Science.gov

Sample records for fast optical flaring

  1. Very fast optical flaring from a possible new Galactic magnetar

    SciTech Connect

    Stefanescu, A.; Kanbach, G.; Greiner, J.; Slowikowska, A.; McBreen, S.; Sala, G.

    2009-05-25

    Rapid optical flaring of an unprecedented type was detected from a transient Galactic high-energy source, SWIFT J195509.6+261406[1]. On June 10, 2007, Swift-BAT triggered on GRB 070610, which turned out to be a previously unknown X-ray transient in the Galaxy. Optical emission following this transient was observed after only 421 s with the high-time-resolution single-photon counting photometer OPTIMA. Measurements continued for the following 5 nights.We detected very strong optical flares (>6 mag) with extremely short timescales: duration of individual flares 2-100 s, shortest variability timescales 0.4 s. The scale and magnitude of the observed variability combined with a distance estimate of 4-8 kpc indicate a non-thermal origin of the observed radiation. The morphology of the optical flares is reminiscent of X-ray outbursts of SGRs. The time resolution and high signal-to-noise ratio during the brightest optical outbursts allow to compute their Fourier power spectral density. Features similar to QPOs appear at periods of 6-8 seconds, typical rotational periods for magnetars. X-ray observations independent from our optical analysis show hints of periodicity at a coinciding frequency. We conclude that the timing properties of the fast, bright outbursts of SWIFT J1955 suggest a connection between this transient and magnetars flaring in the optical.

  2. Mechanisms for fast flare reconnection

    NASA Technical Reports Server (NTRS)

    Vanhoven, G.; Deeds, D.; Tachi, T.

    1988-01-01

    Normal collisional-resistivity mechanisms of magnetic reconnection have the drawback that they are too slow to explain the fast rise of solar flares. Two methods are examined which are proposed for the speed-up of the magnetic tearing instability: the anomalous enhancement of resistivity by the injection of MHD turbulence and the increase of Coulomb resistivity by radiative cooling. The results are described for nonlinear numerical simulations of these processes which show that the first does not provide the claimed effects, while the second yields impressive rates of reconnection, but low saturated energy outputs.

  3. EVIDENCE FOR HOT FAST FLOW ABOVE A SOLAR FLARE ARCADE

    SciTech Connect

    Imada, S.; Aoki, K.; Hara, H.; Watanabe, T.; Harra, L. K.; Shimizu, T.

    2013-10-10

    Solar flares are one of the main forces behind space weather events. However, the mechanism that drives such energetic phenomena is not fully understood. The standard eruptive flare model predicts that magnetic reconnection occurs high in the corona where hot fast flows are created. Some imaging or spectroscopic observations have indicated the presence of these hot fast flows, but there have been no spectroscopic scanning observations to date to measure the two-dimensional structure quantitatively. We analyzed a flare that occurred on the west solar limb on 2012 January 27 observed by the Hinode EUV Imaging Spectrometer (EIS) and found that the hot (∼30MK) fast (>500 km s{sup –1}) component was located above the flare loop. This is consistent with magnetic reconnection taking place above the flare loop.

  4. FAST CONTRACTION OF CORONAL LOOPS AT THE FLARE PEAK

    SciTech Connect

    Liu Rui; Wang Haimin

    2010-05-01

    On 2005 September 8, a coronal loop overlying the active region NOAA 10808 was observed in TRACE 171 A to contract at {approx}100 km s{sup -1} at the peak of an X5.4-2B flare at 21:05 UT. Prior to the fast contraction, the loop underwent a much slower contraction at {approx}6 km s{sup -1} for about 8 minutes, initiating during the flare preheating phase. The sudden switch to fast contraction is presumably corresponding to the onset of the impulsive phase. The contraction resulted in the oscillation of a group of loops located below, with the period of about 10 minutes. Meanwhile, the contracting loop exhibited a similar oscillatory pattern superimposed on the dominant downward motion. We suggest that the fast contraction reflects a suddenly reduced magnetic pressure underneath due either to (1) the eruption of magnetic structures located at lower altitudes or to (2) the rapid conversion of magnetic free energy in the flare core region. Electrons accelerated in the shrinking trap formed by the contracting loop can theoretically contribute to a late-phase hard X-ray burst, which is associated with Type IV radio emission. To complement the X5.4 flare which was probably confined, a similar event observed in SOHO/EIT 195 A on 2004 July 20 in an eruptive, M8.6 flare is briefly described, in which the contraction was followed by the expansion of the same loop leading up to a halo coronal mass ejection. These observations further substantiate the conjecture of coronal implosion and suggest coronal implosion as a new exciter mechanism for coronal loop oscillations.

  5. Fast optical pyrometry

    NASA Technical Reports Server (NTRS)

    Cezairliyan, Ared

    1988-01-01

    Design and operation of accurate millisecond and microsecond resolution optical pyrometers developed at the National Bureau of Standards during the last two decades are described. Results of tests are presented and estimates of uncertainties in temperature measurements are given. Calibration methods are discussed and examples of applications of fast pyrometry are given. Ongoing research in developing fast multiwavelength and spatial scanning pyrometers are summarized.

  6. Optical flare observed in the flaring gamma-ray blazar S5 1044+71

    NASA Astrophysics Data System (ADS)

    Pursimo, Tapio; Blay, Pere; Telting, John; Ojha, Roopesh

    2017-01-01

    We report optical photometry of the blazar S5 1044+71, obtained with the 2.56m Nordic Optical Telescope in La Palma, to look for any enhanced optical activity associated with a recent flare in the daily averaged gamma-ray flux (ATel#9928).

  7. Hot-Wiring Flare Stars: Optical Flare Rates and Properties from Time-Domain Surveys

    NASA Astrophysics Data System (ADS)

    Kowalski, A.

    Flares are thought to result from the reconnection of magnetic fields in the upper layers (coronae) of stellar atmospheres. The highly dynamic atmospheric response produces radiation across the electromagnetic spectrum, from the radio to X-rays, on a range of timescales, from seconds to days. Due to their high flare rates and energies combined with a large contrast against the background quiescent emission, the low-mass M dwarfs are the primary target for studying flare rates in the Galaxy. However, high-precision monitoring campaigns using Kepler and the Hubble Space Telescope have recently revealed important information on the flare rates of earlier- type, more massive stars. In this talk, I will focus on the properties of flares and flare stars in the optical and near-ultraviolet wavelength regimes as revealed from time-domain surveys, such as the repeat observations of the Sloan Digital Sky Surveys Stripe 82. I will discuss the importance of spectroscopic follow-up characterization of the quiescent and flare emission, and I will highlight new radiative-hydrodynamic modeling results that have enhanced our understanding of impulsive phase U-band flare emission.

  8. Optical microflaring on the nearby flare star binary UV Ceti

    NASA Astrophysics Data System (ADS)

    Schmitt, J. H. M. M.; Kanbach, G.; Rau, A.; Steinle, H.

    2016-05-01

    We present extremely high time resolution observations of the visual flare star binary UV Cet obtained with the Optical Pulsar Timing Analyzer (OPTIMA) at the 1.3 m telescope at Skinakas Observatory (SKO) in Crete, Greece. OPTIMA is a fiber-fed optical instrument that uses Single Photon Avalanche Diodes to measure the arrival times of individual optical photons. The time resolution of the observations presented here was 4 μs, allowing to resolve the typical millisecond variability time scales associated with stellar flares. We report the detection of very short impulsive bursts in the blue band with well resolved rise and decay time scales of about 2 s. The overall energetics put these flares at the lower end of the known flare distribution of UV Cet.

  9. Multi-wavelength Observations of Fast Infrared Flares from V404 Cygni in 2015

    NASA Astrophysics Data System (ADS)

    Dallilar, Yigit; Casella, Piergiorgio; Marsh, Tom; Gandhi, Poshak; Fender, Rob; Littlefair, Stuart; Eikenberry, Steve; Garner, Alan; Stelter, Deno; Dhillon, Vik; Mooley, Kunal

    2016-07-01

    We used the fast photometry mode of our new Canarias InfraRed Camera Experiment (CIRCE) on the 10.4-meter Gran Telescopio Canarias to observe V404 Cyg, a stellar mass black hole binary, on June 25, 2015 during its 2015 outburst. CIRCE provided 10Hz sampling in the Ks-band (2.2 microns) In addition, we obtained simultaneous multi wavelength data from our collaborators: three GHz radio bands from the AMI telescope and three optical/UV bands (u', g', r') from ULTRACAM on the William Herschel 4.2-meter telescope. We identify fast (1-second) IR flares with optical counterparts of varying strength/color, which we argue arise from a relativistic jet outflow. These observations provide important constraints on the emission processes and physical conditions in the jet forming region in V404 Cygni. We will discuss these results as well as their implications for relativistic jet formation around stellar-mass black holes.

  10. Multi-wavelength Observations of Fast Infrared Flares from V404 Cygni in 2015

    NASA Astrophysics Data System (ADS)

    Eikenberry, Stephen S.; Dallilar, Yigit; Garner, Alan; Deno Stelter, R.; Gandhi, Poshak; Dhillon, Vik; Littlefair, Stuart; Marsh, Thomas; Fender, Rob P.; Mooley, Kunal

    2016-04-01

    We used the fast photometry mode of our new Canarias InfraRed Camera Experiment (CIRCE) on the 10.4-meter Gran Telescopio Canarias to observe V404 Cyg, a stellar mass black hole binary, on June 25, 2015 during its 2015 outburst. CIRCE provided 10Hz sampling in the Ks-band (2.2 microns) In addition, we obtained simultaneous multi wavelength data from our collaborators: three GHz radio bands from the AMI telescope and three optical/UV bands (u', g', r') from ULTRACAM on the William Herschel 4.2-meter telescope. We identify fast (1-second) IR flares with optical counterparts of varying strength/color, which we argue arise from a relativistic jet outflow. These observations provide important constraints on the emission processes and physical conditions in the jet forming region in V404 Cygni. We will discuss these results as well as their implications for relativistic jet formation around stellar-mass black holes.

  11. Interferometric at-wavelength flare characterization of EUV optical systems

    DOEpatents

    Naulleau, Patrick P.; Goldberg, Kenneth Alan

    2001-01-01

    The extreme ultraviolet (EUV) phase-shifting point diffraction interferometer (PS/PDI) provides the high-accuracy wavefront characterization critical to the development of EUV lithography systems. Enhancing the implementation of the PS/PDI can significantly extend its spatial-frequency measurement bandwidth. The enhanced PS/PDI is capable of simultaneously characterizing both wavefront and flare. The enhanced technique employs a hybrid spatial/temporal-domain point diffraction interferometer (referred to as the dual-domain PS/PDI) that is capable of suppressing the scattered-reference-light noise that hinders the conventional PS/PDI. Using the dual-domain technique in combination with a flare-measurement-optimized mask and an iterative calculation process for removing flare contribution caused by higher order grating diffraction terms, the enhanced PS/PDI can be used to simultaneously measure both figure and flare in optical systems.

  12. Fast X-ray Oscillations during Magnetar Flares

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod E.

    2007-01-01

    The giant flares produced by highly magnetized neutron stars, "magnetars," are the brightest sources of high energy radiation outside our solar system. Serendipitous observations with NASA's Rossi X-ray Timing Explorer (RXTE) of the two most recent flares resulted in the discovery of high frequency oscillations in their X-ray fluxes. The frequencies of these oscillations range from approx. 20 Hz to as high as 1800 Hz, and may represent the first detection of global oscillation modes of neutron stars. Here I will present an observational and theoretical overview of these oscillations and discuss how they might allow us to probe neutron star interiors and dense matter physics.

  13. THE FAST FILAMENT ERUPTION LEADING TO THE X-FLARE ON 2014 MARCH 29

    SciTech Connect

    Kleint, Lucia; Battaglia, Marina; Krucker, Säm; Reardon, Kevin; Dalda, Alberto Sainz; Young, Peter R.

    2015-06-10

    We investigate the sequence of events leading to the solar X1 flare SOL2014-03-29T17:48. Because of the unprecedented joint observations of an X-flare with the ground-based Dunn Solar Telescope and the spacecraft IRIS, Hinode, RHESSI, STEREO, and the Solar Dynamics Observatory, we can sample many solar layers from the photosphere to the corona. A filament eruption was observed above a region of previous flux emergence, which possibly led to a change in magnetic field configuration, causing the X-flare. This was concluded from the timing and location of the hard X-ray emission, which started to increase slightly less than a minute after the filament accelerated. The filament showed Doppler velocities of ∼2–5 km s{sup −1} at chromospheric temperatures for at least one hour before the flare occurred, mostly blueshifts, but also redshifts near its footpoints. Fifteen minutes before the flare, its chromospheric Doppler shifts increased to ∼6–10 km s{sup −1} and plasma heating could be observed before it lifted off with at least 600 km s{sup −1} as seen in IRIS data. Compared to previous studies, this acceleration (∼3–5 km s{sup −2}) is very fast, while the velocities are in the common range for coronal mass ejections. An interesting feature was a low-lying twisted second filament near the erupting filament, which did not seem to participate in the eruption. After the flare ribbons started on each of the second filament’s sides, it seems to have untangled and vanished during the flare. These observations are some of the highest resolution data of an X-class flare to date and reveal some small-scale features yet to be explained.

  14. High-Cadence B-Band Search for Optical Flares on BY Dra

    NASA Astrophysics Data System (ADS)

    Vander Haagen, G. A.

    2015-12-01

    The high-cadence search at 50 and 100 samples/sec of BY Dra revealed very short-duration B-band flares. A statistical criterion was used to isolate the short-duration optical flares from random photon events. Three flares, ranging in duration from 60 to 130 ms, with peaks 0.30-0.43 magnitude above the mean, were detected within the 80.2 hours of periodic monitoring from July 2012 through October 2015. This represents a flare rate of 0.04 flares/hour.

  15. The Effects of Wave Escape on Fast Magnetosonic Wave Turbulence in Solar Flares

    NASA Technical Reports Server (NTRS)

    Pongkitiwanichakul, Peera; Chandran, Benjamin D. G.; Karpen, Judith T.; DeVore, C. Richard

    2012-01-01

    One of the leading models for electron acceleration in solar flares is stochastic acceleration by weakly turbulent fast magnetosonic waves ("fast waves"). In this model, large-scale flows triggered by magnetic reconnection excite large-wavelength fast waves, and fast-wave energy then cascades from large wavelengths to small wavelengths. Electron acceleration by large-wavelength fast-waves is weak, and so the model relies on the small-wavelength waves produced by the turbulent cascade. In order for the model to work, the energy cascade time for large-wavelength fast waves must be shorter than the time required for the waves to propagate out of the solar-flare acceleration region. To investigate the effects of wave escape, we solve the wave kinetic equation for fast waves in weak turbulence theory, supplemented with a homogeneous wave-loss term.We find that the amplitude of large-wavelength fast waves must exceed a minimum threshold in order for a significant fraction of the wave energy to cascade to small wavelengths before the waves leave the acceleration region.We evaluate this threshold as a function of the dominant wavelength of the fast waves that are initially excited by reconnection outflows.

  16. Reconnection-driven plasmoids in blazars: fast flares on a slow envelope

    NASA Astrophysics Data System (ADS)

    Giannios, Dimitrios

    2013-05-01

    TeV flares of a duration of ˜10 min have been observed in several blazars. The fast flaring requires compact regions in the jet that boost their emission towards the observer at an extreme Doppler factor of δem ≳ 50. For ˜100 GeV photons to avoid annihilation in the broad-line region of PKS 1222+216, the flares must come from large (pc) scales, challenging most models proposed to explain them. Here I elaborate on the magnetic reconnection minijet model for the blazar flaring, focusing on the inherently time-dependent aspects of the process of magnetic reconnection. I argue that, for the physical conditions prevailing in blazar jets, the reconnection layer fragments, leading to the formation a large number of plasmoids. Occasionally, a plasmoid grows to become a large, `monster' plasmoid. I show that radiation emitted from the reconnection event can account for the observed `envelope' of day-long blazar activity, while radiation from monster plasmoids can power the fastest TeV flares. The model is applied to several blazars with observed fast flaring. The inferred distance of the dissipation zone from the black hole and the typical size of the reconnection regions are Rdiss ˜ 0.3-1 pc and l' ≲ 1016 cm, respectively. The required magnetization of the jet at this distance is modest: σ ˜ a few. Such distance Rdiss and reconnection size l' are expected if the jet contains field structures with a size of the order of the black hole horizon.

  17. A search for fast optical transients in the Pan-STARRS1 medium-deep survey: M-dwarf flares, asteroids, limits on extragalactic rates, and implications for LSST

    SciTech Connect

    Berger, E.; Leibler, C. N.; Chornock, R.; Foley, R. J.; Soderberg, A. M.; Rest, A.; Price, P. A.; Burgett, W. S.; Chambers, K. C.; Flewelling, H.; Huber, M. E.; Magnier, E. A.; Tonry, J. L.; Metcalfe, N.; Stubbs, C. W.

    2013-12-10

    We present a search for fast optical transients (τ ∼ 0.5 hr-1 day) using repeated observations of the Pan-STARRS1 Medium-Deep Survey (PS1/MDS) fields. Our search takes advantage of the consecutive g {sub P1} r {sub P1} observations (16.5 minutes in each filter), by requiring detections in both bands, with non-detections on preceding and subsequent nights. We identify 19 transients brighter than 22.5 AB mag (S/N ≳ 10). Of these, 11 events exhibit quiescent counterparts in the deep PS1/MDS templates that we identify as M4-M9 dwarfs at d ≈ 0.2-1.2 kpc. The remaining eight transients lack quiescent counterparts, exhibit mild but significant astrometric shifts between the g {sub P1} and r {sub P1} images, colors of (g – r){sub P1} ≈ 0.5-0.8 mag, non-varying light curves, and locations near the ecliptic plane with solar elongations of about 130°, which are all indicative of main-belt asteroids near the stationary point of their orbits. With identifications for all 19 transients, we place an upper limit of R {sub FOT}(τ ∼ 0.5 hr) ≲ 0.12 deg{sup –2} day{sup –1} (95% confidence level) on the sky-projected rate of extragalactic fast transients at ≲ 22.5 mag, a factor of 30-50 times lower than previous limits; the limit for a timescale of ∼1 day is R {sub FOT} ≲ 2.4 × 10{sup –3} deg{sup –2} day{sup –1}. To convert these sky-projected rates to volumetric rates, we explore the expected peak luminosities of fast optical transients powered by various mechanisms, and find that non-relativistic events are limited to M ≈ –10 to ≈ – 14 mag for a timescale of ∼0.5 hr to ∼1 day, while relativistic sources (e.g., gamma-ray bursts, magnetar-powered transients) can reach much larger luminosities. The resulting volumetric rates are ≲ 13 Mpc{sup –3} yr{sup –1} (M ≈ –10 mag), ≲ 0.05 Mpc{sup –3} yr{sup –1} (M ≈ –14 mag), and ≲ 10{sup –6} Mpc{sup –3} yr{sup –1} (M ≈ –24 mag), significantly above the nova, supernova

  18. Investigation of X-ray and optical solar flare activities during solar cycles 22 and 23

    NASA Astrophysics Data System (ADS)

    Akimov, L. A.; Belkina, I. L.; Bushueva, T. P.

    2003-02-01

    Daily X-ray flare indices (XFI) for the interval from January 1986 till June 2002 were calculated. The XFI behaviour during solar cycles 22 and 23 was studied. We compare the daily XFI with the daily optical flare indices (OFI) and with the International Relative Sunspot Numbers. The energy emitted by X-ray flares during 77 months of solar cycle 22 is shown to be about five times larger than the analogous value for the present solar cycle. We revealed statistically significant maxima in power spectra of the XFI and OFI. They correspond to periods of 25.5, 36.5, 73, 116, and 150d which presumably are appropriate to characteristic frequencies of the solar flare activity. A hypothesis on an possible effect of Mercury's variable electric charge on the origin of solar flares is proposed and corresponding estimates were made.

  19. The starting conditions for an optically small solar gamma ray flare

    NASA Technical Reports Server (NTRS)

    Simnett, G. M.; Ryan, J. M.

    1985-01-01

    It is suggested that optically small gamma-ray flares result from gradual pre-flare acceleration of protons over approximately 1,000 s by a series of magnetohydrodynamic shocks in the low corona. A fraction of the accelerated protons are trapped in the corona where they form a seed population for future acceleration. If the shock acceleration is sufficiently rapid proton energies may exceed the gamma-ray production threshold and trigger gamma-ray emission. This occurs without the total flare energy being necessarily large. Magnetic field geometry is an important parameter.

  20. Optical Polarimetry Campaign on Markarian 421 during the 2012 Large Flaring Episodes

    NASA Astrophysics Data System (ADS)

    Barres de Almeida, Ulisses; Jermak, Helen; Lindfors, Elina; Mundell, Carole; Nilsson, Kari; Steele, Iain

    2015-08-01

    In 2012, Fermi/LAT gamma-ray and radio observations registered the largest flaring episodes ever recorded from the blazar Markarian 421. The unprecedented activity state of the source has remained high and much above the normal emission state seem from the source also for the year 2013, characterising a dramatic and long-lasting, albeit puzzling, change of behaviour in the emission of this object. This unique event has been followed by observations over the entire electromagnetic spectrum, showing extreme signatures in all bands, from radio to VHE gamma-rays. Polarisation monitoring of the source has nevertheless been somewhat more scarce, and direct observation of the peak activity in 2012 was prevented by the source's proximity to the Sun at that time. As part of our continuous monitoring programme of VHE-emitting blazars in optical polarimetry at the Liverpool Telescope, which used the RINGO2 fast polarimeter and lasted from 2010 to 2013, we have observed Mkn 421 with regular coverage and a sub-weekly cadence for over two years. This continued monitoring allowed us to continually follow the polarisation behaviour of the source for a long time and up to the days preceding the dramatic flare event in 2012. In the weeks before the extreme 2012 outbursts, Mrk 421 underwent an unprecedented increase in its degree of polarisation, which rose by a factor of 5, not witnessed in decades from this object. The source also showed a large rotation of its polarisation angle, by over 180 degrees, which has never been registered before for this objetc. In this talk we will present our entire dataset on Mkn 421, concentrating in discussing the unprecedented events in optical polarisation that preceded the high-energy outburst. The main question we put ourselves is if what we have seen could be regarded as a polarimetric precursor to the high activity that followed. And if yes, what connections can we establish between them, and what remains mysterious to us about it?

  1. VLBI observations of flared optical quasar CGRaBS J0809+5341

    NASA Astrophysics Data System (ADS)

    An, Tao; Cui, Yu-Zhu; Paragi, Zsolt; Frey, Sándor; Gurvits, Leonid I.; Gabányi, Krisztina É.

    2016-10-01

    A bright optical flare was detected in the high-redshift (z = 2.133) quasar CGRaBS J0809+5341 on 2014 April 13. The absolute magnitude of the object reached -30.0 during the flare, making it the brightest one (in flaring stage) among all known quasars so far. The 15-GHz flux density of CGRaBS J0809+5341 monitored in the period from 2008 to 2016 also reached its peak at the same time. To reveal any structural change possibly associated with the flare in the innermost radio structure of the quasar, we conducted a pilot very long baseline interferometry (VLBI) observation of CGRaBS J0809+5341 using the European VLBI Network (EVN) at 5 GHz on 2014 November 18, about seven months after the prominent optical flare. Three epochs of follow-up KaVA (Korean VLBI Network and VLBI Exploration of Radio Astrometry Array) observations were carried out at 22- and 43-GHz frequencies from 2015 February 25 to June 4, with the intention of exploring a possibly emerging new radio jet component associated with the optical flare. However, these high-resolution VLBI observations revealed only the milliarcsecond-scale compact "core" that was known in the quasar from earlier VLBI images, and showed no sign of any extended jet structure. Neither the size nor the flux density of the "core" changed considerably after the flare, according to our VLBI monitoring. The results suggest that any putative radio ejecta associated with the major optical and radio flare could not yet be separated from the "core" component, or the newly-born jet was short-lived.

  2. Optical Photometry of the flaring gamma-ray blazar AO 0235+164

    NASA Astrophysics Data System (ADS)

    Pursimo, Tapio; Losada, Illa R.; Messa, Matteo; Gafton, Emanuel; Ojha, Roopesh

    2016-03-01

    We report optical photometry of the blazar AO 0235+164 obtained with the 2.56m Nordic Optical Telescope in La Palma to look for any enhanced optical activity associated with a recent flare in the daily averaged gamma-ray flux seen in the public lightcurve of the Fermi/LAT instrument: http://fermi.gsfc.nasa.gov/FTP/glast/data/lat/catalogs/asp/current/lightcurves/0235+164_86400.png Fermi/LAT first reported a detection of gamma-ray activity from this source in Sep, 2008 (ATel#1744) and a short timescale flare in Oct 14, 2008 (ATel#1784).

  3. Solar flares

    NASA Technical Reports Server (NTRS)

    Zirin, H.

    1974-01-01

    A review of the knowledge about solar flares which has been obtained through observations from the earth and from space by various methods. High-resolution cinematography is best carried out at H-alpha wavelengths to reveal the structure, time history, and location of flares. The classification flares in H alpha according to either physical or morphological criteria is discussed. The study of flare morphology, which shows where, when, and how flares occur, is important for evaluating theories of flares. Consideration is given to studies of flares by optical spectroscopy, radio emissions, and at X-ray and XUV wavelengths. Research has shown where and possibly why flares occur, but the physics of the instability involved, of the particle acceleration, and of the heating are still not understood.

  4. Optical Spectral Observations of a Flickering White-light Kernel in a C1 Solar Flare

    NASA Astrophysics Data System (ADS)

    Kowalski, Adam F.; Cauzzi, Gianna; Fletcher, Lyndsay

    2015-01-01

    We analyze optical spectra of a two-ribbon, long-duration C1.1 flare that occurred on 2011 August 18 within AR 11271 (SOL2011-08-18T15:15). The impulsive phase of the flare was observed with a comprehensive set of space-borne and ground-based instruments, which provide a range of unique diagnostics of the lower flaring atmosphere. Here we report the detection of enhanced continuum emission, observed in low-resolution spectra from 3600 Å to 4550 Å acquired with the Horizontal Spectrograph at the Dunn Solar Telescope. A small, <=0.''5 (1015 cm2) penumbral/umbral kernel brightens repeatedly in the optical continuum and chromospheric emission lines, similar to the temporal characteristics of the hard X-ray variation as detected by the Gamma-ray Burst Monitor on the Fermi spacecraft. Radiative-hydrodynamic flare models that employ a nonthermal electron beam energy flux high enough to produce the optical contrast in our flare spectra would predict a large Balmer jump in emission, indicative of hydrogen recombination radiation from the upper flare chromosphere. However, we find no evidence of such a Balmer jump in the bluemost spectral region of the continuum excess. Just redward of the expected Balmer jump, we find evidence of a "blue continuum bump" in the excess emission which may be indicative of the merging of the higher order Balmer lines. The large number of observational constraints provides a springboard for modeling the blue/optical emission for this particular flare with radiative-hydrodynamic codes, which are necessary to understand the opacity effects for the continuum and emission line radiation at these wavelengths.

  5. OPTICAL SPECTRAL OBSERVATIONS OF A FLICKERING WHITE-LIGHT KERNEL IN A C1 SOLAR FLARE

    SciTech Connect

    Kowalski, Adam F.; Cauzzi, Gianna; Fletcher, Lyndsay

    2015-01-10

    We analyze optical spectra of a two-ribbon, long-duration C1.1 flare that occurred on 2011 August 18 within AR 11271 (SOL2011-08-18T15:15). The impulsive phase of the flare was observed with a comprehensive set of space-borne and ground-based instruments, which provide a range of unique diagnostics of the lower flaring atmosphere. Here we report the detection of enhanced continuum emission, observed in low-resolution spectra from 3600 Å to 4550 Å acquired with the Horizontal Spectrograph at the Dunn Solar Telescope. A small, ≤0.''5 (10{sup 15} cm{sup 2}) penumbral/umbral kernel brightens repeatedly in the optical continuum and chromospheric emission lines, similar to the temporal characteristics of the hard X-ray variation as detected by the Gamma-ray Burst Monitor on the Fermi spacecraft. Radiative-hydrodynamic flare models that employ a nonthermal electron beam energy flux high enough to produce the optical contrast in our flare spectra would predict a large Balmer jump in emission, indicative of hydrogen recombination radiation from the upper flare chromosphere. However, we find no evidence of such a Balmer jump in the bluemost spectral region of the continuum excess. Just redward of the expected Balmer jump, we find evidence of a ''blue continuum bump'' in the excess emission which may be indicative of the merging of the higher order Balmer lines. The large number of observational constraints provides a springboard for modeling the blue/optical emission for this particular flare with radiative-hydrodynamic codes, which are necessary to understand the opacity effects for the continuum and emission line radiation at these wavelengths.

  6. Optical imaging of fast, dynamic neurophysiological function.

    SciTech Connect

    Rector, D. M.; Carter, K. M.; Yao, X.; George, J. S.

    2002-01-01

    Fast evoked responses were imaged from rat dorsal medulla and whisker barrel cortex. To investigate the biophysical mechanisms involved, fast optical responses associated with isolated crustacean nerve stimulation were recorded using birefringence and scattered light. Such studies allow optimization of non-invasive imaging techniques being developed for use in humans.

  7. Fast transients - A search in X-rays for short flares, bursts, and related phenomena

    NASA Technical Reports Server (NTRS)

    Connors, A.; Serlemitsos, P. J.; Swank, J. H.

    1986-01-01

    The HEAO 1 A-2 database on fast high energy X-ray transients was examined for any discernible regularities. The data were taken over the interval 1977-79 with six collimated multiwire, multilayer, proportional counters that had a sensitivity sufficient for detecting events lasting 1-5 sec at energies as low as 8-120 keV. The entire sky was surveyed completely three times in the observational period. Best-fit position, error box corners, mean transient flux and quiescent flux data are provided for all six of the type 3 events that were found. All the sources were within the Galaxy. The duration of the events ranged from 60-2000 sec. The limited number of events observed leads to estimates of 10,000-200,000 events per year. It is suggested that all the events originate from hard flares occurring at a rate of 20,000/yr on dMe/dKe stars.

  8. OBSERVATIONAL STUDY OF THE QUASI-PERIODIC FAST-PROPAGATING MAGNETOSONIC WAVES AND THE ASSOCIATED FLARE ON 2011 MAY 30

    SciTech Connect

    Shen Yuandeng; Liu Yu

    2012-07-01

    On 2011 May 30, quasi-periodic fast-propagating (QFP) magnetosonic waves accompanied by a C2.8 flare were directly imaged by the Atmospheric Imaging Assembly instrument on board the Solar Dynamics Observatory. The QFP waves successively emanated from the flare kernel, they propagated along a cluster of open coronal loops with a phase speed of {approx}834 km s{sup -1} during the flare's rising phase, and the multiple arc-shaped wave trains can be fitted with a series of concentric circles. We generate the k - {omega} diagram of the Fourier power and find a straight ridge that represents the dispersion relation of the waves. Along the ridge, we find a lot of prominent nodes which represent the available frequencies of the QFP waves. On the other hand, the frequencies of the flare are also obtained by analyzing the flare light curves using the wavelet technique. The results indicate that almost all the main frequencies of the flare are consistent with those of the QFP waves. This suggests that the flare and the QFP waves were possibly excited by a common physical origin. On the other hand, a few low frequencies (e.g., 2.5 mHz (400 s) and 0.7 mHz (1428 s)) revealed by the k - {omega} diagram cannot be found in the accompanying flare. We propose that these low frequencies were possibly due to the leakage of the pressure-driven p-mode oscillations from the photosphere into the low corona, which should be a noticeable mechanism for driving the QFP waves observed in the corona.

  9. The optical flares of active star II Pegasi in 2005

    NASA Astrophysics Data System (ADS)

    Gu, Shenghong; Kim, Kang Min; Lee, Byeong-Cheol

    2015-08-01

    We observed the active star II Peg using high-resolution spectrographs of 2.16m telescope at Xinglong station of NAOC and 1.8m telescope at BOAO of KASI from November to December, 2005. By means of spectral subtraction technique, the chromospheric activities of II Peg are analyzed at several activity indicators, including CaII IRT, Hα, NaI D1D2 and HeI D3 lines. The results demonstrate that the magnetic activity of II Peg is very strong, and its chromospheric activities show rotational modulations which imply there are active regions in its chromosphere. Two flare events were hunted during the observations, which were identified by HeI D3 line emission above the continuum. The first flare was happened in November 2005, the second one in December 2005, and they were located in different hemisphere of the star. This may indicate the evolution of active regions. Considering the photospheric spot activities, the possible origin of the detected flares is discussed.

  10. Nature and optical identification of the flaring x-ray source FXP 0520-66

    SciTech Connect

    Kumkova, I.I.; Mitrofanov, I.G.

    1980-03-01

    The possibility that the flaring x-ray pulsar in Dorado may be a galactic object is examined. The bursts of 1979 March 6 and April 4 and 24 may have been of thermonuclear origin. A search should be conducted for the optical component of the binary system; some candidates for such an identification are given.

  11. Fast all-optical switch

    NASA Technical Reports Server (NTRS)

    Shay, Thomas M. (Inventor); Poliakov, Evgeni Y. (Inventor); Hazzard, David A. (Inventor)

    2001-01-01

    An apparatus and method wherein polarization rotation in alkali vapors or other mediums is used for all-optical switching and digital logic and where the rate of operation is proportional to the amplitude of the pump field. High rates of speed are accomplished by Rabi flopping of the atomic states using a continuously operating monochromatic atomic beam as the pump.

  12. Coordinated optical and YOHKOH observations of 26 June 1992 flare loops

    NASA Astrophysics Data System (ADS)

    Heinzel, P.; Kotrč, P.; Schmieder, B.; Hiei, E.; Anwar, B.

    1994-10-01

    Optical spectra of large flare loops were detected by the Ondřejov Multichannel Flare Spectrograph (MFS) during coordinated observations with MSDP at Pic du Midi (Hα) and the soft X-ray telescope (SXT) on Yohkoh. The CCD video images taken by the MFS slit-jaw camera document the time-development of the flare loops as seen through the Hα filter. Preliminary analysis of the MSDP images shows the intensity structure of the cool flare loops and their velocity fields. From the spectra we can clearly see the intensity variations along the cool loops. SXT images show the structure of hot X-ray loops similar to that of cool loops. Special attention is devoted to the bright tops, simultaneously observed in X-rays, Hα and other optical lines. Based on a preliminary analysis of the optical spectra, we speculate about possible mechanisms leading to an observed bright emission at the tops of cool loops. We suggest that direct soft X-ray irradiation of cool loops at their tops could be, at least partly, responsible for such a strong brightening.

  13. THE CRAB NEBULA SUPER-FLARE IN 2011 APRIL: EXTREMELY FAST PARTICLE ACCELERATION AND GAMMA-RAY EMISSION

    SciTech Connect

    Striani, E.; Tavani, M.; Cardillo, M; Piano, G.; Donnarumma, I.; Vittorini, V.; Trois, A.; Costa, E.; Argan, A.; De Paris, G.; Bulgarelli, A.; Pittori, C.; Verrecchia, F.; Weisskopf, M.; Tennant, A.; Barbiellini, G.; Caraveo, P.; Chen, A. W.

    2011-11-01

    We report on the extremely intense and fast gamma-ray flare above 100 MeV detected by AGILE from the Crab Nebula in mid-April 2011. This event is the fourth of a sequence of reported major gamma-ray flares produced by the Crab Nebula in the period 2007/mid-2011. These events are attributed to strong radiative and plasma instabilities in the inner Crab Nebula, and their properties are crucial for theoretical studies of fast and efficient particle acceleration up to 10{sup 15} eV. Here we study the very rapid flux and spectral evolution of the event that on 2011 April 16 reached the record-high peak flux of F = (26 {+-} 5) x 10{sup -6} photons cm{sup -2} s{sup -1} with a rise-time timescale that we determine to be in the range 6-10 hr. The peak flaring gamma-ray spectrum reaches a distinct maximum near 500 MeV with no substantial emission above 1 GeV. The very rapid rise time and overall evolution of the Crab Nebula flare strongly constrain the acceleration mechanisms and challenge MHD models. We briefly discuss the theoretical implications of our observations.

  14. A COMPREHENSIVE STUDY OF GAMMA-RAY BURST OPTICAL EMISSION. I. FLARES AND EARLY SHALLOW-DECAY COMPONENT

    SciTech Connect

    Li Liang; Liang Enwei; Tang Qingwen; Chen Jiemin; Xi Shaoqiang; Zhang Bing; Lu Ruijing; Lue Lianzhong; Lue Houjun; Gao He; Zhang Jin; Wei Jianyan; Yi Shuangxi E-mail: zhang@physics.unlv.edu

    2012-10-10

    Well-sampled optical light curves of 146 gamma-ray bursts (GRBs) are compiled from the literature. By empirical fitting, we identify eight possible emission components and summarize the results in a 'synthetic' light curve. Both optical flare and early shallow-decay components are likely related to long-term central engine activities. We focus on their statistical properties in this paper. Twenty-four optical flares are obtained from 19 GRBs. The isotropic R-band energy is smaller than 1% of E{sub {gamma},iso}. The relation between the isotropic luminosities of the flares and gamma rays follows L{sup F}{sub R,iso}{proportional_to}L {sup 1.11{+-}0.27}{sub {gamma},iso}. Later flares tend to be wider and dimmer, i.e., w{sup F} {approx} t{sup F}{sub p}/2 and L{sup F}{sub R,iso}{proportional_to}[t{sup F}{sub p}/(1 + z)]{sup -1.15{+-}0.15}. The detection probability of the optical flares is much smaller than that of X-ray flares. An optical shallow-decay segment is observed in 39 GRBs. The relation between the break time and break luminosity is a power law, with an index of -0.78 {+-} 0.08, similar to that derived from X-ray flares. The X-ray and optical breaks are usually chromatic, but a tentative correlation is found. We suggest that similar to the prompt optical emission that tracks {gamma}-rays, the optical flares are also related to the erratic behavior of the central engine. The shallow-decay component is likely related to a long-lasting spinning-down central engine or piling up of flare materials onto the blast wave. Mixing of different emission components may be the reason for the diverse chromatic afterglow behaviors.

  15. Final Technical Report CMS fast optical calorimetry

    SciTech Connect

    Winn, David R.

    2012-07-12

    This is the final report of CMS FAST OPTICAL CALORIMETRY, a grant to Fairfield University for development, construction, installation and operation of the forward calorimeter on CMS, and for upgrades of the forward and endcap calorimeters for higher luminosity and radiation damage amelioration.

  16. Long-term Optical Activity of the Hard X-ray Flaring Star DG CVn

    NASA Astrophysics Data System (ADS)

    Šimon, V.

    2017-04-01

    DG CVn is a young late-type star which displayed an X-ray and optical superflare in 2014. This paper presents an analysis of the long-term activity of this object in the optical band. I used the photographic data from DASCH (Digital Access to a Sky Century @ Harvard). These measurements from the years 1895-1989 cover the blue spectral region. CCD V-band ASAS data were used for several UV Cet-type stars to place the activity of DG CVn in the context of flaring stars. I show that three large brightenings (flares) of DG CVn by more than 1 mag were detected on the DASCH plates. The character of the long-term activity (regarding the histogram of brightness) of DG CVn is compatible with those of flaring stars UV Cet and V371 Ori. The flares brighter than ˜ 0.4 mag represent less than 1 percent of the observed data in all three objects

  17. Coordinated X-ray, optical, and radio observations of flaring activity on YZ Canis Minoris

    NASA Technical Reports Server (NTRS)

    Kahler, S.; Golub, L.; Harnden, F. R., Jr.; Liller, W.; Seward, F.; Vaiana, G.; Lovell, B.; Davis, R. J.; Spencer, R. E.; Whitehouse, D. R.

    1982-01-01

    The YZ Canis Minoris (Gliese 285), a late-type dwarf star with Balmer emission (dM4.5e), is a member of the UV Ceti class of flare stars. Obtaining good X-ray observations of a dMe star flare is important not only for understanding the physics of flares but also for testing current ideas regarding the similarity between stellar and solar flares. The Einstein X-ray Observatory has made it possible to conduct X-ray observations of dMe stars with unprecedented sensitivity. A description is presented of the results of a program of ground-based optical and radio observations of YZ CMi coordinated with those of the Einstein Observatory. The observations were carried out as part of a coordinated program on October 25, 26, and 27, 1979, when YZ CMi was on the dawn side of the earth. Comprehensive observational data were obtained of an event detected in all three wavelength regions on October 25, 1979.

  18. Extended Optical Flaring of the Blazar 3C 279

    NASA Astrophysics Data System (ADS)

    Turner, C. S.; Miller, H. R.

    2017-03-01

    The blazar, 3C 279, was previously reported to be undergoing a major optical outburst (ATEL#10121 and ATEL#10161). We report optical observations of 3C 279 on March 19 when it was observed with the 24-inch telescope at Georgia State University's Hard Labor Creek Observatory with R=13.46+/-0.01 mag. These observations indicate that 3C 279 continues to be in an extremely bright state.

  19. Ground-based complex for detection and investigation of fast optical transients in wide field

    NASA Astrophysics Data System (ADS)

    Molinari, Emilio; Beskin, Grigory; Bondar, Sergey; Karpov, Sergey; Plokhotnichenko, Vladimir; de-Bur, Vjacheslav; Greco, Guiseppe; Bartolini, Corrado; Guarnieri, Adriano; Piccioni, Adalberto

    2008-07-01

    To study short stochastic optical flares of different objects (GRBs, SNs, etc) of unknown localizations as well as NEOs it is necessary to monitor large regions of sky with high time resolution. We developed a system which consists of wide-field camera (FOW is 400-600 sq.deg.) using TV-CCD with time resolution of 0.13 s to record and classify optical transients, and a fast robotic telescope aimed to perform their spectroscopic and photometric investigation just after detection. Such two telescope complex TORTOREM combining wide-field camera TORTORA and robotic telescope REM operated from May 2006 at La Silla ESO observatory. Some results of its operation, including first fast time resolution study of optical transient accompanying GRB and discovery of its fine time structure, are presented. Prospects for improving the complex efficiency are given.

  20. Fast optical switch having reduced light loss

    NASA Technical Reports Server (NTRS)

    Nelson, Bruce N. (Inventor); Cooper, Ronald F. (Inventor)

    1992-01-01

    An electrically controlled optical switch uses an electro-optic crystal of the type having at least one set of fast and slow optical axes. The crystal exhibits electric field induced birefringence such that a plane of polarization oriented along a first direction of a light beam passing through the crystal may be switched to a plane of polarization oriented along a second direction. A beam splitting polarizer means is disposed at one end of the crystal and directs a light beam passing through the crystal whose plane of polarization is oriented along the first direction differently from a light beam having a plane of polarization oriented along the second direction. The electro-optic crystal may be chosen from the crystal classes 43m, 42m, and 23. In a preferred embodiment, the electro-optic crystal is a bismuth germanium oxide crystal or a bismuth silicon oxide crystal. In another embodiment of the invention, polarization control optics are provided which transmit substantially all of the incident light to the electro-optic crystal, substantially reducing the insertion loss of the switch.

  1. Fast launch speeds in radio flares, from a new determination of the intrinsic motions of SS 433's jet bolides

    NASA Astrophysics Data System (ADS)

    Jeffrey, Robert M.; Blundell, Katherine M.; Trushkin, Sergei A.; Mioduszewski, Amy J.

    2016-09-01

    We present new high-resolution, multi-epoch, Very Long Baseline Array (VLBA) radio images of the Galactic microquasar SS 433. We are able to observe plasma knots in the milliarcsecond-scale jets more than 50 d after their launch. This unprecedented baseline in time allows us to determine the bulk launch speed of the radio-emitting plasma during a radio flare, using a new method which we present here, and which is completely independent of optical spectroscopy. We also apply this method to an earlier sequence of 39 short daily VLBA observations, which cover a period in which SS 433 moved from quiescence into a flare. In both data sets we find, for the first time at radio wavebands, clear evidence that the launch speeds of the milliarcsecond-scale jets rise as high as 0.32c during flaring episodes. By comparing these images of SS 433 with photometric radio monitoring from the RATAN-600 telescope, we explore further properties of these radio flares.

  2. Fast optical measurement of intraocular straylight

    NASA Astrophysics Data System (ADS)

    Ginis, Harilaos; Sahin, Onurcan; Artal, Pablo

    2015-03-01

    Light scattering in the human eye can deteriorate image quality and limit visual performance especially at the presence of a glare source. Optical measurement of straylight in the human eye is a challenging task where issues related to various inherent artifacts must be addressed. We report on a novel instrument based on the principle of double-pass optical integration that has been adapted for fast measurements suitable for a clinical setting. The instrument utilizes a light source formed by an array of green light emitting diodes that is projected onto the ocular fundus. The source has two concentric parts, a disk (field angle 0-3 degrees) and an annulus (3 - 8 degrees) that are modulated at different frequencies. A silicon photomultiplier receives the light reflected from the central part of the fundus and the Fourier transform of the signal reveals the contribution of each part of the source. Their relative amplitude is used to quantify light scattering by means of the straylight parameter. The instrument was initially validated using known diffusers. Straylight in a cohort of cataract patients (N=39) was measured. The optically measured straylight parameter was correlated to the clinical cataract grade as well to the psychophysically estimated value. The measurement method, utilizing rotational symmetry and coding filed angles with different frequencies eliminates the need for a highperformance camera and allows fast measurements. This approach can be further advanced with multiple wavelengths and field angles to perform other measurements such as that of the macular pigment density.

  3. Fast Optical Imaging of Human Brain Function

    PubMed Central

    Gratton, Gabriele; Fabiani, Monica

    2010-01-01

    Great advancements in brain imaging during the last few decades have opened a large number of new possibilities for neuroscientists. The most dominant methodologies (electrophysiological and magnetic resonance-based methods) emphasize temporal and spatial information, respectively. However, theorizing about brain function has recently emphasized the importance of rapid (within 100 ms or so) interactions between different elements of complex neuronal networks. Fast optical imaging, and in particular the event-related optical signal (EROS, a technology that has emerged over the last 15 years) may provide descriptions of localized (to sub-cm level) brain activity with a temporal resolution of less than 100 ms. The main limitations of EROS are its limited penetration, which allows us to image cortical structures not deeper than 3 cm from the surface of the head, and its low signal-to-noise ratio. Advantages include the fact that EROS is compatible with most other imaging methods, including electrophysiological, magnetic resonance, and trans-cranial magnetic stimulation techniques, with which can be recorded concurrently. In this paper we present a summary of the research that has been conducted so far on fast optical imaging, including evidence for the possibility of recording neuronal signals with this method, the properties of the signals, and various examples of applications to the study of human cognitive neuroscience. Extant issues, controversies, and possible future developments are also discussed. PMID:20631845

  4. Optical flare of the Quasar 3C279

    NASA Astrophysics Data System (ADS)

    Jorstad, Svetlana; Savchenko, Sergey

    2017-02-01

    The quasar 3C279 shows significant activity at optical wavelengths. According to our observations at the Perkins telescope of Lowell Obs. (Flagstaff, AZ) on February 23 R band magnitude of the quasar reached 14.088+-0.004 with the degree of polarization P=8.82+-0.11%, while observations at the AZT-8 telescope of Crimean Astrophysical Obs. show that the source was more than 1 mag fainter on February 20, R=15.237+-0.005, with P=6.45+0.88%.

  5. An ultraviolet-optical flare from the tidal disruption of a helium-rich stellar core.

    PubMed

    Gezari, S; Chornock, R; Rest, A; Huber, M E; Forster, K; Berger, E; Challis, P J; Neill, J D; Martin, D C; Heckman, T; Lawrence, A; Norman, C; Narayan, G; Foley, R J; Marion, G H; Scolnic, D; Chomiuk, L; Soderberg, A; Smith, K; Kirshner, R P; Riess, A G; Smartt, S J; Stubbs, C W; Tonry, J L; Wood-Vasey, W M; Burgett, W S; Chambers, K C; Grav, T; Heasley, J N; Kaiser, N; Kudritzki, R-P; Magnier, E A; Morgan, J S; Price, P A

    2012-05-02

    The flare of radiation from the tidal disruption and accretion of a star can be used as a marker for supermassive black holes that otherwise lie dormant and undetected in the centres of distant galaxies. Previous candidate flares have had declining light curves in good agreement with expectations, but with poor constraints on the time of disruption and the type of star disrupted, because the rising emission was not observed. Recently, two 'relativistic' candidate tidal disruption events were discovered, each of whose extreme X-ray luminosity and synchrotron radio emission were interpreted as the onset of emission from a relativistic jet. Here we report a luminous ultraviolet-optical flare from the nuclear region of an inactive galaxy at a redshift of 0.1696. The observed continuum is cooler than expected for a simple accreting debris disk, but the well-sampled rise and decay of the light curve follow the predicted mass accretion rate and can be modelled to determine the time of disruption to an accuracy of two days. The black hole has a mass of about two million solar masses, modulo a factor dependent on the mass and radius of the star disrupted. On the basis of the spectroscopic signature of ionized helium from the unbound debris, we determine that the disrupted star was a helium-rich stellar core.

  6. An optical flare of GB6 1310+4844 observed with the Kanata telescope

    NASA Astrophysics Data System (ADS)

    Itoh, R.; Yamanaka, M.; Sasada, M.; Ikejiri, Y.; Uemura, M.; Kawabata, K. S.; Takahashi, H.; Fukazawa, Y.; Ohsugi, T.; Kuwada, Y.; Tanaka, Y. T.; Kanata Team

    2009-12-01

    Following the Fermi/LAT detection of the gamma-ray flare from GB6 B1310+4844 (ATEL #2316), we performed optical photometric observation with the Kanata 1.5-m telescope at Higashi-Hiroshima Observatory. Our preliminary analysis shows that I and R-band magnitudes of GB6 B1310+4844 were R=20.1+/-0.3 and I=18.8+/-0.2 on 2009 Nov. 28.8(UT). We adopted a nearby star at RA=13:12:54.1 and DEC=+48:27:58.2 (R=16.019,I=15.657 in UCAC3) as the photometric reference.

  7. Simultaneous Extreme-Ultraviolet Explorer and Optical Observations of Ad Leonis: Evidence for Large Coronal Loops and the Neupert Effect in Stellar Flares

    NASA Technical Reports Server (NTRS)

    Hawley, Suzanne L.; Fisher, George H.; Simon, Theodore; Cully, Scott L.; Deustua, Susana E.; Jablonski, Marek; Johns-Krull, Christopher; Pettersen, Bjorn R.; Smith, Verne; Spiesman, William J.; Valenti, Jeffrey

    1995-01-01

    We report on the first simultaneous Extreme-Ultraviolet Explorer (EUVE) and optical observations of flares on the dMe flare star AD Leonis. The data show the following features: (1) Two flares (one large and one of moderate size) of several hours duration were observed in the EUV wavelength range; (2) Flare emission observed in the optical precedes the emission seen with EUVE; and (3) Several diminutions (DIMs) in the optical continuum were observed during the period of optical flare activity. To interpret these data, we develop a technique for deriving the coronal loop length from the observed rise and decay behavior of the EUV flare. The technique is generally applicable to existing and future coronal observations of stellar flares. We also determine the pressure, column depth, emission measure, loop cross-sectional area, and peak thermal energy during the two EUV flares, and the temperature, area coverage, and energy of the optical continuum emission. When the optical and coronal data are combined, we find convincing evidence of a stellar 'Neupert effect' which is a strong signature of chromospheric evaporation models. We then argue that the known spatial correlation of white-light emission with hard X-ray emission in solar flares, and the identification of the hard X-ray emission with nonthermal bremsstrahlung produced by accelerated electrons, provides evidence that flare heating on dMe stars is produced by the same electron precipitation mechanism that is inferred to occur on the Sun. We provide a thorough picture of the physical processes that are operative during the largest EUV flare, compare and contrast this picture with the canonical solar flare model, and conclude that the coronal loop length may be the most important factor in determining the flare rise time and energetics.

  8. Discovery of the Sub-second Linearly Polarized Spikes of Synchrotron Origin in the UV Ceti Giant Optical Flare

    NASA Astrophysics Data System (ADS)

    Beskin, G.; Karpov, S.; Plokhotnichenko, V.; Stepanov, A.; Tsap, Yu.

    2017-01-01

    During our optical monitoring of UV Ceti, iconic late-type flaring star, with high temporal resolution using the Russian 6-m telescope in 2008, we detected a giant flare with the amplitude of about 3 magnitudes in U band. Near flare maximum, more than a dozen of spike bursts have been discovered with triangular shapes and durations from 0.6 to 1.2 s and maximal luminosities in the range (1.5-8) × 1027 erg s-1. For the half of these events, the linear polarization exceeds 35% with significance better than 5σ. We argue that these events are synchrotron emission of electron streams with the energies of several hundred MeV moving in the magnetic field of about 1.4 kG. Emission from such ultra-relativistic (with energies far exceeding 10 MeV) particles is being routinely observed in solar flares, but has never been detected from UV Ceti-type stars. This is the first ever detection of linearly polarized optical light from the UV Ceti-type stars which indicates that at least some fraction of the flaring events on these stars is powered by a non-thermal synchrotron emission mechanism.

  9. Optical/UV-to-X-Ray Echoes from the Tidal Disruption Flare ASASSN-14li

    NASA Astrophysics Data System (ADS)

    Pasham, Dheeraj R.; Cenko, S. Bradley; Sadowski, Aleksander; Guillochon, James; Stone, Nicholas C.; van Velzen, Sjoert; Cannizzo, John K.

    2017-03-01

    We carried out the first multi-wavelength (optical/UV and X-ray) photometric reverberation mapping of a tidal disruption flare (TDF) ASASSN-14li. We find that its X-ray variations are correlated with and lag the optical/UV fluctuations by 32 ± 4 days. Based on the direction and the magnitude of the X-ray time lag, we rule out X-ray reprocessing and direct emission from a standard circular thin disk as the dominant source of its optical/UV emission. The lag magnitude also rules out an AGN disk-driven instability as the origin of ASASSN-14li and thus strongly supports the tidal disruption picture for this event and similar objects. We suggest that the majority of the optical/UV emission likely originates from debris stream self-interactions. Perturbations at the self-interaction sites produce optical/UV variability and travel down to the black hole where they modulate the X-rays. The time lag between the optical/UV and the X-rays variations thus correspond to the time taken by these fluctuations to travel from the self-interaction site to close to the black hole. We further discuss these time lags within the context of the three variants of the self-interaction model. High-cadence monitoring observations of future TDFs will be sensitive enough to detect these echoes and would allow us to establish the origin of optical/UV emission in TDFs in general.

  10. Elongation of Flare Ribbons

    NASA Astrophysics Data System (ADS)

    Qiu, Jiong; Longcope, Dana W.; Cassak, Paul A.; Priest, Eric R.

    2017-03-01

    We present an analysis of the apparent elongation motion of flare ribbons along the polarity inversion line (PIL), as well as the shear of flare loops in several two-ribbon flares. Flare ribbons and loops spread along the PIL at a speed ranging from a few to a hundred km s‑1. The shear measured from conjugate footpoints is consistent with the measurement from flare loops, and both show the decrease of shear toward a potential field as a flare evolves and ribbons and loops spread along the PIL. Flares exhibiting fast bidirectional elongation appear to have a strong shear, which may indicate a large magnetic guide field relative to the reconnection field in the coronal current sheet. We discuss how the analysis of ribbon motion could help infer properties in the corona where reconnection takes place.

  11. All-optical fast random number generator.

    PubMed

    Li, Pu; Wang, Yun-Cai; Zhang, Jian-Zhong

    2010-09-13

    We propose a scheme of all-optical random number generator (RNG), which consists of an ultra-wide bandwidth (UWB) chaotic laser, an all-optical sampler and an all-optical comparator. Free from the electric-device bandwidth, it can generate 10Gbit/s random numbers in our simulation. The high-speed bit sequences can pass standard statistical tests for randomness after all-optical exclusive-or (XOR) operation.

  12. Lithographic measurement of EUV flare in the 0.3-NA Micro ExposureTool optic at the Advanced Light Source

    SciTech Connect

    Cain, Jason P.; Naulleau, Patrick; Spanos, Costas J.

    2005-01-01

    The level of flare present in a 0.3-NA EUV optic (the MET optic) at the Advanced Light Source at Lawrence Berkeley National Laboratory is measured using a lithographic method. Photoresist behavior at high exposure doses makes analysis difficult. Flare measurement analysis under scanning electron microscopy (SEM) and optical microscopy is compared, and optical microscopy is found to be a more reliable technique. In addition, the measured results are compared with predictions based on surface roughness measurement of the MET optical elements. When the fields in the exposure matrix are spaced far enough apart to avoid influence from surrounding fields and the data is corrected for imperfect mask contrast and aerial image proximity effects, the results match predicted values quite well. The amount of flare present in this optic ranges from 4.7% for 2 {micro}m features to 6.8% for 500 nm features.

  13. A Lyman-alpha tunable acousto-optic filter for detecting superthermal flare protons

    NASA Technical Reports Server (NTRS)

    Mickey, Donald L.

    1994-01-01

    The goal of this project was to develop and characterize a narrow-band, tunable filter for use near the Lyman-alpha line of hydrogen at 121.6 nm. Such a filter could form the critical component of an instrument to observe asymmetries in the solar Lyman-alpha line, caused by energetic protons accelerated during the impulsive phase of solar flares. Characteristic charge-exchange nonthermal emission at Lyman alpha should be produced when sub-MeV protons are injected into the chromosphere, but no instrument suitable for their detection has been developed. Such an instrument would require a narrow-band (less than 0.01 nm) tunable filter with aperture and throughput consistent with imaging a solar active region at 0.1 second intervals. The development of acousto-optic tunable filters (AOTF) suitable for use as compact, simple tunable filters for astronomical work suggested an investigation into the use of an AOTF at Lyman-alpha.

  14. Optical polarization map of the Polaris Flare with RoboPol

    NASA Astrophysics Data System (ADS)

    Panopoulou, G.; Tassis, K.; Blinov, D.; Pavlidou, V.; King, O. G.; Paleologou, E.; Ramaprakash, A.; Angelakis, E.; Baloković, M.; Das, H. K.; Feiler, R.; Hovatta, T.; Khodade, P.; Kiehlmann, S.; Kus, A.; Kylafis, N.; Liodakis, I.; Mahabal, A.; Modi, D.; Myserlis, I.; Papadakis, I.; Papamastorakis, I.; Pazderska, B.; Pazderski, E.; Pearson, T. J.; Rajarshi, C.; Readhead, A. C. S.; Reig, P.; Zensus, J. A.

    2015-09-01

    The stages before the formation of stars in molecular clouds are poorly understood. Insights can be gained by studying the properties of quiescent clouds, such as their magnetic field structure. The plane-of-the-sky orientation of the field can be traced by polarized starlight. We present the first extended, wide-field (˜10 deg2) map of the Polaris Flare cloud in dust-absorption induced optical polarization of background stars, using the Robotic Polarimeter (RoboPol) polarimeter at the Skinakas Observatory. This is the first application of the wide-field imaging capabilities of RoboPol. The data were taken in the R band and analysed with the automated reduction pipeline of the instrument. We present in detail optimizations in the reduction pipeline specific to wide-field observations. Our analysis resulted in reliable measurements of 641 stars with median fractional linear polarization 1.3 per cent. The projected magnetic field shows a large-scale ordered pattern. At high longitudes it appears to align with faint striations seen in the Herschel-Spectral and Photometric Imaging Receiver (SPIRE) map of dust emission (250 μm), while in the central 4-5 deg2 it shows an eddy-like feature. The overall polarization pattern we obtain is in good agreement with large-scale measurements by Planck of the dust emission polarization in the same area of the sky.

  15. Chirp-enhanced fast light in semiconductor optical amplifiers.

    PubMed

    Sedgwick, F G; Pesala, Bala; Uskov, Alexander V; Chang-Hasnain, C J

    2007-12-24

    We present a novel scheme to increase the THz-bandwidth fast light effect in semiconductor optical amplifiers and increase the number of advanced pulses. By introducing a linear chirp to the input pulses before the SOA and recompressing at the output with an opposite chirp, the advance-bandwidth product reached 3.5 at room temperature, 1.55 microm wavelength. This is the largest number reported, to the best of our knowledge, for a semiconductor slow/fast light device.

  16. DENSE OPTICAL AND NEAR-INFRARED MONITORING OF CTA 102 DURING HIGH STATE IN 2012 WITH OISTER: DETECTION OF INTRA-NIGHT ''ORPHAN POLARIZED FLUX FLARE''

    SciTech Connect

    Itoh, Ryosuke; Fukazawa, Yasushi; Tanaka, Yasuyuki T.; Abe, Yuhei; Akitaya, Hiroshi; Kawabata, Koji S.; Moritani, Yuki; Arai, Akira; Hayashi, Masahiko; Hori, Takafumi; Nakata, Chikako; Isogai, Mizuki; Izumiura, Hideyuki; Kuroda, Daisuke; Kawai, Nobuyuki; Miyanoshita, Ryo; Morokuma, Tomoki; Nagayama, Takahiro; Nakamoto, Jumpei; Oasa, Yumiko; and others

    2013-05-10

    CTA 102, classified as a flat spectrum radio quasar at z = 1.037, produced an exceptionally bright optical flare in 2012 September. Following the Fermi Large Area Telescope detection of enhanced {gamma}-ray activity, we closely monitored this source in the optical and near-infrared bands for the 10 subsequent nights using 12 telescopes in Japan and South Africa. On MJD 56197 (2012 September 27, four to five days after the peak of bright {gamma}-ray flare), polarized flux showed a transient increase, while total flux and polarization angle (PA) remained almost constant during the ''orphan polarized-flux flare.'' We also detected an intra-night and prominent flare on MJD 56202. The total and polarized fluxes showed quite similar temporal variations, but the PA again remained constant during the flare. Interestingly, the PAs during the two flares were significantly different from the jet direction. The emergence of a new emission component with a high polarization degree (PD) up to 40% would be responsible for the observed two flares, and such a high PD indicates the presence of a highly ordered magnetic field at the emission site. We argue that the well-ordered magnetic field and even the observed directions of the PA, which is grossly perpendicular to the jet, are reasonably accounted for by transverse shock(s) propagating down the jet.

  17. Fast dynamics for atoms in optical lattices.

    PubMed

    Łącki, Mateusz; Zakrzewski, Jakub

    2013-02-08

    Cold atoms in optical lattices allow for accurate studies of many body dynamics. Rapid time-dependent modifications of optical lattice potentials may result in significant excitations in atomic systems. The dynamics in such a case is frequently quite incompletely described by standard applications of tight-binding models (such as, e.g., Bose-Hubbard model or its extensions) that typically neglect the effect of the dynamics on the transformation between the real space and the tight-binding basis. We illustrate the importance of a proper quantum mechanical description using a multiband extended Bose-Hubbard model with time-dependent Wannier functions. We apply it to situations directly related to experiments.

  18. Fast Asynchronous Data Communication Via Fiber Optics

    NASA Technical Reports Server (NTRS)

    Bergman, Larry A.; Tell, Robert G.

    1989-01-01

    Transmitter and receiver devised for asynchronous digital communication via optical fiber at rates above 100 Mb/s. Transmitter converts parallel data to serial for high-speed transmission; receiver recovers clock signal and converts data back to parallel. No phase-lock loops used. New receiver design avoids over-sampling altogether. Local sampling oscillator operating nominally at clock frequency generates N clock signals of equally spaced phase, used to clock incoming data into N separate shift registers.

  19. Investigation on Radio-Quiet and Radio-Loud Fast CMEs and Their Associated Flares During Solar Cycles 23 and 24

    NASA Astrophysics Data System (ADS)

    Suresh, K.; Shanmugaraju, A.

    2015-03-01

    We present the results of a detailed analysis on the differences between radio-loud (RL) and radio-quiet (RQ) fast coronal mass ejections (CMEs) ( V≥900 km s-1) observed during the period 1996 - 2012. The analysis consists of three different steps in which we examined the properties of (i) RL and RQ CMEs, (ii) accelerating (class-A) and decelerating (class-D) CMEs among RL and RQ CMEs, and (iii) associated flares. The last two steps and events from a longer period are the extensions of the earlier work on RL and RQ CMEs that mainly aimed to determine the reason for the radio-quietness of some fast CMEs. During this period, we found that 38 % of fast CMEs are RL and 62 % of fast CMEs are RQ. Moreover, fewer RQ CMEs occur around the disc centre. The average speeds of RL and RQ CMEs are 1358 km s-1 and 1092 km s-1. Around 10 % of the RQ events are halo CMEs, but ≈ 66 % of RL events are halo CMEs. The mean acceleration or deceleration value of RL-CMEs is slightly greater than that of RQ-CMEs. When we divide these events based on their acceleration behaviour into class A and class D, there are no considerable differences between classes A and D of RL-CMEs or between classes A and D of RQ CMEs, except for their initial acceleration values. But there are significant differences among their associated flare properties. According to our study here, the RQ CMEs are less energetic than RL CMEs, and they are not associated with flares as strong as those associated with RL CMEs. This confirms the previous results that RQ CMEs do not often exceed the critical Alfvén speed of 1000 km s-1 in the outer corona that is needed to produce type II radio bursts.

  20. The 100-month Swift catalogue of supergiant fast X-ray transients. I. BAT on-board and transient monitor flares

    NASA Astrophysics Data System (ADS)

    Romano, P.; Krimm, H. A.; Palmer, D. M.; Ducci, L.; Esposito, P.; Vercellone, S.; Evans, P. A.; Guidorzi, C.; Mangano, V.; Kennea, J. A.; Barthelmy, S. D.; Burrows, D. N.; Gehrels, N.

    2014-02-01

    Context. Supergiant fast X-ray transients (SFXTs) are high mass X-ray binaries (HMXBs) that are defined by their hard X-ray flaring behaviour. During these flares they reach peak luminosities of 1036-1037 erg s-1 for a few hours (in the hard X-ray), which are much shorter timescales than those characterizing Be/X-ray binaries. Aims: We investigate the characteristics of bright flares (detections in excess of 5σ) for a sample of SFXTs and their relation to the orbital phase. Methods: We have retrieved all Swift/BAT Transient Monitor light curves and collected all detections in excess of 5σ from both daily- and orbital-averaged light curves in the time range of 2005 February 12 to 2013 May 31 (MJD 53 413-56 443). We also considered all on-board detections as recorded in the same time span and selected those in excess of 5σ and within 4 arcmin of each source in our sample. Results: We present a catalogue of over a thousand BAT flares from 11 SFXTs, down to 15-150 keV fluxes of ~6 × 10-10 erg cm-2 s-1 (daily timescale) and ~1.5 × 10-9 erg cm-2 s-1 (orbital timescale, averaging ~800 s); the great majority of these flares are unpublished. The catalogue spans 100 months. This population is characterized by short (a few hundred seconds) and relatively bright (in excess of 100 mCrab, 15-50 keV) events. In the hard X-ray, these flares last generally much less than a day. Clustering of hard X-ray flares can be used to indirectly measure the length of an outburst, even when the low-level emission is not detected. We construct the distributions of flares, of their significance (in terms of σ), and of their flux as a function of orbital phase to infer the properties of these binary systems. In particular, we observe a trend of clustering of flares at some phases as Porb increases, which is consistent with a progression from tight circular or mildly eccentric orbits at short periods to wider and more eccentric orbits at longer orbital periods. Finally, we estimate the

  1. Fast, compact, autonomous holographic adaptive optics.

    PubMed

    Andersen, Geoff; Gelsinger-Austin, Paul; Gaddipati, Ravi; Gaddipati, Phani; Ghebremichael, Fassil

    2014-04-21

    We present a closed-loop adaptive optics system based on a holographic sensing method. The system uses a multiplexed holographic recording of the response functions of each actuator in a deformable mirror. By comparing the output intensity measured in a pair of photodiodes, the absolute phase can be measured over each actuator location. From this a feedback correction signal is applied to the input beam without need for a computer. The sensing and correction is applied to each actuator in parallel, so the bandwidth is independent of the number of actuator. We demonstrate a breadboard system using a 32-actuator MEMS deformable mirror capable of operating at over 10 kHz without a computer in the loop.

  2. Fast frequency hopping codes applied to SAC optical CDMA network

    NASA Astrophysics Data System (ADS)

    Tseng, Shin-Pin

    2015-06-01

    This study designed a fast frequency hopping (FFH) code family suitable for application in spectral-amplitude-coding (SAC) optical code-division multiple-access (CDMA) networks. The FFH code family can effectively suppress the effects of multiuser interference and had its origin in the frequency hopping code family. Additional codes were developed as secure codewords for enhancing the security of the network. In considering the system cost and flexibility, simple optical encoders/decoders using fiber Bragg gratings (FBGs) and a set of optical securers using two arrayed-waveguide grating (AWG) demultiplexers (DeMUXs) were also constructed. Based on a Gaussian approximation, expressions for evaluating the bit error rate (BER) and spectral efficiency (SE) of SAC optical CDMA networks are presented. The results indicated that the proposed SAC optical CDMA network exhibited favorable performance.

  3. Fast dispersion estimation in coherent optical 16QAM fast OFDM systems.

    PubMed

    Zhao, J; Shams, H

    2013-01-28

    Fast channel estimation is crucial to increase the payload efficiency which is of particular importance for optical packet networks. In this paper, we propose a novel least-square based dispersion estimation method in coherent optical fast OFDM (F-OFDM) systems. Additionally, we experimentally demonstrate for the first time a 37.5 Gb/s 16QAM coherent F-OFDM system with 480 km transmission using the proposed scheme. The results show that this method outperforms the conventional channel estimation methods in minimizing the overhead load. A single training symbol can achieve near-optimum channel estimation without any prior information of the transmission distance. This makes optical F-OFDM a very promising scheme for the future burst-mode applications.

  4. Rotation of the optical polarization angle associated with the 2008 γ-ray flare of blazar W Comae

    SciTech Connect

    Sorcia, Marco; Benítez, Erika; Cabrera, José I.; Hiriart, David; López, José M.; Mújica, Raúl

    2014-10-10

    An R-band photopolarimetric variability analysis of the TeV bright blazar W Comae between 2008 February 28 and 2013 May 17 is presented. The source showed a gradual tendency to decrease its mean flux level with a total change of 3 mJy. A maximum and minimum brightness states in the R band of 14.25 ± 0.04 and 16.52 ± 0.1 mag, respectively, were observed, corresponding to a maximum variation of ΔF = 5.40 mJy. We estimated a minimum variability timescale of Δt = 3.3 days. A maximum polarization degree P = 33.8% ± 1.6%, with a maximum variation of ΔP = 33.2%, was found. One of our main results is the detection of a large rotation of the polarization angle from 78° to 315° (Δθ ∼ 237°) that coincides in time with the γ-ray flare observed in 2008 June. This result indicates that both optical and γ-ray emission regions could be co-spatial. During this flare, a correlation between the R-band flux and polarization degree was found with a correlation coefficient of r {sub F} {sub –} {sub p} = 0.93 ± 0.11. From the Stokes parameters, we infer the existence of two optically thin synchrotron components that contribute to the polarized flux. One of them is stable with a constant polarization degree of 11%. Assuming a shock-in jet model during the 2008 flare, we estimated a maximum Doppler factor δ {sub D} ∼ 27 and a minimum of δ {sub D} ∼ 16; a minimum viewing angle of the jet ∼2.°0; and a magnetic field B ∼ 0.12 G.

  5. Fast Brillouin Optical Time Domain Analysis for dynamic sensing.

    PubMed

    Peled, Yair; Motil, Avi; Tur, Moshe

    2012-04-09

    A new technique for the fast implementation of Brillouin Optical Time Domain Analysis (BOTDA) is proposed and demonstrated, carrying the classical BOTDA method to the dynamic sensing domain. By using a digital signal generator which enables fast switching among 100 scanning frequencies, we demonstrate a truly distributed and dynamic measurement of a 100 m long fiber with a sampling rate of ~10 kHz, limited only by the fiber length and the frequency granularity. With 10 averages the standard deviation of the measured strain was ~5 µε.

  6. A Change in the Optical Polarization Associated with a Gamma-Ray Flare in the Blazar 3C 279

    SciTech Connect

    Abdo, A.A.

    2011-08-19

    It is widely accepted that strong and variable radiation detected over all accessible energy bands in a number of active galaxies arises from a relativistic, Doppler-boosted jet pointing close to our line of sight. The size of the emitting zone and the location of this region relative to the central supermassive black hole are, however, poorly known, with estimates ranging from light-hours to a light-year or more. Here we report the coincidence of a gamma ({gamma})-ray flare with a dramatic change of optical polarization angle. This provides evidence for co-spatiality of optical and {gamma}-ray emission regions and indicates a highly ordered jet magnetic field. The results also require a non-axisymmetric structure of the emission zone, implying a curved trajectory for the emitting material within the jet, with the dissipation region located at a considerable distance from the black hole, at about 10{sup 5} gravitational radii.

  7. TORTORA discovery of Naked-Eye Burst fast optical variability

    NASA Astrophysics Data System (ADS)

    Beskin, Grigory; Karpov, Sergey; Bondar, Sergey; Greco, Giuseppe; Guarnieri, Adriano; Bartolini, Corrado; Piccioni, Adalberto; Molinari, Emilio; Chincarini, Guido

    2008-10-01

    Features characterizing gamma-ray bursts in the different spectral bands may be a clue for the nature of their inner engine. Up to now, only several bursts have been observed in optical band during the gamma activity, and the only one-GRB080319B-was covered from rise till fall with high temporal resolution. Here we discuss these data, acquired with TORTORA fast wide-field monitoring optical camera, as well as results of its analysis. The camera observed the position of Naked-Eye Burst, GRB080318B, before, during and after the trigger. It detected the fast rise of optical emission, which reached the peak of V 5.3 at the eighteenth second, had a complex evolution till T+43s and monotonously faded then. The brightest part of the light curve contains two 15-20 s segments with different fluxes, each having two clearly-seen peaks of 5-8 s duration; all four peaks look quasi-periodic with separation of 9 s. There is no clear evidence of any sub-second variability. However, there are signs of quasi-periodic variability on 1s time scale at around the last peak (T+40 till T+50). The general properties of the optical light curve and its variability time scales look similar to the gamma one, but there is no clear correlation between them. This raises serious problems in interpretation of mechanisms generating such variability.

  8. Correlated optical, X-ray, and γ-ray flaring activity seen with INTEGRAL during the 2015 outburst of V404 Cygni

    NASA Astrophysics Data System (ADS)

    Rodriguez, J.; Cadolle Bel, M.; Alfonso-Garzón, J.; Siegert, T.; Zhang, X.-L.; Grinberg, V.; Savchenko, V.; Tomsick, J. A.; Chenevez, J.; Clavel, M.; Corbel, S.; Diehl, R.; Domingo, A.; Gouiffès, C.; Greiner, J.; Krause, M. G. H.; Laurent, P.; Loh, A.; Markoff, S.; Mas-Hesse, J. M.; Miller-Jones, J. C. A.; Russell, D. M.; Wilms, J.

    2015-09-01

    After 25 years of quiescence, the microquasar V404 Cyg entered a new period of activity in June 2015. This X-ray source is known to undergo extremely bright and variable outbursts seen at all wavelengths. It is therefore an object of prime interest to understand the accretion-ejection connections. These can, however, only be probed through simultaneous observations at several wavelengths. We made use of the INTEGRAL instruments to obtain long, almost uninterrupted observations from 2015 June 20, 15:50 UTC to June 25, 4:05 UTC, from the optical V band up to the soft γ-rays. V404 Cyg was extremely variable in all bands, with the detection of 18 flares with fluxes exceeding 6 Crab (20-40 keV) within three days. The flare recurrence can be as short as ~20 min from peak to peak. A model-independent analysis shows that the >6 Crab flares have a hard spectrum. A simple 10-400 keV spectral analysis of the off-flare and flare periods shows that the variation in intensity is likely to be only due to variations of a cut-off power-law component. The optical flares seem to be at least of two different types: one occurring in simultaneity with the X-ray flares, the other showing a delay greater than 10 min. The former could be associated with X-ray reprocessing by either an accretion disk or the companion star. We suggest that the latter are associated with plasma ejections that have also been seen in radio. Table 1 and Fig. 4 are available in electronic form at http://www.aanda.org

  9. FAST VARIABILITY AND MILLIMETER/IR FLARES IN GRMHD MODELS OF Sgr A* FROM STRONG-FIELD GRAVITATIONAL LENSING

    SciTech Connect

    Chan, Chi-kwan; Psaltis, Dimitrios; Özel, Feryal; Marrone, Daniel; Medeiros, Lia; Sadowski, Aleksander; Narayan, Ramesh

    2015-10-20

    We explore the variability properties of long, high-cadence general relativistic magnetohydrodynamic (GRMHD) simulations across the electromagnetic spectrum using an efficient, GPU-based radiative transfer algorithm. We focus on both standard and normal evolution (SANE) and magnetically arrested disk (MAD) simulations with parameters that successfully reproduce the time-averaged spectral properties of Sgr A* and the size of its image at 1.3 mm. We find that the SANE models produce short-timescale variability with amplitudes and power spectra that closely resemble those inferred observationally. In contrast, MAD models generate only slow variability at lower flux levels. Neither set of models shows any X-ray flares, which most likely indicates that additional physics, such as particle acceleration mechanisms, need to be incorporated into the GRMHD simulations to account for them. The SANE models show strong, short-lived millimeter/infrared (IR) flares, with short (≲1 hr) time lags between the millimeter and IR wavelengths, that arise from the combination of short-lived magnetic flux tubes and strong-field gravitational lensing near the horizon. Such events provide a natural explanation for the observed IR flares with no X-ray counterparts.

  10. Statistical aspects of solar flares

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    1987-01-01

    A survey of the statistical properties of 850 H alpha solar flares during 1975 is presented. Comparison of the results found here with those reported elsewhere for different epochs is accomplished. Distributions of rise time, decay time, and duration are given, as are the mean, mode, median, and 90th percentile values. Proportions by selected groupings are also determined. For flares in general, mean values for rise time, decay time, and duration are 5.2 + or - 0.4 min, and 18.1 + or 1.1 min, respectively. Subflares, accounting for nearly 90 percent of the flares, had mean values lower than those found for flares of H alpha importance greater than 1, and the differences are statistically significant. Likewise, flares of bright and normal relative brightness have mean values of decay time and duration that are significantly longer than those computed for faint flares, and mass-motion related flares are significantly longer than non-mass-motion related flares. Seventy-three percent of the mass-motion related flares are categorized as being a two-ribbon flare and/or being accompanied by a high-speed dark filament. Slow rise time flares (rise time greater than 5 min) have a mean value for duration that is significantly longer than that computed for fast rise time flares, and long-lived duration flares (duration greater than 18 min) have a mean value for rise time that is significantly longer than that computed for short-lived duration flares, suggesting a positive linear relationship between rise time and duration for flares. Monthly occurrence rates for flares in general and by group are found to be linearly related in a positive sense to monthly sunspot number. Statistical testing reveals the association between sunspot number and numbers of flares to be significant at the 95 percent level of confidence, and the t statistic for slope is significant at greater than 99 percent level of confidence. Dependent upon the specific fit, between 58 percent and 94 percent of

  11. Fast optical signals in the peripheral nervous system

    NASA Astrophysics Data System (ADS)

    Tong, Yunjie; Martin, Jeffrey M.; Sassaroli, Angelo; Clervil, Patricia R.; Bergethon, Peter R.; Fantini, Sergio

    2006-07-01

    We present a study of the near-infrared optical response to electrical stimulation of peripheral nerves. The sural nerve of six healthy subjects between the ages of 22 and 41 was stimulated with transcutaneous electrical pulses in a region located approximately 10 cm above the ankle. A two-wavelength (690 and 830 nm) tissue spectrometer was used to probe the same sural nerve below the ankle. We measured optical changes that peaked 60 to 160 ms after the electrical stimulus. On the basis of the strong wavelength dependence of these fast optical signals, we argue that their origin is mostly from absorption rather than scattering. From these absorption changes, we obtain oxy- and deoxy-hemoglobin concentration changes that describe a rapid hemodynamic response to electrical nerve activation. In five out of six subjects, this hemodynamic response is an increase in total (oxy+deoxy) hemoglobin concentration, consistent with a fast vasodilation. Our findings support the hypothesis that the peripheral nervous system undergoes neurovascular coupling, even though more data is needed to prove such hypothesis.

  12. Fast Industrial Inspection of Optical Thin Film Using Optical Coherence Tomography

    PubMed Central

    Shirazi, Muhammad Faizan; Park, Kibeom; Wijesinghe, Ruchire Eranga; Jeong, Hyosang; Han, Sangyeob; Kim, Pilun; Jeon, Mansik; Kim, Jeehyun

    2016-01-01

    An application of spectral domain optical coherence tomography (SD-OCT) was demonstrated for a fast industrial inspection of an optical thin film panel. An optical thin film sample similar to a liquid crystal display (LCD) panel was examined. Two identical SD-OCT systems were utilized for parallel scanning of a complete sample in half time. Dual OCT inspection heads were utilized for transverse (fast) scanning, while a stable linear motorized translational stage was used for lateral (slow) scanning. The cross-sectional and volumetric images of an optical thin film sample were acquired to detect the defects in glass and other layers that are difficult to observe using visual inspection methods. The rapid inspection enabled by this setup led to the early detection of product defects on the manufacturing line, resulting in a significant improvement in the quality assurance of industrial products. PMID:27690043

  13. Fast Industrial Inspection of Optical Thin Film Using Optical Coherence Tomography.

    PubMed

    Shirazi, Muhammad Faizan; Park, Kibeom; Wijesinghe, Ruchire Eranga; Jeong, Hyosang; Han, Sangyeob; Kim, Pilun; Jeon, Mansik; Kim, Jeehyun

    2016-09-28

    An application of spectral domain optical coherence tomography (SD-OCT) was demonstrated for a fast industrial inspection of an optical thin film panel. An optical thin film sample similar to a liquid crystal display (LCD) panel was examined. Two identical SD-OCT systems were utilized for parallel scanning of a complete sample in half time. Dual OCT inspection heads were utilized for transverse (fast) scanning, while a stable linear motorized translational stage was used for lateral (slow) scanning. The cross-sectional and volumetric images of an optical thin film sample were acquired to detect the defects in glass and other layers that are difficult to observe using visual inspection methods. The rapid inspection enabled by this setup led to the early detection of product defects on the manufacturing line, resulting in a significant improvement in the quality assurance of industrial products.

  14. The radio and optical counterpart of the new Fermi LAT flaring source J0109+6134

    NASA Astrophysics Data System (ADS)

    Paredes, J. M.; Martí, J.; Peracaula, M.

    2010-02-01

    Following the recent ATELs #2414, #2416 and #2420 concerning the Fermi-LAT, AGILE and Swift/XRT consistent detections of the new gamma-ray flaring source J0109+6134, we wish to remind that the proposed radio counterpart (VCS2 J0109+6133/GT 0106+613) was extensively observed nearly two decades ago by different authors in the context of the GT catalogue of Galactic Plane radio sources (Taylor and Gregory 1983, AJ, 88, 1784; Gregory and Taylor 1986, AJ 92, 371).

  15. Gamma-ray burst flares: X-ray flaring. II

    SciTech Connect

    Swenson, C. A.; Roming, P. W. A.

    2014-06-10

    We present a catalog of 498 flaring periods found in gamma-ray burst (GRB) light curves taken from the online Swift X-Ray Telescope GRB Catalogue. We analyzed 680 individual light curves using a flare detection method developed and used on our UV/optical GRB Flare Catalog. This method makes use of the Bayesian Information Criterion to analyze the residuals of fitted GRB light curves and statistically determines the optimal fit to the light curve residuals in an attempt to identify any additional features. These features, which we classify as flares, are identified by iteratively adding additional 'breaks' to the light curve. We find evidence of flaring in 326 of the analyzed light curves. For those light curves with flares, we find an average number of ∼1.5 flares per GRB. As with the UV/optical, flaring in our sample is generally confined to the first 1000 s of the afterglow, but can be detected to beyond 10{sup 5} s. Only ∼50% of the detected flares follow the 'classical' definition of Δt/t ≤ 0.5, with many of the largest flares exceeding this value.

  16. Detection of a gas flaring signature in the AERONET optical properties of aerosols at a tropical station in West Africa

    NASA Astrophysics Data System (ADS)

    Fawole, Olusegun G.; Cai, Xiaoming; Levine, James G.; Pinker, Rachel T.; MacKenzie, A. R.

    2016-12-01

    The West African region, with its peculiar climate and atmospheric dynamics, is a prominent source of aerosols. Reliable and long-term in situ measurements of aerosol properties are not readily available across the region. In this study, Version 2 Level 1.5 Aerosol Robotic Network (AERONET) data were used to study the absorption and size distribution properties of aerosols from dominant sources identified by trajectory analysis. The trajectory analysis was used to define four sources of aerosols over a 10 year period. Sorting the AERONET aerosol retrievals by these putative sources, the hypothesis that there exists an optically distinct gas flaring signal was tested. Dominance of each source cluster varies with season: desert-dust (DD) and biomass burning (BB) aerosols are dominant in months prior to the West African Monsoon (WAM); urban (UB) and gas flaring (GF) aerosol are dominant during the WAM months. BB aerosol, with single scattering albedo (SSA) at 675 nm value of 0.86 ± 0.03 and GF aerosol with SSA (675 nm) value of 0.9 ± 0.07, is the most absorbing of the aerosol categories. The range of Absorption Angstr&öm Exponent (AAE) for DD, BB, UB and GF classes are 1.99 ± 0.35, 1.45 ± 0.26, 1.21 ± 0.38 and 0.98 ± 0.25, respectively, indicating different aerosol composition for each source. The AAE (440-870 nm) and Angstr&öm Exponent (AE) (440-870 nm) relationships further show the spread and overlap of the variation of these optical and microphysical properties, presumably due in part to similarity in the sources of aerosols and in part, due to mixing of air parcels from different sources en route to the measurement site.

  17. Proposal for fast optical spin rotations in quantum dots

    NASA Astrophysics Data System (ADS)

    Economou, Sophia E.; Reinecke, T. L.

    2008-04-01

    A proposal for fast optical rotation of the spin of an electron in a quantum dot is presented. Hyperbolic secant pulses of appropriate polarization are employed to induce a relative phase between two spin basis states. This phase is the angle of spin rotation, and the polarization determines the direction of the spin. Varying both allows for the construction of arbitrary rotations. Simulations with typical parameters for InAs self-assembled quantum dots-including dissipative dynamics-show that the fidelity of the operations is at least 99%. The effect of deviation from the ideal pulse shape is also examined.

  18. Discovery of Fast X-ray Oscillations During the 1998 Giant Flare from SGR 1900+14

    NASA Technical Reports Server (NTRS)

    Strohmayer, T.; Watts, A.

    2005-01-01

    We report the discovery of complex high frequency variability during the August 27, 1998 giant flare from SGR 1900+14 using the Rossi X-ray Timing Explorer (RXTE). We detect an approx. equals 84 Hz oscillation (QPO) during a 1 s interval beginning approximately 1 min after the initial hard spike. The amplitude is energy dependent, reaching a maximum of 26% (rms) for photons above 30 keV, and is not detected below 11 keV, with a 90% confidence upper limit of 14% (rms). Remarkably, additional QPOs are detected in the average power spectrum of data segments centered on the rotational phase at which the 84 Hz signal was detected. Two signals, at 53.5 and 155.1 Hz, are strongly detected, while a third feature at 28 Hz is found with lower significance. These QPOs are not detected at other rotational phases. The phenomenology seen in the SGR 1900+14 flare is similar to that of QPOs recently reported by Israel et al. (2005) from the December 27, 2004 flare from SGR 1806-20, suggesting they may have a common origin, perhaps torsional vibrations of the neutron star crust. Indeed, an association of the four frequencies (in increasing order) found in SGR 1900+14 with l = 2, 4, 7, and 13 toroidal modes appears plausible. We discuss our findings in the context of this model and show that if the stars have similar masses then the magnetic field in SGR 1806-20 must be about twice as large as in SGR 1900+14, broadly consistent with estimates from pulse timing.

  19. Acousto-optic infrared spectral imager for Pluto fast flyby

    NASA Technical Reports Server (NTRS)

    Glenar, D. A.; Hillman, J. J.

    1993-01-01

    Acousto-optic tunable filters (AOTF's) enable the design of compact, two-dimensional imaging spectrometers with high spectral and spatial resolution and with no moving parts. Tellurium dioxide AOTF's operate from about 400 nm to nearly 5 microns, and a single device will tune continuously over one octave by changing the RF acoustic frequency applied to the device. An infrared (1.2-2.5 micron) Acousto-Optic Imaging Spectrometer (AImS) was designed that closely conforms to the surface composition mapping objectives of the Pluto Fast Flyby. It features a 75-cm focal length telescope, infrared AOTF, and 256 x 256 NICMOS-3 focal plane array for acquiring narrowband images with a spectral resolving power (lambda/delta(lambda)) exceeding 250. We summarize the instrument design features and its expected performance at the Pluto-Charon encounter.

  20. Fast calculation method of complex space targets' optical cross section.

    PubMed

    Han, Yi; Sun, Huayan; Li, Yingchun; Guo, Huichao

    2013-06-10

    This paper utilizes the optical cross section (OCS) to characterize the optical scattering characteristics of a space target under the conditions of Sun lighting. We derive the mathematical expression of OCS according to the radiometric theory, and put forward a fast visualization calculation method of complex space targets' OCS based on an OpenGL and 3D model. Through the OCS simulation of Lambert bodies (cylinder and sphere), the computational accuracy and speed of the algorithm were verified. By using this method, the relative error for OCS will not exceed 0.1%, and it only takes 0.05 s to complete a complex calculation. Additionally, we calculated the OCS of three actual satellites with bidirectional reflectance distribution function model parameters in visible bands, and results indicate that it is easy to distinguish the three targets by comparing their OCS curves. This work is helpful for the identification and classification of unresolved space target based on photometric characteristics.

  1. Fast optically sectioned fluorescence HiLo endomicroscopy

    PubMed Central

    Lim, Daryl; Mertz, Jerome

    2012-01-01

    Abstract. We describe a nonscanning, fiber bundle endomicroscope that performs optically sectioned fluorescence imaging with fast frame rates and real-time processing. Our sectioning technique is based on HiLo imaging, wherein two widefield images are acquired under uniform and structured illumination and numerically processed to reject out-of-focus background. This work is an improvement upon an earlier demonstration of widefield optical sectioning through a flexible fiber bundle. The improved device features lateral and axial resolutions of 2.6 and 17 μm, respectively, a net frame rate of 9.5 Hz obtained by real-time image processing with a graphics processing unit (GPU) and significantly reduced motion artifacts obtained by the use of a double-shutter camera. We demonstrate the performance of our system with optically sectioned images and videos of a fluorescently labeled chorioallantoic membrane (CAM) in the developing G. gallus embryo. HiLo endomicroscopy is a candidate technique for low-cost, high-speed clinical optical biopsies. PMID:22463023

  2. Two-dimensional fast marching for geometrical optics.

    PubMed

    Capozzoli, Amedeo; Curcio, Claudio; Liseno, Angelo; Savarese, Salvatore

    2014-11-03

    We develop an approach for the fast and accurate determination of geometrical optics solutions to Maxwell's equations in inhomogeneous 2D media and for TM polarized electric fields. The eikonal equation is solved by the fast marching method. Particular attention is paid to consistently discretizing the scatterers' boundaries and matching the discretization to that of the computational domain. The ray tracing is performed, in a direct and inverse way, by using a technique introduced in computer graphics for the fast and accurate generation of textured images from vector fields. The transport equation is solved by resorting only to its integral form, the transport of polarization being trivial for the considered geometry and polarization. Numerical results for the plane wave scattering of two perfectly conducting circular cylinders and for a Luneburg lens prove the accuracy of the algorithm. In particular, it is shown how the approach is capable of properly accounting for the multiple scattering occurring between the two metallic cylinders and how inverse ray tracing should be preferred to direct ray tracing in the case of the Luneburg lens.

  3. Fast character projection electron beam lithography for diffractive optical elements

    NASA Astrophysics Data System (ADS)

    Harzendorf, Torsten; Fuchs, Frank; Banasch, Michael; Zeitner, Uwe D.

    2014-05-01

    Electron beam lithography becomes attractive also for the fabrication of large scale diffractive optical elements by the use of the character projection (CP) technique. Even in the comparable fast variable shaped beam (VSB) exposure approach for conventional electron beam writers optical nanostructures may require very long writing times exceeding 24 hours per wafer because of the high density of features, as required by e.g. sub-wavelength nanostructures. Using character projection, the writing time can be reduced by more than one order of magnitude, due to the simultaneous exposure of multiple features. The benefit of character projection increases with increasing complexity of the features and decreasing period. In this contribution we demonstrate the CP technique for a grating of hexagonal symmetry at 350nm period. The pattern is designed to provide antireflective (AR) properties, which can be adapted in their spectral and angular domain for applications from VIS to NIR by changing the feature size and the etching depth of the nanostructure. This AR nanostructure can be used on the backside of optical elements e.g. gratings, when an AR coating stack could not be applied for the reason of climatic conditions or wave front accuracy.

  4. Fast Bayesian inference of optical trap stiffness and particle diffusion

    PubMed Central

    Bera, Sudipta; Paul, Shuvojit; Singh, Rajesh; Ghosh, Dipanjan; Kundu, Avijit; Banerjee, Ayan; Adhikari, R.

    2017-01-01

    Bayesian inference provides a principled way of estimating the parameters of a stochastic process that is observed discretely in time. The overdamped Brownian motion of a particle confined in an optical trap is generally modelled by the Ornstein-Uhlenbeck process and can be observed directly in experiment. Here we present Bayesian methods for inferring the parameters of this process, the trap stiffness and the particle diffusion coefficient, that use exact likelihoods and sufficient statistics to arrive at simple expressions for the maximum a posteriori estimates. This obviates the need for Monte Carlo sampling and yields methods that are both fast and accurate. We apply these to experimental data and demonstrate their advantage over commonly used non-Bayesian fitting methods. PMID:28139705

  5. Fast Bayesian inference of optical trap stiffness and particle diffusion

    NASA Astrophysics Data System (ADS)

    Bera, Sudipta; Paul, Shuvojit; Singh, Rajesh; Ghosh, Dipanjan; Kundu, Avijit; Banerjee, Ayan; Adhikari, R.

    2017-01-01

    Bayesian inference provides a principled way of estimating the parameters of a stochastic process that is observed discretely in time. The overdamped Brownian motion of a particle confined in an optical trap is generally modelled by the Ornstein-Uhlenbeck process and can be observed directly in experiment. Here we present Bayesian methods for inferring the parameters of this process, the trap stiffness and the particle diffusion coefficient, that use exact likelihoods and sufficient statistics to arrive at simple expressions for the maximum a posteriori estimates. This obviates the need for Monte Carlo sampling and yields methods that are both fast and accurate. We apply these to experimental data and demonstrate their advantage over commonly used non-Bayesian fitting methods.

  6. Wireless optical communication for FDDI, fast Ethernet, and ATM connectivity

    NASA Astrophysics Data System (ADS)

    Medved, David B.; Azancot, Yossi

    1995-09-01

    The bandwidth limitations of spread spectrum RF technology are easily removed by use of optical carriers. A variety of wireless connectivity system applications have been achieved using IR LED (not laser) at data rates up to 125 Mbps and with low frequency corners below 100 Kbps. By use of the UWINTM principle it is possible to achieve wireless communications which are protocol independent. Thus, an urgent installation which must serve today as an Ethernet or Token Ring wireless connection in the future can be used at FDDI, Fast Ethernet, 100 VG Anylan or ATM without any modification to the original installation. In this paper we describe three separate applications of this principle where there are significant trade-offs between range and angular coverage.

  7. Fast optical monitoring of microscopic excitation patterns in cardiac muscle.

    PubMed Central

    Müller, W; Windisch, H; Tritthart, H A

    1989-01-01

    Many vital processes depend on the generation, changes, and conduction of cellular transmembrane potentials. Optical monitoring systems are well suited to detect such cellular electrical activities in networks of excitable cells and also tissues simultaneously at multiple sites. Here, an exceptionally fast array system (16 x 16 photodiodes, up to 4,000,000 samples per second, 12-bit resolution) for imaging voltage-sensitive dye fluorescence, permitted real time measurements of excitation patterns at a microscopic size scale (256 pixels within an area of 1.8-8 mm2), in rat cardiac muscle in vitro. Results emphasize a recent hypothesis for cardiac impulse conduction, based on cardiac structural complexities, that is contradictory to all continuous cable theory models. Images FIGURE 2 PMID:2790142

  8. Coherent Atom Optics with fast metastable rare gas atoms

    SciTech Connect

    Grucker, J.; Baudon, J.; Karam, J.-C.; Perales, F.; Vassilev, G.; Ducloy, M.; Bocvarski, V.

    2006-12-01

    Coherent atom optics experiments making use of an ultra-narrow beam of fast metastable atoms generated by metastability exchange are reported. The transverse coherence of the beam (coherence radius of 1.7 {mu}m for He*, 1.2 {mu}m for Ne*, 0.87 {mu}m for Ar*) is demonstrated via the atomic diffraction by a non-magnetic 2{mu}m-period reflection grating. The combination of the non-scalar van der Waals (vdW) interaction with the Zeeman interaction generated by a static magnetic field gives rise to ''vdW-Zeeman'' transitions among Zeeman sub-levels. Exo-energetic transitions of this type are observed with Ne*(3P2) atoms traversing a copper micro-slit grating. They can be used as a tunable beam splitter in an inelastic Fresnel bi-prism atom interferometer.

  9. Performance analyses for fast variable optical attenuator-based optical current transformer

    NASA Astrophysics Data System (ADS)

    Wei, Pu; Chen, Chen; Wang, Xuefeng; Shan, Xuekang; Sun, Xiaohan

    2014-06-01

    In this paper, we analyze the performance of the electro-optic hybrid optical current transformer (HOCT) proposed by ourselves for high-voltage metering and protective relaying application. The transformer makes use of a fast variable optical attenuator (FVOA) to modulate the lightwave according to the voltage from the primary current sensor, such as low-power current transformer (LPCT). In order to improve the performance of the transformer, we use an optic-electro feedback loop with the PID control algorithm to compensate the nonlinearity of the FVOA. The linearity and accuracy of the transformer were analyzed and tested. The results indicate that the nonlinearity of the FVOA is completely compensated by the loop and the ratio and phase errors are under 0.07% and 5 minutes respectively, under the working power of less than 1 mW power. The transformer can be immune to the polarization and wavelength drift, and also robust against the environmental interference.

  10. Digital balanced detection for fast optical computerized tomography

    NASA Astrophysics Data System (ADS)

    Hafiz, Rehan; Ozanyan, Krikor B.

    2006-10-01

    Analogue Balanced Photo-detection has found extensive usage in high- sensitivity small signal applications e.g. coherent heterodyne detection. It is particularly effective for laser intensity noise removal. Nevertheless, the high cost of the commercially available analogue systems makes them unsuitable for multi-channel applications, such as fast tomography. In this paper a flexible, scalable, inexpensive and compact solution for multi channel digital balanced detection is presented. The proposed system has two components: an analogue front-end, comprising a differential photodiode amplifier for minimizing the external interference noise, and a digital balanced noise remover. The latter component initially calculates a balancing factor (BF) from the average power ratio of the signal and reference photocurrents, measured with the object removed from the signal path. Three digital balancing algorithms (DBAx) are considered for subsequent processing. In DBA1, BF is directly used in real-time ratiometric calculations. In DBA2, the BF is adjusted in real time by monitoring the window-averaged power of the received photocurrents. In DBA3, first the baseline is removed using differentiation and then ratiometric detection is performed. Using the digital alternative only one measurement of the reference beam is necessary for single-source, multi-channel detection systems. The data from multiple channels are processed in parallel by pipelined hardware, configured as a state machine. The proposed system leads to a fast optical computerized tomography system using digital balanced detection.

  11. High frame rate CCD camera with fast optical shutter

    SciTech Connect

    Yates, G.J.; McDonald, T.E. Jr.; Turko, B.T.

    1998-09-01

    A high frame rate CCD camera coupled with a fast optical shutter has been designed for high repetition rate imaging applications. The design uses state-of-the-art microchannel plate image intensifier (MCPII) technology fostered/developed by Los Alamos National Laboratory to support nuclear, military, and medical research requiring high-speed imagery. Key design features include asynchronous resetting of the camera to acquire random transient images, patented real-time analog signal processing with 10-bit digitization at 40--75 MHz pixel rates, synchronized shutter exposures as short as 200pS, sustained continuous readout of 512 x 512 pixels per frame at 1--5Hz rates via parallel multiport (16-port CCD) data transfer. Salient characterization/performance test data for the prototype camera are presented, temporally and spatially resolved images obtained from range-gated LADAR field testing are included, an alternative system configuration using several cameras sequenced to deliver discrete numbers of consecutive frames at effective burst rates up to 5GHz (accomplished by time-phasing of consecutive MCPII shutter gates without overlap) is discussed. Potential applications including dynamic radiography and optical correlation will be presented.

  12. On the Location of the 2009 GeV Flares of Blazar PKS 1510-089

    NASA Astrophysics Data System (ADS)

    Dotson, Amanda; Georganopoulos, Markos; Meyer, Eileen T.; McCann, Kevin

    2015-08-01

    Most of the radiated power of blazars is produced at GeV energies via inverse Compton scattering at an unknown distance from the central engine. Possible seed photon sources map to different locations along the jet spanning two orders of magnitude in distance from the black hole, ranging from the broad-line region (BLR, ˜0.1 pc), to the molecular torus (MT, ˜ 1- few pc), to the very long baseline interferometry (VLBI) radio core zone at ˜10 pc. Here, we apply a diagnostic for identifying the GeV emission zone (GEZ) in blazar PKS 1510-089 using four bright gamma-ray flares detected by Fermi in 2009. As shown by Dotson et al., the flare decay time should be energy-independent for flares in the BLR, but faster at higher energies for flares in the MT. We find that in the two cases where the gamma-ray flare was not accompanied by an optical flare, the decay times show an energy-dependence suggesting a location in the MT. For the two GeV flares accompanied by optical flares, we obtained very fast decay times (≲3 hr) in both low and high energy Fermi bands. For these flares, considering the simultaneous >100 GeV detection by HESS (H.E.S.S. Collaboration et al.) and the ejection of a superluminal component from the VLBI radio core in one case, our results suggest that both flares came from the vicinity of the VLBI core. We thus suggest that the GEZ is spread over a wide range of locations beyond the BLR.

  13. Terahertz-optical-asymmetric-demultiplexer (TOAD)-based arithmetic units for ultra-fast optical information processing

    NASA Astrophysics Data System (ADS)

    Cherri, Abdallah K.

    2010-04-01

    In this paper, designs of ultra-fast all-optical based Terahertz-optical-asymmetric-demultiplexer (TOAD)-based devices are reported. Using TOAD switches, adders/subtracters units are demonstrated. The high speed is achieved due to the use of the nonlinear optical materials and the nonbinary modified signed-digit (MSD) number representation. The proposed all-optical circuits are compared in terms of numbers TOAD switches, optical amplifiers and wavelength converters.

  14. Flare energetics

    NASA Technical Reports Server (NTRS)

    Wu, S. T.; Dejager, C.; Dennis, B. R.; Hudson, H. S.; Simnett, G. M.; Strong, K. T.; Bentley, R. D.; Bornmann, P. L.; Bruner, M. E.; Cargill, P. J.

    1986-01-01

    In this investigation of flare energetics, researchers sought to establish a comprehensive and self-consistent picture of the sources and transport of energy within a flare. To achieve this goal, they chose five flares in 1980 that were well observed with instruments on the Solar Maximum Mission, and with other space-borne and ground-based instruments. The events were chosen to represent various types of flares. Details of the observations available for them and the corresponding physical parameters derived from these data are presented. The flares were studied from two perspectives, the impulsive and gradual phases, and then the results were compared to obtain the overall picture of the energics of these flares. The role that modeling can play in estimating the total energy of a flare when the observationally determined parameters are used as the input to a numerical model is discussed. Finally, a critique of the current understanding of flare energetics and the methods used to determine various energetics terms is outlined, and possible future directions of research in this area are suggested.

  15. Solar Flares

    NASA Technical Reports Server (NTRS)

    Savage, Sabrina

    2013-01-01

    Because the Earth resides in the atmosphere of our nearest stellar neighbor, events occurring on the Sun's surface directly affect us by interfering with satellite operations and communications, astronaut safety, and, in extreme circumstances, power grid stability. Solar flares, the most energetic events in our solar system, are a substantial source of hazardous space weather affecting our increasingly technology-dependent society. While flares have been observed using ground-based telescopes for over 150 years, modern space-bourne observatories have provided nearly continuous multi-wavelength flare coverage that cannot be obtained from the ground. We can now probe the origins and evolution of flares by tracking particle acceleration, changes in ionized plasma, and the reorganization of magnetic fields. I will walk through our current understanding of why flares occur and how they affect the Earth and also show several examples of these fantastic explosions.

  16. Fast Interrogation of Fiber Bragg Gratings with Electro-Optical Dual Optical Frequency Combs.

    PubMed

    Posada-Roman, Julio E; Garcia-Souto, Jose A; Poiana, Dragos A; Acedo, Pablo

    2016-11-26

    Optical frequency combs (OFC) generated by electro-optic modulation of continuous-wave lasers provide broadband coherent sources with high power per line and independent control of line spacing and the number of lines. In addition to their application in spectroscopy, they offer flexible and optimized sources for the interrogation of other sensors based on wavelength change or wavelength filtering, such as fiber Bragg grating (FBG) sensors. In this paper, a dual-OFC FBG interrogation system based on a single laser and two optical-phase modulators is presented. This architecture allows for the configuration of multimode optical source parameters such as the number of modes and their position within the reflected spectrum of the FBG. A direct read-out is obtained by mapping the optical spectrum onto the radio-frequency spectrum output of the dual-comb. This interrogation scheme is proposed for measuring fast phenomena such as vibrations and ultrasounds. Results are presented for dual-comb operation under optimized control. The optical modes are mapped onto detectable tones that are multiples of 0.5 MHz around a center radiofrequency tone (40 MHz). Measurements of ultrasounds (40 kHz and 120 kHz) are demonstrated with this sensing system. Ultrasounds induce dynamic strain onto the fiber, which generates changes in the reflected Bragg wavelength and, hence, modulates the amplitude of the OFC modes within the reflected spectrum. The amplitude modulation of two counterphase tones is detected to obtain a differential measurement proportional to the ultrasound signal.

  17. Swift observation of strong optical-UV and X-ray flaring activity of OJ 287

    NASA Astrophysics Data System (ADS)

    Verrecchia, F.; Ciprini, S.; Valtonen, M.; Zola, S.

    2016-11-01

    A new time-domain astronomy experiment performed with the Swift satellite is ongoing since mid Oct. 2016 on the peculiar BL Lac object OJ 287 (z=0.306) after the observation of a very-high optical flux (private communication and follow-up ATel#9650 and ATel#9675).

  18. The flares of August 1972. [solar flare characteristics and spectra

    NASA Technical Reports Server (NTRS)

    Zirin, H.; Tanaka, K.

    1973-01-01

    Observations of the August, 1972 flares at Big Bear and Tel Aviv, involving monochromatic movies, magnetograms, and spectra, are analyzed. The region (McMath 11976) showed inverted polarity from its inception on July 11; the great activity was due to extremely high shear and gradients in the magnetic field, as well as a constant invasion of one polarity into the opposite; observations in lambda 3835 show remarkable fast flashes in the impulsive flare of 18:38 UT on Aug. 2 with lifetimes of 5 sec, which may be due to dumping of particles in the lower chromosphere. Flare loops show evolutionary increases of their tilts to the neutral line in the flares of Aug. 4 and 7. Spectroscopic observations show red asymmetry and red shift of the H alpha emission in the flash phase of the Aug. 7 flare, as well as substantial velocity shear in the photosphere during the flare, somewhat like earthquake movement along a fault. Finally the total H alpha emission of the Aug. 7 flare could be measured accurately as about 2.5 x 10 to the 30th power erg, considerably less than coarser previous estimates for great flares.

  19. Optical-infrared flares and radio afterglows by Jovian planets inspiraling into their host stars

    NASA Astrophysics Data System (ADS)

    Yamazaki, Ryo; Hayasaki, Kimitake; Loeb, Abraham

    2017-04-01

    When a planet inspirals into its host star, it releases gravitational energy, which is converted into an expanding bubble of hot plasma. We study the radiation from the bubble and show that it includes prompt optical-infrared emission and a subsequent radio afterglow. The prompt emission from M31 and the Large Magellanic Cloud is detectable by optical-near-infrared transient surveys with a large field of view. The subsequent radio afterglows are detectable for 103-104 yr. The event rate depends on uncertain parameters in the formation and dynamics of giant planets. Future observations of the rate will constrain related theoretical models. If the event rate is high ( ≳ a few events per year), the circumstellar disc must typically be massive, as suggested by recent numerical simulations.

  20. Fast left ventricle tracking using localized anatomical affine optical flow.

    PubMed

    Queirós, Sandro; Vilaça, João L; Morais, Pedro; Fonseca, Jaime C; D'hooge, Jan; Barbosa, Daniel

    2017-02-16

    In daily clinical cardiology practice, left ventricle (LV) global and regional function assessment is crucial for disease diagnosis, therapy selection and patient follow-up. Currently, this is still a time-consuming task, spending valuable human resources. In this work, a novel fast methodology for automatic LV tracking is proposed based on localized anatomically constrained affine optical flow. This novel method can be combined to previously proposed segmentation frameworks or manually delineated surfaces at an initial frame to obtain fully delineated datasets and, thus, assess both global and regional myocardial function. Its feasibility and accuracy was investigated in three distinct public databases, namely in realistically simulated 3D ultrasound (US), clinical 3D echocardiography and clinical cine cardiac magnetic resonance (CMR) images. The method showed accurate tracking results in all databases, proving its applicability and accuracy for myocardial function assessment. Moreover, when combined to previous state-of-the-art segmentation frameworks, it outperformed previous tracking strategies in both 3D US and CMR data, automatically computing relevant cardiac indices with smaller biases and narrower limits of agreement compared to reference indices. Simultaneously, the proposed localized tracking method showed to be suitable for online processing, even for 3D motion assessment. Importantly, although here evaluated for LV tracking only, this novel methodology is applicable for tracking of other target structures with minimal adaptations. This article is protected by copyright. All rights reserved.

  1. "Red Tweezers": Fast, customisable hologram generation for optical tweezers

    NASA Astrophysics Data System (ADS)

    Bowman, Richard W.; Gibson, Graham M.; Linnenberger, Anna; Phillips, David B.; Grieve, James A.; Carberry, David M.; Serati, Steven; Miles, Mervyn J.; Padgett, Miles J.

    2014-01-01

    Holographic Optical Tweezers (HOT) are a versatile way of manipulating microscopic particles in 3D. However, their ease of use has been hampered by the computational load of calculating the holograms, resulting in an unresponsive system. We present a program for generating these holograms on a consumer Graphics Processing Unit (GPU), coupled to an easy-to-use interface in LabVIEW (National Instruments). This enables a HOT system to be set up without writing any additional code, as well as providing a platform enabling the fast generation of other holograms. The GPU engine calculates holograms over 300 times faster than the same algorithm running on a quad core CPU. The hologram algorithm can be altered on-the-fly without recompiling the program, allowing it to be used to control Spatial Light Modulators in any situation where the hologram can be calculated in a single pass. The interface has also been rewritten to take advantage of new features in LabVIEW 2010. It is designed to be easily modified and extended to integrate with hardware other than our own.

  2. Slow-rise and Fast-rise Phases of an Erupting Solar Filament and Flare Emission Onset

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.; Moore, Ronald L.

    2005-01-01

    We observe the eruption of an active-region solar filament of 1998 July 11 using high time cadence and high spatial resolution EUV observations from the TRACE satellite, along with soft X-ray images from the soft X-ray telescope (SXT) on the Yohkoh satellite, hard X-ray fluxes from the BATSE instrument on the Compton Gamma Ray Observatory (CGRO) satellite and from the hard X-ray telescope (HXT) on Yohkoh, and ground-based magnetograms. We concentrate on the initiation of the eruption in an effort to understand the eruption mechanism. Prior to eruption the filament undergoes slow upward movement in a "slow rise" phase with an approximately constant velocity of about 15 km/s that lasts about 10 min. It then erupts in a "fast-rise" phase, accelerating to a velocity of about 200 km/s in about 5 min, and then decelerating to approximately 150 km/s over the next 5 min. EUV brightenings begin about concurrent with the start of the filament's slow rise, and remain immediately beneath the rising filament during the slow rise; initial soft X-ray brightenings occur at about the same time and location. Strong hard X-ray emission begins after the onset of the fast rise, and does not peak until the filament has traveled to a substantial altitude (to a height about equal to the initial length of the erupting filament) beyond its initial location. Additional information is available in the original extended abstract.

  3. Flare Observations.

    PubMed

    Benz, Arnold O

    Solar flares are observed at all wavelengths from decameter radio waves to gamma-rays at 100 MeV. This review focuses on recent observations in EUV, soft and hard X-rays, white light, and radio waves. Space missions such as RHESSI, Yohkoh, TRACE, and SOHO have enlarged widely the observational base. They have revealed a number of surprises: Coronal sources appear before the hard X-ray emission in chromospheric footpoints, major flare acceleration sites appear to be independent of coronal mass ejections (CMEs), electrons, and ions may be accelerated at different sites, there are at least 3 different magnetic topologies, and basic characteristics vary from small to large flares. Recent progress also includes improved insights into the flare energy partition, on the location(s) of energy release, tests of energy release scenarios and particle acceleration. The interplay of observations with theory is important to deduce the geometry and to disentangle the various processes involved. There is increasing evidence supporting reconnection of magnetic field lines as the basic cause. While this process has become generally accepted as the trigger, it is still controversial how it converts a considerable fraction of the energy into non-thermal particles. Flare-like processes may be responsible for large-scale restructuring of the magnetic field in the corona as well as for its heating. Large flares influence interplanetary space and substantially affect the Earth's lower ionosphere. While flare scenarios have slowly converged over the past decades, every new observation still reveals major unexpected results, demonstrating that solar flares, after 150 years since their discovery, remain a complex problem of astrophysics including major unsolved questions.

  4. Optical flaring of a radio source seen in the Catalina Sky Survey

    NASA Astrophysics Data System (ADS)

    Mahabal, A. A.; Drake, A. J.; Djorgovski, S. G.; Graham, M.; Williams, R.; Herczeg, G.; Beshore, E.; Larson, S. M.; Boattini, A.; Christiansen, E.

    2008-12-01

    We have detected the optical brightening by ~3 mags (V ~ 16.8) of a previously known radio source (~ flat-spectrum, unknown redshift) in the Catalina Sky Survey (CSS) on 29 Dec 2008 UT.

    CSS081229:104032+061721 2008-12-29 UT 10:22:05 10:40:31.61 06:17:21.8 812291070574110368
    The discovery data and finding chart are posted at the CRTS VOEventNet webpage: http://voeventnet.caltech.edu/feeds/ATEL/CRTS/812291070574110368.atel.html (SDSS object ID 587732701792108700).

  5. Fast Interrogation of Fiber Bragg Gratings with Electro-Optical Dual Optical Frequency Combs

    PubMed Central

    Posada-Roman, Julio E.; Garcia-Souto, Jose A.; Poiana, Dragos A.; Acedo, Pablo

    2016-01-01

    Optical frequency combs (OFC) generated by electro-optic modulation of continuous-wave lasers provide broadband coherent sources with high power per line and independent control of line spacing and the number of lines. In addition to their application in spectroscopy, they offer flexible and optimized sources for the interrogation of other sensors based on wavelength change or wavelength filtering, such as fiber Bragg grating (FBG) sensors. In this paper, a dual-OFC FBG interrogation system based on a single laser and two optical-phase modulators is presented. This architecture allows for the configuration of multimode optical source parameters such as the number of modes and their position within the reflected spectrum of the FBG. A direct read-out is obtained by mapping the optical spectrum onto the radio-frequency spectrum output of the dual-comb. This interrogation scheme is proposed for measuring fast phenomena such as vibrations and ultrasounds. Results are presented for dual-comb operation under optimized control. The optical modes are mapped onto detectable tones that are multiples of 0.5 MHz around a center radiofrequency tone (40 MHz). Measurements of ultrasounds (40 kHz and 120 kHz) are demonstrated with this sensing system. Ultrasounds induce dynamic strain onto the fiber, which generates changes in the reflected Bragg wavelength and, hence, modulates the amplitude of the OFC modes within the reflected spectrum. The amplitude modulation of two counterphase tones is detected to obtain a differential measurement proportional to the ultrasound signal. PMID:27898043

  6. X-ray and optical observations of a dMe flare star in the T Tauri field

    NASA Technical Reports Server (NTRS)

    Smale, A. P.; Charles, P. A.; Corbet, R. H. D.; Jordan, C.; Brown, A.

    1986-01-01

    Observations of a newly discovered dMe flare star within 20 pc of the sun are presented. An EXOSAT observation of this source shows an almost complete X-ray flare light curve with rise time about 600 s, decay time about 1500 s, and peak luminosity 6.1 x 10 to the 29th erg/s, a 40-fold increase in brightness over the quiescent level. The total energy in the flare is between 2.7 x 10 to the 32nd and 3.3 x 10 to the 33rd erg. Results of two Einstein IPC observations are also presented; the source is quiescent in the first and shows evidence for a luminosity enhancement, possibly the tail of another flare, in the second. The source is identified with a hitherto unsteadied nearby star with magnitude V about 13 and spectral type roughly dM5e, at a distnce of about 13 pc. For the flare, a variety of different physical assumptions about the cooling mechanism is explored and possible values for loop lengths and electron densities are derived.

  7. Statistical Analyses of White-Light Flares: Two Main Results about Flare Behaviour

    NASA Astrophysics Data System (ADS)

    Dal, Hasan Ali

    2012-08-01

    We present two main results, based on models and the statistical analyses of 1672 U-band flares. We also discuss the behaviour of white-light flares. In addition, the parameters of the flares detected from two years of observations on CR Dra are presented. By comparing with flare parameters obtained from other UV Ceti-type stars, we examine the behaviour of the optical flare processes along with the spectral types. Moreover, we aimed, using large white-light flare data, to analyse the flare time-scales with respect to some results obtained from X-ray observations. Using SPSS V17.0 and GraphPad Prism V5.02 software, the flares detected from CR Dra were modelled with the OPEA function, and analysed with the t-Test method to compare similar flare events in other stars. In addition, using some regression calculations in order to derive the best histograms, the time-scales of white-light flares were analysed. Firstly, CR Dra flares have revealed that white-light flares behave in a similar way as their counterparts observed in X-rays. As can be seen in X-ray observations, the electron density seems to be a dominant parameter in white-light flare process, too. Secondly, the distributions of the flare time-scales demonstrate that the number of observed flares reaches a maximum value in some particular ratios, which are 0.5, or its multiples, and especially positive integers. The thermal processes might be dominant for these white-light flares, while non-thermal processes might be dominant in the others. To obtain better results for the behaviour of the white-light flare process along with the spectral types, much more stars in a wide spectral range, from spectral type dK5e to dM6e, must be observed in white-light flare patrols.

  8. Solar flare model atmospheres

    NASA Technical Reports Server (NTRS)

    Hawley, Suzanne L.; Fisher, George H.

    1993-01-01

    Solar flare model atmospheres computed under the assumption of energetic equilibrium in the chromosphere are presented. The models use a static, one-dimensional plane parallel geometry and are designed within a physically self-consistent coronal loop. Assumed flare heating mechanisms include collisions from a flux of non-thermal electrons and x-ray heating of the chromosphere by the corona. The heating by energetic electrons accounts explicitly for variations of the ionized fraction with depth in the atmosphere. X-ray heating of the chromosphere by the corona incorporates a flare loop geometry by approximating distant portions of the loop with a series of point sources, while treating the loop leg closest to the chromospheric footpoint in the plane-parallel approximation. Coronal flare heating leads to increased heat conduction, chromospheric evaporation and subsequent changes in coronal pressure; these effects are included self-consistently in the models. Cooling in the chromosphere is computed in detail for the important optically thick HI, CaII and MgII transitions using the non-LTE prescription in the program MULTI. Hydrogen ionization rates from x-ray photo-ionization and collisional ionization by non-thermal electrons are included explicitly in the rate equations. The models are computed in the 'impulsive' and 'equilibrium' limits, and in a set of intermediate 'evolving' states. The impulsive atmospheres have the density distribution frozen in pre-flare configuration, while the equilibrium models assume the entire atmosphere is in hydrostatic and energetic equilibrium. The evolving atmospheres represent intermediate stages where hydrostatic equilibrium has been established in the chromosphere and corona, but the corona is not yet in energetic equilibrium with the flare heating source. Thus, for example, chromospheric evaporation is still in the process of occurring.

  9. Solar flares: an overview.

    PubMed

    Rust, D M

    1992-01-01

    This is a survey of solar phenomena and physical models that may be useful for improving forecasts of solar flares and proton storms in interplanetary space. Knowledge of the physical processes that accelerate protons has advanced because of gamma-ray and X-ray observations from the Solar Maximum Mission telescopes. Protons are accelerated at the onset of flares, but the duration of any subsequent proton storm at 1 AU depends on the structure of the interplanetary fields. X-ray images of the solar corona show possible fast proton escape paths. Magnetographs and high-resolution visible-band images show the magnetic field structure near the acceleration region and the heating effects of sunward-directed protons. Preflare magnetic field growth and shear may be the most important clues to the physical processes that generate high energy solar particles. Any dramatic improvement in flare forecasts will require high resolution solar telescopes in space. Several possibilities for improvements in the art of flare forecasting are presented, among them: the use of acoustic tomography to probe for subsurface magnetic fields; a satellite-borne solar magnetograph; and an X-ray telescope to monitor the corona for eruptions.

  10. Low temperature fiber optic pyrometer for fast time resolved temperature measurements

    NASA Astrophysics Data System (ADS)

    Willsch, M.; Bosselmann, T.; Gaenshirt, D.; Kaiser, J.; Villnow, M.; Banda, M.

    2016-05-01

    Low temperature Pyrometry at temperatures beyond 150°C is limited in the measurement speed due to slow pyroelectric detectors. To detect the circumferential temperature distribution of fast rotating machines a novel Fiber Optical Pyrometer Type is presented here.

  11. Application of Fast Optical Tomography to Flow Tubes

    DTIC Science & Technology

    2007-11-02

    electro-optics, quantum electronics, solid-state lasers , optical propagation and communications; microwave semiconductor devices, microwave /millimeter...34Application of Tomography in 3-D Transonic Flows, AIAA-87-1374, AIAA 19th Fluid Dynamics, Plasma Dynamics and Laser Conference, Honolulu, Hawaii...thermomechanics, gas kinetics and radiation; cw and pulsed chemical and excimer laser development including chemical kinetics, spectroscopy, optical

  12. GONG Inter-site Hα Flare Comparison

    NASA Astrophysics Data System (ADS)

    Giersch, Owen

    2013-06-01

    A challenge of the past few decades for the Solar Observing Optical Network (SOON), operated by the United States Air Force Weather Agency (AFWA), has been to obtain consistent flare brightness reporting for the same flare from different sites. Flare area is usually considered to be a more reliable measure, but significant variation of values between sites still occurs. The Global Oscillation Network Group (GONG) deployed a Hα patrol system in 2010. This provides a modern system with near identical equipment to compare flares from six different sites. The classification of flares and techniques of flare measurement will be briefly discussed. The results presented here suggest that even though different GONG sites report different flare areas and brightnesses, for some sites they vary in a consistent way allowing correction factors to be applied.

  13. Fast integral methods for integrated optical systems simulations: a review

    NASA Astrophysics Data System (ADS)

    Kleemann, Bernd H.

    2015-09-01

    Boundary integral equation methods (BIM) or simply integral methods (IM) in the context of optical design and simulation are rigorous electromagnetic methods solving Helmholtz or Maxwell equations on the boundary (surface or interface of the structures between two materials) for scattering or/and diffraction purposes. This work is mainly restricted to integral methods for diffracting structures such as gratings, kinoforms, diffractive optical elements (DOEs), micro Fresnel lenses, computer generated holograms (CGHs), holographic or digital phase holograms, periodic lithographic structures, and the like. In most cases all of the mentioned structures have dimensions of thousands of wavelengths in diameter. Therefore, the basic methods necessary for the numerical treatment are locally applied electromagnetic grating diffraction algorithms. Interestingly, integral methods belong to the first electromagnetic methods investigated for grating diffraction. The development started in the mid 1960ies for gratings with infinite conductivity and it was mainly due to the good convergence of the integral methods especially for TM polarization. The first integral equation methods (IEM) for finite conductivity were the methods by D. Maystre at Fresnel Institute in Marseille: in 1972/74 for dielectric, and metallic gratings, and later for multiprofile, and other types of gratings and for photonic crystals. Other methods such as differential and modal methods suffered from unstable behaviour and slow convergence compared to BIMs for metallic gratings in TM polarization from the beginning to the mid 1990ies. The first BIM for gratings using a parametrization of the profile was developed at Karl-Weierstrass Institute in Berlin under a contract with Carl Zeiss Jena works in 1984-1986 by A. Pomp, J. Creutziger, and the author. Due to the parametrization, this method was able to deal with any kind of surface grating from the beginning: whether profiles with edges, overhanging non

  14. Solar and stellar flares and their impact on planets

    NASA Astrophysics Data System (ADS)

    Shibata, Kazunari

    Recent observations of the Sun revealed that the solar atmosphere is full of flares and flare-like phenomena, which affect terrestrial environment and our civilization. It has been established that flares are caused by the release of magnetic energy through magnetic reconnection. Many stars show flares similar to solar flares, and such stellar flares especially in stars with fast rotation are much more energetic than solar flares. These are called superflares. The total energy of a solar flare is 1029 - 1032 erg, while that of a superflare is 1033 - 1038 erg. Recently, it was found that superflares (with 1034 - 1035 erg) occur on Sun-like stars with slow rotation with frequency once in 800 - 5000 years. This suggests the possibility of superflares on the Sun. We review recent development of solar and stellar flare research, and briefly discuss possible impacts of superflares on the Earth and exoplanets.

  15. A fast optical outburst of the quasar CTA102

    NASA Astrophysics Data System (ADS)

    Jorstad, Svetlana; Larionov, Valeri; Mokrushina, Anna

    2016-10-01

    The quasar CTA102 is being in an active state at gamma-ray and optical wavelengths since 2015, with prominent gamma-ray and optical outbursts observed in the beginning of 2016 (see www.bu.edu/blazars/VLBA_GLAST/cta102.html).

  16. Optical correlators with fast updating speed using photorefractive semiconductor materials

    NASA Technical Reports Server (NTRS)

    Gheen, Gregory; Cheng, Li-Jen

    1988-01-01

    The performance of an updatable optical correlator which uses a photorefractive semiconductor to generate real-time matched filters is discussed. The application of compound semiconductors makes possible high-speed operation and low optical input intensities. The Bragg diffraction is considered, along with the speed and power characteristics of these materials. Experimental results on photorefractive GaAs are presented.

  17. Double-pass rotary mirror array for fast scanning optical delay line.

    PubMed

    Liu, Linbo; Chen, Nan Guang

    2006-07-20

    We have developed a fast scanning optical delay line based on a rotary mirror array. A double-pass configuration is adopted to optimize the fiber-optical coupling and thus minimize the amplitude modulation in the reflected light. The achieved scanning range is extended to over 3 mm. An additional Michelson interferometer is incorporated into the reference arm to achieve high delay repeatability. Such a device is ideal for real-time optical coherence tomography, optical Doppler tomography, and spectroscopic optical coherence tomography.

  18. Fast magneto-optic switch based on nanosecond pulses

    NASA Astrophysics Data System (ADS)

    Weng, Zi-Hua; Ruan, Jian-Jian; Lin, Shao-Han; Chen, Zhi-Min

    2011-09-01

    The paper studies an all fiber high-speed magneto-optic switch which includes an optical route, a nanosecond pulse generator, and a magnetic field module in order to reduce the switching time of the optical switch in the all optical network. A compact nanosecond pulse generator can be designed based on the special character of the avalanche transistor. The output current pulse of the nanosecond pulse generator is less than 5 ns, while the pulse amplitude is more than 100 V and the pulse width is about 10 to 20 ns, which is able to drive a high-speed magnetic field. A solenoid is used as the magnetic field module, and a bismuth-substituted rare-earth iron garnet single crystal is chosen as the Faraday rotator. By changing the direction of current in the solenoid quickly, the magnetization of the magneto-optic material is reversed, and the optical beam can be rapidly switched. The experimental results indicate that the switching time of the device is about 100 to 400 ns, which can partially meet the demand of the rapid development of the all optical network.

  19. A radio jet from the optical and x-ray bright stellar tidal disruption flare ASASSN-14li.

    PubMed

    van Velzen, S; Anderson, G E; Stone, N C; Fraser, M; Wevers, T; Metzger, B D; Jonker, P G; van der Horst, A J; Staley, T D; Mendez, A J; Miller-Jones, J C A; Hodgkin, S T; Campbell, H C; Fender, R P

    2016-01-01

    The tidal disruption of a star by a supermassive black hole leads to a short-lived thermal flare. Despite extensive searches, radio follow-up observations of known thermal stellar tidal disruption flares (TDFs) have not yet produced a conclusive detection. We present a detection of variable radio emission from a thermal TDF, which we interpret as originating from a newly launched jet. The multiwavelength properties of the source present a natural analogy with accretion-state changes of stellar mass black holes, which suggests that all TDFs could be accompanied by a jet. In the rest frame of the TDF, our radio observations are an order of magnitude more sensitive than nearly all previous upper limits, explaining how these jets, if common, could thus far have escaped detection.

  20. Fast incorporation of optical flow into active polygons.

    PubMed

    Unal, Gozde; Krim, Hamid; Yezzi, Anthony

    2005-06-01

    In this paper, we first reconsider, in a different light, the addition of a prediction step to active contour-based visual tracking using an optical flow and clarify the local computation of the latter along the boundaries of continuous active contours with appropriate regularizers. We subsequently detail our contribution of computing an optical flow-based prediction step directly from the parameters of an active polygon, and of exploiting it in object tracking. This is in contrast to an explicitly separate computation of the optical flow and its ad hoc application. It also provides an inherent regularization effect resulting from integrating measurements along polygon edges. As a result, we completely avoid the need of adding ad hoc regularizing terms to the optical flow computations, and the inevitably arbitrary associated weighting parameters. This direct integration of optical flow into the active polygon framework distinguishes this technique from most previous contour-based approaches, where regularization terms are theoretically, as well as practically, essential. The greater robustness and speed due to a reduced number of parameters of this technique are additional and appealing features.

  1. Fabrication, Testing, Coating and Alignment of Fast Segmented Optics

    DTIC Science & Technology

    2006-05-25

    mirror segment, a 100 mm thick Zerodur mirror blank was purchased from Schott. Figure 2 shows the segment and its support for polishing and testing in...Polishing large off-axis segments of fast primary mirrors 2. Testing large segments in an off-axis geometry 3. Alignment of multiple segments of a large... mirror 4. Coatings that reflect high-intensity light without distorting the substrate These technologies are critical because of several unique

  2. Optical emission spectroscopy observations of fast pulsed capillary discharge plasmas

    NASA Astrophysics Data System (ADS)

    Avaria, G.; Ruiz, M.; Guzmán, F.; Favre, M.; Wyndham, E. S.; Chuaqui, H.; Bhuyan, H.

    2014-05-01

    We present time resolved optical emission spectroscopic (OES) observations of a low energy, pulsed capillary discharage (PCD). The optical emission from the capillary plasma and plasma jets emitted from the capillary volume was recorded with with a SpectraPro 275 spectrograph, fitted with a MCP gated OMA system, with 15 ns time resolution. The discharge was operated with different gases, including argon, nitrogen, hydrogen and methane, in a repetitive pulsed discharge mode at 10-50 Hz, with, 10-12 kV pulses applied at the cathode side. The time evolution of the electron density was measured using Stark broadening of the Hβ line. Several features of the capillary plasma dynamics, such as ionization growth, wall effects and plasma jet evolution, are inferred from the time evolution of the optical emission.

  3. Measurements on a shock wave generated by a solar flare

    NASA Astrophysics Data System (ADS)

    Maxwell, A.; Dryer, M.

    1982-11-01

    Shock waves generated by intense solar flares may be driven by a large amount of ejected mass, about 5 x 10 to the 16th g, and the total energy involved may be of the order of 10 to the 32nd erg. The shocks may have initial velocities of the order of 2,000 km/s and, in their exodus through the corona, may be accompanied by fast-moving optical transients, the emission of highly characteristic radio signatures and the acceleration of particles to quasi-relativistic velocities. Here, a review is presented of data on a high-velocity shock generated by a flare on 18 August 1979, 1400 UT, and comments are provided on some previously deduced velocities for the shock. Attention is given to a model, based on current computer programs to account for the overall characteristics of the shock as it propagated through the corona and the interplanetary plasma.

  4. Measurements on a shock wave generated by a solar flare

    NASA Technical Reports Server (NTRS)

    Maxwell, A.; Dryer, M.

    1982-01-01

    Shock waves generated by intense solar flares may be driven by a large amount of ejected mass, about 5 x 10 to the 16th g, and the total energy involved may be of the order of 10 to the 32nd erg. The shocks may have initial velocities of the order of 2,000 km/s and, in their exodus through the corona, may be accompanied by fast-moving optical transients, the emission of highly characteristic radio signatures and the acceleration of particles to quasi-relativistic velocities. Here, a review is presented of data on a high-velocity shock generated by a flare on 18 August 1979, 1400 UT, and comments are provided on some previously deduced velocities for the shock. Attention is given to a model, based on current computer programs to account for the overall characteristics of the shock as it propagated through the corona and the interplanetary plasma.

  5. Solar flares controlled by helicity conservation

    NASA Technical Reports Server (NTRS)

    Gliner, Erast B.; Osherovich, Vladimir A.

    1995-01-01

    The energy release in a class of solar flares is studied on the assumption that during burst events in highly conducting plasma the magnetic helicity of plasma is approximately conserved. The available energy release under a solar flare controlled by the helicity conservation is shown to be defined by the magnetic structure of the associated prominence. The approach throws light on some solar flare enigmas: the role of the associated prominence. The approach throws light on some solar flare enigmas: the role of the associated prominences; the discontinuation of the reconnection of magnetic lines long before the complete reconnection of participated fields occurs; the existence of quiet prominences which, in spite of their usual optical appearance, do not initiate any flare events; the small energy release under a solar flare in comparison with the stockpile of magnetic energy in surrounding fields. The predicted scale of the energy release is in a fair agreement with observations.

  6. Concepts for fast acquisition in optical communications systems

    NASA Astrophysics Data System (ADS)

    Wilkerson, Brandon L.; Giggenbach, Dirk; Epple, Bernhard

    2006-09-01

    As free-space laser communications systems proliferate due to improved technology and transmission techniques, optical communication networks comprised of ground stations, aircraft, high altitude platforms, and satellites become an attainable goal. An important consideration for optical networks is the ability of optical communication terminals (OCT) to quickly locate one another and align their laser beams to initiate the acquisition sequence. This paper investigates promising low-cost technologies and novel approaches that will facilitate the targeting and acquisition tasks between counter terminals. Specifically, two critical technology areas are investigated: position determination (which includes location and attitude determination) and inter-terminal communications. A feasibility study identified multiple-antenna global navigation satellite system (GNSS) systems and GNSS-aided inertial systems as possible position determination solutions. Personal satellite communication systems (e.g. Iridium or Inmarsat), third generation cellular technology (IMT-2000/UMTS), and a relatively new air traffic surveillance technology called Autonomous Dependent Surveillance-Broadcast (ADS-B) were identified as possible inter-terminal communication solutions. A GNSS-aided inertial system and an ADS-B system were integrated into an OCT to demonstrate their utility in a typical optical communication scenario. Testing showed that these technologies have high potential in future OCTs, although improvements can be made to both to increase tracking accuracy.

  7. Development of a small scintillation detector with an optical fiber for fast neutrons.

    PubMed

    Yagi, T; Unesaki, H; Misawa, T; Pyeon, C H; Shiroya, S; Matsumoto, T; Harano, H

    2011-02-01

    To investigate the characteristics of a reactor and a neutron generator, a small scintillation detector with an optical fiber with ThO(2) has been developed to measure fast neutrons. However, experimental facilities where (232)Th can be used are limited by regulations, and S/N ratio is low because the background counts of this detector are increase by alpha decay of (232)Th. The purpose of this study is to develop a new optical fiber detector for measuring fast neutrons that does not use nuclear material such as (232)Th. From the measured and calculated results, the new optical fiber detector which uses ZnS(Ag) as a converter material together with a scintillator have the highest detection efficiency among several developed detectors. It is applied for the measurement of reaction rates generated from fast neutrons; furthermore, the absolute detection efficiency of this detector was obtained experimentally.

  8. Optical observations of the fast nova V2491 Cyg

    NASA Astrophysics Data System (ADS)

    Tomov, T.; Mikolajewski, M.; Ragan, E.; Swierczynski, E.; Wychudzki, P.

    2008-04-01

    We report on optical spectral observations and UBVRI brightness estimations obtained with 60/90 cm Schmidt and 60 cm Cassegrain telescopes of the Nicolaus Copernicus University Observatory (Torun, Poland). The nova V2491 Cyg was discovered on Apr. 10.728 UT with about 7.7 mag on unfiltered CCD frames (IAUC#8934). Additionally, the X-ray emission was detected for the prenova several months ago (ATel#1473).

  9. Fast gain and phase recovery of semiconductor optical amplifiers based on submonolayer quantum dots

    SciTech Connect

    Herzog, Bastian Owschimikow, Nina; Kaptan, Yücel; Kolarczik, Mirco; Switaiski, Thomas; Woggon, Ulrike; Schulze, Jan-Hindrik; Rosales, Ricardo; Strittmatter, André; Bimberg, Dieter; Pohl, Udo W.

    2015-11-16

    Submonolayer quantum dots as active medium in opto-electronic devices promise to combine the high density of states of quantum wells with the fast recovery dynamics of self-assembled quantum dots. We investigate the gain and phase recovery dynamics of a semiconductor optical amplifier based on InAs submonolayer quantum dots in the regime of linear operation by one- and two-color heterodyne pump-probe spectroscopy. We find an as fast recovery dynamics as for quantum dot-in-a-well structures, reaching 2 ps at moderate injection currents. The effective quantum well embedding the submonolayer quantum dots acts as a fast and efficient carrier reservoir.

  10. Wide-field monitoring strategy for the study of fast optical transients

    NASA Astrophysics Data System (ADS)

    Beskin, Grigory; Bondar, Sergey; Karpov, Sergey; Guarnieri, Adriano; Bartolini, Corrado; Greco, Giuseppe; Piccioni, Adalberto

    2010-10-01

    We discuss the strategy of search for fast optical transients accompanying gamma-ray bursts by means of continuous monitoring of wide sky fields with high temporal resolution. We describe the design, performance and results of our cameras, FAVOR and TORTORA. Also we discuss the perspectives of this strategy and possible design of next-generation equipment for wide-field monitoring which will be able to detect optical transients and to study their color and polarization properties with high time resolution.

  11. Fast figuring of large optics by reactive atom plasma

    NASA Astrophysics Data System (ADS)

    Castelli, Marco; Jourdain, Renaud; Morantz, Paul; Shore, Paul

    2012-09-01

    The next generation of ground-based astronomical observatories will require fabrication and maintenance of extremely large segmented mirrors tens of meters in diameter. At present, the large production of segments required by projects like E-ELT and TMT poses time frames and costs feasibility questions. This is principally due to a bottleneck stage in the optical fabrication chain: the final figuring step. State-of-the-art figure correction techniques, so far, have failed to meet the needs of the astronomical community for mass production of large, ultra-precise optical surfaces. In this context, Reactive Atom Plasma (RAP) is proposed as a candidate figuring process that combines nanometer level accuracy with high material removal rates. RAP is a form of plasma enhanced chemical etching at atmospheric pressure based on Inductively Coupled Plasma technology. The rapid figuring capability of the RAP process has already been proven on medium sized optical surfaces made of silicon based materials. In this paper, the figure correction of a 3 meters radius of curvature, 400 mm diameter spherical ULE mirror is presented. This work demonstrates the large scale figuring capability of the Reactive Atom Plasma process. The figuring is carried out by applying an in-house developed procedure that promotes rapid convergence. A 2.3 μm p-v initial figure error is removed within three iterations, for a total processing time of 2.5 hours. The same surface is then re-polished and the residual error corrected again down to λ/20 nm rms. These results highlight the possibility of figuring a metre-class mirror in about ten hours.

  12. Safety Eye Protection through Use of Fast Acting Optical Switching.

    DTIC Science & Technology

    1984-01-01

    4NH M A ninE ISUPPLEMNITARY NOTES VIL KEY woRDS (Cn-.Mm Mwa ie If 06060 imd Rd-"&t h4g.e Min& . Optical Switching Inhomogeneous Media Safety Eye... media in which the inhomegeneity is on the order of the wavelength of visible light. At present there are not obvious ideal solutions based simply upon...transitions due to short range diffusion; and (4) inhomogeneous media in which the Inhomegeneity is on the order of the wavelength of visible light At

  13. Fast calibration of high-order adaptive optics systems.

    PubMed

    Kasper, Markus; Fedrigo, Enrico; Looze, Douglas P; Bonnet, Henri; Ivanescu, Liviu; Oberti, Sylvain

    2004-06-01

    We present a new method of calibrating adaptive optics systems that greatly reduces the required calibration time or, equivalently, improves the signal-to-noise ratio. The method uses an optimized actuation scheme with Hadamard patterns and does not scale with the number of actuators for a given noise level in the wavefront sensor channels. It is therefore highly desirable for high-order systems and/or adaptive secondary systems on a telescope without a Gregorian focal plane. In the latter case, the measurement noise is increased by the effects of the turbulent atmosphere when one is calibrating on a natural guide star.

  14. Fast quantum-optical random-number generators

    NASA Astrophysics Data System (ADS)

    Durt, Thomas; Belmonte, Carlos; Lamoureux, Louis-Philippe; Panajotov, Krassimir; Van den Berghe, Frederik; Thienpont, Hugo

    2013-02-01

    In this paper we study experimentally the properties of three types of quantum -optical random-number generators and characterize them using the available National Institute for Standards and Technology statistical tests, as well as four alternate tests. The generators are characterized by a trade-off between, on one hand, the rate of generation of random bits and, on the other hand, the degree of randomness of the series which they deliver. We describe various techniques aimed at maximizing this rate without diminishing the quality (degree of randomness) of the series generated by it.

  15. Fast optical recording of light-flash evoked neural activation in amphibian retina

    NASA Astrophysics Data System (ADS)

    Yao, Xin-Cheng; George, John S.

    2005-08-01

    Imaging of fast intrinsic optical responses closely associated with neural activation promises important technical advantages over traditional single and multi-channel electrophysiological techniques for dynamic measurements of visual processing and early detection of eye diseases. We have developed a fast, no-moving-parts optical coherence tomography (OCT), system based on an electro-optic phase modulator, and used it to record dynamic near infrared (NIR) light scattering changes in frog retina activated by a visible light-flash. We also employed transmitted light for highly sensitive measurement and imaging of neural activation, and to optimize illumination and optical configuration. Using a photodiode detector, we routinely measured dynamic NIR transmitted optical responses in single passes. When the whole retina was illuminated by a visible light-flash, a positive peak was typically observed in transmitted light measurements. CCD image sequences disclosed larger fractional responses, in some cases exceeding 0.5% in individual pixels, and showed evidence of multiple response components with both negative- and positive-going signals with different timescales and complex but consistent spatial organization. The fast negative-going signals are highly correlated with the a-wave of the electrophysiological signals, and may reflect the activation of photoreceptors. The fast positive-going responses are related to the b-wave of the electrophysiological signals, and may result from the activation of ON bipolar cells. Slow optical responses may signal metabolic changes of retinal tissue. Our experimental results and theoretical analysis suggest that the optical responses may result from dynamic volume changes associated with neural activation, corresponding to ion and water flow across the cell membrane.

  16. Experimental results on time-resolved reflectance diffuse optical tomography with fast-gated SPADs

    NASA Astrophysics Data System (ADS)

    Puszka, Agathe; Di Sieno, Laura; Dalla Mora, Alberto; Pifferi, Antonio; Contini, Davide; Boso, Gianluca; Tosi, Alberto; Planat-Chrétien, Anne; Hervé, Lionel; Koenig, Anne; Dinten, Jean-Marc

    2013-06-01

    We present experimental results of time-resolved reflectance diffuse optical tomography performed with fast-gated single-photon avalanche diodes (SPADs) and show an increased imaged depth range for a given acquisition time compared to the non gated mode.

  17. IMPULSIVITY PARAMETER FOR SOLAR FLARES

    SciTech Connect

    Fajardo-Mendieta, W. G.; Alvarado-Gómez, J. D.; Calvo-Mozo, B.; Martinez-Oliveros, J. C. E-mail: bcalvom@unal.edu.co E-mail: jalvarad@eso.org

    2016-02-10

    Three phases are typically observed during solar flares: the preflare, impulsive, and decay phases. During the impulsive phase, it is believed that the electrons and other particles are accelerated after the stored energy in the magnetic field is released by reconnection. The impulsivity of a solar flare is a quantifiable property that shows how quickly this initial energy release occurs. It is measured via the impulsivity parameter, which we define as the inverse of the overall duration of the impulsive phase. We take the latter as the raw width of the most prominent nonthermal emission of the flare. We computed this observable over a work sample of 48 M-class events that occurred during the current Solar Cycle 24 by using three different methods. The first method takes into account all of the nonthermal flare emission and gives very accurate results, while the other two just cover fixed energy intervals (30–40 keV and 25–50 keV) and are useful for fast calculations. We propose an alternative way to classify solar flares according to their impulsivity parameter values, defining three different types of impulsivity, namely, high, medium, and low. This system of classification is independent of the manner used to calculated the impulsivity parameter. Lastly, we show the relevance of this tool as a discriminator of different HXR generation processes.

  18. Characterization of total flare energy

    NASA Technical Reports Server (NTRS)

    Hudson, H. S.

    1986-01-01

    It is concluded that the estimates of total energy in the prime flares lie well below the Active Cavity Radiometer Irradiance Monitor upper limits. This is consistent with our knowledge of the energy distribution in solar flares. Insufficient data exist for us to be very firm about this conclusion, however, and major energetic components could exist undetected, especially in the EUV-XUV and optical bands. In addition, the radiant energy cannot quantitatively be compared at this time with non-radiant terms because of even larger uncertainties in the latter.

  19. A fast, high spatial resolution optical tomographic scanner for measurement of absorption in gel dosimetry.

    PubMed

    van Doom, T; Bhat, M; Rutten, T P; Tran, T; Costanzo, A

    2005-06-01

    A fast tomographic optical density measurement system has been constructed and evaluated for application in Fricke 3D gel dosimetry. Although the potential for full three-dimensional radiation dosimetry with Fricke gel dosimeters has been extensively reported, its application has been limited due to a lack of fast optical density measurement systems. In this work, the emphasis of the design has been to achieve a short scan time through the use of precision optics and minimal moving parts. The system has been demonstrated in the laboratory to be able to achieve better than 1mm resolution and a scanning time per tomographic slice of 2.4 seconds. Full volumetric sampling of a 10 cm diameter by 7cm long cylinder can be achieved in 3 minutes. When applied with a Fricke based gel dosimeter a linear response between reconstructed CT number and absolute dose was better than 3%.

  20. An integrated fiber-optic probe combined with support vector regression for fast estimation of optical properties of turbid media.

    PubMed

    Zhou, Yang; Fu, Xiaping; Ying, Yibin; Fang, Zhenhuan

    2015-06-23

    A fiber-optic probe system was developed to estimate the optical properties of turbid media based on spatially resolved diffuse reflectance. Because of the limitations in numerical calculation of radiative transfer equation (RTE), diffusion approximation (DA) and Monte Carlo simulations (MC), support vector regression (SVR) was introduced to model the relationship between diffuse reflectance values and optical properties. The SVR models of four collection fibers were trained by phantoms in calibration set with a wide range of optical properties which represented products of different applications, then the optical properties of phantoms in prediction set were predicted after an optimal searching on SVR models. The results indicated that the SVR model was capable of describing the relationship with little deviation in forward validation. The correlation coefficient (R) of reduced scattering coefficient μ'(s) and absorption coefficient μ(a) in the prediction set were 0.9907 and 0.9980, respectively. The root mean square errors of prediction (RMSEP) of μ'(s) and μ(a) in inverse validation were 0.411 cm(-1) and 0.338 cm(-1), respectively. The results indicated that the integrated fiber-optic probe system combined with SVR model were suitable for fast and accurate estimation of optical properties of turbid media based on spatially resolved diffuse reflectance.

  1. Connection of Very High Energy Gamma-ray Flares in Blazars to Activity at Lower Frequencies

    NASA Astrophysics Data System (ADS)

    Marscher, Alan P.; Jorstad, Svetlana G.

    2016-04-01

    The author will briefly review the results of multi-wavelength observations of blazars that emit very high-energy (VHE) gamma rays. The VHE gamma-ray emission is generally episodic, including flares that are often very short-lived. While many of these flares have counterparts only at X-ray energies, or no counterparts at all, some events are seen also at optical wavelengths, and a number are associated with the passage of new superluminal knots passing through the core in mm-wave VLBA images. Two explanations for the short-term VHE flares in the relativistic jets are supersonic turbulence and ultra-fast plasma jets resulting from magnetic reconnections. Observations of frequency-dependent linear polarization during flares can potentially decide between these models. VLBA images can help to locate VHE events that are seen at millimeter wavelengths. In some cases, the flares take place near the parsec-scale core, while in others they occur closer to the black hole.This research is supported in part by NASA through Swift Guest Investigator grants NNX15AR45G and NNX15AR34G.

  2. Optical delay encoding for fast timing and detector signal multiplexing in PET

    PubMed Central

    Grant, Alexander M.; Levin, Craig S.

    2015-01-01

    Purpose: The large number of detector channels in modern positron emission tomography (PET) scanners poses a challenge in terms of readout electronics complexity. Multiplexing schemes are typically implemented to reduce the number of physical readout channels, but often result in performance degradation. Novel methods of multiplexing in PET must be developed to avoid this data degradation. The preservation of fast timing information is especially important for time-of-flight PET. Methods: A new multiplexing scheme based on encoding detector interaction events with a series of extremely fast overlapping optical pulses with precise delays is demonstrated in this work. Encoding events in this way potentially allows many detector channels to be simultaneously encoded onto a single optical fiber that is then read out by a single digitizer. A two channel silicon photomultiplier-based prototype utilizing this optical delay encoding technique along with dual threshold time-over-threshold is demonstrated. Results: The optical encoding and multiplexing prototype achieves a coincidence time resolution of 160 ps full width at half maximum (FWHM) and an energy resolution of 13.1% FWHM at 511 keV with 3 × 3 × 5 mm3 LYSO crystals. All interaction information for both detectors, including timing, energy, and channel identification, is encoded onto a single optical fiber with little degradation. Conclusions: Optical delay encoding and multiplexing technology could lead to time-of-flight PET scanners with fewer readout channels and simplified data acquisition systems. PMID:26233181

  3. Compact, highly sensitive optical gyros and sensors with fast-light

    NASA Astrophysics Data System (ADS)

    Christensen, Caleb A.; Zavriyev, Anton; Cummings, Malcolm; Beal, A. C.; Lucas, Mark; Lagasse, Michael

    2015-09-01

    Fast-light phenomena can enhance the sensitivity of an optical gyroscope of a given size by several orders of magnitude, and could be applied to other optical sensors as well. MagiQ Technologies has been developing a compact fiber-based fast light Inertial Measurement Unit (IMU) using Stimulated Brillouin Scattering in optical fibers with commercially mature technologies. We will report on our findings, including repeatable fast-light effects in the lab, numerical analysis of noise and stability given realistic optical specs, and methods for optimizing efficiency, size, and reliability with current technologies. The technology could benefit inertial navigation units, gyrocompasses, and stabilization techniques, and could allow high grade IMUs in spacecraft, unmanned aerial vehicles or sensors, where the current size and weight of precision gyros are prohibitive. By using photonic integrated circuits and telecom-grade components along with specialty fibers, we also believe that our design is appropriate for development without further advances in the state of the art of components.

  4. Tunable temporal gap based on simultaneous fast and slow light in electro-optic photonic crystals.

    PubMed

    Li, Guangzhen; Chen, Yuping; Jiang, Haowei; Liu, Yi'an; Liu, Xiao; Chen, Xianfeng

    2015-07-13

    We demonstrated a tunable temporal gap based on simultaneous fast and slow light in electro-optic photonic crystals. The light experiences an anomalous dispersion near the transmission center and a normal dispersion away from the center, where it can be accelerated and slowed down, respectively. We also obtained the switch between fast and slow light by adjusting the external electric filed. The observed largest temporal gap is 541 ps, which is crucial in practical event operation inside the gap. The results offer a new solution for temporal cloak.

  5. The H-alpha/H-beta ratio in solar flares

    NASA Technical Reports Server (NTRS)

    Zirin, H.; Liggett, M.; Patterson, A.

    1982-01-01

    The present investigation involves the study of an extensive body of data accumulated of simultaneous H-alpha and H-beta cinematography of flares. The data were obtained with two telescopes simultaneously photographing flares in H-alpha and H-beta. The results of measurements in a number of flares are presented in a table. The flares were selected purely by optical quality of the data. That the measured ratios are not too different from those in stellar flares is suggested by the last two columns of the table. These columns show that a variety of possible line width ratios could give an integrated intensity ratio of less than unity.

  6. Flares and MHD Jets in Protostar

    NASA Astrophysics Data System (ADS)

    Hayashi, M.; Shibata, K.; Matsumoto, R.

    We present a magnetic reconnection model for hard X-ray emission and flare-like hard X-ray variabilities associated with protostars detected by ASCA. The energy released by protostellar flares is 102 - 105 times larger than solar flares. Moreover, the spectrum is harder. A new ingredient in protostellar flare is the existence of a protostellar disk which can twist the magnetic fields threading the protostellar disk. We carried out magnetohydrodynamic (MHD) simulations of the disk-star interaction. The closed magnetic loops connecting the central star and the disk are twisted by the rotation of the disk. In the presence of resistivity, magnetic reconnection takes place in the current sheet formed inside the expanding loops. Hot, outgoing plasmoid and post flare loops are formed as a result of the reconnection. Numerical results are consistent with the observed plasma temperature (107 - 108K), the length of the flaring loop (1011-1012cm), the total energy of X-ray flares (~1035-36erg). Furthermore, along the opening magnetic loops, hot jet is ejected in bipolar directions with speed 200-400 km/s. The speed and mass flow rate of the jet is consistent with those of optical jets. Our model can explain both the X-ray flare-like variability and mass outflow in star forming region.

  7. Interferometric adaptive optics for high-power laser beam correction in fast ignition experiments

    SciTech Connect

    Homoelle, D C; Baker, K L; Patel, P K; Utterback, E; Rushford, M C; Siders, C W; Barty, C J

    2009-10-22

    We present the design for a high-speed adaptive optics system that will be used to achieve the necessary laser pointing and beam-quality performance for initial fast-ignition coupling experiments. This design makes use of a 32 x 32 pixellated MEMS device as the adaptive optic and a two-channel interferometer as the wave-front sensor. We present results from a system testbed that demonstrates improvement of the Strehl ratio from 0.09 to 0.61 and stabilization of beam pointing from {approx}75{micro}rad to <2{micro}rad.

  8. Advances In Understanding Solar And Stellar Flares

    NASA Astrophysics Data System (ADS)

    Kowalski, Adam F.

    2016-07-01

    Flares result from the sudden reconnection and relaxation of magnetic fields in the coronae of stellar atmospheres. The highly dynamic atmospheric response produces radiation across the electromagnetic spectrum, from the radio to X-rays, on a range of timescales, from seconds to days. New high resolution data of solar flares have revealed the intrinsic spatial properties of the flaring chromosphere, which is thought to be where the majority of the flare energy is released as radiation in the optical and near-UV continua and emission lines. New data of stellar flares have revealed the detailed properties of the broadband (white-light) continuum emission, which provides straightforward constraints for models of the transformation of stored magnetic energy in the corona into thermal energy of the lower atmosphere. In this talk, we discuss the physical processes that produce several important spectral phenomena in the near-ultraviolet and optical as revealed from new radiative-hydrodynamic models of flares on the Sun and low mass stars. We present recent progress with high-flux nonthermal electron beams in reproducing the observed optical continuum color temperature of T 10,000 K and the Balmer jump properties in the near-ultraviolet. These beams produce dense, heated chromospheric condensations, which can explain the shape and strength of the continuum emission in M dwarf flares and the red-wing asymmetries in the chromospheric emission lines in recent observations of solar flares from the Interface Region Imaging Spectrograph. Current theoretical challenges and future modeling directions will be discussed, as well as observational synergies between solar and stellar flares.

  9. RAPID, a revolutionary fast optical to NIR camera applied to interferometry

    NASA Astrophysics Data System (ADS)

    Guieu, S.; Feautrier, P.; Zins, G.; Le Bouquin, J.-B.; Stadler, E.; Kern, P.; Rothman, J.; Tauvy, M.; Coussement, J.; de Borniol, E.; Gach, J.-L.; Jacquard, M.; Moulin, T.; Rochat, S.; Delboulb, A.; Derelle, S.; Robert, C.; Vuillermet, M.; Mérand, A.; Bourget, P.

    2014-07-01

    The RAPID camera is an Avalanche Photo Diode array allowing very fast observation from the optical to the infrared with still a low noise per read. The camera born from a large collaboration within the FUI/FOCUS is intensively tested at IPAG (Grenoble) on an interferometric bench and will soon replace the actual camera of the PIONIER interferometer mounted on the visitor focus of the VLTi. We shortly present here the PIONIER instrument design and success to then focus on the RAPID tested performances. We will then resume the performance tests made on sky with the PIONIER. The RAPID camera is the first IR APD matrix ever mounted on an on-sky astronomical instrument. We show here how this fast, low-noise, large-band and sensitive camera improves PIONIER and the optical interferometry in general.

  10. ADAHELI: exploring the fast, dynamic Sun in the x-ray, optical, and near-infrared

    NASA Astrophysics Data System (ADS)

    Berrilli, Francesco; Soffitta, Paolo; Velli, Marco; Sabatini, Paolo; Bigazzi, Alberto; Bellazzini, Ronaldo; Bellot Rubio, Luis Ramon; Brez, Alessandro; Carbone, Vincenzo; Cauzzi, Gianna; Cavallini, Fabio; Consolini, Giuseppe; Curti, Fabio; Del Moro, Dario; Di Giorgio, Anna Maria; Ermolli, Ilaria; Fabiani, Sergio; Faurobert, Marianne; Feller, Alex; Galsgaard, Klaus; Gburek, Szymon; Giannattasio, Fabio; Giovannelli, Luca; Hirzberger, Johann; Jefferies, Stuart M.; Madjarska, Maria S.; Manni, Fabio; Mazzoni, Alessandro; Muleri, Fabio; Penza, Valentina; Peres, Giovanni; Piazzesi, Roberto; Pieralli, Francesca; Pietropaolo, Ermanno; Pillet, Valentin Martinez; Pinchera, Michele; Reale, Fabio; Romano, Paolo; Romoli, Andrea; Romoli, Marco; Rubini, Alda; Rudawy, Pawel; Sandri, Paolo; Scardigli, Stefano; Spandre, Gloria; Solanki, Sami K.; Stangalini, Marco; Vecchio, Antonio; Zuccarello, Francesca

    2015-10-01

    Advanced Astronomy for Heliophysics Plus (ADAHELI) is a project concept for a small solar and space weather mission with a budget compatible with an European Space Agency (ESA) S-class mission, including launch, and a fast development cycle. ADAHELI was submitted to the European Space Agency by a European-wide consortium of solar physics research institutes in response to the "Call for a small mission opportunity for a launch in 2017," of March 9, 2012. The ADAHELI project builds on the heritage of the former ADAHELI mission, which had successfully completed its phase-A study under the Italian Space Agency 2007 Small Mission Programme, thus proving the soundness and feasibility of its innovative low-budget design. ADAHELI is a solar space mission with two main instruments: ISODY: an imager, based on Fabry-Pérot interferometers, whose design is optimized to the acquisition of highest cadence, long-duration, multiline spectropolarimetric images in the visible/near-infrared region of the solar spectrum. XSPO: an x-ray polarimeter for solar flares in x-rays with energies in the 15 to 35 keV range. ADAHELI is capable of performing observations that cannot be addressed by other currently planned solar space missions, due to their limited telemetry, or by ground-based facilities, due to the problematic effect of the terrestrial atmosphere.

  11. Optical and X-ray radiation from fast pulsars - Effects of duty cycle and spectral shape

    NASA Technical Reports Server (NTRS)

    Pacini, F.; Salvati, M.

    1987-01-01

    The optical luminosity of PSR 0540 is considerably stronger than what one would have predicted in a simple model developed earlier where the pulses are synchrotron radiation by secondary electrons near the light cylinder. This discrepancy can be eliminated if one incorporates into the model the effects of the large duty cycle and the spectral properties of PSR 0540. It is also shown that the same model can provide a reasonable fit to the observed X-ray fluxes from fast pulsars.

  12. [The technology of fast spectral reconstruction in the longer optical path difference PEM-FTS].

    PubMed

    Zhang, Min-Juan; Wang, Zhao-Ba; Wang, Zhi-Bin; Li, Xiao; Li, Shi-Wei; Li, Jin-Hua

    2014-07-01

    The optical path difference of the photoelastic modulator Fourier transform spectrometers (PEM-FTS) changes rapidly and nonlinearly, while the instrument preserves the speed as high as about 10(5) interferograms per second, so that the interferograms of PEM-FTS are sampled by equal interval. In order to fleetly and accurately reconstruct these spectrums, the principle of PEM-FTS and accelerated NUFFT algorithm were studied in the present article. The accelerating NUFFT algorithm integrates interpolation based on convolution kernel and fast Fourier transform (FFT). And the velocity and precision of the algorithm are affected by the type and parameter tau of kernel function, the single-side spreading distance q and the oversampling ratio micro, and so on. In the paper these parameters were analysed, under the condition N = 1 024, q = 10, micro = 2 and tau = 1 x 10(-6) in the Gaussian scaling factor, and the accelerated NUFFT algorithm was applied to the longer optical path difference PEM-FTS to rebuild the spectrums of 632. 8 nm laser and Xenon lamp, The frequency error of the rebuilt spectrums of 632.8 nm laser is less than 0.013 52, the spent time of interpolation is less than 0.267 s. the velocity is fast and the error is less. The accelerated nonuniform fast Fourier transform is fit for the longer optical path difference PEM-FTS.

  13. Manufacturability and optical functionality of multimode optical interconnections developed with fast processable and reliable polymer waveguide silicones

    NASA Astrophysics Data System (ADS)

    Liu, Joe; Lee, Allen; Hu, Mike; Chan, Lisa; Huang, Sean; Swatowski, Brandon W.; Weidner, W. Ken; Han, Joseph

    2015-03-01

    We report on the manufacturing, reliability, and optical functionality of multimode optical waveguide devices developed with a fast processable optical grade silicone. The materials show proven optical losses of <0.05 dB/cm @ 850 nm, surviving >2000 hours 85°C/85% relative humidity testing as well as >4 cycles of wave solder reflow. Fabrication speeds of <10 minutes are shown for a full waveguide stack. Step index 50×50 μm waveguides were fabricated and passively MT connectorized on rigid FR4 and flexible polyimide substrates with precise alignment features (cut by dicing saw or ablated by UV laser). Two out-of-plane coupling techniques were demonstrated in this paper, a MT connectorized sample with a 45° turning lens as well as 45° dielectric mirrors on waveguides by dicing saw. Multiple connections between fiber and polymer waveguides with MPO and two out-of-plane coupling techniques in a complete optical link are demonstrated @ 10 Gbps data rates with commercial transceiver modules. Also, complex waveguide geometries such as turnings and crossings are demonstrated by QSFP+ transceiver. The eye diagram analyses show comparable results in functionality between silicone waveguide and fiber formats.

  14. Solar Flare Aimed at Earth

    NASA Technical Reports Server (NTRS)

    2002-01-01

    At the height of the solar cycle, the Sun is finally displaying some fireworks. This image from the Solar and Heliospheric Observatory (SOHO) shows a large solar flare from June 6, 2000 at 1424 Universal Time (10:24 AM Eastern Daylight Savings Time). Associated with the flare was a coronal mass ejection that sent a wave of fast moving charged particles straight towards Earth. (The image was acquired by the Extreme ultaviolet Imaging Telescope (EIT), one of 12 instruments aboard SOHO) Solar activity affects the Earth in several ways. The particles generated by flares can disrupt satellite communications and interfere with power transmission on the Earth's surface. Earth's climate is tied to the total energy emitted by the sun, cooling when the sun radiates less energy and warming when solar output increases. Solar radiation also produces ozone in the stratosphere, so total ozone levels tend to increase during the solar maximum. For more information about these solar flares and the SOHO mission, see NASA Science News or the SOHO home page. For more about the links between the sun and climate change, see Sunspots and the Solar Max. Image courtesy SOHO Extreme ultaviolet Imaging Telescope, ESA/NASA

  15. Compensation of flare-induced CD changes EUVL

    DOEpatents

    Bjorkholm, John E.; Stearns, Daniel G.; Gullikson, Eric M.; Tichenor, Daniel A.; Hector, Scott D.

    2004-11-09

    A method for compensating for flare-induced critical dimensions (CD) changes in photolithography. Changes in the flare level results in undesirable CD changes. The method when used in extreme ultraviolet (EUV) lithography essentially eliminates the unwanted CD changes. The method is based on the recognition that the intrinsic level of flare for an EUV camera (the flare level for an isolated sub-resolution opaque dot in a bright field mask) is essentially constant over the image field. The method involves calculating the flare and its variation over the area of a patterned mask that will be imaged and then using mask biasing to largely eliminate the CD variations that the flare and its variations would otherwise cause. This method would be difficult to apply to optical or DUV lithography since the intrinsic flare for those lithographies is not constant over the image field.

  16. Understanding Solar Flare Statistics

    NASA Astrophysics Data System (ADS)

    Wheatland, M. S.

    2005-12-01

    A review is presented of work aimed at understanding solar flare statistics, with emphasis on the well known flare power-law size distribution. Although avalanche models are perhaps the favoured model to describe flare statistics, their physical basis is unclear, and they are divorced from developing ideas in large-scale reconnection theory. An alternative model, aimed at reconciling large-scale reconnection models with solar flare statistics, is revisited. The solar flare waiting-time distribution has also attracted recent attention. Observed waiting-time distributions are described, together with what they might tell us about the flare phenomenon. Finally, a practical application of flare statistics to flare prediction is described in detail, including the results of a year of automated (web-based) predictions from the method.

  17. Causal information velocity in fast and slow pulse propagation in an optical ring resonator

    SciTech Connect

    Tomita, Makoto; Uesugi, Hiroyuki; Sultana, Parvin; Oishi, Tohru

    2011-10-15

    We examined the propagation of nonanalytical points encoded on temporally Gaussian-shaped optical pulses in fast and slow light in an optical ring resonator at {lambda} = 1.5 {mu}m. The temporal peak of the Gaussian pulse was either advanced or delayed, reflecting anomalous or normal dispersions in the ring resonator, relevant to under- or overcoupling conditions, respectively. The nonanalytical points were neither advanced nor delayed but appeared as they entered the ring resonator. The nonanalytical points could be interpreted as information; therefore, the experimental results suggested that information velocity is equal to the light velocity in vacuum or the background medium, independent of the group velocity. The transient behaviors at the leading and trailing edges of the nonanalytical points are discussed in terms of optical precursors.

  18. Automatic Detection of the Optic Disc of the Retina: A Fast Method

    PubMed Central

    Jamshidi, M.; Rabbani, H.; Amini, Z.; Kafieh, R.; Ommani, A.; Lakshminarayanan, V.

    2016-01-01

    Localizing the optic disc (OD) in retinal fundus images is of critical importance and many techniques have been developed for OD detection. In this paper, we present the results obtained from two fast methods, correlation and least square, to approximate the location of optic cup. These methods are simple and are not complex, while most of the OD detection algorithms are. The methods were tested on two groups of data (a total of 100 color fundus images) and were 98% successful in the detection of the optic cup. An algorithm using the vessel mask of fundus images is proposed to be run after correlation to ensure that the localization of OD in all images is successful. It was tested on 40 of the test images and had a 100% rate of success. PMID:27014613

  19. Demonstration of 720×720 optical fast circuit switch for intra-datacenter networks

    NASA Astrophysics Data System (ADS)

    Ueda, Koh; Mori, Yojiro; Hasegawa, Hiroshi; Matsuura, Hiroyuki; Ishii, Kiyo; Kuwatsuka, Haruhiko; Namiki, Shu; Sato, Ken-ichi

    2016-03-01

    Intra-datacenter traffic is growing more than 20% a year. In typical datacenters, many racks/pods including servers are interconnected via multi-tier electrical switches. The electrical switches necessitate power-consuming optical-to- electrical (OE) and electrical-to-optical (EO) conversion, the power consumption of which increases with traffic. To overcome this problem, optical switches that eliminate costly OE and EO conversion and enable low power consumption switching are being investigated. There are two major requirements for the optical switch. First, it must have a high port count to construct reduced tier intra-datacenter networks. Second, switching speed must be short enough that most of the traffic load can be offloaded from electrical switches. Among various optical switches, we focus on those based on arrayed-waveguide gratings (AWGs), since the AWG is a passive device with minimal power consumption. We previously proposed a high-port-count optical switch architecture that utilizes tunable lasers, route-and-combine switches, and wavelength-routing switches comprised of couplers, erbium-doped fiber amplifiers (EDFAs), and AWGs. We employed conventional external cavity lasers whose wavelength-tuning speed was slower than 100 ms. In this paper, we demonstrate a large-scale optical switch that offers fast wavelength routing. We construct a 720×720 optical switch using recently developed lasers whose wavelength-tuning period is below 460 μs. We evaluate the switching time via bit-error-ratio measurements and achieve 470-μs switching time (includes 10-μs guard time to handle EDFA surge). To best of our knowledge, this is the first demonstration of such a large-scale optical switch with practical switching time.

  20. Measuring fast optical depth variations in cloud edges with a CCD-array spectrometer

    NASA Astrophysics Data System (ADS)

    González, Josep-Abel; Calbó, Josep; Sanchez-Romero, Alejandro

    2017-02-01

    High frequency measurements of direct solar flux have been performed with a CCD spectrometer in six narrowband channels along the visible range. Measurements were performed in 1-sec intervals for conditions ranging from clear sky to scattered-to-broken cloud fields. The comparison between close time measurements allows obtaining information on the fast changes in optical depth associated to the pass of clouds or other changes in atmospheric conditions and constituents. The method used does not depend on the absolute calibration of the instrument, and minimizes the effects of changes in instrumental conditions (as temperature) and in air mass. The variations in optical depth in the sight direction can be associated to cloud and/or aerosol optical depth, provided that other atmospheric constituents, as ozone, remain constant. The aerosol exponent is used to characterize the spectral dependence of the changes in optical depth and for describing the evolution of the conglomerate of particles (either cloud droplets or aerosol particles) along the measurement periods. We found that rates in optical depth variations above 0.1/sec have to be attributed to sunlight occultation by cloud edges, as the spectral exponent drops to values near zero or even slightly negative. Variations in optical depth at rates below 0.01/sec are mainly related to aerosol effects.

  1. The thermoluminescence response of doped SiO2 optical fibres subjected to fast neutrons.

    PubMed

    Hashim, S; Bradley, D A; Saripan, M I; Ramli, A T; Wagiran, H

    2010-01-01

    This paper describes a preliminary study of the thermoluminescence (TL) response of doped SiO(2) optical fibres subjected to (241)AmBe neutron irradiation. The TL materials, which comprise Al- and Ge-doped silica fibres, were exposed in close contact with the (241)AmBe source to obtain fast neutron interactions through use of measurements obtained with and without a Cd filter (the filter being made to entirely enclose the fibres). The neutron irradiations were performed for exposure times of 1-, 2-, 3-, 5- and 7-days in a neutron tank filled with water. In this study, use was also made of the Monte Carlo N-particle (MCNP) code version 5 (V5) to simulate the neutron irradiations experiment. It was found that the commercially available Ge-doped and Al-doped optical fibres show a linear dose response subjected to fast neutrons from (241)AmBe source up to seven days of irradiations. The simulation performed using MCNP5 also exhibits a similar pattern, albeit differing in sensitivity. The TL response of Ge-doped fibre is markedly greater than that of the Al-doped fibre, the total absorption cross section for Ge in both the fast and thermal neutrons region being some ten times greater than that of Al.

  2. Field Measurements of Black Carbon Yields from Gas Flaring.

    PubMed

    Conrad, Bradley M; Johnson, Matthew R

    2017-02-07

    Black carbon (BC) emissions from gas flaring in the oil and gas industry are postulated to have critical impacts on climate and public health, but actual emission rates remain poorly characterized. This paper presents in situ field measurements of BC emission rates and flare gas volume-specific BC yields for a diverse range of flares. Measurements were performed during a series of field campaigns in Mexico and Ecuador using the sky-LOSA optical measurement technique, in concert with comprehensive Monte Carlo-based uncertainty analyses. Parallel on-site measurements of flare gas flow rate and composition were successfully performed at a subset of locations enabling direct measurements of fuel-specific BC yields from flares under field conditions. Quantified BC emission rates from individual flares spanned more than 4 orders of magnitude (up to 53.7 g/s). In addition, emissions during one notable ∼24-h flaring event (during which the plume transmissivity dropped to zero) would have been even larger than this maximum rate, which was measured as this event was ending. This highlights the likely importance of superemitters to global emission inventories. Flare gas volume-specific BC yields were shown to be strongly correlated with flare gas heating value. A newly derived correlation fitting current field data and previous lab data suggests that, in the context of recent studies investigating transport of flare-generated BC in the Arctic and globally, impacts of flaring in the energy industry may in fact be underestimated.

  3. More Diagnosis of Solar Flare Probability from Chromosphere Image Sequences

    DTIC Science & Technology

    2012-09-28

    AFRL-RV-PS- AFRL-RV-PS- TR-2012-0194 TR-2012-0194 MORE DIAGNOSIS OF SOLAR FLARE PROBABILITY FROM CHROMOSPHERE IMAGE...1 Oct 2011 to 07 Sep 2012 4. TITLE AND SUBTITLE More Diagnosis of Solar Flare Probability from Chromosphere Image Sequences 5a...We continued our investigation of the utility of optical observations of the solar chromosphere in the diagnosis of flare probability. Because we felt

  4. Fast silicon photomultiplier improves signal harvesting and reduces complexity in time-domain diffuse optics.

    PubMed

    Mora, Alberto Dalla; Martinenghi, Edoardo; Contini, Davide; Tosi, Alberto; Boso, Gianluca; Durduran, Turgut; Arridge, Simon; Martelli, Fabrizio; Farina, Andrea; Torricelli, Alessandro; Pifferi, Antonio

    2015-06-01

    We present a proof of concept prototype of a time-domain diffuse optics probe exploiting a fast Silicon PhotoMultiplier (SiPM), featuring a timing resolution better than 80 ps, a fast tail with just 90 ps decay time-constant and a wide active area of 1 mm2. The detector is hosted into the probe and used in direct contact with the sample under investigation, thus providing high harvesting efficiency by exploiting the whole SiPM numerical aperture and also reducing complexity by avoiding the use of cumbersome fiber bundles. Our tests also demonstrate high accuracy and linearity in retrieving the optical properties and suitable contrast and depth sensitivity for detecting localized inhomogeneities. In addition to a strong improvement in both instrumentation cost and size with respect to legacy solutions, the setup performances are comparable to those of state-of-the-art time-domain instrumentation, thus opening a new way to compact, low-cost and high-performance time-resolved devices for diffuse optical imaging and spectroscopy.

  5. Flares, wind and nebulae: the 2015 December mini-outburst of V404 Cygni

    NASA Astrophysics Data System (ADS)

    Muñoz-Darias, T.; Casares, J.; Mata Sánchez, D.; Fender, R. P.; Armas Padilla, M.; Mooley, K.; Hardy, L.; Charles, P. A.; Ponti, G.; Motta, S. E.; Dhillon, V. S.; Gandhi, P.; Jiménez-Ibarra, F.; Butterley, T.; Carey, S.; Grainge, K. J. B.; Hickish, J.; Littlefair, S. P.; Perrott, Y. C.; Razavi-Ghods, N.; Rumsey, C.; Scaife, A. M. M.; Scott, P. F.; Titterington, D. J.; Wilson, R. W.

    2017-02-01

    After more than 26 years in quiescence, the black hole transient V404 Cyg went into a luminous outburst in 2015 June, and additional activity was detected in late December of the same year. Here, we present an optical spectroscopic follow-up of the December mini-outburst, together with X-ray, optical and radio monitoring that spanned more than a month. Strong flares with gradually increasing intensity are detected in the three spectral ranges during the ∼10 d following the Swift trigger. Our optical spectra reveal the presence of a fast outflowing wind, as implied by the detection of a P-Cyg profile (He I-5876 Å) with a terminal velocity of ∼2500 km s-1 . Nebular-like spectra - with an Hα equivalent width of ∼500 Å - are also observed. All these features are similar to those seen during the main 2015 June outburst. Thus, the fast optical wind simultaneous with the radio jet is most likely present in every V404 Cyg outburst. Finally, we report on the detection of a strong radio flare in late 2016 January, when X-ray and optical monitoring had stopped due to Sun constraints.

  6. Fast detection of the optic disc and fovea in color fundus photographs.

    PubMed

    Niemeijer, Meindert; Abràmoff, Michael D; van Ginneken, Bram

    2009-12-01

    A fully automated, fast method to detect the fovea and the optic disc in digital color photographs of the retina is presented. The method makes few assumptions about the location of both structures in the image. We define the problem of localizing structures in a retinal image as a regression problem. A kNN regressor is utilized to predict the distance in pixels in the image to the object of interest at any given location in the image based on a set of features measured at that location. The method combines cues measured directly in the image with cues derived from a segmentation of the retinal vasculature. A distance prediction is made for a limited number of image locations and the point with the lowest predicted distance to the optic disc is selected as the optic disc center. Based on this location the search area for the fovea is defined. The location with the lowest predicted distance to the fovea within the foveal search area is selected as the fovea location. The method is trained with 500 images for which the optic disc and fovea locations are known. An extensive evaluation was done on 500 images from a diabetic retinopathy screening program and 100 specially selected images containing gross abnormalities. The method found the optic disc in 99.4% and the fovea in 96.8% of regular screening images and for the images with abnormalities these numbers were 93.0% and 89.0% respectively.

  7. Adaptive optics in spinning disk microscopy: improved contrast and brightness by a simple and fast method.

    PubMed

    Fraisier, V; Clouvel, G; Jasaitis, A; Dimitrov, A; Piolot, T; Salamero, J

    2015-09-01

    Multiconfocal microscopy gives a good compromise between fast imaging and reasonable resolution. However, the low intensity of live fluorescent emitters is a major limitation to this technique. Aberrations induced by the optical setup, especially the mismatch of the refractive index and the biological sample itself, distort the point spread function and further reduce the amount of detected photons. Altogether, this leads to impaired image quality, preventing accurate analysis of molecular processes in biological samples and imaging deep in the sample. The amount of detected fluorescence can be improved with adaptive optics. Here, we used a compact adaptive optics module (adaptive optics box for sectioning optical microscopy), which was specifically designed for spinning disk confocal microscopy. The module overcomes undesired anomalies by correcting for most of the aberrations in confocal imaging. Existing aberration detection methods require prior illumination, which bleaches the sample. To avoid multiple exposures of the sample, we established an experimental model describing the depth dependence of major aberrations. This model allows us to correct for those aberrations when performing a z-stack, gradually increasing the amplitude of the correction with depth. It does not require illumination of the sample for aberration detection, thus minimizing photobleaching and phototoxicity. With this model, we improved both signal-to-background ratio and image contrast. Here, we present comparative studies on a variety of biological samples.

  8. SOHO Captures CME From X5.4 Solar Flare

    NASA Video Gallery

    The Solar Heliospheric Observatory (SOHO) captured this movie of the sun's coronal mass ejection (CME) associated with an X5.4 solar flare on the evening of March 6, 2012. The extremely fast and en...

  9. Chromospheric Condensation and Quasi-periodic Pulsations in a Circular-ribbon Flare

    NASA Astrophysics Data System (ADS)

    Zhang, Q. M.; Li, D.; Ning, Z. J.

    2016-11-01

    In this paper, we report our multiwavelength observations of the C3.1 circular-ribbon flare SOL2015-10-16T10:20 in active region (AR) 12434. The flare consisted of a circular flare ribbon (CFR), an inner flare ribbon (IFR) inside it, and a pair of short parallel flare ribbons (PFRs). The PFRs located to the north of the IFR were most striking in the Interface Region Imaging Spectrograph (IRIS) 1400 and 2796 Å images. For the first time, we observed the circular-ribbon flare in the Ca ii H line of the Solar Optical Telescope on board Hinode, which has a similar shape as observed in the Atmospheric Imaging Assembly 1600 Å on board the Solar Dynamic Observatory (SDO). Photospheric line-of-sight magnetograms from the Helioseismic and Magnetic Imager on board SDO show that the flare is associated with positive polarities with a negative polarity inside. The IFR and CFR were cospatial with the negative polarity and positive polarities, implying the existence of a magnetic null point ({\\boldsymbol{B}}=0) and a dome-like spine-fan topology. During the impulsive phase of the flare, “two-step” raster observations of IRIS with a cadence of 6 s and an exposure time of 2 s showed plasma downflow at the CFR in the Si iv λ1402.77 line ({log}T≈ 4.8), suggesting chromospheric condensation. The downflow speeds first increased rapidly from a few km s-1 to the peak values of 45-52 km s-1, before decreasing gradually to the initial levels. The decay timescales of condensation were 3-4 minutes, indicating ongoing magnetic reconnection. Interestingly, the downflow speeds are positively correlated with the logarithm of the Si iv line intensity and time derivative of the GOES soft X-ray (SXR) flux in 1-8 Å. The radio dynamic spectra are characterized by a type III radio burst associated with the flare, which implies that the chromospheric condensation was most probably driven by nonthermal electrons. Using an analytical expression and the peak Doppler velocity, we derive the

  10. Fast left ventricle tracking in CMR images using localized anatomical affine optical flow

    NASA Astrophysics Data System (ADS)

    Queirós, Sandro; Vilaça, João. L.; Morais, Pedro; Fonseca, Jaime C.; D'hooge, Jan; Barbosa, Daniel

    2015-03-01

    In daily cardiology practice, assessment of left ventricular (LV) global function using non-invasive imaging remains central for the diagnosis and follow-up of patients with cardiovascular diseases. Despite the different methodologies currently accessible for LV segmentation in cardiac magnetic resonance (CMR) images, a fast and complete LV delineation is still limitedly available for routine use. In this study, a localized anatomically constrained affine optical flow method is proposed for fast and automatic LV tracking throughout the full cardiac cycle in short-axis CMR images. Starting from an automatically delineated LV in the end-diastolic frame, the endocardial and epicardial boundaries are propagated by estimating the motion between adjacent cardiac phases using optical flow. In order to reduce the computational burden, the motion is only estimated in an anatomical region of interest around the tracked boundaries and subsequently integrated into a local affine motion model. Such localized estimation enables to capture complex motion patterns, while still being spatially consistent. The method was validated on 45 CMR datasets taken from the 2009 MICCAI LV segmentation challenge. The proposed approach proved to be robust and efficient, with an average distance error of 2.1 mm and a correlation with reference ejection fraction of 0.98 (1.9 +/- 4.5%). Moreover, it showed to be fast, taking 5 seconds for the tracking of a full 4D dataset (30 ms per image). Overall, a novel fast, robust and accurate LV tracking methodology was proposed, enabling accurate assessment of relevant global function cardiac indices, such as volumes and ejection fraction

  11. Fast Simulators for Satellite Cloud Optical Centroid Pressure Retrievals, 1. Evaluation of OMI Cloud Retrievals

    NASA Technical Reports Server (NTRS)

    Joiner, J.; Vasilkov, A.; Gupta, P.; Bhartia, P. K.; Veefkind, P.; Sneep, M.; de Haan, J.; Polonsky, I.; Spurr, R.

    2012-01-01

    The cloud Optical Centroid Pressure (OCP), also known as the effective cloud pressure, is a satellite-derived parameter that is commonly used in trace-gas retrievals to account for the effects of clouds on near-infrared through ultraviolet radiance measurements. Fast simulators are desirable to further expand the use of cloud OCP retrievals into the operational and climate communities for applications such as data assimilation and evaluation of cloud vertical structure in general circulation models. In this paper, we develop and validate fast simulators that provide estimates of the cloud OCP given a vertical profile of optical extinction. We use a pressure-weighting scheme where the weights depend upon optical parameters of clouds and/or aerosol. A cloud weighting function is easily extracted using this formulation. We then use fast simulators to compare two different satellite cloud OCP retrievals from the Ozone Monitoring Instrument (OMI) with estimates based on collocated cloud extinction profiles from a combination of CloudS at radar and MODIS visible radiance data. These comparisons are made over a wide range of conditions to provide a comprehensive validation of the OMI cloud OCP retrievals. We find generally good agreement between OMI cloud OCPs and those predicted by CloudSat. However, the OMI cloud OCPs from the two independent algorithms agree better with each other than either does with the estimates from CloudSat/MODIS. Differences between OMI cloud OCPs and those based on CloudSat/MODIS may result from undetected snow/ice at the surface, cloud 3-D effects, low altitude clouds missed by CloudSat, and the fact that CloudSat only observes a relatively small fraction of an OMI field-of-view.

  12. Optical absorption and luminescence studies of fast neutron-irradiated complex oxides for jewellery applications

    NASA Astrophysics Data System (ADS)

    Mironova-Ulmane, N.; Skvortsova, V.; Popov, A. I.

    2016-07-01

    We studied the optical absorption and luminescence of agate (SiO2), topaz (Al2[SiO4](F,OH)2), beryl (Be3Al2Si6O18), and prehnite (Ca2Al(AlSi3O10)(OH)2) doped with different concentrations of transition metal ions and exposed to fast neutron irradiation. The exchange interaction between the impurity ions and the defects arising under neutron irradiation causes additional absorption as well as bands' broadening in the crystals. These experimental results allow us to suggest the method for obtaining new radiation-defect induced jewellery colors of minerals due to neutron irradiation.

  13. Optic nerve fast axonal transport abnormalities in primates. Occurrence after short posterior ciliary artery occlusion.

    PubMed

    Radius, R L

    1980-11-01

    Fast axonal transport abnormalities in primate (Aotus trivirgatus) optic nerve were studied in ten eyes at various intervals after occlusion of the lateral short posterior ciliary circulation. Evidence of focal axonal ischemia, as indicated by swelling of mitochondria and dissolution of cytoplasmic detail, was noted as early as one hour after occlusion. Accumulation of mitochondria, microvesicles, and dense bodies, indicating focal interruption of axonal transport mechanisms, was noted in eyes examined at 2, 4, and 6 hours. This accumulation of organelles was limited to the region of the lamina cribrosa. Nerve head abnormalities were not seen in two eyes studied at two weeks.

  14. Self-Balancing, Optical-Center-Pivot, Fast-Steering Mirror

    NASA Technical Reports Server (NTRS)

    Moore, James D.; Carson, Johnathan W.

    2011-01-01

    A complete, self-contained fast-steering- mirror (FSM) mechanism is reported consisting of a housing, a mirror and mirror-mounting cell, three PZT (piezoelectric) actuators, and a counterbalance mass. Basically, it is a comparatively stiff, two-axis (tip-tilt), self-balanced FSM. The present invention requires only three (or three pairs for flight redundancy) actuators. If a PZT actuator degrades, the inherent balance remains, and compensation for degraded stroke is made by simply increasing the voltage to the PZT. Prior designs typically do not pivot at the mirror optical center, creating unacceptable beam shear.

  15. Immunobiosensor for fast detection of bacteria in water using plastic optical fiber (POF) bended

    NASA Astrophysics Data System (ADS)

    Rodrigues, Domingos M. C.; Lopes, Rafaela N.; Queiroz, Vanessa M.; Allil, Regina C. S. B.; Werneck, Marcelo M.

    2015-09-01

    This paper presents an immunobiosensor of fast response time to detection of bacteria, made by Plastic Optical Fiber. Probes were tested in U-shaped and Meander-shaped to investigate the best sensitivity, accuracy and repeatability. During calibration was used for sucrose solutions refractive index (RI) from 1.33 to 1.39. This is equivalent to IR range of the water and the highest concentration of bacteria, respectively. Immunobiosensor was able to detecting the presence of enteropathogenic Escherichia coli in water from suspensions of different concentrations of 106 and 104 colonies forming units per millilitre (CFU/mL) in twenty minutes.

  16. Cost-effective method for fast Brillouin optical time-domain analysis.

    PubMed

    Minardo, Aldo; Catalano, Ester; Zeni, Luigi

    2016-10-31

    A new Brillouin optical time-domain analysis (BOTDA) technique for acquiring the full Brillouin gain spectrum (BGS) at high speed is proposed and demonstrated. The method employs a frequency swept microwave source for the generation of the probe wave, so that the entire BOTDA measurement is taken within the duration of the frequency sweep itself. By properly setting the duration of the sweep, the repetition rate of the pump pulses and the number of averages, truly distributed and dynamic measurements of the BGS are possible using a set-up at a fraction of the cost and complexity of the previously reported fast-BOTDA methods.

  17. Fast optical sectioning obtained by structured illumination microscopy using a digital mirror device.

    PubMed

    Xu, Dongli; Jiang, Tao; Li, Anan; Hu, Bihe; Feng, Zhao; Gong, Hui; Zeng, Shaoqun; Luo, Qingming

    2013-06-01

    High-throughput optical imaging is critical to obtain large-scale neural connectivity information of brain in neuroscience. Using a digital mirror device and a scientific complementary metal-oxide semiconductor camera, we report a significant speed improvement of structured illumination microscopy (SIM), which produces a maximum SIM net frame rate of 133 Hz. We perform three-dimensional (3-D) imaging of mouse brain slices at diffraction-limited resolution and demonstrate the fast 3-D imaging capability to a large sample with an imaging rate of 6.9×10(7)  pixel/s of our system, an order of magnitude faster than previously reported.

  18. Fast optical sectioning obtained by structured illumination microscopy using a digital mirror device

    NASA Astrophysics Data System (ADS)

    Xu, Dongli; Jiang, Tao; Li, Anan; Hu, Bihe; Feng, Zhao; Gong, Hui; Zeng, Shaoqun; Luo, Qingming

    2013-06-01

    High-throughput optical imaging is critical to obtain large-scale neural connectivity information of brain in neuroscience. Using a digital mirror device and a scientific complementary metal-oxide semiconductor camera, we report a significant speed improvement of structured illumination microscopy (SIM), which produces a maximum SIM net frame rate of 133 Hz. We perform three-dimensional (3-D) imaging of mouse brain slices at diffraction-limited resolution and demonstrate the fast 3-D imaging capability to a large sample with an imaging rate of 6.9 pixel/s of our system, an order of magnitude faster than previously reported.

  19. The flare kernel in the impulsive phase

    NASA Technical Reports Server (NTRS)

    Dejager, C.

    1986-01-01

    The impulsive phase of a flare is characterized by impulsive bursts of X-ray and microwave radiation, related to impulsive footpoint heating up to 50 or 60 MK, by upward gas velocities (150 to 400 km/sec) and by a gradual increase of the flare's thermal energy content. These phenomena, as well as non-thermal effects, are all related to the impulsive energy injection into the flare. The available observations are also quantitatively consistent with a model in which energy is injected into the flare by beams of energetic electrons, causing ablation of chromospheric gas, followed by convective rise of gas. Thus, a hole is burned into the chromosphere; at the end of impulsive phase of an average flare the lower part of that hole is situated about 1800 km above the photosphere. H alpha and other optical and UV line emission is radiated by a thin layer (approx. 20 km) at the bottom of the flare kernel. The upward rising and outward streaming gas cools down by conduction in about 45 s. The non-thermal effects in the initial phase are due to curtailing of the energy distribution function by escape of energetic electrons. The single flux tube model of a flare does not fit with these observations; instead we propose the spaghetti-bundle model. Microwave and gamma-ray observations suggest the occurrence of dense flare knots of approx. 800 km diameter, and of high temperature. Future observations should concentrate on locating the microwave/gamma-ray sources, and on determining the kernel's fine structure and the related multi-loop structure of the flaring area.

  20. Predicting the Response of the Mars Ionosphere to Solar Flares

    NASA Astrophysics Data System (ADS)

    Fallows, K.; Withers, P.; Gonzalez, G.

    2015-12-01

    The increased soft X-ray irradiance during solar flares generates increased electron densities in the lower ionosphere of Mars. The relative changes in electron density during a flare are greater for larger flares and also at lower altitudes and larger flares, due to the wavelength dependence of both the flux increase during the flare and the absorption of flux by the neutral atmosphere. These relationships have been explored [Bougher et al. 2001, Fox et al. 2004, Mendillo et al. 2006, Mahajan et al. 2011, Lollo et al. 2012] but not quantified, which has impeded the validation of simulations of the ionospheric effects of solar flares. Such simulations are necessary for developing accurate descriptions of the physical processes governing ionospheric behavior under extreme conditions. We present a response function, a mathematical expression for the change in electron density during a solar flare as a function of the change in solar flux and an optical depth proxy. This response function is based on analysis of 20 Mars Global Surveyor (MGS) radio occultation electron density profiles measured during solar flares. Characterizing the response as a function of optical depth, rather than altitude, provides the best description of ionospheric variability during a flare; otherwise non-negligible solar zenith angle effects are present. We demonstrate that the response function can be used to predict ionospheric electron densities during a specified solar flare by reproducing profiles known to be disturbed by a solar flare. We also demonstrate that the response function can be used to infer the strength of solar flares not visible at Earth by finding the flux enhancement required to reproduce an apparently flare affected profile given an undisturbed profile on the same date.

  1. Signatures of the coalescence instability in solar flares

    SciTech Connect

    Nakajima, H.; Tajima, T.; Brunel, F.

    1984-11-01

    Double sub-peak structures in the quasi periodic oscillations in the time profiles of solar flares in 1980 and 1982 are discussed. Computer simulations of the coalescence instability of two current loops agree with observations of the (widely differing) flares. The simultaneous accelerations of electrons and ions, and the double sub-peak structure in quasi periodic pulses are well explained. The double sub-peak structure is more pronounced when the currents in the two loops are sufficient for fast coalescence to occur. This corresponds to the 1980 flare. When the currents are insufficient for fast coalescence, the double sub-peak structure is less pronounced, as in the 1982 flare. Observations suggest the collision of the two microwave sources for the 1982 event. It is argued that this mechanism is a plausible particle acceleration mechanism in solar flares. (ESA)

  2. Fast optical source for quantum key distribution based on semiconductor optical amplifiers.

    PubMed

    Jofre, M; Gardelein, A; Anzolin, G; Amaya, W; Capmany, J; Ursin, R; Peñate, L; Lopez, D; San Juan, J L; Carrasco, J A; Garcia, F; Torcal-Milla, F J; Sanchez-Brea, L M; Bernabeu, E; Perdigues, J M; Jennewein, T; Torres, J P; Mitchell, M W; Pruneri, V

    2011-02-28

    A novel integrated optical source capable of emitting faint pulses with different polarization states and with different intensity levels at 100 MHz has been developed. The source relies on a single laser diode followed by four semiconductor optical amplifiers and thin film polarizers, connected through a fiber network. The use of a single laser ensures high level of indistinguishability in time and spectrum of the pulses for the four different polarizations and three different levels of intensity. The applicability of the source is demonstrated in the lab through a free space quantum key distribution experiment which makes use of the decoy state BB84 protocol. We achieved a lower bound secure key rate of the order of 3.64 Mbps and a quantum bit error ratio as low as 1.14×10⁻² while the lower bound secure key rate became 187 bps for an equivalent attenuation of 35 dB. To our knowledge, this is the fastest polarization encoded QKD system which has been reported so far. The performance, reduced size, low power consumption and the fact that the components used can be space qualified make the source particularly suitable for secure satellite communication.

  3. Fast optical source for quantum key distribution based on semiconductor optical amplifiers

    NASA Astrophysics Data System (ADS)

    Jofre, M.; Gardelein, A.; Anzolin, G.; Amaya, W.; Campmany, J.; Ursin, R.; Penate, L.; Lopez, D.; San Juan, J. L.; Carrasco, J. A.; Garcia, F.; Torcal-Milla, F. J.; Sanchez-Brea, L. M.; Bernabeu, E.; Perdigues, J. M.; Jennewein, T.; Torres, J. P.; Mitchell, M. W.; Pruneri, V.

    2011-02-01

    A novel integrated optical source capable of emitting faint pulses with different polarization states and with different intensity levels at 100 MHz has been developed. The source relies on a single laser diode followed by four semiconductor optical amplifiers and thin film polarizers, connected through a fiber network. The use of a single laser ensures high level of indistinguishability in time and spectrum of the pulses for the four different polarizations and three different levels of intensity. The applicability of the source is demonstrated in the lab through a free space quantum key distribution experiment which makes use of the decoy state BB84 protocol. We achieved a lower bound secure key rate of the order of 3.64 Mbps and a quantum bit error ratio as low as $1.14\\times 10^{-2}$ while the lower bound secure key rate became 187 bps for an equivalent attenuation of 35 dB. To our knowledge, this is the fastest polarization encoded QKD system which has been reported so far. The performance, reduced size, low power consumption and the fact that the components used can be space qualified make the source particularly suitable for secure satellite communication.

  4. Single-shot digital holography for fast measuring optical properties of fibers.

    PubMed

    Agour, Mostafa; El-Farahaty, Keremal; Seisa, Eman; Omar, Emam; Sokkar, Taha

    2015-10-01

    We propose a fast method for measuring optical properties, e.g., the refractive index profile and birefringence, of fibers. It is based on recovering the phase distribution of light refracted by a fiber sample at the recording plane from a single-shot digital hologram. During the recovering process, an optimized approach based on the spatial carrier frequency method was utilized. The proposed approach enhances affects that arise from the limited spatial extent of the bandpass filter associated with the implementation of the spatial carrier frequency method. In contrast to the low spatial resolution of off-axis digital holograms, the method ensures the best utilization of the camera support. From the recovered phase information, the optical path difference is measured; thus, the refractive index profile, the mean refractive index, and the birefringence of isotactic polypropylene (IPP) are determined. Experimental results are given for illustration.

  5. Large-aperture quantum well shutters for fast retroreflected optical data links in free space

    NASA Astrophysics Data System (ADS)

    Gilbreath, G. Charmaine; Rabinovich, William S.; Mahon, Rita; Corson, Michael R.; Stell, Mena F.; Katzer, D. Scott; Ikossi-Anastasiou, Kiki; Meehan, Timothy J.; Kline, John F.

    1999-05-01

    This paper reports progress on the development of a fast modulating retroreflector for a free space optical data link. A previous publication reported sustaining video over a 17 meter link using a multiple quantum well shutter with a diameter of 0.5 cm at a rate on the order of 0.5 Mbps, limited by the demonstration electronics. This work describes improvements in the device performance, which is on the order of 4 Mbps to 6 Mbps with a Bit Error Rates of 10-6 over a robust optical link. This device lends itself to an array configuration for long range applications and will clearly support T1 rates of 1.54 Mbps, and higher.

  6. Simultaneous X-ray and optical observations of the flaring X-ray source, Aquila A-1

    NASA Technical Reports Server (NTRS)

    Bowyer, C. S.; Charles, P. A.

    1979-01-01

    During the summer of 1978 the recurrent transient X-ray source, Aquila X-1, underwent its first major outburst in two years. The results of extensive observations at X-ray and optical wavelengths throughout this event, which lasted for approximately two months are presented. The peak X-ray luminosity was approximately 1.3 times that of the Crab and exhibited spectral dependent flickering on timescales approximately 5 minutes. The observations are interpreted in terms of a standard accretion disk model withparticular emphasis on the similarities to Sco X-1 and other dward X-ray systems, although the transient nature of the system remains unexplained. It was found that Aquila X-1 can be described adequately by the semi-detached Roche lobe model and yields a mass ratio of less than or approximate to 3.5.

  7. SCRAM: a fast computational model for the optical performance of point fucus solar central receiver systems

    SciTech Connect

    Bergeron, K. D.; Chiang, C. J.

    1980-04-01

    Because of the complexities of heliostat shadowing and blocking calculations, computational models for the optical performance of point focus central receiver (PFCR) systems tend to be too slow for many important applications, such as optimization studies based on performance with realistic weather data. In this paper, a mathematical approximation procedure, designated Sandia Central Receiver Approximation Model (SCRAM) will be described. Rather than simulating the system components from first principles, it relies on data generated by the DELSOL code of Dellin and Fish for the optical performance of PFCR systems, and abstracts a mathematical model using a stepwise regression procedure. The result is a computational procedure which allows the user to define the heliostat field boundaries and tower height arbitrarily, generating a model for optical field performance, including shadowing, blocking, cosine, losses, and atmospheric attenuation, and which requires only a polynomial evaluation for each set of sun angles. A comparison with DELSOL for three different fields on three representative days indicates that the rms error of the approximation is 1-3% and that the new code is 1,000-3,000 times as fast as DELSOL. It is also shown that one reason that the accuracy in field performance predictions is higher than that of the generting function for the model is that much of the error in the generating function is due to an oscillatory behavior associated with a moire pattern in the optical response of the heiostat field.

  8. Fast-response optical and near-infrared GRB science with RATIR and RIMAS

    NASA Astrophysics Data System (ADS)

    Capone, John; RIMAS Collaboration, RATIR project Team

    2016-01-01

    As the Universe's most luminous transient events, long gamma-ray bursts (GRBs) are observed at cosmological distances. The afterglow emission generated by the burst's interaction with the surrounding medium presents the opportunity to study the local environment, as well as intervening systems. The transient nature of these events requires observations starting within minutes of the GRB to maximize the scientific opportunities.This dissertation work comprises efforts to advance the field with a new instrument, the Rapid Infrared Imager and Spectrograph (RIMAS). The optical design is complicated by the broad band coverage (0.97 to 2.39 microns) and the necessity of transmissive optics due to space and weight limitations on the telescope. Additionally, the entire optical system must be cooled to cryogenic temperatures to decrease the background from thermal emission. The completed instrument will be permanently installed on Lowell Observatory's new 4.3 meter Discovery Channel Telescope (DCT) located in Happy Jack, Arizona. The fast slew time of the telescope, combined with the instrument's ability to image in two bands simultaneously and switch to spectroscopic configurations in under a minute will allow observers to obtain photometric data within minutes and spectra within ~ ten minutes.In addition to instrumentation work on RIMAS's optics, early time photometric light curves have been studied primarily using data from the Reionization and Transients Infrared/Optical Project (RATIR). Early time photometric data in six optical and near-infrared (NIR) bands has allowed a study of color evolution in the early to late time SEDs. This study probes possible impacts of the GRB on the local medium as well as intrinsic changes in the afterglow emission.This work is made possible by the RATIR and RIMAS collaborations as well as financial support by the NSF.

  9. Looking for Speed!! Go Optical Ultra-Fast Photonic Logic Gates for the Future Optical Communication and Computing

    NASA Technical Reports Server (NTRS)

    Abdeldayem, Hossin; Frazier, Donald O.; Penn, Benjamin; Paley, Mark S.

    2003-01-01

    Recently, we developed two ultra-fast all-optical switches in the nanosecond and picosecond regimes. The picosecond switch is made of a polydiacetylene thin film coated on the interior wall of a hollow capillary of approximately 50 micron diameter by a photo-polymerization process. In the setup a picosecond Nd:YAG laser at 10 Hz and at 532 nm with a pulse duration of approximately 40 ps was sent collinearly along a cw He-Ne laser beam and both were waveguided through the hollow capillary. The setup functioned as an Exclusive OR gate. On the other hand, the material used in the nanosecond switch is a phthalocyanine thin film, deposited on a glass substrate by a vapor deposition technique. In the setup a nanosecond, 10 Hz, Nd:YAG laser of 8 ns pulse duration was sent collinearly along a cw He-Ne laser beam and both were wave-guided through the phthalocyanine thin film. The setup in this case functioned as an all-optical AND logic gate. The characteristic table of the ExOR gate in polydiacetylene film was attributed to an excited state absorption process, while that of the AND gate was attributed to a saturation process of the first excited state. Both mechanisms were thoroughly investigated theoretically and found to agree remarkably well with the experimental results. An all-optical inverter gate has been designed but has not yet been demonstrated. The combination of all these three gates form the foundation for building all the necessary gates needed to build a prototype of an all-optical system.

  10. Fast optical-resolution photoacoustic microscopy using a 2-axis water-proofing MEMS scanner

    PubMed Central

    Kim, Jin Young; Lee, Changho; Park, Kyungjin; Lim, Geunbae; Kim, Chulhong

    2015-01-01

    Optical-resolution photoacoustic microscopy (OR-PAM) is a novel label-free microscopic imaging tool to provide in vivo optical absorbing contrasts. Specially, it is crucial to equip a real-time imaging capability without sacrificing high signal-to-noise ratios (SNRs) for identifying and tracking specific diseases in OR-PAM. Herein we demonstrate a 2-axis water-proofing MEMS scanner made of flexible PDMS. This flexible scanner results in a wide scanning range (9 × 4 mm2 in a transverse plane) and a fast imaging speed (5 B-scan images per second). Further, the MEMS scanner is fabricated in a compact footprint with a size of 15 × 15 × 15 mm3. More importantly, the scanning ability in water makes the MEMS scanner possible to confocally and simultaneously reflect both ultrasound and laser, and consequently we can maintain high SNRs. The lateral and axial resolutions of the OR-PAM system are 3.6 and 27.7 μm, respectively. We have successfully monitored the flow of carbon particles in vitro with a volumetric display frame rate of 0.14 Hz. Finally, we have successfully obtained in vivo PA images of microvasculatures in a mouse ear. It is expected that our compact and fast OR-PAM system can be significantly useful in both preclinical and clinical applications. PMID:25604654

  11. A fast method for optical simulation of flood maps of light-sharing detector modules

    NASA Astrophysics Data System (ADS)

    Shi, Han; Du, Dong; Xu, JianFeng; Moses, William W.; Peng, Qiyu

    2015-12-01

    Optical simulation of the detector module level is highly desired for Position Emission Tomography (PET) system design. Commonly used simulation toolkits such as GATE are not efficient in the optical simulation of detector modules with complicated light-sharing configurations, where a vast amount of photons need to be tracked. We present a fast approach based on a simplified specular reflectance model and a structured light-tracking algorithm to speed up the photon tracking in detector modules constructed with polished finish and specular reflector materials. We simulated conventional block detector designs with different slotted light guide patterns using the new approach and compared the outcomes with those from GATE simulations. While the two approaches generated comparable flood maps, the new approach was more than 200-600 times faster. The new approach has also been validated by constructing a prototype detector and comparing the simulated flood map with the experimental flood map. The experimental flood map has nearly uniformly distributed spots similar to those in the simulated flood map. In conclusion, the new approach provides a fast and reliable simulation tool for assisting in the development of light-sharing-based detector modules with a polished surface finish and using specular reflector materials.

  12. High-frame-rate intensified fast optically shuttered TV cameras with selected imaging applications

    SciTech Connect

    Yates, G.J.; King, N.S.P.

    1994-08-01

    This invited paper focuses on high speed electronic/electro-optic camera development by the Applied Physics Experiments and Imaging Measurements Group (P-15) of Los Alamos National Laboratory`s Physics Division over the last two decades. The evolution of TV and image intensifier sensors and fast readout fast shuttered cameras are discussed. Their use in nuclear, military, and medical imaging applications are presented. Several salient characteristics and anomalies associated with single-pulse and high repetition rate performance of the cameras/sensors are included from earlier studies to emphasize their effects on radiometric accuracy of electronic framing cameras. The Group`s test and evaluation capabilities for characterization of imaging type electro-optic sensors and sensor components including Focal Plane Arrays, gated Image Intensifiers, microchannel plates, and phosphors are discussed. Two new unique facilities, the High Speed Solid State Imager Test Station (HSTS) and the Electron Gun Vacuum Test Chamber (EGTC) arc described. A summary of the Group`s current and developmental camera designs and R&D initiatives are included.

  13. Versatile illumination platform and fast optical switch to give standard observation camera gated active imaging capacity

    NASA Astrophysics Data System (ADS)

    Grasser, R.; Peyronneaudi, Benjamin; Yon, Kevin; Aubry, Marie

    2015-10-01

    CILAS, subsidiary of Airbus Defense and Space, develops, manufactures and sales laser-based optronics equipment for defense and homeland security applications. Part of its activity is related to active systems for threat detection, recognition and identification. Active surveillance and active imaging systems are often required to achieve identification capacity in case for long range observation in adverse conditions. In order to ease the deployment of active imaging systems often complex and expensive, CILAS suggests a new concept. It consists on the association of two apparatus working together. On one side, a patented versatile laser platform enables high peak power laser illumination for long range observation. On the other side, a small camera add-on works as a fast optical switch to select photons with specific time of flight only. The association of the versatile illumination platform and the fast optical switch presents itself as an independent body, so called "flash module", giving to virtually any passive observation systems gated active imaging capacity in NIR and SWIR.

  14. A fast method for optical simulation of flood maps of light-sharing detector modules

    PubMed Central

    Shi, Han; Du, Dong; Xu, JianFeng; Moses, William W.; Peng, Qiyu

    2016-01-01

    Optical simulation of the detector module level is highly desired for Position Emission Tomography (PET) system design. Commonly used simulation toolkits such as GATE are not efficient in the optical simulation of detector modules with complicated light-sharing configurations, where a vast amount of photons need to be tracked. We present a fast approach based on a simplified specular reflectance model and a structured light-tracking algorithm to speed up the photon tracking in detector modules constructed with polished finish and specular reflector materials. We simulated conventional block detector designs with different slotted light guide patterns using the new approach and compared the outcomes with those from GATE simulations. While the two approaches generated comparable flood maps, the new approach was more than 200–600 times faster. The new approach has also been validated by constructing a prototype detector and comparing the simulated flood map with the experimental flood map. The experimental flood map has nearly uniformly distributed spots similar to those in the simulated flood map. In conclusion, the new approach provides a fast and reliable simulation tool for assisting in the development of light-sharing-based detector modules with a polished surface finish and using specular reflector materials. PMID:27660376

  15. Fast single photon avalanche photodiode-based time-resolved diffuse optical tomography scanner

    PubMed Central

    Mu, Ying; Niedre, Mark

    2015-01-01

    Resolution in diffuse optical tomography (DOT) is a persistent problem and is primarily limited by high degree of light scatter in biological tissue. We showed previously that the reduction in photon scatter between a source and detector pair at early time points following a laser pulse in time-resolved DOT is highly dependent on the temporal response of the instrument. To this end, we developed a new single-photon avalanche photodiode (SPAD) based time-resolved DOT scanner. This instrument uses an array of fast SPADs, a femto-second Titanium Sapphire laser and single photon counting electronics. In combination, the overall instrument temporal impulse response function width was 59 ps. In this paper, we report the design of this instrument and validate its operation in symmetrical and irregularly shaped optical phantoms of approximately small animal size. We were able to accurately reconstruct the size and position of up to 4 absorbing inclusions, with increasing image quality at earlier time windows. We attribute these results primarily to the rapid response time of our instrument. These data illustrate the potential utility of fast SPAD detectors in time-resolved DOT. PMID:26417526

  16. Ultra fast all-optical fiber pressure sensor for blast event evaluation

    NASA Astrophysics Data System (ADS)

    Wu, Nan; Wang, Wenhui; Tian, Ye; Niezrecki, Christopher; Wang, Xingwei

    2011-05-01

    Traumatic brain injury (TBI) is a great potential threat to soldiers who are exposed to explosions or athletes who receive cranial impacts. Protecting people from TBI has recently attracted a significant amount of attention due to recent military operations in the Middle East. Recording pressure transient data in a blast event is very critical to the understanding of the effects of blast events on TBI. However, due to the fast change of the pressure during blast events, very few sensors have the capability to effectively track the dynamic pressure transients. This paper reports an ultra fast, miniature and all-optical fiber pressure sensor which could be mounted at different locations of a helmet to measure the fast changing pressure simultaneously. The sensor is based on Fabry-Perot (FP) principle. The end face of the fiber is wet etched. A well controlled thickness silicon dioxide diaphragm is thermal bonded on the end face to form an FP cavity. A shock tube test was conducted at Natick Soldier Research Development and Engineering Center, where the sensors were mounted in a shock tube side by side with a reference sensor to measure the rapidly changing pressure. The results of the test demonstrated that the sensor developed had an improved rise time (shorter than 0.4 μs) when compared to a commercially available reference sensor.

  17. Fast and sensitive optical toxicity bioassay based on dual wavelength analysis of bacterial ferricyanide reduction kinetics.

    PubMed

    Pujol-Vila, F; Vigués, N; Díaz-González, M; Muñoz-Berbel, X; Mas, J

    2015-05-15

    Global urban and industrial growth, with the associated environmental contamination, is promoting the development of rapid and inexpensive general toxicity methods. Current microbial methodologies for general toxicity determination rely on either bioluminescent bacteria and specific medium solution (i.e. Microtox(®)) or low sensitivity and diffusion limited protocols (i.e. amperometric microbial respirometry). In this work, fast and sensitive optical toxicity bioassay based on dual wavelength analysis of bacterial ferricyanide reduction kinetics is presented, using Escherichia coli as a bacterial model. Ferricyanide reduction kinetic analysis (variation of ferricyanide absorption with time), much more sensitive than single absorbance measurements, allowed for direct and fast toxicity determination without pre-incubation steps (assay time=10 min) and minimizing biomass interference. Dual wavelength analysis at 405 (ferricyanide and biomass) and 550 nm (biomass), allowed for ferricyanide monitoring without interference of biomass scattering. On the other hand, refractive index (RI) matching with saccharose reduced bacterial light scattering around 50%, expanding the analytical linear range in the determination of absorbent molecules. With this method, different toxicants such as metals and organic compounds were analyzed with good sensitivities. Half maximal effective concentrations (EC50) obtained after 10 min bioassay, 2.9, 1.0, 0.7 and 18.3 mg L(-1) for copper, zinc, acetic acid and 2-phenylethanol respectively, were in agreement with previously reported values for longer bioassays (around 60 min). This method represents a promising alternative for fast and sensitive water toxicity monitoring, opening the possibility of quick in situ analysis.

  18. Development of Fast Reactor Structural Integrity Monitoring Technology Using Optical Fiber Sensors

    NASA Astrophysics Data System (ADS)

    Matsuba, Ken-Ichi; Ito, Chikara; Kawahara, Hirotaka; Aoyama, Takafumi

    Significant thermal stresses are loaded onto the structures of sodium-cooled fast reactor (SFR) due to high temperature and large temperature gradients associated with employing sodium coolant with its high thermal conductivity and low heat capacity. Therefore, it is important to monitor the temperature variation, related stress and displacement, and vibration in the cooling system piping and components in order to assure structural integrity while the reactor plant is in-service. SFR structural integrity monitoring can be enhanced by an optical fiber sensor, which is capable of continuous or dispersed distribution measurements of various properties such as radiation dose, temperature, strain, displacement and acceleration. In the experimental fast reactor Joyo, displacement and vibration measurements of the primary cooling system have been carried out using Fiber Bragg Grating (FBG) sensors to evaluate the durability and measurement accuracy of FBG sensors in a high gamma-ray environment. The data were successfully obtained with no significant signal loss up to an accumulated gamma-ray dose of approximately 4×104 Gy corresponding to 120 EFPDs (effective full power days) operation. Measured displacement of the piping support was nearly equal to the calculated thermal displacement. Measured vibration power spectra of the piping support were similar to those measured with a reference acceleration sensor. The measured results indicate that the FBG sensor is suitable for monitoring the displacement and vibration aspects of fast reactor cooling system integrity in a high gamma-ray environment.

  19. Solar Flares: Magnetohydrodynamic Processes

    NASA Astrophysics Data System (ADS)

    Shibata, Kazunari; Magara, Tetsuya

    2011-12-01

    This paper outlines the current understanding of solar flares, mainly focused on magnetohydrodynamic (MHD) processes responsible for producing a flare. Observations show that flares are one of the most explosive phenomena in the atmosphere of the Sun, releasing a huge amount of energy up to about 1032 erg on the timescale of hours. Flares involve the heating of plasma, mass ejection, and particle acceleration that generates high-energy particles. The key physical processes for producing a flare are: the emergence of magnetic field from the solar interior to the solar atmosphere (flux emergence), local enhancement of electric current in the corona (formation of a current sheet), and rapid dissipation of electric current (magnetic reconnection) that causes shock heating, mass ejection, and particle acceleration. The evolution toward the onset of a flare is rather quasi-static when free energy is accumulated in the form of coronal electric current (field-aligned current, more precisely), while the dissipation of coronal current proceeds rapidly, producing various dynamic events that affect lower atmospheres such as the chromosphere and photosphere. Flares manifest such rapid dissipation of coronal current, and their theoretical modeling has been developed in accordance with observations, in which numerical simulations proved to be a strong tool reproducing the time-dependent, nonlinear evolution of a flare. We review the models proposed to explain the physical mechanism of flares, giving an comprehensive explanation of the key processes mentioned above. We start with basic properties of flares, then go into the details of energy build-up, release and transport in flares where magnetic reconnection works as the central engine to produce a flare.

  20. Solar Flare Studies

    DTIC Science & Technology

    1982-03-20

    terms of basic solar flare mechanisms. It was shown that Che basic process by which the X-ray radiation of flares is created is by heating the flare...plasma to temperatures of about ten million degrees, through evaporation of the chromosphere. This process is driven both by beams of accelerated electrons...transfer of energy and momentum from the primary energy.release site in the corona. it is important to understand the basic physical processes that carry

  1. Flare Emission Onset in the Slow-Rise and Fast-Rise Phases of an Erupting Solar Filament Observed with TRACE

    NASA Technical Reports Server (NTRS)

    Sterling, A. C.; Moore, R. L.

    2005-01-01

    We observe the eruption of an active-region solar filament of 1998 July 11 using high time cadence and high spatial resolution EUV observations from the TRACE sareiii'ce, along with soft X-ray images from the soft X-ray telescope (SXT) on the Yohkoh satellite, hard X-ray fluxes from the BATSE instrument on the (CGRO) satellite and from the hard X-ray telescope (HXT) on Yohkoh, and ground-based magnetograms. We concentrate on the initiation of the eruption in an effort to understand the eruption mechanism. First the filament undergoes slow upward movement in a "slow rise" phase with an approximately constant velocity of approximately 15 km/s that lasts about 10-min, and then it erupts in a "fast-rise" phase, reaching a velocity of about 200 km/s in about 5-min, followed by a period of deceleration. EUV brightenings begin just before the start of the filament's slow rise, and remain immediately beneath the rising filament during the slow rise; initial soft X-ray brightenings occur at about the same time and location. Strong hard X-ray emission begins after the onset of the fast rise, and does not peak until the filament has traveled a substantial altitude (to a height about equal to the initial length of the erupting filament) beyond its initial location. Our observations are consistent with the slow-rise phase of the eruption resulting from the onset of "tether cutting" reconnection between magnetic fields beneath the filament, and the fast rise resulting from an explosive increase in the reconnection rate or by catastrophic destabilization of the overlying filament-carrying fields. About two days prior to the event new flux emerged near the location of the initial brightenings, and this recently- emerged flux could have been a catalyst for initiating the tether-cutting reconnection. With the exception of the initial slow rise, our findings qualitatively agree with the prediction for erupting-flux-rope height as a function of time in a model discussed by Chen

  2. Particle acceleration in flares

    NASA Technical Reports Server (NTRS)

    Benz, Arnold O.; Kosugi, Takeo; Aschwanden, Markus J.; Benka, Steve G.; Chupp, Edward L.; Enome, Shinzo; Garcia, Howard; Holman, Gordon D.; Kurt, Victoria G.; Sakao, Taro

    1994-01-01

    Particle acceleration is intrinsic to the primary energy release in the impulsive phase of solar flares, and we cannot understand flares without understanding acceleration. New observations in soft and hard X-rays, gamma-rays and coherent radio emissions are presented, suggesting flare fragmentation in time and space. X-ray and radio measurements exhibit at least five different time scales in flares. In addition, some new observations of delayed acceleration signatures are also presented. The theory of acceleration by parallel electric fields is used to model the spectral shape and evolution of hard X-rays. The possibility of the appearance of double layers is further investigated.

  3. Design and verification of the miniature optical system for small object surface profile fast scanning

    NASA Astrophysics Data System (ADS)

    Chi, Sheng; Lee, Shu-Sheng; Huang, Jen, Jen-Yu; Lai, Ti-Yu; Jan, Chia-Ming; Hu, Po-Chi

    2016-04-01

    As the progress of optical technologies, different commercial 3D surface contour scanners are on the market nowadays. Most of them are used for reconstructing the surface profile of mold or mechanical objects which are larger than 50 mm×50 mm× 50 mm, and the scanning system size is about 300 mm×300 mm×100 mm. There are seldom optical systems commercialized for surface profile fast scanning for small object size less than 10 mm×10 mm×10 mm. Therefore, a miniature optical system has been designed and developed in this research work for this purpose. Since the most used scanning method of such system is line scan technology, we have developed pseudo-phase shifting digital projection technology by adopting projecting fringes and phase reconstruction method. A projector was used to project a digital fringe patterns on the object, and the fringes intensity images of the reference plane and of the sample object were recorded by a CMOS camera. The phase difference between the plane and object can be calculated from the fringes images, and the surface profile of the object was reconstructed by using the phase differences. The traditional phase shifting method was accomplished by using PZT actuator or precisely controlled motor to adjust the light source or grating and this is one of the limitations for high speed scanning. Compared with the traditional optical setup, we utilized a micro projector to project the digital fringe patterns on the sample. This diminished the phase shifting processing time and the controlled phase differences between the shifted phases become more precise. Besides, the optical path design based on a portable device scanning system was used to minimize the size and reduce the number of the system components. A screwdriver section about 7mm×5mm×5mm has been scanned and its surface profile was successfully restored. The experimental results showed that the measurement area of our system can be smaller than 10mm×10mm, the precision reached to

  4. The EVE Doppler Sensitivity and Flare Observations

    NASA Technical Reports Server (NTRS)

    Hudson, H. S.; Woods, T. N.; Chamberlin, P. C.; Didkovsky, L.; Del Zanna, G.

    2011-01-01

    The Extreme-ultraviolet Variability Experiment (EVE) obtains continuous EUV spectra of the Sun viewed as a star. Its primary objective is the characterization of solar spectral irradiance, but its sensitivity and stability make it extremely interesting for observations of variability on time scales down to the limit imposed by its basic 10 s sample interval. In this paper we characterize the Doppler sensitivity of the EVE data. We find that the 30.4 nm line of He II has a random Doppler error below 0.001 nm (1 pm, better than 10 km/s as a redshift), with ample stability to detect the orbital motion of its satellite, the Solar Dynamics Observatory (SDO). Solar flares also displace the spectrum, both because of Doppler shifts and because of EVE's optical layout, which (as with a slitless spectrograph) confuses position and wavelength. As a flare develops, the centroid of the line displays variations that reflect Doppler shifts and therefore flare dynamics. For the impulsive phase of the flare SOL2010-06-12, we find the line centroid to have a redshift of 16.8 +/- 5.9 km/s relative to that of the flare gradual phase (statistical errors only). We find also that high-temperature lines, such as Fe XXIV 19.2 nm, have well-determined Doppler components for major flares, with decreasing apparent blueshifts as expected from chromospheric evaporation flows.

  5. Ionospheric effects of solar flares at Mars

    NASA Astrophysics Data System (ADS)

    Mahajan, K. K.; Lodhi, Neelesh K.; Singh, Sachchidanand

    2009-08-01

    From an analysis of electron density profiles recorded aboard Mars Global Surveyor, we report observations of some new and aeronomically important solar flare effects in the ionosphere of Mars. We find that all flares result in the formation of a well defined E layer peak, not always seen on other days. Further, while majority of flares result in elevated electron densities in the E region alone, some flares affect both the E and F1 layers. These altitude - related effects can provide vital information on the relative enhancement of photon fluxes in the various wavelength bands during solar flares. By using the unit optical depth values at Mars from Fox (2004) and the XUV irradiance model of Meier et al. (2002) for the Bastille Day solar flare, we infer that the well defined E peaks could result from enhancement of photon fluxes in the 10-13 nm spectral band. The extension of effect to the F1 layer is due to hardening of the 26-91 nm spectral band, as supported by Solar EUV Monitor measurements on Solar Heliospheric Observatory.

  6. A fast SPAD-based small animal imager for early-photon diffuse optical tomography.

    PubMed

    Mu, Ying; Niedre, Mark

    2014-01-01

    Photon scatter is the dominant light transport process in biological tissue and is well understood to degrade imaging performance in near-infrared diffuse optical tomography. Measurement of photons arriving at early times following a short laser pulse is considered to be an effective method to improve this limitation, i.e. by systematically selecting photons that have experienced fewer scattering events. Previously, we tested the performance of single photon avalanche photodiode (SPAD) in measurement of early transmitted photons through diffusive media and showed that it outperformed photo-multiplier tube (PMT) systems in similar configurations, principally due to its faster temporal response. In this paper, we extended this work and developed a fast SPAD-based time-resolved diffuse optical tomography system. As a first validation of the instrument, we scanned an optical phantom with multiple absorbing inclusions and measured full time-resolved data at 3240 scan points per axial slice. We performed image reconstruction with very early-arriving photon data and showed significant improvements compared to time-integrated data. Extension of this work to mice in vivo and measurement of time-resolved fluorescence data is the subject of ongoing research.

  7. Fast-response fiber-optic anemometer with temperature self-compensation.

    PubMed

    Liu, Guigen; Hou, Weilin; Qiao, Wei; Han, Ming

    2015-05-18

    We report a novel fiber-optic anemometer with self-temperature compensation capability based on a Fabry-Pérot interferometer (FPI) formed by a thin silicon film attached to the end face of a single-mode fiber. Guided in the fiber are a visible laser beam from a 635 nm diode laser used to heat the FPI and a white-light in the infrared wavelength range as the signal light to interrogate the optical length of the FPI. Cooling effects on the heated sensor head by wind is converted to a wavelength blueshift of the reflection spectral fringes of the FPI. Self-temperature-compensated measurement of wind speed is achieved by recording the difference in fringe wavelengths when the heating laser is turned on and then off. Large thermal-optic coefficient and thermal expansion coefficient of silicon render a high sensitivity that can also be easily tuned by altering the heating laser power. Furthermore, the large thermal diffusivity and the small mass of the thin silicon film endow a fast sensor response.

  8. Discovery of Fast, Large-amplitude Optical Variability of V648 Car (=SS73-17)

    NASA Astrophysics Data System (ADS)

    Angeloni, R.; Di Mille, F.; Ferreira Lopes, C. E.; Masetti, N.

    2012-09-01

    We report on the discovery of large-amplitude flickering from V648 Car (= SS73-17), a poorly studied object listed among the very few hard X-ray-emitting symbiotic stars. We performed millimagnitude precision optical photometry with the Swope Telescope at the Las Campanas Observatory, Chile, and found that V648 Car shows large U-band variability over timescales of minutes. To our knowledge, it exhibits some of the largest flickering of a symbiotic star ever reported. Our finding supports the hypothesis that symbiotic white dwarfs producing hard X-rays are predominantly powered by accretion, rather than quasi-steady nuclear burning, and have masses close to the Chandrasekhar limit. No significant periodicity is evident from the flickering light curve. The All Sky Automated Survey long-term V light curve suggests the presence of a tidally distorted giant accreting via Roche lobe overflow, and a binary period of ~520 days. On the basis of the outstanding physical properties of V648 Car as hinted at by its fast and long-term optical variability, as well as by its nature as a hard X-ray emitter, we therefore call for simultaneous follow-up observations in different bands, ideally combined with time-resolved optical spectroscopy.

  9. ``Seeing'' electroencephalogram through the skull: imaging prefrontal cortex with fast optical signal

    NASA Astrophysics Data System (ADS)

    Medvedev, Andrei V.; Kainerstorfer, Jana M.; Borisov, Sergey V.; Gandjbakhche, Amir H.; Vanmeter, John

    2010-11-01

    Near-infrared spectroscopy is a novel imaging technique potentially sensitive to both brain hemodynamics (slow signal) and neuronal activity (fast optical signal, FOS). The big challenge of measuring FOS noninvasively lies in the presumably low signal-to-noise ratio. Thus, detectability of the FOS has been controversially discussed. We present reliable detection of FOS from 11 individuals concurrently with electroencephalogram (EEG) during a Go-NoGo task. Probes were placed bilaterally over prefrontal cortex. Independent component analysis (ICA) was used for artifact removal. Correlation coefficient in the best correlated FOS-EEG ICA pairs was highly significant (p < 10-8), and event-related optical signal (EROS) was found in all subjects. Several EROS components were similar to the event-related potential (ERP) components. The most robust ``optical N200'' at t = 225 ms coincided with the N200 ERP; both signals showed significant difference between targets and nontargets, and their timing correlated with subject's reaction time. Correlation between FOS and EEG even in single trials provides further evidence that at least some FOS components ``reflect'' electrical brain processes directly. The data provide evidence for the early involvement of prefrontal cortex in rapid object recognition. EROS is highly localized and can provide cost-effective imaging tools for cortical mapping of cognitive processes.

  10. High-speed optical shutter coupled to fast-readout CCD camera

    NASA Astrophysics Data System (ADS)

    Yates, George J.; Pena, Claudine R.; McDonald, Thomas E., Jr.; Gallegos, Robert A.; Numkena, Dustin M.; Turko, Bojan T.; Ziska, George; Millaud, Jacques E.; Diaz, Rick; Buckley, John; Anthony, Glen; Araki, Takae; Larson, Eric D.

    1999-04-01

    A high frame rate optically shuttered CCD camera for radiometric imaging of transient optical phenomena has been designed and several prototypes fabricated, which are now in evaluation phase. the camera design incorporates stripline geometry image intensifiers for ultra fast image shutters capable of 200ps exposures. The intensifiers are fiber optically coupled to a multiport CCD capable of 75 MHz pixel clocking to achieve 4KHz frame rate for 512 X 512 pixels from simultaneous readout of 16 individual segments of the CCD array. The intensifier, Philips XX1412MH/E03 is generically a Generation II proximity-focused micro channel plate intensifier (MCPII) redesigned for high speed gating by Los Alamos National Laboratory and manufactured by Philips Components. The CCD is a Reticon HSO512 split storage with bi-direcitonal vertical readout architecture. The camera main frame is designed utilizing a multilayer motherboard for transporting CCD video signals and clocks via imbedded stripline buses designed for 100MHz operation. The MCPII gate duration and gain variables are controlled and measured in real time and up-dated for data logging each frame, with 10-bit resolution, selectable either locally or by computer. The camera provides both analog and 10-bit digital video. The camera's architecture, salient design characteristics, and current test data depicting resolution, dynamic range, shutter sequences, and image reconstruction will be presented and discussed.

  11. DISCOVERY OF FAST, LARGE-AMPLITUDE OPTICAL VARIABILITY OF V648 Car (=SS73-17)

    SciTech Connect

    Angeloni, R.; Di Mille, F.; Ferreira Lopes, C. E.

    2012-09-01

    We report on the discovery of large-amplitude flickering from V648 Car (= SS73-17), a poorly studied object listed among the very few hard X-ray-emitting symbiotic stars. We performed millimagnitude precision optical photometry with the Swope Telescope at the Las Campanas Observatory, Chile, and found that V648 Car shows large U-band variability over timescales of minutes. To our knowledge, it exhibits some of the largest flickering of a symbiotic star ever reported. Our finding supports the hypothesis that symbiotic white dwarfs producing hard X-rays are predominantly powered by accretion, rather than quasi-steady nuclear burning, and have masses close to the Chandrasekhar limit. No significant periodicity is evident from the flickering light curve. The All Sky Automated Survey long-term V light curve suggests the presence of a tidally distorted giant accreting via Roche lobe overflow, and a binary period of {approx}520 days. On the basis of the outstanding physical properties of V648 Car as hinted at by its fast and long-term optical variability, as well as by its nature as a hard X-ray emitter, we therefore call for simultaneous follow-up observations in different bands, ideally combined with time-resolved optical spectroscopy.

  12. Accurate calculation and Matlab based fast realization of merit function's Hesse matrix for the design of multilayer optical coating

    NASA Astrophysics Data System (ADS)

    Wu, Su-Yong; Long, Xing-Wu; Yang, Kai-Yong

    2009-09-01

    To improve the current status of home multilayer optical coating design with low speed and poor efficiency when a large layer number occurs, the accurate calculation and fast realization of merit function’s gradient and Hesse matrix is pointed out. Based on the matrix method to calculate the spectral properties of multilayer optical coating, an analytic model is established theoretically. And the corresponding accurate and fast computation is successfully achieved by programming with Matlab. Theoretical and simulated results indicate that this model is mathematically strict and accurate, and its maximal precision can reach floating-point operations in the computer, with short time and fast speed. Thus it is very suitable to improve the optimal search speed and efficiency of local optimization methods based on the derivatives of merit function. It has outstanding performance in multilayer optical coating design with a large layer number.

  13. Models of the Solar Atmospheric Response to Flare Heating

    NASA Technical Reports Server (NTRS)

    Allred, Joel

    2011-01-01

    I will present models of the solar atmospheric response to flare heating. The models solve the equations of non-LTE radiation hydrodynamics with an electron beam added as a flare energy source term. Radiative transfer is solved in detail for many important optically thick hydrogen and helium transitions and numerous optically thin EUV lines making the models ideally suited to study the emission that is produced during flares. I will pay special attention to understanding key EUV lines as well the mechanism for white light production. I will also present preliminary results of how the model solar atmosphere responds to Fletcher & Hudson type flare heating. I will compare this with the results from flare simulations using the standard thick target model.

  14. Measurements of mechanical deformation using a full field optical interferometry and a fast camera

    NASA Astrophysics Data System (ADS)

    Pérez López, Carlos; Mendoza Santoyo, Fernando; Gutiérrez Zamarripa, Rodolfo; Caloca Mendez, Cristian

    2006-02-01

    Full field optical interferometry known as ESPI (Electronic Speckle Pattern Interferometry), has been applied to dynamical deformations on solid and semisolid objects. Although microscopic (1 to 30 micrometers), these deformations offer enough information to know even an early crack detection of the material. In industrial and biomedical environments however there is a lot of noise bigger than the signal we try to recovery, therefore is necessary to compensate mechanical or digitally or both. In this paper we will discuss the basic operating principle of the interferometer and analyze its performance. The technique use a continue wave laser for illuminating the tested object. The transient event is recorded by an ultra fast digital image camera. Data processing is completed with a help of a spatio-temporal algorithm. Some results are presented.

  15. Image dissector photocathode solar damage test program. [solar radiation shielding using a fast optical lens

    NASA Technical Reports Server (NTRS)

    Smith, R. A.

    1977-01-01

    Image dissector sensors of the same type which will be used in the NASA shuttle star tracker were used in a series of tests directed towards obtaining solar radiation/time damage criteria. Data were evaluated to determine the predicted level of operability of the star tracker if tube damage became a reality. During the test series a technique for reducing the solar damage effect was conceived and verified. The damage concepts are outlined and the test methods and data obtained which were used for verification of the technique's feasibility are presented. The ability to operate an image dissector sensor with the solar image focussed on the photocathode by a fast optical lens under certain conditions is feasible and the elimination of a mechanical protection device is possible.

  16. Time-resolved diffuse optical tomography using fast-gated single-photon avalanche diodes

    PubMed Central

    Puszka, Agathe; Di Sieno, Laura; Mora, Alberto Dalla; Pifferi, Antonio; Contini, Davide; Boso, Gianluca; Tosi, Alberto; Hervé, Lionel; Planat-Chrétien, Anne; Koenig, Anne; Dinten, Jean-Marc

    2013-01-01

    We present the first experimental results of reflectance Diffuse Optical Tomography (DOT) performed with a fast-gated single-photon avalanche diode (SPAD) coupled to a time-correlated single-photon counting system. The Mellin-Laplace transform was employed to process time-resolved data. We compare the performances of the SPAD operated in the gated mode vs. the non-gated mode for the detection and localization of an absorbing inclusion deeply embedded in a turbid medium for 5 and 15 mm interfiber distances. We demonstrate that, for a given acquisition time, the gated mode enables the detection and better localization of deeper absorbing inclusions than the non-gated mode. These results obtained on phantoms demonstrate the efficacy of time-resolved DOT at small interfiber distances. By achieving depth sensitivity with limited acquisition times, the gated mode increases the relevance of reflectance DOT at small interfiber distance for clinical applications. PMID:24009998

  17. Two-dimensional electronic spectroscopy based on conventional optics and fast dual chopper data acquisition

    NASA Astrophysics Data System (ADS)

    Heisler, Ismael A.; Moca, Roberta; Camargo, Franco V. A.; Meech, Stephen R.

    2014-06-01

    We report an improved experimental scheme for two-dimensional electronic spectroscopy (2D-ES) based solely on conventional optical components and fast data acquisition. This is accomplished by working with two choppers synchronized to a 10 kHz repetition rate amplified laser system. We demonstrate how scattering and pump-probe contributions can be removed during 2D measurements and how the pump probe and local oscillator spectra can be generated and saved simultaneously with each population time measurement. As an example the 2D-ES spectra for cresyl violet were obtained. The resulting 2D spectra show a significant oscillating signal during population evolution time which can be assigned to an intramolecular vibrational mode.

  18. Fast Simulators for Satellite Cloud Optical Centroid Pressure Retrievals, 1. Evaluation of OMI Cloud Retrievals

    NASA Technical Reports Server (NTRS)

    Joiner, J.; Vasilkov, A. P.; Gupta, Pawan; Bhartia, P. K.; Veefkind, Pepijn; Sneep, Maarten; deHaan, Johan; Polonsky, Igor; Spurr, Robert

    2011-01-01

    We have developed a relatively simple scheme for simulating retrieved cloud optical centroid pressures (OCP) from satellite solar backscatter observations. We have compared simulator results with those from more detailed retrieval simulators that more fully account for the complex radiative transfer in a cloudy atmosphere. We used this fast simulator to conduct a comprehensive evaluation of cloud OCPs from the two OMI algorithms using collocated data from CloudSat and Aqua MODIS, a unique situation afforded by the A-train formation of satellites. We find that both OMI algorithms perform reasonably well and that the two algorithms agree better with each other than either does with the collocated CloudSat data. This indicates that patchy snow/ice, cloud 3D, and aerosol effects not simulated with the CloudSat data are affecting both algorithms similarly. We note that the collocation with CloudSat occurs mainly on the East side of OMI's swath. Therefore, we are not able to address cross-track biases in OMI cloud OCP retrievals. Our fast simulator may also be used to simulate cloud OCP from output generated by general circulation models (GCM) with appropriate account of cloud overlap. We have implemented such a scheme and plan to compare OMI data with GCM output in the near future.

  19. Theoretical gravity darkening as a function of optical depth. A first approach to fast rotating stars

    NASA Astrophysics Data System (ADS)

    Claret, A.

    2016-04-01

    Aims: Recent observations of very fast rotating stars show systematic deviations from the von Zeipel theorem and pose a challenge to the theory of gravity-darkening exponents (β1). In this paper, we present a new insight into the problem of temperature distribution over distorted stellar surfaces to try to reduce these discrepancies. Methods: We use a variant of the numerical method based on the triangles strategy, which we previously introduced, to evaluate the gravity-darkening exponents. The novelty of the present method is that the theoretical β1 is now computed as a function of the optical depth, that is, β1 ≡ β1(τ). The stellar evolutionary models, which are necessary to obtain the physical conditions of the stellar envelopes/atmospheres inherent to the numerical method, are computed via the code GRANADA. Results: When the resulting theoretical β1(τ) are compared with the best accurate data of very fast rotators, a good agreement for the six systems is simultaneously achieved. In addition, we derive an equation that relates the locus of constant convective efficiency in the Hertzsprung-Russell (HR) diagram with gravity-darkening exponents.

  20. Fast electron temperature measurements using a 'multicolor' optical soft x-ray array

    SciTech Connect

    Delgado-Aparicio, L. F.; Stutman, D.; Tritz, K.; Finkenthal, M.; Bell, R.; Hosea, J.; Kaita, R.; LeBlanc, B.; Roquemore, L.; Wilson, J. R.

    2007-10-01

    A fast ({<=}0.1 ms) and compact 'multicolor' scintillator-based optical soft x-ray (OSXR) array has been developed for time- and space-resolved measurements of the electron temperature [T{sub e}(R,t)] profiles in magnetically confined fusion plasmas. The 48-channel tangential multicolor OSXR prototype was tested on the National Spherical Torus Experiment. Each sight line views the same plasma volume at the midplane (0{<=}r/a{<=}1), in three distinct energy ranges determined by beryllium foils with different thicknesses. A tangential view of the toroidally (circular) symmetric plasma allows an Abel inversion of the line-integrated SXR brightness to obtain the x-ray emissivity profiles which are then used to constrain the reconstruction of the fast T{sub e}(R,t). The first assessment of the electron temperature is obtained by modeling the slope of the continuum radiation with the ideal double-foil method using both the line-integrated intensity measurements as well as the inverted SXR emissivity profiles.

  1. Flares in childhood eczema.

    PubMed

    Langan, S M

    2009-01-01

    Eczema is a major public health problem affecting children worldwide. Few studies have directly assessed triggers for disease flares. This paper presents evidence from a published systematic review and a prospective cohort study looking at flare factors in eczema. This systematic review suggested that foodstuffs in selected groups, dust exposure, unfamiliar pets, seasonal variation, stress, and irritants may be important in eczema flares. We performed a prospective cohort study that focused on environmental factors and identified associations between exposure to nylon clothing, dust, unfamiliar pets, sweating, shampoo, and eczema flares. Results from this study also demonstrated some new key findings. First, the effect of shampoo was found to increase in cold weather, and second, combinations of environmental factors were associated with disease exacerbation, supporting a multiple component disease model. This information is likely to be useful to families and may lead to the ability to reduce disease flares in the future.

  2. Searching for fast optical transients by means of a wide-field monitoring observations with high temporal resolution

    NASA Astrophysics Data System (ADS)

    Beskin, G.; Karpov, S.; Plokhotnichenko, V.; Bondar, S.; Ivanov, E.; Perkov, A.; Greco, G.; Guarnieri, A.; Bartolini, C.

    We discuss the strategy of search for fast optical transients accompanying gamma-ray bursts by means of continuous monitoring of wide sky fields with high temporal resolution. We describe the design, performance and results of our cameras, FAVOR and TORTORA. Also we discuss the perspectives of this strategy and possible design of next-generation equipment for wide-field monitoring which will be able to detect optical transients and to study their color and polarization properties with high time resolution.

  3. Implications of RHESSI Flare Observations for Magnetic Reconnection Models

    NASA Technical Reports Server (NTRS)

    Holman, Gordon D.; Sui, Linhui; Dennis, Brian R.

    2004-01-01

    The Ramaty High Energy Solar Spectroscopic Imager (RHESSI) observations of the 2002 April 15 solar flare and related flares provide compelling evidence for the formation of a large-scale, reconnecting current sheet in at least some flares. We describe the observed evolution of the April 15 flare in terms of magnetic reconnection models. We argue that the flare most likely evolved through magnetic geometries associated with super-slow reconnection (early rise phase), fast reconnection (impulsive phase), and slow reconnection (gradual phase). We also provide evidence for X-ray brightenings within the evolving current sheet, possibly induced by the tearing mode instability. This work was supported in part by the RHESSI Program and NASA's Sun-Earth Connection Program. This work would not have been possible without the dedicated efforts of the entire RHESSI team.

  4. Fast control of nuclear spin polarization in an optically pumped single quantum dot

    NASA Astrophysics Data System (ADS)

    Makhonin, M. N.; Kavokin, K. V.; Senellart, P.; Lemaître, A.; Ramsay, A. J.; Skolnick, M. S.; Tartakovskii, A. I.

    2011-11-01

    Highly polarized nuclear spins within a semiconductor quantum dot induce effective magnetic (Overhauser) fields of up to several Tesla acting on the electron spin, or up to a few hundred mT for the hole spin. Recently this has been recognized as a resource for intrinsic control of quantum-dot-based spin quantum bits. However, only static long-lived Overhauser fields could be used. Here we demonstrate fast redirection on the microsecond timescale of Overhauser fields on the order of 0.5 T experienced by a single electron spin in an optically pumped GaAs quantum dot. This has been achieved using coherent control of an ensemble of 105 optically polarized nuclear spins by sequences of short radiofrequency pulses. These results open the way to a new class of experiments using radiofrequency techniques to achieve highly correlated nuclear spins in quantum dots, such as adiabatic demagnetization in the rotating frame leading to sub-μK nuclear spin temperatures, rapid adiabatic passage, and spin squeezing.

  5. Slow and fast light using nonlinear processes in semiconductor optical amplifiers

    NASA Astrophysics Data System (ADS)

    Pesala, Bala Subrahmanyam

    Ability to control the velocity of light is usually referred to as slow or fast light depending on whether the group velocity of light is reduced or increased. The slowing of light as it passes through the glass to 2/3rd its original value is a well known phenomenon. This slowing down happens due to the interaction of light with the electrons in the medium. As a general principle, stronger the interaction, larger is the reduction in velocity. Recently, a fascinating field has emerged with the objective of not only slowing down the velocity of light but also speeding it up as it goes through the medium by enhancing light-matter interaction. This unprecedented control opens up several exciting applications in various scientific disciplines ranging from nonlinear science, RF photonics to all-optical networks. Initial experiments succeeded in reducing the velocity of light more than a million times to a very impressive 17 m/s. This speed reduction is extremely useful to enhance various nonlinear processes. For RF photonic applications including phased array antennas and tunable filters, control of phase velocity of light is required while control of group velocity serves various functionalities including packet synchronization and contention resolution in an optical buffer. Within the last 10 years, several material systems have been proposed and investigated for this purpose. Schemes based on semiconductor systems for achieving slow and fast light has the advantage of extremely high speed and electrical control. In addition, they are compact, operate at room temperature and can be easily integrated with other optical subsystems. In this work, we propose to use nonlinear processes in semiconductor optical amplifiers (SOAs) for the purpose of controlling the velocity of light. The versatility of the physical processes present in SOAs enables the control of optical signals ranging from 1GHz to larger than 1000 GHz (1 THz). First, we experimentally demonstrate both

  6. Black Carbon Emissions from Associated Natural Gas Flaring

    NASA Astrophysics Data System (ADS)

    Weyant, C.; Shepson, P. B.; Subramanian, R.; Cambaliza, M. O. L.; Mccabe, D. C.; Baum, E. K.; Caulton, D.; Heimburger, A. M. F.; Bond, T. C.

    2014-12-01

    Approximately 150 billion cubic meters (BCM) of associated natural gas is flared and vented in the world, annually, emitting greenhouse gases and other pollutants with no energy benefit. Based on estimates from satellite observations, the United States flares about 7 BCM of gas, annually (the 5th highest flaring volume worldwide). The volume of gas flared in the US is growing, largely due to flaring in the Bakken formation in North Dakota. Black carbon (BC), a combustion by-product from gas flaring, is a short-term climate pollutant that absorbs shortwave radiation both in the atmosphere and on snow and ice surfaces. Flaring may be a significant source of global BC climate effects. For example, modeling estimates suggest that associated gas flares are the source of a significant percentage of BC surface concentrations in the Arctic, where BC-induced ice melting occurs. However, there are no direct field measurements of BC emission factors from associated gas flares. Emission measurements of BC that include a range of flaring conditions are needed to ascertain the magnitude of BC emissions from this source. Over one hundred flare plumes were sampled in the Bakken formation using a small aircraft. Methane, carbon dioxide, and BC were measured simultaneously, allowing the calculation of BC mass emission factors using the carbon balance method. BC was measured using two methods; optical absorption was measured using a Particle Soot Absorption Photometer (PSAP) and BC particle number and mass concentrations were measured with a Single Particle Soot Photometer (SP2). Simultaneous sampling of BC absorption and mass allows for the calculation of the BC mass absorption cross-section. Results indicate that emission factor variability between flares in the region is significant; there are two orders of magnitude variation in the BC emission factors.

  7. Pre-Hardware Optimization and Implementation Of Fast Optics Closed Control Loop Algorithms

    NASA Technical Reports Server (NTRS)

    Kizhner, Semion; Lyon, Richard G.; Herman, Jay R.; Abuhassan, Nader

    2004-01-01

    One of the main heritage tools used in scientific and engineering data spectrum analysis is the Fourier Integral Transform and its high performance digital equivalent - the Fast Fourier Transform (FFT). The FFT is particularly useful in two-dimensional (2-D) image processing (FFT2) within optical systems control. However, timing constraints of a fast optics closed control loop would require a supercomputer to run the software implementation of the FFT2 and its inverse, as well as other image processing representative algorithm, such as numerical image folding and fringe feature extraction. A laboratory supercomputer is not always available even for ground operations and is not feasible for a night project. However, the computationally intensive algorithms still warrant alternative implementation using reconfigurable computing technologies (RC) such as Digital Signal Processors (DSP) and Field Programmable Gate Arrays (FPGA), which provide low cost compact super-computing capabilities. We present a new RC hardware implementation and utilization architecture that significantly reduces the computational complexity of a few basic image-processing algorithm, such as FFT2, image folding and phase diversity for the NASA Solar Viewing Interferometer Prototype (SVIP) using a cluster of DSPs and FPGAs. The DSP cluster utilization architecture also assures avoidance of a single point of failure, while using commercially available hardware. This, combined with the control algorithms pre-hardware optimization, or the first time allows construction of image-based 800 Hertz (Hz) optics closed control loops on-board a spacecraft, based on the SVIP ground instrument. That spacecraft is the proposed Earth Atmosphere Solar Occultation Imager (EASI) to study greenhouse gases CO2, C2H, H2O, O3, O2, N2O from Lagrange-2 point in space. This paper provides an advanced insight into a new type of science capabilities for future space exploration missions based on on-board image processing

  8. Fast computation of Fresnel diffraction field of a three-dimensional object for a pixelated optical device.

    PubMed

    Esmer, G Bora

    2013-01-01

    In this paper, a fast algorithm is proposed for accurate calculation of the scalar optical diffraction on a pixelated optical device used in the reconstruction process from a three-dimensional object that is formed by scattered sample points over the space. In computer-generated holography, fast and accurate calculation of the diffraction field is an important and a challenging problem. Therefore, several fast algorithms can be found in the literature. The accuracy of the calculations can be determined by the signal processing techniques and the numerical methods used in the calculation of diffraction fields. Furthermore, the quality of reconstructed objects can be affected by the properties of optical devices employed in the reconstruction process. For instance, the pixelated structure of those devices has a significant effect on the reconstruction process. Therefore, the pixelated structure of the display device has to be taken into account. Furthermore, fast calculation of the diffraction pattern can be a bottleneck in dynamic holographic content generation. As a solution to the problems, we propose a fast and accurate algorithm based on a precomputed one-dimensional kernel and scaling of that kernel for the computation of the diffraction pattern for a pixelated display.

  9. COMPTEL solar flare observations

    NASA Technical Reports Server (NTRS)

    Ryan, J. M.; Aarts, H.; Bennett, K.; Debrunner, H.; Devries, C.; Denherder, J. W.; Eymann, G.; Forrest, D. J.; Diehl, R.; Hermsen, W.

    1992-01-01

    COMPTEL as part of a solar target of opportunity campaign observed the sun during the period of high solar activity from 7-15 Jun. 1991. Major flares were observed on 9 and 11 Jun. Although both flares were large GOES events (greater than or = X10), they were not extraordinary in terms of gamma-ray emission. Only the decay phase of the 15 Jun. flare was observed by COMPTEL. We report the preliminary analysis of data from these flares, including the first spectroscopic measurement of solar flare neutrons. The deuterium formation line at 2.223 MeV was present in both events and for at least the 9 Jun. event, was comparable to the flux in the nuclear line region of 4-8 MeV, consistent with Solar-Maximum Mission (SSM) Observations. A clear neutron signal was present in the flare of 9 Jun. with the spectrum extending up to 80 MeV and consistent in time with the emission of gamma-rays, confirming the utility of COMPTEL in measuring the solar neutron flux at low energies. The neutron flux below 100 MeV appears to be lower than that of the 3 Jun. 1982 flare by more than an order of magnitude. The neutron signal of the 11 Jun. event is under study. Severe dead time effects resulting from the intense thermal x-rays require significant corrections to the measured flux which increase the magnitude of the associated systematic uncertainties.

  10. Size Distributions of Solar Flares and Solar Energetic Particle Events

    NASA Technical Reports Server (NTRS)

    Cliver, E. W.; Ling, A. G.; Belov, A.; Yashiro, S.

    2012-01-01

    We suggest that the flatter size distribution of solar energetic proton (SEP) events relative to that of flare soft X-ray (SXR) events is primarily due to the fact that SEP flares are an energetic subset of all flares. Flares associated with gradual SEP events are characteristically accompanied by fast (much > 1000 km/s) coronal mass ejections (CMEs) that drive coronal/interplanetary shock waves. For the 1996-2005 interval, the slopes (alpha values) of power-law size distributions of the peak 1-8 Angs fluxes of SXR flares associated with (a) >10 MeV SEP events (with peak fluxes much > 1 pr/sq cm/s/sr) and (b) fast CMEs were approx 1.3-1.4 compared to approx 1.2 for the peak proton fluxes of >10 MeV SEP events and approx 2 for the peak 1-8 Angs fluxes of all SXR flares. The difference of approx 0.15 between the slopes of the distributions of SEP events and SEP SXR flares is consistent with the observed variation of SEP event peak flux with SXR peak flux.

  11. A Quantitative Analysis of Solar Flare Characteristics as Observed in the Solar Observing Optical Network and the Global Oscillation Network Group

    DTIC Science & Technology

    2012-03-01

    due to their possible threat to operations. Because of their importance, event-level flares are given extra consideration in this report. (AFWA...In the impulsive phase (3 to 10 minutes), as this reconnection takes place, electrons and ions with large energies are accelerated and released...right, correspond to the horizontal lines with large red dashes. The flash and gradual phases are bound by the vertical dashed lines. 13 variable in

  12. Modelling the impulsive phase of solar flares

    NASA Astrophysics Data System (ADS)

    Rubio da Costa, F.; Petrosian, V.; Liu, W.; Carlsson, M.

    2013-12-01

    Solar flares are the most energetic events in the solar system. In order to study this sudden release of energy and evaluate the response of the solar chromosphere to the deposition of thermal energy, we simulate the conditions of the solar atmosphere by creating a 1D plane-parallel atmospheric model and analyze the energy transport of a beam of non-thermal electrons that is injected at the top of the coronal loop. This is done using a numerical model which combines the radiative hydrodynamic equations (RADYN code - Carlsson & Stein, 1992) with the calculation of particle acceleration and transport (Flare code - Petrosian & Liu, 2004). With this model, it is for example possible to compare the emission of solar flares in several lines with available observations. The assemblage of high resolution chromospheric flare observations from the IRIS imaging spectrograph makes it an excellent time for this work. We discuss how accelerated particle heating and energy deposition rate are affected by the variation of cut-off energy and flux of non-thermal electrons as well as spectral index and investigate the response of the atmosphere to the acceleration of particles. Our flare simulation treats each atom in non-LTE condition and calculates in detail the transitions between its energy levels. It also assumes an optically thick atmosphere, which is crucial for understanding how energy is transported from the chromosphere deep into the photosphere.

  13. Multi-spectral observations of flares

    NASA Astrophysics Data System (ADS)

    Zuccarello, F.

    2016-11-01

    Observations show that during solar flares radiation can be emitted across the entire electromagnetic spectrum, spanning from gamma rays to radio waves. These emissions, related to the conversion of magnetic energy into other forms of energy (kinetic, thermal, waves) through magnetic reconnection, are due to different physical processes that can occur in different layers of the Sun. This means that flare observations need to be carried out using instruments operating in different wave-bands in order to achieve a complete scenario of the processes going on. Taking into account that most of the radiative energy is emitted at optical and UV wavelengths, observations carried out from space, need to be complemented by observations carried out from ground-based telescopes. Nowadays, the possibility to carry on high temporal, spatial and spectral resolution from ground-based telescopes in coordinated campaigns with space-borne instruments (like, i.e., IRIS and HINODE) gives the opportunity to investigate the details of the flare emission at different wavelengths and can provide useful hints to understand these phenomena and compare observations with models. However, it is undoubted that sometimes the pointing to the flaring region is not an easy task, due to the necessity to provide the target coordinates to satellites with some hours in advance. Some problems arising from this issue will be discussed. Moreover, new projects related to flare catalogues and archives will be presented.

  14. Unveiling the nature of an X-ray flare from 3XMM* J014528.9+610729: a candidate spiral galaxy

    NASA Astrophysics Data System (ADS)

    Bhatt, Himali; Bhattacharyya, Subir; Bhatt, Nilay; Pandey, J. C.

    2014-11-01

    We report an X-ray flare from 3XMM J014528.9+610729, serendipitously detected during the observation of the open star cluster NGC 663. The colour-colour space technique using optical and infrared data reveals the X-ray source as a candidate spiral galaxy. The flare shows fast rise and exponential decay shape with a ratio of the peak and the quiescent count rates of ˜60 and duration of ˜5.4 ks. The spectrum during the flaring state is well fitted with a combination of thermal (APEC) model with a plasma temperature of 1.3 ± 0.1 keV and non-thermal (POWER-LAW) model with power-law index of 1.9 ± 0.2. However, no firm conclusion can be made for the spectrum during the quiescent state. The temporal behaviour, plasma temperature and spectral evolution during flare suggest that the flare from 3XMM J014528.9+610729 cannot be associated with tidal disruption events.

  15. What Causes Lupus Flares?

    PubMed

    Fernandez, David; Kirou, Kyriakos A

    2016-03-01

    Systemic lupus erythematosus (SLE), the prototypic systemic autoimmune disease, follows a chronic disease course, punctuated by flares. Disease flares often occur without apparent cause, perhaps from progressive inherent buildup of autoimmunity. However, there is evidence that certain environmental factors may trigger the disease. These include exposure to UV light, infections, certain hormones, and drugs which may activate the innate and adaptive immune system, resulting in inflammation, cytotoxic effects, and clinical symptoms. Uncontrolled disease flares, as well as their treatment, especially with glucocorticoids, can cause significant organ damage. Tight surveillance and timely control of lupus flares with judicial use of effective treatments to adequately suppress the excessive immune system activation are required to bring about long term remission of the disease. We hope that new clinical trials will soon offer additional effective and target-specific biologic treatments for SLE.

  16. Development of fast two-dimensional standing wave microscopy using acousto-optic deflectors

    NASA Astrophysics Data System (ADS)

    Gliko, Olga; Reddy, Duemani G.; Brownell, William E.; Saggau, Peter

    2008-02-01

    A novel scheme for two-dimensional (2D) standing wave fluorescence microscopy (SWFM) using acousto-optic deflectors (AODs) is proposed. Two laser beams were coupled into an inverted microscope and focused at the back focal plane of the objective lens. The position of each of two beams at the back focal plane was controlled by a pair of AODs. This resulted in two collimated beams that interfered in the focal plane, creating a lateral periodic excitation pattern with variable spacing and orientation. The phase of the standing wave pattern was controlled by phase delay between two RF sinusoidal signals driving the AODs. Nine SW patterns of three different orientations about the optical axis and three different phases were generated. The excitation of the specimen using these patterns will result in a SWFM image with enhanced 2D lateral resolution with a nearly isotropic effective point-spread function. Rotation of the SW pattern relative to specimen and varying the SW phase do not involve any mechanical movements and are only limited by the time required for the acoustic wave to fill the aperture of AOD. The resulting total acquisition time can be as short as 100 µs and is only further limited by speed and sensitivity of the employed CCD camera. Therefore, this 2D SWFM can provide a real time imaging of subresolution processes such as docking and fusion of synaptic vesicles. In addition, the combination of 2D SWFM with variable angle total internal reflection (TIR) can extend this scheme to fast microscopy with enhanced three-dimensional (3D) resolution.

  17. Solar flare particle radiation

    NASA Technical Reports Server (NTRS)

    Lanzerotti, L. J.

    1972-01-01

    The characteristics of the solar particles accelerated by solar flares and subsequently observed near the orbit of the earth are studied. Considered are solar particle intensity-time profiles, the composition and spectra of solar flare events, and the propagation of solar particles in interplanetary space. The effects of solar particles at the earth, riometer observations of polar cap cosmic noise absorption events, and the production of solar cell damage at synchronous altitudes by solar protons are also discussed.

  18. The solar flare myth

    NASA Technical Reports Server (NTRS)

    Gosling, J. T.

    1993-01-01

    Many years of research have demonstrated that large, nonrecurrent geomagnetic storms, shock wave disturbances in the solar wind, and energetic particle events in interplanetary space often occur in close association with large solar flares. This result has led to a pradigm of cause and effect - that large solar flares are the fundamental cause of these events in the near-Earth space environmemt. This paradigm, which I call 'the solar flare myth,' dominates the popular perception of the relationship between solar activity and interplanetary and geomagnetic events and has provided much of the pragmatic rationale for the study of the solar flare phenomenon. Yet there is good evidence that this paradigm is wrong and that flares do not generally play a central role in producing major transient disturbances in the near-Earth space environment. In this paper I outline a different paradigm of cause and effect that removes solar flares from their central position in the chain of events leading from the Sun to near-Earth space. Instead, this central role is given to events known as coronal mass ejections.

  19. The dependence of solar flare energetics on flare volumes

    NASA Technical Reports Server (NTRS)

    Kahler, S. W.

    1978-01-01

    The sizes of 45 X-ray flares observed on Skylab have been measured and compared to flare rise times, energies, and energy release rates as determined from Solard and XREA X-ray data. The X-ray rise time is correlated with the length and volume of the flare. The energy of the flare and the rate of increase of that energy are correlated with flare length and volume. Both the energy per unit volume and the rate of energy increase per unit volume are inversely correlated with flare length and volume. There is no correlation between the emission measure and the volume.

  20. An ultra-fast fiber optic pressure sensor for blast event measurements

    NASA Astrophysics Data System (ADS)

    Wu, Nan; Zou, Xiaotian; Tian, Ye; Fitek, John; Maffeo, Michael; Niezrecki, Christopher; Chen, Julie; Wang, Xingwei

    2012-05-01

    Soldiers who are exposed to explosions are at risk of suffering traumatic brain injury (TBI). Since the causal relationship between a blast and TBI is poorly understood, it is critical to have sensors that can accurately quantify the blast dynamics and resulting wave propagation through a helmet and skull that are imparted onto and inside the brain. To help quantify the cause of TBI, it is important to record transient pressure data during a blast event. However, very few sensors feature the capabilities of tracking the dynamic pressure transients due to the rapid change of the pressure during blast events, while not interfering with the physical material layers or wave propagation. In order to measure the pressure transients efficiently, a pressure sensor should have a high resonant frequency and a high spatial resolution. This paper describes an ultra-fast fiber optic pressure sensor based on the Fabry-Perot principle for the application of measuring the rapid pressure changes in a blast event. A shock tube experiment performed in US Army Natick Soldier Research, Development and Engineering Center has demonstrated that the resonant frequency of the sensor is 4.12 MHz, which is relatively close to the designed theoretical value of 4.113 MHz. Moreover, the experiment illustrated that the sensor has a rise time of 120 ns, which demonstrates that the sensor is capable of observing the dynamics of the pressure transient during a blast event.

  1. Characterization of Fast-Electron Beam Propagation Through Solid-Density Matter by Optical Transition Radiation

    NASA Astrophysics Data System (ADS)

    Storm, M.; Myatt, J.; Stoeckl, C.

    2006-10-01

    A diagnostic has been developed to measure the emission of optical transition radiation (OTR) produced by relativistic electrons emerging at the rear side of laser-illuminated targets. The device will be deployed in the newly completed multiterawatt (MTW) experimental facility at the University of Rochester's Laboratory for Laser Energetics. The MTW laser is capable of producing 10-J, 600-fs pulses of 1053-nm-wavelength radiation, which are focused using an f/2 off-axis parabolic mirror to intensities in excess of 10^19 Wcm-2. A 20x microscope objective with a resolution of better than 1 μm will image the OTR signal onto a CCD camera. A postprocessor to the particle-in-cell code LSP will be used to generate a simulated OTR signal from the calculated fast-electron distributions at the rear side of the target for comparison with experimental data. This talk will present the characteristics and capabilities of the OTR device along with the most recently acquired data. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-92SF19460.

  2. Optical observations of the fast declining Type Ib supernova iPTF13bvn

    NASA Astrophysics Data System (ADS)

    Srivastav, Shubham; Anupama, G. C.; Sahu, D. K.

    2014-12-01

    We present optical UBVRI photometry and medium resolution spectroscopy of the Type Ib supernova iPTF13bvn, spanning a phase of ˜-13 d to +71 d with respect to B-band maximum. The post-maximum decline rates indicate a fast decline with Δm15(B) = 1.82. Correcting for a Galactic extinction E(B - V)MW = 0.045 and host galaxy extinction of E(B - V)host = 0.17, the absolute V-band magnitude peaks at MV = -17.23 ± 0.20. The bolometric light curve indicates that ˜0.09 M⊙ of 56Ni was synthesized in the explosion. The earliest spectrum (-13 d) shows the presence of He I 5876 Å feature at a velocity of ˜15 000 km s-1, which falls rapidly by the time the SN approaches the epoch of B-band maximum. The photospheric velocity near maximum light, as indicated by the Fe II 5169 Å feature, is ˜9000 km s-1. The estimate for the 56Ni mass, together with the estimates for the ejected mass (Mej) and kinetic energy of the explosion (Ek) indicate that iPTF13bvn is a low-luminosity Type Ib supernova, with a lower than average ejected mass and kinetic energy. Our results suggest that the progenitor of iPTF13bvn is inconsistent with a single Wolf-Rayet star.

  3. Adaptive optics system for fast automatic control of laser beam jitters in air

    NASA Astrophysics Data System (ADS)

    Grasso, Salvatore; Acernese, Fausto; Romano, Rocco; Barone, Fabrizio

    2010-04-01

    Adaptive Optics (AO) Systems can operate fast automatic control of laser beam jitters for several applications of basic research as well as for the improvement of industrial and medical devices. We here present our theoretical and experimental research showing the opportunity of suppressing laser beam geometrical fluctuations of higher order Hermite Gauss modes in interferometric Gravitational Waves (GW) antennas. This in turn allows to significantly reduce the noise that originates from the coupling of the laser source oscillations with the interferometer asymmetries and introduces the concrete possibility of overcoming the sensitivity limit of the GW antennas actually set at 10-23 1 Hz value. We have carried out the feasibility study of a novel AO System which performs effective laser jitters suppression in the 200 Hz bandwidth. It extracts the wavefront error signals in terms of Hermite Gauss (HG) coefficients and performs the wavefront correction using the Zernike polynomials. An experimental Prototype of the AO System has been implemented and tested in our laboratory at the University of Salerno and the results we have achieved fully confirm effectiveness and robustness of the control upon first and second order laser beam geometrical fluctuations, in good accordance with GW antennas requirements. Above all, we have measured 60 dB reduction of astigmatism and defocus modes at low frequency below 1 Hz and 20 dB reduction in the 200 Hz bandwidth.

  4. Fast localization of the optic disc using projection of image features.

    PubMed

    Mahfouz, Ahmed E; Fahmy, Ahmed S

    2010-12-01

    Optic Disc (OD) localization is an important pre-processing step that significantly simplifies subsequent segmentation of the OD and other retinal structures. Current OD localization techniques suffer from impractically-high computation times (few minutes per image). In this work, we present a fast technique that requires less than a second to localize the OD. The technique is based upon obtaining two projections of certain image features that encode the x- and y- coordinates of the OD. The resulting 1-D projections are then searched to determine the location of the OD. This avoids searching the 2-D image space and, thus, enhances the speed of the OD localization process. Image features such as retinal vessels orientation and the OD brightness are used in the current method. Four publicly-available databases, including STARE and DRIVE, are used to evaluate the proposed technique. The OD was successfully located in 330 images out of 340 images (97%) with an average computation time of 0.65 s.

  5. Spatiotemporal focusing-based widefield multiphoton microscopy for fast optical sectioning of thick tissues

    NASA Astrophysics Data System (ADS)

    Cheng, Li-Chung; Chang, Chia-Yuan; Yen, Wei-Chung; Chen, Shean-Jen

    2012-10-01

    Conventional multiphoton microscopy employs beam scanning; however, in this study a microscope based on spatiotemporal focusing offering widefield multiphoton excitation has been developed to provide fast optical sectioning images. The microscope integrates a 10 kHz repetition rate ultrafast amplifier featuring strong instantaneous peak power (maximum 400 μJ/pulse at 90 fs pulse width) with a TE-cooled, ultra-sensitive photon detecting, electron multiplying charge-coupled device camera. This configuration can produce multiphoton excited images with an excitation area larger than 200 × 100 μm2 at a frame rate greater than 100 Hz. Brownian motions of fluorescent microbeads as small as 0.5 μm have been instantaneously observed with a lateral spatial resolution of less than 0.5 μm and an axial resolution of approximately 3.5 μm. Moreover, we combine the widefield multiphoton microscopy with structure illuminated technique named HiLo to reject the background scattering noise to get better quality for bioimaging.

  6. Metal Optics Based nanoLEDs: In Search of a Fast, Efficient, Nanoscale Light Emitter

    NASA Astrophysics Data System (ADS)

    Eggleston, Michael Scott

    Since the invention of the laser, stimulated emission has been the de facto king of optical communication. Lasers can be directly modulated at rates as high as 50GHz, much faster than a typical solid state light-emitting diode (LED) that is limited by spontaneous emission to <1GHz. Unfortunately, lasers have a severe scaling problem; they require large cavities operated at high power to achieve efficient lasing. A properly designed LED can be made arbitrarily small and still operate with high-efficiency. On-chip interconnects is an area that is in desperate need of a high-speed, low-power optical emitter that can enable on-chip links to replace current high-loss metal wires. In this work, I will show that by utilizing proper antenna design, a nanoLED can be created that is faster than a laser while still operating at >50% efficiency. I start by formulating an optical antenna circuit model whose elements are based completely off of antenna geometry. This allows for intuitive antenna design and suggests that rate enhancements up to ~3,000x are possible while keeping antenna efficiency >50%. Such a massive speed-up in spontaneous emission would enable an LED that can be directly modulated at 100's of GHz, much faster than any laser. I then use the circuit model to design an arch-dipole antenna, a dipole antenna with an inductive arch across the feedgap. I experimentally demonstrate a free-standing arch-dipole based nanoLED with rate enhancement of 115x and 66% antenna efficiency. Because the emitter is InGaAsP, a common III-V material, I experimentally show that this device can be easily and efficiently coupled into an InP waveguide. Experimental coupling efficiencies up to 70% are demonstrated and directional antennas are employed that offer front to back emission ratios of 3:1. Finally, I show that a nanoLED can still have high quantum yield by using a transition metal dichalcogenide, WSe2, as the emitter material. By coupling a monolayer of WSe2 to a cavity

  7. Flare activity on low-mass eclipsing binary GJ 3236*

    NASA Astrophysics Data System (ADS)

    Šmelcer, L.; Wolf, M.; Kučáková, H.; Bílek, F.; Dubovský, P.; Hoňková, K.; Vraštil, J.

    2017-04-01

    We report the discovery of optical flares on the very low-mass red-dwarf eclipsing binary GJ 3236 and the results of our 2014-2016 photometric campaign. In total, this binary was monitored photometrically in all filters for about 900 h, which has revealed a flare rate of about 0.06 flares per hour. The amplitude of its flares is the largest among those detected in the V band (∼1.3 mag), R band (∼0.8 mag), I band (∼0.2 mag) and clear band (∼0.5 mag). The light curves of GJ 3236 were analysed and the statistics of detected flare events are presented. The energy released during individual flares was calculated as up to 2.4 × 1027 J and compared with other known active stars. The cumulative distribution of flare energies appears to follow a broken power law. The flare activity of this binary also plays an important role in the precise determination of its physical parameters and evolutionary status.

  8. Multifrequency observations of a flare on UV Ceti.

    NASA Astrophysics Data System (ADS)

    Stepanov, A. V.; Fuerst, E.; Krueger, A.; Hildebrandt, J.; Barwig, H.; Schmitt, J.

    1995-07-01

    Multifrequency observations of the flare of December 31, 1991 on UV Ceti are presented. The radio observations were carried out with the Effelsberg 100-m radio telescope at 4750MHz, whereas optical photometry was performed using the 0.8-m telescope of the Wendelstein Observatory in the five UBVRI colors. The radio burst started ~5min after the maximum of an optical flare. X-ray emission observed with the ROSAT PSPC before and after the optical flare conclusively demonstrates that an X-ray flare has occured. Several narrow-bandwidth radio spikes with duration of about 0.1s, peak flux density of 250mJy, and >=75% LH polarization were recorded. An interpretation of the spikes in terms of electron-cyclotron maser emission (ECME) and, alternatively, coherent plasma emission is proposed. The flare plasma parameters obtained from radio and soft X-ray data are as follows: n_e_=~10^11^/cm-3, T_e_=~10^7^K, B=~(200-800)G. Using these values, the escape windows for ECME have been calculated at ν=4.75GHz. It has been shown that there is actually no "perpendicular" window for the ordinary mode at the second and third harmonics of the electron gyrofrequency. The optical flare's cross-section area and the temperature of the "cool" plasma were found to be 4x10^16^cm^2^ and 16000K, respectively. Possible reasons for the time delay between the optical and radio flares as well as stellar flare models are discussed.

  9. Fast calculation method of computer generated hologram animation for viewpoint parallel shift and rotation using Fourier transform optical system.

    PubMed

    Watanabe, Ryosuke; Yamaguchi, Kazuhiro; Sakamoto, Yuji

    2016-01-20

    Computer generated hologram (CGH) animations can be made by switching many CGHs on an electronic display. Some fast calculation methods for CGH animations have been proposed, but one for viewpoint movement has not been proposed. Therefore, we designed a fast calculation method of CGH animations for viewpoint parallel shifts and rotation. A Fourier transform optical system was adopted to expand the viewing angle. The results of experiments were that the calculation time of our method was over 6 times faster than that of the conventional method. Furthermore, the degradation in CGH animation quality was found to be sufficiently small.

  10. X-ray studies of flaring magnetic structures

    NASA Astrophysics Data System (ADS)

    Goff, Christopher Philip

    This thesis studies non-thermal emission from flaring magnetic structures by looking at HXR emission from flare footpoints at a faint X-ray source above a flare loop and finally at radio emission generated by eruptions. By complementing high quality data from recent missions with data from older instrumentation, studies were performed to compare with accepted models. The relation between Hard X-ray footpoint emission and magnetic field strength in a sample of 32 flares was studied in order to investigate the effects of the magnetic field on the transport of accelerated electrons. It was found that one third of compact flares studied had stronger footpoints in stronger magnetic regions whereas the reverse is anticipated from magnetic trapping arguments. On 16th April 2002, a limb flare was studied in many wavelengths. This provided an opportunity to study an erupting filament from the low corona and into interplanetary space. RHESSI identified a moving X-ray source associated with a rising filament, confirming the plasmoid definition of Tsuneta (1997). The velocity profile of the filament was determined along with its exponential acceleration. This suggested that an instability was responsible for eruption, possibly the kink instability. Doppler shifts were observed on either side of the filament as it crossed the slit field of view, suggesting helical flows and thus a flux rope. A succession of quadrupolar flares, followed by an LDE were then studied. An associated CME was seen and appeared linked to the quadrupolar flares which should re main confined. The flaring region triggered loop expansion, which interacted with a neighbouring large-scale streamer. This led to a fast CME front, which weakened the restraining field above the active region filaments allowing a partial filament eruption. Although at first glance the observations appeared contradictory it was demonstrated that the quadrupolar flares remained confined while triggering a large-scale eruption.

  11. Study on the triggering process of solar flares based on Hinode/SOT observations

    SciTech Connect

    Bamba, Y.; Kusano, K.; Yamamoto, T. T.; Okamoto, T. J.

    2013-11-20

    We investigated four major solar flare events that occurred in active regions NOAA 10930 (2006 December 13 and 14) and NOAA 11158 (2011 February 13 and 15) by using data observed by the Solar Optical Telescope on board the Hinode satellite. To reveal the trigger mechanism of solar flares, we analyzed the spatio-temporal correlation between the detailed magnetic field structure and the emission image of the Ca II H line at the central part of flaring regions for several hours prior to the onset of the flares. In all the flare events, we observed that the magnetic shear angle in the flaring regions exceeded 70°, as well as that characteristic magnetic disturbances developed at the centers of flaring regions in the pre-flare phase. These magnetic disturbances can be classified into two groups depending on the structure of their magnetic polarity inversion lines; the so-called opposite-polarity and reversed-shear magnetic field recently proposed by our group, although the magnetic disturbance in one event of the four samples is too subtle to clearly recognize the detailed structure. The result suggests that some major solar flares are triggered by rather small magnetic disturbances. We also show that the critical size of the flare-trigger field varies among flare events and briefly discuss how the flare-trigger process depends on the evolution of active regions.

  12. Fiber optic thermal/fast neutron and gamma ray scintillation detector

    DOEpatents

    Neal, John S.; Mihalczo, John T.

    2006-11-28

    A detector system that combines a .sup.6Li loaded glass fiber scintillation thermal neutron detector with a fast scintillation detector in a single layered structure. Detection of thermal and fast neutrons and ionizing electromagnetic radiation is achieved in the unified detector structure. The fast scintillator replaces the polyethelene moderator layer adjacent the .sup.6Li loaded glass fiber panel of the neutron detector and acts as the moderator for the glass fibers. Fast neutrons, x-rays and gamma rays are detected in the fast scintillator. Thermal neutrons, x-rays and gamma rays are detected in the glass fiber scintillator.

  13. Fiber optic thermal/fast neutron and gamma ray scintillation detector

    DOEpatents

    Neal, John S.; Mihalczo, John T

    2007-10-30

    A system for detecting fissile and fissionable material originating external to the system includes: a .sup.6Li loaded glass fiber scintillator for detecting thermal neutrons, x-rays and gamma rays; a fast scintillator for detecting fast neutrons, x-rays and gamma rays, the fast scintillator conjoined with the glass fiber scintillator such that the fast scintillator moderates fast neutrons prior to their detection as thermal neutrons by the glass fiber scintillator; and a coincidence detection system for processing the time distributions of arriving signals from the scintillators.

  14. An integrated laser Raman optical sensor for fast detection of nitrogen and oxygen in a cryogenic mixture.

    PubMed

    Tiwari, Vidhu S; Luanje, Appolinaire T; Kalluru, Rajamohan R; Yueh, Fang Y; Singh, Jagdish P

    2011-04-01

    An integrated fiber optic Raman sensor was designed for real-time, nonintrusive detection of liquid nitrogen (LN(2)) in liquid oxygen (LO(2)) at high pressures and high flow rates. This was intended to monitor the quality of LO(2) in oxidizer feed lines during the ground testing of rocket engines. Various issues related to optical diagnosis of cryogenic fluids (LN(2)/LO(2)) in supercritical environment of rocket engine test facility, such as fluorescence from impurity in optical window of feed line, signal-noise ratio, and fast data acquisition time, etc., are well addressed. The integrated sensor employed a frequency doubled 532-nm continuous wave Nd:YAG laser as an excitation light source. The other optical components included were InPhotonics Raman probes, spectrometers, and photomultiplier tubes (PMTs). The spectrometer was used to collect the Raman spectrum of LN(2) and LO(2). The PMT detection unit was integrated with home-built LABVIEW software for fast monitoring of concentration ratios LN(2) and LO(2). Prior to designing an integrated sensor system, its optical components were also tested with gaseous nitrogen (GN(2)) and oxygen (GO(2)).

  15. Fast optical channel recovery in field demonstration of 100-Gbit/s Ethernet over OTN using real-time DSP.

    PubMed

    Yamazaki, Etsushi; Yamanaka, Shogo; Kisaka, Yoshiaki; Nakagawa, Tadao; Murata, Koichi; Yoshida, Eiji; Sakano, Toshikazu; Tomizawa, Masahito; Miyamoto, Yutaka; Matsuoka, Shinji; Matsui, Junichiro; Shibayama, Atsufumi; Abe, Jun-ichi; Nakamura, Yuichi; Noguchi, Hidemi; Fukuchi, Kiyoshi; Onaka, Hiroshi; Fukumitsu, Katsumi; Komaki, Kousuke; Takeuchi, Osamu; Sakamoto, Yuichiro; Nakashima, Hisao; Mizuochi, Takashi; Kubo, Kazuo; Miyata, Yoshikuni; Nishimoto, Hiroshi; Hirano, Susumu; Onohara, Kiyoshi

    2011-07-04

    A field trial of 100-Gbit/s Ethernet over an optical transport network (OTN) is conducted using a real-time digital coherent signal processor. Error free operation with the Q-margin of 3.2 dB is confirmed at a 100 Gbit/s Ethernet analyzer by concatenating a low-density parity-check code with a OTN framer forward error correction, after 80-ch WDM transmission through 6 spans x 70 km of dispersion shifted fiber without inline-dispersion compensation. Also, the recovery time of 12 msec is observed in an optical route switching experiment, which is achieved through fast chromatic dispersion estimation functionality.

  16. Fast aerosol optical thickness retrieval from MERIS data with the use of fast radiative transfer code and analytical radiative transfer solutions

    NASA Astrophysics Data System (ADS)

    Kokhanovsky, Alexander; Katsev, Iosif; Prikhach, Alexander; Zege, Eleonora

    We present the new fast aerosol retrieval technique (FAR) to retrieve the aerosol optical thick-ness (AOT), Angstrom parameter, and land reflectance from spectral satellite data. The most important difference of the proposed techniques from NASA/MODIS, ESA/MERIS and some other well-known AOT retrieval codes is that our retrievals do not use the look-up tables (LUT) technique but instead it is based on our previously developed extremely fast code RAY for ra-diative transfer (RT) computations and includes analytical solutions of radiative transfer. The previous version of the retrieval code (ART) was completely based at the RT computations. The FAR technique is about 100 times faster than ART because of the use combination of the RAY computation and analytical solution of the radiative transfer theory. The accuracy of these approximate solutions is thoroughly checked. Using the RT computations in the course of the AOT retrieval allows one to include any available local models of molecular atmosphere and of aerosol in upper and middle atmosphere layers for the treated area. Any set of wave-lengths from any satellite optical instruments can be processed. Moreover, we use the method of least squares in the retrieval of optical parameters of aerosol because the RAY code pro-vides the derivatives of the radiation characteristics with respect to the parameters in question. This technique allows the optimal use on multi-spectral information. The retrieval methods are flexible and can be used in synergetic algorithms, which couple data of two or more satel-lite receivers. These features may be considered as definite merits in comparison with the LUT technique. The successful comparison of FAR retrieved data with results of some other algorithms and with AERONET measurements will be demonstrated. Beside two important problems, namely, the effect of a priory choice of aerosol model to the retrieved AOT accuracy and effect of adjacent pixels containing clouds or snow spots is

  17. Spontaneous helix formation in non-chiral bent-core liquid crystals with fast linear electro-optic effect

    PubMed Central

    Sreenilayam, Sithara P.; Panarin, Yuri P.; Vij, Jagdish K.; Panov, Vitaly P.; Lehmann, Anne; Poppe, Marco; Prehm, Marko; Tschierske, Carsten

    2016-01-01

    Liquid crystals (LCs) represent one of the foundations of modern communication and photonic technologies. Present display technologies are based mainly on nematic LCs, which suffer from limited response time for use in active colour sequential displays and limited image grey scale. Herein we report the first observation of a spontaneously formed helix in a polar tilted smectic LC phase (SmC phase) of achiral bent-core (BC) molecules with the axis of helix lying parallel to the layer normal and a pitch much shorter than the optical wavelength. This new phase shows fast (∼30 μs) grey-scale switching due to the deformation of the helix by the electric field. Even more importantly, defect-free alignment is easily achieved for the first time for a BC mesogen, thus providing potential use in large-scale devices with fast linear and thresholdless electro-optical response. PMID:27156514

  18. The influence of posterior parietal cortex on extrastriate visual activity: A concurrent TMS and fast optical imaging study.

    PubMed

    Parks, Nathan A; Mazzi, Chiara; Tapia, Evelina; Savazzi, Silvia; Fabiani, Monica; Gratton, Gabriele; Beck, Diane M

    2015-11-01

    The posterior parietal cortex (PPC) is a critical node in attentional and saccadic eye movement networks of the cerebral cortex, exerting top-down control over activity in visual cortex. Here, we sought to further elucidate the properties of PPC feedback by providing a time-resolved map of functional connectivity between parietal and occipital cortex using single-pulse TMS to stimulate the left PPC while concurrently recording fast optical imaging data from bilateral occipital cortex. Magnetic stimulation of the PPC induced transient ipsilateral occipital activations (BA 18) 24-48ms post-TMS. Concurrent TMS and fast optical imaging results demonstrate a clear influence of PPC stimulation on activity within human extrastriate visual cortex and further extend this time- and space-resolved method for examining functional connectivity.

  19. The Influence of Posterior Parietal Cortex on Extrastriate Visual Activity: A Concurrent TMS and Fast Optical Imaging Study

    PubMed Central

    Parks, Nathan A.; Mazzi, Chiara; Tapia, Evelina; Savazzi, Silvia; Fabiani, Monica; Gratton, Gabriele; Beck, Diane M.

    2015-01-01

    The posterior parietal cortex (PPC) is a critical node in attentional and saccadic eye movement networks of the cerebral cortex, exerting top-down control over activity in visual cortex. Here, we sought to further elucidate the properties of PPC feedback by providing a time-resolved map of functional connectivity between parietal and occipital cortex using single-pulse TMS to stimulate the left PPC while concurrently recording fast optical imaging data from bilateral occipital cortex. Magnetic stimulation of the PPC induced transient ipsilateral occipital activations (BA 18) 24 to 48 ms post-TMS. Concurrent TMS and fast optical imaging results demonstrate a clear influence of PPC stimulation on activity within human extrastriate visual cortex and further extend this time- and space-resolved method for examining functional connectivity. PMID:26449990

  20. Spontaneous helix formation in non-chiral bent-core liquid crystals with fast linear electro-optic effect

    NASA Astrophysics Data System (ADS)

    Sreenilayam, Sithara P.; Panarin, Yuri P.; Vij, Jagdish K.; Panov, Vitaly P.; Lehmann, Anne; Poppe, Marco; Prehm, Marko; Tschierske, Carsten

    2016-05-01

    Liquid crystals (LCs) represent one of the foundations of modern communication and photonic technologies. Present display technologies are based mainly on nematic LCs, which suffer from limited response time for use in active colour sequential displays and limited image grey scale. Herein we report the first observation of a spontaneously formed helix in a polar tilted smectic LC phase (SmC phase) of achiral bent-core (BC) molecules with the axis of helix lying parallel to the layer normal and a pitch much shorter than the optical wavelength. This new phase shows fast (~30 μs) grey-scale switching due to the deformation of the helix by the electric field. Even more importantly, defect-free alignment is easily achieved for the first time for a BC mesogen, thus providing potential use in large-scale devices with fast linear and thresholdless electro-optical response.

  1. Fast, precise, and widely tunable frequency control of an optical parametric oscillator referenced to a frequency comb

    NASA Astrophysics Data System (ADS)

    Prehn, Alexander; Glöckner, Rosa; Rempe, Gerhard; Zeppenfeld, Martin

    2017-03-01

    Optical frequency combs (OFCs) provide a convenient reference for the frequency stabilization of continuous-wave lasers. We demonstrate a frequency control method relying on tracking over a wide range and stabilizing the beat note between the laser and the OFC. The approach combines fast frequency ramps on a millisecond timescale in the entire mode-hop free tuning range of the laser and precise stabilization to single frequencies. We apply it to a commercially available optical parametric oscillator (OPO) and demonstrate tuning over more than 60 GHz with a ramping speed up to 3 GHz/ms. Frequency ramps spanning 15 GHz are performed in less than 10 ms, with the OPO instantly relocked to the OFC after the ramp at any desired frequency. The developed control hardware and software are able to stabilize the OPO to sub-MHz precision and to perform sequences of fast frequency ramps automatically.

  2. Retro-modulators and fast beam steering for free-space optical communications

    NASA Astrophysics Data System (ADS)

    Chan, Trevor Keith

    Free-space optical (FSO) communications is a means of secure, high bandwidth communication through the use of a modulated laser beam in free-space as the information medium. The chaotic nature of the atmosphere and the motion of the communication nodes make laser alignment a crucial concern. The employment of retro-reflecting modulators makes the bidirectional quality of a communication link into a one sided alignment problem. While there are existing retro-reflecting modulators, their trade-offs create a lack of abilities (such as aperture size, angular range, high modulation speeds, economic viability) which do not fulfill the requirements for certain applications. Also, the beam must be directed towards the intended receiver. Form mobile or scintillated communication links, beam direction must be adaptable in real time. Once again, this area suffers from trade-offs where beamsteering speed is often limited. Research used to mitigate the trade-offs and adapt the devices into viable options for a wider range of applications is explored in this dissertation. Two forms of retro-modulators were explored; a MEMS deformable mirror retro-modulator and a solid silicon retro-modulator that modulated the light by frustrated total internal reflection (FTIR). The MEMS version offered a high speed, scalable, wavelength/angle insensitive retro-modulator which can be massed produced at low cost, while the solid retro-modulator offered a large field of view with low cost as well. Both modulator's design, simulated performances, fabrication and experimental characterization are described in this dissertation. An ultra-fast beamscanner was also designed using 2-dimensional dispersion. By using wavelength switching for directional control, a beamscanner was developed that could switch light faster than pre-existing beamscanners while the beams characteristics (most importantly its aperture) could be freely adjusted by the independent optics. This beamscanner was preceded by our

  3. Fast double-phase retrieval in Fresnel domain using modified Gerchberg-Saxton algorithm for lensless optical security systems.

    PubMed

    Hwang, Hone-Ene; Chang, Hsuan T; Lie, Wen-Nung

    2009-08-03

    A novel fast double-phase retrieval algorithm for lensless optical security systems based on the Fresnel domain is presented in this paper. Two phase-only masks are efficiently determined by using a modified Gerchberg-Saxton algorithm, in which two cascaded Fresnel transforms are replaced by one Fourier transform with compensations to reduce the consumed computations. Simulation results show that the proposed algorithm substantially speeds up the iterative process, while keeping the reconstructed image highly correlated with the original one.

  4. Understanding Solar Flares

    NASA Astrophysics Data System (ADS)

    Antiochos, Spiro K.; Karpen, J. T.; DeVore, C. R.

    2012-05-01

    Solar flares and their associated coronal mass ejections are the most energetic explosions in the solar system. The largest events pose the greatest space weather dangers to life and civilization, and are of extreme importance to human space exploration. They also provide the best opportunity to study the universal processes of magnetic reconnection and particle acceleration that underlie most solar activity. The two great mysteries of solar flares are: how can so much energy be released so quickly, and how can such a large fraction (50% or more) end up in energetic particles. We present results from recent numerical modeling that sheds new light on these mysteries. These calculations use the highest spatial resolution yet achieved in order to resolve the flare dynamics as clearly as possible. We conclude from this work that magnetic island formation is the defining property of magnetic reconnection in the solar corona, at least, in the large-scale current sheet required for a solar flare. Furthermore, we discuss the types of future observations and modeling that will be required to solve definitively the solar flare mysteries. This work was supported, in part, by the NASA TR&T and SR&T Programs.

  5. Flare Plasma Iron Abundance

    NASA Technical Reports Server (NTRS)

    Dennis, Brian R.; Dan, Chau; Jain, Rajmal; Schwartz, Richard A.; Tolbert, Anne K.

    2008-01-01

    The equivalent width of the iron-line complex at 6.7 keV seen in flare X-ray spectra suggests that the iron abundance of the hottest plasma at temperatures >approx.10 MK may sometimes be significantly lower than the nominal coronal abundance of four times the photospheric value that is commonly assumed. This conclusion is based on X-ray spectral observations of several flares seen in common with the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and the Solar X-ray Spectrometer (SOXS) on the second Indian geostationary satellite, GSAT-2. The implications of this will be discussed as it relates to the origin of the hot flare plasma - either plasma already in the corona that is directly heated during the flare energy release process or chromospheric plasma that is heated by flare-accelerated particles and driven up into the corona. Other possible explanations of lower-than-expected equivalent widths of the iron-line complex will also be discussed.

  6. On fading probability density functions of fast-tracked and untracked free-space optical communication channels

    NASA Astrophysics Data System (ADS)

    Zhao, Zhijun; Liao, Rui

    2011-03-01

    Free-space optical (FSO) communication systems suffer from average power loss and instantaneous power fading due to the atmospheric turbulence. The channel fading probability density function (pdf) is of critical importance for FSO communication system design and evaluation. The performance and reliability of FSO communication systems can be greatly enhanced if fast-tacking devices are employed at the transmitter in order to compensate laser beam wander at the receiver aperture. The fast-tracking method is especially effective when communication distance is long. This paper studies the fading probability density functions of both fast-tracked and untracked FSO communication channels. Large-scale wave-optics simulations are conducted for both tracked and untracked lasers. In the simulations, the Kolmogorov spectrum is adopted, and it is assumed that the outer scale is infinitely large and the inner scale is negligibly small. The fading pdfs of both fast-tracked and untracked FSO channels are obtained from the simulations. Results show that the fast-tracked channel fading can be accurately modeled as gamma-distributed if receiver aperture size is smaller than the coherence radius. An analytical method is given for calculating the untracked fading pdfs of both point-like and finite-size receiver apertures from the fast-tracked fading pdf. For point-like apertures, the analytical method gives pdfs close to the well-known gamma-gamma pdfs if off-axis effects are omitted in the formulation. When off-axis effects are taken into consideration, the untracked pdfs obtained using the analytical method fit the simulation pdfs better than gamma-gamma distributions for point-like apertures, and closely fit the simulation pdfs for finite-size apertures where gamma-gamma pdfs deviate from those of the simulations significantly.

  7. Fast pesticide detection inside microfluidic device with integrated optical pH, oxygen sensors and algal fluorescence.

    PubMed

    Tahirbegi, Islam Bogachan; Ehgartner, Josef; Sulzer, Philipp; Zieger, Silvia; Kasjanow, Alice; Paradiso, Mirco; Strobl, Martin; Bouwes, Dominique; Mayr, Torsten

    2017-02-15

    The necessities of developing fast, portable, cheap and easy to handle pesticide detection platforms are getting attention of scientific and industrial communities. Although there are some approaches to develop microchip based pesticide detection platforms, there is no compact microfluidic device for the complementary, fast, cheap, reusable and reliable analysis of different pesticides. In this work, a microfluidic device is developed for in-situ analysis of pesticide concentration detected via metabolism/photosynthesis of Chlamydomonas reinhardtii algal cells (algae) in tap water. Algae are grown in glass based microfluidic chip, which contains integrated optical pH and oxygen sensors in a portable system for on-site detection. In addition, intrinsic algal fluorescence is detected to analyze the pesticide concentration in parallel to pH and oxygen sensors with integrated fluorescence detectors. The response of the algae under the effect of different concentrations of pesticides is evaluated and complementary inhibition effects depending on the pesticide concentration are demonstrated. The three different sensors allow the determination of various pesticide concentrations in the nanomolar concentration range. The miniaturized system provides the fast quantification of pesticides in less than 10min and enables the study of toxic effects of different pesticides on Chlamydomonas reinhardtii green algae. Consequently, the microfluidic device described here provides fast and complementary detection of different pesticides with algae in a novel glass based microfluidic device with integrated optical pH, oxygen sensors and algal fluorescence.

  8. SU-E-T-75: Commissioning Optically Stimulated Luminescence Dosimeters for Fast Neutron Therapy

    SciTech Connect

    Young, L; Yang, F; Sandison, G; Woodworth, D; McCormick, Z

    2014-06-01

    Purpose: Fast neutrons therapy used at the University of Washington is clinically proven to be more effective than photon therapy in treating salivary gland and other cancers. A nanodot optically stimulated luminescence (OSL) system was chosen to be commissioned for patient in vivo dosimetry for neutron therapy. The OSL-based radiation detectors are not susceptible to radiation damage caused by neutrons compared to diodes or MOSFET systems. Methods: An In-Light microStar OSL system was commissioned for in vivo use by radiating Landauer nanodots with neutrons generated from 50.0 MeV protons accelerated onto a beryllium target. The OSLs were calibrated the depth of maximum dose in solid water localized to 150 cm SAD isocenter in a 10.3 cm square field. Linearity was tested over a typical clinical dose fractionation range i.e. 0 to 150 neutron-cGy. Correction factors for transient signal fading, trap depletion, gantry angle, field size, and wedge factor dependencies were also evaluated. The OSLs were photo-bleached between radiations using a tungsten-halogen lamp. Results: Landauer sensitivity factors published for each nanodot are valid for measuring photon and electron doses but do not apply for neutron irradiation. Individually calculated nanodot calibration factors exhibited a 2–5% improvement over calibration factors computed by the microStar InLight software. Transient fading effects had a significant impact on neutron dose reading accuracy compared to photon and electron in vivo dosimetry. Greater accuracy can be achieved by calibrating and reading each dosimeter within 1–2 hours after irradiation. No additional OSL correction factors were needed for field size, gantry angle, or wedge factors in solid water phantom measurements. Conclusion: OSL detectors are a useful for neutron beam in vivo dosimetry verification. Dosimetric accuracy comparable to conventional diode systems can be achieved. Accounting for transient fading effects during the neutron beam

  9. Fast and automatic depth control of iterative bone ablation based on optical coherence tomography data

    NASA Astrophysics Data System (ADS)

    Fuchs, Alexander; Pengel, Steffen; Bergmeier, Jan; Kahrs, Lüder A.; Ortmaier, Tobias

    2015-07-01

    Laser surgery is an established clinical procedure in dental applications, soft tissue ablation, and ophthalmology. The presented experimental set-up for closed-loop control of laser bone ablation addresses a feedback system and enables safe ablation towards anatomical structures that usually would have high risk of damage. This study is based on combined working volumes of optical coherence tomography (OCT) and Er:YAG cutting laser. High level of automation in fast image data processing and tissue treatment enables reproducible results and shortens the time in the operating room. For registration of the two coordinate systems a cross-like incision is ablated with the Er:YAG laser and segmented with OCT in three distances. The resulting Er:YAG coordinate system is reconstructed. A parameter list defines multiple sets of laser parameters including discrete and specific ablation rates as ablation model. The control algorithm uses this model to plan corrective laser paths for each set of laser parameters and dynamically adapts the distance of the laser focus. With this iterative control cycle consisting of image processing, path planning, ablation, and moistening of tissue the target geometry and desired depth are approximated until no further corrective laser paths can be set. The achieved depth stays within the tolerances of the parameter set with the smallest ablation rate. Specimen trials with fresh porcine bone have been conducted to prove the functionality of the developed concept. Flat bottom surfaces and sharp edges of the outline without visual signs of thermal damage verify the feasibility of automated, OCT controlled laser bone ablation with minimal process time.

  10. Valentines Day X2 Flare

    NASA Video Gallery

    Active region 1158 let loose with an X2.2 flare at 0153 UT or 8:50 pm ET on February 15, 2011, the largest flare since Dec. 2006 and the biggest flare so far in Solar Cycle 24. This video was taken...

  11. Activation of solar flares

    SciTech Connect

    Cargill, P.J.; Migliuolo, S.; Hood, A.W.

    1984-11-01

    The physics of the activation of two-ribbon solar flares via the MHD instability of coronal arcades is presented. The destabilization of a preflare magnetic field is necessary for a rapid energy release, characteristic of the impulsive phase of the flare, to occur. The stability of a number of configurations are examined, and the physical consequences and relative importance of varying pressure profiles and different sets of boundary conditions (involving field-line tying) are discussed. Instability modes, driven unstable by pressure gradients, are candidates for instability. Shearless vs. sheared equilibria are also discussed. (ESA)

  12. White-light flares observed by Yohkoh

    NASA Technical Reports Server (NTRS)

    Hudson, Hugh S.; Acton, Loren W.; Hirayama, Tadashi; Uchida, Yutaka

    1992-01-01

    The Yohkoh observatory is producing a first sample of white-light flares observed from space. We present observations of four of them, all X-class events. The Yohkoh Soft X-ray Telescope white-light data typically have a 12-s cadence for images with 2.46 arcsec pixels over a field of view of 2.62 arcmin in one of two broad-band optical filters, and the November 15, 1991 flare produced a brightness increase of about 38 percent over the photospheric brightness in the 30 A passband filter centered at 4308 A. The white-light flare morphology in the best-observed flares displays a double 'footpoint' character, establishing a close relationship with the compact magnetic flux tubes involved with both hard and soft X-ray emissions. We describe the data in the context of the soft and hard X-ray observations simultaneously carried out on board the Yohkoh satellite, emphasizing energetics and timing.

  13. Observations of Flare-Associated Waves with SolarB

    NASA Astrophysics Data System (ADS)

    Narukage, N.; Shibata, K.

    2004-12-01

    In Hα, a flare-associated chromospheric wave (called a Moreton wave) was discovered in 1960, and after that such waves are sometimes observed. Uchida (1968, 1974) identified the Moreton wave as the intersection of a coronal MHD fast-mode shock and the chromosphere. Recently, the Soft X-ray Telescope (SXT) on board Yohkoh observed coronal wave-like disturbances (X-ray waves). Narukage et al. (2002, 2004) showed two X-ray waves are MHD fast-mode shock, i.e. coronal counterparts of the Moreton waves. The SolarB has Solar Optical Telescope (SOT), X-Ray Telescope (XRT) and EUV Imaging Spectrometer (EIS) on board and will be launched in 2006. We expect SOT, XRT and EIS will detect chromospheric Moreton waves, coronal X-ray waves and line-of-sight velocity of waves, respectively. In preparation for SolarB, we examine the detectable possibility of waves with these telescopes and suggest methods for observation.

  14. The DAWN and FLARE Surveys

    NASA Astrophysics Data System (ADS)

    Rhoads, James E.; Malhotra, Sangeeta; Zheng, Zhenya; Monson, Andrew; Persson, S. Eric; Gonzalez, Alicia; Probst, Ronald G.; Swaters, Robert A.; Tilvi, Vithal; Finkelstein, Steven L.; Jiang, Tianxing; Mobasher, Bahram; Dickinson, Mark; Dressler, Alan; Lee, Janice C.; Ammons, S. Mark; Zabludoff, Ann I.; Emig, Kimberly; Hibon, Pascale; Joshi, Bhavin; Pharo, John; Smith, Mark David; Trahan, Jacob; Veilleux, Sylvain; Wang, JunXian; Wong, Kenneth C.; Yang, Huan; Zabl, Johannes; FLARE Team, the DAWN Team

    2016-01-01

    Lyman alpha galaxy populations at redshifts 8 and 9 offer a unique probe of cosmological reionization. Resonant scattering by neutral hydrogen should obscure such galaxies if the intergalactic medium is neutral, implying a steep decline in their observed counts at redshifts prior to the central phases of reionization. We are pursuing a pair of ambitious near-infrared narrow bandpass surveys to probe these populations: The Cosmic Deep and Wide Narrowband (DAWN) survey, using the NEWFIRM camera at the National Optical Astronomy Observatory's 4m Mayall telescope, and the First Light And Reionization Experiment (FLARE), using the FourStar camera at the 6.5m Magellan Telescopes. DAWN is an NOAO survey program, covering a total of five NEWFIRM fields (one square degree in all) to a limiting sensitivity around 9e-18 erg/cm2/s for emission lines at 1.06 micron wavelength, corresponding to redshift 7.7 for Lyman alpha. FLARE uses the larger aperture of the Magellan telescope to push to still higher redshift, with a limiting line flux near 5e-18 erg/cm2/s in the COSMOS field, and with additional coverage of a half dozen strongly lensed fields where we can probe still further down the Lyman alpha luminosity function. Imaging observations are largely complete for both surveys, and we are now pursuing spectroscopic followup at both near-IR and optical wavelengths. We will summarize initial results from both surveys in this meeting. With two nights of Keck+MOSFIRE observations complete already (and more scheduled in late 2015), we have numerous emission line confirmations-- both including many H alpha and Oxygen emitters in the foreground, and at least one Lyman alpha galaxy in the epoch of reionization.

  15. M DWARF FLARE CONTINUUM VARIATIONS ON ONE-SECOND TIMESCALES: CALIBRATING AND MODELING OF ULTRACAM FLARE COLOR INDICES

    SciTech Connect

    Kowalski, Adam F.; Mathioudakis, Mihalis; Hawley, Suzanne L.; Hilton, Eric J.; Wisniewski, John P.; Dhillon, Vik S.; Marsh, Tom R.; Brown, Benjamin P.

    2016-04-01

    We present a large data set of high-cadence dMe flare light curves obtained with custom continuum filters on the triple-beam, high-speed camera system ULTRACAM. The measurements provide constraints for models of the near-ultraviolet (NUV) and optical continuum spectral evolution on timescales of ≈1 s. We provide a robust interpretation of the flare emission in the ULTRACAM filters using simultaneously obtained low-resolution spectra during two moderate-sized flares in the dM4.5e star YZ CMi. By avoiding the spectral complexity within the broadband Johnson filters, the ULTRACAM filters are shown to characterize bona fide continuum emission in the NUV, blue, and red wavelength regimes. The NUV/blue flux ratio in flares is equivalent to a Balmer jump ratio, and the blue/red flux ratio provides an estimate for the color temperature of the optical continuum emission. We present a new “color–color” relationship for these continuum flux ratios at the peaks of the flares. Using the RADYN and RH codes, we interpret the ULTRACAM filter emission using the dominant emission processes from a radiative-hydrodynamic flare model with a high nonthermal electron beam flux, which explains a hot, T ≈ 10{sup 4} K, color temperature at blue-to-red optical wavelengths and a small Balmer jump ratio as observed in moderate-sized and large flares alike. We also discuss the high time resolution, high signal-to-noise continuum color variations observed in YZ CMi during a giant flare, which increased the NUV flux from this star by over a factor of 100.

  16. Smokeless, efficient, nontoxic flaring

    SciTech Connect

    Leite, O.C. )

    1991-03-01

    The primary function of a flare is to dispose of toxic, corrosive or flammable vapors safely, under relief conditions, by converting them into less objectional products by combustion. Toxic limits are the greatest concentration of a poisonous substance that can be tolerated in the air for a length of time without danger. Most emergencies causing overpressure on safety relief valves can be controlled within 5 to 10 minutes, for example, by shutting down a pump or compressor. A period of 10 to 30 minutes should be sufficient to control any emergency situation short of a catastrophe. Atmospheric discharge of hydrocarbons or other flammables should be designed to avoid the formation of flammable mixtures and exposure of personnel to toxic or corrosive vapors at grade level or on elevated structures. Either elevated flares or ground flares can accomplish efficiently the discharges to atmosphere when properly designed. Proper design is based on the characteristics of waste gas, heat radiation, noise levels, smoke and atmospheric dispersion. Smokeless flares use smoke suppression systems, like stream injection, forced draft air fans, high pressure gas injection and other devices to reduce the smoking tendency of certain fuels, improving air entrainment and mixing.

  17. Impulsively generated fast coronal pulsations

    NASA Technical Reports Server (NTRS)

    Edwin, P. M.; Roberts, B.

    1986-01-01

    Rapid oscillations in the corona are discussed from a theoretical standpoint, developing some previous work on ducted, fast magnetoacoustic waves in an inhomogeneous medium. In the theory, impulsively (e.g., flare) generated mhd (magnetohydrodynamic) waves are ducted by regions of low Alfven speed (high density) such as coronal loops. Wave propagation in such ducts is strongly dispersive and closely akin to the behavior of Love waves in seismology, Pekeris waves in oceanography and guided waves in fiber optics. Such flare-generated magnetoacoustic waves possess distinctive temporal signatures consisting of periodic, quasi-periodic and decay phases. The quasi-periodic phase possesses the strongest amplitudes and the shortest time scales. Time scales are typically of the order of a second for inhomogeneities (coronal loop width) of 1000 km and Alfven speeds of 1000/kms, and pulse duration times are of tens of seconds. Quasi-periodic signatures have been observed in radio wavelengths for over a decade and more recently by SMM. It is hoped that the theoretical ideas outlined may be successfully related to these observations and thus aid the interpretation of oscillatory signatures recorded by SMM. Such signatures may also provide a diagnostic of coronal conditions. New aspects of the ducted mhd waves, for example their behavior in smoothly varying as opposed to tube-like inhomogeneities, are currently under investigation. The theory is not restricted to loops but applied equally to open field regions.

  18. Workshop on Impulsive Solar Flares, 2nd, University of New Hampshire, Durham, Sept. 26-28, 1988, Proceedings

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Papers on impulsive solar flares are presented, covering topics such as the optical properties of impulsive flares, soft X-ray spectroscopy of solar flares, the energy release process in impulsive bursts, high-velocity evaporation and a high-speed shock wave during the impulsive phase of the April 24, 1984 flare, nonpotential magnetic fields at sites of gamma-ray flares, and meter-decimeter and microwave radio observations of solar flares. Other topics include rise times in solar radio bursts, removal of the gradual component in analyses of solar impulsive bursts, ion and relativistic electron transport in solar flares, neutrons and gamma-ray emission on June 3, 1982, emission characteristics of three intense solar flares in cycle 21, and solar flare gamma-ray observations with the Hinotori satellite. Additional topics include spectra of relativistic solar proton ground-level events recorded in Antarctica, a 153-d periodicity in the occurrence of solar flares producing energetic interplanetary electrons, a search for solar neutron response in neutron monitor data, neutral beams in two-ribbon flares and in the geomagnetic tail, beam heating in solar flares, and solar flare gamma-ray line shapes.

  19. Ginga observations of X-ray flares on Algol

    NASA Technical Reports Server (NTRS)

    Stern, R. A.; Uchida, Y.; Tsuneta, S.; Nagase, F.

    1992-01-01

    The Ginga X-ray satellite observed Algol (Beta Per) for 2 days in 1989 January, including both the primary optical eclipse and most of the secondary eclipse. We derive upper limits of about 20 and 10 percent, respectively, for the eclipsed flux fraction during the two eclipses. A large flare lasting over 12 hr was seen prior to and during secondary eclipse. High-temperature Fe line emission is clearly detected in the proportional counter data. The Fe line equivalent width is variable during the flare, ranging from 0.4-1.0 keV. Except for two intervals during the flare rise, the observed equivalent width is lower than predicted using solar abundances and an optically thin plasma model. Similar behavior has also been observed by Ginga in a large flare on UX Ari: in both events, opacity effects at line center may be playing a significant role. Loop model analysis of the large flare suggests that it involves a substantially longer loop or loops than a shorter duration Algol flare seen with Exosat.

  20. Optically-energized, emp-resistant, fast-acting, explosion initiating device

    DOEpatents

    Benson, David A.; Kuswa, Glenn W.

    1987-01-01

    Optical energy, provided from a remote user-operated source, is utilized to initially electrically charge a capacitor in a circuit that also contains an explosion initiating transducer in contact with a small explosive train contained in an attachable housing. Additional optical energy is subsequently supplied in a preferred embodiment to an optically responsive phototransistor acting in conjunction with a silicon controlled rectifer to release the stored electrical energy through the explosion initiating transducer to set off the explosive train. All energy transfers between the user and the explosive apparatus, either for charging it up or for setting it off, are conveyed optically and may be accomplished in a single optical fiber with coding to distinguish between specific optical energy transfers and between these and any extraneous signals.

  1. Fast, high-fidelity, all-optical and dynamically-controlled polarization gate using room-temperature atomic vapor

    SciTech Connect

    Li, Runbing; Zhu, Chengjie; Deng, L.; Hagley, E. W.

    2014-10-20

    We demonstrate a fast, all-optical polarization gate in a room-temperature atomic medium. Using a Polarization-Selective-Kerr-Phase-Shift (PSKPS) technique, we selectively write a π phase shift to one circularly-polarized component of a linearly-polarized input signal field. The output signal field maintains its original strength but acquires a 90° linear polarization rotation, demonstrating fast, high-fidelity, dynamically-controlled polarization gate operation. The intensity of the polarization-switching field used in this PKSPK-based polarization gate operation is only 2 mW/cm{sup 2}, which would be equivalent to 0.5 nW of light power (λ = 800 nm) confined in a typical commercial photonic hollow-core fiber. This development opens a realm of possibilities for potential future extremely low light level telecommunication and information processing systems.

  2. Fast and efficient loading of a Rb magneto-optical trap using light-induced atomic desorption

    SciTech Connect

    Atutov, S.N.; Calabrese, R.; Guidi, V.; Mai, B.; Rudavets, A.G.; Scansani, E.; Tomassetti, L.; Biancalana, V.; Burchianti, A.; Marinelli, C.; Mariotti, E.; Moi, L.; Veronesi, S.

    2003-05-01

    We have obtained fast loading of a rubidium magneto-optical trap and very high collection efficiency by capturing the atoms desorbed by a light flash from a polydimethylsiloxane film deposited on the internal surface of a cell. The atoms are trapped with an effective loading time of about 65 ms at a loading rate greater than 2x10{sup 8} atoms per second. This rate is larger than the values reported in literature and is obtained by preserving a long lifetime of the trapped atoms. This lifetime exceeds the filling time by nearly two orders of magnitude. Trap loading by light-induced desorption from siloxane compounds can be very effectively applied to store and trap a large number of atoms in the case of very weak atomic flux or extremely low vapor density. It can be also effectively used for fast production of ultracold atoms.

  3. Fast and cheap prototyping of nonstandard optical components for sensing speckle dynamics

    NASA Astrophysics Data System (ADS)

    Jakobsen, M. L.; Olesen, A. S.; Stubager, J.; Hanson, S. G.; Kühn, Jan; Pedersen, H. C.

    2016-04-01

    As a part of the work carried out a project supported by the Danish council for technology and innovation, we have investigated the option of smoothening standard CNC machined surfaces. In the process of constructing optical prototypes, involving custom-designed optics, the development price and time can become a prohibitively large part of a research budget. Machining the optical surfaces of a molding tool may be done directly using diamond turning, but it is expensive and time consuming. Alternatively, a more standardized and cheaper machining method can be used, however, calling for manual polishing afterwards. Particularly, this last process is expensive as well, and will introduce an uncertainty in precisely how much material the polishing process will remove, introducing roughness on a larger lateral scale, such as waviness. Therefore, we have investigated the possibilities of smoothening surfaces of various shapes succeeding a standard CNC machining process. Different coatings have been tested for their abilities to fill and smoothen out structures of larger scales, while removing the small-scale roughness, which is critical for optical uses. In this work we will present an optical element, designed for optical spatial filtering velocimetry. The spatial filter is the key component in an optical sensor for non-contact measurement of surface vibrations, based on speckle dynamics. The optical element is casted in silicon. The results of smoothing an optical element will be demonstrated, and the sensor will be demonstrated for real-time measurements.

  4. Microwave Type III Pair Bursts in Solar Flares

    NASA Astrophysics Data System (ADS)

    Tan, Baolin; Mészárosová, Hana; Karlický, Marian; Huang, Guangli; Tan, Chengming

    2016-03-01

    A solar microwave type III pair burst is composed of normal and reverse-sloped (RS) burst branches with oppositely fast frequency drifts. It is the most sensitive signature of the primary energy release and electron accelerations in flares. This work reports 11 microwave type III pair events in 9 flares observed by radio spectrometers in China and the Czech Republic at a frequency of 0.80-7.60 GHz during 1994-2014. These type III pairs occurred in flare impulsive and postflare phases with separate frequencies in the range of 1.08-3.42 GHz and a frequency gap of 10-1700 MHz. The frequency drift increases with the separate frequency (fx), the lifetime of each burst is anti-correlated to fx, while the frequency gap is independent of fx. In most events, the normal branches are drifting obviously faster than the RS branches. The type III pairs occurring in flare impulsive phase have lower separate frequencies, longer lifetimes, wider frequency gaps, and slower frequency drifts than that occurring in postflare phase. Also, the latter always has strong circular polarization. Further analysis indicates that near the flare energy release sites the plasma density is about {10}10{--}{10}11 cm-3 and the temperature is higher than 107 K. These results provide new constraints to the acceleration mechanism in solar flares.

  5. All sky coordination initiative, simple service for wide-field monitoring systems to cooperate in searching for fast optical transients

    NASA Astrophysics Data System (ADS)

    Karpov, S.; Sokołowski, M.; Gorbovskoy, E.

    Here we stress the necessity of cooperation between different wide-field monitoring projects (FAVOR/TORTORA, Pi of the Sky, MASTER, etc), aimed for independent detection of fast optical transients, in order to maximize the area of the sky covered at any moment and to coordinate the monitoring of gamma-ray telescopes' field of view. We review current solutions available for it and propose a simple protocol with dedicated service (ASCI) for such systems to share their current status and pointing schedules.

  6. Relationship of solar flare accelerated particles to solar energetic particles (SEPs) observed in the interplanetary medium

    SciTech Connect

    Lin, R.P.

    2005-08-01

    Observations of hard X-ray (HXR)/gamma-ray continuum and gamma-ray lines produced by energetic electrons and ions, respectively, colliding with the solar atmosphere, have shown that large solar flares can accelerate ions up to many GeV and electrons up to hundreds of MeV. Solar energetic particles (SEPs) are observed by spacecraft near 1 AU and by ground-based instrumentation to extend up to similar energies, but these appear to be accelerated by shocks associated with fast Coronal Mass Ejections (CMEs). The Ramaty High Energy Solar Spectroscopic Imager (RHESSI) mission provides high-resolution spectroscopy and imaging of flare HXRs and gamma-rays. Here we review RHESSI observations for large solar flares and SEP events. The 23 July gamma-ray line flare was associated with a fast, wide CME but no SEPs were observed, while the 21 April 2002 flare had no detectable gamma-ray line emission but a fast CME and strong SEP event were observed. The October- November 2003 series of large flares and associated fast CMEs produced both gamma-ray line emission and strong SEP events. The spectra of flare-accelerated protons, inferred from the gamma-ray line emission observed by RHESSI, is found to be essentially identical to the spectra of the SEPs observed near 1 AU for the well-connected 2 November and 20 January events.

  7. Performance evaluation of coherent free space optical communications with a double-stage fast-steering-mirror adaptive optics system depending on the Greenwood frequency.

    PubMed

    Liu, Wei; Yao, Kainan; Huang, Danian; Lin, Xudong; Wang, Liang; Lv, Yaowen

    2016-06-13

    The Greenwood frequency (GF) is influential in performance improvement for the coherent free space optical communications (CFSOC) system with a closed-loop adaptive optics (AO) unit. We analyze the impact of tilt and high-order aberrations on the mixing efficiency (ME) and bit-error-rate (BER) under different GF. The root-mean-square value (RMS) of the ME related to the RMS of the tilt aberrations, and the GF is derived to estimate the volatility of the ME. Furthermore, a numerical simulation is applied to verify the theoretical analysis, and an experimental correction system is designed with a double-stage fast-steering-mirror and a 97-element continuous surface deformable mirror. The conclusions of this paper provide a reference for designing the AO system for the CFSOC system.

  8. A Hard Gamma-Ray Flare from 3C 279 in 2013 December

    NASA Astrophysics Data System (ADS)

    Paliya, Vaidehi S.; Diltz, Chris; Böttcher, Markus; Stalin, C. S.; Buckley, David

    2016-01-01

    The blazar 3C 279 exhibited twin γ-ray flares of similar intensity in 2013 December and 2014 April. In this work, we present a detailed multi-wavelength analysis of the 2013 December flaring event. Multi-frequency observations reveal the uncorrelated variability patterns with X-ray and optical-UV fluxes peaking after the γ-ray maximum. The broadband spectral energy distribution (SED) at the peak of the γ-ray activity shows a rising γ-ray spectrum but a declining optical-UV flux. This observation along with the detection of uncorrelated variability behavior rules out the one-zone leptonic emission scenario. We, therefore, adopt two independent methodologies to explain the SED: a time-dependent lepto-hadronic modeling and a two-zone leptonic radiative modeling approach. In the lepto-hadronic modeling, a distribution of electrons and protons subjected to a randomly orientated magnetic field produces synchrotron radiation. Electron synchrotron is used to explain the IR to UV emission while proton synchrotron emission is used to explain the high-energy γ-ray emission. A combination of both electron synchrotron self-Compton emission and proton synchrotron emission is used to explain the X-ray spectral break seen during the later stage of the flare. In the two-zone modeling, we assume a large emission region emitting primarily in IR to X-rays and γ-rays to come primarily from a fast-moving compact emission region. We conclude by noting that within a span of four months, 3C 279 has shown the dominance of a variety of radiative processes over each other and this reflects the complexity involved in understanding the physical properties of blazar jets in general.

  9. Dynamics of flare sprays. [in sun

    NASA Technical Reports Server (NTRS)

    Tandberg-Hanssen, E.; Martin, S. F.; Hansen, R. T.

    1980-01-01

    During solar cycle No. 20 new insight into the flare-spray phenomenon has been attained due to several innovations in solar optical-observing techniques (higher spatial resolution cinema-photography, tunable passband filters, multislit spectroscopy and extended angular field coronagraphs). From combined analysis of 13 well-observed sprays which occurred between 1969-1974 it is concluded that (1) the spray material originates from a preexisting active region filament which undergoes increased absorption some tens of minutes prior to the abrupt chromospheric brightening at the 'flare-start', and (2) the spray material is confined within a steadily expanding, loop-shaped (presumable magnetically controlled) envelope with part of the materials draining back down along one or both legs of the loop.

  10. SnO2-MOF-Fabry-Perot humidity optical sensor system based on fast Fourier transform technique

    NASA Astrophysics Data System (ADS)

    Lopez-Aldaba, A.; Lopez-Torres, D.; Ascorbe, J.; Rota-Rodrigo, S.; Elosua, C.; Lopez-Amo, M.; Arregui, F. J.; Corres, J. M.; Auguste, J.-L.; Jamier, R.; Roy, P.

    2016-05-01

    In this paper, a new sensor system for relative humidity measurements based on a SnO2 sputtering deposition on a microstructured optical fiber (MOF) low-finesse Fabry-Perot (FP) sensing head is presented and characterized. The interrogation of the sensing head is carried out by monitoring the Fast Fourier Transform phase variations of the FP interference frequency. This method is low-sensitive to signal amplitude variations and also avoids the necessity of tracking the evolution of peaks and valleys in the spectrum. The sensor is operated within a wide humidity range (20%-90% relative humidity) with a maximum sensitivity achieved of 0.14rad/%. The measurement method uses a commercial optical interrogator as the only active element, this compact solution allows real time analysis of the data.

  11. Derivation of the physical parameters for strong and weak flares from the Hα line

    NASA Astrophysics Data System (ADS)

    Semeida, M. A.; Rashed, M. G.

    2016-06-01

    The two flares of 19 and 30 July 1999 were observed in the Hα line using the multichannel flare spectrograph (MFS) at the Astronomical Institute in Ondřejov, Czech Republic. We use a modified cloud method to fit the Hα line profiles which avoids using the background profile. We obtain the four parameters of the two flares: the source function, the optical thickness at line center, the line-of-sight velocity and the Doppler width. The observed asymmetry profiles have been reproduced by the theoretical ones based on our model. A discussion is made about the results of strong and weak flares using the present method.

  12. Energy Release and Transport in Super-Hot Solar Flares

    NASA Astrophysics Data System (ADS)

    Caspi, A.; McTiernan, J. M.; Shih, A.; Martinez Oliveros, J. C.; Allred, J. C.; Warren, H. P.

    2015-12-01

    Solar flares efficiently convert the magnetic energy stored in the Sun's complex coronal magnetic field into the kinetic energies of hot plasma, accelerated particles, and bulk flows. In intense flares, up to 10^32-33 ergs can go into heating plasma to tens of MK, accelerating electrons to hundreds of MeV and ions to tens of GeV, and ejecting 10^9-10 kg of coronal material into the heliosphere at thousands of km/s. However, the exact physical mechanisms behind these phenomena are poorly understood. For example, while "super-hot" (T > 30 MK) plasma temperatures appear to be common in the most intense, X-class flares, how that plasma is so efficiently heated remains unknown. Current studies favor an in situ heating process for super-hot plasma, versus chromospheric evaporation for cooler plasma, although the specific mechanism is under debate. X-class flares are also often associated with enhanced photospheric/chromospheric white light emission, which is itself poorly understood, and with fast (>1000 km/s) CMEs; super-hot flares are more commonly observed in eruptive two-ribbon arcade flares than in highly-confined events. These phenomena may well have common underlying drivers. We discuss the current understanding of super-hot plasma in solar flares, its formation, and evolution, based on observations from RHESSI, SDO/EVE, SDO/AIA, and other instruments. We discuss the energetics of these events and their relationship to white light enhancement and fast CMEs. We explore the possibility of energy deposition by accelerated ions as a common driver for super-hot plasmas and white light enhancement, and discuss future instrumentation -- both for CubeSats and Explorers -- that will provide a deeper understanding of these phenomena and their interrelationships.

  13. Solar Flare Physics

    NASA Technical Reports Server (NTRS)

    Schmahl, Edward J.; Kundu, Mukul R.

    2000-01-01

    During the past year we have been working with the HESSI (High Energy Solar Spectroscopic Imager) team in preparation for launch in early 2001. HESSI has as its primary scientific goal photometric imaging and spectroscopy of solar flares in hard X-rays and gamma-rays with an approx. 2 sec angular resolution, approx. keV energy resolution and approx. 2 s time resolution over the 6 keV to 15 MeV energy range. We have performed tests of the imager using a specially designed experiment which exploits the second-harmonic response of HESSI's sub-collimators to an artificial X-ray source at a distance of 1550 cm from its front grids. Figures show the response to X-rays at energies in the range where HESSI is expected to image solar flares. To prepare the team and the solar user community for imaging flares with HESSI, we have written a description of the major imaging concepts. This paper will be submitted for publication in a referred journal.

  14. Ultra-fast solid state electro-optical modulator based on liquid crystal polymer and liquid crystal composites

    SciTech Connect

    Ouskova, Elena; Sio, Luciano De Vergara, Rafael; Tabiryan, Nelson; White, Timothy J.; Bunning, Timothy J.

    2014-12-08

    A different generation of polymer-dispersed liquid crystals (PDLCs) based on a liquid crystalline polymer host is reported wherein the fluid behavior of the reactive mesogenic monomer is an enabler to concentration windows (liquid crystal polymer/liquid crystal) (and subsequent morphologies) not previously explored. These liquid crystal (LC) polymer/LC composites, LCPDLCs, exhibit excellent optical and electro-optical properties with negligible scattering losses in both the ON and OFF states. These systems thus have application in systems where fast phase modulation of optical signal instead of amplitude control is needed. Polarized optical microscopy and high resolution scanning electron microscopy confirm a bicontinuous morphology composed of aligned LC polymer coexisting with a phase separated LC fluid. Operating voltages, switching times, and spectra of LCPDLCs compare favourably to conventional PDLC films. The LCPDLCs exhibit a low switching voltage (4–5 V/μm), symmetric and submillisecond (200 μs) on/off response times, and high transmission in both the as formed and switched state in a phase modulation geometry.

  15. Out-of-focus background subtraction for fast structured illumination super-resolution microscopy of optically thick samples.

    PubMed

    Vermeulen, P; Zhan, H; Orieux, F; Olivo-Marin, J-C; Lenkei, Z; Loriette, V; Fragola, A

    2015-09-01

    We propose a structured illumination microscopy method to combine super resolution and optical sectioning in three-dimensional (3D) samples that allows the use of two-dimensional (2D) data processing. Indeed, obtaining super-resolution images of thick samples is a difficult task if low spatial frequencies are present in the in-focus section of the sample, as these frequencies have to be distinguished from the out-of-focus background. A rigorous treatment would require a 3D reconstruction of the whole sample using a 3D point spread function and a 3D stack of structured illumination data. The number of raw images required, 15 per optical section in this case, limits the rate at which high-resolution images can be obtained. We show that by a succession of two different treatments of structured illumination data we can estimate the contrast of the illumination pattern and remove the out-of-focus content from the raw images. After this cleaning step, we can obtain super-resolution images of optical sections in thick samples using a two-beam harmonic illumination pattern and a limited number of raw images. This two-step processing makes it possible to obtain super resolved optical sections in thick samples as fast as if the sample was two-dimensional.

  16. Optical knobs from slow- to fast-light with gain in low-dimensional semiconductor heterostructures

    NASA Astrophysics Data System (ADS)

    Han, Dingan; Zeng, Yaguang; Bai, Yanfeng

    2011-09-01

    The light pulse propagation through semiconductor quantum-well heterostructures under realistic experimental conditions is studied analytically with the Schrödinger equations. It is shown that slow light and superluminal propagation with gain can be observed by varying the relative phase and the strength of the applied fields. Such investigation may open up the possibility to control the light propagation and may lead to potential applications such as high-fidelity optical delay lines, optical buffers and optical communication in quantum wells solid materials.

  17. Fast-Response Fiber-Optic Anemometer with Temperature Self-Compensation

    DTIC Science & Technology

    2015-05-18

    Proceedings (refenoed) ( X ) Jou•r.al an.de (re ’ereetll ( ) Or a1 P•e$en1a~on. pub&shed ( ) Video ( ) Pos1.r A fa~~n~-optic anemometer wit...fiber-optic anemometer with temperature self-compensation Guigen Liu,1 Weilin Hou,2 Wei Qiao,1 and Ming Han1,* 1Department of Electrical and...mhan@unl.edu Abstract: We report a novel fiber-optic anemometer with self-temperature compensation capability based on a Fabry-Pérot interferometer

  18. Acceleration of runaway electrons in solar flares

    SciTech Connect

    Moghaddam-taaheri, E.; Goertz, C.K. )

    1990-03-01

    The dc electric field acceleration of electrons out of a thermal plasma and the evolution of the runaway tail are studied numerically, using a relativistic quasi-linear code based on the Ritz-Galerkin method and finite elements. A small field-aligned electric field is turned on at a certain time. The resulting distribution function from the runaway process is used to calculate the synchrotron emission during the evolution of the runaway tail. It is found that, during the runaway tail formation, which lasts a few tens of seconds for typical solar flare conditions, the synchrotron emission level is low, almost ot the same order as the emission from the thermal plasma, at the high-frequency end of the spectrum. However, the emission is enhanced explosively in a few microseconds by several orders of magnitude at the time the runaway tail stops growing along the magnetic field and tends toward isotropy due to the pitch-angle scattering of the fast particles. Results indicate that, in order to account for the observed synchrotron emission spectrum of a typical solar flare, the electric field acceleration phase must be accompanied or preceded by a heating phase which yields an enhanced electron temperature of about 2-15 keV in the flare region if the electric field is 0.1-0.2 times the Dreicer field and cyclotron-to-plasma frequency ratios are of order 1-2. 23 refs.

  19. Acceleration of runaway electrons in solar flares

    NASA Technical Reports Server (NTRS)

    Moghaddam-Taaheri, E.; Goertz, C. K.

    1990-01-01

    The dc electric field acceleration of electrons out of a thermal plasma and the evolution of the runaway tail are studied numerically, using a relativistic quasi-linear code based on the Ritz-Galerkin method and finite elements. A small field-aligned electric field is turned on at a certain time. The resulting distribution function from the runaway process is used to calculate the synchrotron emission during the evolution of the runaway tail. It is found that, during the runaway tail formation, which lasts a few tens of seconds for typical solar flare conditions, the synchrotron emission level is low, almost ot the same order as the emission from the thermal plasma, at the high-frequency end of the spectrum. However, the emission is enhanced explosively in a few microseconds by several orders of magnitude at the time the runaway tail stops growing along the magnetic field and tends toward isotropy due to the pitch-angle scattering of the fast particles. Results indicate that, in order to account for the observed synchrotron emission spectrum of a typical solar flare, the electric field acceleration phase must be accompanied or preceded by a heating phase which yields an enhanced electron temperature of about 2-15 keV in the flare region if the electric field is 0.1-0.2 times the Dreicer field and cyclotron-to-plasma frequency ratios are of order 1-2.

  20. Well-observed dynamics of flaring and peripheral coronal magnetic loops during an M-class limb flare

    SciTech Connect

    Shen, Jinhua; Zhou, Tuanhui; Ji, Haisheng; Feng, Li; Wiegelmann, Thomas; Inhester, Bernd

    2014-08-20

    In this paper, we present a variety of well-observed dynamic behaviors for the flaring and peripheral magnetic loops of the M6.6 class extreme limb flare that occurred on 2011 February 24 (SOL2011-02-24T07:20) from EUV observations by the Atmospheric Imaging Assembly on the Solar Dynamics Observatory and X-ray observations by RHESSI. The flaring loop motion confirms the earlier contraction-expansion picture. We find that the U-shaped trajectory delineated by the X-ray corona source of the flare roughly follows the direction of a filament eruption associated with the flare. Different temperature structures of the coronal source during the contraction and expansion phases strongly suggest different kinds of magnetic reconnection processes. For some peripheral loops, we discover that their dynamics are closely correlated with the filament eruption. During the slow rising to abrupt, fast rising of the filament, overlying peripheral magnetic loops display different responses. Two magnetic loops on the elbow of the active region had a slow descending motion followed by an abrupt successive fast contraction, while magnetic loops on the top of the filament were pushed outward, slowly being inflated for a while and then erupting as a moving front. We show that the filament activation and eruption play a dominant role in determining the dynamics of the overlying peripheral coronal magnetic loops.

  1. Energy release in solar flares

    NASA Technical Reports Server (NTRS)

    Brown, John C.; Correia, Emilia; Farnik, Frantisek; Garcia, Howard; Henoux, Jean-Claude; La Rosa, Ted N.; Machado, Marcos E. (Compiler); Nakajima, Hiroshi; Priest, Eric R.

    1994-01-01

    Team 2 of the Ottawa Flares 22 Workshop dealt with observational and theoretical aspects of the characteristics and processes of energy release in flares. Main results summarized in this article stress the global character of the flaring phenomenon in active regions, the importance of discontinuities in magnetic connectivity, the role of field-aligned currents in free energy storage, and the fragmentation of energy release in time and space.

  2. Noncontact three-dimensional quantitative profiling of fast aspheric lenses by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Goud, Bujagouni Karthik; Udupa, Dinesh Venkatesh; Prathap, Chilakala; Shinde, Deepak Dilip; Rao, Kompalli Divakar; Sahoo, Naba Kishore

    2016-12-01

    The use of optical coherence tomography (OCT) for noncontact three-dimensional aspheric lens profiling and retrieval of aspheric surface parameters is demonstrated. Two commercially available aspheric lenses with different focal length-to-diameter ratio have been imaged using OCT, and the measured optical path length distribution has been least square fitted with the aspheric lens surface retrieving the radius of curvature, aspheric constant, and conic constants. The refractive index of these lenses has also been measured referencing with a standard Zerodur glass flat. The fitted aspheric surface coefficients of the lenses are in close agreement with the manufacturer's values, thus, envisaging the potential of OCT in rapid screening, testing of aspheric lenses, and other micro-optical components such as those used in illumination optics.

  3. 15 Gbit/s indoor optical wireless systems employing fast adaptation and imaging reception in a realistic environment

    NASA Astrophysics Data System (ADS)

    Alsaadi, Fuad E.

    2016-03-01

    Optical wireless systems are promising candidates for next-generation indoor communication networks. Optical wireless technology offers freedom from spectrum regulations and, compared to current radio-frequency networks, higher data rates and increased security. This paper presents a fast adaptation method for multibeam angle and delay adaptation systems and a new spot-diffusing geometry, and also considers restrictions needed for complying with eye safety regulations. The fast adaptation algorithm reduces the computational load required to reconfigure the transmitter in the case of transmitter and/or receiver mobility. The beam clustering approach enables the transmitter to assign power to spots within the pixel's field of view (FOV) and increases the number of such spots. Thus, if the power per spot is restricted to comply with eye safety standards, the new approach, in which more spots are visible within the FOV of the pixel, leads to enhanced signal-to-noise ratio (SNR). Simulation results demonstrate that the techniques proposed in this paper lead to SNR improvements that enable reliable operation at data rates as high as 15 Gbit/s. These results are based on simulation and not on actual measurements or experiments.

  4. Fast and scalable algorithm for the simulation of multiple Mie scattering in optical systems.

    PubMed

    Kalthoff, Oliver; Kampmann, Ronald; Streicher, Simon; Sinzinger, Stefan

    2016-05-20

    The Monte Carlo simulation of light propagation in optical systems requires the processing of a large number of photons to achieve a satisfactory statistical accuracy. Based on classical Mie scattering, we experimentally show that the independence of photons propagating through a turbid medium imposes a postulate for a concurrent and scalable programming paradigm of general purpose graphics processing units. This ensures that, without rewriting code, increasingly complex optical systems can be simulated if more processors are available in the future.

  5. Ultra-fast nonlinear optical properties and photophysical mechanism of a novel pyrene derivative

    NASA Astrophysics Data System (ADS)

    Zhang, Youwei; Yang, Junyi; Xiao, Zhengguo; Song, Yinglin

    2016-10-01

    The third-order nonlinear optical properties of 1-(pyrene-1-y1)-3-(3-methylthiophene) acrylic keton named PMTAK was investigated by using Z-scan technique. The light sources for picoseconds(ps) and femtosecond(fs) Z-scan were a mode-locked Nd: YAG laser (21 ps, 532 nm,10 Hz) and an Yb: KGW based fiber laser (190 fs, 515 nm,532 nm, 20 Hz), respectively. In the two cases, reverse saturation absorption(RSA) are observed. The dynamics of the sample's optical nonlinearity is discussed via the femtosecond time-resolved pump probe with phase object at 515nm. We believe that the molecules in excited state of particle population count is caused by two-photon absorption(TPA). The five-level theoretical model is used to analysis the optical nonlinear mechanism. Combining with the result of picosecond Z-scan experiment, a set of optical nonlinear parameters are calculated out. The femtosecond Z-scan experiment is taken to confirm these parameters. The obvious excited-state nonlinearity is found by the set of parameters. The result shows that the sample has good optical nonlinearity which indicates it has potential applications in nonlinear optics field.

  6. DRAFTS: A DEEP, RAPID ARCHIVAL FLARE TRANSIENT SEARCH IN THE GALACTIC BULGE

    SciTech Connect

    Osten, Rachel A.; Sahu, Kailash; Kowalski, Adam; Hawley, Suzanne L.

    2012-07-20

    We utilize the Sagittarius Window Eclipsing Extrasolar Planet Search Hubble Space Telescope/Advanced Camera for Surveys data set for a Deep Rapid Archival Flare Transient Search to constrain the flare rate toward the older stellar population in the Galactic bulge. During seven days of monitoring 229,293 stars brighter than V = 29.5, we find evidence for flaring activity in 105 stars between V = 20 and V = 28. We divided the sample into non-variable stars and variable stars whose light curves contain large-scale variability. The flare rate on variable stars is {approx}700 times that of non-variable stars, with a significant correlation between the amount of underlying stellar variability and peak flare amplitude. The flare energy loss rates are generally higher than those of nearby well-studied single dMe flare stars. The distribution of proper motions is consistent with the flaring stars being at the distance and age of the Galactic bulge. If they are single dwarfs, then they span a range of Almost-Equal-To 1.0-0.25 M{sub Sun }. A majority of the flaring stars exhibit periodic photometric modulations with P < 3 days. If these are tidally locked magnetically active binary systems, then their fraction in the bulge is enhanced by a factor of {approx}20 compared to the local value. These stars may be useful for placing constraints on the angular momentum evolution of cool close binary stars. Our results expand the type of stars studied for flares in the optical band, and suggest that future sensitive optical time-domain studies will have to contend with a larger sample of flaring stars than the M dwarf flare stars usually considered.

  7. A Cold Flare with Delayed Heating

    NASA Astrophysics Data System (ADS)

    Fleishman, Gregory D.; Pal'shin, Valentin D.; Meshalkina, Natalia; Lysenko, Alexandra L.; Kashapova, Larisa K.; Altyntsev, Alexander T.

    2016-05-01

    Recently, a number of peculiar flares have been reported that demonstrate significant nonthermal particle signatures with low, if any, thermal emission, which implies a close association of the observed emission with the primary energy release/electron acceleration region. This paper presents a flare that appears “cold” at the impulsive phase, while displaying delayed heating later on. Using hard X-ray data from Konus-Wind, microwave observations by SSRT, RSTN, NoRH, and NoRP, context observations, and three-dimensional modeling, we study the energy release, particle acceleration, and transport, and the relationships between the nonthermal and thermal signatures. The flaring process is found to involve the interaction between a small loop and a big loop with the accelerated particles divided roughly equally between them. Precipitation of the electrons from the small loop produced only a weak thermal response because the loop volume was small, while the electrons trapped in the big loop lost most of their energy in the coronal part of the loop, which resulted in coronal plasma heating but no or only weak chromospheric evaporation, and thus unusually weak soft X-ray emission. The energy losses of the fast electrons in the big tenuous loop were slow, which resulted in the observed delay of the plasma heating. We determined that the impulsively accelerated electron population had a beamed angular distribution in the direction of the electric force along the magnetic field of the small loop. The accelerated particle transport in the big loop was primarily mediated by turbulent waves, which is similar to other reported cold flares.

  8. Characteristics of Gamma-Ray Line Flares,

    DTIC Science & Technology

    1983-10-01

    Sauna -ray line flares now identified, can yield valuable insight that is not obtainable from studying the few Sana-ray line flares observed before...Spectrometer (HUBS; cf., Orwig, Dennis, and Frost 1980) and found that the Sauna -ray line flares are very intense hard X-ray flares. For comparison, we...found that all the Sauna -ray line flares produced hard X-ray emissions with RXRBS peak count rates > 7500 counts s"- (all but two flares were > 104

  9. Design and development of a profilometer for the fast and accurate characterization of optical surfaces

    NASA Astrophysics Data System (ADS)

    Gómez-Pedrero, José A.; Rodríguez-Ibañez, Diego; Alonso, José; Quirgoa, Juan A.

    2015-09-01

    With the advent of techniques devised for the mass production of optical components made with surfaces of arbitrary form (also known as free form surfaces) in the last years, a parallel development of measuring systems adapted for these new kind of surfaces constitutes a real necessity for the industry. Profilometry is one of the preferred methods for the assessment of the quality of a surface, and is widely employed in the optical fabrication industry for the quality control of its products. In this work, we present the design, development and assembly of a new profilometer with five axis of movement, specifically suited to the measurement of medium size (up to 150 mm of diameter) "free-form" optical surfaces with sub-micrometer accuracy and low measuring times. The apparatus is formed by three X, Y, Z linear motorized positioners plus and additional angular and a tilt positioner employed to locate accurately the surface to be measured and the probe which can be a mechanical or an optical one, being optical one a confocal sensor based on chromatic aberration. Both optical and mechanical probes guarantee an accuracy lower than the micrometer in the determination of the surface height, thus ensuring an accuracy in the surface curvatures of the order of 0.01 D or better. An original calibration procedure based on the measurement of a precision sphere has been developed in order to correct the perpendicularity error between the axes of the linear positioners. To reduce the measuring time of the profilometer, a custom electronics, based on an Arduino™ controller, have been designed and produced in order to synchronize the five motorized positioners and the optical and mechanical probes so that a medium size surface (around 10 cm of diameter) with a dynamic range in curvatures of around 10 D, can be measured in less than 300 seconds (using three axes) keeping the resolution in height and curvature in the figures mentioned above.

  10. High-energy gamma-ray emission from solar flares: Summary of Fermi large area telescope detections and analysis of two M-class flares

    SciTech Connect

    Ackermann, M.; Ajello, M.; Albert, A.; Allafort, A.; Bechtol, K.; Bottacini, E.; Buehler, R.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Buson, S.; Bellazzini, R.; Bregeon, J.; Bissaldi, E.; Bonamente, E.; Bouvier, A.; Brandt, T. J.; Brigida, M.; Bruel, P.; and others

    2014-05-20

    We present the detections of 18 solar flares detected in high-energy γ-rays (above 100 MeV) with the Fermi Large Area Telescope (LAT) during its first 4 yr of operation. This work suggests that particle acceleration up to very high energies in solar flares is more common than previously thought, occurring even in modest flares, and for longer durations. Interestingly, all these flares are associated with fairly fast coronal mass ejections (CMEs). We then describe the detailed temporal, spatial, and spectral characteristics of the first two long-lasting events: the 2011 March 7 flare, a moderate (M3.7) impulsive flare followed by slowly varying γ-ray emission over 13 hr, and the 2011 June 7 M2.5 flare, which was followed by γ-ray emission lasting for 2 hr. We compare the Fermi LAT data with X-ray and proton data measurements from GOES and RHESSI. We argue that the γ-rays are more likely produced through pion decay than electron bremsstrahlung, and we find that the energy spectrum of the proton distribution softens during the extended emission of the 2011 March 7 flare. This would disfavor a trapping scenario for particles accelerated during the impulsive phase of the flare and point to a continuous acceleration process at play for the duration of the flares. CME shocks are known for accelerating the solar energetic particles (SEPs) observed in situ on similar timescales, but it might be challenging to explain the production of γ-rays at the surface of the Sun while the CME is halfway to the Earth. A stochastic turbulence acceleration process occurring in the solar corona is another likely scenario. Detailed comparison of characteristics of SEPs and γ-ray-emitting particles for several flares will be helpful to distinguish between these two possibilities.

  11. Type III radio burst productivity of solar flares. I - Release of energetic electrons out of the flare site

    NASA Astrophysics Data System (ADS)

    Poquerusse, M.; McIntosh, P. S.

    1990-12-01

    The statistical relationship between type III radio bursts and optical flares, using the comprehensive flare data base at the NOAA National Geophysical Data Center (Boulder, Colorado), and the radio observations obtained with the ARTEMIS multichannel spectrograph in Nancay (France), operating at 500-100 MHz are presented. At variance with previous results, it is seen that type III probability of occurrence depends only weakly upon the spatial extension of the flare observed in H-alpha, but strongly upon its brightness. It is confirmed that the type III probability increases with proximity to sunspots and with mass motions (surges and prominence activity); in addition, statistical data are consistent with both relations holding at fixed flare brightness. Thus, some of the conditions favorable to type III occurrence are characteristic of compact flares, while others are characteristic of large and long-duration flares, which are often related to mass ejections. This apparent paradox suggests that particle acceleration and magnetic expansion are at work simultaneously in the ejection of electron streams out of faring sites.

  12. Electrically tunable fast light at THz bandwidth using cascaded semiconductor optical amplifiers.

    PubMed

    Pesala, Bala; Sedgwick, Forrest; Uskov, Alexander V; Chang-Hasnain, Connie

    2007-11-26

    Ultra fast non-linear processes are used to achieve an advance of 2 ps for a 600 fs pulse propagating through two SOAs in series. This corresponding 3.3-pulse advance is tuned continuously by changing the current applied to the devices. We propose an experimental scheme that uses a single SOA in a loop to emulate the propagation of pulse through multiple cascaded SOAs.

  13. Fast, all-optical, zero to π continuously controllable Kerr phase gate.

    PubMed

    Li, R B; Deng, L; Hagley, E W

    2013-03-15

    We demonstrate a fast Kerr phase gate in a room-temperature (85)Rb vapor using a Raman gain method where the probe wave travels "superluminally". Continuously variable, zero to π radian nonlinear Kerr phase shifts of the probe wave relative to a reference wave have been observed at 333 K. We show rapid manipulation of digitally encoded probe waves using a digitally encoded phase-control light field, demonstrating the capability of the system in information science and telecommunication applications.

  14. Properties of Solar Flare Clustering

    NASA Astrophysics Data System (ADS)

    Title, Alan; DeRosa, Marc

    The continuous full disk observations provided by the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO) give an observer the impression that flare and filament eruptions are related. However, both detailed analysis of a number of events as well as a number of statistical studies have provided only rare examples of clear causal behavior. But the mechanisms of flare triggering are not well understood, so the lack of hard evidence is not surprising. Here we have examined the waiting-time statistics of GOES X-ray flares of magnitude C5 or greater during the last sunspot cycle with the aim of assessing the degree to which flares are clustered in time. Clusters are groups of flares in which all successive flares occur within a fixed separation time - the linking window. While many of the flares in a cluster may come from the same active region, the clusters that last more than a disk passage must result from flares in multiple active regions. The longest cluster of the last cycle lasted more than 42 days. None of the flares were separated by more than 36 hours. Since that cluster lasted more than three disk passages, it could not have been caused by a single region. We find that during the last maximum, eight clusters contributed 44% of all flares. All of these clusters spanned multiple disk passages, but occupied only 16.5% of the cycle duration. Two of the clusters provided 34% of the flares. We suggest that this behavior implies that a component of the observed coordinated behavior has its origin in the solar dynamo.

  15. Optical characterization of the SOFIA telescope using fast EM-CCD cameras

    NASA Astrophysics Data System (ADS)

    Pfüller, Enrico; Wolf, Jürgen; Hall, Helen; Röser, Hans-Peter

    2012-09-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) has recently demonstrated its scientific capabilities in a first series of astronomical observing flights. In parallel, special measurements and engineering flights were conducted aiming at the characterization and the commissioning of the telescope and the complete airborne observatory. To support the characterization measurements, two commercial Andor iXon EM-CCD cameras have been used, a DU-888 dubbed Fast Diagnostic Camera (FDC) running at frame rates up to about 400 fps, and a DU-860 as a Super Fast Diagnostic Camera (SFDC) providing 2000 fps. Both cameras have been mounted to the telescope’s Focal Plane Imager (FPI) flange in lieu of the standard FPI tracking camera. Their fast image sequences have been used to analyze and to improve the telescope’s pointing stability, especially to help tuning active mass dampers that suppress eigenfrequencies in the telescope system, to characterize and to optimize the chopping secondary mirror and to investigate the structure and behavior of the shear layer that forms over the open telescope cavity in flight. In June 2011, a collaboration between the HIPO science instrument team, the MIT’s stellar occultation group and the FDC team, led to the first SOFIA observation of a stellar occultation by the dwarf planet Pluto over the Pacific.

  16. Highly accurate and fast optical penetration-based silkworm gender separation system

    NASA Astrophysics Data System (ADS)

    Kamtongdee, Chakkrit; Sumriddetchkajorn, Sarun; Chanhorm, Sataporn

    2015-07-01

    Based on our research work in the last five years, this paper highlights our innovative optical sensing system that can identify and separate silkworm gender highly suitable for sericulture industry. The key idea relies on our proposed optical penetration concepts and once combined with simple image processing operations leads to high accuracy in identifying of silkworm gender. Inside the system, there are electronic and mechanical parts that assist in controlling the overall system operation, processing the optical signal, and separating the female from male silkworm pupae. With current system performance, we achieve a very highly accurate more than 95% in identifying gender of silkworm pupae with an average system operational speed of 30 silkworm pupae/minute. Three of our systems are already in operation at Thailand's Queen Sirikit Sericulture Centers.

  17. Distribution of pressure-induced fast axonal transport abnormalities in primate optic nerve. An autoradiographic study.

    PubMed

    Radius, R L

    1981-07-01

    The distribution of transport abnormalities in primate optic nerve from eyes subjected to five hours of pressure elevation (perfusion pressure of 35 mm Hg) was studied. Tissue autoradiography and electron microscopy were used to localize regions of the lamina cribrosa with increased transport interruption. A preferential involvement by this transport abnormality involved the superior, temporal, and inferior portions, to the exclusion of the nasal portion, of the optic nerve head. This observation supports the hypothesis that transport interruption seen in this model may be pertinent to the study of clinical glaucomatous neuropathy.

  18. Detection of Fast Radio Variability of Radio Objects with Continuous Optical Spectra

    NASA Astrophysics Data System (ADS)

    Pustilnik, S. A.

    The results of the search for rapid variability (T > 1 day) in centimeter range using RATAN-600 in 14 radio objects with contiuous optical spectra are given. In 9 of them, namely 0109+224, 0139-097, 0300+471, 0306+102, 0754+100, 0818-128, 0823-223, 1034-293 and 1538+149 the rapid variability is detected at the wavelengths either 3.9 or 8.2 cm with the confidence probability > 0.98. The conclusion is reached on the close correlation of the presence of the rapid radiovariability and the relative power of non-thermal optical continuum.

  19. Plasmonic particles set into fast orbital motion by an optical vortex beam.

    PubMed

    Lehmuskero, Anni; Li, Yanming; Johansson, Peter; Käll, Mikael

    2014-02-24

    We optically trap plasmonic gold particles in two dimensions and set them into circular motion around the optical axis using a helically phased vortex laser beam. The orbiting frequency of the particles reaches 86 Hz, which corresponds to a particle velocity of the order 1 mm per second, for an incident laser power of a few tens of milliwatts. The experimentally determined orbiting frequencies are found to be well in line with the notion that the beam carries an orbital angular momentum of ħl per photon.

  20. SCRAM: A fast computational model for the optical performance of point focus solar central receiver systems

    NASA Astrophysics Data System (ADS)

    Bergeron, K. D.; Chiang, C. J.

    1980-04-01

    A mathematical approximation procedure, designated Sandia Central Receiver Approximation Model is described. A computational procedure which allows the user to define the heliostat field boundaries and tower height arbitrarily, generating a model for optical field performance, including shadowing, blocking, cosine, losses, and atmospheric attenuation, and which requires only a polynomial evaluation for each set of Sun angles was developed. One reason that the accuracy in field performance predictions is higher than that of the generating function for the model is that much of the error in the generating function is due to an oscillatory behavior associated with a moire pattern in the optical response of the heliostat field.

  1. Fast optical cooling of nanomechanical cantilever with the dynamical Zeeman effect.

    PubMed

    Zhang, Jian-Qi; Zhang, Shuo; Zou, Jin-Hua; Chen, Liang; Yang, Wen; Li, Yong; Feng, Mang

    2013-12-02

    We propose an efficient optical electromagnetically induced transparency (EIT) cooling scheme for a cantilever with a nitrogen-vacancy center attached in a non-uniform magnetic field using dynamical Zeeman effect. In our scheme, the Zeeman effect combined with the quantum interference effect enhances the desired cooling transition and suppresses the undesired heating transitions. As a result, the cantilever can be cooled down to nearly the vibrational ground state under realistic experimental conditions within a short time. This efficient optical EIT cooling scheme can be reduced to the typical EIT cooling scheme under special conditions.

  2. Radio-interferometric Monitoring of FRB 131104: A Coincident AGN Flare, but No Evidence for a Cosmic Fireball

    NASA Astrophysics Data System (ADS)

    Shannon, R. M.; Ravi, V.

    2017-03-01

    The localization of fast radio bursts (FRBs) has been hindered by the poor angular resolution of the detection observations and inconclusive identification of transient or variable counterparts. Recently a γ-ray pulse of 380 s duration has been associated with FRB 131104. We report on radio-continuum imaging observations of the original localization region of the FRB, beginning three days after the event and comprising 25 epochs over 2.5 years. We argue that the probability of an association between the FRB and the γ-ray transient has been overestimated. We provide upper limits on radio afterglow emission that would be predicted if the γ-ray transient was associated with an energetic γ-ray burst. We further report the discovery of an unusual variable radio source spatially and temporally coincident with FRB 131104, but not spatially coincident with the γ-ray event. The radio variable flares by a factor of 3 above its long-term average within 10 day of the FRB at 7.5 GHz, with a factor-of-2 increase at 5.5 GHz. Since the flare, the variable has persisted with only modest modulation and never approached the flux density observed in the days after the FRB. We identify an optical counterpart to the variable. Optical and infrared photometry, and deep optical spectroscopy, suggest that the object is a narrow-line radio active galactic nucleus.

  3. Synchronous triple-optical-path digital speckle pattern interferometry with fast discrete curvelet transform for measuring three-dimensional displacements

    NASA Astrophysics Data System (ADS)

    Gu, Guoqing; Wang, Kaifu; Wang, Yanfang; She, Bin

    2016-06-01

    Digital speckle pattern interferometry (DSPI) is a well-established and widely used optical measurement technique for obtaining qualitative as well as quantitative measurements of objects deformation. The simultaneous measurement of an object's surface displacements in three dimensions using DSPI is of great interest. This paper presents a triple-optical-path DSPI based method for the simultaneous and independent measurement of three-dimensional (3D) displacement fields. In the proposed method, in-plane speckle interferometers with dual-observation geometry and an out-of-plane interferometer are optimally combined to construct an integrated triple-optical-path DSPI system employing the phase shift technique, which uses only a single laser source and three cameras. These cameras are placed along a single line to synchronously capture real-time visible speckle fringe patterns in three dimensions. In addition, a pre-filtering method based on the fast discrete curvelet transform (FDCT) is utilized for denoising the obtained wrapped phase patterns to improve measurement accuracy. Finally, the simultaneous measurement of the 3D displacement fields of a simple beam and a composite laminated plate respectively subjected to three-point and single-point bend loading are investigated to validate the feasibility and effectiveness of the proposed method.

  4. Multifocal fluorescence microscope for fast optical recordings of neuronal action potentials.

    PubMed

    Shtrahman, Matthew; Aharoni, Daniel B; Hardy, Nicholas F; Buonomano, Dean V; Arisaka, Katsushi; Otis, Thomas S

    2015-02-03

    In recent years, optical sensors for tracking neural activity have been developed and offer great utility. However, developing microscopy techniques that have several kHz bandwidth necessary to reliably capture optically reported action potentials (APs) at multiple locations in parallel remains a significant challenge. To our knowledge, we describe a novel microscope optimized to measure spatially distributed optical signals with submillisecond and near diffraction-limit resolution. Our design uses a spatial light modulator to generate patterned illumination to simultaneously excite multiple user-defined targets. A galvanometer driven mirror in the emission path streaks the fluorescence emanating from each excitation point during the camera exposure, using unused camera pixels to capture time varying fluorescence at rates that are ∼1000 times faster than the camera's native frame rate. We demonstrate that this approach is capable of recording Ca(2+) transients resulting from APs in neurons labeled with the Ca(2+) sensor Oregon Green Bapta-1 (OGB-1), and can localize the timing of these events with millisecond resolution. Furthermore, optically reported APs can be detected with the voltage sensitive dye DiO-DPA in multiple locations within a neuron with a signal/noise ratio up to ∼40, resolving delays in arrival time along dendrites. Thus, the microscope provides a powerful tool for photometric measurements of dynamics requiring submillisecond sampling at multiple locations.

  5. Fast Calcium Imaging with Optical Sectioning via HiLo Microscopy.

    PubMed

    Lauterbach, Marcel A; Ronzitti, Emiliano; Sternberg, Jenna R; Wyart, Claire; Emiliani, Valentina

    2015-01-01

    Imaging intracellular calcium concentration via reporters that change their fluorescence properties upon binding of calcium, referred to as calcium imaging, has revolutionized our way to probe neuronal activity non-invasively. To reach neurons densely located deep in the tissue, optical sectioning at high rate of acquisition is necessary but difficult to achieve in a cost effective manner. Here we implement an accessible solution relying on HiLo microscopy to provide robust optical sectioning with a high frame rate in vivo. We show that large calcium signals can be recorded from dense neuronal populations at high acquisition rates. We quantify the optical sectioning capabilities and demonstrate the benefits of HiLo microscopy compared to wide-field microscopy for calcium imaging and 3D reconstruction. We apply HiLo microscopy to functional calcium imaging at 100 frames per second deep in biological tissues. This approach enables us to discriminate neuronal activity of motor neurons from different depths in the spinal cord of zebrafish embryos. We observe distinct time courses of calcium signals in somata and axons. We show that our method enables to remove large fluctuations of the background fluorescence. All together our setup can be implemented to provide efficient optical sectioning in vivo at low cost on a wide range of existing microscopes.

  6. Multifocal Fluorescence Microscope for Fast Optical Recordings of Neuronal Action Potentials

    PubMed Central

    Shtrahman, Matthew; Aharoni, Daniel B.; Hardy, Nicholas F.; Buonomano, Dean V.; Arisaka, Katsushi; Otis, Thomas S.

    2015-01-01

    In recent years, optical sensors for tracking neural activity have been developed and offer great utility. However, developing microscopy techniques that have several kHz bandwidth necessary to reliably capture optically reported action potentials (APs) at multiple locations in parallel remains a significant challenge. To our knowledge, we describe a novel microscope optimized to measure spatially distributed optical signals with submillisecond and near diffraction-limit resolution. Our design uses a spatial light modulator to generate patterned illumination to simultaneously excite multiple user-defined targets. A galvanometer driven mirror in the emission path streaks the fluorescence emanating from each excitation point during the camera exposure, using unused camera pixels to capture time varying fluorescence at rates that are ∼1000 times faster than the camera’s native frame rate. We demonstrate that this approach is capable of recording Ca2+ transients resulting from APs in neurons labeled with the Ca2+ sensor Oregon Green Bapta-1 (OGB-1), and can localize the timing of these events with millisecond resolution. Furthermore, optically reported APs can be detected with the voltage sensitive dye DiO-DPA in multiple locations within a neuron with a signal/noise ratio up to ∼40, resolving delays in arrival time along dendrites. Thus, the microscope provides a powerful tool for photometric measurements of dynamics requiring submillisecond sampling at multiple locations. PMID:25650920

  7. Classification of Solar Flares

    DTIC Science & Technology

    1988-11-01

    Svestka, Z . 1985. Sol. Phys. 100: 435-63 45. Decker, R. B., Viahos, L. 1986. Ap. J. 306: 710-29 46. Dennis, B. R. 1985. Sol. Phys. 100: 465-90 47...169-224 51. Dungey, J. W. 1953. Phil. Mag. Ser. 7,44: 725-38 53 52. Dwivedi, B. N., Hudson, H. S., Kane, S. R., Svestka, Z . 1984. Sol. Phys. 90: 331...57 95. Kiepenheuer, K. 0. 1964. in The Physics of Solar Flares, ed. W. N. Hess (NASA SP-50), 323-31 96. Kippehahn, R., Schluter, A. 1957. Z . Astrophys

  8. Controlling slow and fast light and dynamic pulse-splitting with tunable optical gain in a whispering-gallery-mode microcavity

    NASA Astrophysics Data System (ADS)

    Asano, M.; Özdemir, Ş. K.; Chen, W.; Ikuta, R.; Yang, L.; Imoto, N.; Yamamoto, T.

    2016-05-01

    We report controllable manipulation of slow and fast light in a whispering-gallery-mode microtoroid resonator fabricated from Erbium (Er3+) doped silica. We observe continuous transition of the coupling between the fiber-taper waveguide and the microresonator from undercoupling to critical coupling and then to overcoupling regimes by increasing the pump power even though the spatial distance between the resonator and the waveguide was kept fixed. This, in turn, enables switching from fast to slow light and vice versa just by increasing the optical gain. An enhancement of delay of two-fold over the passive silica resonator (no optical gain) was observed in the slow light regime. Moreover, we show dynamic pulse splitting and its control in slow/fast light systems using optical gain.

  9. On the State of a Solar Active Region Before Flares and CMEs

    NASA Astrophysics Data System (ADS)

    Korsós, M. B.; Erdélyi, R.

    2016-06-01

    Several attempts have been made to find reliable diagnostic tools to determine the state prior to flares and related coronal mass ejections (CMEs) in solar active regions (ARs). Characterization of the level of mixed states is carried out using the Debrecen sunspot Data for 116 flaring ARs. Conditional flare probabilities (CFPs) are calculated for different flaring classes. The association with slow/fast CMEs is examined. Two precursor parameters are introduced: (i) the sum of the (daily averaged) horizontal magnetic gradient G S (G DS ) and (ii) the separation parameter {S}l-f. We found that if {S}l-f≤slant 1 for a flaring AR then the CFP of the expected highest-intensity flare being X-class is more than 70%. If 1≤slant {S}l-f≤slant 3 the CFP is more than 45% for the highest-intensity flare(s) to be M-class, and if 3≤slant {S}l-f≤slant 13 there is larger than 60% CFP that C-class flare(s) may have the strongest intensity within 48 hr. Next, from analyzing G S for determining CFP we found: if 5.5≤slant {log}({G}S) ≤slant 6.5, then it is very likely that C-class flare(s) may be the most intense; if 6.5≤slant {log}({G}S)≤slant 7.5 then there is ˜45% CFP that M-class could have the highest intensity; finally, if 7.5≤slant {log}({G}S) then there is at least 70% chance that the strongest energy release will be X-class in the next 48 hr. ARs are unlikely to produce X-class flare(s) if 13≤slant {S}l-f and log(G S ) ≤slant 5.5. Finally, in terms of providing an estimate of an associated slow/fast CME, we found that, if {log}({S}l-f) ≥slant 0.4 or {log}({G}{DS}) ≤slant 6.5, there is no accompanying fast CME in the following 24 hr.

  10. Mid infra-red hyper-spectral imaging with bright super continuum source and fast acousto-optic tuneable filter for cytological applications.

    NASA Astrophysics Data System (ADS)

    Farries, Mark; Ward, Jon; Valle, Stefano; Stephens, Gary; Moselund, Peter; van der Zanden, Koen; Napier, Bruce

    2015-06-01

    Mid-IR imaging spectroscopy has the potential to offer an effective tool for early cancer diagnosis. Current development of bright super-continuum sources, narrow band acousto-optic tunable filters and fast cameras have made feasible a system that can be used for fast diagnosis of cancer in vivo at point of care. The performance of a proto system that has been developed under the Minerva project is described.

  11. X-ray fading and optical/X-ray flaring in the current faint outburst of MAXI J0556-332

    NASA Astrophysics Data System (ADS)

    Russell, David M.; Udrescu, Silviu-Marian; Lewis, Fraser

    2016-03-01

    The neutron star X-ray binary transient, MAXI J0556-332 began a new outburst at the start of this year (ATel #8513, #8517). Since 7 January (MJD 57394) we have been monitoring the optical activity of the source regularly in Bessel B, V, R, I filters with the 2-m Faulkes Telescopes and the 1-m Las Cumbres Observatory Global Telescope (LCOGT) network telescopes.

  12. DETERMINING HEATING RATES IN RECONNECTION FORMED FLARE LOOPS OF THE M8.0 FLARE ON 2005 MAY 13

    SciTech Connect

    Liu Wenjuan; Qiu Jiong; Longcope, Dana W.; Caspi, Amir

    2013-06-20

    We analyze and model an M8.0 flare on 2005 May 13 observed by the Transition Region and Coronal Explorer and the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) to determine the energy release rate from magnetic reconnection that forms and heats numerous flare loops. The flare exhibits two ribbons in UV 1600 A emission. Analysis shows that the UV light curve at each flaring pixel rises impulsively within a few minutes, and decays slowly with a timescale longer than 10 minutes. Since the lower atmosphere (the transition region and chromosphere) responds to energy deposit nearly instantaneously, the rapid UV brightening is thought to reflect the energy release process in the newly formed flare loop rooted at the footpoint. In this paper, we utilize the spatially resolved (down to 1'') UV light curves and the thick-target hard X-ray emission to construct heating functions of a few thousand flare loops anchored at the UV footpoints, and compute plasma evolution in these loops using the enthalpy-based thermal evolution of loops model. The modeled coronal temperatures and densities of these flare loops are then used to calculate coronal radiation. The computed soft X-ray spectra and light curves compare favorably with those observed by RHESSI and by the Geostationary Operational Environmental Satellite X-ray Sensor. The time-dependent transition region differential emission measure for each loop during its decay phase is also computed with a simplified model and used to calculate the optically thin C IV line emission, which dominates the UV 1600 A bandpass during the flare. The computed C IV line emission decays at the same rate as observed. This study presents a method to constrain heating of reconnection-formed flare loops using all available observables independently, and provides insight into the physics of energy release and plasma heating during the flare. With this method, the lower limit of the total energy used to heat the flare loops in this event

  13. Determining Heating Rates in Reconnection Formed Flare Loops of the M8.0 Flare on 2005 May 13

    NASA Astrophysics Data System (ADS)

    Liu, Wen-Juan; Qiu, Jiong; Longcope, Dana W.; Caspi, Amir

    2013-06-01

    We analyze and model an M8.0 flare on 2005 May 13 observed by the Transition Region and Coronal Explorer and the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) to determine the energy release rate from magnetic reconnection that forms and heats numerous flare loops. The flare exhibits two ribbons in UV 1600 Å emission. Analysis shows that the UV light curve at each flaring pixel rises impulsively within a few minutes, and decays slowly with a timescale longer than 10 minutes. Since the lower atmosphere (the transition region and chromosphere) responds to energy deposit nearly instantaneously, the rapid UV brightening is thought to reflect the energy release process in the newly formed flare loop rooted at the footpoint. In this paper, we utilize the spatially resolved (down to 1'') UV light curves and the thick-target hard X-ray emission to construct heating functions of a few thousand flare loops anchored at the UV footpoints, and compute plasma evolution in these loops using the enthalpy-based thermal evolution of loops model. The modeled coronal temperatures and densities of these flare loops are then used to calculate coronal radiation. The computed soft X-ray spectra and light curves compare favorably with those observed by RHESSI and by the Geostationary Operational Environmental Satellite X-ray Sensor. The time-dependent transition region differential emission measure for each loop during its decay phase is also computed with a simplified model and used to calculate the optically thin C IV line emission, which dominates the UV 1600 Å bandpass during the flare. The computed C IV line emission decays at the same rate as observed. This study presents a method to constrain heating of reconnection-formed flare loops using all available observables independently, and provides insight into the physics of energy release and plasma heating during the flare. With this method, the lower limit of the total energy used to heat the flare loops in this

  14. Fine Structure in Solar Flares.

    PubMed

    Warren

    2000-06-20

    We present observations of several large two-ribbon flares observed with both the Transition Region and Coronal Explorer (TRACE) and the soft X-ray telescope on Yohkoh. The high spatial resolution TRACE observations show that solar flare plasma is generally not confined to a single loop or even a few isolated loops but to a multitude of fine coronal structures. These observations also suggest that the high-temperature flare plasma generally appears diffuse while the cooler ( less, similar2 MK) postflare plasma is looplike. We conjecture that the diffuse appearance of the high-temperature flare emission seen with TRACE is due to a combination of the emission measure structure of these flares and the instrumental temperature response and does not reflect fundamental differences in plasma morphology at the different temperatures.

  15. Parameterization of solar flare dose

    SciTech Connect

    Lamarche, A.H.; Poston, J.W.

    1996-12-31

    A critical aspect of missions to the moon or Mars will be the safety and health of the crew. Radiation in space is a hazard for astronauts, especially high-energy radiation following certain types of solar flares. A solar flare event can be very dangerous if astronauts are not adequately shielded because flares can deliver a very high dose in a short period of time. The goal of this research was to parameterize solar flare dose as a function of time to see if it was possible to predict solar flare occurrence, thus providing a warning time. This would allow astronauts to take corrective action and avoid receiving a dose greater than the recommended limit set by the National Council on Radiation Protection and Measurements (NCRP).

  16. Fast and efficient image reconstruction for high density diffuse optical imaging of the human brain

    PubMed Central

    Wu, Xue; Eggebrecht, Adam T.; Ferradal, Silvina L.; Culver, Joseph P.; Dehghani, Hamid

    2015-01-01

    Real-time imaging of human brain has become an important technique within neuroimaging. In this study, a fast and efficient sensitivity map generation based on Finite Element Models (FEM) is developed which utilises a reduced sensitivitys matrix taking advantage of sparsity and parallelisation processes. Time and memory efficiency of these processes are evaluated and compared with conventional method showing that for a range of mesh densities from 50000 to 320000 nodes, the required memory is reduced over tenfold and computational time fourfold allowing for near real-time image recovery. PMID:26601019

  17. Fast optical cooling of a nanomechanical cantilever by a dynamical Stark-shift gate.

    PubMed

    Yan, Leilei; Zhang, Jian-Qi; Zhang, Shuo; Feng, Mang

    2015-10-12

    The efficient cooling of nanomechanical resonators is essential to exploration of quantum properties of the macroscopic or mesoscopic systems. We propose such a laser-cooling scheme for a nanomechanical cantilever, which works even for the low-frequency mechanical mode and under weak cooling lasers. The cantilever is coupled by a diamond nitrogen-vacancy center under a strong magnetic field gradient and the cooling is assisted by a dynamical Stark-shift gate. Our scheme can effectively enhance the desired cooling efficiency by avoiding the off-resonant and undesired carrier transitions, and thereby cool the cantilever down to the vicinity of the vibrational ground state in a fast fashion.

  18. Fast optical cooling of a nanomechanical cantilever by a dynamical Stark-shift gate

    NASA Astrophysics Data System (ADS)

    Yan, Leilei; Zhang, Jian-Qi; Zhang, Shuo; Feng, Mang

    2015-10-01

    The efficient cooling of nanomechanical resonators is essential to exploration of quantum properties of the macroscopic or mesoscopic systems. We propose such a laser-cooling scheme for a nanomechanical cantilever, which works even for the low-frequency mechanical mode and under weak cooling lasers. The cantilever is coupled by a diamond nitrogen-vacancy center under a strong magnetic field gradient and the cooling is assisted by a dynamical Stark-shift gate. Our scheme can effectively enhance the desired cooling efficiency by avoiding the off-resonant and undesired carrier transitions, and thereby cool the cantilever down to the vicinity of the vibrational ground state in a fast fashion.

  19. NIR Flare of PKS2032+107

    NASA Astrophysics Data System (ADS)

    Carrasco, L.; Miramon, J.; Recillas, E.; Porras, A.; Chabushyan, V.; Carraminana, A.; Mayya, D.

    2013-11-01

    We have observed a recent NIR flare of the intermediate redshift quasar PKS2032+107. This radio source is cross identified with the gamma ray source 2FGLJ2035.4+1058 and the optical source BZQJ2035+1056. From observations carried out on November 12th, 2013 (JD 2456608.603380), we determined the following photometric values H = 13.452 +/- 0.03, J = 14.628 +/- 0.03 and Ks = 12.777 +/- 0.05. Our previous NIR photometry of the object (JD2456595.644780) yielded the value: H = 15.012 =/- 0.05.

  20. Examining Cortical Dynamics and Connectivity with Simultaneous Single-Pulse Transcranial Magnetic Stimulation and Fast Optical Imaging

    PubMed Central

    Parks, Nathan A.; Maclin, Edward L.; Low, Kathy A.; Beck, Diane M.; Fabiani, Monica; Gratton, Gabriele

    2011-01-01

    Transcranial magnetic stimulation (TMS) is a widely used experimental and clinical technique that directly induces activity in human cortex using magnetic fields. However, the neural mechanisms of TMS-induced activity are not well understood. Here, we introduce a novel method of imaging TMS-evoked activity using a non-invasive fast optical imaging tool, the event-related optical signal (EROS). EROS measures changes in the scattering of near-infrared light that occur synchronously with electrical activity in cortical tissue. EROS has good temporal and spatial resolution, allowing the dynamics and spatial spread of a TMS pulse to be measured. We used EROS to monitor activity induced in primary motor cortex (M1) by a TMS pulse. Left- and right-hand representations were mapped using standard TMS procedures. Optical sources and detectors mounted on thin rubber patches were then centered on M1 hand representations. EROS was recorded bilaterally from motor cortex while unilateral TMS was simultaneously delivered. Robust ipsilateral EROS activations were apparent within 16 ms of a pulse for TMS delivered to both left and right hemispheres. Clear motor evoked potentials (MEPs) were also elicited by these TMS pulses. Movement artifacts could be excluded as a source of EROS, as no activation was present on short-distance optical channels. For left hemisphere TMS subsequent (40 ms) contralateral activity was also present, presumably due to trans-synaptic propagation of TMS-evoked activity. Results demonstrate that concurrent TMS/EROS is a viable and potentially powerful method for studying TMS-induced activity in the human brain. With further development, this technique may be applied more broadly in the study of the dynamics of causal cortico-cortical connectivity. PMID:21925608

  1. Analysis of flares in the chromosphere and corona of main- and pre-main-sequence M-type stars

    NASA Astrophysics Data System (ADS)

    Crespo-Chacón, I.

    2015-11-01

    This Ph.D. Thesis revolves around flares on main- and pre-main-sequence M-type stars. We use observations in different wavelength ranges with the aim of analysing the effects of flares at different layers of stellar atmospheres. In particular, optical and X-ray observations are used so that we can study how flares affect, respectively, the chromosphere and the corona of stars. In the optical range we carry out a high temporal resolution spectroscopic monitoring of UV Ceti-type stars aimed at detecting non-white-light flares (the most typical kind of solar flares) in stars other than the Sun. With these data we confirm that non-white-light flares are a frequent phenomenon in UV Ceti-type stars, as observed in the Sun. We study and interpret the behaviour of different chromospheric lines during the flares detected on AD Leo. By using a simplified slab model of flares (Jevremović et al. 1998), we are able to determine the physical parameters of the chromospheric flaring plasma (electron density and electron temperature), the temperature of the underlying source, and the surface area covered by the flaring plasma. We also search for possible relationships between the physical parameters of the flaring plasma and other properties such as the flare duration, area, maximum flux and released energy. This work considerably extends the existing sample of stellar flares analysed with good quality spectroscopy in the optical range. In X-rays we take advantage of the great sensitivity, wide energy range, high energy resolution, and continuous time coverage of the EPIC detectors - on-board the XMMNewton satellite - in order to perform time-resolved spectral analysis of coronal flares. In particular, in the UV Ceti-type star CC Eri we study two flares that are weaker than those typically reported in the literature (allowing us to speculate about the role of flares as heating agents of stellar atmospheres); while in the pre-main-sequence M-type star TWA 11B (with no signatures of

  2. Fermi Large Area Telescope observations of high-energy gamma-ray emission from Solar flares

    NASA Astrophysics Data System (ADS)

    Pesce Rollins, Melissa

    2017-01-01

    The Fermi Large Area Telescope (LAT) observations of the active Sun provide the largest sample of detected solar flares with emission greater than 30 MeV to date. These include detections of impulsive and sustained emission, extending up to 20 hours in the case of the 2012 March 7 X-class flares. These high-energy flares are coincident with GOES X-ray flares of X, M and C classes as well as very fast Coronal Mass Ejections (CME). We will present results from the First Fermi-LAT solar flare catalog covering the majority of Solar Cycle 24 including correlation studies with the associated Solar Energetic Particles (SEP) and CMEs.

  3. A Fast and Scalable Kymograph Alignment Algorithm for Nanochannel-Based Optical DNA Mappings

    PubMed Central

    Noble, Charleston; Nilsson, Adam N.; Freitag, Camilla; Beech, Jason P.; Tegenfeldt, Jonas O.; Ambjörnsson, Tobias

    2015-01-01

    Optical mapping by direct visualization of individual DNA molecules, stretched in nanochannels with sequence-specific fluorescent labeling, represents a promising tool for disease diagnostics and genomics. An important challenge for this technique is thermal motion of the DNA as it undergoes imaging; this blurs fluorescent patterns along the DNA and results in information loss. Correcting for this effect (a process referred to as kymograph alignment) is a common preprocessing step in nanochannel-based optical mapping workflows, and we present here a highly efficient algorithm to accomplish this via pattern recognition. We compare our method with the one previous approach, and we find that our method is orders of magnitude faster while producing data of similar quality. We demonstrate proof of principle of our approach on experimental data consisting of melt mapped bacteriophage DNA. PMID:25875920

  4. Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI).

    PubMed

    Dertinger, T; Colyer, R; Iyer, G; Weiss, S; Enderlein, J

    2009-12-29

    Super-resolution optical microscopy is a rapidly evolving area of fluorescence microscopy with a tremendous potential for impacting many fields of science. Several super-resolution methods have been developed over the last decade, all capable of overcoming the fundamental diffraction limit of light. We present here an approach for obtaining subdiffraction limit optical resolution in all three dimensions. This method relies on higher-order statistical analysis of temporal fluctuations (caused by fluorescence blinking/intermittency) recorded in a sequence of images (movie). We demonstrate a 5-fold improvement in spatial resolution by using a conventional wide-field microscope. This resolution enhancement is achieved in iterative discrete steps, which in turn allows the evaluation of images at different resolution levels. Even at the lowest level of resolution enhancement, our method features significant background reduction and thus contrast enhancement and is demonstrated on quantum dot-labeled microtubules of fibroblast cells.

  5. A Fast Optical Method for the Determination of Liquid Levels in Microplates

    PubMed Central

    Thurow, Kerstin; Stoll, Norbert; Ritterbusch, Kai

    2011-01-01

    Parallel liquid handling systems are widely used in different applications of life sciences. In order to avoid false positive or negative results which lead to higher costs due to the replication of the experiments it is necessary to monitor the process and success of liquid delivery. An easy method for the determination of the liquid levels in microplates has been developed and evaluated. The optical method bases on the measurement of the liquid level using CCD cameras followed by special algorithms for the evaluation and visualization of the measured data. The proposed method was tested in changing environmental lighting for two different liquids. These tests confirm our approach towards optical liquid level determination for smallest volumes in microplates and also show the challenges regarding environmental lighting and different physical properties of fluids. PMID:21747734

  6. Fast Optical Hazard Detection for Planetary Rovers Using Multiple Spot Laser Triangulation

    NASA Technical Reports Server (NTRS)

    Matthies, L.; Balch, T.; Wilcox, B.

    1997-01-01

    A new laser-based optical sensor system that provides hazard detection for planetary rovers is presented. It is anticipated that the sensor can support safe travel at speeds up to 6cm/second for large (1m) rovers in full sunlight on Earth or Mars. The system overcomes limitations in an older design that require image differencing ot detect a laser stripe in full sun.

  7. Fast beam steering with full polarization control using a galvanometric optical scanner and polarization controller.

    PubMed

    Jofre, M; Anzolin, G; Steinlechner, F; Oliverio, N; Torres, J P; Pruneri, V; Mitchell, M W

    2012-05-21

    Optical beam steering is a key element in many industrial and scientific applications like in material processing, information technologies, medical imaging and laser display. Even though galvanometer-based scanners offer flexibility, speed and accuracy at a relatively low cost, they still lack the necessary control over the polarization required for certain applications. We report on the development of a polarization steerable system assembled with a fiber polarization controller and a galvanometric scanner, both controlled by a digital signal processor board. The system implements control of the polarization decoupled from the pointing direction through a feed-forward control scheme. This enables to direct optical beams to a desired direction without affecting its initial polarization state. When considering the full working field of view, we are able to compensate polarization angle errors larger than 0.2 rad, in a temporal window of less than ∼ 20 ms. Given the unification of components to fully control any polarization state while steering an optical beam, the proposed system is potentially integrable and robust.

  8. En-face full-field optical coherence tomography for fast and efficient fingerprints acquisition

    NASA Astrophysics Data System (ADS)

    Harms, Fabrice; Dalimier, Eugénie; Boccara, A. Claude

    2014-05-01

    Optical coherence tomography (OCT) has been recently proposed by a number of laboratories as a promising tool for fingerprints acquisitions and for fakes discrimination. Indeed OCT being a non-contact, non-destructive optical method that virtually sections the volume of biological tissues that strongly scatter light it appears obvious to use it for fingerprints. Nevertheless most of the OCT setups have to go through the long acquisition of a full 3D image to isolate an "en-face" image suitable for fingerprint analysis. A few "en-face" OCT approaches have been proposed that use either a complex 2D scanning setup and image processing, or a full-field illumination using a camera and a spatially coherent source that induces crosstalks and degrades the image quality. We show here that Full Field OCT (FFOCT) using a spatially incoherent source is able to provide "en-face" high quality optical sectioning of the fingers skin. Indeed such approach shows a unique spatial resolution able to reveal a number of morphological details of fingerprints that are not seen with competing OCT setups. In particular the cellular structure of the stratum corneum and the epidermis-dermis interface appear clearly. We describe our high-resolution (1 micrometer, isotropic) setup and show our first design to get a large field of view while keeping a good sectioning ability of about 3 micrometers. We display the results obtained using these two setups for fingerprints examination.

  9. Demonstration of a fast-reconfigurable silicon CMOS optical lattice filter.

    PubMed

    Ibrahim, Salah; Fontaine, Nicolas K; Djordjevic, Stevan S; Guan, Binbin; Su, Tiehui; Cheung, Stanley; Scott, Ryan P; Pomerene, Andrew T; Seaford, Liberty L; Hill, Craig M; Danziger, Steve; Ding, Zhi; Okamoto, K; Yoo, S J B

    2011-07-04

    We demonstrate a fully-reconfigurable fourth-order optical lattice filter built by cascading identical unit cells consisting of a Mach-Zehnder interferometer (MZI) and a ring resonator. The filter is fabricated using a commercial silicon complementary metal oxide semiconductor (CMOS) process and reconfigured by current injection into p-i-n diodes with a reconfiguration time of less than 10 ns. The experimental results show full control over the single unit cell pole and zero, switching the unit cell transfer function between a notch filter and a bandpass filter, narrowing the notch width down to 400 MHz, and tuning the center wavelength over the full free spectral range (FSR) of 10 GHz. Theoretical and experimental results show tuning dynamics and associated optical losses in the reconfigurable filters. The full-control of each of the four cascaded single unit cells resulted in demonstrations of a number of fourth-order transfer functions. The multimedia experimental data show live tuning and reconfiguration of optical lattice filters.

  10. High-efficiency fast scintillators for 'optical' soft x-ray arrays for laboratory plasma diagnostics

    SciTech Connect

    Delgado-Aparicio, L. F.; Stutman, D.; Tritz, K.; Vero, R.; Finkenthal, M.; Suliman, G.; Kaita, R.; Majeski, R.; Stratton, B.; Roquemore, L.; Tarrio, C

    2007-08-20

    Scintillator-based 'optical' soft x-ray (OSXR) arrays have been investigated as a replacement for the conventional silicon (Si)-based diode arrays used for imaging, tomographic reconstruction, magnetohydrodynamics, transport, and turbulence studies in magnetically confined fusion plasma research. An experimental survey among several scintillator candidates was performed, measuring the relative and absolute conversion efficiencies of soft x rays to visible light. Further investigations took into account glass and fiber-optic faceplates (FOPs) as substrates, and a thin aluminum foil(150 nm) to reflect the visible light emitted by the scintillator back to the optical detector.Columnar (crystal growth) thallium-doped cesium iodide (CsI:Tl) deposited on an FOP, was found to be the best candidate for the previously mentioned plasma diagnostics.Its luminescence decay time of the order of?1-10 {mu}s is thus suitable for the 10 {mu}s time resolution required for the development of scintillator-based SXR plasma diagnostics. A prototype eight channel OSXR array using CsI:Tl was designed, built,and compared to an absolute extreme ultraviolet diode counterpart: its operation on the National Spherical Torus Experiment showed a lower level of induced noise relative to the Si-based diode arrays, especially during neutral beam injection heated plasma discharges. The OSXR concept can also be implemented in less harsh environments for basic spectroscopic laboratory plasma diagnostics.

  11. Detection of a flaring low-energy gamma-ray source

    NASA Technical Reports Server (NTRS)

    Bhattacharya, Dipen; Owens, Alan

    1994-01-01

    We report the detection of a flaring gamma-ray source by the University of New Hampshire (UNH) balloon-borne coded aperture gamma-ray telescope (DGT) on 1984 October 2. The source was detected at the significance level of 7.2 sigma over the energy range 160-2000 keV. The intensity in the range (160-200) keV was 1.1 Crab. The best-fit position of the source is given by R.A. = 3h 25.8m and Decl. = 67 deg 653 min and is located in the constellation of Camelopardia. The source was visible within the Field of View (FOV) of the telescope for approximately = 2 hr and exhibited signs of flaring. The derived photon spectrum can be equally fitted by an optically thin bremsstrahlung distribution of kT approximately = 52 keV or a power law of the form, dN(E)/dE = 3.7 x 10(exp -6) (E/400)(exp -4.5) photons/sq cm/keV. We compare its spectral characteristics ad energy output to various types of fast X-ray transients. No measurable flux could be detected from CG 135+1, the COS B source which was in the FOV and therefore, we present 2 sigma upper flux limits on its spectral emission over the energy range 160 keV to 9.3 MeV.

  12. Inferring Flare Loop Parameters with Measurements of Standing Sausage Modes

    NASA Astrophysics Data System (ADS)

    Guo, Ming-Zhe; Chen, Shao-Xia; Li, Bo; Xia, Li-Dong; Yu, Hui

    2016-03-01

    Standing fast sausage modes in flare loops were suggested to account for a considerable number of quasi-periodic pulsations (QPPs) in the light curves of solar flares. This study continues our investigation into the possibility of inverting the measured periods P and damping times τ of sausage modes to deduce the transverse Alfvén time R/v_{Ai}, density contrast ρi/ρe, and the steepness of the density distribution transverse to flare loops. A generic dispersion relation governing linear sausage modes is derived for pressureless cylinders where density inhomogeneity of arbitrary form takes place within the cylinder. We show that in general the inversion problem is under-determined for QPP events where only a single sausage mode exists, whether the measurements are spatially resolved or unresolved. While R/v_{Ai} can be inferred to some extent, the range of possible steepness parameters may be too broad to be useful. However, for spatially resolved measurements where an additional mode is present, it is possible to deduce self-consistently ρi/ρe, the profile steepness, and the internal Alfvén speed v_{Ai}. We show that at least for a recent QPP event that involves a fundamental kink mode in addition to a sausage one, flare loop parameters are well constrained even if the specific form of the transverse density distribution remains unknown. We conclude that spatially resolved, multi-mode QPP measurements need to be pursued to infer flare loop parameters.

  13. The high accuracy model of the 19 July 2012 solar flare: kinetic description, calculations of X-Ray and microwave emission

    NASA Astrophysics Data System (ADS)

    Gritsyk, Pavel; Somov, Boris

    2016-04-01

    The limb white-light solar flare M7.7 class was observed at the 19 July 2012 at 05:58UT by RHESSI, GOES and SDO with high spectral, spatial and temporal resolution. These new data make possible to test modern models of solar flares. The flare, which considered here, locates in the picture plane, so we well see two different hard X-ray sources: footpoint and above-the-loop-top. The loop was observed in whit-light and microwave wavelengths. The key part of the presented work is high accuracy kinetic model, which describe behavior of electrons in the target - solar flare loop. We interpret the footpoint source in approximation of the thick target model with reverse current and above-the-loop-top source - in the thin target approximation. The microwave spectrum in the range from 1 to 50 GHz was calculated. Our results fit well the observational data, particularly so important parameter as hard X-Ray spectral index. But intensity of emission of the coronal source was estimated incorrect, it was low than observed. This problem can be solved by taking into account effects of particles acceleration in the collapsing magnetic trap, when fast electrons receive additional energy without changing the index of their energy spectrum. In the result we have flux ~ 5 1010 erg cm-2 s-1 for electrons with energies more then 15 keV, that ~ 5 times larger then in the case classical thick target model. Accordingly , so high flux of electrons to the Chromosphere provides effective heating of the cold plasma in the target, but the reverse current electric field restrict depth of the electron penetration. Received in this work estimates may be used for interpretation of the solar flare optical source formation and evolution.

  14. A proposed optical system for implementing the novel super-fast image processing scheme: the LPED method

    NASA Astrophysics Data System (ADS)

    Hu, Chialun John

    2014-04-01

    LPED method, or Local Polar Edge Detection method, is a novel method the author discovered and implemented in many image processing schemes in the last 3 years with 3 papers published in this and other SPIE national conferences. It uses a special real-time boundary extraction method applied to some binary images taken by an uncooled IR camera on some high temperature objects embedded in a cold environment background in the far field. The unique boundary shape of each high temperature object can then be used to construct a 36D analog vector (a 36 - "digit" number U, with each "digit" being a positive analog number of any magnitude). This 36D analog vector U then represents the ID code to identify this object possessing this particular boundary shape. Therefore, U may be used for tracking and targeting on this particular object when this object is moving very fast in a 2D space and criss-crossing with other fast moving objects embedded in the same field of view. The current paper will report a preliminary optical bench design of the optical system that will use the above developed soft-ware to construct a real-time, instant-detect, instant track, and automatic targeting high power laser gun system, for shooting down any spontaneously launched enemy surface-to-air-missiles from the near-by battle ground. It uses the total reflection phenomenon in the Wollastron beam combiner and real-time monitor screen auto-targeting and firing system to implement this "instant-detect, instant-kill, SAM killer system".

  15. GPU-accelerated non-uniform fast Fourier transform-based compressive sensing spectral domain optical coherence tomography.

    PubMed

    Xu, Daguang; Huang, Yong; Kang, Jin U

    2014-06-16

    We implemented the graphics processing unit (GPU) accelerated compressive sensing (CS) non-uniform in k-space spectral domain optical coherence tomography (SD OCT). Kaiser-Bessel (KB) function and Gaussian function are used independently as the convolution kernel in the gridding-based non-uniform fast Fourier transform (NUFFT) algorithm with different oversampling ratios and kernel widths. Our implementation is compared with the GPU-accelerated modified non-uniform discrete Fourier transform (MNUDFT) matrix-based CS SD OCT and the GPU-accelerated fast Fourier transform (FFT)-based CS SD OCT. It was found that our implementation has comparable performance to the GPU-accelerated MNUDFT-based CS SD OCT in terms of image quality while providing more than 5 times speed enhancement. When compared to the GPU-accelerated FFT based-CS SD OCT, it shows smaller background noise and less side lobes while eliminating the need for the cumbersome k-space grid filling and the k-linear calibration procedure. Finally, we demonstrated that by using a conventional desktop computer architecture having three GPUs, real-time B-mode imaging can be obtained in excess of 30 fps for the GPU-accelerated NUFFT based CS SD OCT with frame size 2048(axial) × 1,000(lateral).

  16. Characteristics of the photospheric magnetic field associated with solar flare initiation

    SciTech Connect

    Yang, Ya-Hui; Chen, P. F.; Hsieh, Min-Shiu; Wu, S. T.; He, Han; Tsai, Tsung-Che E-mail: chenpf@nju.edu.cn E-mail: wus@uah.edu E-mail: tctsai@narlabs.org.tw

    2014-05-01

    The physical environment governing the solar flare initiation is not fully understood, although there are significant efforts to address the relationship between magnetic non-potential parameters and early flare signatures. In this study, we attempt to characterize the flare initiation based on the processed Helioseismic and Magnetic Imager vector magnetograms, Atmospheric Imaging Assembly 1600 Å, and RHESSI hard X-ray observations. Three flare events, the M6.6 flare on 2011 February 13, the X2.2 flare on 2011 February 15, and the X2.1 flare on 2011 September 6, in two active regions AR 11158 and AR 11283 are investigated. We analyze the source field strength in the photosphere, which is defined as the magnitude of the observed magnetic field deviation from the potential field. It is found that one of the strong source field regions above the magnetic polarity inversion line well connects the initial bright kernels of two conjugate ribbons. The results imply that the distribution of the photospheric source field strength can be used to locate the initiation site of flaring loops regardless of the configuration of pre-flare magnetic fields or the evolution of active regions. Moreover, the field configuration in the strong source field regions tends to become more inclined after flares, which is consistent with the coronal implosion scenario. We also employ a fast method to derive the total current density from the photospheric vector magnetogram in the framework of force-free field. This method can provide fast estimation of photospheric current density within a reasonable accuracy without appealing for the more accurate calculation from a model extrapolation.

  17. Optimized six-dimensional optical storage: a practicable way to large capacity and fast throughputs

    NASA Astrophysics Data System (ADS)

    Liu, Shangqing

    2015-08-01

    An optimized six-dimensional storage system has been investigated theoretically. The system uses multiple beams to create overlapped micro gratings as each storage cell. The cell capacity depends exponentially on the beam wavelength number. With two-photon absorption writing, coherence tomography reading and superresolving beam focusing, this system has extra-large capacity of >1 Pbyte per DVD sized disk (potential ~60 Pbytes per disk), extra-fast reading speed of >117 Gbits/s with high signal-to-noise ratio of >66 dB, large cell sizes (~0.3μm × 6μm) which greatly reduce data addressing difficulties and a standard drive like structure compatible with the CD and DVD disks.

  18. Fast optical cooling of a nanomechanical cantilever by a dynamical Stark-shift gate

    PubMed Central

    Yan, Leilei; Zhang, Jian-Qi; Zhang, Shuo; Feng, Mang

    2015-01-01

    The efficient cooling of nanomechanical resonators is essential to exploration of quantum properties of the macroscopic or mesoscopic systems. We propose such a laser-cooling scheme for a nanomechanical cantilever, which works even for the low-frequency mechanical mode and under weak cooling lasers. The cantilever is coupled by a diamond nitrogen-vacancy center under a strong magnetic field gradient and the cooling is assisted by a dynamical Stark-shift gate. Our scheme can effectively enhance the desired cooling efficiency by avoiding the off-resonant and undesired carrier transitions, and thereby cool the cantilever down to the vicinity of the vibrational ground state in a fast fashion. PMID:26455901

  19. Early stage time evolution of a dense nanosecond microdischarge used in fast optical switching applications

    SciTech Connect

    Levko, Dmitry; Raja, Laxminarayan L.

    2015-12-15

    The mechanism of high-voltage nanosecond microdischarges is studied by the self-consistent two-dimensional Particle-in-Cell/Monte Carlo Collisions model. These microdischarges were recently proposed for use as fast switches of visible light in Bataller et al. [Appl. Phys. Lett. 105, 223501 (2014)]. The microdischarge is found to develop in two stages. The first stage is associated with the electrons initially seeded in the cathode-anode gap. These electrons lead to the formation of a cathode-directed streamer. The second stage starts when the secondary electron emission from the cathode begins. In this stage, a rather dense plasma (∼10{sup 16 }cm{sup −3}) is generated which results in the narrow cathode sheath. The electric field in this sheath exceeds the critical electric field which is necessary for the runaway electrons generation. We have found that the presence of these energetic electrons is crucial for the discharge maintenance.

  20. Handling an Asthma Flare-Up

    MedlinePlus

    ... dientes Video: Getting an X-ray Handling an Asthma Flare-Up KidsHealth > For Kids > Handling an Asthma Flare-Up Print A A A What's in ... asmáticas What's a Flare-Up? If you have asthma, you probably know about flare-ups . That's when ...

  1. Ultra-fast coherent optical system for active remote sensing applications

    NASA Astrophysics Data System (ADS)

    Datta, Shubhashish; Becker, Don; Joshi, Abhay; Howard, Roy

    2008-04-01

    Active optical remote sensing has numerous applications including battlefield target recognition and tracking, atmospheric monitoring, structural monitoring, collision avoidance systems, and terrestrial mapping. The maximum propagation distance in LIDAR sensors is limited by the signal attenuation. Sensor range could be improved by increasing the transmitted pulse energy, at the expense of reduced resolution and information bandwidth. Coherent detection can operate at low optical power levels without sacrificing sensor bandwidth. Utilizing a high power LO laser to increase the receiver gain, coherent systems provide shot noise-limited gain thereby increasing the sensing range. To fully exploit high LO powers without incurring performance penalties due to the RIN of the LO, high power handling balanced photodiodes are used. The coherent system has superior dynamic range, bandwidth, and noise performance than small-signal APD-based systems. Coherent detection is a linear process that is sensitive to the amplitude, phase and polarization of the received signal. Therefore, Doppler shifts and vibration signatures can be easily recovered. RF adaptive filtering following photodetection enables channel equalization, atmospheric turbulence compensation, and efficient background light filtering. We demonstrate a coherent optical transmission system using 15mA high power handling balanced photodetectors. This system has an IF linewidth <1Hz, employing a proprietary phase locked loop design. Data is presented for 100ps pulsed transmission. We have demonstrated amplitude and phase modulated 10Gb/s communication links with sensitivities of 132 and 72 photons per bit respectively. Investigations into system performance in the presence of laboratory induced atmospheric turbulence are shown.

  2. Semiconducting polymer waveguides for end-fired ultra-fast optical amplifiers.

    PubMed

    Liu, Ning; Ruseckas, Arvydas; Montgomery, Neil A; Samuel, Ifor D W; Turnbull, Graham A

    2009-11-23

    A method to fabricate conjugated polymer waveguides with well defined edge facets is demonstrated. The utility of the approach is explored for application as end-fired ultrafast optical amplifiers based on poly(9,9'-dioctylfluorene-co-benzothiadiazole). An internal gain of 19 dB was achieved on a 760 microm long waveguide at 565 nm wavelength. This fabrication procedure may be applied to a wide range of conjugated polymers and organic light-emitting devices, providing an important step towards future applications of organic integrated photonics.

  3. Fast and Accurate Cell Tracking by a Novel Optical-Digital Hybrid Method

    NASA Astrophysics Data System (ADS)

    Torres-Cisneros, M.; Aviña-Cervantes, J. G.; Pérez-Careta, E.; Ambriz-Colín, F.; Tinoco, Verónica; Ibarra-Manzano, O. G.; Plascencia-Mora, H.; Aguilera-Gómez, E.; Ibarra-Manzano, M. A.; Guzman-Cabrera, R.; Debeir, Olivier; Sánchez-Mondragón, J. J.

    2013-09-01

    An innovative methodology to detect and track cells using microscope images enhanced by optical cross-correlation techniques is proposed in this paper. In order to increase the tracking sensibility, image pre-processing has been implemented as a morphological operator on the microscope image. Results show that the pre-processing process allows for additional frames of cell tracking, therefore increasing its robustness. The proposed methodology can be used in analyzing different problems such as mitosis, cell collisions, and cell overlapping, ultimately designed to identify and treat illnesses and malignancies.

  4. An optical technique for fast and ultrasensitive detection of ammonia using magnetic nanofluids

    NASA Astrophysics Data System (ADS)

    Mahendran, V.; Philip, John

    2013-02-01

    We report a simple, in-expensive, portable, and ultrasensitive optical sensor for detection of ammonia in parts per million levels using magnetic nanofluids. The sensor produces visually perceptible color changes, in the presence of ammonia, due to the changes in the lattice periodicity of 1-dimensional array of droplets. The penetration of ammonia into the diffused electric double layer around the emulsion droplet causes significant blue shift in the diffracted Bragg peak. The mechanism of the blue shift is probed by measuring the subtle changes in the intermolecular forces in the presence of ammonia. The present approach is useful for online monitoring of ammonia.

  5. Fast and low power Michelson interferometer thermo-optical switch on SOI.

    PubMed

    Song, Junfeng; Fang, Q; Tao, S H; Liow, T Y; Yu, M B; Lo, G Q; Kwong, D L

    2008-09-29

    We designed and fabricated silicon-on-insulator based Michelson interferometer (MI) thermo-optical switches with deep etched trenches for heat-isolation. Switch power was reduced approximately 20% for the switch with deep etched trenches, and the MI saved approximately 50% power than that of the Mach-Zehnder interferometer. 10.6 mW switch power, approximately 42 micros switch time for the MI with deep trenches, 13.14 mW switch power and approximately 34 micros switch time for the MI without deep trenches were achieved.

  6. SCATTERING POLARIZATION IN SOLAR FLARES

    SciTech Connect

    Štěpán, Jiří; Heinzel, Petr

    2013-11-20

    There is ongoing debate about the origin and even the very existence of a high degree of linear polarization of some chromospheric spectral lines observed in solar flares. The standard explanation of these measurements is in terms of the impact polarization caused by non-thermal proton and/or electron beams. In this work, we study the possible role of resonance line polarization due to radiation anisotropy in the inhomogeneous medium of the flare ribbons. We consider a simple two-dimensional model of the flaring chromosphere and we self-consistently solve the non-LTE problem taking into account the role of resonant scattering polarization and of the Hanle effect. Our calculations show that the horizontal plasma inhomogeneities at the boundary of the flare ribbons can lead to a significant radiation anisotropy in the line formation region and, consequently, to a fractional linear polarization of the emergent radiation of the order of several percent. Neglecting the effects of impact polarization, our model can provide a clue for resolving some of the common observational findings, namely: (1) why a high degree of polarization appears mainly at the edges of the flare ribbons; (2) why polarization can also be observed during the gradual phase of a flare; and (3) why polarization is mostly radial or tangential. We conclude that radiation transfer in realistic multi-dimensional models of solar flares needs to be considered as an essential ingredient for understanding the observed spectral line polarization.

  7. X-rays from stellar flares

    NASA Technical Reports Server (NTRS)

    Linsky, Jeffrey L.

    1991-01-01

    A summary of X-ray observations of flares on dMe, active spectroscopic binaries and young stars is presented. Consideration is given to the energy associated with the X-ray emission and its relation to other components of the flare energy budget, the time behavior of the flaring plasma as seen by the X-ray emission, and comparisons of stellar flare parameters with solar compact and two ribbon flares. Flares are easily detected when the contrast in the emission from the flaring plasma relative to the stellar photosphere is large as in the X-ray, microwave, and UV regions of the spectrum.

  8. Analyzing the Electrical Performance of a Solar Cell with Time-Resolved Photoluminescence: Methodology for Fast Optical Screening

    NASA Astrophysics Data System (ADS)

    Tex, David M.; Imaizumi, Mitsuru; Kanemitsu, Yoshihiko

    2017-01-01

    The performance of solar-cell devices is conventionally analyzed electrically by current-voltage measurements. To access the physics of the current generation process at the operating point, the analysis of fast optical responses from devices is highly beneficial. However, the optical responses from p -n junctions exhibit a complex photoluminescence (PL) decay behavior due to their time-dependent electric fields. Here, we propose a method to systematically assign the physical meanings of the PL decay time constants by recording the complete excitation power dependence and voltage dependence of the time-resolved PL from a GaAs single junction. The experimentally obtained PL curves are in agreement with numerical predictions of dominant charge separation. We conclude that the charge separation can be directly observed in state-of-the-art devices. The experimental data set enables assignment of the effective separation time constant for the maximum output power condition, which is the most important number for understanding the carrier dynamics during device operation. The technique developed in this work constitutes a contactless characterization technique for solar cells.

  9. Frequency analysis of the visual steady-state response measured with the fast optical signal in younger and older adults

    PubMed Central

    Tse, Chun-Yu; Gordon, Brian A.; Fabiani, Monica; Gratton, Gabriele

    2010-01-01

    Relatively high frequency activity (>4 Hz) carries important information about the state of the brain or its response to high frequency events. The electroencephalogram (EEG) is commonly used to study these changes because it possesses high temporal resolution and a good signal-to-noise ratio. However, it provides limited spatial information. Non-invasive fast optical signals (FOS) have been proposed as a neuroimaging tool combining spatial and temporal resolution. Yet, this technique has not been applied to study high frequency brain oscillations because of its relatively low signal-to-noise ratio. Here we investigate the sensitivity of FOS to relatively high-frequency brain oscillations. We measured the steady-state optical response elicited in medial and lateral occipital cortex by checkerboard reversals occurring at 4, 6, and 8 Hz in younger and older adults. Stimulus-dependent oscillations were observed at the predicted stimulation frequency. In addition, in the younger adults the FOS steady-state response was smaller in lateral than medial areas, whereas in the older adults it was reversed in these two cortical regions. This may reflect diminished top-down inhibitory control in the older adults. The results indicate that FOS can be used to study the modulation of relatively high-frequency brain oscillations in adjacent cortical regions. PMID:20566389

  10. Tuning the Sensitivity of an Optical Cavity with Slow and Fast Light

    NASA Technical Reports Server (NTRS)

    Smith, David D.; Myneni, Krishna; Chang, H.; Toftul, A.; Schambeau, C.; Odutola, J. A.; Diels, J. C.

    2012-01-01

    We have measured mode pushing by the dispersion of a rubidium vapor in a Fabry-Perot cavity and have shown that the scale factor and sensitivity of a passive cavity can be strongly enhanced by the presence of such an anomalous dispersion medium. The enhancement is the result of the atom-cavity coupling, which provides a positive feedback to the cavity response. The cavity sensitivity can also be controlled and tuned through a pole by a second, optical pumping, beam applied transverse to the cavity. Alternatively, the sensitivity can be controlled by the introduction of a second counter-propagating input beam that interferes with the first beam, coherently increasing the cavity absorptance. We show that the pole in the sensitivity occurs when the sum of the effective group index and an additional cavity delay factor that accounts for mode reshaping goes to zero, and is an example of an exceptional point, commonly associated with coupled non-Hermitian Hamiltonian systems. Additionally we show that a normal dispersion feature can decrease the cavity scale factor and can be generated through velocity selective optical pumping

  11. Simulation of a fast diffuse optical tomography system based on radiative transfer equation

    NASA Astrophysics Data System (ADS)

    Motevalli, S. M.; Payani, A.

    2016-12-01

    Studies show that near-infrared (NIR) light (light with wavelength between 700nm and 1300nm) undergoes two interactions, absorption and scattering, when it penetrates a tissue. Since scattering is the predominant interaction, the calculation of light distribution in the tissue and the image reconstruction of absorption and scattering coefficients are very complicated. Some analytical and numerical methods, such as radiative transport equation and Monte Carlo method, have been used for the simulation of light penetration in tissue. Recently, some investigators in the world have tried to develop a diffuse optical tomography system. In these systems, NIR light penetrates the tissue and passes through the tissue. Then, light exiting the tissue is measured by NIR detectors placed around the tissue. These data are collected from all the detectors and transferred to the computational parts (including hardware and software), which make a cross-sectional image of the tissue after performing some computational processes. In this paper, the results of the simulation of an optical diffuse tomography system are presented. This simulation involves two stages: a) Simulation of the forward problem (or light penetration in the tissue), which is performed by solving the diffusion approximation equation in the stationary state using FEM. b) Simulation of the inverse problem (or image reconstruction), which is performed by the optimization algorithm called Broyden quasi-Newton. This method of image reconstruction is faster compared to the other Newton-based optimization algorithms, such as the Levenberg-Marquardt one.

  12. Fast ray-tracing of human eye optics on Graphics Processing Units.

    PubMed

    Wei, Qi; Patkar, Saket; Pai, Dinesh K

    2014-05-01

    We present a new technique for simulating retinal image formation by tracing a large number of rays from objects in three dimensions as they pass through the optic apparatus of the eye to objects. Simulating human optics is useful for understanding basic questions of vision science and for studying vision defects and their corrections. Because of the complexity of computing such simulations accurately, most previous efforts used simplified analytical models of the normal eye. This makes them less effective in modeling vision disorders associated with abnormal shapes of the ocular structures which are hard to be precisely represented by analytical surfaces. We have developed a computer simulator that can simulate ocular structures of arbitrary shapes, for instance represented by polygon meshes. Topographic and geometric measurements of the cornea, lens, and retina from keratometer or medical imaging data can be integrated for individualized examination. We utilize parallel processing using modern Graphics Processing Units (GPUs) to efficiently compute retinal images by tracing millions of rays. A stable retinal image can be generated within minutes. We simulated depth-of-field, accommodation, chromatic aberrations, as well as astigmatism and correction. We also show application of the technique in patient specific vision correction by incorporating geometric models of the orbit reconstructed from clinical medical images.

  13. An Optically Stabilized Fast-Switching Light Emitting Diode as a Light Source for Functional Neuroimaging

    PubMed Central

    Wagenaar, Daniel A.

    2012-01-01

    Neuroscience research increasingly relies on optical methods for evoking neuronal activity as well as for measuring it, making bright and stable light sources critical building blocks of modern experimental setups. This paper presents a method to control the brightness of a high-power light emitting diode (LED) light source to an unprecedented level of stability. By continuously monitoring the actual light output of the LED with a photodiode and feeding the result back to the LED's driver by way of a proportional-integral controller, drift was reduced to as little as 0.007% per hour over a 12-h period, and short-term fluctuations to 0.005% root-mean-square over 10 seconds. The LED can be switched on and off completely within 100 s, a feature that is crucial when visual stimuli and light for optical recording need to be interleaved to obtain artifact-free recordings. The utility of the system is demonstrated by recording visual responses in the central nervous system of the medicinal leech Hirudo verbana using voltage-sensitive dyes. PMID:22238663

  14. Optical node for fast packet-switching networks in the KEOPS project: structure and performance aspects

    NASA Astrophysics Data System (ADS)

    Chiaroni, Dominique; Lavigne, Bruno; Tran, Tri; Hamon, Laure; Jourdan, Amaury

    1998-10-01

    The future telecommunication network will have to face the dramatic increase of subscribers as well as the increase of the user bandwidth through new services. All-optical packet switching techniques can become a strategic objective to offer on an unique technology a service-transparent network. In this paper, we will describe in detail the structure of an optical packet switching node developed in the framework of the ACTS 043 KEOPS project. An analysis of the key functions will be reported to fulfill system requirements including cascadability. In particular the input synchronization, the Broadcast-and-select switching matrix and the output regenerative interface will be described and physical performance will be assessed through theoretical analysis: quality of the signal, packet jitter and packet power fluctuation. The electronic circuitry for the control of the components of each sub-block will be described. Finally, experimental validations of a 160 Gbit/s throughput node will be reported. In order to complete the analysis, the logical performance in a Bernoulli-type traffic will be regarded. In particular an optimized buffer including a recirculation loop will be studied. Logical performance exhibiting a packet loss rate lower than 10-9 for a 0.8 load and mean packet delay as low as 3 packet slots will be illustrated, thereby demonstrating full compatibility with ATM constraints. Finally, new perspectives in terms of throughput potential through cascading will be drawn.

  15. Ranque-Hilsch vortex tube thermocycler for fast DNA amplification and real-time optical detection

    NASA Astrophysics Data System (ADS)

    Ebmeier, Ryan J.; Whitney, Scott E.; Sarkar, Amitabha; Nelson, Michael; Padhye, Nisha V.; Gogos, George; Viljoen, Hendrik J.

    2004-12-01

    An innovative polymerase chain reaction (PCR) thermocycler capable of performing real-time optical detection is described below. This device utilizes the Ranque-Hilsch vortex tube in a system to efficiently and rapidly cycle three 20 μL samples between the denaturation, annealing, and elongation temperatures. The reaction progress is displayed real-time by measuring the size of a fluorescent signal emitted by SYBR green/double-stranded DNA complexes. This device can produce significant reaction yields with very small amounts of initial DNA, for example, it can amplify 0.25 fg (˜5 copies) of a 96 bp bacteriophage λ-DNA fragment 2.7×1011-fold by performing 45 cycles in less than 12 min. The optical threshold (150% of the baseline intensity) was passed 8 min into the reaction at cycle 34. Besides direct applications, the speed and sensitivity of this device enables it to be used as a scientific instrument for basic studies such as PCR assembly and polymerase kinetics.

  16. An optically stabilized fast-switching light emitting diode as a light source for functional neuroimaging.

    PubMed

    Wagenaar, Daniel A

    2012-01-01

    Neuroscience research increasingly relies on optical methods for evoking neuronal activity as well as for measuring it, making bright and stable light sources critical building blocks of modern experimental setups. This paper presents a method to control the brightness of a high-power light emitting diode (LED) light source to an unprecedented level of stability. By continuously monitoring the actual light output of the LED with a photodiode and feeding the result back to the LED's driver by way of a proportional-integral controller, drift was reduced to as little as 0.007% per hour over a 12-h period, and short-term fluctuations to 0.005% root-mean-square over 10 seconds. The LED can be switched on and off completely within 100 μs, a feature that is crucial when visual stimuli and light for optical recording need to be interleaved to obtain artifact-free recordings. The utility of the system is demonstrated by recording visual responses in the central nervous system of the medicinal leech Hirudo verbana using voltage-sensitive dyes.

  17. Fast, high-resolution 3D dosimetry utilizing a novel optical-CT scanner incorporating tertiary telecentric collimation

    PubMed Central

    Sakhalkar, H. S.; Oldham, M.

    2008-01-01

    This study introduces a charge coupled device (CCD) area detector based optical-computed tomography (optical-CT) scanner for comprehensive verification of radiation dose distributions recorded in nonscattering radiochromic dosimeters. Defining characteristics include: (i) a very fast scanning time of ~5 min to acquire a complete three-dimensional (3D) dataset, (ii) improved image formation through the use of custom telecentric optics, which ensures accurate projection images and minimizes artifacts from scattered and stray-light sources, and (iii) high resolution (potentially 50 μm) isotropic 3D dose readout. The performance of the CCD scanner for 3D dose readout was evaluated by comparison with independent 3D readout from the single laser beam OCTOPUS™-scanner for the same PRESAGE™ dosimeters. The OCTOPUS™ scanner was considered the “gold standard” technique in light of prior studies demonstrating its accuracy. Additional comparisons were made against calculated dose distributions from the ECLIPSE treatment-planning system. Dose readout for the following treatments were investigated: (i) a single rectangular beam irradiation to investigate small field and very steep dose gradient dosimetry away from edge effects, (ii) a 2-field open beam parallel-opposed irradiation to investigate dosimetry along steep dose gradients, and (iii) a 7-field intensity modulated radiation therapy (IMRT) irradiation to investigate dosimetry for complex treatment delivery involving modulation of fluence and for dosimetry along moderate dose gradients. Dose profiles, dose-difference plots, and gamma maps were employed to evaluate quantitative estimates of agreement between independently measured and calculated dose distributions. Results indicated that dose readout from the CCD scanner was in agreement with independent gold-standard readout from the OCTOPUS™-scanner as well as the calculated ECLIPSE dose distribution for all treatments, except in regions within a few

  18. Fast, high-resolution 3D dosimetry utilizing a novel optical-CT scanner incorporating tertiary telecentric collimation

    SciTech Connect

    Sakhalkar, H. S.; Oldham, M.

    2008-01-15

    This study introduces a charge coupled device (CCD) area detector based optical-computed tomography (optical-CT) scanner for comprehensive verification of radiation dose distributions recorded in nonscattering radiochromic dosimeters. Defining characteristics include: (i) a very fast scanning time of {approx}5 min to acquire a complete three-dimensional (3D) dataset, (ii) improved image formation through the use of custom telecentric optics, which ensures accurate projection images and minimizes artifacts from scattered and stray-light sources, and (iii) high resolution (potentially 50 {mu}m) isotropic 3D dose readout. The performance of the CCD scanner for 3D dose readout was evaluated by comparison with independent 3D readout from the single laser beam OCTOPUS-scanner for the same PRESAGE dosimeters. The OCTOPUS scanner was considered the 'gold standard' technique in light of prior studies demonstrating its accuracy. Additional comparisons were made against calculated dose distributions from the ECLIPSE treatment-planning system. Dose readout for the following treatments were investigated: (i) a single rectangular beam irradiation to investigate small field and very steep dose gradient dosimetry away from edge effects, (ii) a 2-field open beam parallel-opposed irradiation to investigate dosimetry along steep dose gradients, and (iii) a 7-field intensity modulated radiation therapy (IMRT) irradiation to investigate dosimetry for complex treatment delivery involving modulation of fluence and for dosimetry along moderate dose gradients. Dose profiles, dose-difference plots, and gamma maps were employed to evaluate quantitative estimates of agreement between independently measured and calculated dose distributions. Results indicated that dose readout from the CCD scanner was in agreement with independent gold-standard readout from the OCTOPUS-scanner as well as the calculated ECLIPSE dose distribution for all treatments, except in regions within a few millimeters of

  19. Fast, high-resolution 3D dosimetry utilizing a novel optical-CT scanner incorporating tertiary telecentric collimation.

    PubMed

    Sakhalkar, H S; Oldham, M

    2008-01-01

    This study introduces a charge coupled device (CCD) area detector based optical-computed tomography (optical-CT) scanner for comprehensive verification of radiation dose distributions recorded in nonscattering radiochromic dosimeters. Defining characteristics include: (i) a very fast scanning time of approximately 5 min to acquire a complete three-dimensional (3D) dataset, (ii) improved image formation through the use of custom telecentric optics, which ensures accurate projection images and minimizes artifacts from scattered and stray-light sources, and (iii) high resolution (potentially 50 microm) isotropic 3D dose readout. The performance of the CCD scanner for 3D dose readout was evaluated by comparison with independent 3D readout from the single laser beam OCTOPUS-scanner for the same PRESAGE dosimeters. The OCTOPUS scanner was considered the "gold standard" technique in light of prior studies demonstrating its accuracy. Additional comparisons were made against calculated dose distributions from the ECLIPSE treatment-planning system. Dose readout for the following treatments were investigated: (i) a single rectangular beam irradiation to investigate small field and very steep dose gradient dosimetry away from edge effects, (ii) a 2-field open beam parallel-opposed irradiation to investigate dosimetry along steep dose gradients, and (iii) a 7-field intensity modulated radiation therapy (IMRT) irradiation to investigate dosimetry for complex treatment delivery involving modulation of fluence and for dosimetry along moderate dose gradients. Dose profiles, dose-difference plots, and gamma maps were employed to evaluate quantitative estimates of agreement between independently measured and calculated dose distributions. Results indicated that dose readout from the CCD scanner was in agreement with independent gold-standard readout from the OCTOPUS-scanner as well as the calculated ECLIPSE dose distribution for all treatments, except in regions within a few

  20. Pre-flare coronal dimmings

    NASA Astrophysics Data System (ADS)

    Zhang, Q. M.; Su, Y. N.; Ji, H. S.

    2017-01-01

    Context. Coronal dimmings are regions of decreased extreme-ultravoilet (EUV) and/or X-ray (originally Skylab, then Yohkoh/SXT) intensities, which are often associated with flares and coronal mass ejections (CMEs). The large-scale impulsive dimmings have been thoroughly observed and investigated. The pre-flare dimmings before the flare impulsive phase, however, have rarely been studied in detail. Aims: We focus on the pre-flare coronal dimmings. We report our multiwavelength observations of the GOES X1.6 solar flare and the accompanying halo CME that was produced by the eruption of a sigmoidal magnetic flux rope (MFR) in NOAA active region (AR) 12158 on 2014 September 10. Methods: The eruption was observed by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamic Observatory (SDO). The photospheric line-of-sight magnetograms were observed by the Helioseismic and Magnetic Imager (HMI) on board SDO. The soft X-ray (SXR) fluxes were recorded by the GOES spacecraft. The halo CME was observed by the white-light coronagraphs of the Large Angle Spectroscopic Coronagraph (LASCO) on board SOHO. Results: About 96 min before the onset of the flare/CME, narrow pre-flare coronal dimmings appeared at the two ends of the twisted MFR. They extended very slowly, with their intensities decreasing with time, while their apparent widths (8-9 Mm) continued to be nearly constant. During the impulsive and decay phases of flare, typical fan-like twin dimmings appeared and expanded, with a much larger extent and lower intensities than the pre-flare dimmings. The percentage of the 171 Å intensity decrease reaches 40%. The pre-flare dimmings are most striking in 171, 193, and 211 Å with formation temperatures of 0.6-2.5 MK. The northern part of the pre-flare dimmings could also be recognized in 131 and 335 Å. Conclusions: To our knowledge, this is the first detailed study of pre-flare coronal dimmings; they can be explained by density depletion as a result of the gradual

  1. Fast 3D in vivo swept-source optical coherence tomography using a two-axis MEMS scanning micromirror

    NASA Astrophysics Data System (ADS)

    Kumar, Karthik; Condit, Jonathan C.; McElroy, Austin; Kemp, Nate J.; Hoshino, Kazunori; Milner, Thomas E.; Zhang, Xiaojing

    2008-04-01

    We report on a fibre-based forward-imaging swept-source optical coherence tomography system using a high-reflectivity two-axis microelectromechanical scanning mirror for high-speed 3D in vivo visualization of cellular-scale architecture of biological specimens. The scanning micromirrors, based on electrostatic staggered vertical comb drive actuators, can provide ± 9° of optical deflection on both rotation axes and uniform reflectivity of greater than 90% over the range of imaging wavelengths (1260-1360 nm), allowing for imaging turbid samples with good signal-to-noise ratio. The wavelength-swept laser, scanning over 100 nm spectrum at 20 kHz rate, enables fast image acquisition at 10.2 million voxels s-1 (for 3D imaging) or 40 frames s-1 (for 2D imaging with 500 transverse pixels per image) with 8.6 µm axial resolution. Lateral resolution of 12.5 µm over 3 mm field of view in each lateral direction is obtained using ZEMAX optical simulations for the lateral beam scanning system across the scanning angle range of the 500 µm × 700 µm micromirror. We successfully acquired en face and tomographic images of rigid structures (scanning micromirror), in vitro biological samples (onion peels and pickle slices) and in vivo images of human epidermis over 2 × 1 × 4 mm3 imaging volume in real time at faster-than-video 2D frame rates. The results indicate that our system framework may be suitable for image-guided minimally invasive examination of various diseased tissues.

  2. Solar flare associated coronal mass ejections causing geo-effectiveness and Forbush decreases

    NASA Astrophysics Data System (ADS)

    Bhatt, Beena; Chandra, Harish

    2017-02-01

    In the present study, we have selected 35 halo Coronal Mass Ejections (CMEs) associated with solar flares, Geomagnetic Storms (GSs) and Forbush decrease (Fd) chosen from 1st January 2000 to 31st December 2007 (i.e., the descending phase of solar cycle 23) observed by the Large Angle Spectrometric Coronagraph (LASCO) on board the SOHO spacecraft. Statistical analyses are performed to look at the distribution of solar flares associated with halo CMEs causing GSs and Fd and investigated the relationship between solar flare and halo CME parameters with GSs and Fd. Forbush decrease is the phenomenon of rapid decrease in cosmic ray intensity following the CME. Our analysis indicates that during 2000 to 2007 the northern region produced 44 % of solar flares associated with halo CMEs, GSs, and Fd, whereas 56 % solar flares associated with halo CMEs, GSs, and Fd were produced in the southern region. The northern and the southern hemispheres between 10° to 20° latitudinal belts are found to be more effective in producing events leading to Fd. From our selected events, we found that about 60 % of super-intense storms (Dst ≤ -200 nT) caused by halo CMEs are associated with X-class flares. Fast halo CMEs associated with X-class flares originating from 0° to 25° latitudes are better potential candidates in producing super-intense GSs than the slow halo CMEs associated with other classes of flares.

  3. Central Engine of Late-time X-Ray Flares with Internal Origin

    NASA Astrophysics Data System (ADS)

    Mu, Hui-Jun; Gu, Wei-Min; Hou, Shu-Jin; Liu, Tong; Lin, Da-Bin; Yi, Tuan; Liang, En-Wei; Lu, Ju-Fu

    2016-12-01

    This work focuses on a sample of seven extremely late-time X-ray flares with peak time {t}{{p}}\\gt {10}4 {{s}}, among which two flares can be confirmed as the late-time activity of central engine. The main purpose is to investigate the mechanism of such late-time flares based on the internal origin assumption. In the hyper-accreting black hole (BH) scenario, we study the possibility of two well-known mechanisms acting as the central engine to power such X-ray flares, i.e., the neutrino-antineutrino annihilation and the Blandford-Znajek (BZ) process. Our results show that the annihilation luminosity is far below the observational data. Thus, the annihilation mechanism cannot account for such late-time flares. For the BZ process, if the role of outflows is taken into consideration, the inflow mass rate near the horizon will be quite low such that the magnetic field will probably be too weak to power the observed X-ray flares. We therefore argue that, for the late-time flares with internal origin, the central engine is unlikely to be associated with BHs. On the contrary, a fast rotating neutron star with strong bipolar magnetic fields may be responsible for such flares.

  4. Doppler-Shifted Flare Emissions Observed by SDO/EVE

    NASA Technical Reports Server (NTRS)

    Chamberlin, Phillip C.

    2012-01-01

    The EUV Variability Experiment (EVE) onboard the Solar Dynamics Observatory (SDO) has been obtaining unprecedented observations of solar variation on times scales of seconds during flares and over the rising phase of Solar Cycle 24 since its start of normal operations in May 2010. Unexpectedly, as first pointed out in Hudson et. al., Ap.j. (2011), even with EVE's spectral resolution of 0.1 nm and 'irradiance' measurements, EVE has the ability to very accurately determine Doppler shifts in all emissions during solar flares and coronal mass ejections (CMEs). The technique for deriving these absolute velocities is not straightforward, as the optical and instrumental effects must first be eliminated in order to separate the absolute plasma velocities from the instrument effects. This talk will discuss these efforts to eliminate the instrumental component, as well as show some of the first results of absolute velocities of multiple emissions at a wide range of temperatures during solar flares.

  5. Solar Flare Physics

    NASA Technical Reports Server (NTRS)

    Schmahl, Edward J.; Kundu, Mukul R.

    1998-01-01

    We have continued our previous efforts in studies of fourier imaging methods applied to hard X-ray flares. We have performed physical and theoretical analysis of rotating collimator grids submitted to GSFC(Goddard Space Flight Center) for the High Energy Solar Spectroscopic Imager (HESSI). We have produced simulation algorithms which are currently being used to test imaging software and hardware for HESSI. We have developed Maximum-Entropy, Maximum-Likelihood, and "CLEAN" methods for reconstructing HESSI images from count-rate profiles. This work is expected to continue through the launch of HESSI in July, 2000. Section 1 shows a poster presentation "Image Reconstruction from HESSI Photon Lists" at the Solar Physics Division Meeting, June 1998; Section 2 shows the text and viewgraphs prepared for "Imaging Simulations" at HESSI's Preliminary Design Review on July 30, 1998.

  6. Building Big Flares: Constraining Generating Processes of Solar Flare Distributions

    NASA Astrophysics Data System (ADS)

    Wyse Jackson, T.; Kashyap, V.; McKillop, S.

    2015-12-01

    We address mechanisms which seek to explain the observed solar flare distribution, dN/dE ~ E1.8. We have compiled a comprehensive database, from GOES, NOAA, XRT, and AIA data, of solar flares and their characteristics, covering the year 2013. These datasets allow us to probe how stored magnetic energy is released over the course of an active region's evolution. We fit power-laws to flare distributions over various attribute groupings. For instance, we compare flares that occur before and after an active region reaches its maximum area, and show that the corresponding flare distributions are indistinguishable; thus, the processes that lead to magnetic reconnection are similar in both cases. A turnover in the distribution is not detectable at the energies accessible to our study, suggesting that a self-organized critical (SOC) process is a valid mechanism. However, we find changes in the distributions that suggest that the simple picture of an SOC where flares draw energy from an inexhaustible reservoir of stored magnetic energy is incomplete. Following the evolution of the flare distribution over the lifetimes of active regions, we find that the distribution flattens with time, and for larger active regions, and that a single power-law model is insufficient. This implies that flares that occur later in the lifetime of the active region tend towards higher energies. We conclude that the SOC process must have an upper bound. Increasing the scope of the study to include data from other years and more instruments will increase the robustness of these results. This work was supported by the NSF-REU Solar Physics Program at SAO, grant number AGS 1263241, NASA Contract NAS8-03060 to the Chandra X-ray Center and by NASA Hinode/XRT contract NNM07AB07C to SAO

  7. A fast processing route of aspheric polydimethylsiloxane lenses array (APLA) and optical characterization for smartphone microscopy

    NASA Astrophysics Data System (ADS)

    Fuh, Yiin-Kuen; Lai, Zheng-Hong

    2017-02-01

    A fast processing route of aspheric polydimethylsiloxane (PDMS) lenses array (APLA) is proposed via the combined effect of inverted gravitational and heat-assisted forces. The fabrication time can be dramatically reduced to 30 s, compared favorably to the traditional duration of 2 hours of repeated cycles of addition-curing processes. In this paper, a low-cost flexible lens can be fabricated by repeatedly depositing, inverting, curing a hanging transparent PDMS elastomer droplet on a previously deposited curved structure. Complex structures with aspheric curve features and various focal lengths can be successfully produced and the fabricated 4 types of APLA have various focal lengths in the range of 7.03 mm, 6.00 mm, 5.33 mm, and 4.43 mm, respectively. Empirically, a direct relationship between the PDMS volume and focal lengths of the lenses can be experimentally deducted. Using these fabricated APLA, an ordinary commercial smartphone camera can be easily transformed to a low-cost, portable digital microscopy (50×magnification) such that point of care diagnostic can be implemented pervasively.

  8. Fast optical and electrical diagnostics of pulsed spark discharges in different gap geometries

    NASA Astrophysics Data System (ADS)

    Höft, Hans; Huiskamp, Tom; Kettlitz, Manfred

    2016-09-01

    Spark discharges in different electrode configurations and with various electrode materials were ignited in air at atmospheric pressure using a custom build pulse charger with 1 μs voltage rise time (up to 28 kV) in single shot operation. Fast voltage and current measurements were combined with iCCD imaging with high spatial resolution (better than 10 μm) on pin-to-pin, pin-to-half-sphere and symmetrical half-sphere tungsten electrodes and symmetrical half-sphere brass electrodes for electrode gaps of 0.1 to 0.7 mm. Breakdown voltages, consumed electrical energies and the discharge emission structures as well as the discharge diameters were obtained. Because of the synchronization of the electrical measurements and the iCCD imaging (i.e. one complete data set for every shot), it was possible to estimate the current density and the change of the discharge pattern, such as single or multiple channels, for all cases. EU funding under Grant No 316216 (PlasmaShape).

  9. Measuring fast stochastic displacements of bio-membranes with dynamic optical displacement spectroscopy.

    PubMed

    Monzel, C; Schmidt, D; Kleusch, C; Kirchenbüchler, D; Seifert, U; Smith, A-S; Sengupta, K; Merkel, R

    2015-10-06

    Stochastic displacements or fluctuations of biological membranes are increasingly recognized as an important aspect of many physiological processes, but hitherto their precise quantification in living cells was limited due to a lack of tools to accurately record them. Here we introduce a novel technique--dynamic optical displacement spectroscopy (DODS), to measure stochastic displacements of membranes with unprecedented combined spatiotemporal resolution of 20 nm and 10 μs. The technique was validated by measuring bending fluctuations of model membranes. DODS was then used to explore the fluctuations in human red blood cells, which showed an ATP-induced enhancement of non-Gaussian behaviour. Plasma membrane fluctuations of human macrophages were quantified to this accuracy for the first time. Stimulation with a cytokine enhanced non-Gaussian contributions to these fluctuations. Simplicity of implementation, and high accuracy make DODS a promising tool for comprehensive understanding of stochastic membrane processes.

  10. Fast Acquisition and Reconstruction of Optical Coherence Tomography Images via Sparse Representation

    PubMed Central

    Li, Shutao; McNabb, Ryan P.; Nie, Qing; Kuo, Anthony N.; Toth, Cynthia A.; Izatt, Joseph A.; Farsiu, Sina

    2014-01-01

    In this paper, we present a novel technique, based on compressive sensing principles, for reconstruction and enhancement of multi-dimensional image data. Our method is a major improvement and generalization of the multi-scale sparsity based tomographic denoising (MSBTD) algorithm we recently introduced for reducing speckle noise. Our new technique exhibits several advantages over MSBTD, including its capability to simultaneously reduce noise and interpolate missing data. Unlike MSBTD, our new method does not require an a priori high-quality image from the target imaging subject and thus offers the potential to shorten clinical imaging sessions. This novel image restoration method, which we termed sparsity based simultaneous denoising and interpolation (SBSDI), utilizes sparse representation dictionaries constructed from previously collected datasets. We tested the SBSDI algorithm on retinal spectral domain optical coherence tomography images captured in the clinic. Experiments showed that the SBSDI algorithm qualitatively and quantitatively outperforms other state-of-the-art methods. PMID:23846467

  11. Optical emission from a fast shock wave - The remnants of Tycho's supernova and SN 1006

    NASA Technical Reports Server (NTRS)

    Chevalier, R. A.; Raymond, J. C.

    1978-01-01

    The faint optical filaments in Tycho's supernova remnant appear to be emission from a shock front moving at 5600 km/s. The intensity of the hydrogen lines, the absence of forbidden lines of heavy elements in the spectrum, and the width of the filaments are explained by a model in which a collisionless shock wave is moving into partially neutral gas. The presence of the neutral gas can be used to set an upper limit of approximately 5 x 10 to the 47th power ergs to the energy in ionizing radiation emitted by a Type I supernova. The patchy neutral gas is probably part of the warm neutral component of the interstellar medium. The existing information on the remnant of SN 1006 indicates that its emission is similar in nature to that from Tycho's remnant.

  12. Characterization of TimepixCam, a fast imager for the time-stamping of optical photons

    NASA Astrophysics Data System (ADS)

    Nomerotski, Andrei; Chakaberia, I.; Fisher-Levine, M.; Janoska, Z.; Takacs, P.; Tsang, T.

    2017-01-01

    We describe the characterization of TimepixCam, a novel camera used to time-stamp optical photons. The camera employs a specialized silicon sensor with a thin entrance window, read out by a Timepix ASIC. TimepixCam is able to record and time-stamp light flashes exceeding 1,000 photons with 15 ns time resolution. Specially produced photodiodes were used to evaluate the quantum efficiency, which was determined to be higher than 90% in the wavelength range of 430-900 nm. The quantum efficiency, sensitivity and ion detection efficiency were compared for a variety of sensors with different surface treatments. Sensors with the thinnest window, 50 nm, had the best performance.

  13. Characterization of TimepixCam, a fast imager for the time-stamping of optical photons

    DOE PAGES

    Nomerotski, Andrei; Chakaberia, I.; Fisher-Levine, M.; ...

    2017-01-04

    Here we describe the characterization of TimepixCam, a novel camera used to time-stamp optical photons. The camera employs a specialized silicon sensor with a thin entrance window, read out by a Timepix ASIC. TimepixCam is able to record and time-stamp light flashes exceeding 1,000 photons with 15 ns time resolution. Specially produced photodiodes were used to evaluate the quantum efficiency, which was determined to be higher than 90% in the wavelength range of 430–900 nm. The quantum efficiency, sensitivity and ion detection efficiency were compared for a variety of sensors with different surface treatments. We found sensors with the thinnestmore » window, 50 nm, had the best performance.« less

  14. Fast retinal layer segmentation of spectral domain optical coherence tomography images

    NASA Astrophysics Data System (ADS)

    Zhang, Tianqiao; Song, Zhangjun; Wang, Xiaogang; Zheng, Huimin; Jia, Fucang; Wu, Jianhuang; Li, Guanglin; Hu, Qingmao

    2015-09-01

    An approach to segment macular layer thicknesses from spectral domain optical coherence tomography has been proposed. The main contribution is to decrease computational costs while maintaining high accuracy via exploring Kalman filtering, customized active contour, and curve smoothing. Validation on 21 normal volumes shows that 8 layer boundaries could be segmented within 5.8 s with an average layer boundary error <2.35 μm. It has been compared with state-of-the-art methods for both normal and age-related macular degeneration cases to yield similar or significantly better accuracy and is 37 times faster. The proposed method could be a potential tool to clinically quantify the retinal layer boundaries.

  15. Measuring fast stochastic displacements of bio-membranes with dynamic optical displacement spectroscopy

    NASA Astrophysics Data System (ADS)

    Monzel, C.; Schmidt, D.; Kleusch, C.; Kirchenbüchler, D.; Seifert, U.; Smith, A.-S.; Sengupta, K.; Merkel, R.

    2015-10-01

    Stochastic displacements or fluctuations of biological membranes are increasingly recognized as an important aspect of many physiological processes, but hitherto their precise quantification in living cells was limited due to a lack of tools to accurately record them. Here we introduce a novel technique--dynamic optical displacement spectroscopy (DODS), to measure stochastic displacements of membranes with unprecedented combined spatiotemporal resolution of 20 nm and 10 μs. The technique was validated by measuring bending fluctuations of model membranes. DODS was then used to explore the fluctuations in human red blood cells, which showed an ATP-induced enhancement of non-Gaussian behaviour. Plasma membrane fluctuations of human macrophages were quantified to this accuracy for the first time. Stimulation with a cytokine enhanced non-Gaussian contributions to these fluctuations. Simplicity of implementation, and high accuracy make DODS a promising tool for comprehensive understanding of stochastic membrane processes.

  16. A Maltese cross-shaped flare of June 15, 2001

    NASA Astrophysics Data System (ADS)

    Kotrč, P.; Kupryakov, Yu. A.

    2002-12-01

    The solar flare in NOAA 9502 began on June 15, 2001 at 10:01 UT (S26E41). Its importance was 1N in optical band, M6.3 in X-rays and in radio band it was accompanied by a burst of 5800 units at 245 MHz and 130 units at 300 MHz. Spectra in D3 of He, Hα and Ca II 8542 Å lines including the slit-jaw images were detected at the Multichannel Flare spectrograph (MFS) from the early beginning of the flare with temporal resolutions 25 images per second. In addition, in Hα line the series of Stokes U/I parameter were observed. To the most spectacular features of the flare belongs the symmetric shape of emission ribbons configured into a Maltese cross. While at the cross arms one could detect standard emission line profiles, there appeared a compact feature with a very broad emission line profile in the center of the cross. It gives us an evidence about a certain type of singularity of this particular point. The very broad emission profile can be explained as by means of a high microturbulence. We describe and discuss another characteristics and particularities of this flare including the result of spectropolarimetric measurements that can be an evidence for the accelerated particle beams interaction with dense chromospheric layers.

  17. A search for proton beams during flares on AU Microscopii

    NASA Technical Reports Server (NTRS)

    Robinson, R. D.; Carpenter, K. G.; Woodgate, B. E.; Maran, S. P.

    1993-01-01

    We report the results of a coordinated observing campaign on the active M dwarf star AU Mic. The purpose of the campaign was to search for evidence of proton beams during the impulsive phase of stellar flares and to determine whether the energy contained in these beams represented a significant fraction of the energy budget of the flare. During a total of 3.5 hr of monitoring a small flare was observed simultaneously by the HST, IUE, and the AAT. This event, which had a total optical + UV emission of 1.3 x 10 exp 32 ergs, occurred during the decay phase of a much larger event and showed no evidence for a proton beam with an energy greater than a few times 10 exp 29 ergs/s. This is comparable to the maximum energy flux released by the flare, though this energy release rate must occur over a time interval much shorter than that of the impulsive phase itself. We conclude that the proton beams may be capable of transporting some energy during the impulsive phase of a flare, but that they are unlikely to be the major contributor, at least for this particular event.

  18. Numerical Simulation of Flares in GRB Afterglow Phase

    NASA Astrophysics Data System (ADS)

    Meliani, Z.; Vlasis, A.; Keppens, R.

    2012-07-01

    We investigate numerically the various evolutionary phases in the interaction of relativistic shells with its surrounding cold interstellar medium (ISM) and shell-shell interaction. We do this for 1D. This is relevant for gamma-ray bursts (GRBs) and the observed flares, and we demonstrate that, thanks to the AMR strategy, we resolve the internal structure of the shocked shell and ISM matter and shell-shell matter, which will leave its imprint on the GRB afterglow. Also, we perform high resolution numerical simulations of late collisions between two ultra-relativistic shells in order to explore the flares in the afterglow phase of GRB. We examine the case where a cold uniform shell collides with a self-similar Blandford and McKee shell in a constant density environment and consider cases with different Lorentz factor and energy for the uniform shell. We produce the corresponding on-axis light curves and emission images for the afterglow phase and examine the occurrence of optical and radio flares assuming a spherical explosion and a hard-edged jet scenario. For our simulations we use the Adaptive Mesh Refinement version of the Versatile Advection Code (AMRVAC) coupled to a linear radiative transfer code to calculate synchrotron emission. We find steeply rising flare like behavior for small jet opening angles and more gradual rebrightenings for large opening angles. Synchrotron self-absorption is found to strongly influence the onset and shape of the radio flare.

  19. Experimental demonstration of a real-time high-throughput digital DC blocker for compensating ADC imperfections in optical fast-OFDM receivers.

    PubMed

    Zhang, Lu; Ouyang, Xing; Shao, Xiaopeng; Zhao, Jian

    2016-06-27

    Performance degradation induced by the DC components at the output of real-time analogue-to-digital converter (ADC) is experimentally investigated for optical fast-OFDM receiver. To compensate this degradation, register transfer level (RTL) circuits for real-time digital DC blocker with 20GS/s throughput are proposed and implemented in field programmable gate array (FPGA). The performance of the proposed real-time digital DC blocker is experimentally investigated in a 15Gb/s optical fast-OFDM system with intensity modulation and direct detection over 40 km standard single-mode fibre. The results show that the fixed-point DC blocker has negligible performance penalty compared to the offline floating point one, and can overcome the error floor of the fast OFDM receiver caused by the DC components from the real-time ADC output.

  20. Catalogue of solar flare spectra observed at Ondrejov in 1998-2007

    NASA Astrophysics Data System (ADS)

    Kupryakov, Yu. A.; Kotrc, P.; Kashapova, L. K.

    2010-12-01

    We present a catalogue of solar flare data observed with two Ondřejov optical spectrographs during 1998-2007 years. This database was created to enable the data processing more convenient for users interested in the study of the energy release and transport in solar flares. The spectra and Hα filtergrams were obtained both at the Multichannel Flare Spectrograph (MFS) and at the Large Horizontal Spectrograph (HSFA2). The catalogue contains basic information about time of observation of solar flares, their location in AR, importance, availability of related data at the selected X-ray, EUV and radio instruments. The catalogue is available at www.asu.cas.cz/~sos/flare_archive.html.

  1. Effect of an X-Class Solar Flare on the OI 630 nm Dayglow Emissions

    NASA Technical Reports Server (NTRS)

    Das, Uma; Pallamraju, Duggirala; Chakrabarti, Supriya

    2010-01-01

    We present a striking event that shows a prompt effect of an X-class solar flare (X6.2/3B) in the neutral optical dayglow emissions. This flare occurred on 13 December 2001 at 1424 UT and peaked at 1430 UT. The peak-to pre-flare X-ray intensity ratio as observed by GOES-10 was greater than 300 and the EUV flux observed by SEM/SOHO was greater by around 60%. As a response to this flare, the daytime redline (OI 630 nm) column integrated emission intensity measured from Carmen Alto (23.16degS, 70.66degW), in Chile, showed a prompt increase of around 50%. Our results show that this prompt enhancement in the thermospheric dayglow seems to be caused mainly due to an increase in photoelectrons due to a sudden increase in the solar EUV flux associated with this flare.

  2. Near Infrared Activity Close to the Crab Pulsar Correlated with Giant Gamma-ray Flares

    NASA Technical Reports Server (NTRS)

    Rudy, Alexander R.; Max, Claire E.; Weisskopf, Martin C.

    2014-01-01

    We describe activity observed in the near-infrared correlated with a giant gamma-ray flare in the Crab Pulsar. The Crab Pulsar has been observed by the Fermi and AGILE satellites to flare for a period of 3 to 7 days, once every 1-1.5 years, increasing in brightness by a factor of 3-10 between 100MeV and 1GeV. We used Keck NIRC2 laser guide star adaptive optics imaging to observe the Crab Pulsar and environs before and during the March 2013 flare. We discuss the evidence for the knot as the location of the flares, and the theoretical implications of these observations. Ongoing target-of-opportunity programs hope to confirm this correlation for future flares.

  3. Ultra-fast optical manipulation of single proteins binding to the actin cytoskeleton

    NASA Astrophysics Data System (ADS)

    Capitanio, Marco; Gardini, Lucia; Pavone, Francesco Saverio

    2014-02-01

    In the last decade, forces and mechanical stresses acting on biological systems are emerging as regulatory factors essential for cell life. Emerging evidences indicate that factors such as applied forces or the rigidity of the extracellular matrix (ECM) determine the shape and function of cells and organisms1. Classically, the regulation of biological systems is described through a series of biochemical signals and enzymatic reactions, which direct the processes and cell fate. However, mechanotransduction, i.e. the conversion of mechanical forces into biochemical and biomolecular signals, is at the basis of many biological processes fundamental for the development and differentiation of cells, for their correct function and for the development of pathologies. We recently developed an in vitro system that allows the investigation of force-dependence of the interaction of proteins binding the actin cytoskeleton, at the single molecule level. Our system displays a delay of only ~10 μs between formation of the molecular bond and application of the force and is capable of detecting interactions as short as 100 μs. Our assay allows direct measurements of load-dependence of lifetimes of single molecular bonds and conformational changes of single proteins and molecular motors. We demonstrate our technique on molecular motors, using myosin II from fast skeletal muscle and on protein-DNA interaction, specifically on Lactose repressor (LacI). The apparatus is stabilized to less than 1 nm with both passive and active stabilization, allowing resolving specific binding regions along the actin filament and DNA molecule. Our technique extends single-molecule force-clamp spectroscopy to molecular complexes that have been inaccessible up to now, opening new perspectives for the investigation of the effects of forces on biological processes.

  4. Mass ejections. [during solar flares

    NASA Technical Reports Server (NTRS)

    Rust, D. M.; Hildner, E.; Hansen, R. T.; Dryer, M.; Mcclymont, A. N.; Mckenna-Lawlor, S. M. P.; Mclean, D. J.; Schmahl, E. J.; Steinolfson, R. S.; Tandberg-Hanssen, E.

    1980-01-01

    Observations and model simulations of solar mass ejection phenomena are examined in an investigation of flare processes. Consideration is given to Skylab and other observations of flare-associated sprays, eruptive prominences, surges and coronal transients, and to MHD, gas dynamic and magnetic loop models developed to account for them. Magnetic forces are found to confine spray material, which originates in preexisting active-region filaments, within steadily expanding loops, while surges follow unmoving, preexisting magnetic field lines. Simulations of effects of a sudden pressure pulse at the bottom of the corona are found to exhibit many characteristics of coronal transients associated with flares, and impulsive heating low in the chromosphere is found to be able to account for surges. The importance of the magnetic field as the ultimate source of energy which drives eruptive phenomena as well as flares is pointed out.

  5. Spectrum of solar flare protons

    NASA Astrophysics Data System (ADS)

    Podgorny, I. M.; Balabin, Yu. V.; Podgorny, A. I.; Vashenyuk, E. V.

    2010-08-01

    Most of big solar flares are accompanied by relativistic protons. The prompt component of relativistic protons moves along the interplanetary magnetic field lines and arrives at the Earth's orbit when the flare favorably located in the western solar hemisphere. The neutron monitor measurements reveal an exponential law energy spectrum. Calculations of relativistic proton acceleration in the flare current sheet with magnetic and electric fields found from 3D MHD simulations also demonstrate an exponential law spectrum. A comparison of the measured and calculated spectra permits to estimate the rate of reconnection in the Bastille flare (14 July 2000) as ˜107cm/s. The delay component of relativistic protons exhibits a power law energy spectrum.

  6. Chandra Monitors the Flaring Crab

    NASA Video Gallery

    Scientists hoped that NASA's Chandra X-ray Observatory would locate X-ray sources correlated to the gamma-ray flares seen by Fermi and Italy's AGILE satellites. Two observations were made during th...

  7. Simulating VIIRS Observed Gas Flare

    NASA Astrophysics Data System (ADS)

    Hsu, F. C.

    2015-12-01

    VIIRS Nightfire (VNF) had been proved being able to effectively detect gas flares at night, and characterize their temperature and source size. [1] However, limited access to generally confidential gas flare operation measurements made it difficult to verify the output. Although flared gas volume is occasionally available, it is not common to log the temperature and flames size which directly links to VNF output. To understand the mechanism of gas flare and how VIIRS perceives the event, a platform is proposed to simulate the gas flare being observed by VIIRS. The methodology can be described in three steps. (1) Use CFD simulation software ISIS-3D to simulate a simple gas flare. [2] Scalar fields of temperature and species concentration related to combustion are extracted from the simulation. The instantaneous scalar can be determined from time-averaging or guess by stochastic time and space series (TASS) from single-point statistics [3]. (2) Model spectral radiance intensity of simulated gas flare using RADCAL. [4] RADCAL developed by NIST can accurately model the spectral radiance emitted on the direction of lineof-sight given the spatial profile of temperature and concentration of species. (3) Use radiative transfer modeling to calculate the energy propagated to VIIRS. The modeled radiation will then be weighted by the MODTRAN [5] modeled transmissivity over predefined atmosphere to the satellite, with geometrical effects considered. Such platform can help understanding how exactly VNF is measuring gas flares, and thus lead to more precise characterization of combustion events. [1] C. D. Elvidge et al, Remote Sensing, 2013[2] IRSN ISIS-3D[3] M. E. Kounalakis et al, ASME J. Heat Transfer, 1991 [4] W. L. Grosshandler, NIST Technical Note 1402, 1993 [5] A. Berk et al, MODTRAN 5.2.0.0 User's Manual

  8. M Dwarf Flare Continuum Variations on One-second Timescales: Calibrating and Modeling of ULTRACAM Flare Color Indices

    NASA Astrophysics Data System (ADS)

    Kowalski, Adam F.; Mathioudakis, Mihalis; Hawley, Suzanne L.; Wisniewski, John P.; Dhillon, Vik S.; Marsh, Tom R.; Hilton, Eric J.; Brown, Benjamin P.

    2016-04-01

    We present a large data set of high-cadence dMe flare light curves obtained with custom continuum filters on the triple-beam, high-speed camera system ULTRACAM. The measurements provide constraints for models of the near-ultraviolet (NUV) and optical continuum spectral evolution on timescales of ≈1 s. We provide a robust interpretation of the flare emission in the ULTRACAM filters using simultaneously obtained low-resolution spectra during two moderate-sized flares in the dM4.5e star YZ CMi. By avoiding the spectral complexity within the broadband Johnson filters, the ULTRACAM filters are shown to characterize bona fide continuum emission in the NUV, blue, and red wavelength regimes. The NUV/blue flux ratio in flares is equivalent to a Balmer jump ratio, and the blue/red flux ratio provides an estimate for the color temperature of the optical continuum emission. We present a new “color-color” relationship for these continuum flux ratios at the peaks of the flares. Using the RADYN and RH codes, we interpret the ULTRACAM filter emission using the dominant emission processes from a radiative-hydrodynamic flare model with a high nonthermal electron beam flux, which explains a hot, T ≈ 104 K, color temperature at blue-to-red optical wavelengths and a small Balmer jump ratio as observed in moderate-sized and large flares alike. We also discuss the high time resolution, high signal-to-noise continuum color variations observed in YZ CMi during a giant flare, which increased the NUV flux from this star by over a factor of 100. Based on observations obtained with the Apache Point Observatory 3.5 m telescope, which is owned and operated by the Astrophysical Research Consortium, based on observations made with the William Herschel Telescope operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofsica de Canarias, and observations, and based on observations made with the ESO Telescopes

  9. Mechanics of protein-DNA interaction studied with ultra-fast optical tweezers

    NASA Astrophysics Data System (ADS)

    Monico, Carina; Tempestini, Alessia; Vanzi, Francesco; Pavone, Francesco S.; Capitanio, Marco

    2014-05-01

    The lac operon is a well known example of gene expression regulation, based on the specific interaction of Lac repressor protein (LacI) with its target DNA sequence (operator). LacI and other DNA-binding proteins bind their specific target sequences with rates higher than allowed by 3D diffusion alone. Generally accepted models predict a combination of free 3D diffusion and 1D sliding along non-specific DNA. We recently developed an ultrafast force-clamp laser trap technique capable of probing molecular interactions with sub-ms temporal resolution, under controlled pN-range forces. With this technique, we tested the interaction of LacI with two different DNA constructs: a construct with two copies of the O1 operator separated by 300 bp and a construct containing the native E.coli operator sequences. Our measurements show at least two classes of LacI-DNA interactions: long (in the tens of s range) and short (tens of ms). Based on position along the DNA sequence, the observed interactions can be interpreted as specific binding to operator sequences (long events) and transient interactions with nonspecific sequences (short events). Moreover, we observe continuous sliding of the protein along DNA, passively driven by the force applied with the optical tweezers.

  10. Fast whole-brain optical tomography capable of automated slice-collection (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yuan, Jing; Jiang, Tao; Deng, Lei; Long, Beng; Peng, Jie; Luo, Qingming; Gong, Hui

    2016-03-01

    Acquiring brain-wide composite information of neuroanatomical and molecular phenotyping is crucial to understand brain functions. However, current whole-brain imaging methods based on mechnical sectioning haven't achieved brain-wide acquisition of both neuroanatomical and molecular phenotyping due to the lack of appropriate whole-brain immunostaining of embedded samples. Here, we present a novel strategy of acquiring brain-wide structural and molecular maps in the same brain, combining whole-brain imaging and subsequent immunostaining of automated-collected slices. We developed a whole-brain imaging system capable of automatically imaging and then collecting imaged tissue slices in order. The system contains three parts: structured illumination microscopy for high-throughput optical sectioning, vibratome for high-precision sectioning and slice-collection device for automated collecting of tissue slices. Through our system, we could acquire a whole-brain dataset of agarose-embedded mouse brain at lateral resolution of 0.33 µm with z-interval sampling of 100 µm in 9 h, and automatically collect the imaged slices in sequence. Subsequently, we performed immunohistochemistry of the collected slices in the routine way. We acquired mouse whole-brain imaging datasets of multiple specific types of neurons, proteins and gene expression profiles. We believe our method could accelerate systematic analysis of brain anatomical structure with specific proteins or genes expression information and understanding how the brain processes information and generates behavior.

  11. Fast fiber-optic tunable filter based on axial compression on a fiber Bragg grating.

    PubMed

    Zu, Wen; Gu, Xijia

    2006-09-01

    We describe the design, fabrication, and performance of a fiber Bragg grating-based tunable optic filter. The filter, driven by two piezostacks, consists of a flexural hinge structure for displacement magnification and a fiber-ferrule assembly for axial compression of the fiber grating. Finite-element analysis was used to design the mechanical structure to achieve the required displacement magnification and the force for grating compression. A passive thermal compensation design was implemented to reduce thermal-induced wavelength drift. A feedback control system with a linear variable differential transformer was employed to control the displacement for accurate wavelength tuning and fine-tuning resolution. This tunable filter has achieved a closed-loop switching time of 17.3 ms, and a passive thermal compensation that reduced the thermal drift of the Bragg wavelength to 1.5 pm/C. The flexural-hinge structure that offers negligible backlash, noise-free motion, no need of lubricants, and no wear ensures its long-term reliability.

  12. Fast robust non-sequential optical ray-tracing with implicit algebraic surfaces

    NASA Astrophysics Data System (ADS)

    Greynolds, Alan W.

    2015-09-01

    The fastest, most robust, general technique for non-sequentially ray-tracing a large class of imaging and non-imaging optical systems is by geometric modeling with algebraic (i.e. polynomial) implicit surfaces. The basic theory of these surfaces with special attention to optimizing their precise intersection with a ray (even at grazing incidence) is outlined for an admittedly limited software implementation. On a couple of "tame" examples, a 64-bit Windows 7 version is significantly faster than the fastest commercial design software (all multi-threaded). Non-sequential ray-surface interactions approaching 30M/sec are achieved on a 12-core 2.67 GHz Mac Pro desktop computer. For a more exotic example of a 6th degree Wood's horn beam dump (light trap), a 32-bit Windows single thread version traces rays nearly 4 times faster than the commercial ASAP software's implicit algebraic surface and over 13 times faster than its equivalent NURBS surface. However, implicit surfaces are foreign to most CAD systems and thus unfortunately, don't easily fit into a modern workflow.

  13. Fast all-optical nuclear spin echo technique based on EIT

    NASA Astrophysics Data System (ADS)

    Walther, Andreas; Nilsson, Adam N.; Li, Qian; Rippe, Lars; Kröll, Stefan

    2016-08-01

    We demonstrate an all-optical Raman spin echo technique, using electromagnetically induced transparency (EIT) to create the pulses required for a spin echo sequence: initialization, pi-rotation, and readout. The first pulse of the sequence induces coherence directly from a mixed state, and the technique is used to measure the nuclear spin coherence of an inhomogeneously broadened ensemble of rare-earth ions (Pr3 +) in a crystal. The rephasing pi-rotation is shown to offer an advantage of combining the rephasing action with the operation of a phase gate, particularly useful in e.g. dynamic decoupling sequences. In contrast to many previous experiments the sequence does not require any preparatory hole burning, which greatly shortens the total duration of the sequence. The effect of the different pulses is characterized by quantum state tomography and compared with simulations. We demonstrate two applications of the technique: compensating the magnetic field across our sample by monitoring T 2 reductions from stray magnetic fields, and measuring coherence times at temperatures up to 11 K, where standard preparation techniques are difficult to implement. We explore the potential of the technique, in particular for systems with much shorter T 2, and other possible applications.

  14. Optical diagnostics of a single evaporating droplet using fast parallel computing on graphics processing units

    NASA Astrophysics Data System (ADS)

    Jakubczyk, D.; Migacz, S.; Derkachov, G.; Woźniak, M.; Archer, J.; Kolwas, K.

    2016-09-01

    We report on the first application of the graphics processing units (GPUs) accelerated computing technology to improve performance of numerical methods used for the optical characterization of evaporating microdroplets. Single microdroplets of various liquids with different volatility and molecular weight (glycerine, glycols, water, etc.), as well as mixtures of liquids and diverse suspensions evaporate inside the electrodynamic trap under the chosen temperature and composition of atmosphere. The series of scattering patterns recorded from the evaporating microdroplets are processed by fitting complete Mie theory predictions with gradientless lookup table method. We showed that computations on GPUs can be effectively applied to inverse scattering problems. In particular, our technique accelerated calculations of the Mie scattering theory on a single-core processor in a Matlab environment over 800 times and almost 100 times comparing to the corresponding code in C language. Additionally, we overcame problems of the time-consuming data post-processing when some of the parameters (particularly the refractive index) of an investigated liquid are uncertain. Our program allows us to track the parameters characterizing the evaporating droplet nearly simultaneously with the progress of evaporation.

  15. Stochastic Particle Acceleration in Impulsive Solar Flares

    NASA Technical Reports Server (NTRS)

    Miller, James A.

    2001-01-01

    The acceleration of a huge number of electrons and ions to relativistic energies over timescales ranging from several seconds to several tens of seconds is the fundamental problem in high-energy solar physics. The cascading turbulence model we have developed has been shown previously (e.g., Miller 2000; Miller & Roberts 1995; Miner, LaRosa, & Moore 1996) to account for all the bulk features (such as acceleration timescales, fluxes, total number of energetic particles, and maximum energies) of electron and proton acceleration in impulsive solar flares. While the simulation of this acceleration process is involved, the essential idea of the model is quite simple, and consists of just a few parts: 1. During the primary flare energy release phase, we assume that low-amplitude MHD Alfven and fast mode waves are excited at long wavelengths, say comparable to the size of the event (although the results are actually insensitive to this initial wavelength). While an assumption, this appears reasonable in light of the likely highly turbulent nature of the flare. 2. These waves then cascade in a Kolmogorov-like fashion to smaller wavelengths (e.g., Verma et al. 1996), forming a power-law spectral density in wavenumber space through the inertial range. 3. When the mean wavenumber of the fast mode waves has increased sufficiently, the transit-time acceleration rate (Miller 1997) for superAlfvenic electrons can overcome Coulomb energy losses, and these electrons are accelerated out of the thermal distribution and to relativistic energies (Miller et al. 1996). As the Alfven waves cascade to higher wavenumbers, they can cyclotron resonate with progressively lower energy protons. Eventually, they will resonate with protons in the tail of the thermal distribution, which will then be accelerated to relativistic energies as well (Miller & Roberts 1995). Hence, both ions and electrons are stochastically accelerated, albeit by different mechanisms and different waves. 4. When the

  16. Imaging DOAS detection of primary formaldehyde and sulfur dioxide emissions from petrochemical flares

    NASA Astrophysics Data System (ADS)

    Pikelnaya, Olga; Flynn, James H.; Tsai, Catalina; Stutz, Jochen

    2013-08-01

    areas with a high number of petrochemical facilities are often struggling to meet current and future air quality standards. The Houston-Galveston area, for example, continues to be in noncompliance with the U.S. federal air quality standard of ozone, despite significant progress in mitigating air pollution. In recent years, the magnitude and role of primary emissions of ozone-forming chemicals, and in particular formaldehyde, from flares in petrochemical facilities have been discussed as a potential factor contributing to ozone formation. However, no direct observations of flare emissions of formaldehyde have thus far been reported. Here we present observations of formaldehyde and sulfur dioxide emissions from petrochemical flares in the Houston-Galveston area during the 2009 Formaldehyde and Olefin from Large Industrial Sources campaign using a new imaging differential optical absorption spectrometer (I-DOAS). Formaldehyde emissions from burning flares were observed directly above the flare stack and ranged from 0.2 to 8.5 kg/h. Unlit flares were found not to emit formaldehyde. SO2 emission rates from a burning acid gas flare ranged between 2 and 4 kg/h. None of the sampled flares coemitted HCHO and SO2. Comparison of the emission fluxes measured by the I-DOAS instrument with those from emission inventories and with fluxes calculated from plumes detected by the long-path DOAS over downtown Houston shows that the flares observed by the I-DOAS were relatively small. While burning flares clearly emit HCHO, a larger observational database is needed to assess the importance of flare emissions for ozone formation.

  17. Blind, fast and SOP independent polarization recovery for square dual polarization-MQAM formats and optical coherent receivers.

    PubMed

    Chagnon, Mathieu; Osman, Mohamed; Xu, Xian; Zhuge, Qunbi; Plant, David V

    2012-12-03

    We present both theoretically and experimentally a novel blind and fast method for estimating the State of Polarization (SOP) of a single carrier channel modulated in square Dual Polarization (DP) MQAM format for optical coherent receivers. The method can be used on system startup, for quick channel reconfiguration, or for burst mode receivers. It consists of converting the received waveform from Jones to Stokes space and looping over an algorithm until a unitary polarization derotation matrix is estimated. The matrix is then used to initialize the center taps of the subsequent classical decision-directed stochastic gradient algorithm (DD-LMS). We present experimental comparisons of the initial Bit Error Rate (BER) and the speed of convergence of this blind Stokes space polarization recovery (PR) technique against the common Constant Modulus Algorithm (CMA). We demonstrate that this technique works on any square DP-MQAM format by presenting experimental results for DP-4QAM, -16QAM and -64QAM at varying distances and baud rates. We additionally numerically assess the technique for varying differential group delays (DGD) and sampling offsets on 28 Gbaud DP-4QAM format and show fast polarization recovery for instantaneous DGD as high as 90% of symbol duration. We show that the convergence time of this blind PR technique does not depend on the initial SOP as CMA does and allows switching to DD-LMS faster by more than an order of magnitude. For DP-4QAM, it shows a convergence time of 5.9 ns, which is much smaller than the convergence time of recent techniques using modified CMA algorithms for quicker convergence. BER of the first 20 × 10(3) symbols is always smaller by several factors for DP-16QAM and -64QAM but not always for DP-4QAM.

  18. RAPID TeV GAMMA-RAY FLARING OF BL LACERTAE

    SciTech Connect

    Arlen, T.; Aune, T.; Bouvier, A.; Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R.; Benbow, W.; Cesarini, A.; Connolly, M. P.; Ciupik, L.; Cui, W.; Feng, Q.; Finley, J. P.; Dumm, J.; Fortson, L.; Errando, M.; Falcone, A.; Federici, S.; Finnegan, G. E-mail: cui@purdue.edu; Collaboration: VERITAS Collaboration; and others

    2013-01-10

    We report on the detection of a very rapid TeV gamma-ray flare from BL Lacertae on 2011 June 28 with the Very Energetic Radiation Imaging Telescope Array System (VERITAS). The flaring activity was observed during a 34.6 minute exposure, when the integral flux above 200 GeV reached (3.4 {+-} 0.6) Multiplication-Sign 10{sup -6} photons m{sup -2} s{sup -1}, roughly 125% of the Crab Nebula flux measured by VERITAS. The light curve indicates that the observations missed the rising phase of the flare but covered a significant portion of the decaying phase. The exponential decay time was determined to be 13 {+-} 4 minutes, making it one of the most rapid gamma-ray flares seen from a TeV blazar. The gamma-ray spectrum of BL Lacertae during the flare was soft, with a photon index of 3.6 {+-} 0.4, which is in agreement with the measurement made previously by MAGIC in a lower flaring state. Contemporaneous radio observations of the source with the Very Long Baseline Array revealed the emergence of a new, superluminal component from the core around the time of the TeV gamma-ray flare, accompanied by changes in the optical polarization angle. Changes in flux also appear to have occurred at optical, UV, and GeV gamma-ray wavelengths at the time of the flare, although they are difficult to quantify precisely due to sparse coverage. A strong flare was seen at radio wavelengths roughly four months later, which might be related to the gamma-ray flaring activities. We discuss the implications of these multiwavelength results.

  19. Rapid fluctuations in solar flares

    NASA Technical Reports Server (NTRS)

    Sturrock, Peter A.

    1986-01-01

    Study of rapid fluctuations in the emission of radiation from solar flares provides a promising approach for probing the magneto-plasma structure and plasma processes that are responsible for a flare. It is proposed that elementary flare bursts in X-ray and microwave emission may be attributed to fine structure of the coronal magnetic field, related to the aggregation of photospheric magnetic field into magnetic knots. Fluctuations that occur on a subsecond time-scale may be due to magnetic islands that develop in current sheets during magnetic reconnection. The impulsive phase may sometimes represent the superposition of a large number of the elementary energy-release processes responsible for elementary flare bursts. If so, the challenge of trying to explain the properties of the impulsive phase in terms of the properties of the elementary processes must be faced. Magnetic field configurations that might produce solar flares are divided into a number of categories, depending on: whether or not there is a filament; whether there is no current sheet, a closed current sheet, or an open current sheet; and whether the filament erupts into the corona, or is ejected completely from the Sun's atmosphere. Analysis of the properties of these possible configurations is compared with different types of flares, and to Bai's subdivision of gamma-ray/proton events.

  20. Flare stars at radio wavelengths

    NASA Technical Reports Server (NTRS)

    Lang, Kenneth R.

    1990-01-01

    The radio emission from dMe flare stars is discussed using Very Large Array and Arecibo observations as examples. Active flare stars emit weak, unpolarized, quiescent radio radiation that may be always present. Although thermal bremsstrahlung and/or thermal gyroresonance radiation account for the slowly-varying, quiescent radio radiation of solar active regions, these processes cannot account for the long-wavelength quiescent radiation observed from nearby dMe flare stars. It has been attributed to nonthermal gyrosynchrotron radiation, but some as yet unexplained mechanism must be continually producing the energetic electrons. Long duration, narrow-band radiation is also emitted from some nearby dMe stars at 20 cm wavelength. Such radiation may be attributed to coherent plasma radiation or to coherent electron-cyclotron masers. Impulsive stellar flares exhibit rapid variations that require radio sources that are smaller than the star in size, and high brightness temperatures greater than 10(exp 15) K that are also explained by coherent radiation processes. Quasi-periodic temporal fluctuations suggest pulsations during some radio flares. Evidence for frequency structure and positive or negative frequency drifts during radio flares from dMe stars is also presented.

  1. Flare stars at radio wavelengths

    NASA Technical Reports Server (NTRS)

    Lang, Kenneth R.

    1989-01-01

    The radio emission from dMe flare stars is discussed using Very Large Array and Arecibo observations as examples. Active flare stars emit weak, unpolarized, quiescent radio radiation that may be always present. Although thermal bremsstrahlung and/or thermal gyroresonance radiation account for the slowly-varying, quiescent radio radiation of solar active regions, these processes cannot account for the long-wavelength quiescent radiation observed from nearby dMe flare stars. It has been attributed to nonthermal gyrosynchrotron radiation, but some as yet unexplained mechanism must be continually producing the energetic electrons. Long duration, narrow-band radiation is also emitted from some nearby dMe stars at 20 cm wavelength. Such radiation may be attributed to coherent plasma radiation or to coherent electron-cyclotron masers. Impulsive stellar flares exhibit rapid variations that require radio sources that are smaller than the star in size, and high brightness temperatures greater than 10(exp 15) K that are also explained by coherent radiation processes. Quasi-periodic temporal fluctuations suggest pulsations during some radio flares. Evidence for frequency structure and positive or negative frequency drifts during radio flares from dMe stars is also presented.

  2. A VLT-ULTRACAM study of the fast optical quasi-periodic oscillations in the polar V834 Centauri

    NASA Astrophysics Data System (ADS)

    Mouchet, M.; Bonnet-Bidaud, J.-M.; Van Box Som, L.; Falize, E.; Buckley, D. A. H.; Breytenbach, H.; Ashley, R. P.; Marsh, T. R.; Dhillon, V. S.

    2017-03-01

    Quasi-periodic oscillations (QPOs) of a few seconds have been detected in some polars, the synchronised subclass of cataclysmic systems containing a strongly magnetised white dwarf which accretes matter from a red dwarf companion. The QPOs are thought to be related to instabilities of a shock formed in the accretion column, close to the white dwarf photosphere above the impact region. We present optical observations of the polar V834 Centauri performed with the fast ULTRACAM camera mounted on the ESO-VLT simultaneously in three filters (u', He ii λ4686, r') to study these oscillations and characterise their properties along the orbit when the column is seen at different viewing angles. Fast Fourier transforms and wavelet analysis have been performed and the mean frequency, rms amplitude, and coherence of the QPOs are derived; a detailed inspection of individual pulses has also been performed. The observations confirm the probable ubiquity of the QPOs for this source at all epochs when the source is in a high state, with observed mean amplitude of 2.1% (r'), 1.5% (He ii), and 0.6% (u'). The QPOs are present in the r' filter at all phases of the orbital cycle, with a higher relative amplitude around the maximum of the light curve. They are also detected in the He ii and u' filters but at a lower level. Trains of oscillations are clearly observed in the r' light curve and can be mimicked by a superposition of damped sinusoids with various parameters. The QPO energy distribution is comparable to that of the cyclotron flux, consistent for the r' and He ii filters but requiring a significant dilution in the u' filter. New 1D hydrodynamical simulations of shock instabilities, adapted to the physical parameters of V834 Cen, can account for the optical QPO amplitude and X-ray upper limit assuming a cross section of the accretion column in the range (4 - 5) × 1014 cm2. However, the predicted frequency is larger than the observed one by an order of magnitude. This

  3. Ultrasensitive detection in optically dense physiological media: applications to fast reliable biological assays

    NASA Astrophysics Data System (ADS)

    Matveeva, Evgenia G.; Gryczynski, Ignacy; Berndt, Klaus W.; Lakowicz, Joseph R.; Goldys, Ewa; Gryczynski, Zygmunt

    2006-02-01

    We present a novel approach for performing fluorescence immunoassay in serum and whole blood using fluorescently labeled anti-rabbit IgG. This approach, which is based on Surface Plasmon-Coupled Emission (SPCE), provides increased sensitivity and substantial background reduction due to exclusive selection of the signal from the fluorophores located near a bio-affinity surface. Effective coupling range for SPCE is only couple of hundred nanometers from the metallic surface. Excited fluorophores outside the coupling layer do not contribute to SPCE, and their free-space emission is not transmitted through the opaque metallic film into the glass substrate. An antigen (rabbit IgG) was adsorbed to a slide covered with a thin silver metal layer, and the SPCE signal from the fluorophore-labeled anti-rabbit antibody, binding to the immobilized antigen, was detected. The effect of the sample matrix (buffer, human serum, or human whole blood) on the end-point immunoassay SPCE signal is discussed. The kinetics of binding could be monitored directly in whole blood or serum. The results showed that human serum and human whole blood attenuate the SPCE end-point signal and the immunoassay kinetic signal only approximately 2- and 3-fold, respectively (compared to buffer), resulting in signals that are easily detectable even in whole blood. The high optical absorption of the hemoglobin can be tolerated because only fluorophores within a couple of hundred nanometers from the metallic film contribute to SPCE. Both glass and plastic slides can be used for SPCE-based assays. We believe that SPCE has the potential of becoming a powerful approach for performing immunoassays based on surface-bound analytes or antibodies for many biomarkers directly in dense samples such as whole blood, without any need for washing steps.

  4. Unprecedented Fine Structure of a Solar Flare Revealed by the 1.6 m New Solar Telescope.

    PubMed

    Jing, Ju; Xu, Yan; Cao, Wenda; Liu, Chang; Gary, Dale; Wang, Haimin

    2016-04-13

    Solar flares signify the sudden release of magnetic energy and are sources of so called space weather. The fine structures (below 500 km) of flares are rarely observed and are accessible to only a few instruments world-wide. Here we present observation of a solar flare using exceptionally high resolution images from the 1.6 m New Solar Telescope (NST) equipped with high order adaptive optics at Big Bear Solar Observatory (BBSO). The observation reveals the process of the flare in unprecedented detail, including the flare ribbon propagating across the sunspots, coronal rain (made of condensing plasma) streaming down along the post-flare loops, and the chromosphere's response to the impact of coronal rain, showing fine-scale brightenings at the footpoints of the falling plasma. Taking advantage of the resolving power of the NST, we measure the cross-sectional widths of flare ribbons, post-flare loops and footpoint brighenings, which generally lie in the range of 80-200 km, well below the resolution of most current instruments used for flare studies. Confining the scale of such fine structure provides an essential piece of information in modeling the energy transport mechanism of flares, which is an important issue in solar and plasma physics.

  5. Unprecedented Fine Structure of a Solar Flare Revealed by the 1.6~m New Solar Telescope

    NASA Astrophysics Data System (ADS)

    Jing, Ju; Xu, Yan; Cao, Wenda; Liu, Chang; Gary, Dale E.; Wang, Haimin

    2016-05-01

    Solar flares signify the sudden release of magnetic energy and are sources of so called space weather. The fine structures (below 500 km) of flares are rarely observed and are accessible to only a few instruments world-wide. Here we present observation of a solar flare using exceptionally high resolution images from the 1.6~m New Solar Telescope (NST) equipped with high order adaptive optics at Big Bear Solar Observatory (BBSO). The observation reveals the process of the flare in unprecedented detail, including the flare ribbon propagating across the sunspots, coronal rain (made of condensing plasma) streaming down along the post-flare loops, and the chromosphere's response to the impact of coronal rain, showing fine-scale brightenings at the footpoints of the falling plasma. Taking advantage of the resolving power of the NST, we measure the cross-sectional widths of flare ribbons, post-flare loops and footpoint brighenings, which generally lie in the range of 80-200 km, well below the resolution of most current instruments used for flare studies. Confining the scale of such fine structure provides an essential piece of information in modeling the energy transport mechanism of flares, which is an important issue in solar and plasma physics.

  6. Unprecedented Fine Structure of a Solar Flare Revealed by the 1.6 m New Solar Telescope

    NASA Astrophysics Data System (ADS)

    Jing, Ju; Xu, Yan; Cao, Wenda; Liu, Chang; Gary, Dale; Wang, Haimin

    2016-04-01

    Solar flares signify the sudden release of magnetic energy and are sources of so called space weather. The fine structures (below 500 km) of flares are rarely observed and are accessible to only a few instruments world-wide. Here we present observation of a solar flare using exceptionally high resolution images from the 1.6 m New Solar Telescope (NST) equipped with high order adaptive optics at Big Bear Solar Observatory (BBSO). The observation reveals the process of the flare in unprecedented detail, including the flare ribbon propagating across the sunspots, coronal rain (made of condensing plasma) streaming down along the post-flare loops, and the chromosphere’s response to the impact of coronal rain, showing fine-scale brightenings at the footpoints of the falling plasma. Taking advantage of the resolving power of the NST, we measure the cross-sectional widths of flare ribbons, post-flare loops and footpoint brighenings, which generally lie in the range of 80–200 km, well below the resolution of most current instruments used for flare studies. Confining the scale of such fine structure provides an essential piece of information in modeling the energy transport mechanism of flares, which is an important issue in solar and plasma physics.

  7. Unprecedented Fine Structure of a Solar Flare Revealed by the 1.6 m New Solar Telescope

    PubMed Central

    Jing, Ju; Xu, Yan; Cao, Wenda; Liu, Chang; Gary, Dale; Wang, Haimin

    2016-01-01

    Solar flares signify the sudden release of magnetic energy and are sources of so called space weather. The fine structures (below 500 km) of flares are rarely observed and are accessible to only a few instruments world-wide. Here we present observation of a solar flare using exceptionally high resolution images from the 1.6 m New Solar Telescope (NST) equipped with high order adaptive optics at Big Bear Solar Observatory (BBSO). The observation reveals the process of the flare in unprecedented detail, including the flare ribbon propagating across the sunspots, coronal rain (made of condensing plasma) streaming down along the post-flare loops, and the chromosphere’s response to the impact of coronal rain, showing fine-scale brightenings at the footpoints of the falling plasma. Taking advantage of the resolving power of the NST, we measure the cross-sectional widths of flare ribbons, post-flare loops and footpoint brighenings, which generally lie in the range of 80–200 km, well below the resolution of most current instruments used for flare studies. Confining the scale of such fine structure provides an essential piece of information in modeling the energy transport mechanism of flares, which is an important issue in solar and plasma physics. PMID:27071459

  8. Gabor-domain optical coherence microscopy with integrated dual-axis MEMS scanner for fast 3D imaging and metrology

    NASA Astrophysics Data System (ADS)

    Canavesi, Cristina; Cogliati, Andrea; Hayes, Adam; Santhanam, Anand P.; Tankam, Patrice; Rolland, Jannick P.

    2015-10-01

    Fast, robust, nondestructive 3D imaging is needed for characterization of microscopic structures in industrial and clinical applications. A custom micro-electromechanical system (MEMS)-based 2D scanner system was developed to achieve 55 kHz A-scan acquisition in a Gabor-domain optical coherence microscopy (GD-OCM) instrument with a novel multilevel GPU architecture for high-speed imaging. GD-OCM yields high-definition volumetric imaging with dynamic depth of focusing through a bio-inspired liquid lens-based microscope design, which has no moving parts and is suitable for use in a manufacturing setting or in a medical environment. A dual-axis MEMS mirror was chosen to replace two single-axis galvanometer mirrors; as a result, the astigmatism caused by the mismatch between the optical pupil and the scanning location was eliminated and a 12x reduction in volume of the scanning system was achieved. Imaging at an invariant resolution of 2 μm was demonstrated throughout a volume of 1 × 1 × 0.6 mm3, acquired in less than 2 minutes. The MEMS-based scanner resulted in improved image quality, increased robustness and lighter weight of the system - all factors that are critical for on-field deployment. A custom integrated feedback system consisting of a laser diode and a position-sensing detector was developed to investigate the impact of the resonant frequency of the MEMS and the driving signal of the scanner on the movement of the mirror. Results on the metrology of manufactured materials and characterization of tissue samples with GD-OCM are presented.

  9. Automatic Solar Flare Detection Using Neural Network Techniques

    NASA Astrophysics Data System (ADS)

    Fernandez Borda, Roberto A.; Mininni, Pablo D.; Mandrini, Cristina H.; Gómez, Daniel O.; Bauer, Otto H.; Rovira, Marta G.

    2002-04-01

    We present a new method for automatic detection of flare events from images in the optical range. The method uses neural networks for pattern recognition and is conceived to be applied to full-disk Hαimages. Images are analyzed in real time, which allows for the design of automatic patrol processes able to detect and record flare events with the best time resolution available without human assistance. We use a neural network consisting of two layers, a hidden layer of nonlinear neurodes and an output layer of one linear neurode. The network was trained using a back-propagation algorithm and a set of full-disk solar images obtained by HASTA (HαSolar Telescope for Argentina), which is located at the Estación de Altura Ulrico Cesco of OAFA (Observatorio Astronómico Félix Aguilar), El Leoncito, San Juan, Argentina. This method is appropriate for the detection of solar flares in the complete optical classification, being portable to any Hαinstrument and providing unique criteria for flare detection independent of the observer.

  10. A comparative study between clinical grading of anterior chamber flare and flare reading using the Kowa laser flare meter.

    PubMed

    Konstantopoulou, Kallirroi; Del'Omo, Roberto; Morley, Anne M; Karagiannis, Dimitris; Bunce, Catey; Pavesio, Carlos

    2015-10-01

    To assess the accuracy of standard clinical grading of aqueous flare in uveitis according to the Standardization of Uveitis Nomenclature consensus, and compare the results with the readings of the laser flare meter, Kowa 500. Two examiners clinically graded the flare in 110 eyes. The flare was then measured using the Kowa laser flare meter. Twenty-nine eyes were graded as anterior chamber flare +2; for 18 of these, the clinicians were in agreement, the rest differed by the order of one grade. The range of the laser flare meter for these eyes was 5.2-899.1 photons/ms. The median value was 41.4. Seventy-four eyes were graded with flare +1. Agreement was established in 51 of these eyes. Disagreement for the rest was again by the order of 1, and the flare meter range was 1.1-169.9 photons/ms, median value 18.4. For the clinical measure of flare 0, the clinicians disagreed on three out of five eyes. The flare meter readings ranged from 2.5 to 14.1 photons/ms, median value 9.9. Only two eyes were graded with flare +3 and there was one step disagreement on both of them. We found little evidence of association between the flare readings and intraocular pressure or age. Our findings suggest that clinical evaluation of aqueous flare is subjective. Compared with the Kowa laser flare meter's numeric readings, the discrepancies observed indicate that clinical grading is an approximate science. The laser flare meter provides an accurate, reproducible, non-invasive assessment of aqueous flare that can prove valuable in research and clinical decisions.

  11. Optical visualization and electrical characterization of fast-rising pulsed dielectric barrier discharge for airflow control applications

    NASA Astrophysics Data System (ADS)

    Benard, Nicolas; Zouzou, Nourredine; Claverie, Alain; Sotton, Julien; Moreau, Eric

    2012-02-01

    Flow control consists of manipulating flows in an effective and robust manner to improve the global performances of transport systems or industrial processes. Plasma technologies, and particularly surface dielectric barrier discharge (DBD), can be a good candidate for such purpose. The present experimental study focuses on optical and electrical characterization of plasma sheet formed by applying a pulse of voltage with rising and falling periods of 50 ns for a typical surface DBD geometry. Positive and negative polarities are compared in terms of current behavior, deposited energy, fast-imaging of the plasma propagation, and resulting modifications of the surrounding medium by using shadowgraphy acquisitions. Positive and negative pulses of voltage produce streamers and corona type plasma, respectively. Both of them result in the production of a localized pressure wave propagating in the air with a speed maintained at 343 m/s (measurements at room temperature of 20 °C). This suggests that the produced pressure wave can be considered as a propagating sound wave. The intensity of the pressure wave is directly connected to the dissipated energy at the dielectric wall with a linear increase with the applied voltage amplitude and a strong dependence toward the rising time. At constant voltage amplitude, the pressure wave is reinforced by using a positive pulse. The present investigation also reveals that rising and decaying periods of a single pulse of voltage result in two distinct pressure waves. As a result, superposition or successive pressure wave can be produced by adjusting the width of the pulse.

  12. Fast and slow ion diffusion processes in lithium ion pouch cells during cycling observed with fiber optic strain sensors

    NASA Astrophysics Data System (ADS)

    Sommer, Lars Wilko; Kiesel, Peter; Ganguli, Anurag; Lochbaum, Alexander; Saha, Bhaskar; Schwartz, Julian; Bae, Chang-Jun; Alamgir, Mohamed; Raghavan, Ajay

    2015-11-01

    Cell monitoring for safe capacity utilization while maximizing pack life and performance is a key requirement for effective battery management and encouraging their adoption for clean-energy technologies. A key cell failure mode is the build-up of residual electrode strain over time, which affects both cell performance and life. Our team has been exploring the use of fiber optic (FO) sensors as a new alternative for cell state monitoring. In this present study, various charge-cycling experiments were performed on Lithium-ion pouch cells with a particular class of FO sensors, fiber Bragg gratings (FBGs), that were externally attached to the cells. An overshooting of the volume change at high SOC that recovers during rest can be observed. This phenomenon originates from the interplay between a fast and a slow Li ion diffusion process, which leads to non-homogeneous intercalation of Li ions. This paper focuses on the strain relaxation processes that occur after switching from charge to no-load phases. The correlation of the excess volume and subsequent relaxation to SOC as well as temperature is discussed. The implications of being able to monitor this phenomenon to control battery utilization for long life are also discussed.

  13. Calibration of Fast Fiber-Optic Beam Loss Monitors for the Advanced Photon Source Storage Ring Superconducting Undulators

    SciTech Connect

    Dooling, J.; Harkay, K.; Ivanyushenkov, Y.; Sajaev, V.; Xiao, A.; Vella, Andrea K.

    2015-01-01

    We report on the calibration and use of fast fiber-optic (FO) beam loss monitors (BLMs) in the Advanced Photon Source storage ring (SR). A superconducting undulator prototype (SCU0) has been operating in SR Sector 6 (“ID6”) since the beginning of CY2013, and another undulator SCU1 (a 1.1-m length undulator that is three times the length of SCU0) is scheduled for installation in Sector 1 (“ID1”) in 2015. The SCU0 main coil often quenches during beam dumps. MARS simulations have shown that relatively small beam loss (<1 nC) can lead to temperature excursions sufficient to cause quenchingwhen the SCU0windings are near critical current. To characterize local beam losses, high-purity fused-silica FO cables were installed in ID6 on the SCU0 chamber transitions and in ID1 where SCU1 will be installed. These BLMs aid in the search for operating modes that protect the SCU structures from beam-loss-induced quenching. In this paper, we describe the BLM calibration process that included deliberate beam dumps at locations of BLMs. We also compare beam dump events where SCU0 did and did not quench.

  14. Rapid and complete hitless defragmentation method using a coherent RX LO with fast wavelength tracking in elastic optical networks.

    PubMed

    Proietti, Roberto; Qin, Chuan; Guan, Binbin; Yin, Yawei; Scott, Ryan P; Yu, Runxiang; Yoo, S J B

    2012-11-19

    This paper demonstrates a rapid and full hitless defragmentation method in elastic optical networks exploiting a new technique for fast wavelength tracking in coherent receivers. This technique can be applied to a single-carrier connection or each of the subcarriers forming a super-channel. A proof-of-concept demonstration shows hitless defragmentation of a 10 Gb/s QPSK single-carrier connection from 1547.75 nm to 1550.1 nm in less than 1 µs. This was obtained using a small (0.625 kB) link-layer transmitter buffer without the need for any additional transponder. We also demonstrated that the proposed defragmentation technique is capable of hopping over an existing connection, i.e. 10 Gb/s OOK at 1548.5 nm, without causing any degradation of its real-time Bit Error Rate (BER) value. The proposed scheme gives advantages in terms of overall network blocking probability reduction up to a factor of 40.

  15. A Novel Scheme of Fast-frequency Hopping Optical CDMA System with No-hit-zone Sequence

    NASA Astrophysics Data System (ADS)

    Ji, Jianhua; liu, Ling; Wang, Ke; Zhang, Zhipeng; Xu, Ming

    2013-09-01

    In traditional fast frequency-hopping OCDMA (FFH-OCDMA) system, beat noise and multiple-access interference are the main performance limitations, and complicated power control must be employed to eliminate the near-far effect. In this paper, a novel scheme of FFH-OCDMA with no-hit-zone sequence is proposed, which is named NHZ FFH-OCDMA. In NHZ FFH-OCDMA, the synchronization among users can be controlled within permissible time delay, and the code cross-correlation for different users equals zero. Therefore, near-far effect can be eliminated. Furthermore, beat noise and multiple-access interference also can be removed. Simulation of eight simultaneous users with dada rate 100 Mbit/s is demonstrated, where the fiber link consists of 50 km single-mode fiber, plus 5 km dispersion compensating fiber. Simulation results show that the near-far problem of NHZ FFH-OCDMA can be eliminated, and complicated power control can be removed. Therefore, this scheme is a good candidate for optical access network.

  16. On the presence of linear polarization in the flare on 26 June, 1999

    NASA Astrophysics Data System (ADS)

    Kotrc, P.; Kashapova, L. K.; Kupryakov, J. A.

    Solar flare on 26 June 1999 was accompanied by radio bursts giving an indirect evidence of accelerated superthermal particle beams. It is generally believed that this effect can stimulate an impact linear polarization in Balmer series spectral lines. The flare was observed simultaneously by the Ondrejov Multichannel Flare Spectrograph (MFS) and by the Large Solar Vacuum Telescope (LSVT) using the polarization optics in the Halpha line. Spectropolarimetric data obtained by the two instruments are analyzed, however no substantial linear polarization was detected. Both spectral and auxiliary data, including radio and X-ray observations are analyzed to discuss possible reasons of the lack of linear polarization.

  17. Radio re-brightening of the gamma-ray flaring blazar PKS 1510-089

    NASA Astrophysics Data System (ADS)

    Fuhrmann, L.; Angelakis, E.; Nestoras, I.; Schmidt, R.; Krichbaum, T. P.; Zensus, J. A.; Ungerechts, H.; Sievers, A.; Riquelme, D.

    2011-07-01

    Responding to the ATels #3473 and #3470 reporting the recent flaring activity of PKS 1510-089 at gamma-rays beginning of July 2011 as well as ATel #3479 reporting no optical counterpart of this activity, we here report its behavior at radio bands as observed by the F-GAMMA program. Long-term activity: Observations performed with the Effelsberg 100-m and the IRAM 30-m telescope since its pronounced flaring activity of 2009 show that the source is basically following a continuously decaying long-term trend at low to intermediate frequencies, though with smaller "sub-flares" superimposed.

  18. Magnetic Flux Transients during Solar Flares

    NASA Astrophysics Data System (ADS)

    Balasubramaniam, K. S.; Delgado, F.; Hock, R. A.

    2013-12-01

    Solar flares result from the sudden release of energy stored in the magnetic field of the solar atmosphere, attributed to magnetic reconnection. In this work, we use line-of-sight magnetograms to study the changes in photospheric magnetic field during large solar flares. The magnetograms are derived from observations using NASA's Helioseismic and Magnetic Imager onboard the Solar Dynamics Observatory, and have a cadence of 3 minutes at a 0.5 arcsecond spatial resolution. We studied the inferred magnetic flux changes in 11 X-class flares from (2011-2012) and 26 M-class flares (2011). Of the 37 flares, 32 exhibited short-lived (less than 30 minutes) magnetic flux transients (MFTs) during the progress of the flare, similar to those by Maurya et al. (2012). We note that MFTs were co-temporal with GOES X-ray peaks. Flares with rapid rises (impulsive flares) had stronger transients while those with slower rises (gradual flares) had weak or no MFTs. Finally, flares with stronger GOES X-ray peaks (flare class) showed stronger MFTs. We believe that these changes are non-physical because the changes in the magnetic field are transient (the magnetic field returns to the pre-flare state) and coincide with the impulsive phase of the flare. This work supported by the US Airforce Office of Scientific Research and the AFRL/RV Space Scholar Program.

  19. Particle Acceleration in Solar Flares and Associated CME Shocks

    NASA Astrophysics Data System (ADS)

    Petrosian, Vahé

    2016-10-01

    Observations relating the characteristics of electrons seen near Earth (solar energetic particles [SEPs]) and those producing flare radiation show that in certain (prompt) events the origin of both populations appears to be the flare site, which shows strong correlation between the number and spectral index of SEP and hard X-ray radiating electrons, but in others (delayed), which are associated with fast coronal mass ejections (CMEs), this relation is complex and SEPs tend to be harder. Prompt event spectral relation disagrees with that expected in thick or thin target models. We show that using a more accurate treatment of the transport of the accelerated electrons to the footpoints and to Earth can account for this discrepancy. Our results are consistent with those found by Chen & Petrosian for two flares using nonparametric inversion methods, according to which we have weak diffusion conditions, and trapping mediated by magnetic field convergence. The weaker correlations and harder spectra of delayed events can come about by reacceleration of electrons in the CME shock environment. We describe under what conditions such a hardening can be achieved. Using this (acceleration at the flare and reacceleration in the CME) scenario, we show that we can describe the similar dichotomy that exists between the so-called impulsive, highly enriched (3He and heavy ions), and softer SEP events and stronger, more gradual SEP events with near-normal ionic abundances and harder spectra. These methods can be used to distinguish the acceleration mechanisms and to constrain their characteristics.

  20. The Nature of CME-flare-Associated Coronal Dimming

    NASA Astrophysics Data System (ADS)

    Cheng, J. X.; Qiu, J.

    2016-07-01

    Coronal mass ejections (CMEs) are often accompanied by coronal dimming that is evident in extreme ultraviolet (EUV) and soft X-ray observations. The locations of dimming are sometimes considered to map footpoints of the erupting flux rope. As the emitting material expands in the corona, the decreased plasma density leads to reduced emission observed in spectral and irradiance measurements. Therefore, signatures of dimming may reflect the properties of CMEs in the early phase of their eruption. In this study, we analyze the event of flare, CME, and coronal dimming on 2011 December 26. We use the data from the Atmospheric Imaging Assembly on the Solar Dynamics Observatory for disk observations of the dimming, and analyze images taken by EUVI, COR1, and COR2 on board the Solar Terrestrial Relations Observatory to obtain the height and velocity of the associated CMEs observed at the limb. We also measure the magnetic reconnection rate from flare observations. Dimming occurs in a few locations next to the flare ribbons, and it is observed in multiple EUV passbands. Rapid dimming starts after the onset of fast reconnection and CME acceleration, and its evolution tracks the CME height and flare reconnection. The spatial distribution of dimming exhibits cores of deep dimming with a rapid growth, and their light curves are approximately linearly scaled with the CME height profile. From the dimming analysis we infer the process of the CME expansion, and estimate properties of the CME.

  1. Nature of CME-flare Associated Coronal Dimming

    NASA Astrophysics Data System (ADS)

    Cheng, Jianxia; Qiu, Jiong

    2016-04-01

    Coronal mass ejections (CMEs) are often accompanied by coronal dimming evident in extreme ultraviolet (EUV) and soft X-ray observations. The locations of dimming are sometimes considered to map footpoints of the erupting flux rope. As emitting material expands in the corona, the decreased plasma density leads to reduced emission observed in spectral and irradiance measurements. Therefore, signatures of dimming may reflect properties of CMEs in the early phase of eruption. We analyze the event of flare, CME, and coronal dimming on December 26, 2011. Data from the Atmospheric Imaging Assembly (AIA) on Solar Dynamics Observatories (SDO) are used for disk observations of the dimming, and images taken by EUVI, COR1, and COR2 onboard the Solar Terrestrial Relations Observatories are used to obtain height and velocity of the associated CMEs observed at the limb. We also calculate magnetic reconnection rate from flare observations. Dimming occurs in a few locations next to flare ribbons, and is observed in multiple EUV passbands. Rapid dimming starts after onset of fast reconnection and CME acceleration, and its evolution well tracks the CME height and flare reconnection. Spatial distribution of dimming exhibits cores of deep dimming with rapid growth, and their light curves are approximately linearly scaled with the CME height profile. From dimming analysis, we infer the process of CME expansion, and estimate properties of the CME.

  2. Largest Solar Flare on Record

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The largest solar flare ever recorded occurred at 4:51 p.m. EDT, on Monday, April 2, 2001. as Observed by the Solar and Heliospheric Observatory (SOHO) satellite. Solar flares, among the solar systems mightiest eruptions, are tremendous explosions in the atmosphere of the Sun capable of releasing as much energy as a billion megatons of TNT. Caused by the sudden release of magnetic energy, in just a few seconds, solar flares can accelerate solar particles to very high velocities, almost to the speed of light, and heat solar material to tens of millions of degrees. The recent explosion from the active region near the sun's northwest limb hurled a coronal mass ejection into space at a whopping speed of roughly 7.2 million kilometers per hour. Luckily, the flare was not aimed directly towards Earth. Second to the most severe R5 classification of radio blackout, this flare produced an R4 blackout as rated by the NOAA SEC. This classification measures the disruption in radio communications. Launched December 2, 1995 atop an ATLAS-IIAS expendable launch vehicle, the SOHO is a cooperative effort involving NASA and the European Space Agency (ESA). (Image courtesy NASA Goddard SOHO Project office)

  3. THE SOLAR FLARE IRON ABUNDANCE

    SciTech Connect

    Phillips, K. J. H.; Dennis, B. R. E-mail: Brian.R.Dennis@nasa.gov

    2012-03-20

    The abundance of iron is measured from emission line complexes at 6.65 keV (Fe line) and 8 keV (Fe/Ni line) in RHESSI X-ray spectra during solar flares. Spectra during long-duration flares with steady declines were selected, with an isothermal assumption and improved data analysis methods over previous work. Two spectral fitting models give comparable results, viz., an iron abundance that is lower than previous coronal values but higher than photospheric values. In the preferred method, the estimated Fe abundance is A(Fe) = 7.91 {+-} 0.10 (on a logarithmic scale, with A(H) = 12) or 2.6 {+-} 0.6 times the photospheric Fe abundance. Our estimate is based on a detailed analysis of 1898 spectra taken during 20 flares. No variation from flare to flare is indicated. This argues for a fractionation mechanism similar to quiet-Sun plasma. The new value of A(Fe) has important implications for radiation loss curves, which are estimated.

  4. QUASI-PERIODIC PULSATIONS IN SOLAR AND STELLAR FLARES: RE-EVALUATING THEIR NATURE IN THE CONTEXT OF POWER-LAW FLARE FOURIER SPECTRA

    SciTech Connect

    Inglis, A. R.; Ireland, J.; Dominique, M.

    2015-01-10

    The nature of quasi-periodic pulsations (QPPs) in solar and stellar flares remains debated. Recent work has shown that power-law-like Fourier power spectra are an intrinsic property of solar and stellar flare signals, a property that many previous studies of this phenomenon have not accounted for. Hence a re-evaluation of the existing interpretations and assumptions regarding QPPs is needed. We adopt a Bayesian method for investigating this phenomenon, fully considering the Fourier power-law properties of flare signals. Using data from the PROBA2/Large Yield Radiometer, Fermi/Gamma-ray Burst Monitor, Nobeyama Radioheliograph, and Yohkoh/HXT instruments, we study a selection of flares from the literature identified as QPP events. Additionally, we examine optical data from a recent stellar flare that appears to exhibit oscillatory properties. We find that, for all but one event tested, an explicit oscillation is not required to explain the observations. Instead, the flare signals are adequately described as a manifestation of a power law in the Fourier power spectrum. However, for the flare of 1998 May 8, strong evidence for an explicit oscillation with P ≈ 14-16 s is found in the 17 GHz radio data and the 13-23 keV Yohkoh/HXT data. We conclude that, most likely, many previously analyzed events in the literature may be similarly described by power laws in the flare Fourier power spectrum, without invoking a narrowband, oscillatory component. Hence the prevalence of oscillatory signatures in solar and stellar flares may be less than previously believed. The physical mechanism behind the appearance of the observed power laws is discussed.

  5. Coronal Mass Ejections Associated With Impulsive Solar Flares - Observations With SECCHI EUVI On STEREO

    NASA Astrophysics Data System (ADS)

    Nitta, N. V.; Lemen, J. R.; Wuelser, J.; Aschwanden, M. J.; Freeland, S. L.; Zarro, D. M.

    2008-12-01

    Long-duration flares, sometimes referred to as Long Decay Events (LDEs), are known to be unmistakable signatures of coronal mass ejections (CMEs), and often of fast and large ones. Short-duration or impulsive flares, on the other hand, do not as frequently accompany CMEs, even though X-ray plasmoid ejections seen in some of these flares may suggest that all flares are eruptive irrespective of durations. Some of these ejections in X-ray or EUV images could be failed ejections, however, meaning that they do not move into interplanetary medium. A complementary, and perhaps more reliable signature of a CME in the low corona may be large-scale dimming typically observed at 1-2 MK. We report on high cadence observations of SECCHI EUVI on STEREO that show this phenomenon in weak impulsive flares more frequently than expected. We systematically study flare periods with good data coverage. In order to avoid false dimming, we use both base and running difference images after carefully co-aligning the image pairs. Some of the dimming events were observed in more than one channel and at two widely separated view angles, letting us better understand the nature of dimming especially in terms of the associated CME. We discuss how the properties of dimming are reflected in CME parameters, how to distinguish the impulsive flares with large- scale effects from those that are confined, and whether similar events could account for orphan ICMEs without a clearly associated CME near the Sun.

  6. What's an Asthma Flare-Up?

    MedlinePlus

    ... Your 1- to 2-Year-Old What's an Asthma Flare-Up? KidsHealth > For Parents > What's an Asthma ... of a straw that's being pinched. Causes of Asthma Flare-Ups People with asthma have airways that ...

  7. The Flare Genesis Experiment

    NASA Technical Reports Server (NTRS)

    Rust, D. M.

    2002-01-01

    Using the Flare Genesis Experiment (FGE), a balloon-borne observatory with an 80-cm solar telescope we observed the active region NOAA 8844 on January 25, 2000 for several hours. FGE was equipped with a vector polarimeter and a tunable Fabry-Perot narrow-band filter. It recorded time series of filtergrams, vector magnetograms, and Dopplergrams at the Ca(I) 6122.2 angstrom line, and H-alpha filtergrams with a cadence between 2.5 and 7.5 minutes. At the time of the observations, NOAA 8844 was located at approximately 5 N 30 W. The region was rapidly growing during the observations; new magnetic flux was constantly emerging in three supergranules near its center. We describe in detail how the FGE data were analyzed and report on the structure and behavior of peculiar moving dipolar features (MDFs) observed in the active region. In longitudinal magnetograms, the MDFs appeared to be small dipoles in the emerging fields. The east-west orientation of their polarities was opposite that of the sunspots. The dipoles were oriented parallel to their direction of motion, which was in most cases towards the sunspots. Previously, dipolar moving magnetic features have only been observed flowing out from sunspots. Vector magnetograms show that the magnetic field of each MDF negative part was less inclined to the local horizontal than the ones of the positive part. We identify the MDFs as undulations, or stitches, where the emerging flux ropes are still tied to the photosphere. We present a U-loop model that can account for their unusual structure and behavior, and it shows how emerging flux can shed its entrained mass.

  8. Comparative analysis of four-wave mixing of optical pulses in slow- and fast-light regimes of a silicon photonic crystal waveguide.

    PubMed

    Lavdas, Spyros; Panoiu, Nicolae C

    2015-09-15

    We present an in-depth study of four-wave mixing (FWM) of optical pulses in silicon photonic crystal waveguides. Our analysis is based on a rigorous model that includes all relevant linear and nonlinear optical effects and their dependence on the group velocity, as well as the influence of free carriers on pulse dynamics. In particular, we reveal key differences between FWM in the slow- and fast-light regimes and how they are related to the physical parameters of the pulses and waveguide. Finally, we illustrate how these results can be used to design waveguides with optimized FWM conversion efficiency.

  9. 6Li from Solar Flares.

    PubMed

    Ramaty; Tatischeff; Thibaud; Kozlovsky; Mandzhavidze

    2000-05-10

    By introducing a hitherto ignored 6Li producing process, due to accelerated 3He reactions with 4He, we show that accelerated particle interactions in solar flares produce much more 6Li than 7Li. By normalizing our calculations to gamma-ray data, we demonstrate that the 6Li produced in solar flares, combined with photospheric 7Li, can account for the recently determined solar wind lithium isotopic ratio, obtained from measurements in lunar soil, provided that the bulk of the flare-produced lithium is evacuated by the solar wind. Further research in this area could provide unique information on a variety of problems, including solar atmospheric transport and mixing, solar convection and the lithium depletion issue, and solar wind and solar particle acceleration.

  10. Mass motion in solar flares

    NASA Technical Reports Server (NTRS)

    Sturrock, P. A.

    1973-01-01

    Mass motions in solar flares are here considered in terms of a previously proposed model. Particle acceleration occurs during reconnection of a current sheet located at coronal heights. The downward component of the particle flux produces an impulsive hard X-ray burst and heats the upper layers of the chromosphere sufficiently to lead to explosive evaporation. Some of the evaporated gas remains trapped in newly closed magnetic field lines and is responsible for the soft thermal component of X-ray emission. Gas which flows along open magnetic field lines subsequently forms a plasmoid which is ejected by magnetic stresses into interplanetary space and may subsequently cause a geomagnetic storm. Analysis of a highly simplified model leads to formulas for the density, temperature, and other parameters of the flare-produced plasma in terms of a length scale and mean magnetic field strength for the flare.

  11. Solar flare predictions and warnings

    NASA Technical Reports Server (NTRS)

    White, K. P., III; Mayfield, E. B.

    1973-01-01

    The real-time solar monitoring information supplied to support SPARCS-equipped rocket launches, the routine collection and analysis of 3.3-mm solar radio maps, short-term flare forecasts based on these maps, longer-term forecasts based on the recurrence of active regions, and results of the synoptic study of solar active regions at 3.3-mm wavelength are presented. Forecasted flares in the 24-hour forecasts were 81% accurate, and those in the 28-day forecasts were 97% accurate. Synoptic radio maps at 3.3-mm wavelength are presented for twenty-three solar rotations in 1967 and 1968, as well as synoptic flare charts for the same period.

  12. Solar gamma-ray-line flares, type II radio bursts, and coronal mass ejections

    NASA Technical Reports Server (NTRS)

    Cliver, E. W.; Cane, H. V.; Forrest, D. J.; Koomen, M. J.; Howard, R. A.; Wright, C. S.

    1991-01-01

    A Big Flare Syndrome (BFS) test is used to substantiate earlier reports of a statistically significant association between nuclear gamma-ray-line (GRL) flares and metric type II bursts from coronal shocks. The type II onset characteristically follows the onset of gamma-ray emission with a median delay of two minutes. It is found that 70-90 percent of GRL flares for which coronagraph data were available were associated with coronal mass ejections (CMEs). Gradual and impulsive GRL flares were equally well associated with CMEs. The CMEs were typically fast, with a median speed greater than 800 km/s. possible `non-BFS' explanations for the GRL-type II association are discussed.

  13. Crab Flares due to Turbulent Dissipation of the Pulsar Striped Wind

    NASA Astrophysics Data System (ADS)

    Zrake, Jonathan

    2016-05-01

    We interpret γ-ray flares from the Crab Nebula as the signature of turbulence in the pulsar’s electromagnetic outflow. Turbulence is triggered upstream by dynamical instability of the wind’s oscillating magnetic field and accelerates non-thermal particles. On impacting the wind-termination shock, these particles emit a distinct synchrotron component {F}ν ,{flare}, which is constantly modulated by intermittency of the upstream plasma flow. Flares are observed when the high-energy cutoff of {F}ν ,{flare} emerges above the fast-declining nebular emission around 0.1-1 GeV. Simulations carried out in the force-free electrodynamics approximation predict the striped wind to become fully turbulent well ahead of the wind-termination shock, provided its terminal Lorentz factor is ≲ {10}4.

  14. MASTER: PKS 1142-225 optical flare

    NASA Astrophysics Data System (ADS)

    Pogrosheva, T.; Lipunov, V.; Podesta, R.; Levato, H.; Gorbovskoy, E.; Tiurina, N.; Balanutsa, P.; Kornilov, V.; Kuznetsov, A.; Gorbunov, I.; Krylov, A.; Lopez, C.; Podesta, F.; Saffe, C.; Kuvshinov, D.; Shumkov, V.

    2017-02-01

    MASTER-OAFA auto-detection system ( Lipunov et al., "MASTER Global Robotic Net", Advances in Astronomy, 2010, 30L ) discovered OT source at (RA, Dec) = 11h 45m 22.02s -22d 50m 31.4s on 2017-02-10.26340 UT. The OT unfiltered magnitude is 16.7m (mlimit=18.0m).

  15. Bright optical outburst with rapid optical variability of the blazar 3C 279

    NASA Astrophysics Data System (ADS)

    Jankowsky, F.; Glawion, D.; Schwemmer, S.; Wagner, S.

    2017-03-01

    Optical observations of the gamma-ray bright, flat-spectrum radio quasar 3C 279 (z=0.536) with the Automatic Telescope for Optical Monitoring (ATOM) confirm a very bright optical state and rapid flares.

  16. Wind, jet, hybrid corona and hard X-ray flares: multiwavelength evolution of GRO J1655-40 during the 2005 outburst rise

    NASA Astrophysics Data System (ADS)

    Kalemci, E.; Begelman, M. C.; Maccarone, T. J.; Dinçer, T.; Russell, T. D.; Bailyn, C.; Tomsick, J. A.

    2016-11-01

    We have investigated the complex multiwavelength evolution of GRO J1655-40 during the rise of its 2005 outburst. We detected two hard X-ray flares, the first one during the transition from the soft state to the ultra-soft state, and the second one in the ultra-soft state. The first X-ray flare coincided with an optically thin radio flare. We also observed a hint of increased radio emission during the second X-ray flare. To explain the hard flares without invoking a secondary emission component, we fit the entire data set with the eqpair model. This single, hybrid Comptonization model sufficiently fits the data even during the hard X-ray flares if we allow reflection fractions greater than unity. In this case, the hard X-ray flares correspond to a Comptonizing corona dominated by non-thermal electrons. The fits also require absorption features in the soft and ultra-soft state which are likely due to a wind. In this work we show that the wind and the optically thin radio flare co-exist. Finally, we have also investigated the radio to optical spectral energy distribution, tracking the radio spectral evolution through the quenching of the compact jet and rise of the optically thin flare, and interpreted all data using state transition models.

  17. Optical and near-IR observations of the faint and fast 2008ha-like supernova 2010ae

    NASA Astrophysics Data System (ADS)

    Stritzinger, M. D.; Hsiao, E.; Valenti, S.; Taddia, F.; Rivera-Thorsen, T. J.; Leloudas, G.; Maeda, K.; Pastorello, A.; Phillips, M. M.; Pignata, G.; Baron, E.; Burns, C. R.; Contreras, C.; Folatelli, G.; Hamuy, M.; Höflich, P.; Morrell, N.; Prieto, J. L.; Benetti, S.; Campillay, A.; Haislip, J. B.; LaClutze, A. P.; Moore, J. P.; Reichart, D. E.

    2014-01-01

    A comprehensive set of optical and near-infrared (NIR) photometry and spectroscopy is presented for the faint and fast 2008ha-like supernova (SN) 2010ae. Contingent on the adopted value of host extinction, SN 2010ae reached a peak brightness of -13.8 > MV > -15.3 mag, while modeling of the UVOIR light curve suggests it produced 0.003-0.007 M⊙ of 56Ni, ejected 0.30-0.60 M⊙ of material, and had an explosion energy of 0.04-0.30 × 1051 erg. The values of these explosion parameters are similar to the peculiar SN 2008ha -for which we also present previously unpublished early phase optical and NIR light curves - and places these two transients at the faint end of the 2002cx-like SN population. Detailed inspection of the post-maximum NIR spectroscopic sequence indicates the presence of a multitude of spectral features, which are identified through SYNAPPS modeling to be mainly attributed to Co ii. Comparison with a collection of published and unpublished NIR spectra of other 2002cx-like SNe, reveals that a Co ii footprint is ubiquitous to this subclass of transients, providing a link to Type Ia SNe. A visual-wavelength spectrum of SN 2010ae obtained at +252 days past maximum shows a striking resemblance to a similar epoch spectrum of SN 2002cx. However, subtle differences in the strength and ratio of calcium emission features, as well as diversity among similar epoch spectra of other 2002cx-like SNe indicates a range of physical conditions of the ejecta, highlighting the heterogeneous nature of thispeculiar class of transients. Based on observations collected at the European Organization for Astronomical Research in the Southern Hemisphere, Chile (ESO Programs 082.A-0526, 084.D-0719, 088.D-0222, 184.D-1140, and 386.D-0966); the Gemini Observatory, Cerro Pachon, Chile (Gemini Programs GS-2010A-Q-14 and GS-2010A-Q-38); the Magellan 6.5 m telescopes at Las Campanas Observatory; and the SOAR telescope.Tables 1-5 and Appendix A are available in electronic form at http

  18. 40 CFR 65.147 - Flares.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... FEDERAL AIR RULE Closed Vent Systems, Control Devices, and Routing to a Fuel Gas System or a Process § 65..., as applicable, shall be operated during any flare compliance determination. (c) Flare monitoring requirements. Where a flare is used, a device (including but not limited to a thermocouple, ultraviolet...

  19. Flare angles measured with ball gage

    NASA Technical Reports Server (NTRS)

    Cleghorn, D.; Wall, W. A.

    1968-01-01

    Precision tungsten carbide balls measure the internal angle of flared joints. Measurements from small and large balls in the flare throat to an external reference point are made. The difference in distances and diameters determine the average slope of the flare between the points of ball contact.

  20. Optical measurement of the pointing stability of the SOFIA Telescope using a fast EM-CCD camera

    NASA Astrophysics Data System (ADS)

    Pfüller, Enrico; Wolf, Jürgen; Röser, Hans-Peter

    2010-07-01

    The goal of the Stratospheric Observatory for Infrared Astronomy (SOFIA) is to point its airborne telescope at astronomical targets stable within 0.2 arcseconds (rms). However, the pointing stability will be affected in flight by aircraft vibrations and movements and constantly changing aerodynamic conditions within the open telescope compartment. Model calculations indicate that initially the deviations from targets may be at the order of several arcseconds. The plan is to carefully analyse and characterize all disturbances and then gradually fine tune the telescope's attitude control system to improve the pointing stability. To optically measure how star images change their position in the focal plane, an Andor DU-888 electronmultiplying (EM) CCD camera will be mounted to the telescope instead of its standard tracking camera. The new camera, dubbed Fast Diagnostic Camera (FDC) has been extensively tested and characterized in the laboratory and on ground based telescopes. In ground tests on the SOFIA telescope system it proofed its capabilities by sampling star images with frame rates up to 400 frames per second. From this data the star's location (centroid) in the focal plane can be calculated every 1/400th second and by means of a Fourier transformation, the star's movement power spectrum can be derived for frequencies up to 200 Hz. Eigenfrequencies and the overall shape of the measured spectrum confirm the previous model calculations. With known disturbances introduced to the telescope's fine drive system, the FDC data can be used to determine the system's transfer function. These data, when measured in flight will be critical for the refinement of the attitude control system. Another subsystem of the telescope that was characterized using FDC data was the chopping secondary mirror. By monitoring a star centroid at high speed while chopping, the chopping mechanism and its properties could be analyzed. This paper will describe the EM-CCD camera and its

  1. A dynamic flare with anomalously dense flare loops

    NASA Technical Reports Server (NTRS)

    Svestka, Z.; Fontenla, J. M.; Machado, M. E.; Martin, S. F.; Neidig, D. F.

    1986-01-01

    The dynamic flare of November 6, 1980 developed a rich system of growing loops which could be followed in H-alpha for 1.5 hours. Throughout the flare, these loops, near the limb, were seen in emission against the disk. Theoretical computations of b-values for a hydrogen atom reveal that this requires electron densities in the loops to be close to 10 to the 12th per cu cm. From measured widths of higher Balmer lines the density at the tops of the loops was found to be 4 x 10 to the 12th per cu cm if no nonthermal motions were present. It is now general knowledge that flare loops are initially observed in X-rays and become visible in H-alpha only after cooling. For such a high density a loop would cool through radiation from 10 to the 7th K to 10 to the 4th K within a few minutes so that the dense H-alpha loops should have heights very close to the heights of the X-ray loops. This, however, contradicts the observations obtained by the HXIS and FCS instruments on board SMM which show the X-ray loops at much higher altitudes than the loops in H-alpha. Therefore, the density must have been significantly smaller when the loops were formed and the flare loops were apparently both shrinking and becoming denser while cooling.

  2. PREDICTION OF SOLAR FLARE SIZE AND TIME-TO-FLARE USING SUPPORT VECTOR MACHINE REGRESSION

    SciTech Connect

    Boucheron, Laura E.; Al-Ghraibah, Amani; McAteer, R. T. James

    2015-10-10

    We study the prediction of solar flare size and time-to-flare using 38 features describing magnetic complexity of the photospheric magnetic field. This work uses support vector regression to formulate a mapping from the 38-dimensional feature space to a continuous-valued label vector representing flare size or time-to-flare. When we consider flaring regions only, we find an average error in estimating flare size of approximately half a geostationary operational environmental satellite (GOES) class. When we additionally consider non-flaring regions, we find an increased average error of approximately three-fourths a GOES class. We also consider thresholding the regressed flare size for the experiment containing both flaring and non-flaring regions and find a true positive rate of 0.69 and a true negative rate of 0.86 for flare prediction. The results for both of these size regression experiments are consistent across a wide range of predictive time windows, indicating that the magnetic complexity features may be persistent in appearance long before flare activity. This is supported by our larger error rates of some 40 hr in the time-to-flare regression problem. The 38 magnetic complexity features considered here appear to have discriminative potential for flare size, but their persistence in time makes them less discriminative for the time-to-flare problem.

  3. Orbit of the OJ287 black hole binary as determined from the General Relativity centenary flare

    NASA Astrophysics Data System (ADS)

    Valtonen, Mauri; Gopakumar, Achamveedu; Mikkola, Seppo; Zola, Staszek; Ciprini, Stefano; Matsumoto, Katsura; Sadakane, Kozo; Kidger, Mark; Gazeas, Kosmas; Nilsson, Kari; Berdyugin, Andrei; Piirola, Vilppu; Jermak, Helen; Baliyan, Kiran; Hudec, Rene; Reichart, Daniel

    2016-05-01

    OJ287 goes through large optical flares twice each 12 years. The times of these flares have been predicted successfully now 5 times using a black hole binary model. In this model a secondary black hole goes around a primary black hole, impacting the accretion disk of the latter twice per orbital period, creating a thermal flare. Together with 6 flares from the historical data base, the set of flare timings determines uniquely the 7 parameters of the model: the two masses, the primary spin, the major axis, eccentricity and the phase of the orbit, plus a time delay parameter that gives the extent of time between accretion disk impacts and the related optical flares. Based on observations by the OJ287-15/16 Collaboration, OJ287 went into the phase of rapid flux rise on November 25, on the centenary of Einstein’s General Relativity, and peaked on December 5. At that time OJ287 was the brightest in over 30 years in optical wavelengths. The flare was of low polarization, and did not extend beyond the optical/UV region of the spectrum. On top of the main flare there were a number of small flares; their excess brightness correlates well with the simultaneous X-ray data. With these properties the main flare qualifies as the marker of the orbit of the secondary going around the primary black hole. Since the orbit solution is strongly over-determined, its parameters are known very accurately, at better than one percent level for the masses and the spin. The next flare is predicted to peak on July 28, 2019.Detailed monitoring of this event should allow us to test, for the first time, the celebrated black hole no-hair theorem for a massive black hole at the 10% level. The present data is consistent with the theorem only at a 30% level. The main difficulty in observing OJ287 from Earth at our predicted epoch is its closeness to the sun. Therefore, it is desirable to monitor OJ287 from a space-based telescope not in the vicinity of Earth. Unfortunately, this unique opportunity

  4. Biggest Solar Flare on Record

    NASA Technical Reports Server (NTRS)

    2002-01-01

    View an animation from the Extreme ultraviolet Imaging Telescope (EIT). At 4:51 p.m. EDT, on Monday, April 2, 2001, the sun unleashed the biggest solar flare ever recorded, as observed by the Solar and Heliospheric Observatory (SOHO) satellite. The flare was definitely more powerful than the famous solar flare on March 6, 1989, which was related to the disruption of power grids in Canada. This recent explosion from the active region near the sun's northwest limb hurled a coronal mass ejection into space at a whopping speed of roughly 7.2 million kilometers per hour. Luckily, the flare was not aimed directly towards Earth. Solar flares, among the solar system's mightiest eruptions, are tremendous explosions in the atmosphere of the Sun capable of releasing as much energy as a billion megatons of TNT. Caused by the sudden release of magnetic energy, in just a few seconds flares can accelerate solar particles to very high velocities, almost to the speed of light, and heat solar material to tens of millions of degrees. Solar ejections are often associated with flares and sometimes occur shortly after the flare explosion. Coronal mass ejections are clouds of electrified, magnetic gas weighing billions of tons ejected from the Sun and hurled into space with speeds ranging from 12 to 1,250 miles per second. Depending on the orientation of the magnetic fields carried by the ejection cloud, Earth-directed coronal mass ejections cause magnetic storms by interacting with the Earth's magnetic field, distorting its shape, and accelerating electrically charged particles (electrons and atomic nuclei) trapped within. Severe solar weather is often heralded by dramatic auroral displays, northern and southern lights, and magnetic storms that occasionally affect satellites, radio communications and power systems. The flare and solar ejection has also generated a storm of high-velocity particles, and the number of particles with ten million electron-volts of energy in the space near

  5. X-ray and microwave emissions from the July 19, 2012 solar flare: Highly accurate observations and kinetic models

    NASA Astrophysics Data System (ADS)

    Gritsyk, P. A.; Somov, B. V.

    2016-08-01

    The M7.7 solar flare of July 19, 2012, at 05:58 UT was observed with high spatial, temporal, and spectral resolutions in the hard X-ray and optical ranges. The flare occurred at the solar limb, which allowed us to see the relative positions of the coronal and chromospheric X-ray sources and to determine their spectra. To explain the observations of the coronal source and the chromospheric one unocculted by the solar limb, we apply an accurate analytical model for the kinetic behavior of accelerated electrons in a flare. We interpret the chromospheric hard X-ray source in the thick-target approximation with a reverse current and the coronal one in the thin-target approximation. Our estimates of the slopes of the hard X-ray spectra for both sources are consistent with the observations. However, the calculated intensity of the coronal source is lower than the observed one by several times. Allowance for the acceleration of fast electrons in a collapsing magnetic trap has enabled us to remove this contradiction. As a result of our modeling, we have estimated the flux density of the energy transferred by electrons with energies above 15 keV to be ˜5 × 1010 erg cm-2 s-1, which exceeds the values typical of the thick-target model without a reverse current by a factor of ˜5. To independently test the model, we have calculated the microwave spectrum in the range 1-50 GHz that corresponds to the available radio observations.

  6. X-ray flares in GRBs: general considerations and photospheric origin

    NASA Astrophysics Data System (ADS)

    Beniamini, Paz; Kumar, Pawan

    2016-03-01

    Observations of X-ray flares from Gamma Ray Bursts imply strong constraints on possible physical models. We provide a general discussion of these. In particular, we show that in order to account for the relatively flat and weak optical flux during the X-ray flares, the size of the emitting region should be ≲3 × 1014cm. The bolometric luminosity of flares also strongly constrain the energy budget, and are inconsistent with late time activity of a central engine powered by the spin-down of a magnetar. We provide a simple toy model according to which flares are produced by an outflow of modest Lorentz factor (a few tens instead of hundreds) that is launched more or less simultaneously with the highly relativistic jet which produced the prompt gamma-ray emission. The `slower moving outflow produces the flare as it reaches its photosphere. If the X-ray flare jets are structured, the existence of such a component may naturally resolve the observational challenges imposed by flares, outlined in this work.

  7. High-Energy Aspects of Solar Flares: Observations and Models

    SciTech Connect

    Liu, Wei; Guo, Fan

    2015-07-21

    The paper begins by describing the structure of the Sun, with emphasis on the corona. The Sun is a unique plasma laboratory, which can be probed by Sun-grazing comets, and is the driver of space weather. Energization and particle acceleration mechanisms in solar flares is presented; magnetic reconnection is key is understanding stochastic acceleration mechanisms. Then coupling between kinetic and fluid aspects is taken up; the next step is feedback of atmospheric response to the acceleration process – rapid quenching of acceleration. Future challenges include applications of stochastic acceleration to solar energetic particles (SEPs), Fermi γ-rays observations, fast-mode magnetosonic wave trains in a funnel-shaped wave guide associated with flare pulsations, and the new SMEX mission IRIS (Interface Region Imaging Spectrograph),

  8. Analog electro-optical readout of SiPMs achieves fast timing required for time-of-flight PET/MR

    PubMed Central

    Bieniosek, MF

    2015-01-01

    The design of combined positron emission tomography/magnetic resonance (PET/MR) systems presents a number of challenges to engineers, as it forces the PET system to acquire data in space constrained environment that is sensitive to electro-magnetic interference and contains high static, radio frequency (RF) and gradient fields. In this work we validate fast timing performance of a PET scintillation detector using a potentially very compact, very low power, and MR compatible readout method in which analog silicon photomultipliers (SiPM) signals are transmitted optically away from the MR bore with little or even no additional readout electronics. This analog ‘electro-optial’ method could reduce the entire PET readout in the MR bore to two compact, low power components (SiPMs and lasers). Our experiments show fast timing performance from analog electro-optical readout with and without pre-amplification. With 3mm × 3mm × 20mm lutetium-yttrium oxyorthosilicate (LYSO) crystals and Excelitas SiPMs the best two-sided fwhm coincident timing resolution achieved was 220 +/- 3ps in electrical mode, 230 +/- 2ps in electro-optical with preamp mode, and 253 +/- 2ps in electro-optical without preamp mode. Timing measurements were also performed with Hamamatsu SiPMs and 3mm × 3mm × 5mm crystals. In the future the timing degradation seen can be further reduced with lower laser noise or improvements SiPM rise time or gain. PMID:25905626

  9. Sunspot 1504 is Spitting Flares

    NASA Video Gallery

    This movie from the Solar Dynamics Observatory (SDO) shows the M class flare on June 14, 2012 from 9:15 AM to 2:00 PM EDT. The sun is shown here in teal as this is the color typically used to repre...

  10. Magnetic Reconnection in Solar Flares

    NASA Astrophysics Data System (ADS)

    Forbes, Terry G.

    2016-05-01

    Reconnection has at least three possible roles in solar flares: First, it may contribute to the build-up of magnetic energy in the solar corona prior to flare onset; second, it may directly trigger the onset of the flare; and third, it may allow the release of magnetic energy by relaxing the magnetic field configuration to a lower energy state. Although observational support for the first two roles is somewhat limited, there is now ample support for the third. Within the last few years EUV and X-ray instruments have directly observed the kind of plasma flows and heating indicative of reconnection. Continued improvements in instrumentation will greatly help to determine the detailed physics of the reconnection process in the solar atmosphere. Careful measurement of the reconnection outflows will be especially helpful in this regard. Current observations suggest that in some flares the jet outflows are accelerated within a short diffusion region that is more characteristic of Petschek-type reconnection than Sweet-Parker reconnection. Recent resistive MHD theoretical and numerical analyses predict that the length of the diffusion region should be just within the resolution range of current X-ray and EUV telescopes if the resistivity is uniform. On the other hand, if the resistivity is not uniform, the length of the diffusion region could be too short for the outflow acceleration region to be observable.

  11. Physical properties of white-light sources in the 2011 February 15 solar flare

    SciTech Connect

    Kerr, G. S.; Fletcher, L.

    2014-03-10

    White-light flares (WLFs) are observational rarities, making them understudied events. However, optical emission is a significant contribution to flare energy budgets and the emission mechanisms responsible could have important implications for flare models. Using Hinode SOT optical continuum data taken in broadband red, green, and blue filters, we investigate WL emission from the X2.2 flare SOL2011-02-15T01:56:00. We develop a technique to robustly identify enhanced flare pixels and, using a knowledge of the RGB filter transmissions, determined the source color temperature and effective temperature. We investigated two idealized models of WL emission—an optically thick photospheric source, and an optically thin chromospheric slab. Under the optically thick assumption, the color temperature and effective temperature of flare sources in sunspot umbra and penumbra were determined as a function of time and position. Values in the range of 5000-6000 K were found, corresponding to a blackbody temperature increase of a few hundred kelvin. The power emitted in the optical was estimated at ∼10{sup 26} erg s{sup –1}. In some of the WL sources the color and blackbody temperatures are the same within uncertainties, consistent with a blackbody emitter. In other regions this is not the case, suggesting that some other continuum emission process is contributing. An optically thin slab model producing hydrogen recombination radiation is also discussed as a potential source of WL emission; it requires temperatures in the range 5500-25,000 K, and total energies of ∼10{sup 27} erg s{sup –1}.

  12. Ion Acceleration in Solar Flares

    NASA Technical Reports Server (NTRS)

    Miller, James A.; Weir, Sue B.

    1996-01-01

    Solar flares are among the most energetic and interesting phenomena in the Solar system, releasing up to 1032 ergs of energy on timescales of several tens of seconds to several tens of minutes. Much of this energy is in the form of suprathermal electrons and ions, which remain trapped at the Sun and produce a wide variety of radiations, as well as escape into interplanetary space, where they can be directly observed. The radiation from trapped particles consists in general of (1) continuum emission; (2) narrow gamma-ray nuclear deexcitation lines; and (3) high-energy neutrons observed in space or by ground-based neutron monitors. The particles that escape into space consist of both electrons and ions, which often have compositions quite different than that of the ambient solar atmosphere. Flares thus present many diagnostics of the particle acceleration mechanism(s), the identification of which is the ultimate goal of flare research. Moreover, flares in fact offer the only opportunity in astrophysics to study the simultaneous energization of both electrons and ions. Hopefully, an understanding of flares with their wealth of diagnostic data will lead to a better understanding of particle acceleration at other sites in the Universe. It is now generally accepted that flares are roughly divided into two classes: impulsive and gradual. Gradual events are large, occur high in the corona, have long-duration soft and hard X-rays and gamma rays, are electron poor, are associated with Type II radio emission and coronal mass ejections (CMEs), and produce energetic ions with coronal abundance ratios. Impulsive events are more compact, occur lower in the corona, produce short-duration radiation, and exhibit dramatic abundance enhancements in the energetic ions. Their He-3/He-4 ratio is - 1, which is a huge increase over the coronal value of about 5 x 10(exp -4), and they also posses smaller but still significant enhancements of Ne, Mg, Si, and Fe relative to He-4, C, N, and O

  13. Towards the circuit theory of solar flares

    NASA Astrophysics Data System (ADS)

    Zaitsev, V. V.; Stepanov, A. V.

    1992-06-01

    The coalescence of a flare loop and a filament is presently used to illustrate magnetic-loop reemergence and the correct application of the generalized form of Ohm's law for solar flares. Flare energy release entails large current values, a nonsteady-state process, and the existence of a neutral component in a flare plasma. Current dissipation furnishes effective Joule heating of the plasma and particle acceleration in a solar flare. Due to the decisive role played in the energy release process by ion-atom collisions, flare loop resistance can grow by 8-10 orders of magnitude. The energy release from the upper part of a flare loop stimulates powerful energy release from the chromospheric level.

  14. The dynamo theory of solar flares

    NASA Astrophysics Data System (ADS)

    Zaitsev, V. V.; Stepanov, A. V.

    1991-04-01

    It is shown that the main problems of the dynamo theory of solar flares; namely, the unrealistically great current growth time and the current interruption mechanism, can be solved by assuming the emergence of magnetic loops with current and by the correct application of Ohm's law. A generalized Ohm's law for solar flares is obtained, and prerequisites for flare energy release are proposed. Coalescence of a flare loop and of a filament is considered as an example, and it is shown that the current dissipation increases dramatically as compared with that in completely ionized plasma, providing effective Joule heating of the plasma and particle acceleration in a solar flare. The ion-atom collisions play the decisive role in the energy release process, leading to an 8-10-order-of-magnitude increase in the flare loop resistance. The energy release emerging from the upper part of a flare loop stimulates a powerful energy release in the chromosphere.

  15. Constraining Models Of The Solar Chromosphere Using An X2 Flare Observed By SDO/EVE

    NASA Astrophysics Data System (ADS)

    Venkataramanasastry, A.; Murphy, N. A.; Avrett, E.

    2013-12-01

    The GOES X2 solar flare of Feb 15, 2011 is analyzed to draw observational constraints in constructing a model of the chromosphere of the Sun during a solar flare, using the Pandora computer program [1]. Spectra from the MEGS-A&B component of EVE [2] on board the Solar Dynamics Observatory are used to analyze the lines and continuum [3]. The irradiances before and after the flare are used for modeling the time-evolution of the impulsive and decay phases of the flare. Significant increase in the intensities of multiple coronal and chromospheric emission lines (H, He, C, N, O, Si etc.) is seen. The observed increase in intensities will serve as constraints to the model program. Pandora performs iterative calculations for non-LTE radiative transfer with multiple ions and atoms. It includes the effects of particle diffusion and flow velocities in the equations of radiative transfer and ionization equilibrium. The fraction of the area on the Sun contributing to the chromospheric flare emission is presented. The upper limit for the intensity in the Lyman continuum due to the flare is accounted to be approximately 7% of that due to the entire surface area. The Lyman, He II and He I continua provide strong constraints for characterizing the chromosphere. The emission lines from the CHIANTI atomic database in these wavelength ranges are considered in order to avoid using optically thin emission lines from the corona. The behavior of changes in line features with time is analyzed. The light curves of different lines that contribute substantially to the flare spectra are studied. The temperatures at the peak of the flare with respect to that at the quiet Sun is estimated at different continuum wavelengths. The pre-flare and post-flare values from these light-curves are adapted to construct the model during the rise and decay phases. The effective intensity due to the lines and the relative times at which these lines peak are presented. The observed irradiance values for pre-flare

  16. The Atmospheric Response to High Nonthermal Electron Beam Fluxes in Solar Flares. I. Modeling the Brightest NUV Footpoints in the X1 Solar Flare of 2014 March 29

    NASA Astrophysics Data System (ADS)

    Kowalski, Adam F.; Allred, Joel C.; Daw, Adrian; Cauzzi, Gianna; Carlsson, Mats

    2017-02-01

    The 2014 March 29 X1 solar flare (SOL20140329T17:48) produced bright continuum emission in the far- and near-ultraviolet (NUV) and highly asymmetric chromospheric emission lines, providing long-sought constraints on the heating mechanisms of the lower atmosphere in solar flares. We analyze the continuum and emission line data from the Interface Region Imaging Spectrograph (IRIS) of the brightest flaring magnetic footpoints in this flare. We compare the NUV spectra of the brightest pixels to new radiative-hydrodynamic predictions calculated with the RADYN code using constraints on a nonthermal electron beam inferred from the collisional thick-target modeling of hard X-ray data from Reuven Ramaty High Energy Solar Spectroscopic Imager. We show that the atmospheric response to a high beam flux density satisfactorily achieves the observed continuum brightness in the NUV. The NUV continuum emission in this flare is consistent with hydrogen (Balmer) recombination radiation that originates from low optical depth in a dense chromospheric condensation and from the stationary beam-heated layers just below the condensation. A model producing two flaring regions (a condensation and stationary layers) in the lower atmosphere is also consistent with the asymmetric Fe ii chromospheric emission line profiles observed in the impulsive phase.

  17. KEPLER FLARES. II. THE TEMPORAL MORPHOLOGY OF WHITE-LIGHT FLARES ON GJ 1243

    SciTech Connect

    Davenport, James R. A.; Hawley, Suzanne L.; Johnson, Emily C.; Peraza, Jesus; Jansen, Tiffany C.; Larsen, Daniel M.; Hebb, Leslie; Wisniewski, John P.; Malatesta, Michael; Keil, Marcus; Silverberg, Steven M.; Scheffler, Matthew S.; Berdis, Jodi R.; Kowalski, Adam F.; Hilton, Eric J.

    2014-12-20

    We present the largest sample of flares ever compiled for a single M dwarf, the active M4 star GJ 1243. Over 6100 individual flare events, with energies ranging from 10{sup 29} to 10{sup 33} erg, are found in 11 months of 1 minute cadence data from Kepler. This sample is unique for its completeness and dynamic range. We have developed automated tools for finding flares in short-cadence Kepler light curves, and performed extensive validation and classification of the sample by eye. From this pristine sample of flares we generate a median flare template. This template shows that two exponential cooling phases are present during the white-light flare decay, providing fundamental constraints for models of flare physics. The template is also used as a basis function to decompose complex multi-peaked flares, allowing us to study the energy distribution of these events. Only a small number of flare events are not well fit by our template. We find that complex, multi-peaked flares occur in over 80% of flares with a duration of 50 minutes or greater. The underlying distribution of flare durations for events 10 minutes and longer appears to follow a broken power law. Our results support the idea that sympathetic flaring may be responsible for some complex flare events.

  18. A search for X-rays from UV Ceti flare stars

    NASA Technical Reports Server (NTRS)

    Crannell, C. J.; Markert, T. H.; Moffett, T. J.; Spangler, S. R.

    1975-01-01

    A search of MIT/OSO-7 data was made for evidence of X-ray emission from flares of UV Ceti flare stars. Observations from McDonald Observatory were used to identify the times of optical flares. The only instance of coincident coverage occurred on 1974 January 21 UT at 03:43:26 GMT for delta m(u)=0.86 flare of YZ CMi. No radio coverage of this particular event was obtained. Upper limits (3 sigma) of 0.8, 1.0, and 0.7 photons/sq cm-sec on the observed X-ray flux were set for the energy ranges greater than or approximately equal to 15, greater than or approximately equal to 3, and 1-10 keV, respectively.

  19. Optical Emission from the Interaction of Fast Electrons with Metallic Films Containing a Circular Aperture: A Study of Radiative Decoherence of Fast Electrons

    SciTech Connect

    Garcia de Abajo, F. J.

    2009-06-12

    Light emission resulting from the interaction of swift electrons with a distant material is shown to produce an unexpectedly large fraction of decoherence in the moving charges. The decoherence probability diverges for an electron passing through a hole drilled in a perfectly conducting metal film, regardless of the size of the opening. This divergence, which is logarithmic in the ratio of film radius to aperture radius, originates in an infrared catastrophe that differs from other sources of decoherence (e.g., bremsstrahlung radiation). Our results provide new avenues for controlling and assessing the role of coherence during electron acceleration (for example, in transmission electron microscopes) and for exploiting partial quantum interference of fast electrons.

  20. Rapid, optical measurement of the atmospheric pressure on a fast research aircraft using open-path TDLAS

    NASA Astrophysics Data System (ADS)

    Buchholz, B.; Afchine, A.; Ebert, V.

    2014-05-01

    . Under certain flight conditions we quantified for the first time stalling-induced, dynamic pressure deviations of up to 30% (at 200 hPa) between the avionic sensor and the optical and mechanical pressure sensors integrated in HAI. Such severe local pressure deviations from the usually used avionic pressure are important to take into account for other airborne sensors employed on such fast flying platforms as the HALO aircraft.

  1. Rapid, optical measurement of the atmospheric pressure on a fast research aircraft using open-path TDLAS

    NASA Astrophysics Data System (ADS)

    Buchholz, B.; Afchine, A.; Ebert, V.

    2014-11-01

    certain flight conditions we quantified, for the first time, stalling-induced, dynamic pressure deviations of up to 30% (at 200 hPa) between the avionic sensor and the optical and mechanical pressure sensors integrated in HAI. Such severe local pressure deviations from the typically used avionic pressure are important to take into account for other airborne sensors employed on such fast flying platforms as the HALO aircraft.

  2. Flares of Nearby, Mid-to-late M-dwarfs Characterized by the MEarth Project

    NASA Astrophysics Data System (ADS)

    Mondrik, Nicholas; Charbonneau, David; Irwin, Jonathan; Newton, Elisabeth R.

    2017-01-01

    Stellar flares are both a curse and a blessing: Transit and radial velocity searches for exoplanets are hindered by the variability caused by flares, while the characteristics of this variability offer valuable insight into the magnetic properties of the star. We present an analysis of flare events of nearby, mid-to-late M-dwarfs from the MEarth Project. MEarth consists of a northern and a southern array of 8 telescopes each that photometrically monitors most mid-to-late M-dwarfs within 30 parsecs. Although the initial motivation was to search for exoplanet transits, the cadence of approximately 20 minutes is well-suited to capturing long-lived flares. However, MEarth employs a single, wide, red bandpass, which poses challenges to the robust detection of flare events, which are typically bluer in color. Using MEarth data, our team has recently published trigonometric parallaxes and estimates of rotation periods for an unprecedented number of nearby low-mass stars. We also gathered supplementary optical and near infrared spectra of a subset of these stars. We describe here the properties of the flares detected by MEarth, and explore the relation of the presence of flares on individual stars with stellar parameters such as rotational period, mass, and H-alpha equivalent width. We also provide an estimate of flare rate for individual stars by injecting flares into our pipeline.The MEarth project acknowledges funding from the National Science Foundation and the David and Lucile Packard Foundation Fellowship for Science and Engineering. This work was made possible through the support of a grant from the John Templeton Foundation.

  3. Satellite observation of pollutant emissions from gas flaring activities near the Arctic

    NASA Astrophysics Data System (ADS)

    Li, Can; Hsu, N. Christina; Sayer, Andrew M.; Krotkov, Nickolay A.; Fu, Joshua S.; Lamsal, Lok N.; Lee, Jaehwa; Tsay, Si-Chee

    2016-05-01

    Gas flaring is a common practice in the oil industry that can have significant environmental impacts, but has until recently been largely overlooked in terms of relevance to climate change. We utilize data from various satellite sensors to examine pollutant emissions from oil exploitation activities in four areas near the Arctic. Despite the remoteness of these sparsely populated areas, tropospheric NO2 retrieved from the Ozone Monitoring Instrument (OMI) is substantial at ˜1 × 1015 molecules cm-2, suggesting sizeable emissions from these industrial activities. Statistically significant (at the 95% confidence level, corresponding uncertainties in parentheses) increasing trends of 0.017 (±0.01) × 1015 and 0.015 (±0.006) × 1015 molecules cm-2 year-1 over 2004-2015 were found for Bakken (USA) and Athabasca (Canada), two areas having recently experienced fast expansion in the oil industry. This rapid change has implications for emission inventories, which are updated less frequently. No significant trend was found for the North Sea (Europe), where oil production has been declining since the 1990s. For northern Russia, the trend was just under the 95% significance threshold at 0.0057 (±0.006) × 1015 molecules cm-2 year-1. This raises an interesting inconsistency as prior studies have suggested that, in contrast to the continued, albeit slow, expansion of Russian oil/gas production, gas flaring in Russia has decreased in recent years. However, only a fraction of oil fields in Russia were covered in our analysis. Satellite aerosol optical depth (AOD) data revealed similar tendencies, albeit at a weaker level of statistical significance, due to the longer lifetime of aerosols and contributions from other sources. This study demonstrates that synergetic use of data from multiple satellite sensors can provide valuable information on pollutant emission sources that is otherwise difficult to acquire.

  4. Advanced Scintillator-Based Compton Telescope for Solar Flare Gamma-Ray Measurements

    NASA Astrophysics Data System (ADS)

    Ryan, James Michael; Bloser, Peter; McConnell, Mark; Legere, Jason; Bancroft, Christopher; Murphy, Ronald; de Nolfo, Georgia

    2015-04-01

    A major goal of future Solar and Heliospheric Physics missions is the understanding of the particle acceleration processes taking place on the Sun. Achieving this understanding will require detailed study of the gamma-ray emission lines generated by accelerated ions in solar flares. Specifically, it will be necessary to study gamma-ray line ratios over a wide range of flare intensities, down to small C-class flares. Making such measurements over such a wide dynamic range, however, is a serious challenge to gamma-ray instrumentation, which must deal with large backgrounds for faint flares and huge counting rates for bright flares. A fast scintillator-based Compton telescope is a promising solution to this instrumentation challenge. The sensitivity of Compton telescopes to solar flare gamma rays has already been demonstrated by COMPTEL, which was able to detect nuclear emission from a C4 flare, the faintest such detection to date. Modern fast scintillators, such as LaBr3, and CeBr3, are efficient at stopping MeV gamma rays, have sufficient energy resolution (4% or better above 0.5 MeV) to resolve nuclear lines, and are fast enough (~15 ns decay times) to record at very high rates. When configured as a Compton telescope in combination with a modern organic scintillator, such as p-terphenyl, sub-nanosecond coincidence resolving time allows dramatic suppression of background via time-of-flight (ToF) measurements, allowing both faint and bright gamma-ray line flares to be measured. The use of modern light readout devices, such as silicon photomultipliers (SiPMs), eliminates passive mass and permits a more compact, efficient instrument. We have flown a prototype Compton telescope using modern fast scintillators with SiPM readouts on a balloon test flight, achieving good ToF and spectroscopy performance. A larger balloon-borne instrument is currently in development. We present our test results and estimates of the solar flare sensitivity of a possible full-scale instrument

  5. A next generation Ultra-Fast Flash Observatory (UFFO-100) for IR/optical observations of the rise phase of gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Grossan, B.; Park, I. H.; Ahmad, S.; Ahn, K. B.; Barrillon, P.; Brandt, S.; Budtz-Jørgensen, C.; Castro-Tirado, A. J.; Chen, P.; Choi, H. S.; Choi, Y. J.; Connell, P.; Dagoret-Campagne, S.; De La Taille, C.; Eyles, C.; Hermann, I.; Huang, M.-H. A.; Jung, A.; Jeong, S.; Kim, J. E.; Kim, M.; Kim, S.-W.; Kim, Y. W.; Lee, J.; Lim, H.; Linder, E. V.; Liu, T.-C.; Lund, N.; Min, K. W.; Na, G. W.; Nam, J. W.; Panasyuk, M. I.; Ripa, J.; Reglero, V.; Rodrigo, J. M.; Smoot, G. F.; Suh, J. E.; Svertilov, S.; Vedenkin, N.; Wang, M.-Z.; Yashin, I.; Zhao, M. H.

    2012-09-01

    The Swift Gamma-ray Burst (GRB) observatory responds to GRB triggers with optical observations in ~ 100 s, butcannot respond faster than ~ 60 s. While some rapid-response ground-based telescopes have responded quickly, thenumber of sub-60 s detections remains small. In 2013 June, the Ultra-Fast Flash Observatory-Pathfinder is expected tobe launched on the Lomonosov spacecraft to investigate early optical GRB emission. Though possessing uniquecapability for optical rapid-response, this pathfinder mission is necessarily limited in sensitivity and event rate; here wediscuss the next generation of rapid-response space observatory instruments. We list science topics motivating ourinstruments, those that require rapid optical-IR GRB response, including: A survey of GRB rise shapes/times,measurements of optical bulk Lorentz factors, investigation of magnetic dominated (vs. non-magnetic) jet models,internal vs. external shock origin of prompt optical emission, the use of GRBs for cosmology, and dust evaporation inthe GRB environment. We also address the impacts of the characteristics of GRB observing on our instrument andobservatory design. We describe our instrument designs and choices for a next generation space observatory as a secondinstrument on a low-earth orbit spacecraft, with a 120 kg instrument mass budget. Restricted to relatively modest mass,power, and launch resources, we find that a coded mask X-ray camera with 1024 cm2 of detector area could rapidlylocate about 64 GRB triggers/year. Responding to the locations from the X-ray camera, a 30 cm aperture telescope witha beam-steering system for rapid (~ 1 s) response and a near-IR camera should detect ~ 29 GRB, given Swift GRBproperties. The additional optical camera would permit the measurement of a broadband optical-IR slope, allowingbetter characterization of the emission, and dynamic measurement of dust extinction at the source, for the first time.

  6. The Kepler Catalog of Stellar Flares

    NASA Astrophysics Data System (ADS)

    Davenport, James R. A.

    2016-09-01

    A homogeneous search for stellar flares has been performed using every available Kepler light curve. An iterative light curve de-trending approach was used to filter out both astrophysical and systematic variability to detect flares. The flare recovery completeness has also been computed throughout each light curve using artificial flare injection tests, and the tools for this work have been made publicly available. The final sample contains 851,168 candidate flare events recovered above the 68% completeness threshold, which were detected from 4041 stars, or 1.9% of the stars in the Kepler database. The average flare energy detected is ˜1035 erg. The net fraction of flare stars increases with g - i color, or decreasing stellar mass. For stars in this sample with previously measured rotation periods, the total relative flare luminosity is compared to the Rossby number. A tentative detection of flare activity saturation for low-mass stars with rapid rotation below a Rossby number of ˜0.03 is found. A power-law decay in flare activity with Rossby number is found with a slope of -1, shallower than typical measurements for X-ray activity decay with Rossby number.

  7. MAGNETIC-ISLAND CONTRACTION AND PARTICLE ACCELERATION IN SIMULATED ERUPTIVE SOLAR FLARES

    SciTech Connect

    Guidoni, S. E.; DeVore, C. R.; Karpen, J. T.; Lynch, B. J.

    2016-03-20

    The mechanism that accelerates particles to the energies required to produce the observed high-energy impulsive emission in solar flares is not well understood. Drake et al. proposed a mechanism for accelerating electrons in contracting magnetic islands formed by kinetic reconnection in multi-layered current sheets (CSs). We apply these ideas to sunward-moving flux ropes (2.5D magnetic islands) formed during fast reconnection in a simulated eruptive flare. A simple analytic model is used to calculate the energy gain of particles orbiting the field lines of the contracting magnetic islands in our ultrahigh-resolution 2.5D numerical simulation. We find that the estimated energy gains in a single island range up to a factor of five. This is higher than that found by Drake et al. for islands in the terrestrial magnetosphere and at the heliopause, due to strong plasma compression that occurs at the flare CS. In order to increase their energy by two orders of magnitude and plausibly account for the observed high-energy flare emission, the electrons must visit multiple contracting islands. This mechanism should produce sporadic emission because island formation is intermittent. Moreover, a large number of particles could be accelerated in each magnetohydrodynamic-scale island, which may explain the inferred rates of energetic-electron production in flares. We conclude that island contraction in the flare CS is a promising candidate for electron acceleration in solar eruptions.

  8. A very small and super strong zebra pattern burst at the beginning of a solar flare

    SciTech Connect

    Tan, Baolin; Tan, Chengming; Zhang, Yin; Huang, Jing; Yan, Yihua; Mészárosová, Hana; Karlický, Marian

    2014-08-01

    Microwave emission with spectral zebra pattern structures (ZPs) is frequently observed in solar flares and the Crab pulsar. The previous observations show that ZP is a structure only overlapped on the underlying broadband continuum with slight increments and decrements. This work reports an unusually strong ZP burst occurring at the beginning of a solar flare observed simultaneously by two radio telescopes located in China and the Czech Republic and by the EUV telescope on board NASA's satellite Solar Dynamics Observatory on 2013 April 11. It is a very short and super strong explosion whose intensity exceeds several times that of the underlying flaring broadband continuum emission, lasting for just 18 s. EUV images show that the flare starts from several small flare bursting points (FBPs). There is a sudden EUV flash with extra enhancement in one of these FBPs during the ZP burst. Analysis indicates that the ZP burst accompanying an EUV flash is an unusual explosion revealing a strong coherent process with rapid particle acceleration, violent energy release, and fast plasma heating simultaneously in a small region with a short duration just at the beginning of the flare.

  9. Study of Historical 4B/X17 Mega Flare on 28 October 2003 (P58)

    NASA Astrophysics Data System (ADS)

    Uddin, W.; Chandra, R.; Ali, S. S.

    2006-11-01

    wuddin_99@yahoo.com We analysed multi-wavelength data of 28 October 2003 4B/X17.2 class extremely energetic parallel ribbon solar flare, which occurred in NOAA 10486. The flare was well observed in H-alpha at ARIES, Nainital and various space (SOHO, TRACE, RHESSI, WIND etc.) and ground based Observatories. The H-alpha observations show the stretching/detwisting and eruption of helically twisted S shaped (sigmoid) filament in the South-West direction of the active region with bright shock front followed by rapid increase in intensity and area of the gigantic flare. The flare is associated with a bright/fast full halo earth directed CME, strong type II, III and IV radio bursts, an intense proton event and GLE. It seems that the filament eruption triggered the halo CME because the helical structure is clearly visible in the SOHO/LASCO C2, C3 images. This indicates helicity transfer from chromosphere to corona and interplanetary medium. The magnetic field of the flaring region was most complex with high magnetic shear. From the above analysis we feel that the energy buildup/release process of this unique flare support helically twisted magnetic flux rope model.

  10. Study of Flare Energy Release Using Events with Numerous Type III-like Bursts in Microwaves

    NASA Astrophysics Data System (ADS)

    Meshalkina, N. S.; Altyntsev, A. T.; Zhdanov, D. A.; Lesovoi, S. V.; Kochanov, A. A.; Yan, Y. H.; Tan, C. M.

    2012-10-01

    The analysis of narrowband drifting of type III-like structures in radio bursts dynamic spectra allows one to obtain unique information about the primary energy release mechanisms in solar flares. The SSRT (Siberian Solar Radio Telescope) spatially resolved images and its high spectral and temporal resolution allow for direct determination not only of the source positions but also of the exciter velocities along the flare loop. Practically, such measurements are possible during some special time intervals when SSRT is observing the flare region in two high-order fringes near 5.7 GHz; thus, two 1D brightness distributions are recorded simultaneously at two frequency bands. The analysis of type III-like bursts recorded during the flare 14 April 2002 is presented. Using multiwavelength radio observations recorded by the SSRT, the Huairou Solar Broadband Radio Spectrometer (SBRS), the Nobeyama Radio Polarimeters (NoRP), and the Radio Solar Telescope Network (RSTN), we study an event with series of several tens of drifting microwave pulses with drift rates in the range from -7 to 13 GHz s-1. The sources of the fast-drifting bursts were located near the top of a flare loop in a volume of a few Mm in size. The slow drift of the exciters along the flare loop suggests a high pitch anisotropy of the emitting electrons.

  11. Magnetic-Island Contraction and Particle Acceleration in Simulated Eruptive Solar Flares

    NASA Technical Reports Server (NTRS)

    Guidoni, S. E.; Devore, C. R.; Karpen, J. T.; Lynch, B. J.

    2016-01-01

    The mechanism that accelerates particles to the energies required to produce the observed high-energy impulsive emission in solar flares is not well understood. Drake et al. proposed a mechanism for accelerating electrons in contracting magnetic islands formed by kinetic reconnection in multi-layered current sheets (CSs). We apply these ideas to sunward-moving flux ropes (2.5D magnetic islands) formed during fast reconnection in a simulated eruptive flare. A simple analytic model is used to calculate the energy gain of particles orbiting the field lines of the contracting magnetic islands in our ultrahigh-resolution 2.5D numerical simulation. We find that the estimated energy gains in a single island range up to a factor of five. This is higher than that found by Drake et al. for islands in the terrestrial magnetosphere and at the heliopause, due to strong plasma compression that occurs at the flare CS. In order to increase their energy by two orders of magnitude and plausibly account for the observed high-energy flare emission, the electrons must visit multiple contracting islands. This mechanism should produce sporadic emission because island formation is intermittent. Moreover, a large number of particles could be accelerated in each magneto hydro dynamic-scale island, which may explain the inferred rates of energetic-electron production in flares. We conclude that island contraction in the flare CS is a promising candidate for electron acceleration in solar eruptions.

  12. Magnetic-island Contraction and Particle Acceleration in Simulated Eruptive Solar Flares

    NASA Astrophysics Data System (ADS)

    Guidoni, S. E.; DeVore, C. R.; Karpen, J. T.; Lynch, B. J.

    2016-03-01

    The mechanism that accelerates particles to the energies required to produce the observed high-energy impulsive emission in solar flares is not well understood. Drake et al. proposed a mechanism for accelerating electrons in contracting magnetic islands formed by kinetic reconnection in multi-layered current sheets (CSs). We apply these ideas to sunward-moving flux ropes (2.5D magnetic islands) formed during fast reconnection in a simulated eruptive flare. A simple analytic model is used to calculate the energy gain of particles orbiting the field lines of the contracting magnetic islands in our ultrahigh-resolution 2.5D numerical simulation. We find that the estimated energy gains in a single island range up to a factor of five. This is higher than that found by Drake et al. for islands in the terrestrial magnetosphere and at the heliopause, due to strong plasma compression that occurs at the flare CS. In order to increase their energy by two orders of magnitude and plausibly account for the observed high-energy flare emission, the electrons must visit multiple contracting islands. This mechanism should produce sporadic emission because island formation is intermittent. Moreover, a large number of particles could be accelerated in each magnetohydrodynamic-scale island, which may explain the inferred rates of energetic-electron production in flares. We conclude that island contraction in the flare CS is a promising candidate for electron acceleration in solar eruptions.

  13. Flare line impact polarization. Na D2 589 nm line polarization in the 2001 June 15 flare

    NASA Astrophysics Data System (ADS)

    Hénoux, J. C.; Karlický, M.

    2013-08-01

    Context. The impact polarization of optical chromospheric lines in solar flares is still being debated. For this reason, additional observations and improved flare atmosphere models are needed still. Aims: The polarization-free telescope THEMIS used in multiline 2 MulTiRaies (MTR) mode allows accurate simultaneous linear polarization measurements in various spectral lines. Methods: In the 2001 June 15 flare, Hα, Hβ, and Mg D2 lines linear impact polarization was reported as present in THEMIS 2 MTR observations. In this paper, THEMIS data analysis was extended to the Na D2 line. Sets of I ± U and I ± Q flare Stokes S 2D-spectra were corrected from dark-current, spectral-line curvature and from transmission differences. Then, we derived the linear polarization degree P and polarization orientation angle α 2D-spectra. No change in relative positioning could be found that would reduce the Stokes parameters U and Q values. No V and I crosstalks could explain our results either. Results: The Na D2 line is linearly polarized with a polarization degree exceeding 5% at some locations. The polarization was found to be radial at outer ribbons edges, and tangential at their inner edges. This orientation change may be due to differences in electron distribution functions on the opposite borders of flare chromospheric ribbons. Electron beams propagating along magnetic field lines, together with return currents, could explain both radial and tangential polarization. At the inner ribbon edges, intensity profile-width enlargements and blueshifts in polarization profiles are observed. This suggests chromospheric evaporation. Appendix A is available in electronic form at http://www.aanda.org

  14. The Effects of Flare Definitions on the Statistics of Derived Flare Distrubtions

    NASA Astrophysics Data System (ADS)

    Ryan, Daniel; Dominique, Marie; Seaton, Daniel B.; Stegen, Koen; White, Arthur

    2016-05-01

    The statistical examination of solar flares is crucial to revealing their global characteristics and behaviour. However, statistical flare studies are often performed using standard but basic flare detection algorithms relying on arbitrary thresholds which may affect the derived flare distributions. We explore the effect of the arbitrary thresholds used in the GOES event list and LYRA Flare Finder algorithms. We find that there is a small but significant relationship between the power law exponent of the GOES flare peak flux frequency distribution and the algorithms’ flare start thresholds. We also find that the power law exponents of these distributions are not stable but appear to steepen with increasing peak flux. This implies that the observed flare size distribution may not be a power law at all. We show that depending on the true value of the exponent of the flare size distribution, this deviation from a power law may be due to flares missed by the flare detection algorithms. However, it is not possible determine the true exponent from GOES/XRS observations. Additionally we find that the PROBA2/LYRA flare size distributions are clearly non-power law. We show that this is consistent with an insufficient degradation correction which causes LYRA absolute irradiance values to be unreliable. This means that they should not be used for flare statistics or energetics unless degradation is adequately accounted for. However they can be used to study time variations over shorter timescales and for space weather monitoring.

  15. Ginga observations of a long-duration X-ray flare in the Algol system

    NASA Technical Reports Server (NTRS)

    Stern, R. A.; Haisch, B. M.; Nagase, F.; Uchida, Y.; Tsuneta, S.

    1990-01-01

    Algol was observed by the Ginga X-ray satellite for about 2 days in January 1989, including both the primary and most of the secondary optical eclipses. No evidence for X-ray eclipses was seen. A large flare lasting over 12 h was detected prior to and during secondary eclipse. The flare began with a peak temperature of about 69 MK, gradually decaying to about 36 MK. Variable Fe line emission at 6.7 keV ws observed. The Fe line equivalent width is in clear disagreement with theoretical predictions for an optically thin plasma.

  16. Evaluation of the aero-optical properties of the SOFIA cavity by means of computional fluid dynamics and a super fast diagnostic camera

    NASA Astrophysics Data System (ADS)

    Engfer, Christian; Pfüller, Enrico; Wiedemann, Manuel; Wolf, Jürgen; Lutz, Thorsten; Krämer, Ewald; Röser, Hans-Peter

    2012-09-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a 2.5 m reflecting telescope housed in an open cavity on board of a Boeing 747SP. During observations, the cavity is exposed to transonic flow conditions. The oncoming boundary layer evolves into a free shear layer being responsible for optical aberrations and for aerodynamic and aeroacoustic disturbances within the cavity. While the aero-acoustical excitation of an airborne telescope can be minimized by using passive flow control devices, the aero-optical properties of the flow are difficult to improve. Hence it is important to know how much the image seen through the SOFIA telescope is perturbed by so called seeing effects. Prior to the SOFIA science fights Computational Fluid Dynamics (CFD) simulations using URANS and DES methods were carried out to determine the flow field within and above the cavity and hence in the optical path in order to provide an assessment of the aero-optical properties under baseline conditions. In addition and for validation purposes, out of focus images have been taken during flight with a Super Fast Diagnostic Camera (SFDC). Depending on the binning factor and the sub-array size, the SFDC is able to take and to read out images at very high frame rates. The paper explains the numerical approach based on CFD to evaluate the aero-optical properties of SOFIA. The CFD data is then compared to the high speed images taken by the SFDC during flight.

  17. Fast photoacoustic imaging with a line scanning optical-acoustical resolution photoacoustic microscope (LS-OAR-PAM)

    NASA Astrophysics Data System (ADS)

    Nuster, Robert; Paltauf, Guenther

    2015-07-01

    We present the concept, the setup and a preliminary experiment using optical ultrasound detection with a CCD camera combined with focused line excitation for photoacoustic microscopy. The line scanning optical-acoustical resolution photoacoustic microscope (LS-OAR-PAM) with optical ultrasound detection is capable of real-time B-scan imaging providing acoustical resolution within the individual B-scans and optical out of plane resolution up to a depth limited by optical diffusion. A 3D image is composed of reconstructed B-scan images recorded while scanning the excitation line along the sample surface. Proof of concept is shown by imaging a phantom containing black human hairs and carbon fibers. The obtained C-scan image clearly shows the different resolution in the two perpendicular directions, namely diffraction limited by optical focusing in scan direction and acoustically limited in direction parallel to line orientation by the properties of acoustic wave propagation.

  18. Slow X-ray bursts and flares with filament disruption

    NASA Technical Reports Server (NTRS)

    Roy, J.-R.; Tang, F.

    1975-01-01

    The data from OGO-5 and OSO-7 X-ray experiments have been compared with optical data from six chromospheric flares with filament disruption associated with slow thermal X-ray bursts. Filament activation accompanied by a slight X-ray enhancement precedes the first evidence of H-alpha flare by a few minutes. Rapid increase of the soft X-ray flux accompanies the phase of fastest expansion of the filament. Plateau or slow decay phases in the X-ray flux are associated with slowing and termination of filament expansion. The soft X-ray flux increases as F approaches (A + Bh)h, where h is the height of the disrupted prominence at any given time and A and B are constants. We suggest that the soft X-ray emission originates from a growing shell of roughly constant thickness of high-temperature plasma due to the compression of the coronal gas by the expanding prominence.

  19. Energetic electrons in impulsive solar flares

    NASA Technical Reports Server (NTRS)

    Batchelor, D. A.

    1984-01-01

    A new analysis was made of a thermal flare model proposed by Brown, Melrose, and Spicer (1979) and Smith and Lilliequist (1979). They assumed the source of impulsive hard X-rays to be a plasma at a temperature of order 10 to the 8th power K, initially located at the apex of a coronal arch, and confined by ion-acoustic turbulence in a collisionless conduction front. Such a source would expand at approximately the ion-sound speed, C sub S = square root of (k T sub e/m sub i), until it filled the arch. Brown, Melrose, and Spicer and Smith and Brown (1980) argued that the source assumed in this model would not explain the simultaneous impulsive microwave emission. In contrast, the new results presented herein suggest that this model leads to the development of a quasi-Maxwellian distribution of electrons that explains both the hard X-ray and microwave emissions. This implies that the source sizes can be determined from observations of the optically-thick portions of microwave spectra and the temperatures obtained from associated hard X-ray observations. In this model, the burst emission would rise to a maximum in a time, t sub r, approximately equal to L/c sub s, where L is the half-length of the arch. New observations of these impulsive flare emissions were analyzed herein to test this prediction of the model. Observations made with the Solar Maximum Mission spacecraft and the Bern Radio Observatory are in good agreement with the model.

  20. Prior Flaring as a Complement to Free Magnetic Energy for Forecasting Solar Eruptions

    NASA Technical Reports Server (NTRS)

    Falconer, David A.; Moore, Ronald L.; Barghouty, Abdulnasser F.; Khazanov, Igor

    2012-01-01

    From a large database of (1) 40,000 SOHO/MDI line-of-sight magnetograms covering the passage of 1,300 sunspot active regions across the 30 deg radius central disk of the Sun, (2) a proxy of each active region's free magnetic energy measured from each of the active region's central-disk-passage magnetograms, and (3) each active region's full-disk-passage history of production of major flares and fast coronal mass ejections (CMEs), we find new statistical evidence that (1) there are aspects of an active region's magnetic field other than the free energy that are strong determinants of the active region's productivity of major flares and fast CMEs in the coming few days, (2) an active region's recent productivity of major flares, in addition to reflecting the amount of free energy in the active region, also reflects these other determinants of coming productivity of major eruptions, and (3) consequently, the knowledge of whether an active region has recently had a major flare, used in combination with the active region's free-energy proxy measured from a magnetogram, can greatly alter the forecast chance that the active region will have a major eruption in the next few days after the time of the magnetogram. The active-region magnetic conditions that, in addition to the free energy, are reflected by recent major flaring are presumably the complexity and evolution of the field.