Science.gov

Sample records for fast observation architecture

  1. DIS: an architecture for fast lisp execution

    SciTech Connect

    Yerazunis, W.S.

    1987-01-01

    DIS is an architecture for very fast execution of LISP and other artificial intelligence languages. The DIS architecture uses a number of functional units controlled by a wide (256 bit) instruction. A simulator, compiler,and optimizer were constructed for the DIS architecture. A simulated 100-nanosecond cycle time single-processor DIS machine appears to run LISP on the order of twice as fast as a CRAY-1, and on the order of ten to fifteen times faster than other LISP-directed architectures.

  2. Fast notification architecture for wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Hahk

    2013-03-01

    In an emergency, since it is vital to transmit the message to the users immediately after analysing the data to prevent disaster, this article presents the deployment of a fast notification architecture for a wireless sensor network. The sensor nodes of the proposed architecture can monitor an emergency situation periodically and transmit the sensing data, immediately to the sink node. We decide on the grade of fire situation according to the decision rule using the sensing values of temperature, CO, smoke density and temperature increasing rate. On the other hand, to estimate the grade of air pollution, the sensing data, such as dust, formaldehyde, NO2, CO2, is applied to the given knowledge model. Since the sink node in the architecture has a ZigBee interface, it can transmit the alert messages in real time according to analysed results received from the host server to the terminals equipped with a SIM card-type ZigBee module. Also, the host server notifies the situation to the registered users who have cellular phone through short message service server of the cellular network. Thus, the proposed architecture can adapt an emergency situation dynamically compared to the conventional architecture using video processing. In the testbed, after generating air pollution and fire data, the terminal receives the message in less than 3 s. In the test results, this system can also be applied to buildings and public areas where many people gather together, to prevent unexpected disasters in urban settings.

  3. Fast semivariogram computation using FPGA architectures

    NASA Astrophysics Data System (ADS)

    Lagadapati, Yamuna; Shirvaikar, Mukul; Dong, Xuanliang

    2015-02-01

    The semivariogram is a statistical measure of the spatial distribution of data and is based on Markov Random Fields (MRFs). Semivariogram analysis is a computationally intensive algorithm that has typically seen applications in the geosciences and remote sensing areas. Recently, applications in the area of medical imaging have been investigated, resulting in the need for efficient real time implementation of the algorithm. The semivariogram is a plot of semivariances for different lag distances between pixels. A semi-variance, γ(h), is defined as the half of the expected squared differences of pixel values between any two data locations with a lag distance of h. Due to the need to examine each pair of pixels in the image or sub-image being processed, the base algorithm complexity for an image window with n pixels is O(n2). Field Programmable Gate Arrays (FPGAs) are an attractive solution for such demanding applications due to their parallel processing capability. FPGAs also tend to operate at relatively modest clock rates measured in a few hundreds of megahertz, but they can perform tens of thousands of calculations per clock cycle while operating in the low range of power. This paper presents a technique for the fast computation of the semivariogram using two custom FPGA architectures. The design consists of several modules dedicated to the constituent computational tasks. A modular architecture approach is chosen to allow for replication of processing units. This allows for high throughput due to concurrent processing of pixel pairs. The current implementation is focused on isotropic semivariogram computations only. Anisotropic semivariogram implementation is anticipated to be an extension of the current architecture, ostensibly based on refinements to the current modules. The algorithm is benchmarked using VHDL on a Xilinx XUPV5-LX110T development Kit, which utilizes the Virtex5 FPGA. Medical image data from MRI scans are utilized for the experiments

  4. A Massively Parallel Adaptive Fast Multipole Method on Heterogeneous Architectures

    SciTech Connect

    Lashuk, Ilya; Chandramowlishwaran, Aparna; Langston, Harper; Nguyen, Tuan-Anh; Sampath, Rahul S; Shringarpure, Aashay; Vuduc, Richard; Ying, Lexing; Zorin, Denis; Biros, George

    2012-01-01

    We describe a parallel fast multipole method (FMM) for highly nonuniform distributions of particles. We employ both distributed memory parallelism (via MPI) and shared memory parallelism (via OpenMP and GPU acceleration) to rapidly evaluate two-body nonoscillatory potentials in three dimensions on heterogeneous high performance computing architectures. We have performed scalability tests with up to 30 billion particles on 196,608 cores on the AMD/CRAY-based Jaguar system at ORNL. On a GPU-enabled system (NSF's Keeneland at Georgia Tech/ORNL), we observed 30x speedup over a single core CPU and 7x speedup over a multicore CPU implementation. By combining GPUs with MPI, we achieve less than 10 ns/particle and six digits of accuracy for a run with 48 million nonuniformly distributed particles on 192 GPUs.

  5. A new architecture for fast ultrasound imaging

    SciTech Connect

    Cruza, J. F.; Camacho, J.; Moreno, J. M.; Medina, L.

    2014-02-18

    Some ultrasound imaging applications require high frame rate, for example 3D imaging and automated inspections of large components. Being the signal-processing throughput of the system the main bottleneck, parallel beamforming is required to achieve hundreds to thousands of images per second. Simultaneous A-scan line beamforming in all active channels is required to reach the intended high frame rate. To this purpose, a new parallel beamforming architecture that exploits the currently available processing resources available in state-of-the-art FPGAs is proposed. The work aims to get the optimal resource usage, high scalability and flexibility for different applications. To achieve these goals, the basic beamforming function is reformulated to be adapted to the DSP-cell architecture of state-of-the-art FPGAs. This allows performing simultaneous dynamic focusing on multiple A-scan lines. Some realistic examples are analyzed, evaluating resource requirements and maximum operating frequency. For example, a 128-channel system, with 128 scan lines and acquiring at 20 MSPS, can be built with 4 mid-range FPGAs, achieving up to 18000 frames per second, just limited by the maximum PRF. The gold standard Synthetic Transmit Aperture method (also called Total Focusing Method) can be carried out in real time at a processing rate of 140 high-resolution images per second (16 cm depth on steel)

  6. Matrix-Vector Based Fast Fourier Transformations on SDR Architectures

    NASA Astrophysics Data System (ADS)

    He, Y.; Hueske, K.; Götze, J.; Coersmeier, E.

    2008-05-01

    Today Discrete Fourier Transforms (DFTs) are applied in various radio standards based on OFDM (Orthogonal Frequency Division Multiplex). It is important to gain a fast computational speed for the DFT, which is usually achieved by using specialized Fast Fourier Transform (FFT) engines. However, in face of the Software Defined Radio (SDR) development, more general (parallel) processor architectures are often desirable, which are not tailored to FFT computations. Therefore, alternative approaches are required to reduce the complexity of the DFT. Starting from a matrix-vector based description of the FFT idea, we will present different factorizations of the DFT matrix, which allow a reduction of the complexity that lies between the original DFT and the minimum FFT complexity. The computational complexities of these factorizations and their suitability for implementation on different processor architectures are investigated.

  7. The NOAA Satellite Observing System Architecture Study

    NASA Technical Reports Server (NTRS)

    Volz, Stephen; Maier, Mark; Di Pietro, David

    2016-01-01

    NOAA is beginning a study, the NOAA Satellite Observing System Architecture (NSOSA) study, to plan for the future operational environmental satellite system that will follow GOES and JPSS, beginning about 2030. This is an opportunity to design a modern architecture with no pre-conceived notions regarding instruments, platforms, orbits, etc. The NSOSA study will develop and evaluate architecture alternatives to include partner and commercial alternatives that are likely to become available. The objectives will include both functional needs and strategic characteristics (e.g., flexibility, responsiveness, sustainability). Part of this study is the Space Platform Requirements Working Group (SPRWG), which is being commissioned by NESDIS. The SPRWG is charged to assess new or existing user needs and to provide relative priorities for observational needs in the context of the future architecture. SPRWG results will serve as input to the process for new foundational (Level 0 and Level 1) requirements for the next generation of NOAA satellites that follow the GOES-R, JPSS, DSCOVR, Jason-3, and COSMIC-2 missions.

  8. Some fast elliptic solvers on parallel architectures and their complexities

    NASA Technical Reports Server (NTRS)

    Gallopoulos, E.; Saad, Y.

    1989-01-01

    The discretization of separable elliptic partial differential equations leads to linear systems with special block tridiagonal matrices. Several methods are known to solve these systems, the most general of which is the Block Cyclic Reduction (BCR) algorithm which handles equations with nonconstant coefficients. A method was recently proposed to parallelize and vectorize BCR. In this paper, the mapping of BCR on distributed memory architectures is discussed, and its complexity is compared with that of other approaches including the Alternating-Direction method. A fast parallel solver is also described, based on an explicit formula for the solution, which has parallel computational compelxity lower than that of parallel BCR.

  9. Some fast elliptic solvers on parallel architectures and their complexities

    NASA Technical Reports Server (NTRS)

    Gallopoulos, E.; Saad, Youcef

    1989-01-01

    The discretization of separable elliptic partial differential equations leads to linear systems with special block triangular matrices. Several methods are known to solve these systems, the most general of which is the Block Cyclic Reduction (BCR) algorithm which handles equations with nonconsistant coefficients. A method was recently proposed to parallelize and vectorize BCR. Here, the mapping of BCR on distributed memory architectures is discussed, and its complexity is compared with that of other approaches, including the Alternating-Direction method. A fast parallel solver is also described, based on an explicit formula for the solution, which has parallel computational complexity lower than that of parallel BCR.

  10. On-board B-ISDN fast packet switching architectures. Phase 2: Development. Proof-of-concept architecture definition report

    NASA Technical Reports Server (NTRS)

    Shyy, Dong-Jye; Redman, Wayne

    1993-01-01

    For the next-generation packet switched communications satellite system with onboard processing and spot-beam operation, a reliable onboard fast packet switch is essential to route packets from different uplink beams to different downlink beams. The rapid emergence of point-to-point services such as video distribution, and the large demand for video conference, distributed data processing, and network management makes the multicast function essential to a fast packet switch (FPS). The satellite's inherent broadcast features gives the satellite network an advantage over the terrestrial network in providing multicast services. This report evaluates alternate multicast FPS architectures for onboard baseband switching applications and selects a candidate for subsequent breadboard development. Architecture evaluation and selection will be based on the study performed in phase 1, 'Onboard B-ISDN Fast Packet Switching Architectures', and other switch architectures which have become commercially available as large scale integration (LSI) devices.

  11. Fast underdetermined BSS architecture design methodology for real time applications.

    PubMed

    Mopuri, Suresh; Reddy, P Sreenivasa; Acharyya, Amit; Naik, Ganesh R

    2015-01-01

    In this paper, we propose a high speed architecture design methodology for the Under-determined Blind Source Separation (UBSS) algorithm using our recently proposed high speed Discrete Hilbert Transform (DHT) targeting real time applications. In UBSS algorithm, unlike the typical BSS, the number of sensors are less than the number of the sources, which is of more interest in the real time applications. The DHT architecture has been implemented based on sub matrix multiplication method to compute M point DHT, which uses N point architecture recursively and where M is an integer multiples of N. The DHT architecture and state of the art architecture are coded in VHDL for 16 bit word length and ASIC implementation is carried out using UMC 90 - nm technology @V DD = 1V and @ 1MHZ clock frequency. The proposed architecture implementation and experimental comparison results show that the DHT design is two times faster than state of the art architecture. PMID:26737514

  12. Contrasting genetic architectures of schizophrenia and other complex diseases using fast variance-components analysis.

    PubMed

    Loh, Po-Ru; Bhatia, Gaurav; Gusev, Alexander; Finucane, Hilary K; Bulik-Sullivan, Brendan K; Pollack, Samuela J; de Candia, Teresa R; Lee, Sang Hong; Wray, Naomi R; Kendler, Kenneth S; O'Donovan, Michael C; Neale, Benjamin M; Patterson, Nick; Price, Alkes L

    2015-12-01

    Heritability analyses of genome-wide association study (GWAS) cohorts have yielded important insights into complex disease architecture, and increasing sample sizes hold the promise of further discoveries. Here we analyze the genetic architectures of schizophrenia in 49,806 samples from the PGC and nine complex diseases in 54,734 samples from the GERA cohort. For schizophrenia, we infer an overwhelmingly polygenic disease architecture in which ≥71% of 1-Mb genomic regions harbor ≥1 variant influencing schizophrenia risk. We also observe significant enrichment of heritability in GC-rich regions and in higher-frequency SNPs for both schizophrenia and GERA diseases. In bivariate analyses, we observe significant genetic correlations (ranging from 0.18 to 0.85) for several pairs of GERA diseases; genetic correlations were on average 1.3 tunes stronger than the correlations of overall disease liabilities. To accomplish these analyses, we developed a fast algorithm for multicomponent, multi-trait variance-components analysis that overcomes prior computational barriers that made such analyses intractable at this scale.

  13. Contrasting genetic architectures of schizophrenia and other complex diseases using fast variance-components analysis.

    PubMed

    Loh, Po-Ru; Bhatia, Gaurav; Gusev, Alexander; Finucane, Hilary K; Bulik-Sullivan, Brendan K; Pollack, Samuela J; de Candia, Teresa R; Lee, Sang Hong; Wray, Naomi R; Kendler, Kenneth S; O'Donovan, Michael C; Neale, Benjamin M; Patterson, Nick; Price, Alkes L

    2015-12-01

    Heritability analyses of genome-wide association study (GWAS) cohorts have yielded important insights into complex disease architecture, and increasing sample sizes hold the promise of further discoveries. Here we analyze the genetic architectures of schizophrenia in 49,806 samples from the PGC and nine complex diseases in 54,734 samples from the GERA cohort. For schizophrenia, we infer an overwhelmingly polygenic disease architecture in which ≥71% of 1-Mb genomic regions harbor ≥1 variant influencing schizophrenia risk. We also observe significant enrichment of heritability in GC-rich regions and in higher-frequency SNPs for both schizophrenia and GERA diseases. In bivariate analyses, we observe significant genetic correlations (ranging from 0.18 to 0.85) for several pairs of GERA diseases; genetic correlations were on average 1.3 tunes stronger than the correlations of overall disease liabilities. To accomplish these analyses, we developed a fast algorithm for multicomponent, multi-trait variance-components analysis that overcomes prior computational barriers that made such analyses intractable at this scale. PMID:26523775

  14. Contrasting genetic architectures of schizophrenia and other complex diseases using fast variance components analysis

    PubMed Central

    Bhatia, Gaurav; Gusev, Alexander; Finucane, Hilary K; Bulik-Sullivan, Brendan K; Pollack, Samuela J; de Candia, Teresa R; Lee, Sang Hong; Wray, Naomi R; Kendler, Kenneth S; O’Donovan, Michael C; Neale, Benjamin M; Patterson, Nick

    2015-01-01

    Heritability analyses of GWAS cohorts have yielded important insights into complex disease architecture, and increasing sample sizes hold the promise of further discoveries. Here, we analyze the genetic architecture of schizophrenia in 49,806 samples from the PGC, and nine complex diseases in 54,734 samples from the GERA cohort. For schizophrenia, we infer an overwhelmingly polygenic disease architecture in which ≥71% of 1Mb genomic regions harbor ≥1 variant influencing schizophrenia risk. We also observe significant enrichment of heritability in GC-rich regions and in higher-frequency SNPs for both schizophrenia and GERA diseases. In bivariate analyses, we observe significant genetic correlations (ranging from 0.18 to 0.85) among several pairs of GERA diseases; genetic correlations were on average 1.3x stronger than correlations of overall disease liabilities. To accomplish these analyses, we developed a fast algorithm for multi-component, multi-trait variance components analysis that overcomes prior computational barriers that made such analyses intractable at this scale. PMID:26523775

  15. Parallel algorithms and architectures for very fast AI search

    SciTech Connect

    Gu, J.

    1989-01-01

    A wide range of problems in natural and artificial intelligence, computer vision, computer graphics, database engineering, operations research, symbolic logic, robot manipulation and hardware design automation are special cases of Consistent Labeling Problems (CLP). CLP has long been viewed as an efficient computational model based on a unit constraint relation containing 2N-tuples of units and labels which specifies which N-tuples of labels are compatible with which N-tuples of units. Due to high computation cost and design complexity, most currently best-known algorithms and computer architectures have usually proven infeasible for solving the consistent labeling problems. Efficiency in CLP computation during the last decade has only been improved a few times. This research presents several parallel algorithms and computer architectures for solving CLP within a parallel processing framework. For problems of practical interest, 4 to 10 orders of magnitude of efficiency improvement can be easily reached. Several simple wafer scale computer architectures are given which implement these parallel algorithms at a surprisingly low cost.

  16. On-board B-ISDN fast packet switching architectures. Phase 1: Study

    NASA Technical Reports Server (NTRS)

    Faris, Faris; Inukai, Thomas; Lee, Fred; Paul, Dilip; Shyy, Dong-Jye

    1993-01-01

    The broadband integrate services digital network (B-ISDN) is an emerging telecommunications technology that will meet most of the telecommunications networking needs in the mid-1990's to early next century. The satellite-based system is well positioned for providing B-ISDN service with its inherent capabilities of point-to-multipoint and broadcast transmission, virtually unlimited connectivity between any two points within a beam coverage, short deployment time of communications facility, flexible and dynamic reallocation of space segment capacity, and distance insensitive cost. On-board processing satellites, particularly in a multiple spot beam environment, will provide enhanced connectivity, better performance, optimized access and transmission link design, and lower user service cost. The following are described: the user and network aspects of broadband services; the current development status in broadband services; various satellite network architectures including system design issues; and various fast packet switch architectures and their detail designs.

  17. The fast beam condition monitor BCM1F backend electronics upgraded MicroTCA-based architecture

    NASA Astrophysics Data System (ADS)

    Zagozdzinska, Agnieszka A.; Bell, Alan; Dabrowski, Anne E.; Guthoff, Moritz; Hempel, Maria; Henschel, Hans; Karacheban, Olena; Lange, Wolfgang; Lohmann, Wolfgang; Lokhovitskiy, Arkady; Leonard, Jessica L.; Loos, Robert; Miraglia, Marco; Penno, Marek; Pozniak, Krzysztof T.; Przyborowski, Dominik; Stickland, David; Trapani, Pier Paolo; Romaniuk, Ryszard; Ryjov, Vladimir; Walsh, Roberval

    2014-11-01

    The Beam Radiation Instrumentation and Luminosity Project of the CMS experiment, consists of several beam monitoring systems. One system, the upgraded Fast Beams Condition Monitor, is based on 24 single crystal CVD diamonds with a double-pad sensor metallization and a custom designed readout. Signals for real-time monitoring are transmitted to the counting room, where they are received and processed by new back-end electronics designed to extract information on LHC collision, beam induced background and activation products. The Slow Control Driver is designed for the front-end electronics configuration and control. The system architecture and the upgrade status will be presented.

  18. Observations of fast VHF-bright positive breakdown

    NASA Astrophysics Data System (ADS)

    Stock, M.; Krehbiel, P. R.; Rison, W.; Lapierre, J. L.; Edens, H. E.

    2014-12-01

    Positive breakdown during lightning discharges is generally considered to be weak and slowly propagating, as high speed video observations show it to be optically weak, and studies of the development of cloud-to-ground (CG) and intracloud (IC) flashes show development in the negative charge region to be slow. With the proper instrumentation, however, fast positive breakdown is a relatively common feature of both CG and IC flashes. The breakdown is bright at VHF, but is smoothly continuous so that time-of-arrival VHF mapping systems such as the Lightning Mapping Array are usually unable to detect or locate its occurrence. However, the breakdown is easily locatable using interferometric mapping techniques. Such an interferometer was developed at NM Tech in the 1980s and used in the CaPE studies at Kennedy Space Center in 1991, where it observed fast (1-6 × 107 m/s), VHF-bright positive leaders propagating away from the source region of negative CG return strokes (Shao et al., 1995). Here we report new observations of fast positive breakdown, obtained with Langmuir Laboratory's flash-continuous broadband VHF interferometer, that confirm and substantially expand our understanding of the phenomena. Numerous examples have been observed following return strokes of negative CG flashes, including bolt-from-blue discharges, and during K-processes of both IC and CG flashes. The breakdown typically propagates a few kilometers at speeds on the order of 107 m/s and frequently produces some of the brightest radiation of the flash. A particularly interesting feature of the breakdown is that it propagates into regions of previously un-ionized air. Then following the breakdown, frequently no further VHF emission is seen along or beyond its channel, indicating that the channel formed is not conducting. But on occasion, especially during cloud-to-ground flashes, the end of the fast positive breakdown turns into a normal, slowly propagating positive leader.

  19. An End-to-End Architecture for Science Goal Driven Observing

    NASA Technical Reports Server (NTRS)

    Jones, Jeremy; Grosvenor, Sandy; Koratkar, Anuradha; Memarsadeghi, Nargess; Wolf, Karl; Obenschain, Arthur F. (Technical Monitor)

    2002-01-01

    New observatories will have greater on-board storage capacity and on-board processing capabilities. The new bottleneck will be download capacity. The cost of downlink time and limitations of bandwidth will end the era where all exposure data is downloaded and all data processing is performed on the ground. In addition, observing campaigns involving inherently variable targets will need scheduling flexibility to focus observing time and data download on exposures that are scientifically interesting. The ability to quickly recognize and react to such events by re-prioritizing the observing schedule will be an essential characteristic for maximizing scientific returns. It will also be a step towards increasing spacecraft autonomy, a major goal of NASA's strategic plan. The science goal monitoring (SGM) system is a proof-of-concept effort to address these challenges. We are developing an interactive distributed system that will use on-board processing and storage combined with event-driven interfaces with ground-based processing and operations, to enable fast re-prioritization of observing schedules, and to minimize time spent on non-optimized observations. SGM is initially aimed towards time-tagged observing modes used frequently in spectroscopic studies of varying targets. In particular, the SGM is collaborating with the proposed MIDEX-class mission Kronos team. The variable targets that Kronos seeks to study make an adaptive system such as SGM particularly valuable for achieving mission goals. However, the architecture and interfaces will also be designed for easy adaptability to other observing platforms, including ground-based systems and to work with different scheduling and pipeline processing systems. This talk will focus on our strategy for developing SGM and the technical challenges that we have encountered. We will discuss the SGM architecture as it applies to the Kronos mission and explain how it is scalable to other missions.

  20. Fast readout architectures for large arrays of digital pixels: examples and applications.

    PubMed

    Gabrielli, A

    2014-01-01

    Modern pixel detectors, particularly those designed and constructed for applications and experiments for high-energy physics, are commonly built implementing general readout architectures, not specifically optimized in terms of speed. High-energy physics experiments use bidimensional matrices of sensitive elements located on a silicon die. Sensors are read out via other integrated circuits bump bonded over the sensor dies. The speed of the readout electronics can significantly increase the overall performance of the system, and so here novel forms of readout architectures are studied and described. These circuits have been investigated in terms of speed and are particularly suited for large monolithic, low-pitch pixel detectors. The idea is to have a small simple structure that may be expanded to fit large matrices without affecting the layout complexity of the chip, while maintaining a reasonably high readout speed. The solutions might be applied to devices for applications not only in physics but also to general-purpose pixel detectors whenever online fast data sparsification is required. The paper presents also simulations on the efficiencies of the systems as proof of concept for the proposed ideas.

  1. Fast Readout Architectures for Large Arrays of Digital Pixels: Examples and Applications

    PubMed Central

    Gabrielli, A.

    2014-01-01

    Modern pixel detectors, particularly those designed and constructed for applications and experiments for high-energy physics, are commonly built implementing general readout architectures, not specifically optimized in terms of speed. High-energy physics experiments use bidimensional matrices of sensitive elements located on a silicon die. Sensors are read out via other integrated circuits bump bonded over the sensor dies. The speed of the readout electronics can significantly increase the overall performance of the system, and so here novel forms of readout architectures are studied and described. These circuits have been investigated in terms of speed and are particularly suited for large monolithic, low-pitch pixel detectors. The idea is to have a small simple structure that may be expanded to fit large matrices without affecting the layout complexity of the chip, while maintaining a reasonably high readout speed. The solutions might be applied to devices for applications not only in physics but also to general-purpose pixel detectors whenever online fast data sparsification is required. The paper presents also simulations on the efficiencies of the systems as proof of concept for the proposed ideas. PMID:24778588

  2. A Services-Oriented Architecture for Water Observations Data

    NASA Astrophysics Data System (ADS)

    Maidment, D. R.; Zaslavsky, I.; Valentine, D.; Tarboton, D. G.; Whitenack, T.; Whiteaker, T.; Hooper, R.; Kirschtel, D.

    2009-04-01

    Water observations data are time series of measurements made at point locations of water level, flow, and quality and corresponding data for climatic observations at point locations such as gaged precipitation and weather variables. A services-oriented architecture has been built for such information for the United States that has three components: hydrologic information servers, hydrologic information clients, and a centralized metadata cataloging system. These are connected using web services for observations data and metadata defined by an XML-based language called WaterML. A Hydrologic Information Server can be built by storing observations data in a relational database schema in the CUAHSI Observations Data Model, in which case, web services access to the data and metadata is automatically provided by query functions for WaterML that are wrapped around the relational database within a web server. A Hydrologic Information Server can also be constructed by custom-programming an interface to an existing water agency web site so that responds to the same queries by producing data in WaterML as do the CUAHSI Observations Data Model based servers. A Hydrologic Information Client is one which can interpret and ingest WaterML metadata and data. We have two client applications for Excel and ArcGIS and have shown how WaterML web services can be ingested into programming environments such as Matlab and Visual Basic. HIS Central, maintained at the San Diego Supercomputer Center is a repository of observational metadata for WaterML web services which presently indexes 342 million data measured at 1.75 million locations. This is the largest catalog water observational data for the United States presently in existence. As more observation networks join what we term "CUAHSI Water Data Federation", and the system accommodates a growing number of sites, measured parameters, applications, and users, rapid and reliable access to large heterogeneous hydrologic data repositories

  3. A Framework for Fast Image Deconvolution With Incomplete Observations.

    PubMed

    Simoes, Miguel; Almeida, Luis B; Bioucas-Dias, Jose; Chanussot, Jocelyn

    2016-11-01

    In image deconvolution problems, the diagonalization of the underlying operators by means of the fast Fourier transform (FFT) usually yields very large speedups. When there are incomplete observations (e.g., in the case of unknown boundaries), standard deconvolution techniques normally involve non-diagonalizable operators, resulting in rather slow methods or, otherwise, use inexact convolution models, resulting in the occurrence of artifacts in the enhanced images. In this paper, we propose a new deconvolution framework for images with incomplete observations that allows us to work with diagonalized convolution operators, and therefore is very fast. We iteratively alternate the estimation of the unknown pixels and of the deconvolved image, using, e.g., an FFT-based deconvolution method. This framework is an efficient, high-quality alternative to existing methods of dealing with the image boundaries, such as edge tapering. It can be used with any fast deconvolution method. We give an example in which a state-of-the-art method that assumes periodic boundary conditions is extended, using this framework, to unknown boundary conditions. Furthermore, we propose a specific implementation of this framework, based on the alternating direction method of multipliers (ADMM). We provide a proof of convergence for the resulting algorithm, which can be seen as a "partial" ADMM, in which not all variables are dualized. We report experimental comparisons with other primal-dual methods, where the proposed one performed at the level of the state of the art. Four different kinds of applications were tested in the experiments: deconvolution, deconvolution with inpainting, superresolution, and demosaicing, all with unknown boundaries.

  4. A Framework for Fast Image Deconvolution With Incomplete Observations.

    PubMed

    Simoes, Miguel; Almeida, Luis B; Bioucas-Dias, Jose; Chanussot, Jocelyn

    2016-11-01

    In image deconvolution problems, the diagonalization of the underlying operators by means of the fast Fourier transform (FFT) usually yields very large speedups. When there are incomplete observations (e.g., in the case of unknown boundaries), standard deconvolution techniques normally involve non-diagonalizable operators, resulting in rather slow methods or, otherwise, use inexact convolution models, resulting in the occurrence of artifacts in the enhanced images. In this paper, we propose a new deconvolution framework for images with incomplete observations that allows us to work with diagonalized convolution operators, and therefore is very fast. We iteratively alternate the estimation of the unknown pixels and of the deconvolved image, using, e.g., an FFT-based deconvolution method. This framework is an efficient, high-quality alternative to existing methods of dealing with the image boundaries, such as edge tapering. It can be used with any fast deconvolution method. We give an example in which a state-of-the-art method that assumes periodic boundary conditions is extended, using this framework, to unknown boundary conditions. Furthermore, we propose a specific implementation of this framework, based on the alternating direction method of multipliers (ADMM). We provide a proof of convergence for the resulting algorithm, which can be seen as a "partial" ADMM, in which not all variables are dualized. We report experimental comparisons with other primal-dual methods, where the proposed one performed at the level of the state of the art. Four different kinds of applications were tested in the experiments: deconvolution, deconvolution with inpainting, superresolution, and demosaicing, all with unknown boundaries. PMID:27576251

  5. Observation of Hot Remnant Islands using Fast Thomson Scattering

    NASA Astrophysics Data System (ADS)

    Morton, L. A.; Young, W. C.; den Hartog, D. J.; Hegna, C. C.; Parke, E.; Reusch, J. A.; Jacobson, C. M.

    2015-11-01

    The MST Fast Thomson Scattering Laser, operating with repetition rates of up to 100 kHz for up to 25 laser pulses, has allowed direct observation of temperature structures produced by tearing modes rotating at 10 - 20 kHz. A hot spot observed by Fast TS coincides with the O-point of the dominant m/n = 1/6 mode reconstructed by MHD modeling from edge magnetic measurements. The electron thermal conductivity inside the island is estimated from power balance to be 75 m2/s. However, MHD modeling also predicts overlap between the n =6 and n =7 islands, producing chaotic field lines and total loss of the island flux surfaces. Ensemble-averaged data from the slower burst laser (25 kHz for 8 pulses) also indicates overlap between the temperature fluctuations associated with these modes. These temperature fluctuation also exhibits the large higher-harmonic content that characterizes the hot island in the single-shot cases. DEBS finite-beta MHD simulations qualitatively reproduce MST temperature structures in certain cases. This work is supported by the US DoE and the NSF.

  6. Fast camera observations of injected and intrinsic dust in TEXTOR

    NASA Astrophysics Data System (ADS)

    Shalpegin, A.; Vignitchouk, L.; Erofeev, I.; Brochard, F.; Litnovsky, A.; Bozhenkov, S.; Bykov, I.; den Harder, N.; Sergienko, G.

    2015-12-01

    Stereoscopic fast camera observations of pre-characterized carbon and tungsten dust injection in TEXTOR are reported, along with the modelling of tungsten particle trajectories with MIGRAINe. Particle tracking analysis of the video data showed significant differences in dust dynamics: while carbon flakes were prone to agglomeration and explosive destruction, spherical tungsten particles followed quasi-inertial trajectories. Although this inertial nature prevented any validation of the force models used in MIGRAINe, comparisons between the experimental and simulated lifetimes provide a direct evidence of dust temperature overestimation in dust dynamics codes. Furthermore, wide-view observations of the TEXTOR interior revealed the main production mechanism of intrinsic carbon dust, as well as the location of probable dust remobilization sites.

  7. Fast Emission Estimates in China Constrained by Satellite Observations (Invited)

    NASA Astrophysics Data System (ADS)

    Mijling, B.; van der A, R.

    2013-12-01

    Emission inventories of air pollutants are crucial information for policy makers and form important input data for air quality models. Unfortunately, bottom-up emission inventories, compiled from large quantities of statistical data, are easily outdated for an emerging economy such as China, where rapid economic growth changes emissions accordingly. Alternatively, top-down emission estimates from satellite observations of air constituents have important advantages of being spatial consistent, having high temporal resolution, and enabling emission updates shortly after the satellite data become available. Constraining emissions from concentration measurements is, however, computationally challenging. Within the GlobEmission project of the European Space Agency (ESA) a new algorithm has been developed, specifically designed for fast daily emission estimates of short-lived atmospheric species on a mesoscopic scale (0.25 × 0.25 degree) from satellite observations of column concentrations. The algorithm needs only one forward model run from a chemical transport model to calculate the sensitivity of concentration to emission, using trajectory analysis to account for transport away from the source. By using a Kalman filter in the inverse step, optimal use of the a priori knowledge and the newly observed data is made. We apply the algorithm for NOx emission estimates in East China, using the CHIMERE model together with tropospheric NO2 column retrievals of the OMI and GOME-2 satellite instruments. The observations are used to construct a monthly emission time series, which reveal important emission trends such as the emission reduction measures during the Beijing Olympic Games, and the impact and recovery from the global economic crisis. The algorithm is also able to detect emerging sources (e.g. new power plants) and improve emission information for areas where proxy data are not or badly known (e.g. shipping emissions). The new emission estimates result in a better

  8. Limb Event Brightenings and Fast Ejection Using IRIS Mission Observations

    NASA Astrophysics Data System (ADS)

    Tavabi, E.; Koutchmy, S.; Golub, L.

    2015-10-01

    The Interface Region Imaging Spectrograph (IRIS) of the recently commissioned NASA small explorer mission provides significantly more complete and higher resolution spectral coverage of the dynamical conditions inside the chromosphere and transition region (TR) than has been available ever before. High temporal, spatial (0.3'') and spectral resolution observations from the ultraviolet IRIS spectra near the solar limb reveal high-energy limb event brightenings (LEBs) at low chromospheric heights at about 1 Mm above the limb. They can be characterized as explosive events producing jets. We selected two events showing spectra of a confined eruption just off or near the quiet-Sun limb, the jet part showing obvious moving material with short-duration large Doppler shifts in three directions that were identified as macrospicules on slit-jaw (SJ) images in Si iv and He ii 304 Å. The events were analyzed from a sequence of very close rasters taken near the central meridian and the South Pole limb. We analyzed the processed SJ images and the simultaneously observed fast spectral sequences, which have large Doppler shifts, with a pair of redshifted elements together with a faster blueshifted element from almost the same position. Shifts correspond to velocities of up to 100 km s^{-1} in projection on the plane of the sky. Erupting spicules and macrospicules from these regions are visible in images taken before and after the spectra. The cool low first ionization potential (FIP) element simultaneous line emissions of the Mg ii h and k resonance lines do not clearly show a similar signature because of optical thickness effects, but the Si iv broadband SJ images do. The bidirectional plasma jets ejected from a small reconnection site are interpreted to be the result of coronal loop-loop interactions that lead to reconnection in nearby sites.

  9. Architecture of scalability file system for meteorological observation data storing

    NASA Astrophysics Data System (ADS)

    Botygin, I. A.; Popov, V. N.; Tartakovsky, V. A.; Sherstnev, V. S.

    2015-11-01

    The approach allows to organize distributed storage of large amounts of diverse data in order to further their parallel processing in high performance cluster systems for problems of climatic processes analysis and forecasting. For different classes of data was used the practice of using meta descriptions - like formalism associated with certain categories of resources. Development of a metadata component was made based on an analysis of data of surface meteorological observations, atmosphere vertical sounding, atmosphere wind sounding, weather radar observing, observations from satellites and others. A common set of metadata components was formed for their general description. The structure and content of the main components of a generalized meta descriptions are presented in detail on the example of reporting meteorological observations from land and sea stations.

  10. Development of a structured observational method for the systematic assessment of school food-choice architecture.

    PubMed

    Ozturk, Orgul D; McInnes, Melayne M; Blake, Christine E; Frongillo, Edward A; Jones, Sonya J

    2016-01-01

    The objective of this study is to develop a structured observational method for the systematic assessment of the food-choice architecture that can be used to identify key points for behavioral economic intervention intended to improve the health quality of children's diets. We use an ethnographic approach with observations at twelve elementary schools to construct our survey instrument. Elements of the structured observational method include decision environment, salience, accessibility/convenience, defaults/verbal prompts, number of choices, serving ware/method/packaging, and social/physical eating environment. Our survey reveals important "nudgeable" components of the elementary school food-choice architecture, including precommitment and default options on the lunch line.

  11. Description and Simulation of a Fast Packet Switch Architecture for Communication Satellites

    NASA Technical Reports Server (NTRS)

    Quintana, Jorge A.; Lizanich, Paul J.

    1995-01-01

    The NASA Lewis Research Center has been developing the architecture for a multichannel communications signal processing satellite (MCSPS) as part of a flexible, low-cost meshed-VSAT (very small aperture terminal) network. The MCSPS architecture is based on a multifrequency, time-division-multiple-access (MF-TDMA) uplink and a time-division multiplex (TDM) downlink. There are eight uplink MF-TDMA beams, and eight downlink TDM beams, with eight downlink dwells per beam. The information-switching processor, which decodes, stores, and transmits each packet of user data to the appropriate downlink dwell onboard the satellite, has been fully described by using VHSIC (Very High Speed Integrated-Circuit) Hardware Description Language (VHDL). This VHDL code, which was developed in-house to simulate the information switching processor, showed that the architecture is both feasible and viable. This paper describes a shared-memory-per-beam architecture, its VHDL implementation, and the simulation efforts.

  12. Resource efficient hardware architecture for fast computation of running max/min filters.

    PubMed

    Torres-Huitzil, Cesar

    2013-01-01

    Running max/min filters on rectangular kernels are widely used in many digital signal and image processing applications. Filtering with a k × k kernel requires of k(2) - 1 comparisons per sample for a direct implementation; thus, performance scales expensively with the kernel size k. Faster computations can be achieved by kernel decomposition and using constant time one-dimensional algorithms on custom hardware. This paper presents a hardware architecture for real-time computation of running max/min filters based on the van Herk/Gil-Werman (HGW) algorithm. The proposed architecture design uses less computation and memory resources than previously reported architectures when targeted to Field Programmable Gate Array (FPGA) devices. Implementation results show that the architecture is able to compute max/min filters, on 1024 × 1024 images with up to 255 × 255 kernels, in around 8.4 milliseconds, 120 frames per second, at a clock frequency of 250 MHz. The implementation is highly scalable for the kernel size with good performance/area tradeoff suitable for embedded applications. The applicability of the architecture is shown for local adaptive image thresholding. PMID:24288456

  13. Geochemistry at 4 Vesta: Observations Using Fast Neutrons

    NASA Technical Reports Server (NTRS)

    Lawrence, David J.; Prettyman, Thomas H.; Feldman, William C.; Bazell, David; Mittlefehldt, David W.; Peplowski, Patrick N.; Reedy, Robert C.

    2012-01-01

    Dawn is currently in orbit around the asteroid 4 Vesta, and one of the major objectives of the mission is to probe the relationship of Vesta to the Howardite, Eucrite, and Diogenite (HED) meteorites. As Vesta is an example of a differentiated planetary embryo, Dawn will also provide fundamental information about planetary evolution in the early solar system [1]. To help accomplish this overall goal, the Dawn spacecraft carries the Gamma-Ray and Neutron Detector (GRaND). GRaND uses planetary gamma-ray and neutron spectroscopy to measure the surface elemental composition of Vesta and will provide information that is unique and complementary to that provided by the other Dawn instruments and investigations. Gamma-ray and neutron spectroscopy is a standard technique for measuring planetary compositions [2], having successfully made measurements at near-Earth asteroids, the Moon, Mars, Mercury and now Vesta. GRaND has made the first measurements of the neutron spectrum from any asteroid (previous asteroid measurements were only made with gamma-rays). Dawn has been collecting data at Vesta since July 2011. The prime data collection period for GRaND is the Low-Altitude Mapping Orbit (LAMO), which started on 12 December 2011 and will last through spring 2012. During LAMO, the Dawn spacecraft orbits at an average altitude of 210 km above the surface of Vesta, which allows good neutron and gamma-ray signals to be detected from Vesta. A description of the overall goals of GRaND and a summary of the initial findings are given elsewhere [3,4]. The subject of this study is to present the information that will be returned from GRaND using fast neutron measurements. Here, we discuss what fast neutrons can reveal about Vesta s surface composition, how such data can address Dawn science goals, and describe fast neutron measurements made in the early portion of the Vesta LAMO phase.

  14. Knowledge-intensive global optimization of Earth observing system architectures: a climate-centric case study

    NASA Astrophysics Data System (ADS)

    Selva, D.

    2014-10-01

    Requirements from the different disciplines of the Earth sciences on satellite missions have become considerably more stringent in the past decade, while budgets in space organizations have not increased to support the implementation of new systems meeting these requirements. At the same time, new technologies such as optical communications, electrical propulsion, nanosatellite technology, and new commercial agents and models such as hosted payloads are now available. The technical and programmatic environment is thus ideal to conduct architectural studies that look with renewed breadth and adequate depth to the myriad of new possible architectures for Earth Observing Systems. Such studies are challenging tasks, since they require formidable amounts of data and expert knowledge in order to be conducted. Indeed, trade-offs between hundreds or thousands of requirements from different disciplines need to be considered, and millions of combinations of instrument technologies and orbits are possible. This paper presents a framework and tool to support the exploration of such large architectural tradespaces. The framework can be seen as a model-based, executable science traceability matrix that can be used to compare the relative value of millions of different possible architectures. It is demonstrated with an operational climate-centric case study. Ultimately, this framework can be used to assess opportunities for international collaboration and look at architectures for a global Earth observing system, including space, air, and ground assets.

  15. Ultra-fast data-mining hardware architecture based on stochastic computing.

    PubMed

    Morro, Antoni; Canals, Vincent; Oliver, Antoni; Alomar, Miquel L; Rossello, Josep L

    2015-01-01

    Minimal hardware implementations able to cope with the processing of large amounts of data in reasonable times are highly desired in our information-driven society. In this work we review the application of stochastic computing to probabilistic-based pattern-recognition analysis of huge database sets. The proposed technique consists in the hardware implementation of a parallel architecture implementing a similarity search of data with respect to different pre-stored categories. We design pulse-based stochastic-logic blocks to obtain an efficient pattern recognition system. The proposed architecture speeds up the screening process of huge databases by a factor of 7 when compared to a conventional digital implementation using the same hardware area.

  16. 4. "ARCHITECTURAL, FLOOR PLANELEVATIONSSECTIONS, OBSERVATION BUNKERS." Specifications No. ENG (NASA)04353631; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. "ARCHITECTURAL, FLOOR PLAN-ELEVATIONS-SECTIONS, OBSERVATION BUNKERS." Specifications No. ENG (NASA)04-353-63-1; Drawing No. 60-09-34; sheet 325. Ref. No. A-13. D.O. SERIES 1597/87. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Observation Bunker 1-D-3, Test Area 1-125, northwest end of Altair Boulevard, Boron, Kern County, CA

  17. Development of a structured observational method for the systematic assessment of school food-choice architecture.

    PubMed

    Ozturk, Orgul D; McInnes, Melayne M; Blake, Christine E; Frongillo, Edward A; Jones, Sonya J

    2016-01-01

    The objective of this study is to develop a structured observational method for the systematic assessment of the food-choice architecture that can be used to identify key points for behavioral economic intervention intended to improve the health quality of children's diets. We use an ethnographic approach with observations at twelve elementary schools to construct our survey instrument. Elements of the structured observational method include decision environment, salience, accessibility/convenience, defaults/verbal prompts, number of choices, serving ware/method/packaging, and social/physical eating environment. Our survey reveals important "nudgeable" components of the elementary school food-choice architecture, including precommitment and default options on the lunch line. PMID:26654767

  18. Attitude determination using vector observations: A fast optimal matrix algorithm

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis

    1993-01-01

    The attitude matrix minimizing Wahba's loss function is computed directly by a method that is competitive with the fastest known algorithm for finding this optimal estimate. The method also provides an estimate of the attitude error covariance matrix. Analysis of the special case of two vector observations identifies those cases for which the TRIAD or algebraic method minimizes Wahba's loss function.

  19. A Lean, Fast Mars Round-trip Mission Architecture: Using Current Technologies for a Human Mission in the 2030s

    NASA Technical Reports Server (NTRS)

    Bailey, Lora; Folta, David; Barbee, Brent W.; Vaughn, Frank; Kirchman, Frank; Englander, Jacob; Campbell, Bruce; Thronson, Harley; Lin, Tzu Yu

    2013-01-01

    We present a lean fast-transfer architecture concept for a first human mission to Mars that utilizes current technologies and two pivotal parameters: an end-to-end Mars mission duration of approximately one year, and a deep space habitat of approximately 50 metric tons. These parameters were formulated by a 2012 deep space habitat study conducted at the NASA Johnson Space Center (JSC) that focused on a subset of recognized high- engineering-risk factors that may otherwise limit space travel to destinations such as Mars or near-Earth asteroid (NEA)s. With these constraints, we model and promote Mars mission opportunities in the 2030s enabled by a combination of on-orbit staging, mission element pre-positioning, and unique round-trip trajectories identified by state-of-the-art astrodynamics algorithms.

  20. Architecture of a flagellar apparatus in the fast-swimming magnetotactic bacterium MO-1

    PubMed Central

    Ruan, Juanfang; Kato, Takayuki; Santini, Claire-Lise; Miyata, Tomoko; Kawamoto, Akihiro; Zhang, Wei-Jia; Bernadac, Alain; Wu, Long-Fei; Namba, Keiichi

    2012-01-01

    The bacterial flagellum is a motility organelle that consists of a rotary motor and a helical propeller. The flagella usually work individually or by forming a loose bundle to produce thrust. However, the flagellar apparatus of marine bacterium MO-1 is a tight bundle of seven flagellar filaments enveloped in a sheath, and it has been a mystery as to how the flagella rotate smoothly in coordination. Here we have used electron cryotomography to visualize the 3D architecture of the sheathed flagella. The seven filaments are enveloped with 24 fibrils in the sheath, and their basal bodies are arranged in an intertwined hexagonal array similar to the thick and thin filaments of vertebrate skeletal muscles. This complex and exquisite architecture strongly suggests that the fibrils counter-rotate between flagella in direct contact to minimize the friction of high-speed rotation of individual flagella in the tight bundle within the sheath to enable MO-1 cells to swim at about 300 µm/s. PMID:23184985

  1. Optical observations of the fast nova V2491 Cyg

    NASA Astrophysics Data System (ADS)

    Tomov, T.; Mikolajewski, M.; Ragan, E.; Swierczynski, E.; Wychudzki, P.

    2008-04-01

    We report on optical spectral observations and UBVRI brightness estimations obtained with 60/90 cm Schmidt and 60 cm Cassegrain telescopes of the Nicolaus Copernicus University Observatory (Torun, Poland). The nova V2491 Cyg was discovered on Apr. 10.728 UT with about 7.7 mag on unfiltered CCD frames (IAUC#8934). Additionally, the X-ray emission was detected for the prenova several months ago (ATel#1473).

  2. Protein domain architectures provide a fast, efficient and scalable alternative to sequence-based methods for comparative functional genomics

    PubMed Central

    Koehorst, Jasper J.; Saccenti, Edoardo; Schaap, Peter J.; Martins dos Santos, Vitor A. P.; Suarez-Diez, Maria

    2016-01-01

    A functional comparative genome analysis is essential to understand the mechanisms underlying bacterial evolution and adaptation. Detection of functional orthologs using standard global sequence similarity methods faces several problems; the need for defining arbitrary acceptance thresholds for similarity and alignment length, lateral gene acquisition and the high computational cost for finding bi-directional best matches at a large scale. We investigated the use of protein domain architectures for large scale functional comparative analysis as an alternative method. The performance of both approaches was assessed through functional comparison of 446 bacterial genomes sampled at different taxonomic levels. We show that protein domain architectures provide a fast and efficient alternative to methods based on sequence similarity to identify groups of functionally equivalent proteins within and across taxonomic bounderies. As the computational cost scales linearly, and not quadratically with the number of genomes, it is suitable for large scale comparative analysis. Running both methods in parallel pinpoints potential functional adaptations that may add to bacterial fitness.

  3. Protein domain architectures provide a fast, efficient and scalable alternative to sequence-based methods for comparative functional genomics

    PubMed Central

    Koehorst, Jasper J.; Saccenti, Edoardo; Schaap, Peter J.; Martins dos Santos, Vitor A. P.; Suarez-Diez, Maria

    2016-01-01

    A functional comparative genome analysis is essential to understand the mechanisms underlying bacterial evolution and adaptation. Detection of functional orthologs using standard global sequence similarity methods faces several problems; the need for defining arbitrary acceptance thresholds for similarity and alignment length, lateral gene acquisition and the high computational cost for finding bi-directional best matches at a large scale. We investigated the use of protein domain architectures for large scale functional comparative analysis as an alternative method. The performance of both approaches was assessed through functional comparison of 446 bacterial genomes sampled at different taxonomic levels. We show that protein domain architectures provide a fast and efficient alternative to methods based on sequence similarity to identify groups of functionally equivalent proteins within and across taxonomic bounderies. As the computational cost scales linearly, and not quadratically with the number of genomes, it is suitable for large scale comparative analysis. Running both methods in parallel pinpoints potential functional adaptations that may add to bacterial fitness. PMID:27703668

  4. Computer architecture providing high-performance and low-cost solutions for fast fMRI reconstruction

    NASA Astrophysics Data System (ADS)

    Chao, Hui; Goddard, J. Iain

    1998-07-01

    Due to the dynamic nature of brain studies in functional magnetic resonance imaging (fMRI), fast pulse sequences such as echo planar imaging (EPI) and spiral are often used for higher temporal resolution. Hundreds of frames of two- dimensional (2-D) images or multiple three-dimensional (3-D) images are often acquired to cover a larger space and time range. Therefore, fMRI often requires a much larger data storage, faster data transfer rate and higher processing power than conventional MRI. In Mercury Computer Systems' PCI-based embedded computer system, the computer architecture allows the concurrent use of a DMA engine for data transfer and CPU for data processing. This architecture allows a multicomputer to distribute processing and data with minimal time spent transferring data. Different types and numbers of processors are available to optimize system performance for the application. The fMRI reconstruction was first implemented in Mercury's PCI-based embedded computer system by using one digital signal processing (DSP) chip, with the host computer running under the Windows NTR platform. Double buffers in SRAM or cache were created for concurrent I/O and processing. The fMRI reconstruction was then implemented in parallel using multiple DSP chips. Data transfer and interprocessor synchronization were carefully managed to optimize algorithm efficiency. The image reconstruction times were measured with different numbers of processors ranging from one to 10. With one DSP chip, the timing for reconstructing 100 fMRI images measuring 128 X 64 pixels was 1.24 seconds, which is already faster than most existing commercial MRI systems. This PCI-based embedded multicomputer architecture, which has a nearly linear improvement in performance, provides high performance for fMRI processing. In summary, this embedded multicomputer system allows the choice of computer topologies to fit the specific application to achieve maximum system performance.

  5. Synoptic Observations for Physical Characterization of Fast Rotator NEOs

    NASA Astrophysics Data System (ADS)

    Kikwaya Eluo, Jean-Baptiste; Hergenrother, Carl W.

    2014-11-01

    NEOs can be studied not only dynamically, to learn about their impact hazard, but also physically, to establish various properties important both to better address their potential hazard and also to understand what they can tell us about the origin of the solar system and its ongoing processes.Taking advantage of the two-meter-class telescopes around Tucson, we plan to observe NEOs synoptically using telescopes at three different locations: VATT (Vatican Advanced Technology Telescope) at Mount Graham (longitude: -109.8719, latitude: 32.7016, elevation: 10469 feet), Bok 2.3 m at Kitt Peak (longitude: -111.6004, latitude: 31.9629, elevation: 6795 feet) and Kuiper 1.5-m at Mount Bigelow (longitude: -110.7345, latitude: 32.4165, elevation: 8235 feet). All three telescopes will aim simultaneously at the same object, each with a different instrument. The three telescopes will be part of the Arizona Robotic Telescope (ART) network, a University of Arizona initiative to provide near real-time observations of Target of Opportunity objects across the visible and near-infrared wavelengths. The VATT-4K optical imager mounted on the VATT has already been used for photometry. In the future we plan to utilize the BCSpec (Boller & Chivens Spectrograph) for visible spectroscopy on Bok 2.3 meter and a near-infrared instrument on Kuiper 1.5 meter. We report here the preliminary results of several NEOs whose rotation rate and color have been estimated using photometry with images recorded with VATT-4K. 2009 SQ104 has a rotation rate of 6.85+/- 0.03 h, 2014 AY28 has a rotation rate of 0.91 +/- 0.02 h, 2014 EC of 0.54 +/-0.04 h, 2014 FA44 of 3.45 +/- 0.05 h, and 2014 KS40 of 1.11 +/- 0.06 h.

  6. Optoelectronic analogs of self-programming neural nets - Architecture and methodologies for implementing fast stochastic learning by simulated annealing

    NASA Technical Reports Server (NTRS)

    Farhat, Nabil H.

    1987-01-01

    Self-organization and learning is a distinctive feature of neural nets and processors that sets them apart from conventional approaches to signal processing. It leads to self-programmability which alleviates the problem of programming complexity in artificial neural nets. In this paper architectures for partitioning an optoelectronic analog of a neural net into distinct layers with prescribed interconnectivity pattern to enable stochastic learning by simulated annealing in the context of a Boltzmann machine are presented. Stochastic learning is of interest because of its relevance to the role of noise in biological neural nets. Practical considerations and methodologies for appreciably accelerating stochastic learning in such a multilayered net are described. These include the use of parallel optical computing of the global energy of the net, the use of fast nonvolatile programmable spatial light modulators to realize fast plasticity, optical generation of random number arrays, and an adaptive noisy thresholding scheme that also makes stochastic learning more biologically plausible. The findings reported predict optoelectronic chips that can be used in the realization of optical learning machines.

  7. Optoelectronic analogs of self-programming neural nets: architecture and methodologies for implementing fast stochastic learning by simulated annealing.

    PubMed

    Farhat, N H

    1987-12-01

    Self-organization and learning is a distinctive feature of neural nets and processors that sets them apart from conventional approaches to signal processing. It leads to self-programmability which alleviates the problem of programming complexity in artificial neural nets. In this paper architectures for partitioning an optoelectronic analog of a neural net into distinct layers with prescribed interconnectivity pattern to enable stochastic learning by simulated annealing in the context of a Boltzmann machine are presented. Stochastic learning is of interest because of its relevance to the role of noise in biological neural nets. Practical considerations and methodologies for appreciably accelerating stochastic learning in such a multilayered net are described. These include the use of parallel optical computing of the global energy of the net, the use of fast nonvolatile programmable spatial light modulators to realize fast plasticity, optical generation of random number arrays, and an adaptive noisy thresholding scheme that also makes stochastic learning more biologically plausible. The findings reported predict optoelectronic chips that can be used in the realization of optical learning machines.

  8. A Distributed, Cross-Agency Software Architecture for Sharing Climate Models and Observational Data Sets (Invited)

    NASA Astrophysics Data System (ADS)

    Crichton, D. J.; Mattmann, C. A.; Braverman, A. J.; Cinquini, L.

    2010-12-01

    The Jet Propulsion Laboratory (JPL) has been developing a distributed infrastructure to supporting access and sharing of Earth Science observational data sets with climate models to support model-to-data intercomparison for climate research. The Climate Data Exchange (CDX), a framework for linking distributed repositories coupled with tailored distributed services to support the intercomparison, provides mechanisms to discover, access, transform and share observational and model output data [2]. These services are critical to allowing data to remain distributed, but be pulled together to support analysis. The architecture itself provides a services-based approach allowing for integrating and working with other computing infrastructures through well-defined software interfaces. Specifically, JPL has worked very closely with the Earth System Grid (ESG) and the Program for Climate Model Diagnostics and Intercomparisons (PCMDI) at Lawrence Livermore National Laboratory (LLNL) to integrate NASA science data systems with the Earth System Grid to support federation across organizational and agency boundaries [1]. Of particular interest near-term is enabling access to NASA observational data along-side climate models for the Coupled Model Intercomparison Project known as CMIP5. CMIP5 is the protocol that will be used for the next International Panel for Climate Change (IPCC) Assessment Report (AR5) on climate change. JPL and NASA are currently engaged in a project to ensure that observational data are available to the climate research community through the Earth System Grid. By both developing a software architecture and working with the key architects for the ESG, JPL has been successful at building a prototype for AR5. This presentation will review the software architecture including core principles, models and interfaces, the Climate Data Exchange project and specific goals to support access to both observational data and models for AR5. It will highlight the progress

  9. A fast and scalable content transfer protocol (FSCTP) for VANET based architecture

    NASA Astrophysics Data System (ADS)

    Santamaria, A. F.; Scala, F.; Sottile, C.; Tropea, M.; Raimondo, P.

    2016-05-01

    In the modern Vehicular Ad-hoc Networks (VANET) based systems even more applications require lot of data to be exchanged among vehicles and infrastructure entities. Due to mobility issues and unplanned events that may occurs it is important that contents should be transferred as fast as possible by taking into account consistence of the exchanged data and reliability of the connections. In order to face with these issues, in this work we propose a new transfer data protocol called Fast and Scalable Content Transfer Protocol (FSCTP). This protocol allows a data transfer by using a bidirectional channel among content suppliers and receivers exploiting several cooperative sessions. Each session will be based on User Datagram Protocol (UDP) and Transmission Control Protocol (TCP) to start and manage data transfer. Often in urban area the VANET scenario is composed of several vehicle and infrastructures points. The main idea is to exploit ad-hoc connections between vehicles to reach content suppliers. Moreover, in order to obtain a faster data transfer, more than one session is exploited to achieve a higher transfer rate. Of course it is important to manage data transfer between suppliers to avoid redundancy and resource wastages. The main goal is to instantiate a cooperative multi-session layer efficiently managed in a VANET environment exploiting the wide coverage area and avoiding common issues known in this kind of scenario. High mobility and unstable connections between nodes are some of the most common issues to address, thus a cooperative work between network, transport and application layers needs to be designed.

  10. IMAGE Observations of Sounder Stimulated and Naturally Occurring Fast Z mode Cavity Noise

    NASA Astrophysics Data System (ADS)

    Sonwalkar, V. S.; Taylor, C.; Reddy, A.

    2015-12-01

    We report first observations of sounder stimulated and naturally occurring fast Z mode (ZM) cavity noise detected by the Radio Plasma Imager (RPI) on the IMAGE satellite. The fast Z mode cavity noise is a banded, structure-less radio emission trapped inside fast Z mode cavities, which are characterized by a minimum (fz,min) in fast Z mode cut-off frequency (fz) along a geomagnetic field line [Gurnett et al., JGR, 1983]. Fast Z mode waves reflect at fz ~ f, where f is the wave frequency. Waves in the frequency range fz,min < f < fz,max, where fz,max is the maximum fz above fz,min altitude, are trapped within the cavity as they bounce back and forth between reflection altitudes (fz ~ f) above and below the fz,min altitude. These trapped waves will be observed by a satellite passing through the cavity. The observed cavity noise lower cutoff is at the local Z mode cut-off frequency (fz,Sat) and the upper cut-off is presumably close to fz,max. The cavity noise is observed typically inside the plasmasphere. Comparison of cavity noise as observed on the plasmagram obtained during active sounding with that observed on the dynamic spectra obtained from the interspersed passive wave measurements indicate that the cavity noise is either stimulated by transmissions from the sounder (RPI) or is of natural origin. The sounder stimulated noise is often accompanied by fast Z mode echoes. The naturally occurring cavity noise is observed on both the plasmagram and the dynamic spectra. We believe the stimulated cavity noise is generated due to scattering from small-scale irregularities of waves transmitted by RPI. One potential candidate for the source of naturally occurring Z mode cavity noise is the ring current electrons that can generate fast ZM waves via higher order cyclotron resonance [Nishimura et al., Earth Planets Space, 2007].

  11. A Massively Parallel Adaptive Fast-Multipole Method on Heterogeneous Architectures

    SciTech Connect

    Lashuk, Ilya; Chandramowlishwaran, Aparna; Langston, Harper; Nguyen, Tuan-Anh; Sampath, Rahul S; Shringarpure, Aashay; Vuduc, Richard; Ying, Lexing; Zorin, Denis; Biros, George

    2009-01-01

    We present new scalable algorithms and an implementation of the kernel-independent fast multiple method (KIFMM), employing hybrid distributed memory message passing (via MPI) and shared memory/streaming using graphics processing unit (GPU) acceleration to rapidly evaluate two-body non-oscillatory potentials. On traditional CPU-only systems, our implementation scales well up to 30 billion unknowns on 65k cores (AMD/CRAY-based Kraken system at NSF/NICS) on tree data structures with 25 levels between leaves. On GPU-enabled systems, we achieve 30 x speedup for problems of up to 256 million points on 256 GPUs (Lincoln at NSF/NCSA) over a comparable CPU-only implementation. Both of these demonstrations represent the largest and fastest of their kind of which we are aware. We achieve scalability at extreme core counts by extending the initial work of Ying et al. (ACM/IEEE SC 03) with a new approach to scalable MPI-based tree construction and partitioning. For the sub-components of KIFMM, which direct- and approximate-interactions, target evaluation, and source-to-multipole translations, we use CUDA-based GPU-acceleration to achieve excellent performance. To do so requires carefully constructed data structure transformations, which we describe, and whose cost we show is minor. Taken together, these components show promise for ultrascalable FMM in the petascale era and beyond.

  12. Scanning electron microscopic observation of the architecture of collagen fibres in chicken M. iliotibialis lateralis.

    PubMed

    Iwamoto, H; Tabata, S; Kakakibara, K; Nishimura, S; Gotoh, T; Koga, Y

    2001-07-01

    1. The collagen architecture of M. iliotibialis lateralis in chicken was observed under the scanning electron microscope after muscle maceration in NaOH. 2. Immunohistochemical methods showed Type I and III collagens to be distributed over both perimysium and endomysium. 3. Thick perimysium around secondary myofibre fasciculi was composed of many large longitudinal collagen bundles and a few small circumferential bundles. In contrast, thin perimysium around primary myofibre fasciculi showed mainly circumferential bundles. 4. Endomysium had a honeycomb-like structure and consisted of a fine collagen mesh, its main fibre striation being circumferential. 5. It is suggested that functional demand differs between thick perimysium and thin endomysium.

  13. Trans-ethnic Meta-analysis and Functional Annotation Illuminates the Genetic Architecture of Fasting Glucose and Insulin.

    PubMed

    Liu, Ching-Ti; Raghavan, Sridharan; Maruthur, Nisa; Kabagambe, Edmond Kato; Hong, Jaeyoung; Ng, Maggie C Y; Hivert, Marie-France; Lu, Yingchang; An, Ping; Bentley, Amy R; Drolet, Anne M; Gaulton, Kyle J; Guo, Xiuqing; Armstrong, Loren L; Irvin, Marguerite R; Li, Man; Lipovich, Leonard; Rybin, Denis V; Taylor, Kent D; Agyemang, Charles; Palmer, Nicholette D; Cade, Brian E; Chen, Wei-Min; Dauriz, Marco; Delaney, Joseph A C; Edwards, Todd L; Evans, Daniel S; Evans, Michele K; Lange, Leslie A; Leong, Aaron; Liu, Jingmin; Liu, Yongmei; Nayak, Uma; Patel, Sanjay R; Porneala, Bianca C; Rasmussen-Torvik, Laura J; Snijder, Marieke B; Stallings, Sarah C; Tanaka, Toshiko; Yanek, Lisa R; Zhao, Wei; Becker, Diane M; Bielak, Lawrence F; Biggs, Mary L; Bottinger, Erwin P; Bowden, Donald W; Chen, Guanjie; Correa, Adolfo; Couper, David J; Crawford, Dana C; Cushman, Mary; Eicher, John D; Fornage, Myriam; Franceschini, Nora; Fu, Yi-Ping; Goodarzi, Mark O; Gottesman, Omri; Hara, Kazuo; Harris, Tamara B; Jensen, Richard A; Johnson, Andrew D; Jhun, Min A; Karter, Andrew J; Keller, Margaux F; Kho, Abel N; Kizer, Jorge R; Krauss, Ronald M; Langefeld, Carl D; Li, Xiaohui; Liang, Jingling; Liu, Simin; Lowe, William L; Mosley, Thomas H; North, Kari E; Pacheco, Jennifer A; Peyser, Patricia A; Patrick, Alan L; Rice, Kenneth M; Selvin, Elizabeth; Sims, Mario; Smith, Jennifer A; Tajuddin, Salman M; Vaidya, Dhananjay; Wren, Mary P; Yao, Jie; Zhu, Xiaofeng; Ziegler, Julie T; Zmuda, Joseph M; Zonderman, Alan B; Zwinderman, Aeilko H; Adeyemo, Adebowale; Boerwinkle, Eric; Ferrucci, Luigi; Hayes, M Geoffrey; Kardia, Sharon L R; Miljkovic, Iva; Pankow, James S; Rotimi, Charles N; Sale, Michele M; Wagenknecht, Lynne E; Arnett, Donna K; Chen, Yii-Der Ida; Nalls, Michael A; Province, Michael A; Kao, W H Linda; Siscovick, David S; Psaty, Bruce M; Wilson, James G; Loos, Ruth J F; Dupuis, Josée; Rich, Stephen S; Florez, Jose C; Rotter, Jerome I; Morris, Andrew P; Meigs, James B

    2016-07-01

    Knowledge of the genetic basis of the type 2 diabetes (T2D)-related quantitative traits fasting glucose (FG) and insulin (FI) in African ancestry (AA) individuals has been limited. In non-diabetic subjects of AA (n = 20,209) and European ancestry (EA; n = 57,292), we performed trans-ethnic (AA+EA) fine-mapping of 54 established EA FG or FI loci with detailed functional annotation, assessed their relevance in AA individuals, and sought previously undescribed loci through trans-ethnic (AA+EA) meta-analysis. We narrowed credible sets of variants driving association signals for 22/54 EA-associated loci; 18/22 credible sets overlapped with active islet-specific enhancers or transcription factor (TF) binding sites, and 21/22 contained at least one TF motif. Of the 54 EA-associated loci, 23 were shared between EA and AA. Replication with an additional 10,096 AA individuals identified two previously undescribed FI loci, chrX FAM133A (rs213676) and chr5 PELO (rs6450057). Trans-ethnic analyses with regulatory annotation illuminate the genetic architecture of glycemic traits and suggest gene regulation as a target to advance precision medicine for T2D. Our approach to utilize state-of-the-art functional annotation and implement trans-ethnic association analysis for discovery and fine-mapping offers a framework for further follow-up and characterization of GWAS signals of complex trait loci. PMID:27321945

  14. Trans-ethnic Meta-analysis and Functional Annotation Illuminates the Genetic Architecture of Fasting Glucose and Insulin.

    PubMed

    Liu, Ching-Ti; Raghavan, Sridharan; Maruthur, Nisa; Kabagambe, Edmond Kato; Hong, Jaeyoung; Ng, Maggie C Y; Hivert, Marie-France; Lu, Yingchang; An, Ping; Bentley, Amy R; Drolet, Anne M; Gaulton, Kyle J; Guo, Xiuqing; Armstrong, Loren L; Irvin, Marguerite R; Li, Man; Lipovich, Leonard; Rybin, Denis V; Taylor, Kent D; Agyemang, Charles; Palmer, Nicholette D; Cade, Brian E; Chen, Wei-Min; Dauriz, Marco; Delaney, Joseph A C; Edwards, Todd L; Evans, Daniel S; Evans, Michele K; Lange, Leslie A; Leong, Aaron; Liu, Jingmin; Liu, Yongmei; Nayak, Uma; Patel, Sanjay R; Porneala, Bianca C; Rasmussen-Torvik, Laura J; Snijder, Marieke B; Stallings, Sarah C; Tanaka, Toshiko; Yanek, Lisa R; Zhao, Wei; Becker, Diane M; Bielak, Lawrence F; Biggs, Mary L; Bottinger, Erwin P; Bowden, Donald W; Chen, Guanjie; Correa, Adolfo; Couper, David J; Crawford, Dana C; Cushman, Mary; Eicher, John D; Fornage, Myriam; Franceschini, Nora; Fu, Yi-Ping; Goodarzi, Mark O; Gottesman, Omri; Hara, Kazuo; Harris, Tamara B; Jensen, Richard A; Johnson, Andrew D; Jhun, Min A; Karter, Andrew J; Keller, Margaux F; Kho, Abel N; Kizer, Jorge R; Krauss, Ronald M; Langefeld, Carl D; Li, Xiaohui; Liang, Jingling; Liu, Simin; Lowe, William L; Mosley, Thomas H; North, Kari E; Pacheco, Jennifer A; Peyser, Patricia A; Patrick, Alan L; Rice, Kenneth M; Selvin, Elizabeth; Sims, Mario; Smith, Jennifer A; Tajuddin, Salman M; Vaidya, Dhananjay; Wren, Mary P; Yao, Jie; Zhu, Xiaofeng; Ziegler, Julie T; Zmuda, Joseph M; Zonderman, Alan B; Zwinderman, Aeilko H; Adeyemo, Adebowale; Boerwinkle, Eric; Ferrucci, Luigi; Hayes, M Geoffrey; Kardia, Sharon L R; Miljkovic, Iva; Pankow, James S; Rotimi, Charles N; Sale, Michele M; Wagenknecht, Lynne E; Arnett, Donna K; Chen, Yii-Der Ida; Nalls, Michael A; Province, Michael A; Kao, W H Linda; Siscovick, David S; Psaty, Bruce M; Wilson, James G; Loos, Ruth J F; Dupuis, Josée; Rich, Stephen S; Florez, Jose C; Rotter, Jerome I; Morris, Andrew P; Meigs, James B

    2016-07-01

    Knowledge of the genetic basis of the type 2 diabetes (T2D)-related quantitative traits fasting glucose (FG) and insulin (FI) in African ancestry (AA) individuals has been limited. In non-diabetic subjects of AA (n = 20,209) and European ancestry (EA; n = 57,292), we performed trans-ethnic (AA+EA) fine-mapping of 54 established EA FG or FI loci with detailed functional annotation, assessed their relevance in AA individuals, and sought previously undescribed loci through trans-ethnic (AA+EA) meta-analysis. We narrowed credible sets of variants driving association signals for 22/54 EA-associated loci; 18/22 credible sets overlapped with active islet-specific enhancers or transcription factor (TF) binding sites, and 21/22 contained at least one TF motif. Of the 54 EA-associated loci, 23 were shared between EA and AA. Replication with an additional 10,096 AA individuals identified two previously undescribed FI loci, chrX FAM133A (rs213676) and chr5 PELO (rs6450057). Trans-ethnic analyses with regulatory annotation illuminate the genetic architecture of glycemic traits and suggest gene regulation as a target to advance precision medicine for T2D. Our approach to utilize state-of-the-art functional annotation and implement trans-ethnic association analysis for discovery and fine-mapping offers a framework for further follow-up and characterization of GWAS signals of complex trait loci.

  15. Observation of fast-ion Doppler-shifted cyclotron resonance with shear Alfven waves

    SciTech Connect

    Zhang Yang; Heidbrink, W. W.; Boehmer, H.; McWilliams, R.; Vincena, S.; Carter, T. A.; Gekelman, W.; Leneman, D.; Pribyl, P.

    2008-10-15

    The Doppler-shifted cyclotron resonance ({omega}-k{sub z}v{sub z}={omega}{sub f}) between fast ions and shear Alfven waves is experimentally investigated ({omega}, wave frequency; k{sub z}, axial wavenumber; v{sub z}, fast-ion axial speed; {omega}{sub f}, fast-ion cyclotron frequency). A test particle beam of fast ions is launched by a Li{sup +} source in the helium plasma of the LArge Plasma Device (LAPD) [W. Gekelman, H. Pfister, Z. Lucky, J. Bamber, D. Leneman, and J. Maggs, Rev. Sci. Instrum. 62, 2875 (1991)], with shear Alfven waves (SAW) (amplitude {delta} B/B up to 1%) launched by a loop antenna. A collimated fast-ion energy analyzer measures the nonclassical spreading of the beam, which is proportional to the resonance with the wave. A resonance spectrum is observed by launching SAWs at 0.3-0.8{omega}{sub ci}. Both the magnitude and frequency dependence of the beam-spreading are in agreement with the theoretical prediction using a Monte Carlo Lorentz code that launches fast ions with an initial spread in real/velocity space and random phases relative to the wave. Measured wave magnetic field data are used in the simulation.

  16. FAST Observations of Acceleration Processes in the Cusp--Evidence for Parallel Electric Fields

    NASA Technical Reports Server (NTRS)

    Pfaff, R. F.. Jr.; Carlson, C.; McFadden, J.; Ergun, R.; Clemmons, J.; Klumpar D.; Strangeway, R.

    1999-01-01

    The existence of precipitating keV ions in the Earth's cusp originating at the magnetosheath provide unique means to test our understanding of particle acceleration and parallel electric fields in the lower altitude acceleration region. On numerous occasions, the FAST (The Fast Auroral Snapshot) spacecraft has encountered the Earth's cusp regions near its apogee of 4175 km which are characterized by their signatures of dispersed keV ion injections. The FAST instruments also reveal a complex microphysics inherent to many, but not all, of the cusp regions encountered by the spacecraft, that include upgoing ion beams and conics, inverted-V electrons, upgoing electron beams, and spikey DC-coupled electric fields and plasma waves. Detailed inspection of the FAST data often show clear modulation of the precipitating magnetosheath ions that indicate that they are affected by local electric potentials. For example, the magnetosheath ion precipitation is sometimes abruptly shut off precisely in regions where downgoing localized inverted-V electrons are observed. Such observations support the existence of a localized process, such as parallel electric fields, above the spacecraft which accelerate the electrons downward and consequently impede the precipitating ion precipitation. Other acceleration events in the cusp are sometimes organized with an apparent cellular structure that suggests Alfven waves or other large-scale phenomena are controlling the localized potentials. We examine several cusp encounters by the FAST satellite where the modulation of energetic session on acceleration particle populations reveals evidence of localized acceleration, most likely by parallel electric fields.

  17. Observation of mode conversion of m = minus 1 fast waves on the Alfven resonance layer

    SciTech Connect

    Amagishi, Y. )

    1990-03-12

    Fast waves or MHD surface waves of {ital m}={minus}1 (poloidal mode number of left-hand rotation) have been observed to be mode converted on the Alfven resonance layer. The converted waves are a quasielectrostatic form of the shear Alfven waves, i.e., kinetic Alfven wave and/or the resistive mode.

  18. Fast X-ray micro-CT for real-time 4D observation

    NASA Astrophysics Data System (ADS)

    Takano, H.; Yoshida, K.; Tsuji, T.; Koyama, T.; Tsusaka, Y.; Kagoshima, Y.

    2009-09-01

    Fast X-ray computed tomography (CT) system with sub-second order measurement for single CT acquisition has been developed. The system, consisting of a high-speed sample rotation stage and a high-speed X-ray camera, is constructed at synchrotron radiation beamline in order to utilize fully intense X-rays. A time-resolving CT movie (i.e. 4D CT) can be available by operating the fast CT system continuously. Real-time observation of water absorbing process of super-absorbent polymer (SAP) has been successfully performed with the 4D CT operation.

  19. MODELING SUPER-FAST MAGNETOSONIC WAVES OBSERVED BY SDO IN ACTIVE REGION FUNNELS

    SciTech Connect

    Ofman, L.; Liu, W.; Title, A.; Aschwanden, M.

    2011-10-20

    Recently, quasi-periodic, rapidly propagating waves have been observed in extreme ultraviolet by the Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA) instrument in about 10 flare/coronal mass ejection (CME) events thus far. A typical example is the 2010 August 1 C3.2 flare/CME event that exhibited arc-shaped wave trains propagating in an active region (AR) magnetic funnel with {approx}5% intensity variations at speeds in the range of 1000-2000 km s{sup -1}. The fast temporal cadence and high sensitivity of AIA enabled the detection of these waves. We identify them as fast magnetosonic waves driven quasi-periodically at the base of the flaring region and develop a three-dimensional MHD model of the event. For the initial state we utilize the dipole magnetic field to model the AR and include gravitationally stratified density at coronal temperature. At the coronal base of the AR, we excite the fast magnetosonic wave by periodic velocity pulsations in the photospheric plane confined to a funnel of magnetic field lines. The excited fast magnetosonic waves have similar amplitude, wavelength, and propagation speeds as the observed wave trains. Based on the simulation results, we discuss the possible excitation mechanism of the waves, their dynamical properties, and the use of the observations for coronal MHD seismology.

  20. Coastal Ocean Observing Network - Open Source Architecture for Data Management and Web-Based Data Services

    NASA Astrophysics Data System (ADS)

    Pattabhi Rama Rao, E.; Venkat Shesu, R.; Udaya Bhaskar, T. V. S.

    2012-07-01

    The observations from the oceans are the backbone for any kind of operational services, viz. potential fishing zone advisory services, ocean state forecast, storm surges, cyclones, monsoon variability, tsunami, etc. Though it is important to monitor open Ocean, it is equally important to acquire sufficient data in the coastal ocean through coastal ocean observing systems for re-analysis, analysis and forecast of coastal ocean by assimilating different ocean variables, especially sub-surface information; validation of remote sensing data, ocean and atmosphere model/analysis and to understand the processes related to air-sea interaction and ocean physics. Accurate information and forecast of the state of the coastal ocean at different time scales is vital for the wellbeing of the coastal population as well as for the socio-economic development of the country through shipping, offshore oil and energy etc. Considering the importance of ocean observations in terms of understanding our ocean environment and utilize them for operational oceanography, a large number of platforms were deployed in the Indian Ocean including coastal observatories, to acquire data on ocean variables in and around Indian Seas. The coastal observation network includes HF Radars, wave rider buoys, sea level gauges, etc. The surface meteorological and oceanographic data generated by these observing networks are being translated into ocean information services through analysis and modelling. Centralized data management system is a critical component in providing timely delivery of Ocean information and advisory services. In this paper, we describe about the development of open-source architecture for real-time data reception from the coastal observation network, processing, quality control, database generation and web-based data services that includes on-line data visualization and data downloads by various means.

  1. Observational constraints on dark energy with a fast varying equation of state

    NASA Astrophysics Data System (ADS)

    De Felice, Antonio; Nesseris, Savvas; Tsujikawa, Shinji

    2012-05-01

    We place observational constraints on models with the late-time cosmic acceleration based on a number of parametrizations allowing fast transitions for the equation of state of dark energy. In addition to the model of Linder and Huterer where the dark energy equation of state w monotonically grows or decreases in time, we propose two new parametrizations in which w has an extremum. We carry out the likelihood analysis with the three parametrizations by using the observational data of supernovae type Ia, cosmic microwave background, and baryon acoustic oscillations. Although the transient cosmic acceleration models with fast transitions can give rise to the total chi square smaller than that in the Λ-Cold-Dark-Matter (ΛCDM) model, these models are not favored over ΛCDM when one uses the Akaike information criterion which penalizes the extra degrees of freedom present in the parametrizations.

  2. Multi-wavelength Observations of Fast Infrared Flares from V404 Cygni in 2015

    NASA Astrophysics Data System (ADS)

    Dallilar, Yigit; Casella, Piergiorgio; Marsh, Tom; Gandhi, Poshak; Fender, Rob; Littlefair, Stuart; Eikenberry, Steve; Garner, Alan; Stelter, Deno; Dhillon, Vik; Mooley, Kunal

    2016-07-01

    We used the fast photometry mode of our new Canarias InfraRed Camera Experiment (CIRCE) on the 10.4-meter Gran Telescopio Canarias to observe V404 Cyg, a stellar mass black hole binary, on June 25, 2015 during its 2015 outburst. CIRCE provided 10Hz sampling in the Ks-band (2.2 microns) In addition, we obtained simultaneous multi wavelength data from our collaborators: three GHz radio bands from the AMI telescope and three optical/UV bands (u', g', r') from ULTRACAM on the William Herschel 4.2-meter telescope. We identify fast (1-second) IR flares with optical counterparts of varying strength/color, which we argue arise from a relativistic jet outflow. These observations provide important constraints on the emission processes and physical conditions in the jet forming region in V404 Cygni. We will discuss these results as well as their implications for relativistic jet formation around stellar-mass black holes.

  3. Multi-wavelength Observations of Fast Infrared Flares from V404 Cygni in 2015

    NASA Astrophysics Data System (ADS)

    Eikenberry, Stephen S.; Dallilar, Yigit; Garner, Alan; Deno Stelter, R.; Gandhi, Poshak; Dhillon, Vik; Littlefair, Stuart; Marsh, Thomas; Fender, Rob P.; Mooley, Kunal

    2016-04-01

    We used the fast photometry mode of our new Canarias InfraRed Camera Experiment (CIRCE) on the 10.4-meter Gran Telescopio Canarias to observe V404 Cyg, a stellar mass black hole binary, on June 25, 2015 during its 2015 outburst. CIRCE provided 10Hz sampling in the Ks-band (2.2 microns) In addition, we obtained simultaneous multi wavelength data from our collaborators: three GHz radio bands from the AMI telescope and three optical/UV bands (u', g', r') from ULTRACAM on the William Herschel 4.2-meter telescope. We identify fast (1-second) IR flares with optical counterparts of varying strength/color, which we argue arise from a relativistic jet outflow. These observations provide important constraints on the emission processes and physical conditions in the jet forming region in V404 Cygni. We will discuss these results as well as their implications for relativistic jet formation around stellar-mass black holes.

  4. Observation of quasi-periodic solar radio bursts associated with propagating fast-mode waves

    NASA Astrophysics Data System (ADS)

    Goddard, C. R.; Nisticò, G.; Nakariakov, V. M.; Zimovets, I. V.; White, S. M.

    2016-10-01

    Aims: Radio emission observations from the Learmonth and Bruny Island radio spectrographs are analysed to determine the nature of a train of discrete, periodic radio "sparks" (finite-bandwidth, short-duration isolated radio features) which precede a type II burst. We analyse extreme ultraviolet (EUV) imaging from SDO/AIA at multiple wavelengths and identify a series of quasi-periodic rapidly-propagating enhancements, which we interpret as a fast wave train, and link these to the detected radio features. Methods: The speeds and positions of the periodic rapidly propagating fast waves and the coronal mass ejection (CME) were recorded using running-difference images and time-distance analysis. From the frequency of the radio sparks the local electron density at the emission location was estimated for each. Using an empirical model for the scaling of density in the corona, the calculated electron density was used to obtain the height above the surface at which the emission occurs, and the propagation velocity of the emission location. Results: The period of the radio sparks, δtr = 1.78 ± 0.04 min, matches the period of the fast wave train observed at 171 Å, δtEUV = 1.7 ± 0.2 min. The inferred speed of the emission location of the radio sparks, 630 km s-1, is comparable to the measured speed of the CME leading edge, 500 km s-1, and the speeds derived from the drifting of the type II lanes. The calculated height of the radio emission (obtained from the density) matches the observed location of the CME leading edge. From the above evidence we propose that the radio sparks are caused by the quasi-periodic fast waves, and the emission is generated as they catch up and interact with the leading edge of the CME. The movie associated to Fig. 2 is available at http://www.aanda.org

  5. MMS Observations of magnetospheric fast ion flows and magnetic dipolarization near the dusk-meridian flank

    NASA Astrophysics Data System (ADS)

    Pollock, Craig; Chen, Li-Jen; Wang, Shan; Torbert, Roy; Russell, Christopher; Reiff, Patricia; Giles, Barbara; Burch, James

    2016-04-01

    The concept of a magnetic dipolarization front propagating earthward through Earth's magnetotail and accompanied by fast earthward ion flows, both as consequences of magnetic reconnection occurring tail-ward of an observation point, is well known. Examples of this phenomenology have recently been referred to as reconnection fronts. It is less common to imagine similar signature sets in contexts other than the imagined noon-midnight magnetotail configuration. Nevertheless, signatures of 800 km/s earthward ion flows were observed contemporaneously with distinct but temporary increases in the GSE-z component of the magnetic field at a geocentric distance of the order of 10 RE, in the vicinity (but somewhat tail-ward) of Earth's equatorial dusk terminator on August 12, 2015. These observations were obtained using the Fast Plasma Investigation (FPI) and the Fields electric fields experiment on NASA's Magnetospheric Multiscale (MMS) mission. Several interesting questions arise as to the nature of the observed plasma and field signatures and their drivers in cases such as this. To what degree are they analogous to the magnetotail reconnection fronts previously alluded to? And, to the degree that they are, what kind of reconnection geometry can we envision as giving rise to these signatures at such a location? We will present sample observations and discuss their significance from this point of view.

  6. Properties of Supergiant Fast X-Ray Transients as Observed by Swift

    NASA Technical Reports Server (NTRS)

    Romano, P.; Vercellone, S.; Krimm, H. A.; Esposito, P.; Cusumano, C.; LaParola, V.; Mangano, V.; Kennea, J. A.; Burrows, D. N.; Pagani, C.; Gehrels, N.

    2011-01-01

    We present the most recent results from our investigation on Supergiant Fast X-ray Transients, a class of High-Mass X-ray Binaries, with a possible counterpart in the gamma-ray energy band. Since 2007 Swift has contributed to this new field by detecting outbursts from these fast transients with the BAT and by following them for days with the XRT. Thus, we demonstrated that while the brightest phase of the outburst only lasts a few hours, further activity is observed at lower fluxes for a remarkably longer time, up to weeks. Furthermore, we have performed several campaigns of intense monitoring with the XRT, assessing the fraction of the time these sources spend in each phase, and their duty cycle of inactivity.

  7. Fast Variability in Selected Chromospherically Active Dwarf Stars and Observational Equipment for Their Study

    NASA Astrophysics Data System (ADS)

    Bogdanovski, Rumen G.

    2015-06-01

    The observations of variable stars, especially those which show fast changes in their brightness, require high speed and high precision photometry. In order to study events like low amplitude optical oscillations and small scale fluctuations in the light curves, synchronous observations are required. These observations have to be carried out simultaneously at two or more, preferably distant, sites (Romanyuk et al., 2001), which allows the identification and elimination of artifacts produced by the equipment and the atmospheric interferences. In this way the fine structure of the light curve is revealed with a significant certainty. In order to study these events a new high speed time synchronized photometric system had to be designed, which addresses the requirements of the observations of high frequency subtle phenomena during stellar flares. It provides remote automatedand centralized control of the photometric equipment over a computer network,as well as remotemonitoring. Furthermore, some preliminary data processing can be performed at the time the data is obtained.

  8. Effects of Ramadan fasting on cardiovascular risk factors: a prospective observational study

    PubMed Central

    2012-01-01

    Background Previous research has shown that Ramadan fasting has beneficial effects on cardiovascular risk factors, however there are controversies. In the present study, the effect of Ramadan fasting on cardiovascular risk factors has been investigated. Method This is a prospective observational study that was carried out in a group of patients with at least one cardiovascular risk factor (including history of documented previous history of either coronary artery disease (CAD), metabolic syndrome or cerebro-vascular disease in past 10 y). Eighty two volunteers including 38 male and 44 female, aged 29–70 y, mean 54.0 ± 10 y, with a previous history of either coronary artery disease, metabolic syndrome or cerebro-vascular disease were recruited. Subjects attended the metabolic unit after at least 10 h fasting, before and after Ramadan who were been fasting for at least 10 days. A fasting blood sample was obtained, blood pressure was measured and body mass index (BMI) was calculated. Lipids profile, fasting blood sugar (FBS) and insulin, homocysteine (hcy), high-sensitivity C-reactive protein (hs-CRP) and complete blood count (CBC) were analyzed on all blood samples. Results A significant improvement in 10 years coronary heart disease risk (based on Framingham risk score) was found (13.0 ± 8 before Ramadan and 10.8 ±7 after Ramadan, P <0.001, t test).There was a significant higher HDL-c, WBC, RBC and platelet count (PLT), and lower plasma cholesterol, triglycerides, LDL-c, VLDL-c, systolic blood pressure, body mass index and waist circumference after Ramadan (P <0.05, t test). The changes in FBS, insulin,Homeostasis Model Assessment Insulin Resistance (HOMA-IR), hcy, hs-CRP and diastolic blood pressure before and after Ramadan were not significant (P >0.05, t test). Conclusions This study shows a significant improvement in 10 years coronary heart disease risk score and other cardiovascular risk factors such as lipids profile, systolic blood

  9. Versatile illumination platform and fast optical switch to give standard observation camera gated active imaging capacity

    NASA Astrophysics Data System (ADS)

    Grasser, R.; Peyronneaudi, Benjamin; Yon, Kevin; Aubry, Marie

    2015-10-01

    CILAS, subsidiary of Airbus Defense and Space, develops, manufactures and sales laser-based optronics equipment for defense and homeland security applications. Part of its activity is related to active systems for threat detection, recognition and identification. Active surveillance and active imaging systems are often required to achieve identification capacity in case for long range observation in adverse conditions. In order to ease the deployment of active imaging systems often complex and expensive, CILAS suggests a new concept. It consists on the association of two apparatus working together. On one side, a patented versatile laser platform enables high peak power laser illumination for long range observation. On the other side, a small camera add-on works as a fast optical switch to select photons with specific time of flight only. The association of the versatile illumination platform and the fast optical switch presents itself as an independent body, so called "flash module", giving to virtually any passive observation systems gated active imaging capacity in NIR and SWIR.

  10. Fast-mode Coronal Wave Trains Detected by SDO/AIA: Recent Observational Progress

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Downs, Cooper; Ofman, Leon

    2016-05-01

    Quasi-periodic Fast Propagating wave trains (QFPs) are a new observational phenomenon discovered by SDO/AIA in extreme ultraviolet (EUV). They are fast-mode magnetosonic waves, closely related to quasi-periodic pulsations in solar flare emission ranging from radio to X-ray wavelengths. The significance of QFPs lies in their diagnostic potential, because they can provide critical clues to flare energy release and serve as new tools for coronal seismology. In this presentation, we report recent advances in observing QFPs. In particular, using differential emission measure (DEM) inversion, we found clear evidence of heating and cooling cycles that are consistent with alternating compression and rarefaction expected for magnetosonic wave pulses. We also found that different local magnetic and plasma environments can lead to two distinct types of QFPs located in different spatial domains with respect to their accompanying coronal mass ejections (CMEs). Moreover, recent IRIS observations of QFP source regions revealed sawtooth-like flare ribbon motions, indicative of pulsed magnetic reconnection, that are correlated with QFP excitation. More interestingly, from a statistical survey of over 100 QFP events, we found a preferential association with eruptive flares rather than confined flares. We will discuss the implications of these results and the potential roles of QFPs in coronal heating, energy transport, and solar eruptions.

  11. Fast O(sup +) ion flow observed around Venus at low altitudes

    SciTech Connect

    Kasprzak, W.T.; Niemann, H.B.

    1988-12-01

    The Pioneer Venus Orbiter Neutral Mass Spectrometer (ONMS) has observed fast O(+) ions with an energy exceeding 40 eV in the spacecraft reference frame. The orbit of the spacecraft is nearly polar with periapsis near the equator. The ONMS is mounted at an angle to the spin axis which, in turn, is perpendicular to the ecliptic plane. From the spin modulated data the direction of the ion flow in that plane can be determined. Data from the first 11 diurnal cycles (orbits 1 to 2475) are vector averaged in order to display the general flow pattern. Plots of the averaged data are presented. On the dayside and near the terminators, where fast O(+) is observed near the ionopause, the directions are more or less parallel to the planet's surface with evidence of an asymmetry about the Sun-Venus line. On the nightside below 2000 km and near the equator there is a preferred dawn to dusk direction while at higher altitudes (lower solar zenith angles and higher latitudes) the flow direction is more antisunward. The averaged flux for this time period is 8x10 to the 5th/sq cm/s with a maximum of 5x10 to the 8th.

  12. Searching for color variation on fast rotating asteroids with simultaneous V-J observations

    NASA Astrophysics Data System (ADS)

    Polishook, David; Moskovitz, Nicholas

    2016-01-01

    Boulders, rocks and regolith on fast rotating asteroids (<2.5 hours) are modeled to slide towards the equator due to a strong centrifugal force and a low cohesion force. As a result, regions of fresh subsurface material can be exposed. Therefore, we searched for color variation on small and fast rotating asteroids. We describe a novel technique in which the asteroid is simultaneously observed in the visible and near-IR wavelength range. In this technique, brightness changes due to atmospheric extinction effects can be calibrated across the visible and near-IR images. We use V- and J-band filters since the distinction in color between weathered and unweathered surfaces on ordinary chondrite-like bodies is most prominent at these wavelengths and can reach ~25%. To test our method, we observed 3 asteroids with Cerro Tololo's 1.3 m telescope. We find ~5% variation of the mean V-J color, but do not find any clearly repeating color signature through multiple rotations. This suggests that no landslides occurred within the timescale of space weathering, or that Landslides occurred but the exposed patches are too small for the measurements' uncertainty.

  13. An explanation for experimental observations of harmonic cyclotron emission induced by fast ions

    SciTech Connect

    Chen, K.R.; Horton, W.; Van Dam, J.W.

    1993-09-01

    An explanation, supported by numerical simulations and analytical theory, is given for the harmonic cyclotron emission induced by fast ions in tokamak plasmas - particular, for the emission observed at low harmonics in deuterium-deuterium md deuterium-tritium experiments in the Joint European Tokamak. We show that the first proton harmonic is one of the highest spectral peaks whereas the first alpha is weak. We also compare the relative spectral amplitudes of different harmonics. Our results axe consistent with the experimental observations. The simulations verify that the instabilities are caused by a weak relativistic mass effect. Simulation that a nonuniform magnetic field leads to no appreciable change in the growth and saturation amplitude of the waves.

  14. Very long baseline IPS observations of the solar wind speed in the fast polar streams

    NASA Technical Reports Server (NTRS)

    Rao, A. Pramesh; Ananthakrishnan, S.; Balasubramanian, V.; Coles, William A.

    1995-01-01

    Observations of intensity scintillation (IPS) with two or more spaced antennas have been widely used to measure the solar wind velocity. Such methods are particularly valuable in regions which spacecraft have not yet penetrated, but they are also very useful in improving the spatial temporal sampling of the solar wind, even in regions where spacecraft data are available. The principle of the measurement is to measure the time delay tau(sub d) between the scintillations observed with an antenna baseline b. The velocity estimate is just V = b/tau(sub d). The error in estimation of the time delay delta tau(sub d) is independent of the baseline length, thus the error in the velocity estimate delta V given by delta(V)/V approximately equals to (delta tau(sub d))/tau(sub d) is inversely proportional to tau(sub d) and hence to b. However the use of a long baseline b has a less obvious advantage; it provides a means for separating fast and slow contributions when both are present in the scattering region. Here we will present recent observations made using the large cylinder antenna at Ooty in the Nilgiri Hills of South India, and one of the 45 m dishes of GMRT near Pune in West-Central India. The baseline of 900 km is, by a considerable margin, the longest ever used for IPS and provides excellent velocity resolution. These results compared with the ULYSSES observations and other IPS measurements made closer to the sun with higher frequency instruments such as EISCAT and the VLBA will provide a precise measure of the velocity profile of the fast north-polar stream.

  15. Observation of Critical-Gradient Behavior in Alfvén-Eigenmode-Induced Fast-Ion Transport.

    PubMed

    Collins, C S; Heidbrink, W W; Austin, M E; Kramer, G J; Pace, D C; Petty, C C; Stagner, L; Van Zeeland, M A; White, R B; Zhu, Y B

    2016-03-01

    Experiments in the DIII-D tokamak show that fast-ion transport suddenly becomes stiff above a critical threshold in the presence of many overlapping small-amplitude Alfvén eigenmodes (AEs). The threshold is phase-space dependent and occurs when particle orbits become stochastic due to resonances with AEs. Above threshold, equilibrium fast-ion density profiles are unchanged despite increased drive, and intermittent fast-ion losses are observed. Fast-ion Dα spectroscopy indicates radially localized transport of the copassing population at radii that correspond to the location of midcore AEs. The observation of stiff fast-ion transport suggests that reduced models can be used to effectively predict alpha profiles, beam ion profiles, and losses to aid in the design of optimized scenarios for future burning plasma devices.

  16. Observation of Critical-Gradient Behavior in Alfvén-Eigenmode-Induced Fast-Ion Transport

    NASA Astrophysics Data System (ADS)

    Collins, C. S.; Heidbrink, W. W.; Austin, M. E.; Kramer, G. J.; Pace, D. C.; Petty, C. C.; Stagner, L.; Van Zeeland, M. A.; White, R. B.; Zhu, Y. B.

    2016-03-01

    Experiments in the DIII-D tokamak show that fast-ion transport suddenly becomes stiff above a critical threshold in the presence of many overlapping small-amplitude Alfvén eigenmodes (AEs). The threshold is phase-space dependent and occurs when particle orbits become stochastic due to resonances with AEs. Above threshold, equilibrium fast-ion density profiles are unchanged despite increased drive, and intermittent fast-ion losses are observed. Fast-ion D α spectroscopy indicates radially localized transport of the copassing population at radii that correspond to the location of midcore AEs. The observation of stiff fast-ion transport suggests that reduced models can be used to effectively predict alpha profiles, beam ion profiles, and losses to aid in the design of optimized scenarios for future burning plasma devices.

  17. Observational and Theoretical Challenges to Wave or Turbulence Accelerations of the Fast Solar Wind

    NASA Technical Reports Server (NTRS)

    Roberts, D. Aaron

    2008-01-01

    We use both observations and theoretical considerations to show that hydromagnetic waves or turbulence cannot produce the acceleration of the fast solar wind and the related heating of the open solar corona. Waves do exist as shown by Hinode and other observations, and can play a role in the differential heating and acceleration of minor ions but their amplitudes are not sufficient to power the wind, as demonstrated by extrapolation of magnetic spectra from Helios and Ulysses observations. Dissipation mechanisms invoked to circumvent this conclusion cannot be effective for a variety of reasons. In particular, turbulence does not play a strong role in the corona as shown by both eclipse observations of coronal striations and theoretical considerations of line-tying to a nonturbulent photosphere, nonlocality of interactions, and the nature of kinetic dissipation. In the absence of wave heating and acceleration, the chromosphere and transition region become the natural source of open coronal energization. We suggest a variant of the velocity filtration approach in which the emergence and complex churning of the magnetic flux in the chromosphere and transition region continuously and ubiquitously produces the nonthermal distributions required. These particles are then released by magnetic carpet reconnection at a wide range of scales and produce the wind as described in kinetic approaches. Since the carpet reconnection is not the main source of the energization of the plasma, there is no expectation of an observable release of energy in nanoflares.

  18. A fast atmospheric turbulent parameters estimation using particle filtering. Application to LIDAR observations

    NASA Astrophysics Data System (ADS)

    Florian, Suzat; Christophe, Baehr; Alain, Dabas

    2011-12-01

    Estimating fast turbulence fluctuations in the boundary layer of the atmosphere, using remote detection instrument is an important scientific issue. Doppler LIDAR, is typically used to get this kind of information because it can make fast, distant, precise, and non-intrusive measurements of the wind field by giving the radial component in any direction. The objective of those measurements is to evaluate as precisely as possible the wind structure using the partial wind information provided, in order to estimate turbulent parameters. The approach presented in this paper, consist in coupling the remote detection system and a stochastic Lagrangian model of the atmosphere. The fluid is represented by a set of interacting particles, evolving according to an evolution system based on S.B Pope work. Data provided by the instrument are assimilated in real time in the model using a particle filtering algorithm. The purpose is to locally correct the properties of particles using measurements, to fit the real fluid observed. A precise real time estimation of the wind field, allows then to estimate turbulent parameters. The methodology has produced convincing results on simulated Doppler LIDAR measurements, in tree-dimensional modeling.

  19. Observations and modelling of fast ice growth in the Tiksi Bay, Laptev Sea

    NASA Astrophysics Data System (ADS)

    Bogorodsky, Petr; Makshtas, Aleksandr; Grubiy, Andrey; Kustov, Vasiliy

    2016-04-01

    Fast ice is one of the main features of sea ice cover in the Laptev Sea. The formation of this immobile ice which occupies up to 30% of the sea area and significantly affects the intensity of air-sea energy exchange in the coastal zones had been investigated during winter 2014-2015 in the Tiksi Bay (Buor-Khaya Gulf). The temperature measurements within sea ice thickness and under-ice sea layer using GeoPrecision thermistor string of 10 sensors together with measurements of snow and ice thicknesses were carried out at the distance of 0.5 km from the shore at the 3.5 m water depth. According to measurements temperature variations qualitatively repeat air temperature variations and, damping with depth, approach to sea water freezing temperature. Vertical temperature distributions allow to recognize snow, ice and water layers by profile inclination in each layer. The temperature profiles within growing ice were quasi-linear, indicating permanence of heat flux inside ice. The linearity of temperature profiles increased during ice growth. For calculations of fast ice evolution one-dimensional thermodynamic model was used. Besides the empirical formulae, based on frost degree-days, developed in 1930th for the Tiksi Bay was applied. Numerical experiments were carried out with constant values of thermal properties of all media and 10 ppt water salinity, as initial condition. The daily average data from Hydrometeorological Observatory Tiksi, located approximately 1 km from the site of ice observations, were used as atmospheric forcing. For the examined area evolutions of ice cover thickness estimated from direct measurements, the thermodynamic model and the empirical formulae were almost identical. The result indicates stability of hydrological and meteorological conditions, determining fast ice growth in the Tiksi Bay during last 75 years. Model simulations showed that in shallow waters the growth of ice thickness is stabilized due to increase of sub-ice water layer

  20. Plasma distribution in Mercury's magnetosphere derived from MESSENGER Magnetometer and Fast Imaging Plasma Spectrometer observations

    NASA Astrophysics Data System (ADS)

    Korth, Haje; Anderson, Brian J.; Gershman, Daniel J.; Raines, Jim M.; Slavin, James A.; Zurbuchen, Thomas H.; Solomon, Sean C.; McNutt, Ralph L.

    2014-04-01

    We assess the statistical spatial distribution of plasma in Mercury's magnetosphere from observations of magnetic pressure deficits and plasma characteristics by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft. The statistical distributions of proton flux and pressure were derived from 10 months of Fast Imaging Plasma Spectrometer (FIPS) observations obtained during the orbital phase of the MESSENGER mission. The Magnetometer-derived pressure distributions compare favorably with those deduced from the FIPS observations at locations where depressions in the magnetic field associated with the presence of enhanced plasma pressures are discernible in the Magnetometer data. The magnitudes of the magnetic pressure deficit and the plasma pressure agree on average, although the two measures of plasma pressure may deviate for individual events by as much as a factor of ~3. The FIPS distributions provide better statistics in regions where the plasma is more tenuous and reveal an enhanced plasma population near the magnetopause flanks resulting from direct entry of magnetosheath plasma into the low-latitude boundary layer of the magnetosphere. The plasma observations also exhibit a pronounced north-south asymmetry on the nightside, with markedly lower fluxes at low altitudes in the northern hemisphere than at higher altitudes in the south on the same field line. This asymmetry is consistent with particle loss to the southern hemisphere surface during bounce motion in Mercury's offset dipole magnetic field.

  1. Plasma Distribution in Mercury's Magnetosphere Derived from MESSENGER Magnetometer and Fast Imaging Plasma Spectrometer Observations

    NASA Technical Reports Server (NTRS)

    Korth, Haje; Anderson, Brian J.; Gershman, Daniel J.; Raines, Jim M.; Slavin, James A.; Zurbuchen, Thomas H.; Solomon, Sean C.; McNutt, Ralph L.

    2014-01-01

    We assess the statistical spatial distribution of plasma in Mercury's magnetosphere from observations of magnetic pressure deficits and plasma characteristics by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft. The statistical distributions of proton flux and pressure were derived from 10months of Fast Imaging Plasma Spectrometer (FIPS) observations obtained during the orbital phase of the MESSENGER mission. The Magnetometer-derived pressure distributions compare favorably with those deduced from the FIPS observations at locations where depressions in the magnetic field associated with the presence of enhanced plasma pressures are discernible in the Magnetometer data. The magnitudes of the magnetic pressure deficit and the plasma pressure agree on average, although the two measures of plasma pressure may deviate for individual events by as much as a factor of approximately 3. The FIPS distributions provide better statistics in regions where the plasma is more tenuous and reveal an enhanced plasma population near the magnetopause flanks resulting from direct entry of magnetosheath plasma into the low-latitude boundary layer of the magnetosphere. The plasma observations also exhibit a pronounced north-south asymmetry on the nightside, with markedly lower fluxes at low altitudes in the northern hemisphere than at higher altitudes in the south on the same field line. This asymmetry is consistent with particle loss to the southern hemisphere surface during bounce motion in Mercury's offset dipole magnetic field.

  2. Experimental observation of ultrasound fast and slow waves through three-dimensional printed trabecular bone phantoms.

    PubMed

    Mézière, F; Juskova, P; Woittequand, J; Muller, M; Bossy, E; Boistel, Renaud; Malaquin, L; Derode, A

    2016-02-01

    In this paper, ultrasound measurements of 1:1 scale three-dimensional (3D) printed trabecular bone phantoms are reported. The micro-structure of a trabecular horse bone sample was obtained via synchrotron x-ray microtomography, converted to a 3D binary data set, and successfully 3D-printed at scale 1:1. Ultrasound through-transmission experiments were also performed through a highly anisotropic version of this structure, obtained by elongating the digitized structure prior to 3D printing. As in real anisotropic trabecular bone, both the fast and slow waves were observed. This illustrates the potential of stereolithography and the relevance of such bone phantoms for the study of ultrasound propagation in bone.

  3. Fast emission estimates in China and South Africa constrained by satellite observations

    NASA Astrophysics Data System (ADS)

    Mijling, Bas; van der A, Ronald

    2013-04-01

    Emission inventories of air pollutants are crucial information for policy makers and form important input data for air quality models. Unfortunately, bottom-up emission inventories, compiled from large quantities of statistical data, are easily outdated for emerging economies such as China and South Africa, where rapid economic growth change emissions accordingly. Alternatively, top-down emission estimates from satellite observations of air constituents have important advantages of being spatial consistent, having high temporal resolution, and enabling emission updates shortly after the satellite data become available. However, constraining emissions from observations of concentrations is computationally challenging. Within the GlobEmission project (part of the Data User Element programme of ESA) a new algorithm has been developed, specifically designed for fast daily emission estimates of short-lived atmospheric species on a mesoscopic scale (0.25 × 0.25 degree) from satellite observations of column concentrations. The algorithm needs only one forward model run from a chemical transport model to calculate the sensitivity of concentration to emission, using trajectory analysis to account for transport away from the source. By using a Kalman filter in the inverse step, optimal use of the a priori knowledge and the newly observed data is made. We apply the algorithm for NOx emission estimates in East China and South Africa, using the CHIMERE chemical transport model together with tropospheric NO2 column retrievals of the OMI and GOME-2 satellite instruments. The observations are used to construct a monthly emission time series, which reveal important emission trends such as the emission reduction measures during the Beijing Olympic Games, and the impact and recovery from the global economic crisis. The algorithm is also able to detect emerging sources (e.g. new power plants) and improve emission information for areas where proxy data are not or badly known (e

  4. Searching for color variation on fast rotating asteroids with simultaneous V-J observations

    NASA Astrophysics Data System (ADS)

    Polishook, David; Moskovitz, Nicholas

    2015-08-01

    Motivation: Boulders, rocks and regolith on fast rotating asteroids (~2.5 hours) might slide towards the equator due to a strong centrifugal force and a low cohesion force, as described by models (Walsh et al. 2008, Sánchez & Scheeres 2014). As a result, a fresh material might be exposed, if the surface consists of weathered ordinary chondrite (S-complex). Detecting color variation, due to the exposure of fresh material, will allow us to model the mass shedding process, its extent and age, and thus support or reject hypotheses of rotational-fission.Method: Detecting color variation on small and fast rotating asteroids is difficult with spectroscopy since color differences are mild while the exposure time must be short to measure a narrow rotational phase. Broadband photometry is also problematic since it introduces large systematic errors when images in different filters are calibrated with standard stars. We describe a novel technique in which the asteroid is simultaneously observed in the visible and near-IR wavelength ranges. This technique is possible if a dichroic split the light into two beams that hit two detectors. In this technique atmospheric interference are self-calibrated between the visible and the near-IR image. We use a V and a J filters since the distinction between fresh and weathered surfaces are most prominent in these wavelengths and range between 10-20%.Observations: We observed 3 asteroids with CTIO’s 1.3m telescope and ANDICAM detector. The asteroids were observed during 2 rotational cycles to confirm features on the color-curve. There is ~5% variation of the mean color. There are a few measurements with a larger/smaller color in the range of ~10%, but these do not repeat in a second rotation cycle and we cannot confirm them as real. Therefore, we cannot detect fresh colors (as seen on Q-type asteroids) on the surface. This suggests one of the following statements: 1. No landslides occurred within the timescale of space weathering. 2

  5. A fast band-Krylov eigensolver for macromolecular functional motion simulation on multicore architectures and graphics processors

    NASA Astrophysics Data System (ADS)

    Aliaga, José I.; Alonso, Pedro; Badía, José M.; Chacón, Pablo; Davidović, Davor; López-Blanco, José R.; Quintana-Ortí, Enrique S.

    2016-03-01

    We introduce a new iterative Krylov subspace-based eigensolver for the simulation of macromolecular motions on desktop multithreaded platforms equipped with multicore processors and, possibly, a graphics accelerator (GPU). The method consists of two stages, with the original problem first reduced into a simpler band-structured form by means of a high-performance compute-intensive procedure. This is followed by a memory-intensive but low-cost Krylov iteration, which is off-loaded to be computed on the GPU by means of an efficient data-parallel kernel. The experimental results reveal the performance of the new eigensolver. Concretely, when applied to the simulation of macromolecules with a few thousands degrees of freedom and the number of eigenpairs to be computed is small to moderate, the new solver outperforms other methods implemented as part of high-performance numerical linear algebra packages for multithreaded architectures.

  6. Seismic observations of large-scale deformation at the bottom of fast-moving plates

    NASA Astrophysics Data System (ADS)

    Debayle, Eric; Ricard, Yanick

    2013-08-01

    We present a new tomographic model of azimuthal anisotropy in the upper mantle, DR2012, and discuss in details the geodynamical causes of this anisotropy. Our model improves upon DKP2005 seismic model (Debayle et al., 2005) through a larger dataset (expanded by a factor ˜3.7) and a new approach which allows us to better extract fundamental and higher-mode information. Our results confirm that on average, azimuthal anisotropy is only significant in the uppermost 200-250 km of the upper mantle where it decreases regularly with depth. We do not see a significant difference in the amplitude of anisotropy beneath fast oceanic plates, slow oceanic plates or continents. The anisotropy projected onto the direction of present plate motion shows a very specific relation with the plate velocity; it peaks in the asthenosphere around 150 km depth, it is very weak for plate velocities smaller than 3 cm yr, increases significantly between 3 and 5 cm yr, and saturates for plate velocities larger than 5 cm yr. Plate-scale present-day deformation is remarkably well and uniformly recorded beneath the fastest-moving plates (India, Coco, Nazca, Australia, Philippine Sea and Pacific plates). Beneath slower plates, plate-motion parallel anisotropy is only observed locally, which suggests that the mantle flow below these plates is not controlled by the lithospheric motion (a minimum plate velocity of around 4 cm yr is necessary for a plate to organize the flow in its underlying asthenosphere). The correlation of oceanic anisotropy with the actual plate motion in the shallow lithosphere is very weak. A better correlation is obtained with the fossil accretion velocity recorded by the gradient of local seafloor age. The transition between frozen-in and active anisotropy occurs across the typical √{age} isotherm that defines the bottom of the thermal lithosphere around 1100 °C. Under fast continents (mostly under Australia and India), the present-day velocity orients also the anisotropy

  7. Seismic observations of large-scale deformation at the bottom of fast-moving plates

    NASA Astrophysics Data System (ADS)

    Debayle, Eric; Ricard, Yanick

    2014-05-01

    We present a new tomographic model of azimuthal anisotropy in the upper mantle and discuss in details the geodynamical causes of this anisotropy. Our model improves upon DKP2005 seismic model (Debayle et al., 2005) through a larger dataset (expanded by a factor ~ 4) and a new approach which allows us to better extract fundamental and higher mode information. Our results confirm that on average, azimuthal anisotropy is only significant in the uppermost 200-250 km of the upper mantle where it decreases regularly with depth. We do not see a significant difference in the amplitude of anisotropy beneath fast oceanic plates, slow oceanic plates or continents. The anisotropy projected onto the direction of present plate motion shows a very specific relation with the plate velocity; it peaks in the asthenosphere around 150 km depth, it is very weak for plate velocities smaller than 3 cm yr-1, increases significantly between 3 and 5 cm yr-1, and saturates for plate velocities larger than 5 cm yr-1. Plate-scale present-day deformation is remarkably well and uniformly recorded beneath the fastest moving plates (India, Coco, Nazca, Australia, Philippine Sea and Pacific plates). Beneath slower plates, plate-motion parallel anisotropy is only observed locally, which suggests that the mantle flow below these plates is not controlled by the lithospheric motion (a minimum plate velocity of around 4 cm yr-1 is necessary for a plate to organize the flow in its underlying asthenosphere). The correlation of oceanic anisotropy with the actual plate motion in the shallow lithosphere is very weak. A better correlation is obtained with the fossil accretion velocity recorded by the gradient of local seafloor age. The transition between frozen-in and active anisotropy occurs across the typical age- isotherm that defines the bottom of the thermal lithosphere around 1100 °C. Under fast continents (mostly under Australia and India), the present day velocity orients also the anisotropy in a

  8. Healthcare architecture in metamorphosis--observations in Hong Kong's heuristic experience.

    PubMed

    Lai, M

    2001-01-01

    Healthcare Architecture in Hong Kong is in an on-going process of metamorphosis in response to the social, economical and technological developments in the territory. In the process of transformation, universal problems like obsolescence, growth and expansion, and advances in science and technology as well as problems unique to Hong Kong like population growth, scarcity in land supply and high density development all call for special solutions. With the turn of the century, new forces of change have also begun to take shape, and in anticipation of the hyper-turbulent changes ahead, we need to shift our paradigm to allow revolutionary new perspectives and innovate, shape and create the future healing space which is sustainable, adaptable, flexible and humane.

  9. A fast SWIR imager for observations of transient features in OH airglow

    NASA Astrophysics Data System (ADS)

    Hannawald, Patrick; Schmidt, Carsten; Wüst, Sabine; Bittner, Michael

    2016-04-01

    Since December 2013 the new imaging system FAIM (Fast Airglow IMager) for the study of smaller-scale features (both in space and time) is in routine operation at the NDMC (Network for the Detection of Mesospheric Change) station at DLR (German Aerospace Center) in Oberpfaffenhofen (48.1° N, 11.3° E).Covering the brightest OH vibrational bands between 1 and 1.7 µm, this imaging system can acquire two frames per second. The field of view is approximately 55 km times 60 km at the mesopause heights. A mean spatial resolution of 200 m at a zenith angle of 45° and up to 120 m for zenith conditions are achieved. The observations show a large variety of atmospheric waves.This paper introduces the instrument and compares the FAIM data with spectrally resolved GRIPS (GRound-based Infrared P-branch Spectrometer) data. In addition, a case study of a breaking gravity wave event, which we assume to be associated with Kelvin-Helmholtz instabilities, is discussed.

  10. Fast Turn-Off Times Observed in Experimental 4H SiC Thyristors

    NASA Technical Reports Server (NTRS)

    Niedra, Janis M.

    2006-01-01

    Room temperature measurements of the turn-off time (t(sub q)) are reported for several packaged, npnp developmental power thyristors based on 4H-type SiC and rated 400 V, 2 A. Turn-off is effected by a 50 V pulse of applied reverse voltage, from a state of a steady 1 A forward current. Plots of t(sub q) against the ramp rate (dV(sub AK)/dt) of reapplied forward voltage are presented for preset values of limiting anode-to-cathode voltage (V(sub AK,max)). The lowest t(sub q) measured was about 180 ns. A rapid rise of these t(sub q) curves was observed for values of V(sub AK,max) that are only about a fifth of the rated voltage, whereas comparative t(sub q) plots for a commercial, fast turn-off, Si-based thyristor at a proportionately reduced V(sub AK,max) showed no such behavior. Hence these SiC thyristors may have problems arising from material defects or surface passivation. The influence the R-C-D gate bypass circuit that was used is briefly discussed.

  11. A fast method for quantifying observational selection effects in asteroid surveys

    NASA Astrophysics Data System (ADS)

    Jedicke, Robert; Bolin, Bryce; Granvik, Mikael; Beshore, Ed

    2016-03-01

    We present a fast method to calculate an asteroid survey's 'bias' - essentially a correction factor from the observed number of objects to the actual number in the population. The method builds upon the work of Jedicke and Metcalfe (Jedicke, R., Metcalfe, T.S. [1998]. Icaurs 131, 245-260) and Granvik et al. (Granvik, M., Vaubaillon, J., Jedicke, R. [2012]. Icarus 218, 262-277) and essentially efficiently maps out the phase space of orbit elements that can appear in a field-of-view. It does so by 'integrating' outwards in geocentric distance along a field's boresite from the topocentric location of the survey and calculating the allowable angular elements for each desired combination of semi-major axis, eccentricity and inclination. We then use a contour algorithm to map out the orbit elements that place an object at the edge of the field-of-view. We illustrate the method's application to calculate the bias correction for near Earth Objects detected with the Catalina Sky Survey (Christensen, E. et al. [2012]. AAS/Division for Planetary Sciences Meeting Abstracts, vol. 44, p. 210.13; Larson, S. et al. [1998]. Bulletin of the American Astronomical Society, vol. 30, p. 1037).

  12. Development of GPU-based Monte Carlo code for fast CT imaging dose calculation on CUDA Fermi architecture

    SciTech Connect

    Liu, T.; Du, X.; Ji, W.; Xu, X. G.

    2013-07-01

    This paper describes the development of a Graphics Processing Unit (GPU) accelerated Monte Carlo photon transport code, ARCHER{sub GPU}, to perform CT imaging dose calculations with good accuracy and performance. The code simulates interactions of photons with heterogeneous materials. It contains a detailed CT scanner model and a family of patient phantoms. Several techniques are used to optimize the code for the GPU architecture. In the accuracy and performance test, a 142 kg adult male phantom was selected, and the CT scan protocol involved a whole-body axial scan, 20-mm x-ray beam collimation, 120 kVp and a pitch of 1. A total of 9 x 108 photons were simulated and the absorbed doses to 28 radiosensitive organs/tissues were calculated. The average percentage difference of the results obtained by the general-purpose production code MCNPX and ARCHER{sub GPU} was found to be less than 0.38%, indicating an excellent agreement. The total computation time was found to be 8,689, 139 and 56 minutes for MCNPX, ARCHER{sub CPU} (6-core) and ARCHER{sub GPU}, respectively, indicating a decent speedup. Under a recent grant funding from the NIH, the project aims at developing a Monte Carlo code with the capability of sub-minute CT organ dose calculations. (authors)

  13. Seismic observations of large-scale deformation at the bottom of fast-moving plates

    NASA Astrophysics Data System (ADS)

    Debayle, E.; Ricard, Y. R.

    2012-12-01

    We investigate the global SV-wave azimuthal anisotropy from a new dataset of around 375 000 fundamental and higher mode Rayleigh waveforms. Our azimuthal anisotropy model improves upon DKP2005 seismic model (Debayle et al., Nature 2005) through a larger dataset (expanded by a factor 3.8) and a new approach which allows us to better extract fundamental and higher mode information. Our results confirm that in average, azimuthal anisotropy is significant only in the uppermost 200-250 km of the upper mantle and weak below. A clear root square of age dependence of anisotropy is observed beneath oceanic plates. The anisotropy projected in the direction of plate motion is more or less proportional to the plate velocity. Plate-scale present-day deformation is remarkably well recorded beneath the fastest moving plates (Indo-Australian, Coco, Nazca, Philippine Sea and Pacific plates). Under these plates, the amplitude of anisotropy does not change much with the distance to the ridge, indicating that the lattice preferred orientation rotates and saturates quickly. Beneath slower plates, plate-motion parallel anisotropy is observed only locally, which suggests, not surprisingly that the convection flow is only partly controlled by the surface motion. Within the lithosphere itself, the anisotropy is weak and likely frozen in; rather aligned with the plate velocity at its age of formation which is recorded by the local age gradient, than with the present-day motion. Although for young ages, the difference between the velocity recorded by the isochrons and the present-day velocity is small, for ages larger than 80 ~myrs the anisotropy rotates with depth from the fossil direction in the lithosphere to the present-day direction in the asthenosphere. Under fast continents (mostly Australia and India), the present day velocity orients the anisotropy around 150-200 km depth.

  14. STEREO OBSERVATIONS OF FAST MAGNETOSONIC WAVES IN THE EXTENDED SOLAR CORONA ASSOCIATED WITH EIT/EUV WAVES

    SciTech Connect

    Kwon, Ryun-Young; Ofman, Leon; Kramar, Maxim; Olmedo, Oscar; Davila, Joseph M.; Thompson, Barbara J.; Cho, Kyung-Suk

    2013-03-20

    We report white-light observations of a fast magnetosonic wave associated with a coronal mass ejection observed by STEREO/SECCHI/COR1 inner coronagraphs on 2011 August 4. The wave front is observed in the form of density compression passing through various coronal regions such as quiet/active corona, coronal holes, and streamers. Together with measured electron densities determined with STEREO COR1 and Extreme UltraViolet Imager (EUVI) data, we use our kinematic measurements of the wave front to calculate coronal magnetic fields and find that the measured speeds are consistent with characteristic fast magnetosonic speeds in the corona. In addition, the wave front turns out to be the upper coronal counterpart of the EIT wave observed by STEREO EUVI traveling against the solar coronal disk; moreover, stationary fronts of the EIT wave are found to be located at the footpoints of deflected streamers and boundaries of coronal holes, after the wave front in the upper solar corona passes through open magnetic field lines in the streamers. Our findings suggest that the observed EIT wave should be in fact a fast magnetosonic shock/wave traveling in the inhomogeneous solar corona, as part of the fast magnetosonic wave propagating in the extended solar corona.

  15. Development of Observation Techniques in Reactor Vessel of Experimental Fast Reactor Joyo

    NASA Astrophysics Data System (ADS)

    Takamatsu, Misao; Imaizumi, Kazuyuki; Nagai, Akinori; Sekine, Takashi; Maeda, Yukimoto

    In-Vessel Observations (IVO) techniques for Sodium cooled Fast Reactors (SFRs) are important in confirming its safety and integrity. And several IVO equipments for an SFR are developed. However, in order to secure the reliability of IVO techniques, it was necessary to demonstrate the performance under the actual reactor environment with high temperature, high radiation dose and remained sodium. During the investigation of an incident that occurred with Joyo, IVO using a standard Video Camera (VC) and a Radiation-Resistant Fiberscope (RRF) took place at (1) the top of the Sub-Assemblies (S/As) and the In-Vessel Storage rack (IVS), (2) the bottom face of the Upper Core Structure (UCS). A simple 6 m overhead view of each S/A, through the fuel handling or inspection holes etc, was photographed using a VC for making observations of the top of S/As and IVS. About 650 photographs were required to create a composite photograph of the top of the entire S/As and IVS, and a resolution was estimated to be approximately 1mm. In order to observe the bottom face of the UCS, a Remote Handling Device (RHD) equipped with RRFs (approximately 13 m long) was specifically developed for Joyo with a tip that could be inserted into the 70 mm gap between the top of the S/As and the bottom of the UCS. A total of about 35,000 photographs were needed for the full investigation. Regarding the resolution, the sodium flow regulating grid of 0.8mm in thickness could be discriminated. The performance of IVO equipments under the actual reactor environment was successfully confirmed. And the results provided useful information on incident investigations. In addition, fundamental findings and the experience gained during this study, which included the design of equipment, operating procedures, resolution, lighting adjustments, photograph composition and the durability of the RRF under radiation exposure, provided valuable insights into further improvements and verifications for IVO techniques to

  16. Remodeling of membrane properties and dendritic architecture accompanies the postembryonic conversion of a slow into a fast motoneuron.

    PubMed

    Duch, C; Levine, R B

    2000-09-15

    The postembryonic acquisition of behavior requires alterations in neuronal circuitry, which ultimately must be understood as specific changes in neuronal structure, membrane properties, and synaptic connectivity. This study addresses this goal by describing the postembryonic remodeling of the excitability and dendritic morphology of an identified motoneuron, MN5, which during the metamorphosis of Manduca sexta (L.) changes from a slow motoneuron that is involved in larval-crawling behavior into a fast adult flight motoneuron. A fivefold lower input resistance, a higher firing threshold, and an increase in voltage-activated K(+) current contribute to a lower excitability of the adult MN5, which is a prerequisite for its newly acquired behavioral role. In addition, the adult MN5 displays larger Ca(2+) currents. The dendrites of MN5 undergo extensive remodeling. Drastic regression of larval dendrites during early pupal stages is followed by rapid growth of new dendrites. Critical changes in excitability take place during the onset of adult dendrite formation. Larval Ca(2+) currents are absent when dendritic remodeling is most dramatic but increase markedly during later development. Changes in Ca(2+) and K(+) currents follow different time courses, allowing the transient occurrence of Ca(2+) spikes during pupal stages when new dendritic branching ceases. The adult MN5 can produce prolonged Ca(2+) spikes after K(+) currents are reduced. We suggest that alterations in Ca(2+) and K(+) currents are necessary for the participation of MN5 in flight behavior and that the transient production of Ca(2+) spikes may influence postembryonic dendritic remodeling.

  17. Marine vehicle sensor network architecture and protocol designs for ocean observation.

    PubMed

    Zhang, Shaowei; Yu, Jiancheng; Zhang, Aiqun; Yang, Lei; Shu, Yeqiang

    2012-01-01

    The micro-scale and meso-scale ocean dynamic processes which are nonlinear and have large variability, have a significant impact on the fisheries, natural resources, and marine climatology. A rapid, refined and sophisticated observation system is therefore needed in marine scientific research. The maneuverability and controllability of mobile sensor platforms make them a preferred choice to establish ocean observing networks, compared to the static sensor observing platform. In this study, marine vehicles are utilized as the nodes of mobile sensor networks for coverage sampling of a regional ocean area and ocean feature tracking. A synoptic analysis about marine vehicle dynamic control, multi vehicles mission assignment and path planning methods, and ocean feature tracking and observing techniques is given. Combined with the observation plan in the South China Sea, we provide an overview of the mobile sensor networks established with marine vehicles, and the corresponding simulation results.

  18. Time-resolved observation of fast domain-walls driven by vertical spin currents in short tracks

    SciTech Connect

    Sampaio, Joao; Lequeux, Steven; Chanthbouala, Andre; Cros, Vincent; Grollier, Julie; Matsumoto, Rie; Yakushiji, Kay; Kubota, Hitoshi; Fukushima, Akio; Yuasa, Shinji; Nishimura, Kazumasa; Nagamine, Yoshinori; Maehara, Hiroki; Tsunekawa, Koji

    2013-12-09

    We present time-resolved measurements of the displacement of magnetic domain-walls (DWs) driven by vertical spin-polarized currents in track-shaped magnetic tunnel junctions. In these structures, we observe very high DW velocities (600 m/s) at current densities below 10{sup 7} A/cm{sup 2}. We show that the efficient spin-transfer torque combined with a short propagation distance allows avoiding the Walker breakdown process and achieving deterministic, reversible, and fast (≈1 ns) DW-mediated switching of magnetic tunnel junction elements, which is of great interest for the implementation of fast DW-based spintronic devices.

  19. Time-resolved observation of fast domain-walls driven by vertical spin currents in short tracks

    NASA Astrophysics Data System (ADS)

    Sampaio, Joao; Lequeux, Steven; Metaxas, Peter J.; Chanthbouala, Andre; Matsumoto, Rie; Yakushiji, Kay; Kubota, Hitoshi; Fukushima, Akio; Yuasa, Shinji; Nishimura, Kazumasa; Nagamine, Yoshinori; Maehara, Hiroki; Tsunekawa, Koji; Cros, Vincent; Grollier, Julie

    2013-12-01

    We present time-resolved measurements of the displacement of magnetic domain-walls (DWs) driven by vertical spin-polarized currents in track-shaped magnetic tunnel junctions. In these structures, we observe very high DW velocities (600 m/s) at current densities below 107 A/cm2. We show that the efficient spin-transfer torque combined with a short propagation distance allows avoiding the Walker breakdown process and achieving deterministic, reversible, and fast (≈1 ns) DW-mediated switching of magnetic tunnel junction elements, which is of great interest for the implementation of fast DW-based spintronic devices.

  20. Using compute unified device architecture-enabled graphic processing unit to accelerate fast Fourier transform-based regression Kriging interpolation on a MODIS land surface temperature image

    NASA Astrophysics Data System (ADS)

    Hu, Hongda; Shu, Hong; Hu, Zhiyong; Xu, Jianhui

    2016-04-01

    Kriging interpolation provides the best linear unbiased estimation for unobserved locations, but its heavy computation limits the manageable problem size in practice. To address this issue, an efficient interpolation procedure incorporating the fast Fourier transform (FFT) was developed. Extending this efficient approach, we propose an FFT-based parallel algorithm to accelerate regression Kriging interpolation on an NVIDIA® compute unified device architecture (CUDA)-enabled graphic processing unit (GPU). A high-performance cuFFT library in the CUDA toolkit was introduced to execute computation-intensive FFTs on the GPU, and three time-consuming processes were redesigned as kernel functions and executed on the CUDA cores. A MODIS land surface temperature 8-day image tile at a resolution of 1 km was resampled to create experimental datasets at eight different output resolutions. These datasets were used as the interpolation grids with different sizes in a comparative experiment. Experimental results show that speedup of the FFT-based regression Kriging interpolation accelerated by GPU can exceed 1000 when processing datasets with large grid sizes, as compared to the traditional Kriging interpolation running on the CPU. These results demonstrate that the combination of FFT methods and GPU-based parallel computing techniques greatly improves the computational performance without loss of precision.

  1. Using compute unified device architecture-enabled graphic processing unit to accelerate fast Fourier transform-based regression Kriging interpolation on a MODIS land surface temperature image

    NASA Astrophysics Data System (ADS)

    Hu, Hongda; Shu, Hong; Hu, Zhiyong; Xu, Jianhui

    2016-04-01

    Kriging interpolation provides the best linear unbiased estimation for unobserved locations, but its heavy computation limits the manageable problem size in practice. To address this issue, an efficient interpolation procedure incorporating the fast Fourier transform (FFT) was developed. Extending this efficient approach, we propose an FFT-based parallel algorithm to accelerate regression Kriging interpolation on an NVIDIA® compute unified device architecture (CUDA)-enabled graphic processing unit (GPU). A high-performance cuFFT library in the CUDA toolkit was introduced to execute computation-intensive FFTs on the GPU, and three time-consuming processes were redesigned as kernel functions and executed on the CUDA cores. A MODIS land surface temperature 8-day image tile at a resolution of 1 km was resampled to create experimental datasets at eight different output resolutions. These datasets were used as the interpolation grids with different sizes in a comparative experiment. Experimental results show that speedup of the FFT-based regression Kriging interpolation accelerated by GPU can exceed 1000 when processing datasets with large grid sizes, as compared to the traditional Kriging interpolation running on the CPU. These results demonstrate that the combination of FFT methods and GPU-based parallel computing techniques greatly improves the computational performance without loss of precision.

  2. GLOBAL CORONAL SEISMOLOGY IN THE EXTENDED SOLAR CORONA THROUGH FAST MAGNETOSONIC WAVES OBSERVED BY STEREO SECCHI COR1

    SciTech Connect

    Kwon, Ryun-Young; Kramar, Maxim; Wang, Tongjiang; Ofman, Leon; Davila, Joseph M.; Chae, Jongchul; Zhang, Jie

    2013-10-10

    We present global coronal seismology for the first time, which allows us to determine inhomogeneous magnetic field strength in the extended corona. From the measurements of the propagation speed of a fast magnetosonic wave associated with a coronal mass ejection (CME) and the coronal background density distribution derived from the polarized radiances observed by the STEREO SECCHI COR1, we determined the magnetic field strengths along the trajectories of the wave at different heliocentric distances. We found that the results have an uncertainty less than 40%, and are consistent with values determined with a potential field model and reported in previous works. The characteristics of the coronal medium we found are that (1) the density, magnetic field strength, and plasma β are lower in the coronal hole region than in streamers; (2) the magnetic field strength decreases slowly with height but the electron density decreases rapidly so that the local fast magnetosonic speed increases while plasma β falls off with height; and (3) the variations of the local fast magnetosonic speed and plasma β are dominated by variations in the electron density rather than the magnetic field strength. These results imply that Moreton and EIT waves are downward-reflected fast magnetosonic waves from the upper solar corona, rather than freely propagating fast magnetosonic waves in a certain atmospheric layer. In addition, the azimuthal components of CMEs and the driven waves may play an important role in various manifestations of shocks, such as type II radio bursts and solar energetic particle events.

  3. Architecture and morphology of coral reef sequences. Modeling and observations from uplifting islands of SE Sulawesi, Indonesia

    NASA Astrophysics Data System (ADS)

    Pastier, Anne-Morwenn; Husson, Laurent; Bezos, Antoine; Pedoja, Kevin; Elliot, Mary; Hafidz, Abdul; Imran, Muhammad; Lacroix, Pascal; Robert, Xavier

    2016-04-01

    During the Late Neogene, sea level oscillations have profoundly shaped the morphology of the coastlines of intertropical zones, wherein relative sea level simultaneously controlled reef expansion and erosion of earlier reef bodies. In uplifted domains like SE Sulawesi, the sequences of fossil reefs display a variety of fossil morphologies. Similarly, the morphologies of the modern reefs are highly variable, including cliff notches, narrow fringing reefs, wide flat terraces, and barriers reefs. In this region, where uplift rates vary rapidly laterally, the entire set of morphologies is displayed within short distances. We developed a numerical model that predicts the architecture of fossil reefs sequences and apply it to observations from SE Sulawesi, accounting -amongst other parameters- for reef growth, coastal erosion, and uplift rates. The observations that we use to calibrate our models are mostly the morphology of both the onshore (dGPS and high-resolution Pleiades DEM) and offshore (sonar) coast, as well as U-Th radiometrically dated coral samples. Our method allows unravelling the spatial and temporal evolution of large domains on map view. Our analysis indicates that the architecture and morphology of uplifting coastlines is almost systematically polyphased (as attested by samples of different ages within a unique terrace), which assigns a primordial role to erosion, comparable to reef growth. Our models also reproduce the variety of modern morphologies, which are chiefly dictated by the uplift rates of the pre-existing morphology of the substratum, itself responding to the joint effects of reef building and subsequent erosion. In turn, we find that fossil and modern morphologies can be returned to uplift rates rather precisely, as the parametric window of each specific morphology is often narrow.

  4. An Architecture and Analysis Environment for Model to Observational Data Intercomparisons

    NASA Astrophysics Data System (ADS)

    Mattmann, C. A.; Williams, D.; Braverman, A. J.; Crichton, D. J.

    2009-12-01

    The Jet Propulsion Laboratory (JPL) has within the last year initiated an effort to increase the use of its observational data in the improvement and analysis of climate model outputs. This effort, known as the Climate Data eXchange (CDX), is a multi-institutional collaboration involving representatives from JPL and from the Program for Climate Model Diagnosis and Intercomparisions (PCMDI) at Lawrence Livermore National Laboratory (LLNL). Our early focus in the context of CDX has been on NASA Level 2 observational data products. These products vary in a number of ways incl.: (1) format - many of the products are stored in the Hierarchical Data Format (HDF), others in netCDF, with variation even between software versions that generated these output files within the same format; (2) geographic distribution - most observational data products are co-located with their scientific discipline expertise, to increase the yield of promising scientific results and to cut down on the effort for a science user to make progress; (3) data access mechanism - some data products are available from sophisticated web service interfaces, e.g., OPeNDAP -- others are not, requiring a user to fill on an online web ordering ``cart'', and have an email notification indicating availability at a later date; and (4) size - depending on the frequency of the instrument's orbit, and the characteristics of the mission including the way that the instrument ``sees'' the Earth, the sheer volume of the Level 2 data can widely vary, ranging from megabytes (MB) per product, to gigabytes (GB). These four dimensions are just a sampling of the characteristics of Level 2 observational data. The goal of CDX is to deliver an open source software toolkit that allows science users to alleviate as much of the complexity of dealing with Level 2 observational data as possible, and to facilitate its comparison to model outputs. In this fashion, there are two fundamental subsystems within CDX: (1) a Client Toolkit

  5. Geopotential Error Analysis from Satellite Gradiometer and Global Positioning System Observables on Parallel Architecture

    NASA Technical Reports Server (NTRS)

    Schutz, Bob E.; Baker, Gregory A.

    1997-01-01

    The recovery of a high resolution geopotential from satellite gradiometer observations motivates the examination of high performance computational techniques. The primary subject matter addresses specifically the use of satellite gradiometer and GPS observations to form and invert the normal matrix associated with a large degree and order geopotential solution. Memory resident and out-of-core parallel linear algebra techniques along with data parallel batch algorithms form the foundation of the least squares application structure. A secondary topic includes the adoption of object oriented programming techniques to enhance modularity and reusability of code. Applications implementing the parallel and object oriented methods successfully calculate the degree variance for a degree and order 110 geopotential solution on 32 processors of the Cray T3E. The memory resident gradiometer application exhibits an overall application performance of 5.4 Gflops, and the out-of-core linear solver exhibits an overall performance of 2.4 Gflops. The combination solution derived from a sun synchronous gradiometer orbit produce average geoid height variances of 17 millimeters.

  6. Consumers’ estimation of calorie content at fast food restaurants: cross sectional observational study

    PubMed Central

    Condon, Suzanne K; Kleinman, Ken; Mullen, Jewel; Linakis, Stephanie; Rifas-Shiman, Sheryl; Gillman, Matthew W

    2013-01-01

    Objective To investigate estimation of calorie (energy) content of meals from fast food restaurants in adults, adolescents, and school age children. Design Cross sectional study of repeated visits to fast food restaurant chains. Setting 89 fast food restaurants in four cities in New England, United States: McDonald’s, Burger King, Subway, Wendy’s, KFC, Dunkin’ Donuts. Participants 1877 adults and 330 school age children visiting restaurants at dinnertime (evening meal) in 2010 and 2011; 1178 adolescents visiting restaurants after school or at lunchtime in 2010 and 2011. Main outcome measure Estimated calorie content of purchased meals. Results Among adults, adolescents, and school age children, the mean actual calorie content of meals was 836 calories (SD 465), 756 calories (SD 455), and 733 calories (SD 359), respectively. A calorie is equivalent to 4.18 kJ. Compared with the actual figures, participants underestimated calorie content by means of 175 calories (95% confidence interval 145 to 205), 259 calories (227 to 291), and 175 calories (108 to 242), respectively. In multivariable linear regression models, underestimation of calorie content increased substantially as the actual meal calorie content increased. Adults and adolescents eating at Subway estimated 20% and 25% lower calorie content than McDonald’s diners (relative change 0.80, 95% confidence interval 0.66 to 0.96; 0.75, 0.57 to 0.99). Conclusions People eating at fast food restaurants underestimate the calorie content of meals, especially large meals. Education of consumers through calorie menu labeling and other outreach efforts might reduce the large degree of underestimation. PMID:23704170

  7. Sol-to-Gel Transition in Fast Evaporating Systems Observed by in Situ Time-Resolved Infrared Spectroscopy.

    PubMed

    Innocenzi, Plinio; Malfatti, Luca; Carboni, Davide; Takahashi, Masahide

    2015-06-22

    The in situ observation of a sol-to-gel transition in fast evaporating systems is a challenging task and the lack of a suitable experimental design, which includes the chemistry and the analytical method, has limited the observations. We synthesise an acidic sol, employing only tetraethylorthosilicate, SiCl4 as catalyst and deuterated water; the absence of water added to the sol allows us to follow the absorption from the external environment and the evaporation of deuterated water. The time-resolved data, obtained by attenuated total reflection infrared spectroscopy on an evaporating droplet, enables us to identify four different stages during evaporation. They are linked to specific hydrolysis and condensation rates that affect the uptake of water from external environment. The second stage is characterized by a decrease in hydroxyl content, a fast rise of condensation rate and an almost stationary absorption of water. This stage has been associated with the sol-to-gel transition.

  8. NASA's Earth Observing Data and Information System - Supporting Interoperability through a Scalable Architecture (Invited)

    NASA Astrophysics Data System (ADS)

    Mitchell, A. E.; Lowe, D. R.; Murphy, K. J.; Ramapriyan, H. K.

    2011-12-01

    Initiated in 1990, NASA's Earth Observing System Data and Information System (EOSDIS) is currently a petabyte-scale archive of data designed to receive, process, distribute and archive several terabytes of science data per day from NASA's Earth science missions. Comprised of 12 discipline specific data centers collocated with centers of science discipline expertise, EOSDIS manages over 6800 data products from many science disciplines and sources. NASA supports global climate change research by providing scalable open application layers to the EOSDIS distributed information framework. This allows many other value-added services to access NASA's vast Earth Science Collection and allows EOSDIS to interoperate with data archives from other domestic and international organizations. EOSDIS is committed to NASA's Data Policy of full and open sharing of Earth science data. As metadata is used in all aspects of NASA's Earth science data lifecycle, EOSDIS provides a spatial and temporal metadata registry and order broker called the EOS Clearing House (ECHO) that allows efficient search and access of cross domain data and services through the Reverb Client and Application Programmer Interfaces (APIs). Another core metadata component of EOSDIS is NASA's Global Change Master Directory (GCMD) which represents more than 25,000 Earth science data set and service descriptions from all over the world, covering subject areas within the Earth and environmental sciences. With inputs from the ECHO, GCMD and Soil Moisture Active Passive (SMAP) mission metadata models, EOSDIS is developing a NASA ISO 19115 Best Practices Convention. Adoption of an international metadata standard enables a far greater level of interoperability among national and international data products. NASA recently concluded a 'Metadata Harmony Study' of EOSDIS metadata capabilities/processes of ECHO and NASA's Global Change Master Directory (GCMD), to evaluate opportunities for improved data access and use, reduce

  9. NASA's Earth Observing Data and Information System - Supporting Interoperability through a Scalable Architecture (Invited)

    NASA Astrophysics Data System (ADS)

    Mitchell, A. E.; Lowe, D. R.; Murphy, K. J.; Ramapriyan, H. K.

    2013-12-01

    Initiated in 1990, NASA's Earth Observing System Data and Information System (EOSDIS) is currently a petabyte-scale archive of data designed to receive, process, distribute and archive several terabytes of science data per day from NASA's Earth science missions. Comprised of 12 discipline specific data centers collocated with centers of science discipline expertise, EOSDIS manages over 6800 data products from many science disciplines and sources. NASA supports global climate change research by providing scalable open application layers to the EOSDIS distributed information framework. This allows many other value-added services to access NASA's vast Earth Science Collection and allows EOSDIS to interoperate with data archives from other domestic and international organizations. EOSDIS is committed to NASA's Data Policy of full and open sharing of Earth science data. As metadata is used in all aspects of NASA's Earth science data lifecycle, EOSDIS provides a spatial and temporal metadata registry and order broker called the EOS Clearing House (ECHO) that allows efficient search and access of cross domain data and services through the Reverb Client and Application Programmer Interfaces (APIs). Another core metadata component of EOSDIS is NASA's Global Change Master Directory (GCMD) which represents more than 25,000 Earth science data set and service descriptions from all over the world, covering subject areas within the Earth and environmental sciences. With inputs from the ECHO, GCMD and Soil Moisture Active Passive (SMAP) mission metadata models, EOSDIS is developing a NASA ISO 19115 Best Practices Convention. Adoption of an international metadata standard enables a far greater level of interoperability among national and international data products. NASA recently concluded a 'Metadata Harmony Study' of EOSDIS metadata capabilities/processes of ECHO and NASA's Global Change Master Directory (GCMD), to evaluate opportunities for improved data access and use, reduce

  10. Direct Electron Heating Observed by Fast Waves in ICRF Range on a Low-Density Low Temperature Tokamak ADITYA

    SciTech Connect

    Mishra, K.; Kulkarni, S.; Rathi, D.; Varia, A.; Jadav, H.; Parmar, K.; Kadia, B.; Joshi, R.; Srinivas, Y.; Singh, R.; Kumar, S.; Dani, S.; Gayatri, A.; Yogi, R.; Singh, M.; Joisa, Y.; Rao, C.; Kumar, S.; Jha, R.; Manchanda, R.

    2011-12-23

    Fast wave electron heating experiments are carried out on Aditya tokamak [R = 0.75 m, a = 0.25m,Bt = 0.75T,ne{approx}1-3E13/cc,Te{approx}250eV] with the help of indigenously developed 200 kW, 20-40 MHz RF heating system. Significant direct electron heating is observed by fast waves in hydrogen plasma with prompt rise in electron temperature with application of RF power and it increases linearly with RF power. A corresponding increase in plasma beta and hence increase in stored diamagnetic energy is also observed in presence of RF. We observe an improvement of energy confinement time from 2-4msec during ohmic heating phase to 3-6msec in RF heating phase. This improvement is within the ohmic confinement regime for the present experiments. The impurity radiation and electron density do not escalate significantly with RF power. The direct electron heating by fast wave in Aditya is also predicted by ion cyclotron resonance heating code TORIC.

  11. Observation and interpretation of fast sub-visual light pulses from the night sky

    NASA Technical Reports Server (NTRS)

    Nemzek, R. J.; Winckler, J. R.

    1989-01-01

    Fast large-aperture photometers directed at the zenith on clear nights near Minneapolis have recorded many light pulses in the msec time range, but aside from man-made events these were almost entirely due to Rayleigh-scattered distant lightning, with a residual very low rate (less than 0.1/hr) of unidentified pulses. It is argued that 1-msec light pulses seen in several previous experiments may also be mostly Rayleigh-scattered lightning, rather than fluorescent light due to electron precipitation from lightning-induced whistlers as previously proposed.

  12. High speed Infrared imaging method for observation of the fast varying temperature phenomena

    NASA Astrophysics Data System (ADS)

    Moghadam, Reza; Alavi, Kambiz; Yuan, Baohong

    With new improvements in high-end commercial R&D camera technologies many challenges have been overcome for exploring the high-speed IR camera imaging. The core benefits of this technology is the ability to capture fast varying phenomena without image blur, acquire enough data to properly characterize dynamic energy, and increase the dynamic range without compromising the number of frames per second. This study presents a noninvasive method for determining the intensity field of a High Intensity Focused Ultrasound Device (HIFU) beam using Infrared imaging. High speed Infrared camera was placed above the tissue-mimicking material that was heated by HIFU with no other sensors present in the HIFU axial beam. A MATLAB simulation code used to perform a finite-element solution to the pressure wave propagation and heat equations within the phantom and temperature rise to the phantom was computed. Three different power levels of HIFU transducers were tested and the predicted temperature increase values were within about 25% of IR measurements. The fundamental theory and methods developed in this research can be used to detect fast varying temperature phenomena in combination with the infrared filters.

  13. Obscura telescope with a MEMS micromirror array for space observation of transient luminous phenomena or fast-moving objects.

    PubMed

    Park, J H; Garipov, G K; Jeon, J A; Khrenov, B A; Kim, J E; Kim, M; Kim, Y K; Lee, C-H; Lee, J; Na, G W; Nam, S; Park, I H; Park, Y-S

    2008-12-01

    We introduce a novel telescope consisting of a pinhole-like camera with rotatable MEMS micromirrors substituting for pinholes. The design is ideal for observations of transient luminous phenomena or fast-moving objects, such as upper atmospheric lightning and bright gamma ray bursts. The advantage of the MEMS "obscura telescope" over conventional cameras is that it is capable both of searching for events over a wide field of view, and fast zooming to allow detailed investigation of the structure of events. It is also able to track the triggering object to investigate its space-time development, and to center the interesting portion of the image on the photodetector array. We present the proposed system and the test results for the MEMS obscura telescope which has a field of view of 11.3 degrees, sixteen times zoom-in and tracking within 1 ms.

  14. Obscura telescope with a MEMS micromirror array for space observation of transient luminous phenomena or fast-moving objects.

    PubMed

    Park, J H; Garipov, G K; Jeon, J A; Khrenov, B A; Kim, J E; Kim, M; Kim, Y K; Lee, C-H; Lee, J; Na, G W; Nam, S; Park, I H; Park, Y-S

    2008-12-01

    We introduce a novel telescope consisting of a pinhole-like camera with rotatable MEMS micromirrors substituting for pinholes. The design is ideal for observations of transient luminous phenomena or fast-moving objects, such as upper atmospheric lightning and bright gamma ray bursts. The advantage of the MEMS "obscura telescope" over conventional cameras is that it is capable both of searching for events over a wide field of view, and fast zooming to allow detailed investigation of the structure of events. It is also able to track the triggering object to investigate its space-time development, and to center the interesting portion of the image on the photodetector array. We present the proposed system and the test results for the MEMS obscura telescope which has a field of view of 11.3 degrees, sixteen times zoom-in and tracking within 1 ms. PMID:19065163

  15. A Web 2.0 and OGC Standards Enabled Sensor Web Architecture for Global Earth Observing System of Systems

    NASA Technical Reports Server (NTRS)

    Mandl, Daniel; Unger, Stephen; Ames, Troy; Frye, Stuart; Chien, Steve; Cappelaere, Pat; Tran, Danny; Derezinski, Linda; Paules, Granville

    2007-01-01

    This paper will describe the progress of a 3 year research award from the NASA Earth Science Technology Office (ESTO) that began October 1, 2006, in response to a NASA Announcement of Research Opportunity on the topic of sensor webs. The key goal of this research is to prototype an interoperable sensor architecture that will enable interoperability between a heterogeneous set of space-based, Unmanned Aerial System (UAS)-based and ground based sensors. Among the key capabilities being pursued is the ability to automatically discover and task the sensors via the Internet and to automatically discover and assemble the necessary science processing algorithms into workflows in order to transform the sensor data into valuable science products. Our first set of sensor web demonstrations will prototype science products useful in managing wildfires and will use such assets as the Earth Observing 1 spacecraft, managed out of NASA/GSFC, a UASbased instrument, managed out of Ames and some automated ground weather stations, managed by the Forest Service. Also, we are collaborating with some of the other ESTO awardees to expand this demonstration and create synergy between our research efforts. Finally, we are making use of Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) suite of standards and some Web 2.0 capabilities to Beverage emerging technologies and standards. This research will demonstrate and validate a path for rapid, low cost sensor integration, which is not tied to a particular system, and thus be able to absorb new assets in an easily evolvable, coordinated manner. This in turn will help to facilitate the United States contribution to the Global Earth Observation System of Systems (GEOSS), as agreed by the U.S. and 60 other countries at the third Earth Observation Summit held in February of 2005.

  16. Turbulence spectrum observed by a fast-rotating wind-turbine blade

    SciTech Connect

    Connell, J.R.

    1980-06-01

    The spectrum of turbulence encountered by a point on a fast-rotating wind turbine blade is shown to be possibly quite different from that measured by a stationary anemometer. The physically reasonable expectations are supported quantitatively by experiments using Pacific Northwest Laboratory's vertical-plane anemometer array. The measurements indicate that the blade encounters energy densities in two regions of the turbulence spectrum much different than those seen by stationary anemometers. For typical turbine types and wind conditions, the spectral energy redistribution phenomenon may be significant only for turbine blade diameters larger than 10 m. The spectral shift should also affect gust statistics for rotting blades; the duration of gusts that are smaller than the diameter of the disk of blade rotation will decrease. Correspondingly, the rise rate will increase by a factor of about ten.

  17. Direct observation of ultrafast surface transport of laser-driven fast electrons in a solid target

    SciTech Connect

    Singh, Prashant Kumar; Chatterjee, Gourab; Adak, Amitava; Ahmed, Saima; Lad, Amit D.; Ravindra Kumar, G.; Cui, Y. Q.; Wang, W. M.; Sheng, Z. M.

    2013-11-15

    We demonstrate rapid spread of surface ionization on a glass target excited by an intense, ultrashort laser pulse at an intensity of 3 × 10{sup 17} W cm{sup −2}. Time- and space-resolved reflectivity of the target surface indicates that the initial plasma region created by the pump pulse expands at c/7. The measured quasi-static megagauss magnetic field is found to expand in a manner very similar to that of surface ionization. Two-dimensional particle-in-cell simulations reproduce measurements of surface ionization and magnetic fields. Both the experiment and simulation convincingly demonstrate the role of self-induced electric and magnetic fields in confining fast electrons along the target-vacuum interface.

  18. Observation of fast expansion velocity with insulating tungsten wires on ˜80 kA facility

    NASA Astrophysics Data System (ADS)

    Li, M.; Zhang, J. H.; Wu, J.; Li, Y.; Sun, T. P.; Wang, L. P.; Sheng, L.; Qiu, M. T.; Mao, W. T.; Li, X. W.

    2016-07-01

    This paper presents experimental results on the effects of insulating coatings on tungsten planar wire array Z-pinches on an 80 kA, 100 ns current facility. Expansion velocity is obviously increased from ˜0.25 km/s to ˜3.5 km/s by using the insulating coatings. It can be inferred that the wire cores are in gaseous state with this fast expansion velocity. An optical framing camera and laser probing images show that the standard wire arrays have typical ablation process which is similar to their behaviors on mega-ampere facilities. The ablation process and precursor plasma are suppressed for dielectric tungsten wires. The wire array implosion might be improved if these phenomena can be reproduced on Mega-ampere facilities.

  19. OBSERVATIONAL TEST OF STOCHASTIC HEATING IN LOW-{beta} FAST-SOLAR-WIND STREAMS

    SciTech Connect

    Bourouaine, Sofiane; Chandran, Benjamin D. G.

    2013-09-10

    Spacecraft measurements show that protons undergo substantial perpendicular heating during their transit from the Sun to the outer heliosphere. In this paper, we use Helios 2 measurements to investigate whether stochastic heating by low-frequency turbulence is capable of explaining this perpendicular heating. We analyze Helios 2 magnetic field measurements in low-{beta} fast-solar-wind streams between heliocentric distances r = 0.29 AU and r = 0.64 AU to determine the rms amplitude of the fluctuating magnetic field, {delta}B{sub p}, near the proton gyroradius scale {rho}{sub p}. We then evaluate the stochastic heating rate Q{sub stoch} using the measured value of {delta}B{sub p} and a previously published analytical formula for Q{sub stoch}. Using Helios measurements we estimate the ''empirical'' perpendicular heating rate Q{sub Up-Tack emp} = (k{sub B}/m{sub p}) BV (d/dr) (T{sub Up-Tack p}/B) that is needed to explain the T{sub p} profile. We find that Q{sub stoch} {approx} Q{sub emp}, but only if a key dimensionless constant appearing in the formula for Q{sub stoch} lies within a certain range of values. This range is approximately the same throughout the radial interval that we analyze and is consistent with the results of numerical simulations of the stochastic heating of test particles in reduced magnetohydrodynamic turbulence. These results support the hypothesis that stochastic heating accounts for much of the perpendicular proton heating occurring in low-{beta} fast-wind streams.

  20. Wide-bandwidth drift-scan pulsar surveys of globular clusters: application to early science observations with FAST

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Hobbs, George; Li, Di; Lorimer, Duncan; Zhang, Jie; Yu, Meng; Yue, You-Ling; Wang, Pei; Pan, Zhi-Chen; Dai, Shi

    2016-10-01

    The Five-hundred-meter Aperture Spherical Telescope (FAST) will begin its early-science operations during 2016. Drift-scan pulsar surveys will be carried out during this period using an ultra-wide-band receiver system (covering ˜ 270 to 1620 MHz). We describe a method for accounting for the changes in the telescope beam shape and the pulsar parameters when searching for pulsars over such a wide bandwidth. We applied this method to simulated data sets of pulsars in globular clusters that are visible to FAST and found that a representative observation would have a sensitivity of ˜ 40 μJy. Our results showed that a single drift-scan (lasting less than a minute) is likely to find at least one pulsar for observations of four globular clusters. Repeated observations will increase the likely number of detections. We found that pulsars in ˜16 clusters are likely to be found if the data from 100 drift-scan observations of each cluster are incoherently combined.

  1. Wide-bandwidth drift-scan pulsar surveys of globular clusters: application to early science observations with FAST

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Hobbs, George; Li, Di; Lorimer, Duncan; Zhang, Jie; Yu, Meng; Yue, You-Ling; Wang, Pei; Pan, Zhi-Chen; Dai, Shi

    2016-10-01

    The Five-hundred-meter Aperture Spherical Telescope (FAST) will begin its early-science operations during 2016. Drift-scan pulsar surveys will be carried out during this period using an ultra-wide-band receiver system (covering ∼ 270 to 1620 MHz). We describe a method for accounting for the changes in the telescope beam shape and the pulsar parameters when searching for pulsars over such a wide bandwidth. We applied this method to simulated data sets of pulsars in globular clusters that are visible to FAST and found that a representative observation would have a sensitivity of ∼ 40 μJy. Our results showed that a single drift-scan (lasting less than a minute) is likely to find at least one pulsar for observations of four globular clusters. Repeated observations will increase the likely number of detections. We found that pulsars in ∼16 clusters are likely to be found if the data from 100 drift-scan observations of each cluster are incoherently combined.

  2. An observational study on the influence of solvent composition on the architecture of drug-layered pellets.

    PubMed

    McConnell, Emma L; Macfarlane, Calum B; Basit, Abdul W

    2009-10-01

    Pelletization for the manufacture of modified release multiparticulate drug delivery systems is often considered to be well defined and robust. However, small differences in formulation conditions can lead to surprising changes to the expected outcomes. We observed that extended release tramadol hydrochloride pellets, prepared by solution layering an ethanolic solution of drug on a non-pareil, resulted in highly unusual pellet architecture with deep indentations which prevented the application of a homogeneous outer coating of ethylcellulose and talc, and negatively influenced the desired modified release characteristics. Modification of outer coating thickness and process temperature showed no improvement in release characteristics. A solution to the problem was found in the incorporation of 10% v/v water into the ethanolic drug layering solution, resulting in the production of drug-loaded pellets with a smooth morphology which allowed the application of a coherent outer coating able to retard drug release. The surprising difference in pellet morphology between the two solvent drug layering systems may be attributed to differences in solvent evaporation rates. This demonstrates that established techniques are sometimes less straightforward than thought as small changes in formulation have significant effects on the resulting product in a way which is not always well understood. PMID:19589378

  3. Observation of strong nano-effect via tuning distributed architecture of graphene oxide in poly(propylene carbonate)

    NASA Astrophysics Data System (ADS)

    Gao, Jian; Bai, Hongwei; Zhou, Xin; Yang, Guanghui; Xu, Chenlong; Zhang, Qin; Chen, Feng; Fu, Qiang

    2014-01-01

    For optimum reinforcement in polymer nanocomposite, a critical challenge is to realize the full ‘nano-effect’ of nanofillers at a high content, which is largely hindered by the strong tendency to aggregation of nanofillers. Here, by using a solvent-exchange and solution casting approach, we could incorporate a high-content graphene oxide (GO) into a soft biodegradable CO2-based poly(propylene carbonate) (PPC) up to 20 wt% with excellent dispersion. Based on this, the distributed architecture of GO could be tuned from a ‘GO dotted dispersion’ and ‘GO network’ to strong ‘GO co-continuous structure’ with increasing GO content. As a result, a very strong ‘nano-effect’ of GO in the PPC matrix was observed: (1) the glass transition temperature of PPC was improved from 25 to 45 ° C for slightly confined molecular chains, and even to 100 ° C for highly confined ones; (2) the modified PPC showed drastically enhanced high-temperature mechanical properties, comparable to those of traditional polymers such as polypropylene (PP) and biopolymer poly(lactic acid) (PLA); and (3) such modified PPC exhibited an exciting solvent resistance compared to neat PPC. Our work provides an example to improve the high-temperature properties of a polymer via formation of filler co-continuous structure.

  4. Observation of strong nano-effect via tuning distributed architecture of graphene oxide in poly(propylene carbonate).

    PubMed

    Gao, Jian; Bai, Hongwei; Zhou, Xin; Yang, Guanghui; Xu, Chenlong; Zhang, Qin; Chen, Feng; Fu, Qiang

    2014-01-17

    For optimum reinforcement in polymer nanocomposite, a critical challenge is to realize the full 'nano-effect' of nanofillers at a high content, which is largely hindered by the strong tendency to aggregation of nanofillers. Here, by using a solvent-exchange and solution casting approach, we could incorporate a high-content graphene oxide (GO) into a soft biodegradable CO2-based poly(propylene carbonate) (PPC) up to 20 wt% with excellent dispersion. Based on this, the distributed architecture of GO could be tuned from a 'GO dotted dispersion' and 'GO network' to strong 'GO co-continuous structure' with increasing GO content. As a result, a very strong 'nano-effect' of GO in the PPC matrix was observed: (1) the glass transition temperature of PPC was improved from 25 to 45 ° C for slightly confined molecular chains, and even to 100 ° C for highly confined ones; (2) the modified PPC showed drastically enhanced high-temperature mechanical properties, comparable to those of traditional polymers such as polypropylene (PP) and biopolymer poly(lactic acid) (PLA); and (3) such modified PPC exhibited an exciting solvent resistance compared to neat PPC. Our work provides an example to improve the high-temperature properties of a polymer via formation of filler co-continuous structure. PMID:24334528

  5. Observation of strong nano-effect via tuning distributed architecture of graphene oxide in poly(propylene carbonate).

    PubMed

    Gao, Jian; Bai, Hongwei; Zhou, Xin; Yang, Guanghui; Xu, Chenlong; Zhang, Qin; Chen, Feng; Fu, Qiang

    2014-01-17

    For optimum reinforcement in polymer nanocomposite, a critical challenge is to realize the full 'nano-effect' of nanofillers at a high content, which is largely hindered by the strong tendency to aggregation of nanofillers. Here, by using a solvent-exchange and solution casting approach, we could incorporate a high-content graphene oxide (GO) into a soft biodegradable CO2-based poly(propylene carbonate) (PPC) up to 20 wt% with excellent dispersion. Based on this, the distributed architecture of GO could be tuned from a 'GO dotted dispersion' and 'GO network' to strong 'GO co-continuous structure' with increasing GO content. As a result, a very strong 'nano-effect' of GO in the PPC matrix was observed: (1) the glass transition temperature of PPC was improved from 25 to 45 ° C for slightly confined molecular chains, and even to 100 ° C for highly confined ones; (2) the modified PPC showed drastically enhanced high-temperature mechanical properties, comparable to those of traditional polymers such as polypropylene (PP) and biopolymer poly(lactic acid) (PLA); and (3) such modified PPC exhibited an exciting solvent resistance compared to neat PPC. Our work provides an example to improve the high-temperature properties of a polymer via formation of filler co-continuous structure.

  6. Cosmic ray modulation at the solar maximum: Ulysses observations during the fast latitude scan of the inner heliosphere*

    NASA Astrophysics Data System (ADS)

    Zhang, M.; McKibben, R. B.; Lopate, C.

    2002-05-01

    Starting at the maximum southern latitude of 80o in November 2000, Ulysses made a fast latitude scan of the inner heliosphere within approximately one year at the time of maximum solar activity. It passed through a perihelion at 1.34 AU near the solar equator in May 2001, and reached its maximum northern latitude in October 2001. The fast latitude scan provides best conditions for the determination of cosmic ray latitudinal gradients because of little expected drift of instrument performance and a small coverage of radial distance (2.2 to 1.34 AU). Although the time period is dominated by solar energetic particle events, measurements from the High-Energy Telescope on the Ulysses COSPIN experiment together with simultaneous measurements from the University of Chicago Charge Particle Telescope on IMP-8 near Earth made during rare solar quiet time periods found that the latitudinal gradient of cosmic ray intensities is essentially zero for all nuclei of energies above 30 MeV/n. Compared to the measurements of small cosmic ray latitude gradients made by Ulysses' first fast latitude scan at the 1994-1995 solar minimum, this observation indicates that the inner heliosphere is more spherically symmetric at the solar maximum. In this paper, we will discuss its implications to the understanding of the structure of heliospheric magnetic fields and the mechanisms of particle transport. * This work was supported in part by NASA Contract JPL-955432 and by NASA Grants NAG5-11036 and NAG5-10888

  7. RTTOV-gb - adapting the fast radiative transfer model RTTOV for the assimilation of ground-based microwave radiometer observations

    NASA Astrophysics Data System (ADS)

    De Angelis, Francesco; Cimini, Domenico; Hocking, James; Martinet, Pauline; Kneifel, Stefan

    2016-08-01

    Ground-based microwave radiometers (MWRs) offer a new capability to provide continuous observations of the atmospheric thermodynamic state in the planetary boundary layer. Thus, they are potential candidates to supplement radiosonde network and satellite data to improve numerical weather prediction (NWP) models through a variational assimilation of their data. However in order to assimilate MWR observations, a fast radiative transfer model is required and such a model is not currently available. This is necessary for going from the model state vector space to the observation space at every observation point. The fast radiative transfer model RTTOV is well accepted in the NWP community, though it was developed to simulate satellite observations only. In this work, the RTTOV code has been modified to allow for simulations of ground-based upward-looking microwave sensors. In addition, the tangent linear, adjoint, and K-modules of RTTOV have been adapted to provide Jacobians (i.e., the sensitivity of observations to the atmospheric thermodynamical state) for ground-based geometry. These modules are necessary for the fast minimization of the cost function in a variational assimilation scheme. The proposed ground-based version of RTTOV, called RTTOV-gb, has been validated against accurate and less time-efficient line-by-line radiative transfer models. In the frequency range commonly used for temperature and humidity profiling (22-60 GHz), root-mean-square brightness temperature differences are smaller than typical MWR uncertainties (˜ 0.5 K) at all channels used in this analysis. Brightness temperatures (TBs) computed with RTTOV-gb from radiosonde profiles have been compared with nearly simultaneous and co-located ground-based MWR observations. Differences between simulated and measured TBs are below 0.5 K for all channels except for the water vapor band, where most of the uncertainty comes from instrumental errors. The Jacobians calculated with the K-module of RTTOV

  8. Observation of the molecular organization of calcium release sites in fast- and slow-twitch skeletal muscle with nanoscale imaging

    PubMed Central

    Jayasinghe, Isuru D.; Munro, Michelle; Baddeley, David; Launikonis, Bradley S.; Soeller, Christian

    2014-01-01

    Localization microscopy is a fairly recently introduced super-resolution fluorescence imaging modality capable of achieving nanometre-scale resolution. We have applied the dSTORM variation of this method to image intracellular molecular assemblies in skeletal muscle fibres which are large cells that critically rely on nanoscale signalling domains, the triads. Immunofluorescence staining in fixed adult rat skeletal muscle sections revealed clear differences between fast- and slow-twitch fibres in the molecular organization of ryanodine receptors (RyRs; the primary calcium release channels) within triads. With the improved resolution offered by dSTORM, abutting arrays of RyRs in transverse view of fast fibres were observed in contrast to the fragmented distribution on slow-twitch muscle that were approximately 1.8 times shorter and consisted of approximately 1.6 times fewer receptors. To the best of our knowledge, for the first time, we have quantified the nanometre-scale spatial association between triadic proteins using multi-colour super-resolution, an analysis difficult to conduct with electron microscopy. Our findings confirm that junctophilin-1 (JPH1), which tethers the sarcoplasmic reticulum ((SR) intracellular calcium store) to the tubular (t-) system at triads, was present throughout the RyR array, whereas JPH2 was contained within much smaller nanodomains. Similar imaging of the primary SR calcium buffer, calsequestrin (CSQ), detected less overlap of the triad with CSQ in slow-twitch muscle supporting greater spatial heterogeneity in the luminal Ca2+ buffering when compared with fast twitch muscle. Taken together, these nanoscale differences can explain the fundamentally different physiologies of fast- and slow-twitch muscle. PMID:25100314

  9. Online Fault Detection of Permanent Magnet Demagnetization for IPMSMs by Nonsingular Fast Terminal-Sliding-Mode Observer

    PubMed Central

    Zhao, Kai-Hui; Chen, Te-Fang; Zhang, Chang-Fan; He, Jing; Huang, Gang

    2014-01-01

    To prevent irreversible demagnetization of a permanent magnet (PM) for interior permanent magnet synchronous motors (IPMSMs) by flux-weakening control, a robust PM flux-linkage nonsingular fast terminal-sliding-mode observer (NFTSMO) is proposed to detect demagnetization faults. First, the IPMSM mathematical model of demagnetization is presented. Second, the construction of the NFTSMO to estimate PM demagnetization faults in IPMSM is described, and a proof of observer stability is given. The fault decision criteria and fault-processing method are also presented. Finally, the proposed scheme was simulated using MATLAB/Simulink and implemented on the RT-LAB platform. A number of robustness tests have been carried out. The scheme shows good performance in spite of speed fluctuations, torque ripples and the uncertainties of stator resistance. PMID:25490582

  10. Online fault detection of permanent magnet demagnetization for IPMSMs by nonsingular fast terminal-sliding-mode observer.

    PubMed

    Zhao, Kai-Hui; Chen, Te-Fang; Zhang, Chang-Fan; He, Jing; Huang, Gang

    2014-12-05

    To prevent irreversible demagnetization of a permanent magnet (PM) for interior permanent magnet synchronous motors (IPMSMs) by flux-weakening control, a robust PM flux-linkage nonsingular fast terminal-sliding-mode observer (NFTSMO) is proposed to detect demagnetization faults. First, the IPMSM mathematical model of demagnetization is presented. Second, the construction of the NFTSMO to estimate PM demagnetization faults in IPMSM is described, and a proof of observer stability is given. The fault decision criteria and fault-processing method are also presented. Finally, the proposed scheme was simulated using MATLAB/Simulink and implemented on the RT-LAB platform. A number of robustness tests have been carried out. The scheme shows good performance in spite of speed fluctuations, torque ripples and the uncertainties of stator resistance.

  11. Fast printing and in situ morphology observation of organic photovoltaics using slot-die coating.

    PubMed

    Liu, Feng; Ferdous, Sunzida; Schaible, Eric; Hexemer, Alexander; Church, Matthew; Ding, Xiaodong; Wang, Cheng; Russell, Thomas P

    2015-02-01

    The mini-slot-die coater offers a simple, convenient, materials-efficient route to print bulk-heterojunction (BHJ) organic photovoltaics (OPVs) that show efficiencies similar to spin-coating. Grazing-incidence X-ray diffraction (GIXD) and GI small-angle X-ray scattering (GISAXS) methods are used in real time to characterize the active-layer formation during printing. A polymer-aggregation-phase-separation-crystallization mechanism for the evolution of the morphology describes the observations.

  12. Fast damping of poloidal Alfven waves by bounce-resonant ions: observations and modeling

    NASA Astrophysics Data System (ADS)

    Wang, C.; Rankin, R.; Sydorenko, D.; Zong, Q.

    2015-12-01

    Interplanetary shocks and solar wind dynamic pressure variations can excite intense ultra-low-frequency (ULF) waves in the inner magnetosphere. An analysis of two interplanetary shocks observed by Cluster on 7 November 2004 and 30 August 2001 shows that the poloidal waves excited in these events are damped away rapidly in tens of minutes. This damping is the result of wave-particle interactions involving H+ and O+ ions with energies in the range of several to a few tens of keV [Wang et al., J. Geophys. Res., 2015]. Damping is found to be more effective in the plasmasphere boundary layer due to the relatively higher proportion of Landau resonant ions that exists in that region. In the November 2004 shock event it has been suggested that energy-dispersed ions observed travelling parallel and anti-parallel direction to the geomagnetic field immediately after the shockare locally accelerated rather than originating from Earth's ionosphere. We use test-particle simulations to show that adiabatic advection of the particle differential flux caused bydrift-bounce-resonance with ULF waves is responsible for the energy-dispersed ions observed in these events. In the simulations,Liouville's theorem is used to reconstruct the iondistribution function and differential flux in a model dipole magnetosphere.It is shown that flux modulations of H and O ions can be reproduced when test-particle ions are advanced in the electric fields of the 3D ULF wave model we have developed.

  13. Photometric and polarimetric observations of fast declining Type II supernovae 2013hj and 2014G

    NASA Astrophysics Data System (ADS)

    Bose, Subhash; Kumar, Brijesh; Misra, Kuntal; Matsumoto, Katsura; Kumar, Brajesh; Singh, Mridweeka; Fukushima, Daiki; Kawabata, Miho

    2016-01-01

    We present broad-band photometric and polarimetric observations of two Type II supernovae (SNe) 2013hj and 2014G. SN 2014G is a spectroscopically classified Type IIL event, which we also confirm photometrically because its light curve shows characteristic features - a plateau slope of 2.55 mag (100 d)-1 in the V band and a duration of ˜77 d - of a generic Type IIL SN. However, SN 2013hj also shows a high plateau decline rate of 1.5 mag (100 d)-1 in the V band, similar to SNe IIL, but marginally lower than SNe IIL template light curves. Our high cadence photometric observations of SNe 2013hj and 2014G enables us to cover all characteristic phases up to the radioactive tail of optical light curves. Broad-band polarimetric observations reveal some polarization in SN 2013hj with subtle enhancement as the SN evolves towards the plateau end. However, the polarization angle remains constant throughout the evolution. This characteristic is consistent with the idea that the evolving SN with recombining hydrogen envelope is slowly revealing a more asymmetric central region of explosion. Modelling of the bolometric light curve yields a progenitor mass of ˜11 M⊙ with a radius of ˜700 R⊙ for SN 2013hj, while for the SN 2014G model estimated progenitor mass is ˜9 M⊙ with a radius of ˜630 R⊙, both having a typical energy budget of ˜2 × 1051 erg.

  14. Clinical observations of early and late normal tissue injury in patients receiving fast neutron irradiation

    SciTech Connect

    Ornitz, R.D.; Bradley, E.W.; Mossman, K.L.; Fender, F.M.; Schell, M.C.; Rogers, C.C.

    1980-03-01

    This communication describes early and late normal tissue effects in 177 patients treated totally or in part by 15 MeV neutrons from the Naval Research Laboratory Cyclotron in Washington, D.C. between October 1973 and December 1976. Late normal tissue reactions were found to be greater than would be expected from careful observation of the early clinical responses to neutron treatment. Neutron prescriptions must be written based on the late effect tolerance level experience which is being accumulated at several neutron therapy facilities.

  15. Can model observers be developed to reproduce radiologists' diagnostic performances? Our study says not so fast!

    NASA Astrophysics Data System (ADS)

    Lee, Juhun; Nishikawa, Robert M.; Reiser, Ingrid; Boone, John M.

    2016-03-01

    The purpose of this study was to determine radiologists' diagnostic performances on different image reconstruction algorithms that could be used to optimize image-based model observers. We included a total of 102 pathology proven breast computed tomography (CT) cases (62 malignant). An iterative image reconstruction (IIR) algorithm was used to obtain 24 reconstructions with different image appearance for each image. Using quantitative image feature analysis, three IIRs and one clinical reconstruction of 50 lesions (25 malignant) were selected for a reader study. The reconstructions spanned a range of smooth-low noise to sharp-high noise image appearance. The trained classifiers' AUCs on the above reconstructions ranged from 0.61 (for smooth reconstruction) to 0.95 (for sharp reconstruction). Six experienced MQSA radiologists read 200 cases (50 lesions times 4 reconstructions) and provided the likelihood of malignancy of each lesion. Radiologists' diagnostic performances (AUC) ranged from 0.7 to 0.89. However, there was no agreement among the six radiologists on which image appearance was the best, in terms of radiologists' having the highest diagnostic performances. Specifically, two radiologists indicated sharper image appearance was diagnostically superior, another two radiologists indicated smoother image appearance was diagnostically superior, and another two radiologists indicated all image appearances were diagnostically similar to each other. Due to the poor agreement among radiologists on the diagnostic ranking of images, it may not be possible to develop a model observer for this particular imaging task.

  16. Shallow vent architecture of Puyehue Cordón-Caulle, as revealed by direct observation of explosive activity

    NASA Astrophysics Data System (ADS)

    Schipper, C. I.; Tuffen, H.; Castro, J. M.

    2012-04-01

    wall of the tephra cone were entrained upward into the main vertical portion of the plume. On Jan. 10, explosive activity was manifested as semi-continuous ash jetting from multiple point sources, as accommodated by a 10-20 m high incipient dome that had formed in the tephra cone. At any given time, up to 10 discrete point and linear sources of gas and ash discharge could be seen. These had variable directionality and produced plumes with spatially and temporally variable ash contents. Cycles of overpressure buildup and vent failure were still observed, but rarely produced significant bombs. Instead, failure was characterized by the simultaneous or staggered opening of many additional point discharge sources, often defining a dish-like structure around - but not disturbing - the incipient dome. During this lower-intensity activity, no defined gas-thrust region was maintained and the plume would often collapse to fill the tephra cone. Directed plumes that breached the cone continued to descend its outer slopes. Ongoing analysis of juvenile pyroclasts and video footage permits an assessment of overpressure buildup and release in the shallow conduit of the PCCVC, and an assessment of the complex shallow vent architecture. We address the ideas: (1) that to describe explosive ash jetting from a single "vent" is a gross oversimplification of what is actually a highly transient, multiple point-source vent complex subject to variations in permeability and rate/type of discharge; and (2) that gas and ash jetting and Vulcanian blasts play an important if not necessary role in generating degassed magma that erupts effusively (see Castro et al., this session).

  17. Energy calibration issues in nuclear resonant vibrational spectroscopy: observing small spectral shifts and making fast calibrations.

    PubMed

    Wang, Hongxin; Yoda, Yoshitaka; Dong, Weibing; Huang, Songping D

    2013-09-01

    The conventional energy calibration for nuclear resonant vibrational spectroscopy (NRVS) is usually long. Meanwhile, taking NRVS samples out of the cryostat increases the chance of sample damage, which makes it impossible to carry out an energy calibration during one NRVS measurement. In this study, by manipulating the 14.4 keV beam through the main measurement chamber without moving out the NRVS sample, two alternative calibration procedures have been proposed and established: (i) an in situ calibration procedure, which measures the main NRVS sample at stage A and the calibration sample at stage B simultaneously, and calibrates the energies for observing extremely small spectral shifts; for example, the 0.3 meV energy shift between the 100%-(57)Fe-enriched [Fe4S4Cl4](=) and 10%-(57)Fe and 90%-(54)Fe labeled [Fe4S4Cl4](=) has been well resolved; (ii) a quick-switching energy calibration procedure, which reduces each calibration time from 3-4 h to about 30 min. Although the quick-switching calibration is not in situ, it is suitable for normal NRVS measurements.

  18. FAST TRACK PAPER: Regional observations of the second North Korean nuclear test on 2009 May 25

    NASA Astrophysics Data System (ADS)

    Shin, Jin Soo; Sheen, Dong-Hoon; Kim, Geunyoung

    2010-01-01

    The suspicious seismic event that occurred in the northern Korean Peninsula on 2009 May 25 was declared to be the second underground nuclear test (NK2ND) by North Korea. We investigated the characteristics of NK2ND using seismic signals recorded at regional-distance stations in South Korea and China. The Pn/Lg ratios of NK2ND definitely discriminate this event from two nearby natural earthquakes at frequencies above 4 Hz. Full moment tensor inversion of full waveform data shows that NK2ND had a very large isotropic component. Pure isotropic moment tensor inversion also resulted in good recovery of observed waveforms, with clear indication that NK2ND was explosive in origin. The moment magnitude (Mw) from the full moment tensor inversion was estimated to be 4.5 and network-averaged values of 4.6 and 3.6 were calculated for rms mb(Lg) and Ms(VMAX), respectively. Although mb - Ms signature has been considered one of the most reliable discriminants for separating explosions and earthquakes, this signature showed poor discrimination in the case of NK2ND. The Pn/Lg ratios and moment tensor inversion give more reliable evidence than does the mb - Ms for classifying the suspicious event in the northern Korean Peninsula as a possible explosion. The characteristics of NK2ND are also quite similar to those of the first North Korean nuclear test on 2006 October 9.

  19. NuSTAR AND SWIFT Observations of the Fast Rotating Magnetized White Dwarf AE Aquarii

    NASA Technical Reports Server (NTRS)

    Kitaguchi, Takao; An, Hongjun; Beloborodov, Andrei M.; Gotthelf, Eric V.; Hayashi, Takayuki; Kaspi, Victoria M.; Rana, Vikram R.; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Hailey, Charles J.; Harrison, Fiona A.; Stern, Daniel; Zhang, Will W.

    2014-01-01

    AE Aquarii is a cataclysmic variable with the fastest known rotating magnetized white dwarf (P(sub spin) = 33.08 s). Compared to many intermediate polars, AE Aquarii shows a soft X-ray spectrum with a very low luminosity (LX (is) approximately 10(exp 31) erg per second). We have analyzed overlapping observations of this system with the NuSTAR and the Swift X-ray observatories in 2012 September. We find the 0.5-30 keV spectra to be well fitted by either an optically thin thermal plasma model with three temperatures of 0.75(+0.18 / -0.45), 2.29(+0.96 / -0.82), and 9.33 (+6.07 / -2.18) keV, or an optically thin thermal plasma model with two temperatures of 1.00 (+0.34 / -0.23) and 4.64 (+1.58 / -0.84) keV plus a power-law component with photon index of 2.50 (+0.17 / -0.23). The pulse profile in the 3-20 keV band is broad and approximately sinusoidal, with a pulsed fraction of 16.6% +/- 2.3%. We do not find any evidence for a previously reported sharp feature in the pulse profile.

  20. NuStar and Swift Observations of the Fast Rotating Magnetized White Dwarf AE Aquarii

    NASA Technical Reports Server (NTRS)

    Kitaguchi, Takao; An, Hongjun; Beloborodov, Andrei M.; Gotthelf, Eric V.; Hayashi, Takayuki; Kaspi, Victoria M.; Rana, Vikram R.; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Hailey, Charles J.; Harrison, Fiona A.; Stern, Daniel; Zhang, Will W.

    2014-01-01

    AE Aquarii is a cataclysmic variable with the fastest known rotating magnetized white dwarf (P(sub spin) = 33.08 s). Compared to many intermediate polars, AE Aquarii shows a soft X-ray spectrum with a very low luminosity (LX (is) approximately 10(exp 31) erg per second). We have analyzed overlapping observations of this system with the NuSTAR and the Swift X-ray observatories in 2012 September. We find the 0.5-30 keV spectra to be well fitted by either an optically thin thermal plasma model with three temperatures of 0.75(+0.18 / -0.45), 2.29(+0.96 / -0.82), and 9.33 (+6.07 / -2.18) keV, or an optically thin thermal plasma model with two temperatures of 1.00 (+0.34 / -0.23) and 4.64 (+1.58 / -0.84) keV plus a power-law component with photon index of 2.50 (+0.17 / -0.23). The pulse profile in the 3-20 keV band is broad and approximately sinusoidal, with a pulsed fraction of 16.6% +/- 2.3%. We do not find any evidence for a previously reported sharp feature in the pulse profile.

  1. Development of the Large-Scale Statistical Analysis System of Satellites Observations Data with Grid Datafarm Architecture

    NASA Astrophysics Data System (ADS)

    Yamamoto, K.; Murata, K.; Kimura, E.; Honda, R.

    2006-12-01

    In the Solar-Terrestrial Physics (STP) field, the amount of satellite observation data has been increasing every year. It is necessary to solve the following three problems to achieve large-scale statistical analyses of plenty of data. (i) More CPU power and larger memory and disk size are required. However, total powers of personal computers are not enough to analyze such amount of data. Super-computers provide a high performance CPU and rich memory area, but they are usually separated from the Internet or connected only for the purpose of programming or data file transfer. (ii) Most of the observation data files are managed at distributed data sites over the Internet. Users have to know where the data files are located. (iii) Since no common data format in the STP field is available now, users have to prepare reading program for each data by themselves. To overcome the problems (i) and (ii), we constructed a parallel and distributed data analysis environment based on the Gfarm reference implementation of the Grid Datafarm architecture. The Gfarm shares both computational resources and perform parallel distributed processings. In addition, the Gfarm provides the Gfarm filesystem which can be as virtual directory tree among nodes. The Gfarm environment is composed of three parts; a metadata server to manage distributed files information, filesystem nodes to provide computational resources and a client to throw a job into metadata server and manages data processing schedulings. In the present study, both data files and data processes are parallelized on the Gfarm with 6 file system nodes: CPU clock frequency of each node is Pentium V 1GHz, 256MB memory and40GB disk. To evaluate performances of the present Gfarm system, we scanned plenty of data files, the size of which is about 300MB for each, in three processing methods: sequential processing in one node, sequential processing by each node and parallel processing by each node. As a result, in comparison between the

  2. Combined Multipoint Remote and In Situ Observations of the Asymmetric Evolution of a Fast Coronal Mass Ejection

    NASA Astrophysics Data System (ADS)

    Rollett, Tanja; Möstl, Christian; Temmer, Manuela; Frahm, Rudy A.; Davies, Jackie A.; Veronig, Astrid M.; Vrsnak, Bojan; Amerstorfer, Ute V.; Farrugia, Charles J.; Zic, Tomislav; Zhang, Tielong

    2015-04-01

    A significant number of in situ detections and remote observations have allowed us to strongly constrain the shape of the fast coronal mass ejection (CME) of 7 March 2012 during its evolution through interplanetary space. The CME was imaged by both STEREO spacecraft and detected in situ by MESSENGER, Venus Express, Wind and Mars Express. Applying the novel constrained self-similar expansion method, which combines observations from STEREO's heliospheric imaging facilities with the four in situ detections, we derived different kinematical profiles for two different segments of the same CME. For the Venus- (and Mercury-) directed segment we found a gradual deceleration while the Earth- (and Mars-) directed part was decelerated abruptly close to the Sun. In order to study the background solar wind conditions we used a drag-based model, which revealed a comparatively small drag-force acting on the Venus-directed CME segment possibly caused by a preceding CME that cleared the way for the CME under study. The Earth-directed segment may have also been affected by a preceding CME. Here, we found different solar wind conditions along the CME path. A high drag-parameter below 35 solar radii suggests a high drag-force acting against the CME propagation, causing a strong deceleration. Subsequently, this part of the CME propagated with an almost constant speed. The resulting deformation of the overall CME shape underlines the importance of using stereoscopic observations for being able to reduce the arrival time error in space weather forecasting.

  3. RTTOV-gb - Adapting the fast radiative transfer model RTTOV for the assimilation of ground-based microwave radiometer observations

    NASA Astrophysics Data System (ADS)

    De Angelis, Francesco; Cimini, Domenico; Hocking, James; Martinet, Pauline; Kneifel, Stefan

    2016-04-01

    The Planetary Boundary Layer (PBL) is the single most important under-sampled part of the atmosphere. According to the WMO Statement Of Guidance For Global Numerical Weather Prediction (NWP), temperature and humidity profiles (in cloudy areas) are among the four critical atmospheric variables not adequately measured in the PBL. Ground-based microwave radiometers (MWR) provide temperature and humidity profiles in both clear- and cloudy-sky conditions with high temporal resolution and low-to-moderate vertical resolution, with information mostly residing in the PBL. Ground-based MWR offer to bridge this observational gap by providing continuous temperature and humidity information in the PBL. The MWR data assimilation into NWP models may be particularly important in nowcasting and severe weather initiation. The assimilation of thermodynamic profiles retrieved from MWR data has been recently experimented, but a way to possibly increase the impact is to directly assimilate measured radiances instead of retrieved profiles. The assimilation of observed radiances in a variational scheme requires the following tools: (i) a fast radiative transfer (RT) model to compute the simulated radiances at MWR channels from the NWP model fields (ii) the partial derivatives (Jacobians) of the fast radiative transfer model with respect to control variables to optimize the distances of the atmospheric state from both the first guess and the observations. Such a RT model is available from the EUMETSAT NWPSAF (Numerical Weather Prediction Satellite Application Facility) and well accepted in the NWP community: RTTOV. This model was developed for nadir-viewing passive visible, infrared, and microwave satellite radiometers, spectrometers and interferometers. It has been modified to handle ground-based microwave radiometer observations. This version of RTTOV, called RTTOV-gb, provides the tools needed to exploit ground-based upward looking MWR brightness temperatures into NWP variational data

  4. Structural changes of block copolymers with bi-modal orientation under fast cyclical stretching as observed by synchrotron SAXS

    PubMed Central

    Brubert, J.; Serrani, M.; Talhat, A.; De Gaetano, F.; Costantino, M. L.; Moggridge, G. D.

    2015-01-01

    Load-bearing tissues are composite materials that depend strongly on anisotropic fibre arrangement to maximise performance. One such tissue is the heart valve, with orthogonally arranged fibrosa and ventricularis layers. Their function is to maintain mechanical stress while being resilient. It is postulated that while one layer bears the applied stress, the orthogonal layer helps to regenerate the microstructure when the load is released. The present paper describes changes in the microstructure of a block copolymer with cylindrical morphology, having a bio-inspired microstructure of anisotropic orthogonally oriented layers, under uniaxial strain. To allow structural observations during fast deformation, equivalent to the real heart valve operation, we used a synchrotron X-ray source and recorded 2D SAXS patterns in only 1 ms per frame. The deformation behaviour of the composite microstructure has been reported for two arrangements of the cylinders in skin and core layers. The behaviour is very different to that observed either for uniaxially oriented or isotropic samples. Deformation is far from being affine. Cylinders aligned in the direction of stretch show fragmentation, but complete recovery of the spacing between cylinders on removal of the load. Those oriented perpendicular to the direction of stretch incline at an angle of approximately 25° to their original direction during load. PMID:25781560

  5. Evaluation of observable phase space by fast ion loss detector by calculating particle orbits in consideration of plasma facing components and three dimensional magnetic field

    NASA Astrophysics Data System (ADS)

    Shinohara, Kouji; Kim, Junghee; Kim, Jun Young; Rhee, Tongnyeol

    2016-11-01

    The orbits of lost ions can be calculated from the information obtained by a fast ion loss detector (FILD). The orbits suggest a source of the lost fast ions in a phase space. However, it is not obvious whether an observable set of orbits, or phase space, of a FILD appropriately covers the region of interest to be investigated since the observable phase space can be affected by plasma facing components (PFCs) and a magnetic configuration. A tool has been developed to evaluate the observable phase space of FILD diagnostic by calculating particle orbits by taking the PFCs and 3D magnetic field into account.

  6. Hybrid on-axis plus ridge-perpendicular circulation reconciles hydrothermal flow observations at fast spreading ridges

    NASA Astrophysics Data System (ADS)

    Hasenclever, J.; Theissen-Krah, S.; Rupke, L.; Morgan, J.; Iyer, K. H.; Petersen, S.; Devey, C. W.

    2013-12-01

    We present crustal-scale 3D numerical calculations of hydrothermal fluid flow at fast spreading ridges. The model domain covers 5 km along-axis, 20 km across-axis and extends down to Moho depth. We observe that a complex hydrothermal system develops that extends over the entire crustal thickness and forms a series of on-axis vent fields with an average along-ridge spacing of 500-1000m. This hydrothermal system comprises two distinct flow components: (1) An on-axis circulation above the melt lens with recharging flow surrounding the hot up-flow zones. (2) A ridge-perpendicular circulation with recharge areas located kilometers away from the ridge. Here fluids penetrate the crust down to Moho depth and travel at temperatures of 400-600°C towards the ridge where they merge with the on-axis circulation in a reaction zone above the axial melt lens. Fluids released at the seafloor are a mixture of both components, with an average ratio between proximately- and distally-sourced fluids of about 2:1. This hybrid hydrothermal system reconciles previously incompatible observations that support either on-axis or ridge-perpendicular circulation patterns. The potential co-existence of two interacting hydrothermal circulations at fast spreading ridges is of importance for the interpretation of chemical signatures at hydrothermal vents and the quantification of the mass and energy exchange between ocean and solid earth: (1) A vertically and laterally extended ridge-perpendicular circulation will expose a much larger volume of oceanic crust to high-temperature hydrothermal alteration. Especially the lower crust would also be exposed to significant hydrothermal fluid flow and thus geochemical mining. (2) Fluids that migrate ridge-perpendicular and undergo phase separation at depth are likely to separate gravitationally from the denser and highly saline brine phase. Only the vapor-like phase may migrate up-slope towards the top of the melt lens, where these fluids would provide a

  7. The polar wind of the fast rotating Be star Achernar. VINCI/VLTI interferometric observations of an elongated polar envelope

    NASA Astrophysics Data System (ADS)

    Kervella, P.; Domiciano de Souza, A.

    2006-07-01

    Context: .Be stars show evidence of mass loss and circumstellar envelopes (CSE) from UV resonance lines, near-IR excesses, and the presence of episodic hydrogen emission lines. The geometry of these envelopes is still uncertain, although it is often assumed that they are formed by a disk around the stellar equator and a hot polar wind. Aims: .We probe the close environment of the fast rotating Be star Achernar at angular scales of a few milliarcseconds (mas) in the infrared, in order to constrain the geometry of a possible polar CSE. Methods: .We obtained long-baseline interferometric observations of Achernar with the VINCI/VLTI beam combiner in the H and K bands, using various telescope configurations and baseline lengths with a wide azimuthal coverage. Results: .The observed visibility measurements along the polar direction are significantly lower than the visibility function of the photosphere of the star alone, in particular at low spatial frequencies. This points to the presence of an asymmetric diffuse CSE elongated along the polar direction of the star. To our data, we fit a simple model consisting of two components: a 2D elliptical Gaussian superimposed on a uniform ellipse representing the distorted photosphere of the fast rotating star. Conclusions: .We clearly detected a CSE elongated along the polar axis of the star, as well as rotational flattening of the stellar photosphere. For the uniform-ellipse photosphere we derive a major axis of θ_eq = 2.13 ± 0.05 mas and a minor axis of θ_pol = 1.51 ± 0.02 mas. The relative near-IR flux measured for the CSE compared to the stellar photosphere is f = 4.7 ± 0.3%. Its angular dimensions are loosely constrained by the available data at ρ_eq = 2.7 ± 1.3 mas and ρ_pol = 17.6 ± 4.9 mas. This CSE could be linked to free-free emission from the radiative pressure driven wind originating from the hot polar caps of the star.

  8. Super-resolution imaging with Pontamine Fast Scarlet 4BS enables direct visualization of cellulose orientation and cell connection architecture in onion epidermis cells

    PubMed Central

    2013-01-01

    Background In plants, a complex cell wall protects cells and defines their shape. Cellulose fibrils form a multilayered network inside the cell-wall matrix that plays a direct role in controlling cell expansion. Resolving the structure of this network will allow us to comprehend the relationship of cellulose fibril orientation and growth. The fluorescent dye Pontamine Fast Scarlet 4BS (PFS) was shown to stain cellulose with high specificity and could be used to visualize cellulose bundles in cell walls of Arabidopsis root epidermal cells with confocal microscopy. The resolution limit of confocal microscopy of some 200 nm in xy and 550 nm in z for green light, restricts the direct visualization of cellulose to relatively large bundles, whereas the structure of cellulose microfibrils with their diameter below 10 nm remains unresolved. Over the last decade, several so-called super-resolution microscopy approaches have been developed; in this paper we explore the potential of such approaches for the direct visualization of cellulose. Results To ensure optimal imaging we determined the spectral properties of PFS-stained tissue. PFS was found not to affect cell viability in the onion bulb scale epidermis. We present the first super-resolution images of cellulose bundles in the plant cell wall produced by direct stochastic optical reconstruction microscopy (dSTORM) in combination with total internal reflection fluorescence (TIRF) microscopy. Since TIRF limits observation to the cell surface, we tested as alternatives 3D-structured illumination microscopy (3D-SIM) and confocal microscopy, combined with image deconvolution. Both methods offer lower resolution than STORM, but enable 3D imaging. While 3D-SIM produced strong artifacts, deconvolution gave good results. The resolution was improved over conventional confocal microscopy and the approach could be used to demonstrate differences in fibril orientation in different layers of the cell wall as well as particular

  9. Fast and slow ion diffusion processes in lithium ion pouch cells during cycling observed with fiber optic strain sensors

    NASA Astrophysics Data System (ADS)

    Sommer, Lars Wilko; Kiesel, Peter; Ganguli, Anurag; Lochbaum, Alexander; Saha, Bhaskar; Schwartz, Julian; Bae, Chang-Jun; Alamgir, Mohamed; Raghavan, Ajay

    2015-11-01

    Cell monitoring for safe capacity utilization while maximizing pack life and performance is a key requirement for effective battery management and encouraging their adoption for clean-energy technologies. A key cell failure mode is the build-up of residual electrode strain over time, which affects both cell performance and life. Our team has been exploring the use of fiber optic (FO) sensors as a new alternative for cell state monitoring. In this present study, various charge-cycling experiments were performed on Lithium-ion pouch cells with a particular class of FO sensors, fiber Bragg gratings (FBGs), that were externally attached to the cells. An overshooting of the volume change at high SOC that recovers during rest can be observed. This phenomenon originates from the interplay between a fast and a slow Li ion diffusion process, which leads to non-homogeneous intercalation of Li ions. This paper focuses on the strain relaxation processes that occur after switching from charge to no-load phases. The correlation of the excess volume and subsequent relaxation to SOC as well as temperature is discussed. The implications of being able to monitor this phenomenon to control battery utilization for long life are also discussed.

  10. The results of the Swiss observational study of the new, fast-dissolving mirtazapine formulation in depressed patients.

    PubMed

    Delini-Stula, Alexandra; Bischof, Roland

    2006-01-01

    Objective. The purpose of the present study was to document the experience with the use of a new, fast-dissolving oral tablet (FDT, RemeronSolTab®) of mirtazapine, a NaSSA antidepressant, in the treatment of depressed patients in daily practice in Switzerland. Methods. It was an open, prospective collection of observations in a total of 1121 depressive patients (>18 years old, both sexes). The treatment duration was 8 weeks with assessments after the second and eighth week. Efficacy measures were CGI (seven points) and specific check-lists for the ratings of severity of anxiety and sleep disturbances. At the end of the trial the acceptance (eight-item questionnaire) of the new formulation was recorded too. Results. The results showed that there was highly significant (P<0.001) and rapid improvement of severity of depression, anxiety and sleep disturbances in the whole population. Subgroup analyses showed that the antidepressant efficacy was independent of gender, initial severity of depression or of the type of depression (first episode, recurrent, chronic depression). The majority of patients (80%) liked at least one of the properties of FDT and, out of 75% of patients having experience with conventional tablet, 50% stated to be better compliant with this new formulation. Conclusion. This report documents the antidepressant efficacy of mirtazapine FDT. The new formulation found good acceptance by the patients. The results also suggest a likelihood of improved compliance with the mirtazapine FDT. PMID:24940962

  11. DISCOVERY OF ULTRA-FAST OUTFLOWS IN A SAMPLE OF BROAD-LINE RADIO GALAXIES OBSERVED WITH SUZAKU

    SciTech Connect

    Tombesi, F.; Sambruna, R. M.; Mushotzky, R. F.; Braito, V.; Ballo, L.; Cappi, M.

    2010-08-10

    We present the results of a uniform and systematic search for blueshifted Fe K absorption lines in the X-ray spectra of five bright broad-line radio galaxies observed with Suzaku. We detect, for the first time in radio-loud active galactic nuclei (AGNs) at X-rays, several absorption lines at energies greater than 7 keV in three out of five sources, namely, 3C 111, 3C 120, and 3C 390.3. The lines are detected with high significance according to both the F-test and extensive Monte Carlo simulations. Their likely interpretation as blueshifted Fe XXV and Fe XXVI K-shell resonance lines implies an origin from highly ionized gas outflowing with mildly relativistic velocities, in the range v {approx_equal} 0.04-0.15c. A fit with specific photoionization models gives ionization parameters in the range log {xi} {approx_equal} 4-5.6 erg s{sup -1} cm and column densities of N {sub H} {approx_equal} 10{sup 22}-10{sup 23} cm{sup -2}. These characteristics are very similar to those of the ultra-fast outflows (UFOs) previously observed in radio-quiet AGNs. Their estimated location within {approx}0.01-0.3 pc of the central super-massive black hole suggests a likely origin related with accretion disk winds/outflows. Depending on the absorber covering fraction, the mass outflow rate of these UFOs can be comparable to the accretion rate and their kinetic power can correspond to a significant fraction of the bolometric luminosity and is comparable to their typical jet power. Therefore, these UFOs can play a significant role in the expected feedback from the AGN to the surrounding environment and can give us further clues on the relation between the accretion disk and the formation of winds/jets in both radio-quiet and radio-loud AGNs.

  12. Discovery of Ultra-fast Outflows in a Sample of Broad-line Radio Galaxies Observed with Suzaku

    NASA Astrophysics Data System (ADS)

    Tombesi, F.; Sambruna, R. M.; Reeves, J. N.; Braito, V.; Ballo, L.; Gofford, J.; Cappi, M.; Mushotzky, R. F.

    2010-08-01

    We present the results of a uniform and systematic search for blueshifted Fe K absorption lines in the X-ray spectra of five bright broad-line radio galaxies observed with Suzaku. We detect, for the first time in radio-loud active galactic nuclei (AGNs) at X-rays, several absorption lines at energies greater than 7 keV in three out of five sources, namely, 3C 111, 3C 120, and 3C 390.3. The lines are detected with high significance according to both the F-test and extensive Monte Carlo simulations. Their likely interpretation as blueshifted Fe XXV and Fe XXVI K-shell resonance lines implies an origin from highly ionized gas outflowing with mildly relativistic velocities, in the range v ~= 0.04-0.15c. A fit with specific photoionization models gives ionization parameters in the range log ξ ~= 4-5.6 erg s-1 cm and column densities of N H ~= 1022-1023 cm-2. These characteristics are very similar to those of the ultra-fast outflows (UFOs) previously observed in radio-quiet AGNs. Their estimated location within ~0.01-0.3 pc of the central super-massive black hole suggests a likely origin related with accretion disk winds/outflows. Depending on the absorber covering fraction, the mass outflow rate of these UFOs can be comparable to the accretion rate and their kinetic power can correspond to a significant fraction of the bolometric luminosity and is comparable to their typical jet power. Therefore, these UFOs can play a significant role in the expected feedback from the AGN to the surrounding environment and can give us further clues on the relation between the accretion disk and the formation of winds/jets in both radio-quiet and radio-loud AGNs.

  13. COMBINED MULTIPOINT REMOTE AND IN SITU OBSERVATIONS OF THE ASYMMETRIC EVOLUTION OF A FAST SOLAR CORONAL MASS EJECTION

    SciTech Connect

    Rollett, T.; Möstl, C.; Temmer, M.; Veronig, A. M.; Amerstorfer, U. V.; Frahm, R. A.; Davies, J. A.; Vršnak, B.; Žic, T.; Farrugia, C. J.; Zhang, T. L.

    2014-07-20

    We present an analysis of the fast coronal mass ejection (CME) of 2012  March 7, which was imaged by both STEREO spacecraft and observed in situ by MESSENGER, Venus Express, Wind, and Mars Express. Based on detected arrivals at four different positions in interplanetary space, it was possible to strongly constrain the kinematics and the shape of the ejection. Using the white-light heliospheric imagery from STEREO-A and B, we derived two different kinematical profiles for the CME by applying the novel constrained self-similar expansion method. In addition, we used a drag-based model to investigate the influence of the ambient solar wind on the CME's propagation. We found that two preceding CMEs heading in different directions disturbed the overall shape of the CME and influenced its propagation behavior. While the Venus-directed segment underwent a gradual deceleration (from ∼2700 km s{sup –1} at 15 R {sub ☉} to ∼1500 km s{sup –1} at 154 R {sub ☉}), the Earth-directed part showed an abrupt retardation below 35 R {sub ☉} (from ∼1700 to ∼900 km s{sup –1}). After that, it was propagating with a quasi-constant speed in the wake of a preceding event. Our results highlight the importance of studies concerning the unequal evolution of CMEs. Forecasting can only be improved if conditions in the solar wind are properly taken into account and if attention is also paid to large events preceding the one being studied.

  14. OBSERVATIONAL STUDY OF THE QUASI-PERIODIC FAST-PROPAGATING MAGNETOSONIC WAVES AND THE ASSOCIATED FLARE ON 2011 MAY 30

    SciTech Connect

    Shen Yuandeng; Liu Yu

    2012-07-01

    On 2011 May 30, quasi-periodic fast-propagating (QFP) magnetosonic waves accompanied by a C2.8 flare were directly imaged by the Atmospheric Imaging Assembly instrument on board the Solar Dynamics Observatory. The QFP waves successively emanated from the flare kernel, they propagated along a cluster of open coronal loops with a phase speed of {approx}834 km s{sup -1} during the flare's rising phase, and the multiple arc-shaped wave trains can be fitted with a series of concentric circles. We generate the k - {omega} diagram of the Fourier power and find a straight ridge that represents the dispersion relation of the waves. Along the ridge, we find a lot of prominent nodes which represent the available frequencies of the QFP waves. On the other hand, the frequencies of the flare are also obtained by analyzing the flare light curves using the wavelet technique. The results indicate that almost all the main frequencies of the flare are consistent with those of the QFP waves. This suggests that the flare and the QFP waves were possibly excited by a common physical origin. On the other hand, a few low frequencies (e.g., 2.5 mHz (400 s) and 0.7 mHz (1428 s)) revealed by the k - {omega} diagram cannot be found in the accompanying flare. We propose that these low frequencies were possibly due to the leakage of the pressure-driven p-mode oscillations from the photosphere into the low corona, which should be a noticeable mechanism for driving the QFP waves observed in the corona.

  15. Observational Study of the Quasi-periodic Fast-propagating Magnetosonic Waves and the Associated Flare on 2011 May 30

    NASA Astrophysics Data System (ADS)

    Shen, Yuandeng; Liu, Yu

    2012-07-01

    On 2011 May 30, quasi-periodic fast-propagating (QFP) magnetosonic waves accompanied by a C2.8 flare were directly imaged by the Atmospheric Imaging Assembly instrument on board the Solar Dynamics Observatory. The QFP waves successively emanated from the flare kernel, they propagated along a cluster of open coronal loops with a phase speed of ~834 km s-1 during the flare's rising phase, and the multiple arc-shaped wave trains can be fitted with a series of concentric circles. We generate the k - ω diagram of the Fourier power and find a straight ridge that represents the dispersion relation of the waves. Along the ridge, we find a lot of prominent nodes which represent the available frequencies of the QFP waves. On the other hand, the frequencies of the flare are also obtained by analyzing the flare light curves using the wavelet technique. The results indicate that almost all the main frequencies of the flare are consistent with those of the QFP waves. This suggests that the flare and the QFP waves were possibly excited by a common physical origin. On the other hand, a few low frequencies (e.g., 2.5 mHz (400 s) and 0.7 mHz (1428 s)) revealed by the k - ω diagram cannot be found in the accompanying flare. We propose that these low frequencies were possibly due to the leakage of the pressure-driven p-mode oscillations from the photosphere into the low corona, which should be a noticeable mechanism for driving the QFP waves observed in the corona.

  16. Fast events and waves in an active region of the Sun observed in Hα with high spatial resolution

    NASA Astrophysics Data System (ADS)

    Sánchez-Andrade Nuño, B.; Bello González, N.; Blanco Rodríguez, J.; Kneer, F.; Puschmann, K. G.

    2008-08-01

    Context: We study the chromosphere of an active region of the Sun in the Hα line. Aims: The development of new instrumentation and new methods of data analysis allows to scrutinize the dynamics of the solar chromosphere with high spatial, spectral, and temporal resolution. The observations we present shed light on some magneto-dynamic processes occurring above an active region in the chromosphere. Methods: We took a time series of 55 min in Hα from AR 10875 at θ≈36°. We used the “Göttingen” Fabry-Perot spectrometer at the Vacuum Tower Telescope, Observatorio del Teide/Tenerife, to obtain two-dimensional spectrograms in Hα. Adaptive optics and image reconstruction yielded a spatial resolution better than 0.5 arcsec throughout the time sequence. From the wealth of structures, we selected areas of interest to study further, in detail, some ongoing processes. Results: A small straight surge developed aside of a pore with upward phase speed of 100 km s-1 and line-of-sight (LOS) velocity of 15 km s-1. The surge retreated rapidly with LOS velocity of 45 km s-1 at its mouth. It underwent a rebound and fell back again. Two sympathetic mini-flares were observed that lasted only approximately 40 s, but showed strong Hα emission. We found magnetoacoustic waves in long fibrils as mainly short wave trains, short packets or pulses, i.e., solitary waves consisting of small (1´´-2´´) blobs. They start at either end of the fibrils and travel with phase speeds of 12-14 km s-1, i.e., close to the tube speed and approximately the sound velocity for sufficiently large magnetic field strengths. Some waves speed up to reach velocities of the order of 30 km s-1. This is much lower than the expected Alfvén velocity of ≥200 km s-1 for reasonable magnetic field strengths and mass densities. We suggest that slow waves are not purely longitudinal, but possess gas velocities perpendicular to the direction of propagation of few km s-1. Also, fast waves travel along sinuous

  17. Architecture & Environment

    ERIC Educational Resources Information Center

    Erickson, Mary; Delahunt, Michael

    2010-01-01

    Most art teachers would agree that architecture is an important form of visual art, but they do not always include it in their curriculums. In this article, the authors share core ideas from "Architecture and Environment," a teaching resource that they developed out of a long-term interest in teaching architecture and their fascination with the…

  18. Direct observation of the core/double-shell architecture of intense dual-mode luminescent tetragonal bipyramidal nanophosphors

    NASA Astrophysics Data System (ADS)

    Kim, Su Yeon; Jeong, Jong Seok; Mkhoyan, K. Andre; Jang, Ho Seong

    2016-05-01

    Highly efficient downconversion (DC) green-emitting LiYF4:Ce,Tb nanophosphors have been synthesized for bright dual-mode upconversion (UC) and DC green-emitting core/double-shell (C/D-S) nanophosphors--Li(Gd,Y)F4:Yb(18%),Er(2%)/LiYF4:Ce(15%),Tb(15%)/LiYF4--and the C/D-S structure has been proved by extensive scanning transmission electron microscopy (STEM) analysis. Colloidal LiYF4:Ce,Tb nanophosphors with a tetragonal bipyramidal shape are synthesized for the first time and they show intense DC green light via energy transfer from Ce3+ to Tb3+ under illumination with ultraviolet (UV) light. The LiYF4:Ce,Tb nanophosphors show 65 times higher photoluminescence intensity than LiYF4:Tb nanophosphors under illumination with UV light and the LiYF4:Ce,Tb is adapted into a luminescent shell of the tetragonal bipyramidal C/D-S nanophosphors. The formation of the DC shell on the core significantly enhances UC luminescence from the UC core under irradiation of near infrared light and concurrently generates DC luminescence from the core/shell nanophosphors under UV light. Coating with an inert inorganic shell further enhances the UC-DC dual-mode luminescence by suppressing the surface quenching effect. The C/D-S nanophosphors show 3.8% UC quantum efficiency (QE) at 239 W cm-2 and 73.0 +/- 0.1% DC QE. The designed C/D-S architecture in tetragonal bipyramidal nanophosphors is rigorously verified by an energy dispersive X-ray spectroscopy (EDX) analysis, with the assistance of line profile simulation, using an aberration-corrected scanning transmission electron microscope equipped with a high-efficiency EDX. The feasibility of these C/D-S nanophosphors for transparent display devices is also considered.Highly efficient downconversion (DC) green-emitting LiYF4:Ce,Tb nanophosphors have been synthesized for bright dual-mode upconversion (UC) and DC green-emitting core/double-shell (C/D-S) nanophosphors--Li(Gd,Y)F4:Yb(18%),Er(2%)/LiYF4:Ce(15%),Tb(15%)/LiYF4--and the C/D-S structure

  19. Project Integration Architecture: Application Architecture

    NASA Technical Reports Server (NTRS)

    Jones, William Henry

    2005-01-01

    The Project Integration Architecture (PIA) implements a flexible, object-oriented, wrapping architecture which encapsulates all of the information associated with engineering applications. The architecture allows the progress of a project to be tracked and documented in its entirety. Additionally, by bringing all of the information sources and sinks of a project into a single architectural space, the ability to transport information between those applications is enabled.

  20. Searching for fast optical transients by means of a wide-field monitoring observations with high temporal resolution

    NASA Astrophysics Data System (ADS)

    Beskin, G.; Karpov, S.; Plokhotnichenko, V.; Bondar, S.; Ivanov, E.; Perkov, A.; Greco, G.; Guarnieri, A.; Bartolini, C.

    We discuss the strategy of search for fast optical transients accompanying gamma-ray bursts by means of continuous monitoring of wide sky fields with high temporal resolution. We describe the design, performance and results of our cameras, FAVOR and TORTORA. Also we discuss the perspectives of this strategy and possible design of next-generation equipment for wide-field monitoring which will be able to detect optical transients and to study their color and polarization properties with high time resolution.

  1. Controlling Material Reactivity Using Architecture.

    PubMed

    Sullivan, Kyle T; Zhu, Cheng; Duoss, Eric B; Gash, Alexander E; Kolesky, David B; Kuntz, Joshua D; Lewis, Jennifer A; Spadaccini, Christopher M

    2016-03-01

    3D-printing methods are used to generate reactive material architectures. Several geometric parameters are observed to influence the resultant flame propagation velocity, indicating that the architecture can be utilized to control reactivity. Two different architectures, channels and hurdles, are generated, and thin films of thermite are deposited onto the surface. The architecture offers an additional route to control, at will, the energy release rate in reactive composite materials. PMID:26669517

  2. Green Architecture

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Ho

    Today, the environment has become a main subject in lots of science disciplines and the industrial development due to the global warming. This paper presents the analysis of the tendency of Green Architecture in France on the threes axes: Regulations and Approach for the Sustainable Architecture (Certificate and Standard), Renewable Materials (Green Materials) and Strategies (Equipments) of Sustainable Technology. The definition of 'Green Architecture' will be cited in the introduction and the question of the interdisciplinary for the technological development in 'Green Architecture' will be raised up in the conclusion.

  3. Controlling chaos in a fast diode resonator using extended time-delay autosynchronization: Experimental observations and theoretical analysis.

    PubMed

    Sukow, David W.; Bleich, Michael E.; Gauthier, Daniel J.; Socolar, Joshua E. S.

    1997-12-01

    We stabilize unstable periodic orbits of a fast diode resonator driven at 10.1 MHz (corresponding to a drive period under 100 ns) using extended time-delay autosynchronization. Stabilization is achieved by feedback of an error signal that is proportional to the difference between the value of a state variable and an infinite series of values of the state variable delayed in time by integral multiples of the period of the orbit. The technique is easy to implement electronically and it has an all-optical counterpart that may be useful for stabilizing the dynamics of fast chaotic lasers. We show that increasing the weights given to temporally distant states enlarges the domain of control and reduces the sensitivity of the domain of control on the propagation delays in the feedback loop. We determine the average time to obtain control as a function of the feedback gain and identify the mechanisms that destabilize the system at the boundaries of the domain of control. A theoretical stability analysis of a model of the diode resonator in the presence of time-delay feedback is in good agreement with the experimental results for the size and shape of the domain of control. (c) 1997 American Institute of Physics. PMID:12779682

  4. A Self-Powered Fast-Sampling Profiling Float in support of a Mesoscale Ocean Observing System in the Western North Pacific

    NASA Astrophysics Data System (ADS)

    Valdez, T.; Chao, Y.; Davis, R. E.; Jones, J.

    2012-12-01

    This talk will describe a new self-powered profiling float that can perform fast sampling over the upper ocean for long durations in support of a mesoscale ocean observing system in the Western North Pacific. The current state-of-the-art profiling floats can provide several hundreds profiles for the upper ocean every ten days. To quantify the role of the upper ocean in modulating the development of Typhoons requires at least an order of magnitude reduction for the sampling interval. With today's profiling float and battery technology, a fast sampling of one day or even a few hours will reduce the typical lifetime of profiling floats from years to months. Interactions between the ocean and typhoons often involves mesoscale eddies and fronts, which require a dense array of floats to reveal the 3-dimensional structure. To measure the mesoscale ocean over a large area like the Western North Pacific therefore requires a new technology that enables fast sampling and long duration at the same time. Harvesting the ocean renewable energy associated with the vertical temperature differentials has the potential to power profiling floats with fast sampling over long durations. Results from the development and deployment of a prototype self-powered profiling float (known as SOLO-TREC) will be presented. With eight hours sampling in the upper 500 meters, the upper ocean temperature and salinity reveal pronounced high frequency variations. Plans to use the SOLO-TREC technology in support of a dense array of fast sampling profiling floats in the Western North Pacific will be discussed.

  5. Strategies to Make Ramadan Fasting Safer in Type 2 Diabetics: A Systematic Review and Network Meta-analysis of Randomized Controlled Trials and Observational Studies.

    PubMed

    Lee, Shaun Wen Huey; Lee, Jun Yang; Tan, Christina San San; Wong, Chee Piau

    2016-01-01

    Ramadan is the holy month for Muslims whereby they fast from predawn to after sunset and is observed by all healthy Muslim adults as well as a large population of type 2 diabetic Muslims.To determine the comparative effectiveness of various strategies that have been used for type 2 diabetic Muslim who fast during Ramadan.A systematic review and network meta-analysis of randomized controlled studies (RCT) as well as observational studies for patients with type 2 diabetes who fasted during Ramadan was conducted. Eight databases were searched from January 1980 through October 2015 for relevant studies. Two reviewers independently screened and assessed study for eligibility, assessed the risk of bias, and extracted relevant data. A network meta-analysis for each outcome was fitted separately, combining direct and indirect evidence for each comparison.Twenty-nine studies, 16 RCTs and 13 observational studies each met the inclusion criteria. The most common strategy used was drug changes during the Ramadan period, which found that the use of DPP-4 (Dipeptidyl peptidase inhibitor -4) inhibitors were associated with a reduction in incidence of experiencing hypoglycemia during Ramadan in both RCTs (pooled relative risk: 0.56; 95% confidence interval: 0.44-0.72) as well as in observational studies (pooled relative risk: 0.27; 0.09-0.75). Ramadan-focused education was shown to be beneficial in reducing hypoglycemia in observational studies but not RCTs (0.25 versus 1.00). Network meta-analyses suggest that incretin mimetics can reduce the risk of hypoglycemia by nearly 1.5 times.The newer antidiabetic agents appear to lower the risk of hypoglycemia and improved glycemic control when compared with sulfonylureas. Ramadan-focused education shows to be a promising strategy but more rigorous examination from RCTs are required.

  6. X-Ray Observations of the First Counterpart to a Fast X-Ray Transient, XRF010930

    NASA Astrophysics Data System (ADS)

    Harrison, Fiona

    2001-09-01

    Thanks to BeppoSAX we are now aware of a new type of transient -- X-ray flashes (XRFs, also called Fast X-ray Transients). About one third of the events seen by the WFC are XRFs. Until today, NOT A SINGLE member of this class has been localized to arcsecond accuracy. Only gradually has the community come to appreciate that XRFs have a rate comparable to GRBs. There are two possibilities: 1. XRFs are highly redshifted GRBs (e.g. Heise, Lloyd) 2) XRFs are explosive events producing Lorentz factors intermediate between GRBs and SNe and thus peak in the X-ray. On 30.25 October 2001 (UT) the BeppoSAX Wide Field Camera (WFC) detected a XRF, XRF011030, and a Chandra DDF has found an X-ray source coincident with a radio transient (see below).

  7. X-Ray Observations of the First Counterpart to a Fast X-Ray Transient, XRF010930

    NASA Astrophysics Data System (ADS)

    Harrison, Fiona

    2001-09-01

    Thanks to BeppoSAX we are now aware of a new type of transient -- X-ray flashes (XRFs, also called Fast X-ray Transients). About one third of the events seen by the WFC are XRFs. Until today, NOT A SINGLE member of this class has been localized to arcsecond accuracy. Only gradually has the community come to appreciate that XRFs have a rate comparable to GRBs. There are two possibilities: 1. XRFs are highly redshifted GRBs (e.g. Heise, Lloyd) 2) XRFs are explosive events producing Lorentz factors intermediate between GRBs and SNe and thus peak in the X-ray. On 30.25 October 2001 (UT) the BeppoSAX Wide Field Camera (WFC) detected a XRF, hereafter XRF011030, unaccompanied by any increased rate in the Gamma Ray Burst Monitor (GRBM) on SAX, HETE-2 or Ulysses.

  8. Fast stochastic variability study of two SU UMa systems V1504 Cyg and V344 Lyr observed by Kepler satellite

    NASA Astrophysics Data System (ADS)

    Dobrotka, A.; Ness, J.-U.; Bajčičáková, I.

    2016-07-01

    We analysed Kepler data of two similar dwarf novae V344 Lyr and V1504 Cyg in order to study optical fast stochastic variability (flickering) by searching for characteristic break frequencies in their power density spectra. Two different stages of activity were analysed separately, i.e. regular outbursts and quiescence. Both systems show similar behaviour during both activity stages. The quiescent power density spectra show a dominant low break frequency which is also present during outburst with a more or less stable value in V344 Lyr while it is slightly higher in V1504 Cyg. The origin of this variability is probably the whole accretion disc. Both outburst power density spectra show additional high-frequency components which we interpret as generated by the rebuilt inner disc that was truncated during quiescence. Moreover, V344 Lyr shows the typical linear rms-flux relation which is strongly deformed by a possible negative superhump variability.

  9. Project Integration Architecture: Architectural Overview

    NASA Technical Reports Server (NTRS)

    Jones, William Henry

    2001-01-01

    The Project Integration Architecture (PIA) implements a flexible, object-oriented, wrapping architecture which encapsulates all of the information associated with engineering applications. The architecture allows the progress of a project to be tracked and documented in its entirety. By being a single, self-revealing architecture, the ability to develop single tools, for example a single graphical user interface, to span all applications is enabled. Additionally, by bringing all of the information sources and sinks of a project into a single architectural space, the ability to transport information between those applications becomes possible, Object-encapsulation further allows information to become in a sense self-aware, knowing things such as its own dimensionality and providing functionality appropriate to its kind.

  10. Synchrotron Heating by a Fast Radio Burst in a Self-absorbed Synchrotron Nebula and Its Observational Signature

    NASA Astrophysics Data System (ADS)

    Yang, Yuan-Pei; Zhang, Bing; Dai, Zi-Gao

    2016-03-01

    Fast radio bursts (FRBs) are mysterious transient sources. If extragalactic, as suggested by their relative large dispersion measures, their brightness temperatures must be extremely high. Some FRB models (e.g., young pulsar model, magnetar giant flare model, or supra-massive neutron star collapse model) suggest that they may be associated with a synchrotron nebula. Here we study a synchrotron-heating process by an FRB in a self-absorbed synchrotron nebula. If the FRB frequency is below the synchrotron self-absorption frequency of the nebula, electrons in the nebula would absorb FRB photons, leading to a harder electron spectrum and enhanced self-absorbed synchrotron emission. In the meantime, the FRB flux is absorbed by the nebula electrons. We calculate the spectra of FRB-heated synchrotron nebulae, and show that the nebula spectra would show a significant hump in several decades near the self-absorption frequency. Identifying such a spectral feature would reveal an embedded FRB in a synchrotron nebula.

  11. In Situ TEM Observations of Sn-Containing Silicon Nanowires Undergoing Reversible Pore Formation Due to Fast Lithiation/Delithiation Kinetics

    SciTech Connect

    Lu, Xiaotang; Bogart, Timothy D.; Gu, Meng; Wang, Chong M.; Korgel, Brian

    2015-09-03

    In situ transmission electron microscopy (TEM) studies were carried out to observe directly in real time the lithiation and delithiation of silicon (Si) nanowires with significant amounts of tin (Sn). The incorporation of Sn significantly enhances the lithiation rate compared to typical Si nanowires. For instance, surface diffusion is enhanced by two orders of magnitude and the bulk lithiation rate by one order of magnitude, resulting in a sequential surface-then-core lithiation mechanism. Pore formation was observed in the nanowires during delithiation, most likely as a result of the fast delithiation kinetics of the nanowires. Pore formation was reversible and the pores disappeared during subsequent lithiation. When an amorphous Si shell was applied to the nanowires, pore formation was not observed during the in situ TEM experimences. Ex situ TEM analysis of Sn-containing Si nanowires cycled in coin cell batteries also showed that the application of an a-Si shell significantly retards pore formation in these nanowires.

  12. Experimental Architecture.

    ERIC Educational Resources Information Center

    Alter, Kevin

    2003-01-01

    Describes the design of the Centre for Architectural Structures and Technology at the University of Manitoba, including the educational context and design goals. Includes building plans and photographs. (EV)

  13. Detection of special nuclear material by observation of delayed neutrons with a novel fast neutron composite detector

    NASA Astrophysics Data System (ADS)

    Mayer, Michael; Nattress, Jason; Barhoumi Meddeb, Amira; Foster, Albert; Trivelpiece, Cory; Rose, Paul; Erickson, Anna; Ounaies, Zoubeida; Jovanovic, Igor

    2015-10-01

    Detection of shielded special nuclear material is crucial to countering nuclear terrorism and proliferation, but its detection is challenging. By observing the emission of delayed neutrons, which is a unique signature of nuclear fission, the presence of nuclear material can be inferred. We report on the observation of delayed neutrons from natural uranium by using monoenergetic photons and neutrons to induce fission. An interrogating beam of 4.4 MeV and 15.1 MeV gamma-rays and neutrons was produced using the 11B(d,n-γ)12C reaction and used to probe different targets. Neutron detectors with complementary Cherenkov detectors then discriminate material undergoing fission. A Li-doped glass-polymer composite neutron detector was used, which displays excellent n/ γ discrimination even at low energies, to observe delayed neutrons from uranium fission. Delayed neutrons have relatively low energies (~0.5 MeV) compared to prompt neutrons, which makes them difficult to detect using recoil-based detectors. Neutrons were counted and timed after the beam was turned off to observe the characteristic decaying time profile of delayed neutrons. The expected decay of neutron emission rate is in agreement with the common parametrization into six delayed neutron groups.

  14. Observing conformations of single FoF1-ATP synthases in a fast anti-Brownian electrokinetic trap

    NASA Astrophysics Data System (ADS)

    Su, Bertram; Düser, Monika G.; Zarrabi, Nawid; Heitkamp, Thomas; Starke, Ilka; Börsch, Michael

    2015-03-01

    To monitor conformational changes of individual membrane transporters in liposomes in real time, we attach two fluorophores to selected domains of a protein. Sequential distance changes between the dyes are recorded and analyzed by Förster resonance energy transfer (FRET). Using freely diffusing membrane proteins reconstituted in liposomes, observation times are limited by Brownian motion through the confocal detection volume. A. E. Cohen and W. E. Moerner have invented and built microfluidic devices to actively counteract Brownian motion of single nanoparticles in electrokinetic traps (ABELtrap). Here we present a version of an ABELtrap with a laser focus pattern generated by electro-optical beam deflectors and controlled by a programmable FPGA. This ABELtrap could hold single fluorescent nanobeads for more than 100 seconds, increasing the observation times of a single particle more than 1000-fold. Conformational changes of single FRET-labeled membrane enzymes FoF1-ATP synthase can be detected in the ABELtrap.

  15. FAST EXTREME-ULTRAVIOLET DIMMING ASSOCIATED WITH A CORONAL JET SEEN IN MULTI-WAVELENGTH AND STEREOSCOPIC OBSERVATIONS

    SciTech Connect

    Lee, K.-S.; Moon, Y.-J.; Lee, Jin-Yi; Innes, D. E.; Shibata, K.; Park, Y.-D.

    2013-03-20

    We have investigated a coronal jet observed near the limb on 2010 June 27 by the Hinode/X-Ray Telescope (XRT), EUV Imaging Spectrograph (EIS), and Solar Optical Telescope (SOT), and by the Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA), and on the disk by STEREO-A/EUVI. From EUV (AIA and EIS) and soft X-ray (XRT) images we have identified both cool and hot jets. There was a small loop eruption seen in Ca II images of the SOT before the jet eruption. We found that the hot jet preceded its associated cool jet by about 2 minutes. The cool jet showed helical-like structures during the rising period which was supported by the spectroscopic analysis of the jet's emission. The STEREO observation, which enabled us to observe the jet projected against the disk, showed dimming at 195 A along a large loop connected to the jet. We measured a propagation speed of {approx}800 km s{sup -1} for the dimming front. This is comparable to the Alfven speed in the loop computed from a magnetic field extrapolation of the photospheric field measured five days earlier by the SDO/Helioseismic and Magnetic Imager, and the loop densities obtained from EIS Fe XIV {lambda}264.79/274.20 line ratios. We interpret the dimming as indicating the presence of Alfvenic waves initiated by reconnection in the upper chromosphere.

  16. Slow and fast narrow spectra aurora E region echoes during the March 17, 2015 storm at mid latitudes. Multi-static, multi-frequency radar observations

    NASA Astrophysics Data System (ADS)

    Chau, Jorge; St-Maurice, Jean-Pierre

    2016-07-01

    Coherent E region echoes were observed at midlatitudes during the March 17, 2015 storm. The observations came from multi-static, multi-frequency, wide-field of view radars operating at 32.55 and 36.2 MHz in northern Germany. Each of the three receiver stations used, two in monostatic and one in bistatic modes, allow interferometry. These radars systems are devoted primarily to the measurement of mesospheric winds from specular meteor echoes. However during this storm, the strongest of the current solar cycle, strong Radar Aurora echoes were observed during the day for more than four hours. Here we present the main features observed, with a specific emphasis on echoes presenting narrow spectra with slower (around 180 m/s) and faster (as fast as 1600 m/s) Doppler velocities, than nominal typical ion-acoustic velocity expected to be between 400 and 800 m/s. We find that in both types of echoes the range vs. time slopes are between 800 and 1400 m/s. They agree rather well with the Doppler velocity for the narrow fast types but do not agree at all in the narrow slow spectral case. In both instances, the echoes are organized in localized horizontal structures with a range extent typically between 50 and 80 km. The fast-narrow structures tend to occur at higher altitudes than the well-known Farley-Buneman echoes, while the slow-narrow structures occur at lower altitudes (lower than 95 km). Both echo types come from regions with relatively small flow angles. Moreover the altitude of all echoes went down after 16:15 UT with the small-narrow echoes acquiring even smaller Doppler velocities. In large part thanks to the echo localization made feasible by interferometry, these new features are shedding some new important perspective on our understanding of auroral E-region radar echoes, particularly when it comes to spectra classified in the past as "Type III" and "Type IV" echoes.

  17. NMAGIC: a fast parallel implementation of a χ2-made-to-measure algorithm for modelling observational data

    NASA Astrophysics Data System (ADS)

    de Lorenzi, Flavio; Debattista, Victor P.; Gerhard, Ortwin; Sambhus, Niranjan

    2007-03-01

    We describe a made-to-measure (M2M) algorithm for constructing N-particle models of stellar systems from observational data (χ2M2M), extending earlier ideas by Syer & Tremaine. The algorithm properly accounts for observational errors, is flexible, and can be applied to various systems and geometries. We implement this algorithm in a parallel code NMAGIC and carry out a sequence of tests to illustrate its power and performance. (i) We reconstruct an isotropic Hernquist model from density moments and projected kinematics and recover the correct differential energy distribution and intrinsic kinematics. (ii) We build a self-consistent oblate three-integral maximum rotator model and compare how the distribution function is recovered from integral field and slit kinematic data. (iii) We create a non-rotating and a figure rotating triaxial stellar particle model, reproduce the projected kinematics of the figure rotating system by a non-rotating system of the same intrinsic shape, and illustrate the signature of pattern rotation in this model. From these tests, we comment on the dependence of the results from χ2M2M on the initial model, the geometry, and the amount of available data.

  18. Sampling theory for asynoptic satellite observations. I Space-time spectra, resolution, and aliasing. II - Fast Fourier synoptic mapping

    NASA Technical Reports Server (NTRS)

    Salby, M. L.

    1982-01-01

    An evaluation of the information content of asynoptic data taken in the form of nadir sonde and limb scan observations is presented, and a one-to-one correspondence is established between the alias-free data and twice-daily synoptic maps. Attention is given to space and time limitations of sampling and the orbital geometry is discussed. The sampling pattern is demonstrated to determine unique space-time spectra at all wavenumbers and frequencies. Spectral resolution and aliasing are explored, while restrictions on sampling and information content are defined. It is noted that irregular sampling at high latitudes produces spurious contamination effects. An Asynoptic Sampling Theorem is thereby formulated, as is a Synoptic Retrieval Theorem, in the second part of the article. In the latter, a procedure is developed for retrieving the unique correspondence between the asymptotic data and the synoptic maps. Applications examples are provided using data from the Nimbus-6 satellite.

  19. Observation of Abrupt- and Fast-rising SOL Current during Trigger Phase of ELMs in DIII-D Tokamak

    SciTech Connect

    H. Takahashi; E.D. Fredrickson; M.J. Schaffer; M.E. Austin; N.H. Brooks; T.E. Evans; G.L. Jackson; L.L. Lao; J.G. Watkins

    2005-06-27

    Extensive studies to date of edge localized modes (ELMs) have sought their origin inside the separatrix, i.e., MHD instability from steep gradients in the plasma edge, and examined their consequences outside the separatrix, i.e., transport of heat and particles in the scrape-off-layer (SOL) and divertors. Recent measurement by a high-speed scrape-off-layer current (SOLC) diagnostic may indicate that the ELM trigger process lies, in part, in the SOL. Thermoelectrically driven SOLC precedes, or co-evolves with, other parameters of the ELM process, and thus can potentially play a causal role: error field generated by non-axisymmetric SOLC, flowing in the immediate vicinity (approximately 1 cm) of the plasma edge, may contribute toward destabilizing MHD modes. The SOLC, observed concurrently with MHD activity, including ELMs, has been reported elsewhere.

  20. IAIMS Architecture

    PubMed Central

    Hripcsak, George

    1997-01-01

    Abstract An information system architecture defines the components of a system and the interfaces among the components. A good architecture is essential for creating an Integrated Advanced Information Management System (IAIMS) that works as an integrated whole yet is flexible enough to accommodate many users and roles, multiple applications, changing vendors, evolving user needs, and advancing technology. Modularity and layering promote flexibility by reducing the complexity of a system and by restricting the ways in which components may interact. Enterprise-wide mediation promotes integration by providing message routing, support for standards, dictionary-based code translation, a centralized conceptual data schema, business rule implementation, and consistent access to databases. Several IAIMS sites have adopted a client-server architecture, and some have adopted a three-tiered approach, separating user interface functions, application logic, and repositories. PMID:9067884

  1. A POSSIBLE DETECTION OF A FAST-MODE EXTREME ULTRAVIOLET WAVE ASSOCIATED WITH A MINI CORONAL MASS EJECTION OBSERVED BY THE SOLAR DYNAMICS OBSERVATORY

    SciTech Connect

    Zheng Ruisheng; Jiang Yunchun; Hong Junchao; Yang Jiayan; Bi Yi; Yang Liheng; Yang Dan

    2011-10-01

    'Extreme ultraviolet (EUV) waves' are large-scale wavelike transients often associated with coronal mass ejections (CMEs). In this Letter, we present a possible detection of a fast-mode EUV wave associated with a mini-CME observed by the Solar Dynamics Observatory. On 2010 December 1, a small-scale EUV wave erupted near the disk center associated with a mini-CME, which showed all the low corona manifestations of a typical CME. The CME was triggered by the eruption of a mini-filament, with a typical length of about 30''. Although the eruption was tiny, the wave had the appearance of an almost semicircular front and propagated at a uniform velocity of 220-250 km s{sup -1} with very little angular dependence. The CME lateral expansion was asymmetric with an inclination toward north, and the southern footprints of the CME loops hardly shifted. The lateral expansion resulted in deep long-duration dimmings, showing the CME extent. Comparing the onset and the initial speed of the CME, the wave was likely triggered by the rapid expansion of the CME loops. Our analysis confirms that the small-scale EUV wave is a true wave, interpreted as a fast-mode wave.

  2. Flare Emission Onset in the Slow-Rise and Fast-Rise Phases of an Erupting Solar Filament Observed with TRACE

    NASA Technical Reports Server (NTRS)

    Sterling, A. C.; Moore, R. L.

    2005-01-01

    We observe the eruption of an active-region solar filament of 1998 July 11 using high time cadence and high spatial resolution EUV observations from the TRACE sareiii'ce, along with soft X-ray images from the soft X-ray telescope (SXT) on the Yohkoh satellite, hard X-ray fluxes from the BATSE instrument on the (CGRO) satellite and from the hard X-ray telescope (HXT) on Yohkoh, and ground-based magnetograms. We concentrate on the initiation of the eruption in an effort to understand the eruption mechanism. First the filament undergoes slow upward movement in a "slow rise" phase with an approximately constant velocity of approximately 15 km/s that lasts about 10-min, and then it erupts in a "fast-rise" phase, reaching a velocity of about 200 km/s in about 5-min, followed by a period of deceleration. EUV brightenings begin just before the start of the filament's slow rise, and remain immediately beneath the rising filament during the slow rise; initial soft X-ray brightenings occur at about the same time and location. Strong hard X-ray emission begins after the onset of the fast rise, and does not peak until the filament has traveled a substantial altitude (to a height about equal to the initial length of the erupting filament) beyond its initial location. Our observations are consistent with the slow-rise phase of the eruption resulting from the onset of "tether cutting" reconnection between magnetic fields beneath the filament, and the fast rise resulting from an explosive increase in the reconnection rate or by catastrophic destabilization of the overlying filament-carrying fields. About two days prior to the event new flux emerged near the location of the initial brightenings, and this recently- emerged flux could have been a catalyst for initiating the tether-cutting reconnection. With the exception of the initial slow rise, our findings qualitatively agree with the prediction for erupting-flux-rope height as a function of time in a model discussed by Chen

  3. Microscale Relationships Between Fault Rock Fabric and Structural Style in Megathrusts - Observations from Tohoku-Oki Via J-Fast.

    NASA Astrophysics Data System (ADS)

    Toy, V. G.; Fagereng, A.; Kirkpatrick, J. D.; Remitti, F.; Rowe, C. D.; Ujiie, K.; Wolfson-Schwehr, M.

    2014-12-01

    Recovered plate boundary thrust material from the site of the 2011 Tohoku-Oki earthquake rupture contains both distributed and localized fabrics. We1 infer these reflect two end members of behavior, namely steady state creep of weak, velocity/strain-hardening materials versus episodic, seismic failure of strong, velocity/strain-weakening materials. Core and downhole observations and mechanical tests demonstrate the fault rock is primarily smectite and has very low frictional strength (μk~0.08) 2,3,4,5. Additional observations of the recovered core indicate microscale fabrics affect mechanical properties. The fault zone fabric is defined mostly by anastomosing dark surfaces surrounding phacoids. Phacoid size and intensity of dark surfaces vary, probably reflecting differences in total strain. Phacoids contain foliations at angles to their long axes and bounding surfaces. Remnant bedding can be recognized in places, based on variation in phyllosilicate colour or clastic:phyllosilicate ratio (although other colour variations result from alteration1). Anastomosing shear surfaces may coincide with bedding but also commonly truncate it, indicating little primary lithological/rheological control on fabric formation. However, in late mm-thickness, through going, more intensely sheared zones, lithologic contrast more strongly defines phacoids while dark seams may be absent. A transition from distributed shear in phyllosilicates to localized shear on dark surfaces requires local change in stress or strain rate. If the orientation of clay fabrics change due to folding ('turbulent' flow), then weak basal planes of phyllosilicates rotated into unfavourable orientations may act as 'stress risers' promoting localization around phacoids containing poorly oriented fabrics. This mechanism is indicated by the presence of the most folded layering in plate boundary core adjacent to the most distinct through-going surfaces1,2. Alternatively, locally well-oriented fabrics may

  4. Can we make atoms sing and molecules dance? Using fast light pulses to observe and control nature"

    NASA Astrophysics Data System (ADS)

    Murnane, Margaret

    2004-05-01

    During the past decade, there has been a revolution in the field of ultrafast lasers. Visible light pulses of only a few optical cycles in duration can now be generated from a simple laser. These laser pulses can be used to literally rip atoms apart, generating "laser-like" x-ray beams in the process. Moreover, using computer algorithms, we can "teach" a laser to generate a properly shaped light pulse in time, that allows us to force an atom to radiate laser-like x-rays of specific wavelengths. This allows us, for example, to channel laser energy into a specific x-ray wavelength, or to force molecules to vibrate along a particular bond. This work is a first step towards using light as a catalyst to control chemical reactions. "Shaped-pulse optimisation of coherent soft-x-rays," Nature 406, 164 (2000). "Direct observation of surface chemistry using ultrafast soft-x-ray pulses", Physical Review Letters 87, 25501 (2001). "Fully spatially coherent EUV beams generated using a small-scale laser", Science 297, 376 (2002).

  5. Observations of soft x-ray emission and wall ablation in a fast low-energy pulsed capillary discharge

    NASA Astrophysics Data System (ADS)

    Valdivia, M. P.; Wyndham, E. S.; Ramos-Moore, E.; Ferrari, P.; Favre, M.

    2013-08-01

    We report on experimental observations of pulsed capillary discharges aimed at soft x-ray production within the water-window range. Through systematical studies of capillary tube characteristics and discharge conditions, radiation emission was analysed. Plasma properties were studied by means of spectrometry, wide-band PIN diode signals and plasma micro-channel plate imaging. Surface and bulk material analyses were performed using scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDS) and Auger electron spectroscopy (AES) in order to characterize the capillary inner surface after discharges. We report on hollow cathode effect enhancement by modification of cathode electrode aperture, as well as pressure conditions along the capillary, which were found to have an important effect over plasma and x-ray yields due to the modification of local electrical field and gas density. Capillary tube material and inner diameter also modified the interaction of the plasma channel with the capillary surface, thus modifying the plasma source characteristics. It was found that emission of the NVI line at 28.8 Å can be enhanced within the conditions studied, from no significant emission to sources delivering an average brightness of over 70.0 mW mm-2 per 2π sr. This demonstrates that hollow cathode electrons and plasma-wall interaction and ablation have a direct impact on emission quality.

  6. The XMM-Newton1 and INTEGRAL2 Observations of the Supergiant Fast X-Ray Transient IGR J16328-4726

    NASA Astrophysics Data System (ADS)

    Fiocchi, M.; Bazzano, A.; Natalucci, L.; Ubertini, P.; Sguera, V.; Bird, A. J.; Boon, C. M.; Persi, P.; Piro, L.

    2016-10-01

    The accretion mechanism producing the short flares observed from the Supergiant Fast X-ray Transients (SFXT) is still highly debated and forms a major part in our attempts to place these X-ray binaries in the wider context of the High Mass X-ray Binaries. We report on a 216 ks INTEGRAL observation of the SFXT IGR J16328-4726 (2014 August 24–27) simultaneous with two fixed-time observations with XMM-Newton (33 and 20 ks) performed around the putative periastron passage, in order to investigate the accretion regime and the wind properties during this orbital phase. During these observations, the source has shown luminosity variations, from ∼ 4× {10}34 to ∼ {10}36 {erg} {{{s}}}-1, linked to spectral properties changes. The soft X-ray continuum is well modeled by a power law with a photon index varying from ∼1.2 up to ∼1.7 and with high values of the column density in the range of ∼ 2{--}4× {10}23 {{cm}}-2. We report on the presence of iron lines at ∼6.8–7.1 keV, suggesting that the X-ray flux is produced by the accretion of matter from the companion wind characterized by density and temperature inhomogeneities.

  7. Functional pools of fast and slow twitch fibers observed by /sup 31/P-NMR during exercise of flexor wrist muscles in man

    SciTech Connect

    Park, J.H.; Park, C.R.; Brown, R.L.; Chance, B.

    1987-05-01

    Functional compartments of fast and slow twitch fibers have been observed by /sup 31/P-NMR spectroscopy during exercise of the wrist flexor muscles in a sedentary, young male subject. Values of Pi, phosphocreatine (PCr) and adenine nucleotides were determined at rest and during an exercise protocol. The subject flexed his wrist muscles at 20% of maximum strength every 5 sec for 6 min and then increased his effort in the next two 6 min intervals to 40% and 60% of maximum. With exercise, the Pi/PCr rose rapidly to the exceptionally high value of 2.2 at 60% effort. As the Pi increased, the initial single peak (pH 7.0-6.9) split into two distinct components with pH values of 6.8 and 6.3. Quantitatively, distribution of the Pi was 40% in the pH 6.8 peak and 60% in the pH 6.3 peak as determined by area estimation following curve fitting. This presumably reflects two pools of Pi corresponding to the oxidative (slow twitch, high pH) and glycolytic (fast twitch, low pH) fibers. In the second identical exercise sequence which followed immediately, only one Pi peak (pH 6.8-6.9) appeared. This suggested that the glycolytic contribution to energy production was largely exhausted and the residual energy was derived from oxidative metabolism. During exercise at high levels, total phosphate decreased due primarily to loss of NMR visible adenine nucleotides. Similar phenomena have been observed in three other sedentary individuals, but not in trained athletes.

  8. Class Architecture.

    ERIC Educational Resources Information Center

    Crosbie, Michael J.

    This compendium contains more than 40 schools that show new directions in design and the changing demands on this building type. It discusses the design challenges in new schools and how each one of the projects meets the demands of an architecture for learning. An introduction by architect Raymond Bordwell explains many of the trends in new…

  9. Architectural Tops

    ERIC Educational Resources Information Center

    Mahoney, Ellen

    2010-01-01

    The development of the skyscraper is an American story that combines architectural history, economic power, and technological achievement. Each city in the United States can be identified by the profile of its buildings. The design of the tops of skyscrapers was the inspiration for the students in the author's high-school ceramic class to develop…

  10. Architectural Drafting.

    ERIC Educational Resources Information Center

    Davis, Ronald; Yancey, Bruce

    Designed to be used as a supplement to a two-book course in basic drafting, these instructional materials consisting of 14 units cover the process of drawing all working drawings necessary for residential buildings. The following topics are covered in the individual units: introduction to architectural drafting, lettering and tools, site…

  11. Architectural Models

    ERIC Educational Resources Information Center

    Levenson, Harold E.; Hurni, Andre

    1978-01-01

    Suggests building models as a way to reinforce and enhance related subjects such as architectural drafting, structural carpentry, etc., and discusses time, materials, scales, tools or equipment needed, how to achieve realistic special effects, and the types of projects that can be built (model of complete building, a panoramic model, and model…

  12. XMM-Newton and NuSTAR joint observation of the periodic Supergiant Fast X-ray Transient IGR J11215-5952

    NASA Astrophysics Data System (ADS)

    Sidoli, L.; Paizis, A.; Sguera, V.

    2016-06-01

    IGRJ11215-5952 is the only Supergiant Fast X-ray Transient showing periodic outbursts (every 165 days, the orbital period of the system). The driving mechanism causing the transient X-ray emission in this sub-class of High Mass X-ray Binaries is still a matter of debate, after 10 years from the discovery of the class. To disentangle between magnetar-like neutron stars from models requiring more usual neutron star magnetic fields (1E12G), we observed the SFXT pulsar IGRJ11215-5952 with XMM-Newton coordinated with NuSTAR on 2016, February 14, during the expected peak of the outburst, for a net exposure time of 20 ks. The source was indeed caught in outburst (1E36 erg/s), with several bright flares repeating quasi-periodically with timescales of a few thousand seconds, spanning a dynamic range of two orders of magnitude. The overlapping observation with both XMM-Newton and NuSTAR enabled the study of the simultaneous broad band spectrum from 0.3 to 78 keV. The work is still in progress, given the extreme variability of the X-ray emission. X-ray pulsations were detected at 187.14 s, consistent with the last XMM-Newton observation, performed in 2007. We will discuss XMM+NuSTAR results in light of the different models proposed to explain the SFXTs behavior.

  13. Frame architecture for video servers

    NASA Astrophysics Data System (ADS)

    Venkatramani, Chitra; Kienzle, Martin G.

    1999-11-01

    Video is inherently frame-oriented and most applications such as commercial video processing require to manipulate video in terms of frames. However, typical video servers treat videos as byte streams and perform random access based on approximate byte offsets to be supplied by the client. They do not provide frame or timecode oriented API which is essential for many applications. This paper describes a frame-oriented architecture for video servers. It also describes the implementation in the context of IBM's VideoCharger server. The later part of the paper describes an application that uses the frame architecture and provides fast and slow-motion scanning capabilities to the server.

  14. DUAL TRIGGER OF TRANSVERSE OSCILLATIONS IN A PROMINENCE BY EUV FAST AND SLOW CORONAL WAVES: SDO/AIA AND STEREO/EUVI OBSERVATIONS

    SciTech Connect

    Gosain, S.; Foullon, C.

    2012-12-20

    We analyze flare-associated transverse oscillations in a quiescent solar prominence on 2010 September 8-9. Both the flaring active region and the prominence were located near the west limb, with a favorable configuration and viewing angle. The full-disk extreme ultraviolet (EUV) images of the Sun obtained with high spatial and temporal resolution by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory show flare-associated lateral oscillations of the prominence sheet. The STEREO-A spacecraft, 81.{sup 0}5 ahead of the Sun-Earth line, provides an on-disk view of the flare-associated coronal disturbances. We derive the temporal profile of the lateral displacement of the prominence sheet by using the image cross-correlation technique. The displacement curve was de-trended and the residual oscillatory pattern was derived. We fit these oscillations with a damped cosine function with a variable period and find that the period is increasing. The initial oscillation period (P{sub 0}) is {approx}28.2 minutes and the damping time ({tau}{sub D}) {approx} 44 minutes. We confirm the presence of fast and slow EUV wave components. Using STEREO-A observations, we derive a propagation speed of {approx}250 km s{sup -1} for the slow EUV wave by applying the time-slice technique to the running difference images. We propose that the prominence oscillations are excited by the fast EUV wave while the increase in oscillation period of the prominence is an apparent effect, related to a phase change due to the slow EUV wave acting as a secondary trigger. We discuss implications of the dual trigger effect for coronal prominence seismology and scaling law studies of damping mechanisms.

  15. Observation of the cation radicals of pyrrole and of some substituted pyrroles in fast-scan cyclic voltammetry. Standard potentials and lifetimes

    SciTech Connect

    Andrieux, C.P.; Audebert, P.; Hapiot, P.; Saveant, J. )

    1990-03-14

    Polypyrroles and polysubstituted pyrroles have attracted considerable and increasing attention over the past 10 years in view of their remarkable conducting and electrocatalytic properties. Oxidative electropolymerization of pyrrolic monomers is a convenient and attractive route to polypyrrole electrode coatings and free-standing films. Although valuable information has been gained about the nucleation processes following the initial generation of dimeric and polymeric species, the mechanism by which these dimers are formed has not been ascertained. Likewise, the standard potentials at which the cation radicals are formed as well as their lifetimes are not known. The reason for this lack of information concerning the reactivity of the electrochemically generated pyrrole cation radical is that the measurement times employed in the experimental studies carried out by potential-step and cyclic voltammetric techniques were too long to allow the observation of the cation radical by means of its rereduction current. In the present preliminary report, they show that it is possible to overcome these difficulties by use of recently developed ultramicroelectrode techniques and thus to observe the pyrrolic cation radicals through their rereduction wave in fast-scan cyclic voltammetry.

  16. Will architecture win the technology wars?

    PubMed

    Alberthal, L; Manzi, J; Curtis, G; Davidow, W H; Timko, J W; Nadler, D; Davis, L L

    1993-01-01

    Success today flows to the company that establishes proprietary architectural control over a broad, fast-moving, competitive space, Charles R. Morris and Charles H. Ferguson claim in "How Architecture Wins Technology Wars" (March-April 1993). No single vendor can keep pace with the outpouring of cheap, powerful, mass-produced components, so customers have been stitching together their own local systems solutions. Architectures impose order on the system and make interconnections possible. An architectural controller has power over the standard by which the entire information package is assembled. Because of the popularity of Microsoft's Windows, for example, companies like Lotus must conform their software to its parameters to be able to compete for market share. Proprietary architectural control has broader implications for organizational structure too: architectural competition is giving rise to a new form of business organization. PMID:10126152

  17. How architecture wins technology wars.

    PubMed

    Morris, C R; Ferguson, C H

    1993-01-01

    Signs of revolutionary transformation in the global computer industry are everywhere. A roll call of the major industry players reads like a waiting list in the emergency room. The usual explanations for the industry's turmoil are at best inadequate. Scale, friendly government policies, manufacturing capabilities, a strong position in desktop markets, excellent software, top design skills--none of these is sufficient, either by itself or in combination, to ensure competitive success in information technology. A new paradigm is required to explain patterns of success and failure. Simply stated, success flows to the company that manages to establish proprietary architectural control over a broad, fast-moving, competitive space. Architectural strategies have become crucial to information technology because of the astonishing rate of improvement in microprocessors and other semiconductor components. Since no single vendor can keep pace with the outpouring of cheap, powerful, mass-produced components, customers insist on stitching together their own local systems solutions. Architectures impose order on the system and make the interconnections possible. The architectural controller is the company that controls the standard by which the entire information package is assembled. Microsoft's Windows is an excellent example of this. Because of the popularity of Windows, companies like Lotus must conform their software to its parameters in order to compete for market share. In the 1990s, proprietary architectural control is not only possible but indispensable to competitive success. What's more, it has broader implications for organizational structure: architectural competition is giving rise to a new form of business organization. PMID:10124636

  18. A Suzaku X-ray Observation of One Orbit of the Supergiant Fast X-ray Transient IGR J16479-4514

    NASA Technical Reports Server (NTRS)

    Sidoli, L.; Esposito, P.; Sguera, V.; Bodaghee, A.; Tomsick, J. A.; Pottschmidt, K.; Rodriguez, J.; Ramano, P.; Wilms, J.

    2013-01-01

    We report on a 250 ks long X-ray observation of the supergiant fast X-ray transient (SFXT) IGR J16479-4514 performed with Suzaku in 2012 February. During this observation, about 80% of the short orbital period (P(sub orb) approximates 3.32 days) was covered as continuously as possible for the first time. The source light curve displays variability of more than two orders of magnitude, starting with a very low emission state (10(exp -13) erg / sq cm/s; 1-10 keV) lasting the first 46 ks, consistent with being due to the X-ray eclipse by the supergiant companion. The transition to the uneclipsed X-ray emission is energy dependent. Outside the eclipse, the source spends most of the time at a level of 6-7X10)(exp-12) erg/sq. cm/s) punctuated by two structured faint flares with a duration of about 10 and 15 ks, respectively, reaching a peak flux of 3-4X10(exp -11) erg/sq. cm./S, separated by about 0.2 in orbital phase. Remarkably, the first faint flare occurs at a similar orbital phase of the bright flares previously observed in the system. This indicates the presence of a phase-locked large scale structure in the supergiant wind, driving a higher accretion rate onto the compact object. The average X-ray spectrum is hard and highly absorbed, with a column density, NH, of 10*exp 23)/sq cm, clearly in excess of the interstellar absorption. There is no evidence for variability of the absorbing column density, except that during the eclipse, where a less absorbed X-ray spectrum is observed. A narrow Fe K-alpha emission line at 6.4 keV is viewed along the whole orbit, with an intensity which correlates with the continuum emission above 7 keV. The scattered component visible during the X-ray eclipse allowed us to directly probe the wind density at the orbital separation, resulting in rho(sub w)=7X10(exp -14) g/cubic cm. Assuming a spherical geometry for the supergiant wind, the derived wind density translates into a ratio M(sub w)/v(sub infinity) = 7X10(exp -17) Solar M

  19. Lab architecture

    NASA Astrophysics Data System (ADS)

    Crease, Robert P.

    2008-04-01

    There are few more dramatic illustrations of the vicissitudes of laboratory architecturethan the contrast between Building 20 at the Massachusetts Institute of Technology (MIT) and its replacement, the Ray and Maria Stata Center. Building 20 was built hurriedly in 1943 as temporary housing for MIT's famous Rad Lab, the site of wartime radar research, and it remained a productive laboratory space for over half a century. A decade ago it was demolished to make way for the Stata Center, an architecturally striking building designed by Frank Gehry to house MIT's computer science and artificial intelligence labs (above). But in 2004 - just two years after the Stata Center officially opened - the building was criticized for being unsuitable for research and became the subject of still ongoing lawsuits alleging design and construction failures.

  20. The FAMoUS toolbox goes to Yasur: field test of a FAst, MUltiparametric Set-up for real-time observation of explosive eruptions

    NASA Astrophysics Data System (ADS)

    Freda, C.; Taddeucci, J.; Scarlato, P.; Rao, S.; Salvaterra, C.; Gaeta, M.; Palladino, D. M.

    2012-04-01

    Explosive volcanic eruptions are intrinsically highly dynamical in space and time. For this reason, their observation in real time requires a broad range of sensors operating at high-sampling rates. Permanent networks meeting these requirements are limited to a few, intensively monitored volcanoes. Multiparametric experiments are run for limited periods at active volcanoes, but currently still require considerable logistic effort and a reliable forecast of "where" and "what" the activity will be. In contrast, the FAMoUS toolbox is a fast-deployed and flexible tool that can provide real-time observation of a broad variety of volcanic phenomena. The core of the FAMoUS toolbox includes: 1) an Optronis CamRecord 600x2 high speed camera and data logger; 2) a FLIR SC655 thermal camera; 3) two InfraCyrus microphones. All instruments are time-synchronized via a hand- or microphone-operated trigger. GPS time stamp is also available. The toolbox also includes a custom-designed power supply system, two laptops, lenses, and tripods. Total weight amounts to less than 20 kg divided into 7 items easily fitting into four, hand-luggage-sized backpacks. Deploying FAMoUS requires less than 20' whereas removing can take less than 2', if needed. The FAMoUS toolbox was first tested on Yasur volcano, Vanuatu Islands, in 10-12 July 2011, explosive activity ranging from strombolian explosions to ash venting and puffing. Visible and infrared high-speed videos were acquired at 500 and 50-200 frames per second, and 1280x1024 and 480-120x640 pixel resolution, respectively. Microphone signals were recorded at 1-20 kHz. Several volcanic processes have been thus investigated. 1) Initial jet-plume dynamics were characterized by zooming into the vents to estimate ejection velocities, gas-particle-atmosphere interactions, and mass eruption rates. 2) Ballistic pyroclast trajectories were recorded with a broader field of view, focusing on larger particles and using thermal data to discriminate

  1. The FAMoUS toolbox goes to Yasur: field test of a FAst, MUltiparametric Set-up for real-time observation of explosive eruptions

    NASA Astrophysics Data System (ADS)

    Taddeucci, J.; Freda, C.; Scarlato, P.; Rao, S.; Salvaterra, C.; Gaeta, M.; Palladino, D. M.

    2011-12-01

    Explosive volcanic eruptions are intrinsically highly dynamical in space and time. For this reason, their observation in real time requires a broad range of sensors operating at high-sampling rates. Permanent networks meeting these requirements are limited to a few, intensively monitored volcanoes. Multiparametric experiments are run for limited periods at active volcanoes, but currently still require considerable logistic effort and a reliable forecast of "where" and "what" the activity will be. In contrast, the FAMoUS toolbox is a fast-deployed and flexible tool that can provide real-time observation of a broad variety of volcanic phenomena. The core of the FAMoUS toolbox includes: 1) an Optronis CamRecord 600x2 high speed camera and data logger; 2) a FLIR SC655 thermal camera; 3) two InfraCyrus microphones. All instruments are time-synchronized via a hand- or microphone-operated trigger. GPS time stamp is also available. The toolbox also includes a custom-designed power supply system, two laptops, lenses, and tripods. Total weight amounts to less than 20 kg divided into 7 items easily fitting into four, hand-luggage-sized backpacks. Deploying FAMoUS requires less than 20' whereas removing can take less than 2', if needed. The FAMoUS toolbox was first tested on Yasur volcano, Vanuatu Islands, in 10-12 July 2011, explosive activity ranging from strombolian explosions to ash venting and puffing. Visible and infrared high-speed videos were acquired at 500 and 50-200 frames per second, and 1280x1024 and 480-120x640 pixel resolution, respectively. Microphone signals were recorded at 1-20 kHz. Several volcanic processes have been thus investigated. 1) Initial jet-plume dynamics were characterized by zooming into the vents to estimate ejection velocities, gas-particle-atmosphere interactions, and mass eruption rates. 2) Ballistic pyroclast trajectories were recorded with a broader field of view, focusing on larger particles and using thermal data to discriminate

  2. A Dual-Porosity, In Situ Crystallisation Model For Fast-Spreading Mid-Ocean Ridge Magma Chambers Based Upon Direct Observation From Hess Deep

    NASA Astrophysics Data System (ADS)

    MacLeod, C. J.; Lissenberg, C. J.

    2014-12-01

    We propose a revised magma chamber model for fast-spreading mid-ocean ridges based upon a synthesis of new data from a complete section of lower crust from the East Pacific Rise, reconstructed from samples collected from the Hess Deep rift valley during cruise JC21. Our investigation includes detailed sampling across critical transitions in the upper part of the plutonic section, including the inferred axial melt lens (AML) within the dyke-gabbro transition. We find that an overall petrological progression, from troctolite and primitive gabbro at the base up into evolved (oxide) gabbro and gabbronorite at the top of the lower crustal section, is mirrored by a progressive upward chemical fractionation as recorded in bulk rock and mineral compositions. Crystallographic preferred orientations measured using EBSD show that the downward increase in deformation of mush required in crystal subsidence models is not observed. Together these observations are consistent only with a model in which crystallisation of upward migrating evolving melts occurs in situ in the lower crust. Over-enrichment in incompatible trace element concentrations and ratios above that possible by fractional crystallisation is ubiquitous. This implies redistribution of incompatible trace elements in the lower crust by low porosity, near-pervasive reactive porous flow of interstitial melt moving continuously upward through the mush pile. Mass balance calculations reveal a significant proportion of this trace element enriched melt is trapped at mid-crustal levels. Mineral compositions in the upper third to half of the plutonic section are too evolved to represent the crystal residues of MORB. Erupted MORB therefore must be fed from melts sourced in the deeper part of the crystal mush pile, and which must ascend rapidly without significant modification in the upper plutonics or AML. From physical models of mush processes we posit that primitive melts are transported through transient, high porosity

  3. Interplanetary Fast Shocks and Associated Drivers Observed through the Twenty-Third Solar Minimum by WIND Over its First 2.5 Years

    NASA Technical Reports Server (NTRS)

    Mariani, F.; Berdichevsky, D.; Szabo, A.; Lepping, R. P.; Vinas, A. F.

    1999-01-01

    A list of the interplanetary (IP) shocks observed by WIND from its launch (in November 1994) to May 1997 is presented. Forty two shocks were identified. The magnetohydrodynamic nature of the shocks is investigated, and the associated shock parameters and their uncertainties are accurately computed using a practical scheme which combines two techniques. These techniques are a combination of the "pre-averaged" magnetic-coplanarity, velocity-coplanarity, and the Abraham-Schrauner-mixed methods, on the one hand, and the Vinas and Scudder [1986] technique for solving the non-linear least-squares Rankine-Hugoniot shock equations, on the other. Within acceptable limits these two techniques generally gave the same results, with some exceptions. The reasons for the exceptions are discussed. It is found that the mean strength and rate of occurrence of the shocks appears to correlated with the solar cycle. Both showed a decrease in 1996 coincident with the time of the lowest ultraviolet solar radiance, indicative of solar minimum and start of solar cycle 23, which began around June 1996. Eighteen shocks appeared to be associated with corotating interaction regions (CIRs). The distribution of their shock normals showed a mean direction peaking in the ecliptic plane and with a longitude (phi(sub n)) in that plane between perpendicular to the Parker spiral and radial from the Sun. When grouped according to the sense of the direction of propagation of the shocks the mean azimuthal (longitude) angle in GSE coordinates was approximately 194 deg for the fast-forward and approximately 20 deg for the fast-reverse shocks. Another 16 shocks were determined to be driven by solar transients, including magnetic clouds. These shocks had a broader distribution of normal directions than those of the CIR cases with a mean direction close to the Sun-Earth line. Eight shocks of unknown origin had normal orientation well off the ecliptic plane. No shock propagated with longitude phi(sub n) >= 220

  4. Fast protein folding kinetics

    PubMed Central

    Gelman, Hannah; Gruebele, Martin

    2014-01-01

    Fast folding proteins have been a major focus of computational and experimental study because they are accessible to both techniques: they are small and fast enough to be reasonably simulated with current computational power, but have dynamics slow enough to be observed with specially developed experimental techniques. This coupled study of fast folding proteins has provided insight into the mechanisms which allow some proteins to find their native conformation well less than 1 ms and has uncovered examples of theoretically predicted phenomena such as downhill folding. The study of fast folders also informs our understanding of even “slow” folding processes: fast folders are small, relatively simple protein domains and the principles that govern their folding also govern the folding of more complex systems. This review summarizes the major theoretical and experimental techniques used to study fast folding proteins and provides an overview of the major findings of fast folding research. Finally, we examine the themes that have emerged from studying fast folders and briefly summarize their application to protein folding in general as well as some work that is left to do. PMID:24641816

  5. An unusually fast brightness decline in optical of young type II supernova SN 2016gkg from ASAS-SN follow-up observations

    NASA Astrophysics Data System (ADS)

    Chen, Ping; Dong, Subo; Bose, S.; Prieto, J. L.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Holoien, T. W.-S.; Shields, J.; Shappee, B. J.; Bersier, D.; Brimacombe, J.; Nicholls, B.

    2016-09-01

    The All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin") collaboration reports an unusually fast brightness decline in optical for SN 2016gkg at an averaged rate of ~1 mag/d in V-band between UT 2016-09-21.7 (JD 2457653.2) and UT 2016-09-22.4 (JD 2457653.9).

  6. Discovery with FAST

    NASA Astrophysics Data System (ADS)

    Wilkinson, P.

    2016-02-01

    FAST offers "transformational" performance well-suited to finding new phenomena - one of which might be polarised spectral transients. But discoveries will only be made if "the system" provides its users with the necessary opportunities. In addition to designing in as much observational flexibility as possible, FAST should be operated with a philosophy which maximises its "human bandwidth". This band includes the astronomers of tomorrow - many of whom not have yet started school or even been born.

  7. Aerobot Autonomy Architecture

    NASA Technical Reports Server (NTRS)

    Elfes, Alberto; Hall, Jeffery L.; Kulczycki, Eric A.; Cameron, Jonathan M.; Morfopoulos, Arin C.; Clouse, Daniel S.; Montgomery, James F.; Ansar, Adnan I.; Machuzak, Richard J.

    2009-01-01

    An architecture for autonomous operation of an aerobot (i.e., a robotic blimp) to be used in scientific exploration of planets and moons in the Solar system with an atmosphere (such as Titan and Venus) is undergoing development. This architecture is also applicable to autonomous airships that could be flown in the terrestrial atmosphere for scientific exploration, military reconnaissance and surveillance, and as radio-communication relay stations in disaster areas. The architecture was conceived to satisfy requirements to perform the following functions: a) Vehicle safing, that is, ensuring the integrity of the aerobot during its entire mission, including during extended communication blackouts. b) Accurate and robust autonomous flight control during operation in diverse modes, including launch, deployment of scientific instruments, long traverses, hovering or station-keeping, and maneuvers for touch-and-go surface sampling. c) Mapping and self-localization in the absence of a global positioning system. d) Advanced recognition of hazards and targets in conjunction with tracking of, and visual servoing toward, targets, all to enable the aerobot to detect and avoid atmospheric and topographic hazards and to identify, home in on, and hover over predefined terrain features or other targets of scientific interest. The architecture is an integrated combination of systems for accurate and robust vehicle and flight trajectory control; estimation of the state of the aerobot; perception-based detection and avoidance of hazards; monitoring of the integrity and functionality ("health") of the aerobot; reflexive safing actions; multi-modal localization and mapping; autonomous planning and execution of scientific observations; and long-range planning and monitoring of the mission of the aerobot. The prototype JPL aerobot (see figure) has been tested extensively in various areas in the California Mojave desert.

  8. Architecture as Design Study.

    ERIC Educational Resources Information Center

    Kauppinen, Heta

    1989-01-01

    Explores the use of analogies in architectural design, the importance of Gestalt theory and aesthetic cannons in understanding and being sensitive to architecture. Emphasizes the variation between public and professional appreciation of architecture. Notes that an understanding of architectural process enables students to improve the aesthetic…

  9. Modeling of fast neutral-beam-generated ion effects on MHD-spectroscopic observations of resistive wall mode stability in DIII-D plasmas

    SciTech Connect

    Turco, F. Hanson, J. M.; Navratil, G. A.; Turnbull, A. D.

    2015-02-15

    Experiments conducted at DIII-D investigate the role of drift kinetic damping and fast neutral beam injection (NBI)-ions in the approach to the no-wall β{sub N} limit. Modelling results show that the drift kinetic effects are significant and necessary to reproduce the measured plasma response at the ideal no-wall limit. Fast neutral-beam ions and rotation play important roles and are crucial to quantitatively match the experiment. In this paper, we report on the model validation of a series of plasmas with increasing β{sub N}, where the plasma stability is probed by active magnetohydrodynamic (MHD) spectroscopy. The response of the plasma to an externally applied field is used to probe the stable side of the resistive wall mode and obtain an indication of the proximity of the equilibrium to an instability limit. We describe the comparison between the measured plasma response and that calculated by means of the drift kinetic MARS-K code [Liu et al., Phys. Plasmas 15, 112503 (2008)], which includes the toroidal rotation, the electron and ion drift-kinetic resonances, and the presence of fast particles for the modelled plasmas. The inclusion of kinetic effects allows the code to reproduce the experimental results within ∼13% for both the amplitude and phase of the plasma response, which is a significant improvement with respect to the undamped MHD-only model. The presence of fast NBI-generated ions is necessary to obtain the low response at the highest β{sub N} levels (∼90% of the ideal no-wall limit). The toroidal rotation has an impact on the results, and a sensitivity study shows that a large variation in the predicted response is caused by the details of the rotation profiles at high β{sub N}.

  10. An Architecture to Enable Future Sensor Webs

    NASA Technical Reports Server (NTRS)

    Mandl, Dan; Caffrey, Robert; Frye, Stu; Grosvenor, Sandra; Hess, Melissa; Chien, Steve; Sherwood, Rob; Davies, Ashley; Hayden, Sandra; Sweet, Adam

    2004-01-01

    A sensor web is a coherent set of distributed 'nodes', interconnected by a communications fabric, that collectively behave as a single dynamic observing system. A 'plug and play' mission architecture enables progressive mission autonomy and rapid assembly and thereby enables sensor webs. This viewgraph presentation addresses: Target mission messaging architecture; Strategy to establish architecture; Progressive autonomy with onboard sensor web; EO-1; Adaptive array antennas (smart antennas) for satellite ground stations.

  11. Fast valve

    DOEpatents

    Van Dyke, William J.

    1992-01-01

    A fast valve is disclosed that can close on the order of 7 milliseconds. It is closed by the force of a compressed air spring with the moving parts of the valve designed to be of very light weight and the valve gate being of wedge shaped with O-ring sealed faces to provide sealing contact without metal to metal contact. The combination of the O-ring seal and an air cushion create a soft final movement of the valve closure to prevent the fast air acting valve from having a harsh closing.

  12. Fast valve

    DOEpatents

    Van Dyke, W.J.

    1992-04-07

    A fast valve is disclosed that can close on the order of 7 milliseconds. It is closed by the force of a compressed air spring with the moving parts of the valve designed to be of very light weight and the valve gate being of wedge shaped with O-ring sealed faces to provide sealing contact without metal to metal contact. The combination of the O-ring seal and an air cushion create a soft final movement of the valve closure to prevent the fast air acting valve from having a harsh closing. 4 figs.

  13. Evolution of genome architecture.

    PubMed

    Koonin, Eugene V

    2009-02-01

    Charles Darwin believed that all traits of organisms have been honed to near perfection by natural selection. The empirical basis underlying Darwin's conclusions consisted of numerous observations made by him and other naturalists on the exquisite adaptations of animals and plants to their natural habitats and on the impressive results of artificial selection. Darwin fully appreciated the importance of heredity but was unaware of the nature and, in fact, the very existence of genomes. A century and a half after the publication of the "Origin", we have the opportunity to draw conclusions from the comparisons of hundreds of genome sequences from all walks of life. These comparisons suggest that the dominant mode of genome evolution is quite different from that of the phenotypic evolution. The genomes of vertebrates, those purported paragons of biological perfection, turned out to be veritable junkyards of selfish genetic elements where only a small fraction of the genetic material is dedicated to encoding biologically relevant information. In sharp contrast, genomes of microbes and viruses are incomparably more compact, with most of the genetic material assigned to distinct biological functions. However, even in these genomes, the specific genome organization (gene order) is poorly conserved. The results of comparative genomics lead to the conclusion that the genome architecture is not a straightforward result of continuous adaptation but rather is determined by the balance between the selection pressure, that is itself dependent on the effective population size and mutation rate, the level of recombination, and the activity of selfish elements. Although genes and, in many cases, multigene regions of genomes possess elaborate architectures that ensure regulation of expression, these arrangements are evolutionarily volatile and typically change substantially even on short evolutionary scales when gene sequences diverge minimally. Thus, the observed genome

  14. Detecting the oligomeric state of Escherichia coli MutS from its geometric architecture observed by an atomic force microscope at a single molecular level.

    PubMed

    Li, Yan-Li; Meng, Yi-Fan; Zhang, Zi-Mou; Jiang, Yong

    2014-08-01

    Atomic force microscopy (AFM), which provides true 3D surface topography, can also be used to determine the geometric parameters of proteins quantitatively at a single molecular level. In this paper, two different kinds of Escherichia coli MutS (MutS) protein were observed using AFM, and the geometric parameters of the proteins such as height, perimeter, area, and volume were measured. On the basis of these measurements, the molecular weight, association constant, oligomeric state, and orientation of MutS proteins on a mica surface were deduced. The oligomerization mechanism of MutS was analyzed in detail, and the results show that two different kinds of interactions between MutS protein may be involved in oligomerization. Our results also show that AFM imaging is an accurate method for analyzing the geometric structures of a single protein quantitatively at a single-molecule level.

  15. Shallow vent architecture during hybrid explosive-effusive activity at Cordón Caulle (Chile, 2011-12): Evidence from direct observations and pyroclast textures

    NASA Astrophysics Data System (ADS)

    Schipper, C. Ian; Castro, Jonathan M.; Tuffen, Hugh; James, Mike R.; How, Penelope

    2013-07-01

    In June 2011, an eruption of rhyolite magma began at the Puyehue-Cordón Caulle volcanic complex, southern Chile. By January 2012, explosive activity had declined from sustained pyroclastic (Plinian to sub-Plinian) fountaining to mixed gas and ash jetting punctuated by Vulcanian blasts. This explosive activity was accompanied by synchronous effusion of obsidian lava in a hybrid explosive-effusive eruption. Fortuitous climatic conditions permitted ground-based observation and video recording of transient vent dynamics as well as real-time collection of proximal juvenile ash as it sedimented from the active plume. The main eruptive vent complex and site of lava effusion were represented by two loci of Vulcanian blasts within a single tephra cone containing a pancake-shaped proto-lava dome. These blast loci each consisted of clusters of sub-vents that expressed correlated shifts in eruption intensity, indicating the presence of partially connected and/or branching zones of high permeability within the upper conduit. Pyroclast textures were examined by X-ray computed microtomography and their permeability was modelled by lattice Boltzmann simulations. The porosity (39 to 67%) and Darcian permeability (3.1 × 10- 15 m2 perpendicular to fabric to 3.8 × 10- 11 m2 parallel to fabric) of fine ash emitted during ash jetting indicate that the permeable zones comprised highly sheared, tube-like bubbly magma, and contrast with the low porosity (~ 17%) and nul permeability of bombs ejected to hundreds of metres from the vent in Vulcanian blasts. Residual H2O content of ash (0.14 wt.%) and two bombs (0.2-0.25 wt.%), determined by Karl-Fischer titration indicate degassing of this pyroclastic material to near-atmospheric pressures. Ash textures and simple degassing/vesiculation models indicate the onset of permeability by ductile processes of shear-enhanced bubble coalescence in the upper 1 to 1.5 km of the conduit. Repeated ash jetting and Vulcanian blasts indicate that such

  16. New computer architectures

    SciTech Connect

    Tiberghien, J.

    1984-01-01

    This book presents papers on supercomputers. Topics considered include decentralized computer architecture, new programming languages, data flow computers, reduction computers, parallel prefix calculations, structural and behavioral descriptions of digital systems, instruction sets, software generation, personal computing, and computer architecture education.

  17. Safety profile of fast-track extubation in pediatric congenital heart disease surgery patients in a tertiary care hospital of a developing country: An observational prospective study

    PubMed Central

    Akhtar, Mohammad Irfan; Hamid, Mohammad; Minai, Fauzia; Wali, Amina Rehmat; Anwar-ul-Haq; Aman-Ullah, Muneer; Ahsan, Khalid

    2014-01-01

    Background and Aims: Early extubation after cardiac operations is an important aspect of fast-track cardiac anesthesia. In order to reduce or eliminate the adverse effects of prolonged ventilation in pediatric congenital heart disease (CHD) surgical patients, the concept of early extubation has been analyzed at our tertiary care hospital. The current study was carried out to record the data to validate the importance and safety of fast-track extubation (FTE) with evidence. Materials and Methods: A total of 71 patients, including male and female aged 6 months to 18 years belonging to risk adjustment for congenital heart surgery-1 category 1, 2, and 3 were included in this study. All patients were anesthetized with a standardized technique and surgery performed by the same surgeon. At the end of operation, the included patients were assessed for FTE and standard extubation criteria were used for decision making. Results: Of the total 71 patients included in the study, 26 patients (36.62%) were extubated in the operating room, 29 (40.85%) were extubated within 6 h of arrival in cardiovascular intensive care unit and 16 (22.54%) were unable to get extubated within 6 h due to multiple reasons. Hence, overall success rate was 77.47%. The reasons for delayed extubation were significant bleeding in 5 (31.3%) cases, hemodynamic instability (low cardiac output syndrome) in 4 (25%) cases, respiratory complication in 2 (12.5%), bleeding plus hemodynamic instability in 2 (12.5) cases, hemodynamic instability, and respiratory complication in 2 (12.5%) cases and triad of hemodynamic instability, bleeding and respiratory complication in 1 (6.5%) case. There was no reintubation in the FTE cases. Conclusion: On the basis of the current study results, it is recommended to use FTE in pediatric CHD surgical patients safely with multidisciplinary approach. PMID:25190943

  18. High performance parallel architectures

    SciTech Connect

    Anderson, R.E. )

    1989-09-01

    In this paper the author describes current high performance parallel computer architectures. A taxonomy is presented to show computer architecture from the user programmer's point-of-view. The effects of the taxonomy upon the programming model are described. Some current architectures are described with respect to the taxonomy. Finally, some predictions about future systems are presented. 5 refs., 1 fig.

  19. Advanced HF anti-jam network architecture

    NASA Astrophysics Data System (ADS)

    Jackson, E. M.; Horner, Robert W.; Cai, Khiem V.

    The Hughes HF2000 system was developed using a flexible architecture which utilizes a wideband RF front-end and extensive digital signal processing. The HF2000 antijamming (AJ) mode was field tested via an HF skywave path between Fullerton, CA and Carlsbad, CA (about 100 miles), and it was shown that reliable fast frequency-hopping data transmission is feasible at 2400 b/s without adaptive equalization. The necessary requirements of an HF communication network are discussed, and how the HF2000 AJ mode can be used to support those requirements is shown. The Hughes HF2000 AJ mode system architecture is presented.

  20. Design of an integrated airframe/propulsion control system architecture

    NASA Technical Reports Server (NTRS)

    Cohen, Gerald C.; Lee, C. William; Strickland, Michael J.; Torkelson, Thomas C.

    1990-01-01

    The design of an integrated airframe/propulsion control system architecture is described. The design is based on a prevalidation methodology that uses both reliability and performance. A detailed account is given for the testing associated with a subset of the architecture and concludes with general observations of applying the methodology to the architecture.

  1. Synoptic and fast events on the sun according to observations at the center and wings of the Ca II K line at the Kislovodsk Mountain station patrol telescope

    NASA Astrophysics Data System (ADS)

    Tlatov, A. G.; Dormidontov, D. V.; Kirpichev, R. V.; Pashchenko, M. P.; Shramko, A. D.

    2015-12-01

    Observations performed at the solar telescope-spectroheliograph, which has continuously automatically operated at MAS MAO RAS, were analyzed. Measurements of the activity index in the Ca II K line, which were performed according to the program of synoptic observations, are presented. The development of the solar flares observed at the center and on the wings of the Ca II K line was compared with observations in the X-ray and radio bands. It was shown that the time variations in the intensity in the 1-8 Å range according to the Geostationary Orbiting Environmental Satellites' (GOES) data and in the Ca II K line are close to each other and that the total X-ray flux and Ca II K intensity amplitude substantially correlate during the entire flare.

  2. A method for describing the canopy architecture of coppice poplar with allometric relationships.

    PubMed

    Casella, Eric; Sinoquet, Hervé

    2003-12-01

    A multi-scale biometric methodology for describing the architecture of fast-growing short-rotation woody crops is used to describe 2-year-old poplar clones during the second rotation. To allow for expressions of genetic variability observed within this species (i.e., growth potential, leaf morphology, coppice and canopy structure), the method has been applied to two clones: Ghoy (Gho) (Populus deltoides Bartr. ex Marsh. x Populus nigra L.) and Trichobel (Tri) (Populus trichocarpa Torr. & A. Gray x Populus trichocarpa). The method operates at the stool level and describes the plant as a collection of components (shoots and branches) described as a collection of metameric elements, themselves defined as a collection of elementary units (internode, petiole, leaf blade). Branching and connection between the plant units (i.e., plant topology) and their spatial location, orientation, size and shape (i.e., plant geometry) describe the plant architecture. The methodology has been used to describe the plant architecture of 15 selected stools per clone over a 5-month period. On individual stools, shoots have been selected from three classes (small, medium and large) spanning the diameter distribution range. Using a multi-scale approach, empirical allometric relationships were used to parameterize elementary units of the plant, topological relationships and geometry (e.g., distribution of shoot diameters on stool, shoot attributes from shoot diameter). The empirical functions form the basis of the 3-D Coppice Poplar Canopy Architecture model (3-D CPCA), which recreates the architecture and canopy structure of fast-growing coppice crops at the plot scale. Model outputs are assessed through visual and quantitative comparisons between actual photographs of the coppice canopy and simulated images. Overall, results indicate a good predictive ability of the 3-D CPCA model.

  3. RASSP signal processing architectures

    NASA Astrophysics Data System (ADS)

    Shirley, Fred; Bassett, Bob; Letellier, J. P.

    1995-06-01

    The rapid prototyping of application specific signal processors (RASSP) program is an ARPA/tri-service effort to dramatically improve the process by which complex digital systems, particularly embedded signal processors, are specified, designed, documented, manufactured, and supported. The domain of embedded signal processing was chosen because it is important to a variety of military and commercial applications as well as for the challenge it presents in terms of complexity and performance demands. The principal effort is being performed by two major contractors, Lockheed Sanders (Nashua, NH) and Martin Marietta (Camden, NJ). For both, improvements in methodology are to be exercised and refined through the performance of individual 'Demonstration' efforts. The Lockheed Sanders' Demonstration effort is to develop an infrared search and track (IRST) processor. In addition, both contractors' results are being measured by a series of externally administered (by Lincoln Labs) six-month Benchmark programs that measure process improvement as a function of time. The first two Benchmark programs are designing and implementing a synthetic aperture radar (SAR) processor. Our demonstration team is using commercially available VME modules from Mercury Computer to assemble a multiprocessor system scalable from one to hundreds of Intel i860 microprocessors. Custom modules for the sensor interface and display driver are also being developed. This system implements either proprietary or Navy owned algorithms to perform the compute-intensive IRST function in real time in an avionics environment. Our Benchmark team is designing custom modules using commercially available processor ship sets, communication submodules, and reconfigurable logic devices. One of the modules contains multiple vector processors optimized for fast Fourier transform processing. Another module is a fiberoptic interface that accepts high-rate input data from the sensors and provides video-rate output data to a

  4. Questioning the observation of laser-assisted ionization in fast collisions of He(2 /sup 1,3/S) with He

    SciTech Connect

    Gillen, K.T.

    1989-02-15

    In four recent papers Pradel et al. (Phys. Rev. Lett. 54, 2600 (1985); Phys. Rev. A 35, 1062 (1987)) and Monchicourt et al. (Phys. Rev. A 33, 3515 (1986); Chem. Phys. Lett. 152, 336 (1988)) give arguments claiming the observation of laser-assisted ionization of the short-lived collision complex formed during collisions of He/sup */(2 /sup 1,3/S) with He. However, estimates of the relative sizes of the assisted and unassisted ion signals observed make it very unlikely that laser-assisted ionization has been observed in those experiments. Collisional excitation to higher He/sup */ states, followed by (single-photon) ionization of the excited states, seems a more likely explanation at all energies considered.

  5. Observation of internal structure of the L-shell x-ray hypersatellites for palladium atoms multiply ionized by fast oxygen ions

    SciTech Connect

    Czarnota, M.; Banas, D.; Pajek, M.; Berset, M.; Dousse, J.-Cl.; Hoszowska, J.; Maillard, Y.-P.; Mauron, O.; Raboud, P. A.; Chmielewska, D.; Rzadkiewicz, J.; Sujkowski, Z.; Polasik, M.; Slabkowska, K.

    2010-06-15

    An observation of the internal structure of the L-shell hypersatellite x rays resulting from the one-photon decay of L{sup -2} double-vacancy states in palladium multiply ionized by oxygen ions is reported. The Pd L{sub 3}{yields}M{sub 4,5} x-ray spectrum was measured with a von Hamos high-resolution crystal spectrometer. The complex shape of the observed spectrum could be interpreted in detail using relativistic multiconfiguration Dirac-Fock calculations. The relative intensities of the measured x rays were found to be in good agreement with semiclassical approximation calculations using relativistic Dirac-Hartree-Fock wave functions.

  6. Nanorobot architecture for medical target identification

    NASA Astrophysics Data System (ADS)

    Cavalcanti, Adriano; Shirinzadeh, Bijan; Freitas, Robert A., Jr.; Hogg, Tad

    2008-01-01

    This work has an innovative approach for the development of nanorobots with sensors for medicine. The nanorobots operate in a virtual environment comparing random, thermal and chemical control techniques. The nanorobot architecture model has nanobioelectronics as the basis for manufacturing integrated system devices with embedded nanobiosensors and actuators, which facilitates its application for medical target identification and drug delivery. The nanorobot interaction with the described workspace shows how time actuation is improved based on sensor capabilities. Therefore, our work addresses the control and the architecture design for developing practical molecular machines. Advances in nanotechnology are enabling manufacturing nanosensors and actuators through nanobioelectronics and biologically inspired devices. Analysis of integrated system modeling is one important aspect for supporting nanotechnology in the fast development towards one of the most challenging new fields of science: molecular machines. The use of 3D simulation can provide interactive tools for addressing nanorobot choices on sensing, hardware architecture design, manufacturing approaches, and control methodology investigation.

  7. Fast Proton-Coupled Electron Transfer Observed for a High-Fidelity Structural and Functional [2Fe–2S] Rieske Model

    PubMed Central

    2015-01-01

    Rieske cofactors have a [2Fe–2S] cluster with unique {His2Cys2} ligation and distinct Fe subsites. The histidine ligands are functionally relevant, since they allow for coupling of electron and proton transfer (PCET) during quinol oxidation in respiratory and photosynthetic ET chains. Here we present the highest fidelity synthetic analogue for the Rieske [2Fe–2S] cluster reported so far. This synthetic analogue 5x– emulates the heteroleptic {His2Cys2} ligation of the [2Fe–2S] core, and it also serves as a functional model that undergoes fast concerted proton and electron transfer (CPET) upon reaction of the mixed-valent (ferrous/ferric) protonated 5H2– with TEMPO. The thermodynamics of the PCET square scheme for 5x– have been determined, and three species (diferric 52–, protonated diferric 5H–, and mixed-valent 53–) have been characterized by X-ray diffraction. pKa values for 5H– and 5H2– differ by about 4 units, and the reduction potential of 5H– is shifted anodically by about +230 mV compared to that of 52–. While the N–H bond dissociation free energy of 5H2– (60.2 ± 0.5 kcal mol–1) and the free energy, ΔG°CPET, of its reaction with TEMPO (−6.3 kcal mol–1) are similar to values recently reported for a homoleptic {N2/N2}-coordinated [2Fe–2S] cluster, CPET is significantly faster for 5H2– with biomimetic {N2/S2} ligation (k = (9.5 ± 1.2) × 104 M–1 s–1, ΔH‡ = 8.7 ± 1.0 kJ mol–1, ΔS‡ = −120 ± 40 J mol–1 K–1, and ΔG‡ = 43.8 ± 0.3 kJ mol–1 at 293 K). These parameters, and the comparison with homoleptic analogues, provide important information and new perspectives for the mechanistic understanding of the biological Rieske cofactor. PMID:24506804

  8. Style grammars for interactive visualization of architecture.

    PubMed

    Aliaga, Daniel G; Rosen, Paul A; Bekins, Daniel R

    2007-01-01

    Interactive visualization of architecture provides a way to quickly visualize existing or novel buildings and structures. Such applications require both fast rendering and an effortless input regimen for creating and changing architecture using high-level editing operations that automatically fill in the necessary details. Procedural modeling and synthesis is a powerful paradigm that yields high data amplification and can be coupled with fast-rendering techniques to quickly generate plausible details of a scene without much or any user interaction. Previously, forward generating procedural methods have been proposed where a procedure is explicitly created to generate particular content. In this paper, we present our work in inverse procedural modeling of buildings and describe how to use an extracted repertoire of building grammars to facilitate the visualization and quick modification of architectural structures and buildings. We demonstrate an interactive application where the user draws simple building blocks and, using our system, can automatically complete the building "in the style of" other buildings using view-dependent texture mapping or nonphotorealistic rendering techniques. Our system supports an arbitrary number of building grammars created from user subdivided building models and captured photographs. Using only edit, copy, and paste metaphors, the entire building styles can be altered and transferred from one building to another in a few operations, enhancing the ability to modify an existing architectural structure or to visualize a novel building in the style of the others.

  9. Two-fluid 2.5D MHD Simulations of the Fast Solar Wind in Coronal Holes and the Relation to UVCS Observations

    NASA Astrophysics Data System (ADS)

    Davila, J. M.; Ofman, L.

    1999-01-01

    Recent SOHO/UVCS observations indicate that the perpendicular proton and ion temperatures are much larger than electron temperatures. In the present study we simulate numerically the solar wind flow in a coronal hole with the two-fluid approach. We investigate the effects of electron and proton temperatures on the solar wind acceleration by nonlinear waves. In the model the nonlinear waves are generated by Alfvén waves with frequencies in the 10-3 Hz range, driven at the base of the coronal hole. The resulting electron and proton flow profile exhibits density and velocity fluctuations. The fluctuations may steepen into shocks as they propagate away from the sun. We calculate the effective proton temperature by combining the thermal and wave velocity of the protons, and find qualitative agreement with the proton kinetic temperature increase with height deduced from the UVCS Ly-α observations by Kohl et al. (1998).

  10. A computer program for fast non-LTE analysis of interstellar line spectra. With diagnostic plots to interpret observed line intensity ratios

    NASA Astrophysics Data System (ADS)

    van der Tak, F. F. S.; Black, J. H.; Schöier, F. L.; Jansen, D. J.; van Dishoeck, E. F.

    2007-06-01

    Aims:The large quantity and high quality of modern radio and infrared line observations require efficient modeling techniques to infer physical and chemical parameters such as temperature, density, and molecular abundances. Methods: We present a computer program to calculate the intensities of atomic and molecular lines produced in a uniform medium, based on statistical equilibrium calculations involving collisional and radiative processes and including radiation from background sources. Optical depth effects are treated with an escape probability method. The program is available on the World Wide Web at http://www.sron.rug.nl/~vdtak/radex/index.shtml. The program makes use of molecular data files maintained in the Leiden Atomic and Molecular Database (LAMDA), which will continue to be improved and expanded. Results: The performance of the program is compared with more approximate and with more sophisticated methods. An Appendix provides diagnostic plots to estimate physical parameters from line intensity ratios of commonly observed molecules. Conclusions: This program should form an important tool in analyzing observations from current and future radio and infrared telescopes. Appendices A-D, are only available in electronic form at http://www.aanda.org

  11. Production of a long-term global water vapor and liquid water data set using ultra-fast methods to assimilate multi-satellite and radiosonde observations

    NASA Technical Reports Server (NTRS)

    Vonderhaar, Thomas H.; Randel, David L.; Reinke, Donald L.; Stephens, Graeme L.; Ringerud, Mark A.; Combs, Cynthia L.; Greenwald, Thomas J.; Wittmeyer, Ian L.

    1995-01-01

    There is a well-documented requirement for a comprehensive and accurate global moisture data set to assist many important studies in atmospheric science. Currently, atmospheric water vapor measurements are made from a variety of sources including radiosondes, aircraft and surface observations, and in recent years, by various satellite instruments. Creating a global data set from a single measuring system produces results that are useful and accurate only in specific situations and/or areas. Therefore, an accurate global moisture data set has been derived from a combination of these measurement systems. Under a NASA peer-reviewed contract, STC-METSAT produced two 5-yr (1988-1992) global data sets. One is the total column (integrated) water vapor data set and the other, a global layered water vapor data set using a combination of radiosonde observations, Television and Infrared Observation Satellite (TIROS) Operational Satellite (TOVS), and Special Sensor Microwave/Imager (SSM/I) data sets. STC-METSAT also produced a companion, global, integrated liquid water data set. The complete data set (all three products) has been named NVAP, an anachronym for NASA Water Vapor Project. STC-METSAT developed methods to process the data at a daily time scale and 1 x 1 deg spatial resolution.

  12. Grid Architecture 2

    SciTech Connect

    Taft, Jeffrey D.

    2016-01-01

    The report describes work done on Grid Architecture under the auspices of the Department of Electricity Office of Electricity Delivery and Reliability in 2015. As described in the first Grid Architecture report, the primary purpose of this work is to provide stakeholder insight about grid issues so as to enable superior decision making on their part. Doing this requires the creation of various work products, including oft-times complex diagrams, analyses, and explanations. This report provides architectural insights into several important grid topics and also describes work done to advance the science of Grid Architecture as well.

  13. Thermal Hotspots in CPU Die and It's Future Architecture

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Hu, Fu-Yuan

    Owing to the increasing core frequency and chip integration and the limited die dimension, the power densities in CPU chip have been increasing fastly. The high temperature on chip resulted by power densities threats the processor's performance and chip's reliability. This paper analyzed the thermal hotspots in die and their properties. A new architecture of function units in die - - hot units distributed architecture is suggested to cope with the problems of high power densities for future processor chip.

  14. Fast word reading in pure alexia: "fast, yet serial".

    PubMed

    Bormann, Tobias; Wolfer, Sascha; Hachmann, Wibke; Neubauer, Claudia; Konieczny, Lars

    2015-01-01

    Pure alexia is a severe impairment of word reading in which individuals process letters serially with a pronounced length effect. Yet, there is considerable variation in the performance of alexic readers with generally very slow, but also occasionally fast responses, an observation addressed rarely in previous reports. It has been suggested that "fast" responses in pure alexia reflect residual parallel letter processing or that they may even be subserved by an independent reading system. Four experiments assessed fast and slow reading in a participant (DN) with pure alexia. Two behavioral experiments investigated frequency, neighborhood, and length effects in forced fast reading. Two further experiments measured eye movements when DN was forced to read quickly, or could respond faster because words were easier to process. Taken together, there was little support for the proposal that "qualitatively different" mechanisms or reading strategies underlie both types of responses in DN. Instead, fast responses are argued to be generated by the same serial-reading strategy.

  15. Is the intraosseous access route fast and efficacious compared to conventional central venous catheterization in adult patients under resuscitation in the emergency department? A prospective observational pilot study

    PubMed Central

    Leidel, Bernd A; Kirchhoff, Chlodwig; Bogner, Viktoria; Stegmaier, Julia; Mutschler, Wolf; Kanz, Karl-Georg; Braunstein, Volker

    2009-01-01

    Background For patients' safety reasons, current American Heart Association and European Resuscitation Council guidelines recommend intraosseous (IO) vascular access as an alternative in cases of emergency, if prompt venous catheterization is impossible. The purpose of this study was to compare the IO access as a bridging procedure versus central venous catheterization (CVC) for in-hospital adult emergency patients under resuscitation with impossible peripheral intravenous (IV) access. We hypothesised, that CVC is faster and more efficacious compared to IO access. Methods A prospective observational study comparing success rates and procedure times of IO access (EZ-IO, Vidacare Corporation) versus CVC in adult (≥18 years of age) patients under trauma and medical resuscitation admitted to our emergency department with impossible peripheral IV catheterization was conducted. Procedure time was defined from preparation and insertion of vascular access type until first drug or infusion solution administration. Success rate on first attempt and procedure time for each access route was evaluated and statistically tested. Results Ten consecutive adult patients under resuscitation, each receiving IO access and CVC, were analyzed. IO access was performed with 10 tibial or humeral insertions, CVC in 10 internal jugular or subclavian veins. The success rate on first attempt was 90% for IO insertion versus 60% for CVC. Mean procedure time was significantly lower for IO cannulation (2.3 min ± 0.8) compared to CVC (9.9 min ± 3.7) (p < 0.001). As for complications, failure of IO access was observed in one patient, while two or more attempts of CVC were necessary in four patients. No other relevant complications, like infection, bleeding or pneumothorax were observed. Conclusion Preliminary data demonstrate that IO access is a reliable bridging method to gain vascular access for in-hospital adult emergency patients under trauma or medical resuscitation with impossible

  16. Production of long-term global water vapor and liquid water data set using ultra-fast methods to assimilate multi-satellite and radiosonde observations

    NASA Technical Reports Server (NTRS)

    Vonderhaar, Thomas H.; Randel, David L.; Reinke, Donald L.; Stephens, Graeme L.; Ringerud, Mark A.; Combs, Cynthia L.; Greenwald, Thomas J.; Wittmeyer, Ian L.

    1994-01-01

    In recent years climate research scientists have recognized the need for increased time and space resolution precipitable and liquid water data sets. This project is designed to meet those needs. Specifically, NASA is funding STC-METSAT to develop a total integrated column and layered precipitable water data set. This is complemented by a total column liquid water data set. These data are global in extent, 1 deg x 1 deg in resolution, with daily grids produced. Precipitable water is measured by a combination of in situ radiosonde observations and satellite derived infrared and microwave retrievals from four satellites. This project combines these data into a coherent merged product for use in global climate research. This report is the Year 2 Annual Report from this NASA-sponsored project and includes progress-to-date on the assigned tasks.

  17. FTS2000 network architecture

    NASA Technical Reports Server (NTRS)

    Klenart, John

    1991-01-01

    The network architecture of FTS2000 is graphically depicted. A map of network A topology is provided, with interservice nodes. Next, the four basic element of the architecture is laid out. Then, the FTS2000 time line is reproduced. A list of equipment supporting FTS2000 dedicated transmissions is given. Finally, access alternatives are shown.

  18. Generic POCC architectures

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This document describes a generic POCC (Payload Operations Control Center) architecture based upon current POCC software practice, and several refinements to the architecture based upon object-oriented design principles and expected developments in teleoperations. The current-technology generic architecture is an abstraction based upon close analysis of the ERBS, COBE, and GRO POCC's. A series of three refinements is presented: these may be viewed as an approach to a phased transition to the recommended architecture. The third refinement constitutes the recommended architecture, which, together with associated rationales, will form the basis of the rapid synthesis environment to be developed in the remainder of this task. The document is organized into two parts. The first part describes the current generic architecture using several graphical as well as tabular representations or 'views.' The second part presents an analysis of the generic architecture in terms of object-oriented principles. On the basis of this discussion, refinements to the generic architecture are presented, again using a combination of graphical and tabular representations.

  19. Teaching American Indian Architecture.

    ERIC Educational Resources Information Center

    Winchell, Dick

    1991-01-01

    Reviews "Native American Architecture," by Nabokov and Easton, an encyclopedic work that examines technology, climate, social structure, economics, religion, and history in relation to house design and the "meaning" of space among tribes of nine regions. Describes this book's use in a college course on Native American architecture. (SV)

  20. Architectural Physics: Lighting.

    ERIC Educational Resources Information Center

    Hopkinson, R. G.

    The author coordinates the many diverse branches of knowledge which have dealt with the field of lighting--physiology, psychology, engineering, physics, and architectural design. Part I, "The Elements of Architectural Physics", discusses the physiological aspects of lighting, visual performance, lighting design, calculations and measurements of…

  1. Robotic Intelligence Kernel: Architecture

    SciTech Connect

    2009-09-16

    The INL Robotic Intelligence Kernel Architecture (RIK-A) is a multi-level architecture that supports a dynamic autonomy structure. The RIK-A is used to coalesce hardware for sensing and action as well as software components for perception, communication, behavior and world modeling into a framework that can be used to create behaviors for humans to interact with the robot.

  2. Software Architecture Evolution

    ERIC Educational Resources Information Center

    Barnes, Jeffrey M.

    2013-01-01

    Many software systems eventually undergo changes to their basic architectural structure. Such changes may be prompted by new feature requests, new quality attribute requirements, changing technology, or other reasons. Whatever the causes, architecture evolution is commonplace in real-world software projects. Today's software architects, however,…

  3. Workflow automation architecture standard

    SciTech Connect

    Moshofsky, R.P.; Rohen, W.T.

    1994-11-14

    This document presents an architectural standard for application of workflow automation technology. The standard includes a functional architecture, process for developing an automated workflow system for a work group, functional and collateral specifications for workflow automation, and results of a proof of concept prototype.

  4. Applying neuroscience to architecture.

    PubMed

    Eberhard, John P

    2009-06-25

    Architectural practice and neuroscience research use our brains and minds in much the same way. However, the link between neuroscience knowledge and architectural design--with rare exceptions--has yet to be made. The concept of linking these two fields is a challenge worth considering.

  5. The Technology of Architecture

    ERIC Educational Resources Information Center

    Reese, Susan

    2006-01-01

    This article discusses how career and technical education is helping students draw up plans for success in architectural technology. According to the College of DuPage (COD) in Glen Ellyn, Illinois, one of the two-year schools offering training in architectural technology, graduates have a number of opportunities available to them. They may work…

  6. The Simulation Intranet Architecture

    SciTech Connect

    Holmes, V.P.; Linebarger, J.M.; Miller, D.J.; Vandewart, R.L.

    1998-12-02

    The Simdarion Infranet (S1) is a term which is being used to dcscribc one element of a multidisciplinary distributed and distance computing initiative known as DisCom2 at Sandia National Laboratory (http ct al. 1998). The Simulation Intranet is an architecture for satisfying Sandia's long term goal of providing an end- to-end set of scrviccs for high fidelity full physics simu- lations in a high performance, distributed, and distance computing environment. The Intranet Architecture group was formed to apply current distributed object technologies to this problcm. For the hardware architec- tures and software models involved with the current simulation process, a CORBA-based architecture is best suited to meet Sandia's needs. This paper presents the initial desi-a and implementation of this Intranct based on a three-tier Network Computing Architecture(NCA). The major parts of the architecture include: the Web Cli- ent, the Business Objects, and Data Persistence.

  7. Can architecture be barbaric?

    PubMed

    Hürol, Yonca

    2009-06-01

    The title of this article is adapted from Theodor W. Adorno's famous dictum: 'To write poetry after Auschwitz is barbaric.' After the catastrophic earthquake in Kocaeli, Turkey on the 17th of August 1999, in which more than 40,000 people died or were lost, Necdet Teymur, who was then the dean of the Faculty of Architecture of the Middle East Technical University, referred to Adorno in one of his 'earthquake poems' and asked: 'Is architecture possible after 17th of August?' The main objective of this article is to interpret Teymur's question in respect of its connection to Adorno's philosophy with a view to make a contribution to the politics and ethics of architecture in Turkey. Teymur's question helps in providing a new interpretation of a critical approach to architecture and architectural technology through Adorno's philosophy. The paper also presents a discussion of Adorno's dictum, which serves for a better understanding of its universality/particularity.

  8. FAST TRACK PAPER: An advanced slip model for the Umbria-Marche earthquake sequence: coseismic displacements observed by SAR interferometry and model inversion

    NASA Astrophysics Data System (ADS)

    Crippa, B.; Crosetto, M.; Biescas, E.; Troise, C.; Pingue, F.; de Natale, G.

    2006-01-01

    We report an improved slip model for the 1997 September-October Umbria-Marche earthquake sequence in central Italy. The model is based on coseismic displacements estimated by differential synthetic aperture radar (DInSAR) interferometry using an advanced inverse modelling approach that enables the characteristics of the SAR data, especially their dense spatial sampling, to be fully exploited. The paper first looks at DInSAR analysis using the simplest configuration, that is, a single-image pair that temporally covers the earthquake sequence. Yet, given that this DInSAR configuration is often used for coseismic studies and the limited availability of SAR data, we duly consider the limitations of the DInSAR results and discuss the rigorous DInSAR procedure carried out, highlighting key errors associated with such observations. We then focus on the inversion of the estimated DInSAR displacements and on our advanced heterogeneous slip model for this earthquake sequence's main shocks, emphasizing its most significant features.

  9. Assessment of Alternative Europa Mission Architectures

    NASA Technical Reports Server (NTRS)

    Langmaier, Jerry; Elliott, John; Clark, Karla; Pappalardo, Robert; Reh, Kim; Spilker, Tom

    2008-01-01

    The purpose of this study was to assess the science merit, technical risk and qualitative assessment of relative cost of alternative architectural implementations as applied to a first dedicated mission to Europa. The objective was accomplished through an examination of mission concepts resulting from previous and ongoing studies. Key architectural elements that were considered include moon orbiters, flybys (single flybys like New Horizons and multiple flybys similar to the ongoing Jupiter System Observer study), sample return and in situ landers and penetrators.

  10. Architecture of the multichannel data-driven ASIC

    NASA Astrophysics Data System (ADS)

    Normanov, D. D.; Atkin, E. V.

    2016-02-01

    The development architecture of a multichannel data-driven ASIC is presented. It provides the selection of useful events at an early stage of reading out detector signals. The architecture is based on fast cross-point switches of analog signals, followed by their digitization by a limited set of ADCs and high-speed output data serialization. Such approach reduces the number of subsequent ADCs as well as digital processing channels. That leads to lower power consumption and chip area. The results of a prototype ASIC development, based on this architecture and intended for the CBM experiment at FAIR, are given.

  11. Flexible surveillance system architecture for prototyping video content analysis algorithms

    NASA Astrophysics Data System (ADS)

    Wijnhoven, R. G. J.; Jaspers, E. G. T.; de With, P. H. N.

    2006-01-01

    Many proposed video content analysis algorithms for surveillance applications are very computationally intensive, which limits the integration in a total system, running on one processing unit (e.g. PC). To build flexible prototyping systems of low cost, a distributed system with scalable processing power is therefore required. This paper discusses requirements for surveillance systems, considering two example applications. From these requirements, specifications for a prototyping architecture are derived. An implementation of the proposed architecture is presented, enabling mapping of multiple software modules onto a number of processing units (PCs). The architecture enables fast prototyping of new algorithms for complex surveillance applications without considering resource constraints.

  12. High Performance Parallel Architectures

    NASA Technical Reports Server (NTRS)

    El-Ghazawi, Tarek; Kaewpijit, Sinthop

    1998-01-01

    Traditional remote sensing instruments are multispectral, where observations are collected at a few different spectral bands. Recently, many hyperspectral instruments, that can collect observations at hundreds of bands, have been operational. Furthermore, there have been ongoing research efforts on ultraspectral instruments that can produce observations at thousands of spectral bands. While these remote sensing technology developments hold great promise for new findings in the area of Earth and space science, they present many challenges. These include the need for faster processing of such increased data volumes, and methods for data reduction. Dimension Reduction is a spectral transformation, aimed at concentrating the vital information and discarding redundant data. One such transformation, which is widely used in remote sensing, is the Principal Components Analysis (PCA). This report summarizes our progress on the development of a parallel PCA and its implementation on two Beowulf cluster configuration; one with fast Ethernet switch and the other with a Myrinet interconnection. Details of the implementation and performance results, for typical sets of multispectral and hyperspectral NASA remote sensing data, are presented and analyzed based on the algorithm requirements and the underlying machine configuration. It will be shown that the PCA application is quite challenging and hard to scale on Ethernet-based clusters. However, the measurements also show that a high- performance interconnection network, such as Myrinet, better matches the high communication demand of PCA and can lead to a more efficient PCA execution.

  13. Space transportation architecture: Reliability sensitivities

    NASA Technical Reports Server (NTRS)

    Williams, A. M.

    1992-01-01

    A sensitivity analysis is given of the benefits and drawbacks associated with a proposed Earth to orbit vehicle architecture. The architecture represents a fleet of six vehicles (two existing, four proposed) that would be responsible for performing various missions as mandated by NASA and the U.S. Air Force. Each vehicle has a prescribed flight rate per year for a period of 31 years. By exposing this fleet of vehicles to a probabilistic environment where the fleet experiences failures, downtimes, setbacks, etc., the analysis involves determining the resiliency and costs associated with the fleet of specific vehicle/subsystem reliabilities. The resources required were actual observed data on the failures and downtimes associated with existing vehicles, data based on engineering judgement for proposed vehicles, and the development of a sensitivity analysis program.

  14. Superconducting Bolometer Array Architectures

    NASA Technical Reports Server (NTRS)

    Benford, Dominic; Chervenak, Jay; Irwin, Kent; Moseley, S. Harvey; Shafer, Rick; Staguhn, Johannes; Wollack, Ed; Oegerle, William (Technical Monitor)

    2002-01-01

    The next generation of far-infrared and submillimeter instruments require large arrays of detectors containing thousands of elements. These arrays will necessarily be multiplexed, and superconducting bolometer arrays are the most promising present prospect for these detectors. We discuss our current research into superconducting bolometer array technologies, which has recently resulted in the first multiplexed detections of submillimeter light and the first multiplexed astronomical observations. Prototype arrays containing 512 pixels are in production using the Pop-Up Detector (PUD) architecture, which can be extended easily to 1000 pixel arrays. Planar arrays of close-packed bolometers are being developed for the GBT (Green Bank Telescope) and for future space missions. For certain applications, such as a slewed far-infrared sky survey, feedhorncoupling of a large sparsely-filled array of bolometers is desirable, and is being developed using photolithographic feedhorn arrays. Individual detectors have achieved a Noise Equivalent Power (NEP) of -10(exp 17) W/square root of Hz at 300mK, but several orders of magnitude improvement are required and can be reached with existing technology. The testing of such ultralow-background detectors will prove difficult, as this requires optical loading of below IfW. Antenna-coupled bolometer designs have advantages for large format array designs at low powers due to their mode selectivity.

  15. Microcomponent sheet architecture

    DOEpatents

    Wegeng, R.S.; Drost, M.K..; McDonald, C.E.

    1997-03-18

    The invention is a microcomponent sheet architecture wherein macroscale unit processes are performed by microscale components. The sheet architecture may be a single laminate with a plurality of separate microcomponent sections or the sheet architecture may be a plurality of laminates with one or more microcomponent sections on each laminate. Each microcomponent or plurality of like microcomponents perform at least one unit operation. A first laminate having a plurality of like first microcomponents is combined with at least a second laminate having a plurality of like second microcomponents thereby combining at least two unit operations to achieve a system operation. 14 figs.

  16. Microcomponent sheet architecture

    DOEpatents

    Wegeng, Robert S.; Drost, M. Kevin; McDonald, Carolyn E.

    1997-01-01

    The invention is a microcomponent sheet architecture wherein macroscale unit processes are performed by microscale components. The sheet architecture may be a single laminate with a plurality of separate microcomponent sections or the sheet architecture may be a plurality of laminates with one or more microcomponent sections on each laminate. Each microcomponent or plurality of like microcomponents perform at least one unit operation. A first laminate having a plurality of like first microcomponents is combined with at least a second laminate having a plurality of like second microcomponents thereby combining at least two unit operations to achieve a system operation.

  17. Architecture for Verifiable Software

    NASA Technical Reports Server (NTRS)

    Reinholtz, William; Dvorak, Daniel

    2005-01-01

    Verifiable MDS Architecture (VMA) is a software architecture that facilitates the construction of highly verifiable flight software for NASA s Mission Data System (MDS), especially for smaller missions subject to cost constraints. More specifically, the purpose served by VMA is to facilitate aggressive verification and validation of flight software while imposing a minimum of constraints on overall functionality. VMA exploits the state-based architecture of the MDS and partitions verification issues into elements susceptible to independent verification and validation, in such a manner that scaling issues are minimized, so that relatively large software systems can be aggressively verified in a cost-effective manner.

  18. Fast finite difference Poisson solvers on heterogeneous architectures

    NASA Astrophysics Data System (ADS)

    Valero-Lara, Pedro; Pinelli, Alfredo; Prieto-Matias, Manuel

    2014-04-01

    In this paper we propose and evaluate a set of new strategies for the solution of three dimensional separable elliptic problems on CPU-GPU platforms. The numerical solution of the system of linear equations arising when discretizing those operators often represents the most time consuming part of larger simulation codes tackling a variety of physical situations. Incompressible fluid flows, electromagnetic problems, heat transfer and solid mechanic simulations are just a few examples of application areas that require efficient solution strategies for this class of problems. GPU computing has emerged as an attractive alternative to conventional CPUs for many scientific applications. High speedups over CPU implementations have been reported and this trend is expected to continue in the future with improved programming support and tighter CPU-GPU integration. These speedups by no means imply that CPU performance is no longer critical. The conventional CPU-control-GPU-compute pattern used in many applications wastes much of CPU's computational power. Our proposed parallel implementation of a classical cyclic reduction algorithm to tackle the large linear systems arising from the discretized form of the elliptic problem at hand, schedules computing on both the GPU and the CPUs in a cooperative way. The experimental result demonstrates the effectiveness of this approach.

  19. Parallel fast gauss transform

    SciTech Connect

    Sampath, Rahul S; Sundar, Hari; Veerapaneni, Shravan

    2010-01-01

    We present fast adaptive parallel algorithms to compute the sum of N Gaussians at N points. Direct sequential computation of this sum would take O(N{sup 2}) time. The parallel time complexity estimates for our algorithms are O(N/n{sub p}) for uniform point distributions and O( (N/n{sub p}) log (N/n{sub p}) + n{sub p}log n{sub p}) for non-uniform distributions using n{sub p} CPUs. We incorporate a plane-wave representation of the Gaussian kernel which permits 'diagonal translation'. We use parallel octrees and a new scheme for translating the plane-waves to efficiently handle non-uniform distributions. Computing the transform to six-digit accuracy at 120 billion points took approximately 140 seconds using 4096 cores on the Jaguar supercomputer. Our implementation is 'kernel-independent' and can handle other 'Gaussian-type' kernels even when explicit analytic expression for the kernel is not known. These algorithms form a new class of core computational machinery for solving parabolic PDEs on massively parallel architectures.

  20. Robot Electronics Architecture

    NASA Technical Reports Server (NTRS)

    Garrett, Michael; Magnone, Lee; Aghazarian, Hrand; Baumgartner, Eric; Kennedy, Brett

    2008-01-01

    An electronics architecture has been developed to enable the rapid construction and testing of prototypes of robotic systems. This architecture is designed to be a research vehicle of great stability, reliability, and versatility. A system according to this architecture can easily be reconfigured (including expanded or contracted) to satisfy a variety of needs with respect to input, output, processing of data, sensing, actuation, and power. The architecture affords a variety of expandable input/output options that enable ready integration of instruments, actuators, sensors, and other devices as independent modular units. The separation of different electrical functions onto independent circuit boards facilitates the development of corresponding simple and modular software interfaces. As a result, both hardware and software can be made to expand or contract in modular fashion while expending a minimum of time and effort.

  1. Predicting and Modeling RNA Architecture

    PubMed Central

    Westhof, Eric; Masquida, Benoît; Jossinet, Fabrice

    2011-01-01

    SUMMARY A general approach for modeling the architecture of large and structured RNA molecules is described. The method exploits the modularity and the hierarchical folding of RNA architecture that is viewed as the assembly of preformed double-stranded helices defined by Watson-Crick base pairs and RNA modules maintained by non-Watson-Crick base pairs. Despite the extensive molecular neutrality observed in RNA structures, specificity in RNA folding is achieved through global constraints like lengths of helices, coaxiality of helical stacks, and structures adopted at the junctions of helices. The Assemble integrated suite of computer tools allows for sequence and structure analysis as well as interactive modeling by homology or ab initio assembly with possibilities for fitting within electronic density maps. The local key role of non-Watson-Crick pairs guides RNA architecture formation and offers metrics for assessing the accuracy of three-dimensional models in a more useful way than usual root mean square deviation (RMSD) values. PMID:20504963

  2. Neural architectures for robot intelligence.

    PubMed

    Ritter, H; Steil, J J; Nölker, C; Röthling, F; McGuire, P

    2003-01-01

    We argue that direct experimental approaches to elucidate the architecture of higher brains may benefit from insights gained from exploring the possibilities and limits of artificial control architectures for robot systems. We present some of our recent work that has been motivated by that view and that is centered around the study of various aspects of hand actions since these are intimately linked with many higher cognitive abilities. As examples, we report on the development of a modular system for the recognition of continuous hand postures based on neural nets, the use of vision and tactile sensing for guiding prehensile movements of a multifingered hand, and the recognition and use of hand gestures for robot teaching. Regarding the issue of learning, we propose to view real-world learning from the perspective of data-mining and to focus more strongly on the imitation of observed actions instead of purely reinforcement-based exploration. As a concrete example of such an effort we report on the status of an ongoing project in our laboratory in which a robot equipped with an attention system with a neurally inspired architecture is taught actions by using hand gestures in conjunction with speech commands. We point out some of the lessons learnt from this system, and discuss how systems of this kind can contribute to the study of issues at the junction between natural and artificial cognitive systems.

  3. Architecture Adaptive Computing Environment

    NASA Technical Reports Server (NTRS)

    Dorband, John E.

    2006-01-01

    Architecture Adaptive Computing Environment (aCe) is a software system that includes a language, compiler, and run-time library for parallel computing. aCe was developed to enable programmers to write programs, more easily than was previously possible, for a variety of parallel computing architectures. Heretofore, it has been perceived to be difficult to write parallel programs for parallel computers and more difficult to port the programs to different parallel computing architectures. In contrast, aCe is supportable on all high-performance computing architectures. Currently, it is supported on LINUX clusters. aCe uses parallel programming constructs that facilitate writing of parallel programs. Such constructs were used in single-instruction/multiple-data (SIMD) programming languages of the 1980s, including Parallel Pascal, Parallel Forth, C*, *LISP, and MasPar MPL. In aCe, these constructs are extended and implemented for both SIMD and multiple- instruction/multiple-data (MIMD) architectures. Two new constructs incorporated in aCe are those of (1) scalar and virtual variables and (2) pre-computed paths. The scalar-and-virtual-variables construct increases flexibility in optimizing memory utilization in various architectures. The pre-computed-paths construct enables the compiler to pre-compute part of a communication operation once, rather than computing it every time the communication operation is performed.

  4. FAST: FAST Analysis of Sequences Toolbox

    PubMed Central

    Lawrence, Travis J.; Kauffman, Kyle T.; Amrine, Katherine C. H.; Carper, Dana L.; Lee, Raymond S.; Becich, Peter J.; Canales, Claudia J.; Ardell, David H.

    2015-01-01

    FAST (FAST Analysis of Sequences Toolbox) provides simple, powerful open source command-line tools to filter, transform, annotate and analyze biological sequence data. Modeled after the GNU (GNU's Not Unix) Textutils such as grep, cut, and tr, FAST tools such as fasgrep, fascut, and fastr make it easy to rapidly prototype expressive bioinformatic workflows in a compact and generic command vocabulary. Compact combinatorial encoding of data workflows with FAST commands can simplify the documentation and reproducibility of bioinformatic protocols, supporting better transparency in biological data science. Interface self-consistency and conformity with conventions of GNU, Matlab, Perl, BioPerl, R, and GenBank help make FAST easy and rewarding to learn. FAST automates numerical, taxonomic, and text-based sorting, selection and transformation of sequence records and alignment sites based on content, index ranges, descriptive tags, annotated features, and in-line calculated analytics, including composition and codon usage. Automated content- and feature-based extraction of sites and support for molecular population genetic statistics make FAST useful for molecular evolutionary analysis. FAST is portable, easy to install and secure thanks to the relative maturity of its Perl and BioPerl foundations, with stable releases posted to CPAN. Development as well as a publicly accessible Cookbook and Wiki are available on the FAST GitHub repository at https://github.com/tlawrence3/FAST. The default data exchange format in FAST is Multi-FastA (specifically, a restriction of BioPerl FastA format). Sanger and Illumina 1.8+ FastQ formatted files are also supported. FAST makes it easier for non-programmer biologists to interactively investigate and control biological data at the speed of thought. PMID:26042145

  5. FAST: FAST Analysis of Sequences Toolbox.

    PubMed

    Lawrence, Travis J; Kauffman, Kyle T; Amrine, Katherine C H; Carper, Dana L; Lee, Raymond S; Becich, Peter J; Canales, Claudia J; Ardell, David H

    2015-01-01

    FAST (FAST Analysis of Sequences Toolbox) provides simple, powerful open source command-line tools to filter, transform, annotate and analyze biological sequence data. Modeled after the GNU (GNU's Not Unix) Textutils such as grep, cut, and tr, FAST tools such as fasgrep, fascut, and fastr make it easy to rapidly prototype expressive bioinformatic workflows in a compact and generic command vocabulary. Compact combinatorial encoding of data workflows with FAST commands can simplify the documentation and reproducibility of bioinformatic protocols, supporting better transparency in biological data science. Interface self-consistency and conformity with conventions of GNU, Matlab, Perl, BioPerl, R, and GenBank help make FAST easy and rewarding to learn. FAST automates numerical, taxonomic, and text-based sorting, selection and transformation of sequence records and alignment sites based on content, index ranges, descriptive tags, annotated features, and in-line calculated analytics, including composition and codon usage. Automated content- and feature-based extraction of sites and support for molecular population genetic statistics make FAST useful for molecular evolutionary analysis. FAST is portable, easy to install and secure thanks to the relative maturity of its Perl and BioPerl foundations, with stable releases posted to CPAN. Development as well as a publicly accessible Cookbook and Wiki are available on the FAST GitHub repository at https://github.com/tlawrence3/FAST. The default data exchange format in FAST is Multi-FastA (specifically, a restriction of BioPerl FastA format). Sanger and Illumina 1.8+ FastQ formatted files are also supported. FAST makes it easier for non-programmer biologists to interactively investigate and control biological data at the speed of thought.

  6. Fast Paced, Low Cost Projects at MSFC

    NASA Technical Reports Server (NTRS)

    Watson-Morgan, Lisa; Clinton, Raymond

    2012-01-01

    one year. FastSat HSV01 also deployed a Poly Picosatellite Orbital Deployer (PPOD) for a separate nano ]satellite class spacecraft (Cubesat: Nano Sail Demonstration) in partnership with Ames Research Center. The Robotic lunar lander is a MSFC JHU APL partnership that led to the development of a flexible architecture for landers to support robotic missions to a wide range of lunar and asteroid destinations. The team started with the goal of meeting NASA agency directives that led to the creation of a test bed focusing on GN&C and software to demonstrate the descent and landing on any airless body for the final 30 to 60 meters. The team created a complex technology demonstration as well as Guidance Control and Navigation (GN&C) algorithms providing autonomous control of the lander. The team uses a green propellant of 90% hydrogen peroxide and has completed 18 successful test flights. The International Space Station (ISS) SERVIR Environmental Research and Visualization System (ISERV) is a technology demonstration payload to assist the SERVIR project with environmental monitoring for disaster relief and humanitarian efforts. The ISERV project was a partnership with TBE. The ISERV payload consists of a commercial off the shelf camera, telescope, and MSFC developed power distribution box and interfaces on ISS with the Window Observational Research Facility in the US Lab. MSFC has identified three key areas that enabled the low cost mission success to include culture, partnering, and cost/schedule control. This paper will briefly discuss these three Class D efforts, FastSat HSV-01, the Robotic Lunar Lander and the ISERV camera system, the lessons learned, their successes and challenges.

  7. Simplified fast neutron dosimeter

    DOEpatents

    Sohrabi, Mehdi

    1979-01-01

    Direct fast-neutron-induced recoil and alpha particle tracks in polycarbonate films may be enlarged for direct visual observation and automated counting procedures employing electrochemical etching techniques. Electrochemical etching is, for example, carried out in a 28% KOH solution at room temperature by applying a 2000 V peak-to-peak voltage at 1 kHz frequency. Such recoil particle amplification can be used for the detection of wide neutron dose ranges from 1 mrad. to 1000 rads. or higher, if desired.

  8. Neural Architectures for Control

    NASA Technical Reports Server (NTRS)

    Peterson, James K.

    1991-01-01

    The cerebellar model articulated controller (CMAC) neural architectures are shown to be viable for the purposes of real-time learning and control. Software tools for the exploration of CMAC performance are developed for three hardware platforms, the MacIntosh, the IBM PC, and the SUN workstation. All algorithm development was done using the C programming language. These software tools were then used to implement an adaptive critic neuro-control design that learns in real-time how to back up a trailer truck. The truck backer-upper experiment is a standard performance measure in the neural network literature, but previously the training of the controllers was done off-line. With the CMAC neural architectures, it was possible to train the neuro-controllers on-line in real-time on a MS-DOS PC 386. CMAC neural architectures are also used in conjunction with a hierarchical planning approach to find collision-free paths over 2-D analog valued obstacle fields. The method constructs a coarse resolution version of the original problem and then finds the corresponding coarse optimal path using multipass dynamic programming. CMAC artificial neural architectures are used to estimate the analog transition costs that dynamic programming requires. The CMAC architectures are trained in real-time for each obstacle field presented. The coarse optimal path is then used as a baseline for the construction of a fine scale optimal path through the original obstacle array. These results are a very good indication of the potential power of the neural architectures in control design. In order to reach as wide an audience as possible, we have run a seminar on neuro-control that has met once per week since 20 May 1991. This seminar has thoroughly discussed the CMAC architecture, relevant portions of classical control, back propagation through time, and adaptive critic designs.

  9. The architectural relevance of cybernetics

    SciTech Connect

    Frazer, J.H.

    1993-12-31

    This title is taken from an article by Gordon Pask in Architectural Design September 1969. It raises a number of questions which this article attempts to answer. How did Gordon come to be writing for an architectural publication? What was his contribution to architecture? How does he now come to be on the faculty of a school of architecture? And what indeed is the architectural relevance of cybernetics? 12 refs.

  10. Agent Architectures for Compliance

    NASA Astrophysics Data System (ADS)

    Burgemeestre, Brigitte; Hulstijn, Joris; Tan, Yao-Hua

    A Normative Multi-Agent System consists of autonomous agents who must comply with social norms. Different kinds of norms make different assumptions about the cognitive architecture of the agents. For example, a principle-based norm assumes that agents can reflect upon the consequences of their actions; a rule-based formulation only assumes that agents can avoid violations. In this paper we present several cognitive agent architectures for self-monitoring and compliance. We show how different assumptions about the cognitive architecture lead to different information needs when assessing compliance. The approach is validated with a case study of horizontal monitoring, an approach to corporate tax auditing recently introduced by the Dutch Customs and Tax Authority.

  11. Avionics System Architecture Tool

    NASA Technical Reports Server (NTRS)

    Chau, Savio; Hall, Ronald; Traylor, marcus; Whitfield, Adrian

    2005-01-01

    Avionics System Architecture Tool (ASAT) is a computer program intended for use during the avionics-system-architecture- design phase of the process of designing a spacecraft for a specific mission. ASAT enables simulation of the dynamics of the command-and-data-handling functions of the spacecraft avionics in the scenarios in which the spacecraft is expected to operate. ASAT is built upon I-Logix Statemate MAGNUM, providing a complement of dynamic system modeling tools, including a graphical user interface (GUI), modeling checking capabilities, and a simulation engine. ASAT augments this with a library of predefined avionics components and additional software to support building and analyzing avionics hardware architectures using these components.

  12. Protein domain architectures.

    PubMed

    Mulder, Nicola J

    2010-01-01

    Proteins are composed of functional units, or domains, that can be found alone or in combination with other domains. Analysis of protein domain architectures and the movement of protein domains within and across different genomes provide clues about the evolution of protein function. The classification of proteins into families and domains is provided through publicly available tools and databases that use known protein domains to predict other members in new proteins sequences. Currently at least 80% of the main protein sequence databases can be classified using these tools, thus providing a large data set to work from for analyzing protein domain architectures. Each of the protein domain databases provide intuitive web interfaces for viewing and analyzing their domain classifications and provide their data freely for downloading. Some of the main protein family and domain databases are described here, along with their Web-based tools for analyzing domain architectures.

  13. Efficient Phase Unwrapping Architecture for Digital Holographic Microscopy

    PubMed Central

    Hwang, Wen-Jyi; Cheng, Shih-Chang; Cheng, Chau-Jern

    2011-01-01

    This paper presents a novel phase unwrapping architecture for accelerating the computational speed of digital holographic microscopy (DHM). A fast Fourier transform (FFT) based phase unwrapping algorithm providing a minimum squared error solution is adopted for hardware implementation because of its simplicity and robustness to noise. The proposed architecture is realized in a pipeline fashion to maximize throughput of the computation. Moreover, the number of hardware multipliers and dividers are minimized to reduce the hardware costs. The proposed architecture is used as a custom user logic in a system on programmable chip (SOPC) for physical performance measurement. Experimental results reveal that the proposed architecture is effective for expediting the computational speed while consuming low hardware resources for designing an embedded DHM system. PMID:22163688

  14. Efficient VLSI Architecture for Training Radial Basis Function Networks

    PubMed Central

    Fan, Zhe-Cheng; Hwang, Wen-Jyi

    2013-01-01

    This paper presents a novel VLSI architecture for the training of radial basis function (RBF) networks. The architecture contains the circuits for fuzzy C-means (FCM) and the recursive Least Mean Square (LMS) operations. The FCM circuit is designed for the training of centers in the hidden layer of the RBF network. The recursive LMS circuit is adopted for the training of connecting weights in the output layer. The architecture is implemented by the field programmable gate array (FPGA). It is used as a hardware accelerator in a system on programmable chip (SOPC) for real-time training and classification. Experimental results reveal that the proposed RBF architecture is an effective alternative for applications where fast and efficient RBF training is desired. PMID:23519346

  15. Efficient VLSI architecture for training radial basis function networks.

    PubMed

    Fan, Zhe-Cheng; Hwang, Wen-Jyi

    2013-03-19

    This paper presents a novel VLSI architecture for the training of radial basis function (RBF) networks. The architecture contains the circuits for fuzzy C-means (FCM) and the recursive Least Mean Square (LMS) operations. The FCM circuit is designed for the training of centers in the hidden layer of the RBF network. The recursive LMS circuit is adopted for the training of connecting weights in the output layer. The architecture is implemented by the field programmable gate array (FPGA). It is used as a hardware accelerator in a system on programmable chip (SOPC) for real-time training and classification. Experimental results reveal that the proposed RBF architecture is an effective alternative for applications where fast and efficient RBF training is desired.

  16. Integrated architectures for a horticultural application

    NASA Astrophysics Data System (ADS)

    Spooner, Natalie R.; Rodrigo, T. Surangi

    1998-10-01

    For many applications, which involve the processing and handling of highly variable natural products, conventional automation techniques are inadequate. Field applications involving the processing and handling of these products have the additional complication of dealing with a dynamically changing environment. Automated systems for these applications must be capable of sensing the variability of each product item and adjusting the way each product item is processed to accommodate that variability. For automation to be feasible, both fast processing of sensor information and fast determination of how product items are handled, is vital. The combination of sensor equipped mobile robotic systems with artificial intelligence techniques is a potential solution for the automation of many of these applications. The aim of this research is to develop a software architecture which incorporates robotic task planning and control for a variety of applications involving the processing of naturally varying products. In this paper we discuss the results from the initial laboratory trials for an asparagus harvesting application.

  17. Information architecture. Volume 3: Guidance

    SciTech Connect

    1997-04-01

    The purpose of this document, as presented in Volume 1, The Foundations, is to assist the Department of Energy (DOE) in developing and promulgating information architecture guidance. This guidance is aimed at increasing the development of information architecture as a Departmentwide management best practice. This document describes departmental information architecture principles and minimum design characteristics for systems and infrastructures within the DOE Information Architecture Conceptual Model, and establishes a Departmentwide standards-based architecture program. The publication of this document fulfills the commitment to address guiding principles, promote standard architectural practices, and provide technical guidance. This document guides the transition from the baseline or defacto Departmental architecture through approved information management program plans and budgets to the future vision architecture. This document also represents another major step toward establishing a well-organized, logical foundation for the DOE information architecture.

  18. Hybrid polarity SAR architecture

    NASA Astrophysics Data System (ADS)

    Raney, R. Keith

    2009-05-01

    A space-based synthetic aperture radar (SAR) designed to provide quantitative information on a global scale implies severe requirements to maximize coverage and to sustain reliable operational calibration. These requirements are best served by the hybrid-polarity architecture, in which the radar transmits in circular polarization, and receives on two orthogonal linear polarizations, coherently, retaining their relative phase. This paper summarizes key attributes of hybrid-polarity dual- and quadrature-polarized SARs, reviews the associated advantages, formalizes conditions under which the signal-to-noise ratio is conserved, and describes the evolution of this architecture from first principles.

  19. D Architectural Videomapping

    NASA Astrophysics Data System (ADS)

    Catanese, R.

    2013-07-01

    3D architectural mapping is a video projection technique that can be done with a survey of a chosen building in order to realize a perfect correspondence between its shapes and the images in projection. As a performative kind of audiovisual artifact, the real event of the 3D mapping is a combination of a registered video animation file with a real architecture. This new kind of visual art is becoming very popular and its big audience success testifies new expressive chances in the field of urban design. My case study has been experienced in Pisa for the Luminara feast in 2012.

  20. Lunar architecture and urbanism

    NASA Technical Reports Server (NTRS)

    Sherwood, Brent

    1992-01-01

    Human civilization and architecture have defined each other for over 5000 years on Earth. Even in the novel environment of space, persistent issues of human urbanism will eclipse, within a historically short time, the technical challenges of space settlement that dominate our current view. By adding modern topics in space engineering, planetology, life support, human factors, material invention, and conservation to their already renaissance array of expertise, urban designers can responsibly apply ancient, proven standards to the exciting new opportunities afforded by space. Inescapable facts about the Moon set real boundaries within which tenable lunar urbanism and its component architecture must eventually develop.

  1. A component simulator architecture

    NASA Astrophysics Data System (ADS)

    Bégin, M.-E.; Walsh, T.

    2002-07-01

    This paper describes the current state of our new component simulator architecture. This design is being developed at VEGA GmbH, by the Technology Group, within the Space Business Unit. This paper describes our overall component architecture and attempts to explain how it can be used by model developers and end-users. At the time of writing, it appears clear that a certain level of automation is required to increase the usability of the system. This automation is only briefly discussed here.

  2. Intermittent fasting during Ramadan: does it affect sleep?

    PubMed

    Bahammam, Ahmed S; Almushailhi, Khalid; Pandi-Perumal, Seithikurippu R; Sharif, Munir M

    2014-02-01

    Islamic intermittent fasting is distinct from regular voluntary or experimental fasting. We hypothesised that if a regimen of a fixed sleep-wake schedule and a fixed caloric intake is followed during intermittent fasting, the effects of fasting on sleep architecture and daytime sleepiness will be minimal. Therefore, we designed this study to objectively assess the effects of Islamic intermittent fasting on sleep architecture and daytime sleepiness. Eight healthy volunteers reported to the Sleep Disorders Centre on five occasions for polysomnography and multiple sleep latency tests: (1) during adaptation; (2) 3 weeks before Ramadan, after having performed Islamic fasting for 1 week (baseline fasting); (3) 1 week before Ramadan (non-fasting baseline); (4) 2 weeks into Ramadan (Ramadan); and (5) 2 weeks after Ramadan (non-fasting; Recovery). Daytime sleepiness was assessed using the Epworth Sleepiness Scale and the multiple sleep latency test. The participants had a mean age of 26.6 ± 4.9 years, a body mass index of 23.7 ± 3.5 kg m(-2) and an Epworth Sleepiness Scale score of 7.3 ± 2.7. There was no change in weight or the Epworth Sleepiness Scale in the four study periods. The rapid eye movement sleep percentage was significantly lower during fasting. There was no difference in sleep latency, non-rapid eye movement sleep percentage, arousal index and sleep efficiency. The multiple sleep latency test analysis revealed no difference in the sleep latency between the 'non-fasting baseline', 'baseline fasting', 'Ramadan' and 'Recovery' time points. Under conditions of a fixed sleep-wake schedule and a fixed caloric intake, Islamic intermittent fasting results in decreased rapid eye movement sleep with no impact on other sleep stages, the arousal index or daytime sleepiness.

  3. Intermittent fasting during Ramadan: does it affect sleep?

    PubMed

    Bahammam, Ahmed S; Almushailhi, Khalid; Pandi-Perumal, Seithikurippu R; Sharif, Munir M

    2014-02-01

    Islamic intermittent fasting is distinct from regular voluntary or experimental fasting. We hypothesised that if a regimen of a fixed sleep-wake schedule and a fixed caloric intake is followed during intermittent fasting, the effects of fasting on sleep architecture and daytime sleepiness will be minimal. Therefore, we designed this study to objectively assess the effects of Islamic intermittent fasting on sleep architecture and daytime sleepiness. Eight healthy volunteers reported to the Sleep Disorders Centre on five occasions for polysomnography and multiple sleep latency tests: (1) during adaptation; (2) 3 weeks before Ramadan, after having performed Islamic fasting for 1 week (baseline fasting); (3) 1 week before Ramadan (non-fasting baseline); (4) 2 weeks into Ramadan (Ramadan); and (5) 2 weeks after Ramadan (non-fasting; Recovery). Daytime sleepiness was assessed using the Epworth Sleepiness Scale and the multiple sleep latency test. The participants had a mean age of 26.6 ± 4.9 years, a body mass index of 23.7 ± 3.5 kg m(-2) and an Epworth Sleepiness Scale score of 7.3 ± 2.7. There was no change in weight or the Epworth Sleepiness Scale in the four study periods. The rapid eye movement sleep percentage was significantly lower during fasting. There was no difference in sleep latency, non-rapid eye movement sleep percentage, arousal index and sleep efficiency. The multiple sleep latency test analysis revealed no difference in the sleep latency between the 'non-fasting baseline', 'baseline fasting', 'Ramadan' and 'Recovery' time points. Under conditions of a fixed sleep-wake schedule and a fixed caloric intake, Islamic intermittent fasting results in decreased rapid eye movement sleep with no impact on other sleep stages, the arousal index or daytime sleepiness. PMID:23937329

  4. HI Intensity Mapping with FAST

    NASA Astrophysics Data System (ADS)

    Bigot-Sazy, M.-A.; Ma, Y.-Z.; Battye, R. A.; Browne, I. W. A.; Chen, T.; Dickinson, C.; Harper, S.; Maffei, B.; Olivari, L. C.; Wilkinsondagger, P. N.

    2016-02-01

    We discuss the detectability of large-scale HI intensity fluctuations using the FAST telescope. We present forecasts for the accuracy of measuring the Baryonic Acoustic Oscillations and constraining the properties of dark energy. The FAST 19-beam L-band receivers (1.05-1.45 GHz) can provide constraints on the matter power spectrum and dark energy equation of state parameters (w0,wa) that are comparable to the BINGO and CHIME experiments. For one year of integration time we find that the optimal survey area is 6000 deg2. However, observing with larger frequency coverage at higher redshift (0.95-1.35 GHz) improves the projected errorbars on the HI power spectrum by more than 2 σ confidence level. The combined constraints from FAST, CHIME, BINGO and Planck CMB observations can provide reliable, stringent constraints on the dark energy equation of state.

  5. Hadl: HUMS Architectural Description Language

    NASA Technical Reports Server (NTRS)

    Mukkamala, R.; Adavi, V.; Agarwal, N.; Gullapalli, S.; Kumar, P.; Sundaram, P.

    2004-01-01

    Specification of architectures is an important prerequisite for evaluation of architectures. With the increase m the growth of health usage and monitoring systems (HUMS) in commercial and military domains, the need far the design and evaluation of HUMS architectures has also been on the increase. In this paper, we describe HADL, HUMS Architectural Description Language, that we have designed for this purpose. In particular, we describe the features of the language, illustrate them with examples, and show how we use it in designing domain-specific HUMS architectures. A companion paper contains details on our design methodology of HUMS architectures.

  6. American School & University Architectural Portfolio 2000 Awards: Landscape Architecture.

    ERIC Educational Resources Information Center

    American School & University, 2000

    2000-01-01

    Presents photographs and basic information on architectural design, costs, square footage, and principle designers of the award winning school landscaping projects that competed in the American School & University Architectural Portfolio 2000. (GR)

  7. Geostar's system architectures

    NASA Technical Reports Server (NTRS)

    Lepkowski, Ronald J.

    1989-01-01

    Geostar is currently constructing a radiodetermination satellite system to provide position fixes and vehicle surveillance services, and has proposed a digital land mobile satellite service to provide data, facsimile and digitized voice services to low cost mobile users. The different system architectures for these two systems, are reviewed.

  8. INL Generic Robot Architecture

    SciTech Connect

    2005-03-30

    The INL Generic Robot Architecture is a generic, extensible software framework that can be applied across a variety of different robot geometries, sensor suites and low-level proprietary control application programming interfaces (e.g. mobility, aria, aware, player, etc.).

  9. Emulating an MIMD architecture

    SciTech Connect

    Su Bogong; Grishman, R.

    1982-01-01

    As part of a research effort in parallel processor architecture and programming, the ultracomputer group at New York University has performed extensive simulation of parallel programs. To speed up these simulations, a parallel processor emulator, using the microprogrammable Puma computer system previously designed and built at NYU, has been developed. 8 references.

  10. [Architecture, budget and dignity].

    PubMed

    Morel, Etienne

    2012-01-01

    Drawing on its dynamic strengths, a psychiatric unit develops various projects and care techniques. In this framework, the institute director must make a number of choices with regard to architecture. Why renovate the psychiatry building? What financial investments are required? What criteria should be followed? What if the major argument was based on the respect of the patient's dignity?

  11. [Architecture and movement].

    PubMed

    Rivallan, Armel

    2012-01-01

    Leading an architectural project means accompanying the movement which it induces within the teams. Between questioning, uncertainty and fear, the organisational changes inherent to the new facility must be subject to constructive and ongoing exchanges. Ethics, safety and training are revised and the unit projects are sometimes modified.

  12. Making Connections through Architecture.

    ERIC Educational Resources Information Center

    Hollingsworth, Patricia

    1993-01-01

    The Center for Arts and Sciences (Oklahoma) developed an interdisciplinary curriculum for disadvantaged gifted children on styles of architecture, called "Discovering Patterns in the Built Environment." This article describes the content and processes used in the curriculum, as well as other programs of the center, such as teacher workshops,…

  13. Tutorial on architectural acoustics

    NASA Astrophysics Data System (ADS)

    Shaw, Neil; Talaske, Rick; Bistafa, Sylvio

    2002-11-01

    This tutorial is intended to provide an overview of current knowledge and practice in architectural acoustics. Topics covered will include basic concepts and history, acoustics of small rooms (small rooms for speech such as classrooms and meeting rooms, music studios, small critical listening spaces such as home theatres) and the acoustics of large rooms (larger assembly halls, auditoria, and performance halls).

  14. Terra Harvest software architecture

    NASA Astrophysics Data System (ADS)

    Humeniuk, Dave; Klawon, Kevin

    2012-06-01

    Under the Terra Harvest Program, the DIA has the objective of developing a universal Controller for the Unattended Ground Sensor (UGS) community. The mission is to define, implement, and thoroughly document an open architecture that universally supports UGS missions, integrating disparate systems, peripherals, etc. The Controller's inherent interoperability with numerous systems enables the integration of both legacy and future UGS System (UGSS) components, while the design's open architecture supports rapid third-party development to ensure operational readiness. The successful accomplishment of these objectives by the program's Phase 3b contractors is demonstrated via integration of the companies' respective plug-'n'-play contributions that include controllers, various peripherals, such as sensors, cameras, etc., and their associated software drivers. In order to independently validate the Terra Harvest architecture, L-3 Nova Engineering, along with its partner, the University of Dayton Research Institute, is developing the Terra Harvest Open Source Environment (THOSE), a Java Virtual Machine (JVM) running on an embedded Linux Operating System. The Use Cases on which the software is developed support the full range of UGS operational scenarios such as remote sensor triggering, image capture, and data exfiltration. The Team is additionally developing an ARM microprocessor-based evaluation platform that is both energy-efficient and operationally flexible. The paper describes the overall THOSE architecture, as well as the design decisions for some of the key software components. Development process for THOSE is discussed as well.

  15. GNU debugger internal architecture

    SciTech Connect

    Miller, P.; Nessett, D.; Pizzi, R.

    1993-12-16

    This document describes the internal and architecture and implementation of the GNU debugger, gdb. Topics include inferior process management, command execution, symbol table management and remote debugging. Call graphs for specific functions are supplied. This document is not a complete description but offers a developer an overview which is the place to start before modification.

  16. Transforming Space Missions into Service Oriented Architectures

    NASA Technical Reports Server (NTRS)

    Mandl, Dan; Frye, Stuart; Cappelaere, Pat

    2006-01-01

    This viewgraph presentation reviews the vision of the sensor web enablement via a Service Oriented Architecture (SOA). An generic example is given of a user finding a service through the Web, and initiating a request for the desired observation. The parts that comprise this system and how they interact are reviewed. The advantages of the use of SOA are reviewed.

  17. Commanding Constellations (Pipeline Architecture)

    NASA Technical Reports Server (NTRS)

    Ray, Tim; Condron, Jeff

    2003-01-01

    Providing ground command software for constellations of spacecraft is a challenging problem. Reliable command delivery requires a feedback loop; for a constellation there will likely be an independent feedback loop for each constellation member. Each command must be sent via the proper Ground Station, which may change from one contact to the next (and may be different for different members). Dynamic configuration of the ground command software is usually required (e.g. directives to configure each member's feedback loop and assign the appropriate Ground Station). For testing purposes, there must be a way to insert command data at any level in the protocol stack. The Pipeline architecture described in this paper can support all these capabilities with a sequence of software modules (the pipeline), and a single self-identifying message format (for all types of command data and configuration directives). The Pipeline architecture is quite simple, yet it can solve some complex problems. The resulting solutions are conceptually simple, and therefore, reliable. They are also modular, and therefore, easy to distribute and extend. We first used the Pipeline architecture to design a CCSDS (Consultative Committee for Space Data Systems) Ground Telecommand system (to command one spacecraft at a time with a fixed Ground Station interface). This pipeline was later extended to include gateways to any of several Ground Stations. The resulting pipeline was then extended to handle a small constellation of spacecraft. The use of the Pipeline architecture allowed us to easily handle the increasing complexity. This paper will describe the Pipeline architecture, show how it was used to solve each of the above commanding situations, and how it can easily be extended to handle larger constellations.

  18. Shaping plant architecture

    PubMed Central

    Teichmann, Thomas; Muhr, Merlin

    2015-01-01

    Plants exhibit phenotypical plasticity. Their general body plan is genetically determined, but plant architecture and branching patterns are variable and can be adjusted to the prevailing environmental conditions. The modular design of the plant facilitates such morphological adaptations. The prerequisite for the formation of a branch is the initiation of an axillary meristem. Here, we review the current knowledge about this process. After its establishment, the meristem can develop into a bud which can either become dormant or grow out and form a branch. Many endogenous factors, such as photoassimilate availability, and exogenous factors like nutrient availability or shading, have to be integrated in the decision whether a branch is formed. The underlying regulatory network is complex and involves phytohormones and transcription factors. The hormone auxin is derived from the shoot apex and inhibits bud outgrowth indirectly in a process termed apical dominance. Strigolactones appear to modulate apical dominance by modification of auxin fluxes. Furthermore, the transcription factor BRANCHED1 plays a central role. The exact interplay of all these factors still remains obscure and there are alternative models. We discuss recent findings in the field along with the major models. Plant architecture is economically significant because it affects important traits of crop and ornamental plants, as well as trees cultivated in forestry or on short rotation coppices. As a consequence, plant architecture has been modified during plant domestication. Research revealed that only few key genes have been the target of selection during plant domestication and in breeding programs. Here, we discuss such findings on the basis of various examples. Architectural ideotypes that provide advantages for crop plant management and yield are described. We also outline the potential of breeding and biotechnological approaches to further modify and improve plant architecture for economic needs

  19. Shaping plant architecture.

    PubMed

    Teichmann, Thomas; Muhr, Merlin

    2015-01-01

    Plants exhibit phenotypical plasticity. Their general body plan is genetically determined, but plant architecture and branching patterns are variable and can be adjusted to the prevailing environmental conditions. The modular design of the plant facilitates such morphological adaptations. The prerequisite for the formation of a branch is the initiation of an axillary meristem. Here, we review the current knowledge about this process. After its establishment, the meristem can develop into a bud which can either become dormant or grow out and form a branch. Many endogenous factors, such as photoassimilate availability, and exogenous factors like nutrient availability or shading, have to be integrated in the decision whether a branch is formed. The underlying regulatory network is complex and involves phytohormones and transcription factors. The hormone auxin is derived from the shoot apex and inhibits bud outgrowth indirectly in a process termed apical dominance. Strigolactones appear to modulate apical dominance by modification of auxin fluxes. Furthermore, the transcription factor BRANCHED1 plays a central role. The exact interplay of all these factors still remains obscure and there are alternative models. We discuss recent findings in the field along with the major models. Plant architecture is economically significant because it affects important traits of crop and ornamental plants, as well as trees cultivated in forestry or on short rotation coppices. As a consequence, plant architecture has been modified during plant domestication. Research revealed that only few key genes have been the target of selection during plant domestication and in breeding programs. Here, we discuss such findings on the basis of various examples. Architectural ideotypes that provide advantages for crop plant management and yield are described. We also outline the potential of breeding and biotechnological approaches to further modify and improve plant architecture for economic needs

  20. 11. Photocopy of architectural drawing (from National Archives Architectural and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Photocopy of architectural drawing (from National Archives Architectural and Cartographic Branch Alexandria, Va.) 'Non-Com-Officers Qrs.' Quartermaster General's Office Standard Plan 82, sheet 1. Lithograph on linen architectural drawing. April 1893 3 ELEVATIONS, 3 PLANS AND A PARTIAL SECTION - Fort Myer, Non-Commissioned Officers Quarters, Washington Avenue between Johnson Lane & Custer Road, Arlington, Arlington County, VA

  1. 12. Photocopy of architectural drawing (from National Archives Architectural and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Photocopy of architectural drawing (from National Archives Architectural and Cartographic Branch, Alexandria, Va.) 'Non-Com-Officers Qrs.' Quartermaster Generals Office Standard Plan 82, sheet 2, April 1893. Lithograph on linen architectural drawing. DETAILS - Fort Myer, Non-Commissioned Officers Quarters, Washington Avenue between Johnson Lane & Custer Road, Arlington, Arlington County, VA

  2. ACOUSTICS IN ARCHITECTURAL DESIGN, AN ANNOTATED BIBLIOGRAPHY ON ARCHITECTURAL ACOUSTICS.

    ERIC Educational Resources Information Center

    DOELLE, LESLIE L.

    THE PURPOSE OF THIS ANNOTATED BIBLIOGRAPHY ON ARCHITECTURAL ACOUSTICS WAS--(1) TO COMPILE A CLASSIFIED BIBLIOGRAPHY, INCLUDING MOST OF THOSE PUBLICATIONS ON ARCHITECTURAL ACOUSTICS, PUBLISHED IN ENGLISH, FRENCH, AND GERMAN WHICH CAN SUPPLY A USEFUL AND UP-TO-DATE SOURCE OF INFORMATION FOR THOSE ENCOUNTERING ANY ARCHITECTURAL-ACOUSTIC DESIGN…

  3. Fasts, feasts and festivals in diabetes-1: Glycemic management during Hindu fasts.

    PubMed

    Kalra, Sanjay; Bajaj, Sarita; Gupta, Yashdeep; Agarwal, Pankaj; Singh, S K; Julka, Sandeep; Chawla, Rajeev; Agrawal, Navneet

    2015-01-01

    This communication is the first of a series on South Asian fasts, festivals, and diabetes, designed to spread awareness and stimulate research on this aspect of diabetes and metabolic care. It describes the various fasts observed as part of Hindu religion and offers a classification scheme for them, labeling them as infrequent and frequent. The infrequent fasts are further sub-classified as brief and prolonged, to facilitate a scientific approach to glycemic management during these fasts. Pre-fast counseling, non-pharmacological therapy, pharmacological modification, and post-fast debriefing are discussed in detail. All available drug classes and molecules are covered in this article, which provides guidance about necessary changes in dosage and timing of administration. While in no way exhaustive, the brief review offers a basic framework which diabetes care professionals can use to counsel and manage persons in their care who wish to observe various Hindu fasts. PMID:25729681

  4. Fasts, feasts and festivals in diabetes-1: Glycemic management during Hindu fasts

    PubMed Central

    Kalra, Sanjay; Bajaj, Sarita; Gupta, Yashdeep; Agarwal, Pankaj; Singh, S. K.; Julka, Sandeep; Chawla, Rajeev; Agrawal, Navneet

    2015-01-01

    This communication is the first of a series on South Asian fasts, festivals, and diabetes, designed to spread awareness and stimulate research on this aspect of diabetes and metabolic care. It describes the various fasts observed as part of Hindu religion and offers a classification scheme for them, labeling them as infrequent and frequent. The infrequent fasts are further sub-classified as brief and prolonged, to facilitate a scientific approach to glycemic management during these fasts. Pre-fast counseling, non-pharmacological therapy, pharmacological modification, and post-fast debriefing are discussed in detail. All available drug classes and molecules are covered in this article, which provides guidance about necessary changes in dosage and timing of administration. While in no way exhaustive, the brief review offers a basic framework which diabetes care professionals can use to counsel and manage persons in their care who wish to observe various Hindu fasts. PMID:25729681

  5. Evolution and development of inflorescence architectures.

    PubMed

    Prusinkiewicz, Przemyslaw; Erasmus, Yvette; Lane, Brendan; Harder, Lawrence D; Coen, Enrico

    2007-06-01

    To understand the constraints on biological diversity, we analyzed how selection and development interact to control the evolution of inflorescences, the branching structures that bear flowers. We show that a single developmental model accounts for the restricted range of inflorescence types observed in nature and that this model is supported by molecular genetic studies. The model predicts associations between inflorescence architecture, climate, and life history, which we validated empirically. Paths, or evolutionary wormholes, link different architectures in a multidimensional fitness space, but the rate of evolution along these paths is constrained by genetic and environmental factors, which explains why some evolutionary transitions are rare between closely related plant taxa.

  6. Architectural Growth of Cu Nanoparticles Through Electrodeposition

    PubMed Central

    2009-01-01

    Cu particles with different architectures such as pyramid, cube, and multipod have been successfully fabricated on the surface of Au films, which is the polycrystalline Au substrate with (111) domains, using the electrodeposition technique in the presence of the surface-capping reagents of dodecylbenzene sulfonic acid and poly(vinylpyrrolidone). Further, the growth evolution of pyramidal Cu nanoparticles was observed for the first time. We believe that our method might open new possibilities for fabricating nanomaterials of non-noble transition metals with various novel architectures, which can then potentially be utilized in applications such as biosensors, catalysis, photovoltaic cells, and electronic nanodevices. PMID:20652131

  7. An Experiment in Architectural Instruction.

    ERIC Educational Resources Information Center

    Dvorak, Robert W.

    1978-01-01

    Discusses the application of the PLATO IV computer-based educational system to a one-semester basic drawing course for freshman architecture, landscape architecture, and interior design students and relates student reactions to the experience. (RAO)

  8. Fasting protects mice from lethal DNA damage by promoting small intestinal epithelial stem cell survival.

    PubMed

    Tinkum, Kelsey L; Stemler, Kristina M; White, Lynn S; Loza, Andrew J; Jeter-Jones, Sabrina; Michalski, Basia M; Kuzmicki, Catherine; Pless, Robert; Stappenbeck, Thaddeus S; Piwnica-Worms, David; Piwnica-Worms, Helen

    2015-12-22

    Short-term fasting protects mice from lethal doses of chemotherapy through undetermined mechanisms. Herein, we demonstrate that fasting preserves small intestinal (SI) architecture by maintaining SI stem cell viability and SI barrier function following exposure to high-dose etoposide. Nearly all SI stem cells were lost in fed mice, whereas fasting promoted sufficient SI stem cell survival to preserve SI integrity after etoposide treatment. Lineage tracing demonstrated that multiple SI stem cell populations, marked by Lgr5, Bmi1, or HopX expression, contributed to fasting-induced survival. DNA repair and DNA damage response genes were elevated in SI stem/progenitor cells of fasted etoposide-treated mice, which importantly correlated with faster resolution of DNA double-strand breaks and less apoptosis. Thus, fasting preserved SI stem cell viability as well as SI architecture and barrier function suggesting that fasting may reduce host toxicity in patients undergoing dose intensive chemotherapy.

  9. Fasting protects mice from lethal DNA damage by promoting small intestinal epithelial stem cell survival

    PubMed Central

    Tinkum, Kelsey L.; Stemler, Kristina M.; White, Lynn S.; Loza, Andrew J.; Jeter-Jones, Sabrina; Michalski, Basia M.; Kuzmicki, Catherine; Pless, Robert; Stappenbeck, Thaddeus S.; Piwnica-Worms, David; Piwnica-Worms, Helen

    2015-01-01

    Short-term fasting protects mice from lethal doses of chemotherapy through undetermined mechanisms. Herein, we demonstrate that fasting preserves small intestinal (SI) architecture by maintaining SI stem cell viability and SI barrier function following exposure to high-dose etoposide. Nearly all SI stem cells were lost in fed mice, whereas fasting promoted sufficient SI stem cell survival to preserve SI integrity after etoposide treatment. Lineage tracing demonstrated that multiple SI stem cell populations, marked by Lgr5, Bmi1, or HopX expression, contributed to fasting-induced survival. DNA repair and DNA damage response genes were elevated in SI stem/progenitor cells of fasted etoposide-treated mice, which importantly correlated with faster resolution of DNA double-strand breaks and less apoptosis. Thus, fasting preserved SI stem cell viability as well as SI architecture and barrier function suggesting that fasting may reduce host toxicity in patients undergoing dose intensive chemotherapy. PMID:26644583

  10. Lunar Laser Communication Demonstration operations architecture

    NASA Astrophysics Data System (ADS)

    Khatri, Farzana I.; Robinson, Bryan S.; Semprucci, Marilyn D.; Boroson, Don M.

    2015-06-01

    Radio waves have been the standard method for deep-space communications since the earliest days of space exploration. However, the recent success of the Lunar Laser Communications Demonstration (LLCD) program will clearly revolutionize the way data is sent and received from deep space. LLCD demonstrated record-breaking optical up/downlinks between Earth and the Lunar Lasercom Space Terminal (LLST) payload on NASA's Lunar Atmosphere Environment Explorer (LADEE) satellite orbiting the Moon. A space-to-ground optical downlink as fast as 622 Mbps was demonstrated as well as a ground-to-space uplink as fast as 20 Mbps. The LLCD operations architecture was designed to support a wide range of operations conditions, multiple ground terminals with varying designs and capabilities, short contact times including energy and thermal constraints, and limited viewing opportunities. This paper will explore the operations architecture used for the LLCD as well as present ideas on how best to make future laser communications operations routine and suitable for wide-scale deployment.

  11. Fast separable nonlocal means

    NASA Astrophysics Data System (ADS)

    Ghosh, Sanjay; Chaudhury, Kunal N.

    2016-03-01

    We propose a simple and fast algorithm called PatchLift for computing distances between patches (contiguous block of samples) extracted from a given one-dimensional signal. PatchLift is based on the observation that the patch distances can be efficiently computed from a matrix that is derived from the one-dimensional signal using lifting; importantly, the number of operations required to compute the patch distances using this approach does not scale with the patch length. We next demonstrate how PatchLift can be used for patch-based denoising of images corrupted with Gaussian noise. In particular, we propose a separable formulation of the classical nonlocal means (NLM) algorithm that can be implemented using PatchLift. We demonstrate that the PatchLift-based implementation of separable NLM is a few orders faster than standard NLM and is competitive with existing fast implementations of NLM. Moreover, its denoising performance is shown to be consistently superior to that of NLM and some of its variants, both in terms of peak signal-to-noise ratio/structural similarity index and visual quality.

  12. Fast food tips (image)

    MedlinePlus

    ... challenge to eat healthy when going to a fast food place. In general, avoiding items that are deep ... challenge to eat healthy when going to a fast food place. In general, avoiding items that are deep ...

  13. Fast food (image)

    MedlinePlus

    Fast foods are quick, reasonably priced, and readily available alternatives to home cooking. While convenient and economical for a busy lifestyle, fast foods are typically high in calories, fat, saturated fat, ...

  14. Architecture for autonomy

    NASA Astrophysics Data System (ADS)

    Broten, Gregory S.; Monckton, Simon P.; Collier, Jack; Giesbrecht, Jared

    2006-05-01

    In 2002 Defence R&D Canada changed research direction from pure tele-operated land vehicles to general autonomy for land, air, and sea craft. The unique constraints of the military environment coupled with the complexity of autonomous systems drove DRDC to carefully plan a research and development infrastructure that would provide state of the art tools without restricting research scope. DRDC's long term objectives for its autonomy program address disparate unmanned ground vehicle (UGV), unattended ground sensor (UGS), air (UAV), and subsea and surface (UUV and USV) vehicles operating together with minimal human oversight. Individually, these systems will range in complexity from simple reconnaissance mini-UAVs streaming video to sophisticated autonomous combat UGVs exploiting embedded and remote sensing. Together, these systems can provide low risk, long endurance, battlefield services assuming they can communicate and cooperate with manned and unmanned systems. A key enabling technology for this new research is a software architecture capable of meeting both DRDC's current and future requirements. DRDC built upon recent advances in the computing science field while developing its software architecture know as the Architecture for Autonomy (AFA). Although a well established practice in computing science, frameworks have only recently entered common use by unmanned vehicles. For industry and government, the complexity, cost, and time to re-implement stable systems often exceeds the perceived benefits of adopting a modern software infrastructure. Thus, most persevere with legacy software, adapting and modifying software when and wherever possible or necessary -- adopting strategic software frameworks only when no justifiable legacy exists. Conversely, academic programs with short one or two year projects frequently exploit strategic software frameworks but with little enduring impact. The open-source movement radically changes this picture. Academic frameworks

  15. Architectural Adventures in Your Community

    ERIC Educational Resources Information Center

    Henn, Cynthia A.

    2007-01-01

    Due to architecture's complexity, it can be challenging to develop lessons for the students, and consequently, the teaching of architecture is frequently overlooked. Every community has an architectural history. For example, the community in which the author's students live has a variety of historic houses from when the community originated (the…

  16. Parallel Architectures for Planetary Exploration Requirements (PAPER)

    NASA Technical Reports Server (NTRS)

    Cezzar, Ruknet; Sen, Ranjan K.

    1989-01-01

    The Parallel Architectures for Planetary Exploration Requirements (PAPER) project is essentially research oriented towards technology insertion issues for NASA's unmanned planetary probes. It was initiated to complement and augment the long-term efforts for space exploration with particular reference to NASA/LaRC's (NASA Langley Research Center) research needs for planetary exploration missions of the mid and late 1990s. The requirements for space missions as given in the somewhat dated Advanced Information Processing Systems (AIPS) requirements document are contrasted with the new requirements from JPL/Caltech involving sensor data capture and scene analysis. It is shown that more stringent requirements have arisen as a result of technological advancements. Two possible architectures, the AIPS Proof of Concept (POC) configuration and the MAX Fault-tolerant dataflow multiprocessor, were evaluated. The main observation was that the AIPS design is biased towards fault tolerance and may not be an ideal architecture for planetary and deep space probes due to high cost and complexity. The MAX concepts appears to be a promising candidate, except that more detailed information is required. The feasibility for adding neural computation capability to this architecture needs to be studied. Key impact issues for architectural design of computing systems meant for planetary missions were also identified.

  17. A biologically inspired MANET architecture

    NASA Astrophysics Data System (ADS)

    Kershenbaum, Aaron; Pappas, Vasileios; Lee, Kang-Won; Lio, Pietro; Sadler, Brian; Verma, Dinesh

    2008-04-01

    Mobile Ad-Hoc Networks (MANETs), that do not rely on pre-existing infrastructure and that can adapt rapidly to changes in their environment, are coming into increasingly wide use in military applications. At the same time, the large computing power and memory available today even for small, mobile devices, allows us to build extremely large, sophisticated and complex networks. Such networks, however, and the software controlling them are potentially vulnerable to catastrophic failures because of their size and complexity. Biological networks have many of these same characteristics and are potentially subject to the same problems. But in successful organisms, these biological networks do in fact function well so that the organism can survive. In this paper, we present a MANET architecture developed based on a feature, called homeostasis, widely observed in biological networks but not ordinarily seen in computer networks. This feature allows the network to switch to an alternate mode of operation under stress or attack and then return to the original mode of operation after the problem has been resolved. We explore the potential benefits such an architecture has, principally in terms of the ability to survive radical changes in its environment using an illustrative example.

  18. Neural architectures for stereo vision

    PubMed Central

    2016-01-01

    Stereoscopic vision delivers a sense of depth based on binocular information but additionally acts as a mechanism for achieving correspondence between patterns arriving at the left and right eyes. We analyse quantitatively the cortical architecture for stereoscopic vision in two areas of macaque visual cortex. For primary visual cortex V1, the result is consistent with a module that is isotropic in cortical space with a diameter of at least 3 mm in surface extent. This implies that the module for stereo is larger than the repeat distance between ocular dominance columns in V1. By contrast, in the extrastriate cortical area V5/MT, which has a specialized architecture for stereo depth, the module for representation of stereo is about 1 mm in surface extent, so the representation of stereo in V5/MT is more compressed than V1 in terms of neural wiring of the neocortex. The surface extent estimated for stereo in V5/MT is consistent with measurements of its specialized domains for binocular disparity. Within V1, we suggest that long-range horizontal, anatomical connections form functional modules that serve both binocular and monocular pattern recognition: this common function may explain the distortion and disruption of monocular pattern vision observed in amblyopia. This article is part of the themed issue ‘Vision in our three-dimensional world’. PMID:27269604

  19. Neural architectures for stereo vision.

    PubMed

    Parker, Andrew J; Smith, Jackson E T; Krug, Kristine

    2016-06-19

    Stereoscopic vision delivers a sense of depth based on binocular information but additionally acts as a mechanism for achieving correspondence between patterns arriving at the left and right eyes. We analyse quantitatively the cortical architecture for stereoscopic vision in two areas of macaque visual cortex. For primary visual cortex V1, the result is consistent with a module that is isotropic in cortical space with a diameter of at least 3 mm in surface extent. This implies that the module for stereo is larger than the repeat distance between ocular dominance columns in V1. By contrast, in the extrastriate cortical area V5/MT, which has a specialized architecture for stereo depth, the module for representation of stereo is about 1 mm in surface extent, so the representation of stereo in V5/MT is more compressed than V1 in terms of neural wiring of the neocortex. The surface extent estimated for stereo in V5/MT is consistent with measurements of its specialized domains for binocular disparity. Within V1, we suggest that long-range horizontal, anatomical connections form functional modules that serve both binocular and monocular pattern recognition: this common function may explain the distortion and disruption of monocular pattern vision observed in amblyopia.This article is part of the themed issue 'Vision in our three-dimensional world'. PMID:27269604

  20. On-board processing satellite network architectures for broadband ISDN

    NASA Technical Reports Server (NTRS)

    Inukai, Thomas; Faris, Faris; Shyy, Dong-Jye

    1992-01-01

    Onboard baseband processing architectures for future satellite broadband integrated services digital networks (B-ISDN's) are addressed. To assess the feasibility of implementing satellite B-ISDN services, critical design issues, such as B-ISDN traffic characteristics, transmission link design, and a trade-off between onboard circuit and fast packet switching, are analyzed. Examples of the two types of switching mechanisms and potential onboard network control functions are presented. A sample network architecture is also included to illustrate a potential onboard processing system.

  1. Layered Architectures for Quantum Computers and Quantum Repeaters

    NASA Astrophysics Data System (ADS)

    Jones, Nathan C.

    This chapter examines how to organize quantum computers and repeaters using a systematic framework known as layered architecture, where machine control is organized in layers associated with specialized tasks. The framework is flexible and could be used for analysis and comparison of quantum information systems. To demonstrate the design principles in practice, we develop architectures for quantum computers and quantum repeaters based on optically controlled quantum dots, showing how a myriad of technologies must operate synchronously to achieve fault-tolerance. Optical control makes information processing in this system very fast, scalable to large problem sizes, and extendable to quantum communication.

  2. Is fast food addictive?

    PubMed

    Garber, Andrea K; Lustig, Robert H

    2011-09-01

    Studies of food addiction have focused on highly palatable foods. While fast food falls squarely into that category, it has several other attributes that may increase its salience. This review examines whether the nutrients present in fast food, the characteristics of fast food consumers or the presentation and packaging of fast food may encourage substance dependence, as defined by the American Psychiatric Association. The majority of fast food meals are accompanied by a soda, which increases the sugar content 10-fold. Sugar addiction, including tolerance and withdrawal, has been demonstrated in rodents but not humans. Caffeine is a "model" substance of dependence; coffee drinks are driving the recent increase in fast food sales. Limited evidence suggests that the high fat and salt content of fast food may increase addictive potential. Fast food restaurants cluster in poorer neighborhoods and obese adults eat more fast food than those who are normal weight. Obesity is characterized by resistance to insulin, leptin and other hormonal signals that would normally control appetite and limit reward. Neuroimaging studies in obese subjects provide evidence of altered reward and tolerance. Once obese, many individuals meet criteria for psychological dependence. Stress and dieting may sensitize an individual to reward. Finally, fast food advertisements, restaurants and menus all provide environmental cues that may trigger addictive overeating. While the concept of fast food addiction remains to be proven, these findings support the role of fast food as a potentially addictive substance that is most likely to create dependence in vulnerable populations.

  3. Is fast food addictive?

    PubMed

    Garber, Andrea K; Lustig, Robert H

    2011-09-01

    Studies of food addiction have focused on highly palatable foods. While fast food falls squarely into that category, it has several other attributes that may increase its salience. This review examines whether the nutrients present in fast food, the characteristics of fast food consumers or the presentation and packaging of fast food may encourage substance dependence, as defined by the American Psychiatric Association. The majority of fast food meals are accompanied by a soda, which increases the sugar content 10-fold. Sugar addiction, including tolerance and withdrawal, has been demonstrated in rodents but not humans. Caffeine is a "model" substance of dependence; coffee drinks are driving the recent increase in fast food sales. Limited evidence suggests that the high fat and salt content of fast food may increase addictive potential. Fast food restaurants cluster in poorer neighborhoods and obese adults eat more fast food than those who are normal weight. Obesity is characterized by resistance to insulin, leptin and other hormonal signals that would normally control appetite and limit reward. Neuroimaging studies in obese subjects provide evidence of altered reward and tolerance. Once obese, many individuals meet criteria for psychological dependence. Stress and dieting may sensitize an individual to reward. Finally, fast food advertisements, restaurants and menus all provide environmental cues that may trigger addictive overeating. While the concept of fast food addiction remains to be proven, these findings support the role of fast food as a potentially addictive substance that is most likely to create dependence in vulnerable populations. PMID:21999689

  4. Generic robot architecture

    DOEpatents

    Bruemmer, David J [Idaho Falls, ID; Few, Douglas A [Idaho Falls, ID

    2010-09-21

    The present invention provides methods, computer readable media, and apparatuses for a generic robot architecture providing a framework that is easily portable to a variety of robot platforms and is configured to provide hardware abstractions, abstractions for generic robot attributes, environment abstractions, and robot behaviors. The generic robot architecture includes a hardware abstraction level and a robot abstraction level. The hardware abstraction level is configured for developing hardware abstractions that define, monitor, and control hardware modules available on a robot platform. The robot abstraction level is configured for defining robot attributes and provides a software framework for building robot behaviors from the robot attributes. Each of the robot attributes includes hardware information from at least one hardware abstraction. In addition, each robot attribute is configured to substantially isolate the robot behaviors from the at least one hardware abstraction.

  5. Parallel Subconvolution Filtering Architectures

    NASA Technical Reports Server (NTRS)

    Gray, Andrew A.

    2003-01-01

    These architectures are based on methods of vector processing and the discrete-Fourier-transform/inverse-discrete- Fourier-transform (DFT-IDFT) overlap-and-save method, combined with time-block separation of digital filters into frequency-domain subfilters implemented by use of sub-convolutions. The parallel-processing method implemented in these architectures enables the use of relatively small DFT-IDFT pairs, while filter tap lengths are theoretically unlimited. The size of a DFT-IDFT pair is determined by the desired reduction in processing rate, rather than on the order of the filter that one seeks to implement. The emphasis in this report is on those aspects of the underlying theory and design rules that promote computational efficiency, parallel processing at reduced data rates, and simplification of the designs of very-large-scale integrated (VLSI) circuits needed to implement high-order filters and correlators.

  6. Consistent model driven architecture

    NASA Astrophysics Data System (ADS)

    Niepostyn, Stanisław J.

    2015-09-01

    The goal of the MDA is to produce software systems from abstract models in a way where human interaction is restricted to a minimum. These abstract models are based on the UML language. However, the semantics of UML models is defined in a natural language. Subsequently the verification of consistency of these diagrams is needed in order to identify errors in requirements at the early stage of the development process. The verification of consistency is difficult due to a semi-formal nature of UML diagrams. We propose automatic verification of consistency of the series of UML diagrams originating from abstract models implemented with our consistency rules. This Consistent Model Driven Architecture approach enables us to generate automatically complete workflow applications from consistent and complete models developed from abstract models (e.g. Business Context Diagram). Therefore, our method can be used to check practicability (feasibility) of software architecture models.

  7. Instrumented Architectural Simulation System

    NASA Technical Reports Server (NTRS)

    Delagi, B. A.; Saraiya, N.; Nishimura, S.; Byrd, G.

    1987-01-01

    Simulation of systems at an architectural level can offer an effective way to study critical design choices if (1) the performance of the simulator is adequate to examine designs executing significant code bodies, not just toy problems or small application fragements, (2) the details of the simulation include the critical details of the design, (3) the view of the design presented by the simulator instrumentation leads to useful insights on the problems with the design, and (4) there is enough flexibility in the simulation system so that the asking of unplanned questions is not suppressed by the weight of the mechanics involved in making changes either in the design or its measurement. A simulation system with these goals is described together with the approach to its implementation. Its application to the study of a particular class of multiprocessor hardware system architectures is illustrated.

  8. Staged Event Architecture

    SciTech Connect

    Hoschek, Wolfgang; Berket, Karlo

    2005-05-30

    Sea is a framework for a Staged Event Architecture, designed around non-blocking asynchronous communication facilities that are decoupled from the threading model chosen by any given application, Components for P networking and in-memory communication are provided. The Sea Java library encapsulates these concepts. Sea is used to easily build efficient and flexible low-level network clients and servers, and in particular as a basic communication substrate for Peer-to-Peer applications.

  9. Information systems definition architecture

    SciTech Connect

    Calapristi, A.J.

    1996-06-20

    The Tank Waste Remediation System (TWRS) Information Systems Definition architecture evaluated information Management (IM) processes in several key organizations. The intent of the study is to identify improvements in TWRS IM processes that will enable better support to the TWRS mission, and accommodate changes in TWRS business environment. The ultimate goals of the study are to reduce IM costs, Manage the configuration of TWRS IM elements, and improve IM-related process performance.

  10. Architectural Methodology Report

    NASA Technical Reports Server (NTRS)

    Dhas, Chris

    2000-01-01

    The establishment of conventions between two communicating entities in the end systems is essential for communications. Examples of the kind of decisions that need to be made in establishing a protocol convention include the nature of the data representation, the for-mat and the speed of the date representation over the communications path, and the sequence of control messages (if any) which are sent. One of the main functions of a protocol is to establish a standard path between the communicating entities. This is necessary to create a virtual communications medium with certain desirable characteristics. In essence, it is the function of the protocol to transform the characteristics of the physical communications environment into a more useful virtual communications model. The final function of a protocol is to establish standard data elements for communications over the path; that is, the protocol serves to create a virtual data element for exchange. Other systems may be constructed in which the transferred element is a program or a job. Finally, there are special purpose applications in which the element to be transferred may be a complex structure such as all or part of a graphic display. NASA's Glenn Research Center (GRC) defines and develops advanced technology for high priority national needs in communications technologies for application to aeronautics and space. GRC tasked Computer Networks and Software Inc. (CNS) to describe the methodologies used in developing a protocol architecture for an in-space Internet node. The node would support NASA:s four mission areas: Earth Science; Space Science; Human Exploration and Development of Space (HEDS); Aerospace Technology. This report presents the methodology for developing the protocol architecture. The methodology addresses the architecture for a computer communications environment. It does not address an analog voice architecture.

  11. Modular robotic architecture

    NASA Astrophysics Data System (ADS)

    Smurlo, Richard P.; Laird, Robin T.

    1991-03-01

    The development of control architectures for mobile systems is typically a task undertaken with each new application. These architectures address different operational needs and tend to be difficult to adapt to more than the problem at hand. The development of a flexible and extendible control system with evolutionary growth potential for use on mobile robots will help alleviate these problems and if made widely available will promote standardization and cornpatibility among systems throughout the industry. The Modular Robotic Architecture (MRA) is a generic control systern that meets the above needs by providing developers with a standard set of software hardware tools that can be used to design modular robots (MODBOTs) with nearly unlimited growth potential. The MODBOT itself is a generic creature that must be customized by the developer for a particular application. The MRA facilitates customization of the MODBOT by providing sensor actuator and processing modules that can be configured in almost any manner as demanded by the application. The Mobile Security Robot (MOSER) is an instance of a MODBOT that is being developed using the MRA. Navigational Sonar Module RF Link Control Station Module hR Link Detection Module Near hR Proximi Sensor Module Fluxgate Compass and Rate Gyro Collision Avoidance Sonar Module Figure 1. Remote platform module configuration of the Mobile Security Robot (MOSER). Acoustical Detection Array Stereoscopic Pan and Tilt Module High Level Processing Module Mobile Base 566

  12. Complex Event Recognition Architecture

    NASA Technical Reports Server (NTRS)

    Fitzgerald, William A.; Firby, R. James

    2009-01-01

    Complex Event Recognition Architecture (CERA) is the name of a computational architecture, and software that implements the architecture, for recognizing complex event patterns that may be spread across multiple streams of input data. One of the main components of CERA is an intuitive event pattern language that simplifies what would otherwise be the complex, difficult tasks of creating logical descriptions of combinations of temporal events and defining rules for combining information from different sources over time. In this language, recognition patterns are defined in simple, declarative statements that combine point events from given input streams with those from other streams, using conjunction, disjunction, and negation. Patterns can be built on one another recursively to describe very rich, temporally extended combinations of events. Thereafter, a run-time matching algorithm in CERA efficiently matches these patterns against input data and signals when patterns are recognized. CERA can be used to monitor complex systems and to signal operators or initiate corrective actions when anomalous conditions are recognized. CERA can be run as a stand-alone monitoring system, or it can be integrated into a larger system to automatically trigger responses to changing environments or problematic situations.

  13. Robust Software Architecture for Robots

    NASA Technical Reports Server (NTRS)

    Aghazanian, Hrand; Baumgartner, Eric; Garrett, Michael

    2009-01-01

    Robust Real-Time Reconfigurable Robotics Software Architecture (R4SA) is the name of both a software architecture and software that embodies the architecture. The architecture was conceived in the spirit of current practice in designing modular, hard, realtime aerospace systems. The architecture facilitates the integration of new sensory, motor, and control software modules into the software of a given robotic system. R4SA was developed for initial application aboard exploratory mobile robots on Mars, but is adaptable to terrestrial robotic systems, real-time embedded computing systems in general, and robotic toys.

  14. Impact of Ramadan intermittent fasting on cognitive function in trained cyclists: a pilot study.

    PubMed

    Chamari, K; Briki, W; Farooq, A; Patrick, T; Belfekih, T; Herrera, C P

    2016-03-01

    This study assessed selected measures of cognitive function in trained cyclists who observed daylight fasting during Ramadan. Eleven cyclists volunteered to participate (age: 21.6±4.8 years, VO2max: 57.7±5.6 ml kg(-1)·min(-1)) and were followed for 2 months. Cognitive function (Cambridge Neuropsychological Test Automated Battery (CANTAB), Reaction Time index (RTI) and Rapid Visual Information Processing (RVP) tests) and sleep architecture (ambulatory EEG) were assessed: before Ramadan (BR), in the 1st week (RA1) and 4th week of Ramadan (RA4), and 2 weeks post-Ramadan (PR). Both cognitive tests were performed twice per day: before and after Ramadan at 8-10 a.m. and 4-6 p.m., and during Ramadan at 4-6 p.m. and 0-2 a.m., respectively. Training load (TL) by the rating of perceived exertion (RPE) method and wellness (Hooper index) were measured daily. If the TL increased over the study period, this variable was stable during Ramadan. The perceived fatigue and delayed onset muscle soreness (DOMS) increased at RA4. Sleep patterns and architecture showed clear disturbances, with significant increases in the number of awakenings and light sleep durations during Ramadan (RA1 and RA4), together with decreased durations of deep and REM sleep stages at PR. RTI (simple and multiple reaction index) reaction and movement times did not vary over the study period. The RVP test showed reduced false alarms during Ramadan, suggesting reduced impulsivity. Overall accuracy significantly increased at RA1, RA4 and PR compared to baseline. At RA4, the accuracy was higher at 0-2 a.m. compared to 4-6 p.m. Despite the observed disturbances in sleep architecture, Ramadan fasting did not negatively impact the cognitive performance of trained cyclists from the Middle East. PMID:26985134

  15. Impact of Ramadan intermittent fasting on cognitive function in trained cyclists: a pilot study

    PubMed Central

    Briki, W; Farooq, A; Patrick, T; Belfekih, T; Herrera, CP

    2015-01-01

    This study assessed selected measures of cognitive function in trained cyclists who observed daylight fasting during Ramadan. Eleven cyclists volunteered to participate (age: 21.6±4.8 years, VO2max: 57.7±5.6 ml kg−1·min−1) and were followed for 2 months. Cognitive function (Cambridge Neuropsychological Test Automated Battery (CANTAB), Reaction Time index (RTI) and Rapid Visual Information Processing (RVP) tests) and sleep architecture (ambulatory EEG) were assessed: before Ramadan (BR), in the 1st week (RA1) and 4th week of Ramadan (RA4), and 2 weeks post-Ramadan (PR). Both cognitive tests were performed twice per day: before and after Ramadan at 8-10 a.m. and 4-6 p.m., and during Ramadan at 4-6 p.m. and 0-2 a.m., respectively. Training load (TL) by the rating of perceived exertion (RPE) method and wellness (Hooper index) were measured daily. If the TL increased over the study period, this variable was stable during Ramadan. The perceived fatigue and delayed onset muscle soreness (DOMS) increased at RA4. Sleep patterns and architecture showed clear disturbances, with significant increases in the number of awakenings and light sleep durations during Ramadan (RA1 and RA4), together with decreased durations of deep and REM sleep stages at PR. RTI (simple and multiple reaction index) reaction and movement times did not vary over the study period. The RVP test showed reduced false alarms during Ramadan, suggesting reduced impulsivity. Overall accuracy significantly increased at RA1, RA4 and PR compared to baseline. At RA4, the accuracy was higher at 0-2 a.m. compared to 4-6 p.m. Despite the observed disturbances in sleep architecture, Ramadan fasting did not negatively impact the cognitive performance of trained cyclists from the Middle East. PMID:26985134

  16. Fast food: friendly?

    PubMed

    Rice, S; McAllister, E J; Dhurandhar, N V

    2007-06-01

    Fast food is routinely blamed for the obesity epidemic and consequentially excluded from professional dietary recommendations. However, several sections of society including senior citizens, low-income adult and children, minority and homeless children, or those pressed for time appear to rely on fast food as an important source of meals. Considering the dependence of these nutritionally vulnerable population groups on fast food, we examined the possibility of imaginative selection of fast food, which would attenuate the potentially unfavorable nutrient composition. We present a sample menu to demonstrate that it is possible to design a fast food menu that provides reasonable level of essential nutrients without exceeding the caloric recommendations. We would like to alert health-care professionals that fast food need not be forbidden under all circumstances, and that a fresh look at the role of fast food may enable its inclusion in meal planning for those who depend on it out of necessity, while adding flexibility.

  17. Capital Architecture: Situating symbolism parallel to architectural methods and technology

    NASA Astrophysics Data System (ADS)

    Daoud, Bassam

    Capital Architecture is a symbol of a nation's global presence and the cultural and social focal point of its inhabitants. Since the advent of High-Modernism in Western cities, and subsequently decolonised capitals, civic architecture no longer seems to be strictly grounded in the philosophy that national buildings shape the legacy of government and the way a nation is regarded through its built environment. Amidst an exceedingly globalized architectural practice and with the growing concern of key heritage foundations over the shortcomings of international modernism in representing its immediate socio-cultural context, the contextualization of public architecture within its sociological, cultural and economic framework in capital cities became the key denominator of this thesis. Civic architecture in capital cities is essential to confront the challenges of symbolizing a nation and demonstrating the legitimacy of the government'. In today's dominantly secular Western societies, governmental architecture, especially where the seat of political power lies, is the ultimate form of architectural expression in conveying a sense of identity and underlining a nation's status. Departing with these convictions, this thesis investigates the embodied symbolic power, the representative capacity, and the inherent permanence in contemporary architecture, and in its modes of production. Through a vast study on Modern architectural ideals and heritage -- in parallel to methodologies -- the thesis stimulates the future of large scale governmental building practices and aims to identify and index the key constituents that may respond to the lack representation in civic architecture in capital cities.

  18. Determinants of Mammalian Nucleolar Architecture

    PubMed Central

    Farley, Katherine I.; Surovtseva, Yulia; Merkel, Janie; Baserga, Susan J.

    2015-01-01

    The nucleolus is responsible for the production of ribosomes, essential machines which synthesize all proteins needed by the cell. The structure of human nucleoli is highly dynamic and is directly related to its functions in ribosome biogenesis. Despite the importance of this organelle, the intricate relationship between nucleolar structure and function remains largely unexplored. How do cells control nucleolar formation and function? What are the minimal requirements for making a functional nucleolus? Here we review what is currently known regarding mammalian nucleolar formation at nucleolar organizer regions (NORs), which can be studied by observing the dissolution and reformation of the nucleolus during each cell division. Additionally, the nucleolus can be examined by analyzing how alterations in nucleolar function manifest in differences in nucleolar architecture. Furthermore, changes in nucleolar structure and function are correlated with cancer, highlighting the importance of studying the determinants of nucleolar formation. PMID:25670395

  19. BADD phase II: DDS information management architecture

    NASA Astrophysics Data System (ADS)

    Stephenson, Thomas P.; DeCleene, Brian T.; Speckert, Glen; Voorhees, Harry L.

    1997-06-01

    the warfighter in caches which are physically close to the warfighter. Through a global schema and intelligent caching, the BADD DDS architecture will provide a virtual information repository in which warfighter access to information is both fast and transparent with respect to its original source.

  20. FAST User Guide

    NASA Technical Reports Server (NTRS)

    Walatka, Pamela P.; Clucas, Jean; McCabe, R. Kevin; Plessel, Todd; Potter, R.; Cooper, D. M. (Technical Monitor)

    1994-01-01

    The Flow Analysis Software Toolkit, FAST, is a software environment for visualizing data. FAST is a collection of separate programs (modules) that run simultaneously and allow the user to examine the results of numerical and experimental simulations. The user can load data files, perform calculations on the data, visualize the results of these calculations, construct scenes of 3D graphical objects, and plot, animate and record the scenes. Computational Fluid Dynamics (CFD) visualization is the primary intended use of FAST, but FAST can also assist in the analysis of other types of data. FAST combines the capabilities of such programs as PLOT3D, RIP, SURF, and GAS into one environment with modules that share data. Sharing data between modules eliminates the drudgery of transferring data between programs. All the modules in the FAST environment have a consistent, highly interactive graphical user interface. Most commands are entered by pointing and'clicking. The modular construction of FAST makes it flexible and extensible. The environment can be custom configured and new modules can be developed and added as needed. The following modules have been developed for FAST: VIEWER, FILE IO, CALCULATOR, SURFER, TOPOLOGY, PLOTTER, TITLER, TRACER, ARCGRAPH, GQ, SURFERU, SHOTET, and ISOLEVU. A utility is also included to make the inclusion of user defined modules in the FAST environment easy. The VIEWER module is the central control for the FAST environment. From VIEWER, the user can-change object attributes, interactively position objects in three-dimensional space, define and save scenes, create animations, spawn new FAST modules, add additional view windows, and save and execute command scripts. The FAST User Guide uses text and FAST MAPS (graphical representations of the entire user interface) to guide the user through the use of FAST. Chapters include: Maps, Overview, Tips, Getting Started Tutorial, a separate chapter for each module, file formats, and system

  1. Control system architecture of AMICA: a robotic instrument in an extreme environment

    NASA Astrophysics Data System (ADS)

    Di Rico, Gianluca; Ragni, Maurizio; Corcione, Leonardo; Giro, Enrico; Fantinel, Daniela

    2006-06-01

    AMICA is a camera conceived to automatically acquire infrared astronomical images in the extreme environment of Dome C (T ~ -70 °C, p ~ 640 mbar). For this reason, hardware and software are specially designed. They must guarantee the correct execution of observing procedures, while performing a continuous monitoring of the environmental conditions, the instrument status and the observing parameters, and a real-time adjustment of them when required. All temperature-sensitive components will be placed in a thermally controlled rack. The environmental control inside it is assigned to a Programmable Logic Controller (PLC). It is responsible, in particular, for the overall system start-up. Instrument status, mainly concerning vacuum level and temperatures inside the cryostat, is directly monitored by the local cPC, which sends instructions to the PLC in case of failure, in order to start appropriate restoring procedures. All hardware components are conceived to be easily and fast replaceable. Main tasks of the AMICA Control Software (ACS) are: telescope interaction, observation management, environment control, events handling, data storing. Because of the high frame rate, typical of infrared imaging, the acquisition system has been interfaced with an independent application (STS), to perform read-out electronics control, fast data processing (co-adding from chopping raw frames), parameters checking (such as exposure time, chopping frequency, etc.), and data output. The software design has a multithreading architecture, based on the Object Oriented approach and developed for Windows OS platforms.

  2. The flight telerobotic servicer: From functional architecture to computer architecture

    NASA Technical Reports Server (NTRS)

    Lumia, Ronald; Fiala, John

    1989-01-01

    After a brief tutorial on the NASA/National Bureau of Standards Standard Reference Model for Telerobot Control System Architecture (NASREM) functional architecture, the approach to its implementation is shown. First, interfaces must be defined which are capable of supporting the known algorithms. This is illustrated by considering the interfaces required for the SERVO level of the NASREM functional architecture. After interface definition, the specific computer architecture for the implementation must be determined. This choice is obviously technology dependent. An example illustrating one possible mapping of the NASREM functional architecture to a particular set of computers which implements it is shown. The result of choosing the NASREM functional architecture is that it provides a technology independent paradigm which can be mapped into a technology dependent implementation capable of evolving with technology in the laboratory and in space.

  3. Integrating the services' imagery architectures

    NASA Astrophysics Data System (ADS)

    Mader, John F.

    1993-04-01

    Any military organization requiring imagery must deal with one or more of several architectures: the tactical architectures of the three military departments, the theater architectures, and their interfaces to a separate national architecture. A seamless, joint, integrated architecture must meet today's imagery requirements. The CIO's vision of 'the right imagery to the right people in the right format at the right time' would serve well as the objective of a joint, integrated architecture. A joint imagery strategy should be initially shaped by the four pillars of the National Military Strategy of the United States: strategic deterrence; forward presence; crisis response; and reconstitution. In a macro view, it must consist of a series of sub-strategies to include science and technology and research and development, maintenance of the imagery related industrial base, acquisition, resource management, and burden sharing. Common imagery doctrine must follow the imagery strategy. Most of all, control, continuity, and direction must be maintained with regard to organizations and systems development as the architecture evolves. These areas and more must be addressed to reach the long term goal of a joint, integrated imagery architecture. This will require the services and theaters to relinquish some sovereignty over at least systems development and acquisition. Nevertheless, the goal of a joint, integrated imagery architecture is feasible. The author presents arguments and specific recommendations to orient the imagery community in the direction of a joint, integrated imagery architecture.

  4. The EPOS ICT Architecture

    NASA Astrophysics Data System (ADS)

    Jeffery, Keith; Harrison, Matt; Bailo, Daniele

    2016-04-01

    The EPOS-PP Project 2010-2014 proposed an architecture and demonstrated feasibility with a prototype. Requirements based on use cases were collected and an inventory of assets (e.g. datasets, software, users, computing resources, equipment/detectors, laboratory services) (RIDE) was developed. The architecture evolved through three stages of refinement with much consultation both with the EPOS community representing EPOS users and participants in geoscience and with the overall ICT community especially those working on research such as the RDA (Research Data Alliance) community. The architecture consists of a central ICS (Integrated Core Services) consisting of a portal and catalog, the latter providing to end-users a 'map' of all EPOS resources (datasets, software, users, computing, equipment/detectors etc.). ICS is extended to ICS-d (distributed ICS) for certain services (such as visualisation software services or Cloud computing resources) and CES (Computational Earth Science) for specific simulation or analytical processing. ICS also communicates with TCS (Thematic Core Services) which represent European-wide portals to national and local assets, resources and services in the various specific domains (e.g. seismology, volcanology, geodesy) of EPOS. The EPOS-IP project 2015-2019 started October 2015. Two work-packages cover the ICT aspects; WP6 involves interaction with the TCS while WP7 concentrates on ICS including interoperation with ICS-d and CES offerings: in short the ICT architecture. Based on the experience and results of EPOS-PP the ICT team held a pre-meeting in July 2015 and set out a project plan. The first major activity involved requirements (re-)collection with use cases and also updating the inventory of assets held by the various TCS in EPOS. The RIDE database of assets is currently being converted to CERIF (Common European Research Information Format - an EU Recommendation to Member States) to provide the basis for the EPOS-IP ICS Catalog. In

  5. FAST - A multiprocessed environment for visualization of computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Bancroft, Gordon V.; Merritt, Fergus J.; Plessel, Todd C.; Kelaita, Paul G.; Mccabe, R. Kevin

    1991-01-01

    The paper presents the Flow Analysis Software Toolset (FAST) to be used for fluid-mechanics analysis. The design criteria for FAST including the minimization of the data path in the computational fluid-dynamics (CFD) process, consistent user interface, extensible software architecture, modularization, and the isolation of three-dimensional tasks from the application programmer are outlined. Each separate process communicates through the FAST Hub, while other modules such as FAST Central, NAS file input, CFD calculator, surface extractor and renderer, titler, tracer, and isolev might work together to generate the scene. An interprocess communication package making it possible for FAST to operate as a modular environment where resources could be shared among different machines as well as a single host is discussed.

  6. Architecture for Teraflop Visualization

    SciTech Connect

    Breckenridge, A.R.; Haynes, R.A.

    1999-04-09

    Sandia Laboratories' computational scientists are addressing a very important question: How do we get insight from the human combined with the computer-generated information? The answer inevitably leads to using scientific visualization. Going one technology leap further is teraflop visualization, where the computing model and interactive graphics are an integral whole to provide computing for insight. In order to implement our teraflop visualization architecture, all hardware installed or software coded will be based on open modules and dynamic extensibility principles. We will illustrate these concepts with examples in our three main research areas: (1) authoring content (the computer), (2) enhancing precision and resolution (the human), and (3) adding behaviors (the physics).

  7. Architecture for robot intelligence

    NASA Technical Reports Server (NTRS)

    Peters, II, Richard Alan (Inventor)

    2004-01-01

    An architecture for robot intelligence enables a robot to learn new behaviors and create new behavior sequences autonomously and interact with a dynamically changing environment. Sensory information is mapped onto a Sensory Ego-Sphere (SES) that rapidly identifies important changes in the environment and functions much like short term memory. Behaviors are stored in a DBAM that creates an active map from the robot's current state to a goal state and functions much like long term memory. A dream state converts recent activities stored in the SES and creates or modifies behaviors in the DBAM.

  8. Mind and Language Architecture

    PubMed Central

    Logan, Robert K

    2010-01-01

    A distinction is made between the brain and the mind. The architecture of the mind and language is then described within a neo-dualistic framework. A model for the origin of language based on emergence theory is presented. The complexity of hominid existence due to tool making, the control of fire and the social cooperation that fire required gave rise to a new level of order in mental activity and triggered the simultaneous emergence of language and conceptual thought. The mind is shown to have emerged as a bifurcation of the brain with the emergence of language. The role of language in the evolution of human culture is also described. PMID:20922045

  9. Architecture, constraints, and behavior

    PubMed Central

    Doyle, John C.; Csete, Marie

    2011-01-01

    This paper aims to bridge progress in neuroscience involving sophisticated quantitative analysis of behavior, including the use of robust control, with other relevant conceptual and theoretical frameworks from systems engineering, systems biology, and mathematics. Familiar and accessible case studies are used to illustrate concepts of robustness, organization, and architecture (modularity and protocols) that are central to understanding complex networks. These essential organizational features are hidden during normal function of a system but are fundamental for understanding the nature, design, and function of complex biologic and technologic systems. PMID:21788505

  10. Etruscan Divination and Architecture

    NASA Astrophysics Data System (ADS)

    Magli, Giulio

    The Etruscan religion was characterized by divination methods, aimed at interpreting the will of the gods. These methods were revealed by the gods themselves and written in the books of the Etrusca Disciplina. The books are lost, but parts of them are preserved in the accounts of later Latin sources. According to such traditions divination was tightly connected with the Etruscan cosmovision of a Pantheon distributed in equally spaced, specific sectors of the celestial realm. We explore here the possible reflections of such issues in the Etruscan architectural remains.

  11. TROPIX Power System Architecture

    NASA Technical Reports Server (NTRS)

    Manner, David B.; Hickman, J. Mark

    1995-01-01

    This document contains results obtained in the process of performing a power system definition study of the TROPIX power management and distribution system (PMAD). Requirements derived from the PMADs interaction with other spacecraft systems are discussed first. Since the design is dependent on the performance of the photovoltaics, there is a comprehensive discussion of the appropriate models for cells and arrays. A trade study of the array operating voltage and its effect on array bus mass is also presented. A system architecture is developed which makes use of a combination of high efficiency switching power convertors and analog regulators. Mass and volume estimates are presented for all subsystems.

  12. Architectures Toward Reusable Science Data Systems

    NASA Astrophysics Data System (ADS)

    Moses, J. F.

    2014-12-01

    Science Data Systems (SDS) comprise an important class of data processing systems that support product generation from remote sensors and in-situ observations. These systems enable research into new science data products, replication of experiments and verification of results. NASA has been building ground systems for satellite data processing since the first Earth observing satellites launched and is continuing development of systems to support NASA science research, NOAA's weather satellites and USGS's Earth observing satellite operations. The basic data processing workflows and scenarios continue to be valid for remote sensor observations research as well as for the complex multi-instrument operational satellite data systems being built today. System functions such as ingest, product generation and distribution need to be configured and performed in a consistent and repeatable way with an emphasis on scalability. This paper will examine the key architectural elements of several NASA satellite data processing systems currently in operation and under development that make them suitable for scaling and reuse. Examples of architectural elements that have become attractive include virtual machine environments, standard data product formats, metadata content and file naming, workflow and job management frameworks, data acquisition, search, and distribution protocols. By highlighting key elements and implementation experience the goal is to recognize architectures that will outlast their original application and be readily adaptable for new applications. Concepts and principles are explored that lead to sound guidance for SDS developers and strategists.

  13. Architectures Toward Reusable Science Data Systems

    NASA Technical Reports Server (NTRS)

    Moses, John

    2015-01-01

    Science Data Systems (SDS) comprise an important class of data processing systems that support product generation from remote sensors and in-situ observations. These systems enable research into new science data products, replication of experiments and verification of results. NASA has been building systems for satellite data processing since the first Earth observing satellites launched and is continuing development of systems to support NASA science research and NOAAs Earth observing satellite operations. The basic data processing workflows and scenarios continue to be valid for remote sensor observations research as well as for the complex multi-instrument operational satellite data systems being built today. System functions such as ingest, product generation and distribution need to be configured and performed in a consistent and repeatable way with an emphasis on scalability. This paper will examine the key architectural elements of several NASA satellite data processing systems currently in operation and under development that make them suitable for scaling and reuse. Examples of architectural elements that have become attractive include virtual machine environments, standard data product formats, metadata content and file naming, workflow and job management frameworks, data acquisition, search, and distribution protocols. By highlighting key elements and implementation experience we expect to find architectures that will outlast their original application and be readily adaptable for new applications. Concepts and principles are explored that lead to sound guidance for SDS developers and strategists.

  14. The Architecture of Circumbinary Systems

    NASA Astrophysics Data System (ADS)

    Smullen, Rachel; Kratter, Kaitlin M.

    2015-12-01

    Transiting circumbinary planets, as discovered by Kepler, provide unique insight into planet formation and planetary dynamics. These planets are low mass (about Neptune or smaller) and reside close to the stability limit of the binary. The question then becomes nature or nurture? Have circumbinary disks preferentially formed low mass, close in planets, or have dynamical processes sculpted the system into what we observe? We used N-body simulations to explore the impact of planet-planet scattering on the orbital architecture of four planetary populations around both single and binary stars. I will present the similarities and differences in the resultant planet populations. For instance, the final multiplicity is similar between single and binary stars, but planets in binary systems are much more likely to eject than collide. I will address the observable multiplicity and other unique characteristics our simulations have revealed. With this work and future observations, we will be able to better understand the underlying initial planetary distributions around binary stars and the formation mechanisms that allow these systems to form.

  15. Implementation of MP{_}Lite for the VI Architecture

    SciTech Connect

    Weiyi Chen

    2002-12-31

    MP{_}Lite is a light weight message-passing library designed to deliver the maximum performance to applications in a portable and user friendly manner. The Virtual Interface (VI) architecture is a user-level communication protocol that bypasses the operating system to provide much better performance than traditional network architectures. By combining the high efficiency of MP{_}Lite and high performance of the VI architecture, they are able to implement a high performance message-passing library that has much lower latency and better throughput. The design and implementation of MP{_}Lite for M-VIA, which is a modular implementation of the VI architecture on Linux, is discussed in this thesis. By using the eager protocol for sending short messages, MP{_}Lite M-VIA has much lower latency on both Fast Ethernet and Gigabit Ethernet. The handshake protocol and RDMA mechanism provides double the throughput that MPICH can deliver for long messages. MP{_}Lite M-VIA also has the ability to channel-bonding multiple network interface cards to increase the potential bandwidth between nodes. Using multiple Fast Ethernet cards can double or even triple the maximum throughput without increasing the cost of a PC cluster greatly.

  16. Knowledge Production in an Architectural Practice and a University Architectural Department

    ERIC Educational Resources Information Center

    Winberg, Chris

    2006-01-01

    Processes of knowledge production by professional architects and architects-in-training were studied and compared. Both professionals and students were involved in the production of knowledge about the architectural heritage of historical buildings in Cape Town. In a study of the artefacts produced, observations of the processes by means of which…

  17. The ALMA software architecture

    NASA Astrophysics Data System (ADS)

    Schwarz, Joseph; Farris, Allen; Sommer, Heiko

    2004-09-01

    The software for the Atacama Large Millimeter Array (ALMA) is being developed by many institutes on two continents. The software itself will function in a distributed environment, from the 0.5-14 kmbaselines that separate antennas to the larger distances that separate the array site at the Llano de Chajnantor in Chile from the operations and user support facilities in Chile, North America and Europe. Distributed development demands 1) interfaces that allow separated groups to work with minimal dependence on their counterparts at other locations; and 2) a common architecture to minimize duplication and ensure that developers can always perform similar tasks in a similar way. The Container/Component model provides a blueprint for the separation of functional from technical concerns: application developers concentrate on implementing functionality in Components, which depend on Containers to provide them with services such as access to remote resources, transparent serialization of entity objects to XML, logging, error handling and security. Early system integrations have verified that this architecture is sound and that developers can successfully exploit its features. The Containers and their services are provided by a system-orienteddevelopment team as part of the ALMA Common Software (ACS), middleware that is based on CORBA.

  18. Architectures for intelligent machines

    NASA Technical Reports Server (NTRS)

    Saridis, George N.

    1991-01-01

    The theory of intelligent machines has been recently reformulated to incorporate new architectures that are using neural and Petri nets. The analytic functions of an intelligent machine are implemented by intelligent controls, using entropy as a measure. The resulting hierarchical control structure is based on the principle of increasing precision with decreasing intelligence. Each of the three levels of the intelligent control is using different architectures, in order to satisfy the requirements of the principle: the organization level is moduled after a Boltzmann machine for abstract reasoning, task planning and decision making; the coordination level is composed of a number of Petri net transducers supervised, for command exchange, by a dispatcher, which also serves as an interface to the organization level; the execution level, include the sensory, planning for navigation and control hardware which interacts one-to-one with the appropriate coordinators, while a VME bus provides a channel for database exchange among the several devices. This system is currently implemented on a robotic transporter, designed for space construction at the CIRSSE laboratories at the Rensselaer Polytechnic Institute. The progress of its development is reported.

  19. Protocol Architecture Model Report

    NASA Technical Reports Server (NTRS)

    Dhas, Chris

    2000-01-01

    NASA's Glenn Research Center (GRC) defines and develops advanced technology for high priority national needs in communications technologies for application to aeronautics and space. GRC tasked Computer Networks and Software Inc. (CNS) to examine protocols and architectures for an In-Space Internet Node. CNS has developed a methodology for network reference models to support NASA's four mission areas: Earth Science, Space Science, Human Exploration and Development of Space (REDS), Aerospace Technology. This report applies the methodology to three space Internet-based communications scenarios for future missions. CNS has conceptualized, designed, and developed space Internet-based communications protocols and architectures for each of the independent scenarios. The scenarios are: Scenario 1: Unicast communications between a Low-Earth-Orbit (LEO) spacecraft inspace Internet node and a ground terminal Internet node via a Tracking and Data Rela Satellite (TDRS) transfer; Scenario 2: Unicast communications between a Low-Earth-Orbit (LEO) International Space Station and a ground terminal Internet node via a TDRS transfer; Scenario 3: Multicast Communications (or "Multicasting"), 1 Spacecraft to N Ground Receivers, N Ground Transmitters to 1 Ground Receiver via a Spacecraft.

  20. Data management system advanced architectures

    NASA Technical Reports Server (NTRS)

    Chevers, ED

    1991-01-01

    The topics relating to the Space Station Freedom (SSF) are presented in view graph form and include: (1) the data management system (DMS) concept; (2) DMS evolution rationale; (3) the DMS advance architecture task; (4) DMS group support for Ames payloads; (5) DMS testbed development; (6) the DMS architecture task status; (7) real time multiprocessor testbed; (8) networked processor performance; (9) and the DMS advance architecture task 1992 goals.

  1. Rutger's CAM2000 chip architecture

    NASA Technical Reports Server (NTRS)

    Smith, Donald E.; Hall, J. Storrs; Miyake, Keith

    1993-01-01

    This report describes the architecture and instruction set of the Rutgers CAM2000 memory chip. The CAM2000 combines features of Associative Processing (AP), Content Addressable Memory (CAM), and Dynamic Random Access Memory (DRAM) in a single chip package that is not only DRAM compatible but capable of applying simple massively parallel operations to memory. This document reflects the current status of the CAM2000 architecture and is continually updated to reflect the current state of the architecture and instruction set.

  2. fast-matmul

    SciTech Connect

    Grey Ballard, Austin Benson

    2014-11-26

    This software provides implementations of fast matrix multiplication algorithms. These algorithms perform fewer floating point operations than the classical cubic algorithm. The software uses code generation to automatically implement the fast algorithms based on high-level descriptions. The code serves two general purposes. The first is to demonstrate that these fast algorithms can out-perform vendor matrix multiplication algorithms for modest problem sizes on a single machine. The second is to rapidly prototype many variations of fast matrix multiplication algorithms to encourage future research in this area. The implementations target sequential and shared memory parallel execution.

  3. Fast robust correlation.

    PubMed

    Fitch, Alistair J; Kadyrov, Alexander; Christmas, William J; Kittler, Josef

    2005-08-01

    A new, fast, statistically robust, exhaustive, translational image-matching technique is presented: fast robust correlation. Existing methods are either slow or non-robust, or rely on optimization. Fast robust correlation works by expressing a robust matching surface as a series of correlations. Speed is obtained by computing correlations in the frequency domain. Computational cost is analyzed and the method is shown to be fast. Speed is comparable to conventional correlation and, for large images, thousands of times faster than direct robust matching. Three experiments demonstrate the advantage of the technique over standard correlation.

  4. Demand Activated Manufacturing Architecture

    SciTech Connect

    Bender, T.R.; Zimmerman, J.J.

    2001-02-07

    Honeywell Federal Manufacturing & Technologies (FM&T) engineers John Zimmerman and Tom Bender directed separate projects within this CRADA. This Project Accomplishments Summary contains their reports independently. Zimmerman: In 1998 Honeywell FM&T partnered with the Demand Activated Manufacturing Architecture (DAMA) Cooperative Business Management Program to pilot the Supply Chain Integration Planning Prototype (SCIP). At the time, FM&T was developing an enterprise-wide supply chain management prototype called the Integrated Programmatic Scheduling System (IPSS) to improve the DOE's Nuclear Weapons Complex (NWC) supply chain. In the CRADA partnership, FM&T provided the IPSS technical and business infrastructure as a test bed for SCIP technology, and this would provide FM&T the opportunity to evaluate SCIP as the central schedule engine and decision support tool for IPSS. FM&T agreed to do the bulk of the work for piloting SCIP. In support of that aim, DAMA needed specific DOE Defense Programs opportunities to prove the value of its supply chain architecture and tools. In this partnership, FM&T teamed with Sandia National Labs (SNL), Division 6534, the other DAMA partner and developer of SCIP. FM&T tested SCIP in 1998 and 1999. Testing ended in 1999 when DAMA CRADA funding for FM&T ceased. Before entering the partnership, FM&T discovered that the DAMA SCIP technology had an array of applications in strategic, tactical, and operational planning and scheduling. At the time, FM&T planned to improve its supply chain performance by modernizing the NWC-wide planning and scheduling business processes and tools. The modernization took the form of a distributed client-server planning and scheduling system (IPSS) for planners and schedulers to use throughout the NWC on desktops through an off-the-shelf WEB browser. The planning and scheduling process within the NWC then, and today, is a labor-intensive paper-based method that plans and schedules more than 8,000 shipped parts

  5. Fast internal dynamics in alcohol dehydrogenase.

    PubMed

    Monkenbusch, M; Stadler, A; Biehl, R; Ollivier, J; Zamponi, M; Richter, D

    2015-08-21

    Large-scale domain motions in alcohol dehydrogenase (ADH) have been observed previously by neutron spin-echo spectroscopy (NSE). We have extended the investigation on the dynamics of ADH in solution by using high-resolution neutron time-of-flight (TOF) and neutron backscattering (BS) spectroscopy in the incoherent scattering range. The observed hydrogen dynamics were interpreted in terms of three mobility classes, which allowed a simultaneous description of the measured TOF and BS spectra. In addition to the slow global protein diffusion and domain motions observed by NSE, a fast internal process could be identified. Around one third of the protons in ADH participate in the fast localized diffusive motion. The diffusion coefficient of the fast internal motions is around two third of the value of the surrounding D2O solvent. It is tempting to associate the fast internal process with solvent exposed amino acid residues with dangling side chains. PMID:26298156

  6. Fast internal dynamics in alcohol dehydrogenase

    SciTech Connect

    Monkenbusch, M.; Stadler, A. Biehl, R.; Richter, D.; Ollivier, J.; Zamponi, M.

    2015-08-21

    Large-scale domain motions in alcohol dehydrogenase (ADH) have been observed previously by neutron spin-echo spectroscopy (NSE). We have extended the investigation on the dynamics of ADH in solution by using high-resolution neutron time-of-flight (TOF) and neutron backscattering (BS) spectroscopy in the incoherent scattering range. The observed hydrogen dynamics were interpreted in terms of three mobility classes, which allowed a simultaneous description of the measured TOF and BS spectra. In addition to the slow global protein diffusion and domain motions observed by NSE, a fast internal process could be identified. Around one third of the protons in ADH participate in the fast localized diffusive motion. The diffusion coefficient of the fast internal motions is around two third of the value of the surrounding D{sub 2}O solvent. It is tempting to associate the fast internal process with solvent exposed amino acid residues with dangling side chains.

  7. Software synthesis using generic architectures

    NASA Technical Reports Server (NTRS)

    Bhansali, Sanjay

    1993-01-01

    A framework for synthesizing software systems based on abstracting software system designs and the design process is described. The result of such an abstraction process is a generic architecture and the process knowledge for customizing the architecture. The customization process knowledge is used to assist a designer in customizing the architecture as opposed to completely automating the design of systems. Our approach using an implemented example of a generic tracking architecture which was customized in two different domains is illustrated. How the designs produced using KASE compare to the original designs of the two systems, and current work and plans for extending KASE to other application areas are described.

  8. The EO-1 Autonomous Science Agent Architecture

    NASA Technical Reports Server (NTRS)

    Chien, Steve; Sherwood, Rob; Tran, Daniel; Cichy, Benjamin; Rabideau, Gregg; Castano, Rebecca; Davies, Ashley; Lee, Rachel; Mandl, Dan; Frye, Stuart; Trout, Bruce; Hengemihle, Jerry; D'Agostino, Jeff; Shulman, Seth; Ungar, Stephen; Brakke, Thomas; Boyer, Darrell; Van Gaasbeck, Jim; Greeley, Ronald; Doggett, Thomas; Baker, Victor; Dohm, James; Ip, Felipe

    2004-01-01

    An Autonomous Science Agent is currently flying onboard the Earth Observing One Spacecraft. This software enables the spacecraft to autonomously detect and respond to science events occurring on the Earth. The package includes software systems that perform science data analysis, deliberative planning, and run-time robust execution. Because of the deployment to a remote spacecraft, this Autonomous Science Agent has stringent constraints of autonomy, reliability, and limited computing resources. We describe these constraints and how they are reflected in our agent architecture.

  9. [Medical aspects of fasting].

    PubMed

    Gavrankapetanović, F

    1997-01-01

    Fasting (arabic-savm) was proclaimed through islam, and thus it is an obligation for Holly Prophet Muhammad s.a.v.s.-Peace be to Him-in the second year after Hijra (in 624 after Milad-born of Isa a.s.). There is a month of fasting-Ramadan-each lunar (hijra) year. So, it was 1415th fasting this year. Former Prophets have brought obligative messages on fasting to their people; so there are also certain forms of fasting with other religions i.e. with Catholics, Jews, Orthodox. These kinds of fasting above differ from muslim fasting, but they also appear obligative. All revelations have brought fasting as obligative. From medical point of view, fasting has two basical components: psychical and physical. Psychical sphere correlate closely with its fundamental ideological message. Allah dz.s. says in Quran: "... Fasting is obligative for you, as it was obligative to your precedents, as to avoid sins; during very few days (II, II, 183 & 184)." Will strength, control of passions, effort and self-discipline makes a pure faithfull person, who purify its mind and body through fasting. Thinking about The Creator is more intensive, character is more solid; and spirit and will get stronger. We will mention the hadith saying: "Essaihune humus saimun!" That means: "Travellers at the Earth are fasters (of my ummet)." The commentary of this hadith, in the Collection of 1001 hadiths (Bin bir hadis), number 485, says: "There are no travelling dervishs or monks in islam; thus there is no such a kind of relligousity in islam. In stead, it is changed by fasting and constant attending of mosque. That was proclaimed as obligation, although there were few cases of travelling in the name of relligousity, like travelling dervishs and sheichs." In this paper, the author discusses medical aspects of fasting and its positive characteristics in the respect of healthy life style and prevention of many sicks. The author mentions positive influence of fasting to certain system and organs of human

  10. Integrative Physiology of Fasting.

    PubMed

    Secor, Stephen M; Carey, Hannah V

    2016-04-01

    Extended bouts of fasting are ingrained in the ecology of many organisms, characterizing aspects of reproduction, development, hibernation, estivation, migration, and infrequent feeding habits. The challenge of long fasting episodes is the need to maintain physiological homeostasis while relying solely on endogenous resources. To meet that challenge, animals utilize an integrated repertoire of behavioral, physiological, and biochemical responses that reduce metabolic rates, maintain tissue structure and function, and thus enhance survival. We have synthesized in this review the integrative physiological, morphological, and biochemical responses, and their stages, that characterize natural fasting bouts. Underlying the capacity to survive extended fasts are behaviors and mechanisms that reduce metabolic expenditure and shift the dependency to lipid utilization. Hormonal regulation and immune capacity are altered by fasting; hormones that trigger digestion, elevate metabolism, and support immune performance become depressed, whereas hormones that enhance the utilization of endogenous substrates are elevated. The negative energy budget that accompanies fasting leads to the loss of body mass as fat stores are depleted and tissues undergo atrophy (i.e., loss of mass). Absolute rates of body mass loss scale allometrically among vertebrates. Tissues and organs vary in the degree of atrophy and downregulation of function, depending on the degree to which they are used during the fast. Fasting affects the population dynamics and activities of the gut microbiota, an interplay that impacts the host's fasting biology. Fasting-induced gene expression programs underlie the broad spectrum of integrated physiological mechanisms responsible for an animal's ability to survive long episodes of natural fasting. PMID:27065168

  11. 9. Photocopy of architectural drawing (from National Archives Architectural and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Photocopy of architectural drawing (from National Archives Architectural and Cartographic Branch, Alexandria, Va.) Annotated lithograph on paper. Standard plan used for construction of Commissary Sergeants Quarters, 1876. PLAN, FRONT AND SIDE ELEVATIONS, SECTION - Fort Myer, Commissary Sergeant's Quarters, Washington Avenue between Johnson Lane & Custer Road, Arlington, Arlington County, VA

  12. Geology and Architecture of a Continental Arc in Flare-up Mode: Observations and Insights From a Crustal Cross-Section in Sierras Valle Fertil-La Huerta, Argentina.

    NASA Astrophysics Data System (ADS)

    Otamendi, J.; Banik, T.; Bergantz, G. W.; Ducea, M.; Stair, K.

    2008-12-01

    especially attractive idea as the large mafic bodies and heterogeneous tonalities might be an analog for the attenuating mid-crustal low velocity layer imaged in Puna-Altiplano region today. Our presentation will present work in progress on our efforts to refine the regional architecture of this arc with a special emphasis on applications to continental arcs in flare- up mode.

  13. A distributed parallel storage architecture and its potential application within EOSDIS

    NASA Technical Reports Server (NTRS)

    Johnston, William E.; Tierney, Brian; Feuquay, Jay; Butzer, Tony

    1994-01-01

    We describe the architecture, implementation, use of a scalable, high performance, distributed-parallel data storage system developed in the ARPA funded MAGIC gigabit testbed. A collection of wide area distributed disk servers operate in parallel to provide logical block level access to large data sets. Operated primarily as a network-based cache, the architecture supports cooperation among independently owned resources to provide fast, large-scale, on-demand storage to support data handling, simulation, and computation.

  14. A distributed parallel storage architecture and its potential application within EOSDIS

    SciTech Connect

    Johnston, W.E.; Tierney, B.; Feuquay, J.; Butzer, T.

    1995-01-01

    We describe the architecture, implementation, use, and potential use of a scale, high-performance, distributed-parallel data storage system developed in the ARPA funded MAGIC gigabit testbed. A collection of wide area distributed disk servers operate in parallel to provide logical block level access to large data sets. Operated primarily as a network-based cache, the architecture supports cooperation among independently owned resources to provide fast, large-scale, on-demand storage to support data handling, simulation, and computation.

  15. The Architecture of Exoplanets

    NASA Astrophysics Data System (ADS)

    Hatzes, Artie P.

    2016-05-01

    Prior to the discovery of exoplanets our expectations of their architecture were largely driven by the properties of our solar system. We expected giant planets to lie in the outer regions and rocky planets in the inner regions. Planets should probably only occupy orbital distances 0.3-30 AU from the star. Planetary orbits should be circular, prograde and in the same plane. The reality of exoplanets have shattered these expectations. Jupiter-mass, Neptune-mass, Superearths, and even Earth-mass planets can orbit within 0.05 AU of the stars, sometimes with orbital periods of less than one day. Exoplanetary orbits can be eccentric, misaligned, and even in retrograde orbits. Radial velocity surveys gave the first hints that the occurrence rate increases with decreasing mass. This was put on a firm statistical basis with the Kepler mission that clearly demonstrated that there were more Neptune- and Superearth-sized planets than Jupiter-sized planets. These are often in multiple, densely packed systems where the planets all orbit within 0.3 AU of the star, a result also suggested by radial velocity surveys. Exoplanets also exhibit diversity along the main sequence. Massive stars tend to have a higher frequency of planets ( ≈ 20-25 %) that tend to be more massive ( M≈ 5-10 M_{Jup}). Giant planets around low mass stars are rare, but these stars show an abundance of small (Neptune and Superearth) planets in multiple systems. Planet formation is also not restricted to single stars as the Kepler mission has discovered several circumbinary planets. Although we have learned much about the architecture of planets over the past 20 years, we know little about the census of small planets at relatively large ( a>1 AU) orbital distances. We have yet to find a planetary system that is analogous to our own solar system. The question of how unique are the properties of our own solar system remains unanswered. Advancements in the detection methods of small planets over a wide range

  16. Nanoscale Materials and Architectures for Energy Conversion

    SciTech Connect

    Grulke, Eric A.; Sunkara, Mahendra K.

    2011-05-25

    The Kentucky EPSCoR Program supported an inter-university, multidisciplinary energy-related research cluster studying nanomaterials for converting solar radiation and residual thermal energy to electrical energy and hydrogen. It created a collaborative center of excellence based on research expertise in nanomaterials, architectures, and their synthesis. The project strengthened and improved the collaboration between the University of Louisville, the University of Kentucky, and NREL. The cluster hired a new faculty member for ultra-fast transient spectroscopy, and enabled the mentoring of one research scientist, two postdoctoral scholars and ten graduate students. Work was accomplished with three focused cluster projects: organic and photoelectrochemical solar cells, solar fuels, and thermionic energy conversion.

  17. Organic Light Emitting Devices with Linearly-Graded Mixed Host Architecture

    NASA Astrophysics Data System (ADS)

    Lee, Sang Min

    Organic Light Emitting Devices (OLEDs) with a linearly-graded mixed (LGM) host architecture in the emissive layer (EML) were studied by the application of a newly-developed thermal deposition boat. A new thermal deposition boat, featuring indirect deposition control and fast rate response, was developed in order to make an evaporation coater of high space utilization and to achieve a real time linearly-graded rate control during the device fabrication process. A new design of dual-hole boat, based on the reduced wall resistance of the side hole toward the vapor flow, enabled the indirect deposition rate control with sufficient control accuracy by using the feature of the stable ratio of rates from top and side holes. Minimizing the thermal mass of the body and designing a direct heat transfer with a coil placed inside the boat resulted in the realization of the linearly-graded deposition rate within acceptable deviation range. Thanks to the feature of fast rate response, it was possible to control the linearly-graded rate of each host material during the process and to apply the architecture to some of the fluorescent and phosphorescent OLED devices. The reported efficiency improvement of a fluorescent OLED, based on step-graded junction in the literature, was well reproduced in an OLED with a LGM architecture, demonstrating that charge balance in the emissive layer can be further improved using the LGM architecture. By minimizing the internal energy barrier in the LGM device, a higher EL efficiency was well demonstrated over the uniformly-mixed (UM) host device, where residual internal interfaces were present as additional quenching sites in the EML. Similar effects were observed in blue phosphorescent OLED devices, where the mobility of the hole transport material (HTM) was usually much higher than that of the electron transport material (ETM) such that the recombination zone was more localized at the EML/ETL interface. It was found that the main effect of the

  18. fastKDE

    SciTech Connect

    O'Brien, Travis A.; Kashinath, Karthik

    2015-05-22

    This software implements the fast, self-consistent probability density estimation described by O'Brien et al. (2014, doi: ). It uses a non-uniform fast Fourier transform technique to reduce the computational cost of an objective and self-consistent kernel density estimation method.

  19. Fast and effective?

    PubMed

    Trueland, Jennifer

    2013-12-18

    The 5.2 diet involves two days of fasting each week. It is being promoted as the key to sustained weight loss, as well as wider health benefits, despite the lack of evidence on the long-term effects. Nurses need to support patients who wish to try intermittent fasting. PMID:24345130

  20. MSAT network architecture

    NASA Technical Reports Server (NTRS)

    Davies, N. G.; Skerry, B.

    1990-01-01

    The Mobile Satellite (MSAT) communications system will support mobile voice and data services using circuit switched and packet switched facilities with interconnection to the public switched telephone network and private networks. Control of the satellite network will reside in a Network Control System (NCS) which is being designed to be extremely flexible to provide for the operation of the system initially with one multi-beam satellite, but with capability to add additional satellites which may have other beam configurations. The architecture of the NCS is described. The signalling system must be capable of supporting the protocols for the assignment of circuits for mobile public telephone and private network calls as well as identifying packet data networks. The structure of a straw-man signalling system is discussed.

  1. Planning in subsumption architectures

    NASA Technical Reports Server (NTRS)

    Chalfant, Eugene C.

    1994-01-01

    A subsumption planner using a parallel distributed computational paradigm based on the subsumption architecture for control of real-world capable robots is described. Virtual sensor state space is used as a planning tool to visualize the robot's anticipated effect on its environment. Decision sequences are generated based on the environmental situation expected at the time the robot must commit to a decision. Between decision points, the robot performs in a preprogrammed manner. A rudimentary, domain-specific partial world model contains enough information to extrapolate the end results of the rote behavior between decision points. A collective network of predictors operates in parallel with the reactive network forming a recurrrent network which generates plans as a hierarchy. Details of a plan segment are generated only when its execution is imminent. The use of the subsumption planner is demonstrated by a simple maze navigation problem.

  2. BioArchitecture

    PubMed Central

    Gunning, Peter

    2012-01-01

    BioArchitecture is a term used to describe the organization and regulation of biological space. It applies to the principles which govern the structure of molecules, polymers and mutiprotein complexes, organelles, membranes and their organization in the cytoplasm and the nucleus. It also covers the integration of cells into their three dimensional environment at the level of cell-matrix, cell-cell interactions, integration into tissue/organ structure and function and finally into the structure of the organism. This review will highlight studies at all these levels which are providing a new way to think about the relationship between the organization of biological space and the function of biological systems. PMID:23267413

  3. The architecture of personality.

    PubMed

    Cervone, David

    2004-01-01

    This article presents a theoretical framework for analyzing psychological systems that contribute to the variability, consistency, and cross-situational coherence of personality functioning. In the proposed knowledge-and-appraisal personality architecture (KAPA), personality structures and processes are delineated by combining 2 principles: distinctions (a) between knowledge structures and appraisal processes and (b) among intentional cognitions with varying directions of fit, with the latter distinction differentiating among beliefs, evaluative standards, and aims. Basic principles of knowledge activation and use illuminate relations between knowledge and appraisal, yielding a synthetic account of personality structures and processes. Novel empirical data illustrate the heuristic value of the knowledge/appraisal distinction by showing how self-referent and situational knowledge combine to foster cross-situational coherence in appraisals of self-efficacy. PMID:14756593

  4. Functional Biomimetic Architectures

    NASA Astrophysics Data System (ADS)

    Levine, Paul M.

    N-substituted glycine oligomers, or 'peptoids,' are a class of sequence--specific foldamers composed of tertiary amide linkages, engendering proteolytic stability and enhanced cellular permeability. Peptoids are notable for their facile synthesis, sequence diversity, and ability to fold into distinct secondary structures. In an effort to establish new functional peptoid architectures, we utilize the copper-catalyzed azide-alkyne [3+2] cycloaddition (CuAAC) reaction to generate peptidomimetic assemblies bearing bioactive ligands that specifically target and modulate Androgen Receptor (AR) activity, a major therapeutic target for prostate cancer. Additionally, we explore chemical ligation protocols to generate semi-synthetic hybrid biomacromolecules capable of exhibiting novel structures and functions not accessible to fully biosynthesized proteins.

  5. Power Systems Control Architecture

    SciTech Connect

    James Davidson

    2005-01-01

    A diagram provided in the report depicts the complexity of the power systems control architecture used by the national power structure. It shows the structural hierarchy and the relationship of the each system to those other systems interconnected to it. Each of these levels provides a different focus for vulnerability testing and has its own weaknesses. In evaluating each level, of prime concern is what vulnerabilities exist that provide a path into the system, either to cause the system to malfunction or to take control of a field device. An additional vulnerability to consider is can the system be compromised in such a manner that the attacker can obtain critical information about the system and the portion of the national power structure that it controls.

  6. Multiprocessor architectural study

    NASA Technical Reports Server (NTRS)

    Kosmala, A. L.; Stanten, S. F.; Vandever, W. H.

    1972-01-01

    An architectural design study was made of a multiprocessor computing system intended to meet functional and performance specifications appropriate to a manned space station application. Intermetrics, previous experience, and accumulated knowledge of the multiprocessor field is used to generate a baseline philosophy for the design of a future SUMC* multiprocessor. Interrupts are defined and the crucial questions of interrupt structure, such as processor selection and response time, are discussed. Memory hierarchy and performance is discussed extensively with particular attention to the design approach which utilizes a cache memory associated with each processor. The ability of an individual processor to approach its theoretical maximum performance is then analyzed in terms of a hit ratio. Memory management is envisioned as a virtual memory system implemented either through segmentation or paging. Addressing is discussed in terms of various register design adopted by current computers and those of advanced design.

  7. Mars Exploration Architecture

    NASA Technical Reports Server (NTRS)

    Jordan, James F.; Miller, Sylvia L.

    2000-01-01

    The architecture of NASA's program of robotic Mars exploration missions received an intense scrutiny during the summer months of 1998. We present here the results of that scrutiny, and describe a list of Mars exploration missions which are now being proposed by the nation's space agency. The heart of the new program architecture consists of missions which will return samples of Martian rocks and soil back to Earth for analysis. A primary scientific goal for these missions is to understand Mars as a possible abode of past or present life. The current level of sophistication for detecting markers of biological processes and fossil or extant life forms is much higher in Earth-based laboratories than possible with remotely deployed instrumentation, and will remain so for at least the next decade. Hence, bringing Martian samples back to Earth is considered the best way to search for the desired evidence. A Mars sample return mission takes approximately three years to complete. Transit from Earth to Mars requires almost a single year. After a lapse of time of almost a year at Mars, during which orbital and surface operations can take place, and the correct return launch energy constraints are met, a Mars-to-Earth return flight can be initiated. This return leg also takes approximately one year. Opportunities to launch these 3-year sample return missions occur about every 2 years. The figure depicts schedules for flights to and from Mars for Earth launches in 2003, 2005, 2007 and 2009. Transits for less than 180 deg flight angle, measured from the sun, and more than 180 deg are both shown.

  8. Secure Storage Architectures

    SciTech Connect

    Aderholdt, Ferrol; Caldwell, Blake A; Hicks, Susan Elaine; Koch, Scott M; Naughton, III, Thomas J; Pogge, James R; Scott, Stephen L; Shipman, Galen M; Sorrillo, Lawrence

    2015-01-01

    The purpose of this report is to clarify the challenges associated with storage for secure enclaves. The major focus areas for the report are: - review of relevant parallel filesystem technologies to identify assets and gaps; - review of filesystem isolation/protection mechanisms, to include native filesystem capabilities and auxiliary/layered techniques; - definition of storage architectures that can be used for customizable compute enclaves (i.e., clarification of use-cases that must be supported for shared storage scenarios); - investigate vendor products related to secure storage. This study provides technical details on the storage and filesystem used for HPC with particular attention on elements that contribute to creating secure storage. We outline the pieces for a a shared storage architecture that balances protection and performance by leveraging the isolation capabilities available in filesystems and virtualization technologies to maintain the integrity of the data. Key Points: There are a few existing and in-progress protection features in Lustre related to secure storage, which are discussed in (Chapter 3.1). These include authentication capabilities like GSSAPI/Kerberos and the in-progress work for GSSAPI/Host-keys. The GPFS filesystem provides native support for encryption, which is not directly available in Lustre. Additionally, GPFS includes authentication/authorization mechanisms for inter-cluster sharing of filesystems (Chapter 3.2). The limitations of key importance for secure storage/filesystems are: (i) restricting sub-tree mounts for parallel filesystem (which is not directly supported in Lustre or GPFS), and (ii) segregation of hosts on the storage network and practical complications with dynamic additions to the storage network, e.g., LNET. A challenge for VM based use cases will be to provide efficient IO forwarding of the parallel filessytem from the host to the guest (VM). There are promising options like para-virtualized filesystems to

  9. Efficient Architecture for Spike Sorting in Reconfigurable Hardware

    PubMed Central

    Hwang, Wen-Jyi; Lee, Wei-Hao; Lin, Shiow-Jyu; Lai, Sheng-Ying

    2013-01-01

    This paper presents a novel hardware architecture for fast spike sorting. The architecture is able to perform both the feature extraction and clustering in hardware. The generalized Hebbian algorithm (GHA) and fuzzy C-means (FCM) algorithm are used for feature extraction and clustering, respectively. The employment of GHA allows efficient computation of principal components for subsequent clustering operations. The FCM is able to achieve near optimal clustering for spike sorting. Its performance is insensitive to the selection of initial cluster centers. The hardware implementations of GHA and FCM feature low area costs and high throughput. In the GHA architecture, the computation of different weight vectors share the same circuit for lowering the area costs. Moreover, in the FCM hardware implementation, the usual iterative operations for updating the membership matrix and cluster centroid are merged into one single updating process to evade the large storage requirement. To show the effectiveness of the circuit, the proposed architecture is physically implemented by field programmable gate array (FPGA). It is embedded in a System-on-Chip (SOC) platform for performance measurement. Experimental results show that the proposed architecture is an efficient spike sorting design for attaining high classification correct rate and high speed computation. PMID:24189331

  10. A Tool for Managing Software Architecture Knowledge

    SciTech Connect

    Babar, Muhammad A.; Gorton, Ian

    2007-08-01

    This paper describes a tool for managing architectural knowledge and rationale. The tool has been developed to support a framework for capturing and using architectural knowledge to improve the architecture process. This paper describes the main architectural components and features of the tool. The paper also provides examples of using the tool for supporting wellknown architecture design and analysis methods.

  11. SpaceWire Architectures: Present and Future

    NASA Technical Reports Server (NTRS)

    Rakow, Glen Parker

    2006-01-01

    A viewgraph presentation on current and future spacewire architectures is shown. The topics include: 1) Current Spacewire Architectures: Swift Data Flow; 2) Current SpaceWire Architectures : LRO Data Flow; 3) Current Spacewire Architectures: JWST Data Flow; 4) Current SpaceWire Architectures; 5) Traditional Systems; 6) Future Systems; 7) Advantages; and 8) System Engineer Toolkit.

  12. Architectural Portfolio 2001: Main Winners.

    ERIC Educational Resources Information Center

    American School & University, 2001

    2001-01-01

    Presents descriptions and photographs of the following two American School and University Architectural Portfolio main winners for 2001: Chesterton, Indiana's Chesterton High School and Lied Library at the University of Nevada, Las Vegas. Included are each project's vital statistics, the architectural firm involved, and a list of designers.(GR)

  13. Dynamic Weather Routes Architecture Overview

    NASA Technical Reports Server (NTRS)

    Eslami, Hassan; Eshow, Michelle

    2014-01-01

    Dynamic Weather Routes Architecture Overview, presents the high level software architecture of DWR, based on the CTAS software framework and the Direct-To automation tool. The document also covers external and internal data flows, required dataset, changes to the Direct-To software for DWR, collection of software statistics, and the code structure.

  14. Interior Design in Architectural Education

    ERIC Educational Resources Information Center

    Gurel, Meltem O.; Potthoff, Joy K.

    2006-01-01

    The domain of interiors constitutes a point of tension between practicing architects and interior designers. Design of interior spaces is a significant part of architectural profession. Yet, to what extent does architectural education keep pace with changing demands in rendering topics that are identified as pertinent to the design of interiors?…

  15. Space Telecommunications Radio Architecture (STRS)

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.

    2006-01-01

    A software defined radio (SDR) architecture used in space-based platforms proposes to standardize certain aspects of radio development such as interface definitions, functional control and execution, and application software and firmware development. NASA has charted a team to develop an open software defined radio hardware and software architecture to support NASA missions and determine the viability of an Agency-wide Standard. A draft concept of the proposed standard has been released and discussed among organizations in the SDR community. Appropriate leveraging of the JTRS SCA, OMG's SWRadio Architecture and other aspects are considered. A standard radio architecture offers potential value by employing common waveform software instantiation, operation, testing and software maintenance. While software defined radios offer greater flexibility, they also poses challenges to the radio development for the space environment in terms of size, mass and power consumption and available technology. An SDR architecture for space must recognize and address the constraints of space flight hardware, and systems along with flight heritage and culture. NASA is actively participating in the development of technology and standards related to software defined radios. As NASA considers a standard radio architecture for space communications, input and coordination from government agencies, the industry, academia, and standards bodies is key to a successful architecture. The unique aspects of space require thorough investigation of relevant terrestrial technologies properly adapted to space. The talk will describe NASA s current effort to investigate SDR applications to space missions and a brief overview of a candidate architecture under consideration for space based platforms.

  16. Fast ion JET diagnostics: confinement and losses

    SciTech Connect

    Kiptily, V. G.; Pinches, S. D.; Sharapov, S. E.; Syme, D. B.; Cecconello, M.; Darrow, D.; Hill, K.; Goloborod'ko, V.; Yavorskij, V.; Johnson, T.; Murari, A.; Reich, M.; Gorini, G.; Zoita, V.

    2008-03-12

    A study of magnetically confined fast ions in tokamaks plays an important role in burning plasma research. To reach ignition and steady burning of a reactor plasma an adequate confinement of energetic ions produced by NBI heating, accelerated with ICRF and born in fusion reactions is essential to provide efficient heating of the bulk plasma. Thus, investigation of the fast ion behaviour is an immediate task for present-day large machines, such as JET, in order to understand the main mechanisms of slowing down, redistribution and losses, and to develop optimal plasma scenarios. Today's JET has an enhanced suite of fast ion diagnostics both of confined and lost ions that enable to significantly contribute to this important area of research. Fast ion populations of p, d, t, {sup 3}He and {sup 4}He, made with ICRF, NBI, and fusion reactions have been investigated in experiments on JET with sophisticated diagnostics in conventional and shear-reversed plasmas, exploring a wide range of effects. This paper will introduce to the JET fast-ion diagnostic techniques and will give an overview of recent observations. A synergy of the unique diagnostic set was utilised in JET, and studies of the response of fast ions to MHD modes (e.g. tornado modes, sawtooth crashes), fast {sup 3}He-ions behaviour in shear-reversed plasmas are impressive examples of that. Some results on fast ion losses in JET experiments with various levels of the toroidal field ripple will be demonstrated.

  17. Fasting during Ramadan in adolescents with diabetes

    PubMed Central

    Zabeen, Bedowra; Tayyeb, Samin; Benarjee, Biplob; Baki, Abdul; Nahar, Jebun; Mohsin, Fauzia; Nahar, Nazmun; Azad, Kishwar

    2014-01-01

    Background: Fasting (Sawm) during Ramadan, one of the five pillars of Islam is obligatory for all healthy adult and adolescent Muslims from the age of 12 years. Some children with diabetes, despite their exemption insist on fasting in Ramadan. We evaluated the safety of fasting among children with type 1 diabetes. Materials and Mathods: A prospective observational study was designed for diabetic children and adolescents who wish to fast during Ramadan 2012. Patients with their caregivers were given intensive education and instructions were provided by diabetic educators, dieticians and physicians on insulin adjustment, home blood glucose monitoring and dietary adjustments prior to Ramadan. Results: A total of 33 children and adolescents were included in this study. Of these, 16 were male and 17 were female. Majority (60.6%) of the patients could complete their fasting during the Ramadan. Patients were divided into two groups, those who completed fasting were considered as Group-I, whereas patients who broke the fast were in Group-ll. Blood glucose, hemoglobin A1c weight, and insulin dose before and after Ramadan in two groups showed no significant difference. Conclusion: Children older than 11 years of age with type 1 diabetes mellitus with conventional twice-a-day regimen can fast safely during Ramadan provided they have proper education and intensive follow-up during Ramadan. PMID:24701429

  18. Fast Neutron Sensitivity with HPGe

    SciTech Connect

    Seifert, Allen; Hensley, Walter K.; Siciliano, Edward R.; Pitts, W. K.

    2008-01-22

    In addition to being excellent gamma-ray detectors, germanium detectors are also sensitive to fast neutrons. Incident neutrons undergo inelastic scattering {Ge(n,n')Ge*} off germanium nuclei and the resulting excited states emit gamma rays or conversion electrons. The response of a standard 140% high-purity germanium (HPGe) detector with a bismuth germanate (BGO) anti-coincidence shield was measured for several neutron sources to characterize the ability of the HPGe detector to detect fast neutrons. For a sensitivity calculation performed using the characteristic fast neutron response peak that occurs at 692 keV, the 140% germanium detector system exhibited a sensitivity of ~175 counts / kg of WGPumetal in 1000 seconds at a source-detector distance of 1 meter with 4 in. of lead shielding between source and detector. Theoretical work also indicates that it might be possible to use the shape of the fast-neutron inelastic scattering signatures (specifically, the end-point energy of the long high energy tail of the resulting asymmetric peak) to gain additional information about the energy distribution of the incident neutron spectrum. However, the experimentally observed end-point energies appear to be almost identical for each of the fast neutron sources counted. Detailed MCNP calculations show that the neutron energy distributions impingent on the detector for these sources are very similar in this experimental configuration, due to neutron scattering in a lead shield (placed between the neutron source and HPGe detector to reduce the gamma ray flux), the BGO anti-coincidence detector, and the concrete floor.

  19. Application performation evaluation of the HTMT architecture.

    SciTech Connect

    Hereld, M.; Judson, I. R.; Stevens, R.

    2004-02-23

    In this report we summarize findings from a study of the predicted performance of a suite of application codes taken from the research environment and analyzed against a modeling framework for the HTMT architecture. We find that the inward bandwidth of the data vortex may be a limiting factor for some applications. We also find that available memory in the cryogenic layer is a constraining factor in the partitioning of applications into parcels. The architecture in several examples may be inadequately exploited; in particular, applications typically did not capitalize well on the available computational power or data organizational capability in the PIM layers. The application suite provided significant examples of wide excursions from the accepted (if simplified) program execution model--in particular, by required complex in-SPELL synchronization between parcels. The availability of the HTMT-C emulation environment did not contribute significantly to the ability to analyze applications, because of the large gap between the available hardware descriptions and parameters in the modeling framework and the types of data that could be collected via HTMT-C emulation runs. Detailed analysis of application performance, and indeed further credible development of the HTMT-inspired program execution model and system architecture, requires development of much better tools. Chief among them are cycle-accurate simulation tools for computational, network, and memory components. Additionally, there is a critical need for a whole system simulation tool to allow detailed programming exercises and performance tests to be developed. We address three issues in this report: (1) The landscape for applications of petaflops computing; (2) The performance of applications on the HTMT architecture; and (3) The effectiveness of HTMT-C as a tool for studying and developing the HTMT architecture. We set the scene with observations about the course of application development as petaflops

  20. Space Elevators Preliminary Architectural View

    NASA Astrophysics Data System (ADS)

    Pullum, L.; Swan, P. A.

    Space Systems Architecture has been expanded into a process by the US Department of Defense for their large scale systems of systems development programs. This paper uses the steps in the process to establishes a framework for Space Elevator systems to be developed and provides a methodology to manage complexity. This new approach to developing a family of systems is based upon three architectural views: Operational View OV), Systems View (SV), and Technical Standards View (TV). The top level view of the process establishes the stages for the development of the first Space Elevator and is called Architectural View - 1, Overview and Summary. This paper will show the guidelines and steps of the process while focusing upon components of the Space Elevator Preliminary Architecture View. This Preliminary Architecture View is presented as a draft starting point for the Space Elevator Project.

  1. A repeating fast radio burst.

    PubMed

    Spitler, L G; Scholz, P; Hessels, J W T; Bogdanov, S; Brazier, A; Camilo, F; Chatterjee, S; Cordes, J M; Crawford, F; Deneva, J; Ferdman, R D; Freire, P C C; Kaspi, V M; Lazarus, P; Lynch, R; Madsen, E C; McLaughlin, M A; Patel, C; Ransom, S M; Seymour, A; Stairs, I H; Stappers, B W; van Leeuwen, J; Zhu, W W

    2016-03-10

    Fast radio bursts are millisecond-duration astronomical radio pulses of unknown physical origin that appear to come from extragalactic distances. Previous follow-up observations have failed to find additional bursts at the same dispersion measure (that is, the integrated column density of free electrons between source and telescope) and sky position as the original detections. The apparent non-repeating nature of these bursts has led to the suggestion that they originate in cataclysmic events. Here we report observations of ten additional bursts from the direction of the fast radio burst FRB 121102. These bursts have dispersion measures and sky positions consistent with the original burst. This unambiguously identifies FRB 121102 as repeating and demonstrates that its source survives the energetic events that cause the bursts. Additionally, the bursts from FRB 121102 show a wide range of spectral shapes that appear to be predominantly intrinsic to the source and which vary on timescales of minutes or less. Although there may be multiple physical origins for the population of fast radio bursts, these repeat bursts with high dispersion measure and variable spectra specifically seen from the direction of FRB 121102 support an origin in a young, highly magnetized, extragalactic neutron star. PMID:26934226

  2. A repeating fast radio burst.

    PubMed

    Spitler, L G; Scholz, P; Hessels, J W T; Bogdanov, S; Brazier, A; Camilo, F; Chatterjee, S; Cordes, J M; Crawford, F; Deneva, J; Ferdman, R D; Freire, P C C; Kaspi, V M; Lazarus, P; Lynch, R; Madsen, E C; McLaughlin, M A; Patel, C; Ransom, S M; Seymour, A; Stairs, I H; Stappers, B W; van Leeuwen, J; Zhu, W W

    2016-03-10

    Fast radio bursts are millisecond-duration astronomical radio pulses of unknown physical origin that appear to come from extragalactic distances. Previous follow-up observations have failed to find additional bursts at the same dispersion measure (that is, the integrated column density of free electrons between source and telescope) and sky position as the original detections. The apparent non-repeating nature of these bursts has led to the suggestion that they originate in cataclysmic events. Here we report observations of ten additional bursts from the direction of the fast radio burst FRB 121102. These bursts have dispersion measures and sky positions consistent with the original burst. This unambiguously identifies FRB 121102 as repeating and demonstrates that its source survives the energetic events that cause the bursts. Additionally, the bursts from FRB 121102 show a wide range of spectral shapes that appear to be predominantly intrinsic to the source and which vary on timescales of minutes or less. Although there may be multiple physical origins for the population of fast radio bursts, these repeat bursts with high dispersion measure and variable spectra specifically seen from the direction of FRB 121102 support an origin in a young, highly magnetized, extragalactic neutron star.

  3. Fast Physics Testbed for the FASTER Project

    SciTech Connect

    Lin, W.; Liu, Y.; Hogan, R.; Neggers, R.; Jensen, M.; Fridlind, A.; Lin, Y.; Wolf, A.

    2010-03-15

    This poster describes the Fast Physics Testbed for the new FAst-physics System Testbed and Research (FASTER) project. The overall objective is to provide a convenient and comprehensive platform for fast turn-around model evaluation against ARM observations and to facilitate development of parameterizations for cloud-related fast processes represented in global climate models. The testbed features three major components: a single column model (SCM) testbed, an NWP-Testbed, and high-resolution modeling (HRM). The web-based SCM-Testbed features multiple SCMs from major climate modeling centers and aims to maximize the potential of SCM approach to enhance and accelerate the evaluation and improvement of fast physics parameterizations through continuous evaluation of existing and evolving models against historical as well as new/improved ARM and other complementary measurements. The NWP-Testbed aims to capitalize on the large pool of operational numerical weather prediction products. Continuous evaluations of NWP forecasts against observations at ARM sites are carried out to systematically identify the biases and skills of physical parameterizations under all weather conditions. The highresolution modeling (HRM) activities aim to simulate the fast processes at high resolution to aid in the understanding of the fast processes and their parameterizations. A four-tier HRM framework is established to augment the SCM- and NWP-Testbeds towards eventual improvement of the parameterizations.

  4. A model for fast axonal transport.

    PubMed

    Blum, J J; Reed, M C

    1985-01-01

    A model for fast axonal transport is developed in which the essential features are that organelles may interact with mechanochemical cross-bridges that in turn interact with microtubules, forming an organelle-engine-microtubule complex which is transported along the microtubules. Computer analysis of the equations derived to describe such a system show that most of the experimental observations on fast axonal transport can be simulated by the model, indicating that the model is useful for the interpretation and design of experiments aimed at clarifying the mechanism of fast axonal transport. PMID:2416456

  5. Causes of Extremely Fast CMEs

    NASA Technical Reports Server (NTRS)

    Feynman, Joan; Ruzmaikin, Alexander

    2006-01-01

    We study CMEs observed by LASCO to have plane of the sky velocities exceeding 1500 km/sec. We find that these extremely fast CMEs are typically associated with flares accompanied by erupting prominences. Our results are consistent with a single CME initiation process that consists of three stages. The initial stage is brought about by the emergence of new magnetic flux, which interacts with the pre-existing magnetic configuration and results in a slow rise of the magnetic structure. The second stage is a fast reconnection phase with flaring, filament eruption and a sudden increase of the rise velocity of the magnetic structure (CME). The third stage consists of propagation in the corona. We discuss the sources of these CMEs and the need for improved understanding of the first and third stages.

  6. Biology-inspired Architecture for Situation Management

    NASA Technical Reports Server (NTRS)

    Jones, Kennie H.; Lodding, Kenneth N.; Olariu, Stephan; Wilson, Larry; Xin, Chunsheng

    2006-01-01

    Situation Management is a rapidly developing science combining new techniques for data collection with advanced methods of data fusion to facilitate the process leading to correct decisions prescribing action. Current research focuses on reducing increasing amounts of diverse data to knowledge used by decision makers and on reducing time between observations, decisions and actions. No new technology is more promising for increasing the diversity and fidelity of observations than sensor networks. However, current research on sensor networks concentrates on a centralized network architecture. We believe this trend will not realize the full potential of situation management. We propose a new architecture modeled after biological ecosystems where motes are autonomous and intelligent, yet cooperate with local neighborhoods. Providing a layered approach, they sense and act independently when possible, and cooperate with neighborhoods when necessary. The combination of their local actions results in global effects. While situation management research is currently dominated by military applications, advances envisioned for industrial and business applications have similar requirements. NASA has requirements for intelligent and autonomous systems in future missions that can benefit from advances in situation management. We describe requirements for the Integrated Vehicle Health Management program where our biology-inspired architecture provides a layered approach and decisions can be made at the proper level to improve safety, reduce costs, and improve efficiency in making diagnostic and prognostic assessments of the structural integrity, aerodynamic characteristics, and operation of aircraft.

  7. Reusable fast opening switch

    DOEpatents

    Van Devender, John P.; Emin, David

    1986-01-01

    A reusable fast opening switch for transferring energy, in the form of a high power pulse, from an electromagnetic storage device such as an inductor into a load. The switch is efficient, compact, fast and reusable. The switch comprises a ferromagnetic semiconductor which undergoes a fast transition between conductive and insulating states at a critical temperature and which undergoes the transition without a phase change in its crystal structure. A semiconductor such as europium rich europhous oxide, which undergoes a conductor to insulator transition when it is joule heated from its conductor state, can be used to form the switch.

  8. Reusable fast opening switch

    DOEpatents

    Van Devender, J.P.; Emin, D.

    1983-12-21

    A reusable fast opening switch for transferring energy, in the form of a high power pulse, from an electromagnetic storage device such as an inductor into a load. The switch is efficient, compact, fast and reusable. The switch comprises a ferromagnetic semiconductor which undergoes a fast transition between conductive and metallic states at a critical temperature and which undergoes the transition without a phase change in its crystal structure. A semiconductor such as europium rich europhous oxide, which undergoes a conductor to insulator transition when it is joule heated from its conductor state, can be used to form the switch.

  9. fast-matmul

    2014-11-26

    This software provides implementations of fast matrix multiplication algorithms. These algorithms perform fewer floating point operations than the classical cubic algorithm. The software uses code generation to automatically implement the fast algorithms based on high-level descriptions. The code serves two general purposes. The first is to demonstrate that these fast algorithms can out-perform vendor matrix multiplication algorithms for modest problem sizes on a single machine. The second is to rapidly prototype many variations of fastmore » matrix multiplication algorithms to encourage future research in this area. The implementations target sequential and shared memory parallel execution.« less

  10. Fast Breeder Reactor studies

    SciTech Connect

    Till, C.E.; Chang, Y.I.; Kittel, J.H.; Fauske, H.K.; Lineberry, M.J.; Stevenson, M.G.; Amundson, P.I.; Dance, K.D.

    1980-07-01

    This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts.

  11. Distributed visualization framework architecture

    NASA Astrophysics Data System (ADS)

    Mishchenko, Oleg; Raman, Sundaresan; Crawfis, Roger

    2010-01-01

    An architecture for distributed and collaborative visualization is presented. The design goals of the system are to create a lightweight, easy to use and extensible framework for reasearch in scientific visualization. The system provides both single user and collaborative distributed environment. System architecture employs a client-server model. Visualization projects can be synchronously accessed and modified from different client machines. We present a set of visualization use cases that illustrate the flexibility of our system. The framework provides a rich set of reusable components for creating new applications. These components make heavy use of leading design patterns. All components are based on the functionality of a small set of interfaces. This allows new components to be integrated seamlessly with little to no effort. All user input and higher-level control functionality interface with proxy objects supporting a concrete implementation of these interfaces. These light-weight objects can be easily streamed across the web and even integrated with smart clients running on a user's cell phone. The back-end is supported by concrete implementations wherever needed (for instance for rendering). A middle-tier manages any communication and synchronization with the proxy objects. In addition to the data components, we have developed several first-class GUI components for visualization. These include a layer compositor editor, a programmable shader editor, a material editor and various drawable editors. These GUI components interact strictly with the interfaces. Access to the various entities in the system is provided by an AssetManager. The asset manager keeps track of all of the registered proxies and responds to queries on the overall system. This allows all user components to be populated automatically. Hence if a new component is added that supports the IMaterial interface, any instances of this can be used in the various GUI components that work with this

  12. The REmote Patient Education in a Telemedicine Environment Architecture (REPETE).

    PubMed

    Lai, Albert M; Starren, Justin B; Kaufman, David R; Mendonça, Eneida A; Palmas, Walter; Nieh, Jason; Shea, Steven

    2008-05-01

    The objective of the study was to develop and implement an architecture for remote training that can be used in the narrowband home telemedicine environment. A remote training architecture, the REmote Patient Education in a Telemedicine Environment (REPETE) architecture, using a remote control protocol (RCP) was developed. A set of design criteria was specified. The developed architecture was integrated into the IDEATel home telemedicine unit (HTU) and evaluated against these design criteria using a combination of technical and expert evaluations. Technical evaluation of the architecture demonstrated that remote cursor movements and positioning displayed on the HTU were smooth and effectively real-time. The trainers were able to observe within approximately 2 seconds lag what the patient sees on their HTU screen. Evaluation of the architecture by experts was favorable. Responses to a Likert scale questionnaire regarding audio quality and remote control performance indicated that the expert evaluators thought that the audio quality and remote control performance were adequate for remote training. All evaluators strongly agreed that the system would be useful for training patients. The REPETE architecture supports basic training needs over a narrowband dial-up connection. We were able to maintain an audio chat simultaneously with performing a remote training session, while maintaining both acceptable audio quality and remote control performance. The RCP provides a mechanism to provide training without requiring a trainer to go to the patient's home and effectively supports deictic referencing to on screen objects.

  13. Planetary cubesats - mission architectures

    NASA Astrophysics Data System (ADS)

    Bousquet, Pierre W.; Ulamec, Stephan; Jaumann, Ralf; Vane, Gregg; Baker, John; Clark, Pamela; Komarek, Tomas; Lebreton, Jean-Pierre; Yano, Hajime

    2016-07-01

    Miniaturisation of technologies over the last decade has made cubesats a valid solution for deep space missions. For example, a spectacular set 13 cubesats will be delivered in 2018 to a high lunar orbit within the frame of SLS' first flight, referred to as Exploration Mission-1 (EM-1). Each of them will perform autonomously valuable scientific or technological investigations. Other situations are encountered, such as the auxiliary landers / rovers and autonomous camera that will be carried in 2018 to asteroid 1993 JU3 by JAXA's Hayabusas 2 probe, and will provide complementary scientific return to their mothership. In this case, cubesats depend on a larger spacecraft for deployment and other resources, such as telecommunication relay or propulsion. For both situations, we will describe in this paper how cubesats can be used as remote observatories (such as NEO detection missions), as technology demonstrators, and how they can perform or contribute to all steps in the Deep Space exploration sequence: Measurements during Deep Space cruise, Body Fly-bies, Body Orbiters, Atmospheric probes (Jupiter probe, Venus atmospheric probes, ..), Static Landers, Mobile landers (such as balloons, wheeled rovers, small body rovers, drones, penetrators, floating devices, …), Sample Return. We will elaborate on mission architectures for the most promising concepts where cubesat size devices offer an advantage in terms of affordability, feasibility, and increase of scientific return.

  14. Array processor architecture

    NASA Technical Reports Server (NTRS)

    Barnes, George H. (Inventor); Lundstrom, Stephen F. (Inventor); Shafer, Philip E. (Inventor)

    1983-01-01

    A high speed parallel array data processing architecture fashioned under a computational envelope approach includes a data base memory for secondary storage of programs and data, and a plurality of memory modules interconnected to a plurality of processing modules by a connection network of the Omega gender. Programs and data are fed from the data base memory to the plurality of memory modules and from hence the programs are fed through the connection network to the array of processors (one copy of each program for each processor). Execution of the programs occur with the processors operating normally quite independently of each other in a multiprocessing fashion. For data dependent operations and other suitable operations, all processors are instructed to finish one given task or program branch before all are instructed to proceed in parallel processing fashion on the next instruction. Even when functioning in the parallel processing mode however, the processors are not locked-step but execute their own copy of the program individually unless or until another overall processor array synchronization instruction is issued.

  15. Distributed multiport memory architecture

    NASA Technical Reports Server (NTRS)

    Kohl, W. H. (Inventor)

    1983-01-01

    A multiport memory architecture is diclosed for each of a plurality of task centers connected to a command and data bus. Each task center, includes a memory and a plurality of devices which request direct memory access as needed. The memory includes an internal data bus and an internal address bus to which the devices are connected, and direct timing and control logic comprised of a 10-state ring counter for allocating memory devices by enabling AND gates connected to the request signal lines of the devices. The outputs of AND gates connected to the same device are combined by OR gates to form an acknowledgement signal that enables the devices to address the memory during the next clock period. The length of the ring counter may be effectively lengthened to any multiple of ten to allow for more direct memory access intervals in one repetitive sequence. One device is a network bus adapter which serially shifts onto the command and data bus, a data word (8 bits plus control and parity bits) during the next ten direct memory access intervals after it has been granted access. The NBA is therefore allocated only one access in every ten intervals, which is a predetermined interval for all centers. The ring counters of all centers are periodically synchronized by DMA SYNC signal to assure that all NBAs be able to function in synchronism for data transfer from one center to another.

  16. Lunar Exploration Architectures

    NASA Astrophysics Data System (ADS)

    Perino, Maria Antonietta

    The international space exploration plans foresee in the next decades multiple robotic and human missions to Moon and robotic missions to Mars, Phobos and other destinations. Notably the US has since the announcement of the US space exploration vision by President G. W. Bush in 2004 made significant progress in the further definition of its exploration programme focusing in the next decades in particular on human missions to Moon. Given the highly demanding nature of these missions, different initiatives have been recently taken at international level to discuss how the lunar exploration missions currently planned at national level could fit in a coordinate roadmap and contribute to lunar exploration. Thales Alenia Space - Italia is leading 3 studies for the European Space Agency focus on the analysis of the transportation, in-space and surface architectures required to meet ESA provided stakeholders exploration objectives and requirements. Main result of this activity is the identification of European near-term priorities for exploration missions and European long-term priorities for capability and technology developments related to planetary exploration missions. This paper will present the main studies' results drawing a European roadmap for exploration missions and capability and technology developments related to lunar exploration infrastructure development, taking into account the strategic and programmatic indications for exploration coming from ESA as well as the international exploration context.

  17. VASSAR: Value assessment of system architectures using rules

    NASA Astrophysics Data System (ADS)

    Selva, D.; Crawley, E. F.

    - eholder requirements is a good architecture. The assessment process is thus fundamentally seen as a pattern matching process where capabilities match requirements, which motivates the use of rule-based expert systems (RBES). This paper describes the VASSAR methodology and shows how it can be applied to a large complex space system, namely an Earth observation satellite system. Companion papers show its applicability to the NASA space communications and navigation program and the joint NOAA-DoD NPOESS program.

  18. The architectural design of networks of protein domain architectures.

    PubMed

    Hsu, Chia-Hsin; Chen, Chien-Kuo; Hwang, Ming-Jing

    2013-08-23

    Protein domain architectures (PDAs), in which single domains are linked to form multiple-domain proteins, are a major molecular form used by evolution for the diversification of protein functions. However, the design principles of PDAs remain largely uninvestigated. In this study, we constructed networks to connect domain architectures that had grown out from the same single domain for every single domain in the Pfam-A database and found that there are three main distinctive types of these networks, which suggests that evolution can exploit PDAs in three different ways. Further analysis showed that these three different types of PDA networks are each adopted by different types of protein domains, although many networks exhibit the characteristics of more than one of the three types. Our results shed light on nature's blueprint for protein architecture and provide a framework for understanding architectural design from a network perspective.

  19. Systolic architecture for heirarchical clustering

    SciTech Connect

    Ku, L.C.

    1984-01-01

    Several hierarchical clustering methods (including single-linkage complete-linkage, centroid, and absolute overlap methods) are reviewed. The absolute overlap clustering method is selected for the design of systolic architecture mainly due to its simplicity. Two versions of systolic architectures for the absolute overlap hierarchical clustering algorithm are proposed: one-dimensional version that leads to the development of a two dimensional version which fully takes advantage of the underlying data structure of the problems. The two dimensional systolic architecture can achieve a time complexity of O(m + n) in comparison with the conventional computer implementation of a time complexity of O(m/sup 2*/n).

  20. Microcomponent chemical process sheet architecture

    DOEpatents

    Wegeng, R.S.; Drost, M.K.; Call, C.J.; Birmingham, J.G.; McDonald, C.E.; Kurath, D.E.; Friedrich, M.

    1998-09-22

    The invention is a microcomponent sheet architecture wherein macroscale unit processes are performed by microscale components. The sheet architecture may be a single laminate with a plurality of separate microcomponent sections or the sheet architecture may be a plurality of laminates with one or more microcomponent sections on each laminate. Each microcomponent or plurality of like microcomponents perform at least one chemical process unit operation. A first laminate having a plurality of like first microcomponents is combined with at least a second laminate having a plurality of like second microcomponents thereby combining at least two unit operations to achieve a system operation. 26 figs.

  1. Microcomponent chemical process sheet architecture

    DOEpatents

    Wegeng, Robert S.; Drost, M. Kevin; Call, Charles J.; Birmingham, Joseph G.; McDonald, Carolyn Evans; Kurath, Dean E.; Friedrich, Michele

    1998-01-01

    The invention is a microcomponent sheet architecture wherein macroscale unit processes are performed by microscale components. The sheet architecture may be a single laminate with a plurality of separate microcomponent sections or the sheet architecture may be a plurality of laminates with one or more microcomponent sections on each laminate. Each microcomponent or plurality of like microcomponents perform at least one chemical process unit operation. A first laminate having a plurality of like first microcomponents is combined with at least a second laminate having a plurality of like second microcomponents thereby combining at least two unit operations to achieve a system operation.

  2. Telemedicine system interoperability architecture: concept description and architecture overview.

    SciTech Connect

    Craft, Richard Layne, II

    2004-05-01

    In order for telemedicine to realize the vision of anywhere, anytime access to care, it must address the question of how to create a fully interoperable infrastructure. This paper describes the reasons for pursuing interoperability, outlines operational requirements that any interoperability approach needs to consider, proposes an abstract architecture for meeting these needs, identifies candidate technologies that might be used for rendering this architecture, and suggests a path forward that the telemedicine community might follow.

  3. Concentric transmon qubit featuring fast tunability and an anisotropic magnetic dipole moment

    NASA Astrophysics Data System (ADS)

    Braumüller, Jochen; Sandberg, Martin; Vissers, Michael R.; Schneider, Andre; Schlör, Steffen; Grünhaupt, Lukas; Rotzinger, Hannes; Marthaler, Michael; Lukashenko, Alexander; Dieter, Amadeus; Ustinov, Alexey V.; Weides, Martin; Pappas, David P.

    2016-01-01

    We present a planar qubit design based on a superconducting circuit that we call concentric transmon. While employing a straightforward fabrication process using Al evaporation and lift-off lithography, we observe qubit lifetimes and coherence times in the order of 10 μ s . We systematically characterize loss channels such as incoherent dielectric loss, Purcell decay and radiative losses. The implementation of a gradiometric SQUID loop allows for a fast tuning of the qubit transition frequency and therefore for full tomographic control of the quantum circuit. Due to the large loop size, the presented qubit architecture features a strongly increased magnetic dipole moment as compared to conventional transmon designs. This renders the concentric transmon a promising candidate to establish a site-selective passive direct Z ̂ coupling between neighboring qubits, being a pending quest in the field of quantum simulation.

  4. Nanosatellite Architectures for Improved Study of the Hydrologic Cycle

    NASA Astrophysics Data System (ADS)

    Blackwell, W. J.; Osaretin, I.; Cahoy, K.

    2012-12-01

    The need for low-cost, mission-flexible, and rapidly deployable spaceborne sensors that meet stringent performance requirements pervades the NASA Earth Science measurement programs, including especially the recommended NRC Decadal Survey missions. To address these challenges, we present nanosatellite constellation architectures that would profoundly improve both the performance and cost/risk/schedule profiles of NASA Earth and Space Science missions by leveraging recent technology advancements. As a key enabling element, we describe a scalable and mission-flexible 6U CubeSat-based self-organizing constellation architecture (the Distributed Observatory for Monitoring of Earth, henceforth "DOME") that will achieve state-of-the-art performance (and beyond) relative to current systems with respect to spatial, spectral, and radiometric resolution. A focus of this presentation is an assessment of the viability of a cross-linked CubeSat constellation with onboard propulsion systems for high-fidelity Earth and Space Science research. Such architecture could provide game-changing advances by reducing costs by at least an order of magnitude while increasing robustness to launch and sensor failures, allowing fast-track insertion of new technologies, and improving science performance. High-resolution passive microwave atmospheric sounding is an ideal sensing modality for nanosatellite implementation due to rapidly advancing microwave and millimeterwave receiver technology. The DOME constellation would nominally comprise 6U CubeSat Microwave Atmospheric Sounder (CMAS) satellites. Each CMAS satellite would host a complete 6U CubeSat atmospheric sounder, including a radiometer payload module with passive microwave receivers operating near atmospheric absorption lines near 60 and 183.31 GHz, and a spacecraft bus with attitude determination and control, avionics, power, cross-linked communications (spacecraft-to-spacecraft and spacecraft-to-ground), and propulsion systems. A

  5. Fast magnetoacoustic wave trains in coronal holes

    NASA Astrophysics Data System (ADS)

    Pascoe, D. J.; Nakariakov, V. M.; Kupriyanova, E. G.

    2014-08-01

    Context. Rapidly propagating coronal EUV disturbances recently discovered in the solar corona are interpreted in terms of guided fast magnetoacoustic waves. Fast magnetoacoustic waves experience geometric dispersion in waveguides, which causes localised, impulsive perturbations to develop into quasi-periodic wave trains. Aims: We consider the formation of fast wave trains in a super-radially expanding coronal hole modelled by a magnetic funnel with a field-aligned density profile that is rarefied in comparison to the surrounding plasma. This kind of structure is typical of coronal holes, and it forms a fast magnetoacoustic anti-waveguide as a local maximum in the Alfvén speed. Methods: We performed 2D MHD numerical simulations for impulsively generated perturbations to the system. Both sausage and kink perturbations are considered and the role of the density contrast ratio investigated. Results: The anti-waveguide funnel geometry refracts wave energy away from the structure. However, in this geometry the quasi-periodic fast wave trains are found to appear, too, and so can be associated with the observed rapidly propagating coronal EUV disturbances. The wave trains propagate along the external edge of the coronal hole. The fast wave trains generated in coronal holes exhibit less dispersive evolution than in the case of a dense waveguide. Conclusions: We conclude that an impulsive energy release localised in a coronal plasma inhomogeneity develops into a fast wave train for both kink and sausage disturbances and for both waveguide and anti-waveguide transverse plasma profiles.

  6. Astronomical and Cosmological Aspects of Maya Architecture and Urbanism

    NASA Astrophysics Data System (ADS)

    Šprajc, I.

    2009-08-01

    Archaeoastronomical studies carried out so far have shown that the orientations in the ancient Maya architecture were, like elsewhere in Mesoamerica, largely astronomical, mostly referring to sunrises and sunsets on particular dates and allowing the use of observational calendars that facilitated a proper scheduling of agricultural activities. However, the astronomical alignments cannot be understood in purely utilitarian terms. Since the repeatedly occurring directions are most consistently incorporated in monumental architecture of civic and ceremonial urban cores, they must have had an important place in religion and worldview. The characteristics of urban layouts, as well as architectural and other elements associated with important buildings, reveal that the Maya architectural and urban planning was dictated by a complex set of rules, in which astronomical considerations related to practical needs were embedded in a broader framework of cosmological concepts substantiated by political ideology.

  7. An epigenetic toolkit allows for diverse genome architectures in eukaryotes.

    PubMed

    Maurer-Alcalá, Xyrus X; Katz, Laura A

    2015-12-01

    Genome architecture varies considerably among eukaryotes in terms of both size and structure (e.g. distribution of sequences within the genome, elimination of DNA during formation of somatic nuclei). The diversity in eukaryotic genome architectures and the dynamic processes are only possible due to the well-developed epigenetic toolkit, which probably existed in the Last Eukaryotic Common Ancestor (LECA). This toolkit may have arisen as a means of navigating the genomic conflict that arose from the expansion of transposable elements within the ancestral eukaryotic genome. This toolkit has been coopted to support the dynamic nature of genomes in lineages across the eukaryotic tree of life. Here we highlight how the changes in genome architecture in diverse eukaryotes are regulated by epigenetic processes, such as DNA elimination, genome rearrangements, and adaptive changes to genome architecture. The ability to epigenetically modify and regulate genomes has contributed greatly to the diversity of eukaryotes observed today.

  8. The IVOA Architecture

    NASA Astrophysics Data System (ADS)

    Arviset, C.; Gaudet, S.; IVOA Technical Coordination Group

    2012-09-01

    Astronomy produces large amounts of data of many kinds, coming from various sources: science space missions, ground based telescopes, theoretical models, compilation of results, etc. These data and associated processing services are made available via the Internet by "providers", usually large data centres or smaller teams (see Figure 1). The "consumers", be they individual researchers, research teams or computer systems, access these services to do their science. However, inter-connection amongst all these services and between providers and consumers is usually not trivial. The Virtual Observatory (VO) is the necessary "middle layer" framework enabling interoperability between all these providers and consumers in a seamless and transparent manner. Like the web which enables end users and machines to access transparently documents and services wherever and however they are stored, the VO enables the astronomy community to access data and service resources wherever and however they are provided. Over the last decade, the International Virtual Observatory Alliance (IVOA) has been defining various standards to build the VO technical framework for the providers to share their data and services ("Sharing"), and to allow users to find ("Finding") these resources, to get them ("Getting") and to use them ("Using"). To enable these functionalities, the definition of some core astronomically-oriented standards ("VO Core") has also been necessary. This paper will present the official and current IVOA Architecture[1], describing the various building blocks of the VO framework (see Figure 2) and their relation to all existing and in-progress IVOA standards. Additionally, it will show examples of these standards in action, connecting VO "consumers" to VO "providers".

  9. Project Integration Architecture

    NASA Technical Reports Server (NTRS)

    Jones, William Henry

    2008-01-01

    The Project Integration Architecture (PIA) is a distributed, object-oriented, conceptual, software framework for the generation, organization, publication, integration, and consumption of all information involved in any complex technological process in a manner that is intelligible to both computers and humans. In the development of PIA, it was recognized that in order to provide a single computational environment in which all information associated with any given complex technological process could be viewed, reviewed, manipulated, and shared, it is necessary to formulate all the elements of such a process on the most fundamental level. In this formulation, any such element is regarded as being composed of any or all of three parts: input information, some transformation of that input information, and some useful output information. Another fundamental principle of PIA is the assumption that no consumer of information, whether human or computer, can be assumed to have any useful foreknowledge of an element presented to it. Consequently, a PIA-compliant computing system is required to be ready to respond to any questions, posed by the consumer, concerning the nature of the proffered element. In colloquial terms, a PIA-compliant system must be prepared to provide all the information needed to place the element in context. To satisfy this requirement, PIA extends the previously established object-oriented- programming concept of self-revelation and applies it on a grand scale. To enable pervasive use of self-revelation, PIA exploits another previously established object-oriented-programming concept - that of semantic infusion through class derivation. By means of self-revelation and semantic infusion through class derivation, a consumer of information can inquire about the contents of all information entities (e.g., databases and software) and can interact appropriately with those entities. Other key features of PIA are listed.

  10. Dynamic Information Architecture System

    1997-02-12

    The Dynamic Information System (DIAS) is a flexible object-based software framework for concurrent, multidiscplinary modeling of arbitrary (but related) processes. These processes are modeled as interrelated actions caused by and affecting the collection of diverse real-world objects represented in a simulation. The DIAS architecture allows independent process models to work together harmoniously in the same frame of reference and provides a wide range of data ingestion and output capabilities, including Geographic Information System (GIS) typemore » map-based displays and photorealistic visualization of simulations in progress. In the DIAS implementation of the object-based approach, software objects carry within them not only the data which describe their static characteristics, but also the methods, or functions, which describe their dynamic behaviors. There are two categories of objects: (1) Entity objects which have real-world counterparts and are the actors in a simulation, and (2) Software infrastructure objects which make it possible to carry out the simulations. The Entity objects contain lists of Aspect objects, each of which addresses a single aspect of the Entity''s behavior. For example, a DIAS Stream Entity representing a section of a river can have many aspects correspondimg to its behavior in terms of hydrology (as a drainage system component), navigation (as a link in a waterborne transportation system), meteorology (in terms of moisture, heat, and momentum exchange with the atmospheric boundary layer), and visualization (for photorealistic visualization or map type displays), etc. This makes it possible for each real-world object to exhibit any or all of its unique behaviors within the context of a single simulation.« less

  11. The Mothership Mission Architecture

    NASA Astrophysics Data System (ADS)

    Ernst, S. M.; DiCorcia, J. D.; Bonin, G.; Gump, D.; Lewis, J. S.; Foulds, C.; Faber, D.

    2015-12-01

    The Mothership is considered to be a dedicated deep space carrier spacecraft. It is currently being developed by Deep Space Industries (DSI) as a mission concept that enables a broad participation in the scientific exploration of small bodies - the Mothership mission architecture. A Mothership shall deliver third-party nano-sats, experiments and instruments to Near Earth Asteroids (NEOs), comets or moons. The Mothership service includes delivery of nano-sats, communication to Earth and visuals of the asteroid surface and surrounding area. The Mothership is designed to carry about 10 nano-sats, based upon a variation of the Cubesat standard, with some flexibility on the specific geometry. The Deep Space Nano-Sat reference design is a 14.5 cm cube, which accommodates the same volume as a traditional 3U CubeSat. To reduce cost, Mothership is designed as a secondary payload aboard launches to GTO. DSI is offering slots for nano-sats to individual customers. This enables organizations with relatively low operating budgets to closely examine an asteroid with highly specialized sensors of their own choosing and carry out experiments in the proximity of or on the surface of an asteroid, while the nano-sats can be built or commissioned by a variety of smaller institutions, companies, or agencies. While the overall Mothership mission will have a financial volume somewhere between a European Space Agencies' (ESA) S- and M-class mission for instance, it can be funded through a number of small and individual funding sources and programs, hence avoiding the processes associated with traditional space exploration missions. DSI has been able to identify a significant interest in the planetary science and nano-satellite communities.

  12. Parallel architectures and neural networks

    SciTech Connect

    Calianiello, E.R. )

    1989-01-01

    This book covers parallel computer architectures and neural networks. Topics include: neural modeling, use of ADA to simulate neural networks, VLSI technology, implementation of Boltzmann machines, and analysis of neural nets.

  13. Transverse pumped laser amplifier architecture

    SciTech Connect

    Bayramian, Andrew James; Manes, Kenneth R.; Deri, Robert; Erlandson, Alvin; Caird, John; Spaeth, Mary L.

    2015-05-19

    An optical gain architecture includes a pump source and a pump aperture. The architecture also includes a gain region including a gain element operable to amplify light at a laser wavelength. The gain region is characterized by a first side intersecting an optical path, a second side opposing the first side, a third side adjacent the first and second sides, and a fourth side opposing the third side. The architecture further includes a dichroic section disposed between the pump aperture and the first side of the gain region. The dichroic section is characterized by low reflectance at a pump wavelength and high reflectance at the laser wavelength. The architecture additionally includes a first cladding section proximate to the third side of the gain region and a second cladding section proximate to the fourth side of the gain region.

  14. Architecture and the Information Revolution.

    ERIC Educational Resources Information Center

    Driscoll, Porter; And Others

    1982-01-01

    Traces how technological changes affect the architecture of the workplace. Traces these effects from the industrial revolution up through the computer revolution. Offers suggested designs for the computerized office of today and tomorrow. (JM)

  15. Transverse pumped laser amplifier architecture

    DOEpatents

    Bayramian, Andrew James; Manes, Kenneth; Deri, Robert; Erlandson, Al; Caird, John; Spaeth, Mary

    2013-07-09

    An optical gain architecture includes a pump source and a pump aperture. The architecture also includes a gain region including a gain element operable to amplify light at a laser wavelength. The gain region is characterized by a first side intersecting an optical path, a second side opposing the first side, a third side adjacent the first and second sides, and a fourth side opposing the third side. The architecture further includes a dichroic section disposed between the pump aperture and the first side of the gain region. The dichroic section is characterized by low reflectance at a pump wavelength and high reflectance at the laser wavelength. The architecture additionally includes a first cladding section proximate to the third side of the gain region and a second cladding section proximate to the fourth side of the gain region.

  16. Simulator for heterogeneous dataflow architectures

    NASA Technical Reports Server (NTRS)

    Malekpour, Mahyar R.

    1993-01-01

    A new simulator is developed to simulate the execution of an algorithm graph in accordance with the Algorithm to Architecture Mapping Model (ATAMM) rules. ATAMM is a Petri Net model which describes the periodic execution of large-grained, data-independent dataflow graphs and which provides predictable steady state time-optimized performance. This simulator extends the ATAMM simulation capability from a heterogenous set of resources, or functional units, to a more general heterogenous architecture. Simulation test cases show that the simulator accurately executes the ATAMM rules for both a heterogenous architecture and a homogenous architecture, which is the special case for only one processor type. The simulator forms one tool in an ATAMM Integrated Environment which contains other tools for graph entry, graph modification for performance optimization, and playback of simulations for analysis.

  17. The architecture of FAIM-1

    SciTech Connect

    Anderson, J.M.; Coates, W.S.; Davis, A.L.; Hon, R.W.; Robinson, I.N.; Robison, S.V.; Stevens, K.S.

    1987-01-01

    This article describes a symbolic multiprocessing system called FAIM-1. FAIM-1 is a highly concurrent, general-purpose, symbolic accelerator for parallel AI symbolic computation. The paramount goal of the FAIM project is to produce an architecture that can be scaled to a configuration capable of performance improvements of two to three orders of magnitude over conventional architectures. In the design of FAIM-1, prime consideration was given to programmability, performance, extensibility, fault tolerance, and the cost-effective use of technology.

  18. Secure thin client architecture for DICOM image analysis

    NASA Astrophysics Data System (ADS)

    Mogatala, Harsha V. R.; Gallet, Jacqueline

    2005-04-01

    This paper presents a concept of Secure Thin Client (STC) Architecture for Digital Imaging and Communications in Medicine (DICOM) image analysis over Internet. STC Architecture provides in-depth analysis and design of customized reports for DICOM images using drag-and-drop and data warehouse technology. Using a personal computer and a common set of browsing software, STC can be used for analyzing and reporting detailed patient information, type of examinations, date, Computer Tomography (CT) dose index, and other relevant information stored within the images header files as well as in the hospital databases. STC Architecture is three-tier architecture. The First-Tier consists of drag-and-drop web based interface and web server, which provides customized analysis and reporting ability to the users. The Second-Tier consists of an online analytical processing (OLAP) server and database system, which serves fast, real-time, aggregated multi-dimensional data using OLAP technology. The Third-Tier consists of a smart algorithm based software program which extracts DICOM tags from CT images in this particular application, irrespective of CT vendor's, and transfers these tags into a secure database system. This architecture provides Winnipeg Regional Health Authorities (WRHA) with quality indicators for CT examinations in the hospitals. It also provides health care professionals with analytical tool to optimize radiation dose and image quality parameters. The information is provided to the user by way of a secure socket layer (SSL) and role based security criteria over Internet. Although this particular application has been developed for WRHA, this paper also discusses the effort to extend the Architecture to other hospitals in the region. Any DICOM tag from any imaging modality could be tracked with this software.

  19. SMEX-Lite Modular Solar Array Architecture

    NASA Technical Reports Server (NTRS)

    Lyons, John

    2002-01-01

    similarity to multiple missions. It then becomes possible to procure solar array modules in advance of mission definition and respond quickly and inexpensively to a selected mission's unique requirements. The solar array modular architecture allows the procurement of solar array modules before the array geometry has been frozen. This reduces the effect of procurement lead-time on the mission integration and test flow by as much as 50%. Second, by spreading the non-recurring costs over multiple missions, the cost per unit area is also reduced. In the case of the SMEX-Lite procurement, this reduction was by about one third of the cost per unit area compared to previous SMEX mission-unique procurements. Third, the modular architecture greatly facilitates the infusion of new solar cell technologies into flight programs as these technologies become available. New solar cell technologies need only be fabricated onto a standard-sized module to be incorporated into the next available mission. The modular solar array can be flown in a mixed configuration with some new and some standard cell technologies. Since each module has its own wiring terminals, the array can be arranged as desired electrically with little impact to cost and schedule. The solar array modular architecture does impose some additional constraints on systems and subsystem engineers. First, they must work with discrete solar array modules rather than size the array to fit exactly within an available envelope. The array area is constrained to an integer multiple of the module area. Second, the modular design is optimized for space radiation and thermal environments not greatly different from a typical SMEX LEO environment. For example, a mission with a highly elliptical orbit (e.g., Polar, SMEX/FAST) would require thicker coverglasses to protect the solar cells from the more intense radiation environment.

  20. Streamlining Collaborative Planning in Spacecraft Mission Architectures

    NASA Technical Reports Server (NTRS)

    Misra, Dhariti; Bopf, Michel; Fishman, Mark; Jones, Jeremy; Kerbel, Uri; Pell, Vince

    2000-01-01

    During the past two decades, the planning and scheduling community has substantially increased the capability and efficiency of individual planning and scheduling systems. Relatively recently, research work to streamline collaboration between planning systems is gaining attention. Spacecraft missions stand to benefit substantially from this work as they require the coordination of multiple planning organizations and planning systems. Up to the present time this coordination has demanded a great deal of human intervention and/or extensive custom software development efforts. This problem will become acute with increased requirements for cross-mission plan coordination and multi -spacecraft mission planning. The Advanced Architectures and Automation Branch of NASA's Goddard Space Flight Center is taking innovative steps to define collaborative planning architectures, and to identify coordinated planning tools for Cross-Mission Campaigns. Prototypes are being developed to validate these architectures and assess the usefulness of the coordination tools by the planning community. This presentation will focus on one such planning coordination too], named Visual Observation Layout Tool (VOLT), which is currently being developed to streamline the coordination between astronomical missions

  1. Architectures of Planetary System - Snapshots in Time

    NASA Astrophysics Data System (ADS)

    Montgomery, Michele; Goel, Amit

    2015-08-01

    Architectures of planetary systems are observable snapshots in time, a study of which can aide in our understanding of how planetary systems form and evolve dynamically. For example, if we compare architectures of exoplanetary systems having various stellar host ages with laws that apply to our own Solar System architecture, population, and age, we gain insights into when these laws hold with stellar age and which systems are outliers at various stellar ages. In this work, we study Keplerian motion in confirmed planetary systems as a function of stellar age. Systems eliminated from the study are those with unknown planetary orbital periods, unknown planetary semi-major axis, and/or unknown stellar ages, the latter of which eliminates several Kepler multi-planet systems. As expected, we find Keplerian motion holds for systems that are the age of the Solar System or older, but this result does not seem to hold true for younger systems. In this work we discuss these findings, we identify the outlier systems at various stellar ages from our statistical analysis, and we provide explanations as to why these exo-systems are outliers.

  2. Adaptive line enhancers for fast acquisition

    NASA Technical Reports Server (NTRS)

    Yeh, H.-G.; Nguyen, T. M.

    1994-01-01

    Three adaptive line enhancer (ALE) algorithms and architectures - namely, conventional ALE, ALE with double filtering, and ALE with coherent accumulation - are investigated for fast carrier acquisition in the time domain. The advantages of these algorithms are their simplicity, flexibility, robustness, and applicability to general situations including the Earth-to-space uplink carrier acquisition and tracking of the spacecraft. In the acquisition mode, these algorithms act as bandpass filters; hence, the carrier-to-noise ratio (CNR) is improved for fast acquisition. In the tracking mode, these algorithms simply act as lowpass filters to improve signal-to-noise ratio; hence, better tracking performance is obtained. It is not necessary to have a priori knowledge of the received signal parameters, such as CNR, Doppler, and carrier sweeping rate. The implementation of these algorithms is in the time domain (as opposed to the frequency domain, such as the fast Fourier transform (FFT)). The carrier frequency estimation can be updated in real time at each time sample (as opposed to the batch processing of the FFT). The carrier frequency to be acquired can be time varying, and the noise can be non-Gaussian, nonstationary, and colored.

  3. On the parallelization approaches for Intel MIC architecture

    NASA Astrophysics Data System (ADS)

    Atanassov, E.; Gurov, T.; Karaivanova, A.; Ivanovska, S.; Durchova, M.; Dimitrov, D.

    2016-10-01

    The Intel MIC architecture is one of the main processor architectures used for the production of computational accelerators. Increasing energy and cost-effciency of accelerators is one important option for building new HPC systems. However, the effective use of accelerators requires careful optimization on all stages of the algorithm and use of appropriate parallelization approaches. In the domain of statistical methods the quasi-Monte Carlo methods present distinct challenges when thousands of computational cores are to be involved in a computation. In this paper we describe in detail and study the performance of algorithms for generating some popular low-discrepancy sequences, aimed at devices with Intel MIC architecture. By leveraging the powerful vector instructions of the Intel MIC architecture to process many coordinates of the sequences in parallel, we obtain fast implementations that can be plugged-in in any parallel quasi-Monte Carlo computation. We present extensive numerical and timing results that demonstrate the benefit of our algorithms and their parallel effciency. The effects of using hyperthreading are also studied. The generation routines are provided under the GPL.

  4. Bipartite memory network architectures for parallel processing

    SciTech Connect

    Smith, W.; Kale, L.V. . Dept. of Computer Science)

    1990-01-01

    Parallel architectures are boradly classified as either shared memory or distributed memory architectures. In this paper, the authors propose a third family of architectures, called bipartite memory network architectures. In this architecture, processors and memory modules constitute a bipartite graph, where each processor is allowed to access a small subset of the memory modules, and each memory module allows access from a small set of processors. The architecture is particularly suitable for computations requiring dynamic load balancing. The authors explore the properties of this architecture by examining the Perfect Difference set based topology for the graph. Extensions of this topology are also suggested.

  5. Architectural Analysis of Dynamically Reconfigurable Systems

    NASA Technical Reports Server (NTRS)

    Lindvall, Mikael; Godfrey, Sally; Ackermann, Chris; Ray, Arnab; Yonkwa, Lyly

    2010-01-01

    oTpics include: the problem (increased flexibility of architectural styles decrease analyzability, behavior emerges and varies depending on the configuration, does the resulting system run according to the intended design, and architectural decisions can impede or facilitate testing); top down approach to architecture analysis, detection of defects and deviations, and architecture and its testability; currently targeted projects GMSEC and CFS; analyzing software architectures; analyzing runtime events; actual architecture recognition; GMPUB in Dynamic SAVE; sample output from new approach; taking message timing delays into account; CFS examples of architecture and testability; some recommendations for improved testablity; and CFS examples of abstract interfaces and testability; CFS example of opening some internal details.

  6. Selected Precepts in Lunar Architecture

    NASA Astrophysics Data System (ADS)

    Cohen, Marc M.

    2002-01-01

    This paper presents an overview of selected approaches to Lunar Architecture to describe the parameters of this design problem space. The paper identifies typologies of architecture based on Lunar site features, structural concepts and habitable functions. This paper develops an analysis of these architectures based on the NASA Habitats and Surface Construction Road Map (1997) in which there are three major types of surface construction: Class I) Preintegrated, Class 2) Assembled, Deployed, Erected or Inflated, and Class 3) Use of In Situ materials and site characteristics. Class 1 Architectures include the following. The Apollo Program was intended to extend to landing a 14 day base in enhanced Lunar Excursion Modules. The Air Force was the first to propose preintegrated cylindrical modules landed on the Lunar surface. The University of Wisconsin proposed building a module and hub system on the surface. Madhu Thangavelu proposed assembling such a module and hub base in orbit and then landing it intact on the moon . Class 2 Architectures include: The NASA 90 Day Study proposed an inflatable sphere of about 20m diameter for a lunar habitat. Jenine Abarbanel of Colorado State University proposed rectangular inflatable habitats, with lunar regolith as ballast on the flat top. Class 3 Architectures include: William Simon proposed a lunar base bored into a crater rim. Alice Eichold proposed a base within a crater ring. The paper presents a comparative characterization and analysis of these and other examples paradigms of proposed Lunar construction. It evaluates bath the architectures and the NASA Habitats and Surface Construction Road Map for how well they correlate to one another

  7. A Fast Hermite Transform★

    PubMed Central

    Leibon, Gregory; Rockmore, Daniel N.; Park, Wooram; Taintor, Robert; Chirikjian, Gregory S.

    2008-01-01

    We present algorithms for fast and stable approximation of the Hermite transform of a compactly supported function on the real line, attainable via an application of a fast algebraic algorithm for computing sums associated with a three-term relation. Trade-offs between approximation in bandlimit (in the Hermite sense) and size of the support region are addressed. Numerical experiments are presented that show the feasibility and utility of our approach. Generalizations to any family of orthogonal polynomials are outlined. Applications to various problems in tomographic reconstruction, including the determination of protein structure, are discussed. PMID:20027202

  8. Fast Overcurrent Tripping Circuit

    NASA Technical Reports Server (NTRS)

    Sullender, Craig C.; Davies, Bryan L.; Osborn, Stephen H.

    1993-01-01

    Fast overcurrent tripping circuit designed for incorporation into power metal oxide/semiconductor field-effect transistor (MOSFET) switching circuit. Serves as fast electronic circuit breaker by sensing voltage across MOSFET's during conduction and switching MOSFET's off within 1 microsecond after voltage exceeds reference value corresponding to tripping current. Acts more quickly than Hall-effect current sensor and, in comparison with shunt current-measuring circuits, smaller and consumes less power. Also ignores initial transient overcurrents during first 5 microseconds of switching cycle.

  9. Data center networks and network architecture

    NASA Astrophysics Data System (ADS)

    Esaki, Hiroshi

    2014-02-01

    This paper discusses and proposes the architectural framework, which is for data center networks. The data center networks require new technical challenges, and it would be good opportunity to change the functions, which are not need in current and future networks. Based on the observation and consideration on data center networks, this paper proposes; (i) Broadcast-free layer 2 network (i.e., emulation of broadcast at the end-node), (ii) Full-mesh point-to-point pipes, and (iii) IRIDES (Invitation Routing aDvertisement for path Engineering System).

  10. The EDSN Intersatellite Communications Architecture

    NASA Technical Reports Server (NTRS)

    Hanson, John; Chartres, James; Sanchez, Hugo; Oyadomari, Ken

    2014-01-01

    The Edison Demonstration of Smallsat Networks (EDSN) is a swarm of eight 1.5U Cubesats developed by the NASA Ames Research Center under the Small Spacecraft Technology Program (SSTP) within NASA Space Technology Mission Directorate (STMD). EDSN, scheduled for launch in late 2014, is designed to explore the use of small spacecraft networks to make synchronized, multipoint scientific measurements, and to organize and pass those data to the ground through their network. Networked swarms of these small spacecraft will open new horizons in astronomy, Earth observations and solar physics. Their range of applications include the formation of synthetic aperture radars for Earth sensing systems, large aperture observatories for next generation telescopes and the collection of spatially distributed measurements of time varying systems, probing the Earth's magnetosphere, Earth-Sun interactions and the Earth's geopotential. The EDSN communications network is maintained and operated by a simple set of predefined rules operating independently on all eight spacecraft without direction from ground based systems. One spacecraft serves as a central node, requesting and collecting data from the other seven spacecraft, organizing the data and passing it to a ground station at regular intervals. The central node is rotated among the spacecraft on a regular basis, providing robustness against the failure of a single spacecraft. This paper describes the communication architecture of the EDSN network and its operation with small spacecraft of limited electrical power, computing power and communication range. Furthermore, the problems of collecting and prioritizing data through a system that has data throughput bottlenecks are addressed. Finally, future network enhancements that can be built on top of the current EDSN hardware are discussed.

  11. Architecture and Function of Mechanosensitive Membrane Protein Lattices

    PubMed Central

    Kahraman, Osman; Koch, Peter D.; Klug, William S.; Haselwandter, Christoph A.

    2016-01-01

    Experiments have revealed that membrane proteins can form two-dimensional clusters with regular translational and orientational protein arrangements, which may allow cells to modulate protein function. However, the physical mechanisms yielding supramolecular organization and collective function of membrane proteins remain largely unknown. Here we show that bilayer-mediated elastic interactions between membrane proteins can yield regular and distinctive lattice architectures of protein clusters, and may provide a link between lattice architecture and lattice function. Using the mechanosensitive channel of large conductance (MscL) as a model system, we obtain relations between the shape of MscL and the supramolecular architecture of MscL lattices. We predict that the tetrameric and pentameric MscL symmetries observed in previous structural studies yield distinct lattice architectures of MscL clusters and that, in turn, these distinct MscL lattice architectures yield distinct lattice activation barriers. Our results suggest general physical mechanisms linking protein symmetry, the lattice architecture of membrane protein clusters, and the collective function of membrane protein lattices. PMID:26771082

  12. Lunar Navigation Architecture Design Considerations

    NASA Technical Reports Server (NTRS)

    D'Souza, Christopher; Getchius, Joel; Holt, Greg; Moreau, Michael

    2009-01-01

    The NASA Constellation Program is aiming to establish a long-term presence on the lunar surface. The Constellation elements (Orion, Altair, Earth Departure Stage, and Ares launch vehicles) will require a lunar navigation architecture for navigation state updates during lunar-class missions. Orion in particular has baselined earth-based ground direct tracking as the primary source for much of its absolute navigation needs. However, due to the uncertainty in the lunar navigation architecture, the Orion program has had to make certain assumptions on the capabilities of such architectures in order to adequately scale the vehicle design trade space. The following paper outlines lunar navigation requirements, the Orion program assumptions, and the impacts of these assumptions to the lunar navigation architecture design. The selection of potential sites was based upon geometric baselines, logistical feasibility, redundancy, and abort support capability. Simulated navigation covariances mapped to entry interface flightpath- angle uncertainties were used to evaluate knowledge errors. A minimum ground station architecture was identified consisting of Goldstone, Madrid, Canberra, Santiago, Hartebeeshoek, Dongora, Hawaii, Guam, and Ascension Island (or the geometric equivalent).

  13. Space and Architecture's Current Line of Research? A Lunar Architecture Workshop With An Architectural Agenda.

    NASA Astrophysics Data System (ADS)

    Solomon, D.; van Dijk, A.

    The "2002 ESA Lunar Architecture Workshop" (June 3-16) ESTEC, Noordwijk, NL and V2_Lab, Rotterdam, NL) is the first-of-its-kind workshop for exploring the design of extra-terrestrial (infra) structures for human exploration of the Moon and Earth-like planets introducing 'architecture's current line of research', and adopting an architec- tural criteria. The workshop intends to inspire, engage and challenge 30-40 European masters students from the fields of aerospace engineering, civil engineering, archi- tecture, and art to design, validate and build models of (infra) structures for Lunar exploration. The workshop also aims to open up new physical and conceptual terrain for an architectural agenda within the field of space exploration. A sound introduc- tion to the issues, conditions, resources, technologies, and architectural strategies will initiate the workshop participants into the context of lunar architecture scenarios. In my paper and presentation about the development of the ideology behind this work- shop, I will comment on the following questions: * Can the contemporary architectural agenda offer solutions that affect the scope of space exploration? It certainly has had an impression on urbanization and colonization of previously sparsely populated parts of Earth. * Does the current line of research in architecture offer any useful strategies for com- bining scientific interests, commercial opportunity, and public space? What can be learned from 'state of the art' architecture that blends commercial and public pro- grammes within one location? * Should commercial 'colonisation' projects in space be required to provide public space in a location where all humans present are likely to be there in a commercial context? Is the wave in Koolhaas' new Prada flagship store just a gesture to public space, or does this new concept in architecture and shopping evolve the public space? * What can we learn about designing (infra-) structures on the Moon or any other

  14. Fast focus field calculations

    NASA Astrophysics Data System (ADS)

    Leutenegger, Marcel; Geissbuehler, Matthias; Märki, Iwan; Leitgeb, Rainer A.; Lasser, Theo

    2008-02-01

    We present a method for fast calculation of the electromagnetic field near the focus of an objective with a high numerical aperture (NA). Instead of direct integration, the vectorial Debye diffraction integral is evaluated with the fast Fourier transform for calculating the electromagnetic field in the entire focal region. We generalize this concept with the chirp z transform for obtaining a flexible sampling grid and an additional gain in computation speed. Under the conditions for the validity of the Debye integral representation, our method yields the amplitude, phase and polarization of the focus field for an arbitrary paraxial input field in the aperture of the objective. Our fast calculation method is particularly useful for engineering the point-spread function or for fast image deconvolution. We present several case studies by calculating the focus fields of high NA oil immersion objectives for various amplitude, polarization and phase distributions of the input field. In addition, the calculation of an extended polychromatic focus field generated by a Bessel beam is presented. This extended focus field is of particular interest for Fourier domain optical coherence tomography because it preserves a lateral resolution of a few micrometers over an axial distance in the millimeter range.

  15. Fast ForWord.

    ERIC Educational Resources Information Center

    Education Commission of the States, Denver, CO.

    This paper provides an overview of Fast ForWord, a CD-ROM and Internet-based training program for children (pre-K to grade 8) with language and reading problems that helps children rapidly build oral language comprehension and other critical skills necessary for learning to read or becoming a better reader. With the help of computers, speech…

  16. The Integral Fast Reactor

    SciTech Connect

    Till, C.E.; Chang, Y.I. ); Lineberry, M.J. )

    1990-01-01

    Argonne National Laboratory, since 1984, has been developing the Integral Fast Reactor (IFR). This paper will describe the way in which this new reactor concept came about; the technical, public acceptance, and environmental issues that are addressed by the IFR; the technical progress that has been made; and our expectations for this program in the near term. 5 refs., 3 figs.

  17. Electroanalysis of single-nucleotide polymorphism by hairpin DNA architectures.

    PubMed

    Abi, Alireza; Ferapontova, Elena E

    2013-04-01

    Genetic analysis of infectious and genetic diseases and cancer diagnostics require the development of efficient tools for fast and reliable analysis of single-nucleotide polymorphism (SNP) in targeted DNA and RNA sequences often responsible for signalling disease onset. Here, we highlight the main trends in the development of electrochemical genosensors for sensitive and selective detection of SNP that are based on hairpin DNA architectures exhibiting better SNP recognition properties compared with linear DNA probes. SNP detection by electrochemical hairpin DNA beacons is discussed, and comparative analysis of the existing SNP sensing strategies based on enzymatic and nanoparticle signal amplification schemes is presented.

  18. 4D fibrous materials: characterising the deployment of paper architectures

    NASA Astrophysics Data System (ADS)

    Mulakkal, Manu C.; Seddon, Annela M.; Whittell, George; Manners, Ian; Trask, Richard S.

    2016-09-01

    Deployment of folded paper architecture using a fluid medium as the morphing stimulus presents a simple and inexpensive methodology capable of self-actuation; where the underlying principles can be translated to develop smart fibrous materials capable of programmable actuations. In this study we characterise different paper architectures and their stimuli mechanisms for folded deployment; including the influence of porosity, moisture, surfactant concentration, temperature, and hornification. We observe that actuation time decreases with paper grammage; through the addition of surfactants, and when the temperature is increased at the fluid–vapour interface. There is a clear effect of hydration, water transport and the interaction of hydrogen bonds within the fibrous architecture which drives the deployment of the folded regions. The importance of fibre volume fraction and functional fillers in shape recovery was also observed, as well as the effect of a multilayer composite paper system. The design guidelines shown here will inform the development of synthetic fibrous actuators for repeated deployment.

  19. 4D fibrous materials: characterising the deployment of paper architectures

    NASA Astrophysics Data System (ADS)

    Mulakkal, Manu C.; Seddon, Annela M.; Whittell, George; Manners, Ian; Trask, Richard S.

    2016-09-01

    Deployment of folded paper architecture using a fluid medium as the morphing stimulus presents a simple and inexpensive methodology capable of self-actuation; where the underlying principles can be translated to develop smart fibrous materials capable of programmable actuations. In this study we characterise different paper architectures and their stimuli mechanisms for folded deployment; including the influence of porosity, moisture, surfactant concentration, temperature, and hornification. We observe that actuation time decreases with paper grammage; through the addition of surfactants, and when the temperature is increased at the fluid-vapour interface. There is a clear effect of hydration, water transport and the interaction of hydrogen bonds within the fibrous architecture which drives the deployment of the folded regions. The importance of fibre volume fraction and functional fillers in shape recovery was also observed, as well as the effect of a multilayer composite paper system. The design guidelines shown here will inform the development of synthetic fibrous actuators for repeated deployment.

  20. Architecture assessment of HLLV candidates

    NASA Technical Reports Server (NTRS)

    Thompson, Walter E.

    1992-01-01

    Results of an architecture study of four Heavy Lift Launch Vehicles (HLLV) families are summarized, with attention given to civil, commercial, military and Space Exploration Initiative (SEI) applications. The Mars Exploration architecture is used as the SEI model baseline, and the architecture of each vehicle family is analyzed with respect to ground processing, launch operations, on-orbit operations, mission performance, and cost. For lunar missions, a 70-t earth-to-orbit (ETO) vehicle is shown to have definite cost advantages, with only small operational disadvantages, if the lunar program is small or medium in size. For Mars, a comparison of 150-t and 250-t ETO vehicles shows that little operational advantage is gained by going to the 250-t size.

  1. Airport Surface Network Architecture Definition

    NASA Technical Reports Server (NTRS)

    Nguyen, Thanh C.; Eddy, Wesley M.; Bretmersky, Steven C.; Lawas-Grodek, Fran; Ellis, Brenda L.

    2006-01-01

    Currently, airport surface communications are fragmented across multiple types of systems. These communication systems for airport operations at most airports today are based dedicated and separate architectures that cannot support system-wide interoperability and information sharing. The requirements placed upon the Communications, Navigation, and Surveillance (CNS) systems in airports are rapidly growing and integration is urgently needed if the future vision of the National Airspace System (NAS) and the Next Generation Air Transportation System (NGATS) 2025 concept are to be realized. To address this and other problems such as airport surface congestion, the Space Based Technologies Project s Surface ICNS Network Architecture team at NASA Glenn Research Center has assessed airport surface communications requirements, analyzed existing and future surface applications, and defined a set of architecture functions that will help design a scalable, reliable and flexible surface network architecture to meet the current and future needs of airport operations. This paper describes the systems approach or methodology to networking that was employed to assess airport surface communications requirements, analyze applications, and to define the surface network architecture functions as the building blocks or components of the network. The systems approach used for defining these functions is relatively new to networking. It is viewing the surface network, along with its environment (everything that the surface network interacts with or impacts), as a system. Associated with this system are sets of services that are offered by the network to the rest of the system. Therefore, the surface network is considered as part of the larger system (such as the NAS), with interactions and dependencies between the surface network and its users, applications, and devices. The surface network architecture includes components such as addressing/routing, network management, network

  2. Adaptive reconfigurable distributed sensor architecture

    NASA Astrophysics Data System (ADS)

    Akey, Mark L.

    1997-07-01

    The infancy of unattended ground based sensors is quickly coming to an end with the arrival of on-board GPS, networking, and multiple sensing capabilities. Unfortunately, their use is only first-order at best: GPS assists with sensor report registration; networks push sensor reports back to the warfighter and forwards control information to the sensors; multispectral sensing is a preset, pre-deployment consideration; and the scalability of large sensor networks is questionable. Current architectures provide little synergy among or within the sensors either before or after deployment, and do not map well to the tactical user's organizational structures and constraints. A new distributed sensor architecture is defined which moves well beyond single sensor, single task architectures. Advantages include: (1) automatic mapping of tactical direction to multiple sensors' tasks; (2) decentralized, distributed management of sensor resources and tasks; (3) software reconfiguration of deployed sensors; (4) network scalability and flexibility to meet the constraints of tactical deployments, and traditional combat organizations and hierarchies; and (5) adaptability to new battlefield communication paradigms such as BADD (Battlefield Analysis and Data Dissemination). The architecture is supported in two areas: a recursive, structural definition of resource configuration and management via loose associations; and a hybridization of intelligent software agents with tele- programming capabilities. The distributed sensor architecture is examined within the context of air-deployed ground sensors with acoustic, communication direction finding, and infra-red capabilities. Advantages and disadvantages of the architecture are examined. Consideration is given to extended sensor life (up to 6 months), post-deployment sensor reconfiguration, limited on- board sensor resources (processor and memory), and bandwidth. It is shown that technical tasking of the sensor suite can be automatically

  3. Epinephrine depletion exacerbates the fasting-induced protein breakdown in fast-twitch skeletal muscles.

    PubMed

    Graça, Flávia A; Gonçalves, Dawit A P; Silveira, Wilian A; Lira, Eduardo C; Chaves, Valéria Ernestânia; Zanon, Neusa M; Garófalo, Maria Antonieta R; Kettelhut, Isis C; Navegantes, Luiz C C

    2013-12-01

    The physiological role of epinephrine in the regulation of skeletal muscle protein metabolism under fasting is unknown. We examined the effects of plasma epinephrine depletion, induced by adrenodemedullation (ADMX), on muscle protein metabolism in fed and 2-day-fasted rats. In fed rats, ADMX for 10 days reduced muscle mass, the cross-sectional area of extensor digitorum longus (EDL) muscle fibers, and the phosphorylation levels of Akt. In addition, ADMX led to a compensatory increase in muscle sympathetic activity, as estimated by the rate of norepinephrine turnover; this increase was accompanied by high rates of muscle protein synthesis. In fasted rats, ADMX exacerbated fasting-induced proteolysis in EDL but did not affect the low rates of protein synthesis. Accordingly, ADMX activated lysosomal proteolysis and further increased the activity of the ubiquitin (Ub)-proteasome system (UPS). Moreover, expression of the atrophy-related Ub ligases atrogin-1 and MuRF1 and the autophagy-related genes LC3b and GABARAPl1 were upregulated in EDL muscles from ADMX-fasted rats compared with sham-fasted rats, and ADMX reduced cAMP levels and increased fasting-induced Akt dephosphorylation. Unlike that observed for EDL muscles, soleus muscle proteolysis and Akt phosphorylation levels were not affected by ADMX. In isolated EDL, epinephrine reduced the basal UPS activity and suppressed overall proteolysis and atrogin-1 and MuRF1 induction following fasting. These data suggest that epinephrine released from the adrenal medulla inhibits fasting-induced protein breakdown in fast-twitch skeletal muscles, and these antiproteolytic effects on the UPS and lysosomal system are apparently mediated through a cAMP-Akt-dependent pathway, which suppresses ubiquitination and autophagy.

  4. Investigation of the fast ion beta limit in MST

    NASA Astrophysics Data System (ADS)

    Capecchi, William; Eilerman, Scott; Reusch, Joshua; Koliner, Jonathan; Anderson, Jay; Lin, Liang; Clark, Jerry; Liu, Deyong

    2013-10-01

    Fast ion orbits in the reversed field pinch (RFP) magnetic configuration are well ordered and have low orbit loss, even considering the stochasticity of the magnetic field generated by multiple tearing modes. Purely classical TRANSP modeling of a 1MW tangentially injected hydrogen neutral beam in MST deuterium plasmas predicts a core-localized fast ion density that can be up to 25% of the electron density and a fast ion beta of many times the local thermal beta. However, neutral particle analysis (NPA) of an NBI-driven mode (presumably driven by a fast ion pressure gradient) clearly shows transport of core-localized fast ions and a saturated fast ion density. The TRANSP modeling is presumed valid until the onset of the beam driven mode and gives an initial estimate of the volume-averaged fast ion beta in the range of 1-2% (local core value up to 10%). Distinguishing between an experimental fast ion number limit or fast ion beta limit is performed by scanning both the magnetic field strength and the NBI energy while observing conditions at the onset of the beam driven mode. Upcoming experiments will further investigate the empirical fast ion beta limit through the use of a deuterium beam into deuterium plasma which will allow for the NPA and neutron flux signals to provide a local and global fast ion beta measurement respectively. Work supported by US DoE.

  5. Kinetics of fast island decay on Ag(111)

    SciTech Connect

    Morgenstern, Karina; Rosenfeld, Georg; Comsa, George; Sorensen, Mads R.; Hammer, Bjork; Laegsgaard, Erik; Besenbacher, Flemming

    2001-01-15

    The kinetics of fast island decay on Ag(111) close to steps has been studied in scanning tunneling microscopy experiments and atomistic total energy calculations. We show that a breakdown of the step-edge barrier is not sufficient to explain the decay rates observed during fast decay events. From the interplay between experiments and theory, we instead propose that fast decay originates from concerted diffusion processes, which bypass the detachment barrier of atoms from kinks and step sites.

  6. On the 'fast electron hypothesis' for stellar flares

    NASA Technical Reports Server (NTRS)

    Mullan, D. J.

    1990-01-01

    It is pointed out that Gurzadyan's (1988) fast-electron hypothesis for stellar flares encounters certain difficulties. The origin of the fast electrons is obscure. Negative flares and predicted ratios of X-ray to optical fluxes are not necessarily a proof of the fast-electron hypothesis. When the electrons thermalize, they will yield X-ray fluxes which are orders of magnitude too large to be consistent with observations.

  7. Hybrid-Polarity SAR Architecture

    NASA Astrophysics Data System (ADS)

    Raney, R. K.; Freeman, A.

    2009-04-01

    A space-based synthetic aperture radar (SAR) designed to provide quantitative information on a global scale implies severe requirements to maximize coverage and to sustain reliable operational calibration. These requirements are best served by the hybrid-polarity architecture, in which the radar transmits in circular polarization, and receives on two orthogonal linear polarizations, coherently, retaining their relative phase. This paper reviews those advantages,summarizes key attributes of hybrid-polarity dual- and quadrature-polarized SARs including conditions under which the signal-to-noise ratio is conserved, and describes the evolution of this architecture from first principles.

  8. Software design by reusing architectures

    NASA Technical Reports Server (NTRS)

    Bhansali, Sanjay; Nii, H. Penny

    1992-01-01

    Abstraction fosters reuse by providing a class of artifacts that can be instantiated or customized to produce a set of artifacts meeting different specific requirements. It is proposed that significant leverage can be obtained by abstracting software system designs and the design process. The result of such an abstraction is a generic architecture and a set of knowledge-based, customization tools that can be used to instantiate the generic architecture. An approach for designing software systems based on the above idea are described. The approach is illustrated through an implemented example, and the advantages and limitations of the approach are discussed.

  9. Bit-serial neuroprocessor architecture

    NASA Technical Reports Server (NTRS)

    Tawel, Raoul (Inventor)

    2001-01-01

    A neuroprocessor architecture employs a combination of bit-serial and serial-parallel techniques for implementing the neurons of the neuroprocessor. The neuroprocessor architecture includes a neural module containing a pool of neurons, a global controller, a sigmoid activation ROM look-up-table, a plurality of neuron state registers, and a synaptic weight RAM. The neuroprocessor reduces the number of neurons required to perform the task by time multiplexing groups of neurons from a fixed pool of neurons to achieve the successive hidden layers of a recurrent network topology.

  10. Archibabel: Tracing the Writing Architecture Project in Architectural Education

    ERIC Educational Resources Information Center

    Lappin, Sarah A.; Erk, Gül Kaçmaz; Martire, Agustina

    2015-01-01

    Though much recent scholarship has investigated the potential of writing in creative practice (including visual arts, drama, even choreography), there are few models in the literature which discuss writing in the context of architectural education. This article aims to address this dearth of pedagogical research, analysing the cross-disciplinary…

  11. Impact of Enterprise Architecture on Architecture Agility and Coherence

    ERIC Educational Resources Information Center

    Abaas, Kanari

    2009-01-01

    IT has permeated to the very roots of organizations and has an ever increasingly important role in the achievement of overall corporate objectives and business strategies. This paper presents an approach for evaluating the impact of existing Enterprise Architecture (EA) implementations. The papers answers questions such as: What are the challenges…

  12. Sociodemographic differences in fast food price sensitivity

    PubMed Central

    Meyer, Katie A.; Guilkey, David K.; Ng, Shu Wen; Duffey, Kiyah J.; Popkin, Barry M.; Kiefe, Catarina I.; Steffen, Lyn M.; Shikany, James M.; Gordon-Larsen, Penny

    2014-01-01

    observed differential price effects on HOMA-IR (inverse for lower educational status and at middle income) and BMI (inverse for blacks, lower education, and middle income; positive for whites, high education, and high income). Conclusions We found greater fast food price sensitivity on fast food consumption and insulin resistance among sociodemographic groups that have a disproportionate burden of chronic disease. Our findings have implications for fiscal policy approaches related to diet, particularly with respect to possible effects of fast food taxes among populations with diet-related health disparities. PMID:24424384

  13. The OVIS analysis architecture.

    SciTech Connect

    Mayo, Jackson R.; Gentile, Ann C.; Brandt, James M.; De Sapio, Vincent; Thompson, David C.; Roe, Diana C.; Wong, Matthew H.; Pebay, Philippe Pierre

    2010-07-01

    This report summarizes the current statistical analysis capability of OVIS and how it works in conjunction with the OVIS data readers and interpolators. It also documents how to extend these capabilities. OVIS is a tool for parallel statistical analysis of sensor data to improve system reliability. Parallelism is achieved using a distributed data model: many sensors on similar components (metaphorically sheep) insert measurements into a series of databases on computers reserved for analyzing the measurements (metaphorically shepherds). Each shepherd node then processes the sheep data stored locally and the results are aggregated across all shepherds. OVIS uses the Visualization Tool Kit (VTK) statistics algorithm class hierarchy to perform analysis of each process's data but avoids VTK's model aggregation stage which uses the Message Passing Interface (MPI); this is because if a single process in an MPI job fails, the entire job will fail. Instead, OVIS uses asynchronous database replication to aggregate statistical models. OVIS has several additional features beyond those present in VTK that, first, accommodate its particular data format and, second, improve the memory and speed of the statistical analyses. First, because many statistical algorithms are multivariate in nature and sensor data is typically univariate, interpolation of data is required to provide simultaneous observations of metrics. Note that in this report, we will refer to a single value obtained from a sensor as a measurement while a collection of multiple sensor values simultaneously present in the system is an observation. A base class for interpolation is provided that abstracts the operation of converting multiple sensor measurements into simultaneous observations. A concrete implementation is provided that performs piecewise constant temporal interpolation of multiple metrics across a single component. Secondly, because calculations may summarize data too large to fit in memory OVIS analyses

  14. Scientific Visualization Using the Flow Analysis Software Toolkit (FAST)

    NASA Technical Reports Server (NTRS)

    Bancroft, Gordon V.; Kelaita, Paul G.; Mccabe, R. Kevin; Merritt, Fergus J.; Plessel, Todd C.; Sandstrom, Timothy A.; West, John T.

    1993-01-01

    Over the past few years the Flow Analysis Software Toolkit (FAST) has matured into a useful tool for visualizing and analyzing scientific data on high-performance graphics workstations. Originally designed for visualizing the results of fluid dynamics research, FAST has demonstrated its flexibility by being used in several other areas of scientific research. These research areas include earth and space sciences, acid rain and ozone modelling, and automotive design, just to name a few. This paper describes the current status of FAST, including the basic concepts, architecture, existing functionality and features, and some of the known applications for which FAST is being used. A few of the applications, by both NASA and non-NASA agencies, are outlined in more detail. Described in the Outlines are the goals of each visualization project, the techniques or 'tricks' used lo produce the desired results, and custom modifications to FAST, if any, done to further enhance the analysis. Some of the future directions for FAST are also described.

  15. Efficient architectures for two-dimensional discrete wavelet transform using lifting scheme.

    PubMed

    Xiong, Chengyi; Tian, Jinwen; Liu, Jian

    2007-03-01

    Novel architectures for 1-D and 2-D discrete wavelet transform (DWT) by using lifting schemes are presented in this paper. An embedded decimation technique is exploited to optimize the architecture for 1-D DWT, which is designed to receive an input and generate an output with the low- and high-frequency components of original data being available alternately. Based on this 1-D DWT architecture, an efficient line-based architecture for 2-D DWT is further proposed by employing parallel and pipeline techniques, which is mainly composed of two horizontal filter modules and one vertical filter module, working in parallel and pipeline fashion with 100% hardware utilization. This 2-D architecture is called fast architecture (FA) that can perform J levels of decomposition for N * N image in approximately 2N2(1 - 4(-J))/3 internal clock cycles. Moreover, another efficient generic line-based 2-D architecture is proposed by exploiting the parallelism among four subband transforms in lifting-based 2-D DWT, which can perform J levels of decomposition for N * N image in approximately N2(1 - 4(-J))/3 internal clock cycles; hence, it is called high-speed architecture. The throughput rate of the latter is increased by two times when comparing with the former 2-D architecture, but only less additional hardware cost is added. Compared with the works reported in previous literature, the proposed architectures for 2-D DWT are efficient alternatives in tradeoff among hardware cost, throughput rate, output latency and control complexity, etc. PMID:17357722

  16. Space Generic Open Avionics Architecture (SGOAA): Overview

    NASA Technical Reports Server (NTRS)

    Wray, Richard B.; Stovall, John R.

    1992-01-01

    A space generic open avionics architecture created for NASA is described. It will serve as the basis for entities in spacecraft core avionics, capable of being tailored by NASA for future space program avionics ranging from small vehicles such as Moon ascent/descent vehicles to large ones such as Mars transfer vehicles or orbiting stations. The standard consists of: (1) a system architecture; (2) a generic processing hardware architecture; (3) a six class architecture interface model; (4) a system services functional subsystem architectural model; and (5) an operations control functional subsystem architectural model.

  17. Functional Performance of an Enabling Atmosphere Revitalization Subsystem Architecture for Deep Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Perry, Jay L.; Abney, Morgan B.; Frederick, Kenneth R.; Greenwood, Zachary W.; Kayatin, Matthew J.; Newton, Robert L.; Parrish, Keith J.; Roman, Monsi C.; Takada, Kevin C.; Miller, Lee A.; Scott, Joseph P.; Stanley, Christine M.

    2013-01-01

    A subsystem architecture derived from the International Space Station's (ISS) Atmosphere Revitalization Subsystem (ARS) has been functionally demonstrated. This ISS-derived architecture features re-arranged unit operations for trace contaminant control and carbon dioxide removal functions, a methane purification component as a precursor to enhance resource recovery over ISS capability, operational modifications to a water electrolysis-based oxygen generation assembly, and an alternative major atmospheric constituent monitoring concept. Results from this functional demonstration are summarized and compared to the performance observed during ground-based testing conducted on an ISS-like subsystem architecture. Considerations for further subsystem architecture and process technology development are discussed.

  18. Architecture of the MEGA detector trigger

    NASA Astrophysics Data System (ADS)

    Chen, Y. K.; Cooper, M. D.; Cooper, P. S.; Dzemidzic, M.; Gagliardi, C. A.; Hogan, G. E.; Hungerford, E. V.; Kim, G. J.; Knott, J. E.; Lan, K. J.; Liu, F.; Mayes, B. W.; Mischke, R. E.; Phelps, R.; Pinsky, L. S.; Stantz, K. M.; Szymanski, J. J.; Tang, L. G.; Tribble, R. E.; Tu, X. L.; Van Ausdeln, L. A.; Von Witsch, W.; Wright, C. S.

    The trigger for the MEGA detector system is based on signals from single, high-energy photons interacting in one of the three MEGA pair spectrometers. The trigger is divided into a fast and a slow stage. The first stage produces a fast output if a specific pattern of detector hits is observed in the scintillators and high-speed wire chambers of a pair spectrometer. The second, slow-stage interrogates drift chamber hit patterns and provides a veto when the pattern fails a minimal requirement for reconstruction of the hits into a pair of circular orbits. The trigger interacts with the photon detector electronics by gating limited sections of the detector during the read-out of an event. This paper describes the two stage trigger system, the photon detector electronics, and the implementation of the trigger outputs to strobe the data acquisition system. The performance of the trigger is compared to Monte Carlo simulations of the photon detector response.

  19. Magnetically assisted fast ignition.

    PubMed

    Wang, W-M; Gibbon, P; Sheng, Z-M; Li, Y-T

    2015-01-01

    Fast ignition (FI) is investigated via integrated particle-in-cell simulation including both generation and transport of fast electrons, where petawatt ignition lasers of 2 ps and compressed targets of a peak density of 300  g cm(-3) and areal density of 0.49  g cm(-2) at the core are taken. When a 20 MG static magnetic field is imposed across a conventional cone-free target, the energy coupling from the laser to the core is enhanced by sevenfold and reaches 14%. This value even exceeds that obtained using a cone-inserted target, suggesting that the magnetically assisted scheme may be a viable alternative for FI. With this scheme, it is demonstrated that two counterpropagating, 6 ps, 6 kJ lasers along the magnetic field transfer 12% of their energy to the core, which is then heated to 3 keV. PMID:25615473

  20. Fast electrochemical actuator

    NASA Astrophysics Data System (ADS)

    Uvarov, I. V.; Postnikov, A. V.; Svetovoy, V. B.

    2016-03-01

    Lack of fast and strong microactuators is a well-recognized problem in MEMS community. Electrochemical actuators can develop high pressure but they are notoriously slow. Water electrolysis produced by short voltage pulses of alternating polarity can overcome the problem of slow gas termination. Here we demonstrate an actuation regime, for which the gas pressure is relaxed just for 10 μs or so. The actuator consists of a microchamber filled with the electrolyte and covered with a flexible membrane. The membrane bends outward when the pressure in the chamber increases. Fast termination of gas and high pressure developed in the chamber are related to a high density of nanobubbles in the chamber. The physical processes happening in the chamber are discussed so as problems that have to be resolved for practical applications of this actuation regime. The actuator can be used as a driving engine for microfluidics.

  1. Photoacoustic microscopy of myocardial sheet architecture in unfixed and unstained mammalian hearts

    NASA Astrophysics Data System (ADS)

    Zhang, Chi; Cheng, Ya-Jian; Yao, Da-Kang; Wickline, Samuel; Wang, Lihong V.

    2012-02-01

    The laminar myocardial sheet architecture and its dynamic change play a key role in myocardial wall thickening. Histology, confocal optical microscopy (COM), and diffusion tensor MRI (DTI) have been used to unveil the structures and functions of the myocardial sheets. However, histology and COM require fixation, sectioning, and staining processes, which dehydrate and deform the sheet architecture. Although DTI can delineate sheet architecture nondestructively in viable hearts, it cannot provide cellular-level resolution. Here we show that photoacoustic microscopy (PAM), with high resolution (~1 μm) and label-free detection, is appropriate for imaging 3D myocardial architecture. Perfused half-split mouse hearts were also imaged by PAM in vitro without fixation, dehydration, nor staining. The laminar myocardial sheet architecture was clearly visualized within a 0.15 mm depth range. Two populations of oppositely signed sheet angles were observed. Therefore, PAM promises to access dynamic changes of myocardial architectures in ex vivo perfused-viable hearts.

  2. Implementation of pipelined FastICA on FPGA for real-time blind source separation.

    PubMed

    Shyu, Kuo-Kai; Lee, Ming-Huan; Wu, Yu-Te; Lee, Po-Lei

    2008-06-01

    Fast independent component analysis (FastICA) algorithm separates the independent sources from their mixtures by measuring non-Gaussian. FastICA is a common offline method to identify artifact and interference from their mixtures such as electroencephalogram (EEG), magnetoencephalography (MEG), and electrocardiogram (ECG). Therefore, it is valuable to implement FastICA for real-time signal processing. In this paper, the FastICA algorithm is implemented in a field-programmable gate array (FPGA), with the ability of real-time sequential mixed signals processing by the proposed pipelined FastICA architecture. Moreover, in order to increase the numbers precision, the hardware floating-point (FP) arithmetic units had been carried out in the hardware FastICA. In addition, the proposed pipeline FastICA provides the high sampling rate (192 kHz) capability by hand coding the hardware FastICA in hardware description language (HDL). To verify the features of the proposed hardware FastICA, simulations are first performed, then real-time signal processing experimental results are presented using the fabricated platform. Experimental results demonstrate the effectiveness of the presented hardware FastICA as expected.

  3. Fast Ion Conductors

    NASA Astrophysics Data System (ADS)

    Chadwick, Alan V.

    Fast ion conductors, sometimes referred to as superionic conductors or solid electrolytes, are solids with ionic conductivities that are comparable to those found in molten salts and aqueous solutions of strong electrolytes, i.e., 10-2-10 S cm-1. Such materials have been known of for a very long time and some typical examples of the conductivity are shown in Fig. 1, along with sodium chloride as the archetypal normal ionic solid. Faraday [1] first noted the high conductivity of solid lead fluoride (PbF2) and silver sulphide (Ag2S) in the 1830s and silver iodide was known to be unusually high ionic conductor to the German physicists early in the 1900s. However, the materials were regarded as anomalous until the mid 1960s when they became the focus of intense interest to academics and technologists and they have remained at the forefront of materials research [2-4]. The academic aim is to understand the fundamental origin of fast ion behaviour and the technological goal is to utilize the properties in applications, particularly in energy applications such as the electrolyte membranes in solid-state batteries and fuel cells, and in electrochemical sensors. The last four decades has seen an expansion of the types of material that exhibit fast ion behaviour that now extends beyond simple binary ionic crystals to complex solids and even polymeric materials. Over this same period computer simulations of solids has also developed (in fact these methods and the interest in fast ion conductors were almost coincidental in their time of origin) and the techniques have played a key role in this area of research.

  4. PHENIX Fast TOF

    SciTech Connect

    Soha, Aria; Chiu, Mickey; Mannel, Eric; Stoll, Sean; Lynch, Don; Boose, Steve; Northacker, Dave; Alfred, Marcus; Lindesay, James; Chujo, Tatsuya; Inaba, Motoi; Nonaka, Toshihiro; Sato, Wataru; Sakatani, Ikumi; Hirano, Masahiro; Choi, Ihnjea

    2014-01-15

    This is a technical scope of work (TSW) between the Fermi National Accelerator Laboratory (Fermilab) and the experimenters of PHENIX Fast TOF group who have committed to participate in beam tests to be carried out during the FY2014 Fermilab Test Beam Facility program. The goals for this test beam experiment are to verify the timing performance of the two types of time-of-flight detector prototypes.

  5. Fast track evaluation methodology.

    PubMed

    Duke, J R

    1991-06-01

    Evaluating hospital information systems has taken a variety of forms since the initial development and use of automation. The process itself has moved from a hardware-based orientation controlled by data processing professionals to systems solutions and a user-driven process overseen by management. At Harbor Hospital Center in Baltimore, a fast track methodology has been introduced to shorten system evaluation time to meet the rapid changes that constantly affect the healthcare industry.

  6. Architectural Environment: A Resource Kit.

    ERIC Educational Resources Information Center

    J.B. Speed Art Museum, Louisville, KY.

    There are many ways to approach the investigation of architecture. One can look at structural form, climate and topography, the aesthetics of style and decoration, building function, historical factors, cultural meanings, or technology and techniques associated with construction. This resource kit touches upon a few of these approaches, ranging…

  7. Integrating Technology with Architectural Needs

    ERIC Educational Resources Information Center

    Elmasry, Sarah

    2009-01-01

    Researchers at the Center of High Performance Learning Technologies (CHPLE), Virginia Tech, conducted a study investigating issues related to integration of learning technologies with architectural systems in contemporary learning environments. The study is qualitative in nature, and focuses on integration patterns of learning technologies with…

  8. Putting Architecture in Its Place.

    ERIC Educational Resources Information Center

    Meyer, Esther da Costa

    1995-01-01

    Examines Vincent Scully's work as teacher, writer, and critic. This reminisce by a former student also lauds Scully's role as mentor to several generations of art historians. Briefly covers his work on behalf of historic preservation and discusses two seminal works, "American Architecture and Urbanism" and "The Earth, the Temple, and the Gods."…

  9. Changing School Architecture in Zurich

    ERIC Educational Resources Information Center

    Ziegler, Mark; Kurz, Daniel

    2008-01-01

    Changes in the way education is delivered has contributed to the evolution of school architecture in Zurich, Switzerland. The City of Zurich has revised its guidelines for designing school buildings, both new and old. Adapting older buildings to today's needs presents a particular challenge. The authors explain what makes up a good school building…

  10. Carnegie Mellon University Space Architecture

    NASA Technical Reports Server (NTRS)

    Kennedy, Kriss J.

    2016-01-01

    A traditional architecture studio focusing on a "post-pioneering" settlement (a first step research station with an emphasis on material, resources, closed-loop systems, as well as programmatic network and spatial considerations) for the surface of Mars or for Earth-Mars transit.

  11. The Rhetoric of Campus Architecture

    ERIC Educational Resources Information Center

    Smith, Cynthia Duquette

    2016-01-01

    The group activity described in this article was originally designed for an upper-division undergraduate course on Rhetoric and Architecture, but would also be well suited for courses in Persuasion, Rhetorical Criticism, or Visual Rhetoric. Any undergraduate course related to communication and design (including Advertising) could make excellent…

  12. Computing architecture for autonomous microgrids

    DOEpatents

    Goldsmith, Steven Y.

    2015-09-29

    A computing architecture that facilitates autonomously controlling operations of a microgrid is described herein. A microgrid network includes numerous computing devices that execute intelligent agents, each of which is assigned to a particular entity (load, source, storage device, or switch) in the microgrid. The intelligent agents can execute in accordance with predefined protocols to collectively perform computations that facilitate uninterrupted control of the .

  13. Enhancements to PVM's BEOLIN architecture

    NASA Technical Reports Server (NTRS)

    Springer, Paul L.

    2005-01-01

    .4.3 of PVM had previously been enhanced by the addition of a new architecture, BEOLIN, which allowed a PVM user to abstract a Beowulf class computer with a private network to appear as a single system, visible to the outside world, which could spawn tasks on different internal nodes.

  14. Cohesin in determining chromosome architecture

    SciTech Connect

    Haering, Christian H.; Jessberger, Rolf

    2012-07-15

    Cells use ring-like structured protein complexes for various tasks in DNA dynamics. The tripartite cohesin ring is particularly suited to determine chromosome architecture, for it is large and dynamic, may acquire different forms, and is involved in several distinct nuclear processes. This review focuses on cohesin's role in structuring chromosomes during mitotic and meiotic cell divisions and during interphase.

  15. Information architecture. Volume 4: Vision

    SciTech Connect

    1998-03-01

    The Vision document marks the transition from definition to implementation of the Department of Energy (DOE) Information Architecture Program. A description of the possibilities for the future, supported by actual experience with a process model and tool set, points toward implementation options. The directions for future information technology investments are discussed. Practical examples of how technology answers the business and information needs of the organization through coordinated and meshed data, applications, and technology architectures are related. This document is the fourth and final volume in the planned series for defining and exhibiting the DOE information architecture. The targeted scope of this document includes DOE Program Offices, field sites, contractor-operated facilities, and laboratories. This document paints a picture of how, over the next 7 years, technology may be implemented, dramatically improving the ways business is conducted at DOE. While technology is mentioned throughout this document, the vision is not about technology. The vision concerns the transition afforded by technology and the process steps to be completed to ensure alignment with business needs. This goal can be met if those directing the changing business and mission-support processes understand the capabilities afforded by architectural processes.

  16. An open architecture motion controller

    NASA Technical Reports Server (NTRS)

    Rossol, Lothar

    1994-01-01

    Nomad, an open architecture motion controller, is described. It is formed by a combination of TMOS, C-WORKS, and other utilities. Nomad software runs in a UNIX environment and provides for sensor-controlled robotic motions, with user replaceable kinematics. It can also be tailored for highly specialized applications. Open controllers such as Nomad should have a major impact on the robotics industry.

  17. Freeform reflectors for architectural lighting.

    PubMed

    Zhu, Ruidong; Hong, Qi; Zhang, Hongxia; Wu, Shin-Tson

    2015-12-14

    We propose an improved method to design freeform reflectors for architectural lighting: one for accent lighting and another for large area wall washing. The designed freeform reflectors effectively distribute light fluxes over the target surfaces, and generate appropriate illumination patterns for comfortable visual environments, which provides greater flexibility for lighting designs, allows many challenging designs, and improves energy-efficiency simultaneously.

  18. Space-Time and Architecture

    NASA Astrophysics Data System (ADS)

    Field, F.; Goodbun, J.; Watson, V.

    Architects have a role to play in interplanetary space that has barely yet been explored. The architectural community is largely unaware of this new territory, for which there is still no agreed method of practice. There is moreover a general confusion, in scientific and related fields, over what architects might actually do there today. Current extra-planetary designs generally fail to explore the dynamic and relational nature of space-time, and often reduce human habitation to a purely functional problem. This is compounded by a crisis over the representation (drawing) of space-time. The present work returns to first principles of architecture in order to realign them with current socio-economic and technological trends surrounding the space industry. What emerges is simultaneously the basis for an ecological space architecture, and the representational strategies necessary to draw it. We explore this approach through a work of design-based research that describes the construction of Ocean; a huge body of water formed by the collision of two asteroids at the Translunar Lagrange Point (L2), that would serve as a site for colonisation, and as a resource to fuel future missions. Ocean is an experimental model for extra-planetary space design and its representation, within the autonomous discipline of architecture.

  19. Fast Track Study

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The NASA Fast Track Study supports the efforts of a Special Study Group (SSG) made up of members of the Advanced Project Management Class number 23 (APM-23) that met at the Wallops Island Management Education Center from April 28 - May 8, 1996. Members of the Class expressed interest to Mr. Vem Weyers in having an input to the NASA Policy Document (NPD) 7120.4, that will replace NASA Management Institute (NMI) 7120.4, and the NASA Program/Project Management Guide. The APM-23 SSG was tasked with assisting in development of NASA policy on managing Fast Track Projects, defined as small projects under $150 million and completed within three years. 'Me approach of the APM-23 SSG was to gather data on successful projects working in a 'Better, Faster, Cheaper' environment, within and outside of NASA and develop the Fast Track Project section of the NASA Program/Project Management Guide. Fourteen interviews and four other data gathering efforts were conducted by the SSG, and 16 were conducted by Strategic Resources, Inc. (SRI), including five interviews at the Jet Propulsion Laboratory (JPL) and one at the Applied Physics Laboratory (APL). The interviews were compiled and analyzed for techniques and approaches commonly used to meet severe cost and schedule constraints.

  20. The fast Hartley transform

    NASA Astrophysics Data System (ADS)

    Mar, Mark H.

    1990-11-01

    The purpose of this paper is to report the results of testing the fast Hartley transform (FHT) and comparing it with the fast Fourier transform (FFT). All the definitions and equations in this paper are quoted and cited from the series of references. The author of this report developed a FORTRAN program which computes the Hartley transform. He tested the program with a generalized electromagnetic pulse waveform and verified the results with the known value. Fourier analysis is an essential tool to obtain frequency domain information from transient time domain signals. The FFT is a popular tool to process many of today's audio and electromagnetic signals. System frequency response, digital filtering of signals, and signal power spectrum are the most practical applications of the FFT. However, the Fourier integral transform of the FFT requires computer resources appropriate for the complex arithmetic operations. On the other hand, the FHT can accomplish the same results faster and requires fewer computer resources. The FHT is twice as fast as the FFT, uses only half the computer resources, and so could be more useful than the FFT in typical applications such as spectral analysis, signal processing, and convolution. This paper presents a FORTRAN computer program for the FHT algorithm along with a brief description and compares the results and performance of the FHT and the FFT algorithms.