. The selection of the ∼40% most important multipole sites is highly transferable among different conformations, and we find that quadrupoles are of high importance for atoms involved in π-bonding, since the anisotropic electric field generated in such regions requires a large degree of flexibility.

  13. Electric multipole interactions in an extended BEG model

    NASA Astrophysics Data System (ADS)

    Burns, Teresa; Dennison, J. R.

    2013-03-01

    General 2D dielectric phase diagrams and phase transitions for multipolar molecules adsorbed to a square ionic crystal are presented. The adsorbed molecules are modeled using a dilute spin-one Ising model in the Blume-Emery-Griffiths formalism, using a mean-field approximation. Physical constants such as the electric multipole moments and binding energies are used to uniquely determine the interaction parameters over the full range of physically-relevant values. We find that temperature- and coverage-dependent antiferroelectric to ferroelectric, coverage-dependent ferroelectric up to ferroelectric down, reentrant ferroelectric to ferrielectric, and order-disorder dipole phase transitions can occur. The results are presented as a quasi-continuous set of phase diagrams. Extensions into ferro-electric parameter space are discussed and connections to analytical solutions are explored.

  14. Multipole-multimode Floquet theory in nuclear magnetic resonance.

    PubMed

    Ramachandran, Ramesh; Griffin, Robert G

    2005-04-22

    In this paper, we present a new analytical approach for describing the spin dynamics of synchronous and asynchronous time-dependent modulations in solid-state nuclear magnetic resonance experiments. The approach, based on multimode Floquet theory, employs the multipole operator basis of Sanctuary for spin description and illustrates the time evolution in the Floquet-Liouville space using the effective Hamiltonians obtained from the contact (or van Vleck) transformation procedure. Since the Hamiltonian and the density operator are expressed in terms of irreducible tensor operators, extensions to higher spin magnitudes (I>12) and multiple spins are quite straightforward and permit analytical treatments for many problems. We outline the general underlying principles involved in this approach with a brief mention of its potential application in other branches of spectroscopy. PMID:15945688

  15. Magnetic assembly of colloidal superstructures with multipole symmetry.

    PubMed

    Erb, Randall M; Son, Hui S; Samanta, Bappaditya; Rotello, Vincent M; Yellen, Benjamin B

    2009-02-19

    The assembly of complex structures out of simple colloidal building blocks is of practical interest for building materials with unique optical properties (for example photonic crystals and DNA biosensors) and is of fundamental importance in improving our understanding of self-assembly processes occurring on molecular to macroscopic length scales. Here we demonstrate a self-assembly principle that is capable of organizing a diverse set of colloidal particles into highly reproducible, rotationally symmetric arrangements. The structures are assembled using the magnetostatic interaction between effectively diamagnetic and paramagnetic particles within a magnetized ferrofluid. The resulting multipolar geometries resemble electrostatic charge configurations such as axial quadrupoles ('Saturn rings'), axial octupoles ('flowers'), linear quadrupoles (poles) and mixed multipole arrangements ('two tone'), which represent just a few examples of the type of structure that can be built using this technique.

  16. Magnetic assembly of colloidal superstructures with multipole symmetry.

    PubMed

    Erb, Randall M; Son, Hui S; Samanta, Bappaditya; Rotello, Vincent M; Yellen, Benjamin B

    2009-02-19

    The assembly of complex structures out of simple colloidal building blocks is of practical interest for building materials with unique optical properties (for example photonic crystals and DNA biosensors) and is of fundamental importance in improving our understanding of self-assembly processes occurring on molecular to macroscopic length scales. Here we demonstrate a self-assembly principle that is capable of organizing a diverse set of colloidal particles into highly reproducible, rotationally symmetric arrangements. The structures are assembled using the magnetostatic interaction between effectively diamagnetic and paramagnetic particles within a magnetized ferrofluid. The resulting multipolar geometries resemble electrostatic charge configurations such as axial quadrupoles ('Saturn rings'), axial octupoles ('flowers'), linear quadrupoles (poles) and mixed multipole arrangements ('two tone'), which represent just a few examples of the type of structure that can be built using this technique. PMID:19225522

  17. Active and passive compensation of APPLE II-introduced multipole errors through beam-based measurement

    NASA Astrophysics Data System (ADS)

    Chung, Ting-Yi; Huang, Szu-Jung; Fu, Huang-Wen; Chang, Ho-Ping; Chang, Cheng-Hsiang; Hwang, Ching-Shiang

    2016-08-01

    The effect of an APPLE II-type elliptically polarized undulator (EPU) on the beam dynamics were investigated using active and passive methods. To reduce the tune shift and improve the injection efficiency, dynamic multipole errors were compensated using L-shaped iron shims, which resulted in stable top-up operation for a minimum gap. The skew quadrupole error was compensated using a multipole corrector, which was located downstream of the EPU for minimizing betatron coupling, and it ensured the enhancement of the synchrotron radiation brightness. The investigation methods, a numerical simulation algorithm, a multipole error correction method, and the beam-based measurement results are discussed.

  18. Polarizable Atomic Multipole Solutes in a Poisson-Boltzmann Continuum

    PubMed Central

    Schnieders, Michael J.; Baker, Nathan A.; Ren, Pengyu; Ponder, Jay W.

    2008-01-01

    Modeling the change in the electrostatics of organic molecules upon moving from vacuum into solvent, due to polarization, has long been an interesting problem. In vacuum, experimental values for the dipole moments and polarizabilities of small, rigid molecules are known to high accuracy; however, it has generally been difficult to determine these quantities for a polar molecule in water. A theoretical approach introduced by Onsager used vacuum properties of small molecules, including polarizability, dipole moment and size, to predict experimentally known permittivities of neat liquids via the Poisson equation. Since this important advance in understanding the condensed phase, a large number of computational methods have been developed to study solutes embedded in a continuum via numerical solutions to the Poisson-Boltzmann equation (PBE). Only recently have the classical force fields used for studying biomolecules begun to include explicit polarization in their functional forms. Here we describe the theory underlying a newly developed Polarizable Multipole Poisson-Boltzmann (PMPB) continuum electrostatics model, which builds on the Atomic Multipole Optimized Energetics for Biomolecular Applications (AMOEBA) force field. As an application of the PMPB methodology, results are presented for several small folded proteins studied by molecular dynamics in explicit water as well as embedded in the PMPB continuum. The dipole moment of each protein increased on average by a factor of 1.27 in explicit water and 1.26 in continuum solvent. The essentially identical electrostatic response in both models suggests that PMPB electrostatics offers an efficient alternative to sampling explicit solvent molecules for a variety of interesting applications, including binding energies, conformational analysis, and pKa prediction. Introduction of 150 mM salt lowered the electrostatic solvation energy between 2–13 kcal/mole, depending on the formal charge of the protein, but had only a

  19. Nuclear photonics at ultra-high counting rates and higher multipole excitations

    NASA Astrophysics Data System (ADS)

    Thirolf, P. G.; Habs, D.; Filipescu, D.; Gernhäuser, R.; Günther, M. M.; Jentschel, M.; Marginean, N.; Pietralla, N.

    2012-07-01

    Next-generation γ beams from laser Compton-backscattering facilities like ELI-NP (Bucharest)] or MEGa-Ray (Livermore) will drastically exceed the photon flux presently available at existing facilities, reaching or even exceeding 1013 γ/sec. The beam structure as presently foreseen for MEGa-Ray and ELI-NP builds upon a structure of macro-pulses (˜120 Hz) for the electron beam, accelerated with X-band technology at 11.5 GHz, resulting in a micro structure of 87 ps distance between the electron pulses acting as mirrors for a counterpropagating intense laser. In total each 8.3 ms a γ pulse series with a duration of about 100 ns will impinge on the target, resulting in an instantaneous photon flux of about 1018 γ/s, thus introducing major challenges in view of pile-up. Novel γ optics will be applied to monochromatize the γ beam to ultimately ΔE/E˜10-6. Thus level-selective spectroscopy of higher multipole excitations will become accessible with good contrast for the first time. Fast responding γ detectors, e.g. based on advanced scintillator technology (e.g. LaBr3(Ce)) allow for measurements with count rates as high as 106-107 γ/s without significant drop of performance. Data handling adapted to the beam conditions could be performed by fast digitizing electronics, able to sample data traces during the micro-pulse duration, while the subsequent macro-pulse gap of ca. 8 ms leaves ample time for data readout. A ball of LaBr3 detectors with digital readout appears to best suited for this novel type of nuclear photonics at ultra-high counting rates.

  20. Nuclear photonics at ultra-high counting rates and higher multipole excitations

    SciTech Connect

    Thirolf, P. G.; Habs, D.; Filipescu, D.; Gernhaeuser, R.; Guenther, M. M.; Jentschel, M.; Marginean, N.; Pietralla, N.

    2012-07-09

    Next-generation {gamma} beams from laser Compton-backscattering facilities like ELI-NP (Bucharest)] or MEGa-Ray (Livermore) will drastically exceed the photon flux presently available at existing facilities, reaching or even exceeding 10{sup 13}{gamma}/sec. The beam structure as presently foreseen for MEGa-Ray and ELI-NP builds upon a structure of macro-pulses ({approx}120 Hz) for the electron beam, accelerated with X-band technology at 11.5 GHz, resulting in a micro structure of 87 ps distance between the electron pulses acting as mirrors for a counterpropagating intense laser. In total each 8.3 ms a {gamma} pulse series with a duration of about 100 ns will impinge on the target, resulting in an instantaneous photon flux of about 10{sup 18}{gamma}/s, thus introducing major challenges in view of pile-up. Novel {gamma} optics will be applied to monochromatize the {gamma} beam to ultimately {Delta}E/E{approx}10{sup -6}. Thus level-selective spectroscopy of higher multipole excitations will become accessible with good contrast for the first time. Fast responding {gamma} detectors, e.g. based on advanced scintillator technology (e.g. LaBr{sub 3}(Ce)) allow for measurements with count rates as high as 10{sup 6}-10{sup 7}{gamma}/s without significant drop of performance. Data handling adapted to the beam conditions could be performed by fast digitizing electronics, able to sample data traces during the micro-pulse duration, while the subsequent macro-pulse gap of ca. 8 ms leaves ample time for data readout. A ball of LaBr{sub 3} detectors with digital readout appears to best suited for this novel type of nuclear photonics at ultra-high counting rates.

  1. Characterization of multipole storage assisted dissociation: implications for electrospray ionization mass spectrometry characterization of biomolecules.

    PubMed

    Sannes-Lowery, K A; Hofstadler, S A

    2000-01-01

    Ions accumulated in an rf-only multipole for extended periods of time prior to mass analysis can experience a significant degree of fragmentation and produce mass spectra which do not reflect the true nature of the intact analyte(s). This phenomenon, termed multipole storage assisted dissociation (MSAD), places constraints on the maximum number of ions which can be accumulated in the multipole storage device as a result of its finite space charge limit. This phenomenon can be exploited to produce dissociation spectra that are dominated by fragment ions providing important sequence/structure information. In this work we further explore MSAD and characterize parameters including accumulation time, source pressure, and the electrostatic configuration of the multipole storage device, which mediate the phenomenon. Operating parameters are identified that can either enhance or eliminate the phenomenon.

  2. Simple loss scaling laws for quadrupoles and higher-order multipoles used in antihydrogen traps

    SciTech Connect

    Fajans, J.; Bertsche, W.; Burke, K.; Deutsch, A.; Chapman, S. F.; Gomberoff, K.; Wurtele, J. S.; Werf, D. P. van der

    2006-10-18

    Simple scaling laws strongly suggest that for antihydrogen relevant parameters, quadrupole magnetic fields will transport particles into, or near to, the trap walls. Consequently quadrupoles are a poor choice for antihydrogen trapping. Higher order multipoles lead to much less transport.

  3. A multipole-based water potential with implicit polarization for biomolecular simulations.

    PubMed

    Walsh, T R; Liang, T

    2009-04-30

    A new water potential, DMIP (distributed multipoles, implicit polarization), is constructed using distributed multipoles to describe the electrostatic interactions, while accounting for polarization implicitly. In this procedure, small clusters are randomly sampled from atomistic simulations of bulk water using the AMOEBA (Ren and Ponder, J Comput Chem 2002, 23, 1497) potential. The multipole moments of the central water in each cluster are obtained from ab initio densities for each cluster, and the moments are then averaged over all clusters. Properties of bulk water calculated using DMIP compare favorably with existing data from AMOEBA simulations and experiment, with a conservative estimate of reduction in compute time of roughly 40%. The implicit force-field is also shown to work compatibly with existing polarizable multipole-based force-fields for biomolecules.

  4. Constraining halo occupation distribution and cosmic growth rate using multipole power spectrum

    NASA Astrophysics Data System (ADS)

    Hikage, Chiaki

    2014-06-01

    We propose a new method of measuring halo occupation distribution (HOD) together with cosmic growth rate using multipole components of galaxy power spectrum Pl(k). The non-linear redshift-space distortion due to the random motion of satellite galaxies, i.e. Fingers-of-God, generates high-l multipole anisotropy in galaxy clustering, such as the hexadecapole (l = 4) and tetra-hexadecapole (l = 6), which are sensitive to the fraction and the velocity dispersion of satellite galaxies. Using simulated samples following the HOD of luminous red galaxies, we find that the input HOD parameters are successfully reproduced from Pl(k), and that high-l multipole information help to break the degeneracy among HOD parameters. We also show that the measurements of the cosmic growth rate as well as the satellite fraction and velocity dispersions are significantly improved by adding the small-scale information of high-l multipoles.

  5. Radial stratification of ions as a function of mass to charge ratio in collisional cooling radio frequency multipoles used as ion guides or ion traps.

    PubMed

    Tolmachev, A V; Udseth, H R; Smith, R D

    2000-01-01

    Collisional cooling in radio frequency (RF) ion guides has been used in mass spectrometry as an intermediate step during the transport of ions from high pressure regions of an ion source into high vacuum regions of a mass analyzer. Such collisional cooling devices are also increasingly used as 'linear', two-dimensional (2D) ion traps for ion storage and accumulation to achieve improved sensitivity and dynamic range. We have used the effective potential approach to study m/z dependent distribution of ions in the devices. Relationships obtained for the ideal 2D multipole demonstrate that after cooling the ion cloud forms concentric cylindrical layers, each of them composed of ions having the same m/z ratio; the higher the m/z, the larger is the radial position occupied by the ions. This behavior results from the fact that the effective RF focusing is stronger for ions of lower m/z, pushing these ions closer to the axis. Radial boundaries of the layers are more distinct for multiply charged ions, compared to singly charged ions having the same m/z and charge density. In the case of sufficiently high ion density and low ion kinetic energy, we show that each m/z layer is separated from its nearest neighbor by a radial gap of low ion density. The radial gaps of low ion population between the layers are formed due to the space charge repulsion. Conditions for establishing the m/z stratified structure include sufficiently high charge density and adequate collisional relaxation. These conditions are likely to occur in collisional RF multipoles operated as ion guides or 2D ion traps for external ion accumulation. When linear ion density increases, the maximum ion cloud radius also increases, and outer layers of high m/z ions approach the multipole rods and may be ejected. This 'overfilling' of the multipole capacity results in a strong discrimination against high m/z ions. A relationship is reported for the maximum linear ion density of a multipole that is not overfilled.

  6. Selected applications of planar permanent magnet multipoles in FEL insertion device design

    SciTech Connect

    Tatchyn, R.

    1993-08-01

    In recent work, a new class of magnetic multipoles based on planar configurations of permanent magnet (PM) material has been developed. These structures, in particular the quadrupole and sextupole, feature fully open horizontal apertures, and are comparable in effectiveness to conventional iron multipole structures. In this paper results of recent measurements of planar PM quadrupoles and sextupoles are reported and selected applications to FEL insertion device design are considered.

  7. A general formalism for quasi-local correction of multipole distortions in periodic transport systems

    SciTech Connect

    Neuffer, D.; Forest, E.

    1988-06-01

    We generalize a new concept of local correction of nonlinearities due to multipole content by giving it a mathematical description. We present a general method which allows for a general reduction of all the distortions produced by a given set of multipole errors. The method can be applied to correct an arbitrary distribution of the errors in any transport system, such as transport lines, linacs, synchrotrons and storage rings. 11 refs., 3 figs., 2 tabs.

  8. A three-dimensional fast solver for arbitrary vorton distributions

    SciTech Connect

    Strickland, J.H.; Baty, R.S.

    1994-05-01

    A method which is capable of an efficient calculation of the three-dimensional flow field produced by a large system of vortons (discretized regions of vorticity) is presented in this report. The system of vortons can, in turn, be used to model body surfaces, container boundaries, free-surfaces, plumes, jets, and wakes in unsteady three-dimensional flow fields. This method takes advantage of multipole and local series expansions which enables one to make calculations for interactions between groups of vortons which are in well-separated spatial domains rather than having to consider interactions between every pair of vortons. In this work, series expansions for the vector potential of the vorton system are obtained. From such expansions, the three components of velocity can be obtained explicitly. A Fortran computer code FAST3D has been written to calculate the vector potential and the velocity components at selected points in the flow field. In this code, the evaluation points do not have to coincide with the location of the vortons themselves. Test cases have been run to benchmark the truncation errors and CPU time savings associated with the method. Non-dimensional truncation errors for the magnitudes of the vector potential and velocity fields are on the order of 10{sup {minus}4}and 10{sup {minus}3} respectively. Single precision accuracy produces errors in these quantities of up to 10{sup {minus}5}. For less than 1,000 to 2,000 vortons in the field, there is virtually no CPU time savings with the fast solver. For 100,000 vortons in the flow, the fast solver obtains solutions in 1 % to 10% of the time required for the direct solution technique depending upon the configuration.

  9. A faster aggregation for 3D fast evanescent wave solvers using rotations

    SciTech Connect

    Bogaert, Ignace Pissoort, Davy; Olyslager, Femke

    2007-11-10

    A novel technique to accelerate the aggregation and disaggregation stages in evanescent plane wave methods is presented. The new method calculates the six plane wave radiation patterns from a multipole expansion (aggregation) and calculates the multipole expansion of an incoming field from the six plane wave incoming field patterns. It is faster than the direct approach for multipole orders larger than one, and becomes six times faster for large multipole orders. The method relies on a connection between the discretizations of the six integral representations, and on the fact that the Wigner D-matrices become diagonal for rotations around the z-axis. The proposed technique can also be extended to the vectorial case in two different ways, one of which is very similar to the scalar case. The other method relies on a Beltrami decomposition of the fields and is faster than the direct approach for any multipole order. This decomposition is also not limited to evanescent wave solvers, but can be used in any vectorial multilevel fast multipole algorithm.

  10. Simultaneous suppression of disturbing fields and localization of magnetic markers by means of multipole expansion.

    PubMed

    Hilgenfeld, Bernd; Haueisen, Jens

    2004-09-01

    BACKGROUND: Magnetically marked capsules serve for the analysis of peristalsis and throughput times within the intestinal tract. Moreover, they can be used for the targeted disposal of drugs. The capsules get localized in time by field measurements with a superconducting quantum interference device (SQUID) magnetometer array. Here it is important to ensure an online localization with high speed and high suppression of disturbing fields. In this article we use multipole expansions for the simultaneous localization and suppression of disturbing fields. METHODS: We expand the measurement data in terms of inner and outer multipoles. Thereby we obtain directly a separation of marker field and outer disturbing fields. From the inner dipoles and quadrupoles we compute the magnetization and position of the capsule. The outer multipoles get eliminated. RESULTS: The localization goodness has been analyzed depending on the order of the multipoles used and depending on the systems noise level. We found upper limits of the noise level for the usage of certain multipole moments. Given a signal to noise ratio of 40 and utilizing inner dipoles and quadrupoles and outer dipoles, the method enables an accuracy of 5 mm with a speed of 10 localizations per second. CONCLUSION: The multipole localization is an effective method and is capable of online-tracking magnetic markers.

  11. Multipole analysis of unidirectional light scattering from plasmonic dimers

    NASA Astrophysics Data System (ADS)

    Poutrina, E.; Urbas, A.

    2014-11-01

    We analyze unidirectional scattering produced by sub-wavelength plasmonic dimers formed by two silver strips separated by a thin dielectric spacer and embedded in a uniform dielectric medium. Achieving the Kerker condition, which requires matching the strengths of the electric and magnetic-type contributions of the same multipolar order, is possible with such structures for both forward and backward unidirectional scattering by matching the geometric shape-leveraged resonant magnetic dipolar response with the off-resonant electric dipolar contribution. However, unidirectionality is strongly affected by coupling between the two elements in the dimer structure, leading to the manifestation of the electric quadrupole response in the far field. We develop an approach allowing for an easy inverse scattering retrieval of various multipole contributions to the far-field pattern produced by this type of geometry. The retrieval shows unambiguously that the electric quadrupole response contributes up to 30% of the scattered far-field intensity, in addition to strong manifestation of both electric and magnetic dipolar modes. A modified condition for unidirectionality can be developed based on the principle that suppression of radiation in either the forward or backward direction can be achieved whenever the combined strength of multipolar modes of a certain parity, radiating along the propagation direction, matches that of an opposite parity, and noting that parities of electric and magnetic modes interchange with increasing multipole order. With this condition satisfied, unidirectionality of 26 dB/17 dB for forward/backward scattering, respectively, can be achieved with dimer geometries. We also perform a detailed quantitative analysis of scattering cross sections of dimer structures compared to those of Si and gold spheres, accounting for the actual material losses. We show that dimer structures allow for improving backscattering unidirectionality by 10 dB compared to what

  12. Revised Parameters for the AMOEBA Polarizable Atomic Multipole Water Model

    PubMed Central

    Pande, Vijay S.; Head-Gordon, Teresa; Ponder, Jay W.

    2016-01-01

    A set of improved parameters for the AMOEBA polarizable atomic multipole water model is developed. The protocol uses an automated procedure, ForceBalance, to adjust model parameters to enforce agreement with ab initio-derived results for water clusters and experimentally obtained data for a variety of liquid phase properties across a broad temperature range. The values reported here for the new AMOEBA14 water model represent a substantial improvement over the previous AMOEBA03 model. The new AMOEBA14 water model accurately predicts the temperature of maximum density and qualitatively matches the experimental density curve across temperatures ranging from 249 K to 373 K. Excellent agreement is observed for the AMOEBA14 model in comparison to a variety of experimental properties as a function of temperature, including the 2nd virial coefficient, enthalpy of vaporization, isothermal compressibility, thermal expansion coefficient and dielectric constant. The viscosity, self-diffusion constant and surface tension are also well reproduced. In comparison to high-level ab initio results for clusters of 2 to 20 water molecules, the AMOEBA14 model yields results similar to the AMOEBA03 and the direct polarization iAMOEBA models. With advances in computing power, calibration data, and optimization techniques, we recommend the use of the AMOEBA14 water model for future studies employing a polarizable water model. PMID:25683601

  13. Collective magnetic multipole excitations in open shells: 48Ti

    NASA Astrophysics Data System (ADS)

    Liu, H.; Zamick, L.

    1987-11-01

    The magnetic multipole even-parity transitions are calculated in 48Ti with a mind to finding interesting collective behavior and to study the effects of increasing the model space. The single-j shell signature selection rules are compared to those in the neutron-proton interacting boson model with good F spin. There are similarities but also differences. Some behavior of the single-j shell calculation survives as the model space increases, e.g., low lying collective M1 and M7 modes. Configuration mixing is, however, vital to describe the M3 and M5 modes as well as the spin flip M1 modes. The distribution of strength between lower and higher isospins is discussed. Results are compared with calculated transitions in 42Sc. It appears that allowing one-particle excitations from the single-j shell gives the pattern of the strength distribution; the further addition of two-particle excitations leads to a quenching of the strength distribution.

  14. Neptune radio emission in dipole and multipole magnetic fields

    NASA Technical Reports Server (NTRS)

    Sawyer, C. B.; King, N. V.; Romig, J. H.; Warwick, J. W.

    1995-01-01

    We study Neptune's smooth radio emission in two ways: we simulate the observations and we then consider the radio effects of Neptune's magnetic multipoles. A procedure to deduce the characteristics of radio sources observed by the Planetary Radio Astronomy experiment minimizes limiting assumptions and maximizes use of the data, including quantitative measurement of circular polarization. Study of specific sources simulates time variation of intensity and apparent polarization of their integrated emission over an extended time period. The method is applied to Neptune smooth recurrent emission (SRE). Time series are modeled with both broad and beamed emission patterns, and at two frequencies which exhibit different time variation of polarization. These dipole-based results are overturned by consideration of more complex models of Neptune's magnetic field. Any smooth emission from the anticipated auroral radio source is weak and briefly observed. Dominant SRE originates complex fields at midlatitude. Possible SRE source locations overlap that of 'high-latitude' emission (HLE) between +(out) and -(in) quadrupoles. This is the first identification of multipolar magnetic structure with a major source of planetary radio emission.

  15. Low pressure characteristics of the multipole resonance probe

    NASA Astrophysics Data System (ADS)

    Brinkmann, Ralf Peter; Oberrath, Jens

    2014-10-01

    The term ``Active plasma resonance spectroscopy'' (APRS) denotes a class of related techniques which utilize, for diagnostic purposes, the natural ability of plasmas to resonate on or near the electron plasma frequency ωpe. The basic idea dates back to the early days of discharge physics but has recently found renewed interest as an approach to industry-compatible plasma diagnostics: A radio frequent signal (in the GHz range) is coupled into the plasma via an antenna or probe, the spectral response is recorded (with the same or another antenna or probe), and a mathematical model is used to determine plasma parameters like the electron density or the electron temperature. When the method is applied to low pressure plasmas (of a few Pa and lower), kinetic effects must be accounted for in the mathematical model. This contribution studies a particular realization of the APRS scheme, the geometrically and electrically symmetric Multipole Resonance Probe (MRP). It is shown that the resonances of the MRP exhibit a residual damping in the limit p --> 0 which cannot be explained by Ohmic dissipation but only by kinetic effects. Supported by the German Federal Ministry of Education and Research (BMBF) in the framework of the PluTO project.

  16. Revised Parameters for the AMOEBA Polarizable Atomic Multipole Water Model.

    PubMed

    Laury, Marie L; Wang, Lee-Ping; Pande, Vijay S; Head-Gordon, Teresa; Ponder, Jay W

    2015-07-23

    A set of improved parameters for the AMOEBA polarizable atomic multipole water model is developed. An automated procedure, ForceBalance, is used to adjust model parameters to enforce agreement with ab initio-derived results for water clusters and experimental data for a variety of liquid phase properties across a broad temperature range. The values reported here for the new AMOEBA14 water model represent a substantial improvement over the previous AMOEBA03 model. The AMOEBA14 model accurately predicts the temperature of maximum density and qualitatively matches the experimental density curve across temperatures from 249 to 373 K. Excellent agreement is observed for the AMOEBA14 model in comparison to experimental properties as a function of temperature, including the second virial coefficient, enthalpy of vaporization, isothermal compressibility, thermal expansion coefficient, and dielectric constant. The viscosity, self-diffusion constant, and surface tension are also well reproduced. In comparison to high-level ab initio results for clusters of 2-20 water molecules, the AMOEBA14 model yields results similar to AMOEBA03 and the direct polarization iAMOEBA models. With advances in computing power, calibration data, and optimization techniques, we recommend the use of the AMOEBA14 water model for future studies employing a polarizable water model.

  17. Spectral Kinetic Simulation of the Ideal Multipole Resonance Probe

    NASA Astrophysics Data System (ADS)

    Gong, Junbo; Wilczek, Sebastian; Szeremley, Daniel; Oberrath, Jens; Eremin, Denis; Dobrygin, Wladislaw; Schilling, Christian; Friedrichs, Michael; Brinkmann, Ralf Peter

    2015-09-01

    The term Active Plasma Resonance Spectroscopy (APRS) denotes a class of diagnostic techniques which utilize the natural ability of plasmas to resonate on or near the electron plasma frequency ωpe: An RF signal in the GHz range is coupled into the plasma via an electric probe; the spectral response of the plasma is recorded, and a mathematical model is used to determine plasma parameters such as the electron density ne or the electron temperature Te. One particular realization of the method is the Multipole Resonance Probe (MRP). The ideal MRP is a geometrically simplified version of that probe; it consists of two dielectrically shielded, hemispherical electrodes to which the RF signal is applied. A particle-based numerical algorithm is described which enables a kinetic simulation of the interaction of the probe with the plasma. Similar to the well-known particle-in-cell (PIC), it contains of two modules, a particle pusher and a field solver. The Poisson solver determines, with the help of a truncated expansion into spherical harmonics, the new electric field at each particle position directly without invoking a numerical grid. The effort of the scheme scales linearly with the ensemble size N.

  18. Higher-multipole deformations and compactness of hot fusion reactions

    SciTech Connect

    Manhas, Monika; Gupta, Raj K.; Li, Qingfeng; Greiner, Walter; Patra, S. K.

    2006-09-15

    The effect of adding the higher-multipole deformations {beta}{sub 6} and {beta}{sub 8}, and the octupole deformation {beta}{sub 3} (in addition to quadrupole and hexadecapole deformations {beta}{sub 2} and {beta}{sub 4}), on the distribution of barriers in orientation degrees of freedom is studied for a ''compact'' configuration of spherical-plus-deformed or deformed-plus-deformed nuclei in hot fusion reactions. Though {beta}{sub 3} is known to be nonzero for only a few nuclei, its role toward compactness of hot fusion reactions is found to be as important as that of {beta}{sub 4}. With {beta}{sub 3} included, depending on its sign and magnitude, the belly-to-belly compact, bbc (or equatorial compact, ec), configuration due to {beta}{sub 4} changes to not-belly-to-belly compact, nbbc (or not-equatorial compact, nec), and vice versa. Similarly, {beta}{sub 6} is found to be as important as {beta}{sub 3} and/or {beta}{sub 4} for spherical-plus-deformed nuclei, but is rather insignificant for collisions involving deformed-plus-deformed nuclei. On the other hand, the addition of {beta}{sub 8} is shown to be insignificant also for spherical-plus-deformed nuclei.

  19. Dynamics of Oscillatory Vortex Multipoles Generated by Electromagnetic Forcing

    NASA Astrophysics Data System (ADS)

    Figueroa, Aldo; Cuevas, Sergio; Ramos, Eduardo

    2010-11-01

    Vortices formed by the concurrent effect on a localized magnetic field distribution and two alternate electric currents perpendicular to each other in a shallow (4mm) layer of an electrolyte are analyzed. Alternate currents with frequencies and amplitude in the range of 1-500 mHz and 80 mA, respectively, are explored. For a single dipolar magnetic field and a single electric current, the dominant structure of the flow is a pair of alternating lobes located co-linear with the generated Lorenz force. The flow presents a resonant behavior when the forcing frequency is around 10 mHz. When multipoles are used to generate the magnetic field, more complicated lobe distributions are obtained. The flow patterns were successfully described using a quasi-two-dimensional numerical model. A tridimensional numerical models corroborates the theoretical results. Flow visualization and numerical Lagrangian particle tracking indicate that multipolar flows present symmetries according to the magnetic field distributions. Although in some regions the flow patterns efficiently mix the fluid, the mixing is inhomogeneous due to symmetry conditions of the flows. Mixing is enhanced when symmetries are destroyed by the use of a random array of magnets or by injecting two electric currents.

  20. Elastic multipoles in the field of the nematic director distortions.

    PubMed

    Pergamenshchik, V M

    2014-12-01

    Theory of the interaction between all types of elastic dipoles and quadrupoles and distortions of the nematic director is presented. If a particle is small relative to the characteristic distortion length, the interaction is determined by the director derivatives at the particle location. We consider a spherical particle since, even under the standard assumptions of the multipole theory (weak deformations, one constant approximation), the problem can be solved analytically only in this case. Different dipoles interact with different distortion modes (e.g., isotropic dipole interacts with the splay, chiral dipole with the twist, and so on). In the main order, the interaction of a dipole is linear in the director derivatives, and the interaction of a quadrupole is linear in the second-order director derivatives. The theory goes beyond the main-order terms and predicts an effective distortion-induced dipolar component on a particle. This effect is described by the free energy term quadratic in the director derivatives and has contributions both of a bulk and surface origin. The bulk effect takes place even if the director at the particle surface is fixed, whereas the surface effect appears if the surface director is perturbed by the distortions due to a weak surface anchoring. The theory is illustrated by simple examples of the interaction of elastic dipoles with a disclination line, with cholesteric spiral, and with the director distortions in a hybrid cell.

  1. Modelling organic crystal structures using distributed multipole and polarizability-based model intermolecular potentials.

    PubMed

    Price, Sarah L; Leslie, Maurice; Welch, Gareth W A; Habgood, Matthew; Price, Louise S; Karamertzanis, Panagiotis G; Day, Graeme M

    2010-08-14

    Crystal structure prediction for organic molecules requires both the fast assessment of thousands to millions of crystal structures and the greatest possible accuracy in their relative energies. We describe a crystal lattice simulation program, DMACRYS, emphasizing the features that make it suitable for use in crystal structure prediction for pharmaceutical molecules using accurate anisotropic atom-atom model intermolecular potentials based on the theory of intermolecular forces. DMACRYS can optimize the lattice energy of a crystal, calculate the second derivative properties, and reduce the symmetry of the spacegroup to move away from a transition state. The calculated terahertz frequency k = 0 rigid-body lattice modes and elastic tensor can be used to estimate free energies. The program uses a distributed multipole electrostatic model (Q, t = 00,...,44s) for the electrostatic fields, and can use anisotropic atom-atom repulsion models, damped isotropic dispersion up to R(-10), as well as a range of empirically fitted isotropic exp-6 atom-atom models with different definitions of atomic types. A new feature is that an accurate model for the induction energy contribution to the lattice energy has been implemented that uses atomic anisotropic dipole polarizability models (alpha, t = (10,10)...(11c,11s)) to evaluate the changes in the molecular charge density induced by the electrostatic field within the crystal. It is demonstrated, using the four polymorphs of the pharmaceutical carbamazepine C(15)H(12)N(2)O, that whilst reproducing crystal structures is relatively easy, calculating the polymorphic energy differences to the accuracy of a few kJ mol(-1) required for applications is very demanding of assumptions made in the modelling. Thus DMACRYS enables the comparison of both known and hypothetical crystal structures as an aid to the development of pharmaceuticals and other speciality organic materials, and provides a tool to develop the modelling of the

  2. Fast and accurate metrology of multi-layered ceramic materials by an automated boundary detection algorithm developed for optical coherence tomography data

    PubMed Central

    Ekberg, Peter; Su, Rong; Chang, Ernest W.; Yun, Seok Hyun; Mattsson, Lars

    2014-01-01

    Optical coherence tomography (OCT) is useful for materials defect analysis and inspection with the additional possibility of quantitative dimensional metrology. Here, we present an automated image-processing algorithm for OCT analysis of roll-to-roll multilayers in 3D manufacturing of advanced ceramics. It has the advantage of avoiding filtering and preset modeling, and will, thus, introduce a simplification. The algorithm is validated for its capability of measuring the thickness of ceramic layers, extracting the boundaries of embedded features with irregular shapes, and detecting the geometric deformations. The accuracy of the algorithm is very high, and the reliability is better than 1 µm when evaluating with the OCT images using the same gauge block step height reference. The method may be suitable for industrial applications to the rapid inspection of manufactured samples with high accuracy and robustness. PMID:24562018

  3. Fast and accurate metrology of multi-layered ceramic materials by an automated boundary detection algorithm developed for optical coherence tomography data.

    PubMed

    Ekberg, Peter; Su, Rong; Chang, Ernest W; Yun, Seok Hyun; Mattsson, Lars

    2014-02-01

    Optical coherence tomography (OCT) is useful for materials defect analysis and inspection with the additional possibility of quantitative dimensional metrology. Here, we present an automated image-processing algorithm for OCT analysis of roll-to-roll multilayers in 3D manufacturing of advanced ceramics. It has the advantage of avoiding filtering and preset modeling, and will, thus, introduce a simplification. The algorithm is validated for its capability of measuring the thickness of ceramic layers, extracting the boundaries of embedded features with irregular shapes, and detecting the geometric deformations. The accuracy of the algorithm is very high, and the reliability is better than 1 μm when evaluating with the OCT images using the same gauge block step height reference. The method may be suitable for industrial applications to the rapid inspection of manufactured samples with high accuracy and robustness.

  4. Measurement and calculation of the fast-neutron and photon spectra from the core boundary to the biological shielding in the WWER-1000 reactor model.

    PubMed

    Osmera, B; Cvachovec, F; Kyncl, J; Smutný, V

    2005-01-01

    The fast-neutron and photon space-energy distributions have been measured in an axially (1.25 m active height) and azimuthally (60 degree symmetry sector) shortened model of the WWER-1000 reactor assembled in the LR-0 experimental reactor. The space-energy distributions have been calculated with the stochastic code MCNP and the deterministic three-dimensional code TORT. Selected results are presented and discussed in the paper. This work has been done in the frame of the EU 5th FW project REDOS REDOS, Reactor Dosimetry: Accurate determination and benchmarking of radiation field parameters, relevant for reactor pressure vessel monitoring. EURATOM Programme, Call 2000/C 294/04). All geometry and material composition data of the model as well as the available experimental data were carefully checked and revised.

  5. Measurements of diurnal variations and Eddy Covariance (EC) fluxes of glyoxal in the tropical marine boundary layer: description of the Fast LED-CE-DOAS instrument

    NASA Astrophysics Data System (ADS)

    Coburn, S.; Ortega, I.; Thalman, R.; Blomquist, B.; Fairall, C. W.; Volkamer, R.

    2014-06-01

    Here we present first Eddy Covariance (EC) measurements of fluxes of glyoxal, the smallest α-dicarbonyl product of hydrocarbon oxidation, and a precursor for secondary organic aerosol (SOA). The unique physical and chemical properties of glyoxal, i.e., high solubility in water (Henry's Law constant, KH = 4.2 × 105 M atm-1) and short atmospheric lifetime (~2 h at solar noon) make it a unique indicator species for organic carbon oxidation in the marine atmosphere. Previous reports of elevated glyoxal over oceans remain unexplained by atmospheric models. Here we describe a Fast Light Emitting Diode Cavity Enhanced Differential Optical Absorption Spectroscopy (Fast LED-CE-DOAS) instrument to measure diurnal variations and EC fluxes of glyoxal, and inform about its unknown sources. The fast in situ sensor is described, and first results are presented from a cruise deployment over the Eastern tropical Pacific Ocean (20° N to 10° S; 133° W to 85° W) as part of the Tropical Ocean Troposphere Exchange of Reactive Halogens and OVOC (TORERO) field experiment (January to March 2012). The Fast LED-CE-DOAS is a multispectral sensor that selectively and simultaneously measures glyoxal (CHOCHO), nitrogen dioxide (NO2), oxygen dimers (O4) and water vapor (H2O) with ~2 Hz time resolution, and a precision of ~40 pptv Hz-0.5 for glyoxal. The instrument is demonstrated to be a "white-noise" sensor suitable for EC flux measurements; further, highly sensitive and inherently calibrated glyoxal measurements are obtained from temporal averaging of data (~2 pptv detection limit over 1 h). The campaign averaged mixing ratio in the Southern Hemisphere (SH) is found to be 43 ± 9 pptv glyoxal, and is higher than in the Northern Hemisphere (NH: 32 ± 6 pptv; error reflects variability over multiple days). The diurnal variation of glyoxal in the MBL is measured for the first time, and mixing ratios vary by ~8 ppt (NH) and ~12 pptv (SH) over the course of 24 h. Consistently, maxima are

  6. Multipole analysis of {sup 2}H({gamma},p)n in the {Delta} resonance region

    SciTech Connect

    Whisnant, C.S.; Mize, W.K.; Pomarede, D.; Sandorfi, A.M.

    1998-07-01

    An energy-dependent multipole analysis of the photodisintegration of deuterium has been performed for photon energies between 187 and 314 MeV using recent data taken with linearly polarized photons. A good fit is obtained with 11 free parameters determining eight multipoles. A wide variety of multipole solutions has been examined and in all cases the cross section with photon polarization parallel to the reaction plane is dominated by electric transitions, with E2{bold {center_dot}}E1 interference responsible for the observed forward-backward angular asymmetry. The cross sections observed in perpendicular kinematics are dominated by magnetic multipoles. Several recent N{Delta}/NN coupled-channel calculations have predicted a pronounced 90{degree} dip in the cross section that is absent from the data. This dip can be reproduced by changing the M2 strength distribution in our fit. A comparison is made with multipoles calculated by Wilhelm and Arenh{umlt o}vel at 300 MeV. {copyright} {ital 1998} {ital The American Physical Society}

  7. a Detailed Proof of the Fundamental Theorem of STF Multipole Expansion in Linearized Gravity

    NASA Astrophysics Data System (ADS)

    Zschocke, Sven

    2014-10-01

    The linearized field equations of general relativity in harmonic coordinates are given by an inhomogeneous wave equation. In the region exterior to the matter field, the retarded solution of this wave equation can be expanded in terms of 10 Cartesian symmetric and tracefree (STF) multipoles in post-Minkowskian approximation. For such a multipole decomposition only three and rather weak assumptions are required: (1) No-incoming-radiation condition. (2) The matter source is spatially compact. (3) A spherical expansion for the metric outside the matter source is possible. During the last decades, the STF multipole expansion has been established as a powerful tool in several fields of gravitational physics: celestial mechanics, theory of gravitational waves and in the theory of light propagation and astrometry. But despite its formidable importance, an explicit proof of the fundamental theorem of STF multipole expansion has not been presented so far, while only some parts of it are distributed into several publications. In a technical but more didactical form, an explicit and detailed mathematical proof of each individual step of this important theorem of STF multipole expansion is represented.

  8. United polarizable multipole water model for molecular mechanics simulation

    NASA Astrophysics Data System (ADS)

    Qi, Rui; Wang, Lee-Ping; Wang, Qiantao; Pande, Vijay S.; Ren, Pengyu

    2015-07-01

    We report the development of a united AMOEBA (uAMOEBA) polarizable water model, which is computationally 3-5 times more efficient than the three-site AMOEBA03 model in molecular dynamics simulations while providing comparable accuracy for gas-phase and liquid properties. In this coarse-grained polarizable water model, both electrostatic (permanent and induced) and van der Waals representations have been reduced to a single site located at the oxygen atom. The permanent charge distribution is described via the molecular dipole and quadrupole moments and the many-body polarization via an isotropic molecular polarizability, all located at the oxygen center. Similarly, a single van der Waals interaction site is used for each water molecule. Hydrogen atoms are retained only for the purpose of defining local frames for the molecular multipole moments and intramolecular vibrational modes. The parameters have been derived based on a combination of ab initio quantum mechanical and experimental data set containing gas-phase cluster structures and energies, and liquid thermodynamic properties. For validation, additional properties including dimer interaction energy, liquid structures, self-diffusion coefficient, and shear viscosity have been evaluated. The results demonstrate good transferability from the gas to the liquid phase over a wide range of temperatures, and from nonpolar to polar environments, due to the presence of molecular polarizability. The water coordination, hydrogen-bonding structure, and dynamic properties given by uAMOEBA are similar to those derived from the all-atom AMOEBA03 model and experiments. Thus, the current model is an accurate and efficient alternative for modeling water.

  9. United polarizable multipole water model for molecular mechanics simulation.

    PubMed

    Qi, Rui; Wang, Lee-Ping; Wang, Qiantao; Pande, Vijay S; Ren, Pengyu

    2015-07-01

    We report the development of a united AMOEBA (uAMOEBA) polarizable water model, which is computationally 3-5 times more efficient than the three-site AMOEBA03 model in molecular dynamics simulations while providing comparable accuracy for gas-phase and liquid properties. In this coarse-grained polarizable water model, both electrostatic (permanent and induced) and van der Waals representations have been reduced to a single site located at the oxygen atom. The permanent charge distribution is described via the molecular dipole and quadrupole moments and the many-body polarization via an isotropic molecular polarizability, all located at the oxygen center. Similarly, a single van der Waals interaction site is used for each water molecule. Hydrogen atoms are retained only for the purpose of defining local frames for the molecular multipole moments and intramolecular vibrational modes. The parameters have been derived based on a combination of ab initio quantum mechanical and experimental data set containing gas-phase cluster structures and energies, and liquid thermodynamic properties. For validation, additional properties including dimer interaction energy, liquid structures, self-diffusion coefficient, and shear viscosity have been evaluated. The results demonstrate good transferability from the gas to the liquid phase over a wide range of temperatures, and from nonpolar to polar environments, due to the presence of molecular polarizability. The water coordination, hydrogen-bonding structure, and dynamic properties given by uAMOEBA are similar to those derived from the all-atom AMOEBA03 model and experiments. Thus, the current model is an accurate and efficient alternative for modeling water.

  10. United polarizable multipole water model for molecular mechanics simulation

    SciTech Connect

    Qi, Rui; Wang, Qiantao; Ren, Pengyu; Wang, Lee-Ping; Pande, Vijay S.

    2015-07-07

    We report the development of a united AMOEBA (uAMOEBA) polarizable water model, which is computationally 3–5 times more efficient than the three-site AMOEBA03 model in molecular dynamics simulations while providing comparable accuracy for gas-phase and liquid properties. In this coarse-grained polarizable water model, both electrostatic (permanent and induced) and van der Waals representations have been reduced to a single site located at the oxygen atom. The permanent charge distribution is described via the molecular dipole and quadrupole moments and the many-body polarization via an isotropic molecular polarizability, all located at the oxygen center. Similarly, a single van der Waals interaction site is used for each water molecule. Hydrogen atoms are retained only for the purpose of defining local frames for the molecular multipole moments and intramolecular vibrational modes. The parameters have been derived based on a combination of ab initio quantum mechanical and experimental data set containing gas-phase cluster structures and energies, and liquid thermodynamic properties. For validation, additional properties including dimer interaction energy, liquid structures, self-diffusion coefficient, and shear viscosity have been evaluated. The results demonstrate good transferability from the gas to the liquid phase over a wide range of temperatures, and from nonpolar to polar environments, due to the presence of molecular polarizability. The water coordination, hydrogen-bonding structure, and dynamic properties given by uAMOEBA are similar to those derived from the all-atom AMOEBA03 model and experiments. Thus, the current model is an accurate and efficient alternative for modeling water.

  11. Fast Poisson, Fast Helmholtz and fast linear elastostatic solvers on rectangular parallelepipeds

    SciTech Connect

    Wiegmann, A.

    1999-06-01

    FFT-based fast Poisson and fast Helmholtz solvers on rectangular parallelepipeds for periodic boundary conditions in one-, two and three space dimensions can also be used to solve Dirichlet and Neumann boundary value problems. For non-zero boundary conditions, this is the special, grid-aligned case of jump corrections used in the Explicit Jump Immersed Interface method. Fast elastostatic solvers for periodic boundary conditions in two and three dimensions can also be based on the FFT. From the periodic solvers we derive fast solvers for the new 'normal' boundary conditions and essential boundary conditions on rectangular parallelepipeds. The periodic case allows a simple proof of existence and uniqueness of the solutions to the discretization of normal boundary conditions. Numerical examples demonstrate the efficiency of the fast elastostatic solvers for non-periodic boundary conditions. More importantly, the fast solvers on rectangular parallelepipeds can be used together with the Immersed Interface Method to solve problems on non-rectangular domains with general boundary conditions. Details of this are reported in the preprint The Explicit Jump Immersed Interface Method for 2D Linear Elastostatics by the author.

  12. Boundary-corrected four-body continuum-intermediate-state method: Single-electron capture from heliumlike atomic systems by fast nuclei

    NASA Astrophysics Data System (ADS)

    Mančev, Ivan; Milojević, Nenad; Belkić, Dževad

    2015-06-01

    Single charge exchange in collisions between bare projectiles and heliumlike atomic systems at intermediate and high incident energies is examined by using the four-body formalism of the first- and second-order theories. The main purpose of the present study is to investigate the relative importance of the intermediate ionization continua of the captured electron compared to the usual direct path of the single electron transfer from a target to a projectile. In order to achieve this goal, comprehensive comparisons are made between the four-body boundary-corrected continuum-intermediate-states (BCIS-4B) method and the four-body boundary-corrected first Born (CB1-4B) method. The perturbation potential is the same in the CB1-4B and BCIS-4B methods. Both methods satisfy the correct boundary conditions in the entrance and exit channels. However, unlike the CB1-4B method, the second-order BCIS-4B method takes into account the electronic Coulomb continuum-intermediate states in either the entrance or the exit channel depending on whether the post or the prior version of the transition amplitude is used. Hence, by comparing the results from these two theories, the relative importance of the intermediate ionization electronic continua can be assessed within the four-body formalism of scattering theory. The BCIS-4B method predicts the usual second-order effect through double scattering of the captured electron on two nuclei as a quantum-mechanical counterpart of the Thomas classical two-step, billiard-type collision. The physical mechanism for this effect in the BCIS-4B method is also comprised of two steps such that ionization occurs first. This is followed by capture of the electron by the projectile with both processes taking place on the energy shell. Moreover, the role of the second, noncaptured electron in a heliumlike target is revisited. To this end, the BCIS-4B method describes the effect of capture of one electron by the interaction of the projectile nucleus with

  13. A fast algorithm for non-Newtonian flow. An enhanced particle-tracking finite element code for solving boundary-valve problems in viscoelastic flow

    NASA Astrophysics Data System (ADS)

    Malkus, David S.

    1989-01-01

    This project concerned the development of a new fast finite element algorithm to solve flow problems of non-Newtonian fluids such as solutions or melts of polymers. Many constitutive theories for such materials involve single integrals over the deformation history of the particle at the stress evaluation point; examples are the Doi-Edwards and Curtiss-Bird molecular theories and the BKZ family derived from continuum arguments. These theories are believed to be among the most accurate in describing non-Newtonian effects important to polymer process design, effects such as stress relaxation, shear thinning, and normal stress effects. This research developed an optimized version of the algorithm which would run a factor of two faster than the pilot algorithm on scalar machines and would be able to take full advantage of vectorization on machines. Significant progress was made in code vectorization; code enhancement and streamlining; adaptive memory quadrature; model problems for the High Weissenberg Number Problem; exactly incompressible projection; development of multimesh extrapolation procedures; and solution of problems of physical interest. A portable version of the code is in the final stages of benchmarking and testing. It interfaces with the widely used FIDAP fluid dynamics package.

  14. Efficient Kriging via Fast Matrix-Vector Products

    NASA Technical Reports Server (NTRS)

    Memarsadeghi, Nargess; Raykar, Vikas C.; Duraiswami, Ramani; Mount, David M.

    2008-01-01

    Interpolating scattered data points is a problem of wide ranging interest. Ordinary kriging is an optimal scattered data estimator, widely used in geosciences and remote sensing. A generalized version of this technique, called cokriging, can be used for image fusion of remotely sensed data. However, it is computationally very expensive for large data sets. We demonstrate the time efficiency and accuracy of approximating ordinary kriging through the use of fast matrixvector products combined with iterative methods. We used methods based on the fast Multipole methods and nearest neighbor searching techniques for implementations of the fast matrix-vector products.

  15. Multipole correction of atomic monopole models of molecular charge distribution. I. Peptides

    NASA Technical Reports Server (NTRS)

    Sokalski, W. A.; Keller, D. A.; Ornstein, R. L.; Rein, R.

    1993-01-01

    The defects in atomic monopole models of molecular charge distribution have been analyzed for several model-blocked peptides and compared with accurate quantum chemical values. The results indicate that the angular characteristics of the molecular electrostatic potential around functional groups capable of forming hydrogen bonds can be considerably distorted within various models relying upon isotropic atomic charges only. It is shown that these defects can be corrected by augmenting the atomic point charge models by cumulative atomic multipole moments (CAMMs). Alternatively, sets of off-center atomic point charges could be automatically derived from respective multipoles, providing approximately equivalent corrections. For the first time, correlated atomic multipoles have been calculated for N-acetyl, N'-methylamide-blocked derivatives of glycine, alanine, cysteine, threonine, leucine, lysine, and serine using the MP2 method. The role of the correlation effects in the peptide molecular charge distribution are discussed.

  16. Global Aspects of Charged Particle Motion in Axially Symmetric Multipole Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    2003-01-01

    The motion of a single charged particle in the space outside of a compact region of steady currents is investigated. The charged particle is assumed to produce negligible electromagnetic radiation, so that its energy is conserved. The source of the magnetic field is represented as a point multipole. After a general description, attention is focused on magnetic fields with axial symmetry. Lagrangian dynamical theory is utilized to identify constants of the motion as well as the equations of motion themselves. The qualitative method of Stonner is used to examine charged particle motion in axisymmetric multipole fields of all orders. Although the equations of motion generally have no analytical solutions and must be integrated numerically to produce a specific orbit, a topological examination of dynamics is possible, and can be used, d la Stonner, to completely describe the global aspects of the motion of a single charged particle in a space with an axisymmetric multipole magnetic field.

  17. On the stability of two-layer geostrophic point-vortex multipoles

    NASA Astrophysics Data System (ADS)

    Kizner, Ziv

    2014-04-01

    A point-vortex multipole is an ensemble of m+1 vortices (m = 2, 3, …) possessing a m-fold symmetry, with the "core vortex" being located at the centre and m identical "satellite vortices" located at the vertices of an equilateral m-sided polygon (at m > 2) or at the ends of a straight-line segment (at m = 2). At m = 2, m = 3, and m = 4, the multipole is commonly termed a tripole, a quadrupole, and a pentapole, respectively, and the distance from the core vortex to the satellite vortices, the multipole leg. A multipole is said to be stable if, in response to sufficiently small initial perturbations in the distances between the vortices, the variations in the distances remain small for all times. The main issue of this article is an analytical study of the nonlinear stability of point-vortex tripoles characterized by that their core and satellite vortices reside in different layers of a two-layer f-plane quasigeostrophic model. Also the stability of pentapoles and quadrupoles is discussed. The parameters affecting the stability properties of a multipole are the length of its leg and the intensity of the core vortex relative to the satellite vortices. Among the invariants of the dynamical system that describes the motion of an ensemble of m+1 vortices, there are two ones depending on the distances between the vortices only. To establish the stability/instability of a multipole, we consider the restriction of one of the two invariants to the sheet (in the phase space) constituted by the states at which the second invariant takes the same value as at the multipole equilibrium state. Two versions of the method are presented and employed to analyze the stability of collinear states (m = 2) and non-collinear states (m > 2). For tripoles, complete stability analysis is performed resulting in the determination of the regions of stability/instability in the parameter plane. Depending on the parameters, a multipole can rotate clockwise or counterclockwise, and also can be

  18. Improved measurement surface for MEG using magnetic-dipole sources and a spherical-multipole expansion

    NASA Astrophysics Data System (ADS)

    Argin, F.; Ahrens, H.; Klinkenbusch, L.

    2012-09-01

    The multipole representation of Magnetoencephalography (MEG) signals is known as a useful tool for distinguishing between magnetic fields arising from the brain and external disturbances. In this contribution we extend this concept and show that a closed double-layer surface with magnetometer probes is better suited to determine the corresponding multipole amplitudes αlm than a conventional single-layer surface with gradiometers and magnetometer probes. For two different source configurations we show that the αlm rapidly converge to the exact values. This proof of concept motivates to further optimize the geometry of the double-layer surface and the sensors' positions.

  19. Apparatus and method of dissociating ions in a multipole ion guide

    SciTech Connect

    Webb, Ian K.; Tang, Keqi; Smith, Richard D.; Ibrahim, Yehia M.; Anderson, Gordon A.

    2014-07-08

    A method of dissociating ions in a multipole ion guide is disclosed. A stream of charged ions is supplied to the ion guide. A main RF field is applied to the ion guide to confine the ions through the ion guide. An excitation RF field is applied to one pair of rods of the ion guide. The ions undergo dissociation when the applied excitation RF field is resonant with a secular frequency of the ions. The multipole ion guide is, but not limited to, a quadrupole, a hexapole, and an octopole.

  20. Effects of Crab Cavities' Multipole Content in an Electron-Ion Collider

    SciTech Connect

    Satogata, Todd J.; Morozov, Vasiliy; Delayen, Jean R.; Castillo, Alejandro

    2015-09-01

    The impact on the beam dynamics of the Medium Energy Electron-Ion Colider (MEIC) due to the multipole content of the 750 MHz crab cavity was studied using thin multipole elements for 6D phase space particle tracking in ELEGANT. Target values of the sextupole component for the cavity’s field expansion were used to perform preliminary studies on the proton beam stability when compared to the case of pure dipole content of the rf kicks. Finally, important effects on the beam sizes due to non-linear components of the crab cavities’ fields were identified, and some criteria for their future study were proposed.

  1. Multipole Field Effects for the Superconducting Parallel-Bar Deflecting/Crabbing Cavities

    SciTech Connect

    De Silva, Payagalage Subashini Uddika; Delayen, Jean Roger

    2012-09-01

    The superconducting parallel-bar deflecting/crabbing cavity is currently being considered as one of the design options in rf separation for the Jefferson Lab 12 GeV upgrade and for the crabbing cavity for the proposed LHC luminosity upgrade. Knowledge of multipole field effects is important for accurate beam dynamics study of rf structures. The multipole components can be accurately determined numerically using the electromagnetic surface field data in the rf structure. This paper discusses the detailed analysis of those components for the fundamental deflecting/crabbing mode and higher order modes in the parallel-bar deflecting/crabbing cavity.

  2. Quantum calculation of multipole relaxation and transfer cross sections in collisions of Na with Xe

    SciTech Connect

    DeVries, P.L.

    1984-01-01

    Well-established quantum mechanical methods were used to calculate multipole cross sections in sodium--xenon collisions. The cross sections were opacity analyzed to determine the relative importance of various angular momenta; the relaxation of the alignment was found to be the multipole most dependent upon low angular momenta (e.g., small impact parameter) collisions. While all the cross sections reported are found to be in satisfactory agreement with experiment, the relaxation of occupation of the j = 1/2 state was found to be in excellent agreement with recent experimental results.

  3. PARAMETRIC TENSION BETWEEN EVEN AND ODD MULTIPOLE DATA OF THE WMAP POWER SPECTRUM: UNACCOUNTED CONTAMINATION OR MISSING PARAMETERS?

    SciTech Connect

    Kim, Jaiseung; Naselsky, Pavel

    2010-12-01

    There exists power contrast in even and odd multipoles of the WMAP power spectrum at low and intermediate multipole ranges. This anomaly is explicitly associated with the angular power spectrum, which is heavily used for cosmological model fitting. Having noted this, we have investigated whether even (odd) multipole data set is individually consistent with the WMAP concordance model. Our investigation shows that the WMAP concordance model does not make a good fit for even (odd) multipole data set, which indicates parametric tension between even and odd multipole data set. Noting that tension is highest in primordial power spectrum parameters, we have additionally considered a running spectral index, but found that tension increases to even a higher level. We believe these parametric tensions may be indications of unaccounted contamination or imperfection of the model.

  4. Higher-order multipole amplitudes in charmonium radiative transitions

    NASA Astrophysics Data System (ADS)

    Artuso, M.; Blusk, S.; Khalil, S.; Mountain, R.; Randrianarivony, K.; Skwarnicki, T.; Stone, S.; Wang, J. C.; Zhang, L. M.; Bonvicini, G.; Cinabro, D.; Lincoln, A.; Smith, M. J.; Zhou, P.; Zhu, J.; Naik, P.; Rademacker, J.; Asner, D. M.; Edwards, K. W.; Reed, J.; Robichaud, A. N.; Tatishvili, G.; White, E. J.; Briere, R. A.; Vogel, H.; Onyisi, P. U. E.; Rosner, J. L.; Alexander, J. P.; Cassel, D. G.; Ehrlich, R.; Fields, L.; Galik, R. S.; Gibbons, L.; Gray, S. W.; Hartill, D. L.; Heltsley, B. K.; Hunt, J. M.; Kreinick, D. L.; Kuznetsov, V. E.; Ledoux, J.; Mahlke-Krüger, H.; Patterson, J. R.; Peterson, D.; Riley, D.; Ryd, A.; Sadoff, A. J.; Shi, X.; Stroiney, S.; Sun, W. M.; Yelton, J.; Rubin, P.; Lowrey, N.; Mehrabyan, S.; Selen, M.; Wiss, J.; Kornicer, M.; Mitchell, R. E.; Shepherd, M. R.; Tarbert, C. M.; Besson, D.; Pedlar, T. K.; Xavier, J.; Cronin-Hennessy, D.; Gao, K. Y.; Hietala, J.; Poling, R.; Zweber, P.; Dobbs, S.; Metreveli, Z.; Seth, K. K.; Tan, B. J. Y.; Tomaradze, A.; Brisbane, S.; Libby, J.; Martin, L.; Powell, A.; Spradlin, P.; Thomas, C.; Wilkinson, G.; Mendez, H.; Ge, J. Y.; Miller, D. H.; Shipsey, I. P. J.; Xin, B.; Adams, G. S.; Hu, D.; Moziak, B.; Napolitano, J.; Ecklund, K. M.; Insler, J.; Muramatsu, H.; Park, C. S.; Thorndike, E. H.; Yang, F.

    2009-12-01

    Using 24×106 ψ'≡ψ(2S) decays in CLEO-c, we have searched for higher multipole admixtures in electric-dipole-dominated radiative transitions in charmonia. We find good agreement between our data and theoretical predictions for magnetic quadrupole (M2) amplitudes in the transitions ψ'→γχc1,c2 and χc1,c2→γJ/ψ, in striking contrast to some previous measurements. Let b2J and a2J denote the normalized M2 amplitudes in the respective aforementioned decays, where the superscript J refers to the angular momentum of the χcJ. By performing unbinned maximum likelihood fits to full five-parameter angular distributions, we found the following values of M2 admixtures for Jχ=1: a2J=1=(-6.26±0.63±0.24)×10-2 and b2J=1=(2.76±0.73±0.23)×10-2, which agree well with theoretical expectations for a vanishing anomalous magnetic moment of the charm quark. For Jχ=2, if we fix the electric octupole (E3) amplitudes to zero as theory predicts for transitions between charmonium S states and P states, we find a2J=2=(-9.3±1.6±0.3)×10-2 and b2J=2=(1.0±1.3±0.3)×10-2. If we allow for E3 amplitudes we find, with a four-parameter fit, a2J=2=(-7.9±1.9±0.3)×10-2, b2J=2=(0.2±1.4±0.4)×10-2, a3J=2=(1.7±1.4±0.3)×10-2, and b3J=2=(-0.8±1.2±0.2)×10-2. We determine the ratios a2J=1/a2J=2=0.67-0.13+0.19 and a2J=1/b2J=1=-2.27-0.99+0.57, where the theoretical predictions are independent of the charmed quark magnetic moment and are a2J=1/a2J=2=0.676±0.071 and a2J=1/b2J=1=-2.27±0.16.

  5. Boundary Crossing and Boundary Objects

    ERIC Educational Resources Information Center

    Akkerman, Sanne F.; Bakker, Arthur

    2011-01-01

    Diversity and mobility in education and work present a paramount challenge that needs better conceptualization in educational theory. This challenge has been addressed by educational scholars with the notion of "boundaries", particularly by the concepts of "boundary crossing" and "boundary objects". Although studies on boundary crossing and…

  6. Development of a Transient Acoustic Boundary Element Method to Predict the Noise Signature of Swimming Fish

    NASA Astrophysics Data System (ADS)

    Wagenhoffer, Nathan; Moored, Keith; Jaworski, Justin

    2015-11-01

    Animals have evolved flexible wings and fins to efficiently and quietly propel themselves through the air and water. The design of quiet and efficient bio-inspired propulsive concepts requires a rapid, unified computational framework that integrates three essential features: the fluid mechanics, the elastic structural response, and the noise generation. This study focuses on the development, validation, and demonstration of a transient, two-dimensional acoustic boundary element solver accelerated by a fast multipole algorithm. The resulting acoustic solver is used to characterize the acoustic signature produced by a vortex street advecting over a NACA 0012 airfoil, which is representative of vortex-body interactions that occur in schools of swimming fish. Both 2S and 2P canonical vortex streets generated by fish are investigated over the range of Strouhal number 0 . 2 < St < 0 . 4 , and the acoustic signature of the airfoil is quantified. This study provides the first estimate of the noise signature of a school of swimming fish. Lehigh University CORE Grant.

  7. Analytical transition-matrix treatment of electric multipole polarizabilities of hydrogen-like atoms

    SciTech Connect

    Kharchenko, V.F.

    2015-04-15

    The direct transition-matrix approach to the description of the electric polarization of the quantum bound system of particles is used to determine the electric multipole polarizabilities of the hydrogen-like atoms. It is shown that in the case of the bound system formed by the Coulomb interaction the corresponding inhomogeneous integral equation determining an off-shell scattering function, which consistently describes virtual multiple scattering, can be solved exactly analytically for all electric multipole polarizabilities. Our method allows to reproduce the known Dalgarno–Lewis formula for electric multipole polarizabilities of the hydrogen atom in the ground state and can also be applied to determine the polarizability of the atom in excited bound states. - Highlights: • A new description for electric polarization of hydrogen-like atoms. • Expression for multipole polarizabilities in terms of off-shell scattering functions. • Derivation of integral equation determining the off-shell scattering function. • Rigorous analytic solving the integral equations both for ground and excited states. • Study of contributions of virtual multiple scattering to electric polarizabilities.

  8. Identifying the Development in Phase and Amplitude of Dipole and Multipole Radiation

    ERIC Educational Resources Information Center

    Rice, E. M.; Bradshaw, D. S.; Saadi, K.; Andrews, D. L.

    2012-01-01

    The spatial variation in phase and the propagating wave-front of plane wave electromagnetic radiation are widely familiar text-book territory. In contrast, the developing amplitude and phase of radiation emitted by a dipole or multipole source generally receive less attention, despite the prevalence of these systems. There is additional complexity…

  9. Modeling of piezoelectric energy extraction in a thermoacoustic engine with multi-pole time-domain impedance

    NASA Astrophysics Data System (ADS)

    Lin, Jeffrey; Scalo, Carlo; Hesselink, Lambertus

    2015-11-01

    We have carried out the first high-fidelity Navier-Stokes simulation of a complete thermoacoustic engine with piezoelectric energy extraction. The standing-wave thermoacoustic piezoelectric (TAP) engine model comprises a 51 cm long cylindrical resonator, containing a thermoacoustic stack on one end and capped by a PZT-5A piezoelectric diaphragm on the other end, tuned to the frequency of the thermoacoustically-amplified mode (388 Hz). A multi-pole broadband time-domain impedance model has been adopted to accurately simulate the measured electromechanical properties of the piezoelectric diaphragm. Simulations are first carried out from quasi-quiescent conditions to a limit cycle, with varying temperature gradients and stack configurations. Stack geometry and boundary layers are fully resolved. Acoustic energy extraction is then activated, achieving a new limit cycle at lower pressure amplitudes. The scaling of the modeled electrical power output and attainable thermal-to-electric energy conversion efficiencies are discussed. Limitations of extending a quasi-one-dimensional linear approximation based on Rott's theory to a (low amplitude) limit cycle are discussed, as well as nonlinear effects such as thermoacoustic energy transport and viscous dissipation.

  10. On the completeness and the linear dependence of the Cartesian multipole series in representing the solution to the Helmholtz equation.

    PubMed

    Liu, Yangfan; Bolton, J Stuart

    2016-08-01

    The (Cartesian) multipole series, i.e., the series comprising monopole, dipoles, quadrupoles, etc., can be used, as an alternative to the spherical or cylindrical wave series, in representing sound fields in a wide range of problems, such as source radiation, sound scattering, etc. The proofs of the completeness of the spherical and cylindrical wave series in these problems are classical results, and it is also generally agreed that the Cartesian multipole series spans the same space as the spherical waves: a rigorous mathematical proof of that statement has, however, not been presented. In the present work, such a proof of the completeness of the Cartesian multipole series, both in two and three dimensions, is given, and the linear dependence relations among different orders of multipoles are discussed, which then allows one to easily extract a basis from the multipole series. In particular, it is concluded that the multipoles comprising the two highest orders in the series form a basis of the whole series, since the multipoles of all the lower source orders can be expressed as a linear combination of that basis.

  11. On the completeness and the linear dependence of the Cartesian multipole series in representing the solution to the Helmholtz equation.

    PubMed

    Liu, Yangfan; Bolton, J Stuart

    2016-08-01

    The (Cartesian) multipole series, i.e., the series comprising monopole, dipoles, quadrupoles, etc., can be used, as an alternative to the spherical or cylindrical wave series, in representing sound fields in a wide range of problems, such as source radiation, sound scattering, etc. The proofs of the completeness of the spherical and cylindrical wave series in these problems are classical results, and it is also generally agreed that the Cartesian multipole series spans the same space as the spherical waves: a rigorous mathematical proof of that statement has, however, not been presented. In the present work, such a proof of the completeness of the Cartesian multipole series, both in two and three dimensions, is given, and the linear dependence relations among different orders of multipoles are discussed, which then allows one to easily extract a basis from the multipole series. In particular, it is concluded that the multipoles comprising the two highest orders in the series form a basis of the whole series, since the multipoles of all the lower source orders can be expressed as a linear combination of that basis. PMID:27586772

  12. A novel structure of multipole field magnets and their applications in uniformizing beam spot at target

    NASA Astrophysics Data System (ADS)

    Guo, Zhen; Tang, Jing-Yu; Yang, Zheng; Wang, Xiang-Qi; Sun, Biao

    2012-11-01

    A novel structure of multipole field magnets is proposed, and it can provide any order either symmetric or anti-symmetric field distribution within a good-field region in a flat rectangular shape with relative field errors of about 1%. Some of these field distributions cannot be obtained by standard multipole magnets but are quite useful in some applications, thanks to the decoupling of the two halves of the magnets by a pair of shielding plates. In addition, the simplified structure compared with the standard one makes the magnet fabrication easier and cost effective. Two-dimensional magnetic field calculations for anti-symmetric sextupole, octupole, decapole and dodecapole fields show that the new types of multipole magnets have good field quality. Three-dimensional magnetic field calculations have confirmed the validity of the two-dimensional calculations. Symmetric field distributions by the simplified multipole field magnets have also been confirmed by two-dimensional field calculations. Two application examples by using numerical simulations are also given to show the effectiveness of simplified multipole field magnets in producing uniform-like beam spots at two different targets with different beam inputs. It is also shown that combinations of the lower order anti-symmetric field magnets - a merit of this magnet structure - are more advantageous than the traditional combination of octupole and dodecapole magnets in beam spot uniformization, besides with cheaper construction and operation costs. The applications of non-standard field distributions such as anti-symmetric sextupole and symmetric octupole field distributions in synchrotrons are to be exploited in the future.

  13. Development of a hybrid finite difference solution of the Westervelt equation using the fast nearfield method as a boundary condition for focused sources: or microbubble nuclei interaction with histotripsy shockwaves

    NASA Astrophysics Data System (ADS)

    Bader, Kenneth B.; Holland, Christy K.

    2015-10-01

    Theoretical models of therapeutic ultrasound expand the understanding of the mechanisms of treatment, and expedite the development of regulatory standards. For focused ultrasound therapies that rely on thermal mechanisms to generate lesions, only modeling of the incident sound field needs is sufficient. Modeling of microbubble clouds formed through shock scattering for histotripsy requires computation of both the incident and scattered fields. The objective of this study was to utilize a finite-difference time-domain (FDTD) method to compute both fields. A fine computation grid is required to resolve the shocked field at the focus. In the nearfield, where nonlinearity is negligible, a fine resolution computation is unnecessary and adds significant computational time. A hybrid method model was developed that employs an analytic solution to compute the nearfield, and the FDTD method to compute the field at the focus. The Fast Nearfield Method (FNM) was used to compute the nearfield solution using Gaussian quadrature integration. A FDTD method was used to solve the Westervelt equation at the focus, using the FNM solution as the source boundary condition. Computed fields agree with previously reported insonations when the FNM method calculation is set to half the focal distance. Thus, this hybrid technique allows reliable calculation of the focal pressure while reducing the FDTD computational domain by a factor of two. Implications of the model will be discussed, and the extension of the model to scattering of histotripsy pulses from spherical microbubbles will be presented.

  14. Reliability-based design of transmission line structures user's manual: HFRAME-84 analysis and design of multipole structures

    SciTech Connect

    Goodman, J.R.; Vanderbilt, M.D.; Criswell, M.E.; Bodig, J.

    1985-09-01

    The HFRAME computer program enables utility engineers to design or analyze planar multipole transmission structures. The code will handle all types of transverse and vertical loads for any configuration of poles and bracing.

  15. Torque and atomic forces for Cartesian tensor atomic multipoles with an application to crystal unit cell optimization.

    PubMed

    Elking, Dennis M

    2016-08-15

    New equations for torque and atomic force are derived for use in flexible molecule force fields with atomic multipoles. The expressions are based on Cartesian tensors with arbitrary multipole rank. The standard method for rotating Cartesian tensor multipoles and calculating torque is to first represent the tensor with n indexes and 3(n) redundant components. In this work, new expressions for directly rotating the unique (n + 1)(n + 2)/2 Cartesian tensor multipole components Θpqr are given by introducing Cartesian tensor rotation matrix elements X(R). A polynomial expression and a recursion relation for X(R) are derived. For comparison, the analogous rotation matrix for spherical tensor multipoles are the Wigner functions D(R). The expressions for X(R) are used to derive simple equations for torque and atomic force. The torque and atomic force equations are applied to the geometry optimization of small molecule crystal unit cells. In addition, a discussion of computational efficiency as a function of increasing multipole rank is given for Cartesian tensors. © 2016 Wiley Periodicals, Inc.

  16. Variance and shift of transition arrays for electric and magnetic multipole transitions

    NASA Astrophysics Data System (ADS)

    Krief, Menahem; Feigel, Alexander

    2015-12-01

    Generalized analytical expressions for the two-electron relativistic Unresolved-Transition-Array (UTA) energy variance and shift for electric and magnetic transitions of general multipole order are presented. The revised expressions are shown to agree with the exact moments calculated directly from the energy levels of two-electron configurations. We show that for electric transitions of even multipole order and for magnetic transitions, the available expressions in the literature, which are implemented in widely used atomic codes, are incorrect. We suggest an alternative method for the calculation of the UTA energy variance and shift by using the analytical expressions for the two-electron energy levels and line-strengths. The method is much more efficient and simple than the use of the traditional lengthy analytic expressions. Finally, the effect of UTA widths on Super-Transition-Array (STA) spectral opacity is shown for several examples.

  17. Method of reducing multipole content in a conductor assembly during manufacture

    DOEpatents

    Meinke, Rainer

    2016-05-24

    A method for manufacture of a conductor assembly. The assembly is of the type which, when conducting current, generates a magnetic field or in which, in the presence of a changing magnetic field, a voltage is induced. In an example embodiment one or more first coil rows are formed. The assembly has multiple coil rows about an axis with outer coil rows formed about inner coil rows. A determination is made of deviations from specifications associated with the formed one or more first coil rows. One or more deviations correspond to a magnitude of a multipole field component which departs from a field specification. Based on the deviations, one or more wiring patterns are generated for one or more second coil rows to be formed about the one or more first coil rows. The one or more second coil rows are formed in the assembly. The magnitude of each multipole field component that departs from the field specification is offset.

  18. Method of reducing multipole content in a conductor assembly during manufacture

    DOEpatents

    Meinke, Rainer

    2013-08-20

    A method for manufacture of a conductor assembly. The assembly is of the type which, when conducting current, generates a magnetic field or in which, in the presence of a changing magnetic field, a voltage is induced. In an example embodiment one or more first coil rows are formed. The assembly has multiple coil rows about an axis with outer coil rows formed about inner coil rows. A determination is made of deviations from specifications associated with the formed one or more first coil rows. One or more deviations correspond to a magnitude of a multipole field component which departs from a field specification. Based on the deviations, one or more wiring patterns are generated for one or more second coil rows to be formed about the one or more first coil rows. The one or more second coil rows are formed in the assembly. The magnitude of each multipole field component that departs from the field specification is offset.

  19. Method of reducing multipole content in a conductor assembly during manufacture

    DOEpatents

    Meinke, Rainer

    2011-08-09

    A method for manufacture of a conductor assembly. The assembly is of the type which, when conducting current, generates a magnetic field or in which, in the presence of a changing magnetic field, a voltage is induced. In an example embodiment one or more first coil rows are formed. The assembly has multiple coil rows about an axis with outer coil rows formed about inner coil rows. A determination is made of deviations from specifications associated with the formed one or more first coil rows. One or more deviations correspond to a magnitude of a multipole field component which departs from a field specification. Based on the deviations, one or more wiring patterns are generated for one or more second coil rows to be formed about the one or more first coil rows. The one or more second coil rows are formed in the assembly. The magnitude of each multipole field component that departs from the field specification is offset.

  20. Point charge representation of multicenter multipole moments in calculation of electrostatic properties.

    PubMed

    Sokalski, W A; Shibata, M; Ornstein, R L; Rein, R

    1993-01-01

    Distributed Point Charge Models (PCM) for CO, (H2O)2, and HS-SH molecules have been computed from analytical expressions using multi-center multipole moments. The point charges (set of charges including both atomic and non-atomic positions) exactly reproduce both molecular and segmental multipole moments, thus constituting an accurate representation of the local anisotropy of electrostatic properties. In contrast to other known point charge models, PCM can be used to calculate not only intermolecular, but also intramolecular interactions. Comparison of these results with more accurate calculations demonstrated that PCM can correctly represent both weak and strong (intramolecular) interactions, thus indicating the merit of extending PCM to obtain improved potentials for molecular mechanics and molecular dynamics computational methods.

  1. From geodesics of the multipole solutions to the perturbed Kepler problem

    NASA Astrophysics Data System (ADS)

    Hernández-Pastora, J. L.; Ospino, J.

    2010-11-01

    A static and axisymmetric solution of the Einstein vacuum equations with a finite number of relativistic multipole moments (RMM) is written in multipole symmetry adapted (MSA) coordinates up to certain order of approximation, and the structure of its metric components is explicitly shown. From the equation of equatorial geodesics, we obtain the Binet equation for the orbits and it allows us to determine the gravitational potential that leads to the equivalent classical orbital equations of the perturbed Kepler problem. The relativistic corrections to Keplerian motion are provided by the different contributions of the RMM of the source starting from the monopole (Schwarzschild correction). In particular, the perihelion precession of the orbit is calculated in terms of the quadrupole and 24-pole moments. Since the MSA coordinates generalize the Schwarzschild coordinates, the result obtained allows measurement of the relevance of the quadrupole moment in the first order correction to the perihelion frequency-shift.

  2. Static multipole polarisabilities and second-order Stark shift in francium

    NASA Technical Reports Server (NTRS)

    Khan, F.; Khandelwal, G. S.; Wilson, J. W.

    1988-01-01

    The multipole polarizability of the ground state of francium is calculated by utilizing both the variational technique of Davison and the quantum defect theory underlying the Bates-Damgaard method. This approach is also shown to yield reasonable results for other alkali atoms. Second-order Stark shift for the ground state of francium is presented as a function of field strength for possible future experimental comparison.

  3. Static multipole polarisabilities and second-order Stark shift in francium.

    PubMed

    Khan, F; Khandelwal, G S; Wilson, J W

    1988-01-01

    The multipole polarisability of the ground state of francium is calculated by utilising both the variational technique of Davison and the quantum defect theory underlying the Bates-Damgaard method. This approach is also shown to yield reasonable results for other alkali atoms. Second-order Stark shift for the ground state of francium is presented as a function of field strength for possible future experimental comparison. PMID:11539071

  4. The Polarizable Atomic Multipole-based AMOEBA Force Field for Proteins

    PubMed Central

    Shi, Yue; Xia, Zhen; Zhang, Jiajing; Best, Robert; Wu, Chuanjie; Ponder, Jay W.; Ren, Pengyu

    2013-01-01

    Development of the AMOEBA (Atomic Multipole Optimized Energetics for Biomolecular Simulation) force field for proteins is presented. The current version (AMOEBA-2013) utilizes permanent electrostatic multipole moments through the quadrupole at each atom, and explicitly treats polarization effects in various chemical and physical environments. The atomic multipole electrostatic parameters for each amino acid residue type are derived from high-level gas phase quantum mechanical calculations via a consistent and extensible protocol. Molecular polarizability is modeled via a Thole-style damped interactive induction model based upon distributed atomic polarizabilities. Inter- and intramolecular polarization is treated in a consistent fashion via the Thole model. The intramolecular polarization model ensures transferability of electrostatic parameters among different conformations, as demonstrated by the agreement between QM and AMOEBA electrostatic potentials, and dipole moments of dipeptides. The backbone and side chain torsional parameters were determined by comparing to gas-phase QM (RI-TRIM MP2/CBS) conformational energies of dipeptides and to statistical distributions from the Protein Data Bank. Molecular dynamics simulations are reported for short peptides in explicit water to examine their conformational properties in solution. Overall the calculated conformational free energies and J-coupling constants are consistent with PDB statistics and experimental NMR results, respectively. In addition, the experimental crystal structures of a number of proteins are well maintained during molecular dynamics (MD) simulation. While further calculations are necessary to fully validate the force field, initial results suggest the AMOEBA polarizable multipole force field is able to describe the structure and energetics of peptides and proteins, in both gas-phase and solution environments. PMID:24163642

  5. The Polarizable Atomic Multipole-based AMOEBA Force Field for Proteins.

    PubMed

    Shi, Yue; Xia, Zhen; Zhang, Jiajing; Best, Robert; Wu, Chuanjie; Ponder, Jay W; Ren, Pengyu

    2013-01-01

    Development of the AMOEBA (Atomic Multipole Optimized Energetics for Biomolecular Simulation) force field for proteins is presented. The current version (AMOEBA-2013) utilizes permanent electrostatic multipole moments through the quadrupole at each atom, and explicitly treats polarization effects in various chemical and physical environments. The atomic multipole electrostatic parameters for each amino acid residue type are derived from high-level gas phase quantum mechanical calculations via a consistent and extensible protocol. Molecular polarizability is modeled via a Thole-style damped interactive induction model based upon distributed atomic polarizabilities. Inter- and intramolecular polarization is treated in a consistent fashion via the Thole model. The intramolecular polarization model ensures transferability of electrostatic parameters among different conformations, as demonstrated by the agreement between QM and AMOEBA electrostatic potentials, and dipole moments of dipeptides. The backbone and side chain torsional parameters were determined by comparing to gas-phase QM (RI-TRIM MP2/CBS) conformational energies of dipeptides and to statistical distributions from the Protein Data Bank. Molecular dynamics simulations are reported for short peptides in explicit water to examine their conformational properties in solution. Overall the calculated conformational free energies and J-coupling constants are consistent with PDB statistics and experimental NMR results, respectively. In addition, the experimental crystal structures of a number of proteins are well maintained during molecular dynamics (MD) simulation. While further calculations are necessary to fully validate the force field, initial results suggest the AMOEBA polarizable multipole force field is able to describe the structure and energetics of peptides and proteins, in both gas-phase and solution environments.

  6. Steady-state multipole moments of atoms in a resonant field with elliptical polarization

    NASA Astrophysics Data System (ADS)

    Taichenachev, A. V.; Basalaev, M. Yu; Lazebny, D. B.; Yudin, V. I.

    2014-07-01

    Steady-state multipole moments of atoms ρK q of the rank K ⩽ 2 are analytically calculated for all closed dipole transitions Jg → Je in a resonant radiation field with arbitrary intensity and arbitrary elliptical polarization. The nonlinear propagation of a monochromatic elliptically polarized wave through a medium consisting of atoms with resonant transition Jg → Je is considered as an application.

  7. Role of higher-multipole deformations in exotic {sup 14}C cluster radioactivity

    SciTech Connect

    Sawhney, Gudveen; Sharma, Manoj K.; Gupta, Raj K.

    2011-06-15

    We have studied nine cases of spontaneous emission of {sup 14}C clusters in the ground-state decays of the same number of parent nuclei from the trans-lead region, specifically from {sup 221}Fr to {sup 226}Th, using the preformed cluster model (PCM) of Gupta and collaborators, with choices of spherical, quadrupole deformation ({beta}{sub 2}) alone, and higher-multipole deformations ({beta}{sub 2}, {beta}{sub 3}, {beta}{sub 4}) with cold ''compact'' orientations {theta}{sup c} of decay products. The calculated {sup 14}C cluster decay half-life times are found to be in nice agreement with experimental data only for the case of higher-multipole deformations ({beta}{sub 2}-{beta}{sub 4}) and {theta}{sup c} orientations of cold elongated configurations. In other words, compared to our earlier study of clusters heavier than {sup 14}C, where the inclusion of {beta}{sub 2} alone, with ''optimum'' orientations, was found to be enough to give the best comparison with data, here for {sup 14}C cluster decay the inclusion of higher-multipole deformations (up to hexadecapole), together with {theta}{sup c} orientations, is found to be essential on the basis of the PCM. Interestingly, whereas both the penetration probability and assault frequency work simply as scaling factors, the preformation probability is strongly influenced by the order of multipole deformations and orientations of nuclei. The possible role of Q value and angular-momentum effects are also considered in reference to {sup 14}C cluster radioactivity.

  8. Zero-multipole summation method for efficiently estimating electrostatic interactions in molecular system.

    PubMed

    Fukuda, Ikuo

    2013-11-01

    The zero-multipole summation method has been developed to efficiently evaluate the electrostatic Coulombic interactions of a point charge system. This summation prevents the electrically non-neutral multipole states that may artificially be generated by a simple cutoff truncation, which often causes large amounts of energetic noise and significant artifacts. The resulting energy function is represented by a constant term plus a simple pairwise summation, using a damped or undamped Coulombic pair potential function along with a polynomial of the distance between each particle pair. Thus, the implementation is straightforward and enables facile applications to high-performance computations. Any higher-order multipole moment can be taken into account in the neutrality principle, and it only affects the degree and coefficients of the polynomial and the constant term. The lowest and second moments correspond respectively to the Wolf zero-charge scheme and the zero-dipole summation scheme, which was previously proposed. Relationships with other non-Ewald methods are discussed, to validate the current method in their contexts. Good numerical efficiencies were easily obtained in the evaluation of Madelung constants of sodium chloride and cesium chloride crystals. PMID:24206287

  9. Application of state-multipole Heisenberg equations to Raman excitation dynamics

    SciTech Connect

    Shore, B.W.; Sacks, R.; Dixit, S.N.

    1987-09-10

    Description of detailed temporal excitation dyanmics for coherent excitation, such as is produced by idealized laser radiation, contrasts with evaluation of rate coefficients by means of generalized Golden Rule procedures; it requires an appropriate time-dependent Schroedinger equation. When the atom undergoing excitation is also affected by incoherent processes, such as collisions, this equation no longer suffices. The Heisenberg equations, or equivalent density-matrix equations, permit treatment in which coherence and incoherence play comparable roles in the excitation dynamics. Unlike rate equations, such equations must incorporate complexities that originate in the orientation degeneracy expressed by magnetic quantum numbers. In simple cases of coherent excitation, both for single-photon and multiphoton excitation, the sublevels merely require an average of 2J+1 independent Schroedinger equations. Relaxation couples the independent equations. It has been known for some time that appropriate state-multipole operators can simplify the description of many phenomena connected with optical pumping. This memo discusses application of these multipole operators to the description of Raman (or more general multiphoton) coherent excitation. In some simple limiting cases the equations simplify, but in general one has a hierarchy of coupled multipole polarizations and coherences in place of the populations and coherences that occur as variables in nondegenerate systems. 28 refs., 4 figs.

  10. Zero-multipole summation method for efficiently estimating electrostatic interactions in molecular system

    SciTech Connect

    Fukuda, Ikuo

    2013-11-07

    The zero-multipole summation method has been developed to efficiently evaluate the electrostatic Coulombic interactions of a point charge system. This summation prevents the electrically non-neutral multipole states that may artificially be generated by a simple cutoff truncation, which often causes large amounts of energetic noise and significant artifacts. The resulting energy function is represented by a constant term plus a simple pairwise summation, using a damped or undamped Coulombic pair potential function along with a polynomial of the distance between each particle pair. Thus, the implementation is straightforward and enables facile applications to high-performance computations. Any higher-order multipole moment can be taken into account in the neutrality principle, and it only affects the degree and coefficients of the polynomial and the constant term. The lowest and second moments correspond respectively to the Wolf zero-charge scheme and the zero-dipole summation scheme, which was previously proposed. Relationships with other non-Ewald methods are discussed, to validate the current method in their contexts. Good numerical efficiencies were easily obtained in the evaluation of Madelung constants of sodium chloride and cesium chloride crystals.

  11. On the calculation of magnetic fields based on multipole modeling of focal biological current sources.

    PubMed Central

    Nolte, G; Curio, G

    1997-01-01

    Spatially restricted biological current distributions, like the primary neuronal response in the human somatosensory cortex evoked by electric nerve stimulation, can be described adequately by a current multipole expansion. Here analytic formulas are derived for computing magnetic fields induced by current multipoles in terms of an nth-order derivative of the dipole field. The required differential operators are given in closed form for arbitrary order. The concept is realized in different forms for an expansion of the scalar as well as the dyadic Green's function, the latter allowing for separation of those multipolar source components that are electrically silent but magnetically detectable. The resulting formulas are generally applicable for current sources embedded in arbitrarily shaped volume conductors. By using neurophysiologically relevant source parameters, examples are provided for a spherical volume conductor with an analytically given dipole field. An analysis of the signal-to-noise ratio for multipole coefficients up to the octapolar term indicates that the lateral extent of cortical current sources can be detected by magnetoencephalographic recordings. PMID:9284293

  12. Can residuals of the solar system foreground explain low multipole anomalies of the CMB?

    SciTech Connect

    Hansen, M.; Kim, J.; Frejsel, A.M.; Ramazanov, S.; Naselsky, P.; Zhao, W.; Burigana, C. E-mail: jkim@nbi.dk E-mail: sabir_ra@nbi.dk E-mail: wzhao7@nbi.ku.dk

    2012-10-01

    The low multipole anomalies of the Cosmic Microwave Background has received much attention during the last few years. It is still not ascertained whether these anomalies are indeed primordial or the result of systematics or foregrounds. An example of a foreground, which could generate some non-Gaussian and statistically anisotropic features at low multipole range, is the very symmetric Kuiper Belt in the outer solar system. In this paper, expanding upon the methods presented in [1], we investigate the contributions from the Kuiper Belt objects (KBO) to the WMAP ILC 7 map, whereby we can minimize the contrast in power between even and odd multipoles in the CMB, discussed in [2,3]. We submit our KBO de-correlated CMB signal to several tests, to analyze its validity, and find that incorporation of the KBO emission can decrease the quadrupole-octupole alignment and parity asymmetry problems, provided that the KBO signals has a non-cosmological dipole modulation, associated with the statistical anisotropy of the ILC 7 map. Additionally, we show that the amplitude of the dipole modulation, within a 2σ interval, is in agreement with the corresponding amplitudes, discussed in [4].

  13. Boundary Layer

    NASA Technical Reports Server (NTRS)

    Loitsianskii. L. G.

    1956-01-01

    The fundamental, practically the most important branch of the modern mechanics of a viscous fluid or a gas, is that branch which concerns itself with the study of the boundary layer. The presence of a boundary layer accounts for the origin of the resistance and lift force, the breakdown of the smooth flow about bodies, and other phenomena that are associated with the motion of a body in a real fluid. The concept of boundary layer was clearly formulated by the founder of aerodynamics, N. E. Joukowsky, in his well-known work "On the Form of Ships" published as early as 1890. In his book "Theoretical Foundations of Air Navigation," Joukowsky gave an account of the most important properties of the boundary layer and pointed out the part played by it in the production of the resistance of bodies to motion. The fundamental differential equations of the motion of a fluid in a laminar boundary layer were given by Prandtl in 1904; the first solutions of these equations date from 1907 to 1910. As regards the turbulent boundary layer, there does not exist even to this day any rigorous formulation of this problem because there is no closed system of equations for the turbulent motion of a fluid. Soviet scientists have done much toward developing a general theory of the boundary layer, and in that branch of the theory which is of greatest practical importance at the present time, namely the study of the boundary layer at large velocities of the body in a compressed gas, the efforts of the scientists of our country have borne fruit in the creation of a new theory which leaves far behind all that has been done previously in this direction. We shall herein enumerate the most important results by Soviet scientists in the development of the theory of the boundary layer.

  14. Grain boundaries

    SciTech Connect

    Balluffi, R.W.; Bristowe, P.D.

    1991-01-01

    The present document is a progress report describing the work accomplished to date during the second year of our four-year grant (February 15, 1990--February 14, 1994) to study grain boundaries. The research was focused on the following three major efforts: Study of the atomic structure of grain boundaries by means of x-ray diffraction, transmission electron microscopy and computer modeling; study of short-circuit diffusion along grain boundaries; and development of a Thin-film Deposition/Bonding Apparatus for the manufacture of high purity bicrystals.

  15. Bashful ballerina unveiled: Multipole analysis of the coronal magnetic field

    NASA Astrophysics Data System (ADS)

    Virtanen, I.; Mursula, K.

    2012-12-01

    Heliospheric current sheet (HCS) is the continuum of the coronal magnetic equator, dividing the heliospheric magnetic field (HMF) into two sectors (polarities). Because of its wavy structure, the HCS is often called the ballerina skirt. Several studies have proven that the HCS is southward shifted during about three years in the solar declining phase. This persistent phenomenon, called the bashful ballerina, has been verified by geomagnetic indices since 1930s, by OMNI data base since 1960s, by the WSO PFSS model since mid-1970s and by the Ulysses probe measurements during the fast latitude scans in 1994-1995 and 2007. We study here the Wilcox Solar Observatory measurements of the photospheric magnetic field and the PFSS extrapolation of the coronal magnetic field. We show that the quadrupole moment of the photospheric magnetic field, which is important for the HCS asymmetry (bashful ballerina), mainly arises from the difference between northern and southern polar field strengths. According to the WSO data the minimum time quadrupole is mainly due to the difference between the highest northern and southern latitude bins. Related studies imply that the southward shift of the HCS is related to the delayed development of southern coronal holes. We also discuss the suggested connection of the HCS asymmetry to sunspot hemispheric asymmetry.

  16. Variation-perturbation theory within a time-dependent Kohn-Sham formalism: An application to the determination of multipole polarizabilities, spectral sums, and dispersion coefficients

    NASA Astrophysics Data System (ADS)

    Bartolotti, Libero J.

    1984-06-01

    The variation-perturbation method within time-dependent Kohn-Sham theory is used to calculate atomic multipole polarizabilities, spectra sums, and multipole-multipole two-body dispersion coefficients. The first-order corrections to Kohn-Sham amplitudes and phases were obtained from a direct variational approach and from the method of Cauchy moments. The multipole Cauchy moments were used to construct Padé approximants, which gave us upper and lower bounds to the two-body dispersion coefficients. Four approximations to the exchange-correlation energy were investigated in the present work and the gradient expansion for atoms proved to be most satisfactory.

  17. An improved multipole approximation for self-gravity and its importance for core-collapse supernova simulations

    SciTech Connect

    Couch, Sean M.; Graziani, Carlo; Flocke, Norbert

    2013-12-01

    Self-gravity computation by multipole expansion is a common approach in problems such as core-collapse and Type Ia supernovae, where single large condensations of mass must be treated. The standard formulation of multipole self-gravity in arbitrary coordinate systems suffers from two significant sources of error, which we correct in the formulation presented in this article. The first source of error is due to the numerical approximation that effectively places grid cell mass at the central point of the cell, then computes the gravitational potential at that point, resulting in a convergence failure of the multipole expansion. We describe a new scheme that avoids this problem by computing gravitational potential at cell faces. The second source of error is due to sub-optimal choice of location for the expansion center, which results in angular power at high multipole l values in the gravitational field, requiring a high—and expensive—value of multipole cutoff l {sub max}. By introducing a global measure of angular power in the gravitational field, we show that the optimal coordinate for the expansion is the square-density-weighted mean location. We subject our new multipole self-gravity algorithm, implemented in the FLASH simulation framework, to two rigorous test problems: MacLaurin spheroids for which exact analytic solutions are known, and core-collapse supernovae. We show that key observables of the core-collapse simulations, particularly shock expansion, proto-neutron star motion, and momentum conservation, are extremely sensitive to the accuracy of the multipole gravity, and the accuracy of their computation is greatly improved by our reformulated solver.

  18. An Improved Multipole Approximation for Self-gravity and Its Importance for Core-collapse Supernova Simulations

    NASA Astrophysics Data System (ADS)

    Couch, Sean M.; Graziani, Carlo; Flocke, Norbert

    2013-12-01

    Self-gravity computation by multipole expansion is a common approach in problems such as core-collapse and Type Ia supernovae, where single large condensations of mass must be treated. The standard formulation of multipole self-gravity in arbitrary coordinate systems suffers from two significant sources of error, which we correct in the formulation presented in this article. The first source of error is due to the numerical approximation that effectively places grid cell mass at the central point of the cell, then computes the gravitational potential at that point, resulting in a convergence failure of the multipole expansion. We describe a new scheme that avoids this problem by computing gravitational potential at cell faces. The second source of error is due to sub-optimal choice of location for the expansion center, which results in angular power at high multipole l values in the gravitational field, requiring a high—and expensive—value of multipole cutoff l max. By introducing a global measure of angular power in the gravitational field, we show that the optimal coordinate for the expansion is the square-density-weighted mean location. We subject our new multipole self-gravity algorithm, implemented in the FLASH simulation framework, to two rigorous test problems: MacLaurin spheroids for which exact analytic solutions are known, and core-collapse supernovae. We show that key observables of the core-collapse simulations, particularly shock expansion, proto-neutron star motion, and momentum conservation, are extremely sensitive to the accuracy of the multipole gravity, and the accuracy of their computation is greatly improved by our reformulated solver.

  19. Neptunium multipoles and resonant x-ray Bragg diffraction by neptunium dioxide (NpO2)

    NASA Astrophysics Data System (ADS)

    Lovesey, S. W.; Detlefs, C.; Rodríguez-Fernández, A.

    2012-06-01

    The low-temperature ordered state of neptunium dioxide (NpO2) remains enigmatic. After decades of experimental and theoretical efforts, long-range order of a time-odd (magnetic) high-order atomic multipole moment is now generally considered to be the fundamental order parameter, the most likely candidate being a magnetic triakontadipole (rank 5). To date, however, direct experimental observation of the primary order parameter remains outstanding. In the light of new experimental findings, we re-examine the effect of crystal symmetry on the atomic multipoles and the resulting x-ray resonant scattering signature. Our simulations use the crystallographic point group \\bar {3}m (D3d), because corresponding magnetic groups \\bar {3}{m}^{\\prime}, {\\bar {3}}^{\\prime}{m}^{\\prime} and {\\bar {3}}^{\\prime}m are shown by us to be at odds with a wealth of experimental results. In addition to the previously observed (secondary) quadrupole order, we derive expressions for higher-order multipoles that might be observed in future experiments. In particular, magnetic octupole moments are predicted to contribute to Np M2,3 and L2,3 resonant scattering via E2-E2 events. The Lorentzian-squared lineshape observed at the M4 resonance is shown to be the result of the anisotropy of the 3p3/2 core levels. Quantitative comparison of our calculations to the measured data yields a core-hole width Γ = 2.60(7) eV and a core-state exchange energy \\vert \\varepsilon (\\frac{1}{2})\\vert =0.7 6(2) eV.

  20. Neptunium multipoles and resonant x-ray Bragg diffraction by neptunium dioxide (NpO2).

    PubMed

    Lovesey, S W; Detlefs, C; Rodríguez-Fernández, A

    2012-06-27

    The low-temperature ordered state of neptunium dioxide (NpO(2)) remains enigmatic. After decades of experimental and theoretical efforts, long-range order of a time-odd (magnetic) high-order atomic multipole moment is now generally considered to be the fundamental order parameter, the most likely candidate being a magnetic triakontadipole (rank 5). To date, however, direct experimental observation of the primary order parameter remains outstanding. In the light of new experimental findings, we re-examine the effect of crystal symmetry on the atomic multipoles and the resulting x-ray resonant scattering signature. Our simulations use the crystallographic point group ̅3m (D(3d)), because corresponding magnetic groups ̅3m', ̅3'm', and ̅3'm are shown by us to be at odds with a wealth of experimental results. In addition to the previously observed (secondary) quadrupole order, we derive expressions for higher-order multipoles that might be observed in future experiments. In particular, magnetic octupole moments are predicted to contribute to Np M(2,3) and L(2,3) resonant scattering via E2–E2 events. The Lorentzian-squared lineshape observed at the M(4) resonance is shown to be the result of the anisotropy of the 3p(3/2) core levels. Quantitative comparison of our calculations to the measured data yields a core–hole width Γ = 2.60(7) eV and a core-state exchange energy [absolute value]ε(1/2)[absolute value] = 0.76(2) eV.

  1. Experimental study of the formation of field-reversed configurations employing high-order multipole fields

    NASA Astrophysics Data System (ADS)

    Slough, J. T.; Hoffman, A. L.

    1990-04-01

    A high-order multipole ``barrier'' field was applied at the vacuum tube wall in the TRX experiment [Phys. Fluids B 1, 840 (1989)] during both the preionization and field reversal phases of field-reversed configuration (FRC) formation. Use of this field during field reversal resulted in a significant reduction of impurities as well as increased flux trapping. With a large enough Bθ at the wall, sheath detachment from the wall became apparent, and flux loss through the sheath became negligible (<10%). At larger wall Bθ (>1.5 kG), destructive rotational spin-up occurred, driven by Hall current forces. When the multipole barrier field was also applied during either axial discharge or ringing theta current preionization, a very symmetric and uniform breakdown of the fill gas was achieved. In particular, using ringing theta preionization, complete ionization of the fill gas was accomplished with purely inductive fields of remarkably low magnitude, where Ez≤3 V/cm, and Eθ≤20 V/cm. Due to the improved ionization symmetry, about 65% to 75% of the lift-off flux (flux remaining after field reversal) could be retained through the remaining formation processes into an equilibrium FRC. Using the multipole field during both preionization and formation, it was possible to form FRC's with good confinement with greater than 3 mWb of trapped flux at 15 mTorr D2 or H2 in a 10 cm radius device. Values of s in excess of 4 could be achieved in this manner.

  2. Report of the SSC workshop on distributed multipole correction coils. Task force report

    SciTech Connect

    Sah, R.

    1988-01-01

    The SSC Workshop on Distributed Multipole Correction Coils was held at Brookhaven National Laboratory on October 13 and 14, 1987. This Workshop was organized by the SSC Central Design Group, and its purpose was to discuss the present status of specifications, designs, and R&D plans for distributed, actively-powered multipole correction coils for the SSC. The Workshop was organized into four consecutive sessions to discuss the following topics: requirements for distributed correction coils, distributed connection coil designs, materials issues, and plans for future R&D. The following conclusions were drawn from the workshop: Accelerator physics considerations indicate that distributed multipole correction coils represent a feasible and flexible method to correct magnetic field errors in the SSC. Considerable progress has been made by Brookhaven National Laboratory in collaboration with industry to develop a possible fabrication technique for distributed correction coils. This technique consists of imbedding superconducting wire in a flexible plastic substrate. Its feasibility for the SSC still needs to be demonstrated. BNL has presented a preliminary plan for the necessary R&D. A successful technique has been developed to manufacture distributed correction coils for HERA. The coil performance is excellent. As yet, no plan has been proposed to study this type of correction coil for the SSC. The results from an experiment to study radiation damage to organic materials, although still preliminary, am providing guidance in selecting the most radiation resistant materials to use in correction coils. The test samples in this experiment were subjected to much larger radiation doses than expected at the SSC. Considerable information on radiation damage is available in the literature.

  3. Geometry Effects on Multipole Components and Beam Optics in High-Velocity Multi-Spoke Cavities

    SciTech Connect

    Hopper, Christopher S.; Deitrick, Kirsten E.; Delayen, Jean R.

    2013-12-01

    Velocity-of-light, multi-spoke cavities are being proposed to accelerate electrons in a compact light-source. There are strict requirements on the beam quality which require that the linac have only small non-uniformities in the accelerating field. Beam dynamics simulations have uncovered varying levels of focusing and defocusing in the proposed cavities, which is dependent on the geometry of the spoke in the vicinity of the beam path. Here we present results for the influence different spoke geometries have on the multipole components of the accelerating field and how these components, in turn, impact the simulated beam properties.

  4. Multiple-type solutions for multipole interface solitons in thermal nonlinear media

    SciTech Connect

    Ma Xuekai; Yang Zhenjun; Lu Daquan; Hu Wei

    2011-09-15

    We address the existence of multipole interface solitons in one-dimensional thermal nonlinear media with a step in the linear refractive index at the sample center. It is found that there exist two types of solutions for tripole and quadrupole interface solitons. The two types of interface solitons have different profiles, beam widths, mass centers, and stability regions. For a given propagation constant, only one type of interface soliton is proved to be stable, while the other type can also survive over a long distance. In addition, three types of solutions for fifth-order interface solitons are found.

  5. Magnetic design and measurement of nonlinear multipole magnets for the APT beam expander system

    SciTech Connect

    Barlow, D.B.; Shafer, R.E.; Martinez, R.P.; Walstrom, P.L.; Kahn, S.; Jain, A.; Wanderer, P.

    1997-10-01

    Two prototype nonlinear multipole magnets have been designed for use in the 800-MeV beam test of the APT beam-expansion concept at LANSCE. The iron-dominated magnets each consist of three independent coils, two for producing a predominantly octupole field with a tunable duodecapole component, and one for canceling the residual quadrupole field. Two such magnets, one for shaping each transverse plane, are required to produce a rectangular, uniform beam current density distribution with sharp edges on the APT target. This report will describe the magnetic design of these magnets, along with field measurements, and a comparison to the magnetic design.

  6. Impact of High-Order Multipole Errors in the NSLS-II Quadrupoles and Sectupoles on Dynamic and Momentum Aperture

    SciTech Connect

    Nash,B.; Guo, W.

    2009-05-04

    Successful operation of NSLS-II requires sufficient dynamic aperture for injection, as well as momentum aperture for Touschek lifetime. We explore the dependence of momentum and dynamic aperture on higher-order multipole field errors in the quadrupoles and sextupoles. We add random and systematic multipole errors to the quadrupoles and sextupoles and compute the effect on dynamic aperture. We find that the strongest effect is at negative momentum, due to larger closed orbit excursions. Adding all the errors based on the NSLS-II specifications, we find adequate dynamic and momentum aperture.

  7. Spin induced multipole moments for the gravitational wave flux from binary inspirals to third Post-Newtonian order

    SciTech Connect

    Porto, Rafael A.; Ross, Andreas; Rothstein, Ira Z. E-mail: andreasr@andrew.cmu.edu

    2011-03-01

    Using effective field theory techniques we calculate the source multipole moments needed to obtain the spin contributions to the power radiated in gravitational waves from inspiralling compact binaries to third Post-Newtonian order (3PN). The multipoles depend linearly and quadratically on the spins and include both spin(1)spin(2) and spin(1)spin(1) components. The results in this paper provide the last missing ingredient required to determine the phase evolution to 3PN including all spin effects which we will report in a separate paper.

  8. Local geometry of electromagnetic fields and its role in molecular multipole transitions.

    PubMed

    Yang, Nan; Cohen, Adam E

    2011-05-12

    Electromagnetic fields with complex spatial variation routinely arise in Nature. We study the response of a small molecule to monochromatic fields of arbitrary three-dimensional geometry. First, we consider the allowed configurations of the fields and field gradients at a single point in space. Many configurations cannot be generated from a single plane wave, regardless of polarization, but any allowed configuration can be generated by superposition of multiple plane waves. There is no local configuration of the fields and gradients that requires near-field effects. Second, we derive a set of local electromagnetic quantities, each of which couples to a particular multipole transition. These quantities are small or zero in plane waves, but can be large in regions of certain superpositions of plane waves. Our findings provide a systematic framework for designing far-field and near-field experiments to drive multipole transitions. The proposed experiments provide information on molecular structure that is inaccessible to other spectroscopic techniques and open the possibility for new types of optical control of molecules.

  9. Dynamically Polarizable Water Potential Based on Multipole Moments Trained by Machine Learning.

    PubMed

    Handley, Chris M; Popelier, Paul L A

    2009-06-01

    It is widely accepted that correctly accounting for polarization within simulations involving water is critical if the structural, dynamic, and thermodynamic properties of such systems are to be accurately reproduced. We propose a novel potential for the water dimer, trimer, tetramer, pentamer, and hexamer that includes polarization explicitly, for use in molecular dynamics simulations. Using thousands of dimer, trimer, tetramer, pentamer, and hexamer clusters sampled from a molecular dynamics simulation lacking polarization, we train (artificial) neural networks (NNs) to predict the atomic multipole moments of a central water molecule. The input of the neural nets consists solely of the coordinates of the water molecules surrounding the central water. The multipole moments are calculated by the atomic partitioning defined by quantum chemical topology (QCT). This method gives a dynamic multipolar representation of the water electron density without explicit polarizabilities. Instead, the required knowledge is stored in the neural net. Furthermore, there is no need to perform iterative calculations to self-consistency during the simulation nor is there a need include damping terms in order to avoid a polarization catastrophe.

  10. Multipole plasmon resonances in self-assembled metal hollow-nanospheres.

    PubMed

    Yin, Jun; Zang, Yashu; Xu, Binbin; Li, Shuping; Kang, Junyong; Fang, Yanyan; Wu, Zhihao; Li, Jing

    2014-04-21

    Recently, multipole plasmonic mode resonances in metal hollow structures, such as dipole, quadrupole, and octupole modes, have been widely investigated by researchers with the aim for potential applications in bio-sensing, fluorescence, nanolasers or nonlinear nano-photonics. Here, in this work, the multipole plasmon resonances in self-assembled metal hollow-nanospheres (HNSs) are theoretically and experimentally demonstrated and the hot spots originating from the higher order mode plasmonic resonance and interparticle coupling effect are proposed to be used for Raman scattering enhancements. Dipole, quadrupole, octupole and hexadecapole mode plasmonic resonances were clearly resolved in the extinction spectra of these Ag HNS arrays showing good agreement with the theoretical simulation results. Strong regular hot spots were obtained around the surface and in the gaps of the Ag HNSs through the higher order mode plasmonic resonances and corresponding interparticle coupling effect between the HNSs. Maximum local field intensity was accomplished by optimizing the size of as well as the coupling distance between the HNSs and then it was applied to SERS sensing. Raman mapping also demonstrated these self-assembled plasmonic cavity arrays to be a stable and uniform SERS-active substrate.

  11. An optimized intermolecular force field for hydrogen-bonded organic molecular crystals using atomic multipole electrostatics

    PubMed Central

    Pyzer-Knapp, Edward O.; Thompson, Hugh P. G.; Day, Graeme M.

    2016-01-01

    We present a re-parameterization of a popular intermolecular force field for describing intermolecular interactions in the organic solid state. Specifically we optimize the performance of the exp-6 force field when used in conjunction with atomic multipole electrostatics. We also parameterize force fields that are optimized for use with multipoles derived from polarized molecular electron densities, to account for induction effects in molecular crystals. Parameterization is performed against a set of 186 experimentally determined, low-temperature crystal structures and 53 measured sublimation enthalpies of hydrogen-bonding organic molecules. The resulting force fields are tested on a validation set of 129 crystal structures and show improved reproduction of the structures and lattice energies of a range of organic molecular crystals compared with the original force field with atomic partial charge electrostatics. Unit-cell dimensions of the validation set are typically reproduced to within 3% with the re-parameterized force fields. Lattice energies, which were all included during parameterization, are systematically underestimated when compared with measured sublimation enthalpies, with mean absolute errors of between 7.4 and 9.0%. PMID:27484370

  12. Static electric and magnetic multipole susceptibilities for Dirac one-electron atoms in the ground state

    NASA Astrophysics Data System (ADS)

    Szmytkowski, Radosław; Łukasik, Grzegorz

    2016-09-01

    We present tabulated data for several families of static electric and magnetic multipole susceptibilities for hydrogenic atoms with nuclear charge numbers from the range 1 ⩽ Z ⩽ 137. Atomic nuclei are assumed to be point-like and spinless. The susceptibilities considered include the multipole electric polarizabilities α E L → E L and magnetizabilities (magnetic susceptibilities) χ M L → M L with 1 ⩽ L ⩽ 4 (i.e., the dipole, quadrupole, octupole and hexadecapole ones), the electric-to-magnetic cross-susceptibilities α E L → M(L - 1) with 2 ⩽ L ⩽ 5 and α E L → M(L + 1) with 1 ⩽ L ⩽ 4, the magnetic-to-electric cross-susceptibilities χ M L → E(L - 1) with 2 ⩽ L ⩽ 5 and χ M L → E(L + 1) with 1 ⩽ L ⩽ 4 (it holds that χ M L → E(L ∓ 1) =α E(L ∓ 1) → M L), and the electric-to-toroidal-magnetic cross-susceptibilities α E L → T L with 1 ⩽ L ⩽ 4. Numerical values are computed from general exact analytical formulas, derived by us elsewhere within the framework of the Dirac relativistic quantum mechanics, and involving generalized hypergeometric functions 3F2 of the unit argument.

  13. Real-space quadrature: A convenient, efficient representation for multipole expansions

    SciTech Connect

    Rogers, David M.

    2015-02-21

    Multipoles are central to the theory and modeling of polarizable and nonpolarizable molecular electrostatics. This has made a representation in terms of point charges a highly sought after goal, since rotation of multipoles is a bottleneck in molecular dynamics implementations. All known point charge representations are orders of magnitude less efficient than spherical harmonics due to either using too many fixed charge locations or due to nonlinear fitting of fewer charge locations. We present the first complete solution to this problem—completely replacing spherical harmonic basis functions by a dramatically simpler set of weights associated to fixed, discrete points on a sphere. This representation is shown to be space optimal. It reduces the spherical harmonic decomposition of Poisson’s operator to pairwise summations over the point set. As a corollary, we also shows exact quadrature-based formulas for contraction over trace-free supersymmetric 3D tensors. Moreover, multiplication of spherical harmonic basis functions translates to a direct product in this representation.

  14. General relativistic theory of light propagation in the field of gravitational multipoles

    NASA Astrophysics Data System (ADS)

    Korobkov, Pavel

    We consider propagation of electromagnetic signals through the time-dependent gravitational field of an isolated astronomical system emitting gravitational waves. The system is assumed to possess multipole moments of arbitrary order. Working in the linear, weak-field approximation of general relativity, we obtain analytical expressions for light-ray trajectory and observable effects of bending of light, time delay, and gravitational rotation of the polarization plane. The relative positions of the source of light, the isolated system, and the observer are not restricted, which makes our formalism quite general and applicable for most practical situations. Asymptotic expressions for observable effects are obtained in two limiting cases of arrangement of light source, observer, and the source of gravitational waves: the gravitational-lens approximation and the approximation of plane gravitational waves. It is shown that in the gravitational-lens approximation the leading contributions to the effects due to multipole moments of arbitrary order fall off with the impact parameter as 1/d2 and 1/d3 for time delay and deflection of light respectively. Such, stronger than it could be a priori expected, dependance on impact parameter hinders observation of time-dependent effects in gravitational lensing. In the plane-gravitational-wave approximation the expressions for observable effects due to gravitational waves of arbitrary multipolarity are obtained in terms of the transverse-traceless (TT) part of the spacial components of the metric tensor.

  15. An optimized intermolecular force field for hydrogen-bonded organic molecular crystals using atomic multipole electrostatics.

    PubMed

    Pyzer-Knapp, Edward O; Thompson, Hugh P G; Day, Graeme M

    2016-08-01

    We present a re-parameterization of a popular intermolecular force field for describing intermolecular interactions in the organic solid state. Specifically we optimize the performance of the exp-6 force field when used in conjunction with atomic multipole electrostatics. We also parameterize force fields that are optimized for use with multipoles derived from polarized molecular electron densities, to account for induction effects in molecular crystals. Parameterization is performed against a set of 186 experimentally determined, low-temperature crystal structures and 53 measured sublimation enthalpies of hydrogen-bonding organic molecules. The resulting force fields are tested on a validation set of 129 crystal structures and show improved reproduction of the structures and lattice energies of a range of organic molecular crystals compared with the original force field with atomic partial charge electrostatics. Unit-cell dimensions of the validation set are typically reproduced to within 3% with the re-parameterized force fields. Lattice energies, which were all included during parameterization, are systematically underestimated when compared with measured sublimation enthalpies, with mean absolute errors of between 7.4 and 9.0%. PMID:27484370

  16. Multipole and field uniformity tailoring of a 750 MHz rf dipole

    SciTech Connect

    Delayen, Jean R.; Castillo, Alejandro

    2014-12-01

    In recent years great interest has been shown in developing rf structures for beam separation, correction of geometrical degradation on luminosity, and diagnostic applications in both lepton and hadron machines. The rf dipole being a very promising one among all of them. The rf dipole has been tested and proven to have attractive properties that include high shunt impedance, low and balance surface fields, absence of lower order modes and far-spaced higher order modes that simplify their damping scheme. As well as to be a compact and versatile design in a considerable range of frequencies, its fairly simple geometry dependency is suitable both for fabrication and surface treatment. The rf dipole geometry can also be optimized for lowering multipacting risk and multipole tailoring to meet machine specific field uniformity tolerances. In the present work a survey of field uniformities, and multipole contents for a set of 750 MHz rf dipole designs is presented as both a qualitative and quantitative analysis of the inherent flexibility of the structure and its limitations.

  17. Magnetic multipole cylinders from mould-injection Nd2Fe14B plastic bonded magnets (abstract)

    NASA Astrophysics Data System (ADS)

    Nicolaides, G. K.; Niarchos, D.; Tsamakis, D.; Koubouros, I.; Mitsis, A.

    1996-04-01

    Mould injection Nd2Fe14B magnetic material of density ρ˜4 g/cc and of an energy product (BH)max˜4 MGOe, has been pressed into the form of cylindrical segments in order to investigate the possibility of preparing cylindrical magnetic multipoles which could be used as magnetic gears. The obtained cylindrical bonded magnet segments have a length of 3 cm and an angle width of φ=90° or φ=45°. These segments are easily magnetized along a radial direction at the angle φ/2, using a conventional electromagnet at a magnetic field of 2 T. Subsequently, the opposite magnetized segments are combined and bonded together with ultrasonic technique. The final result of the above procedure is the formation of a magnetic multipole cylinder which could be used as a magnetic gear. Here, except the preparation technique, we report the maximum torque applied versus the magnetization M of the poles and the distance between the gears. The dependence of the applied torque on the rotational frequency is also examined.

  18. BOOK REVIEW: Multipole Theory in Electromagnetism: Classical, Quantum and Symmetry Aspects, with Applications

    NASA Astrophysics Data System (ADS)

    Sihvola, Ari

    2005-03-01

    `Good reasons must, of force, give place to better', observes Brutus to Cassius, according to William Shakespeare in Julius Caesar. Roger Raab and Owen de Lange seem to agree, as they cite this sentence in the concluding chapter of their new book on the importance of exact multipole analysis in macroscopic electromagnetics. Very true and essential to remember in our daily research work. The two scientists from the University of Natal in Pietermaritzburg, South Africa (presently University of KwaZulu-Natal) have been working for a very long time on the accurate description of electric and magnetic response of matter and have published much of their findings in various physics journals. The present book gives us a clear and coherent exposition of many of these results. The important message of Raab and de Lange is that in the macroscopic description of matter, a correct balance between the various orders of electric and magnetic multipole terms has to be respected. If the inclusion of magnetic dipole terms is not complemented with electric quadrupoles, there is a risk of losing the translational invariance of certain important quantities. This means that the values of these quantities depend on the choice of the origin! `It canÂ't be Nature, for it is not sense' is another of the apt literary citations in the book. Often monographs written by researchers look like they have been produced using a cut-and-paste technique; earlier published articles are included in the same book but, unfortunately, too little additional effort is expended into moulding the totality into a unified story. This is not the case with Raab and de Lange. The structure and the text flow of the book serve perfectly its important message. After the obligatory introduction of material response to electromagnetic fields, constitutive relations, basic quantum theory and spacetime properties, a chapter follows with transmission and scattering effects where everything seems to work well with the `old

  19. Boundary issues

    NASA Astrophysics Data System (ADS)

    Townsend, Alan R.; Porder, Stephen

    2011-03-01

    What is our point of no return? Caesar proclaimed 'the die is cast' while crossing the Rubicon, but rarely does modern society find so visible a threshold in our continued degradation of ecosystems and the services they provide. Humans have always used their surroundings to make a living— sometimes successfully, sometimes not (Diamond 2005)—and we intuitively know that there are boundaries to our exploitation. But defining these boundaries has been a challenge since Malthus first prophesied that nature would limit the human population (Malthus 1798). In 2009, Rockström and colleagues tried to quantify what the 6.8 billion (and counting) of us could continue to get away with, and what we couldn't (Rockström et al 2009). In selecting ten 'planetary boundaries', the authors contend that a sustainable human enterprise requires treating a number of environmental thresholds as points of no return. They suggest we breach these Rubicons at our own peril, and that we've already crossed three: biodiversity loss, atmospheric CO2, and disruption of the global nitrogen (N) cycle. As they clearly hoped, the very act of setting targets has provoked scientific inquiry about their accuracy, and about the value of hard targets in the first place (Schlesinger 2009). Such debate is a good thing. Despite recent emphasis on the science of human-ecosystem interactions, understanding of our planetary boundaries is still in its infancy, and controversy can speed scientific progress (Engelhardt and Caplan 1987). A few weeks ago in this journal, Carpenter and Bennett (2011) took aim at one of the more controversial boundaries in the Rockström analysis: that for human alteration of the global phosphorus (P) cycle. Rockström's group chose riverine P export as the key indicator, suggesting that humans should not exceed a value that could trigger widespread marine anoxic events—and asserting that we have not yet crossed this threshold. There are defensible reasons for a marine

  20. Resonant Spectra of Malignant Breast Cancer Tumors Using the Three-Dimensional Electromagnetic Fast Multipole Model. Part 1

    NASA Technical Reports Server (NTRS)

    El-Shenawee, Magda

    2003-01-01

    An intensive numerical study for the resonance scattering of malignant breast cancer tumors is presented. The rigorous three-dimensional electromagnetic model, based on the equivalence theorem, is used to obtain the induced electric and magnetic currents on the breast and tumor surfaces. The results show that a non-spherical malignant tumor can be characterized based its spectra regardless of its orientation, the incident polarization, or the incident or scattered directions. The tumor's spectra depend solely on its physical characteristics (i.e., the shape and the electrical properties), however, their locations are not functions of its burial depth. This work provides a useful guidance to select the appropriate frequency range for the tumor's size.

  1. Boundary issues

    NASA Astrophysics Data System (ADS)

    Townsend, Alan R.; Porder, Stephen

    2011-03-01

    What is our point of no return? Caesar proclaimed 'the die is cast' while crossing the Rubicon, but rarely does modern society find so visible a threshold in our continued degradation of ecosystems and the services they provide. Humans have always used their surroundings to make a living— sometimes successfully, sometimes not (Diamond 2005)—and we intuitively know that there are boundaries to our exploitation. But defining these boundaries has been a challenge since Malthus first prophesied that nature would limit the human population (Malthus 1798). In 2009, Rockström and colleagues tried to quantify what the 6.8 billion (and counting) of us could continue to get away with, and what we couldn't (Rockström et al 2009). In selecting ten 'planetary boundaries', the authors contend that a sustainable human enterprise requires treating a number of environmental thresholds as points of no return. They suggest we breach these Rubicons at our own peril, and that we've already crossed three: biodiversity loss, atmospheric CO2, and disruption of the global nitrogen (N) cycle. As they clearly hoped, the very act of setting targets has provoked scientific inquiry about their accuracy, and about the value of hard targets in the first place (Schlesinger 2009). Such debate is a good thing. Despite recent emphasis on the science of human-ecosystem interactions, understanding of our planetary boundaries is still in its infancy, and controversy can speed scientific progress (Engelhardt and Caplan 1987). A few weeks ago in this journal, Carpenter and Bennett (2011) took aim at one of the more controversial boundaries in the Rockström analysis: that for human alteration of the global phosphorus (P) cycle. Rockström's group chose riverine P export as the key indicator, suggesting that humans should not exceed a value that could trigger widespread marine anoxic events—and asserting that we have not yet crossed this threshold. There are defensible reasons for a marine

  2. The Analysis of Likert Scales Using State Multipoles: An Application of Quantum Methods to Behavioral Sciences Data

    ERIC Educational Resources Information Center

    Camparo, James; Camparo, Lorinda B.

    2013-01-01

    Though ubiquitous, Likert scaling's traditional mode of analysis is often unable to uncover all of the valid information in a data set. Here, the authors discuss a solution to this problem based on methodology developed by quantum physicists: the state multipole method. The authors demonstrate the relative ease and value of this method by…

  3. The creation, destruction, and transfer of multipole moments in electron- and proton-impact ionization of atoms and ions

    NASA Astrophysics Data System (ADS)

    Csanak, G.; Inal, M. K.; Fontes, C. J.; Kilcrease, D. P.

    2013-12-01

    Expanding on previous works that involved elastic and inelastic scattering of electrons by atoms and ions, we use the wave-packet propagation scheme of Dollard to define multipole moment creation, destruction and transfer cross sections for electron- and proton-impact ionization of atoms and ions. The electron-impact cross sections can then be used by defining appropriate rate coefficients for use in Fujimoto’s population-alignment collisional-radiative model for cylindrically symmetric plasmas. Our result for the alignment creation cross section is in agreement with those formulae that were obtained earlier intuitively or by semi-classical collisional methods. The multipole cross sections obtained here can be used also for modelling the relaxation behaviour of laser-excited plasmas under cylindrical symmetry conditions. We have also derived the electron- and proton-impact ionization multipole cross sections in terms of Liouville-space quantities, which then enabled us by using group theoretical methods to obtain the azimuthal-angle dependence of the multipole cross sections and symmetry properties that are results of reflection across a plane over the collisional axis.

  4. Spin induced multipole moments for the gravitational wave amplitude from binary inspirals to 2.5 Post-Newtonian order

    SciTech Connect

    Porto, Rafael A.; Ross, Andreas; Rothstein, Ira Z. E-mail: andreasr@andrew.cmu.edu

    2012-09-01

    Using the NRGR effective field theory formalism we calculate the remaining source multipole moments necessary to obtain the spin contributions to the gravitational wave amplitude to 2.5 Post-Newtonian (PN) order. We also reproduce the tail contribution to the waveform linear in spin at 2.5PN arising from the nonlinear interaction between the current quadrupole and the mass monopole.

  5. On the use of multipole expansion in time evolution of nonlinear dynamical systems and some surprises related to superradiance

    NASA Astrophysics Data System (ADS)

    Csizmadia, Péter; László, András; Rácz, István

    2013-01-01

    A new numerical method is introduced to study the problem of time evolution of generic nonlinear dynamical systems in four-dimensional spacetimes. It is assumed that the time level surfaces are foliated by a one-parameter family of codimension-2 compact surfaces with no boundary and which are conformal to a Riemannian manifold {C}. The method is based on the use of a multipole expansion determined uniquely by the induced metric structure on {C}. The approach is fully spectral—i.e. it avoids pointwise evaluations of the basic variables—in the angular directions. Instead, Gaunt coefficients as matrix elements are used to evaluate multilinear expressions. The dynamics in the complementary 1+1 Lorentzian spacetime is followed by making use of a fourth-order finite differencing scheme. In handling the pertinent 1+1 transverse degrees of freedom, the techniques of adaptive mesh refinement (AMR) is also applied. In checking the reliability and effectiveness of the introduced new method, the evolution of a massless scalar field on a fixed Kerr spacetime is investigated. In particular, the angular distribution of the evolving field in superradiant scattering is studied. The primary aim was to check the validity of some of the recent arguments claiming that the Penrose process, or its field theoretical correspondence—superradiance—does play a crucial role in jet formation in black hole spacetimes while matter accretes onto the central object. Our findings appear to be contrary to these claims as the angular dependence of superradiant scattering of massless scalar fields does not show any preference of the axis of rotation. In addition, the characteristic properties of superradiance in the case of a massless scalar field were also investigated. Contrary to the general expectations, we found that by an incident wave packet, which had been tuned to be maximally superradiant, the acquired extra energy in the scattering process must be less than 0.1% of the energy sent in

  6. Anisotropy across Superplume Boundaries

    NASA Astrophysics Data System (ADS)

    Cottaar, S.; Romanowicz, B. A.

    2011-12-01

    Sdiff data sets are presented for paths that run parallel to the African and the Pacific superplume boundaries. Objective clustering of waveforms illustrates sharp changes across these boundaries. The African plume shows a sharp offset in travel times in the SHdiff phase, while a more gradual offset towards slower arrivals is seen in the case of the Pacific superplume. Additionally, Pdiff phases display no offset around the African plume and a weak one around the Pacific plume. Here we focus mainly on another striking feature observed in both cases: outside of the superplume the Sdiff particle motion is strongly elliptical, but becomes linear within the superplume (first noticed by To et al. 2005 in the African superplume case). For the African plume we argue that these observations of delayed SV at large distances (~120 degrees) are indicative of the occurrence of azimuthal anisotropy. The SV arrivals have similar polarity as SH, opposite from what their radiation pattern predicts. Azimuthal anisotropy causes SH energy to be converted to SV (Maupin, 1994), explaining the travel time, polarity and amplitude. Forward modeling through different isotropic and anisotropic models supports this statement, although there are trade-offs between direction and magnitude of azimuthal anisotropy. The strong elliptical particle motions are also observed outside the Pacific plume, but at shorter distances (95-105 degrees). Elliptical motions can occur in the absence of anisotropy when strong velocity deviations or layering occurs close to the CMB, which, based on velocity profiles with depth in global tomographic models would be more likely within the superplume rather than on the fast side. The elliptical particle motions here can be modelled with a simple transverse isotropic model with VSH>VSV, but azimuthal anisotropy cannot be ruled out. The complexities within the Pacific superplume, including strong amplitude drop and existence of a post-cursor, are likely caused by an

  7. Structure of the low latitude boundary layer

    NASA Technical Reports Server (NTRS)

    Sckopke, N.; Paschmann, G.; Haerendel, G.; Sonnerup, B. U. O.; Bame, S. J.; Forbes, T. G.; Hones, E. W., Jr.; Russell, C. T.

    1980-01-01

    Observations at high temporal resolution of the frontside magnetopause and plasma boundary layer, made with the LASL/MPE fast plasma analyzer onboard the ISEE 1 and 2 spacecraft, revealed a complex quasiperiodic structure of some of the observed boundary layers. A cool tailward streaming boundary layer plasma was seen intermittently, with intervening periods of hot tenuous plasma which has properties similar to the magnetospheric population. While individual encounters with the boundary layer plasma last only a few minutes, the total observation time may extend over one hour or more.

  8. A comparison of least squares linear regression and measurement error modeling of warm/cold multipole correlation in SSC prototype dipole magnets

    SciTech Connect

    Pollock, D.; Kim, K.; Gunst, R.; Schucany, W.

    1993-05-01

    Linear estimation of cold magnetic field quality based on warm multipole measurements is being considered as a quality control method for SSC production magnet acceptance. To investigate prediction uncertainties associated with such an approach, axial-scan (Z-scan) magnetic measurements from SSC Prototype Collider Dipole Magnets (CDM`s) have been studied. This paper presents a preliminary evaluation of the explanatory ability of warm measurement multipole variation on the prediction of cold magnet multipoles. Two linear estimation methods are presented: least-squares regression, which uses the assumption of fixed independent variable (xi) observations, and the measurement error model, which includes measurement error in the xi`s. The influence of warm multipole measurement errors on predicted cold magnet multipole averages is considered. MSD QA is studying warm/cold correlation to answer several magnet quality control questions. How well do warm measurements predict cold (2kA) multipoles? Does sampling error significantly influence estimates of the linear coefficients (slope, intercept and residual standard error)? Is estimation error for the predicted cold magnet average small compared to typical variation along the Z-Axis? What fraction of the multipole RMS tolerance is accounted for by individual magnet prediction uncertainty?

  9. Field analysis and enhancement of multi-pole magnetic components fabricated on printed circuit board

    NASA Astrophysics Data System (ADS)

    Chiu, Kuo-Chi; Chen, Chin-Sen

    2007-09-01

    A multi-pole magnetic component magnetized with a fine magnetic pole pitch of less than 1 mm is very difficult to achieve by using traditional methods. Moreover, it requires a precise mechanical process and a complicated magnetization system. Different fine magnetic pole pitches of 300, 350 and 400 μm have been accomplished on 9-pole magnetic components through the printed circuit board (PCB) manufacturing technology. Additionally, another fine magnetic pole pitch of 500 μm was also fabricated on a dual-layered (DL) wire circuit structure to investigate the field enhancement. After measurements, a gain factor of 1.37 was obtained in the field strength. The field variations among different magnetic pole pitches were analyzed in this paper.

  10. A novel design of iron dominated superconducting multipole magnets with circular coils

    SciTech Connect

    Kashikhin, Vladimir; /Fermilab

    2009-10-01

    Linear accelerators based on superconducting magnet technology use a large number of relatively weak superconducting quadrupoles. In this case an iron dominated quadrupole is the most cost effective solution. The field quality in this magnet is defined by iron poles; the magnet air gap is minimal as are coil ampere-turns. Nevertheless, it has long racetrack type coils, which must be rigid and fixed by a mechanical structure to provide the needed mechanical stability. The novel concept of using circular superconducting coils in such a quadrupole type is described, with a discussion of quadrupole parameters, and results of 3D magnetic designs. Variants of short and long sectional quadrupoles and multipoles are presented.

  11. Cumulative atomic multipole moments complement any atomic charge model to obtain more accurate electrostatic properties

    NASA Technical Reports Server (NTRS)

    Sokalski, W. A.; Shibata, M.; Ornstein, R. L.; Rein, R.

    1992-01-01

    The quality of several atomic charge models based on different definitions has been analyzed using cumulative atomic multipole moments (CAMM). This formalism can generate higher atomic moments starting from any atomic charges, while preserving the corresponding molecular moments. The atomic charge contribution to the higher molecular moments, as well as to the electrostatic potentials, has been examined for CO and HCN molecules at several different levels of theory. The results clearly show that the electrostatic potential obtained from CAMM expansion is convergent up to R-5 term for all atomic charge models used. This illustrates that higher atomic moments can be used to supplement any atomic charge model to obtain more accurate description of electrostatic properties.

  12. General solutions of the Stokes flow --- Lamb's solution and multipole expansion

    NASA Astrophysics Data System (ADS)

    Ichiki, Kengo

    2004-11-01

    The objective of this talk is to relate the two major representations of the Stokes flow; Lamb's general solution (Lamb 1932, and Happel and Brenner 1973) and the multipole expansion of the Oseen tensor (Ichiki 2002). For low Reynolds number hydrodynamics, the governing equation is the Stokes equation, which is a linear partial differential equation. The general solution can be obtained by the conventional potential theory and we have a lot of equivalent representations. It is obvious that these various formulations are mathematically equivalent. However, to the author's knowledge, the relations among them are limited (Weinbaum and Ganatos 1990, and Kim and Karrila 1991). Here we write Lamb's solution by Cartesian tensors and express the force moments on particles by the Lamb's solution. Using this relation, we compare the suspension stress expressed by Lamb's solution (Tanksley and Prosperetti 2001) with that by force moments.

  13. Impact of multipole matching resolution on supersonic aircraft sonic boom assessment

    NASA Astrophysics Data System (ADS)

    Salah El Din, I.; Le Pape, M.-C.; Minelli, A.; Grenon, R.; Carrier, G.

    2013-06-01

    Sonic boom assessment methods through numerical analysis have been ever-evolving since the development of the fundamental theory. With the growing need for efficient low-boom design tools and the increasing computational resources, original approaches using advanced numerical simulation techniques have been developed. Among the various existing methods, the three-layer resolution introduced in the 1990s is very convenient for low-boom aircraft design. It is based on near-field computational fluid dynamics (CFD) calculation which is matched with the far-field propagation code using a description of the source with multipoles before undergoing classical acoustic propagation through atmosphere. The present paper reviews the theory of the near- to far-field matching as well as the different resolution approaches and their limits. The impact of the resolution method on the ground propagated signal is also presented.

  14. Resonance properties of optical all-dielectric metamaterials using two-dimensional multipole expansion

    NASA Astrophysics Data System (ADS)

    Kallos, Efthymios; Chremmos, Ioannis; Yannopapas, Vassilios

    2012-12-01

    We examine the electromagnetic response of metamaterial unit elements consisting of dielectric rods embedded in a nonmagnetic background medium. We establish a theoretical framework in which the response is described through the electric and magnetic multipole moments that are simultaneously generated via the polarization currents that are excited upon the incidence of plane waves. The corresponding dipole and quadrupole polarizabilities are then calculated as a function of the Mie scattering coefficients, and their resonances are mapped for the case of dielectric cylindrical rods as a function of the geometry and the material parameters used. The results provide critical insight into the anisotropic response of two-dimensional rod-type metamaterials and can be used as a unified methodology in the calculation of exotic effective electromagnetic parameters involved in phenomena such as optical magnetism.

  15. Computer-controlled, variable-frequency power supply for driving multipole ion guides.

    PubMed

    Robbins, Matthew D; Yoon, Oh Kyu; Zuleta, Ignacio; Barbula, Griffin K; Zare, Richard N

    2008-03-01

    A high voltage, variable-frequency driver circuit for powering resonant multipole ion guides is presented. Two key features of this design are (1) the use of integrated circuits in the driver stage and (2) the use a stepper motor for tuning a large variable capacitor in the resonant stage. In the present configuration the available frequency range spans a factor of 2. The actual values of the minimum and maximum frequencies depend on the chosen inductor and the capacitance of the ion guide. Feedback allows for stabilized, computer-adjustable rf amplitudes over the range of 5-500 V. The rf power supply was characterized over the range of 350-750 kHz and evaluated by driving a quadrupole ion guide in an electrospray time-of-flight mass spectrometer.

  16. Oxidation of gallium arsenide in a plasma multipole device. Study of the MOS structures obtained

    NASA Technical Reports Server (NTRS)

    Gourrier, S.; Mircea, A.; Simondet, F.

    1980-01-01

    The oxygen plasma oxidation of GaAs was studied in order to obtain extremely high frequency responses with MOS devices. In the multipole system a homogeneous oxygen plasma of high density can easily be obtained in a large volume. This system is thus convenient for the study of plasma oxidation of GaAs. The electrical properties of the MOS diodes obtained in this way are controlled by interface states, located mostly in the upper half of the band gap where densities in the 10 to the 13th power/(sq cm) (eV) range can be estimated. Despite these interface states the possibility of fabricating MOSFET transistors working mostly in the depletion mode for a higher frequency cut-off still exists.

  17. Dispersion potential between three-bodies with arbitrary electric multipole polarizabilities: Molecular QED theory

    SciTech Connect

    Salam, A.

    2014-01-28

    Molecular quantum electrodynamics is used to obtain an expression for the retarded dispersion energy shift between three arbitrarily electrically polarizable atoms or molecules. A generalized Craig-Power Hamiltonian that depends quadratically on the electric displacement field is employed together with third-order diagrammatic perturbation theory. This approach simplifies the calculation relative to the use of the usual multipolar coupling Hamiltonian that is linear in the displacement field. Specific higher multipole non-additive contributions are then extracted. These include dipole-dipole-quadrupole, dipole-quadrupole-quadrupole, and dipole-dipole-octupole potentials valid for oriented and isotropic species with arbitrary separation distances between particles, extending recent work in which these energy shifts were given for equilateral triangle and collinear geometries. Near-zone limiting forms are found to agree with earlier works in which static inter-particle couplings were used.

  18. Grooved multi-pole magnetic gratings for high-resolution positioning systems

    NASA Astrophysics Data System (ADS)

    Xu, Zhi-Hao; Tseng, Bin-Hui; Chang, Ching; Wang, Sheng-Ching; Chin, Tsung-Shune; Sung, Cheng-Kuo

    2015-06-01

    Magnetic encoders are much advantageous for precision positioning specifically under harsh environments. The finer the magnetic pole-pitches of the magnetic scale in a magnetic encoder the higher the resolution of the encoder. In this paper, a grooved multi-pole magnetic grating (MPMG) is substituted for conventional non-structured magnetic scale. A MPMG with pole-pitch of 200 µm was prepared by photo-lithography and electro-deposition. Simulation was first done to attain the relationship among magnetic flux density, magnetic properties of electrodeposited alloy layers, magnetizing directions and the grating dimensions. The MPMG can be fully magnetized for use by just a single pulse in a solenoid coil. Magnetic properties were investigated in which CoNiP layers were electrodeposited under various current densities. Measured magnetic flux densities versus grating heights, magnetizing directions and detection gaps on magnetized MPMG validate the applicability of ultra-fine pitched MPMG.

  19. Comparison of multipole expansion and exact form of the eddy current field of the AGS Booster

    SciTech Connect

    Dell, G.F.; Lee, S.Y.; Parzen, G.

    1990-01-01

    Studies are made on magnetic field representation using a multipole expansion as well as the exact form to calculate the magnetic field produced by eddy currents in the vacuum chamber of the AGS Booster as well as the field produced by three turn correction coils attached to the top and bottom of the vacuum chamber. The multiple representation of the chamber field does not converge to the next field when X > 30mm and limits the particle motion. When the exact form of the chamber field is used, initial amplitudes in the horizontal plane (measured at QF) can be nearly as large as the chamber half aperture. Use of three turn correction coils to compensate the eddy current fields seems to reduce rather than increase the acceptance. 6 figs., 3 tabs.

  20. Exchange splitting of the interaction energy and the multipole expansion of the wave function

    SciTech Connect

    Gniewek, Piotr Jeziorski, Bogumił

    2015-10-21

    The exchange splitting J of the interaction energy of the hydrogen atom with a proton is calculated using the conventional surface-integral formula J{sub surf}[Φ], the volume-integral formula of the symmetry-adapted perturbation theory J{sub SAPT}[Φ], and a variational volume-integral formula J{sub var}[Φ]. The calculations are based on the multipole expansion of the wave function Φ, which is divergent for any internuclear distance R. Nevertheless, the resulting approximations to the leading coefficient j{sub 0} in the large-R asymptotic series J(R) = 2e{sup −R−1}R(j{sub 0} + j{sub 1}R{sup −1} + j{sub 2}R{sup −2} + ⋯) converge with the rate corresponding to the convergence radii equal to 4, 2, and 1 when the J{sub var}[Φ], J{sub surf}[Φ], and J{sub SAPT}[Φ] formulas are used, respectively. Additionally, we observe that also the higher j{sub k} coefficients are predicted correctly when the multipole expansion is used in the J{sub var}[Φ] and J{sub surf}[Φ] formulas. The symmetry adapted perturbation theory formula J{sub SAPT}[Φ] predicts correctly only the first two coefficients, j{sub 0} and j{sub 1}, gives a wrong value of j{sub 2}, and diverges for higher j{sub n}. Since the variational volume-integral formula can be easily generalized to many-electron systems and evaluated with standard basis-set techniques of quantum chemistry, it provides an alternative for the determination of the exchange splitting and the exchange contribution of the interaction potential in general.

  1. Effect of higher-order multipole moments on the Stark line shape

    NASA Astrophysics Data System (ADS)

    Gomez, T. A.; Nagayama, T.; Kilcrease, D. P.; Montgomery, M. H.; Winget, D. E.

    2016-08-01

    Spectral line shapes are sensitive to plasma conditions and are often used to diagnose electron density of laboratory plasmas as well as astrophysical plasmas. Stark line-shape models take into account the perturbation of the radiator's energy structure due to the Coulomb interaction with the surrounding charged particles. Solving this Coulomb interaction is challenging and is commonly approximated via a multipole expansion. However, most models include only up to the second term of the expansion (the dipole term). While there have been studies on the higher-order terms due to one of the species (i.e., either ions or electrons), there is no model that includes the terms beyond dipole from both species. Here, we investigate the importance of the higher-order multipole terms from both species on the Hβ line shape. First, we find that it is important to include higher-order terms consistently from both ions and electrons to reproduce measured line-shape asymmetry. Next, we find that the line shape calculated with the dipole-only approximation becomes inaccurate as density increases. It is necessary to include up to the third (quadrupole) term to compute the line shape accurately within 2%. Since most existing models include only up to the dipole terms, the densities inferred with such models are in question. We find that the model without the quadrupole term slightly underestimates the density, and the discrepancy becomes as large as 12% at high densities. While the case of study is limited to Hβ, we expect similar impact on other lines.

  2. A compensated multi-pole linear ion trap mercury frequency standard for ultra-stable timekeeping.

    PubMed

    Burt, Eric A; Diener, William A; Tjoelker, Robert L

    2008-12-01

    The multi-pole linear ion trap frequency standard (LITS) being developed at the Jet Propulsion Laboratory (JPL) has demonstrated excellent short- and long-term stability. The technology has now demonstrated long-term field operation providing a new capability for timekeeping standards. Recently implemented enhancements have resulted in a record line Q of 5 x 10(12) for a room temperature microwave atomic transition and a short-term fractional frequency stability of 5 x 10(-14)/tau(1/2). A scheme for compensating the second order Doppler shift has led to a reduction of the combined sensitivity to the primary LITS systematic effects below 5 x 10(-17) fractional frequency. Initial comparisons to JPL's cesium fountain clock show a systematic floor of less than 2 x 10(-16). The compensated multi-pole LITS at JPL was operated continuously and unattended for a 9-mo period from October 2006 to July 2007. During that time it was used as the frequency reference for the JPL geodetic receiver known as JPLT, enabling comparisons to any clock used as a reference for an International GNSS Service (IGS) site. Comparisons with the laser-cooled primary frequency standards that reported to the Bureau International des Poids et Mesures (BIPM) over this period show a frequency deviation less than 2.7 x 10(-17)/day. In the capacity of a stand-alone ultra-stable flywheel, such a standard could be invaluable for long-term timekeeping applications in metrology labs while its methodology and robustness make it ideal for space applications as well. PMID:19126484

  3. Interaction of molecules with electromagnetic fields. II. The multipole operators and dynamics of molecules with moving nuclei in electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Yang, Kuo-Ho Tom; Hirschfelder, Joseph O.; Johnson, Bruce R.

    1981-09-01

    This paper presents a thorough unified treatment of the electric and magnetic multipole operators and the dynamics of a moving molecular system of electrons and nuclei in the presence of an arbitrary (semiclassical) electromagnetic field. The multipole operators are expressed in terms of rjc, the position of each of the particles j relative to the center of mass rc, the velocities ?jc and ?c, and the spins sj. Two levels of precision of the multipole operators and dynamics are considered: The ''nonrelativistic'' approximation including all terms which vary as 1/c (where c is the velocity of light) suffices for most practical applications. The multipole moments are determined by the Lorentz force on the molecule. Also, the multipole operators are related to the electric and magnetic polarization operators Popc and Mopc, respectively, as well as to the effective charge and effective current on the molecule. The Lagrangian is then determined by rearranging the ''Newtonian'' equations of motion into the Lagrangian form. In both the Hamiltonian and the Lagrangian, terms involving Popc and Mopc couple the external fields to the molecular dynamics. The Hamiltonian is also derived in the ''quantum mechanical fashion'' by making a Power-Zienau-Woolley type transformation of the usual ''minimal coupling'' Hamiltonian. The new coordinates are rc and a set of (N-1) linearly independent combinations of the rjc. In the determination of the electric and magnetic properties of molecules, there are significant advantages in considering moving nuclei and center of mass coordinates rather than assuming clamped nuclei. In order to explain a few very sensitive types of experimental properties, it is necessary to use the semirelativistic approximation which is accurate through all of the α4mc2 or 1/c2 terms and includes all of the fine-structural effects with the exception of the Lamb shift. The electric and magnetic multipole moments were derived in terms of the Kracjik and Foldy

  4. Exact calculation of the angular momentum loss, recoil force, and radiation intensity for an arbitrary source in terms of electric, magnetic, and toroid multipoles.

    PubMed

    Radescu, E E; Vaman, G

    2002-04-01

    An exact calculation of the radiation intensity, angular momentum loss, and the recoil force for the most general type of source, characterized by electric, magnetic, and toroid multipole moments and radii of any multipolarity and an arbitrary time dependence, is presented. The results are expressed in terms of time derivatives of the multipole moments and mean radii of the corresponding distributions. Although quite cumbersome, the formulas found by us represent exact results in the correct multipole analysis of configurations of charges and currents that contain toroidal sources. So the longstanding problem in classical electrodynamics of relating the radiation properties of a system to quantities completely describing its internal electromagnetic structure is thereby exactly solved. By particularizations to the first multipole contributions, corrections to the familiar formulas from books are found, mostly on account of the toroid moments and their interference with the usual electric and magnetic ones.

  5. Fast valve

    DOEpatents

    Van Dyke, William J.

    1992-01-01

    A fast valve is disclosed that can close on the order of 7 milliseconds. It is closed by the force of a compressed air spring with the moving parts of the valve designed to be of very light weight and the valve gate being of wedge shaped with O-ring sealed faces to provide sealing contact without metal to metal contact. The combination of the O-ring seal and an air cushion create a soft final movement of the valve closure to prevent the fast air acting valve from having a harsh closing.

  6. Fast valve

    DOEpatents

    Van Dyke, W.J.

    1992-04-07

    A fast valve is disclosed that can close on the order of 7 milliseconds. It is closed by the force of a compressed air spring with the moving parts of the valve designed to be of very light weight and the valve gate being of wedge shaped with O-ring sealed faces to provide sealing contact without metal to metal contact. The combination of the O-ring seal and an air cushion create a soft final movement of the valve closure to prevent the fast air acting valve from having a harsh closing. 4 figs.

  7. Continuous medium theory for nonequilibrium solvation: III. Solvation shift by monopole approximation and multipole expansion in spherical cavity.

    PubMed

    Zhu, Quan; Fu, Ke-Xiang; Li, Xiang-Yuan; Gong, Zhen; Ma, Jian-Yi

    2005-03-01

    According to the classical electrodynamics, a new and reasonable method about electrostatic energy decomposition of the solute-solvent system has been proposed in this work by introducing the concept of spring energy. This decomposition in equilibrium solvation gives the clear comprehension for different parts of total electrostatic free energy. Logically extending this cognition to nonequilibrium leads to the new formula of electrostatic free energy of nonequilibrium state. Furthermore, the general solvation shift for light absorption/emission has been reformulated and applied to the ideal sphere case with the monopole approximation and multipole expansion. Solvation shifts in vertical ionizations of atomic ions of some series of main group elements have been investigated with monopole approximation, and the variation tendency of the solvation shift versus atomic number has been discussed. Moreover, the solvation shift in photoionization of nitrate anion in glycol has been investigated by the multipole expansion method.

  8. Zeeman spectrum, magnetic neutron diffraction pattern, and Dirac multipoles for a multiferroic material Cu B2O4

    NASA Astrophysics Data System (ADS)

    Lovesey, S. W.

    2016-09-01

    Zeeman spectra, dichroic signals, and neutron Bragg diffraction patterns generated by copper ions in magnetically ordered copper metaborate (Cu B2O4 ) are investigated within a minimal model of Cu atomic states. A theory platform, common to understanding optical spectra and neutron diffraction patterns, affords the immediate benefit of a unified description of the experimental probes in terms of electronic multipoles. Results for dichroic signals illustrate a nontrivial use of a general, quantum mechanical theory of photon absorption couched in terms of Dirac multipoles that are magnetic and polar. Anapoles (Dirac dipoles) are predicted to generate Bragg spots in magnetic neutron diffraction that are not indexed by the motif of conventional (axial) magnetic-dipole moments. The minimal model of Cu states is informed by magnetic symmetry, derived from an established commensurate antiferromagnetic order, with a sparse number of parameters that comply with available empirical evidence.

  9. An efficient algorithm for multipole energies and derivatives based on spherical harmonics and extensions to particle mesh Ewald

    PubMed Central

    Simmonett, Andrew C.; Pickard, Frank C.; Schaefer, Henry F.; Brooks, Bernard R.

    2014-01-01

    Next-generation molecular force fields deliver accurate descriptions of non-covalent interactions by employing more elaborate functional forms than their predecessors. Much work has been dedicated to improving the description of the electrostatic potential (ESP) generated by these force fields. A common approach to improving the ESP is by augmenting the point charges on each center with higher-order multipole moments. The resulting anisotropy greatly improves the directionality of the non-covalent bonding, with a concomitant increase in computational cost. In this work, we develop an efficient strategy for enumerating multipole interactions, by casting an efficient spherical harmonic based approach within a particle mesh Ewald (PME) framework. Although the derivation involves lengthy algebra, the final expressions are relatively compact, yielding an approach that can efficiently handle both finite and periodic systems without imposing any approximations beyond PME. Forces and torques are readily obtained, making our method well suited to modern molecular dynamics simulations. PMID:24832247

  10. Multipole operators in semileptonic weak and electromagnetic interactions with nuclei. II. General single-particle matrix elements

    SciTech Connect

    Donnelly, T.W.; Haxton, W.C.

    1980-01-01

    We extend our previous harmonic oscillator analysis to a treatment of general single-particle matrix elements of the multipole operators arising in studies of semileptonic weak and electromagnetic interactions with nuclei. Together with the earlier harmonic oscillator tables the present work will allow the reader to express these general matrix elements compactly in terms of specific radial integrals, which then usually must be evaluated numerically.

  11. Production Of Multi-magnetron Plasma By Using Polyphase Ac Glow Discharge In An Improved Multi-pole Magnetic Field

    NASA Astrophysics Data System (ADS)

    Matsumoto, Kazunori; Motoki, Kentaro; Miyamoto, Masahiro; Uetani, Yasuhiro

    1998-10-01

    Effects of an improved multi-pole magnetic field on a plasma production generated by a polyphase ac glow discharge with multiple electrodes have been investigated. Conventional configuration of the multi-pole magnetic filed has been modified to suppress plasma losses at both ends of the chamber due to ExB drift motion. The modified multi-pole magnetic field has enabled us to produce a multiple magnetron-plasma at a considerably low pressure less than mTorr. The low temperature plasma has been widely used as the fine processing technology of a dry etching and as the thin film formation technology of a sputtering coating. Large-scale plasmas which can be generated at a low gas-pressure have been desired for more wider dry etching and greater sputter coating. The purpose of this study is to develop a large-scale and low-cost plasma generator by using a polyphase ac power source with the low frequency. In this session, we will present the experimental result as to a multiple magnetron-plasma generated in the modified twenty-four poles magnetic field by using the twenty-four-phase ac power source with the commercial electric power frequency of 60Hz. The ac power is supplied to twenty-four electrodes which are fixed to the water-cooled chamber-wall through sheet insulators so that the electrodes can be cooled indirectly.

  12. Fast computation of general forward gravitation problems

    NASA Astrophysics Data System (ADS)

    Casenave, Fabien; Métivier, Laurent; Pajot-Métivier, Gwendoline; Panet, Isabelle

    2016-07-01

    We consider the well-known problem of the forward computation of the gradient of the gravitational potential generated by a mass density distribution of general 3D geometry. Many methods have been developed for given geometries, and the computation time often appears as a limiting practical issue for considering large or complex problems. In this work, we develop a fast method to carry out this computation, where a tetrahedral mesh is used to model the mass density distribution. Depending on the close- or long-range nature of the involved interactions, the algorithm automatically switches between analytic integration formulae and numerical quadratic formulae, and relies on the Fast Multipole Method to drastically increase the computation speed of the long-range interactions. The parameters of the algorithm are empirically chosen for the computations to be the fastest possible while guarantying a given relative accuracy of the result. Computations that would load many-core clusters for days can now be carried out on a desk computer in minutes. The computation of the contribution of topographical masses to the Earth's gravitational field at the altitude of the GOCE satellite and over France are proposed as numerical illustrations of the method.

  13. Multipole plasmons and their disappearance in few-nanometre silver nanoparticles

    PubMed Central

    Raza, Søren; Kadkhodazadeh, Shima; Christensen, Thomas; Di Vece, Marcel; Wubs, Martijn; Mortensen, N. Asger; Stenger, Nicolas

    2015-01-01

    Electron energy-loss spectroscopy can be used for detailed spatial and spectral characterization of optical excitations in metal nanoparticles. In previous electron energy-loss experiments on silver nanoparticles with radii smaller than 20 nm, only the dipolar surface plasmon resonance was assumed to play a role. Here, applying electron energy-loss spectroscopy to individual silver nanoparticles encapsulated in silicon nitride, we observe besides the usual dipole resonance an additional surface plasmon resonance corresponding to higher angular momenta for nanoparticle radii as small as 4 nm. We study the radius and electron beam impact position dependence of both resonances separately. For particles smaller than 4 nm in radius the higher-order surface plasmon mode disappears, in agreement with generalized non-local optical response theory, while the dipole resonance blueshift exceeds our theoretical predictions. Unlike in optical spectra, multipole surface plasmons are important in electron energy-loss spectra even of ultrasmall metallic nanoparticles. PMID:26537568

  14. Gay-Berne and electrostatic multipole based coarse-grain potential in implicit solvent

    NASA Astrophysics Data System (ADS)

    Wu, Johnny; Zhen, Xia; Shen, Hujun; Li, Guohui; Ren, Pengyu

    2011-10-01

    A general, transferable coarse-grain (CG) framework based on the Gay-Berne potential and electrostatic point multipole expansion is presented for polypeptide simulations. The solvent effect is described by the Generalized Kirkwood theory. The CG model is calibrated using the results of all-atom simulations of model compounds in solution. Instead of matching the overall effective forces produced by atomic models, the fundamental intermolecular forces such as electrostatic, repulsion-dispersion, and solvation are represented explicitly at a CG level. We demonstrate that the CG alanine dipeptide model is able to reproduce quantitatively the conformational energy of all-atom force fields in both gas and solution phases, including the electrostatic and solvation components. Replica exchange molecular dynamics and microsecond dynamic simulations of polyalanine of 5 and 12 residues reveal that the CG polyalanines fold into "alpha helix" and "beta sheet" structures. The 5-residue polyalanine displays a substantial increase in the "beta strand" fraction relative to the 12-residue polyalanine. The detailed conformational distribution is compared with those reported from recent all-atom simulations and experiments. The results suggest that the new coarse-graining approach presented in this study has the potential to offer both accuracy and efficiency for biomolecular modeling.

  15. Excitation energies, polarizabilities, multipole transition rates, and lifetimes of ions along the francium isoelectronic sequence

    SciTech Connect

    Safronova, U. I.; Johnson, W. R.; Safronova, M. S.

    2007-10-15

    Relativistic many-body perturbation theory is applied to study properties of ions of the francium isoelectronic sequence. Specifically, energies of the 7s, 7p, 6d, and 5f states of Fr-like ions with nuclear charges Z=87-100 are calculated through third order; reduced matrix elements, oscillator strengths, transition rates, and lifetimes are determined for 7s-7p, 7p-6d, and 6d-5f electric-dipole transitions; and 7s-6d, 7s-5f, and 5f{sub 5/2}-5f{sub 7/2} multipole matrix elements are evaluated to obtain the lifetimes of low-lying excited states. Moreover, for the ions Z=87-92 calculations are also carried out using the relativistic all-order single-double method, in which single and double excitations of Dirac-Fock wave functions are included to all orders in perturbation theory. With the aid of the single-double wave functions, we obtain accurate values of energies, transition rates, oscillator strengths, and the lifetimes of these six ions. Ground state scalar polarizabilities in Fr I, Ra II, Ac III, and Th IV are calculated using relativistic third-order and all-order methods. Ground state scalar polarizabilities for other Fr-like ions are calculated using a relativistic second-order method. These calculations provide a theoretical benchmark for comparison with experiment and theory.

  16. Coarse-Grained Modeling of Nucleic Acids Using Anisotropic Gay-Berne and Electric Multipole Potentials.

    PubMed

    Li, Guohui; Shen, Hujun; Zhang, Dinglin; Li, Yan; Wang, Honglei

    2016-02-01

    In this work, we attempt to apply a coarse-grained (CG) model, which is based on anisotropic Gay-Berne and electric multipole (EMP) potentials, to the modeling of nucleic acids. First, a comparison has been made between the CG and atomistic models (AMBER point-charge model) in the modeling of DNA and RNA hairpin structures. The CG results have demonstrated a good quality in maintaining the nucleic acid hairpin structures, in reproducing the dynamics of backbone atoms of nucleic acids, and in describing the hydrogen-bonding interactions between nucleic acid base pairs. Second, the CG and atomistic AMBER models yield comparable results in modeling double-stranded DNA and RNA molecules. It is encouraging that our CG model is capable of reproducing many elastic features of nucleic acid base pairs in terms of the distributions of the interbase pair step parameters (such as shift, slide, tilt, and twist) and the intrabase pair parameters (such as buckle, propeller, shear, and stretch). Finally, The GBEMP model has shown a promising ability to predict the melting temperatures of DNA duplexes with different lengths.

  17. A Polarizable Multipole-based Force Field for Dimethyl and Trimethyl Phosphate

    PubMed Central

    Zhang, Changsheng; Lu, Chao; Wang, Qiantao; Ponder, Jay W.; Ren, Pengyu

    2016-01-01

    Using quantum mechanical studies and liquid phase simulations, the AMOEBA force field for dimethylphosphate (DMP) ion and trimethylphosphate (TMP) has been developed. Based on ab initio calculations, it was found that ion binding and the solution environment significantly impact both the molecular geometry and the energy differences between conformations. Atomic multipole moments are derived from MP2/cc-pVQZ calculations of methyl phosphates at several conformations with accounting of chemical environments. Many-body polarization is handled via a Thole-style induction model using distributed atomic polarizabilities. Van der Waals parameters of phosphate and oxygen atoms are determined by fitting to the quantum mechanical interaction energy curves for water with DMP or TMP. Additional stretch-torsion and angle-torsion coupling terms were introduced in order to capture asymmetry in P-O bond lengths and angles due to the generalized anomeric effect. The resulting force field for DMP and TMP is able to accurately describe both the molecular structure and conformational energy surface, including bond and angle variations with conformation, as well as interaction of both species with water and metal ions. The force field was further validated for liquid TMP by comparing simulated density and heat of vaporization values with experimental data. Structural insight obtained from MD simulations indicates liquid TMP is stabilized by both nonpolar-nonpolar contacts and hydrogen bonding. The current study is an important step towards developing the AMOEBA model for nucleic acids. PMID:26574325

  18. Multipole storage assisted dissociation, a novel in-source dissociation technique for electrospray ionization generated ions.

    PubMed

    Sannes-Lowery, K; Griffey, R H; Kruppa, G H; Speir, J P; Hofstadler, S A

    1998-01-01

    In this work we present a novel in-source dissociation scheme referred to as multipole storage assisted dissociation (MSAD) for electrospray ionization (ESI) generated ions in which dissociation is effected by employing extended ion accumulation intervals in a high pressure rf-only hexapole assembly prior to mass analysis. Following an extended ion accumulation interval in which ions are confined in the rf-only hexapole, ions are gated out of the hexapole, trapped, and mass analyzed in the trapped ion cell of a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. The accumulation region is comprised of an rf-only hexapole ion guide which separates two electrodes, a biased skimmer cone, and an auxiliary 'gate' electrode at the low pressure end of the hexapole. This technique should be applicable to other mass spectrometry platforms compatible with pulsed ionization sources including quadrupole ion traps, and time-of-flight mass analyzers. This concept is demonstrated with the dissociation of a small protein in which selective fragmentation is observed at labile amino acid linkages producing primarily y-type fragment ions.

  19. Using the Multipole Resonance Probe to Stabilize the Electron Density During a Reactive Sputter Process

    NASA Astrophysics Data System (ADS)

    Oberberg, Moritz; Styrnoll, Tim; Ries, Stefan; Bienholz, Stefan; Awakowicz, Peter

    2015-09-01

    Reactive sputter processes are used for the deposition of hard, wear-resistant and non-corrosive ceramic layers such as aluminum oxide (Al2O3) . A well known problem is target poisoning at high reactive gas flows, which results from the reaction of the reactive gas with the metal target. Consequently, the sputter rate decreases and secondary electron emission increases. Both parameters show a non-linear hysteresis behavior as a function of the reactive gas flow and this leads to process instabilities. This work presents a new control method of Al2O3 deposition in a multiple frequency CCP (MFCCP) based on plasma parameters. Until today, process controls use parameters such as spectral line intensities of sputtered metal as an indicator for the sputter rate. A coupling between plasma and substrate is not considered. The control system in this work uses a new plasma diagnostic method: The multipole resonance probe (MRP) measures plasma parameters such as electron density by analyzing a typical resonance frequency of the system response. This concept combines target processes and plasma effects and directly controls the sputter source instead of the resulting target parameters.

  20. Influence of kinetic effects on the resonance behavior of the Multipole Resonance Probe

    NASA Astrophysics Data System (ADS)

    Oberrath, Jens; Mussenbrock, Thomas; Brinkmann, Ralf Peter

    2012-10-01

    Active plasma resonance spectroscopy is a well known diagnostic method. Many concepts of this method are theoretically investigated and realized as a diagnostic tool. One of these tools is the multipole resonance probe (MRP) [1]. The application of such a probe in plasmas with pressures of only a few Pa raises the question whether kinetic effects have to be taken into account or not. To address this question a kinetic model is necessary. A general kinetic model for an electrostatic concept of active plasma resonance spectroscopy has already been presented by the authors [2]. This model can be used to describe the dynamical behavior of the MRP, which is interpretable as a special case of the general model. Neglecting electron-neutral collisions, this model can be solved analytically. Based on this solution we derive an approximated expression for the admittance of the system to investigate the influence of kinetic effects on the resonance behavior of the MRP. [4pt] [1] M. Lapke et al., Plasma Sources Sci. Technol. 20, 2011, 042001[0pt] [2] J. Oberrath et al., Proceedings of the 30th International Conference on Phenomena in Ionized Gases, 28th August - 2nd September, 2011

  1. Multipole theory and the Hehl-Obukhov decomposition of the electromagnetic constitutive tensor

    NASA Astrophysics Data System (ADS)

    de Lange, O. L.; Raab, R. E.

    2015-05-01

    The Hehl-Obukhov decomposition expresses the 36 independent components of the electromagnetic constitutive tensor for a local linear anisotropic medium in a useful general form comprising seven macroscopic property tensors: four of second rank, two vectors, and a four-dimensional (pseudo)scalar. We consider homogeneous media and show that in semi-classical multipole theory, the first full realization of this formulation is obtained (in terms of molecular polarizability tensors) at third order (electric octopole-magnetic quadrupole order). The calculations are an extension of a direct method previously used at second order (electric quadrupole-magnetic dipole order). We consider in what sense this theory is independent of the choice of molecular coordinate origins relative to which polarizabilities are evaluated. The pseudoscalar (axion) observable is expressed relative to the crystallographic origin. The other six property tensors are invariant (with respect to an arbitrary choice of each molecular coordinate origin), or zero, at first and second orders. At third order, this invariance has to be imposed (by transformation of the response fields)—an aspect that is required by consideration of isotropic fluids and is consistent with the invariance of transmission phenomena in dielectrics. Alternative derivations of the property tensors are reviewed, with emphasis on the pseudoscalar, constraint-breaking, translational invariance, and uniqueness.

  2. MULTIPOLE GRAVITATIONAL LENSING AND HIGH-ORDER PERTURBATIONS ON THE QUADRUPOLE LENS

    SciTech Connect

    Chu, Z.; Lin, W. P.; Li, G. L.; Kang, X. E-mail: linwp@shao.ac.cn

    2013-03-10

    An arbitrary surface mass density of the gravitational lens can be decomposed into multipole components. We simulate the ray tracing for the multipolar mass distribution of the generalized Singular Isothermal Sphere model based on deflection angles, which are analytically calculated. The magnification patterns in the source plane are then derived from an inverse shooting technique. As has been found, the caustics of odd mode lenses are composed of two overlapping layers for some lens models. When a point source traverses this kind of overlapping caustics, the image numbers change by {+-}4, rather than {+-}2. There are two kinds of caustic images. One is the critical curve and the other is the transition locus. It is found that the image number of the fold is exactly the average value of image numbers on two sides of the fold, while the image number of the cusp is equal to the smaller one. We also focus on the magnification patterns of the quadrupole (m = 2) lenses under the perturbations of m = 3, 4, and 5 mode components and found that one, two, and three butterfly or swallowtail singularities can be produced, respectively. With the increasing intensity of the high-order perturbations, the singularities grow up to bring sixfold image regions. If these perturbations are large enough to let two or three of the butterflies or swallowtails make contact, then eightfold or tenfold image regions can be produced as well. The possible astronomical applications are discussed.

  3. WinTRAX: A raytracing software package for the design of multipole focusing systems

    NASA Astrophysics Data System (ADS)

    Grime, G. W.

    2013-07-01

    The software package TRAX was a simulation tool for modelling the path of charged particles through linear cylindrical multipole fields described by analytical expressions and was a development of the earlier OXRAY program (Grime and Watt, 1983; Grime et al., 1982) [1,2]. In a 2005 comparison of raytracing software packages (Incerti et al., 2005) [3], TRAX/OXRAY was compared with Geant4 and Zgoubi and was found to give close agreement with the more modern codes. TRAX was a text-based program which was only available for operation in a now rare VMS workstation environment, so a new program, WinTRAX, has been developed for the Windows operating system. This implements the same basic computing strategy as TRAX, and key sections of the code are direct translations from FORTRAN to C++, but the Windows environment is exploited to make an intuitive graphical user interface which simplifies and enhances many operations including system definition and storage, optimisation, beam simulation (including with misaligned elements) and aberration coefficient determination. This paper describes the program and presents comparisons with other software and real installations.

  4. Coarse-Grained Modeling of Nucleic Acids Using Anisotropic Gay-Berne and Electric Multipole Potentials.

    PubMed

    Li, Guohui; Shen, Hujun; Zhang, Dinglin; Li, Yan; Wang, Honglei

    2016-02-01

    In this work, we attempt to apply a coarse-grained (CG) model, which is based on anisotropic Gay-Berne and electric multipole (EMP) potentials, to the modeling of nucleic acids. First, a comparison has been made between the CG and atomistic models (AMBER point-charge model) in the modeling of DNA and RNA hairpin structures. The CG results have demonstrated a good quality in maintaining the nucleic acid hairpin structures, in reproducing the dynamics of backbone atoms of nucleic acids, and in describing the hydrogen-bonding interactions between nucleic acid base pairs. Second, the CG and atomistic AMBER models yield comparable results in modeling double-stranded DNA and RNA molecules. It is encouraging that our CG model is capable of reproducing many elastic features of nucleic acid base pairs in terms of the distributions of the interbase pair step parameters (such as shift, slide, tilt, and twist) and the intrabase pair parameters (such as buckle, propeller, shear, and stretch). Finally, The GBEMP model has shown a promising ability to predict the melting temperatures of DNA duplexes with different lengths. PMID:26717419

  5. Beam-beam interaction and pacman effects in the SSC with random nonlinear multipoles

    SciTech Connect

    Goderre, G.P.; Mahale, N.K.; Ohnuma, S.

    1989-05-25

    In order to find the combined effects of beam-beam interaction (head-on and long-range) and random nonlinear multipoles in dipole magnets, transverse tunes and smears have been calculated as a function of oscillation amplitudes. Two types of particles, ''regular'' and ''pacman,'' have been investigated using a modified version of the tracking code TEAPOT. Regular particles experience beam-beam interactions in all four interaction regions (IR's), both head-on and long-range, while pacman particles interact with bunches of the other beam in one medium-beta and one low-beta IR's only. The model for the beam-beam interaction is of weak-strong type and the strong beam is assumed to have a round Gaussian charge distribution. Furthermore, it is assumed that the vertical closed orbit deviation arising from the finite crossing angle of 70 ..mu..rad is perfectly compensated for regular particles. The same compensation applied to pacman particles creates a closed orbit distortion. Linear tunes are adjusted for regular particles to the design values but there are no nonlinear corrections except for chromaticity correcting sextupoles in two families. Results obtained in this study do not show any reduction of dynamic or linear apertures for pacman particles when the oscillation amplitude is less than /approximately/10sigma. However, smears often exhibit a strong dependence on tunes, casting some doubts on the validity of defining the linear aperture from the smear alone. 10 refs., 16 figs., 3 tabs.

  6. Polarizable atomic multipole X-ray refinement: weighting schemes for macromolecular diffraction.

    PubMed

    Fenn, T D; Schnieders, M J

    2011-11-01

    In the past, weighting between the sum of chemical and data-based targets in macromolecular crystallographic refinement was based on comparing the gradients or Hessian diagonal terms of the two potential functions. Here, limitations of this scheme are demonstrated, especially in the context of a maximum-likelihood target that is inherently weighted by the model and data errors. In fact, the congruence between the maximum-likelihood target and a chemical potential based on polarizable atomic multipole electrostatics evaluated with Ewald summation has opened the door to a transferable static weight. An optimal static weight is derived from first principles and is demonstrated to be transferable across a broad range of data resolutions in the context of a recent implementation of X-ray crystallographic refinement using the polarizable AMOEBA force field and it is shown that the resulting models are balanced with respect to optimizing both R(free) and MolProbity scores. Conversely, the classical automatic weighting scheme is shown to lead to underfitting or overfitting of the data and poor model geometry. The benefits of this approach for low-resolution diffraction data, where the need for prior chemical information is of particular importance, are also highlighted. It is demonstrated that this method is transferable between low- and high-resolution maximum-likelihood-based crystallographic refinement, which proves for the first time that resolution-dependent parameterization of either the weight or the chemical potential is unnecessary.

  7. Solar oscillations, gravitational multipole field of the sun and the solar neutrino paradox

    SciTech Connect

    Hill, H.A.; Rosenwald, R.D.

    1986-11-04

    The visual solar oblateness work and the solar seismological work on the internal rotation of the sun are reviewed and their implications concerning the static gravitational multipole moments of the sun are discussed. The results of this work are quite deviant which is indicative of the complexity encountered and of the necessity for continued studies based on a diverse set of observing techniques. The evidence for phase-locked internal gravity modes of the sun is reviewed and the implications for the solar neutrino paradox are discussed. The rather unique possibility for testing the relevance which the phase-locked gravity modes have to this paradox is also noted. The oscillating perturbations in the sun's gravitational field produced by the classified internal gravity modes and the phase-locked modes are inferred from the observed temperature eigenfunctions. Strains of the order of 10/sup -18/ in gravitational radiation detectors based on free masses are inferred for frequencies near 100 ..mu..Hz. The relevance of these findings is discussed in terms of a new technique for use in solar seismological studies and of producing background signals in studies of low-frequency gravitational radiation. 64 refs., 2 figs.

  8. Magnetohydrodynamic Characteristic Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Schaffenberger, Werner; Stein, R.

    2009-05-01

    We implemented MHD characteristic boundary conditions for a non-ideal plasma in the "stagger-code" (Gudiksen and Nordlund, 2005, ApJ 618, 1020). The aim of these boundary conditions is to reduce reflection at the boundaries which is important for the simulation of wave propagation. We present some test simulations of propagating waves demonstrating the capability of these boundary conditions.

  9. Polarizable Multipole-Based Force Field for Dimethyl and Trimethyl Phosphate.

    PubMed

    Zhang, Changsheng; Lu, Chao; Wang, Qiantao; Ponder, Jay W; Ren, Pengyu

    2015-11-10

    Phosphate groups are commonly observed in biomolecules such as nucleic acids and lipids. Due to their highly charged and polarizable nature, modeling these compounds with classical force fields is challenging. Using quantum mechanical studies and liquid-phase simulations, the AMOEBA force field for dimethyl phosphate (DMP) ion and trimethyl phosphate (TMP) has been developed. On the basis of ab initio calculations, it was found that ion binding and the solution environment significantly impact both the molecular geometry and the energy differences between conformations. Atomic multipole moments are derived from MP2/cc-pVQZ calculations of methyl phosphates at several conformations with their chemical environments taken into account. Many-body polarization is handled via a Thole-style induction model using distributed atomic polarizabilities. van der Waals parameters of phosphate and oxygen atoms are determined by fitting to the quantum mechanical interaction energy curves for water with DMP or TMP. Additional stretch-torsion and angle-torsion coupling terms were introduced in order to capture asymmetry in P-O bond lengths and angles due to the generalized anomeric effect. The resulting force field for DMP and TMP is able to accurately describe both the molecular structure and conformational energy surface, including bond and angle variations with conformation, as well as interaction of both species with water and metal ions. The force field was further validated for TMP in the condensed phase by computing hydration free energy, liquid density, and heat of vaporization. The polarization behavior between liquid TMP and TMP in water is drastically different. PMID:26574325

  10. Polarizable Multipole-Based Force Field for Dimethyl and Trimethyl Phosphate

    PubMed Central

    2015-01-01

    Phosphate groups are commonly observed in biomolecules such as nucleic acids and lipids. Due to their highly charged and polarizable nature, modeling these compounds with classical force fields is challenging. Using quantum mechanical studies and liquid-phase simulations, the AMOEBA force field for dimethyl phosphate (DMP) ion and trimethyl phosphate (TMP) has been developed. On the basis of ab initio calculations, it was found that ion binding and the solution environment significantly impact both the molecular geometry and the energy differences between conformations. Atomic multipole moments are derived from MP2/cc-pVQZ calculations of methyl phosphates at several conformations with their chemical environments taken into account. Many-body polarization is handled via a Thole-style induction model using distributed atomic polarizabilities. van der Waals parameters of phosphate and oxygen atoms are determined by fitting to the quantum mechanical interaction energy curves for water with DMP or TMP. Additional stretch-torsion and angle-torsion coupling terms were introduced in order to capture asymmetry in P–O bond lengths and angles due to the generalized anomeric effect. The resulting force field for DMP and TMP is able to accurately describe both the molecular structure and conformational energy surface, including bond and angle variations with conformation, as well as interaction of both species with water and metal ions. The force field was further validated for TMP in the condensed phase by computing hydration free energy, liquid density, and heat of vaporization. The polarization behavior between liquid TMP and TMP in water is drastically different. PMID:26574325

  11. Generalized and efficient algorithm for computing multipole energies and gradients based on Cartesian tensors.

    PubMed

    Lin, Dejun

    2015-09-21

    Accurate representation of intermolecular forces has been the central task of classical atomic simulations, known as molecular mechanics. Recent advancements in molecular mechanics models have put forward the explicit representation of permanent and/or induced electric multipole (EMP) moments. The formulas developed so far to calculate EMP interactions tend to have complicated expressions, especially in Cartesian coordinates, which can only be applied to a specific kernel potential function. For example, one needs to develop a new formula each time a new kernel function is encountered. The complication of these formalisms arises from an intriguing and yet obscured mathematical relation between the kernel functions and the gradient operators. Here, I uncover this relation via rigorous derivation and find that the formula to calculate EMP interactions is basically invariant to the potential kernel functions as long as they are of the form f(r), i.e., any Green's function that depends on inter-particle distance. I provide an algorithm for efficient evaluation of EMP interaction energies, forces, and torques for any kernel f(r) up to any arbitrary rank of EMP moments in Cartesian coordinates. The working equations of this algorithm are essentially the same for any kernel f(r). Recently, a few recursive algorithms were proposed to calculate EMP interactions. Depending on the kernel functions, the algorithm here is about 4-16 times faster than these algorithms in terms of the required number of floating point operations and is much more memory efficient. I show that it is even faster than a theoretically ideal recursion scheme, i.e., one that requires 1 floating point multiplication and 1 addition per recursion step. This algorithm has a compact vector-based expression that is optimal for computer programming. The Cartesian nature of this algorithm makes it fit easily into modern molecular simulation packages as compared with spherical coordinate-based algorithms. A

  12. Generalized and efficient algorithm for computing multipole energies and gradients based on Cartesian tensors

    NASA Astrophysics Data System (ADS)

    Lin, Dejun

    2015-09-01

    Accurate representation of intermolecular forces has been the central task of classical atomic simulations, known as molecular mechanics. Recent advancements in molecular mechanics models have put forward the explicit representation of permanent and/or induced electric multipole (EMP) moments. The formulas developed so far to calculate EMP interactions tend to have complicated expressions, especially in Cartesian coordinates, which can only be applied to a specific kernel potential function. For example, one needs to develop a new formula each time a new kernel function is encountered. The complication of these formalisms arises from an intriguing and yet obscured mathematical relation between the kernel functions and the gradient operators. Here, I uncover this relation via rigorous derivation and find that the formula to calculate EMP interactions is basically invariant to the potential kernel functions as long as they are of the form f(r), i.e., any Green's function that depends on inter-particle distance. I provide an algorithm for efficient evaluation of EMP interaction energies, forces, and torques for any kernel f(r) up to any arbitrary rank of EMP moments in Cartesian coordinates. The working equations of this algorithm are essentially the same for any kernel f(r). Recently, a few recursive algorithms were proposed to calculate EMP interactions. Depending on the kernel functions, the algorithm here is about 4-16 times faster than these algorithms in terms of the required number of floating point operations and is much more memory efficient. I show that it is even faster than a theoretically ideal recursion scheme, i.e., one that requires 1 floating point multiplication and 1 addition per recursion step. This algorithm has a compact vector-based expression that is optimal for computer programming. The Cartesian nature of this algorithm makes it fit easily into modern molecular simulation packages as compared with spherical coordinate-based algorithms. A

  13. Polarizable Multipole-Based Force Field for Dimethyl and Trimethyl Phosphate.

    PubMed

    Zhang, Changsheng; Lu, Chao; Wang, Qiantao; Ponder, Jay W; Ren, Pengyu

    2015-11-10

    Phosphate groups are commonly observed in biomolecules such as nucleic acids and lipids. Due to their highly charged and polarizable nature, modeling these compounds with classical force fields is challenging. Using quantum mechanical studies and liquid-phase simulations, the AMOEBA force field for dimethyl phosphate (DMP) ion and trimethyl phosphate (TMP) has been developed. On the basis of ab initio calculations, it was found that ion binding and the solution environment significantly impact both the molecular geometry and the energy differences between conformations. Atomic multipole moments are derived from MP2/cc-pVQZ calculations of methyl phosphates at several conformations with their chemical environments taken into account. Many-body polarization is handled via a Thole-style induction model using distributed atomic polarizabilities. van der Waals parameters of phosphate and oxygen atoms are determined by fitting to the quantum mechanical interaction energy curves for water with DMP or TMP. Additional stretch-torsion and angle-torsion coupling terms were introduced in order to capture asymmetry in P-O bond lengths and angles due to the generalized anomeric effect. The resulting force field for DMP and TMP is able to accurately describe both the molecular structure and conformational energy surface, including bond and angle variations with conformation, as well as interaction of both species with water and metal ions. The force field was further validated for TMP in the condensed phase by computing hydration free energy, liquid density, and heat of vaporization. The polarization behavior between liquid TMP and TMP in water is drastically different.

  14. Additional boundary condition for electric quadrupolar continua derived from Maxwell's differential equations

    NASA Astrophysics Data System (ADS)

    Yaghjian, A. D.; Silveirinha, M. G.

    2016-08-01

    Electric quadrupolar continua satisfying a physically reasonable constitutive relation supports both an evanescent and a propagating eigenmode. Thus, three interface boundary conditions, two plus an "additional boundary condition" (ABC), are required to obtain a unique solution to a plane wave incident from free space upon an electric quadrupolar half-space. By generalizing the constitutive relation to hold within the transition layer between the free space and the quadrupolar continuum, we derive these three boundary conditions directly from Maxwell's differential equations. The three boundary conditions are used to determine the unique solution to the boundary value problem of an electric quadrupolar slab. Numerical computations show that for long wavelengths, two previous boundary conditions, derived under the assumption that the electric quadrupolarization contains negligible effective delta functions in the transition layer, produce an accurate solution by neglecting the evanescent eigenmode, that is, by assuming it decays within the transition layer. It appears that the general method used to derive the electric quadrupolar ABC can be applied to obtain the boundary conditions for any other realizable constitutive relation in a Maxwellian multipole continuum.

  15. Fundamental, multipole, and half-vortex gap solitons in spin-orbit coupled Bose-Einstein condensates.

    PubMed

    Lobanov, Valery E; Kartashov, Yaroslav V; Konotop, Vladimir V

    2014-05-01

    Using the parity and time reversal symmetries of a two-dimensional spin-orbit coupled Bose-Einstein condensate in a lattice created by the Zeeman field, we identify and find numerically various families of localized solutions, including multipole and half-vortex solitons. The obtained solutions may exist at any direction of the gauge field with respect to the lattice and can be found either in finite gaps (for repulsive interatomic interactions) or in a semi-infinite gap (for attractive interactions). The existence of half-vortices requires higher symmetry (the reflection with respect to the field direction). Stability of these modes makes them feasible for experimental observation.

  16. Modeling electron density distributions from X-ray diffraction to derive optical properties: Constrained wavefunction versus multipole refinement

    NASA Astrophysics Data System (ADS)

    Hickstein, Daniel D.; Cole, Jacqueline M.; Turner, Michael J.; Jayatilaka, Dylan

    2013-08-01

    The rational design of next-generation optical materials requires an understanding of the connection between molecular structure and the solid-state optical properties of a material. A fundamental challenge is to utilize the accurate structural information provided by X-ray diffraction to explain the properties of a crystal. For years, the multipole refinement has been the workhorse technique for transforming high-resolution X-ray diffraction datasets into the detailed electron density distribution of crystalline material. However, the electron density alone is not sufficient for a reliable calculation of the nonlinear optical properties of a material. Recently, the X-ray constrained wavefunction refinement has emerged as a viable alternative to the multipole refinement, offering several potential advantages, including the calculation of a wide range of physical properties and seeding the refinement process with a physically reasonable starting point. In this study, we apply both the multipole refinement and the X-ray constrained wavefunction technique to four molecules with promising nonlinear optical properties and diverse structural motifs. In general, both techniques obtain comparable figures of merit and generate largely similar electron densities, demonstrating the wide applicability of the X-ray constrained wavefunction method. However, there are some systematic differences between the electron densities generated by each technique. Importantly, we find that the electron density generated using the X-ray constrained wavefunction method is dependent on the exact location of the nuclei. The X-ray constrained wavefunction refinement makes smaller changes to the wavefunction when coordinates from the Hartree-Fock-based Hirshfeld atom refinement are employed rather than coordinates from the multipole refinement, suggesting that coordinates from the Hirshfeld atom refinement allow the X-ray constrained wavefunction method to produce more accurate wavefunctions. We

  17. Modeling electron density distributions from X-ray diffraction to derive optical properties: constrained wavefunction versus multipole refinement.

    PubMed

    Hickstein, Daniel D; Cole, Jacqueline M; Turner, Michael J; Jayatilaka, Dylan

    2013-08-14

    The rational design of next-generation optical materials requires an understanding of the connection between molecular structure and the solid-state optical properties of a material. A fundamental challenge is to utilize the accurate structural information provided by X-ray diffraction to explain the properties of a crystal. For years, the multipole refinement has been the workhorse technique for transforming high-resolution X-ray diffraction datasets into the detailed electron density distribution of crystalline material. However, the electron density alone is not sufficient for a reliable calculation of the nonlinear optical properties of a material. Recently, the X-ray constrained wavefunction refinement has emerged as a viable alternative to the multipole refinement, offering several potential advantages, including the calculation of a wide range of physical properties and seeding the refinement process with a physically reasonable starting point. In this study, we apply both the multipole refinement and the X-ray constrained wavefunction technique to four molecules with promising nonlinear optical properties and diverse structural motifs. In general, both techniques obtain comparable figures of merit and generate largely similar electron densities, demonstrating the wide applicability of the X-ray constrained wavefunction method. However, there are some systematic differences between the electron densities generated by each technique. Importantly, we find that the electron density generated using the X-ray constrained wavefunction method is dependent on the exact location of the nuclei. The X-ray constrained wavefunction refinement makes smaller changes to the wavefunction when coordinates from the Hartree-Fock-based Hirshfeld atom refinement are employed rather than coordinates from the multipole refinement, suggesting that coordinates from the Hirshfeld atom refinement allow the X-ray constrained wavefunction method to produce more accurate wavefunctions. We

  18. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Inverse computation for cardiac sources using single current dipole and current multipole models

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Ma, Ping; Lu, Hong; Tang, Xue-Zheng; Hua, Ning; Tang, Fa-Kuan

    2009-12-01

    Two cardiac functional models are constructed in this paper. One is a single current model and the other is a current multipole model. Parameters denoting the properties of these two models are calculated by a least-square fit to the measurements using a simulated annealing algorithm. The measured signals are detected at 36 observation nodes by a superconducting quantum interference device (SQUID). By studying the trends of position, orientation and magnitude of the single current dipole model and the current multipole model in the QRS complex during one time span and comparing the reconstructed magnetocardiography (MCG) of these two cardiac models, we find that the current multipole model is a more appropriate model to represent cardiac electrophysiological activity.

  19. Charge Changing Experiments and Multipole Expansions of Electron Loss to the Continuum.

    NASA Astrophysics Data System (ADS)

    Atan, H.

    Available from UMI in association with The British Library. Charge changing processes involving single electron loss for 0.6-2.2 MeV _sp{2}{4 }He^{+} ions and 2.0-3.0 MeV _sp{2}{3 }He^{+} ions, and single electron capture for 0.6-2.2 MeV _sp {2}{4}He^{+ } ions colliding with He, Ne and Ar have bee studied. The gas target was in the form of a gas beam jet, well localised and directed, obtained using a multicapillary array system. The measured absolute cross sections for single electron loss sigma_{12 }, were in good agreement with most other experimental data. These results were also compared with the theoretical quantal, semi-classical and classical calculations. For a He target, quantal Born approximation calculations gave good agreement especially towards the high energy region but not for an Ar target. The semi-classical calculations gave good agreement for all three target systems, in terms of the magnitude, velocity dependence as well the Z _{t}, dependence. The classical calculations gave not only a good estimate of the cross -sections but also predicted the velocity dependence quite accurately. The measured absolute cross sections for single electron capture sigma_{10} agreed well with most other experimental data and with the classical binary encounter calculations. Electron loss to the continuum (ELC) for 1.4-2.8 MeV He^{+} colliding with He, Ne and Ar have also been studied using a second-order focussing, 30^circ parallel plate spectrometer. The analysis was performed using a specially developed multipole expansion method, allowing an extraction of the parameters in an apparatus independent manner. The first order anisotropy parameter beta_1, was found to exhibit a systematic target dependence, with negative values for Ne and Ar targets, indicating an asymmetric cusp with an enhanced intensity of electrons at velocities lower than that of the ions. Such cusp shape was not predicted by any existing first-order theory. The second-order anisotropy parameter

  20. Gravitational bending of light by planetary multipoles and its measurement with microarcsecond astronomical interferometers

    SciTech Connect

    Kopeikin, Sergei M.; Makarov, Valeri V.

    2007-03-15

    General-relativistic deflection of light by mass, dipole, and quadrupole moments of the gravitational field of a moving massive planet in the solar system is derived in the approximation of the linearized Einstein equations. All terms of order 1 {mu}as are taken into account, parametrized, and classified in accordance with their physical origin. The monopolar light-ray deflection, modulated by the radial Doppler effect, is associated with the total mass and radial velocity of the gravitating body. It displaces the apparent positions of stars in the sky plane radially away from the origin of the celestial coordinates associated with the planet. The dipolar deflection of light is due to a translational mismatch of the center of mass of the planet and the origin of the planetary coordinates caused by the inaccuracy of planetary ephemeris. It can also originate from the difference between the null cone for light and that for gravity that is not allowed in general relativity but can exist in some of the alternative theories of gravity. The dipolar gravity field pulls the apparent position of a star in the plane of the sky in both radial and orthoradial directions with respect to the origin of the coordinates. The quadrupolar deflection of light is caused by the physical oblateness, J{sub 2}, of the planet, but in any practical experiment it will have an admixture of the translation-dependent quadrupole due to inaccuracy of planetary ephemeris. This leads to a bias in the estimated value of J{sub 2} that should be minimized by applying an iterative data reduction method designed to disentangle the different multipole moments and to fit out the translation-dependent dipolar and quadrupolar components of light deflection. The method of microarcsecond interferometric astrometry has the potential of greatly improving the planetary ephemerides, getting unbiased measurements of planetary quadrupoles, and of thoroughly testing the null-cone structure of the gravitational field

  1. Generalized and efficient algorithm for computing multipole energies and gradients based on Cartesian tensors

    PubMed Central

    Lin, Dejun

    2015-01-01

    Accurate representation of intermolecular forces has been the central task of classical atomic simulations, known as molecular mechanics. Recent advancements in molecular mechanics models have put forward the explicit representation of permanent and/or induced electric multipole (EMP) moments. The formulas developed so far to calculate EMP interactions tend to have complicated expressions, especially in Cartesian coordinates, which can only be applied to a specific kernel potential function. For example, one needs to develop a new formula each time a new kernel function is encountered. The complication of these formalisms arises from an intriguing and yet obscured mathematical relation between the kernel functions and the gradient operators. Here, I uncover this relation via rigorous derivation and find that the formula to calculate EMP interactions is basically invariant to the potential kernel functions as long as they are of the form f(r), i.e., any Green’s function that depends on inter-particle distance. I provide an algorithm for efficient evaluation of EMP interaction energies, forces, and torques for any kernel f(r) up to any arbitrary rank of EMP moments in Cartesian coordinates. The working equations of this algorithm are essentially the same for any kernel f(r). Recently, a few recursive algorithms were proposed to calculate EMP interactions. Depending on the kernel functions, the algorithm here is about 4–16 times faster than these algorithms in terms of the required number of floating point operations and is much more memory efficient. I show that it is even faster than a theoretically ideal recursion scheme, i.e., one that requires 1 floating point multiplication and 1 addition per recursion step. This algorithm has a compact vector-based expression that is optimal for computer programming. The Cartesian nature of this algorithm makes it fit easily into modern molecular simulation packages as compared with spherical coordinate-based algorithms. A

  2. Polarizable Atomic Multipole X-Ray Refinement: Particle Mesh Ewald Electrostatics for Macromolecular Crystals.

    PubMed

    Schnieders, Michael J; Fenn, Timothy D; Pande, Vijay S

    2011-04-12

    Refinement of macromolecular models from X-ray crystallography experiments benefits from prior chemical knowledge at all resolutions. As the quality of the prior chemical knowledge from quantum or classical molecular physics improves, in principle so will resulting structural models. Due to limitations in computer performance and electrostatic algorithms, commonly used macromolecules X-ray crystallography refinement protocols have had limited support for rigorous molecular physics in the past. For example, electrostatics is often neglected in favor of nonbonded interactions based on a purely repulsive van der Waals potential. In this work we present advanced algorithms for desktop workstations that open the door to X-ray refinement of even the most challenging macromolecular data sets using state-of-the-art classical molecular physics. First we describe theory for particle mesh Ewald (PME) summation that consistently handles the symmetry of all 230 space groups, replicates of the unit cell such that the minimum image convention can be used with a real space cutoff of any size and the combination of space group symmetry with replicates. An implementation of symmetry accelerated PME for the polarizable atomic multipole optimized energetics for biomolecular applications (AMOEBA) force field is presented. Relative to a single CPU core performing calculations on a P1 unit cell, our AMOEBA engine called Force Field X (FFX) accelerates energy evaluations by more than a factor of 24 on an 8-core workstation with a Tesla GPU coprocessor for 30 structures that contain 240 000 atoms on average in the unit cell. The benefit of AMOEBA electrostatics evaluated with PME for macromolecular X-ray crystallography refinement is demonstrated via rerefinement of 10 crystallographic data sets that range in resolution from 1.7 to 4.5 Å. Beginning from structures obtained by local optimization without electrostatics, further optimization using AMOEBA with PME electrostatics improved

  3. Generalized and efficient algorithm for computing multipole energies and gradients based on Cartesian tensors

    SciTech Connect

    Lin, Dejun

    2015-09-21

    Accurate representation of intermolecular forces has been the central task of classical atomic simulations, known as molecular mechanics. Recent advancements in molecular mechanics models have put forward the explicit representation of permanent and/or induced electric multipole (EMP) moments. The formulas developed so far to calculate EMP interactions tend to have complicated expressions, especially in Cartesian coordinates, which can only be applied to a specific kernel potential function. For example, one needs to develop a new formula each time a new kernel function is encountered. The complication of these formalisms arises from an intriguing and yet obscured mathematical relation between the kernel functions and the gradient operators. Here, I uncover this relation via rigorous derivation and find that the formula to calculate EMP interactions is basically invariant to the potential kernel functions as long as they are of the form f(r), i.e., any Green’s function that depends on inter-particle distance. I provide an algorithm for efficient evaluation of EMP interaction energies, forces, and torques for any kernel f(r) up to any arbitrary rank of EMP moments in Cartesian coordinates. The working equations of this algorithm are essentially the same for any kernel f(r). Recently, a few recursive algorithms were proposed to calculate EMP interactions. Depending on the kernel functions, the algorithm here is about 4–16 times faster than these algorithms in terms of the required number of floating point operations and is much more memory efficient. I show that it is even faster than a theoretically ideal recursion scheme, i.e., one that requires 1 floating point multiplication and 1 addition per recursion step. This algorithm has a compact vector-based expression that is optimal for computer programming. The Cartesian nature of this algorithm makes it fit easily into modern molecular simulation packages as compared with spherical coordinate-based algorithms. A

  4. Tunable Lattice Coupling of Multipole Plasmon Modes and Near-Field Enhancement in Closely Spaced Gold Nanorod Arrays

    PubMed Central

    Huang, Yu; Zhang, Xian; Ringe, Emilie; Hou, Mengjing; Ma, Lingwei; Zhang, Zhengjun

    2016-01-01

    Considering the nanogap and lattice effects, there is an attractive structure in plasmonics: closely spaced metallic nanoarrays. In this work, we demonstrate experimentally and theoretically the lattice coupling of multipole plasmon modes for closely spaced gold nanorod arrays, offering a new insight into the higher order cavity modes coupled with each other in the lattice. The resonances can be greatly tuned by changes in inter-rod gaps and nanorod heights while the influence of the nanorod diameter is relatively insignificant. Experimentally, pronounced suppressions of the reflectance are observed. Meanwhile, the near-field enhancement can be further enhanced, as demonstrated through surface enhanced Raman scattering (SERS). We then confirm the correlation between the near-field and far-field plasmonic responses, which is significantly important for maximizing the near-field enhancement at a specific excitation wavelength. This lattice coupling of multipole plasmon modes is of broad interest not only for SERS but also for other plasmonic applications, such as subwavelength imaging or metamaterials. PMID:26983501

  5. A critical appraisal of the zero-multipole method: Structural, thermodynamic, dielectric, and dynamical properties of a water system

    NASA Astrophysics Data System (ADS)

    Wang, Han; Nakamura, Haruki; Fukuda, Ikuo

    2016-03-01

    We performed extensive and strict tests for the reliability of the zero-multipole (summation) method (ZMM), which is a method for estimating the electrostatic interactions among charged particles in a classical physical system, by investigating a set of various physical quantities. This set covers a broad range of water properties, including the thermodynamic properties (pressure, excess chemical potential, constant volume/pressure heat capacity, isothermal compressibility, and thermal expansion coefficient), dielectric properties (dielectric constant and Kirkwood-G factor), dynamical properties (diffusion constant and viscosity), and the structural property (radial distribution function). We selected a bulk water system, the most important solvent, and applied the widely used TIP3P model to this test. In result, the ZMM works well for almost all cases, compared with the smooth particle mesh Ewald (SPME) method that was carefully optimized. In particular, at cut-off radius of 1.2 nm, the recommended choices of ZMM parameters for the TIP3P system are α ≤ 1 nm-1 for the splitting parameter and l = 2 or l = 3 for the order of the multipole moment. We discussed the origin of the deviations of the ZMM and found that they are intimately related to the deviations of the equilibrated densities between the ZMM and SPME, while the magnitude of the density deviations is very small.

  6. A critical appraisal of the zero-multipole method: Structural, thermodynamic, dielectric, and dynamical properties of a water system.

    PubMed

    Wang, Han; Nakamura, Haruki; Fukuda, Ikuo

    2016-03-21

    We performed extensive and strict tests for the reliability of the zero-multipole (summation) method (ZMM), which is a method for estimating the electrostatic interactions among charged particles in a classical physical system, by investigating a set of various physical quantities. This set covers a broad range of water properties, including the thermodynamic properties (pressure, excess chemical potential, constant volume/pressure heat capacity, isothermal compressibility, and thermal expansion coefficient), dielectric properties (dielectric constant and Kirkwood-G factor), dynamical properties (diffusion constant and viscosity), and the structural property (radial distribution function). We selected a bulk water system, the most important solvent, and applied the widely used TIP3P model to this test. In result, the ZMM works well for almost all cases, compared with the smooth particle mesh Ewald (SPME) method that was carefully optimized. In particular, at cut-off radius of 1.2 nm, the recommended choices of ZMM parameters for the TIP3P system are α ≤ 1 nm(-1) for the splitting parameter and l = 2 or l = 3 for the order of the multipole moment. We discussed the origin of the deviations of the ZMM and found that they are intimately related to the deviations of the equilibrated densities between the ZMM and SPME, while the magnitude of the density deviations is very small.

  7. Numerical Boundary Condition Procedures

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Topics include numerical procedures for treating inflow and outflow boundaries, steady and unsteady discontinuous surfaces, far field boundaries, and multiblock grids. In addition, the effects of numerical boundary approximations on stability, accuracy, and convergence rate of the numerical solution are discussed.

  8. Fast inhomogeneous plane wave algorithm for the analysis of electromagnetic scattering

    NASA Astrophysics Data System (ADS)

    Hu, Bin; Chew, Weng Cho; Velamparambil, Sanjay

    2001-01-01

    The fast inhomogeneous plane wave algorithm has been developed to accelerate the solution of three-dimensional electromagnetic scattering problems in free space. By expanding the kernel of the Green's function using the Weyl identity and choosing a proper steepest descent path, the diagonalization of the translation matrix is achieved after the interpolation and extrapolation techniques are applied. The proposed algorithm is implemented on top of the scalable multipole engine, a portable implementation of the dynamic multilevel fast multipole algorithm for distributed-memory computers. The computational time per matrix vector multiplication is reduced to O(NlogN) and the memory requirement is reduced to O(N), where N is the number of unknowns in the discretized integral equation. The algorithm is validated by applying it to the solution of the electromagnetic scattering from the perfect electric conducting scatterers. This approach can be easily extended to more general problems with complicated Green's function expressed in terms of the plane wave spectral integrals, such as the ones encountered in the multilayered medium studies.

  9. FAST: FAST Analysis of Sequences Toolbox

    PubMed Central

    Lawrence, Travis J.; Kauffman, Kyle T.; Amrine, Katherine C. H.; Carper, Dana L.; Lee, Raymond S.; Becich, Peter J.; Canales, Claudia J.; Ardell, David H.

    2015-01-01

    FAST (FAST Analysis of Sequences Toolbox) provides simple, powerful open source command-line tools to filter, transform, annotate and analyze biological sequence data. Modeled after the GNU (GNU's Not Unix) Textutils such as grep, cut, and tr, FAST tools such as fasgrep, fascut, and fastr make it easy to rapidly prototype expressive bioinformatic workflows in a compact and generic command vocabulary. Compact combinatorial encoding of data workflows with FAST commands can simplify the documentation and reproducibility of bioinformatic protocols, supporting better transparency in biological data science. Interface self-consistency and conformity with conventions of GNU, Matlab, Perl, BioPerl, R, and GenBank help make FAST easy and rewarding to learn. FAST automates numerical, taxonomic, and text-based sorting, selection and transformation of sequence records and alignment sites based on content, index ranges, descriptive tags, annotated features, and in-line calculated analytics, including composition and codon usage. Automated content- and feature-based extraction of sites and support for molecular population genetic statistics make FAST useful for molecular evolutionary analysis. FAST is portable, easy to install and secure thanks to the relative maturity of its Perl and BioPerl foundations, with stable releases posted to CPAN. Development as well as a publicly accessible Cookbook and Wiki are available on the FAST GitHub repository at https://github.com/tlawrence3/FAST. The default data exchange format in FAST is Multi-FastA (specifically, a restriction of BioPerl FastA format). Sanger and Illumina 1.8+ FastQ formatted files are also supported. FAST makes it easier for non-programmer biologists to interactively investigate and control biological data at the speed of thought. PMID:26042145

  10. FAST: FAST Analysis of Sequences Toolbox.

    PubMed

    Lawrence, Travis J; Kauffman, Kyle T; Amrine, Katherine C H; Carper, Dana L; Lee, Raymond S; Becich, Peter J; Canales, Claudia J; Ardell, David H

    2015-01-01

    FAST (FAST Analysis of Sequences Toolbox) provides simple, powerful open source command-line tools to filter, transform, annotate and analyze biological sequence data. Modeled after the GNU (GNU's Not Unix) Textutils such as grep, cut, and tr, FAST tools such as fasgrep, fascut, and fastr make it easy to rapidly prototype expressive bioinformatic workflows in a compact and generic command vocabulary. Compact combinatorial encoding of data workflows with FAST commands can simplify the documentation and reproducibility of bioinformatic protocols, supporting better transparency in biological data science. Interface self-consistency and conformity with conventions of GNU, Matlab, Perl, BioPerl, R, and GenBank help make FAST easy and rewarding to learn. FAST automates numerical, taxonomic, and text-based sorting, selection and transformation of sequence records and alignment sites based on content, index ranges, descriptive tags, annotated features, and in-line calculated analytics, including composition and codon usage. Automated content- and feature-based extraction of sites and support for molecular population genetic statistics make FAST useful for molecular evolutionary analysis. FAST is portable, easy to install and secure thanks to the relative maturity of its Perl and BioPerl foundations, with stable releases posted to CPAN. Development as well as a publicly accessible Cookbook and Wiki are available on the FAST GitHub repository at https://github.com/tlawrence3/FAST. The default data exchange format in FAST is Multi-FastA (specifically, a restriction of BioPerl FastA format). Sanger and Illumina 1.8+ FastQ formatted files are also supported. FAST makes it easier for non-programmer biologists to interactively investigate and control biological data at the speed of thought.

  11. Boundary Value Problem with Unbounded, Fast Oscillatory Random Flows

    NASA Astrophysics Data System (ADS)

    Fannjiang, Albert

    1998-03-01

    We use Tartar's weak convergence method in conjunction with a variational principle to prove a sharp homogenization theorem for diffusion in steady random flows. The flow has a stationary and square integrable stream matrix. The key of our approach is introducing approximate correctors by means of a saddle point variational principle. We also obtain the two-term asymptotics.

  12. Correlation and relativistic effects for the 4f-nl and 5p-nl multipole transitions in Er-like tungsten

    SciTech Connect

    Safronova, U. I.; Safronova, A. S.

    2011-07-15

    Wavelengths, transition rates, and line strengths are calculated for the multipole (E1, M1, E2, M2, E3, and M3) transitions between the excited [Cd]4f{sup 13}5p{sup 6}nl, [Cd]4f{sup 14}5p{sup 5}nl configurations and the ground [Cd]4f{sup 14}5p{sup 6} state in Er-like W{sup 6+} ion ([Cd]=[Kr]4d{sup 10}5s{sup 2}). In particular, the relativistic many-body perturbation theory (RMBPT), including the Breit interaction, is used to evaluate energies and transition rates for multipole transitions in this hole-particle system. This method is based on the relativistic many-body perturbation theory that agrees with multiconfiguration Dirac-Fock (MCDF) calculations in lowest order, and includes all second-order correlation corrections and corrections from negative-energy states. The calculations start from a [Cd]4f{sup 14}5p{sup 6} Dirac-Fock (DF) potential. First-order perturbation theory is used to obtain intermediate-coupling coefficients, and second-order RMBPT is used to determine the multipole matrix elements needed for calculations of other atomic properties such as line strengths and transition rates. In addition, core multipole polarizability is evaluated in random-phase and DF approximations. The comparison with available data is demonstrated.

  13. Multipole radiation fields from the Jefimenko equation for the magnetic field and the Panofsky-Phillips equation for the electric field

    NASA Astrophysics Data System (ADS)

    de Melo e Souza, R.; Cougo-Pinto, M. V.; Farina, C.; Moriconi, M.

    2009-01-01

    We show how to obtain the first multipole contributions to the electromagnetic radiation emitted by an arbitrary localized source directly from the Jefimenko equation for the magnetic field and the Panofsky-Phillips equation for the electric field. This procedure avoids the unnecessary calculation of the electromagnetic potentials.

  14. CMB quadrupole suppression. II. The early fast roll stage

    SciTech Connect

    Boyanovsky, D.; Vega, H. J. de; Sanchez, N. G.

    2006-12-15

    Within the effective field theory of inflation, an initialization of the classical dynamics of the inflaton with approximate equipartition between the kinetic and potential energy of the inflaton leads to a brief fast roll stage that precedes the slow roll regime. The fast roll stage leads to an attractive potential in the wave equations for the mode functions of curvature and tensor perturbations. The evolution of the inflationary perturbations is equivalent to the scattering by this potential and a useful dictionary between the scattering data and observables is established. Implementing methods from scattering theory we prove that this attractive potential leads to a suppression of the quadrupole moment for CMB and B-mode angular power spectra. The scale of the potential is determined by the Hubble parameter during slow roll. Within the effective field theory of inflation at the grand unification (GUT) energy scale we find that if inflation lasts a total number of e-folds N{sub tot}{approx}59, there is a 10%-20% suppression of the CMB quadrupole and about 2%-4% suppression of the tensor quadrupole. The suppression of higher multipoles is smaller, falling off as 1/l{sup 2}. The suppression is much smaller for N{sub tot}>59, therefore if the observable suppression originates in the fast roll stage, there is the upper bound N{sub tot}{approx}59.

  15. High-resolution crystal structures of protein helices reconciled with three-centered hydrogen bonds and multipole electrostatics.

    PubMed

    Kuster, Daniel J; Liu, Chengyu; Fang, Zheng; Ponder, Jay W; Marshall, Garland R

    2015-01-01

    Theoretical and experimental evidence for non-linear hydrogen bonds in protein helices is ubiquitous. In particular, amide three-centered hydrogen bonds are common features of helices in high-resolution crystal structures of proteins. These high-resolution structures (1.0 to 1.5 Å nominal crystallographic resolution) position backbone atoms without significant bias from modeling constraints and identify Φ = -62°, ψ = -43 as the consensus backbone torsional angles of protein helices. These torsional angles preserve the atomic positions of α-β carbons of the classic Pauling α-helix while allowing the amide carbonyls to form bifurcated hydrogen bonds as first suggested by Némethy et al. in 1967. Molecular dynamics simulations of a capped 12-residue oligoalanine in water with AMOEBA (Atomic Multipole Optimized Energetics for Biomolecular Applications), a second-generation force field that includes multipole electrostatics and polarizability, reproduces the experimentally observed high-resolution helical conformation and correctly reorients the amide-bond carbonyls into bifurcated hydrogen bonds. This simple modification of backbone torsional angles reconciles experimental and theoretical views to provide a unified view of amide three-centered hydrogen bonds as crucial components of protein helices. The reason why they have been overlooked by structural biologists depends on the small crankshaft-like changes in orientation of the amide bond that allows maintenance of the overall helical parameters (helix pitch (p) and residues per turn (n)). The Pauling 3.6(13) α-helix fits the high-resolution experimental data with the minor exception of the amide-carbonyl electron density, but the previously associated backbone torsional angles (Φ, Ψ) needed slight modification to be reconciled with three-atom centered H-bonds and multipole electrostatics. Thus, a new standard helix, the 3.6(13/10)-, Némethy- or N-helix, is proposed. Due to the use of constraints from

  16. High-Resolution Crystal Structures of Protein Helices Reconciled with Three-Centered Hydrogen Bonds and Multipole Electrostatics

    PubMed Central

    Kuster, Daniel J.; Liu, Chengyu; Fang, Zheng; Ponder, Jay W.; Marshall, Garland R.

    2015-01-01

    Theoretical and experimental evidence for non-linear hydrogen bonds in protein helices is ubiquitous. In particular, amide three-centered hydrogen bonds are common features of helices in high-resolution crystal structures of proteins. These high-resolution structures (1.0 to 1.5 Å nominal crystallographic resolution) position backbone atoms without significant bias from modeling constraints and identify Φ = -62°, ψ = -43 as the consensus backbone torsional angles of protein helices. These torsional angles preserve the atomic positions of α-β carbons of the classic Pauling α-helix while allowing the amide carbonyls to form bifurcated hydrogen bonds as first suggested by Némethy et al. in 1967. Molecular dynamics simulations of a capped 12-residue oligoalanine in water with AMOEBA (Atomic Multipole Optimized Energetics for Biomolecular Applications), a second-generation force field that includes multipole electrostatics and polarizability, reproduces the experimentally observed high-resolution helical conformation and correctly reorients the amide-bond carbonyls into bifurcated hydrogen bonds. This simple modification of backbone torsional angles reconciles experimental and theoretical views to provide a unified view of amide three-centered hydrogen bonds as crucial components of protein helices. The reason why they have been overlooked by structural biologists depends on the small crankshaft-like changes in orientation of the amide bond that allows maintenance of the overall helical parameters (helix pitch (p) and residues per turn (n)). The Pauling 3.613 α-helix fits the high-resolution experimental data with the minor exception of the amide-carbonyl electron density, but the previously associated backbone torsional angles (Φ, Ψ) needed slight modification to be reconciled with three-atom centered H-bonds and multipole electrostatics. Thus, a new standard helix, the 3.613/10-, Némethy- or N-helix, is proposed. Due to the use of constraints from monopole

  17. [Bone remodelling using the boundary element method].

    PubMed

    Martínez, Gabriela; Cerrolaza, Miguel

    2003-01-01

    An algorithm for the mathematical representation of external bone remodeling is proposed. The Boundary element method is used for the numerical analysis of trabecular bone, together with the remodeling algorithm presented by Fridez. The versatility and power of the algorithm discussed herein are shown by some numerical examples. As well, the method converges very fast to the solution, which is one of the main advantages of the proposed numerical scheme.

  18. Boundary lubrication: Revisited

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.

    1982-01-01

    A review of the various lubrication regimes, with particular, emphasis on boundary lubrication, is presented. The types of wear debris and extent of surface damage is illustrated for each regime. The role of boundary surface films along with their modes of formation and important physical properties are discussed. In addition, the effects of various operating parameters on friction and wear in the boundary lubrication regime are considered.

  19. Accelerating search kinetics by following boundaries

    NASA Astrophysics Data System (ADS)

    Calandre, T.; Bénichou, O.; Voituriez, R.

    2014-06-01

    We derive exact expressions of the mean first-passage time to a bulk target for a random searcher that performs boundary-mediated diffusion in a circular domain. Although nonintuitive for bulk targets, it is found that boundary excursions, if fast enough, can minimize the search time. A scaling analysis generalizes these findings to domains of arbitrary shapes and underlines their robustness. Overall, these results provide a generic mechanism of optimization of search kinetics in interfacial systems, which could have important implications in chemical physics. In the context of animal behavior sciences, it shows that following the boundaries of a domain can accelerate a search process, and therefore suggests that thigmotactism could be a kinetically efficient behavior.

  20. Prospects for Ultra-Stable Timekeeping with Sealed Vacuum Operation in Multi-Pole Linear Ion Trap Standards

    NASA Technical Reports Server (NTRS)

    Burt, Eric A.; Tjoelker, R. L.

    2007-01-01

    A recent long-term comparison between the compensated multi-pole Linear Ion Trap Standard (LITS) and the laser-cooled primary standards via GPS carrier phase time transfer showed a deviation of less than 2.7x10(exp -17)/day. A subsequent evaluation of potential drift contributors in the LITS showed that the leading candidates are fluctuations in background gases and the neon buffer gas. The current vacuum system employs a "flow-through" turbomolecular pump and a diaphragm fore pump. Here we consider the viability of a "sealed" vacuum system pumped by a non-evaporable getter for long-term ultra-stable clock operation. Initial tests suggests that both further stability improvement and longer mean-time-between-maintenance can be achieved using this approach

  1. Buffer-Gas Cooling of a Single Ion in a Multipole Radio Frequency Trap Beyond the Critical Mass Ratio

    NASA Astrophysics Data System (ADS)

    Höltkemeier, Bastian; Weckesser, Pascal; López-Carrera, Henry; Weidemüller, Matthias

    2016-06-01

    We theoretically investigate the dynamics of a trapped ion immersed in a spatially localized buffer gas. For a homogeneous buffer gas, the ion's energy distribution reaches a stable equilibrium only if the mass of the buffer gas atoms is below a critical value. This limitation can be overcome by using multipole traps in combination with a spatially confined buffer gas. Using a generalized model for elastic collisions of the ion with the buffer-gas atoms, the ion's energy distribution is numerically determined for arbitrary buffer-gas distributions and trap parameters. Three regimes characterized by the respective analytic form of the ion's equilibrium energy distribution are found. Final ion temperatures down to the millikelvin regime can be achieved by adiabatically decreasing the spatial extension of the buffer gas and the effective ion trap depth (forced sympathetic cooling).

  2. Influence of the multipole order of the source on the decay of an inertial wave beam in a rotating fluid

    SciTech Connect

    Machicoane, Nathanaël; Cortet, Pierre-Philippe; Moisy, Frédéric; Voisin, Bruno

    2015-06-15

    We analyze theoretically and experimentally the far-field viscous decay of a two-dimensional inertial wave beam emitted by a harmonic line source in a rotating fluid. By identifying the relevant conserved quantities along the wave beam, we show how the beam structure and decay exponent are governed by the multipole order of the source. Two wavemakers are considered experimentally, a pulsating and an oscillating cylinder, aiming to produce a monopole and a dipole source, respectively. The relevant conserved quantity which discriminates between these two sources is the instantaneous flow rate along the wave beam, which is non-zero for the monopole and zero for the dipole. For each source, the beam structure and decay exponent, measured using particle image velocimetry, are in good agreement with the predictions.

  3. Combined complex-source beam and spherical-multipole analysis for the electromagnetic probing of conical structures

    NASA Astrophysics Data System (ADS)

    Klinkenbusch, Ludger; Brüns, Hendrik

    2016-11-01

    The paper addresses the combination of the spherical-multipole analysis in sphero-conal coordinates with a uniform complex-source beam (CSB) in order to analyze the scattering of a localized electromagnetic plane wave by any desired part of a perfectly conducting elliptic cone. The concept of uniform CSB is introduced and rigorously applied to the diffraction by a semi-infinite elliptic cone. The analysis takes into account the fact that the incident CSB does not satisfy the radiation condition. A new modal form of the Green's function for the elliptic cone is derived based on the principle that there is no energy loss to infinity. The numerical evaluation includes the scattered far fields of a CSB incident on the corner of a plane angular sector with different opening angles. xml:lang="fr"

  4. The impact of new polarization data from Bonn, Mainz and Jefferson Laboratory on γ p → π N multipoles

    NASA Astrophysics Data System (ADS)

    Anisovich, A. V.; Beck, R.; Döring, M.; Gottschall, M.; Hartmann, J.; Kashevarov, V.; Klempt, E.; Meißner, Ulf-G.; Nikonov, V.; Ostrick, M.; Rönchen, D.; Sarantsev, A.; Strakovsky, I.; Thiel, A.; Tiator, L.; Thoma, U.; Workman, R.; Wunderlich, Y.

    2016-09-01

    New data on pion-photoproduction off the proton have been included in the partial-wave analyses Bonn-Gatchina and SAID and in the dynamical coupled-channel approach Jülich-Bonn. All reproduce the recent new data well: the double-polarization data for E, G, H, P and T in γ p→ π0p from ELSA, the beam asymmetry Σ for γ p→ π0p and π+n from Jefferson Laboratory, and the precise new differential cross section and beam asymmetry data Σ for γ p→ π0p from MAMI. The new fit results for the multipoles are compared with predictions not taking into account the new data. The mutual agreement is improved considerably but still far from being perfect.

  5. Extracting multipole moments of neutron stars from quasi-periodic oscillations in low mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Boshkayev, Kuantay; Rueda, Jorge; Muccino, Marco

    2015-06-01

    We consider the kilohertz quasi-periodic oscillations of low-mass X-ray binaries within the Hartle-Thorne spacetime. We show that the interpretation of the epicyclic frequencies of this spacetime with the observed kilohertz quasi-periodic oscillations, within the Relativistic Precession Model, allows us to extract the total mass M, angular momentum J, and quadrupole moment Q of the compact object in a low-mass X-ray binary. We exemplify this fact by analyzing the data of the Z-source GX 5-1. We show that the extracted multipole structure of the compact component of this source deviates from the one expected from a Kerr black hole and instead it points to a neutron star explanation.

  6. Implementation and application of a novel 2D magnetic twisting cytometry based on multi-pole electromagnet.

    PubMed

    Chen, La; Maybeck, Vanessa; Offenhäusser, Andreas; Krause, Hans-Joachim

    2016-06-01

    We implemented a novel 2D magnetic twisting cytometry (MTC) based on a previously reported multi-pole high permeability electromagnet, in which both the strength and direction of the twisting field can be controlled. Thanks to the high performance twisting electromagnet and the heterodyning technology, the measurement frequency has been extended to the 1 kHz range. In order to obtain high remanence of the ferromagnetic beads, a separate electromagnet with feedback control was adopted for the high magnetic field polarization. Our setup constitutes the first instrument which can be operated both in MTC mode and in magnetic tweezers (MT) mode. In this work, the mechanical properties of HL-1 cardiomyocytes were characterized in MTC mode. Both anisotropy and log-normal distribution of cell stiffness were observed, which agree with our previous results measured in MT mode. The response from these living cells at different frequencies can be fitted very well by the soft glassy rheology model. PMID:27370475

  7. Implementation and application of a novel 2D magnetic twisting cytometry based on multi-pole electromagnet

    NASA Astrophysics Data System (ADS)

    Chen, La; Maybeck, Vanessa; Offenhäusser, Andreas; Krause, Hans-Joachim

    2016-06-01

    We implemented a novel 2D magnetic twisting cytometry (MTC) based on a previously reported multi-pole high permeability electromagnet, in which both the strength and direction of the twisting field can be controlled. Thanks to the high performance twisting electromagnet and the heterodyning technology, the measurement frequency has been extended to the 1 kHz range. In order to obtain high remanence of the ferromagnetic beads, a separate electromagnet with feedback control was adopted for the high magnetic field polarization. Our setup constitutes the first instrument which can be operated both in MTC mode and in magnetic tweezers (MT) mode. In this work, the mechanical properties of HL-1 cardiomyocytes were characterized in MTC mode. Both anisotropy and log-normal distribution of cell stiffness were observed, which agree with our previous results measured in MT mode. The response from these living cells at different frequencies can be fitted very well by the soft glassy rheology model.

  8. Implementation and application of a novel 2D magnetic twisting cytometry based on multi-pole electromagnet.

    PubMed

    Chen, La; Maybeck, Vanessa; Offenhäusser, Andreas; Krause, Hans-Joachim

    2016-06-01

    We implemented a novel 2D magnetic twisting cytometry (MTC) based on a previously reported multi-pole high permeability electromagnet, in which both the strength and direction of the twisting field can be controlled. Thanks to the high performance twisting electromagnet and the heterodyning technology, the measurement frequency has been extended to the 1 kHz range. In order to obtain high remanence of the ferromagnetic beads, a separate electromagnet with feedback control was adopted for the high magnetic field polarization. Our setup constitutes the first instrument which can be operated both in MTC mode and in magnetic tweezers (MT) mode. In this work, the mechanical properties of HL-1 cardiomyocytes were characterized in MTC mode. Both anisotropy and log-normal distribution of cell stiffness were observed, which agree with our previous results measured in MT mode. The response from these living cells at different frequencies can be fitted very well by the soft glassy rheology model.

  9. The impact of new polarization data from Bonn, Mainz and Jefferson Laboratory on $$\\gamma p \\rightarrow \\pi N$$ multipoles

    DOE PAGES

    Anisovich, A. V.; Beck, R.; Döring, M.; Gottschall, M.; Hartmann, J.; Kashevarov, V.; Klempt, E.; Nikonov, V.; Ostrick, M.; Ronchen, D.; et al

    2016-09-16

    New data on pion-photoproduction off the proton have been included in the partial wave analyses Bonn-Gatchina and SAID and in the dynamical coupled-channel approach Julich-Bonn. All reproduce the recent new data well: the double polarization data for E, G, H, P and T inmore » $$\\gamma p \\to \\pi^0 p$$ from ELSA, the beam asymmetry $$\\Sigma$$ for $$\\gamma p \\to \\pi^0 p$$ and $$\\pi^+ n$$ from Jefferson Laboratory, and the precise new differential cross section and beam asymmetry data $$\\Sigma$$ for $$\\gamma p \\to \\pi^0 p$$ from MAMI. The new fit results for the multipoles are compared with predictions not taking into account the new data. Lastly, the mutual agreement is improved considerably but still far from being perfect.« less

  10. Multipole-storage-assisted dissociation for the characterization of large proteins and simple protein mixtures by ESI-FTICR-MS.

    PubMed

    Pan, Chongle; Hettich, Robert L

    2005-05-15

    In Fourier transform ion cyclotron resonance mass spectrometry, collisionally activated dissociation (CAD) typically is accomplished within the analyzer ion cell. An alternative approach of multipole-storage-assisted dissociation (MSAD) has previously been demonstrated by inducing collisional fragmentation in the external multipole that is usually employed for ion accumulation. To explore the utility of MSAD for interrogating intact proteins and simple protein mixtures in a multiplexed manner, we have investigated the means of controlling the collisional energy and the fragmentation pattern for this experimental approach. With protein samples in the low micromolar concentration range, the two major experimental parameters affecting MSAD in the hexapole region were found to be the dc offset voltage and accumulation time. While low-energy MSAD of intact proteins yields fragment ions similar to sustained off resonance irradiation collision-activated dissociation (SORI-CAD), high-energy MSAD induces sequential fragmentation for intact proteins to yield a rich variety of singly charged ions in the m/z 600-1200 Da region. Each of the seven proteins (Mr range of 8.5-116 kDa) examined in this study exhibited their own characteristic MSAD fragmentation pattern, which could be used as a signature of the presence of a given protein, even in a mixture. In addition, any MSAD fragment can be isolated and dissociated further by SORI-CAD in an MS3-type experiment inside the FTICR analyzer cell. This presents a novel way to interrogate the identities of these fragment ions as well as obtain amino acid sequence tag information that can be used to identify proteins from mixtures.

  11. Learning at Boundaries

    ERIC Educational Resources Information Center

    Akkerman, S. F.

    2011-01-01

    In the literature on boundaries, it is sometimes falsely assumed that learning naturally evolves from a co-location of diverse practices and perspectives. Empirical studies indicate that this is not self-evident. The aim of this article is to understand the challenge of learning at the boundary. In the light of this aim, the article interprets…

  12. The Atmospheric Boundary Layer

    ERIC Educational Resources Information Center

    Tennekes, Hendrik

    1974-01-01

    Discusses some important parameters of the boundary layer and effects of turbulence on the circulation and energy dissipation of the atmosphere. Indicates that boundary-layer research plays an important role in long-term forecasting and the study of air-pollution meteorology. (CC)

  13. Single-file diffusion near channel boundaries.

    PubMed

    Vasenkov, Sergey; Schüring, Andreas; Fritzsche, Siegfried

    2006-06-20

    Molecular transport under the conditions of single-file diffusion was investigated near the channel boundaries by using dynamic Monte Carlo and molecular dynamics simulations of tracer exchange between single-file channels and their surroundings. The boundary effect reported in our recent papers (Vasenkov S.; Kärger, J. Phys. Rev. E 2002, 66, 052601. Schüring, A.; Vasenkov S.; Fritzsche, S. J. Phys. Chem. B 2005, 109, 16711) was studied in detail. This boundary effect is characterized by deviations of the intrachannel concentration profiles of tracer molecules observed in the case of single-file diffusion near the channel boundaries from the corresponding profiles typical for normal diffusion. It has been shown in our previous studies that these deviations occur under the conditions when the potential-energy difference inside and outside of single-file channels was both comparable and much larger than the activation energy of intrachannel diffusion. Here, we report a quantitative model describing the boundary effect. According to this model, an occurrence of the boundary effect is related to a complex character of diffusion in finite single-file systems. Such diffusion can be described by the following two types of movements occurring in parallel: (i) correlated displacements of all molecules in any particular channel and (ii) fast displacements of single molecules, which are uncorrelated with the displacements of all other molecules in the same channel. The latter displacements are restricted to a certain length interval that depends on the channel length and the channel occupancy. This length interval is shown to determine the extensions of the channel margins where the boundary effect is observed.

  14. Fast time variations of supernova neutrino fluxes and their detectability

    SciTech Connect

    Lund, Tina; Marek, Andreas; Janka, Hans-Thomas; Lunardini, Cecilia; Raffelt, Georg

    2010-09-15

    In the delayed explosion scenario of core-collapse supernovae, the accretion phase shows pronounced convective overturns and a low-multipole hydrodynamic instability, the standing accretion shock instability. These effects imprint detectable fast time variations on the emerging neutrino flux. Among existing detectors, IceCube is best suited to this task, providing an event rate of {approx}1000 ms{sup -1} during the accretion phase for a fiducial SN distance of 10 kpc, comparable to what could be achieved with a megaton water Cherenkov detector. If the standing accretion shock instability activity lasts for several hundred ms, a Fourier component with an amplitude of 1% of the average signal clearly sticks out from the shot noise. We analyze in detail the output of axially symmetric hydrodynamical simulations that predict much larger amplitudes up to frequencies of a few hundred Hz. If these models are roughly representative for realistic SNe, fast time variations of the neutrino signal are easily detectable in IceCube or future megaton-class instruments. We also discuss the information that could be deduced from such a measurement about the physics in the SN core and the explosion mechanism of the SN.

  15. High-order magnetic multipoles as a source of gross asymmetry in the distant Jovian magnetosphere

    NASA Technical Reports Server (NTRS)

    Dessler, A. J.; Hill, T. W.

    1975-01-01

    The longitudinal asymmetry of the surface magnetic-field strength at Jupiter causes a longitudinal asymmetry in the equatorial plasma mass density within the Jovian magnetosphere. The rotation of these density variations with the planet causes a diurnal variation of the radial distance on the night side at which the centrifugal stress of the magnetospheric plasma exceeds the local magnetic-field tension. This is approximately the distance at which the magnetic field opens to interplanetary space; we estimate that the opening distance can vary by as much as 14% as a result of the observed surface field asymmetry. Such a diurnal variation of the boundary of the particle trapping region can account for the observed ten-hour modulation of relativistic electrons emitted from Jupiter into interplanetary space.

  16. Fast food tips (image)

    MedlinePlus

    ... challenge to eat healthy when going to a fast food place. In general, avoiding items that are deep ... challenge to eat healthy when going to a fast food place. In general, avoiding items that are deep ...

  17. Fast food (image)

    MedlinePlus

    Fast foods are quick, reasonably priced, and readily available alternatives to home cooking. While convenient and economical for a busy lifestyle, fast foods are typically high in calories, fat, saturated fat, ...

  18. Crossing species boundaries.

    PubMed

    Robert, Jason Scott; Baylis, Françoise

    2003-01-01

    This paper critically examines the biology of species identity and the morality of crossing species boundaries in the context of emerging research that involves combining human and nonhuman animals at the genetic or cellular level. We begin with the notion of species identity, particularly focusing on the ostensible fixity of species boundaries, and we explore the general biological and philosophical problem of defining species. Against this backdrop, we survey and criticize earlier attempts to forbid crossing species boundaries in the creation of novel beings. We do not attempt to establish the immorality of crossing species boundaries, but we conclude with some thoughts about such crossings, alluding to the notion of moral confusion regarding social and ethical obligations to novel interspecies beings.

  19. Boundary Layer Relaminarization Device

    NASA Technical Reports Server (NTRS)

    Creel, Theodore R. (Inventor)

    1993-01-01

    Relamination of a boundary layer formed in supersonic flow over the leading edge of a swept airfoil is accomplished using at least one band, especially a quadrangular band, and most preferably a square band. Each band conforms to the leading edge and the upper and lower surfaces of the airfoil as an integral part thereof and extends perpendicularly from the leading edge. Each band has a height of about two times the thickness of the maximum expected boundary layer.

  20. Is fast food addictive?

    PubMed

    Garber, Andrea K; Lustig, Robert H

    2011-09-01

    Studies of food addiction have focused on highly palatable foods. While fast food falls squarely into that category, it has several other attributes that may increase its salience. This review examines whether the nutrients present in fast food, the characteristics of fast food consumers or the presentation and packaging of fast food may encourage substance dependence, as defined by the American Psychiatric Association. The majority of fast food meals are accompanied by a soda, which increases the sugar content 10-fold. Sugar addiction, including tolerance and withdrawal, has been demonstrated in rodents but not humans. Caffeine is a "model" substance of dependence; coffee drinks are driving the recent increase in fast food sales. Limited evidence suggests that the high fat and salt content of fast food may increase addictive potential. Fast food restaurants cluster in poorer neighborhoods and obese adults eat more fast food than those who are normal weight. Obesity is characterized by resistance to insulin, leptin and other hormonal signals that would normally control appetite and limit reward. Neuroimaging studies in obese subjects provide evidence of altered reward and tolerance. Once obese, many individuals meet criteria for psychological dependence. Stress and dieting may sensitize an individual to reward. Finally, fast food advertisements, restaurants and menus all provide environmental cues that may trigger addictive overeating. While the concept of fast food addiction remains to be proven, these findings support the role of fast food as a potentially addictive substance that is most likely to create dependence in vulnerable populations.

  1. Is fast food addictive?

    PubMed

    Garber, Andrea K; Lustig, Robert H

    2011-09-01

    Studies of food addiction have focused on highly palatable foods. While fast food falls squarely into that category, it has several other attributes that may increase its salience. This review examines whether the nutrients present in fast food, the characteristics of fast food consumers or the presentation and packaging of fast food may encourage substance dependence, as defined by the American Psychiatric Association. The majority of fast food meals are accompanied by a soda, which increases the sugar content 10-fold. Sugar addiction, including tolerance and withdrawal, has been demonstrated in rodents but not humans. Caffeine is a "model" substance of dependence; coffee drinks are driving the recent increase in fast food sales. Limited evidence suggests that the high fat and salt content of fast food may increase addictive potential. Fast food restaurants cluster in poorer neighborhoods and obese adults eat more fast food than those who are normal weight. Obesity is characterized by resistance to insulin, leptin and other hormonal signals that would normally control appetite and limit reward. Neuroimaging studies in obese subjects provide evidence of altered reward and tolerance. Once obese, many individuals meet criteria for psychological dependence. Stress and dieting may sensitize an individual to reward. Finally, fast food advertisements, restaurants and menus all provide environmental cues that may trigger addictive overeating. While the concept of fast food addiction remains to be proven, these findings support the role of fast food as a potentially addictive substance that is most likely to create dependence in vulnerable populations. PMID:21999689

  2. Kinetic Sunyaev-Zeldovich effect in an anisotropic CMB model: Measuring low multipoles of the CMB at higher redshifts using intensity and polarization spectral distortions

    NASA Astrophysics Data System (ADS)

    Yasini, Siavash; Pierpaoli, Elena

    2016-07-01

    We present a novel mathematical formalism that allows us to easily compute the expected kinetic Sunyaev-Zeldovich (kSZ) signal in intensity and polarization due to an anisotropic primordial cosmic microwave background (CMB). We derive the expected intensity and polarization distortions in the direction of nonmoving galaxy clusters, and then we generalize our calculations for nonzero peculiar velocity. We show that, in the direction of moving clusters, low CMB multipoles impose intensity and polarization spectral distortions with different frequency dependences. The polarization signal primarily probes the quadrupole moment of the CMB, with a significant contribution from the primordial dipole and octupole moments. For a typical cluster velocity of 1000 km /s , corrections to the quadrupole-induced polarization of a nonmoving cluster are of the order of 2%-10% between 200-600 GHz, and depend on cluster's position on the sky, velocity magnitude, and direction of motion. We also find that the angular dependence of the signal varies with frequency of observation. The distinct frequency and angular dependences of the polarization induced by the primordial dipole and octupole can be exploited to measure them despite other physical effects and foregrounds. Contrary to polarization, intensity distortions are affected by all the CMB multipoles, so they cannot be readily used to probe the low multipoles at higher redshifts. However, correlations between intensity and polarization signals can be used to enhance the signal to noise ratio for the measurements of the primordial dipole, quadrupole, and octupole. The more general calculation of the aberration kernel presented in this work has applications reaching beyond the SZ cluster science addressed here. For example, it can be exploited to the deboost/deaberrate CMB multipoles as observed in our local frame.

  3. Turbulent Plasmaspheric Boundary Layer: Observables and Consequences

    NASA Astrophysics Data System (ADS)

    Mishin, Evgeny

    2014-10-01

    In situ satellite observations reveal strong lower hybrid/fast magnetosonic turbulence and broadband hiss-like VLF waves in the substorm subauroral geospace at and earthward of the electron plasmasheet boundary. These coincide with subauroral ion drifts/polarization streams (SAID/SAPS) in the plasmasphere and topside ionosphere. SAID/SAPS appear in ~10 min after the substorm onset consistent with the fast propagation of substorm injection fronts. The SAID channel follows the dispersionless cutoff of the energetic electron flux at the plasmapause. This indicates that the cold plasma maintains charge neutrality within the channel, thereby short-circuiting the injected plasma jet (injection fronts over the plasmasphere. Plasma turbulence leads to the circuit resistivity and magnetic diffusion as well as significant electron heating and acceleration. As a result, a turbulent boundary layer forms between the inner edge of the electron plasmasheet and plasmasphere. The SAID/SAPS-related VLF emissions appear to constitute a distinctive subset of substorm/storm-related VLF activity in the region co-located with freshly injected energetic ions inside the plasmasphere. Significant pitch-angle diffusion coefficients suggest that substorm SAID/SAPS-related VLF waves could be responsible for the alteration of the outer radiation belt boundary during (sub)storms. Supported by the Air Force Office of Scientific Research.

  4. Psychodynamic Perspective on Therapeutic Boundaries

    PubMed Central

    Bridges, Nancy A.

    1999-01-01

    Discussion of boundaries in therapeutic work most often focuses on boundary maintenance, risk management factors, and boundary violations. The psychodynamic meaning and clinical management of boundaries in therapeutic relationships remains a neglected area of discourse. Clinical vignettes will illustrate a psychodynamic, developmental-relational perspective using boundary dilemmas to deepen and advance the therapeutic process. This article contributes to the dialogue about the process of making meaning and constructing therapeutically useful and creative boundaries that further the psychotherapeutic process. PMID:10523432

  5. Fast food: friendly?

    PubMed

    Rice, S; McAllister, E J; Dhurandhar, N V

    2007-06-01

    Fast food is routinely blamed for the obesity epidemic and consequentially excluded from professional dietary recommendations. However, several sections of society including senior citizens, low-income adult and children, minority and homeless children, or those pressed for time appear to rely on fast food as an important source of meals. Considering the dependence of these nutritionally vulnerable population groups on fast food, we examined the possibility of imaginative selection of fast food, which would attenuate the potentially unfavorable nutrient composition. We present a sample menu to demonstrate that it is possible to design a fast food menu that provides reasonable level of essential nutrients without exceeding the caloric recommendations. We would like to alert health-care professionals that fast food need not be forbidden under all circumstances, and that a fresh look at the role of fast food may enable its inclusion in meal planning for those who depend on it out of necessity, while adding flexibility.

  6. FAST User Guide

    NASA Technical Reports Server (NTRS)

    Walatka, Pamela P.; Clucas, Jean; McCabe, R. Kevin; Plessel, Todd; Potter, R.; Cooper, D. M. (Technical Monitor)

    1994-01-01

    The Flow Analysis Software Toolkit, FAST, is a software environment for visualizing data. FAST is a collection of separate programs (modules) that run simultaneously and allow the user to examine the results of numerical and experimental simulations. The user can load data files, perform calculations on the data, visualize the results of these calculations, construct scenes of 3D graphical objects, and plot, animate and record the scenes. Computational Fluid Dynamics (CFD) visualization is the primary intended use of FAST, but FAST can also assist in the analysis of other types of data. FAST combines the capabilities of such programs as PLOT3D, RIP, SURF, and GAS into one environment with modules that share data. Sharing data between modules eliminates the drudgery of transferring data between programs. All the modules in the FAST environment have a consistent, highly interactive graphical user interface. Most commands are entered by pointing and'clicking. The modular construction of FAST makes it flexible and extensible. The environment can be custom configured and new modules can be developed and added as needed. The following modules have been developed for FAST: VIEWER, FILE IO, CALCULATOR, SURFER, TOPOLOGY, PLOTTER, TITLER, TRACER, ARCGRAPH, GQ, SURFERU, SHOTET, and ISOLEVU. A utility is also included to make the inclusion of user defined modules in the FAST environment easy. The VIEWER module is the central control for the FAST environment. From VIEWER, the user can-change object attributes, interactively position objects in three-dimensional space, define and save scenes, create animations, spawn new FAST modules, add additional view windows, and save and execute command scripts. The FAST User Guide uses text and FAST MAPS (graphical representations of the entire user interface) to guide the user through the use of FAST. Chapters include: Maps, Overview, Tips, Getting Started Tutorial, a separate chapter for each module, file formats, and system

  7. Beyond Euler angles: exploiting the angle-axis parametrization in a multipole expansion of the rotation operator.

    PubMed

    Siemens, Mark; Hancock, Jason; Siminovitch, David

    2007-02-01

    Euler angles (alpha,beta,gamma) are cumbersome from a computational point of view, and their link to experimental parameters is oblique. The angle-axis {Phi, n} parametrization, especially in the form of quaternions (or Euler-Rodrigues parameters), has served as the most promising alternative, and they have enjoyed considerable success in rf pulse design and optimization. We focus on the benefits of angle-axis parameters by considering a multipole operator expansion of the rotation operator D(Phi, n), and a Clebsch-Gordan expansion of the rotation matrices D(MM')(J)(Phi, n). Each of the coefficients in the Clebsch-Gordan expansion is proportional to the product of a spherical harmonic of the vector n specifying the axis of rotation, Y(lambdamu)(n), with a fixed function of the rotation angle Phi, a Gegenbauer polynomial C(2J-lambda)(lambda+1)(cosPhi/2). Several application examples demonstrate that this Clebsch-Gordan expansion gives easy and direct access to many of the parameters of experimental interest, including coherence order changes (isolated in the Clebsch-Gordan coefficients), and rotation angle (isolated in the Gegenbauer polynomials). PMID:17267183

  8. Characterization of low-pressure microwave and radio frequency discharges in oxygen applying optical emission spectroscopy and multipole resonance probe

    NASA Astrophysics Data System (ADS)

    Steves, Simon; Styrnoll, Tim; Mitschker, Felix; Bienholz, Stefan; Nikita, Bibinov; Awakowicz, Peter

    2013-11-01

    Optical emission spectroscopy (OES) and multipole resonance probe (MRP) are adopted to characterize low-pressure microwave (MW) and radio frequency (RF) discharges in oxygen. In this context, both discharges are usually applied for the deposition of permeation barrier SiOx films on plastic foils or the inner surface of plastic bottles. For technological reasons the MW excitation is modulated and a continuous wave (cw) RF bias is used. The RF voltage produces a stationary low-density plasma, whereas the high-density MW discharge is pulsed. For the optimization of deposition process and the quality of the deposited barrier films, plasma conditions are characterized using OES and MRP. To simplify the comparison of applied diagnostics, both MW and RF discharges are studied separately in cw mode. The OES and MRP diagnostic methods complement each other and provide reliable information about electron density and electron temperature. In the MW case, electron density amounts to ne = (1.25 ± 0.26) × 1017 m-3, and kTe to 1.93 ± 0.20 eV, in the RF case ne = (6.8 ± 1.8)×1015 m-3 and kTe = 2.6 ± 0.35 eV. The corresponding gas temperatures are 760±40 K and 440±20 K.

  9. Dependence of the probabilities of the electric-multipole electron transitions in W{sup 24+} on multipolarity

    SciTech Connect

    Gaigalas, Gediminas; Rudzikas, Zenonas; Rynkun, Pavel; Alkauskas, Andrius

    2011-03-15

    Usually it is accepted that the probabilities of the electric-multipole electron transitions are rapidly decreasing functions of their multipolarity. Therefore while calculating the probabilities of electronic transitions between the configurations of certain chosen parities, it seems sufficient to take into account the first nonzero term, i.e., to consider the electron transitions of lowest multipolarity permitted by the exact selection rules. This paper aims at verifying this assumption on the example of electric-octupole transitions in W{sup 24+} ion. For this purpose the large-scale multiconfiguration Hartree-Fock and Dirac-Fock calculations have been performed for the configurations [Kr]4d{sup 10}4f{sup 4} and [Kr]4d{sup 10}4f{sup 3}5s energy levels of W{sup 24+} ion. The relativistic corrections were taken into account in the quasirelativistic Breit-Pauli and fully relativistic Breit (taking into account QED effects) approximations. The role of correlation, relativistic, and QED corrections is discussed. Line strengths, oscillator strengths, and transition probabilities in Coulomb and Babushkin gauges are presented for E1 and E3 transitions among these levels.

  10. Toward transferable interatomic van der Waals interactions without electrons: The role of multipole electrostatics and many-body dispersion

    SciTech Connect

    Bereau, Tristan; Lilienfeld, O. Anatole von

    2014-07-21

    We estimate polarizabilities of atoms in molecules without electron density, using a Voronoi tesselation approach instead of conventional density partitioning schemes. The resulting atomic dispersion coefficients are calculated, as well as many-body dispersion effects on intermolecular potential energies. We also estimate contributions from multipole electrostatics and compare them to dispersion. We assess the performance of the resulting intermolecular interaction model from dispersion and electrostatics for more than 1300 neutral and charged, small organic molecular dimers. Applications to water clusters, the benzene crystal, the anti-cancer drug ellipticine—intercalated between two Watson-Crick DNA base pairs, as well as six macro-molecular host-guest complexes highlight the potential of this method and help to identify points of future improvement. The mean absolute error made by the combination of static electrostatics with many-body dispersion reduces at larger distances, while it plateaus for two-body dispersion, in conflict with the common assumption that the simple 1/R{sup 6} correction will yield proper dissociative tails. Overall, the method achieves an accuracy well within conventional molecular force fields while exhibiting a simple parametrization protocol.

  11. Communication: Accurate higher-order van der Waals coefficients between molecules from a model dynamic multipole polarizability

    NASA Astrophysics Data System (ADS)

    Tao, Jianmin; Rappe, Andrew M.

    2016-01-01

    Due to the absence of the long-range van der Waals (vdW) interaction, conventional density functional theory (DFT) often fails in the description of molecular complexes and solids. In recent years, considerable progress has been made in the development of the vdW correction. However, the vdW correction based on the leading-order coefficient C6 alone can only achieve limited accuracy, while accurate modeling of higher-order coefficients remains a formidable task, due to the strong non-additivity effect. Here, we apply a model dynamic multipole polarizability within a modified single-frequency approximation to calculate C8 and C10 between small molecules. We find that the higher-order vdW coefficients from this model can achieve remarkable accuracy, with mean absolute relative deviations of 5% for C8 and 7% for C10. Inclusion of accurate higher-order contributions in the vdW correction will effectively enhance the predictive power of DFT in condensed matter physics and quantum chemistry.

  12. Reassessing the planetary boundary for freshwater consumption

    NASA Astrophysics Data System (ADS)

    Gerten, Dieter; Pastor, Amandine; Jägermeyr, Jonas; Hoff, Holger; Rockström, Johan; Kummu, Matti

    2014-05-01

    This presentation reviews the conceptual and quantitative foundation of the recently suggested 'planetary boundary' for freshwater (i.e. the volume of human 'blue' water consumption that is deemed to be tolerable; see Rockström et al. in Nature 2009). It also proposes ways forward to refine and reassess this planetary boundary. As a key element of such a revision we provide a bottom-up quantification of local water availabilities taking account of environmental flow requirement in a spatially explicit manner and using five different methods to estimate these flow requirements with a global dynamic hydrology and vegetation model (LPJmL). Our analysis suggests that the planetary boundary for freshwater consumption may adopt a value of about 2800 km3 yr-1 (which is the average of an uncertainty range of 1100-4500 km3 yr-1). This is notably lower than the original suggestion based on a simpler top-down analysis that relied on some global estimates of environmental flow requirements (4,000 km3 yr-1, the lower value of an uncertainty range of 4000-6000 km3 yr-1). Although assessed with spatial detail, this new estimate remains provisional, pending further refinement by analyses of local water accessibility and further constraints up-scaled to the global domain, including study of cascading impacts on Earth system properties. Nonetheless, with a current blue water consumption of >1,700 km3 yr-1, it appears that the freshwater boundary appears is being approached fast, and perhaps faster than suggested earlier. Thus, design opportunities to remain within this boundary are imperative - we argue that their comprehensive quantification requires analysis of tradeoffs with other planetary boundaries such as those for land use and climate change.

  13. Boundary layer simulator improvement

    NASA Technical Reports Server (NTRS)

    Praharaj, Sarat C.; Schmitz, Craig P.; Nouri, Joseph A.

    1989-01-01

    Boundary Layer Integral Matrix Procedure (BLIMPJ) has been identified by the propulsion community as the rigorous boundary layer program in connection with the existing JANNAF reference programs. The improvements made to BLIMPJ and described herein have potential applications in the design of the future Orbit Transfer Vehicle engines. The turbulence model is validated to include the effects of wall roughness and a way is devised to treat multiple smooth-rough surfaces. A prediction of relaminarization regions is examined as is the combined effects of wall cooling and surface roughness on relaminarization. A turbulence model to represent the effects of constant condensed phase loading is given. A procedure is described for thrust decrement calculation in thick boundary layers by coupling the T-D Kinetics Program and BLIMPJ and a way is provided for thrust loss optimization. Potential experimental studies in rocket nozzles are identified along with the required instrumentation to provide accurate measurements in support of the presented new analytical models.

  14. Turbulent boundary layers over nonstationary plane boundaries

    NASA Technical Reports Server (NTRS)

    Roper, A. T.

    1976-01-01

    Methods of predicting integral parameters and skin-friction coefficients of turbulent boundary layers developing over moving-ground-planes are evaluated using test information from three different wind tunnel facilities at the NASA Langley Research Center. These data include test information from the VSTOL tunnel which is presented for the first time. The three methods evaluated were: (1) relative integral parameter method, (2) relative power law method, and (3) modified law of the wall method. Methods (1) and (2) can be used to predict moving-ground-plane shape factors with an expected accuracy of + or - 10%. They may also be used to predict moving-ground-plane displacement and momentum thicknesses with lower expected accuracy. This decrease in accuracy can be traced to the failure of approximations upon which these methods are based to prove universal when compared with VSTOL tunnel test results.

  15. Dialogic Bonds and Boundaries.

    ERIC Educational Resources Information Center

    Khawaja, Mabel

    A study of literature cannot be divorced from cultural contexts, nor can it ignore the humanist vision in interpreting literary texts. To discover dialogic bonds and boundaries between the reader and the text, or the writer and the audience, English classes should have two objectives: (1) to explore the diversity of perspectives, and (2) to relate…

  16. Boundary Changing without Acrimony

    ERIC Educational Resources Information Center

    Gunnell, Thomas J.

    2011-01-01

    In December 2009, a rapid-growth school district on the Texas Gulf Coast shifted its paradigm of rezoning. Even though half of the Katy Independent School District (Katy ISD) was affected, it achieved a genuine ownership for boundary changes that would affect more than 11,500 students at five schools. Katy ISD accomplished this by seeking…

  17. Boundary Ambiguity in Stepfamilies

    ERIC Educational Resources Information Center

    Stewart, Susan D.

    2005-01-01

    Family boundary ambiguity refers to a lack of clarity as to who is in and who is out of the family system. Few studies have examined this concept in the stepfamily context, which is problematic because such definitional problems hinder our understanding of close relationships in stepfamilies. Based on a nationally representative sample of…

  18. Rethinking the Boundaries

    ERIC Educational Resources Information Center

    Schuller, Tom

    2011-01-01

    The splintering of the public domain makes the development of a coherent lifelong learning system less likely. But while people might want to resist plans to dissolve the boundaries between the public, private and voluntary sectors, debate about the relationship between professionals and volunteers in adult education suggests those boundaries…

  19. fast-matmul

    SciTech Connect

    Grey Ballard, Austin Benson

    2014-11-26

    This software provides implementations of fast matrix multiplication algorithms. These algorithms perform fewer floating point operations than the classical cubic algorithm. The software uses code generation to automatically implement the fast algorithms based on high-level descriptions. The code serves two general purposes. The first is to demonstrate that these fast algorithms can out-perform vendor matrix multiplication algorithms for modest problem sizes on a single machine. The second is to rapidly prototype many variations of fast matrix multiplication algorithms to encourage future research in this area. The implementations target sequential and shared memory parallel execution.

  20. Fast robust correlation.

    PubMed

    Fitch, Alistair J; Kadyrov, Alexander; Christmas, William J; Kittler, Josef

    2005-08-01

    A new, fast, statistically robust, exhaustive, translational image-matching technique is presented: fast robust correlation. Existing methods are either slow or non-robust, or rely on optimization. Fast robust correlation works by expressing a robust matching surface as a series of correlations. Speed is obtained by computing correlations in the frequency domain. Computational cost is analyzed and the method is shown to be fast. Speed is comparable to conventional correlation and, for large images, thousands of times faster than direct robust matching. Three experiments demonstrate the advantage of the technique over standard correlation.

  1. [Medical aspects of fasting].

    PubMed

    Gavrankapetanović, F

    1997-01-01

    Fasting (arabic-savm) was proclaimed through islam, and thus it is an obligation for Holly Prophet Muhammad s.a.v.s.-Peace be to Him-in the second year after Hijra (in 624 after Milad-born of Isa a.s.). There is a month of fasting-Ramadan-each lunar (hijra) year. So, it was 1415th fasting this year. Former Prophets have brought obligative messages on fasting to their people; so there are also certain forms of fasting with other religions i.e. with Catholics, Jews, Orthodox. These kinds of fasting above differ from muslim fasting, but they also appear obligative. All revelations have brought fasting as obligative. From medical point of view, fasting has two basical components: psychical and physical. Psychical sphere correlate closely with its fundamental ideological message. Allah dz.s. says in Quran: "... Fasting is obligative for you, as it was obligative to your precedents, as to avoid sins; during very few days (II, II, 183 & 184)." Will strength, control of passions, effort and self-discipline makes a pure faithfull person, who purify its mind and body through fasting. Thinking about The Creator is more intensive, character is more solid; and spirit and will get stronger. We will mention the hadith saying: "Essaihune humus saimun!" That means: "Travellers at the Earth are fasters (of my ummet)." The commentary of this hadith, in the Collection of 1001 hadiths (Bin bir hadis), number 485, says: "There are no travelling dervishs or monks in islam; thus there is no such a kind of relligousity in islam. In stead, it is changed by fasting and constant attending of mosque. That was proclaimed as obligation, although there were few cases of travelling in the name of relligousity, like travelling dervishs and sheichs." In this paper, the author discusses medical aspects of fasting and its positive characteristics in the respect of healthy life style and prevention of many sicks. The author mentions positive influence of fasting to certain system and organs of human

  2. Integrative Physiology of Fasting.

    PubMed

    Secor, Stephen M; Carey, Hannah V

    2016-04-01

    Extended bouts of fasting are ingrained in the ecology of many organisms, characterizing aspects of reproduction, development, hibernation, estivation, migration, and infrequent feeding habits. The challenge of long fasting episodes is the need to maintain physiological homeostasis while relying solely on endogenous resources. To meet that challenge, animals utilize an integrated repertoire of behavioral, physiological, and biochemical responses that reduce metabolic rates, maintain tissue structure and function, and thus enhance survival. We have synthesized in this review the integrative physiological, morphological, and biochemical responses, and their stages, that characterize natural fasting bouts. Underlying the capacity to survive extended fasts are behaviors and mechanisms that reduce metabolic expenditure and shift the dependency to lipid utilization. Hormonal regulation and immune capacity are altered by fasting; hormones that trigger digestion, elevate metabolism, and support immune performance become depressed, whereas hormones that enhance the utilization of endogenous substrates are elevated. The negative energy budget that accompanies fasting leads to the loss of body mass as fat stores are depleted and tissues undergo atrophy (i.e., loss of mass). Absolute rates of body mass loss scale allometrically among vertebrates. Tissues and organs vary in the degree of atrophy and downregulation of function, depending on the degree to which they are used during the fast. Fasting affects the population dynamics and activities of the gut microbiota, an interplay that impacts the host's fasting biology. Fasting-induced gene expression programs underlie the broad spectrum of integrated physiological mechanisms responsible for an animal's ability to survive long episodes of natural fasting. PMID:27065168

  3. Fast protein folding kinetics

    PubMed Central

    Gelman, Hannah; Gruebele, Martin

    2014-01-01

    Fast folding proteins have been a major focus of computational and experimental study because they are accessible to both techniques: they are small and fast enough to be reasonably simulated with current computational power, but have dynamics slow enough to be observed with specially developed experimental techniques. This coupled study of fast folding proteins has provided insight into the mechanisms which allow some proteins to find their native conformation well less than 1 ms and has uncovered examples of theoretically predicted phenomena such as downhill folding. The study of fast folders also informs our understanding of even “slow” folding processes: fast folders are small, relatively simple protein domains and the principles that govern their folding also govern the folding of more complex systems. This review summarizes the major theoretical and experimental techniques used to study fast folding proteins and provides an overview of the major findings of fast folding research. Finally, we examine the themes that have emerged from studying fast folders and briefly summarize their application to protein folding in general as well as some work that is left to do. PMID:24641816

  4. fastKDE

    SciTech Connect

    O'Brien, Travis A.; Kashinath, Karthik

    2015-05-22

    This software implements the fast, self-consistent probability density estimation described by O'Brien et al. (2014, doi: ). It uses a non-uniform fast Fourier transform technique to reduce the computational cost of an objective and self-consistent kernel density estimation method.

  5. Fast and effective?

    PubMed

    Trueland, Jennifer

    2013-12-18

    The 5.2 diet involves two days of fasting each week. It is being promoted as the key to sustained weight loss, as well as wider health benefits, despite the lack of evidence on the long-term effects. Nurses need to support patients who wish to try intermittent fasting. PMID:24345130

  6. Segmentation of hand radiographs using fast marching methods

    NASA Astrophysics Data System (ADS)

    Chen, Hong; Novak, Carol L.

    2006-03-01

    Rheumatoid Arthritis is one of the most common chronic diseases. Joint space width in hand radiographs is evaluated to assess joint damage in order to monitor progression of disease and response to treatment. Manual measurement of joint space width is time-consuming and highly prone to inter- and intra-observer variation. We propose a method for automatic extraction of finger bone boundaries using fast marching methods for quantitative evaluation of joint space width. The proposed algorithm includes two stages: location of hand joints followed by extraction of bone boundaries. By setting the propagation speed of the wave front as a function of image intensity values, the fast marching algorithm extracts the skeleton of the hands, in which each branch corresponds to a finger. The finger joint locations are then determined by using the image gradients along the skeletal branches. In order to extract bone boundaries at joints, the gradient magnitudes are utilized for setting the propagation speed, and the gradient phases are used for discriminating the boundaries of adjacent bones. The bone boundaries are detected by searching for the fastest paths from one side of each joint to the other side. Finally, joint space width is computed based on the extracted upper and lower bone boundaries. The algorithm was evaluated on a test set of 8 two-hand radiographs, including images from healthy patients and from patients suffering from arthritis, gout and psoriasis. Using our method, 97% of 208 joints were accurately located and 89% of 416 bone boundaries were correctly extracted.

  7. Control and Identification of Turbulent Boundary Layer Separation

    NASA Technical Reports Server (NTRS)

    Seifert, Avi; Pack-Melton, La Tunia

    2004-01-01

    Effective delay of turbulent boundary layer separation could be achieved via closed-loop control. Constructing such a system requires that sensor data be processed, real-time, and fed into the controller to determine the output. Current methods for detection of turbulent boundary layer separation are lacking the capability of localized, fast and reliable identification of the boundary layer state. A method is proposed for short-time FFT processing of time series, measured by hot-film sensors, with the purpose of identifying the alternation of the balance between small and large scales as the boundary layer separates, favoring the large scales. The method has been validated by comparison to other criteria of separation detection and over a range of baseline and controlled flow conditions on a simplified high-lift system, incorporating active flow control.

  8. Organizing boundary RG flows

    NASA Astrophysics Data System (ADS)

    Fredenhagen, Stefan

    2003-06-01

    We show how a large class of boundary RG flows in two-dimensional conformal field theories can be summarized in a single rule. This rule is a generalization of the 'absorption of the boundary spin'-principle of Affleck and Ludwig and applies to all theories which have a description as a coset model. We give a formulation for coset models with arbitrary modular invariant partition function and present evidence for the conjectured rule. The second half of the article contains an illustrated section of examples where the rule is applied to unitary minimal models of the A- and D-series, in particular, the 3-state Potts model, and to parafermion theories. We demonstrate how the rule can be used to compute brane charge groups in the example of N=2 minimal models.

  9. Boundary transfer matrices and boundary quantum KZ equations

    SciTech Connect

    Vlaar, Bart

    2015-07-15

    A simple relation between inhomogeneous transfer matrices and boundary quantum Knizhnik-Zamolodchikov (KZ) equations is exhibited for quantum integrable systems with reflecting boundary conditions, analogous to an observation by Gaudin for periodic systems. Thus, the boundary quantum KZ equations receive a new motivation. We also derive the commutativity of Sklyanin’s boundary transfer matrices by merely imposing appropriate reflection equations, in particular without using the conditions of crossing symmetry and unitarity of the R-matrix.

  10. Boundary layer simulator improvement

    NASA Technical Reports Server (NTRS)

    Praharaj, S. C.; Schmitz, C.; Frost, C.; Engel, C. D.; Fuller, C. E.; Bender, R. L.; Pond, J.

    1984-01-01

    High chamber pressure expander cycles proposed for orbit transfer vehicles depend primarily on the heat energy transmitted from the combustion products through the thrust wall chamber wall. The heat transfer to the nozzle wall is affected by such variables as wall roughness, relamarization, and the presence of particles in the flow. Motor performance loss for these nozzles with thick boundary layers is inaccurate using the existing procedure coded BLIMPJ. Modifications and innovations to the code are examined. Updated routines are listed.

  11. Relativistic many-body calculations of lifetimes, rates, and line strengths of multipole transitions between 3l-1 4l' states in Ni-like ions

    SciTech Connect

    Safronova, U I; Safronova, A S; Beiersdorfer, P

    2007-10-08

    Transition rates and line strengths are calculated for electric-multipole (E2 and E3) and magnetic-multipole (M1, M2, and M3) transitions between 3s{sup 2}3p{sup 6}3d{sup 10}, 3s{sup 2}3p{sup 6}3d{sup 9}4l, 3s{sup 2}3p{sup 5}3d{sup 10}4l, and 3s3p{sup 6}3d{sup 10}4l states (with 4l = 4s, 4p, 4d, and 4f) in Ni-like ions with the nuclear charges ranging from Z = 34 to 100. Relativistic many-body perturbation theory (RMBPT), including the Breit interaction, is used to evaluate retarded multipole matrix elements. Transition energies used in the calculation of line strengths and transition rates are from second-order RMBPT. Lifetimes of the 3s{sup 2}3p{sup 6}3d{sup 9}4s levels are given for Z = 34-100. Taking into account that calculations were performed in a very broad range of Z, most of the data are presented in graphs as Z-dependencies. The full set of data is given only for Ni-like W ion. In addition, we also give complete results for the 3d4s{sup 3}D{sub 2}-3d4s {sup 3}D{sub 1} magnetic-dipole transition, as the transition may be observed in future experiments, which measure both transition energies and radiative rates. These atomic data are important in the modeling of radiation spectra from Ni-like multiply-charged ions generated in electron beam ion trap experiments as well as for laboratory plasma diagnostics including fusion research.

  12. Microstructure design for fast oxygen conduction

    SciTech Connect

    Aidhy, Dilpuneet S.; Weber, William J.

    2015-11-11

    Research from the last decade has shown that in designing fast oxygen conducting materials for electrochemical applications has largely shifted to microstructural features, in contrast to material-bulk. In particular, understanding oxygen energetics in heterointerface materials is currently at the forefront, where interfacial tensile strain is being considered as the key parameter in lowering oxygen migration barriers. Nanocrystalline materials with high densities of grain boundaries have also gathered interest that could possibly allow leverage over excess volume at grain boundaries, providing fast oxygen diffusion channels similar to those previously observed in metals. In addition, near-interface phase transformations and misfit dislocations are other microstructural phenomenon/features that are being explored to provide faster diffusion. In this review, the current understanding on oxygen energetics, i.e., thermodynamics and kinetics, originating from these microstructural features is discussed. Moreover, our experimental observations, theoretical predictions and novel atomistic mechanisms relevant to oxygen transport are highlighted. In addition, the interaction of dopants with oxygen vacancies in the presence of these new microstructural features, and their future role in the design of future fast-ion conductors, is outlined.

  13. Microstructure design for fast oxygen conduction

    DOE PAGES

    Aidhy, Dilpuneet S.; Weber, William J.

    2015-11-11

    Research from the last decade has shown that in designing fast oxygen conducting materials for electrochemical applications has largely shifted to microstructural features, in contrast to material-bulk. In particular, understanding oxygen energetics in heterointerface materials is currently at the forefront, where interfacial tensile strain is being considered as the key parameter in lowering oxygen migration barriers. Nanocrystalline materials with high densities of grain boundaries have also gathered interest that could possibly allow leverage over excess volume at grain boundaries, providing fast oxygen diffusion channels similar to those previously observed in metals. In addition, near-interface phase transformations and misfit dislocations aremore » other microstructural phenomenon/features that are being explored to provide faster diffusion. In this review, the current understanding on oxygen energetics, i.e., thermodynamics and kinetics, originating from these microstructural features is discussed. Moreover, our experimental observations, theoretical predictions and novel atomistic mechanisms relevant to oxygen transport are highlighted. In addition, the interaction of dopants with oxygen vacancies in the presence of these new microstructural features, and their future role in the design of future fast-ion conductors, is outlined.« less

  14. Boundary lubrication in vivo.

    PubMed

    Hills, B A

    2000-01-01

    Evidence is reviewed for the concept that the body employs essentially the same lubrication system in many sites in the body where tissues slide over each other with such ease. This system consists of fluid adjacent to surfaces coated with an oligolamellar lining of surface-active phospholipid (SAPL) acting as a back-up boundary lubricant wherever the fluid film fails to support the load--a likely event at physiological velocities. Particular attention is paid to the load-bearing joints, where the issue of identifying the vital active ingredient in synovial fluid is reviewed, coming down--perhaps predictably--in favour of SAPL. It is also explained how Lubricin and hyaluronic acid (HA) could have 'carrier' functions for the highly insoluble SAPL, while HA has good wetting properties needed to promote hydrodynamic lubrication of a very hydrophobic articular surface by an aqueous fluid wherever the load permits. In addition to friction and wear, release is included as another major role of boundary lubricants, especially relevant in environments where proteins are found, many having adhesive properties. The discussion is extended to a mention of the lubrication of prosthetic implants and to disease states where a deficiency of boundary lubricant is implicated, particular attention being paid to osteoarthritis.

  15. Light scattering by adsorbates at Ag particles: Quantum-mechanical approach for energy transfer induced interfacial optical processes involving surface plasmons, multipoles, and electron-hole pairs

    NASA Astrophysics Data System (ADS)

    Pettinger, B.

    1986-12-01

    A quantum-mechanical approach for surface-enhanced optical processes is given, which may solve an old controversy regarding the surface enhancement mechanisms: The present formalism contains three terms: The first is equivalent to the classically derived electromagnetic enhancement; the second represents a loss term due to a competitive dipole-multipole and dipole-electron-hole pair coupling; and the third reveals an additional energy transfer induced gain for excitable molecules. Thus, the total pure surface enhancement can be much greater for ``colored'' species than for transparent ones.

  16. Magnetic multipole induced zero-rotation frequency bounce-resonant loss in a Penning-Malmberg trap used for antihydrogen trapping

    SciTech Connect

    Andresen, G. B.; Bertsche, W.; Butler, E.; Charlton, M.; Humphries, A. J.; Joergensen, L. V.; Kerrigan, S. J.; Madsen, N.; Werf, D. P. van der; Bray, C. C.; Chapman, S.; Fajans, J.; Keller, J.; Povilus, A.; Wurtele, J. S.; Cesar, C. L.; Lambo, R.; Fujiwara, M. C.; Gill, D. R.; Kurchaninov, L.

    2009-10-15

    In many antihydrogen trapping schemes, antiprotons held in a short-well Penning-Malmberg trap are released into a longer well. This process necessarily causes the bounce-averaged rotation frequency {omega}{sub r} of the antiprotons around the trap axis to pass through zero. In the presence of a transverse magnetic multipole, experiments and simulations show that many antiprotons (over 30% in some cases) can be lost to a hitherto unidentified bounce-resonant process when {omega}{sub r} is close to zero.

  17. Characterization of a Small Form Factor Multipole RGA for Process Chamber Monitoring and for Reduction in Time to Complete Routine Preventive Maintenance

    SciTech Connect

    Johnson, Ron; Winningham, Brannon; Schuur, John

    2008-11-03

    A small form-factor, multipole Residual Gas Analyzer (RGA) has been used to study steady state and post-PM conditions in an Axcelis GSD ion implanter. The RGA properties and specifications are discussed and data is presented to illustrate N{sub 2}, O{sub 2}, and H{sub 2}O pump-down curve characteristics. Baseline performance is compared to performance following invasive activities to determine applicability for eliminating explicit He leak checking requirements and for the determination of how quickly a machine may be returned to production. The target ion implanter was an Axcelis GSD/200E.

  18. Characterization of a Small Form Factor Multipole RGA for Process Chamber Monitoring and for Reduction in Time to Complete Routine Preventive Maintenance

    NASA Astrophysics Data System (ADS)

    Johnson, Ron; Winningham, Brannon; Schuur, John

    2008-11-01

    A small form-factor, multipole Residual Gas Analyzer (RGA) has been used to study steady state and post-PM conditions in an Axcelis GSD ion implanter. The RGA properties and specifications are discussed and data is presented to illustrate N2, O2, and H2O pump-down curve characteristics. Baseline performance is compared to performance following invasive activities to determine applicability for eliminating explicit He leak checking requirements and for the determination of how quickly a machine may be returned to production. The target ion implanter was an Axcelis GSD/200E.

  19. Phenomenology of Abnormal Grain Growth in Systems with Nonuniform Grain Boundary Mobility

    NASA Astrophysics Data System (ADS)

    DeCost, Brian L.; Holm, Elizabeth A.

    2016-07-01

    We have investigated the potential for nonuniform grain boundary mobility to act as a persistence mechanism for abnormal grain growth (AGG) using Monte Carlo Potts model simulations. The model system consists of a single initially large candidate grain embedded in a matrix of equiaxed grains, corresponding to the abnormal growth regime before impingement occurs. We assign a mobility advantage to grain boundaries between the candidate grain and a randomly selected subset of the matrix grains. We observe AGG in systems with physically reasonable fractions of fast boundaries; the probability of abnormal growth increases as the density of fast boundaries increases. This abnormal growth occurs by a series of fast, localized growth events that counteract the tendency of abnormally large grains to grow more slowly than the surrounding matrix grains. Resulting abnormal grains are morphologically similar to experimentally observed abnormal grains.

  20. Cell boundary fault detection system

    DOEpatents

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2009-05-05

    A method determines a nodal fault along the boundary, or face, of a computing cell. Nodes on adjacent cell boundaries communicate with each other, and the communications are analyzed to determine if a node or connection is faulty.

  1. Reusable fast opening switch

    DOEpatents

    Van Devender, John P.; Emin, David

    1986-01-01

    A reusable fast opening switch for transferring energy, in the form of a high power pulse, from an electromagnetic storage device such as an inductor into a load. The switch is efficient, compact, fast and reusable. The switch comprises a ferromagnetic semiconductor which undergoes a fast transition between conductive and insulating states at a critical temperature and which undergoes the transition without a phase change in its crystal structure. A semiconductor such as europium rich europhous oxide, which undergoes a conductor to insulator transition when it is joule heated from its conductor state, can be used to form the switch.

  2. Reusable fast opening switch

    DOEpatents

    Van Devender, J.P.; Emin, D.

    1983-12-21

    A reusable fast opening switch for transferring energy, in the form of a high power pulse, from an electromagnetic storage device such as an inductor into a load. The switch is efficient, compact, fast and reusable. The switch comprises a ferromagnetic semiconductor which undergoes a fast transition between conductive and metallic states at a critical temperature and which undergoes the transition without a phase change in its crystal structure. A semiconductor such as europium rich europhous oxide, which undergoes a conductor to insulator transition when it is joule heated from its conductor state, can be used to form the switch.

  3. fast-matmul

    2014-11-26

    This software provides implementations of fast matrix multiplication algorithms. These algorithms perform fewer floating point operations than the classical cubic algorithm. The software uses code generation to automatically implement the fast algorithms based on high-level descriptions. The code serves two general purposes. The first is to demonstrate that these fast algorithms can out-perform vendor matrix multiplication algorithms for modest problem sizes on a single machine. The second is to rapidly prototype many variations of fastmore » matrix multiplication algorithms to encourage future research in this area. The implementations target sequential and shared memory parallel execution.« less

  4. Fast Breeder Reactor studies

    SciTech Connect

    Till, C.E.; Chang, Y.I.; Kittel, J.H.; Fauske, H.K.; Lineberry, M.J.; Stevenson, M.G.; Amundson, P.I.; Dance, K.D.

    1980-07-01

    This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts.

  5. Paint and Click: Unified Interactions for Image Boundaries

    SciTech Connect

    Summa, B.; Gooch, A. A.; Scorzelli, G.; Pascucci, V.

    2015-06-22

    Image boundaries are a fundamental component of many interactive digital photography techniques, enabling applications such as segmentation, panoramas, and seamless image composition. Interactions for image boundaries often rely on two complementary but separate approaches: editing via painting or clicking constraints. In this work, we provide a novel, unified approach for interactive editing of pairwise image boundaries that combines the ease of painting with the direct control of constraints. Rather than a sequential coupling, this new formulation allows full use of both interactions simultaneously, giving users unprecedented flexibility for fast boundary editing. To enable this new approach, we provide technical advancements. In particular, we detail a reformulation of image boundaries as a problem of finding cycles, expanding and correcting limitations of the previous work. Our new formulation provides boundary solutions for painted regions with performance on par with state-of-the-art specialized, paint-only techniques. In addition, we provide instantaneous exploration of the boundary solution space with user constraints. Finally, we provide examples of common graphics applications impacted by our new approach.

  6. Boundaries and Boundary Marks - Substantive Cultural Heritage of Extensive Importance

    NASA Astrophysics Data System (ADS)

    Waldhaeusl, P.; Koenig, H.; Mansberger, R.

    2015-08-01

    The Austrian Society for surveying and Geoinformation (ASG) has proposed to submit "Boundaries and Boundary Marks" for the UNESCO World Heritage title. It was time that boundaries, borders and limits of all types as well as ownership rights would find the proper attention in the global public. Landmarks symbolize the real property and the associated rights and obligations, in a figurative sense, the property generally and all legal limits. A democratic state of law is impossible at today's population density without a functioning land administration system with surveying and jurisdiction. As monumental World Heritage representatives of the geodetic artwork "Boundaries and Boundary Marks" are specifically proposed: remaining monuments of the original cadastral geodetic network, the first pan-Austrian surveying headquarters in Vienna, and a specific selection of outstanding boundary monuments. Landmarks are monuments to the boundaries which separate rights and obligations, but also connect the neighbors peacefully after written agreement. "And cursed be he who does not respect the boundaries" you wrote already 3000 years ago. Boundaries and Boundary Marks are a real thing; they all belong to the tangible or material heritage of human history. In this context also the intangible heritage is discussed. This refers to oral tradition and expressions, performing arts; social practices, rituals and festive events; as well as to knowledge and practices handling nature and the universe. "Boundaries and Boundary Marks" do not belong to it, but clearly to the material cultural world heritage. "Boundary and Boundary Marks" is proposed to be listed according to the criteria (ii),(iv),(vi).

  7. Open boundary molecular dynamics

    NASA Astrophysics Data System (ADS)

    Delgado-Buscalioni, R.; Sablić, J.; Praprotnik, M.

    2015-09-01

    This contribution analyzes several strategies and combination of methodologies to perform molecular dynamic simulations in open systems. Here, the term open indicates that the total system has boundaries where transfer of mass, momentum and energy can take place. This formalism, which we call Open Boundary Molecular Dynamics (OBMD), can act as interface of different schemes, such as Adaptive Resolution Scheme (AdResS) and Hybrid continuum-particle dynamics to link atomistic, coarse-grained (CG) and continuum (Eulerian) fluid dynamics in the general framework of fluctuating Navier-Stokes equations. The core domain of the simulation box is solved using all-atom descriptions. The CG layer introduced using AdResS is located at the outer part of the open box to make feasible the insertion of large molecules into the system. Communications between the molecular system and the outer world are carried out in the outer layers, called buffers. These coupling preserve momentum and mass conservation laws and can thus be linked with Eulerian hydro- dynamic solvers. In its simpler form, OBMD allows, however, to impose a local pressure tensor and a heat flux across the system's boundaries. For a one component molecular system, the external normal pressure and temperature determine the external chemical potential and thus the independent parameters of a grand-canonical ensemble simulation. Extended ensembles under non-equilibrium stationary states can also be simulated as well as time dependent forcings (e.g. oscillatory rheology). To illustrate the robustness of the combined OBMD-AdResS method, we present simulations of star-polymer melts at equilibrium and in sheared flow.

  8. Space Boundary Tool (SBT)

    SciTech Connect

    Rose, Cody

    2012-07-01

    SBT is an application that automatically calculates thermal zone boundaries suitable for input to the EnergyPlus simulation engine from building element and space geometry defined in IFC. SBT has multiple components. There is a general computational core, a DLL for reading and writing IFC files, and a GUI front end. The GUI also has the capability to create ready-to-simulate IDF files for EnergyPlus. Hardware req: PC; Operating Syst/Version: MSVC++2010; Type of files: source code; Documentation: User Manual (Electronic).

  9. BOUndary Plasma Turbulence

    2008-01-25

    BOUT is a parallelized 3D nonlocal electromagnetic turbulence code. The principal calculations are the boundary plasma turbulence in a realistic magnetic geometry. BOUT uses fluid Braginskii equations for plasma vorticity, density, electron and ion temperature and Parallel mementum. With sources added in the core-edge region and sinks in the scrape-off-layer (SOL), BOUT follows the self-consistent profile evolution together with turbulence. BOUT also includes coupling to a magnetohyfrodynamic equlibrium (EFIT package) and a two-dimensional hydrodynamic edgemore » transport model (UEDGE package).« less

  10. Space Boundary Tool (SBT)

    2012-07-01

    SBT is an application that automatically calculates thermal zone boundaries suitable for input to the EnergyPlus simulation engine from building element and space geometry defined in IFC. SBT has multiple components. There is a general computational core, a DLL for reading and writing IFC files, and a GUI front end. The GUI also has the capability to create ready-to-simulate IDF files for EnergyPlus. Hardware req: PC; Operating Syst/Version: MSVC++2010; Type of files: source code; Documentation:more » User Manual (Electronic).« less

  11. Discovery with FAST

    NASA Astrophysics Data System (ADS)

    Wilkinson, P.

    2016-02-01

    FAST offers "transformational" performance well-suited to finding new phenomena - one of which might be polarised spectral transients. But discoveries will only be made if "the system" provides its users with the necessary opportunities. In addition to designing in as much observational flexibility as possible, FAST should be operated with a philosophy which maximises its "human bandwidth". This band includes the astronomers of tomorrow - many of whom not have yet started school or even been born.

  12. Does the magnetic field of a multipole stator winding drive flow of a ferrofluid in a cylindrical container?

    NASA Astrophysics Data System (ADS)

    Torres-Díaz, Isaac; Rinaldi, Carlos

    The flow of a ferrofluid in a stationary cylindrical container driven by a rotating magnetic field has received considerable attention since the inception of the field of ferrohydrodynamics. Much controversy has resulted regarding the existence, or lack thereof, of bulk flow under conditions of a rotating uniform magnetic field, which can be generated for example, using a two-pole stator winding. The original observations of flow at the interface showed counter-rotation of field and fluid, whereas recent observations of bulk flow using the ultrasound technique have shown co-rotation of field and fluid. Various theories have been advanced over the years to explain the observed phenomena, including the spin diffusion theory of Shliomis and the hypothesis that it is field non-uniformity, generated by non-ideal stator winding distributions, that actually drives the flow, as first proposed by Glazov. We have revisited this problem from an analytical perspective by solving the ferrohydrodynamic and magnetoquasistatic equations self-consistently for the case of ferrofluid in a cylindrical container, with and without an internal co-axial cylinder, and driven by the field generated by a multipole stator winding distribution. In such a winding increasing the number of poles results in increasingly non-uniform fields. It is shown that regardless of the number of poles in the stator winding the ferrohydrodynamic equations do not predict any flow in either geometry as long as the spin viscosity parameter is assumed to be zero. Velocity profiles are obtained for both geometries and arbitrary number of poles for the case of non-zero spin viscosity. It is shown that only for the case of a two-pole stator winding and ferrofluid constrained to the annular space between an inner and outer cylinder do the ferrohydrodynamic equations predict co-rotation of fluid and field close to the outer cylinder and counter-rotation of fluid and field close to the inner cylinder, in qualitative

  13. Blackbody radiation shift, multipole polarizabilities, oscillator strengths, lifetimes, hyperfine constants, and excitation energies in Ca{sup +}

    SciTech Connect

    Safronova, M. S.; Safronova, U. I.

    2011-01-15

    A systematic study of Ca{sup +} atomic properties is carried out using a high-precision relativistic all-order method where all single, double, and partial triple excitations of the Dirac-Fock wave functions are included to all orders of perturbation theory. Reduced matrix elements, oscillator strengths, transition rates, and lifetimes are determined for the levels up to n=7. Recommended values and estimates of their uncertainties are provided for a large number of electric-dipole transitions. Electric-dipole scalar polarizabilities for the 5s, 6s, 7s, 8s, 4p{sub j}, 5p{sub j}, 3d{sub j}, and 4d{sub j} states and tensor polarizabilities for the 4p{sub 3/2}, 5p{sub 3/2}, 3d{sub j}, and 4d{sub j} states in Ca{sup +} are calculated. Methods are developed to accurately treat the contributions from highly excited states, resulting in significant (factor of 3) improvement in the accuracy of the 3d{sub 5/2} static polarizability value, 31.8(3)a{sub 0}{sup 3}, in comparison with the previous calculation [Arora et al., Phys. Rev. A 76, 064501 (2007).]. The blackbody radiation shift of the 4s-3d{sub 5/2} clock transition in Ca{sup +} is calculated to be 0.381(4) Hz at room temperature, T=300 K. Electric-quadrupole 4s-nd and electric-octupole 4s-nf matrix elements are calculated to obtain the ground-state multipole E2 and E3 static polarizabilities. Excitation energies of the ns, np, nd, nf, and ng states with n{<=} 7 in are evaluated and compared with experiment. Recommended values are provided for the 7p{sub 1/2}, 7p{sub 3/2}, 8p{sub 1/2}, and 8p{sub 3/2} removal energies for which experimental measurements are not available. The hyperfine constants A are determined for the low-lying levels up to n=7. The quadratic Stark effect on hyperfine structure levels of {sup 43}Ca{sup +} ground state is investigated. These calculations provide recommended values critically evaluated for their accuracy for a number of Ca{sup +} atomic properties for use in planning and analysis of

  14. The Hale solar sector boundary

    NASA Technical Reports Server (NTRS)

    Svalgaard, L.; Wilcox, J. M.

    1976-01-01

    A Hale solar sector boundary is defined as the half (Northern Hemisphere or Southern Hemisphere) of a sector boundary in which the change of sector magnetic field polarity is the same as the change of polarity from a preceding spot to a following spot. Above a Hale sector boundary the green corona has maximum brightness, while above a non-Hale boundary the green corona has a minimum brightness. The Hale portion of a photospheric sector boundary tends to have maximum magnetic field strength, while the non-Hale portion has minimum field strength.

  15. A classification of ecological boundaries

    USGS Publications Warehouse

    Strayer, D.L.; Power, M.E.; Fagan, W.F.; Pickett, S.T.A.; Belnap, J.

    2003-01-01

    Ecologists use the term boundary to refer to a wide range of real and conceptual structures. Because imprecise terminology may impede the search for general patterns and theories about ecological boundaries, we present a classification of the attributes of ecological boundaries to aid in communication and theory development. Ecological boundaries may differ in their origin and maintenance, their spatial structure, their function, and their temporal dynamics. A classification system based on these attributes should help ecologists determine whether boundaries are truly comparable. This system can be applied when comparing empirical studies, comparing theories, and testing theoretical predictions against empirical results.

  16. Boundary anomalies and correlation functions

    NASA Astrophysics Data System (ADS)

    Huang, Kuo-Wei

    2016-08-01

    It was shown recently that boundary terms of conformal anomalies recover the universal contribution to the entanglement entropy and also play an important role in the boundary monotonicity theorem of odd-dimensional quantum field theories. Motivated by these results, we investigate relationships between boundary anomalies and the stress tensor correlation functions in conformal field theories. In particular, we focus on how the conformal Ward identity and the renormalization group equation are modified by boundary central charges. Renormalized stress tensors induced by boundary Weyl invariants are also discussed, with examples in spherical and cylindrical geometries.

  17. Higher-order electric multipole contributions to retarded non-additive three-body dispersion interaction energies between atoms: equilateral triangle and collinear configurations.

    PubMed

    Salam, A

    2013-12-28

    The theory of molecular quantum electrodynamics (QED) is used to calculate higher electric multipole contributions to the dispersion energy shift between three atoms or molecules arranged in a straight line or in an equilateral triangle configuration. As in two-body potentials, three-body dispersion interactions are viewed in the QED formalism to arise from exchange of virtual photons between coupled pairs of particles. By employing an interaction Hamiltonian that is quadratic in the electric displacement field means that third-order perturbation theory can be used to yield the energy shift for a particular combination of electric multipole polarizable species, with only six time-ordered diagrams needing to be summed over. Specific potentials evaluated include dipole-dipole-quadrupole (DDQ), dipole-quadrupole-quadrupole (DQQ), and dipole-dipole-octupole (DDO) terms. For the geometries of interest, near-zone limiting forms are found to exhibit an R(-11) dependence on separation distance for the DDQ interaction, and an R(-13) behaviour for DQQ and DDO shifts, agreeing with an earlier semi-classical computation. Retardation weakens the potential in each case by R(-1) in the far-zone. It is found that by decomposing the octupole moment into its irreducible components of weights-1 and -3 that the former contribution to the DDO potential may be taken to be a higher-order correction to the leading triple dipole energy shift. PMID:24387355

  18. Rectangular beam (5 X 40 cm multipole ion source). M.S. Thesis - Nov. 1979; [applications to electron bombardment in materials processing

    NASA Technical Reports Server (NTRS)

    Haynes, C. M.

    1980-01-01

    A 5 x 40 cm rectangular-beam ion source was designed and fabricated. A multipole field configuration was used to facilitate design of the modular rectangular chamber, while a three-grid ion optics system was used for increased ion current densities. For the multipole chamber, a magnetic integral of 0.000056 Tesla-m was used to contain the primary electrons. This integral value was reduced from the initial design value, with the reduction found necessary for discharge stability. The final value of magnetic integral resulted in discharge losses at typical operating conditions which ranged from 600 to 1000 eV/ion, in good agreement with the design value of 800 eV/ion. The beam current density at the ion optics was limited to about 3.2 mA/sq cm at 500 eV and to about 3.5 mA/sq cm at 1000 ev. The effects of nonuniform ion current, dimension tolerance, and grid thermal warping were considered. The use of multiple rectangular-beam ion sources to process wider areas than would be possible with a single source (approx. 40 cm) was also studied. Beam profiles were surveyed at a variety of operating conditions and the results of various amounts of beam overlap calculated.

  19. Higher-order electric multipole contributions to retarded non-additive three-body dispersion interaction energies between atoms: Equilateral triangle and collinear configurations

    SciTech Connect

    Salam, A.

    2013-12-28

    The theory of molecular quantum electrodynamics (QED) is used to calculate higher electric multipole contributions to the dispersion energy shift between three atoms or molecules arranged in a straight line or in an equilateral triangle configuration. As in two-body potentials, three-body dispersion interactions are viewed in the QED formalism to arise from exchange of virtual photons between coupled pairs of particles. By employing an interaction Hamiltonian that is quadratic in the electric displacement field means that third-order perturbation theory can be used to yield the energy shift for a particular combination of electric multipole polarizable species, with only six time-ordered diagrams needing to be summed over. Specific potentials evaluated include dipole-dipole-quadrupole (DDQ), dipole-quadrupole-quadrupole (DQQ), and dipole-dipole-octupole (DDO) terms. For the geometries of interest, near-zone limiting forms are found to exhibit an R{sup −11} dependence on separation distance for the DDQ interaction, and an R{sup −13} behaviour for DQQ and DDO shifts, agreeing with an earlier semi-classical computation. Retardation weakens the potential in each case by R{sup −1} in the far-zone. It is found that by decomposing the octupole moment into its irreducible components of weights-1 and -3 that the former contribution to the DDO potential may be taken to be a higher-order correction to the leading triple dipole energy shift.

  20. Turbulent boundary layer heat

    NASA Astrophysics Data System (ADS)

    Finson, M. L.; Clarke, A. S.; Wu, P. K. S.

    1981-01-01

    A Reynolds stress model for turbulent boundary layers is used to study surface roughness effects on skin friction and heat transfer. The issues of primary interest are the influence of roughness character (element shape and spacing) and the nature of roughness effects at high Mach numbers. Computations based on the model compare satisfactorily with measurements from experiments involving variations in roughness character, in low speed and modestly supersonic conditions. The more limited data base at hypersonic Mach numbers is also examined with reasonable success, although no quantitative explanation is offered for the reduction of heat transfer with increasing roughness observed by Holden at Me -9.4. The present calculations indicate that the mean velocity is approximately uniform over much of the height range below the tops of the elements, y less than or equal to k. With this constant (roughness velocity,) it is simple to estimate the form drag on the elements. This roughness velocity has been investigated by systematically exercising the present model over ranges of potential parameters. The roughness velocity is found to be primarily a function of the projected element frontal area per unit surface area, thus providing a new and simple method for predicting roughness character effects. The model further suggests that increased boundary layer temperatures should be generated by roughness at high edge Mach numbers, which would tend to reduce skin friction and heat transfer, perhaps below smooth wall levels.

  1. The Boundary Layer Radiometer

    NASA Astrophysics Data System (ADS)

    Irshad, Ranah; Bowles, N. E.; Calcutt, S. B.; Hurley, J.

    2010-10-01

    The Boundary Layer Radiometer is a small, low mass (<1kg) radiometer with only a single moving part - a scan/calibration mirror. The instrument consists of a three mirror telescope system incorporating an intermediate focus for use with miniature infrared and visible filters. It also has an integrated low power blackbody calibration target to provide long-term calibration stability The instrument may be used as an upward looking boundary layer radiometer for both the terrestrial and Martian atmospheres with appropriate filters for the mid-infrared carbon dioxide band, as well as a visible channel for the detection of aerosol components such as dust. The scan mirror may be used to step through different positions from the local horizon to the zenith, allowing the vertical temperature profile of the atmosphere to be retrieved. The radiometer uses miniature infrared filter assemblies developed for previous space-based instruments by Oxford, Cardiff and Reading Universities. The intermediate focus allows for the use of upstream blocking filters and baffles, which not only simplifies the design of the filters and focal plane assembly, but also reduces the risk of problems due to stray light. Combined with the calibration target this means it has significant advantages over previous generations of small radiometers.

  2. Computation of the shock-wave boundary layer interaction with flow separation

    NASA Technical Reports Server (NTRS)

    Ardonceau, P.; Alziary, T.; Aymer, D.

    1980-01-01

    The boundary layer concept is used to describe the flow near the wall. The external flow is approximated by a pressure displacement relationship (tangent wedge in linearized supersonic flow). The boundary layer equations are solved in finite difference form and the question of the presence and unicity of the solution is considered for the direct problem (assumed pressure) or converse problem (assumed displacement thickness, friction ratio). The coupling algorithm presented implicitly processes the downstream boundary condition necessary to correctly define the interacting boundary layer problem. The algorithm uses a Newton linearization technique to provide a fast convergence.

  3. Multipole Love relations

    NASA Astrophysics Data System (ADS)

    Yagi, Kent

    2014-02-01

    Gravitational-wave observations in the near future may allow us to measure tidal deformabilities of neutron stars, which leads us to the understanding of physics at nuclear density. In principle, the gravitational waveform depends on various tidal parameters, which correlate strongly. Therefore, it would be useful if one can express such tidal parameters with a single parameter. Here, we report on universal relations among various ℓth (dimensionless) electric, magnetic, and shape tidal deformabilities in neutron stars and quark stars that do not depend sensitively on the equation of state. Such relations allow us to break the degeneracy among the tidal parameters. In this paper, we focus on gravitational waves from nonspinning neutron-star binary inspirals. We first derive the leading contribution of the ℓth electric and ℓ=2 magnetic tidal deformabilities to the gravitational-wave phase, which enters at 2ℓ+1 and 6 post-Newtonian orders relative to the leading Newtonian one, respectively. We then calculate the useful number of gravitational-wave cycles and show that not only the ℓ=2 but also ℓ=3 electric tidal deformabilities are important for parameter estimation with third-generation gravitational-wave detectors such as LIGO III and Einstein Telescope. Although the correlation between the ℓ=2 and ℓ=3 electric tidal deformabilities deteriorate the measurement accuracy of the former deformability parameter, one can increase its measurement accuracy significantly by using the universal relation. We provide a fitting formula for the LIGO III noise curve in the appendixes.

  4. Boundary layer transition studies

    NASA Technical Reports Server (NTRS)

    Watmuff, Jonathan H.

    1995-01-01

    A small-scale wind tunnel previously used for turbulent boundary layer experiments was modified for two sets of boundary layer transition studies. The first study concerns a laminar separation/turbulent reattachment. The pressure gradient and unit Reynolds number are the same as the fully turbulent flow of Spalart and Watmuff. Without the trip wire, a laminar layer asymptotes to a Falkner & Skan similarity solution in the FPG. Application of the APG causes the layer to separate and a highly turbulent and approximately 2D mean flow reattachment occurs downstream. In an effort to gain some physical insight into the flow processes a small impulsive disturbance was introduced at the C(sub p) minimum. The facility is totally automated and phase-averaged data are measured on a point-by-point basis using unprecedently large grids. The evolution of the disturbance has been tracked all the way into the reattachment region and beyond into the fully turbulent boundary layer. At first, the amplitude decays exponentially with streamwise distance in the APG region, where the layer remains attached, i.e. the layer is viscously stable. After separation, the rate of decay slows, and a point of minimum amplitude is reached where the contours of the wave packet exhibit dispersive characteristics. From this point, exponential growth of the amplitude of the disturbance is observed in the detached shear layer, i.e. the dominant instability mechanism is inviscid. A group of large-scale 3D vortex loops emerges in the vicinity of the reattachment. Remarkably, the second loop retains its identify far downstream in the turbulent boundary layer. The results provide a level of detail usually associated with CFD. Substantial modifications were made to the facility for the second study concerning disturbances generated by Suction Holes for laminar flow Control (LFC). The test section incorporates suction through interchangeable porous test surfaces. Detailed studies have been made using isolated

  5. On the Boundary Condition Between Two Multiplying Media

    DOE R&D Accomplishments Database

    Friedman, F. L.; Wigner, E. P.

    1944-04-19

    The transition region between two parts of a pile which have different compositions is investigated. In the case where the moderator is the same in both parts of the pile, it is found that the diffusion constant times thermal neutron density plus diffusion constant times fast neutron density satisfies the usual pile equations everywhere, right to the boundary. More complicated formulae apply in a more general case.

  6. Boundary layer elasto-optic switching in ferroelectric liquid crystals

    NASA Technical Reports Server (NTRS)

    Parmar, D. S.

    1992-01-01

    The first experimental observation of a change in the director azimuthal angle due to applied shear stress is reported in a sample configuration involving a liquid-crystal-coated top surface exposed directly to gas flow. The electrooptic response caused by the shear stress is large, fast, and reversible. These findings are relevant to the use of liquid crystals in boundary layer investigations on wind tunnel models.

  7. Boundary work in knowledge teams.

    PubMed

    Faraj, Samer; Yan, Aimin

    2009-05-01

    The purpose of this article is to promote an open systems perspective on team research. The authors develop a model of team boundary activities: boundary spanning, buffering, and reinforcement. The model examines the relationship between these boundary activities and team performance, the moderating effects of organizational contextual factors, and the mediating effect of team psychological safety on the boundary work-performance relationship. These relationships were empirically tested with data collected from 64 software development teams. Boundary spanning, buffering, and boundary reinforcement were found to relate to team performance and psychological safety. Both relationships are moderated by the team's task uncertainty and resource scarcity. The implications of the findings are offered for future research and practice. PMID:19450002

  8. Computation of airfoil buffet boundaries

    NASA Technical Reports Server (NTRS)

    Levy, L. L., Jr.; Bailey, H. E.

    1981-01-01

    The ILLIAC IV computer has been programmed with an implicit, finite-difference code for solving the thin layer compressible Navier-Stokes equation. Results presented for the case of the buffet boundaries of a conventional and a supercritical airfoil section at high Reynolds numbers are found to be in agreement with experimentally determined buffet boundaries, especially at the higher freestream Mach numbers and lower lift coefficients where the onset of unsteady flows is associated with shock wave-induced boundary layer separation.

  9. Modeling the urban boundary layer

    NASA Technical Reports Server (NTRS)

    Bergstrom, R. W., Jr.

    1976-01-01

    A summary and evaluation is given of the Workshop on Modeling the Urban Boundary Layer; held in Las Vegas on May 5, 1975. Edited summaries from each of the session chairpersons are also given. The sessions were: (1) formulation and solution techniques, (2) K-theory versus higher order closure, (3) surface heat and moisture balance, (4) initialization and boundary problems, (5) nocturnal boundary layer, and (6) verification of models.

  10. A Fast Hermite Transform★

    PubMed Central

    Leibon, Gregory; Rockmore, Daniel N.; Park, Wooram; Taintor, Robert; Chirikjian, Gregory S.

    2008-01-01

    We present algorithms for fast and stable approximation of the Hermite transform of a compactly supported function on the real line, attainable via an application of a fast algebraic algorithm for computing sums associated with a three-term relation. Trade-offs between approximation in bandlimit (in the Hermite sense) and size of the support region are addressed. Numerical experiments are presented that show the feasibility and utility of our approach. Generalizations to any family of orthogonal polynomials are outlined. Applications to various problems in tomographic reconstruction, including the determination of protein structure, are discussed. PMID:20027202

  11. Fast Overcurrent Tripping Circuit

    NASA Technical Reports Server (NTRS)

    Sullender, Craig C.; Davies, Bryan L.; Osborn, Stephen H.

    1993-01-01

    Fast overcurrent tripping circuit designed for incorporation into power metal oxide/semiconductor field-effect transistor (MOSFET) switching circuit. Serves as fast electronic circuit breaker by sensing voltage across MOSFET's during conduction and switching MOSFET's off within 1 microsecond after voltage exceeds reference value corresponding to tripping current. Acts more quickly than Hall-effect current sensor and, in comparison with shunt current-measuring circuits, smaller and consumes less power. Also ignores initial transient overcurrents during first 5 microseconds of switching cycle.

  12. Magnetospheric plasma regions and boundaries

    NASA Technical Reports Server (NTRS)

    Heikkila, W. J.

    1975-01-01

    The boundaries of the various regions of the magnetospheric plasma are considered, taking into account the bow shock, the magnetopause, the outer boundary of the plasma sheet, the inner boundary of the plasma sheet, and the trapping boundary for energetic particles. Attention is given to the steady state, or quasi-steady state, to substorm effects in which temporal changes are important, and to primary auroral processes. A description is presented of the high latitude lobes of the magnetotail. The characteristics of magnetic field topology associated with interconnected interplanetary and geomagnetic field lines are illustrated with the aid of a graph.

  13. Static electric multipole susceptibilities of the relativistic hydrogenlike atom in the ground state: Application of the Sturmian expansion of the generalized Dirac-Coulomb Green function

    NASA Astrophysics Data System (ADS)

    Szmytkowski, Radosław; Łukasik, Grzegorz

    2016-06-01

    The ground state of the Dirac one-electron atom, placed in a weak, static electric field of definite 2L polarity, is studied within the framework of the first-order perturbation theory. The Sturmian expansion of the generalized Dirac-Coulomb Green function [R. Szmytkowski, J. Phys. B: At. Mol. Opt. Phys. 30, 825 (1997), 10.1088/0953-4075/30/4/007; erratum R. Szmytkowski, J. Phys. B: At. Mol. Opt. Phys. 30, 2747 (1997), 10.1088/0953-4075/30/11/023] is used to derive closed-form analytical expressions for various far-field and near-nucleus static electric multipole susceptibilities of the atom. The far-field multipole susceptibilities—the polarizabilities αL, the electric-to-magnetic cross susceptibilities αE L →M (L ∓1 ), and the electric-to-toroidal-magnetic cross susceptibilities αE L →T L —are found to be expressible in terms of one or two nonterminating generalized hypergeometric functions F2 with the unit argument. Counterpart formulas for the near-nucleus multipole susceptibilities—the electric nuclear shielding constants σEL→E L, the near-nucleus electric-to-magnetic cross susceptibilities σE L →M (L ∓1 ), and the near-nucleus electric-to-toroidal-magnetic cross susceptibilities σE L →T L —involve one or two terminating F2(1 ) series and for each L may be rewritten in terms of elementary functions. Numerical values of the far-field dipole, quadrupole, octupole, and hexadecapole susceptibilities are provided for selected hydrogenic ions. The effect of a declared uncertainty in the CODATA 2014 recommended value of the fine-structure constant α on the accuracy of numerical results is investigated. Analytical quasirelativistic approximations, valid to the second order in α Z , where Z is the nuclear charge number, are also derived for all types of the far-field and near-nucleus susceptibilities considered in the paper.

  14. Symbolic Boundary Work in Schools: Demarcating and Denying Ethnic Boundaries

    ERIC Educational Resources Information Center

    Tabib-Calif, Yosepha; Lomsky-Feder, Edna

    2014-01-01

    This article examines the symbolic boundary work that is carried out at a school whose student population is heterogeneous in terms of ethnicity and class. Based on ethnography, the article demonstrates how the school's staff seeks to neutralize ethnic boundaries and their accompanying discourse, while the pupils try to bring ethnic…

  15. Boundary-Layer & health

    NASA Astrophysics Data System (ADS)

    Costigliola, V.

    2010-09-01

    It has long been known that specific atmospheric processes, such as weather and longer-term climatic fluctuations, affect human health. The biometeorological literature refers to this relationship as meteorotropism, defined as a change in an organism that is correlated with a change in atmospheric conditions. Plenty of (patho)physiological functions are affected by those conditions - like the respiratory diseases - and currently it is difficult to put any limits for pathologies developed in reply. Nowadays the importance of atmospheric boundary layer and health is increasingly recognised. A number of epidemiologic studies have reported associations between ambient concentrations of air pollution, specifically particulate pollution, and adverse health effects, even at the relatively low concentrations of pollution found. Since 1995 there have been over twenty-one studies from four continents that have explicitly examined the association between ambient air pollutant mixes and daily mortality. Statistically significant and positive associations have been reported in data from various locations around the world, all with varying air pollutant concentrations, weather conditions, population characteristics and public health policies. Particular role has been given to atmospheric boundary layer processes, the impact of which for specific patient-cohort is, however, not well understood till now. Assessing and monitoring air quality are thus fundamental to improve Europe's welfare. One of current projects run by the "European Medical Association" - PASODOBLE will develop and demonstrate user-driven downstream information services for the regional and local air quality sectors by combining space-based and in-situ data with models in 4 thematic service lines: - Health community support for hospitals, pharmacies, doctors and people at risk - Public information for regions, cities, tourist industry and sporting event organizers - Compliance monitoring support on particulate

  16. The effects of aging on the speed-accuracy compromise: Boundary optimality in the diffusion model.

    PubMed

    Starns, Jeffrey J; Ratcliff, Roger

    2010-06-01

    We evaluated age-related differences in the optimality of decision boundary settings in a diffusion model analysis. In the model, the width of the decision boundary represents the amount of evidence that must accumulate in favor of a response alternative before a decision is made. Wide boundaries lead to slow but accurate responding, and narrow boundaries lead to fast but inaccurate responding. There is a single value of boundary separation that produces the most correct answers in a given period of time, and we refer to this value as the reward rate optimal boundary (RROB). We consistently found across a variety of decision tasks that older adults used boundaries that were much wider than the RROB value. Young adults used boundaries that were closer to the RROB value, although age differences in optimality were smaller with instructions emphasizing speed than with instructions emphasizing accuracy. Young adults adjusted their boundary settings to more closely approach the RROB value when they were provided with accuracy feedback and extensive practice. Older participants showed no evidence of making boundary adjustments in response to feedback or task practice, and they consistently used boundary separation values that produced accuracy levels that were near asymptote. Our results suggest that young adults attempt to balance speed and accuracy to achieve the most correct answers per unit time, whereas older adultts attempt to minimize errors even if they must respond quite slowly to do so.

  17. Fast focus field calculations

    NASA Astrophysics Data System (ADS)

    Leutenegger, Marcel; Geissbuehler, Matthias; Märki, Iwan; Leitgeb, Rainer A.; Lasser, Theo

    2008-02-01

    We present a method for fast calculation of the electromagnetic field near the focus of an objective with a high numerical aperture (NA). Instead of direct integration, the vectorial Debye diffraction integral is evaluated with the fast Fourier transform for calculating the electromagnetic field in the entire focal region. We generalize this concept with the chirp z transform for obtaining a flexible sampling grid and an additional gain in computation speed. Under the conditions for the validity of the Debye integral representation, our method yields the amplitude, phase and polarization of the focus field for an arbitrary paraxial input field in the aperture of the objective. Our fast calculation method is particularly useful for engineering the point-spread function or for fast image deconvolution. We present several case studies by calculating the focus fields of high NA oil immersion objectives for various amplitude, polarization and phase distributions of the input field. In addition, the calculation of an extended polychromatic focus field generated by a Bessel beam is presented. This extended focus field is of particular interest for Fourier domain optical coherence tomography because it preserves a lateral resolution of a few micrometers over an axial distance in the millimeter range.

  18. Fast ForWord.

    ERIC Educational Resources Information Center

    Education Commission of the States, Denver, CO.

    This paper provides an overview of Fast ForWord, a CD-ROM and Internet-based training program for children (pre-K to grade 8) with language and reading problems that helps children rapidly build oral language comprehension and other critical skills necessary for learning to read or becoming a better reader. With the help of computers, speech…

  19. The Integral Fast Reactor

    SciTech Connect

    Till, C.E.; Chang, Y.I. ); Lineberry, M.J. )

    1990-01-01

    Argonne National Laboratory, since 1984, has been developing the Integral Fast Reactor (IFR). This paper will describe the way in which this new reactor concept came about; the technical, public acceptance, and environmental issues that are addressed by the IFR; the technical progress that has been made; and our expectations for this program in the near term. 5 refs., 3 figs.

  20. Boundary effects in entanglement entropy

    NASA Astrophysics Data System (ADS)

    Berthiere, Clément; Solodukhin, Sergey N.

    2016-09-01

    We present a number of explicit calculations of Renyi and entanglement entropies in situations where the entangling surface intersects the boundary of d-dimensional Minkowski spacetime. When the boundary is a single plane we compute the contribution to the entropy due to this intersection, first in the case of the Neumann and Dirichlet boundary conditions, and then in the case of a generic Robin type boundary condition. The flow in the boundary coupling between the Neumann and Dirichlet phases is analyzed in arbitrary dimension d and is shown to be monotonic, the peculiarity of d = 3 case is noted. We argue that the translational symmetry along the entangling surface is broken due the presence of the boundary which reveals that the entanglement is not homogeneous. In order to characterize this quantitatively, we introduce a density of entanglement entropy and compute it explicitly. This quantity clearly indicates that the entanglement is maximal near the boundary. We then consider the situation where the boundary is composed of two parallel planes at a finite separation and compute the entanglement entropy as well as its density in this case. The complete contribution to entanglement entropy due to the boundaries is shown not to depend on the distance between the planes and is simply twice the entropy in the case of single plane boundary. Additionally, we find how the area law, the part in the entropy proportional to the area of entire entangling surface, depends on the size of the separation between the two boundaries. The latter is shown to appear in the UV finite part of the entropy.

  1. A search for concentric rings with unusual variance in the 7-year WMAP temperature maps using a fast convolution approach

    NASA Astrophysics Data System (ADS)

    Bielewicz, P.; Wandelt, B. D.; Banday, A. J.

    2013-02-01

    We present a method for the computation of the variance of cosmic microwave background (CMB) temperature maps on azimuthally symmetric patches using a fast convolution approach. As an example of the application of the method, we show results for the search for concentric rings with unusual variance in the 7-year Wilkinson Microwave Anisotropy Probe (WMAP) data. We re-analyse claims concerning the unusual variance profile of rings centred at two locations on the sky that have recently drawn special attention in the context of the conformal cyclic cosmology scenario proposed by Penrose. We extend this analysis to rings with larger radii and centred on other points of the sky. Using the fast convolution technique enables us to perform this search with higher resolution and a wider range of radii than in previous studies. We show that for one of the two special points rings with radii larger than 10° have systematically lower variance in comparison to the concordance Λ cold dark matter model predictions. However, we show that this deviation is caused by the multipoles up to order ℓ = 7. Therefore, the deficit of power for concentric rings with larger radii is yet another manifestation of the well-known anomalous CMB distribution on large angular scales. Furthermore, low-variance rings can be easily found centred on other points in the sky. In addition, we show also the results of a search for extremely high-variance rings. As for the low-variance rings, some anomalies seem to be related to the anomalous distribution of the low-order multipoles of the WMAP CMB maps. As such our results are not consistent with the conformal cyclic cosmology scenario.

  2. Intergenerational differences in mental boundaries.

    PubMed

    Barbuto, John E; Bryant, Stephanie; Pennisi, Lisa A

    2010-04-01

    382 employees in government offices were surveyed using demographic variables and organizational and interpersonal boundaries. Analysis of variance indicated a significant difference in Mental Boundary Score between Baby Boomers I (born 1946-1954) and Generation X (born 1965-1976) cohorts. PMID:20524559

  3. Cell boundary fault detection system

    DOEpatents

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2011-04-19

    An apparatus and program product determine a nodal fault along the boundary, or face, of a computing cell. Nodes on adjacent cell boundaries communicate with each other, and the communications are analyzed to determine if a node or connection is faulty.

  4. Parts and boundaries.

    PubMed

    Jackendoff, R

    1991-12-01

    Within the framework of Conceptual Semantics, a family of conceptual features and functions is developed that accounts for phenomena in the semantics of noun phrases such as the mass-count distinction, plurality, the partitive construction (a leg of the table), the constitutive construction (a house of wood), the "Universal Packager" (three coffees), and boundary words such as end, edge, and crust. Using the strong formal parallelism between noun phrase semantics and event structure that is a hallmark of the Conceptual Semantics approach, the features and functions of the NP system are applied to a wide range of problems in event structure, for example the analysis of the Vendler classes, the meaning of the progressive, the "imperfective paradox", and "aktionsarten" such as the syntactically unexpressed sense of repetition in The light flashed until dawn. Crucial to the analysis is that these features and functions can be expressed in syntactic structure either by being part of lexical conceptual structure, or by use of a morphological affix, or by being associated with the meaning of a construction such as N of NP or nominal compounding. Alternatively, they may remain unexpressed altogether, being introduced into the conceptual structure of a phrase by "rules of construal". This shows that lexical semantics and phrasal semantics interpenetrate deeply, and that there is no strict one-to-one correspondence between syntactic and semantic structures. In addition, the analysis provides further evidence that natural language semantics must be based on a psychological view of meaning--it must be concerned with how language users are constructed to understand and schematize the world. PMID:1790657

  5. fastSCOP: a fast web server for recognizing protein structural domains and SCOP superfamilies.

    PubMed

    Tung, Chi-Hua; Yang, Jinn-Moon

    2007-07-01

    The fastSCOP is a web server that rapidly identifies the structural domains and determines the evolutionary superfamilies of a query protein structure. This server uses 3D-BLAST to scan quickly a large structural classification database (SCOP1.71 with <95% identity with each other) and the top 10 hit domains, which have different superfamily classifications, are obtained from the hit lists. MAMMOTH, a detailed structural alignment tool, is adopted to align these top 10 structures to refine domain boundaries and to identify evolutionary superfamilies. Our previous works demonstrated that 3D-BLAST is as fast as BLAST, and has the characteristics of BLAST (e.g. a robust statistical basis, effective search and reliable database search capabilities) in large structural database searches based on a structural alphabet database and a structural alphabet substitution matrix. The classification accuracy of this server is approximately 98% for 586 query structures and the average execution time is approximately 5. This server was also evaluated on 8700 structures, which have no annotations in the SCOP; the server can automatically assign 7311 (84%) proteins (9420 domains) to the SCOP superfamilies in 9.6 h. These results suggest that the fastSCOP is robust and can be a useful server for recognizing the evolutionary classifications and the protein functions of novel structures. The server is accessible at http://fastSCOP.life.nctu.edu.tw.

  6. Magnetically assisted fast ignition.

    PubMed

    Wang, W-M; Gibbon, P; Sheng, Z-M; Li, Y-T

    2015-01-01

    Fast ignition (FI) is investigated via integrated particle-in-cell simulation including both generation and transport of fast electrons, where petawatt ignition lasers of 2 ps and compressed targets of a peak density of 300  g cm(-3) and areal density of 0.49  g cm(-2) at the core are taken. When a 20 MG static magnetic field is imposed across a conventional cone-free target, the energy coupling from the laser to the core is enhanced by sevenfold and reaches 14%. This value even exceeds that obtained using a cone-inserted target, suggesting that the magnetically assisted scheme may be a viable alternative for FI. With this scheme, it is demonstrated that two counterpropagating, 6 ps, 6 kJ lasers along the magnetic field transfer 12% of their energy to the core, which is then heated to 3 keV. PMID:25615473

  7. Fast electrochemical actuator

    NASA Astrophysics Data System (ADS)

    Uvarov, I. V.; Postnikov, A. V.; Svetovoy, V. B.

    2016-03-01

    Lack of fast and strong microactuators is a well-recognized problem in MEMS community. Electrochemical actuators can develop high pressure but they are notoriously slow. Water electrolysis produced by short voltage pulses of alternating polarity can overcome the problem of slow gas termination. Here we demonstrate an actuation regime, for which the gas pressure is relaxed just for 10 μs or so. The actuator consists of a microchamber filled with the electrolyte and covered with a flexible membrane. The membrane bends outward when the pressure in the chamber increases. Fast termination of gas and high pressure developed in the chamber are related to a high density of nanobubbles in the chamber. The physical processes happening in the chamber are discussed so as problems that have to be resolved for practical applications of this actuation regime. The actuator can be used as a driving engine for microfluidics.

  8. Fast Ion Conductors

    NASA Astrophysics Data System (ADS)

    Chadwick, Alan V.

    Fast ion conductors, sometimes referred to as superionic conductors or solid electrolytes, are solids with ionic conductivities that are comparable to those found in molten salts and aqueous solutions of strong electrolytes, i.e., 10-2-10 S cm-1. Such materials have been known of for a very long time and some typical examples of the conductivity are shown in Fig. 1, along with sodium chloride as the archetypal normal ionic solid. Faraday [1] first noted the high conductivity of solid lead fluoride (PbF2) and silver sulphide (Ag2S) in the 1830s and silver iodide was known to be unusually high ionic conductor to the German physicists early in the 1900s. However, the materials were regarded as anomalous until the mid 1960s when they became the focus of intense interest to academics and technologists and they have remained at the forefront of materials research [2-4]. The academic aim is to understand the fundamental origin of fast ion behaviour and the technological goal is to utilize the properties in applications, particularly in energy applications such as the electrolyte membranes in solid-state batteries and fuel cells, and in electrochemical sensors. The last four decades has seen an expansion of the types of material that exhibit fast ion behaviour that now extends beyond simple binary ionic crystals to complex solids and even polymeric materials. Over this same period computer simulations of solids has also developed (in fact these methods and the interest in fast ion conductors were almost coincidental in their time of origin) and the techniques have played a key role in this area of research.

  9. PHENIX Fast TOF

    SciTech Connect

    Soha, Aria; Chiu, Mickey; Mannel, Eric; Stoll, Sean; Lynch, Don; Boose, Steve; Northacker, Dave; Alfred, Marcus; Lindesay, James; Chujo, Tatsuya; Inaba, Motoi; Nonaka, Toshihiro; Sato, Wataru; Sakatani, Ikumi; Hirano, Masahiro; Choi, Ihnjea

    2014-01-15

    This is a technical scope of work (TSW) between the Fermi National Accelerator Laboratory (Fermilab) and the experimenters of PHENIX Fast TOF group who have committed to participate in beam tests to be carried out during the FY2014 Fermilab Test Beam Facility program. The goals for this test beam experiment are to verify the timing performance of the two types of time-of-flight detector prototypes.

  10. Fast track evaluation methodology.

    PubMed

    Duke, J R

    1991-06-01

    Evaluating hospital information systems has taken a variety of forms since the initial development and use of automation. The process itself has moved from a hardware-based orientation controlled by data processing professionals to systems solutions and a user-driven process overseen by management. At Harbor Hospital Center in Baltimore, a fast track methodology has been introduced to shorten system evaluation time to meet the rapid changes that constantly affect the healthcare industry.

  11. Fast Track Study

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The NASA Fast Track Study supports the efforts of a Special Study Group (SSG) made up of members of the Advanced Project Management Class number 23 (APM-23) that met at the Wallops Island Management Education Center from April 28 - May 8, 1996. Members of the Class expressed interest to Mr. Vem Weyers in having an input to the NASA Policy Document (NPD) 7120.4, that will replace NASA Management Institute (NMI) 7120.4, and the NASA Program/Project Management Guide. The APM-23 SSG was tasked with assisting in development of NASA policy on managing Fast Track Projects, defined as small projects under $150 million and completed within three years. 'Me approach of the APM-23 SSG was to gather data on successful projects working in a 'Better, Faster, Cheaper' environment, within and outside of NASA and develop the Fast Track Project section of the NASA Program/Project Management Guide. Fourteen interviews and four other data gathering efforts were conducted by the SSG, and 16 were conducted by Strategic Resources, Inc. (SRI), including five interviews at the Jet Propulsion Laboratory (JPL) and one at the Applied Physics Laboratory (APL). The interviews were compiled and analyzed for techniques and approaches commonly used to meet severe cost and schedule constraints.

  12. The fast Hartley transform

    NASA Astrophysics Data System (ADS)

    Mar, Mark H.

    1990-11-01

    The purpose of this paper is to report the results of testing the fast Hartley transform (FHT) and comparing it with the fast Fourier transform (FFT). All the definitions and equations in this paper are quoted and cited from the series of references. The author of this report developed a FORTRAN program which computes the Hartley transform. He tested the program with a generalized electromagnetic pulse waveform and verified the results with the known value. Fourier analysis is an essential tool to obtain frequency domain information from transient time domain signals. The FFT is a popular tool to process many of today's audio and electromagnetic signals. System frequency response, digital filtering of signals, and signal power spectrum are the most practical applications of the FFT. However, the Fourier integral transform of the FFT requires computer resources appropriate for the complex arithmetic operations. On the other hand, the FHT can accomplish the same results faster and requires fewer computer resources. The FHT is twice as fast as the FFT, uses only half the computer resources, and so could be more useful than the FFT in typical applications such as spectral analysis, signal processing, and convolution. This paper presents a FORTRAN computer program for the FHT algorithm along with a brief description and compares the results and performance of the FHT and the FFT algorithms.

  13. Fasting - the ultimate diet?

    PubMed

    Johnstone, A M

    2007-05-01

    Adult humans often undertake acute fasts for cosmetic, religious or medical reasons. For example, an estimated 14% of US adults have reported using fasting as a means to control body weight and this approach has long been advocated as an intermittent treatment for gross refractory obesity. There are unique historical data sets on extreme forms of food restriction that give insight into the consequences of starvation or semi-starvation in previously healthy, but usually non-obese subjects. These include documented medical reports on victims of hunger strike, famine and prisoners of war. Such data provide a detailed account on how the body adapts to prolonged starvation. It has previously been shown that fasting for the biblical period of 40 days and 40 nights is well within the overall physiological capabilities of a healthy adult. However, the specific effects on the human body and mind are less clearly documented, either in the short term (hours) or in the longer term (days). This review asks the following three questions, pertinent to any weight-loss therapy, (i) how effective is the regime in achieving weight loss, (ii) what impact does it have on psychology? and finally, (iii) does it work long-term? PMID:17444963

  14. Dimension of fractal basin boundaries

    SciTech Connect

    Park, B.S.

    1988-01-01

    In many dynamical systems, multiple attractors coexist for certain parameter ranges. The set of initial conditions that asymptotically approach each attractor is its basin of attraction. These basins can be intertwined on arbitrary small scales. Basin boundary can be either smooth or fractal. Dynamical systems that have fractal basin boundary show final state sensitivity of the initial conditions. A measure of this sensitivity (uncertainty exponent {alpha}) is related to the dimension of the basin boundary d = D - {alpha}, where D is the dimension of the phase space and d is the dimension of the basin boundary. At metamorphosis values of the parameter, there might happen a conversion from smooth to fractal basin boundary (smooth-fractal metamorphosis) or a conversion from fractal to another fractal basin boundary characteristically different from the previous fractal one (fractal-fractal metamorphosis). The dimension changes continuously with the parameter except at the metamorphosis values where the dimension of the basin boundary jumps discontinuously. We chose the Henon map and the forced damped pendulum to investigate this. Scaling of the basin volumes near the metamorphosis values of the parameter is also being studied for the Henon map. Observations are explained analytically by using low dimensional model map.

  15. A Hierarchical Algorithm for Fast Debye Summation with Applications to Small Angle Scattering

    PubMed Central

    Gumerov, Nail A.; Berlin, Konstantin; Fushman, David; Duraiswami, Ramani

    2012-01-01

    Debye summation, which involves the summation of sinc functions of distances between all pair of atoms in three dimensional space, arises in computations performed in crystallography, small/wide angle X-ray scattering (SAXS/WAXS) and small angle neutron scattering (SANS). Direct evaluation of Debye summation has quadratic complexity, which results in computational bottleneck when determining crystal properties, or running structure refinement protocols that involve SAXS or SANS, even for moderately sized molecules. We present a fast approximation algorithm that efficiently computes the summation to any prescribed accuracy ε in linear time. The algorithm is similar to the fast multipole method (FMM), and is based on a hierarchical spatial decomposition of the molecule coupled with local harmonic expansions and translation of these expansions. An even more efficient implementation is possible when the scattering profile is all that is required, as in small angle scattering reconstruction (SAS) of macromolecules. We examine the relationship of the proposed algorithm to existing approximate methods for profile computations, and show that these methods may result in inaccurate profile computations, unless an error bound derived in this paper is used. Our theoretical and computational results show orders of magnitude improvement in computation complexity over existing methods, while maintaining prescribed accuracy. PMID:22707386

  16. A fast lattice Green's function method for solving viscous incompressible flows on unbounded domains

    NASA Astrophysics Data System (ADS)

    Liska, Sebastian; Colonius, Tim

    2016-07-01

    A computationally efficient method for solving three-dimensional, viscous, incompressible flows on unbounded domains is presented. The method formally discretizes the incompressible Navier-Stokes equations on an unbounded staggered Cartesian grid. Operations are limited to a finite computational domain through a lattice Green's function technique. This technique obtains solutions to inhomogeneous difference equations through the discrete convolution of source terms with the fundamental solutions of the discrete operators. The differential algebraic equations describing the temporal evolution of the discrete momentum equation and incompressibility constraint are numerically solved by combining an integrating factor technique for the viscous term and a half-explicit Runge-Kutta scheme for the convective term. A projection method that exploits the mimetic and commutativity properties of the discrete operators is used to efficiently solve the system of equations that arises in each stage of the time integration scheme. Linear complexity, fast computation rates, and parallel scalability are achieved using recently developed fast multipole methods for difference equations. The accuracy and physical fidelity of solutions are verified through numerical simulations of vortex rings.

  17. Neighborhood fast food availability and fast food consumption

    PubMed Central

    Oexle, Nathalie; Barnes, Timothy L; Blake, Christine E; Bell, Bethany A; Liese, Angela D

    2015-01-01

    Recent nutritional and public health research has focused on how the availability of various types of food in a person’s immediate area or neighborhood influences his or her food choices and eating habits. It has been theorized that people living in areas with a wealth of unhealthy fast-food options may show higher levels of fast-food consumption, a factor that often coincides with being overweight or obese. However, measuring food availability in a particular area is difficult to achieve consistently: there may be differences in the strict physical locations of food options as compared to how individuals perceive their personal food availability, and various studies may use either one or both of these measures. The aim of this study was to evaluate the association between weekly fast-food consumption and both a person’s perceived availability of fast-food and an objective measure of fast-food presence—Geographic Information Systems (GIS)—within that person’s neighborhood. A randomly selected population-based sample of eight counties in South Carolina was used to conduct a cross-sectional telephone survey assessing self-report fast-food consumption and perceived availability of fast food. GIS was used to determine the actual number of fast-food outlets within each participant’s neighborhood. Using multinomial logistic regression analyses, we found that neither perceived availability nor GIS-based presence of fast-food was significantly associated with weekly fast-food consumption. Our findings indicate that availability might not be the dominant factor influencing fast-food consumption. We recommend using subjective availability measures and considering individual characteristics that could influence both perceived availability of fast food and its impact on fast-food consumption. If replicated, our findings suggest that interventions aimed at reducing fast-food consumption by limiting neighborhood fast-food availability might not be completely

  18. Neighborhood fast food availability and fast food consumption.

    PubMed

    Oexle, Nathalie; Barnes, Timothy L; Blake, Christine E; Bell, Bethany A; Liese, Angela D

    2015-09-01

    Recent nutritional and public health research has focused on how the availability of various types of food in a person's immediate area or neighborhood influences his or her food choices and eating habits. It has been theorized that people living in areas with a wealth of unhealthy fast-food options may show higher levels of fast-food consumption, a factor that often coincides with being overweight or obese. However, measuring food availability in a particular area is difficult to achieve consistently: there may be differences in the strict physical locations of food options as compared to how individuals perceive their personal food availability, and various studies may use either one or both of these measures. The aim of this study was to evaluate the association between weekly fast-food consumption and both a person's perceived availability of fast-food and an objective measure of fast-food presence - Geographic Information Systems (GIS) - within that person's neighborhood. A randomly selected population-based sample of eight counties in South Carolina was used to conduct a cross-sectional telephone survey assessing self-report fast-food consumption and perceived availability of fast food. GIS was used to determine the actual number of fast-food outlets within each participant's neighborhood. Using multinomial logistic regression analyses, we found that neither perceived availability nor GIS-based presence of fast-food was significantly associated with weekly fast-food consumption. Our findings indicate that availability might not be the dominant factor influencing fast-food consumption. We recommend using subjective availability measures and considering individual characteristics that could influence both perceived availability of fast food and its impact on fast-food consumption. If replicated, our findings suggest that interventions aimed at reducing fast-food consumption by limiting neighborhood fast-food availability might not be completely effective.

  19. Neighborhood fast food availability and fast food consumption.

    PubMed

    Oexle, Nathalie; Barnes, Timothy L; Blake, Christine E; Bell, Bethany A; Liese, Angela D

    2015-09-01

    Recent nutritional and public health research has focused on how the availability of various types of food in a person's immediate area or neighborhood influences his or her food choices and eating habits. It has been theorized that people living in areas with a wealth of unhealthy fast-food options may show higher levels of fast-food consumption, a factor that often coincides with being overweight or obese. However, measuring food availability in a particular area is difficult to achieve consistently: there may be differences in the strict physical locations of food options as compared to how individuals perceive their personal food availability, and various studies may use either one or both of these measures. The aim of this study was to evaluate the association between weekly fast-food consumption and both a person's perceived availability of fast-food and an objective measure of fast-food presence - Geographic Information Systems (GIS) - within that person's neighborhood. A randomly selected population-based sample of eight counties in South Carolina was used to conduct a cross-sectional telephone survey assessing self-report fast-food consumption and perceived availability of fast food. GIS was used to determine the actual number of fast-food outlets within each participant's neighborhood. Using multinomial logistic regression analyses, we found that neither perceived availability nor GIS-based presence of fast-food was significantly associated with weekly fast-food consumption. Our findings indicate that availability might not be the dominant factor influencing fast-food consumption. We recommend using subjective availability measures and considering individual characteristics that could influence both perceived availability of fast food and its impact on fast-food consumption. If replicated, our findings suggest that interventions aimed at reducing fast-food consumption by limiting neighborhood fast-food availability might not be completely effective. PMID

  20. Brain response to prosodic boundary cues depends on boundary position

    PubMed Central

    Holzgrefe, Julia; Wellmann, Caroline; Petrone, Caterina; Truckenbrodt, Hubert; Höhle, Barbara; Wartenburger, Isabell

    2013-01-01

    Prosodic information is crucial for spoken language comprehension and especially for syntactic parsing, because prosodic cues guide the hearer's syntactic analysis. The time course and mechanisms of this interplay of prosody and syntax are not yet well-understood. In particular, there is an ongoing debate whether local prosodic cues are taken into account automatically or whether they are processed in relation to the global prosodic context in which they appear. The present study explores whether the perception of a prosodic boundary is affected by its position within an utterance. In an event-related potential (ERP) study we tested if the brain response evoked by the prosodic boundary differs when the boundary occurs early in a list of three names connected by conjunctions (i.e., after the first name) as compared to later in the utterance (i.e., after the second name). A closure positive shift (CPS)—marking the processing of a prosodic phrase boundary—was elicited for stimuli with a late boundary, but not for stimuli with an early boundary. This result is further evidence for an immediate integration of prosodic information into the parsing of an utterance. In addition, it shows that the processing of prosodic boundary cues depends on the previously processed information from the preceding prosodic context. PMID:23882234

  1. Hispanics in Fast Food Jobs.

    ERIC Educational Resources Information Center

    Charner, Ivan; Fraser, Bryna Shore

    A study examined the employment of Hispanics in the fast-food industry. Data were obtained from a national survey of employees at 279 fast-food restaurants from seven companies in which 194 (4.2 percent) of the 4,660 respondents reported being Hispanic. Compared with the total sample, Hispanic fast-food employees were slightly less likely to be…

  2. A Framework for Fast Image Deconvolution With Incomplete Observations.

    PubMed

    Simoes, Miguel; Almeida, Luis B; Bioucas-Dias, Jose; Chanussot, Jocelyn

    2016-11-01

    In image deconvolution problems, the diagonalization of the underlying operators by means of the fast Fourier transform (FFT) usually yields very large speedups. When there are incomplete observations (e.g., in the case of unknown boundaries), standard deconvolution techniques normally involve non-diagonalizable operators, resulting in rather slow methods or, otherwise, use inexact convolution models, resulting in the occurrence of artifacts in the enhanced images. In this paper, we propose a new deconvolution framework for images with incomplete observations that allows us to work with diagonalized convolution operators, and therefore is very fast. We iteratively alternate the estimation of the unknown pixels and of the deconvolved image, using, e.g., an FFT-based deconvolution method. This framework is an efficient, high-quality alternative to existing methods of dealing with the image boundaries, such as edge tapering. It can be used with any fast deconvolution method. We give an example in which a state-of-the-art method that assumes periodic boundary conditions is extended, using this framework, to unknown boundary conditions. Furthermore, we propose a specific implementation of this framework, based on the alternating direction method of multipliers (ADMM). We provide a proof of convergence for the resulting algorithm, which can be seen as a "partial" ADMM, in which not all variables are dualized. We report experimental comparisons with other primal-dual methods, where the proposed one performed at the level of the state of the art. Four different kinds of applications were tested in the experiments: deconvolution, deconvolution with inpainting, superresolution, and demosaicing, all with unknown boundaries.

  3. A Framework for Fast Image Deconvolution With Incomplete Observations.

    PubMed

    Simoes, Miguel; Almeida, Luis B; Bioucas-Dias, Jose; Chanussot, Jocelyn

    2016-11-01

    In image deconvolution problems, the diagonalization of the underlying operators by means of the fast Fourier transform (FFT) usually yields very large speedups. When there are incomplete observations (e.g., in the case of unknown boundaries), standard deconvolution techniques normally involve non-diagonalizable operators, resulting in rather slow methods or, otherwise, use inexact convolution models, resulting in the occurrence of artifacts in the enhanced images. In this paper, we propose a new deconvolution framework for images with incomplete observations that allows us to work with diagonalized convolution operators, and therefore is very fast. We iteratively alternate the estimation of the unknown pixels and of the deconvolved image, using, e.g., an FFT-based deconvolution method. This framework is an efficient, high-quality alternative to existing methods of dealing with the image boundaries, such as edge tapering. It can be used with any fast deconvolution method. We give an example in which a state-of-the-art method that assumes periodic boundary conditions is extended, using this framework, to unknown boundary conditions. Furthermore, we propose a specific implementation of this framework, based on the alternating direction method of multipliers (ADMM). We provide a proof of convergence for the resulting algorithm, which can be seen as a "partial" ADMM, in which not all variables are dualized. We report experimental comparisons with other primal-dual methods, where the proposed one performed at the level of the state of the art. Four different kinds of applications were tested in the experiments: deconvolution, deconvolution with inpainting, superresolution, and demosaicing, all with unknown boundaries. PMID:27576251

  4. Lozenge Tilings with Free Boundaries

    NASA Astrophysics Data System (ADS)

    Panova, Greta

    2015-11-01

    We study lozenge tilings of a domain with partially free boundary. In particular, we consider a trapezoidal domain (half-hexagon), s.t. the horizontal lozenges on the long side can intersect it anywhere to protrude halfway across. We show that the positions of the horizontal lozenges near the opposite flat vertical boundary have the same joint distribution as the eigenvalues from a Gaussian Unitary Ensemble (the GUE-corners/minors process). We also prove the existence of a limit shape of the height function, which is also a vertically symmetric plane partition. Both behaviors are shown to coincide with those of the corresponding doubled fixed boundary hexagonal domain. We also consider domains where the different sides converge to {∞} at different rates and recover again the GUE-corners process near the boundary.

  5. Boundary Layer Control on Airfoils.

    ERIC Educational Resources Information Center

    Gerhab, George; Eastlake, Charles

    1991-01-01

    A phenomena, boundary layer control (BLC), produced when visualizing the fluidlike flow of air is described. The use of BLC in modifying aerodynamic characteristics of airfoils, race cars, and boats is discussed. (KR)

  6. Removing Boundary Layer by Suction

    NASA Technical Reports Server (NTRS)

    Ackeret, J

    1927-01-01

    Through the utilization of the "Magnus effect" on the Flettner rotor ship, the attention of the public has been directed to the underlying physical principle. It has been found that the Prandtl boundary-layer theory furnishes a satisfactory explanation of the observed phenomena. The present article deals with the prevention of this separation or detachment of the flow by drawing the boundary layer into the inside of a body through a slot or slots in its surface.

  7. Changing the Structure Boundary Geometry

    SciTech Connect

    Karasev, Viktor; Dzlieva, Elena; Ivanov, Artyom

    2008-09-07

    Analysis of previously obtained results shows that hexagonal crystal lattice is the dominant type of ordering, in particular, in striated glow discharges. We explore the possibility for changing the dust distribution in horizontal cross sections of relatively highly ordered structures in a glow-discharge. Presuming that boundary geometry can affect dust distribution, we used cylindrical coolers held at 0 deg. C and placed against a striation containing a structure, to change the geometry of its outer boundary. By varying the number of coolers, their positions, and their separations from the tube wall, azimuthally asymmetric thermophoretic forces can be used to form polygonal boundaries and vary the angles between their segments (in a horizontal cross section). The corner in the structure's boundary of 60 deg. stimulates formation of hexagonal cells. The structure between the supported parallel boundaries is also characterized by stable hexagonal ordering. We found that a single linear boundary segment does not give rise to any sizable domain, but generates a lattice extending from the boundary (without edge defects). A square lattice can be formed by setting the angle equal to 90 deg. . However, angles of 45 deg. and 135 deg. turned out easier to form. Square lattice was created by forming a near-135 deg. corner with four coolers. It was noted that no grain ordering is observed in the region adjacent to corners of angles smaller than 30 deg. , which do not promote ordering into cells of any shape. Thus, manipulation of a structure boundary can be used to change dust distribution, create structures free of the ubiquitous edge defects that destroy orientation order, and probably change the crystal lattice type.

  8. Free boundary problems in biology.

    PubMed

    Friedman, Avner

    2015-09-13

    In this paper, I review several free boundary problems that arise in the mathematical modelling of biological processes. The biological topics are quite diverse: cancer, wound healing, biofilms, granulomas and atherosclerosis. For each of these topics, I describe the biological background and the mathematical model, and then proceed to state mathematical results, including existence and uniqueness theorems, stability and asymptotic limits, and the behaviour of the free boundary. I also suggest, for each of the topics, open mathematical problems.

  9. Pyramidal inversion domain boundaries revisited

    SciTech Connect

    Remmele, T.; Albrecht, M.; Irmscher, K.; Fornari, R.; Strassburg, M.

    2011-10-03

    The structure of pyramidal inversion domain boundaries in GaN:Mg was investigated by aberration corrected transmission electron microscopy. The analysis shows the upper (0001) boundary to consist of a single Mg layer inserted between polarity inverted GaN layers in an abcab stacking. The Mg bound in these defects is at least one order of magnitude lower than the chemical Mg concentration. Temperature dependent Hall effect measurements show that up to 27% of the Mg acceptors is electrically compensated.

  10. Interplanetary sector boundaries, 1971 - 1973

    NASA Technical Reports Server (NTRS)

    Klein, L.; Burlaga, L. F.

    1979-01-01

    Eighteen interplanetary sector boundary crossings observed at 1 AU by the magnetometer on the IMP-6 spacecraft are discussed. The events were examined on many different time scales ranging from days on either side of the boundary to high resolution measurements of 12.5 vectors per second. Two categories of boundaries were found, one group being relatively thin and the other being thick. In many cases the field vector rotated in a plane from one polarity to the other. Only two of the transitions were null sheets. Using the minimum variance analysis to determine the normals to the plane of rotation, and assuming that this is the same as the normal to the sector boundary surface, it was found that the normals were close to the ecliptic plane. An analysis of tangential discontinuities contained in 4-day periods about the events showed that their orientations were generally not related to the orientations of the sector boundary surface, but rather their characteristics were about the same as those for discontinuities outside the sector boundaries.

  11. Boundary lubrication by associative mucin.

    PubMed

    Wang, Xiang; Du, Miao; Han, Hongpeng; Song, Yihu; Zheng, Qiang

    2015-04-28

    Mucus lubricants are widely distributed in living organisms. Such lubricants consist of a gel structure constructed by associative mucin. However, limited tribological studies exist on associative mucin fluids. The present research is the first to investigate the frictional behavior of a typical intact vertebrate mucin (loach skin mucin), which can recover the gel structure of mucus via hydrophobic association under physiological conditions (5-10 mg/mL loach skin mucin dissolved in water). Both rough hydrophobic and hydrophilic polydimethylsiloxane (PDMS) rubber plates were used as friction substrates. Up to 10 mg/mL loach skin mucin dissolved in water led to a 10-fold reduction in boundary friction of the two substrates. The boundary-lubricating ability for hydrophilic PDMS decreased with rubbing time, whereas that for hydrophobic PDMS remained constant. The boundary-lubricating abilities of the mucin on hydrophobic PDMS and hydrophilic PDMS showed almost similar responses toward changing concentration or sodium dodecyl sulfate (SDS). The mucin fluids reduced boundary friction coefficients (μ) only at concentrations (c) in which intermucin associations were formed, with a relationship shown as μ ∼ c(-0.7). Destroying intermucin associations by SDS largely impaired the boundary-lubricating ability. Results reveal for the first time that intermolecular association of intact mucin in bulk solution largely enhances boundary lubrication, whereas tightly adsorbed layer plays a minor role in the lubrication. This study indicates that associated mucin should contribute considerably to the lubricating ability of biological mucus in vivo. PMID:25843576

  12. Boundary Condition for Modeling Semiconductor Nanostructures

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon; Oyafuso, Fabiano; von Allmen, Paul; Klimeck, Gerhard

    2006-01-01

    A recently proposed boundary condition for atomistic computational modeling of semiconductor nanostructures (particularly, quantum dots) is an improved alternative to two prior such boundary conditions. As explained, this boundary condition helps to reduce the amount of computation while maintaining accuracy.

  13. Grain-boundary migration in KCl bicrystals

    NASA Technical Reports Server (NTRS)

    Gibbon, C. F.

    1968-01-01

    Boundary migration in melt-grown bicrystals of KCl containing pure twist boundaries was investigated. The experiments involve the use of bicrystal specimens in the shape of right-triangular prisms with the boundary parallel to one side.

  14. MULTIRESOLUTION REPRESENTATION OF OPERATORS WITH BOUNDARY CONDITIONS ON SIMPLE DOMAINS

    SciTech Connect

    Beylkin, Gregory; Fann, George I; Harrison, Robert J; Kurcz, Christopher E; Monzon, Lucas A

    2011-01-01

    We develop a multiresolution representation of a class of integral operators satisfying boundary conditions on simple domains in order to construct fast algorithms for their application. We also elucidate some delicate theoretical issues related to the construction of periodic Green s functions for Poisson s equation. By applying the method of images to the non-standard form of the free space operator, we obtain lattice sums that converge absolutely on all scales, except possibly on the coarsest scale. On the coarsest scale the lattice sums may be only conditionally convergent and, thus, allow for some freedom in their definition. We use the limit of square partial sums as a definition of the limit and obtain a systematic, simple approach to the construction (in any dimension) of periodized operators with sparse non-standard forms. We illustrate the results on several examples in dimensions one and three: the Hilbert transform, the projector on divergence free functions, the non-oscillatory Helmholtz Green s function and the Poisson operator. Remarkably, the limit of square partial sums yields a periodic Poisson Green s function which is not a convolution. Using a short sum of decaying Gaussians to approximate periodic Green s functions, we arrive at fast algorithms for their application. We further show that the results obtained for operators with periodic boundary conditions extend to operators with Dirichlet, Neumann, or mixed boundary conditions.

  15. Simplified fast neutron dosimeter

    DOEpatents

    Sohrabi, Mehdi

    1979-01-01

    Direct fast-neutron-induced recoil and alpha particle tracks in polycarbonate films may be enlarged for direct visual observation and automated counting procedures employing electrochemical etching techniques. Electrochemical etching is, for example, carried out in a 28% KOH solution at room temperature by applying a 2000 V peak-to-peak voltage at 1 kHz frequency. Such recoil particle amplification can be used for the detection of wide neutron dose ranges from 1 mrad. to 1000 rads. or higher, if desired.

  16. The fast encryption package

    NASA Technical Reports Server (NTRS)

    Bishop, Matt

    1988-01-01

    The organization of some tools to help improve passwork security at a UNIX-based site is described along with how to install and use them. These tools and their associated library enable a site to force users to pick reasonably safe passwords (safe being site configurable) and to enable site management to try to crack existing passworks. The library contains various versions of a very fast implementation of the Data Encryption Standard and of the one-way encryption functions used to encryp the password.

  17. Fast neutron dosimetry

    SciTech Connect

    DeLuca, P.M. Jr.; Pearson, D.W.

    1992-01-01

    This progress report concentrates on two major areas of dosimetry research: measurement of fast neutron kerma factors for several elements for monochromatic and white spectrum neutron fields and determination of the response of thermoluminescent phosphors to various ultra-soft X-ray energies and beta-rays. Dr. Zhixin Zhou from the Shanghai Institute of Radiation Medicine, People's Republic of China brought with him special expertise in the fabrication and use of ultra-thin TLD materials. Such materials are not available in the USA. The rather unique properties of these materials were investigated during this grant period.

  18. Fast quench reactor method

    SciTech Connect

    Detering, Brent A.; Donaldson, Alan D.; Fincke, James R.; Kong, Peter C.; Berry, Ray A.

    1999-01-01

    A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a means of rapidly expanding a reactant stream, such as a restrictive convergent-divergent nozzle at its outlet end. Metal halide reactants are injected into the reactor chamber. Reducing gas is added at different stages in the process to form a desired end product and prevent back reactions. The resulting heated gaseous stream is then rapidly cooled by expansion of the gaseous stream.

  19. Fast quench reactor method

    DOEpatents

    Detering, B.A.; Donaldson, A.D.; Fincke, J.R.; Kong, P.C.; Berry, R.A.

    1999-08-10

    A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a means of rapidly expanding a reactant stream, such as a restrictive convergent-divergent nozzle at its outlet end. Metal halide reactants are injected into the reactor chamber. Reducing gas is added at different stages in the process to form a desired end product and prevent back reactions. The resulting heated gaseous stream is then rapidly cooled by expansion of the gaseous stream. 8 figs.

  20. FAST NEUTRONIC REACTOR

    DOEpatents

    Snell, A.H.

    1957-12-01

    This patent relates to a reactor and process for carrying out a controlled fast neutron chain reaction. A cubical reactive mass, weighing at least 920 metric tons, of uranium metal containing predominantly U/sup 238/ and having a U/sup 235/ content of at least 7.63% is assembled and the maximum neutron reproduction ratio is limited to not substantially over 1.01 by insertion and removal of a varying amount of boron, the reactive mass being substantially freed of moderator.