Research on liquid sloshing performance in vane type tank under microgravity
NASA Astrophysics Data System (ADS)
Hu, Q.; Li, Y.; Liu, J. T.; Liang, J. Q.
2016-05-01
Propellant management device (PMD) in vane type tank mainly comprises of vane type structure parts, whose performance of restraining liquid sloshing should satisfy spacecraft requirements of high stabilization and fast orbital maneuver. Aiming at liquid sloshing performance in vane type tank under microgravity environment, gas-liquid flow model based on the volume of fluid (VOF) method was put forward, and via numerical simulation liquid sloshing performances of vane type PMD with anti-sloshing baffles and without anti-sloshing baffles in microgravity were analyzed and compared. Simulation results reveal that liquid sloshing performance of vane type PMD with anti-sloshing baffles is markedly superior vane type PMD without anti-sloshing baffles and the baffles make liquid surface become stable fast. Then by comparing between results of microgravity experiments and results of numerical simulations, they are very similar. According to present research, vane type PMD with antisloshing baffles has better effects on restraining liquid sloshing and is able to restrain observably propellant sloshing in tanks in order to satisfy spacecraft requirements of high stabilization and fast orbital maneuver.
Polymer stabilized liquid crystals: Topology-mediated electro-optical behavior and applications
NASA Astrophysics Data System (ADS)
Weng, Libo
There has been a wide range of liquid crystal polymer composites that vary in polymer concentration from as little as 3 wt.% (polymer stabilized liquid crystal) to as high as 60 wt.% (polymer dispersed liquid crystals). In this dissertation, an approach of surface polymerization based on a low reactive monomer concentration about 1 wt.% is studied in various liquid crystal operation modes. The first part of dissertation describes the development of a vertical alignment (VA) mode with surface polymer stabilization, and the effects of structure-performance relationship of reactive monomers (RMs) and polymerization conditions on the electro-optical behaviors of the liquid crystal device has been explored. The polymer topography plays an important role in modifying and enhancing the electro-optical performance of stabilized liquid crystal alignment. The enabling surface-pinned polymer stabilized vertical alignment (PSVA) approach has led to the development of high-performance and fast-switching displays with controllable pretilt angle, increase in surface anchoring energy, high optical contrast and fast response time. The second part of the dissertation explores a PSVA mode with in-plane switching (IPS) and its application for high-efficiency and fast-switching phase gratings. The diffraction patterns and the electro-optical behaviors including diffraction efficiency and response time are characterized. The diffraction grating mechanism and performance have been validated by computer simulation. Finally, the advantages of surface polymerization approach such as good optical contrast and fast response time have been applied to the fringe-field switching (FFS) system. The concentration of reactive monomer on the electro-optical behavior of the FFS cells is optimized. The outstanding electro-optical results and mechanism of increase in surface anchoring strength are corroborated by the director field simulation. The density and topology of nanoscale polymer protrusions are analyzed and confirmed by morphological study. The developed high-performance polymer-stabilized fringe-field-switching (PS-FFS) could open new types of device applications.
Damm, Irina; Enger, Eileen; Chrubasik-Hausmann, Sigrun; Schieber, Andreas; Zimmermann, Benno F
2016-08-01
Fast methods for the extraction and analysis of various secondary metabolites from cocoa products were developed and optimized regarding speed and separation efficiency. Extraction by pressurized liquid extraction is automated and the extracts are analyzed by rapid reversed-phase ultra high-performance liquid chromatography and normal-phase high-performance liquid chromatography methods. After extraction, no further sample treatment is required before chromatographic analysis. The analytes comprise monomeric and oligomeric flavanols, flavonols, methylxanthins, N-phenylpropenoyl amino acids, and phenolic acids. Polyphenols and N-phenylpropenoyl amino acids are separated in a single run of 33 min, procyanidins are analyzed by normal-phase high-performance liquid chromatography within 16 min, and methylxanthins require only 6 min total run time. A fourth method is suitable for phenolic acids, but only protocatechuic acid was found in relevant quantities. The optimized methods were validated and applied to 27 dark chocolates, one milk chocolate, two cocoa powders and two food supplements based on cocoa extract. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Determination of Caffeine in Beverages by High Performance Liquid Chromatography.
ERIC Educational Resources Information Center
DiNunzio, James E.
1985-01-01
Describes the equipment, procedures, and results for the determination of caffeine in beverages by high performance liquid chromatography. The method is simple, fast, accurate, and, because sample preparation is minimal, it is well suited for use in a teaching laboratory. (JN)
Eddy Current Flow Measurements in the FFTF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nielsen, Deborah L.; Polzin, David L.; Omberg, Ronald P.
2017-02-02
The Fast Flux Test Facility (FFTF) is the most recent liquid metal reactor (LMR) to be designed, constructed, and operated by the U.S. Department of Energy (DOE). The 400-MWt sodium-cooled, fast-neutron flux reactor plant was designed for irradiation testing of nuclear reactor fuels and materials for liquid metal fast breeder reactors. Following shut down of the Clinch River Breeder Reactor Plant (CRBRP) project in 1983, FFTF continued to play a key role in providing a test bed for demonstrating performance of advanced fuel designs and demonstrating operation, maintenance, and safety of advanced liquid metal reactors. The FFTF Program provides valuablemore » information for potential follow-on reactor projects in the areas of plant system and component design, component fabrication, fuel design and performance, prototype testing, site construction, and reactor control and operations. This report provides HEDL-TC-1344, “ECFM Flow Measurements in the FFTF Using Phase-Sensitive Detectors”, March 1979.« less
Status of liquid metal fast breeder reactor fuel development in Japan
NASA Astrophysics Data System (ADS)
Katsuragawa, M.; Kashihara, H.; Akebi, M.
1993-09-01
The mixed-oxide fuel technology for a liquid metal fast breeder reactor (LMFBR) in Japan is progressing toward commercial deployment of LMFBR. Based on accumulated experience in Joyo and Monju fuel development, efforts for large scale LMFBR fuel development are devoted to improved irradiation performance, reliability and economy. This paper summarizes accomplishments, current activities and future plans for LMFBR fuel development in Japan.
Multichannel Detection in High-Performance Liquid Chromatography.
ERIC Educational Resources Information Center
Miller, James C.; And Others
1982-01-01
A linear photodiode array is used as the photodetector element in a new ultraviolet-visible detection system for high-performance liquid chromatography (HPLC). Using a computer network, the system processes eight different chromatographic signals simultaneously in real-time and acquires spectra manually/automatically. Applications in fast HPLC…
NASA Astrophysics Data System (ADS)
Kim, Byungwoo; Chung, Haegeun; Kim, Woong
2012-04-01
We demonstrate the high performance of supercapacitors fabricated with vertically aligned carbon nanotubes and nonaqueous electrolytes such as ionic liquids and conventional organic electrolytes. Specific capacitance, maximum power and energy density of the supercapacitor measured in ionic liquid were ˜75 F g-1, ˜987 kW kg-1 and ˜27 W h kg-1, respectively. The high power performance was consistently indicated by a fast relaxation time constant of 0.2 s. In addition, electrochemical oxidation of the carbon nanotubes improved the specific capacitance (˜158 F g-1) and energy density (˜53 W h kg-1). Both high power and energy density could be attributed to the fast ion transport realized by the alignment of carbon nanotubes and the wide operational voltage defined by the ionic liquid. The demonstrated carbon-nanotube- and nonaqueous-electrolyte-based supercapacitors show great potential for the development of high-performance energy storage devices.
Kim, Byungwoo; Chung, Haegeun; Kim, Woong
2012-04-20
We demonstrate the high performance of supercapacitors fabricated with vertically aligned carbon nanotubes and nonaqueous electrolytes such as ionic liquids and conventional organic electrolytes. Specific capacitance, maximum power and energy density of the supercapacitor measured in ionic liquid were ~75 F g(-1), ~987 kW kg(-1) and ~27 W h kg(-1), respectively. The high power performance was consistently indicated by a fast relaxation time constant of 0.2 s. In addition, electrochemical oxidation of the carbon nanotubes improved the specific capacitance (~158 F g(-1)) and energy density (~53 W h kg(-1)). Both high power and energy density could be attributed to the fast ion transport realized by the alignment of carbon nanotubes and the wide operational voltage defined by the ionic liquid. The demonstrated carbon-nanotube- and nonaqueous-electrolyte-based supercapacitors show great potential for the development of high-performance energy storage devices. © 2012 IOP Publishing Ltd
Bass, C D; Beise, E J; Breuer, H; Heimbach, C R; Langford, T J; Nico, J S
2013-07-01
The characterization of a liquid scintillator incorporating an aqueous solution of enriched lithium chloride to produce a scintillator with 0.40% (6)Li is presented, including the performance of the scintillator in terms of its optical properties and neutron response. The scintillator was incorporated into a fast neutron spectrometer, and the light output spectra from 2.5 MeV, 14.1 MeV, and (252)Cf neutrons were measured using capture-gated coincidence techniques. The spectrometer was operated without coincidence to perform thermal neutron measurements. Possible improvements in spectrometer performance are discussed. Published by Elsevier Ltd.
Magnetic Resonance Imaging Quantification of Fasted State Colonic Liquid Pockets in Healthy Humans.
Murray, Kathryn; Hoad, Caroline L; Mudie, Deanna M; Wright, Jeff; Heissam, Khaled; Abrehart, Nichola; Pritchard, Susan E; Al Atwah, Salem; Gowland, Penny A; Garnett, Martin C; Amidon, Gregory E; Spiller, Robin C; Amidon, Gordon L; Marciani, Luca
2017-08-07
The rate and extent of drug dissolution and absorption from solid oral dosage forms is highly dependent on the volume of liquid in the gastrointestinal tract (GIT). However, little is known about the time course of GIT liquid volumes after drinking a glass of water (8 oz), particularly in the colon, which is a targeted site for both locally and systemically acting drug products. Previous magnetic resonance imaging (MRI) studies offered novel insights on GIT liquid distribution in fasted humans in the stomach and small intestine, and showed that freely mobile liquid in the intestine collects in fairly distinct regions or "pockets". Based on this previous pilot data, we hypothesized that (1) it is possible to quantify the time course of the volume and number of liquid pockets in the undisturbed colon of fasted healthy humans following ingestion of 240 mL, using noninvasive MRI methods; (2) the amount of freely mobile water in the fasted human colon is of the order of only a few milliliters. Twelve healthy volunteers fasted overnight and underwent fasted abdominal MRI scans before drinking 240 mL (∼8 fluid ounces) of water. After ingesting the water they were scanned at frequent intervals for 2 h. The images were processed to quantify freely mobile water in the total and regional colon: ascending, transverse, and descending. The fasted colon contained (mean ± SEM) 11 ± 5 pockets of resting liquid with a total volume of 2 ± 1 mL (average). The colonic fluid peaked at 7 ± 4 mL 30 min after the water drink. This peak fluid was distributed in 17 ± 7 separate liquid pockets in the colon. The regional analysis showed that pockets of free fluid were found primarily in the ascending colon. The interindividual variability was very high; the subjects showed a range of number of colonic fluid pockets from 0 to 89 and total colonic freely mobile fluid volume from 0 to 49 mL. This is the first study measuring the time course of the number, regional location, and volume of pockets of freely mobile liquid in the undisturbed colon of fasted humans after ingestion of a glass of water. Novel insights into the colonic fluid environment will be particularly relevant to improve our understanding and design of the in vivo performance of controlled release formulations targeted to the colon. The in vivo quantitative information presented here can be input into physiologically based mechanistic models of dissolution and absorption, and can be used in the design and set up of novel in vitro performance tools predictive of the in vivo environment.
Comparison of Fast Neutron Detector Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stange, Sy; Mckigney, Edward Allen
2015-02-09
This report documents the work performed for the Department of Homeland Security Domestic Nuclear Detection O ce as the project Fast Neutron Detection Evaluation under contract HSHQDC-14-X-00022. This study was performed as a follow-on to the project Study of Fast Neutron Signatures and Measurement Techniques for SNM Detection - DNDO CFP11-100 STA-01. That work compared various detector technologies in a portal monitor con guration, focusing on a comparison between a number of fast neutron detection techniques and two standard thermal neutron detection technologies. The conclusions of the earlier work are contained in the report Comparison of Fast Neutron Detector Technologies.more » This work is designed to address questions raised about assumptions underlying the models built for the earlier project. To that end, liquid scintillators of two di erent sizes{ one a commercial, o -the-shelf (COTS) model of standard dimensions and the other a large, planer module{were characterized at Los Alamos National Laboratory. The results of those measurements were combined with the results of the earlier models to gain a more complete picture of the performance of liquid scintillator as a portal monitor technology.« less
NASA Astrophysics Data System (ADS)
Nishimura, Shun; Ebitani, Kohki
2018-01-01
Development of a compact fast pyrolysis reactor constructed using Auger-type technology to afford liquid biofuel with high yield has been an interesting concept in support of local production for local consumption. To establish a widely useable module package, details of the performance of the developing compact module reactor were investigated. This study surveyed the properties of as-produced pyrolysis oil as a function of operation time, and clarified the recent performance of the developing compact fast pyrolysis reactor. Results show that after condensation in the scrubber collector, e.g. approx. 10 h for a 25 kg/h feedstock rate, static performance of pyrolysis oil with approximately 20 MJ/kg (4.8 kcal/g) calorific values were constantly obtained after an additional 14 h. The feeding speed of cedar chips strongly influenced the time for oil condensation process: i.e. 1.6 times higher feeding speed decreased the condensation period by half (approx. 5 h in the case of 40 kg/h). Increasing the reactor throughput capacity is an important goal for the next stage in the development of a compact fast pyrolysis reactor with Auger-type modules.
NASA Technical Reports Server (NTRS)
Jones, N. D.; Kinsinger, R. E.; Harris, L. P.
1974-01-01
Fast-acting current limiting device provides current overload protection for vulnerable circuit elements and then re-establishes conduction path within milliseconds. Fuse can also perform as fast-acting switch to clear transient circuit overloads. Fuse takes advantage of large increase in electrical resistivity that occurs when liquid metal vaporizes.
High-performance liquid chromatographic method for the determination of dansyl-polyamines
Subhash C. Minocha; Rakesh Minocha; Cheryl A. Robie
1990-01-01
This paper describes a fast reliable, and a sensitive technique for the separation and quantification of dansylated polyamines by high-performance liquid chromatography. Using a small 33 x 4.6 mm I.D., 3 ?m particle size, C18 reversed-phase cartridge column and a linear gradient of acetonitrile-heptanesulfonate (10 mM, pH 3.4...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medin, Stanislav A.; Basko, Mikhail M.; Orlov, Yurii N.
2012-07-11
Radiation hydrodynamics 1D simulations were performed with two concurrent codes, DEIRA and RAMPHY. The DEIRA code was used for DT capsule implosion and burn, and the RAMPHY code was used for computation of X-ray and fast ions deposition in the first wall liquid film of the reactor chamber. The simulations were run for 740 MJ direct drive DT capsule and Pb thin liquid wall reactor chamber of 10 m diameter. Temporal profiles for DT capsule leaking power of X-rays, neutrons and fast {sup 4}He ions were obtained and spatial profiles of the liquid film flow parameter were computed and analyzed.
Loop Mirror Laser Neural Network with a Fast Liquid-Crystal Display
NASA Astrophysics Data System (ADS)
Mos, Evert C.; Schleipen, Jean J. H. B.; de Waardt, Huug; Khoe, Djan G. D.
1999-07-01
In our laser neural network (LNN) all-optical threshold action is obtained by application of controlled optical feedback to a laser diode. Here an extended experimental LNN is presented with as many as 32 neurons and 12 inputs. In the setup we use a fast liquid-crystal display to implement an optical matrix vector multiplier. This display, based on ferroelectric liquid-crystal material, enables us to present 125 training examples s to the LNN. To maximize the optical feedback efficiency of the setup, a loop mirror is introduced. We use a -rule learning algorithm to train the network to perform a number of functions toward the application area of telecommunication data switching.
Shrestha, Rojeet; Hui, Shu-Ping; Imai, Hiromitsu; Hashimoto, Satoru; Uemura, Naoto; Takeda, Seiji; Fuda, Hirotoshi; Suzuki, Akira; Yamaguchi, Satoshi; Hirano, Ken-Ichi; Chiba, Hitoshi
2015-09-01
Capric acid (FA10:0, decanoic acid) is a medium-chain fatty acid abundant in tropical oils such as coconut oil, whereas small amounts are present in milk of goat, cow, and human. Orally ingested FA10:0 is transported to the liver and quickly burnt within it. Only few reports are available for FA10:0 concentrations in human plasma. Fasting (n = 5, male/female = 3/2, age 31 ± 9.3 years old) and non-fasting (n = 106, male/female = 44/62, age 21.9 ± 3.2 years old) blood samples were collected from apparently healthy Japanese volunteers. The total FA10:0 in the plasma were measured by high-performance liquid chromatography after derivatization with 2-nitrophenylhydrazine followed by UV detection. Inter and intra-assay coefficient of variation of FA10:0 assay at three different concentrations ranged in 1.7-3.9 and 1.3-5.4%, respectively, with an analytical recovery of 95.2-104.0%. FA10:0 concentration was below detection limit (0.1 µmol/L) in each fasting human plasma. FA10:0 was not detected in 50 (47.2%) of 106 non-fasting blood samples, while 29 (27.4%) plasma samples contained FA10:0 less than or equal to 0.5 µmol/L (0.4 ± 0.1), and 27 (25.5%) contained it at more than 0.5 µmol/L (0.9 ± 0.3). A half of the non-fasting plasma samples contained detectable FA10:0. This simple, precise, and accurate high-performance liquid chromatography method might be useful for monitoring plasma FA10:0 during medium-chain triglycerides therapy. © The Author(s) 2015.
Kaplan, Samuel; Chertock, Alan J.; Punches, James R.
1977-01-01
A method for spacing fast reactor fuel rods using a wire wrapper improved by orienting the wire-wrapped fuel rods in a unique manner which introduces desirable performance characteristics not attainable by previous wire-wrapped designs. Use of this method in a liquid metal fast breeder reactor results in: (a) improved mechanical performance, (b) improved rod-to-rod contact, (c) reduced steel volume, and (d) improved thermal-hydraulic performance. The method produces a "locked wrap" design which tends to lock the rods together at each of the wire cluster locations.
Kortz, Linda; Helmschrodt, Christin; Ceglarek, Uta
2011-03-01
In the last decade various analytical strategies have been established to enhance separation speed and efficiency in high performance liquid chromatography applications. Chromatographic supports based on monolithic material, small porous particles, and porous layer beads have been developed and commercialized to improve throughput and separation efficiency. This paper provides an overview of current developments in fast chromatography combined with mass spectrometry for the analysis of metabolites and proteins in clinical applications. Advances and limitations of fast chromatography for the combination with mass spectrometry are discussed. Practical aspects of, recent developments in, and the present status of high-throughput analysis of human body fluids for therapeutic drug monitoring, toxicology, clinical metabolomics, and proteomics are presented.
Integration of electrochemistry with ultra-performance liquid chromatography/mass spectrometry.
Cai, Yi; Zheng, Qiuling; Liu, Yong; Helmy, Roy; Loo, Joseph A; Chen, Hao
2015-01-01
This study presents the development of ultra-performance liquid chromatography (UPLC) mass spectrometry (MS) combined with electrochemistry (EC) for the first time and its application for the structural analysis of proteins/peptides that contain disulfide bonds. In our approach, a protein/peptide mixture sample undergoes a fast UPLC separation and subsequent electrochemical reduction in an electrochemical flow cell followed by online MS and tandem mass spectrometry (MS/MS) analyses. The electrochemical cell is coupled to the mass spectrometer using our recently developed desorption electrospray ionization (DESI) interface. Using this UPLC/EC/DESI-MS method, peptides that contain disulfide bonds can be differentiated from those without disulfide bonds, as the former are electroactive and reducible. MS/MS analysis of the disulfide-reduced peptide ions provides increased information on the sequence and disulfide-linkage pattern. In a reactive DESI- MS detection experiment in which a supercharging reagent was used to dope the DESI spray solvent, increased charging was obtained for the UPLC-separated proteins. Strikingly, upon online electrolytic reduction, supercharged proteins (e.g., α-lactalbumin) showed even higher charging, which will be useful in top- down protein structure MS analysis as increased charges are known to promote protein ion dissociation. Also, the separation speed and sensitivity are enhanced by approximately 1(~)2 orders of magnitude by using UPLC for the liquid chromatography (LC)/EC/MS platform, in comparison to the previously used high- performance liquid chromatography (HPLC). This UPLC/EC/DESI-MS method combines the power of fast UPLC separation, fast electrochemical conversion, and online MS structural analysis for a potentially valuable tool for proteomics research and bioanalysis.
Electromagnetic liquid pistons for capillarity-based pumping.
Malouin, Bernard A; Vogel, Michael J; Olles, Joseph D; Cheng, Lili; Hirsa, Amir H
2011-02-07
The small scales associated with lab-on-a-chip technologies lend themselves well to capillarity-dominated phenomena. We demonstrate a new capillarity-dominated system where two adjoining ferrofluid droplets can behave as an electronically-controlled oscillator or switch by an appropriate balance of magnetic, capillary, and inertial forces. Their oscillatory motion can be exploited to displace a surrounding liquid (akin to an axial piston pump), forming electromagnetic "liquid pistons." Such ferrofluid pistons can pump a precise volume of liquid via finely tunable amplitudes (cf. pump stroke) or resonant frequencies (cf. pump speed) with no solid moving parts for long-term operation without wear in a small device. Furthermore, the rapid propagation of electromagnetic fields and the favorable scaling of capillary forces with size permit micron sized devices with very fast operating speeds (∼kHz). The pumping dynamics and performance of these liquid pistons is explored, with experimental measurements showing good agreement with a spherical cap model. While these liquid pistons may find numerous applications in micro- and mesoscale fluidic devices (e.g., remotely activated drug delivery), here we demonstrate the use of these liquid pistons in capillarity-dominated systems for chip-level, fast-acting adaptive liquid lenses with nearly perfect spherical interfaces.
A novel liquid-Xenon detector concept for combined fast-neutrons and gamma imaging and spectroscopy
NASA Astrophysics Data System (ADS)
Breskin, A.; Israelashvili, I.; Cortesi, M.; Arazi, L.; Shchemelinin, S.; Chechik, R.; Dangendorf, V.; Bromberger, B.; Vartsky, D.
2012-06-01
A new detector concept is presented for combined imaging and spectroscopy of fast-neutrons and gamma rays. It comprises a liquid-Xenon (LXe) converter and scintillator coupled to a UV-sensitive gaseous imaging photomultiplier (GPM). Radiation imaging is obtained by localization of the scintillation-light from LXe with the position-sensitive GPM. The latter comprises a cascade of Thick Gas Electron Multipliers (THGEM), where the first element is coated with a CsI UV-photocathode. We present the concept and provide first model-simulation results of the processes involved and the expected performances of a detector having a LXe-filled capillaries converter. The new detector concept has potential applications in combined fast-neutron and gamma-ray screening of hidden explosives and fissile materials with pulsed sources.
Wang, Tong; Wu, Hai-Long; Xie, Li-Xia; Zhu, Li; Liu, Zhi; Sun, Xiao-Dong; Xiao, Rong; Yu, Ru-Qin
2017-04-01
In this work, a smart chemometrics-enhanced strategy, high-performance liquid chromatography, and diode array detection coupled with second-order calibration method based on alternating trilinear decomposition algorithm was proposed to simultaneously quantify 12 polyphenols in different kinds of apple peel and pulp samples. The proposed strategy proved to be a powerful tool to solve the problems of coelution, unknown interferences, and chromatographic shifts in the process of high-performance liquid chromatography analysis, making it possible for the determination of 12 polyphenols in complex apple matrices within 10 min under simple conditions of elution. The average recoveries with standard deviations, and figures of merit including sensitivity, selectivity, limit of detection, and limit of quantitation were calculated to validate the accuracy of the proposed method. Compared to the quantitative analysis results from the classic high-performance liquid chromatography method, the statistical and graphical analysis showed that our proposed strategy obtained more reliable results. All results indicated that our proposed method used in the quantitative analysis of apple polyphenols was an accurate, fast, universal, simple, and green one, and it was expected to be developed as an attractive alternative method for simultaneous determination of multitargeted analytes in complex matrices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Study of a novel electromagnetic liquid argon calorimeter — the TGT
NASA Astrophysics Data System (ADS)
Berger, C.; Braunschweig, W.; Geulig, E.; Schöntag, M.; Siedling, R.; Wlochal, M.; Putzer, A.; Wotschack, J.; Cheplakov, A.; Feshchenko, A.; Kazarinov, M.; Kukhtin, V.; Ladygin, E.; Obudovskij, V.; Geweniger, C.; Hanke, P.; Kluge, E.-E.; Krause, J.; Schmidt, M.; Stenzel, H.; Tittel, K.; Wunsch, M.; Zerwas, D.; Bruncko, D.; Jusko, A.; Kocper, B.; Lupták, M.; Aderholz, M.; Bán, J.; Brettel, H.; Dydak, F.; Fent, J.; Frey, H.; Huber, J.; Jakobs, K.; Kiesling, C.; Kiryunin, A. E.; Oberlack, H.; Ribarics, P.; Schacht, P.; Stiegler, U.; Bogolyubsky, M. Y.; Buyanov, O. V.; Chekulaev, S. V.; Kurchaninov, L. L.; Levitsky, M. S.; Maximov, V. V.; Minaenko, A. A.; Moiseev, A. M.; Semenov, P. A.; Tikhonov, V. V.; Straumann, U.
1995-02-01
The concept and the basic design of a fast, highly granular and compact electromagnetic liquid argon calorimeter are described. This novel calorimeter offers uniform energy response and constant energy resolution independent of the production angle of an impinging particle and of its impact position at the calorimeter. An example of a calorimeter with full rapidity coverage in an application in a collider detector is given. An important aspect of the concept is the electronics for fast signal processing matched to the short charge collection time. We report on the experience with the realization of a prototype calorimeter module and on its performance in a testbeam exposure.
Abe, Y; Hosoda, H; Arikawa, Y; Nagai, T; Kojima, S; Sakata, S; Inoue, H; Iwasa, Y; Iwano, K; Yamanoi, K; Fujioka, S; Nakai, M; Sarukura, N; Shiraga, H; Norimatsu, T; Azechi, H
2014-11-01
The characteristics of oxygen-enriched liquid scintillators with very low afterglow are investigated and optimized for application to a single-hit neutron spectrometer for fast ignition experiments. It is found that 1,2,4-trimethylbenzene has better characteristics as a liquid scintillator solvent than the conventional solvent, p-xylene. In addition, a benzophenon-doped BBQ liquid scintillator is shown to demonstrate very rapid time response, and therefore has potential for further use in neutron diagnostics with fast time resolution.
The physiology and biomechanics of competitive swimming.
Troup, J P
1999-04-01
Fast swimming, either in the pool, in open water swimming, or in water polo and synchronized swimming, requires maximizing the efficiencies with which the human body can move through a liquid medium. A multitude of factors can affect the ability to swim fast as well as the final outcome. Physiology and biomechanics are the present tools used by sports scientists to determine which factors are important to fast swimming and, subsequently, to determine how the swimmer may maximize these factors to improve performance.
Conventional and fast pyrolysis of automobile shredder residues (ASR).
Zolezzi, Marcello; Nicolella, Cristiano; Ferrara, Sebastiano; Iacobucci, Cesare; Rovatti, Mauro
2004-01-01
This work aims at comparing performance and product yields in conventional pyrolysis and fast pyrolysis of automotive shredded residues. In both processes, carbon conversion to gaseous and liquid products was more than 80%. Gas production was maximised in conventional pyrolysis (about 35% by weight of the initial ASR weight), while fast pyrolysis led to an oil yield higher than 55%. Higher heating values (HHV) of both conventional pyrolysis gas and fast pyrolysis oil increased from 8.8 to 25.07 MJ/Nm3 and from 28.8 and 36.27 MJ/kg with increasing pyrolysis temperature. Copyright 2004 Elsevier Ltd.
Johnston, Patrick A; Brown, Robert C
2014-08-13
A rapid method for the quantitation of total sugars in pyrolysis liquids using high-performance liquid chromatography (HPLC) was developed. The method avoids the tedious and time-consuming sample preparation required by current analytical methods. It is possible to directly analyze hydrolyzed pyrolysis liquids, bypassing the neutralization step usually required in determination of total sugars. A comparison with traditional methods was used to determine the validity of the results. The calibration curve coefficient of determination on all standard compounds was >0.999 using a refractive index detector. The relative standard deviation for the new method was 1.13%. The spiked sugar recoveries on the pyrolysis liquid samples were between 104 and 105%. The research demonstrates that it is possible to obtain excellent accuracy and efficiency using HPLC to quantitate glucose after acid hydrolysis of polymeric and oligomeric sugars found in fast pyrolysis bio-oils without neutralization.
Tomková, Jana; Ondra, Peter; Kocianová, Eva; Václavík, Jan
2017-07-01
This paper presents a method for the determination of acebutolol, betaxolol, bisoprolol, metoprolol, nebivolol and sotalol in human serum by liquid-liquid extraction and ultra-high-performance liquid chromatography coupled with ultra-high-resolution TOF mass spectrometry. After liquid-liquid extraction, beta blockers were separated on a reverse-phase analytical column (Acclaim RS 120; 100 × 2.1 mm, 2.2 μm). The total run time was 6 min for each sample. Linearity, limit of detection, limit of quantification, matrix effects, specificity, precision, accuracy, recovery and sample stability were evaluated. The method was successfully applied to the therapeutic drug monitoring of 108 patients with hypertension. This method was also used for determination of beta blockers in 33 intoxicated patients. Copyright © 2016 John Wiley & Sons, Ltd.
Aflatoxin B1 in eggs and chicken livers by dispersive liquid-liquid microextraction and HPLC.
Amirkhizi, Behzad; Arefhosseini, Seyed Rafie; Ansarin, Masoud; Nemati, Mahboob
2015-01-01
A rapid, low-cost and simple technique has been developed for the determination of aflatoxin B1 (AFB1) in eggs and livers using high-performance liquid chromatography (HPLC) with UV detection. In this study, the presence of AFB1 was investigated in 150 eggs and 50 chicken livers from the local market of Tabriz, Iran. AFB1 was extracted with a mixture of acetonitrile:water (80:20) and cleaned up by dispersive liquid-liquid microextraction which is a very economical, fast and sensitive method. AFB1 was quantified by HPLC-UV without need for any complex derivatisation in samples to enhance the detection. The results showed that 72% of the liver and 58% of the egg samples were contaminated with AFB1 ranging from 0.30 to 16.36 µg kg (̶1). limit of detection and limit of quantification for AFB1 were 0.08 and 0.28 µg kg (̶ 1), respectively. The proposed method is suitable for fast analysing of AFB1 in egg and liver samples.
Troncoso, N; Sierra, H; Carvajal, L; Delpiano, P; Günther, G
2005-12-23
An improved HPLC method is reported for the determination of rosemary's principal phenolic antioxidants, rosmarinic and carnosic acids, providing a fast and simultaneous determination for both of them by using a solid phase column. The analysis was performed with fresh methanolic extractions of Rosmarinus officinalis. To quantify the amount of antioxidants in a fast and reproducible way by means of UV-vis absorption measurements, a spectrophotometric multi-wavelength calibration curve was constructed based on the antioxidant contents obtained with the recently developed HPLC method. This UV-vis methodology can be extended to the determination of other compounds and herbs if the restrictions mentioned in the text are respected.
Tao, Lingyan; Zhang, Qing; Wu, Yongjiang; Liu, Xuesong
2016-12-01
In this study, a fast and effective high-performance liquid chromatography method was developed to obtain a fingerprint chromatogram and quantitative analysis simultaneously of four indexes including gallic acid, chlorogenic acid, albiflorin and paeoniflorin of the traditional Chinese medicine Moluodan Concentrated Pill. The method was performed by using a Waters X-bridge C 18 reversed phase column on an Agilent 1200S high-performance liquid chromatography system coupled with diode array detection. The mobile phase of the high-performance liquid chromatography method was composed of 20 mmol/L phosphate solution and acetonitrile with a 1 mL/min eluent velocity, under a detection temperature of 30°C and a UV detection wavelength of 254 nm. After the methodology validation, 16 batches of Moluodan Concentrated Pill were analyzed by this high-performance liquid chromatography method and both qualitative and quantitative evaluation results were achieved by similarity analysis, principal component analysis and hierarchical cluster analysis. The results of these three chemometrics were in good agreement and all indicated that batch 10 and batch 16 showed significant differences with the other 14 batches. This suggested that the developed high-performance liquid chromatography method could be applied in the quality evaluation of Moluodan Concentrated Pill. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Porous Emitter Colloid Thruster Performance Characterization Using Optical Techniques
2013-03-01
spacecraft. Liquid propellant has received a renewed interest as a viable propellant with the creation and proliferation of new ionic liquid compounds ...electrostatic gate) and collector (metallic plate) is unknown. Two factors cause this ambiguity, first, the gate needs to close fast enough to...simultaneously block all of the emitters and second, it is not directly known which emitter released the last particle hitting the collector plate
Mixed organic compound-ionic liquid electrolytes for lithium battery electrolyte systems
NASA Astrophysics Data System (ADS)
Montanino, M.; Moreno, M.; Carewska, M.; Maresca, G.; Simonetti, E.; Lo Presti, R.; Alessandrini, F.; Appetecchi, G. B.
2014-12-01
The thermal, transport, rheological and flammability properties of electrolyte mixtures, proposed for safer lithium-ion battery systems, were investigated as a function of the mole composition. The blends were composed of a lithium salt (LiTFSI), organic solvents (namely EC, DEC) and an ionic liquid (PYR13TFSI). The main goal is to combine the fast ion transport properties of the organic compounds with the safe issues of the non-flammable and non-volatile ionic liquids. Preliminary tests in batteries have evidenced cycling performance approaching that observed in commercial organic electrolytes.
Cai, Yi; Zheng, Qiuling; Liu, Yong; Helmy, Roy; Loo, Joseph A.; Chen, Hao
2015-01-01
This study presents the development of ultra-performance liquid chromatography/mass spectrometry (UPLC/MS) combined with electrochemistry (EC) for the first time and its application for the structural analysis of disulfide bond-containing proteins/peptides. In our approach, a protein/peptide mixture sample undergoes fast UPLC separation and subsequent electrochemical reduction in an electrochemical flow cell followed by online MS and MS/MS analyses. The electrochemical cell is coupled to MS using our recently developed desorption electrospray ionization (DESI) interface. Using this UPLC/EC/DESI-MS method, disulfide bond-containing peptides can be differentiated from those without disulfide bonds as the former are electroactive and reducible. Tandem MS analysis of the disulfide-reduced peptide ions provides increased sequence and disulfide linkage pattern information. In a reactive DESI-MS detection experiment in which a supercharging reagent was used to dope the DESI spray solvent, increased charging was obtained for the UPLC-separated proteins. Strikingly, upon online electrolytic reduction, supercharged proteins (e.g., α-lactalbumin) showed even higher charging, which would be useful in top-down protein structure analysis as increased charges are known to promote protein ion dissociation. Also, the separation speed and sensitivity are enhanced by approximately 1~2 orders of magnitude by using UPLC for the LC/EC/MS platform, in comparison to the previously used high performance liquid chromatography (HPLC). This UPLC/EC/DESI-MS method combines the power of fast UPLC separation, fast electrochemical conversion and online MS structural analysis for a potentially valuable tool for proteomics research and bioanalysis. PMID:26307715
Marina, Michela; Ceda, Gian Paolo; Aloe, Rosalia; Gnocchi, Cecilia; Ceresini, Graziano
2017-01-16
Liquid levothyroxine (LT4) given at breakfast normalizes TSH in hypothyroid patients. However, a few studies are available on circulating free thyroxine (FT4) concentrations after liquid vs solid LT4 preparations. During an "ad interim" analysis on serum FT4 after 200 mcg liquid LT4 consumption while fasting in thyroidectomized thyroid cancer patients, we found that seven subjects fortuitously took liquid LT4 at breakfast. As established in the original protocol, serum FT4 was measured both at baseline as well as at 3 and 4 hours after solid or liquid LT4 consumption. We compared serum profile of FT4 in these subjects with those obtained in other subjects participating in the same study who took liquid LT4 (n. 7 subjects) or solid LT4 (n. 7 subjects) while fasting. The percentage increase of circulating FT4 was calculated at the above reported peak-times over the baseline values. Circulating FT4 increased of about 40% in each group of subjects at both the 3rd and the 4th hour with no difference between these two time points in either group. The maximum FT4 % increase, irrespective of the time point, was 44.62 ± 3.05 (Mean ± SE), 44.84 ± 5.43, and 43.83 ± 1.30 after fasting solid, fasting liquid, and breakfast liquid LT4 consumption, respectively, with no differences among the three groups. Circulating FT4 obtained after 3 and 4 hours from the ingestion of 200 mcg liquid LT4 is not influenced by meal and is comparable with that observed after solid LT4 preparations ingested while fasting.
Core body temperature control by total liquid ventilation using a virtual lung temperature sensor.
Nadeau, Mathieu; Micheau, Philippe; Robert, Raymond; Avoine, Olivier; Tissier, Renaud; Germim, Pamela Samanta; Vandamme, Jonathan; Praud, Jean-Paul; Walti, Herve
2014-12-01
In total liquid ventilation (TLV), the lungs are filled with a breathable liquid perfluorocarbon (PFC) while a liquid ventilator ensures proper gas exchange by renewal of a tidal volume of oxygenated and temperature-controlled PFC. Given the rapid changes in core body temperature generated by TLV using the lung has a heat exchanger, it is crucial to have accurate and reliable core body temperature monitoring and control. This study presents the design of a virtual lung temperature sensor to control core temperature. In the first step, the virtual sensor, using expired PFC to estimate lung temperature noninvasively, was validated both in vitro and in vivo. The virtual lung temperature was then used to rapidly and automatically control core temperature. Experimentations were performed using the Inolivent-5.0 liquid ventilator with a feedback controller to modulate inspired PFC temperature thereby controlling lung temperature. The in vivo experimental protocol was conducted on seven newborn lambs instrumented with temperature sensors at the femoral artery, pulmonary artery, oesophagus, right ear drum, and rectum. After stabilization in conventional mechanical ventilation, TLV was initiated with fast hypothermia induction, followed by slow posthypothermic rewarming for 1 h, then by fast rewarming to normothermia and finally a second fast hypothermia induction phase. Results showed that the virtual lung temperature was able to provide an accurate estimation of systemic arterial temperature. Results also demonstrate that TLV can precisely control core body temperature and can be favorably compared to extracorporeal circulation in terms of speed.
Liu, E-Hu; Liu, Qun; Chu, Chu; Li, Ping
2011-10-01
A fast high-performance liquid chromatography (HPLC) method with diode-array detection (DAD) and time-of-flight mass spectrometry (TOF/MS) has been developed for the analysis of multi-constituent in Yinhuang granules, a well-known combined herbal remedy prepared from the extract mixtures of Flos Lonicerae and Radix Scutellariae. The fast HPLC analysis was performed on an Agilent ZorBax SB-C(18) column (4.6×50 mm, 1.8 μm) and 0.2% aqueous formic acid and acetonitrile was the optimum mobile phase for gradient elution in 17 min, which is five times faster than the performance of conventional columns packed with 5.0 μm particles. With various fragmentor voltages in TOF/MS, accurate mass measurements (<5 ppm error) for molecular ions and characteristic fragment ions represented reliable identification criteria for different constituents. A total of 28 compounds, including nine phenolic acids, three iridoid glycosides and nine saponins from Flos Lonicerae and seven flavonoids from Radix Scutellariae, were identified or tentatively characterized in the extract of Yinhuang granules. The established fast HPLC-DAD-TOF/MS method turns out to be useful and efficient for quality control of this commonly used Chinese herbal preparation. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
An Electrically Tunable Zoom System Using Liquid Lenses
Li, Heng; Cheng, Xuemin; Hao, Qun
2015-01-01
A four-group stabilized zoom system using two liquid lenses and two fixed lens groups is proposed. We describe the design principle, realization, and the testing of a 5.06:1 zoom system. The realized effective focal length (EFL) range is 6.93 mm to 35.06 mm, and the field of view (FOV) range is 8° to 40°. The system can zoom fast when liquid lens 1’s (L1’s) optical power take the value from 0.0087 mm−1 to 0.0192 mm−1 and liquid lens 2’s (L2’s) optical power take the value from 0.0185 mm−1 to −0.01 mm−1. Response time of the realized zoom system was less than 2.5 ms, and the settling time was less than 15 ms.The analysis of elements’ parameters and the measurement of lens performance not only verify the design principle further, but also show the zooming process by the use of two liquid lenses. The system is useful for motion carriers e.g., robot, ground vehicle, and unmanned aerial vehicles considering that it is fast, reliable, and miniature. PMID:26729124
Zeng, Mingfei; Cao, Huachuan
2018-04-15
Short chain fatty acids (SCFA) and ketone bodies recently emerged as important physiological relevant metabolites because of their association with microbiota, immunology, obesity and other metabolic states. They were commonly analyzed by GC-MS with long run time and laborious sample preparation. In this study we developed a novel LC-MS/MS method using fast derivatization coupled with liquid-liquid extraction to detect SCFA and ketone bodies in plasma and feces. Several different derivatization reagents were evaluated to compare the efficiency, the sensitivity and chromatographic separation of structural isomers. O‑benzylhydroxylamine was selected for its superior overall performance in reaction time and isomeric separation that allowed the measurement of each SCFAs and ketone bodies free from interferences. The derivatization procedure is facile and reproducible in aqueous-organic medium, which abolished the evaporation procedure hampering the analysis of volatile short chain acids. Enhancement in sensitivity remarkably improved the detection limit of SCFA and ketone bodies to sub-fmol level. This novel method was applied to quantify these metabolites in fecal and plasma samples from lean and DIO mouse. Copyright © 2018 Elsevier B.V. All rights reserved.
Yang, Xiao; Diao, Chun-Peng; Sun, Ai-Ling; Liu, Ren-Min
2014-10-01
A method for the rapid pretreatment and determination of bisphenol A in water samples based on vortex-assisted liquid-liquid microextraction followed by high-performance liquid chromatography with fluorescence detection was proposed in this paper. A simple apparatus consisting of a test tube and a cut-glass dropper was designed and applied to collect the floating extraction drop in liquid-liquid microextraction when low-density organic solvent was used as the extraction solvent. Solidification and melting steps that were tedious but necessary once the low-density organic solvent used as extraction solvent could be avoided by using this apparatus. Bisphenol A was selected as model pollutant and vortex-assisted liquid-liquid microextraction was employed to investigate the usefulness of the apparatus. High-performance liquid chromatography with fluorescence detection was selected as the analytical tool for the detection of bisphenol A. The linear dynamic range was from 0.10 to 100 μg/L for bisphenol A, with good squared regression coefficient (r(2) = 0.9990). The relative standard deviation (n = 7) was 4.7% and the limit of detection was 0.02 μg/L. The proposed method had been applied to the determination of bisphenol A in natural water samples and was shown to be economical, fast, and convenient. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Biredox ionic liquids: new opportunities toward high performance supercapacitors.
Bodin, C; Mourad, E; Zigah, D; Le Vot, S; Freunberger, S A; Favier, F; Fontaine, O
2018-01-01
Nowadays commercial supercapacitors are based on purely capacitive storage at the porous carbons that are used for the electrodes. However, the limits that capacitive storage imposes on energy density calls to investigate new materials to improve the capacitance of the device. This new type of electrodes (e.g., RuO 2 , MnO 2 …) involves pseudo-capacitive faradaic redox processes with the solid material. Ion exchange with solid materials is, however, much slower than the adsorption process in capacitive storage and inevitably leads to significant loss of power. Faradaic process in the liquid state, in contrast can be similarly fast as capacitive processes due to the fast ion transport. Designing new devices with liquid like dynamics and improved specific capacitance is challenging. We present a new approach to increase the specific capacitance using biredox ionic liquids, where redox moieties are tethered to the electrolyte ions, allowing high redox concentrations and significant pseudo-capacitive storage in the liquid state. Anions and cations are functionalized with anthraquinone (AQ) and 2,2,6,6-tetramethylpiperidinyl-1-oxyl (TEMPO) moieties, respectively. Glassy carbon, carbon-onion, and commercial activated carbon electrodes that exhibit different double layer structures and thus different diffusion dynamics were used to simultaneously study the electrochemical response of biredox ionic liquids at the positive and negative electrode.
Transient Effects in Turbulence Modelling.
1979-12-01
plenum region of a liquid-metal- cooled fast breeder reactor (LMFBR). The efficient heat transfer characteristics of liquid metal coolant, combined...Transients in Generalized Liquid-Metal Fast Breeder Reactor Outlet Plenums," Nuclear Technology, Vol. 44, July 1979, p. 210. 135 15. Lorenz, J. J., "MIX... Sodium Coolant in the Outlet Plenum of a Fast Nuclear Reactor ," Int. J. Heat Mass Transfer, Vol. 21, 1978, pp. 1565-1579. 19. Chen, Y. B., Golay, M. W
Hu, Lei; Lv, Zhenhua; Li, Gao; Xu, Xiaolong; Zhang, Chenghao; Cao, Peng; Huang, Jiangeng; Si, Luqin
2015-06-01
TJ0711 (1-[4-(2-methoxyethyl)phenoxy]-3-[2-(2-methoxyphenoxy)ethylamino]-2-propanol) is a novel β-adrenoreceptor blocker with vasodilating activity. The aim of this study was to investigate the in vitro metabolic properties of TJ0711 from both qualitative and quantitative aspects using mouse, rat, dog, and human liver microsomes as well as rat hepatocytes. Two modern liquid chromatography with tandem mass spectrometry systems, ultra high performance liquid chromatography with quadrupole time-of-flight mass spectrometry and ultra fast liquid chromatography with quadrupole linear ion trap mass spectrometry, were utilized for the analysis. To better characterize the metabolic pathways of TJ0711, two major metabolites were incubated under the same conditions as that for TJ0711. TJ0711 was extensively metabolized in vitro, and a total of 34 metabolites, including 19 phase I and 15 phase II metabolites, were identified. Similar metabolite profiles were observed among species, and demethylation, hydroxylation, carboxylic acid formation, and glucuronidation were proposed as the major metabolic routes. Significant interspecies differences were observed in the metabolic stability studies of TJ0711. Furthermore, gender differences were significant in mice, rats, and dogs, but were negligible in humans. The valuable information provided in this work will be useful in planning and interpreting further pharmacokinetic, in vivo metabolism and toxicological studies of this novel β-blocker. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Analysis of spatial and temporal spectra of liquid film surface in annular gas-liquid flow
NASA Astrophysics Data System (ADS)
Alekseenko, Sergey; Cherdantsev, Andrey; Heinz, Oksana; Kharlamov, Sergey; Markovich, Dmitriy
2013-09-01
Wavy structure of liquid film in annular gas-liquid flow without liquid entrainment consists of fast long-living primary waves and slow short-living secondary waves. In present paper, results of spectral analysis of this wavy structure are presented. Application of high-speed LIF technique allowed us to perform such analysis in both spatial and temporal domains. Power spectra in both domains are characterized by one-humped shape with long exponential tail. Influence of gas velocity, liquid Reynolds number, liquid viscosity and pipe diameter on frequency of the waves is investigated. When gravity effect is much lesser than the shear stress, similarity of power spectra at different gas velocities is observed. Using combination of spectral analysis and identification of characteristic lines of primary waves, frequency of generation of secondary waves by primary waves is measured.
Radioactive waste from decommissioning of fast reactors (through the example of BN-800)
NASA Astrophysics Data System (ADS)
Rybin, A. A.; Momot, O. A.
2017-01-01
Estimation of volume of radioactive waste from operating and decommissioning of fast reactors is introduced. Preliminary estimation has shown that the volume of RW from decommissioning of BN-800 is amounted to 63,000 cu. m. Comparison of the amount of liquid radioactive waste derived from operation of different reactor types is performed. Approximate costs of all wastes disposal for complete decommissioning of BN-800 reactor are estimated amounting up to approx. 145 million.
NASA Astrophysics Data System (ADS)
Schulzki, G.; Spiegelberg, A.; Bögl, K. W.; Schreiber, G. A.
1995-02-01
For identification of irradiated food, radiation-induced volatile hydrocarbons (HC) are determined by gas chromatography in the non-polar fraction of fat. However, in complex food matrices the detection is often disturbed by fat-associated compounds. On-line coupling of high performance liquid chromatography (LC) and gas chromatography (GC) is very efficient to remove such compounds from the HC fraction. The high sensitivity of this fast and efficient technique is demonstrated by the example of detection of radiation-induced HC in fat isolated from baked sponge cake which had been prepared with irradiated liquid egg.
Corrosion-resistant fuel cladding allow for liquid metal fast breeder reactors
Brehm, Jr., William F.; Colburn, Richard P.
1982-01-01
An aluminide coating for a fuel cladding tube for LMFBRs (liquid metal fast breeder reactors) such as those using liquid sodium as a heat transfer agent. The coating comprises a mixture of nickel-aluminum intermetallic phases and presents good corrosion resistance to liquid sodium at temperatures up to 700.degree. C. while additionally presenting a barrier to outward diffusion of .sup.54 Mn.
Fast-responding liquid crystal light-valve technology for color-sequential display applications
NASA Astrophysics Data System (ADS)
Janssen, Peter J.; Konovalov, Victor A.; Muravski, Anatoli A.; Yakovenko, Sergei Y.
1996-04-01
A color sequential projection system has some distinct advantages over conventional systems which make it uniquely suitable for consumer TV as well as high performance professional applications such as computer monitors and electronic cinema. A fast responding light-valve is, clearly, essential for a good performing system. Response speed of transmissive LC lightvalves has been marginal thus far for good color rendition. Recently, Sevchenko Institute has made some very fast reflective LC cells which were evaluated at Philips Labs. These devices showed sub millisecond-large signal-response times, even at room temperature, and produced good color in a projector emulation testbed. In our presentation we describe our highly efficient color sequential projector and demonstrate its operation on video tape. Next we discuss light-valve requirements and reflective light-valve test results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Söngen, Hagen, E-mail: soengen@uni-mainz.de; Graduate School Materials Science in Mainz, Staudinger Weg 9, 55128 Mainz; Nalbach, Martin
2016-06-15
We present the implementation of a three-dimensional mapping routine for probing solid-liquid interfaces using frequency modulation atomic force microscopy. Our implementation enables fast and flexible data acquisition of up to 20 channels simultaneously. The acquired data can be directly synchronized with commercial atomic force microscope controllers, making our routine easily extendable for related techniques that require additional data channels, e.g., Kelvin probe force microscopy. Moreover, the closest approach of the tip to the sample is limited by a user-defined threshold, providing the possibility to prevent potential damage to the tip. The performance of our setup is demonstrated by visualizing themore » hydration structure above the calcite (10.4) surface in water.« less
Matlashov, Andrei N.; Schultz, Larry J.; Espy, Michelle A.; Kraus, Robert H.; Savukov, Igor M.; Volegov, Petr L.; Wurden, Caroline J.
2011-01-01
Nuclear magnetic resonance (NMR) is widely used in medicine, chemistry and industry. One application area is magnetic resonance imaging (MRI). Recently it has become possible to perform NMR and MRI in the ultra-low field (ULF) regime requiring measurement field strengths of the order of only 1 Gauss. This technique exploits the advantages offered by superconducting quantum interference devices or SQUIDs. Our group has built SQUID based MRI systems for brain imaging and for liquid explosives detection at airport security checkpoints. The requirement for liquid helium cooling limits potential applications of ULF MRI for liquid identification and security purposes. Our experimental comparative investigation shows that room temperature inductive magnetometers may provide enough sensitivity in the 3–10 kHz range and can be used for fast liquid explosives detection based on ULF NMR technique. We describe experimental and computer-simulation results comparing multichannel SQUID based and induction coils based instruments that are capable of performing ULF MRI for liquid identification. PMID:21747638
Liu, E-Hu; Qi, Lian-Wen; Li, Bin; Peng, Yong-Bo; Li, Ping; Li, Chang-Yin; Cao, Jun
2009-01-01
A fast high-performance liquid chromatography (HPLC) method coupled with diode-array detection (DAD) and electrospray ionization time-of-flight mass spectrometry (ESI-TOFMS) has been developed for rapid separation and sensitive identification of major constituents in Radix Paeoniae Rubra (RPR). The total analysis time on a short column packed with 1.8-microm porous particles was about 20 min without a loss in resolution, six times faster than the performance of a conventional column analysis (115 min). The MS fragmentation behavior and structural characterization of major compounds in RPR were investigated here for the first time. The targets were rapidly screened from RPR matrix using a narrow mass window of 0.01 Da to restructure extracted ion chromatograms. Accurate mass measurements (less than 5 ppm error) for both the deprotonated molecule and characteristic fragment ions represent reliable identification criteria for these compounds in complex matrices with similar if not even better performance compared with tandem mass spectrometry. A total of 26 components were screened and identified in RPR including 11 monoterpene glycosides, 11 galloyl glucoses and 4 other phenolic compounds. From the point of time savings, resolving power, accurate mass measurement capability and full spectral sensitivity, the established fast HPLC/DAD/TOFMS method turns out to be a highly useful technique to identify constituents in complex herbal medicines. (c) 2008 John Wiley & Sons, Ltd.
Liquid lens driven by elastomer actuator
NASA Astrophysics Data System (ADS)
Jin, Boya; Lee, Ji-Hyeon; Zhou, Zuowei; Lee, Gi-Bbeum; Ren, Hongwen; Nah, Changwoon
2015-09-01
By filling a liquid droplet in the hole of a dielectric elastomer (DE) film directly, we prepared two small liquid lenses. The aperture of one lens is macro size and the other is micro size. The liquid droplet in each hole of the DE film exhibits a lens character due to its biconvex shape. In relaxed state, the focal length of each liquid droplet is the longest. When a sufficiently high DC voltage is applied, the diameter of each DE hole is decreased by the generated Maxwell stress, causing the curvature of its droplet to increase. As a result, the focal length of each lens is reduced. Here the DE film functions as an actuator. In contrast to previous approaches, our miniature liquid lenses possess the advantages of simple fabrication, fast response time (~ 540 ms), and high optical performance (~ 114 lp/mm). Moreover, the micro-sized liquid lens presents good mechanical stability.
Homogeneous fast-flux isotope-production reactor
Cawley, W.E.; Omberg, R.P.
1982-08-19
A method is described for producing tritium in a liquid metal fast breeder reactor. Lithium target material is dissolved in the liquid metal coolant in order to facilitate the production and removal of tritium.
Retinoic acid concentrations in patients with squamous cell carcinoma of the head and neck.
Wahlberg, P; Fex, G
1996-02-01
The serum concentrations of all-trans (atRA) and 13-cis (13cRA) retinoic acid were determined by high performance liquid chromatography in 27 patients with squamous cell carcinoma of the head and neck and in 80 healthy controls. This investigation seemed relevant as ethanol is an aetiological factor in these cancers and has been suggested to interfere with the synthesis of atRA. Neither the serum concentration of atRA nor that of 13cRA differed between patients and controls. The serum atRA concentration did not differ between fasting and non-fasting patients, but the serum 13cRA concentration was significantly higher in non-fasting than in fasting patients, probably due to the dietary retinoid content.
Inorganic Surface Coating with Fast Wetting-Dewetting Transitions for Liquid Manipulations.
Yang, Yajie; Zhang, Liaoliao; Wang, Jue; Wang, Xinwei; Duan, Libing; Wang, Nan; Xiao, Fajun; Xie, Yanbo; Zhao, Jianlin
2018-06-06
Liquid manipulation is a fundamental issue for microfluidics and miniaturized sensors. Fast wetting-state transitions by optical methods have proven being efficient for liquid manipulations by organic surface coatings, however rarely been achieved by using inorganic coatings. Here, we report a fast optical-induced wetting-state transition surface achieved by inorganic coating, enabling tens of second transitions for a wetting-dewetting cycle, shortened from an hour, as typically reported. Here, we demonstrate a gravity-driven microfluidic reactor and switch it to a mixer after a second-step exposure in a minimum of within 80 s of UV exposure. The fast wetting-dewetting transition surfaces enable the fast switchable or erasable smart surfaces for water collection, miniature chemical reaction, or sensing systems by using inorganic surface coatings.
Guo, Liang; Tan, Shufang; Li, Xiao; Lee, Hian Kee
2016-03-18
An automated procedure, combining low density solvent based solvent demulsification dispersive liquid-liquid microextraction (DLLME) with gas chromatography-mass spectrometry analysis, was developed for the determination of polycyclic aromatic hydrocarbons (PAHs) in environmental water samples. Capitalizing on a two-rail commercial autosampler, fast solvent transfer using a large volume syringe dedicated to the DLLME process, and convenient extract collection using a small volume microsyringe for better GC performance were enabled. Extraction parameters including the type and volume of extraction solvent, the type and volume of dispersive solvent and demulsification solvent, extraction and demulsification time, and the speed of solvent injection were investigated and optimized. Under the optimized conditions, the linearity ranged from 0.1 to 50 μg/L, 0.2 to 50 μg/L, and 0.5 to 50 μg/L, depending on the analytes. Limits of detection were determined to be between 0.023 and 0.058 μg/L. The method was applied to determine PAHs in environmental water samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Low voltage polymer network liquid crystal for infrared spatial light modulators.
Peng, Fenglin; Xu, Daming; Chen, Haiwei; Wu, Shin-Tson
2015-02-09
We report a low-voltage and fast-response polymer network liquid crystal (PNLC) infrared phase modulator. To optimize device performance, we propose a physical model to understand the curing temperature effect on average domain size. Good agreement between model and experiment is obtained. By optimizing the UV curing temperature and employing a large dielectric anisotropy LC host, we have lowered the 2π phase change voltage to 22.8V at 1.55μm wavelength while keeping response time at about 1 ms. Widespread application of such a PNLC integrated into a high resolution liquid-crystal-on-silicon (LCoS) for infrared spatial light modulator is foreseeable.
Nonintrusive dynamic flowmeter
NASA Technical Reports Server (NTRS)
Pedersen, N. E.; Lynnworth, L. C.
1973-01-01
Description of some of the design and performance characteristics of an ultrasonic dynamic flowmeter which combines nonintrusiveness, fast response, high accuracy, and high resolution and is intended for use with cryogenic liquids and water. The flowmeter measures to 1% accuracy the dynamic as well as the steady flow velocity averaged over the pipe area.
Hetzel, Martin; Lugstein, Alois; Zeiner, Clemens; Wójcik, Tomasz; Pongratz, Peter; Bertagnolli, Emmerich
2011-09-30
The feasibility of gallium as a catalyst for vapour-liquid-solid (VLS) nanowire (NW) growth deriving from an implantation process in silicon by a focused ion beam (FIB) is investigated. Si(100) substrates are subjected to FIB implantation of gallium ions with various ion fluence rates. NW growth is performed in a hot wall chemical vapour deposition (CVD) reactor at temperatures between 400 and 500 °C with 2% SiH(4)/He as precursor gas. This process results in ultra-fast growth of (112)- and (110)-oriented Si-NWs with a length of several tens of micrometres. Further investigation by transmission electron microscopy indicates the presence of a NW core-shell structure: while the NW core yields crystalline structuring, the shell consists entirely of amorphous material.
Amarasinghe, Kande; Chu, Pak-Sin; Evans, Eric; Reimschuessel, Renate; Hasbrouck, Nicholas; Jayasuriya, Hiranthi
2012-05-23
This paper describes the development of a fast method to screen and confirm methyltestosterone 17-O-glucuronide (MT-glu) in tilapia bile. The method consists of solid-phase extraction (SPE) followed by high-performance liquid chromatography-mass spectrometry. The system used was an Agilent 6530 Q-TOF with an Agilent Jet stream electrospray ionization interface. The glucuronide detected in the bile was characterized as MT-glu by comparison with a chemically synthesized standard. MT-glu was detected in bile for up to 7 days after dosing. Semiquantification was done with matrix-matched calibration curves, because MT-glu showed signal suppression due to matrix effects. This method provides a suitable tool to monitor the illegal use of methyltestosterone in tilapia culture.
Li, J; Cheong, K L; Zhao, J; Hu, D J; Chen, X Q; Qiao, C F; Zhang, Q W; Chen, Y W; Li, S P
2013-09-20
A fast protein liquid chromatography coupled with refractive index detection (FPLC-RID) method was firstly developed for preparation and purification of fructooligosaccharides with different degree of polymerization from burdock, Arctium lappa. After extraction with 60% ethanol and decolorization with MCI gel CHP20P, total fructooligosaccharides were purified on Bio-Gel P-2 column eluted with water at the flow rate of 0.3 ml/min, which was the optimized conditions. The obtained fructooligosaccharides with degree of polymerization of 3-9 were identified based on their methylation analysis, MS and NMR data. This method has the advantages of high automation, good recovery and easy performance, which could be used for preparation of FOS from other sources, as well as other targeted compounds without UV absorbance. Copyright © 2013 Elsevier B.V. All rights reserved.
Wang, Xiaotong; Zhang, Yue; Niu, Huibin; Geng, Yajing; Wang, Bing; Yang, Xiaomei; Yan, Pengyu; Li, Qing; Bi, Kaishun
2017-05-01
A method of ultra-fast liquid chromatography with tandem mass spectrometry was developed and validated for the simultaneous quantitation of eight bioactive components, including polygalaxanthone III, sibiricaxanthone B, tenuifolin, sibiricose A5, sibiricose A6, tenuifoliside A, ginsenoside Re and ginsenoside Rb1 in rat plasma after oral administration of Kai-Xin-San. The plasma samples were extracted by liquid-liquid extraction using digoxin as an internal standard. Chromatographic separation was performed on a Venusil MP C 18 column (100 mm × 2.1 mm, 3 μm) with methanol and 0.05% acetic acid in water as mobile phase. The tandem mass spectrometric detection was performed in the multiple reaction monitoring with turbo ion spray source in the negative ionization. Validation parameters were within acceptable ranges. The established method has been successfully applied to compare the pharmacokinetic profiles of the analytes between normal and Alzheimer's disease rats. The results indicated that there were significant differences in pharmacokinetic parameters of some components between two groups, which may be due to the mechanisms of Alzheimer's disease and pharmacological effects of the analytes. The pharmacokinetic research in the pathological state might provide more useful information to guide the clinical usage of herbal medicine. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effects of acarbose treatment on markers of insulin sensitivity and systemic inflammation.
Rudovich, Natalia N; Weickert, Martin O; Pivovarova, Olga; Bernigau, Wolfgang; Pfeiffer, Andreas F H
2011-06-01
This study assessed the effect of postprandial glucose reduction by acarbose on insulin sensitivity and biomarkers of systemic inflammation. This was a single-center, double-blind, randomized, placebo-controlled, crossover study <40 weeks in duration, involving 66 subjects with varying degrees of glucose tolerance. Eligible patients completed a 3-week run-in period and were randomized to receive either 100 mg of acarbose three times daily followed by placebo, or vice versa, lasting 12 weeks each with a 12-week washout between interventions. Liquid meal challenges and hyperinsulinemic-euglycemic glucose clamp were performed at weeks 0, 12, 24, and 36. Fasting proinsulin levels and proinsulin-to-adiponectin ratios but not fasting adiponectin levels were significantly lower during acarbose versus placebo treatment. Clamp-derived insulin sensitivity index and body weight were unchanged by the intervention. Levels of fasting insulin, fasting glucose, monocyte chemoattractant protein-1, interleukin-6, and interleukin-1β were comparable between treatments. In the liquid meal challenge tests, postprandial glucose and insulin responses were significantly lower during acarbose versus placebo treatment. The effects of acarbose on the reduction of fasting proinsulin was most pronounced in subjects with impaired fasting glucose/impaired glucose tolerance (n = 24). Reduction of the glycemic load by acarbose decreased fasting levels of proinsulin but had no effect on adiponectin and whole-body insulin sensitivity as well as biomarkers reflecting inflammation. The preventive effects of acarbose on type 2 diabetes mellitus and cardiovascular risk need further investigation and cannot be explained by changes of insulin resistance and inflammatory biomarkers.
Velghe, Inge; Carleer, Robert; Yperman, Jan; Schreurs, Sonja
2013-04-01
Slow and fast pyrolysis of sludge and sludge/disposal filter cake (FC) mix are performed to investigate the liquid and solid products for their use as value added products. The obtained slow pyrolysis liquid products separate in an oil, a water rich fraction and a valuable crystalline solid 5,5-dimethyl hydantoin. During fast pyrolysis, mainly an oil fraction is formed. Aliphatic acids and amides present in the water rich fractions can be considered as value added products and could be purified. The oil fractions have properties which make them promising as fuel (25-35 MJ/kg, 14-20 wt% water content, 0.2-0.6 O/C value), but upgrading is necessary. Sludge/FC oils have a lower calorific value, due to evaporation of alcohols present in FC. ICP-AES analyses reveal that almost none of the metals present in sludge or sludge/FC are transferred towards the liquid fractions. The metals are enriched in the solid fractions. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matlashov, Andrei N; Espy, Michelle A; Kraus, Robert H
2010-01-01
Nuclear magnetic resonance (NMR) methods are widely used in medicine, chemistry and industry. One application area is magnetic resonance imaging or MRI. Recently it has become possible to perform NMR and MRI in ultra-low field (ULF) regime that requires measurement field strengths only of the order of 1 Gauss. These techniques exploit the advantages offered by superconducting quantum interference devices or SQUIDs. Our group at LANL has built SQUID based MRI systems for brain imaging and for liquid explosives detection at airports security checkpoints. The requirement for liquid helium cooling limits potential applications of ULF MRI for liquid identification andmore » security purposes. Our experimental comparative investigation shows that room temperature inductive magnetometers provide enough sensitivity in the 3-10 kHz range and can be used for fast liquid explosives detection based on ULF NMR/MRI technique. We describe an experimental and computer simulation comparison of the world's first multichannel SQUID based and Faraday coils based instruments that are capable of performing ULF MRI for liquids identification.« less
Tests and evaluation of a variable focus liquid lens for curvature wavefront sensors in astronomy.
Fuentes-Fernández, Jorge; Cuevas, Salvador; Álvarez-Nuñez, Luis C; Watson, Alan
2013-10-20
Curvature wavefront sensors (WFSs), which obtain the wavefront aberrations from two defocused intensity images at each side of the pupil plane, have shown to be highly efficient for astronomical applications. We propose here an alternative defocusing mechanism for curvature sensors, based on an electrowetting-based variable focus liquid lens. Typically, the sampling rates of a WFS for active optics are of the order of 0.01 Hz, and the focus modulation can be done by simply moving the detector back and forth. On the other hand, adaptive optics may require speeds of up to several hundred hertz, and the modulation is then done by using a fast vibrating membrane mirror. We believe variable focus liquid lenses may be able to perform this focus modulation, reducing the overall size of the system and without the need of extra moving parts. We have done a full characterization of the Varioptic Arctic 416 liquid lens, and we have evaluated its potential performance in different curvature configurations.
Active-Interrogation Measurements of Fast Neutrons from Induced Fission in Low-Enriched Uranium
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. L. Dolan; M. J. Marcath; M. Flaska
2014-02-01
A detection system was designed with MCNPX-PoliMi to measure induced-fission neutrons from U-235 and U-238 using active interrogation. Measurements were then performed with this system at the Joint Research Centre (JRC) in Ispra, Italy on low-enriched uranium samples. Liquid scintillators measured induced fission neutron to characterize the samples in terms of their uranium mass and enrichment. Results are presented to investigate and support the use of organic liquid scintillators with active interrogation techniques to characterize uranium containing materials.
Applications of variable focus liquid lenses for curvature wave-front sensors in astronomy
NASA Astrophysics Data System (ADS)
Fuentes-Fernández, J.; Cuevas, S.; Alvarez-Nuñez, L. C.; Watson, A. M.
2014-08-01
Curvature wavefront sensors obtain the wave-front aberrations from two defocused intensity images at each side of the pupil plane. Typically, when high modulation speeds are required, as it is the case with Adaptive Optics, that defocusing is done with a fast vibrating membrane mirror. We propose an alternative defocusing mechanism based on an electrowetting variable focus liquid lens. The use of such lenses may perform the required focus modulation without the need of extra moving parts, reducing the overall size of the system.
USDA-ARS?s Scientific Manuscript database
A rapid computer-aided program for profiling glucosinolates, “GLS-Finder", was developed. GLS-Finder is a Matlab script based expert system that is capable for qualitative and semi-quantitative analysis of glucosinolates in samples using data generated by ultra-high performance liquid chromatograph...
Cryogenic liquid-level detector
NASA Technical Reports Server (NTRS)
Hamlet, J.
1978-01-01
Detector is designed for quick assembly, fast response, and good performance under vibratory stress. Its basic parallel-plate open configuration can be adapted to any length and allows its calibration scale factor to be predicted accurately. When compared with discrete level sensors, continuous reading sensor was found to be superior if there is sloshing, boiling, or other disturbance.
Yeung, B; Vouros, P; Reddy, G S
1993-08-13
A mass spectrometric method for the detection of vitamin D3 metabolites is described. This method involves the derivatization of the metabolites by cycloaddition with 4-phenyl-1,2,4-triazoline-3,5-dione, followed by their characterization by continuous-flow fast atom bombardment (CF-FAB) tandem mass spectrometry (MS-MS) and high-performance liquid chromatography (HPLC). Using HPLC, this derivatization has been shown to increase the UV detectability of 25-hydroxyvitamin D3 by about 5-fold. The FAB spectra of the adducts are dominated by peaks corresponding to a protonated molecule and a fragment ion derived in part from the loss of the side chain. Multiple reaction monitoring (MRM) of this transition by MS-MS may be utilized for trace level analysis of vitamin D metabolites. Sample introduction by flow injection yields detection limits in the low nanogram to high picogram range, whereas the use of on-line capillary LC has been found to decrease the detection limits to the low picogram level.
Coupling of Ultrafast LC with Mass Spectrometry by DESI
NASA Astrophysics Data System (ADS)
Cai, Yi; Liu, Yong; Helmy, Roy; Chen, Hao
2014-10-01
Recently we reported a desorption electrospray ionization (DESI) interface to combine liquid chromatography (LC) with mass spectrometry (MS) using a new LC eluent splitting strategy through a tiny orifice on LC capillary tube [ J. Am. Soc. Mass Spectrom. 25, 286 (2014)]. The interface introduces negligible dead volume and back pressure, thereby allowing "near real-time" MS detection, fast LC elution, and online MS-directed purification. This study further evaluates the LC/DESI-MS performance with focus of using ultra-fast LC. Using a monolithic C18 column, metabolites in urine can be separated within 1.6 min and can be online collected for subsequent structure elucidation (e.g., by NMR, UV, IR) in a recovery yield up to 99%. Using a spray solvent with alkaline pH, negative ions could be directly generated for acidic analytes (e.g., ibuprofen) in acidic LC eluent by DESI, offering a novel protocol to realize "wrong-way around" ionization for LC/MS analysis. In addition, DESI-MS is found to be compatible with ultra-performance liquid chromatography (UPLC) for the first time.
Hydrophobic ionic liquids for quantitative bacterial cell lysis with subsequent DNA quantification.
Fuchs-Telka, Sabine; Fister, Susanne; Mester, Patrick-Julian; Wagner, Martin; Rossmanith, Peter
2017-02-01
DNA is one of the most frequently analyzed molecules in the life sciences. In this article we describe a simple and fast protocol for quantitative DNA isolation from bacteria based on hydrophobic ionic liquid supported cell lysis at elevated temperatures (120-150 °C) for subsequent PCR-based analysis. From a set of five hydrophobic ionic liquids, 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide was identified as the most suitable for quantitative cell lysis and DNA extraction because of limited quantitative PCR inhibition by the aqueous eluate as well as no detectable DNA uptake. The newly developed method was able to efficiently lyse Gram-negative bacterial cells, whereas Gram-positive cells were protected by their thick cell wall. The performance of the final protocol resulted in quantitative DNA extraction efficiencies for Gram-negative bacteria similar to those obtained with a commercial kit, whereas the number of handling steps, and especially the time required, was dramatically reduced. Graphical Abstract After careful evaluation of five hydrophobic ionic liquids, 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([BMPyr + ][Ntf 2 - ]) was identified as the most suitable ionic liquid for quantitative cell lysis and DNA extraction. When used for Gram-negative bacteria, the protocol presented is simple and very fast and achieves DNA extraction efficiencies similar to those obtained with a commercial kit. ddH 2 O double-distilled water, qPCR quantitative PCR.
Zaimes, George G; Soratana, Kullapa; Harden, Cheyenne L; Landis, Amy E; Khanna, Vikas
2015-08-18
A well-to-wheel (WTW) life cycle assessment (LCA) model is developed to evaluate the environmental profile of producing liquid transportation fuels via fast pyrolysis of perennial grasses: switchgrass and miscanthus. The framework established in this study consists of (1) an agricultural model used to determine biomass growth rates, agrochemical application rates, and other key parameters in the production of miscanthus and switchgrass biofeedstock; (2) an ASPEN model utilized to simulate thermochemical conversion via fast pyrolysis and catalytic upgrading of bio-oil to renewable transportation fuel. Monte Carlo analysis is performed to determine statistical bounds for key sustainability and performance measures including life cycle greenhouse gas (GHG) emissions and Energy Return on Investment (EROI). The results of this work reveal that the EROI and GHG emissions (gCO2e/MJ-fuel) for fast pyrolysis derived fuels range from 1.52 to 2.56 and 22.5 to 61.0 respectively, over the host of scenarios evaluated. Further analysis reveals that the energetic performance and GHG reduction potential of fast pyrolysis-derived fuels are highly sensitive to the choice of coproduct scenario and LCA allocation scheme, and in select cases can change the life cycle carbon balance from meeting to exceeding the renewable fuel standard emissions reduction threshold for cellulosic biofuels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malathi, N.; Sahoo, P., E-mail: sahoop@igcar.gov.in; Ananthanarayanan, R.
2015-02-15
An innovative continuous type liquid level monitoring system constructed by using a new class of sensor, viz., pulsating sensor, is presented. This device is of industrial grade and it is exclusively used for level monitoring of any non conducting liquid. This instrument of unique design is suitable for high resolution online monitoring of oil level in dashpots of a sodium-cooled fast breeder reactor. The sensing probe is of capacitance type robust probe consisting of a number of rectangular mirror polished stainless steel (SS-304) plates separated with uniform gaps. The performance of this novel instrument has been thoroughly investigated. The precision,more » sensitivity, response time, and the lowest detection limit in measurement using this device are <0.01 mm, ∼100 Hz/mm, ∼1 s, and ∼0.03 mm, respectively. The influence of temperature on liquid level is studied and the temperature compensation is provided in the instrument. The instrument qualified all recommended tests, such as environmental, electromagnetic interference and electromagnetic compatibility, and seismic tests prior to its deployment in nuclear reactor. With the evolution of this level measurement approach, it is possible to provide dashpot oil level sensors in fast breeder reactor for the first time for continuous measurement of oil level in dashpots of Control and Safety Rod Drive Mechanism during reactor operation.« less
Tian, Jiajun; Lu, Zejin; Quan, Mingran; Jiao, Yuzhu; Yao, Yong
2016-09-05
We report a fast response microfluidic Fabry-Perot (FP) interferometer refractive index (RI) fiber sensor based on a concave-core photonic crystal fiber (CPCF), which is formed by directly splicing a section CPCF with a section of single mode fiber. The CPCF is made by cleaving a section of multimode photonic crystal fiber with an axial tension. The shallow concave-core of CPCF naturally forms the FP cavity with a very short cavity length. The inherent large air holes in the cladding of CPCF are used as the open channels to let liquid sample come in and out of FP cavity. In order to shorten the liquid channel length and eliminate the harmful reflection from the outside end face of the CPCF, the CPCF is cleaved with a tilted tensile force. Due to the very small cavity capacity, the short length and the large sectional area of the microfluidic channels, the proposed sensor provides an easy-in and easy-out structure for liquids, leading to great decrement of the measuring time. The proposed sensor exhibits fast measuring speed, the measuring time is less than 359 and 23 ms for distilled water and pure ethanol, respectively. We also experimentally study and demonstrate the superior performances of the sensor in terms of high RI sensitivity, good linear response, low temperature cross-sensitivity and easy fabrication.
Lessons Learned about Liquid Metal Reactors from FFTF Experience
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wootan, David W.; Casella, Andrew M.; Omberg, Ronald P.
2016-09-20
The Fast Flux Test Facility (FFTF) is the most recent liquid-metal reactor (LMR) to operate in the United States, from 1982 to 1992. FFTF is located on the DOE Hanford Site near Richland, Washington. The 400-MWt sodium-cooled, low-pressure, high-temperature, fast-neutron flux, nuclear fission test reactor was designed specifically to irradiate Liquid Metal Fast Breeder Reactor (LMFBR) fuel and components in prototypical temperature and flux conditions. FFTF played a key role in LMFBR development and testing activities. The reactor provided extensive capability for in-core irradiation testing, including eight core positions that could be used with independent instrumentation for the test specimens.more » In addition to irradiation testing capabilities, FFTF provided long-term testing and evaluation of plant components and systems for LMFBRs. The FFTF was highly successful and demonstrated outstanding performance during its nearly 10 years of operation. The technology employed in designing and constructing this reactor, as well as information obtained from tests conducted during its operation, can significantly influence the development of new advanced reactor designs in the areas of plant system and component design, component fabrication, fuel design and performance, prototype testing, site construction, and reactor operations. The FFTF complex included the reactor, as well as equipment and structures for heat removal, containment, core component handling and examination, instrumentation and control, and for supplying utilities and other essential services. The FFTF Plant was designed using a “system” concept. All drawings, specifications and other engineering documentation were organized by these systems. Efforts have been made to preserve important lessons learned during the nearly 10 years of reactor operation. A brief summary of Lessons Learned in the following areas will be discussed: Acceptance and Startup Testing of FFTF FFTF Cycle Reports« less
NASA Astrophysics Data System (ADS)
Israelashvili, I.; Coimbra, A. E. C.; Vartsky, D.; Arazi, L.; Shchemelinin, S.; Caspi, E. N.; Breskin, A.
2017-09-01
Gamma-ray and fast-neutron imaging was performed with a novel liquid xenon (LXe) scintillation detector read out by a Gaseous Photomultiplier (GPM). The 100 mm diameter detector prototype comprised a capillary-filled LXe converter/scintillator, coupled to a triple-THGEM imaging-GPM, with its first electrode coated by a CsI UV-photocathode, operated in Ne/5%CH4 at cryogenic temperatures. Radiation localization in 2D was derived from scintillation-induced photoelectron avalanches, measured on the GPM's segmented anode. The localization properties of 60Co gamma-rays and a mixed fast-neutron/gamma-ray field from an AmBe neutron source were derived from irradiation of a Pb edge absorber. Spatial resolutions of 12± 2 mm and 10± 2 mm (FWHM) were reached with 60Co and AmBe sources, respectively. The experimental results are in good agreement with GEANT4 simulations. The calculated ultimate expected resolutions for our application-relevant 4.4 and 15.1 MeV gamma-rays and 1-15 MeV neutrons are 2-4 mm and ~ 2 mm (FWHM), respectively. These results indicate the potential applicability of the new detector concept to Fast-Neutron Resonance Radiography (FNRR) and Dual-Discrete-Energy Gamma Radiography (DDEGR) of large objects.
Core-Shell Columns in High-Performance Liquid Chromatography: Food Analysis Applications
Preti, Raffaella
2016-01-01
The increased separation efficiency provided by the new technology of column packed with core-shell particles in high-performance liquid chromatography (HPLC) has resulted in their widespread diffusion in several analytical fields: from pharmaceutical, biological, environmental, and toxicological. The present paper presents their most recent applications in food analysis. Their use has proved to be particularly advantageous for the determination of compounds at trace levels or when a large amount of samples must be analyzed fast using reliable and solvent-saving apparatus. The literature hereby described shows how the outstanding performances provided by core-shell particles column on a traditional HPLC instruments are comparable to those obtained with a costly UHPLC instrumentation, making this novel column a promising key tool in food analysis. PMID:27143972
Baranowska, Irena; Wojciechowska, Iwona; Solarz, Natalia; Krutysza, Ewa
2014-01-01
This paper reports the development of a method for simultaneously determining five preservatives in cosmetics, cleaning agents and pharmaceuticals by fast liquid chromatography. Methylisothiazolinone, methylchloroisothiazolinone, benzyl alcohol, sodium benzoate and methylparaben were separated on a Chromolith Fast Gradient reversed-phase 18e column using gradient elution with acetonitrile and a 0.1% aqueous solution of formic acid, with a run time of 3 min. The preparation of solid and liquid samples included ultrasonic extraction with methanol with recoveries ranging from 69 to 119%. The developed method was used to analyze samples of cosmetics (66 samples), cleaning agents (five samples) and pharmaceutical industry products (17 samples).
An, Meichen; Liu, Ning
2010-02-01
A high performance liquid chromatography-matrix-assisted laser desorption/ionization time of flight/time of flight mass spectrometry (HPLC-MALDI-TOF/TOF MS) method was developed for the separation and identification of bovine lactoferricin (LfcinB). Bovine lactoferrin was hydrolyzed by pepsin and then separated by ion exchange chromatography and reversed-phase liquid chromatography (RP-LC). The antibacterial activities of the fractions from RP-LC separation were determined and the protein concentration of the fraction with the highest activity was measured, whose sequence was indentified by MALDI-TOF/TOF MS. The relative molecular mass of LfcinB was 3 124.89 and the protein concentration was 18.20 microg/mL. The method of producing LfcinB proposed in this study has fast speed, high accuracy and high resolution.
Schmidt, Holger; Böttcher, Christoph; Trampczynska, Aleksandra; Clemens, Stephan
2011-01-01
Nicotianamine (NA) is an important metal chelator, implicated in the intra- and intercellular trafficking of several transition metal ions in plants. To decipher its roles in physiological processes such as micronutrient acquisition, distribution or storage, fast and sensitive analytical techniques for quantification of this non-proteinogenic amino acid will be required. The use of a recombinant Schizosaccharomyces pombe strain expressing a nicotianamine synthase (NAS) gene allowed for the production of [(15)N(3)]-NA, which was enriched from cell extracts through cation exchange and used for stable isotope dilution analysis of NA. Such an approach should be widely applicable to important bioanalytes that are difficult to synthesize. The analytical procedure comprises mild aqueous extraction and rapid Fmoc derivatization, followed by fast separation using ultra-performance liquid chromatography (UPLC) and sensitive detection by positive ion electrospray ionization time-of-flight mass spectrometry (ESI-TOF-MS) with a chromatographic cycle time of only 8 min. Derivatization was optimized with respect to incubation time and species suitable for quantification. The limit of detection was 0.14 to 0.23 pmol in biological matrices with the response being linear up to 42 pmol. Recovery rates were between 83% and 104% in various biological matrices including fission yeast cells, fungal mycelium, plant leaves and roots.
Su, Rui; Li, Dan; Wu, Lijie; Han, Jing; Lian, Wenhui; Wang, Keren; Yang, Hongmei
2017-07-01
A novel microextraction method, termed microwave-assisted ionic liquid/ionic liquid dispersive liquid-liquid microextraction, has been developed for the rapid enrichment and analysis of triazine herbicides in fruit juice samples by high-performance liquid chromatography. Instead of using hazardous organic solvents, two kinds of ionic liquids, a hydrophobic ionic liquid (1-hexyl-3-methylimidazolium hexafluorophosphate) and a hydrophilic ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate), were used as the extraction solvent and dispersion agent, respectively, in this method. The extraction procedure was induced by the formation of cloudy solution, which was composed of fine drops of 1-hexyl-3-methylimidazolium hexafluorophosphate dispersed entirely into sample solution with the help of 1-butyl-3-methylimidazolium tetrafluoroborate. In addition, an ion-pairing agent (NH 4 PF 6 ) was introduced to improve recoveries of the ionic liquid phase. Several experimental parameters that might affect the extraction efficiency were investigated. Under the optimum experimental conditions, the linearity for determining the analytes was in the range of 5.00-250.00 μg/L, with the correlation coefficients of 0.9982-0.9997. The practical application of this effective and green method is demonstrated by the successful analysis of triazine herbicides in four juice samples, with satisfactory recoveries (76.7-105.7%) and relative standard deviations (lower than 6.6%). In general, this method is fast, effective, and robust to determine triazine herbicides in juice samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Borovcová, Lucie; Pauk, Volodymyr; Lemr, Karel
2018-05-01
New psychoactive substances represent serious social and health problem as tens of new compounds are detected in Europe annually. They often show structural proximity or even isomerism, which complicates their analysis. Two methods based on ultra high performance supercritical fluid chromatography and ultra high performance liquid chromatography with mass spectrometric detection were validated and compared. A simple dilute-filter-and-shoot protocol utilizing propan-2-ol or methanol for supercritical fluid or liquid chromatography, respectively, was proposed to detect and quantify 15 cathinones and phenethylamines in human urine. Both methods offered fast separation (<3 min) and short total analysis time. Precision was well <15% with a few exceptions in liquid chromatography. Limits of detection in urine ranged from 0.01 to 2.3 ng/mL, except for cathinone (5 ng/mL) in supercritical fluid chromatography. Nevertheless, this technique distinguished all analytes including four pairs of isomers, while liquid chromatography was unable to resolve fluoromethcathinone regioisomers. Concerning matrix effects and recoveries, supercritical fluid chromatography produced more uniform results for different compounds and at different concentration levels. This work demonstrates the performance and reliability of supercritical fluid chromatography and corroborates its applicability as an alternative tool for analysis of new psychoactive substances in biological matrixes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Quantitative Insights into the Fast Pyrolysis of Extracted Cellulose, Hemicelluloses, and Lignin.
Carrier, Marion; Windt, Michael; Ziegler, Bernhard; Appelt, Jörn; Saake, Bodo; Meier, Dietrich; Bridgwater, Anthony
2017-08-24
The transformation of lignocellulosic biomass into bio-based commodity chemicals is technically possible. Among thermochemical processes, fast pyrolysis, a relatively mature technology that has now reached a commercial level, produces a high yield of an organic-rich liquid stream. Despite recent efforts to elucidate the degradation paths of biomass during pyrolysis, the selectivity and recovery rates of bio-compounds remain low. In an attempt to clarify the general degradation scheme of biomass fast pyrolysis and provide a quantitative insight, the use of fast pyrolysis microreactors is combined with spectroscopic techniques (i.e., mass spectrometry and NMR spectroscopy) and mixtures of unlabeled and 13 C-enriched materials. The first stage of the work aimed to select the type of reactor to use to ensure control of the pyrolysis regime. A comparison of the chemical fragmentation patterns of "primary" fast pyrolysis volatiles detected by using GC-MS between two small-scale microreactors showed the inevitable occurrence of secondary reactions. In the second stage, liquid fractions that are also made of primary fast pyrolysis condensates were analyzed by using quantitative liquid-state 13 C NMR spectroscopy to provide a quantitative distribution of functional groups. The compilation of these results into a map that displays the distribution of functional groups according to the individual and main constituents of biomass (i.e., hemicelluloses, cellulose and lignin) confirmed the origin of individual chemicals within the fast pyrolysis liquids. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
NASA Astrophysics Data System (ADS)
Nakhostin, M.
2015-10-01
In this paper, we have compared the performances of the digital zero-crossing and charge-comparison methods for n/γ discrimination with liquid scintillation detectors at low light outputs. The measurements were performed with a 2″×2″ cylindrical liquid scintillation detector of type BC501A whose outputs were sampled by means of a fast waveform digitizer with 10-bit resolution, 4 GS/s sampling rate and one volt input range. Different light output ranges were measured by operating the photomultiplier tube at different voltages and a new recursive algorithm was developed to implement the digital zero-crossing method. The results of our study demonstrate the superior performance of the digital zero-crossing method at low light outputs when a large dynamic range is measured. However, when the input range of the digitizer is used to measure a narrow range of light outputs, the charge-comparison method slightly outperforms the zero-crossing method. The results are discussed in regard to the effects of the quantization noise and the noise filtration performance of the zero-crossing filter.
Zhao, Jiao; Zhu, Yan; Jiao, Yang; Ning, Jinyan; Yang, Yaling
2016-10-01
A novel two-step extraction technique combining ionic-liquid-based dispersive liquid-liquid microextraction with magnetic solid-phase extraction was developed for the preconcentration and separation of aflatoxins in animal feedstuffs before high-performance liquid chromatography coupled with fluorescence detection. In this work, ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate was used as the extractant in dispersive liquid-liquid microextraction, and hydrophobic pelargonic acid modified Fe 3 O 4 magnetic nanoparticles as an efficient adsorbent were applied to retrieve the aflatoxins-containing ionic liquid. Notably, the target of magnetic nanoparticles was the ionic liquid rather than the aflatoxins. Because of the rapid mass transfer associated with the dispersive liquid-liquid microextraction and magnetic solid phase steps, fast extraction could be achieved. The main parameters affecting the extraction recoveries of aflatoxins were investigated and optimized. Under the optimum conditions, vortexing at 2500 rpm for 1 min in the dispersive liquid-liquid microextraction and magnetic solid-phase extraction and then desorption by sonication for 2 min with acetonitrile as eluent. The recoveries were 90.3-103.7% with relative standard deviations of 3.2-6.4%. Good linearity was observed with correlation coefficients ranged from 0.9986 to 0.9995. The detection limits were 0.632, 0.087, 0.422 and 0.146 ng/mL for aflatoxins B 1 , B2, G1, and G2, respectively. The results were also compared with the pretreatment method carried out by conventional immunoaffinity columns. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
EBR-II Static Neutronic Calculations by PHISICS / MCNP6 codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paolo Balestra; Carlo Parisi; Andrea Alfonsi
2016-02-01
The International Atomic Energy Agency (IAEA) launched a Coordinated Research Project (CRP) on the Shutdown Heat Removal Tests (SHRT) performed in the '80s at the Experimental fast Breeder Reactor EBR-II, USA. The scope of the CRP is to improve and validate the simulation tools for the study and the design of the liquid metal cooled fast reactors. Moreover, training of the next generation of fast reactor analysts is being also considered the other scope of the CRP. In this framework, a static neutronic model was developed, using state-of-the art neutron transport codes like SCALE/PHISICS (deterministic solution) and MCNP6 (stochastic solution).more » Comparison between both solutions is briefly illustrated in this summary.« less
Pierson, Stephen A; Trujillo-Rodríguez, María J; Anderson, Jared L
2018-05-29
An ionic-liquid-based in situ dispersive liquid-liquid microextraction method coupled to headspace gas chromatography and mass spectrometry was developed for the rapid analysis of ultraviolet filters. The chemical structures of five ionic liquids were specifically designed to incorporate various functional groups for the favorable extraction of the target analytes. Extraction parameters including ionic liquid mass, molar ratio of ionic liquid to metathesis reagent, vortex time, ionic strength, pH, and total sample volume were studied and optimized. The effect of the headspace temperature and volume during the headspace sampling step was also evaluated to increase the sensitivity of the method. The optimized procedure is fast as it only required ∼7-10 min per extraction and allowed for multiple extractions to be performed simultaneously. In addition, the method exhibited high precision, good linearity, and low limits of detection for six ultraviolet filters in aqueous samples. The developed method was applied to both pool and lake water samples attaining acceptable relative recovery values. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Analysis of the OPERA 15-pin experiment with SABRE-2P. [LMFBR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rose, S.D.; Carbajo, J.J.
The OPERA (Out-of-Pile Expulsion and Reentry Apparatus) experiment simulates the initial phase of a pump coastdown without scram of a liquid-metal fast breeder reactor, specifically the Fast Flux Test Facility. The test section is a 15-pin 60/sup 0/ triangular sector designed to simulate a full-size 61-pin hexagonal bundle. A previous study indicates this to be an adequate simulation. In this paper, experimental results from the OPERA 15-pin experiment performed at ANL in 1982 are compared to analytical calculations obtained with the SABRE-2P code at ORNL.
Bodai, Zsolt; Szabó, Bálint Sámuel; Novák, Márton; Hámori, Susanne; Nyiri, Zoltán; Rikker, Tamás; Eke, Zsuzsanna
2014-10-15
A simple and fast analytical method was developed for the determination of six UV stabilizers (Cyasorb UV-1164, Tinuvin P, Tinuvin 234, Tinuvin 326, Tinuvin 327, and Tinuvin 1577) and five antioxidants (Irgafos 168, Irganox 1010, Irganox 3114, Irganox 3790, and Irganox 565) in milk. For sample preparation liquid-liquid extraction with low-temperature purification combined with centrifugation was used to remove fats, proteins, and sugars. After the cleanup step, the sample was analyzed with high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS). External standard and matrix calibrations were tested. External calibration proved to be acceptable for Tinuvin P, Tinuvin 234, Tinuvin 326, Tinuvin 327, Irganox 3114, and Irganox 3790. The method was successfully validated with matrix calibration for all compounds. Method detection limits were between 0.25 and 10 μg/kg. Accuracies ranged from 93 to 109%, and intraday precisions were <13%.
Kong, Xianghong; He, Qiang; Yue, Aishan; Wu, Shuangmin; Li, Jianhua
2010-06-01
An ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/ MS) method was developed for the determination of arbutin in apple juice concentrate. Samples were diluted with water, then cleaned-up with a PS-DVB column. Quantitation was carried out using an external standard method. UPLC was performed on an Eclipse Plus C, column (100 mm x 2.1 mm, 1.8 microm) using a gradient solvent system (methanol-water). MS/MS was performed with multiple reaction monitoring (MRM) mode. The detection limit of arbutin was 0.02 mg/L. The method showed good linear relationship at the range of 0.04-2.0 mg/L. The recoveries ranged from 75.2% to 102.7% with relative standard deviations (RSDs) less than 8.9%. The method is simple, fast and sensitive. It's suitable for quantitative and qualitative analysis of arbutin in apple juice concentrate.
Ultra fast polymer network blue phase liquid crystals
NASA Astrophysics Data System (ADS)
Hussain, Zakir; Masutani, Akira; Danner, David; Pleis, Frank; Hollfelder, Nadine; Nelles, Gabriele; Kilickiran, Pinar
2011-06-01
Polymer-stabilization of blue phase liquid crystal systems within a host polymer network are reported, which enables ultrafast switching flexible displays. Our newly developed method to stabilize the blue phase in an existing polymer network (e.g., that of a polymer network liquid crystal; PNLC) has shown wide temperature stability and fast response speeds. Systems where the blue phase is stabilized in an already existing polymer network are attractive candidates for ultrafast LCDs. The technology also promises to be applied to flexible PNLC and/or polymer dispersed liquid crystal (PDLC) displays using plastic substrate such as polyethylene terephthalate (PET).
Oellig, Claudia
2017-07-21
Ergot alkaloids are generally determined by high-performance liquid chromatography (HPLC) coupled to fluorescence detection (FLD) or mass selective detection, analyzing the individual compounds. However, fast and easy screening methods for the determination of the total ergot alkaloid content are more suitable, since for monitoring only the sum of the alkaloids is relevant. The herein presented screening uses lysergic acid amide (LSA) as chemical marker, formed from ergopeptine alkaloids, and ergometrine for the determination of the total ergot alkaloids in rye with high-performance thin-layer chromatography-fluorescence detection (HPTLC-FLD). An ammonium acetate buffered extraction step was followed by liquid-liquid partition for clean-up before the ergopeptine alkaloids were selectively transformed to LSA and analyzed by HPTLC-FLD on silica gel with isopropyl acetate/methanol/water/25% ammonium hydroxide solution (80:10:3.8:1.1, v/v/v/v) as the mobile phase. The enhanced native fluorescence of LSA and unaffected ergometrine was used for quantitation without any interfering matrix. Limits of detection and quantitation were 8 and 26μg LSA/kg rye, which enables the determination of the total ergot alkaloids far below the applied quality criterion limit for rye. Close to 100% recoveries for different rye flours at relevant spiking levels were obtained. Thus, reliable results were guaranteed, and the fast and efficient screening for the total ergot alkaloids in rye offers a rapid alternative to the HPLC analysis of the individual compounds. Copyright © 2017 Elsevier B.V. All rights reserved.
Hetzel, Terence; Blaesing, Christina; Jaeger, Martin; Teutenberg, Thorsten; Schmidt, Torsten C
2017-02-17
The performance of micro-liquid chromatography columns with an inner diameter of 0.3mm was investigated on a dedicated micro-LC system for gradient elution. Core-shell as well as fully porous particle packed columns were compared on the basis of peak capacity and gradient kinetic plot limits. The results for peak capacity showed the superior performance of columns packed with sub-2μm fully porous particles compared to 3.0μm fully porous and 2.7μm core-shell particles within a range of different gradient time to column void time ratios. For ultra-fast chromatography a maximum peak capacity of 16 can be obtained using a 30s gradient for the sub-2μm fully porous particle packed column. A maximum peak capacity of 121 can be achieved using a 5min gradient. In addition, the influence of an alternative detector cell on the basis of optical waveguide technology and contributing less to system variance was investigated showing an increased peak capacity for all applied gradient time/column void time ratios. Finally, the influence of pressure was evaluated indicating increased peak capacity for maximum performance whereas a limited benefit for ultra-fast chromatography with gradient times below 30s was observed. Copyright © 2017 Elsevier B.V. All rights reserved.
1980-08-01
metal fast breeder reactor (LMFBR) design. It also re-examines the impact of the accident at Three Mile Island on the design basis concept, and how...Water Reactors : ImpZications for Liquid MetaZ Fast Breeder Reactors , by W. E. Kastenberg and K. A. Solomon, July 1979. v SUNMARY The 1979 accident...the liquid metal fast breeder reactor (LMFBR). This Note assesses the impact of the TMI-2 accident on the LMFBR. Specifically, it: o Reviews the
FRANCISCO, Saionara Cristina; BATISTA, Sandra Teixeira; PENA, Geórgia das Graças
2015-01-01
Background: Prolonged preoperative fasting may impair nutritional status of the patient and their recovery. In contrast, some studies show that fasting abbreviation can improve the response to trauma and decrease the length of hospital stay. Aim: Investigate whether the prescribed perioperative fasting time and practiced by patients is in compliance with current multimodal protocols and identify the main factors associated. Methods: Cross-sectional study with 65 patients undergoing elective surgery of the digestive tract or abdominal wall. We investigated the fasting time in the perioperative period, hunger and thirst reports, physical status, diabetes diagnosis, type of surgery and anesthesia. Results: The patients were between 19 and 87 years, mostly female (73.8%). The most performed procedure was cholecystectomy (47.69%) and general anesthesia the most used (89.23%). The most common approach was to start fasting from midnight for liquids and solids, and most of the patients received grade II (64.6%) to the physical state. The real fasting average time was 16 h (9.5-41.58) was higher than prescribed (11 h, 6.58 -26.75). The patients submitted to surgery in the afternoon were in more fasting time than those who did in the morning (p<0.001). The intensity of hunger and thirst increased in postoperative fasting period (p=0.010 and 0.027). The average period of postoperative fasting was 18.25 h (3.33-91.83) and only 23.07% restarted feeding on the same day. Conclusion: Patients were fasted for prolonged time, higher even than the prescribed time and intensity of the signs of discomfort such as hunger and thirst increased over time. To better recovery and the patient's well-being, it is necessary to establish a preoperative fasting abbreviation protocol. PMID:26734794
Sun, Ye; Xi, Hanmi; Ediger, M D; Richert, Ranko; Yu, Lian
2009-08-21
The liquid dynamics of 5-methyl-2-[(2-nitrophenyl)amino]-3-thiophenecarbonitrile, named ROY for its red, orange, and yellow crystal polymorphs, was characterized by dielectric spectroscopy and differential scanning calorimetry. Four of these polymorphs show fast "diffusionless" crystal growth at low temperatures while three others do not. ROY was found to be a typical fragile organic liquid. Its alpha relaxation process has time-temperature superposition symmetry across the viscous range (tau(alpha)=100 s-100 ns) with the width of the relaxation peak characterized by a constant beta(KWW) of 0.73. No secondary relaxation peak was observed, even with glasses made by fast quenching. For the polymorphs not showing fast crystal growth in the glassy state, the growth rate has a power-law relation with tau(alpha), u proportional to tau(alpha)(-xi), where xi approximately = 0.7. For the polymorphs showing fast crystal growth in the glassy state, the growth is so fast near and below the glass transition temperature T(g) that thousands of molecular layers can be added to the crystalline phase during one structural relaxation time of the liquid. In the glassy state, this mode of growth slows slightly over time. This slowdown is not readily explained by the effect of physical aging on the thermodynamic driving force of crystallization, the glass vapor pressure, or the rate of structural relaxation. This study demonstrates that from the same liquid or glass, the growth of some polymorphs is accurately described as being limited by the rate of structural relaxation or bulk diffusion, whereas the growth of other polymorphs is too fast to be under such control.
Micro-droplet formation via 3D printed micro channel
NASA Astrophysics Data System (ADS)
Jian, Zhen; Zhang, Jiaming; Li, Erqiang; Thoroddsen, Sigurdur T.
2016-11-01
Low cost, fast-designed and fast-fabricated 3D micro channel was used to create micro-droplets. Capillary with an outer diameter of 1.5 mm and an inner diameter of 150 μm was inserted into a 3D printed cylindrical channel with a diameter of 2 mm . Flow rate of the two inlets, insert depth, liquid (density, viscosity and surface tension) and solid (roughness, contact angle) properties all play a role in the droplet formation. Different regimes - dripping, jetting, unstable state - were observed in the micro-channel on varying these parameters. With certain parameter combinations, successive formation of micro-droplets with equal size was observed and its size can be much smaller than the smallest channel size. Based on our experimental results, the droplet formation via 3D printed micro T-junction was investigated through direct numerical simulations with a code called Gerris. Reynolds numbers Re = ρUL / μ and Weber numbers We = ρU2 L / σ of the two liquids were introduced to measure the liquid effect. The parameter regime where different physical dynamics occur was studied and the regime transition was observed with certain threshold values. Qualitative and quantitative analysis were performed as well between simulations and experiments.
Sun, Guangying; Liu, Yanfang; Ahat, Hasanjan; Shen, Aijin; Liang, Xinmiao; Xue, Xingya; Luo, Yuqin; Yang, Jian; Liu, Zhao-Sheng; Aisa, Haji Akber
2017-07-07
In this study, "two dimensional" molecularly imprinted solid-phase extraction (2D-MIP-SPE) of semi-preparative grade was constructed to fast purify ellagitannins in pomegranate husk extract with the help of crystallization and reverse-phase liquid chromatgoraphy (RPLC). Ellagic acid and punicalagin imprinted polymers were synthesized in batch mode and two semi-preparative MIP-SPE columns were individually packed. After investigaing "functional complementation", 2D-MIP-SPE was constructed using ellagic acid MIP and punicalagin MIP-SPE as the first and second dimension, respectively. Then, pomegranate husk extract was fast divided into four fractions individually enriching in ellagic acid, granatin A, punicalagin and ellagic acid glucoside by 2D-MIP-SPE. With the aid of crystallization and RPLC, ellagic acid (13.5mg) and punicalagin (53.4mg) were fast obtained in 30min. Ellagic acid glucoside was purified to the purity near 100% with a recovery of 86.1%. Granatin A (92%) was directly obtained by 2D-MIP-SPE with the recovery of 81.8%. All above indicated that 2D-MIP-SPE was highly efficient in natural product purification. The concept of "functional complementation" was expected to be a useful tool in the construction of 2D-MIP-SPE. Copyright © 2017 Elsevier B.V. All rights reserved.
Gerace, E; Salomone, A; Abbadessa, G; Racca, S; Vincenti, M
2012-02-01
A fast screening protocol was developed for the simultaneous determination of nine anti-estrogenic agents (aminoglutethimide, anastrozole, clomiphene, drostanolone, formestane, letrozole, mesterolone, tamoxifen, testolactone) plus five of their metabolites in human urine. After an enzymatic hydrolysis, these compounds can be extracted simultaneously from urine with a simple liquid-liquid extraction at alkaline conditions. The analytes were subsequently analyzed by fast-gas chromatography/mass spectrometry (fast-GC/MS) after derivatization. The use of a short column, high-flow carrier gas velocity and fast temperature ramping produced an efficient separation of all analytes in about 4 min, allowing a processing rate of 10 samples/h. The present analytical method was validated according to UNI EN ISO/IEC 17025 guidelines for qualitative methods. The range of investigated parameters included the limit of detection, selectivity, linearity, repeatability, robustness and extraction efficiency. High MS-sampling rate, using a benchtop quadrupole mass analyzer, resulted in accurate peak shape definition under both scan and selected ion monitoring modes, and high sensitivity in the latter mode. Therefore, the performances of the method are comparable to the ones obtainable from traditional GC/MS analysis. The method was successfully tested on real samples arising from clinical treatments of hospitalized patients and could profitably be used for clinical studies on anti-estrogenic drug administration.
ERIC Educational Resources Information Center
Homem, Vera; Alves, Arminda; Santos, Lu´cia
2014-01-01
A laboratory application with a strong component in analytical chemistry was designed for undergraduate students, in order to introduce a current problem in the environmental science field, the water contamination by antibiotics. Therefore, a simple and rapid method based on direct injection and high performance liquid chromatography-tandem mass…
Ortelli, Didier; Edder, Patrick; Cognard, Emmanuelle; Jan, Philippe
2008-06-09
Cyanobacteria, commonly called "blue-green algae", may accumulate in surface water supplies as "blooms" and may concentrate on the surface as blue-green "scums". Some species of cyanobacteria produce toxins and are of relevance to water supplies and to microalgae dietary supplements. To ensure the safety of drinking water and blue-green algae products, analyses are the only way to determine the presence or absence of toxins. This paper shows the use of ultra performance liquid chromatography (UPLC) coupled to orthogonal acceleration time of flight (TOF) mass spectrometry for the detection and quantitation of microcystins. The method presented is very sensitive, simple, fast, robust and did not require fastidious clean-up step. Limits of detection of 0.1 microg L(-1) in water and 0.1-0.2 microg g(-1) in microalgae samples were achieved. Method performances were satisfactory and appropriate for monitoring of water and dietary supplements. The method was applied in routine to samples taken from Swiss market or buy on internet website. Among 19 samples, six showed the presence of microcystins LR and LA at harmful levels.
NASA Astrophysics Data System (ADS)
Vitillo, F.; Vitale Di Maio, D.; Galati, C.; Caruso, G.
2015-11-01
A CFD analysis has been carried out to study the thermal-hydraulic behavior of liquid metal coolant in a fuel assembly of triangular lattice. In order to obtain fast and accurate results, the isotropic two-equation RANS approach is often used in nuclear engineering applications. A different approach is provided by Non-Linear Eddy Viscosity Models (NLEVM), which try to take into account anisotropic effects by a nonlinear formulation of the Reynolds stress tensor. This approach is very promising, as it results in a very good numerical behavior and in a potentially better fluid flow description than classical isotropic models. An Anisotropic Shear Stress Transport (ASST) model, implemented into a commercial software, has been applied in previous studies, showing very trustful results for a large variety of flows and applications. In the paper, the ASST model has been used to perform an analysis of the fluid flow inside the fuel assembly of the ALFRED lead cooled fast reactor. Then, a comparison between the results of wall-resolved conjugated heat transfer computations and the results of a decoupled analysis using a suitable thermal wall-function previously implemented into the solver has been performed and presented.
AlKhalidi, Bashar A; Shtaiwi, Majed; AlKhatib, Hatim S; Mohammad, Mohammad; Bustanji, Yasser
2008-01-01
A fast and reliable method for the determination of repaglinide is highly desirable to support formulation screening and quality control. A first-derivative UV spectroscopic method was developed for the determination of repaglinide in tablet dosage form and for dissolution testing. First-derivative UV absorbance was measured at 253 nm. The developed method was validated for linearity, accuracy, precision, limit of detection (LOD), and limit of quantitation (LOQ) in comparison to the U.S. Pharmacopeia (USP) column high-performance liquid chromatographic (HPLC) method. The first-derivative UV spectrophotometric method showed excellent linearity [correlation coefficient (r) = 0.9999] in the concentration range of 1-35 microg/mL and precision (relative standard deviation < 1.5%). The LOD and LOQ were 0.23 and 0.72 microg/mL, respectively, and good recoveries were achieved (98-101.8%). Statistical comparison of results of the first-derivative UV spectrophotometric and the USP HPLC methods using the t-test showed that there was no significant difference between the 2 methods. Additionally, the method was successfully used for the dissolution test of repaglinide and was found to be reliable, simple, fast, and inexpensive.
Shan, Chen-Xiao; Cui, Xiao-Bing; Yu, Sheng; Chai, Chuan; Wen, Hong-Mei; Wang, Xin-Zhi; Sun, Xue
2016-01-01
3,4-Divanillyltetrahydrofuran is the main active ingredient of nettle root which can increase steroid hormones in the bloodstream for many of bodybuilders. To better understand its pharmacological activities, we need to determine its pharmacokinetic profiles. In this study, a rapid and sensitive ultra-fast liquid chromatography-tandem mass spectrometry (UFLC-MS/MS) method has been developed for the determination of 3,4-divanillyltetrahydrofuran in the plasma of rats. Chromatographic separation was performed on a C18 column at 40°C, with a gradient elution consisting of methanol and water containing 0.3% (v/v) formic acid at a flow rate of 0.8mL/min. The detection was performed using an electrospray triple-quadrupole MS/MS via positive ion multiple reaction monitoring mode. The lower limits-of-quantification determined were 0.5ng/mL. The intra- and inter-day precision (RSD%) was found to be within 15% and the accuracy (RE%) ranged from -4.0% to 7.0%. This simple yet sensitive method was fully validated and could be successfully applied to the study on pharmacokinetics of 3, 4-divanillyltetrahydrofuran. Copyright © 2015 Elsevier B.V. All rights reserved.
Tejada-Casado, Carmen; Lara, Francisco J; García-Campaña, Ana M; Del Olmo-Iruela, Monsalud
2018-03-30
Ultra-high performance liquid chromatography (UHPLC) coupled with fluorescence detection (FL) has been proposed for the first time to determine thirteen benzimidazoles (BZs) in farmed fish samples. In order to optimize the chromatographic separation, parameters such as mobile phase composition and flow rate were carefully studied, establishing a gradient mode with a mobile phase consisted of water (solvent A) and acetonitrile (solvent B) at a flow rate of 0.4 mL/min. The separation was performed on a Zorbax Eclipse Plus RRHD C 18 column (50 × 2.1 mm, 1.8 μm), involving a total analysis time lower than 12 min. Salting-out assisted liquid-liquid extraction (SALLE) was applied as sample treatment to different types of farmed fish (trout, sea bream and sea bass). To obtain satisfactory extraction efficiencies for the studied analytes, several parameters affecting the SALLE procedure were optimized including the amount of sample, type and volume of the extraction solvent, and the nature and amount of the salt used. Characterization of the method in terms of performance characteristics was carried out, obtaining satisfactory results for the linearity (R 2 ≥ 0.997), repeatability (RSD ≤ 6.1%), reproducibility (RSD ≤ 10.8%) and recoveries (R ≥ 79%; RSD ≤ 7.8%). Detection limits between 0.04-29.9 μg kg -1 were obtained, demonstrating the applicability of this fast, simple and environmentally friendly method. Copyright © 2018 Elsevier B.V. All rights reserved.
Pre-Licensing Evaluation of Legacy SFR Metallic Fuel Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yacout, A. M.; Billone, M. C.
2016-09-16
The US sodium cooled fast reactor (SFR) metallic fuel performance data that are of interest to advanced fast reactors applications, can be attributed mostly to the Integral Fast Reactor (IFR) program between 1984 and 1994. Metallic fuel data collected prior to the IFR program were associated with types of fuel that are not of interest to future advanced reactors deployment (e.g., previous U-Fissium alloy fuel). The IFR fuels data were collected from irradiation of U-Zr based fuel alloy, with and without Pu additions, and clad in different types of steels, including HT9, D9, and 316 stainless-steel. Different types of datamore » were generated during the program, and were based on the requirements associated with the DOE Advanced Liquid Metal Cooled Reactor (ALMR) program.« less
Coaxial atomization of a round liquid jet in a high speed gas stream: A phenomenological study
NASA Astrophysics Data System (ADS)
Mayer, W. O. H.
1994-05-01
Coaxial injectors have proven to be advantageous for the injection, atomization and mixing of propellants in cryogenic H2/O2 rocket engines. Thereby, a round liquid oxygen jet is atomized by a fast, coaxial gaseous hydrogen jet. This article summarizes phenomenological studies of coaxial spray generation under a broad variation of influencing parameters including injector design, inflow, and fluid conditions. The experimental investigations, performed using spark light photography and high speed cinematography in a shadow graph setup as main diagnostic means, illuminate the most important processes leading to atomization. These are identified as turbulence in the liquid jet, surface instability, surface wave growth and droplet detachment. Numerical simulations including free surface flow phenomena are a further diagnostic tool to elucidate some atomization particulars. The results of the study are of general importance in the field of liquid atomization.
Li, Jia-Fu; Fang, Hua; Yan, Xia; Chang, Fang-Rong; Wu, Zhen; Wu, Yun-Long; Qiu, Ying-Kun
2016-07-22
An on-line comprehensive preparative two-dimensional normal-phase liquid chromatography×reversed-phase liquid chromatography (2D NPLC×RPLC) system was constructed with a newly developed vacuum evaporation assisted adsorption (VEAA) interface, allowing fast removal of NPLC solvent in the vacuum condition and successfully solving the solvent incompatibility problem between NPLC and RPLC. The system achieved on-line solvent exchange within the two dimensions and its performance was illustrated by gram-scale isolation of crude extract from the venom of Bufo bufo gargarizans. Within separation time of ∼20h, 19 compounds were obtained with high purity in a single run. With the VEAA interface, the 2D system exhibited apparent advantages in separation efficiency and automation compared with conventional methods, indicating its promising application in the routine separation process for complicated natural products. Copyright © 2016 Elsevier B.V. All rights reserved.
Microfluidic study of fast gas-liquid reactions.
Li, Wei; Liu, Kun; Simms, Ryan; Greener, Jesse; Jagadeesan, Dinesh; Pinto, Sascha; Günther, Axel; Kumacheva, Eugenia
2012-02-15
We present a new concept for studies of the kinetics of fast gas-liquid reactions. The strategy relies on the microfluidic generation of highly monodisperse gas bubbles in the liquid reaction medium and subsequent analysis of time-dependent changes in bubble dimensions. Using reactions of CO(2) with secondary amines as an exemplary system, we demonstrate that the method enables rapid determination of reaction rate constant and conversion, and comparison of various binding agents. The proposed approach addresses two challenges in studies of gas-liquid reactions: a mass-transfer limitation and a poorly defined gas-liquid interface. The proposed strategy offers new possibilities in studies of the fundamental aspects of rapid multiphase reactions, and can be combined with throughput optimization of reaction conditions.
Core-shell microspheres with porous nanostructured shells for liquid chromatography.
Ahmed, Adham; Skinley, Kevin; Herodotou, Stephanie; Zhang, Haifei
2018-01-01
The development of new stationary phases has been the key aspect for fast and efficient high-performance liquid chromatography separation with relatively low backpressure. Core-shell particles, with a solid core and porous shell, have been extensively investigated and commercially manufactured in the last decade. The excellent performance of core-shell particles columns has been recorded for a wide range of analytes, covering small and large molecules, neutral and ionic (acidic and basic), biomolecules and metabolites. In this review, we first introduce the advance and advantages of core-shell particles (or more widely known as superficially porous particles) against non-porous particles and fully porous particles. This is followed by the detailed description of various methods used to fabricate core-shell particles. We then discuss the applications of common silica core-shell particles (mostly commercially manufactured), spheres-on-sphere particles and core-shell particles with a non-silica shell. This review concludes with a summary and perspective on the development of stationary phase materials for high-performance liquid chromatography applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Valeja, Santosh G.; Emmett, Mark R.; Marshall, Alan G.
2012-04-01
Hydrogen/deuterium exchange monitored by mass spectrometry is an important non-perturbing tool to study protein structure and protein-protein interactions. However, water in the reversed-phase liquid chromatography mobile phase leads to back-exchange of D for H during chromatographic separation of proteolytic peptides following H/D exchange, resulting in incorrect identification of fast-exchanging hydrogens as unexchanged hydrogens. Previously, fast high-performance liquid chromatography (HPLC) and supercritical fluid chromatography have been shown to decrease back-exchange. Here, we show that replacement of up to 40% of the water in the LC mobile phase by the modifiers, dimethylformamide (DMF) and N-methylpyrrolidone (NMP) (i.e., polar organic modifiers that lack rapid exchanging hydrogens), significantly reduces back-exchange. On-line LC micro-ESI FT-ICR MS resolves overlapped proteolytic peptide isotopic distributions, allowing for quantitative determination of the extent of back-exchange. The DMF modified solvent composition also improves chromatographic separation while reducing back-exchange relative to conventional solvent.
Wan, Hao; Yin, Heyu; Lin, Lu; Zeng, Xiangqun; Mason, Andrew J
2018-02-01
The growing impact of airborne pollutants and explosive gases on human health and occupational safety has escalated the demand of sensors to monitor hazardous gases. This paper presents a new miniaturized planar electrochemical gas sensor for rapid measurement of multiple gaseous hazards. The gas sensor features a porous polytetrafluoroethylene substrate that enables fast gas diffusion and room temperature ionic liquid as the electrolyte. Metal sputtering was utilized for platinum electrodes fabrication to enhance adhesion between the electrodes and the substrate. Together with carefully selected electrochemical methods, the miniaturized gas sensor is capable of measuring multiple gases including oxygen, methane, ozone and sulfur dioxide that are important to human health and safety. Compared to its manually-assembled Clark-cell predecessor, this sensor provides better sensitivity, linearity and repeatability, as validated for oxygen monitoring. With solid performance, fast response and miniaturized size, this sensor is promising for deployment in wearable devices for real-time point-of-exposure gas pollutant monitoring.
Kim, K. S.; Nakae, L. F.; Prasad, M. K.; ...
2017-07-31
We present that fast nanosecond timescale neutron and gamma-ray counting can be performed with a (liquid) scintillator array. Fission chains in metal evolve over a timescale of tens of nanoseconds. If the metal is surrounded by moderator, neutrons leaking from the metal can thermalize and diffuse in the moderator. With finite probability, the diffusing neutrons can return to the metal and restart the fast fission chain. The timescale for this restart process is microseconds. A theory describing time evolving fission chains for metal surrounded by moderator, including this restart process, is presented. Finally, this theory is sufficiently simple for itmore » to be implemented for real-time analysis.« less
A liquid xenon imaging telescope for 1-30 MeV gamma-ray astrophysics
NASA Technical Reports Server (NTRS)
Aprile, Elena; Mukherjee, Reshmi; Suzuki, Masayo
1989-01-01
A study of the primary scintillation light in liquid xenon excited by 241 Am alpha particles and 207 Bi internal conversion electrons are discussed. The time dependence and the intensity of the light at different field strengths have been measured with a specifically designed chamber, equipped with a CaF sub 2 light transmitting window coupled to a UV sensitive PMT. The time correlation between the fast light signal and the charge signal shows that the scintillation signals produced in liquid xenon by ionizing particles provides an ideal trigger in a Time Projection type LXe detector aiming at full imaging of complex gamma-ray events. Researchers also started Monte Carlo calculations to establish the performance of a LXe imaging telescope for high energy gamma-rays.
Unsteady heat transfer performance of heat pipe with axially swallow-tailed microgrooves
NASA Astrophysics Data System (ADS)
Zhang, R. P.
2017-04-01
A mathematical model is developed for predicting the transient heat transfer and fluid flow of heat pipe with axially swallow-tailed microgrooves. The effects of liquid convective heat transfer in the microgrooves, liquid-vapor interfacial phase-change heat transfer and liquid-vapor interfacial shear stress are accounted for in the present model. The coupled non-linear control equations are solved numerically. Mass flow rate at the interface is obtained from the application of kinetic theory. Time variation of wall temperature is studied from the initial startup to steady state. The numerical results are verified by experiments. Time constants for startup and shutdown operation are defined to determine how fast a heat pipe responds to an applied input heat flux, which slightly decreases with increasing heat load.
In-situ upgrading of biomass pyrolysis vapors: catalyst screening on a fixed bed reactor.
Stefanidis, S D; Kalogiannis, K G; Iliopoulou, E F; Lappas, A A; Pilavachi, P A
2011-09-01
In-situ catalytic upgrading of biomass fast pyrolysis vapors was performed in a fixed bed bench-scale reactor at 500°C, for catalyst screening purposes. The catalytic materials tested include a commercial equilibrium FCC catalyst (E-cat), various commercial ZSM-5 formulations, magnesium oxide and alumina materials with varying specific surface areas, nickel monoxide, zirconia/titania, tetragonal zirconia, titania and silica alumina. The bio-oil was characterized measuring its water content, the carbon-hydrogen-oxygen (by difference) content and the chemical composition of its organic fraction. Each catalytic material displayed different catalytic effects. High surface area alumina catalysts displayed the highest selectivity towards hydrocarbons, yielding however low organic liquid products. Zirconia/titania exhibited good selectivity towards desired compounds, yielding higher organic liquid product than the alumina catalysts. The ZSM-5 formulation with the highest surface area displayed the most balanced performance having a moderate selectivity towards hydrocarbons, reducing undesirable compounds and producing organic liquid products at acceptable yields. Copyright © 2011 Elsevier Ltd. All rights reserved.
Bertolín, J R; Joy, M; Rufino-Moya, P J; Lobón, S; Blanco, M
2018-08-15
An accurate, fast, economic and simple method to determine carotenoids, tocopherols, retinol and cholesterol in lyophilised samples of ovine milk, muscle and liver and raw samples of fat, which are difficult to lyophilise, is sought. Those analytes have been studied in animal tissues to trace forage feeding and unhealthy contents. The sample treatment consisted of mild overnight saponification, liquid-liquid extraction, evaporation with vacuum evaporator and redissolution. The quantification of the different analytes was performed by the use of ultra-high performance liquid chromatography with diode-array detector for carotenoids, retinol and cholesterol and fluorescence detector for tocopherols. The retention times of the analytes were short and the resolution between analytes was very high. The limits of detection and quantification were very low. This method is suitable for all the matrices and analytes and could be adapted to other animal species with minor changes. Copyright © 2018 Elsevier Ltd. All rights reserved.
Nuclear Engineering Computer Modules, Thermal-Hydraulics, TH-2: Liquid Metal Fast Breeder Reactors.
ERIC Educational Resources Information Center
Reihman, Thomas C.
This learning module is concerned with the temperature field, the heat transfer rates, and the coolant pressure drop in typical liquid metal fast breeder reactor (LMFBR) fuel assemblies. As in all of the modules of this series, emphasis is placed on developing the theory and demonstrating the use with a simplified model. The heart of the module is…
2011-03-31
2.1 Experimental Investigation of Coal and Biomass Gasification using In-situ Diagnostics ................ 31 2.2 References...need for fundamental scientific and synergistic research in catalytic biomass fast-hydropyrolysis, advanced coal gasification and liquid fuel...experimental findings will improve the scientific knowledge of catalytic biomass fast-hydropyrolysis, coal/ biomass gasification and liquid fuel combustion
Quan, Ji; Hu, Zeshu
2018-01-01
Food safety issues closely related to human health have always received widespread attention from the world society. As a basic food source, wheat is the fundamental support of human survival; therefore, the detection of pesticide residues in wheat is very necessary. In this work, the ultrasonic-assisted ionic liquid-dispersive liquid-liquid microextraction (DLLME) method was firstly proposed, and the extraction and analysis of three organophosphorus pesticides were carried out by combining high-performance liquid chromatography (HPLC). The extraction efficiencies of three ionic liquids with bis(trifluoromethylsulfonyl)imide (Tf2N) anion were compared by extracting organophosphorus in wheat samples. It was found that the use of 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([OMIM][Tf2N]) had both high enrichment efficiency and appropriate extraction recovery. Finally, the method was used for the determination of three wheat samples, and the recoveries of them were 74.8–112.5%, 71.8–104.5%, and 83.8–115.5%, respectively. The results show that the method proposed is simple, fast, and efficient, which can be applied to the extraction of organic matters in wheat samples. PMID:29854562
NASA Astrophysics Data System (ADS)
Narula, Manmeet Singh
Innovative concepts using fast flowing thin films of liquid metals (like lithium) have been proposed for the protection of the divertor surface in magnetic fusion devices. However, concerns exist about the possibility of establishing the required flow of liquid metal thin films because of the presence of strong magnetic fields which can cause flow disrupting MHD effects. A plan is underway to design liquid lithium based divertor protection concepts for NSTX, a small spherical torus experiment at Princeton. Of these, a promising concept is the use of modularized fast flowing liquid lithium film zones, as the divertor (called the NSTX liquid surface module concept or NSTX LSM). The dynamic response of the liquid metal film flow in a spatially varying magnetic field configuration is still unknown and it is suspected that some unpredicted effects might be lurking. The primary goal of the research work being reported in this dissertation is to provide qualitative and quantitative information on the liquid metal film flow dynamics under spatially varying magnetic field conditions, typical of the divertor region of a magnetic fusion device. The liquid metal film flow dynamics have been studied through a synergic experimental and numerical modeling effort. The Magneto Thermofluid Omnibus Research (MTOR) facility at UCLA has been used to design several experiments to study the MHD interaction of liquid gallium films under a scaled NSTX outboard divertor magnetic field environment. A 3D multi-material, free surface MHD modeling capability is under development in collaboration with HyPerComp Inc., an SBIR vendor. This numerical code called HIMAG provides a unique capability to model the equations of incompressible MHD with a free surface. Some parts of this modeling capability have been developed in this research work, in the form of subroutines for HIMAG. Extensive code debugging and benchmarking exercise has also been carried out. Finally, HIMAG has been used to study the MHD interaction of fast flowing liquid metal films under various divertor relevant magnetic field configurations through numerical modeling exercises.
ERIC Educational Resources Information Center
Martí-Andre´s, P.; Escuder-Gilabert, L.; Martín-Biosca, Y.; Sagrado, S.; Medina-Herna´ndez, M.J.
2015-01-01
Energy drinks, as familiar consumer products, have been widely used in laboratory courses to help promote student interest, as well as to connect lecture concepts with laboratory work. Energy drinks contain B vitamins: pyridoxine (vitamin B6) and riboflavin (vitamin B2) of which amounts are high enough to be of concern. In this work, a fast and…
Magiera, Sylwia; Kwietniowska, Ewelina
2016-11-15
In this study, an easy, simple and efficient method for the determination of naringenin enantiomers in fruit juices after salting-out-assisted liquid-liquid extraction (SALLE) and high-performance liquid chromatography (HPLC) with diode-array detection (DAD) was developed. The sample treatment is based on the use of water-miscible acetonitrile as the extractant and acetonitrile phase separation under high-salt conditions. After extraction, juice samples were incubated with hydrochloric acid in order to achieve hydrolysis of naringin to naringenin. The hydrolysis parameters were optimized by using a half-fraction factorial central composite design (CCD). After sample preparation, chromatographic separation was obtained on a Chiralcel® OJ-RH column using the mobile phase consisting of 10mM aqueous ammonium acetate:methanol:acetonitrile (50:30:20; v/v/v) with detection at 288nm. The average recovery of the analyzed compounds ranged from 85.6 to 97.1%. The proposed method was satisfactorily used for the determination of naringenin enantiomers in various fruit juices samples. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fast gray-to-gray switching of a hybrid-aligned liquid crystal cell
NASA Astrophysics Data System (ADS)
Choi, Tae-Hoon; Kim, Jung-Wook; Yoon, Tae-Hoon
2015-03-01
We demonstrate fast gray-to-gray (GTG) switching of a hybrid-aligned liquid crystal cell by applying both vertical and inplane electric fields to liquid crystals (LCs) using a four-terminal electrode structure. The LCs are switched to the bright state through downward tilting and twist deformation initiated by applying an in-plane electric field, whereas they are switched back to the initial dark state through optically hidden relaxation initiated by applying a vertical electric field for a short duration. The top electrode in the proposed device is grounded, which requires a much higher voltage to be applied for in-plane rotation of LCs. Thus, ultrafast turn-on switching of the device is achieved, whereas the turn-off switching of the proposed device is independent of the elastic constants and the viscosity of the LCs so that fast turn-off switching can be achieved. We experimentally obtained a total response time of 0.75 ms. Furthermore, fast GTG response within 3 ms could be achieved.
The Ongoing Impact of the U.S. Fast Reactor Integral Experiments Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
John D. Bess; Michael A. Pope; Harold F. McFarlane
2012-11-01
The creation of a large database of integral fast reactor physics experiments advanced nuclear science and technology in ways that were unachievable by less capital intensive and operationally challenging approaches. They enabled the compilation of integral physics benchmark data, validated (or not) analytical methods, and provided assurance of future rector designs The integral experiments performed at Argonne National Laboratory (ANL) represent decades of research performed to support fast reactor design and our understanding of neutronics behavior and reactor physics measurements. Experiments began in 1955 with the Zero Power Reactor No. 3 (ZPR-3) and terminated with the Zero Power Physics Reactormore » (ZPPR, originally the Zero Power Plutonium Reactor) in 1990 at the former ANL-West site in Idaho, which is now part of the Idaho National Laboratory (INL). Two additional critical assemblies, ZPR-6 and ZPR-9, operated at the ANL-East site in Illinois. A total of 128 fast reactor assemblies were constructed with these facilities [1]. The infrastructure and measurement capabilities are too expensive to be replicated in the modern era, making the integral database invaluable as the world pushes ahead with development of liquid metal cooled reactors.« less
Fast detection of atrazine in corn using thermometric biosensors.
Qie, Zhiwei; Ning, Baoan; Liu, Ming; Bai, Jialei; Peng, Yuan; Song, Nan; Lv, Zhiqiang; Wang, Ying; Sun, Siming; Su, Xuan; Zhang, Yihong; Gao, Zhixian
2013-09-07
Fast detection is important in screening large-scale samples. This study establishes a direct competitive ELISA method (dcTELISA) based on an enzyme thermistor for fast atrazine (ATZ) detection. ATZ competes with β-lactamase-labeled ATZ (ATZ-E) for the binding sites on anti-ATZ monoclonal antibody (mAb). The mAb are covalently bound to Controlled Pore Glass (CPG) in an immunoreactor to form immunocomplexes with ATZ and ATZ-E. Several parameters of biosensor performance were optimized, such as the ATZ-E concentration, concentration and nature of the substrate, flow rate, and effect of temperature on the sensor response. After optimization, the assay time for a single sample was 12 min. The work process and result were compared with those of high-performance liquid chromatography (HPLC). The detection results exhibited a recovery rate of 88% to 107% in ATZ-spiked fresh cut corn stalks and silage samples. The results obtained via dcTELISA had good correlation with that of HPLC, and the biosensor response was reproducible and stable even when used continuously for over 4 months. All these properties suggested that the fast detection method, dcTELISA, may be used to detect pesticide residue in large-scale samples.
Jin, Yang-Hui; Shi, Shi-Yuan; Zheng, Qi; Shen, Jian; Ying, Xiao-Zhang; Wang, Yi-Fan
2017-09-25
To investigate the application value of Xpert MTB/RIF in diagnosis of spinal tuberculosis and detection of rifampin resistance. The 109 pus specimens were obtained from patients who were primaryly diagnosed as spinal tuberculosis. All of the pus specimens were detected by acid-fast stain, liquid fast culturing by BACTEC MGIT 960 and Xpert MTB/RIF assay to definite the differences in sensitivity and specificity of mycobacterium tuberculosis among detecting methods. Pus specimens obtained by different methods were deteceded by MTB/RIF test to analyze the self-influence on Xpert MTB/RIF test. The result of liquid fast culturing by BACTEC MGIT 960 was used as the gold standard; and the value of Xpert MTB/RIF assay in detecting rifampin resistance was analyzed. The sensitivity of acid-fast stain, liquid fast culturing by BACTEC MGIT 960 and Xpert MTB/RIF assay were 25.92%, 48.15%, 77.78%, respectively. The sensitivity of pus specimens obtained from open surgery, ultrasound positioning puncture and biopsy the sensitivity were 83.78%, 76.47%, 44.68% respectively deteceded by MTB/RIF test. According to the gold standard of the results of liquid fast culturing by BACTEC MGIT 960 assay, the sensitivity and specificity of Xpert MTB/RIF assay in detecting rifampin resistance were 80%(4/5) and 90.70%(39/43), respectively. Xpert MTB/RIF assay has higher value in diagnosis of spinal tuberculosi, and also can detect rifampin resistance. The number of mycobacterium tuberculosis in pus specimens has a great influence in the sensitivity of Xpert MTB/RIF assay.
Liquid-like cationic sub-lattice in copper selenide clusters
NASA Astrophysics Data System (ADS)
White, Sarah L.; Banerjee, Progna; Jain, Prashant K.
2017-02-01
Super-ionic solids, which exhibit ion mobilities as high as those in liquids or molten salts, have been employed as solid-state electrolytes in batteries, improved thermoelectrics and fast-ion conductors in super-capacitors and fuel cells. Fast-ion transport in many of these solids is supported by a disordered, `liquid-like' sub-lattice of cations mobile within a rigid anionic sub-lattice, often achieved at high temperatures or pressures via a phase transition. Here we show that ultrasmall clusters of copper selenide exhibit a disordered cationic sub-lattice under ambient conditions unlike larger nanocrystals, where Cu+ ions and vacancies form an ordered super-structure similar to the bulk solid. The clusters exhibit an unusual cationic sub-lattice arrangement wherein octahedral sites, which serve as bridges for cation migration, are stabilized by compressive strain. The room-temperature liquid-like nature of the Cu+ sub-lattice combined with the actively tunable plasmonic properties of the Cu2Se clusters make them suitable as fast electro-optic switches.
Zhang, Yingzhi; Zhang, Aihua; Zhang, Ying; Sun, Hui; Meng, Xiangcai; Yan, Guangli; Wang, Xijun
2016-01-01
Acanthopanax senticosus (Rupr and Maxim) Harms (AS), a member of Araliaceae family, is a typical folk medicinal herb, which is widely distributed in the Northeastern part of China. Due to lack of this resource caused by the extensive use of its root, this work studied the chemical constituents of leaves of this plant with the purpose of looking for an alternative resource. In this work, a fast and optimized ultra-performance liquid chromatography method with quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) has been developed for the analysis of constituents in leaves extracts. A total of 131 compounds were identified or tentatively characterized including triterpenoid saponins, phenols, flavonoids, lignans, coumarins, polysaccharides, and other compounds based on their fragmentation behaviors. Besides, a total of 21 metabolites were identified in serum in rats after oral administration, among which 12 prototypes and 9 metabolites through the metabolic pathways of reduction, methylation, sulfate conjugation, sulfoxide to thioether and deglycosylation. The coupling of UPLC-QTOF-MS led to the in-depth characterization of the leaves extracts of AS both in vitro and in vivo on the basis of retention time, mass accuracy, and tandem MS/MS spectra. It concluded that this analytical tool was very valuable in the study of complex compounds in medicinal herb. HIGHLIGHT OF PAPER A fast UPLC-QTOF-MS has been developed for analysis of constituents in leaves extractsA total of 131 compounds were identified in leaves extractsA total of 21 metabolites including 12 prototypes and 9 metabolites were identified in vivo. SUMMARY Constituent’s analysis of Acanthopanax senticosus Harms leaf by ultra-performance liquid chromatography method with quadrupole time-of-flight mass spectrometry. Abbreviations used: AS: Acanthopanax senticosus (Rupr and Maxim) Harms, TCHM: Traditional Chinese herbal medicine, UPLC-QTOF-MS: Ultra-performance liquid chromatography method with time-of-flight mass spectrometry, MS/MS: Tandem mass spectrometry, PCA: Principal component analysis, PLS-DA: Partial least squared discriminant analysis, OPLS-DA: Orthogonal projection to latent structure-discriminant analysis. PMID:27076752
Fast Ignition and Sustained Combustion of Ionic Liquids
NASA Technical Reports Server (NTRS)
Joshi, Prakash B. (Inventor); Piper, Lawrence G. (Inventor); Oakes, David B. (Inventor); Sabourin, Justin L. (Inventor); Hicks, Adam J. (Inventor); Green, B. David (Inventor); Tsinberg, Anait (Inventor); Dokhan, Allan (Inventor)
2016-01-01
A catalyst free method of igniting an ionic liquid is provided. The method can include mixing a liquid hypergol with a HAN (Hydroxylammonium nitrate)-based ionic liquid to ignite the HAN-based ionic liquid in the absence of a catalyst. The HAN-based ionic liquid and the liquid hypergol can be injected into a combustion chamber. The HAN-based ionic liquid and the liquid hypergol can impinge upon a stagnation plate positioned at top portion of the combustion chamber.
Fast-switching chiral nematic liquid-crystal mode with polymer-sustained twisted vertical alignment.
Chang, Kai-Han; Joshi, Vinay; Chien, Liang-Chy
2017-04-01
We demonstrate a fast-switching liquid-crystal mode with polymer-sustained twisted vertical alignment. By optimizing the polymerization condition, a polymer microstructure with controlled orientation is produced. The polymer microstructure not only synergistically suppresses the optical bounce during field-induced homeotropic-twist transition but also shortens the response time significantly. Theoretical analyses validate that the ground state free energy density is modified by the aligning field of the polymer microstructure, which affects the driving voltage of the device. The outcomes of this paper will enable the development of fast-switching and achromatic electro-optical and photonic devices.
Fast-switching chiral nematic liquid-crystal mode with polymer-sustained twisted vertical alignment
NASA Astrophysics Data System (ADS)
Chang, Kai-Han; Joshi, Vinay; Chien, Liang-Chy
2017-04-01
We demonstrate a fast-switching liquid-crystal mode with polymer-sustained twisted vertical alignment. By optimizing the polymerization condition, a polymer microstructure with controlled orientation is produced. The polymer microstructure not only synergistically suppresses the optical bounce during field-induced homeotropic-twist transition but also shortens the response time significantly. Theoretical analyses validate that the ground state free energy density is modified by the aligning field of the polymer microstructure, which affects the driving voltage of the device. The outcomes of this paper will enable the development of fast-switching and achromatic electro-optical and photonic devices.
Preoperative fasting times in elective surgical patients at a referral Hospital in Botswana.
Abebe, Worknehe Agegnehu; Rukewe, Ambrose; Bekele, Negussie Alula; Stoffel, Moeng; Dichabeng, Mompelegi Nicoh; Shifa, Jemal Zeberga
2016-01-01
Adults and children are required to fast before anaesthesia to reduce the risk of regurgitation and aspiration of gastric contents. However, prolonged periods of fasting are unnecessary and may cause complications. This study was conducted to evaluate preoperative fasting period in our centre and compare it with the ASA recommendations and factors that influence fasting periods. This is a cross-sectional study of preoperative fasting times among elective surgical patients. A total numbers of 260 patients were interviewed as they arrived at the reception area of operating theatre using questionnaire. Majority of patients (98.1%) were instructed to fast from midnight. Fifteen patients (5.8%) reported that they were told the importance of preoperative fasting. The mean fasting period were 15.9±2.5 h (range 12.0-25.3 h) for solids and 15.3±2.3 h (range 12.0-22.0 h) for liquids. The mean duration of fasting was significantly longer for patients operated after midday compared to those operated before midday, p<0.001. The mean fasting periods were 7.65 times longer for clear liquid and 2.5 times for solids than the ASA guidelines. It is imperative that the Hospital should establish Preoperative fasting policies and teach the staff who should ensure compliance with guidelines.
Kolocouri, Filomila; Dotsikas, Yannis; Apostolou, Constantinos; Kousoulos, Constantinos; Soumelas, Georgios-Stefanos; Loukas, Yannis L
2011-01-01
An HPLC/MS/MS method characterized by complete automation and high throughput was developed for the determination of cilazapril and its active metabolite cilazaprilat in human plasma. All sample preparation and analysis steps were performed by using 2.2 mL 96 deep-well plates, while robotic liquid handling workstations were utilized for all liquid transfer steps, including liquid-liquid extraction. The whole procedure was very fast compared to a manual procedure with vials and no automation. The method also had a very short chromatographic run time of 1.5 min. Sample analysis was performed by RP-HPLC/MS/MS with positive electrospray ionization using multiple reaction monitoring. The calibration curve was linear in the range of 0.500-300 and 0.250-150 ng/mL for cilazapril and cilazaprilat, respectively. The proposed method was fully validated and proved to be selective, accurate, precise, reproducible, and suitable for the determination of cilazapril and cilazaprilat in human plasma. Therefore, it was applied to a bioequivalence study after per os administration of 2.5 mg tablet formulations of cilazapril.
Zheng, Rong; Wu, Yi-Hong; Jiang, De-Xi; Zhang, Dan
2012-02-01
A fast, simple and sensitive high performance liquid chromatographic (HPLC) method has been developed for determination of 10 α -methoxy-6-methyl ergoline-8 β -methanol (MDL, a main metabolite of nicergoline) in human plasma. One-step liquid-liquid extraction (LLE) with diethyl ether was employed as the sample preparation method. Tizanidine hydrochloride was selected as the internal standard (IS). Analysis was carried out on a Diamonsil ODS column (150 mm×4.6 mm, 5 μm) using acetonitrile-ammonium acetate (0.1 mol/L) (15/85, v/v) as mobile phase at detection wavelength of 224 nm. The calibration curves were linear over the range of 2.288-73.2 ng/mL with a lower limit of quantitation (LLOQ) of 2.288 ng/mL. The intra- and inter-day precision values were below 13% and the recoveries were from 74.47% to 83.20% at three quality control levels. The method herein described was successfully applied in a randomized crossover bioequivalence study of two different nicergoline preparations after administration of 30 mg in 20 healthy volunteers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Josephson, J.; Sowa, E.S.
1977-04-01
The design and testing of a simple and reliable Self-Actuated Shutdown System (SASS) for the protection of Liquid Metal Fast Breeder Reactors (LMFBRs) is described. A ferromagnetic Curie temperature permanent magnet holding device has been selected for the design of the Self-Actuated Shutdown System in order to enhance the safety of liquid metal cooled fast reactors (LMFBRs). The self-actuated, self-contained device operates such that accident conditions, resulting in increased coolant temperature or neutron flux reduce the magnetic holding force suspending a neutron absorber above the core by raising the temperature of the trigger mechanism above the Curie point. Neutron absorbermore » material is then inserted into the core, under gravity, terminating the accident. Two possible design variations of the selected concept are presented.« less
Recent developments in plastic scintillators with pulse shape discrimination
NASA Astrophysics Data System (ADS)
Zaitseva, N. P.; Glenn, A. M.; Mabe, A. N.; Carman, M. L.; Hurlbut, C. R.; Inman, J. W.; Payne, S. A.
2018-05-01
The paper reports results of studies conducted to improve scintillation performance of plastic scintillators capable of neutron/gamma pulse-shape discrimination (PSD). Compositional modifications made with the polymer matrix improved physical stability, allowing for increased loads of the primary dye that, in combination with selected secondary dyes, provided enhanced PSD especially important for the lower energy ranges. Additional measurements were made with a newly-introduced PSD plastic EJ-276, that replaces the first commercially produced EJ-299. Comparative studies conducted with the new materials and EJ-309 liquids at large scale (up to 10 cm) show that current plastics may provide scintillation and PSD performance sufficient for the replacement of liquid scintillators. Comparison to stilbene single crystals compliments the information about the status of the solid-state materials recently developed for fast neutron detection applications.
Schroyer, B.R.; Capel, P.D.
1996-01-01
A high-performance liquid Chromatography (HPLC) method is presented for the for the fast, quantitative analysis of the target analytes in water and in low organic-carbon, sandy soils that are known to be contaminated with the parent herbicides. Speed and ease of sample preparation was prioritized above minimizing detection limits. Soil samples were extracted using 80:20 methanol:water (volume:volume). Water samples (50 ??L) were injected directly into the HPLC without prior preparation. Method quantification limits for soil samples (10 g dry weight) and water samples ranged from 20 to 110 ng/g and from 20 to 110 ??g/L for atrazine and its transformation products and from 80 to 320 ng/g and from 80 to 320 ??g/L for alachlor and its transformation products, respectively.
Sommella, Eduardo; Pepe, Giacomo; Pagano, Francesco; Tenore, Gian Carlo; Dugo, Paola; Manfra, Michele; Campiglia, Pietro
2013-10-01
We have developed a fast ultra HPLC with ion-trap TOF-MS method for the analysis of flavonoids in Citrus bergamia juice. With respect to the typical methods for the analysis of these matrices based on conventional HPLC techniques, a tenfold faster separation was attained. The use of a core-shell particle column ensured high resolution within the fast analysis time of only 5 min. Unambiguous determination of flavonoid identity was obtained by the employment of a hybrid ion-trap TOF mass spectrometer with high mass accuracy (average error 1.69 ppm). The system showed good retention time and peak area repeatability, with maximum RSD% values of 0.36 and 3.86, respectively, as well as good linearity (R(2) ≥ 0.99). Our results show that ultra HPLC can be a useful tool for ultra fast qualitative/quantitative analysis of flavonoid compounds in citrus fruit juices. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Guo, Jianming; Shang, Er-Xin; Duan, Jin-Ao; Tang, Yuping; Qian, Dawei; Su, Shulan
2010-02-01
In drug metabolism research, the setting up of a complex series of mass spectrometry experiments and the subsequent analysis of the large amounts of data produced are often time-consuming. In this paper, we describe a strategy using ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC/QTOFMS) with automated data analysis software (MetaboLynx) for fast analysis of the metabolic profile of flavonoids in Abelmoschus manihot. Rat plasma and urine samples collected 1 h and 0-12 h after oral administration of Abelmoschus manihot were analyzed by UPLC/QTOFMS within 15 min. The post-acquisition data were processed using MetaboLynx. With key parameters carefully set, MetaboLynx is able to show the presence of a wide range of metabolites with only a limited requirement for manual intervention and data interpretation time. A total of 16 and 38 metabolites were identified in plasma and urine compared with blank samples. The results indicated that methylation and glucuronidation after deglycosylation were the major metabolic pathways of flavonoid glycosides in Abelmoschus manihot. The present study provided important information about the metabolism of flavonoid glycosides in Abelmoschus manihot which will be helpful for fully understanding the mechanism of action of this herb. Furthermore, this work demonstrated the potential of the UPLC/QTOFMS approach using MetaboLynx for fast and automated identification of metabolites from Chinese herbal medicines. Copyright (c) 2010 John Wiley & Sons, Ltd.
Badoud, F; Grata, E; Perrenoud, L; Avois, L; Saugy, M; Rudaz, S; Veuthey, J-L
2009-05-15
The general strategy to perform anti-doping analyses of urine samples starts with the screening for a wide range of compounds. This step should be fast, generic and able to detect any sample that may contain a prohibited substance while avoiding false negatives and reducing false positive results. The experiments presented in this work were based on ultra-high-pressure liquid chromatography coupled to hybrid quadrupole time-of-flight mass spectrometry. Thanks to the high sensitivity of the method, urine samples could be diluted 2-fold prior to injection. One hundred and three forbidden substances from various classes (such as stimulants, diuretics, narcotics, anti-estrogens) were analysed on a C(18) reversed-phase column in two gradients of 9min (including two 3min equilibration periods) for positive and negative electrospray ionisation and detected in the MS full scan mode. The automatic identification of analytes was based on retention time and mass accuracy, with an automated tool for peak picking. The method was validated according to the International Standard for Laboratories described in the World Anti-Doping Code and was selective enough to comply with the World Anti-Doping Agency recommendations. In addition, the matrix effect on MS response was measured on all investigated analytes spiked in urine samples. The limits of detection ranged from 1 to 500ng/mL, allowing the identification of all tested compounds in urine. When a sample was reported positive during the screening, a fast additional pre-confirmatory step was performed to reduce the number of confirmatory analyses.
NASA Astrophysics Data System (ADS)
Mosunova, N. A.
2018-05-01
The article describes the basic models included in the EUCLID/V1 integrated code intended for safety analysis of liquid metal (sodium, lead, and lead-bismuth) cooled fast reactors using fuel rods with a gas gap and pellet dioxide, mixed oxide or nitride uranium-plutonium fuel under normal operation, under anticipated operational occurrences and accident conditions by carrying out interconnected thermal-hydraulic, neutronics, and thermal-mechanical calculations. Information about the Russian and foreign analogs of the EUCLID/V1 integrated code is given. Modeled objects, equation systems in differential form solved in each module of the EUCLID/V1 integrated code (the thermal-hydraulic, neutronics, fuel rod analysis module, and the burnup and decay heat calculation modules), the main calculated quantities, and also the limitations on application of the code are presented. The article also gives data on the scope of functions performed by the integrated code's thermal-hydraulic module, using which it is possible to describe both one- and twophase processes occurring in the coolant. It is shown that, owing to the availability of the fuel rod analysis module in the integrated code, it becomes possible to estimate the performance of fuel rods in different regimes of the reactor operation. It is also shown that the models implemented in the code for calculating neutron-physical processes make it possible to take into account the neutron field distribution over the fuel assembly cross section as well as other features important for the safety assessment of fast reactors.
Steam generator for liquid metal fast breeder reactor
Gillett, James E.; Garner, Daniel C.; Wineman, Arthur L.; Robey, Robert M.
1985-01-01
Improvements in the design of internal components of J-shaped steam generators for liquid metal fast breeder reactors. Complex design improvements have been made to the internals of J-shaped steam generators which improvements are intended to reduce tube vibration, tube jamming, flow problems in the upper portion of the steam generator, manufacturing complexities in tube spacer attachments, thermal stripping potentials and difficulties in the weld fabrication of certain components.
NASA Technical Reports Server (NTRS)
Habiby, Sarry F.; Collins, Stuart A., Jr.
1987-01-01
The design and implementation of a digital (numerical) optical matrix-vector multiplier are presented. A Hughes liquid crystal light valve, the residue arithmetic representation, and a holographic optical memory are used to construct position coded optical look-up tables. All operations are performed in effectively one light valve response time with a potential for a high information density.
Habiby, S F; Collins, S A
1987-11-01
The design and implementation of a digital (numerical) optical matrix-vector multiplier are presented. A Hughes liquid crystal light valve, the residue arithmetic representation, and a holographic optical memory are used to construct position coded optical look-up tables. All operations are performed in effectively one light valve response time with a potential for a high information density.
Zhu, Bangjie; Liu, Feng; Li, Xituo; Wang, Yan; Gu, Xue; Dai, Jieyu; Wang, Guiming; Cheng, Yu; Yan, Chao
2015-01-01
Endogenous carbohydrates in biosamples are frequently highlighted as the most differential metabolites in many metabolomics studies. A simple, fast, simultaneous quantitative method for 16 endogenous carbohydrates in plasma has been developed using hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry. In order to quantify 16 endogenous carbohydrates in plasma, various conditions, including columns, chromatographic conditions, mass spectrometry conditions, and plasma preparation methods, were investigated. Different conditions in this quantified analysis were performed and optimized. The reproducibility, precision, recovery, matrix effect, and stability of the method were verified. The results indicated that a methanol/acetonitrile (50:50, v/v) mixture could effectively and reproducibly precipitate rat plasma proteins. Cold organic solvents coupled with vortex for 1 min and incubated at -20°C for 20 min were the most optimal conditions for protein precipitation and extraction. The results, according to the linearity, recovery, precision, matrix effect, and stability, showed that the method was satisfactory in the quantification of endogenous carbohydrates in rat plasma. The quantified analysis of endogenous carbohydrates in rat plasma performed excellently in terms of sensitivity, high throughput, and simple sample preparation, which met the requirement of quantification in specific expanded metabolomic studies after the global metabolic profiling research. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Laboratory simulation of heat exchange for liquids with Pr > 1: Heat transfer
NASA Astrophysics Data System (ADS)
Belyaev, I. A.; Zakharova, O. D.; Krasnoshchekova, T. E.; Sviridov, V. G.; Sukomel, L. A.
2016-02-01
Liquid metals are promising heat transfer agents in new-generation nuclear power plants, such as fast-neutron reactors and hybrid tokamaks—fusion neutron sources (FNSs). We have been investigating hydrodynamics and heat exchange of liquid metals for many years, trying to reproduce the conditions close to those in fast reactors and fusion neutron sources. In the latter case, the liquid metal flow takes place in a strong magnetic field and strong thermal loads resulting in development of thermogravitational convection in the flow. In this case, quite dangerous regimes of magnetohydrodynamic (MHD) heat exchange not known earlier may occur that, in combination with other long-known regimes, for example, the growth of hydraulic drag in a strong magnetic field, make the possibility of creating a reliable FNS cooling system with a liquid metal heat carrier problematic. There exists a reasonable alternative to liquid metals in FNS, molten salts, namely, the melt of lithium and beryllium fluorides (Flibe) and the melt of fluorides of alkali metals (Flinak). Molten salts, however, are poorly studied media, and their application requires detailed scientific substantiation. We analyze the modern state of the art of studies in this field. Our contribution is to answer the following question: whether above-mentioned extremely dangerous regimes of MHD heat exchange detected in liquid metals can exist in molten salts. Experiments and numerical simulation were performed in order to answer this question. The experimental test facility represents a water circuit, since water (or water with additions for increasing its electrical conduction) is a convenient medium for laboratory simulation of salt heat exchange in FNS conditions. Local heat transfer coefficients along the heated tube, three-dimensional (along the length and in the cross section, including the viscous sublayer) fields of averaged temperature and temperature pulsations are studied. The probe method for measurements in a flow is described in detail. Experimental data are designated for verification of codes simulating heat exchange of molten salts.
Quantitative Insights into the Fast Pyrolysis of Extracted Cellulose, Hemicelluloses, and Lignin
Windt, Michael; Ziegler, Bernhard; Appelt, Jörn; Saake, Bodo; Meier, Dietrich; Bridgwater, Anthony
2017-01-01
Abstract The transformation of lignocellulosic biomass into bio‐based commodity chemicals is technically possible. Among thermochemical processes, fast pyrolysis, a relatively mature technology that has now reached a commercial level, produces a high yield of an organic‐rich liquid stream. Despite recent efforts to elucidate the degradation paths of biomass during pyrolysis, the selectivity and recovery rates of bio‐compounds remain low. In an attempt to clarify the general degradation scheme of biomass fast pyrolysis and provide a quantitative insight, the use of fast pyrolysis microreactors is combined with spectroscopic techniques (i.e., mass spectrometry and NMR spectroscopy) and mixtures of unlabeled and 13C‐enriched materials. The first stage of the work aimed to select the type of reactor to use to ensure control of the pyrolysis regime. A comparison of the chemical fragmentation patterns of “primary” fast pyrolysis volatiles detected by using GC‐MS between two small‐scale microreactors showed the inevitable occurrence of secondary reactions. In the second stage, liquid fractions that are also made of primary fast pyrolysis condensates were analyzed by using quantitative liquid‐state 13C NMR spectroscopy to provide a quantitative distribution of functional groups. The compilation of these results into a map that displays the distribution of functional groups according to the individual and main constituents of biomass (i.e., hemicelluloses, cellulose and lignin) confirmed the origin of individual chemicals within the fast pyrolysis liquids. PMID:28644517
Fast Conversion of Ionic Liquids and Poly(Ionic Liquid)s into Porous Nitrogen-Doped Carbons in Air
Men, Yongjun; Ambrogi, Martina; Han, Baohang; Yuan, Jiayin
2016-01-01
Ionic liquids and poly(ionic liquid)s have been successfully converted into nitrogen-doped porous carbons with tunable surface area up to 1200 m2/g at high temperatures in air. Compared to conventional carbonization process conducted under inert gas to produce nitrogen-doped carbons, the new production method was completed in a rather shorter time without noble gas protection. PMID:27070588
Fast Conversion of Ionic Liquids and Poly(Ionic Liquid)s into Porous Nitrogen-Doped Carbons in Air.
Men, Yongjun; Ambrogi, Martina; Han, Baohang; Yuan, Jiayin
2016-04-08
Ionic liquids and poly(ionic liquid)s have been successfully converted into nitrogen-doped porous carbons with tunable surface area up to 1200 m²/g at high temperatures in air. Compared to conventional carbonization process conducted under inert gas to produce nitrogen-doped carbons, the new production method was completed in a rather shorter time without noble gas protection.
GLS-Finder: A Platform for Fast Profiling of Glucosinolates in Brassica Vegetables.
Sun, Jianghao; Zhang, Mengliang; Chen, Pei
2016-06-01
Mass spectrometry combined with related tandem techniques has become the most popular method for plant secondary metabolite characterization. We introduce a new strategy based on in-database searching, mass fragmentation behavior study, formula predicting for fast profiling of glucosinolates, a class of important compounds in brassica vegetables. A MATLAB script-based expert system computer program, "GLS-Finder", was developed. It is capable of qualitative and semi-quantitative analyses of glucosinolates in samples using data generated by ultrahigh-performance liquid chromatography-high-resolution accurate mass with multi-stage mass fragmentation (UHPLC-HRAM/MS(n)). A suite of bioinformatic tools was integrated into the "GLS-Finder" to perform raw data deconvolution, peak alignment, glucosinolate putative assignments, semi-quantitation, and unsupervised principal component analysis (PCA). GLS-Finder was successfully applied to identify intact glucosinolates in 49 commonly consumed Brassica vegetable samples in the United States. It is believed that this work introduces a new way of fast data processing and interpretation for qualitative and quantitative analyses of glucosinolates, where great efficacy was improved in comparison to identification manually.
A narrow open tubular column for high efficiency liquid chromatographic separation.
Chen, Huang; Yang, Yu; Qiao, Zhenzhen; Xiang, Piliang; Ren, Jiangtao; Meng, Yunzhu; Zhang, Kaiqi; Juan Lu, Joann; Liu, Shaorong
2018-04-30
We report a great feature of open tubular liquid chromatography when it is run using an extremely narrow (e.g., 2 μm inner diameter) open tubular column: more than 10 million plates per meter can be achieved in less than 10 min and under an elution pressure of ca. 20 bar. The column is coated with octadecylsilane and both isocratic and gradient separations are performed. We reveal a focusing effect that may be used to interpret the efficiency enhancement. We also demonstrate the feasibility of using this technique for separating complex peptide samples. This high-resolution and fast separation technique is promising and can lead to a powerful tool for trace sample analysis.
Beyki, Mostafa Hossein; Bayat, Mehrnoosh; Shemirani, Farzaneh
2016-10-01
Ionic liquids are considered to be a class of environmentally friendly compounds as combination of them with bioresource polymeric substances such as; cellulose, constitute emerging coating materials. Biosorption by polymeric ionic liquids exhibits an attractive green way that involves low cost and irrespective of toxicity. As a result, a novel polymeric ionic liquid has been developed by the reaction of one step synthesized Fe3O4-cellulose nanohybrid, epichlorohydrin and 1-methylimidazole and employed as a green sorbent for efficient biosorption of Congo red dye. Effective parameters on dye removing as well as their interactions were determined with response surface methodology (RSM). Congo red adsorption showed fast equilibrium time (11min) with maximum uptake of 131mgg(-1). Isotherm study revealed that Langmuir adsorption model can better describe dye adsorption behavior. Regeneration of the sorbent was performed with a mixture of methanol-acetone-NaOH (3.0molL(-1)) solution. Copyright © 2016 Elsevier Ltd. All rights reserved.
Frizzarin, Rejane M; Maya, Fernando; Estela, José M; Cerdà, Víctor
2016-12-01
A novel fully-automated magnetic stirring-assisted lab-in-syringe analytical procedure has been developed for the fast and efficient dispersive liquid-liquid microextraction (DLLME) of caffeine in coffee beverages. The procedure is based on the microextraction of caffeine with a minute amount of dichloromethane, isolating caffeine from the sample matrix with no further sample pretreatment. Selection of the relevant extraction parameters such as the dispersive solvent, proportion of aqueous/organic phase, pH and flow rates have been carefully evaluated. Caffeine quantification was linear from 2 to 75mgL(-1), with detection and quantification limits of 0.46mgL(-1) and 1.54mgL(-1), respectively. A coefficient of variation (n=8; 5mgL(-1)) of a 2.1% and a sampling rate of 16h(-1), were obtained. The procedure was satisfactorily applied to the determination of caffeine in brewed, instant and decaf coffee samples, being the results for the sample analysis validated using high-performance liquid chromatography. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bazregar, Mohammad; Rajabi, Maryam; Yamini, Yadollah; Arghavani-Beydokhti, Somayeh; Asghari, Alireza
2018-04-01
In this work, a novel method, namely centrifugeless dispersive liquid-liquid microextraction, is introduced for the efficient extraction of banned Sudan dyes from foodstuff and water samples. In this method, which is based upon the salting-out phenomenon, in order to accelerate the extraction process, the extraction solvent (1-undecanol, 75 μL) is dispersed into the sample solution. Then the mixture is passed through a small column filled with 5 g sodium chloride, used as a separating reagent. In this condition, fine droplets of the extraction solvent are floated on the mixture, and the phase separation is simply achieved. This method is environmentally friendly, simple, and very fast, so that the overall extraction time is only 7 min. Under the optimal experimental conditions, the preconcentration factors in the range of 90-121 were obtained for the analytes. Also good linearities were obtained in the range of 2.5-1200 ng mL -1 (r 2 ≥ 0.993). Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Singh, Jagdish P.; Yueh, Fang-Yu; Kalluru, Rajamohan R.; Harrison, Louie
2012-01-01
An integrated fiber-optic Raman sensor has been designed for real-time, nonintrusive detection of liquid nitrogen in liquid oxygen (LOX) at high pressures and high flow rates in order to monitor the quality of LOX used during rocket engine ground testing. The integrated sensor employs a high-power (3-W) Melles Griot diode-pumped, solid-state (DPSS), frequency-doubled Nd:YAG 532- nm laser; a modified Raman probe that has built-in Raman signal filter optics; two high-resolution spectrometers; and photomultiplier tubes (PMTs) with selected bandpass filters to collect both N2 and O2 Raman signals. The PMT detection units are interfaced with National Instruments Lab- VIEW for fast data acquisition. Studies of sensor performance with different detection systems (i.e., spectrometer and PMT) were carried out. The concentration ratio of N2 and O2 can be inferred by comparing the intensities of the N2 and O2 Raman signals. The final system was fabricated to measure N2 and O2 gas mixtures as well as mixtures of liquid N2 and LOX
Pebdani, Arezou Amiri; Shabani, Ali Mohammad Haji; Dadfarnia, Shayesteh; Talebianpoor, Mohammad Sharif; Khodadoust, Saeid
2016-05-01
In this work, a fast, easy, and efficient dispersive liquid-liquid microextraction method based on solidification of floating organic drop followed by high-performance liquid chromatography with UV detection was developed for the separation/preconcentration and determination of the drug valsartan. Experimental design was applied for the optimization of the effective variables (such as volume of extracting and dispersing solvents, ionic strength, and pH) on the extraction efficiency of valsartan from urine samples. The optimized values were 250.0 μL ethanol, 65.0 μL 1-dodecanol, 4.0% w/v NaCl, pH 3.8, 1.0 min extraction time, and 4.0 min centrifugation at 4000 rpm min(-1) . The linear response (r(2) = 0.997) was obtained in the range of 0.013-10.0 μg mL(-1) with a limit of detection of 4.0 ng mL(-1) and relative standard deviations of less than 5.0 % (n = 6). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Li, Jia-Fu; Yan, Xia; Wu, Yun-Long; Fang, Mei-Juan; Wu, Zhen; Qiu, Ying-Kun
2017-04-15
An analytical two-dimensional normal-phase liquid chromatography × reversed-phase liquid chromatography (2D NPLC × RPLC) system was constructed with a newly developed thermal evaporation assisted adsorption (TEAA) interface. This novel TEAA interface with heating temperature above solvent boiling point allowed fast removal of organic NPLC solvent and successfully solved the solvent incompatibility problem between NPLC and RPLC. The system achieved rapid on-line solvent exchange between the two dimensions within a short modulation time of 190 s and was applied in the analysis of an extract from the skin of Bufo bufo gargarizans. This is the first time to realize the on-line comprehensive analysis of a moderate polar natural product by coupling NPLC with reversed phase ultra-high performance liquid chromatography (UHPLC). To be highlighted, with the TEAA interface, the 2D NPLC × RPLC system provided excellent resolution and orthogonality (75.2%), when compared with that of 2D RPLC × RPLC. Copyright © 2017 Elsevier B.V. All rights reserved.
Hemming, C J; Patey, G N
2004-10-01
Bridge phases associated with a phase transition between two liquid phases occur when a two-component liquid mixture is confined between chemically patterned walls. In the bulk the liquid mixture with components A, B undergoes phase separation into an A-rich phase and a B-rich phase. The walls bear stripes attractive to A. In the bridge phase A-rich and B-rich regions alternate. Grand canonical Monte Carlo studies are performed with the alignment between stripes on opposite walls varied. Misalignment of the stripes places the nanoscopic liquid bridges under shear strain. The bridges exert a Hookean restoring force on the walls for small displacements from equilibrium. As the strain increases there are deviations from Hooke's law. Eventually there is an abrupt yielding of the bridges. Molecular dynamics simulations show the bridges form or disintegrate on time scales which are fast compared to wall motion and transport of molecules into or from the confined space. Some interesting possible applications of the phenomena are discussed. (c) 2004 American Institute of Physics
Saito, Y; Mishima, K; Tobita, Y; Suzuki, T; Matsubayashi, M
2004-10-01
To establish reasonable safety concepts for the realization of commercial liquid-metal fast breeder reactors, it is indispensable to demonstrate that the release of excessive energy due to re-criticality of molten core could be prevented even if a severe core damage accident took place. Two-phase flow due to the boiling of fuel-steel mixture in the molten core pool has a larger liquid-to-gas density ratio and higher surface tension in comparison with those of ordinary two-phase flows such as air-water flow. In this study, to investigate the effect of the recirculation flow on the bubble behavior, visualization and measurement of nitrogen gas-molten lead bismuth in a rectangular tank was performed by using neutron radiography and particle image velocimetry techniques. Measured flow parameters include flow regime, two-dimensional void distribution, and liquid velocity field in the tank. The present technique is applicable to the measurement of velocity fields and void fraction, and the basic characteristics of gas-liquid metal two-phase mixture were clarified.
Kubica, Paweł; Wasik, Andrzej; Kot-Wasik, Agata; Namieśnik, Jacek
2014-05-01
The influence of sucrose combustion products on smoking and nicotine addiction is still controversial because the presence of the sucrose may be treated as a source of aldehydes and organic acids. In e-liquids used as refills for electronic cigarettes, which are made primarily of poly(propylene glycol), glycerine and ethanol, sucrose may be present at trace levels, and its impact on mainstream smoke formation, and hence on human health and smoking/nicotine addiction is unknown. An analytical method was developed where high-performance liquid chromatography in hydrophilic interaction liquid chromatography mode and tandem mass spectrometry were used for fast and simple determination of sucrose and other saccharides in e-liquids for electronic cigarettes. Minimal effort was required in the sample preparation step, and satisfactory results were obtained, and the sample matrix had an insignificant impact. The chromatographic separation was done using an Ascentis Express OH5 column (150 mm × 2.1 mm, 2.7 μm). The coefficients of variation for within-day precision for three concentrations were 2.4 %, 1.6 % and 2.3 %, and the between-day coefficients of variation for a single concentration were 2.1 %, 2.5 % and 1.7 % measured on the next 3 days. The detection limit was 0.73 μg/g, and the sucrose content in e-liquids ranged from 0.76 to 72.93 μg/g among 37 samples. Moreover, with the method presented it is possible to determine the presence of other saccharides such as fructose, glucose, maltose and lactose. However, only sucrose was found in all samples of e-liquids. The proposed method is rapid, simple and reliable in terms of high-performance liquid chromatography coupled with tandem mass spectrometry.
Pyrolytic oil of banana (Musa spp.) pseudo-stem via fast process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdullah, Nurhayati; Sulaiman, Fauziah; Taib, Rahmad Mohd
This study was an attempt to produce bio-oil from banana pseudo-stem, a waste of banana cultivation, using fast pyrolysis technology. The compositions were determined and the thermal degradation behaviour of the raw material was analyzed using Perkin-Elmer Simultaneous Thermal Analyzer (STA) 6000. A 300 g/h fluidized bed bench scale fast pyrolysis unit, assembled with double screw feeders and cyclones, operating at atmospheric pressure, was used to obtain the pyrolysis liquid. The study involves the impact of the following key variables; the reactor temperature in the range of 450–650 °C, and the residence time in the range of 1.00–3.00 s. The particlemore » size was set at 224-400 µm. The properties of the liquid product were analyzed for calorific heating value, pH value, conductivity, water and char content. The basic functional groups of the compositions were also determined using FTIR. The properties of the liquid product were compared with other wood derived bio-oil. The pyrolysis liquids derived from banana pseudo-stem were found to be in an aqueous phase.« less
A review of the toxicity of biomass pyrolysis liquids formed at low temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diebold, J P
1997-04-01
The scaleup of biomass fast pyrolysis systems to large pilot and commercial scales will expose an increasingly large number of personnel to potential health hazards, especially during the evaluation of the commercial use of the pyrolysis condensates. Although the concept of fast pyrolysis to optimize liquid products is relatively new, low-temperature pyrolysis processes have been used over the aeons to produce charcoal and liquid by-products, e.g., smoky food flavors, food preservatives, and aerosols containing narcotics, e.g., nicotine. There are a number of studies in the historical literature that concern the hazards of acute and long-term exposure to smoke and tomore » the historical pyrolysis liquids formed at low temperatures. The reported toxicity of smoke, smoke food flavors, and fast pyrolysis oils is reviewed. The data found for these complex mixtures suggest that the toxicity may be less than that of the individual components. It is speculated that there may be chemical reactions that take place that serve to reduce the toxicity during aging. 81 refs.« less
NASA Astrophysics Data System (ADS)
Swaminathan, K.; Asokane, C.; Sylvia, J. I.; Kalyanasundaram, P.; Swaminathan, P.
2012-02-01
An ultrasonic under-sodium scanner has been developed for deployment in Prototype Fast Breeder Reactor (PFBR) which is in advanced stage of construction at Kalpakkam, India. Its purpose is to scan the above-core plenum for detection, if any, of displacement of sub-assemblies. During its burn-up in the reactor, the head of a Fuel Sub-Assembly (FSA) may undergo a lateral shift from its original position (called `bowing') due to the fast neutron induced damage on its structural material. A simple scanning technique has been developed for measuring the extent of bowing in-situ. This paper describes a PC-controlled mock-up of the scanner used to implement the scanning technique and the results obtained of scanning a mock-up FSA head under water. The details of the liquid-sodium proof transducer developed for use in the PFBR scanner and its performance are also discussed.
Wei, Zuofu; Pan, Youzhi; Li, Lu; Huang, Yuyang; Qi, Xiaolin; Luo, Meng; Zu, Yuangang; Fu, Yujie
2014-11-01
A method based on matrix solid-phase dispersion extraction followed by ultra high performance liquid chromatography with tandem mass spectrometry is presented for the extraction and determination of phenolic compounds in Equisetum palustre. This method combines the high efficiency of matrix solid-phase dispersion extraction and the rapidity, sensitivity, and accuracy of ultra high performance liquid chromatography with tandem mass spectrometry. The influential parameters of the matrix solid-phase dispersion extraction were investigated and optimized. The optimized conditions were as follows: silica gel was selected as dispersing sorbent, the ratio of silica gel to sample was selected to be 2:1 (400/200 mg), and 8 mL of 80% methanol was used as elution solvent. Furthermore, a fast and sensitive ultra high performance liquid chromatography with tandem mass spectrometry method was developed for the determination of nine phenolic compounds in E. palustre. This method was carried out within <6 min, and exhibited satisfactory linearity, precision, and recovery. Compared with ultrasound-assisted extraction, the proposed matrix solid-phase dispersion procedure possessed higher extraction efficiency, and was more convenient and time saving with reduced requirements on sample and solvent amounts. All these results suggest that the developed method represents an excellent alternative for the extraction and determination of active components in plant matrices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ramanujam, N; Sivaselvakumar, M; Ramalingam, S
2017-11-01
A simple, sensitive and reproducible ultra-performance liquid chromatography (UPLC) method has been developed and validated for simultaneous estimation of polychlorinated biphenyl (PCB) 77 and PCB 180 in mouse plasma. The sample preparation was performed by simple liquid-liquid extraction technique. The analytes were chromatographed on a Waters Acquity H class UPLC system using isocratic mobile phase conditions at a flow rate of 0.3 mL/min and Acquity UPLC BEH shield RP 18 column maintained at 35°C. Quantification was performed on a photodiode array detector set at 215 nm and PCB 101 was used as internal standard (IS). PCB 77, PCB 180, and IS retention times were 2.6, 4.7 and 2.8 min, respectively, and the total run time was 6 min. The method was validated for specificity, selectivity, recovery, linearity, accuracy, precision and sample stability. The calibration curve was linear over the concentration range 10-3000 ng/mL for PCB 77 and PCB 180. Intra- and inter-day precisions for PCBs 77 and 180 were found to be good with CV <4.64%, and the accuracy ranged from 98.90 to 102.33% in mouse plasma. The validated UPLC method was successfully applied to the pharmacokinetic study of PCBs 77 and 180 in mouse plasma. Copyright © 2017 John Wiley & Sons, Ltd.
Fast axial scanning for 2-photon microscopy using liquid lens technology.
Tehrani, Kayvan Forouhesh; Sun, Min Kyoung; Karumbaiah, Lohitash; Mortensen, Luke J
2017-03-01
Scanning microscopy methods require movement of the focus in Z coordinates to produce an image of a 3-dimensional volume. In a typical imaging system, the optical setup is kept fixed and either the sample or the objective is translated with a mechanical stage driven by a stepper motor or a piezoelectric element. Mechanical Z scanning is precise, but its slow response and vulnerability to mechanical vibrations and stress make it disadvantageous to image dynamic, time-varying samples such as live cell structures. An alternative method less susceptible to these problems is to change the focal plane using conjugate optics. Deformable mirrors, acoustooptics, and electrically tunable lenses have been experimented with to achieve this goal and have attained very fast and precise Z-scanning without physically moving the sample. Here, we present the use of a liquid lens for fast axial scanning. Liquid lenses have a long functional life, high degree of phase shift, and low sensitivity to mechanical stress. They work on the principle of refraction at a liquid-liquid interface. At the boundary of a polar and an apolar liquid a spherical surface is formed whose curvature can be controlled by adjusting its relative wettability using electrowetting. We characterize the effects of the lens on attainable Z displacement, beam spectral characteristics, and pulse duration as compared with mechanical scanning.
Fast axial scanning for 2-photon microscopy using liquid lens technology
Tehrani, Kayvan Forouhesh; Sun, Min Kyoung; Karumbaiah, Lohitash; Mortensen, Luke J.
2018-01-01
Scanning microscopy methods require movement of the focus in Z coordinates to produce an image of a 3-dimensional volume. In a typical imaging system, the optical setup is kept fixed and either the sample or the objective is translated with a mechanical stage driven by a stepper motor or a piezoelectric element. Mechanical Z scanning is precise, but its slow response and vulnerability to mechanical vibrations and stress make it disadvantageous to image dynamic, time-varying samples such as live cell structures. An alternative method less susceptible to these problems is to change the focal plane using conjugate optics. Deformable mirrors, acoustooptics, and electrically tunable lenses have been experimented with to achieve this goal and have attained very fast and precise Z-scanning without physically moving the sample. Here, we present the use of a liquid lens for fast axial scanning. Liquid lenses have a long functional life, high degree of phase shift, and low sensitivity to mechanical stress. They work on the principle of refraction at a liquid-liquid interface. At the boundary of a polar and an apolar liquid a spherical surface is formed whose curvature can be controlled by adjusting its relative wettability using electrowetting. We characterize the effects of the lens on attainable Z displacement, beam spectral characteristics, and pulse duration as compared with mechanical scanning. PMID:29706682
Conceptual design of laser fusion reactor KOYO-fast Concepts of reactor system and laser driver
NASA Astrophysics Data System (ADS)
Kozaki, Y.; Miyanaga, N.; Norimatsu, T.; Soman, Y.; Hayashi, T.; Furukawa, H.; Nakatsuka, M.; Yoshida, K.; Nakano, H.; Kubomura, H.; Kawashima, T.; Nishimae, J.; Suzuki, Y.; Tsuchiya, N.; Kanabe, T.; Jitsuno, T.; Fujita, H.; Kawanaka, J.; Tsubakimoto, K.; Fujimoto, Y.; Lu, J.; Matsuoka, S.; Ikegawa, T.; Owadano, Y.; Ueda, K.; Tomabechi, K.; Reactor Design Committee in Ife Forum, Members Of
2006-06-01
We have carried out the design studies of KOYO-Fast laser fusion power plant, using fast ignition cone targets, DPSSL lasers, and LiPb liquid wall chambers. Using fast ignition targets, we could design a middle sized 300 MWe reactor module, with 200 MJ fusion pulse energy and 4 Hz rep-rates, and 1200MWe modular power plants with 4 reactor modules and a 16 Hz laser driver. The liquid wall chambers with free surface cascade flows are proposed for cooling surface quickly enough to a 4 Hz pulse operation. We examined the potential of Yb-YAG ceramic lasers operated at 150˜ 225 K for both implosion and heating laser systems required for a 16-Hz repetition and 8 % total efficiency.
NASA Astrophysics Data System (ADS)
Hao, Chonglei; Liu, Yahua; Chen, Xuemei; He, Yuncheng; Li, Qiusheng; Li, K. Y.; Wang, Zuankai
2014-10-01
Electrowetting on dielectric (EWOD) has emerged as a powerful tool to electrically manipulate tiny individual droplets in a controlled manner. Despite tremendous progress over the past two decades, current EWOD operating in ambient conditions has limited functionalities posing challenges for its applications, including electronic display, energy generation, and microfluidic systems. Here, we demonstrate a new paradigm of electrowetting on liquid-infused film (EWOLF) that allows for complete reversibility and tunable transient response simultaneously. We determine that these functionalities in EWOLF are attributed to its novel configuration, which allows for the formation of viscous liquid-liquid interfaces as well as additional wetting ridges, thereby suppressing the contact line pinning and severe droplet oscillation encountered in the conventional EWOD. Finally, by harnessing these functionalities demonstrated in EWOLF, we also explore its application as liquid lens for fast optical focusing.
Hao, Chonglei; Liu, Yahua; Chen, Xuemei; He, Yuncheng; Li, Qiusheng; Li, K. Y.; Wang, Zuankai
2014-01-01
Electrowetting on dielectric (EWOD) has emerged as a powerful tool to electrically manipulate tiny individual droplets in a controlled manner. Despite tremendous progress over the past two decades, current EWOD operating in ambient conditions has limited functionalities posing challenges for its applications, including electronic display, energy generation, and microfluidic systems. Here, we demonstrate a new paradigm of electrowetting on liquid-infused film (EWOLF) that allows for complete reversibility and tunable transient response simultaneously. We determine that these functionalities in EWOLF are attributed to its novel configuration, which allows for the formation of viscous liquid-liquid interfaces as well as additional wetting ridges, thereby suppressing the contact line pinning and severe droplet oscillation encountered in the conventional EWOD. Finally, by harnessing these functionalities demonstrated in EWOLF, we also explore its application as liquid lens for fast optical focusing. PMID:25355005
Hao, Chonglei; Liu, Yahua; Chen, Xuemei; He, Yuncheng; Li, Qiusheng; Li, K Y; Wang, Zuankai
2014-10-30
Electrowetting on dielectric (EWOD) has emerged as a powerful tool to electrically manipulate tiny individual droplets in a controlled manner. Despite tremendous progress over the past two decades, current EWOD operating in ambient conditions has limited functionalities posing challenges for its applications, including electronic display, energy generation, and microfluidic systems. Here, we demonstrate a new paradigm of electrowetting on liquid-infused film (EWOLF) that allows for complete reversibility and tunable transient response simultaneously. We determine that these functionalities in EWOLF are attributed to its novel configuration, which allows for the formation of viscous liquid-liquid interfaces as well as additional wetting ridges, thereby suppressing the contact line pinning and severe droplet oscillation encountered in the conventional EWOD. Finally, by harnessing these functionalities demonstrated in EWOLF, we also explore its application as liquid lens for fast optical focusing.
NASA Astrophysics Data System (ADS)
Smalyukh, Ivan I.
2018-03-01
Colloids are abundant in nature, science, and technology, with examples ranging from milk to quantum dots and the colloidal atom paradigm. Similarly, liquid crystal ordering is important in contexts ranging from biological membranes to laboratory models of cosmic strings and liquid crystal displays in consumer devices. Some of the most exciting recent developments in both of these soft matter fields emerge at their interface, in the fast-growing research arena of liquid crystal colloids. Mesoscale self-assembly in such systems may lead to artificial materials and to structures with emergent physical behavior arising from patterning of molecular order and nano- or microparticles into precisely controlled configurations. Liquid crystal colloids show exceptional promise for new discovery that may impinge on composite material fabrication, low-dimensional topology, photonics, and so on. Starting from physical underpinnings, I review the state of the art in this fast-growing field, with a focus on its scientific and technological potential.
Preoperative fasting times in elective surgical patients at a referral Hospital in Botswana
Abebe, Worknehe Agegnehu; Rukewe, Ambrose; Bekele, Negussie Alula; Stoffel, Moeng; Dichabeng, Mompelegi Nicoh; Shifa, Jemal Zeberga
2016-01-01
Introduction Adults and children are required to fast before anaesthesia to reduce the risk of regurgitation and aspiration of gastric contents. However, prolonged periods of fasting are unnecessary and may cause complications. This study was conducted to evaluate preoperative fasting period in our centre and compare it with the ASA recommendations and factors that influence fasting periods. Methods This is a cross-sectional study of preoperative fasting times among elective surgical patients. A total numbers of 260 patients were interviewed as they arrived at the reception area of operating theatre using questionnaire. Results Majority of patients (98.1%) were instructed to fast from midnight. Fifteen patients (5.8%) reported that they were told the importance of preoperative fasting. The mean fasting period were 15.9±2.5 h (range 12.0-25.3 h) for solids and 15.3±2.3 h (range 12.0-22.0 h) for liquids. The mean duration of fasting was significantly longer for patients operated after midday compared to those operated before midday, p<0.001. Conclusion The mean fasting periods were 7.65 times longer for clear liquid and 2.5 times for solids than the ASA guidelines. It is imperative that the Hospital should establish Preoperative fasting policies and teach the staff who should ensure compliance with guidelines. PMID:27222691
Gao, Meng; Wang, Yuesheng; Wei, Huizhen; Ouyang, Hui; He, Mingzhen; Zeng, Lianqing; Shen, Fengyun; Guo, Qiang; Rao, Yi
2014-06-01
A method was developed for the determination of amygdalin and its metabolite prunasin in rat plasma after intragastric administration of Maxing shigan decoction. The analytes were identified by ultra-high performance liquid chromatography-tandem quadrupole time of flight mass spectrometry and quantitatively determined by ultra-high performance liquid chromatography-tandem triple quadrupole mass spectrometry. After purified by liquid-liquid extraction, the qualitative analysis of amygdalin and prunasin in the plasma sample was performed on a Shim-pack XR-ODS III HPLC column (75 mm x 2.0 mm, 1.6 microm), using acetonitrile-0.1% (v/v) formic acid aqueous solution. The detection was performed on a Triple TOF 5600 quadrupole time of flight mass spectrometer. The quantitative analysis of amygdalin and prunasin in the plasma sample was performed by separation on an Agilent C18 HPLC column (50 mm x 2.1 mm, 1.7 microm), using acetonitrile-0.1% (v/v) formic acid aqueous solution. The detection was performed on an AB Q-TRAP 4500 triple quadrupole mass spectrometer utilizing electrospray ionization (ESI) interface operated in negative ion mode and multiple-reaction monitoring (MRM) mode. The qualitative analysis results showed that amygdalin and its metabolite prunasin were detected in the plasma sample. The quantitative analysis results showed that the linear range of amygdalin was 1.05-4 200 ng/mL with the correlation coefficient of 0.999 0 and the linear range of prunasin was 1.25-2 490 ng/mL with the correlation coefficient of 0.997 0. The method had a good precision with the relative standard deviations (RSDs) lower than 9.20% and the overall recoveries varied from 82.33% to 95.25%. The limits of detection (LODs) of amygdalin and prunasin were 0.50 ng/mL. With good reproducibility, the method is simple, fast and effective for the qualitative and quantitative analysis of the amygdalin and prunasin in plasma sample of rats which were administered by Maxing shigan decoction.
Active-Interrogation Measurements of Induced-Fission Neutrons from Low-Enriched Uranium
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. L. Dolan; M. J. Marcath; M. Flaska
2012-07-01
Protection and control of nuclear fuels is paramount for nuclear security and safeguards; therefore, it is important to develop fast and robust controlling mechanisms to ensure the safety of nuclear fuels. Through both passive- and active-interrogation methods we can use fast-neutron detection to perform real-time measurements of fission neutrons for process monitoring. Active interrogation allows us to use different ranges of incident neutron energy to probe for different isotopes of uranium. With fast-neutron detectors, such as organic liquid scintillation detectors, we can detect the induced-fission neutrons and photons and work towards quantifying a sample’s mass and enrichment. Using MCNPX-PoliMi, amore » system was designed to measure induced-fission neutrons from U-235 and U-238. Measurements were then performed in the summer of 2010 at the Joint Research Centre in Ispra, Italy. Fissions were induced with an associated particle D-T generator and an isotopic Am-Li source. The fission neutrons, as well as neutrons from (n, 2n) and (n, 3n) reactions, were measured with five 5” by 5” EJ-309 organic liquid scintillators. The D-T neutron generator was available as part of a measurement campaign in place by Padova University. The measurement and data-acquisition systems were developed at the University of Michigan utilizing a CAEN V1720 digitizer and pulse-shape discrimination algorithms to differentiate neutron and photon detections. Low-enriched uranium samples of varying mass and enrichment were interrogated. Acquired time-of-flight curves and cross-correlation curves are currently analyzed to draw relationships between detected neutrons and sample mass and enrichment. In the full paper, the promise of active-interrogation measurements and fast-neutron detection will be assessed through the example of this proof-of-concept measurement campaign. Additionally, MCNPX-PoliMi simulation results will be compared to the measured data to validate the MCNPX-PoliMi code when used for active-interrogation simulations.« less
Huertas-Pérez, José Fernando; Arroyo-Manzanares, Natalia; Hitzler, Dominik; Castro-Guerrero, Francisco Germán; Gámiz-Gracia, Laura; García-Campaña, Ana M
2018-04-15
A fast and simple analytical method was developed and characterized for the determination of aflatoxins (B 1 , B 2 , G 1 and G 2 ) in rice. The procedure is based on a simple solid-liquid extraction without further clean-up, and analysis by ultra-high performance liquid chromatography coupled with fluorescence detection. Fluorescence emission of aflatoxins B 1 and G 1 was enhanced by post-column chemical derivatization using pyridinium bromide perbromide. The analytical method was satisfactorily characterized in white and brown rice. Under optimum conditions, external calibration in solvent could be used for quantification purposes and limits of quantification were below the maximum contents established by the European Union regulation for these contaminants/commodity group combination (0.07-0.14 µg/kg for white rice and 0.20-0.28 µg/kg for brown rice). Recovery studies carried out at three different concentration levels (0.5, 2 and 5 µg/kg) showed values in the range of 84.5-105.3%, and RSDs ≤ 5%. Copyright © 2017 Elsevier Ltd. All rights reserved.
Thorium Fuel Utilization Analysis on Small Long Life Reactor for Different Coolant Types
NASA Astrophysics Data System (ADS)
Permana, Sidik
2017-07-01
A small power reactor and long operation which can be deployed for less population and remote area has been proposed by the IAEA as a small and medium reactor (SMR) program. Beside uranium utilization, it can be used also thorium fuel resources for SMR as a part of optimalization of nuclear fuel as a “partner” fuel with uranium fuel. A small long-life reactor based on thorium fuel cycle for several reactor coolant types and several power output has been evaluated in the present study for 10 years period of reactor operation. Several key parameters are used to evaluate its effect to the reactor performances such as reactor criticality, excess reactivity, reactor burnup achievement and power density profile. Water-cooled types give higher criticality than liquid metal coolants. Liquid metal coolant for fast reactor system gives less criticality especially at beginning of cycle (BOC), which shows liquid metal coolant system obtains almost stable criticality condition. Liquid metal coolants are relatively less excess reactivity to maintain longer reactor operation than water coolants. In addition, liquid metal coolant gives higher achievable burnup than water coolant types as well as higher power density for liquid metal coolants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The SPS Concept Development and Evaluation Program includes a comparative assessment. An early first step in the assessment process is the selection and characterization of alternative technologies. This document describes the cost and performance (i.e., technical and environmental) characteristics of six central station energy alternatives: (1) conventional coal-fired powerplant; (2) conventional light water reactor (LWR); (3) combined cycle powerplant with low-Btu gasifiers; (4) liquid metal fast breeder reactor (LMFBR); (5) photovoltaic system without storage; and (6) fusion reactor.
USDA-ARS?s Scientific Manuscript database
The way to maximize scope of analysis, sample throughput, and laboratory efficiency in the monitoring of veterinary drug residues in food animals is to determine as many analytes as possible as fast as possible in as few methods as possible. Capital and overhead expenses are also reduced by using f...
Ahmadi-Jouibari, Toraj; Fattahi, Nazir; Shamsipur, Mojtaba; Pirsaheb, Meghdad
2013-11-01
A novel, simple, rapid and sensitive dispersive liquid-liquid microextraction method based on the solidification of floating organic drop (DLLME-SFO) combined with high-performance liquid chromatography-ultraviolet detection (HPLC-UV) was used to determine opium alkaloids in human plasma. During the extraction procedure, plasma protein was precipitated by using a mixture of zinc sulfate solution and acetonitrile. Some effective parameters on extraction were studied and optimized. Under the optimum conditions (extraction solvent: 30.0 μl 1-undecanol; disperser solvent: 470 μl acetone; pH: 9; salt addition: 1%(w/v) NaCl and extraction time: 0.5 min), calibration curves are linear in the range of 1.5-1000 μgl(-1) and limit of detections (LODs) are in the range of 0.5-5 μgl(-1). The relative standard deviations (RSDs) for 100 μgl(-1) of morphine and codeine, 10.0 μgl(-1) of papaverine and 20.0 μgl(-1) of noscapine in diluted human plasma are in the range of 4.3-7.4% (n=5). Finally, the method was successfully applied in the determination of opium alkaloids in the actual human plasma samples. The relative recoveries of plasma samples spiked with alkaloids are 88-110.5%. The obtained results show that DLLME-SFO combined with HPLC-UV is a fast and simple method for the determination of opium alkaloids in human plasma. Copyright © 2013 Elsevier B.V. All rights reserved.
Beccaria, Marco; Inferrera, Veronica; Rigano, Francesca; Gorynski, Krzysztof; Purcaro, Giorgia; Pawliszyn, Janusz; Dugo, Paola; Mondello, Luigi
2017-08-04
A simple, fast, and versatile method, using an ultra-high performance liquid chromatography system coupled with a low resolution (single quadrupole) mass spectrometer was optimized to perform multiclass lipid profiling of human plasma. Particular attention was made to develop a method suitable for both electrospray ionization and atmospheric pressure chemical ionization interfaces (sequentially in positive- and negative-ion mode), without any modification of the chromatographic conditions (mobile phase, flow-rate, gradient, etc.). Emphasis was given to the extrapolation of the structural information based on the fragmentation pattern obtained using atmospheric pressure chemical ionization interface, under each different ionization condition, highlighting the complementary information obtained using the electrospray ionization interface, of support for related molecule ions identification. Furthermore, mass spectra of phosphatidylserine and phosphatidylinositol obtained using the atmospheric pressure chemical ionization interface are reported and discussed for the first time. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sarangapani, R.; Jose, M. T.; Srinivasan, T. K.; Venkatraman, B.
2017-07-01
Methods for the determination of efficiency of an aged high purity germanium (HPGe) detector for gaseous sources have been presented in the paper. X-ray radiography of the detector has been performed to get detector dimensions for computational purposes. The dead layer thickness of HPGe detector has been ascertained from experiments and Monte Carlo computations. Experimental work with standard point and liquid sources in several cylindrical geometries has been undertaken for obtaining energy dependant efficiency. Monte Carlo simulations have been performed for computing efficiencies for point, liquid and gaseous sources. Self absorption correction factors have been obtained using mathematical equations for volume sources and MCNP simulations. Self-absorption correction and point source methods have been used to estimate the efficiency for gaseous sources. The efficiencies determined from the present work have been used to estimate activity of cover gas sample of a fast reactor.
High Birefringence Liquid Crystals for Laser Hardening and IR Countermeasure
2004-09-24
A fast-switching and scattering-free phase modulator using polymer network liquid crystal ( PNLC ) is demonstrated at **=l.55 um for laser beam...steering application. The strong polymer network anchoring greatly reduces the visco-elastic coefficient of the liquid crystal. As a result, the PNLC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behafarid, F.; Shaver, D. R.; Bolotnov, I. A.
The required technological and safety standards for future Gen IV Reactors can only be achieved if advanced simulation capabilities become available, which combine high performance computing with the necessary level of modeling detail and high accuracy of predictions. The purpose of this paper is to present new results of multi-scale three-dimensional (3D) simulations of the inter-related phenomena, which occur as a result of fuel element heat-up and cladding failure, including the injection of a jet of gaseous fission products into a partially blocked Sodium Fast Reactor (SFR) coolant channel, and gas/molten sodium transport along the coolant channels. The computational approachmore » to the analysis of the overall accident scenario is based on using two different inter-communicating computational multiphase fluid dynamics (CMFD) codes: a CFD code, PHASTA, and a RANS code, NPHASE-CMFD. Using the geometry and time history of cladding failure and the gas injection rate, direct numerical simulations (DNS), combined with the Level Set method, of two-phase turbulent flow have been performed by the PHASTA code. The model allows one to track the evolution of gas/liquid interfaces at a centimeter scale. The simulated phenomena include the formation and breakup of the jet of fission products injected into the liquid sodium coolant. The PHASTA outflow has been averaged over time to obtain mean phasic velocities and volumetric concentrations, as well as the liquid turbulent kinetic energy and turbulence dissipation rate, all of which have served as the input to the core-scale simulations using the NPHASE-CMFD code. A sliding window time averaging has been used to capture mean flow parameters for transient cases. The results presented in the paper include testing and validation of the proposed models, as well the predictions of fission-gas/liquid-sodium transport along a multi-rod fuel assembly of SFR during a partial loss-of-flow accident. (authors)« less
Khalikova, Maria A; Šatínský, Dalibor; Solich, Petr; Nováková, Lucie
2015-05-18
A novel simple, fast and efficient ultra-high performance supercritical fluid chromatography (UHPSFC) method was developed and validated for the separation and quantitative determination of eleven illegal dyes in chili-containing spices. The method involved a simple ultrasound-assisted liquid extraction of illegal compounds with tetrahydrofuran. The separation was performed using a supercritical fluid chromatography system and CSH Fluoro-Phenyl stationary phase at 70°C. The mobile phase was carbon dioxide and the mixture of methanol:acetonitrile (1:1, v/v) with 2.5% formic acid as an additive at the flow rate 2.0 mL min(-1). The UV-vis detection was accomplished at 500 nm for seven compounds and at 420 nm for Sudan Orange G, Butter Yellow, Fast Garnet GBC and Methyl Red due to their maximum of absorbance. All eleven compounds were separated in less than 5 min. The method was successfully validated and applied using three commercial samples of chili-containing spices - Chili sauce (Indonesia), Feferony sauce (Slovakia) and Mojo sauce (Spain). The linearity range of proposed method was 0.50-9.09 mg kg(-1) (r ≥ 0.995). The detection limits were determined as signal to noise ratio of 3 and were ranged from 0.15 mg kg(-1) to 0.60 mg kg(-1) (1.80 mg kg(-1) for Fast Garnet) for standard solution and from 0.25 mg kg(-1) to 1.00 mg kg(-1) (2.50 mg kg(-1) for Fast Garnet, 1.50 mg kg(-1) for Sudan Red 7B) for chili-containing samples. The recovery values were in the range of 73.5-107.2% and relative standard deviation ranging from 0.1% to 8.2% for within-day precision and from 0.5% to 8.8% for between-day precision. The method showed potential for being used to monitor forbidden dyes in food constituents. The developed UHPSFC method was compared to the UHPLC-UV method. The orthogonality of Sudan dyes separation by these two methods was demonstrated. Benefits and drawbacks were discussed showing the reliability of both methods for monitoring of studied illegal dyes in real food constituents. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niedermaier, Inga; Kolbeck, Claudia; Steinrück, Hans-Peter
The investigation of liquid surfaces and interfaces with the powerful toolbox of ultra-high vacuum (UHV)-based surface science techniques generally has to overcome the issue of liquid evaporation within the vacuum system. In the last decade, however, new classes of liquids with negligible vapor pressure at room temperature—in particular, ionic liquids (ILs)—have emerged for surface science studies. It has been demonstrated that particularly angle-resolved X-ray Photoelectron Spectroscopy (ARXPS) allows for investigating phenomena that occur at gas-liquid and liquid-solid interfaces on the molecular level. The results are not only relevant for IL systems but also for liquids in general. In all ofmore » these previous ARXPS studies, the sample holder had to be tilted in order to change the polar detection angle of emitted photoelectrons, which restricted the liquid systems to very thin viscous IL films coating a flat solid support. We now report on the concept and realization of a new and unique laboratory “Dual Analyzer System for Surface Analysis (DASSA)” which enables fast ARXPS, UV photoelectron spectroscopy, imaging XPS, and low-energy ion scattering at the horizontal surface plane of macroscopically thick non-volatile liquid samples. It comprises a UHV chamber equipped with two electron analyzers mounted for simultaneous measurements in 0° and 80° emission relative to the surface normal. The performance of DASSA on a first macroscopic liquid system will be demonstrated.« less
Regueiro, Jorge; Giri, Anupam; Wenzl, Thomas
2016-06-21
Fast market penetration of electronic cigarettes is leading to an exponentially growing number of electronic refill liquids with different nicotine contents and an endless list of flavors. Therefore, rapid and simple methods allowing a fast screening of these products are necessary to detect harmful substances which can negatively impact the health of consumers. In this regard, the present work explores the capabilities of differential ion mobility spectrometry coupled to tandem mass spectrometry for high-throughput analysis of nicotine and 11 related compounds in commercial refill liquids for electronic cigarettes. The influence of main factors affecting the ion mobility separation, such as modifier types and concentration, separation voltage, and temperature, was systematically investigated. Despite small molecular weight differences among the studied compounds, a good separation was achieved in the ion mobility cell under the optimized conditions, which involved the use of ethanol as a polar gas-phase chemical modifier. Indeed, differential ion mobility was able to resolve (resolution >4) nicotine from its structural isomer anabasine without the use of any chromatographic separation. The quantitative performance of the proposed method was then evaluated, showing satisfactory precision (RSD ≤ 16%) and recoveries ranging from 85 to 100% for nicotine, and from 84 to 126% for the rest of the target analytes. Several commercial electronic cigarette refill liquids were analyzed to demonstrate the applicability of the method. In some cases, significant differences were found between labeled and measured levels of nicotine. Anatabine, cotinine, myosmine, and nornicotine were also found in some of the analyzed samples.
Yan, Xia; Wang, Li-Juan; Wu, Zhen; Wu, Yun-Long; Liu, Xiu-Xiu; Chang, Fang-Rong; Fang, Mei-Juan; Qiu, Ying-Kun
2016-10-15
Microbial metabolites represent an important source of bioactive natural products, but always exhibit diverse of chemical structures or complicated chemical composition with low active ingredients content. Traditional separation methods rely mainly on off-line combination of open-column chromatography and preparative high performance liquid chromatography (HPLC). However, the multi-step and prolonged separation procedure might lead to exposure to oxygen and structural transformation of metabolites. In the present work, a new two-dimensional separation workflow for fast isolation and analysis of microbial metabolites from Chaetomium globosum SNSHI-5, a cytotoxic fungus derived from extreme environment. The advantage of this analytical comprehensive two-dimensional liquid chromatography (2D-LC) lies on its ability to analyze the composition of the metabolites, and to optimize the separation conditions for the preparative 2D-LC. Furthermore, gram scale preparative 2D-LC separation of the crude fungus extract could be performed on a medium-pressure liquid chromatograph×preparative high-performance liquid chromatography system, under the optimized condition. Interestingly, 12 cytochalasan derivatives, including two new compounds named cytoglobosin Ab (3) and isochaetoglobosin Db (8), were successfully obtained with high purity in a short period of time. The structures of the isolated metabolites were comprehensively characterized by HR ESI-MS and NMR. To be highlighted, this is the first report on the combination of analytical and preparative 2D-LC for the separation of microbial metabolites. The new workflow exhibited apparent advantages in separation efficiency and sample treatment capacity compared with conventional methods. Copyright © 2016 Elsevier B.V. All rights reserved.
Liang, Taigang; Yue, Wenyan; Du, Xue; Ren, Luhui; Li, Qingshan
2012-01-01
Praeruptorin D (PD), a major pyranocoumarin isolated from Radix Peucedani, exhibited antitumor and anti-inflammatory activities. The aim of this study was to investigate the pharmacokinetics and tissue distribution of PD in rats following intravenous (i.v.) administration. The levels of PD in plasma and tissues were measured by a simple and sensitive reversed-phase high-performance liquid chromatography (HPLC) method. The biosamples were treated by liquid-liquid extraction (LLE) with methyl tert-butyl ether (MTBE) and osthole was used as the internal standard (IS). The chromatographic separation was accomplished on a reversed-phase C(18) column using methanol-water (75:25, v/v) as mobile phase at a flow rate of 0.8 mL/min and ultraviolet detection wave length was set at 323 nm. The results demonstrate that this method has excellent specificity, linearity, precision, accuracy and recovery. The pharmacokinetic study found that PD fitted well into a two-compartment model with a fast distribution phase and a relative slow elimination phase. Tissue distribution showed that the highest concentration was observed in the lung, followed by heart, liver and kidney. Furthermore, PD can also be detected in the brain, which indicated that PD could cross the blood-brain barrier after i.v. administration.
Padilla-Sánchez, Juan Antonio; Haug, Line Småstuen
2016-05-06
A fast and sensitive method for simultaneous determination of 18 traditional and 6 alternative per- and polyfluoroalkyl substances (PFASs) using solid-liquid extraction (SLE), off-line clean-up using activated carbon and on-line solid phase extraction-ultrahigh performance liquid chromatography-time-of-flight-mass spectrometry (on-line SPE-UHPLC-TOF-MS) was developed. The extraction efficiency was studied and recoveries in range the 58-114% were obtained. Extraction and injection volumes were also optimized to 2mL and 400μL, respectively. The method was validated by spiking dust from a vacuum cleaner bag that had been found to contain low levels of the PFASs in focus. Low method detection limits (MDLs) and method quantification limits (MQLs) in the range 0.008-0.846ngg(-1) and 0.027-2.820ngg(-1) were obtained, respectively. For most of the PFASs, the accuracies were between 70 and 125% in the range from 2 to100ngg(-1) dust. Intra-day and inter-day precisions were in general well below 30%. Analysis of a Standard Reference Material (SRM 2585) showed high accordance with results obtained by other laboratories. Finally, the method was applied to seven indoor dust samples, and PFAS concentrations in the range 0.02-132ngg(-1) were found. The highest median concentrations were observed for some of the alternative PFASs, such as 6:2-diPAP (25ngg(-1)), 8:2-diPAP (49ngg(-1)), and PFOPA (23ngg(-1)), illustrating the importance of inclusion of new PFASs in the analytical methods. Copyright © 2016 Elsevier B.V. All rights reserved.
Stankovich, Joseph J; Gritti, Fabrice; Stevenson, Paul G; Beaver, Lois Ann; Guiochon, Georges
2014-01-10
Using a column packed with fully porous particles, four methods for controlling the flow rates at which gradient elution runs are conducted in very high pressure liquid chromatography (VHPLC) were tested to determine whether reproducible thermal conditions could be achieved, such that subsequent analyses would proceed at nearly the same initial temperature. In VHPLC high flow rates are achieved, producing fast analyses but requiring high inlet pressures. The combination of high flow rates and high inlet pressures generates local heat, leading to temperature changes in the column. Usually in this case a post-run time is input into the analytical method to allow the return of the column temperature to its initial state. An alternative strategy involves operating the column without a post-run equilibration period and maintaining constant temperature variations for subsequent analysis after conducting one or a few separations to bring the column to a reproducible starting temperature. A liquid chromatography instrument equipped with a pressure controller was used to perform constant pressure and constant flow rate VHPLC separations. Six replicate gradient separations of a nine component mixture consisting of acetophenone, propiophenone, butyrophenone, valerophenone, hexanophenone, heptanophenone, octanophenone, benzophenone, and acetanilide dissolved in water/acetonitrile (65:35, v/v) were performed under various experimental conditions: constant flow rate, two sets of constant pressure, and constant pressure operation with a programmed flow rate. The relative standard deviations of the response factors for all the analytes are lower than 5% across the methods. Programming the flow rate to maintain a fairly constant pressure instead of using instrument controlled constant pressure improves the reproducibility of the retention times by a factor of 5, when plotting the chromatograms in time. Copyright © 2013 Elsevier B.V. All rights reserved.
Liquid metal fast breeder reactors, 1972--1973
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1974-01-01
Reference to 1467 publications on liquid sodium fast breeder reactors cited in Nuclear Science Abstracts Volume 26 (1972) through Volume 27 (1973 through June) are contained in this citation to provide information on the contents of the document. References are arranged in order by the original NSA abstract number which approximately places them in chronological order. Sequence numbers appear beside each reference, and the personal author index refers to these sequence numbers. The subject index refers to the original abstract numbers. (auth)
Application of a Self-Actuating Shutdown System (SASS) to a Gas-Cooled Fast Reactor (GCFR)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Germer, J.H.; Peterson, L.F.; Kluck, A.L.
1980-09-01
The application of a SASS (Self-Actuated Shutdown System) to a GCFR (Gas-Cooled Fast Reactor) is compared with similar systems designed for an LMFBR (Liquid Metal Fast Breeder Reactor). A comparison of three basic SASS concepts is given: hydrostatic holdup, fluidic control, and magnetic holdup.
NASA Astrophysics Data System (ADS)
Garedew, Mahlet
The production of liquid hydrocarbon fuels from biomass is needed to replace fossil fuels, which are decreasing in supply at an unsustainable rate. Renewable fuels also address the rising levels of greenhouse gases, an issue for which the Intergovernmental Panel on Climate Change implicated humanity in 2013. In response, the Energy Independence and Security Act (EISA) mandates the production of 21 billion gallons of advanced biofuels by 2022. Biomass fast pyrolysis (BFP) uses heat (400-600 °C) without oxygen to convert biomass to liquids fuel precursors offering an alternative to fossil fuels and a means to meet the EISA mandate. The major product, bio-oil, can be further upgraded to liquid hydrocarbon fuels, while biochar can serve as a solid fuel or soil amendment. The combustible gas co-product is typically burned for process heat. Though the most valuable of the pyrolysis products, the liquid bio-oil is highly oxygenated, corrosive, low in energy content and unstable during storage. As a means of improving bio-oil properties, electrocatalytic hydrogenation (ECH) is employed to reduce and deoxygenate reactive compounds. This work specifically focuses on lignin as a feed material for BFP. As lignin comprises up to 30% of the mass and 40% of the energy stored in biomass, it offers great potential for the production of liquid fuels and value-added products by utilizing fast pyrolysis as a conversion method coupled with electrocatalysis as an upgrading method.
Mujawar, Liyakat Hamid; Maan, Abid Aslam; Khan, Muhammad Kashif Iqbal; Norde, Willem; van Amerongen, Aart
2013-04-02
The main focus of our research was to study the distribution of inkjet printed biomolecules in porous nitrocellulose membrane pads of different brands. We produced microarrays of fluorophore-labeled IgG and bovine serum albumin (BSA) on FAST, Unisart, and Oncyte-Avid slides and compared the spot morphology of the inkjet printed biomolecules. The distribution of these biomolecules within the spot embedded in the nitrocellulose membrane was analyzed by confocal laser scanning microscopy in the "Z" stack mode. By applying a "concentric ring" format, the distribution profile of the fluorescence intensity in each horizontal slice was measured and represented in a graphical color-coded way. Furthermore, a one-step diagnostic antibody assay was performed with a primary antibody, double-labeled amplicons, and fluorophore-labeled streptavidin in order to study the functionality and distribution of the immune complex in the nitrocellulose membrane slides. Under the conditions applied, the spot morphology and distribution of the primary labeled biomolecules was nonhomogenous and doughnut-like on the FAST and Unisart nitrocellulose slides, whereas a better spot morphology with more homogeneously distributed biomolecules was observed on the Oncyte-Avid slide. Similar morphologies and distribution patterns were observed when the diagnostic one-step nucleic acid microarray immunoassay was performed on these nitrocellulose slides. We also investigated possible reasons for the differences in the observed spot morphology by monitoring the dynamic behavior of a liquid droplet on and in these nitrocellulose slides. Using high speed cameras, we analyzed the wettability and fluid flow dynamics of a droplet on the various nitrocellulose substrates. The spreading of the liquid droplet was comparable for the FAST and Unisart slides but different, i.e., slower, for the Oncyte-Avid slide. The results of the spreading of the droplet and the penetration behavior of the liquid in the nitrocellulose membrane may (partly) explain the distribution of the biomolecules in the different slides. To our knowledge, this is the first time that fluid dynamics in diagnostic membranes have been analyzed by the use of high-speed cameras.
Wang, Xiu-Li; Zhu, Ying; Fang, Qun
2014-01-07
In this work, the combination of droplet-based microfluidics with liquid chromatography/mass spectrometry (LC/MS) was achieved, for providing a fast separation and high-information-content detection method for the analysis of nanoliter-scale droplets with complex compositions. A novel interface method was developed using an oil-covered droplet array chip to couple with an LC/MS system via a capillary sampling probe and a 4 nL injection valve without the need of a droplet extraction device. The present system can perform multistep operations including parallel enzyme inhibition reactions in nanoliter droplets, 4 nL sample injection, fast separation with capillary LC, and label-free detection with ESI-MS, and has significant flexibility in the accurate addressing and sampling of droplets of interest on demand. The system performance was evaluated using angiotensin I and angiotensin II as model samples, and the repeatabilities of peak area for angiotensin I and angiotensin II were 2.7% and 7.5% (RSD, n = 4), respectively. The present system was further applied to the screening for inhibitors of cytochrome P450 (CYP1A2) and measurement of the IC50 value of the inhibitor. The sample consumption for each droplet assay was 100 nL, which is reduced 10-100 times compared with conventional 384-multi-well plate systems usually used in high-throughput drug screening.
Terol, Amanda; Marcinkowska, Monika; Ardini, Francisco; Grotti, Marco
2016-01-01
A new method for the speciation analysis of arsenic in food using narrow-bore high-performance liquid-chromatography inductively coupled plasma mass spectrometry (HPLC-ICP-MS) has been developed. Fast separation of arsenite, arsenate, monomethylarsonic acid and dimethylarsinic acid was carried out in 7 min using an anion-exchange narrow-bore Nucleosil 100 SB column and 12 mM ammonium dihydrogen phosphate of pH 5.2 as the mobile phase, at a flow rate of 0.3 mL min(-1). A PFA-ST micronebulizer jointed to a cyclonic spray chamber was used for HPLC-ICP-MS coupling. Compared with standard-bore HPLC-ICP-MS, the new method has provided higher sensitivity, reduced mobile-phase consumption, a lower matrix plasma load and a shorter analysis time. The achieved instrumental limits of detection were in the 0.3 - 0.4 ng As mL(-1) range, and the precision was better than 3%. The arsenic compounds were efficiently (>80%) extracted from various food samples using a 1:5 methanol/water solution, with additional ultrasonic treatment for rice products. The applicability of this method was demonstrated by the analysis of several samples, such as seafood (fish, mussels, shrimps, edible algae) and rice-based products (Jasmine and Arborio rice, spaghetti, flour, crackers), including three certified reference materials.
Li, Shuoyu; Liu, Yuyi; Guo, Peisheng; Wang, Chengxin
2017-09-13
Transition metal oxide nanoparticles capsuled in amorphous carbon nanotubes (ACNTs) are attractive anode materials of lithium-ion batteries (LIBs). Here, we first designed a fast and universal method with a hydromechanics conception which is called Marangoni flow to fabricate transition bimetal oxides (TBOs) in the ACNT composite with a better electrochemistry performance. Marangoni flows can produce a liquid column with several centimeters of height in a tube with one side immersed in the liquid. The key point to induce a Marangoni flow is to make a gradient of the surface tension between the surface and the inside of the solution. With our research, we control the gradient of the surface tension by controlling the viscosity of a solution. To show how our method could be generally used, we synthesize two anode materials such as (a) CoFe 2 O 4 @ACNTs, and (b) NiFe 2 O 4 @ACNTs. All of these have a similar morphology which is ∼20 μm length with a diameter of 80-100 nm for the ACNTs, and the particles (inside the ACNTs) are smaller than 5 nm. In particular, there are amorphous carbons between the nanoparticles. All of the composite materials showed an outstanding electrochemistry performance which includes a high capacity and cycling stability so that after 600 cycles the capacity changed by less than 3%.
Mourad, Eléonore; Coustan, Laura; Lannelongue, Pierre; Zigah, Dodzi; Mehdi, Ahmad; Vioux, André; Freunberger, Stefan A; Favier, Frédéric; Fontaine, Olivier
2017-04-01
Kinetics of electrochemical reactions are several orders of magnitude slower in solids than in liquids as a result of the much lower ion diffusivity. Yet, the solid state maximizes the density of redox species, which is at least two orders of magnitude lower in liquids because of solubility limitations. With regard to electrochemical energy storage devices, this leads to high-energy batteries with limited power and high-power supercapacitors with a well-known energy deficiency. For such devices the ideal system should endow the liquid state with a density of redox species close to the solid state. Here we report an approach based on biredox ionic liquids to achieve bulk-like redox density at liquid-like fast kinetics. The cation and anion of these biredox ionic liquids bear moieties that undergo very fast reversible redox reactions. As a first demonstration of their potential for high-capacity/high-rate charge storage, we used them in redox supercapacitors. These ionic liquids are able to decouple charge storage from an ion-accessible electrode surface, by storing significant charge in the pores of the electrodes, to minimize self-discharge and leakage current as a result of retaining the redox species in the pores, and to raise working voltage due to their wide electrochemical window.
Hardening neutron spectrum for advanced actinide transmutation experiments in the ATR.
Chang, G S; Ambrosek, R G
2005-01-01
The most effective method for transmuting long-lived isotopes contained in spent nuclear fuel into shorter-lived fission products is in a fast neutron spectrum reactor. In the absence of a fast test reactor in the United States, initial irradiation testing of candidate fuels can be performed in a thermal test reactor that has been modified to produce a test region with a hardened neutron spectrum. Such a test facility, with a spectrum similar but somewhat softer than that of the liquid-metal fast breeder reactor (LMFBR), has been constructed in the INEEL's Advanced Test Reactor (ATR). The radial fission power distribution of the actinide fuel pin, which is an important parameter in fission gas release modelling, needs to be accurately predicted and the hardened neutron spectrum in the ATR and the LMFBR fast neutron spectrum is compared. The comparison analyses in this study are performed using MCWO, a well-developed tool that couples the Monte Carlo transport code MCNP with the isotope depletion and build-up code ORIGEN-2. MCWO analysis yields time-dependent and neutron-spectrum-dependent minor actinide and Pu concentrations and detailed radial fission power profile calculations for a typical fast reactor (LMFBR) neutron spectrum and the hardened neutron spectrum test region in the ATR. The MCWO-calculated results indicate that the cadmium basket used in the advanced fuel test assembly in the ATR can effectively depress the linear heat generation rate in the experimental fuels and harden the neutron spectrum in the test region.
Sakamoto, Yasunari; Sekino, Yusuke; Yamada, Eiji; Ohkubo, Hidenori; Higurashi, Takuma; Sakai, Eiji; Iida, Hiroshi; Hosono, Kunihiro; Endo, Hiroki; Nonaka, Takashi; Ikeda, Tamon; Fujita, Koji; Yoneda, Masato; Koide, Tomoko; Takahashi, Hirokazu; Goto, Ayumu; Abe, Yasunobu; Gotoh, Eiji; Maeda, Shin; Nakajima, Atsushi
2011-01-01
Background/Aims The administration of liquid nutrients to patients is often accompanied by complications such as gastroesophageal reflux. To prevent gastroesophageal reflux, high-viscosity liquid meals are used widely, however, it still remains controversial whether high-viscosity liquid meals have any effect on the rate of gastric emptying. The present study was conducted with the aim of determining whether high-viscosity liquid meals had any effect on the rate of gastric emptying and mosapride might accelerate the rate of gastric emptying of high-viscosity liquid meals. Methods Six healthy male volunteers underwent 3 tests at intervals of > 1 week. After fasting for > 8 hours, each subject received one of three test meals (liquid meal only, high-viscosity liquid meal [liquid meal plus pectin] only, or high-viscosity liquid meal 30 minutes after intake of mosapride). A 13C-acetic acid breath test was performed, which monitored the rate of gastric emptying for 4 hours. Using the Oridion Research Software (β version), breath test parameters were calculated. The study parameters were examined for all the 3 test conditions and compared using the Freidman test. Results Gastric emptying was significantly delayed following intake of a high-viscosity liquid meal alone as compared with a liquid meal alone; however, intake of mosapride prior to a high-viscosity liquid meal was associated with a significantly accelerated rate of gastric emptying as compared with a high-viscosity liquid meal alone. Conclusions This study showed that high-viscosity liquid meals delayed gastric emptying: however, mosapride recovered the delayed rate of gastric emptying by high-viscosity liquid meals. PMID:22148109
Cold-stage microscopy system for fast-frozen liquids.
Talmon, Y; Davis, H T; Scriven, L E; Thomas, E L
1979-06-01
The least artifact-laden fixation technique for examining colloidal suspensions, microemulsions, and other microstructured liquids in the electron microscope appears to be thermal fixation, i.e., ultrafast freezing of the liquid specimen. For rapid-enough cooling and for observation in TEM/STEM a thin sample is needed. The need is met by trapping a thin layer ( approximately 100 nm) of liquid between two polyimide films ( approximately 40 nm thickness) mounted on copper grids and immersing the resulting sandwich in liquid nitrogen at its melting point. For liquids containing water, polyimides films are used since this polymer is far less susceptible to the electron beam damage observed for the commonly used polymer films such as Formvar and collodion in contact with ice. Transfer of the frozen sample into the microscope column without deleterious frost deposition and warming is accomplished with a new transfer module for the cooling stage of the JEOL JEM-100CX microscope, which makes a true cold stage out of a device originally intended for cooling specimens inside the column. Sample results obtained with the new fast-freeze, cold-stage microscopy system are given.
Charehsaz, Mohammad; Gürbay, Aylin; Aydin, Ahmet; Sahin, Gönül
2014-01-01
In this study, a high-performance liquid chromatographic method (HPLC) and UV spectrophotometric method were developed, validated and applied for the determination of theophylline in biological fluids. Liquid- liquid extraction is performed for isolation of the drug and elimination of plasma and saliva interferences. Urine samples were applied without any extraction. The chromatographic separation was achieved on a C18 column by using 60:40 methanol:water as mobile phase under isocratic conditions at a flow rate of 0.75 mL/min with UV detection at 280 nm in HPLC method. UV spectrophotometric analysis was performed at 275 nm. the limit of quantification: 1.1 µg/mL for urine, 1.9 µg/mL for saliva, 3.1 µg/mL for plasma; recovery: 94.85% for plasma, 100.45% for saliva, 101.39% for urine; intra-day precision: 0.22-2.33%, inter-day precision: 3.17-13.12%. Spectrophotometric analysis results were as follows: the limit of quantitation: 5.23 µg/mL for plasma, 8.7 µg/mL for urine; recovery: 98.27% for plasma, 95.25% for urine; intra-day precision: 2.37 - 3.00%, inter-day precision: 5.43-7.91%. It can be concluded that this validated HPLC method is easy, precise, accurate, sensitive and selective for determination of theophylline in biological samples. Also spectrophotometric analysis can be used where it can be applicable.
Jouyban, Abolghasem; Sorouraddin, Mohammad Hossein; Farajzadeh, Mir Ali; Somi, Mohammad Hossein; Fazeli-Bakhtiyari, Rana
2015-03-01
A fast and sensitive high-performance liquid chromatography (HPLC) method with ultraviolet (UV) detection was developed and validated for the simultaneous quantitation of five antiarrhythmic drugs (metoprolol, propranolol, carvedilol, diltiazem, and verapamil) in human plasma samples. It involves dispersive liquid-liquid microextraction (DLLME) of the desired drugs from 660 µL plasma and separation using isocratic elution with UV detection at 200 nm. The complete separation of all analytes was achieved within 7 min. Acetonitrile (as disperser solvent) resulting from the protein precipitation procedure was mixed with 100 µL dichloromethane (as an extraction solvent) and rapidly injected into 5 mL aqueous solution (pH 11.5) containing 1% (w/v), NaCl. After centrifugation, the sedimented phase containing enriched analytes was collected and evaporated to dryness. The residue was re-dissolved in 50 µL de-ionized water (acidified to pH 3) and injected into the HPLC system for analysis. Under the optimal conditions, the enrichment factors and extraction recoveries ranged between 4.4-10.8 and 33-82%, respectively. The suggested method was linear (r(2) ≥0.997) over a dynamic range of 0.02-0.80 µg mL(-1) in plasma. The intra- and inter-days relative standard deviation (RSD%) and relative error (RE%) values of the method were below 20%, which shows good precision and accuracy. Finally, this method was applied to the analysis of real plasma samples obtained from the patients treated with these drugs. Copyright © 2014 Elsevier B.V. All rights reserved.
McDonnell, Gerald; Ehrman, Michele; Kiess, Sara
2016-06-01
A troubling number of health care-acquired infection outbreaks and transmission events, some involving highly resistant microbial pathogens and resulting in serious patient outcomes, have been traced to reusable, high-level disinfected duodenoscopes in the United States. The Food and Drug Administration (FDA) requested a study be conducted to verify liquid chemical sterilization efficacy of SYSTEM 1E(®) Liquid Chemical Sterilant Processing System (STERIS Corporation, Mentor, OH) with varied duodenoscope designs under especially arduous conditions. Here, we describe the system's performance under worst case SYSTEM 1E(®) processing conditions. The test protocol challenged the system's performance by running a fractional cycle to evaluate reduction of recoverable test spores from heavily contaminated endoscopes, including all channels and each distal tip, under worst case SYSTEM 1E(®) processing conditions. All devices were successfully liquid chemically sterilized, showing greater than a 6 log10 reduction of Geobacillus stearothermophilus spores at every inoculation site of each duodenoscope tested, in less than half the exposure time of the standard cycle. The successful outcome of the additional efficacy testing reported here indicates that the SYSTEM 1E(®) is an effective low-temperature liquid chemical sterilization method for duodenoscopes and other critical and semicritical devices. It offers a fast, safe, convenient processing alternative while providing the assurance of a system expressly tested and cleared to achieve liquid chemical sterilization of specific validated duodenoscope models. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.
Group Constants Generation of the Pseudo Fission Products for Fast Reactor Burnup Calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gil, Choong-Sup; Kim, Do Heon; Chang, Jonghwa
The pseudo fission products for the burnup calculations of the liquid metal fast reactor were generated. The cross-section data and fission product yield data of ENDF/B-VI were used for the pseudo fission product data of U-235, U-238, Pu-239, Pu-240, Pu-241, and Pu-242. The pseudo fission product data can be used with the KAFAX-F22 or -E66, which are the MATXS-format libraries for analyses of the liquid metal fast reactor at KAERI and were distributed through the OECD/NEA. The 80-group MATXS-format libraries of the 172 fission products were generated and the burnup chains for generation of the pseudo fission products were prepared.
Heterogeneous Interaction of Peroxyacetyl Nitrate on Liquid Sulfuric Acid
NASA Technical Reports Server (NTRS)
Zhang, Renyi; Leu, Ming-Taun
1996-01-01
The uptake of peroxyacetyl nitrate (PAN) on liquid sulfuric acid surfaces has been investigated using a fast-flow reactor coupled to a chemical ionization mass spectrometer. PAN was observed to be reversibly adsorbed on sulfuric acid.
Hetzel, Terence; Loeker, Denise; Teutenberg, Thorsten; Schmidt, Torsten C
2016-10-01
The efficiency of miniaturized liquid chromatography columns with inner diameters between 200 and 300 μm has been investigated using a dedicated micro-liquid chromatography system. Fully porous, core-shell and monolithic commercially available stationary phases were compared applying van Deemter and kinetic plot analysis. The sub-2 μm fully porous as well as the 2.7 μm core-shell particle packed columns showed superior efficiency and similar values for the minimum reduced plate heights (2.56-2.69) before correction for extra-column contribution compared to normal-bore columns. Moreover, the influence of extra-column contribution was investigated to demonstrate the difference between apparent and intrinsic efficiency by replacing the column by a zero dead volume union to determine the band spreading caused by the system. It was demonstrated that 72% of the intrinsic efficiency could be reached. The results of the kinetic plot analysis indicate the superior performance of the sub-2 μm fully porous particle packed column for ultra-fast liquid chromatography. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Maciel, Juliana V; Soares, Bruno M; Mandlate, Jaime S; Picoloto, Rochele S; Bizzi, Cezar A; Flores, Erico M M; Duarte, Fabio A
2014-08-20
This work reports the development of a method for Fe extraction in white and red wines using dispersive liquid-liquid microextraction (DLLME) and determination by ultraviolet-visible spectrophotometry. For optimization of the DLLME method, the following parameters were evaluated: type and volume of dispersive (1300 μL of acetonitrile) and extraction (80 μL of C(2)Cl(4)) solvents, pH (3.0), concentration of ammonium pyrrolidinedithiocarbamate (APDC, 500 μL of 1% m/v APDC solution), NaCl concentration (not added), and extraction time. The calibration curve was performed using the analyte addition method, and the limit of detection and relative standard deviation were 0.2 mg L(-1) and below 7%, respectively. The accuracy was evaluated by comparison of results obtained after Fe determination by graphite furnace atomic absorption spectrometry, with agreement ranging from 94 to 105%. The proposed method was applied for Fe determination in white and red wines with concentrations ranging from 1.3 to 4.7 mg L(-1).
Zokaei, Maryam; Abedi, Abdol-Samad; Kamankesh, Marzieh; Shojaee-Aliababadi, Saeedeh; Mohammadi, Abdorreza
2017-11-01
In this research, for the first time, we successfully developed ultrasonic-assisted extraction and dispersive liquid-liquid microextraction combined with gas chromatography-mass spectrometry as a new, fast and highly sensitive method for determining of acrylamide in potato chips samples. Xanthydrol was used as a derivatization reagent and parameters affecting in the derivatization and microextraction steps were studied and optimized. Under optimum conditions, the calibration curves showed high levels of linearity (R 2 >0.9993) for acrylamide in the range of 2-500ngmL -1 . The relative standard deviation (RSD) for the seven analyses was 6.8%. The limit of detection (LOD) and limit of quantification (LOQ) were 0.6ngg -1 and 2ngg -1 , respectively. The UAE-DLLME-GC-MS method demonstrated high sensitivity, good linearity, recovery, and enrichment factor. The performance of the new proposed method was evaluated for the determination of acrylamide in various types of chips samples and satisfactory results were obtained. Copyright © 2017 Elsevier Ltd. All rights reserved.
The Use of Fast Neutron Detection for Materials Accountability
NASA Astrophysics Data System (ADS)
Nakae, L. F.; Chapline, G. F.; Glenn, A. M.; Kerr, P. L.; Kim, K. S.; Ouedraogo, S. A.; Prasad, M. K.; Sheets, S. A.; Snyderman, N. J.; Verbeke, J. M.; Wurtz, R. E.
2014-02-01
For many years at LLNL, we have been developing time-correlated neutron detection techniques and algorithms for applications such as Arms Control, Threat Detection and Nuclear Material Assay. Many of our techniques have been developed specifically for the relatively low efficiency (a few percent) inherent in man-portable systems. Historically, thermal neutron detectors (mainly 3He) were used, taking advantage of the high thermal neutron interaction cross-sections, but more recently we have been investigating the use of fast neutron detection with liquid scintillators, inorganic crystals, and in the near future, pulse-shape discriminating plastics that respond over 1000 times faster (nanoseconds versus tens of microseconds) than thermal neutron detectors. Fast neutron detection offers considerable advantages, since the inherent nanosecond production timescales of fission and neutron-induced fission are preserved and measured instead of being lost in the thermalization of thermal neutron detectors. We are now applying fast neutron technology to the safeguards regime in the form of high efficiency counters. Faster detector response times and sensitivity to neutron momentum show promise in measuring, differentiating, and assaying samples that have modest to very high count rates, as well as mixed neutron sources (e.g., Pu oxide or Mixed Cm and Pu). Here we report on measured results with our existing liquid scintillator array and promote the design of a nuclear material assay system that incorporates fast neutron detection, including the surprising result that fast liquid scintillator becomes competitive and even surpasses the precision of 3He counters measuring correlated pairs in modest (kg) samples of plutonium.
NASA Technical Reports Server (NTRS)
Santi, Louis M.; Butas, John P.; Aguilar, Robert B.; Sowers, Thomas S.
2008-01-01
The J-2X is an expendable liquid hydrogen (LH2)/liquid oxygen (LOX) gas generator cycle rocket engine that is currently being designed as the primary upper stage propulsion element for the new NASA Ares vehicle family. The J-2X engine will contain abort logic that functions as an integral component of the Ares vehicle abort system. This system is responsible for detecting and responding to conditions indicative of impending Loss of Mission (LOM), Loss of Vehicle (LOV), and/or catastrophic Loss of Crew (LOC) failure events. As an earth orbit ascent phase engine, the J-2X is a high power density propulsion element with non-negligible risk of fast propagation rate failures that can quickly lead to LOM, LOV, and/or LOC events. Aggressive reliability requirements for manned Ares missions and the risk of fast propagating J-2X failures dictate the need for on-engine abort condition monitoring and autonomous response capability as well as traditional abort agents such as the vehicle computer, flight crew, and ground control not located on the engine. This paper describes the baseline J-2X abort subsystem concept of operations, as well as the development process for this subsystem. A strategy that leverages heritage system experience and responds to an evolving engine design as well as J-2X specific test data to support abort system development is described. The utilization of performance and failure simulation models to support abort system sensor selection, failure detectability and discrimination studies, decision threshold definition, and abort system performance verification and validation is outlined. The basis for abort false positive and false negative performance constraints is described. Development challenges associated with information shortfalls in the design cycle, abort condition coverage and response assessment, engine-vehicle interface definition, and abort system performance verification and validation are also discussed.
Ansermot, Nicolas; Brawand-Amey, Marlyse; Kottelat, Astrid; Eap, Chin B
2013-05-31
A sensitive and selective ultra-high performance liquid chromatography (UHPLC) tandem mass spectrometry (MS/MS) method was developed for the fast quantification of ten psychotropic drugs and metabolites in human plasma for the needs of our laboratory (amisulpride, asenapine, desmethyl-mirtazapine, iloperidone, mirtazapine, norquetiapine, olanzapine, paliperidone, quetiapine and risperidone). Stable isotope-labeled internal standards were used for all analytes, to compensate for the global method variability, including extraction and ionization variations. Sample preparation was performed by generic protein precipitation with acetonitrile. Chromatographic separation was achieved in less than 3.0min on an Acquity UPLC BEH Shield RP18 column (2.1mm×50mm; 1.7μm), using a gradient elution of 10mM ammonium formate buffer pH 3.0 and acetonitrile at a flow rate of 0.4ml/min. The compounds were quantified on a tandem quadrupole mass spectrometer operating in positive electrospray ionization mode, using multiple reaction monitoring. The method was fully validated according to the latest recommendations of international guidelines. Eight point calibration curves were used to cover a large concentration range 0.5-200ng/ml for asenapine, desmethyl-mirtazapine, iloperidone, mirtazapine, olanzapine, paliperidone and risperidone, and 1-1500ng/ml for amisulpride, norquetiapine and quetiapine. Good quantitative performances were achieved in terms of trueness (93.1-111.2%), repeatability (1.3-8.6%) and intermediate precision (1.8-11.5%). Internal standard-normalized matrix effects ranged between 95 and 105%, with a variability never exceeding 6%. The accuracy profiles (total error) were included in the acceptance limits of ±30% for biological samples. This method is therefore suitable for both therapeutic drug monitoring and pharmacokinetic studies. Copyright © 2013 Elsevier B.V. All rights reserved.
Study of surface modes on a vibrating electrowetting liquid lens
NASA Astrophysics Data System (ADS)
Strauch, Matthias; Shao, Yifeng; Bociort, Florian; Urbach, H. Paul
2017-10-01
The increased usage of liquid lenses motivates us to investigate surface waves on the liquid's surface. During fast focal switching, the surface waves decrease the imaging quality. We propose a model that describes the surface modes appearing on a liquid lens and predicts the resonance frequencies. The effects of those surface modes on a laser beam are simulated using Fresnel propagation, and the model is verified experimentally.
Molecular dynamics simulations on the local order of liquid and amorphous ZnTe
NASA Astrophysics Data System (ADS)
Rino, José Pedro; Borges, Denilson; Mota, Rita C.; Silva, Maurício A. P.
2008-05-01
Molecular dynamics studies of structural and dynamical correlations of molten and vitreous states under several conditions of density and temperature were performed. We use an effective recently proposed interatomic potential, consisting of two- and three-body covalent interactions which has successfully described the structural, dynamical, and structural phase transformation induced by pressure in ZnTe [D. S. Borges and J. P. Rino, Phys. Rev. B 72, 014107 (2005)]. The two-body term of the interaction potential consists of Coulomb interaction resulting from charge transfer, steric repulsion due to atomic sizes, charge-dipole interaction to include the effect of electronic polarizability of anions, and dipole-dipole (van der Waals) interactions. The three-body covalent term is a modification of the Stillinger-Weber potential. Molecular dynamics simulations in isobaric-isenthalpic ensemble have been performed for systems amounting to 4096 and 64 000 particles. Starting from a crystalline zinc-blende (ZB) structure, the system is initially heated until a very homogeneous liquid is obtained. The vitreous zinc telluride phase is attained by cooling the liquid at sufficiently fast cooling rates, while slower cooling rates lead to a disordered ZB crystalline structure. Two- and three-body correlations for the liquid and vitreous phases are analyzed through pair distribution functions, static structure factors, and bond angle distributions. In particular, the neutron static structure factor for the liquid phase is in very good agreement with both the reported experimental data and first-principles simulations.
Wilson, Robert D.
2001-03-27
Methods and apparatus are disclosed for determining gas saturation, liquid saturation, porosity and density of earth formations penetrated by a well borehole. Determinations are made from measures of fast neutron and inelastic scatter gamma radiation induced by a pulsed, fast neutron source. The system preferably uses two detectors axially spaced from the neutron source. One detector is preferably a scintillation detector responsive to gamma radiation, and a second detector is preferably an organic scintillator responsive to both neutron and gamma radiation. The system can be operated in cased boreholes which are filled with either gas or liquid. Techniques for correcting all measurements for borehole conditions are disclosed.
Cescutti, P; Bigio, M; Guarnieri, V
1996-07-16
The capsular polysaccharide produced by Neisseria meningitidis group A has the following structure: [formula: see text] [formula: see text] This polysaccharide was partially hydrolysed with acetic acid, and the oligomers obtained were separated by fast performance liquid chromatography. Six fractions were collected and characterised by ionspray mass spectrometry in the positive ion mode. This soft ionisation technique established the size of the obtained oligosaccharides and the degree of O-acetyl substitution for each fraction.
2007-12-01
Pinhero and others, 1998). The Air Force is currently developing the Electric Chemical Oxygen Iodine Laser (ElectriCOIL) system to replace the liquid...chemistry generator currently used in the Air Borne Laser (ABL) system (Zimmerman and others, 2003). The ElectriCOIL system produces in a radio...convected downstream is critical to improving the performance of the ABL system . The use of a second non-self sustained discharge operating at a lower
Fast and sensitive method for detecting volatile species in liquids
NASA Astrophysics Data System (ADS)
Trimarco, Daniel B.; Pedersen, Thomas; Hansen, Ole; Chorkendorff, Ib; Vesborg, Peter C. K.
2015-07-01
This paper presents a novel apparatus for extracting volatile species from liquids using a "sniffer-chip." By ultrafast transfer of the volatile species through a perforated and hydrophobic membrane into an inert carrier gas stream, the sniffer-chip is able to transport the species directly to a mass spectrometer through a narrow capillary without the use of differential pumping. This method inherits features from differential electrochemical mass spectrometry (DEMS) and membrane inlet mass spectrometry (MIMS), but brings the best of both worlds, i.e., the fast time-response of a DEMS system and the high sensitivity of a MIMS system. In this paper, the concept of the sniffer-chip is thoroughly explained and it is shown how it can be used to quantify hydrogen and oxygen evolution on a polycrystalline platinum thin film in situ at absolute faradaic currents down to ˜30 nA. To benchmark the capabilities of this method, a CO-stripping experiment is performed on a polycrystalline platinum thin film, illustrating how the sniffer-chip system is capable of making a quantitative in situ measurement of <1 % of a monolayer of surface adsorbed CO being electrochemically stripped off an electrode at a potential scan-rate of 50 mV s-1.
NASA Astrophysics Data System (ADS)
Santos, José; Janeiro, Fernando M.; Ramos, Pedro M.
2015-10-01
This paper presents an embedded liquid viscosity measurement system based on a vibrating wire sensor. Although multiple viscometers based on different working principles are commercially available, there is still a market demand for a dedicated measurement system capable of performing accurate, fast measurements and requiring little or no operator training for simple systems and solution monitoring. The developed embedded system is based on a vibrating wire sensor that works by measuring the impedance response of the sensor, which depends on the viscosity and density of the liquid in which the sensor is immersed. The core of the embedded system is a digital signal processor (DSP) which controls the waveform generation and acquisitions for the measurement of the impedance frequency response. The DSP also processes the acquired waveforms and estimates the liquid viscosity. The user can interact with the measurement system through a keypad and an LCD or through a computer with a USB connection for data logging and processing. The presented system is tested on a set of viscosity standards and the estimated values are compared with the standard manufacturer specified viscosity values. A stability study of the measurement system is also performed.
Fekete, Szabolcs; Fekete, Jeno; Molnár, Imre; Ganzler, Katalin
2009-11-06
Many different strategies of reversed phase high performance liquid chromatographic (RP-HPLC) method development are used today. This paper describes a strategy for the systematic development of ultrahigh-pressure liquid chromatographic (UHPLC or UPLC) methods using 5cmx2.1mm columns packed with sub-2microm particles and computer simulation (DryLab((R)) package). Data for the accuracy of computer modeling in the Design Space under ultrahigh-pressure conditions are reported. An acceptable accuracy for these predictions of the computer models is presented. This work illustrates a method development strategy, focusing on time reduction up to a factor 3-5, compared to the conventional HPLC method development and exhibits parts of the Design Space elaboration as requested by the FDA and ICH Q8R1. Furthermore this paper demonstrates the accuracy of retention time prediction at elevated pressure (enhanced flow-rate) and shows that the computer-assisted simulation can be applied with sufficient precision for UHPLC applications (p>400bar). Examples of fast and effective method development in pharmaceutical analysis, both for gradient and isocratic separations are presented.
Zheng, Rong; Wu, Yi-Hong; Jiang, De-Xi; Zhang, Dan
2012-01-01
A fast, simple and sensitive high performance liquid chromatographic (HPLC) method has been developed for determination of 10α-methoxy-6-methyl ergoline-8β-methanol (MDL, a main metabolite of nicergoline) in human plasma. One-step liquid–liquid extraction (LLE) with diethyl ether was employed as the sample preparation method. Tizanidine hydrochloride was selected as the internal standard (IS). Analysis was carried out on a Diamonsil ODS column (150 mm×4.6 mm, 5 μm) using acetonitrile–ammonium acetate (0.1 mol/L) (15/85, v/v) as mobile phase at detection wavelength of 224 nm. The calibration curves were linear over the range of 2.288–73.2 ng/mL with a lower limit of quantitation (LLOQ) of 2.288 ng/mL. The intra- and inter-day precision values were below 13% and the recoveries were from 74.47% to 83.20% at three quality control levels. The method herein described was successfully applied in a randomized crossover bioequivalence study of two different nicergoline preparations after administration of 30 mg in 20 healthy volunteers. PMID:29403722
Detecting fast and thermal neutrons with a boron loaded liquid scintillator, EJ-339A.
Pino, F; Stevanato, L; Cester, D; Nebbia, G; Sajo-Bohus, L; Viesti, G
2014-09-01
A commercial boron-loaded liquid scintillator EJ-339 A was studied, using a (252)Cf source with/without polyethylene moderator, to examine the possibility of discriminating slow-neutron induced events in (10)B from fast-neutron events, resulting from proton recoils, and gamma-ray events. Despite the strong light quenching associated with neutron induced events in (10)B, correct classification of these events is shown to be possible with the aid of digital signal processing. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ultra-high density aligned Carbon-nanotube with controled nano-morphology for supercapacitors
NASA Astrophysics Data System (ADS)
Ghaffari, Mehdi; Zhao, Ran; Liu, Yang; Zhou, Yue; Cheng, Jiping; Guzman de Villoria, Roberto; Wardle, B. L.; Zhang, Q. M.
2012-02-01
Recent advances in fabricating controlled-morphology vertically aligned carbon nanotubes (VA-CNTs) with ultrahigh volume fractioncreate unique opportunities for developing unconventional supercapacitors with ultra-high energy density, power density, and long charge/discharge cycle life.Continuous paths through inter-VA-CNT channels allow fast ion transport, and high electrical conduction of the aligned CNTs in the composite electrodes lead to fast discharge speed. We investigate the charge-discharge characteristics of VA-CNTs with >20 vol% of CNT and ionic liquids as electrolytes. By employing both the electric and electromechanical spectroscopes, as well as nanostructured materials characterization, the ion transport and storage behaviors in porous electrodes are studied. The results suggest pathways for optimizing the electrode morphology in supercapacitorsusing ultra-high volume fraction VA-CNTs to further enhance performance.
2016-10-14
Nematic Liquid Crystals allowing for rapidly changing moving pictures during the time frame below about 5-10 ms. Ferroelectric Liquid Crystals (FLCs...could fill this gap bearing some advantages over Nematic Liquid Crystals , mainly a fast switching time in the microsecond range, better optical...AFRL-RX-WP-JA-2017-0210 FERROELECTRIC BaTiO3 AND LiNbO3 NANOPARTICLES DISPERSED IN FERROELECTRIC LIQUID CRYSTAL MIXTURES: ELECTROOPTIC
Yang, Miyi; Xi, Xuefei; Wu, Xiaoling; Lu, Runhua; Zhou, Wenfeng; Zhang, Sanbing; Gao, Haixiang
2015-02-13
A novel microextraction technique combining magnetic solid-phase microextraction (MSPME) with ionic liquid dispersive liquid-liquid microextraction (IL-DLLME) to determine four fungicides is presented in this work for the first time. The main factors affecting the extraction efficiency were optimized by the one-factor-at-a-time approach and the impacts of these factors were studied by an orthogonal design. Without tedious clean-up procedure, analytes were extracted from the sample to the adsorbent and organic solvent and then desorbed in acetonitrile prior to chromatographic analysis. Under the optimum conditions, good linearity and high enrichment factors were obtained for all analytes, with correlation coefficients ranging from 0.9998 to 1.0000 and enrichment factors ranging 135 and 159 folds. The recoveries for proposed approach were between 98% and 115%, the limits of detection were between 0.02 and 0.04 μg L(-1) and the RSDs changed from 2.96 to 4.16. The method was successfully applied in the analysis of four fungicides (azoxystrobin, chlorothalonil, cyprodinil and trifloxystrobin) in environmental water samples. The recoveries for the real water samples ranged between 81% and 109%. The procedure proved to be a time-saving, environmentally friendly, and efficient analytical technique. Copyright © 2015 Elsevier B.V. All rights reserved.
Alves, Andreia; Vanermen, Guido; Covaci, Adrian; Voorspoels, Stefan
2016-09-01
A new, fast, and environmentally friendly method based on ultrasound assisted extraction combined with dispersive liquid-liquid microextraction (US-DLLME) was developed and optimized for assessing the levels of seven phthalate metabolites (including the mono(ethyl hexyl) phthalate (MEHP), mono(2-ethyl-5-hydroxyhexyl) phthalate (5-OH-MEHP), mono(2-ethyl-5-oxohexyl) phthalate (5-oxo-MEHP), mono-n-butyl phthalate (MnBP), mono-isobutyl phthalate (MiBP), monoethyl phthalate (MEP), and mono-benzyl phthalate (MBzP)) in human nails by UPLC-MS/MS. The optimization of the US-DLLME method was performed using a Taguchi combinatorial design (L9 array). Several parameters such as extraction solvent, solvent volume, extraction time, acid, acid concentration, and vortex time were studied. The optimal extraction conditions achieved were 180 μL of trichloroethylene (extraction solvent), 2 mL trifluoroacetic acid in methanol (2 M), 2 h extraction and 3 min vortex time. The optimized method had a good precision (6-17 %). The accuracy ranged from 79 to 108 % and the limit of method quantification (LOQm) was below 14 ng/g for all compounds. The developed US-DLLME method was applied to determine the target metabolites in 10 Belgian individuals. Levels of the analytes measured in nails ranged between <12 and 7982 ng/g. The MEHP, MBP isomers, and MEP were the major metabolites and detected in every sample. Miniaturization (low volumes of organic solvents used), low costs, speed, and simplicity are the main advantages of this US-DLLME based method. Graphical Abstract Extraction and phase separation of the US-DLLME procedure.
NASA Astrophysics Data System (ADS)
Mor, Ilan; Vartsky, David; Dangendorf, Volker; Tittelmeier, Kai.; Weierganz, Mathias; Goldberg, Mark Benjamin; Bar, Doron; Brandis, Michal
2018-06-01
We describe an analysis procedure for automatic unambiguous detection of fast-neutron-induced recoil proton tracks in a micro-capillary array filled with organic liquid scintillator. The detector is viewed by an intensified CCD camera. This imaging neutron detector possesses the capability to perform high position-resolution (few tens of μm), energy-dispersive transmission-imaging using ns-pulsed beams. However, when operated with CW or DC beams, it also features medium-quality spectroscopic capabilities for incident neutrons in the energy range 2-20 MeV. In addition to the recoil proton events which display a continuous extended track structure, the raw images exhibit complex ion-tracks from nuclear interactions of fast-neutrons in the scintillator, capillaries quartz-matrix and CCD. Moreover, as expected, one also observes a multitude of isolated scintillation spots of varying intensity (henceforth denoted "blobs") that originate from several different sources, such as: fragmented proton tracks, gamma-rays, heavy-ion reactions as well as events and noise that occur in the image-intensifier and CCD. In order to identify the continuous-track recoil proton events and distinguish them from all these background events, a rapid, computerized and automatic track-recognition-procedure was developed. Based on an appropriately weighted analysis of track parameters such as: length, width, area and overall light intensity, the method is capable of distinguishing a single continuous-track recoil proton from typically surrounding several thousands of background events that are found in each CCD frame.
Cell stimulus and lysis in a microfluidic device with segmented gas-liquid flow.
El-Ali, Jamil; Gaudet, Suzanne; Günther, Axel; Sorger, Peter K; Jensen, Klavs F
2005-06-01
We describe a microfluidic device with rapid stimulus and lysis of mammalian cells for resolving fast transient responses in cell signaling networks. The device uses segmented gas-liquid flow to enhance mixing and has integrated thermoelectric heaters and coolers to control the temperature during cell stimulus and lysis. Potential negative effects of segmented flow on cell responses are investigated in three different cell types, with no morphological changes and no activation of the cell stress-sensitive mitogen activated protein kinases observed. Jurkat E6-1 cells are stimulated in the device using alpha-CD3, and the resulting activations of ERK and JNK are presented for different time points. Stimulation of cells performed on chip results in pathway activation identical to that of conventionally treated cells under the same conditions.
Note: Tesla based pulse generator for electrical breakdown study of liquid dielectrics
NASA Astrophysics Data System (ADS)
Veda Prakash, G.; Kumar, R.; Patel, J.; Saurabh, K.; Shyam, A.
2013-12-01
In the process of studying charge holding capability and delay time for breakdown in liquids under nanosecond (ns) time scales, a Tesla based pulse generator has been developed. Pulse generator is a combination of Tesla transformer, pulse forming line, a fast closing switch, and test chamber. Use of Tesla transformer over conventional Marx generators makes the pulse generator very compact, cost effective, and requires less maintenance. The system has been designed and developed to deliver maximum output voltage of 300 kV and rise time of the order of tens of nanoseconds. The paper deals with the system design parameters, breakdown test procedure, and various experimental results. To validate the pulse generator performance, experimental results have been compared with PSPICE simulation software and are in good agreement with simulation results.
Kinetic Studies of Reactions in Solution Using Fast Mass Spectrometry
2013-08-13
dicyanamide ionic liquids Hypergolic fuels, or hypergols, can be ignited by exposure to an oxidizing agent under ambient conditions and are a common...DCA) based ionic liquids are a less volatile alternative that are less viscous than most ionic liquids ; however, ignition of these compounds...Condensates upon Hypergolic Ignition of Dicyanamide Ionic Liquids ," Angew. Chem. Int. Ed. 50, 8634–8637 (2011). (7) R. H. Perry, D. I. Bellovin, E
Liquid Nitrogen as Fast High Voltage Switching Medium
NASA Astrophysics Data System (ADS)
Dickens, J.; Neuber, A.; Haustein, M.; Krile, J.; Krompholz, H.
2002-12-01
Compact pulsed power systems require new switching technologies. For high voltages, liquid nitrogen seems to be a suitable switching medium, with high hold-off voltage, low dielectric constant, and no need for pressurized systems as in high pressure gas switches. The discharge behavior in liquid nitrogen, such as breakdown voltages, formative times, current rise as function of voltage, recovery, etc. are virtually unknown, however. The phenomenology of breakdown in liquid nitrogen is investigated with high speed (temporal resolution < 1 ns) electrical and optical diagnostics, in a coaxial system with 50-Ohm impedance. Discharge current and voltage are determined with transmission line type current sensors and capacitive voltage dividers. The discharge luminosity is measured with photomultiplier tubes. Preliminary results of self-breakdown investigations (gap 1 mm, breakdown voltage 44 kV, non-boiling supercooled nitrogen) show a fast (2 ns) transition from an unknown current level to several mA, a long-duration (100 ns) phase with constant current superimposed by ns-spikes, and a final fast transition to the impedance limited current during several nanoseconds. The optical measurements will be expanded toward spectroscopy and high speed photography with the aim of clarifying the overall breakdown mechanisms, including electronic initiation, bubble formation, bubble dynamics, and their role in breakdown, for different electrode geometries (different macroscopic field enhancements).
Melo, Lucio F C; Collins, Carol H; Jardim, Isabel C S F
2004-04-02
Sample preparation procedures which included the use of new aminopropyl (NH2) and octadecyl (C18) solid-phase extraction (SPE) sorbents are proposed for the simultaneous multiclass determination of the fungicide benomyl and of the herbicides tebuthiuron, diuron, simazine, atrazine, and ametryn in grapes, using single wavelength high-performance liquid chromatography. Sorbent preparation uses a fast, easy, and effective procedure to obtain silica-based materials, made by depositing polysiloxanes on a silica support followed by thermal immobilization. Recovery results of the compounds, after elution from the SPE cartridges, indicate that the most efficient system employed silica loaded with 40% of an aminofunctional polydimethylsiloxane as sorbent, using dichloromethane:methanol (95:5, v/v) as eluent. Method validation, carried out in agreement with International Conference on Harmonization directives, was performed at three fortification levels (100, 200, and 1000 microg kg(-1)). Limits of detection and quantification show that the method developed can be used to detect the pesticides at concentrations below the maximum residue levels established by Codex Alimentarius, the US Environmental Protection Agency, the European Union, and Brazilian legislation.
Yan, Zhou; Xia, Bing; Qiu, Ming Hua; Li Sheng, Ding; Xu, Hong Xi
2013-11-01
A rapid and reliable method was established for simultaneous determination of main triterpenoids in Ganoderma lucidum spores using ultra-high-performance liquid chromatography coupled with triple quadrupole mass spectrometry (UPLC-TQ-MS). The established method was validated in terms of linearity, sensitivity, precision, accuracy and stability, and was successfully applied to determine the contents of 10 main triterpenoids in different batches of G. lucidum spores. The analysis results showed that moderate levels of triterpenoids were found in G. lucidum spores. In addition, a MS full scan with a daughter ion scan experiment was performed to identify the potential derivatives of triterpenoids present in G. lucidum spores. As a result, a total of 22 triterpenoids from different G. lucidum spores were unequivocally or tentatively identified via comparisons with authentic standards and literatures. This method provides both qualitative and quantitative results without the need for repetitive UPLC-MS analyses, thereby increasing efficiency and productivity, making it suitable for high-throughput applications. Copyright © 2013 John Wiley & Sons, Ltd.
Oliva, Alexis; Monzón, Cecilia; Santoveña, Ana; Fariña, José B; Llabrés, Matías
2016-07-01
An ultra high performance liquid chromatography method was developed and validated for the quantitation of triamcinolone acetonide in an injectable ophthalmic hydrogel to determine the contribution of analytical method error in the content uniformity measurement. During the development phase, the design of experiments/design space strategy was used. For this, the free R-program was used as a commercial software alternative, a fast efficient tool for data analysis. The process capability index was used to find the permitted level of variation for each factor and to define the design space. All these aspects were analyzed and discussed under different experimental conditions by the Monte Carlo simulation method. Second, a pre-study validation procedure was performed in accordance with the International Conference on Harmonization guidelines. The validated method was applied for the determination of uniformity of dosage units and the reasons for variability (inhomogeneity and the analytical method error) were analyzed based on the overall uncertainty. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
UPLC and HPLC of caffeoyl esters in wild and cultivated Arctium lappa L.
Haghi, Ghasem; Hatami, Alireza; Mehran, Mehdi
2013-05-01
Analytical methods including ultra-performance liquid chromatography (UPLC) and high-performance liquid chromatography (HPLC) with photodiode array (PDA) detector were developed for the analysis of caffeoylquinic acid derivatives in seeds, leaves and roots of Arctium lappa L. Separation was performed on C(18) column utilising 5% (v/v) acetic acid in water and acetonitrile at 330 nm. Both methodologies were validated in terms of linearity, precision, and recovery. The results showed that the major advantages of UPLC, over HPLC were the fast analysis, narrow peaks, high sensitivity, and reduction of solvent consumption. Subsequently the methods were applied for the identification and quantification of chlorogenic acid (5-CQA) and 1,5-dicaffeoylquinic acid (1,5-DCQA) as main compounds in samples. The total phenolic content of samples ranged from 3.93 to 14.13 g of 5-CQA equivalent/100g dry weight (DW). There was a significant variability from 89 to 571 mg/100g for 5-CQA and 48 to 486 mg/100g for 1,5-DCQA in dry material. Copyright © 2012 Elsevier Ltd. All rights reserved.
Hellmuth, Christian; Weber, Martina; Koletzko, Berthold; Peissner, Wolfgang
2012-02-07
Despite their central importance for lipid metabolism, straightforward quantitative methods for determination of nonesterified fatty acid (NEFA) species are still missing. The protocol presented here provides unbiased quantitation of plasma NEFA species by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Simple deproteination of plasma in organic solvent solution yields high accuracy, including both the unbound and initially protein-bound fractions, while avoiding interferences from hydrolysis of esterified fatty acids from other lipid classes. Sample preparation is fast and nonexpensive, hence well suited for automation and high-throughput applications. Separation of isotopologic NEFA is achieved using ultrahigh-performance liquid chromatography (UPLC) coupled to triple quadrupole LC-MS/MS detection. In combination with automated liquid handling, total assay time per sample is less than 15 min. The analytical spectrum extends beyond readily available NEFA standard compounds by a regression model predicting all the relevant analytical parameters (retention time, ion path settings, and response factor) of NEFA species based on chain length and number of double bonds. Detection of 50 NEFA species and accurate quantification of 36 NEFA species in human plasma is described, the highest numbers ever reported for a LC-MS application. Accuracy and precision are within widely accepted limits. The use of qualifier ions supports unequivocal analyte verification. © 2012 American Chemical Society
Meyer, Markus R; Caspar, Achim; Brandt, Simon D; Maurer, Hans H
2014-01-01
The first synthetic tryptamines have entered the designer drug market in the late 1990s and were distributed as psychedelic recreational drugs. In the meantime, several analogs have been brought onto the market indicating a growing interest in this drug class. So far, only scarce analytical data were available on the detectability of tryptamines in human biosamples. Therefore, the aim of the presented study was the development and full validation of a method for their detection in human urine and plasma and their quantification in human plasma. The liquid chromatography-linear ion trap mass spectrometry method presented covered 37 tryptamines as well as five β-carbolines, ibogaine, and yohimbine. Compounds were analyzed after protein precipitation of urine or fast liquid-liquid extraction of plasma using an LXQ linear ion trap coupled to an Accela ultra ultra high-performance liquid chromatography system. Data mining was performed via information-dependent acquisition or targeted product ion scan mode with positive electrospray ionization. The assay was selective for all tested substances with limits of detection in urine between 10 and 100 ng/mL and in plasma between 1 and 100 ng/mL. A validated quantification in plasma according to international recommendation could be demonstrated for 33 out of 44 analytes.
NASA Astrophysics Data System (ADS)
Yonemura, M.; Okada, J.; Watanabe, Y.; Ishikawa, T.; Nanao, S.; Shobu, T.; Toyokawa, H.
2013-03-01
Liquid state provides functions such as matter transport or a reaction field and plays an important role in manufacturing processes such as refining, forging or welding. However, experimental procedures are significantly difficult for an observation of solidification process of iron and iron-based alloys in order to identify rapid transformations subjected to fast temperature evolution. Therefore, in order to study the solidification in iron and iron-based alloys, we considered a combination of high energy X-ray diffraction measurements and an electrostatic levitation method (ESL). In order to analyze the liquid/solid fraction, the solidification of melted spherical specimens was measured at a time resolution of 0.1 seconds during rapid cooling using the two-dimensional time-resolved X-ray diffraction. Furthermore, the observation of particle sizes and phase identification was performed on a trial basis using X-ray small angle scattering with X-ray diffraction.
High-voltage subnanosecond dielectric breakdown
NASA Astrophysics Data System (ADS)
Mankowski, John Jerome
Current interests in ultrawideband radar sources are in the microwave regime, which correspond to voltage pulse risetimes less than a nanosecond. Some new sources, including the Phillips Laboratory Hindenberg series of hydrogen gas switched pulsers use hydrogen at hundreds of atmospheres of pressure in the switch. Unfortunately, the published data of electrical breakdown of gas and liquid media at these time lengths are relatively scarce. A study was conducted on the electrical breakdown properties of liquid and gas dielectrics at subnanosecond and nanoseconds. Two separate voltage sources with pulse risetimes less than 400 ps were developed. Diagnostic probes were designed and tested for their capability of detecting high voltage pulses at these fast risetimes. A thorough investigation into E-field strengths of liquid and gas dielectrics at breakdown times ranging from 0.4 to 5 ns was performed. The voltage polarity dependence on breakdown strength is observed. Streak camera images of streamer formation were taken. The effect of ultraviolet radiation, incident upon the gap, on statistical lag time was determined.
Ceramic micro-injection molded nozzles for serial femtosecond crystallography sample delivery
NASA Astrophysics Data System (ADS)
Beyerlein, K. R.; Adriano, L.; Heymann, M.; Kirian, R.; Knoška, J.; Wilde, F.; Chapman, H. N.; Bajt, S.
2015-12-01
Serial femtosecond crystallography (SFX) using X-ray Free-Electron Lasers (XFELs) allows for room temperature protein structure determination without evidence of conventional radiation damage. In this method, a liquid suspension of protein microcrystals can be delivered to the X-ray beam in vacuum as a micro-jet, which replenishes the crystals at a rate that exceeds the current XFEL pulse repetition rate. Gas dynamic virtual nozzles produce the required micrometer-sized streams by the focusing action of a coaxial sheath gas and have been shown to be effective for SFX experiments. Here, we describe the design and characterization of such nozzles assembled from ceramic micro-injection molded outer gas-focusing capillaries. Trends of the emitted jet diameter and jet length as a function of supplied liquid and gas flow rates are measured by a fast imaging system. The observed trends are explained by derived relationships considering choked gas flow and liquid flow conservation. Finally, the performance of these nozzles in a SFX experiment is presented, including an analysis of the observed background.
Zhang, Wei
2005-01-01
The purification of reaction mixtures is a slow process in organic synthesis, especially during the production of large numbers of analogs and compound libraries. Phase-tag methods such as solid-phase synthesis and fluorous synthesis, provide efficient ways of addressing the separation issue. Fluorous synthesis employs functionalized perfluoroalkyl groups attached to substrates or reagents. The separation of the resulting fluorous molecules can be achieved using strong and selective fluorous liquid-liquid extraction, fluorous silica gel-based solid-phase extraction or high-performance liquid chromatography. Fluorous technology is a novel solution-phase method, which has the advantages of fast reaction times in homogeneous environments, being readily adaptable to literature conditions, having easy intermediate analysis, and having flexibility in reaction scale and scope. In principle, any synthetic methods that use a solid-support could be conducted in solution-phase by replacing the polymer linker with a corresponding fluorous tag. This review summarizes the progress of fluorous tags in solution-phase synthesis of small molecules, peptides and oligosaccharides. PMID:15595439
Absorption degree analysis on biogas separation with ionic liquid systems.
Zhang, Xin; Zhang, Suojiang; Bao, Di; Huang, Ying; Zhang, Xiangping
2015-01-01
For biogas upgrading, present work mainly focuses on either thermodynamics or mass transfer properties. A systematical study on these two aspects is important for developing a new biogas separation process. In this work, a new criterion "absorption degree", which combines both thermodynamics and mass transfer properties, was proposed for the first time to comprehensively evaluate the absorption performance. Henry's law constants of CO2 and CH4 in ionic liquids-polyethylene glycol dimethyl ethers mixtures were investigated. The liquid-side mass transfer coefficients (kL) were determined. The results indicate that IL-NHD mixtures exhibit not only a high CO2/CH4 selectivity, but also a fast kL for CO2 absorption. The [bmim][NO3]+NHD mixtures present a high absorption degree value for CO2 but a low value for CH4. For presenting a highest relative absorption degree value, the 50wt% [bmim][NO3]+50wt% NHD mixture is recommended for biogas upgrading. Copyright © 2014 Elsevier Ltd. All rights reserved.
Effect of feeding on the pharmacokinetics of oral minocycline in healthy research dogs.
Hnot, Melanie L; Cole, Lynette K; Lorch, Gwendolen; Rajala-Schultz, Paivi J; Papich, Mark G
2015-12-01
The effect of food on minocycline oral absorption in dogs is unknown. The objective was to determine the pharmacokinetics of minocycline after administration of a single oral dose in fed and fasted dogs. Ten research hounds were administered oral minocycline (approximately 5 mg/kg) with and without food, in a crossover study, with a one-week wash-out between treatments. Blood samples were collected immediately prior to minocycline administration and over 24 h. Minocycline plasma drug concentrations were measured using high-performance liquid chromatography using ultraviolet detection and were analysed with compartmental modelling to determine primary pharmacokinetic parameters. Each dog was analysed independently, followed by calculation of means and variation of the dogs. The Wilcoxon signed-rank test [analysing secondary pharmacokinetic parameters - peak concentration (CMAX ), area under the concentration versus time curve (AUC)] was used to compare the two groups. A population pharmacokinetic modelling approach was performed using nonlinear mixed effects modelling of primary parameters for the population as fixed effects and the difference between subjects as a random effect. Covariate analysis was used to identify the source of variability in the population. No significant difference was found between treatments for AUC (P = 0.0645), although AUC was higher in fasted dogs. A significant difference was found for CMAX (P = 0.0059), with fasted dogs attaining a higher CMAX . The covariate of fed versus fasted accounted for a significant variation in the pharmacokinetics. Because feeding was a significant source of variation for the population's primary pharmacokinetic parameters and fasted dogs had higher minocycline concentrations, we recommend administering minocycline without food. © 2015 ESVD and ACVD.
Unsteady jet in designing innovative drug delivery system
NASA Astrophysics Data System (ADS)
Wang, Cong; Mazur, Paul; Cosse, Julia; Rider, Stephanie; Gharib, Morteza
2014-11-01
Micro-needle injections, a promising pain-free drug delivery method, is constrained by its limited penetration depth. This deficiency can be overcome by implementing fast unsteady jet that can penetrate sub-dermally. The development of a faster liquid jet would increase the penetration depth and delivery volume of micro-needles. In this preliminary work, the nonlinear transient behavior of an elastic tube balloon in providing fast discharge is analyzed. A physical model that combines the Mooney Rivlin Material model and Young-Lapalce's Law was developed and used to investigate the fast discharging dynamic phenomenon. A proof of concept prototype was constructed to demonstrate the feasibility of a simple thumb-sized delivery system to generate liquid jet with desired speed in the range of 5-10 m/s. This work is supported by ZCUBE Corporation.
Liquid crystal materials and tunable devices for optical communications
NASA Astrophysics Data System (ADS)
Du, Fang
In this dissertation, liquid crystal materials and devices are investigated in meeting the challenges for photonics and communications applications. The first part deals with polymer-stabilized liquid crystal (PSLC) materials and devices. Three polymer-stabilized liquid crystal systems are developed for optical communications. The second part reports the experimental investigation of a novel liquid-crystal-infiltrated photonic crystal fiber (PCF) and explores its applications in fiber-optic communications. The curing temperature is found to have significant effects on the PSLC performance. The electro-optic properties of nematic polymer network liquid crystal (PNLC) at different curing temperatures are investigated experimentally. At high curing temperature, a high contrast, low drive voltage, and small hysteresis PNLC is obtained as a result of the formed large LC microdomains. With the help of curing temperature effect, it is able to develop PNLC based optical devices with highly desirable performances for optical communications. Such high performance is generally considered difficult to realize for a PNLC. In fact, the poor performance of PNLC, especially at long wavelengths, has hindered it from practical applications for optical communications for a long time. Therefore, the optimal curing temperature effect discovered in this thesis would enable PSLCs for practical industrial applications. Further more, high birefringence LCs play an important role for near infrared photonic devices. The isothiocyanato tolane liquid crystals exhibit a high birefringence and low viscosity. The high birefringence LC dramatically improves the PSLC contrast ratio while keeping a low drive voltage and fast response time. A free-space optical device by PNLC is experimentally demonstrated and its properties characterized. Most LC devices are polarization sensitive. To overcome this drawback, we have investigated the polymer-stabilized cholesteric LC (PSCLC). Combining the curing temperature effect and high birefringence LC, a polarization independent fiber-optical device is realized with over 30 dB attenuation, ˜12 V rms drive voltage and 11/28 milliseconds (rise/decay) response times. A polymer-stabilized twisted nematic LC (PS TNLC) is also proposed as a variable optical attenuator for optical communications. By using the polarization control system, the device is polarization independent. The polymer network in a PS TNLC not only results in a fast response time (0.9/9 milliseconds for rise/decay respectively), but also removes the backflow effect of TNLC which occurs in the high voltage regime. Another major achievement in this thesis is the first demonstration of an electrically tunable LC-infiltrated photonic crystal fiber (PCF). Two different LC PCF configurations are studied. For the first time, electrically tunable LC PCFs are demonstrated experimentally. The guiding mechanism and polarization properties are studied. Preliminary experimental results are also given for the thermo-optical properties of a LC filled air-core PCF. In conclusion, this dissertation has solved important issues related to PSLC and enables its applications as VOAs and light shutters in optical communications. Through experimental investigations of the LC filled PCFs, a new possibility of developing tunable micro-sized fiber devices is opened for optical communications as well.
NASA Astrophysics Data System (ADS)
Badoni, D.; Bizzarri, M.; Bonaiuto, V.; Checcucci, B.; De Simone, N.; Federici, L.; Fucci, A.; Paoluzzi, G.; Papi, A.; Piccini, M.; Salamon, A.; Salina, G.; Santovetti, E.; Sargeni, F.; Venditti, S.
2014-01-01
The goal of the NA62 experiment at the CERN SPS is the measurement of the Branching Ratio of the very rare kaon decay K+→π+ ν bar nu with a 10% accuracy by collecting 100 events in two years of data taking. An efficient photon veto system is needed to reject the K+→π+ π0 background and a liquid krypton electromagnetic calorimeter will be used for this purpose in the 1-10 mrad angular region. The L0 trigger system for the calorimeter consists of a peak reconstruction algorithm implemented on FPGA by using a mixed parallel architecture based on soft core Altera NIOS II embedded processors together with custom VHDL modules. This solution allows an efficient and flexible reconstruction of the energy-deposition peak. The system will be totally composed of 36 TEL62 boards, 108 mezzanine cards and 215 high-performance FPGAs. We describe the design, current status and the results of the first performance tests.
Lepom, P
1988-09-01
A method for the determination of zearalenone in maize and maize silage was developed which distinguishes itself by the effective and fast cleaning of the extracts with the help of a silica gel minicolumn. The samples were extracted with chloroform/methanol (9 + 1) and cleaned on a silica gel minicolumn after acid-base partition. The zearalenone was quantitatively determined optionally by means of high-performance liquid chromatography (HPLC) with fluorescence detection (excitation wavelength 236 nm, emission filter 418 nm) or thin-layer chromatography (TLC), p-methoxybenzene diazonium fluoroborate and aluminium chloride were used as detection chemicals. The limits of detection are 0.01 mg/kg (HPLC) and 0.1 mg/kg resp. (TLC), the average recovery is 81%. The method was used for the determination of zearalenone in grain maize, CCM silage and silage from whole maize plants.
Analysis of biodiesel by high performance liquid chromatography using refractive index detector.
Syed, Mahin Basha
2017-01-01
High-performance liquid chromatography (HPLC) was used for the determination of compounds occurring during the production of biodiesel from karanja and jatropha oil. Methanol was used for fast monitoring of conversion of karanja and jatropha oil triacylglycerols to fatty acid methyl esters and for quantitation of residual triacylglycerols (TGs), in the final biodiesel product. The individual sample compounds were identified using HPLC. Analysis of fatty acid methyl esters (FAMES) in blends of biodiesel by HPLC using a refractive index and a UV detector at 238 nm. Individual triacylglycerols, diacylglycerols, monoacylglycerols and methyl esters of oleic, linoleic and linolenic acids and free fatty acids were separated within 40 min. Hence HPLC was found to be best for the analysis of biodiesel. Analysis of biodiesel by HPLC using RID detector. Estimation of amount of FAMES in biodiesel. Individual triacylglycerols, diacylglycerols, monoacylglycerols and methyl esters of oleic, linoleic and linolenic acids and free fatty acids were separated within 40 min.
Di Filippo, Patrizia; Riccardi, Carmela; Pomata, Donatella; Marsiglia, Riccardo; Console, Carla; Puri, Daniele
2018-01-01
Fosetyl-aluminum is a synthetic fungicide administered to plants especially to prevent diseases caused by the members of the Peronosporales and several Phytophthora species. Herein, we present a selective liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to analyze residues of fosetyl-A1 in air particulate matter. This study was performed in perspective of an exposure assessment of this substance of health concern in environments where high levels of fosetly-Al, relatively to airborne particulate matter, can be found after spraying it. The cleanup procedure of the analyte, from sampled filters of atmospheric particulate matter, was optimized using a Strata X solid-phase extraction cartridge, after accelerated extraction by using water. The chromatographic separation was achieved using a polymeric column based on hydrophilic interaction in step elution with water/acetonitrile, whereas the mass spectrometric detection was performed in negative electrospray ionization. The proposed method resulted to be a simple, fast, and suitable method for confirmation purposes. PMID:29686933
Comparison of non-catalytic and catalytic fast pyrolysis of corncob in a fluidized bed reactor.
Zhang, Huiyan; Xiao, Rui; Huang, He; Xiao, Gang
2009-02-01
Fast pyrolysis of corncob with and without catalyst was investigated in a fluidized bed to determine the effects of pyrolysis parameters (temperature, gas flow rate, static bed height and particle size) and a HZSM-5 zeolite catalyst on the product yields and the qualities of the liquid products. The result showed that the optimal conditions for liquid yield (56.8%) were a pyrolysis temperature of 550 degrees C, gas flow rate of 3.4 L/min, static bed height of 10 cm and particle size of 1.0-2.0mm. The presence of the catalyst increased the yields of non-condensable gas, water and coke, while decreased the liquid and char yields. The elemental analysis showed that more than 25% decrease in oxygen content of the collected liquid in the second condenser with HZSM-5 was observed compared with that without catalyst. The H/C, O/C molar ratios and the higher heating value of the oil fraction in the collected liquid with the catalyst were 1.511, 0.149 and 34.6 MJ/kg, respectively. It was indicated that the collected liquid in the second condenser had high qualities and might be used as transport oil.
Development of medial pterygoid muscle fibers in rabbits fed with a liquid diet.
Kuroki, Kozue; Morita, Takumi; Takasu, Hiroki; Saito, Keisuke; Fujiwara, Takuya; Hiraba, Katsunari; Goto, Shigemi
2017-08-01
This study aimed to investigate the influence of decreased functional load on the medial pterygoid muscle during mastication in rabbits fed with a liquid-diet. Medial pterygoid muscles from 54 rabbits (solid- and liquid-diet groups, n=48; unweaned group, n=6) were histochemically examined at 4, 9, 12, 18, and 33 weeks after birth. Six fiber types (I, IC, IIC, IIA, IIAB, and IIB) were distinguished via mATPase staining. Significant increases in the diameters of all fiber types were seen up to 33 weeks of age in the solid-diet group; however, no significant increase was noted in fiber types I and IC, from 4 to 33 weeks of age, in the liquid-diet group. The proportion of slow fibers increased up to 12 weeks followed by an increase in the number of fast fibers in the solid-diet group, whereas in the liquid-diet group, the number of slow fiber declined after weaning. Liquid-diet consumption caused muscle fiber atrophy and an increase in the number of fast fibers during early developmental stages after weaning. Furthermore, the growth pattern of the medial pterygoid muscle in the liquid-diet group was different from that in the solid-diet group. Copyright © 2017 Elsevier Ltd. All rights reserved.
Two-step catalytic hydrodeoxygenation of fast pyrolysis oil to hydrocarbon liquid fuels.
Xu, Xingmin; Zhang, Changsen; Liu, Yonggang; Zhai, Yunpu; Zhang, Ruiqin
2013-10-01
Two-step catalytic hydrodeoxygenation (HDO) of fast pyrolysis oil was investigated for translating pyrolysis oil to transportation grade hydrocarbon liquid fuels. At the first mild HDO step, various organic solvents were employed to promote HDO of bio-oil to overcome coke formation using noble catalyst (Ru/C) under mild conditions (300 °C, 10 MPa). At the second deep HDO step, conventional hydrogenation setup and catalyst (NiMo/Al2O3) were used under severe conditions (400 °C, 13 MPa) for obtaining hydrocarbon fuel. Results show that the phenomenon of coke formation is effectively eliminated, and the properties of products have been significantly improved, such as oxygen content decreases from 48 to 0.5 wt% and high heating value increases from 17 to 46 MJ kg(-1). GC-MS analysis indicates that the final products include C11-C27 aliphatic hydrocarbons and aromatic hydrocarbons. In short, the fast pyrolysis oils were successfully translated to hydrocarbon liquid fuels using a two-step catalytic HDO process. Copyright © 2013 Elsevier Ltd. All rights reserved.
Membranes for nanometer-scale mass fast transport
Bakajin, Olgica [San Leandro, CA; Holt, Jason [Berkeley, CA; Noy, Aleksandr [Belmont, CA; Park, Hyung Gyu [Oakland, CA
2011-10-18
Nanoporous membranes comprising single walled, double walled, and multiwalled carbon nanotubes embedded in a matrix material were fabricated for fluid mechanics and mass transfer studies on the nanometer scale and commercial applications. Average pore size can be 2 nm to 20 nm, or seven nm or less, or two nanometers or less. The membrane can be free of large voids spanning the membrane such that transport of material such as gas or liquid occurs exclusively through the tubes. Fast fluid, vapor, and liquid transport are observed. Versatile micromachining methods can be used for membrane fabrication. A single chip can comprise multiple membranes. These membranes are a robust platform for the study of confined molecular transport, with applications in liquid and gas separations and chemical sensing including desalination, dialysis, and fabric formation.
Maltby, J Roger; Pytka, Saul; Watson, Neil C; Cowan, Robert A McTaggart; Fick, Gordon H
2004-02-01
To determine whether, in obese [body mass index (BMI) > 30 kg.m(2)] patients, oral intake of 300 mL clear liquid two hours before elective surgery affects the volume and pH of gastric contents at induction of anesthesia. A single-blind, randomized study of 126 adult patients, age > or = 18 yr, ASA physical status I or II, BMI > 30 kg.m(2) who were scheduled for elective surgery under general anesthesia. Patients were excluded if they had diabetes mellitus, symptoms of gastroesophageal reflux, or had taken medication within 24 hr that affects gastric secretion, gastric fluid pH or gastric emptying. All patients fasted from midnight and were randomly assigned to fasting or fluid group. Two hours before their scheduled time of surgery, all patients drank 10 mL of water containing phenol red 50 mg. Those in the fluid group followed with 300 mL clear liquid of their choice. Immediately following induction of general anesthesia and tracheal intubation, gastric contents were aspirated through a multiorifice Salem sump tube. The fluid volume, pH and phenol red concentration were recorded. Median (range) values in fasting vs fluid groups were: gastric fluid volume 26 (3-107) mL vs 30 (3-187) mL, pH 1.78 (1.31-7.08) vs 1.77 (1.27-7.34) and phenol red retrieval 0.1 (0-30)% vs 0.2 (0-15)%. Differences between groups were not statistically significant. Obese patients without comorbid conditions should follow the same fasting guidelines as non-obese patients and be allowed to drink clear liquid until two hours before elective surgery, inasmuch as obesity per se is not considered a risk factor for pulmonary aspiration.
Ren, Yan; Zhao, Weiwei; Zhao, Juanjuan; Chen, Xiangming; Yu, Chen; Liu, Mengan
2017-11-01
A simple, fast and reliable high-performance liquid chromatography-tandem mass spectrometry method was developed and validated for the simultaneous quantification and pharmacokinetic study of three flavonoids (liquiritigenin, isoliquiritigenin and formononetin) and three anthraquinones (emodin, rhein and aloe-emodin), which are the bioactive ingredients of Wei-Chang-Shu tablet found in rat plasma. After extraction by liquid-liquid extraction with ethyl acetate, chromatographic separation was achieved on an Agilent Zorbax SB-C 18 column (4.6 × 150 mm, 5 μm) at a flow rate of 1 mL/min by gradient elution using 0.1% aqueous acetic acid and acetonitrile. The detection was performed using a triple quadrupole mass spectrometer equipped with electrospray ionization source in the negative ionization and selected reaction monitoring mode. Method validation was performed in terms of specificity, carryover, linearity (r > 0.99), intra-/inter-day precision (1.0-10.1%), accuracy (relative error, <7.6%), stability (0.6-13.2%), extract recovery (74.9-91.9%) and matrix effect (89.1-109%). The lower limits of quantification of the six analytes varied from 0.92 to 10.4 ng/mL. The validated method was successfully applied to compare the pharmacokinetic properties of Wei-Chang-Shu tablet in normal rats and in rats with gastrointestinal motility disorders. The results indicated that there were obvious differences in the pharmacokinetic behavior between normal and model rats. This study will be helpful in the clinical application of Wei-Chang-Shu tablet. Copyright © 2017 John Wiley & Sons, Ltd.
Sheu, Ceshing; Chen, Shu-Chuan; Lo, Chi-Chu
2010-07-01
A high performance liquid chromatographic (HPLC) analysis method with an ultraviolet (UV) detector and an Aqua C18 (250 x 4.6 mm, Phenomenex) column were applied to analyze the antibiotic fungicide kasugamycin in water. An aromatic sulfonic acid spe column (Backerbond, J. T. Backer) was used to remove the interfering materials from irrigation water. A good linear relation existed between the concentration of the fungicide and the peak area, and correlation coefficient of linearity from 0.1 to 10.2 microg/mL was 0.998. The accuracies expressed as the recoveries of kasugamycin from irrigation water ranged from 112.2 to 111.7 %. The precisions expressed as relative standard deviations (RSD) were found to be below 7.0 %. The quantitative detection limit (LOQ) of kasugamycin in irrigation water was set at 2.2 microg/mL which was 2-times higher than the method detection limit (MDL) 1.03 microg/mL. Electrospray ionization-mass (ESI-MS) and fast-atom bombardment-mass (FAB-MS) were applied to compare the ability of identifying the component of the eluent peak from HPLC, and the result indicated that electrospray ionization-mass (ESI-MS) was more sensitive than fast-atom bombardment-mass (FAB-MS) in the detection of kasugamycin. There was no kasugamycin residue detected in irrigation water samples collected from paddyfields at Wufong, indicated that the residues of kasugamycin in water were less than 2.2 microg/mL, and the risk of water contamination was very low.
Lung, Shih-Chun Candice; Liu, Chun-Hu
2015-01-01
Polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs are ubiquitous in the environment. Some of them are probable carcinogens and some are source markers. This work presents an ultra-high performance liquid chromatography-atmospheric pressure photoionization-tandem mass spectrometry (UHPLC-APPI-MS/MS) method for simultaneous analysis of 20 PAHs and nine nitro-PAHs. These compounds are separated in 15 minutes in the positive mode and 11 minutes in the negative mode, one half of GC/MS analysis time. Two pairs of precursor/product ions are offered, which is essential for confirmation. This method separates and quantifies benzo[a]pyrene (the most toxic PAHs) and non-priority benzo[e]pyrene (isomers, little toxicity) to avoid overestimation of toxin levels, demonstrating its importance for health-related researches. With 0.5% 2,4-difluoroanisole in chlorobenzene as the dopant, limits of detection of PAHs except acenaphthylene and those of nitro-PAHs except 2-nitrofluoranthene are below 10 pg and 3 pg, respectively, mostly lower than or comparable to those reported using LC-related systems. The responses were linear over two orders of magnitude with fairly good accuracy and precision. Certified reference materials and real aerosol samples were analyzed to demonstrate its applicability. This fast, sensitive, and reliable method is the first UHPLC-APPI-MS/MS method capable of simultaneously analyzing 29 environmentally and toxicologically important PAHs and nitro-PAHs. PMID:26265155
2013-01-01
Background The SuoQuan formulae containing Fructus Alpiniae Oxyphyllae has been used to combat the urinary incontinence symptoms including frequency, urgency and nocturia for hundreds of years in China. However, the chemical information was not well characterized. The quality control marker constituent only focused on one single compound in the current Chinese Pharmacopeia. Hence it is prudent to identify and quantify the main constituents in this herbal product. This study aimed to analyze the main constituents using ultra-fast performance liquid chromatography coupled to tandem mass spectrometry (UFLC-MS/MS). Results Fourteen phytochemicals originated from five chemical classes constituents were identified by comparing the molecular mass, fragmentation pattern and retention time with those of the reference standards. A newly developed UFLC-MS/MS was validated demonstrating that the new assay was valid, reproducible and reliable. This method was successfully applied to simultaneously quantify the fourteen phytochemicals. Notably, the content of these constituents showed significant differences in three pharmaceutical preparations. The major constituent originated from each of chemical class was isolinderalactone, norisoboldine, nootkatone, yakuchinone A and apigenin-4’,7-dimethylther, respectively. The variation among these compounds was more than 1000 times. Furthermore, the significant content variation between the two different Suoquan pills was also observed. Conclusion The proposed method is sensitive and reliable; hence it can be used to analyze a variety of SuoQuan formulae products produced by different pharmaceutical manufacturers. PMID:23899222
Bendahl, Lars; Hansen, Steen Honoré; Gammelgaard, Bente; Sturup, Stefan; Nielsen, Camilla
2006-02-24
Ultra performance liquid chromatography (UPLC) was coupled to inductively coupled plasma mass spectrometry (ICP-MS) for fast analysis of three bromine-containing preservatives, monitoring the 79Br and 81Br isotopes simultaneously. Due to the efficiency of the 1.7 microm column packing material, the resolution of the test substances was only slightly affected when the linear flow velocity was increased from 0.5 to 1.9 mm s(-1). However, the sensitivity of ICP-MS detection decreased when the linear flow velocity was increased from 0.5 to 1.9 mm s(-1). Analytical figures of merit were determined at an intermediate and at a high linear velocity. The precision was better than 2.2% R.S.D. and regression analysis showed that a linear response was achieved at both flow rates (R2 > 0.9993, n = 36). The analysis time was less than 4.5 min at a flow rate of 50 microL min(-1) and limits of detection and quantification were better than 3.3 and 11 microg BrL(-1), respectively. The analysis time was reduced to 2.7 min when the flow rate was increased to 90 microL min(-1) and limits of detection and quantification were better than 20 and 65 microg BrL(-1), respectively. The method was applied for quantitative analysis of bromine-containing preservatives in commercially available cosmetic products.
NASA Astrophysics Data System (ADS)
Kim, Onnuri; Park, Moon Jeong
2015-03-01
Electroactive polymer (EAP) actuators that show reversible deformation under external electric stimulus have attracted great attention toward a range of biomimetic applications such as microsensors and artificial muscles. Key challenges to advance the technologies can be placed on the achievement of fast response time, low driving voltage, and durable operation in air. In present study, we are motivated to solve these issues by employing self-assembled block copolymers containing ionic liquids (ILs) as polymer layers in the actuator based on knowledge of factors affecting electromechanical properties of actuators. By controlling the block architecture and molecular weight of block copolymers, bending strain and durability were controlled in a straightforward manner. It has also been revealed that the type of IL makes impact on the EAP actuator performance by determining ion migration dynamics. Our actuators demonstrated large bending strains (up to 4%) under low voltages of 1-3V, which far exceeds the best performance of other EAP actuators reported in the literature. To underpin the molecular-level understanding of actuation mechanisms underlying the improved performance, we carried out in situ spectroscopy and in situ scattering experiments under actuation.
Subthreshold neutron interrogator for detection of radioactive materials
Evans, Michael L.; Menlove, Howard O.; Baker, Michael P.
1980-01-01
A device for detecting fissionable material such as uranium in low concentrations by interrogating with photoneutrons at energy levels below 500 keV, and typically about 26 keV. Induced fast neutrons having energies above 500 keV by the interrogated fissionable material are detected by a liquid scintillator or recoil proportional counter which is sensitive to the induced fast neutrons. Since the induced fast neutrons are proportional to the concentration of fissionable material, detection of induced fast neutrons indicate concentration of the fissionable material.
Wang, Xiaoyan; Qi, Weimei; Zhao, Xian'en; Lü, Tao; Wang, Xiya; Zheng, Longfang; Yan, Yehao; You, Jinmao
2014-06-01
To achieve accurate, fast and sensitive detection of phenolic endocrine disruptors in small volume of environmental water samples, a method of dispersive liquid-liquid microextraction (DLLME) coupled with fluorescent derivatization was developed for the determination of bisphenol A, nonylphenol, octylphenol and 4-tert-octylphenol in environmental water samples by high performance liquid chromatography-fluorescence detection (HPLC-FLD). The DLLME and derivatization conditions were investigated, and the optimized DLLME conditions for small volume of environmental water samples (pH 4.0) at room temperature were as follows: 70 microL chloroform as extraction solvent, 400 microL acetonitrile as dispersing solvent, vortex mixing for 3 min, and then high-speed centrifugation for 2 min. Using 2-[2-(7H-dibenzo [a, g] carbazol-7-yl)-ethoxy] ethyl chloroformate (DBCEC-Cl) as precolumn derivatization reagent, the stable derivatives of the four phenolic endocrine disruptors were obtained in pH 10.5 Na2CO3-NaHCO3 buffer/acetonitrile at 50 degrees C for 3 min, and then separated within 10 min by HPLC-FLD. The limits of detection (LODs) were in the range of 0.9-1.6 ng/L, and the limits of quantification (LOQs) were in the range of 3.8-7.1 ng/L. This method had perfect linearity, precision and recovery results, and showed obvious advantages and practicality comparing to the previously reported methods. It is a convenient and validated method for the routine analysis of phenolic endocrine disruptors in waste water of paper mill, lake water, domestic wastewater, tap water, etc.
Sosso, Gabriele C; Miceli, Giacomo; Caravati, Sebastiano; Giberti, Federico; Behler, Jörg; Bernasconi, Marco
2013-12-19
Phase change materials are of great interest as active layers in rewritable optical disks and novel electronic nonvolatile memories. These applications rest on a fast and reversible transformation between the amorphous and crystalline phases upon heating, taking place on the nanosecond time scale. In this work, we investigate the microscopic origin of the fast crystallization process by means of large-scale molecular dynamics simulations of the phase change compound GeTe. To this end, we use an interatomic potential generated from a Neural Network fitting of a large database of ab initio energies. We demonstrate that in the temperature range of the programming protocols of the electronic memories (500-700 K), nucleation of the crystal in the supercooled liquid is not rate-limiting. In this temperature range, the growth of supercritical nuclei is very fast because of a large atomic mobility, which is, in turn, the consequence of the high fragility of the supercooled liquid and the associated breakdown of the Stokes-Einstein relation between viscosity and diffusivity.
Wang, Jiawei; Light, Kelly; Henderson, Mélanie; O'Loughlin, Jennifer; Mathieu, Marie-Eve; Paradis, Gilles; Gray-Donald, Katherine
2014-01-01
Little is known about longitudinal associations between added sugar consumption (solid and liquid sources) and glucose-insulin homeostasis among youth. Caucasian children (8-10 y) with at least one obese biological parent were recruited in the QUébec Adipose and Lifestyle InvesTigation in Youth (QUALITY) cohort (n = 630) and followed-up 2 y later (n = 564). Added sugars were assessed by 3 24-h dietary recalls at baseline. Two-year changes were examined in multivariate linear regression models, adjusting for baseline level, age, sex, Tanner stage, energy intake, fat mass (dual-energy X-ray absorptiometry), and physical activity (7 d accelerometer). Added sugar intake in either liquid or solid sources was not related to changes in adiposity measures (fat mass, body mass index, or waist circumference). However, a higher consumption (10 g/d) of added sugars from liquid sources was associated with 0.04 mmol/L higher fasting glucose, 2.3 pmol/L higher fasting insulin, 0.1 unit higher homeostasis model assessment of insulin resistance (HOMA-IR), and 0.4 unit lower Matsuda-insulin sensitivity index (Matsuda-ISI) in all participants (P < 0.01). No associations were observed with consumption of added sugars from solid sources. Overweight/obese children at baseline had greater increases in adiposity indicators, fasting insulin, and HOMA-IR and decreases in Matsuda-ISI during those 2 y than normal-weight children. Consumption of added sugars from liquid or solid sources was not associated with changes in adiposity, but liquid added sugars were a risk factor for the development of impaired glucose homeostasis and insulin resistance over 2 y among youth at risk of obesity.
Fast-response and scattering-free polymer network liquid crystals for infrared light modulators
NASA Astrophysics Data System (ADS)
Fan, Yun-Hsing; Lin, Yi-Hsin; Ren, Hongwen; Gauza, Sebastian; Wu, Shin-Tson
2004-02-01
A fast-response and scattering-free homogeneously aligned polymer network liquid crystal (PNLC) light modulator is demonstrated at λ=1.55 μm wavelength. Light scattering in the near-infrared region is suppressed by optimizing the polymer concentration such that the network domain sizes are smaller than the wavelength. The strong polymer network anchoring assists LC to relax back quickly as the electric field is removed. As a result, the PNLC response time is ˜250× faster than that of the E44 LC mixture except that the threshold voltage is increased by ˜25×.
Ultra-fast switching blue phase liquid crystals diffraction grating stabilized by chiral monomer
NASA Astrophysics Data System (ADS)
Manda, Ramesh; Pagidi, Srinivas; Sarathi Bhattacharya, Surjya; Yoo, Hyesun; T, Arun Kumar; Lim, Young Jin; Lee, Seung Hee
2018-05-01
We have demonstrated an ultra-fast switching and efficient polymer stabilized blue phase liquid crystal (PS-BPLC) diffraction grating utilizing a chiral monomer. We have obtained a 0.5 ms response time by a novel polymer stabilization method which is three times faster than conventional PS-BPLC. In addition, the diffraction efficiency was improved 2% with a much wider phase range and the driving voltage to switch the device is reduced. The polarization properties of the diffracted beam are unaffected by this novel polymer stabilization. This device can be useful for future photonic applications.
Liquid-Xe detector for contraband detection
NASA Astrophysics Data System (ADS)
Vartsky, D.; Israelashvili, I.; Cortesi, M.; Arazi, L.; Coimbra, A. E.; Moleri, L.; Erdal, E.; Bar, D.; Rappaport, M.; Shchemelinin, S.; Caspi, E. N.; Aviv, O.; Breskin, A.
2016-07-01
We describe progress made with a liquid-Xe (LXe) detector coupled to a gaseous photomultiplier (GPM), for combined imaging and spectroscopy of fast neutrons and gamma-rays in the MeV range. The purpose of this detector is to enable the detection of hidden explosives and fissile materials in cargo and containers. The expected position resolution is about 2 m and 3.5 mm for fast neutrons and gamma-rays, respectively. Experimental results obtained using an 241Am source yielded energy and time resolutions of 11% and 1.2 ns RMS, respectively. Initial results obtained with the position-sensitive GPM are presented.
Lísa, Miroslav; Holcapek, Michal; Sovová, Helena
2009-11-20
The selection of column packing during the development of high-performance liquid chromatography method is a crucial step to achieve sufficient chromatographic resolution of analyzed species in complex mixtures. Various stationary phases are tested in this paper for the analysis of complex mixture of triacylglycerols (TGs) in blackcurrant oil using non-aqueous reversed-phase (NARP) system with acetonitrile-2-propanol mobile phase. Conventional C(18) column in the total length of 45 cm is used for the separation of TGs according to their equivalent carbon number, the number and positions of double bonds and acyl chain lengths. The separation of TGs and their more polar hydrolysis products after the partial enzymatic hydrolysis of blackcurrant oil in one chromatographic run is achieved using conventional C(18) column. Retention times of TGs are reduced almost 10 times without the loss of the chromatographic resolution using ultra high-performance liquid chromatography with 1.7 microm C(18) particles. The separation in NARP system on C(30) column shows an unusual phenomenon, because the retention order of TGs changes depending on the column temperature, which is reported for the first time. The commercial monolithic column modified with C(18) is used for the fast analysis of TGs to increase the sample throughput but at cost of low resolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henry, T; Robertson, D; Therriault-Proulx, F
2015-06-15
Purpose: Liquid scintillators have been shown to provide fast and high-resolution measurements of radiation beams. However, their linear energy transfer-dependent response (quenching) limits their use in proton beams. The purpose of this study was to develop a simple and fast method to verify the range, spread-out Bragg peak (SOBP) width, and output of a passive-scattering proton beam with a liquid scintillator detector, without the need for quenching correction. Methods: The light signal from a 20×20×20 cm3 liquid scintillator tank was collected with a CCD camera. Reproducible landmarks on the SOBP depth-light curve were identified which possessed a linear relationship withmore » the beam range and SOBP width. The depth-light profiles for three beam energies (140, 160 and 180 MeV) with six SOBP widths at each energy were measured with the detector. Beam range and SOBP width calibration factors were obtained by comparing the depth-light curve landmarks with the nominal range and SOBP width for each beam setting. The daily output stability of the liquid scintillator detector was also studied by making eight repeated output measurements in a cobalt-60 beam over the course of two weeks. Results: The mean difference between the measured and nominal beam ranges was 0.6 mm (σ=0.2 mm), with a maximum difference of 0.9 mm. The mean difference between the measured and nominal SOBP widths was 0.1 mm (σ=1.8 mm), with a maximum difference of 4.0 mm. Finally an output variation of 0.14% was observed for 8 measurements performed over 2 weeks. Conclusion: A method has been developed to determine the range and SOBP width of a passive-scattering proton beam in a liquid scintillator without the need for quenching correction. In addition to providing rapid and accurate beam range and SOBP measurements, the detector is capable of measuring the output consistency with a high degree of precision. This project was supported in part by award number CA182450 from the National Cancer Institute.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mojaverian, P.; Ferguson, R.K.; Vlasses, P.H.
In animal and human studies, the gastric emptying of large (greater than 1 mm) indigestible solids is due to the activity of the interdigestive migrating myoelectric complex. The gastric residence time (GRT) of an orally administered, nondigestible, pH-sensitive, radiotelemetric device (Heidelberg capsule) was evaluated in three studies in healthy volunteers. In 6 subjects, the GRT of the Heidelberg capsule was compared with the half-emptying time (t1/2) of diethylenetriaminepentaacetic acid labeled with technetium 99m after a 4-ml/kg liquid fatty meal. The mean (+/-SD) GRT (4.3 +/- 1.4 h) was significantly (p less than 0.001) longer than the mean t1/2 (1.1 +/-more » 0.3 h); the GRT was prolonged compared with the t1/2 in each subject. In a randomized, crossover trial in 10 subjects, frequent feeding caused a dramatic prolongation in mean GRT of the capsule compared with the fasting state (greater than 14.5 vs. 0.5 h, p less than 0.005). In another crossover study in 6 subjects, the GRT of the capsule was evaluated after an overnight fast, a standard breakfast including solid food, and a liquid meal (i.e., 200 ml of diluted light cream). The mean GRT was 2.6 +/- 0.9 h after the liquid meal vs. 1.2 +/- 0.8 h after fasting (p less than 0.025). The mean GRT after the breakfast was 4.8 +/- 1.5 h, which was significantly greater than that after fasting (p less than 0.001) and after the liquid meal (p less than 0.01). These data suggest that the GRT of the Heidelberg capsule is a marker of the interdigestive migrating myoelectric complex in humans, the interdigestive migrating myoelectric complex can be markedly delayed by frequent feedings with solids, and the interdigestive migrating myoelectric complex is delayed by both liquid and solid meals.« less
Studies on Materials for Heavy-Liquid-Metal-Cooled Reactors in Japan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minoru Takahashi; Masayuki Igashira; Toru Obara
2002-07-01
Recent studies on materials for the development of lead-bismuth (Pb-Bi)-cooled fast reactors (FR) and accelerator-driven sub-critical systems (ADS) in Japan are reported. The measurement of the neutron cross section of Bi to produce {sup 210}Po, the removal experiment of Po contamination and steel corrosion test in Pb-Bi flow were performed in Tokyo Institute of Technology. A target material corrosion test was performed in the project of Transmutation Experimental Facility for ADS in Japan Atomic Energy Research Institute (JAERI). Steel corrosion test was started in Mitsui Engineering and Shipbuilding Co., LTD (MES). The feasibility study for FR cycle performed in Japanmore » Nuclear Cycle Institute (JNC) are described. (authors)« less
Fleet Composition of Rail Tank Cars That Transport Flammable Liquids: 2013-2016
DOT National Transportation Integrated Search
2017-09-05
Section 7308 of the Fixing America's Surface Transportation Act (FAST Act; P. L. 114-94; December 4, 2015) requires the U.S. Department of Transportation (DOT) to assemble and collect data on rail tank cars transporting Class 3 flammable liquids (box...
Cherenkov and scintillation light separation on the CheSS experiment
NASA Astrophysics Data System (ADS)
Caravaca, Javier; Land, Benjamin; Descamps, Freija; Orebi Gann, Gabriel D.
2016-09-01
Separation of the scintillation and Cherenkov light produced in liquid scintillators enables outstanding capabilities for future particle detectors, the most relevant being: particle directionality information in a low energy threshold detector and improved particle identification. The CheSS experiment uses an array of small, fast photomultipliers (PMTs) and state-of-the-art electronics to demonstrate the reconstruction of a Cherenkov ring in liquid scintillator using two techniques: based on the photon density and using the photon hit time information. A charged particle ionizing a scintillation medium produces a prompt Cherenkov cone and late isotropic scintillation light, typically delayed by several ns. The fast response of our PMTs and DAQ provides a precision well below the ns level, making possible the time separation. Furthermore, the usage of the new developed water-based liquid scintillators (WbLS) enhances the separation since it allows tuning of the Cherenkov/Scintillation ratio. Latest results on the separation for pure liquid scintillators and WbLS will be presented.
N-(2-Ethylhexyl)carbazole: A New Fluorophore Highly Suitable as a Monomolecular Liquid Scintillator.
Montbarbon, Eva; Sguerra, Fabien; Bertrand, Guillaume H V; Magnier, Élodie; Coulon, Romain; Pansu, Robert B; Hamel, Matthieu
2016-08-16
The synthesis, photophysical properties, and applications in scintillation counting of N-(2-ethylhexyl)carbazole (EHCz) are reported. This molecule displays all of the required characteristics for an efficient liquid scintillator (emission wavelength, scintillation yield), and can be used without any extra fluorophores. Thus, its scintillation properties are discussed, as well as its fast neutron/gamma discrimination. For the latter application, the material is compared with the traditional liquid scintillator BC-501 A, and other liquid fluorescent molecules classically used as scintillation solvents, such as xylene, pseudocumene (PC), linear alkylbenzenes (LAB), diisopropylnaphthalene (DIN), 1-methylnaphthalene (1-MeNapht), and 4-isopropylbiphenyl (iPrBiph). For the first time, an excimeric form of a molecule has been advantageously used in scintillation counting. A moderate discrimination between fast neutrons and gamma rays was observed in bulk EHCz, with an apparent neutron/gamma discrimination potential half of that of BC-501 A. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Dissociation of biomolecules in liquid environments during fast heavy-ion irradiation
NASA Astrophysics Data System (ADS)
Nomura, Shinji; Tsuchida, Hidetsugu; Kajiwara, Akihiro; Yoshida, Shintaro; Majima, Takuya; Saito, Manabu
2017-12-01
The effect of aqueous environment on fast heavy-ion radiation damage of biomolecules was studied by comparative experiments using liquid- and gas-phase amino acid targets. Three types of amino acids with different chemical structures were used: glycine, proline, and hydroxyproline. Ion-induced reaction products were analyzed by time-of-flight secondary-ion mass spectrometry. The results showed that fragments from the amino acids resulting from the C—Cα bond cleavage were the major products for both types of targets. For liquid-phase targets, specific products originating from chemical reactions in solutions were observed. Interestingly, multiple dissociated atomic fragments were negligible for the liquid-phase targets. We found that the ratio of multifragment to total fragment ion yields was approximately half of that for gas-phase targets. This finding agreed with the results of other studies on biomolecular cluster targets. It is concluded that the suppression of molecular multifragmentation is caused by the energy dispersion to numerous water molecules surrounding the biomolecular solutes.
Fast novel nonlinear optical NLC system with local response
NASA Astrophysics Data System (ADS)
Iljin, Andrey; Residori, Stefania; Bortolozzo, Umberto
2017-06-01
Nonlinear optical performance of a novel liquid crystalline (LC) cell has been studied in two-wave mixing experiments revealing high diffraction efficiency within extremely wide intensity range, fast recording times and spatial resolution. Photo-induced modulation of the LC order parameter resulting from trans-cis isomerisation of dye molecules causes consequent changes of refractive indices of the medium (Light-Induced Order Modification, LIOM-mechanism) and is proved to be the main mechanism of optical nonlinearity. The proposed arrangement of the electric-field-stabilised homeotropic alignment hinders the LC director reorientation, prevents appearance of surface effects and ensures the optical cell quality. The LIOM-type nonlinearity, characterised with the substantially local nonlinear optical response, could also be extended for the recording of arbitrary phase profiles as requested in several applications for light-beam manipulation, recording of dynamic volume holograms and photonic lattices.
Mechanically assisted liquid lens zoom system for mobile phone cameras
NASA Astrophysics Data System (ADS)
Wippermann, F. C.; Schreiber, P.; Bräuer, A.; Berge, B.
2006-08-01
Camera systems with small form factor are an integral part of today's mobile phones which recently feature auto focus functionality. Ready to market solutions without moving parts have been developed by using the electrowetting technology. Besides virtually no deterioration, easy control electronics and simple and therefore cost-effective fabrication, this type of liquid lenses enables extremely fast settling times compared to mechanical approaches. As a next evolutionary step mobile phone cameras will be equipped with zoom functionality. We present first order considerations for the optical design of a miniaturized zoom system based on liquid-lenses and compare it to its mechanical counterpart. We propose a design of a zoom lens with a zoom factor of 2.5 considering state-of-the-art commercially available liquid lens products. The lens possesses auto focus capability and is based on liquid lenses and one additional mechanical actuator. The combination of liquid lenses and a single mechanical actuator enables extremely short settling times of about 20ms for the auto focus and a simplified mechanical system design leading to lower production cost and longer life time. The camera system has a mechanical outline of 24mm in length and 8mm in diameter. The lens with f/# 3.5 provides market relevant optical performance and is designed for an image circle of 6.25mm (1/2.8" format sensor).
Petrarca, Mateus Henrique; Ccanccapa-Cartagena, Alexander; Masiá, Ana; Godoy, Helena Teixeira; Picó, Yolanda
2017-05-12
A new selective and sensitive liquid chromatography triple quadrupole mass spectrometry method was developed for simultaneous analysis of natural pyrethrins and synthetic pyrethroids residues in baby food. In this study, two sample preparation methods based on ultrasound-assisted dispersive liquid-liquid microextraction (UA-DLLME) and salting-out assisted liquid-liquid extraction (SALLE) were optimized, and then, compared regarding the performance criteria. Appropriate linearity in solvent and matrix-based calibrations, and suitable recoveries (75-120%) and precision (RSD values≤16%) were achieved for selected analytes by any of the sample preparation procedures. Both methods provided the analytical selectivity required for the monitoring of the insecticides in fruit-, cereal- and milk-based baby foods. SALLE, recognized by cost-effectiveness, and simple and fast execution, provided a lower enrichment factor, consequently, higher limits of quantification (LOQs) were obtained. Some of them too high to meet the strict legislation regarding baby food. Nonetheless, the combination of ultrasound and DLLME also resulted in a high sample throughput and environmental-friendly method, whose LOQs were lower than the default maximum residue limit (MRL) of 10μgkg -1 set by European Community for baby foods. In the commercial baby foods analyzed, cyhalothrin and etofenprox were detected in different samples, demonstrating the suitability of proposed method for baby food control. Copyright © 2017 Elsevier B.V. All rights reserved.
Sager, Maximilian; Jedamzik, Philipp; Merdivan, Simon; Grimm, Michael; Schneider, Felix; Kromrey, Marie-Luise; Hasan, Mahmoud; Oswald, Stefan; Kühn, Jens; Koziolek, Mirko; Weitschies, Werner
2018-06-01
Improving our knowledge about human gastrointestinal physiology and its impact on oral drug delivery is crucial for the development of new therapies and effective drug delivery systems. The aim of this study was to develop an in vivo tool to determine gastric emptying of water by administration of a caffeine as a tracer substance followed by subsequent saliva caffeine analysis. For this purpose, 35 mg of caffeine were given to six healthy volunteers after a 10 h overnight together with 240 mL of tap water either on a fasted stomach or 30 min after the high-caloric, high-fat breakfast recommended for bioavailability/bioequivalence (BA/BE) studies. Caffeine was administered in form of an ice capsule in order to omit the contamination of the oral cavity with caffeine. Parallel to saliva sampling, magnetic resonance imaging (MRI) was applied in order to validate this novel approach. After administration of the ice capsule, MRI measurements were performed every 2 min for the first 20 min followed by further measurements after 25, 30, 35, 40, 50 and 60 min. Saliva samples were collected always 1 min after the MRI measurement in supine position in the MRI scanner and continued for further 240 min. The caffeine concentration in saliva was quantified after liquid-liquid extraction by a validated HPLC/MS-MS method. The obtained MRI data revealed a fast emptying of the co-administered water within 10 to 50 min in the fasted state and likewise in the fed state. Salivary caffeine kinetics showed a C max from 150 to 400 ng/mL with a t max from 20 to 90 min. MRI data were normalized by setting the maximum emptied volume to 100% and the salivary caffeine kinetics were normalized by setting C max to 100%. In order to compare the results obtained by the MRI and the saliva method, the normalized data for each volunteer was correlated based on a linear regression. In the fasted state the mean slope for six comparisons was 0.9114 ± 0.1500 and the mean correlation coefficient was 0.912 ± 0.055. In the fed state, a mean slope of 0.8326 ± 0.1630 and a mean correlation coefficient of 0.887 ± 0.047 were obtained. Based on these results, we could show that salivary caffeine concentrations are suitable to describe the emptying of water as a non-caloric liquid from the fasted and the fed stomach. The presented technique provides a straight-forward, inexpensive and noninvasive method to assess gastric emptying of hydrophilic liquids, which can be broadly used in oral biopharmaceutics. Possible applications are the characterization of real-life conditions, specific populations (e.g. elderly people) and the better understanding of the contribution of gastric emptying to pharmacokinetic profiles of orally administered drugs. Copyright © 2018 Elsevier B.V. All rights reserved.
Safer staining method for acid fast bacilli.
Ellis, R C; Zabrowarny, L A
1993-01-01
To develop a method for staining acid fast bacilli which excluded highly toxic phenol from the staining solution. A lipophilic agent, a liquid organic detergent, LOC High Studs, distributed by Amway, was substituted. The acid fast bacilli stained red; nuclei, cytoplasm, and cytoplasmic elements stained blue on a clear background. These results compare very favourably with acid fast bacilli stained by the traditional method. Detergents are efficient lipophilic agents and safer to handle than phenol. The method described here stains acid fast bacilli as efficiently as traditional carbol fuchsin methods. LOC High Suds is considerably cheaper than phenol. Images PMID:7687254
Safer staining method for acid fast bacilli.
Ellis, R C; Zabrowarny, L A
1993-06-01
To develop a method for staining acid fast bacilli which excluded highly toxic phenol from the staining solution. A lipophilic agent, a liquid organic detergent, LOC High Studs, distributed by Amway, was substituted. The acid fast bacilli stained red; nuclei, cytoplasm, and cytoplasmic elements stained blue on a clear background. These results compare very favourably with acid fast bacilli stained by the traditional method. Detergents are efficient lipophilic agents and safer to handle than phenol. The method described here stains acid fast bacilli as efficiently as traditional carbol fuchsin methods. LOC High Suds is considerably cheaper than phenol.
NASA Astrophysics Data System (ADS)
Zeng, Zhi; Peng, Runling; He, Mei
2017-02-01
The double-liquid variable-focus lens based on the electrowetting has the characteristics of small size, light weight, fast response, and low price and so on. In this paper, double-liquid variable-focus lens's Principle and structure are introduced. The reasons for the existence and improvement of contact angle hysteresis are given according improved Young's equation. At last, 1-Bromododecane with silicone oil are mixed to get oil liquid with different viscosity and proportion liquid as insulating liquid. External voltages are applied to these three liquid lens and focal lengths of the lenses versus applied voltage are investigated. Experiments show that, the decreasing of oil liquid viscosity can reduce focal length hysteresis.
Aerodynamic repellency of impacting liquids
NASA Astrophysics Data System (ADS)
Gauthier, Anaïs; Bouillant, Ambre; Clanet, Christophe; Quéré, David
2018-05-01
Impacting liquids can be reflected by moving solid plates, provided the surface is fast enough. We describe and model here the threshold speed of bouncing, in particular as a function of the impact velocity of the incoming liquid. We also demonstrate that the aerodynamic force responsible for the nonwetting behavior induces an oblique rebound, which contributes to the liquid removal. In summary, this situation repels viscous, low surface tension drops of any size, all kinds of cases where repellency is impossible to achieve by other means.
Lehotay, Steven J; Lightfield, Alan R; Geis-Asteggiante, Lucía; Schneider, Marilyn J; Dutko, Terry; Ng, Chilton; Bluhm, Louis; Mastovska, Katerina
2012-08-01
In the USA, the US Department of Agriculture's Food Safety and Inspection Service (FSIS) conducts the National Residue Program designed to monitor veterinary drug and other chemical residues in beef and other slaughtered food animals. Currently, FSIS uses a 7-plate bioassay in the laboratory to screen for antimicrobial drugs in bovine kidneys from those animals tested positive by inspectors in the slaughter establishments. The microbial inhibition bioassay has several limitations in terms of monitoring scope, sensitivity, selectivity, and analysis time. Ultra-high performance liquid chromatography - tandem mass spectrometry (UHPLC-MS/MS) has many advantages over the bioassay for this application, and this study was designed to develop, evaluate, and validate a fast UHPLC-MS/MS method for antibiotics and other high-priority veterinary drugs in bovine kidney. Five existing multi-class, multi-residue methods from the literature were tested and compared, and each performed similarly. Experiments with incurred samples demonstrated that a 5-min shake of 2 g homogenized kidney with 10 ml of 4/1 (v/v) acetonitrile/water followed by simultaneous clean-up of the initial extract with 0.5 g C18 and 10 ml hexane gave a fast, simple, and effective sample preparation method for the <10 min UHPLC-MS/MS analysis. An extensive 5-day validation process demonstrated that the final method could be used to acceptably screen for 54 of the 62 drugs tested, and 50 of those met qualitative MS identification criteria. Quantification was not needed in the application, but the method gave ≥ 70% recoveries and ≤ 25% reproducibilities for 30 of the drugs. Published 2012. This article is a U.S. Government work and is in the public domain of the USA.
NASA Astrophysics Data System (ADS)
Strauch, Matthias; Konijnenberg, Sander; Shao, Yifeng; Urbach, H. Paul
2017-02-01
Liquid lenses are used to correct for low order wavefront aberrations. Electrowetting liquid lenses can nowadays control defocus and astigmatism effectively, so they start being used for ophthalmology applications. To increase the performance and applicability, we introduce a new driving mechanism to create, detect and correct higher order aberrations using standing waves on the liquid interface. The speed of a liquid lens is in general limited, because the liquid surface cannot follow fast voltage changes, while providing a spherical surface. Surface waves are created instead and with them undesired aberrations. We try to control those surface waves to turn them into an effective wavefront shaping tool. We introduce a model, which treats the liquid lens as a circular vibrating membrane with adjusted boundary conditions. Similar to tunable acoustic gradient (TAG) lenses, the nature of the surface modes are predicted to be Bessel functions. Since Bessel functions are a full set of orthogonal basis functions any surface can be created as a linear combination of different Bessel functions. The model was investigated experimentally in two setups. First the point spread functions were studied and compared to a simulation of the intensity distribution created by Fresnel propagated Bessel surfaces. Second the wavefronts were measured directly using a spatial light modulator. The surface resonance frequencies confirm the predictions made by the model as well as the wavefront measurements. By superposition of known surface modes, it is possible to create new surface shapes, which can be used to simulate and measure the human eye.
Beilke, Michael C; Beres, Martin J; Olesik, Susan V
2016-03-04
A "green" hydrophilic interaction liquid chromatography (HILIC) technique for separating the components of mixtures with a broad range of polarities is illustrated using enhanced-fluidity liquid mobile phases. Enhanced-fluidity liquid chromatography (EFLC) involves the addition of liquid CO2 to conventional liquid mobile phases. Decreased mobile phase viscosity and increased analyte diffusivity results when a liquefied gas is dissolved in common liquid mobile phases. The impact of CO2 addition to a methanol:water (MeOH:H2O) mobile phase was studied to optimize HILIC gradient conditions. For the first time a fast separation of 16 ribonucleic acid (RNA) nucleosides/nucleotides was achieved (16min) with greater than 1.3 resolution for all analyte pairs. By using a gradient, the analysis time was reduced by over 100% compared to similar separations conducted under isocratic conditions. The optimal separation using MeOH:H2O:CO2 mobile phases was compared to MeOH:H2O and acetonitrile:water (ACN:H2O) mobile phases. Based on chromatographic performance parameters (efficiency, resolution and speed of analysis) and an assessment of the environmental impact of the mobile phase mixtures, MeOH:H2O:CO2 mixtures are preferred over ACN:H2O or MeOH:H2O mobile phases for the separation of mixtures of RNA nucleosides and nucleotides. Copyright © 2016 Elsevier B.V. All rights reserved.
Pires, Adriana Elias; Honda, Neli Kiko; Cardoso, Cláudia Andréa Lima
2004-10-29
A method for sample preparation and analysis by high performance liquid chromatography with UV detection (HPLC-UV) has been developed for routine analysis of psoralen and bergapten, photosensitizing compounds, in oral solutions of phytomedicines employed in Brazil for some illnesses. The linearity, accuracy, the inter- and intra-day precision of the procedure were evaluated. Calibration curves for psoralen and bergapten were linear in the range of 1.0-600.0 microg ml(-1) and 1.0-400.0 microg ml(-1) respectively. The recoveries of the psoralens in the oral solutions analysed were 94.43-99.97%. The percentage coefficient of variation (CV) of the quantitative analysis of the psoralens in the products analysis was within 5%. In inter-equipment study was employed gas chromatography-flame ionization (CG-FID) detection.
SVGA and XGA active matrix microdisplays for head-mounted applications
NASA Astrophysics Data System (ADS)
Alvelda, Phillip; Bolotski, Michael; Brown, Imani L.
2000-03-01
The MicroDisplay Corporation's liquid crystal on silicon (LCOS) display devices are based on the union of several technologies with the extreme integration capability of conventionally fabricated CMOS substrates. The fast liquid crystal operation modes and new scalable high-performance pixel addressing architectures presented in this paper enable substantially improved color, contrast, and brightness while still satisfying the optical, packaging, and power requirements of portable applications. The entire suite of MicroDisplay's technologies was devised to create a line of mixed-signal application-specific integrated circuits (ASICs) in single-chip display systems. Mixed-signal circuits can integrate computing, memory, and communication circuitry on the same substrate as the display drivers and pixel array for a multifunctional complete system-on-a-chip. System-on-a-chip benefits also include reduced head supported weight requirements through the elimination of off-chip drive electronics.
A simple and efficient HPLC method for benznidazole dosage in human breast milk.
Marson, María E; Padró, Juan M; Reta, Mario R; Altcheh, Jaime; García-Bournissen, Facundo; Mastrantonio, Guido
2013-08-01
Due to migration, Chagas disease is a significant public health problem in Latin America, and in other nonendemic regions. The 2 drugs currently available for the treatment, nifurtimox and benznidazole (BNZ), are associated with a high risk of toxicity in therapeutic doses. Excretion of drug into human breast milk is a potential source of unwanted exposure and pharmacologic effects in the nursing infant. However, this phenomenon was not evaluated until now, and measurement techniques for both drugs in milk were not developed. In this work, we described the development of a simple and fast method to quantify BNZ in human milk using a pretreatment that involves acid protein precipitation followed by tandem microfiltration, and reverse phase high-performance liquid chromatography/ultraviolet analysis. It is simple because it takes only 3 steps to obtain a clean extracted solution that is ready to inject into the high-performance liquid chromatography equipment. It is fast because a complete analysis of a sample takes only 36 minutes. Although the human breast milk composition is very variable, and lipids are one of the most difficult compounds to clean up on a milk sample, the procedure has proven to be robust and sensitive with a limit of detection of 0.3 μg/mL and quantization of 0.9 μg/mL. Despite a 70% recovery value, which could be considered a relatively low result, this recovery is reproducible (coefficient of variation <10%) and the analytical response under the linear range is very good (r = 0.9969 adjusted). Real samples of human breast milk from patients in treatment with BNZ were dosed to support the validation process of the method. The method described is fast, specific, accurate, precise, and sufficiently sensitive in the clinical context for the quantification of BNZ in human milk. For all these reasons, it is suitable for clinical risk evaluation studies.
Fast-response IR spatial light modulators with a polymer network liquid crystal
NASA Astrophysics Data System (ADS)
Peng, Fenglin; Chen, Haiwei; Tripathi, Suvagata; Twieg, Robert J.; Wu, Shin-Tson
2015-03-01
Liquid crystals (LC) have widespread applications for amplitude modulation (e.g. flat panel displays) and phase modulation (e.g. beam steering). For phase modulation, a 2π phase modulo is required. To extend the electro-optic application into infrared region (MWIR and LWIR), several key technical challenges have to be overcome: 1. low absorption loss, 2. high birefringence, 3. low operation voltage, and 4. fast response time. After three decades of extensive development, an increasing number of IR devices adopting LC technology have been demonstrated, such as liquid crystal waveguide, laser beam steering at 1.55μm and 10.6 μm, spatial light modulator in the MWIR (3~5μm) band, dynamic scene projectors for infrared seekers in the LWIR (8~12μm) band. However, several fundamental molecular vibration bands and overtones exist in the MWIR and LWIR regions, which contribute to high absorption coefficient and hinder its widespread application. Therefore, the inherent absorption loss becomes a major concern for IR devices. To suppress IR absorption, several approaches have been investigated: 1) Employing thin cell gap by choosing a high birefringence liquid crystal mixture; 2) Shifting the absorption bands outside the spectral region of interest by deuteration, fluorination and chlorination; 3) Reducing the overlap vibration bands by using shorter alkyl chain compounds. In this paper, we report some chlorinated LC compounds and mixtures with a low absorption loss in the near infrared and MWIR regions. To achieve fast response time, we have demonstrated a polymer network liquid crystal with 2π phase change at MWIR and response time less than 5 ms.
MOLTEN PLUTONIUM FUELED FAST BREEDER REACTOR
Kiehn, R.M.; King, L.D.P.; Peterson, R.E.; Swickard, E.O. Jr.
1962-06-26
A description is given of a nuclear fast reactor fueled with molten plutonium containing about 20 kg of plutonium in a tantalum container, cooled by circulating liquid sodium at about 600 to 650 deg C, having a large negative temperature coefficient of reactivity, and control rods and movable reflector for criticality control. (AEC)
Nemitz, Marina C; Yatsu, Francini K J; Bidone, Juliana; Koester, Letícia S; Bassani, Valquiria L; Garcia, Cássia V; Mendez, Andreas S L; von Poser, Gilsane L; Teixeira, Helder F
2015-03-01
There is a growing interest in the pharmaceutical field concerning isoflavones topical delivery systems, especially with regard to their skin care properties and antiherpetic activity. In this context, the present work describes an ultra-fast liquid chromatography method (UFLC) for determining daidzein, glycitein, and genistein in different matrices during the development of topical systems containing isoflavone aglycones (IA) obtained from soybeans. The method showed to be specific, precise, accurate, and linear (0.1 to 5 µg mL(-1)) for IA determination in soybean acid extract, IA-rich fraction obtained after the purification process, IA loaded-nanoemulsions, and topical hydrogel, as well as for permeation/retention assays in porcine skin and porcine esophageal mucosa. The matrix effect was determined for all complex matrices, demonstrating low effect during the analysis. The stability indicating UFLC method was verified by submitting IA to acidic, alkaline, oxidative, and thermal stress conditions, and no interference of degradation products was detected during analysis. Mass spectrometry was performed to show the main compounds produced after acid hydrolysis of soybeans, as well as suggest the main degradation products formed after stress conditions. Besides the IA, hydroxymethylfurfural and ethoxymethylfurfural were produced and identified after acid hydrolysis of the soybean extract and well separated by the UFLC method. The method's robustness was confirmed using the Plackett-Burman experimental design. Therefore, the new method affords fast IA analysis during routine processes, extract purification, products development, and bioanalytical assays. Copyright © 2014 Elsevier B.V. All rights reserved.
Li, Chenying; Sadraie, Badri; Steckhan, Nico; Kessler, Christian; Stange, Rainer; Jeitler, Michael; Michalsen, Andreas
2017-10-01
There is increasing experimental evidence for beneficial effects of calorie restriction and intermittent fasting in type 2 diabetes mellitus (T2DM). In humans, prolonged fasting is established as a health-promoting complementary treatment in Europe and claimed to improve metabolism by a complex hormetic response. We aimed to investigate effects of a one-week fasting period compared to usual care in T2DM by means of a pilot trial. Patients with manifest T2DM medically treated with oral hypoglycemic agents and/or insulin were randomly assigned to a 7-day fasting program followed by dietary advice or to usual care and dietary advice only. Fasting was performed according to the method of Buchinger with a nutritional energy intake of 300kcal/day by liquids only and stepwise re-introduction of solid food thereafter. Outcomes were assessed baseline and after 4 months. Of 46 enrolled participants, 32 (n=16 each group) completed the trial and were included for final analyses. Fasting was well accepted, there were no serious adverse events. After 4 months mean weight decreased by 3.5 kg and 2.0 kg in the fasting vs. control group (p=0.03) paralleled by greater reduction of abdominal circumference (p=0.001). Fasting led to a significant decrease of systolic/diastolic blood pressure (p=0.01; p=0.003) and increased quality-of-life (p=0.04), while for HbA 1c , insulin and HOMA-index only non-significant improvements were observed. Results of this study suggest that prolonged fasting is feasible and might have beneficial clinical effects. The effectiveness of fasting should be proved in larger confirmatory trials that include intermittent fasting in follow-ups to enable more pronounced and long-term effects. © Georg Thieme Verlag KG Stuttgart · New York.
[Preoperative fasting period of fluids in bariatric surgery].
Simon, P; Pietsch, U-C; Oesemann, R; Dietrich, A; Wrigge, H
2017-07-01
Aspiration of stomach content is a severe complication during general anaesthesia. The DGAI (German Society for Anesthesiology and Intensive Care Medicine) guidelines recommend a fasting period for liquids of 2 h, with a maximum of 400 ml. Preoperative fasting can affect the patients' recovery after surgery due to insulin resistance and higher protein catabolism as a response to surgical stress. The aim of the study was to compare a liberal fasting regimen consisting of up to 1000 ml of liquids until 2 h before surgery with the DGAI recommendation. The prospective observational clinical study was approved by the ethics committee of the University of Leipzig. In the liberal fasting group (G lib ) patients undergoing bariatric surgery were asked to drink 1000 ml of tea up to 2 h before surgery. Patients assigned to the restrictive fasting group (G res ) who were undergoing nonbariatric abdominal surgery were asked to drink no more than 400 ml of water up to 2 h preoperatively. Right after anaesthesia induction and intubation a gastric tube was placed, gastric residual volume was measured and the pH level of gastric fluid was determined. Moreover, the occurrence of aspiration was monitored. In all, 98 patients with a body mass index (BMI) of G lib 51.1 kg/m 2 and G res 26.5 kg/m 2 were identified. The preoperative fasting period of liquids was significantly different (G lib 170 min vs. G res 700 min, p < 0.001). There was no difference regarding the residual gastric volume (G lib 11 ml, G res 5 ml, p = 0.355). The pH of gastric fluid was nearly similar (G lib 4.0; G res 3.0; p = 0.864). Aspiration did not occur in any patient. There is evidence suggesting that a liberal fluid fasting regimen (1000 ml of fluid) in the preoperative period is safe in patients undergoing bariatric surgery.
Si, Gu Leng Ri; Yao, Peng; Shi, Luwen
2015-08-01
A valid and efficient reversed-phase ultra-fast liquid chromatography method was developed for the simultaneous determination of 13 bile acids in the bile of three mammal species, including rat, pig and human gallstone patients. Chromatographic separation was performed with a Shim-pack XR-ODS column, and the mobile phase consisted of acetonitrile and potassium phosphate buffer (pH 2.6) at a flow rate of 0.5 mL min(-1). The linear detection range of most bile acids ranged from 2 to 600 ng µL(-1) with a good correlation coefficient (>0.9995). The precision of each bile acid was <1.8% for intraday and <4.8% for interday. All bile acids were separated in 15 min with satisfactory resolution, and the total analysis time was 18 min, including equilibration. The method was successfully applied in rapid screening of bile samples from the three mammals. Significant metabolic frameworks of bile acids among various species were observed, whereas considerable quantitative variations in both inter- and intraspecies were also observed, especially for gallstone patients. Our results suggest that detecting the change of bile acid profiles could be applied for the diagnosis of gallstone disease. © Crown copyright 2014.
Simultaneous identification of synthetic and natural dyes in different food samples by UPLC-MS
NASA Astrophysics Data System (ADS)
Mandal, Badal Kumar; Mathiyalagan, Siva; Dalavai, Ramesh; Ling, Yong-Chien
2017-11-01
Fast foods and variety food items are populating among the food lovers. To improve the appearance of the food product in surviving gigantic competitive environment synthetic or natural food dyes are added to food items and beverages. Although regulatory bodies permit addition of natural colorants due to its safe and nontoxic nature in food, synthetic dyes are stringently controlled in all food products due to their toxicity by regulatory bodies. Artificial colors are need certification from the regulatory bodies for human consumption. To analyze food dyes in different food samples many analytical techniques are available like high pressure liquid chromatography (HPLC), thin layer chromatography (TLC), spectroscopic and gas chromatographic methods. However all these reported methods analyzed only synthetic dyes or natural dyes. Not a single method has analyzed both synthetic and natural dyes in a single run. In this study a robust ultra-performance liquid chromatographic method for simultaneous identification of 6 synthetic dyes (Tartrazine, Indigo carmine, Briliant blue, Fast green, malachite green, sunset yellow) and one natural dye (Na-Cu-Chlorophyllin) was developed using acquitic UPLC system equipped with Mass detector and acquity UPLC HSS T3 column (1.8 μm, 2.1 × 50 mm, 100Å). All the dyes were separated and their masses were determined through fragments’ masses analyses.
Di Carro, Marina; Scapolla, Carlo; Liscio, Camilla; Magi, Emanuele
2010-09-01
A fast liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS-MS) method was developed to study five endocrine-disrupting compounds (4-n-nonylphenol, bisphenol A, estrone, 17β-estradiol and 17α-ethinylestradiol) in water. Different columns were tested; the chromatographic separation of the analytes was optimized on a Pinnacle DB biphenylic column with a water-acetonitrile gradient elution, which allowed the separation of the selected endocrine-disrupting compounds (EDCs) in less than 6 min. Quantitative analysis was performed in selected reaction monitoring (SRM) mode; two transitions were chosen for each compound, using the most abundant for quantitation. Calibration curves using bisphenol A-d (16) as internal standard were drawn, showing good correlation coefficients (0.9993-0.9998). All figures of merit of the method were satisfactory; limits of detection were in the low pg range for all analytes. The method was then applied to the determination of the analytes in real water samples: to this aim, polar organic chemical integrative samplers (POCIS) were deployed in the influent and in the effluent of a drinking water treatment plant in Liguria (Italy). The EDC level was rather low in the influent and negligible in the outlet, reflecting the expected function of the treatment plant.
Fast and sensitive method for detecting volatile species in liquids.
Trimarco, Daniel B; Pedersen, Thomas; Hansen, Ole; Chorkendorff, Ib; Vesborg, Peter C K
2015-07-01
This paper presents a novel apparatus for extracting volatile species from liquids using a "sniffer-chip." By ultrafast transfer of the volatile species through a perforated and hydrophobic membrane into an inert carrier gas stream, the sniffer-chip is able to transport the species directly to a mass spectrometer through a narrow capillary without the use of differential pumping. This method inherits features from differential electrochemical mass spectrometry (DEMS) and membrane inlet mass spectrometry (MIMS), but brings the best of both worlds, i.e., the fast time-response of a DEMS system and the high sensitivity of a MIMS system. In this paper, the concept of the sniffer-chip is thoroughly explained and it is shown how it can be used to quantify hydrogen and oxygen evolution on a polycrystalline platinum thin film in situ at absolute faradaic currents down to ∼30 nA. To benchmark the capabilities of this method, a CO-stripping experiment is performed on a polycrystalline platinum thin film, illustrating how the sniffer-chip system is capable of making a quantitative in situ measurement of <1% of a monolayer of surface adsorbed CO being electrochemically stripped off an electrode at a potential scan-rate of 50 mV s(-1).
NASA Astrophysics Data System (ADS)
Beznosko, Dmitriy; Batyrkhanov, Ayan; Iakovlev, Alexander; Yelshibekov, Khalykbek
2017-06-01
The Horizon-T (HT) detector system and the currently under R&D HT-KZ detector system are designed for the detection of Extensive Air Showers (EAS) with energies above ˜1016 eV (˜1017 eV for HT-KZ). The main challenges in both detector systems are the fast time resolutions needed for studying the temporary structure of EAS, and the extremely wide dynamic range needed to study the spatial distribution of charged particles in EAS disks. In order to detect the low-density of charged particles far from the EAS axis, a large-area detector is needed. Liquid scintillator with low cost would be a possible solution for such a detector, including the recently developed safe and low-cost water-based liquid scintillators. Liquid organic scintillators give a fast and high light yield (LY) for charged particle detection. It is similar to plastic scintillator in properties but is cost effective for large volumes. With liquid scintillator, one can create detection volumes that are symmetric and yet retain high LY detection. Different wavelength shifters affect the scintillation light by changing the output spectrum into the best detection region. Results of the latest studies of the components optimization in the liquid scintillator formulae are presented.
Deyrup, Cynthia L; Southern, Kristal J; Cornett, Julie A; Shultz, Craig E; Cera, Deborah A
2012-07-15
To determine whether cull dairy cows with signs of certain clinical conditions, termed suspect, are more likely than healthy-appearing cull dairy cows to have violative concentrations of flunixin meglumine in their tissues at slaughter. Cross-sectional study. 961 cull dairy cows. Suspect cull dairy cows were selected from 21 beef slaughter establishments with a high production volume of dairy cows, and kidney and liver tissues were collected for screening. Kidney tissues were screened for antibiotics and sulfonamides with the fast antimicrobial screening test (FAST). Liver tissues were screened for flunixin meglumine with an ELISA, and quantitative analysis of ELISA-positive samples was performed with high-performance liquid chromatography. During the same time period, liver tissues from 251 healthy-appearing cull dairy cows were collected for the Food Safety and Inspection Service National Residue Program Scheduled Sampling Plan, but were screened only for flunixin meglumine. Of 710 suspect cull dairy cows, 50 (7.04%) had liver tissue flunixin concentrations higher than the flunixin tolerance concentration (0.125 ppm). Thirty-one of 168 (18.45%) FAST-positive and 19 of 542 (3.51%) FAST-negative suspect cull dairy cows had violative tissue flunixin concentrations. Two of the 251 (0.80%) healthy-appearing cull dairy cows had violative tissue flunixin concentrations. Suspect cull dairy cows, especially those that were also FAST positive, had a significantly higher incidence of violative tissue flunixin concentrations than healthy-appearing cull dairy cows at slaughter. Targeted sampling plans for flunixin meglumine in suspect dairy cows can help to support more efficient use of resources and further safeguard the nation's food supply.
NASA Astrophysics Data System (ADS)
Flexman, M. L.; Kim, H. K.; Stoll, R.; Khalil, M. A.; Fong, C. J.; Hielscher, A. H.
2012-03-01
We present a low-cost, portable, wireless diffuse optical imaging device. The handheld device is fast, portable, and can be applied to a wide range of both static and dynamic imaging applications including breast cancer, functional brain imaging, and peripheral artery disease. The continuous-wave probe has four near-infrared wavelengths and uses digital detection techniques to perform measurements at 2.3 Hz. Using a multispectral evolution algorithm for chromophore reconstruction, we can measure absolute oxygenated and deoxygenated hemoglobin concentration as well as scattering in tissue. Performance of the device is demonstrated using a series of liquid phantoms comprised of Intralipid®, ink, and dye.
Jilge, G; Unger, K K; Esser, U; Schäfer, H J; Rathgeber, G; Müller, W
1989-08-04
The linear solvent strength model of Snyder was applied to describe fast protein separations on 2.1-micron non-porous, silica-based strong anion exchangers. It was demonstrated on short columns packed with these anion exchangers that (i) a substantially higher resolution of proteins and nucleotides was obtained at gradient times of less than 5 min than on porous anion exchangers; (ii) the low external surface area of the non-porous anion exchanger is not a critical parameter in analytical separations and (iii) microgram-amounts of enzymes of high purity and full biological activity were isolated.
Wang, Yinan; Han, Fei; Song, Aihua; Wang, Miao; Zhao, Min; Zhao, Chunjie
2016-11-01
Cortex Fraxini is an important traditional Chinese medicine. In this work, a rapid and reliable homogenate extraction method was applied for the fast extraction for Cortex Fraxini, and the method was optimized by response surface methodology. Ultra high performance liquid chromatography combined with Fourier transform ion cyclotron resonance mass spectrometry and gas chromatography with mass spectrometry were established for the separation and characterization of the constituents of Cortex Fraxini. Liquid chromatography separation was conducted on a C 18 column (150 mm × 2.1 mm, 1.8 μm), and gas chromatography separation was performed on a capillary with a 5% phenyl-methylpolysiloxane stationary phase (30 m × 0.25 mm × 0.25 mm) by injection of silylated samples. According to the results, 33 chemical compounds were characterized by liquid chromatography with mass spectrometry, and 11 chemical compounds were characterized by gas chromatography with mass spectrometry, and coumarins were the major components characterized by both gas chromatography with mass spectrometry and liquid chromatography with mass spectrometry. The proposed homogenate extraction was an efficient and rapid method, and coumarins, phenylethanoid glycosides, iridoid glycosides, phenylpropanoids, and lignans were the main constituents of Cortex Fraxini. This work laid the foundation for further study of Cortex Fraxini and will be helpful for the rapid extraction and characterization of ingredients in other traditional Chinese medicines. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kalariya, Pradipbhai D; Kumar Talluri, Murali V N; Gaitonde, Vinay D; Devrukhakar, Prashant S; Srinivas, Ragampeta
2014-08-01
The present work describes the systematic development of a robust, precise, and rapid reversed-phase liquid chromatography method for the simultaneous determination of eprosartan mesylate and its six impurities using quality-by-design principles. The method was developed in two phases, screening and optimization. During the screening phase, the most suitable stationary phase, organic modifier, and pH were identified. The optimization was performed for secondary influential parameters--column temperature, gradient time, and flow rate using eight experiments--to examine multifactorial effects of parameters on the critical resolution and generated design space representing the robust region. A verification experiment was performed within the working design space and the model was found to be accurate. This study also describes other operating features of the column packed with superficially porous particles that allow very fast separations at pressures available in most liquid chromatography instruments. Successful chromatographic separation was achieved in less than 7 min using a fused-core C18 (100 mm × 2.1 mm, 2.6 μm) column with linear gradient elution of 10 mM ammonium formate (pH 3.0) and acetonitrile as the mobile phase. The method was validated for specificity, linearity, accuracy, precision, and robustness in compliance with the International Conference on Harmonization Q2 (R1) guidelines. The impurities were identified by liquid chromatography with mass spectrometry. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Suárez, Ruth; Clavijo, Sabrina; González, Alba; Cerdà, Víctor
2018-03-01
An on-line, fast, simple, selective, and sensitive method has been developed for the determination of three herbicides belonging to the following families: triazines (atrazine), chloroacetamide (alachlor), and phenoxy (2,4-dichlorophenoxyacetic acid) in water samples. The method involves an in-syringe magnetic stirring-assisted dispersive liquid-liquid microextraction along with simultaneous silylation prior to their determination by gas chromatography with mass spectrometry. Extraction, derivatization, and preconcentration have been simultaneously performed using acetone as dispersive solvent, N-methyl-N-tert-butyldimethylsilyltrifluoroacetamide as derivatization agent and trichloroethylene as extraction solvent. After stirring for 180 s, the sedimented phase was transferred to a rotary micro-volume injection valve (3 μL) and introduced by an air stream into gas chromatograph with mass spectrometry detector. Recovery and enrichment factors were 87.2-111.2% and 7.4-10.4, respectively. Relative standard deviations were in the ranges of 6.6-7.4 for intraday and 9.2-9.6 for interday precision. The detection limits were in the range of 0.045-0.03 μg/L, and good linearity was observed up to 200 μg/L, with R 2 ranging between 0.9905 and 0.9964. The developed method was satisfactorily applied to assess the occurrence of the studied herbicides in groundwater samples. The recovery test was also performed with values between 77 and 117%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gkinis, Vasileios; Popp, Trevor J; Johnsen, Sigfus J; Blunier, Thomas
2010-12-01
A new technique for high-resolution simultaneous isotopic analysis of δ¹⁸O and δD in liquid water is presented. A continuous stream flash evaporator has been designed that is able to vapourise a stream of liquid water in a continuous mode and deliver a stable and finely controlled water vapour sample to a commercially available infrared cavity ring-down spectrometer. Injection of sub-microlitre amounts of the liquid water is achieved by pumping liquid water sample through a fused silica capillary and instantaneously vapourising it with 100% efficiency in a home-made oven at a temperature of 170 °C. The system's simplicity, low power consumption and low dead volume together with the possibility for automated unattended operation provides a solution for the calibration of laser instruments performing isotopic analysis of water vapour. Our work is mainly driven by the possibility to perform high-resolution online water isotopic analysis on continuous-flow analysis (CFA) systems typically used to analyse the chemical composition of ice cores drilled in polar regions. In the following, we describe the system's precision and stability and sensitivity to varying levels of sample size and we assess the observed memory effects. A test run with standard waters of different isotopic compositions is presented, demonstrating the ability to calibrate the spectrometer's measurements on a VSMOW scale with a relatively simple and fast procedure.
Hemanth Kumar, A K; Ramesh, K; Kannan, T; Sudha, V; Haribabu, Hemalatha; Lavanya, J; Swaminathan, Soumya; Ramachandran, Geetha
2017-01-01
Variations in the N-acetyltransferase (NAT2) gene among different populations could affect the metabolism and disposition of isoniazid (INH). This study was performed to genotype NAT2 gene polymorphisms in tuberculosis (TB) patients from Chennai, India, and compare plasma INH concentrations among the different genotypes. Adult patients with TB treated in the Revised National TB Control Programme (RNTCP) in Chennai, Tamil Nadu, were genotyped for NAT2 gene polymorphism, and two-hour post-dosing INH concentrations were compared between the different genotypes. Plasma INH was determined by high-performance liquid chromatography. Genotyping of the NAT2 gene polymorphism was performed by real-time polymerase chain reaction method. Among the 326 patients genotyped, there were 189 (58%), 114 (35%) and 23 (7%) slow, intermediate and fast acetylators, respectively. The median two-hour INH concentrations in slow, intermediate and fast acetylators were 10.2, 8.1 and 4.1 μg/ml, respectively. The differences in INH concentrations among the three genotypes were significant (P<0.001). Genotyping of TB patients from south India for NAT2 gene polymorphism revealed that 58 per cent of the study population comprised slow acetylators. Two-hour INH concentrations differed significantly among the three genotypes.
Norkus, C; Rankin, D; KuKanich, B
2015-12-01
This study reports the pharmacokinetics of oral amitriptyline and its active metabolite nortriptyline in Greyhound dogs. Five healthy Greyhound dogs were enrolled in a randomized crossover design. A single oral dose of amitriptyline hydrochloride (actual mean dose 8.1 per kg) was administered to fasted or fed dogs. Blood samples were collected at predetermined times from 0 to 24 h after administration, and plasma drug concentrations were measured by liquid chromatography with mass spectrometry. Noncompartmental pharmacokinetic analyses were performed. Two dogs in the fasted group vomited following amitriptyline administration and were excluded from analysis. The range of amitriptyline CMAX for the remaining fasted dogs (n = 3) was 22.8-64.5 ng/mL compared to 30.6-127 ng/mL for the fed dogs (n = 5). The range of the amitriptyline AUCINF for the three fasted dogs was 167-720 h·ng/mL compared to 287-1146 h·ng/mL for fed dogs. The relative bioavailability of amitriptyline in fasted dogs compared to fed dogs was 69-91% (n = 3). The exposure of the active metabolite nortriptyline was correlated to amitriptyline exposure (R(2) = 0.84). Due to pharmacokinetic variability and the small number of dogs completing this study, further studies are needed assessing the impact of feeding on oral amitriptyline pharmacokinetics. Amitriptyline may be more likely to cause vomiting in fasted dogs. © 2015 John Wiley & Sons Ltd.
Preparation and Characterization of Ato Nanoparticles by Coprecipitation with Modified Drying Method
NASA Astrophysics Data System (ADS)
Liu, Shimin; Liang, Dongdong; Liu, Jindong; Jiang, Weiwei; Liu, Chaoqian; Ding, Wanyu; Wang, Hualin; Wang, Nan
Antimony-doped tin oxide (ATO) nanoparticles were prepared by coprecipitation by packing drying and traditional direct drying (for comparison) methods. The as-prepared ATO nanoparticles were characterized by TG, XRD, EDS, TEM, HRTEM, BET, bulk density and electrical resistivity measurements. Results indicated that the ATO nanoparticles obtained by coprecipitation with direct drying method featured hard-agglomerated morphology, high bulk density, low surface area and low electrical resistivity, probably due to the direct liquid evaporation during drying, the fast shrinkage of the precipitate, the poor removal efficiency of liquid molecules and the hard agglomerate formation after calcination. Very differently, the ATO product obtained by the packing and drying method featured free-agglomerated morphology, low bulk density, high surface area and high electrical resistivity ascribed probably to the formed vapor cyclone environment and liquid evaporation-resistance, avoiding fast liquid removal and improving the removal efficiency of liquid molecules. The intrinsic formation mechanism of ATO nanoparticles from different drying methods was illustrated based on the dehydration process of ATO precipitates. Additionally, the packing and drying time played key roles in determining the bulk density, morphology and electrical conductivity of ATO nanoparticles.
Meyer, Golo M J; Weber, Armin A; Maurer, Hans H
2014-05-01
Diagnosis and prognosis of poisonings should be confirmed by comprehensive screening and reliable quantification of xenobiotics, for example by gas chromatography-mass spectrometry (GC-MS) or liquid chromatography-mass spectrometry (LC-MS). The turnaround time should be short enough to have an impact on clinical decisions. In emergency toxicology, quantification using full-scan acquisition is preferable because this allows screening and quantification of expected and unexpected drugs in one run. Therefore, a multi-analyte full-scan GC-MS approach was developed and validated with liquid-liquid extraction and one-point calibration for quantification of 40 drugs relevant to emergency toxicology. Validation showed that 36 drugs could be determined quickly, accurately, and reliably in the range of upper therapeutic to toxic concentrations. Daily one-point calibration with calibrators stored for up to four weeks reduced workload and turn-around time to less than 1 h. In summary, the multi-analyte approach with simple liquid-liquid extraction, GC-MS identification, and quantification over fast one-point calibration could successfully be applied to proficiency tests and real case samples. Copyright © 2013 John Wiley & Sons, Ltd.
Wang, Yiru; Liu, Wanshuang; Qiu, Yiping; Wei, Yi
2018-04-27
Imidazole cured epoxy resin systems were evaluated for one-component, fast-curing resins for liquid molding of automotive composite parts according to industry requirements. It was demonstrated that an epoxy resin-1-(cyanoethyl)-2-ethyl-4-methylimidazol(EP-1C2E4MIM) system would cure in a few minutes at 120 °C, while exhibiting acceptable pot life, viscosity profiles, and low water absorption. Moreover, this system yielded high T g parts with mechanical properties similar to the amine-epoxy systems, which are the mainstream two-component epoxy resin systems for automobiles.
Wang, Yiru; Qiu, Yiping; Wei, Yi
2018-01-01
Imidazole cured epoxy resin systems were evaluated for one-component, fast-curing resins for liquid molding of automotive composite parts according to industry requirements. It was demonstrated that an epoxy resin-1-(cyanoethyl)-2-ethyl-4-methylimidazol(EP-1C2E4MIM) system would cure in a few minutes at 120 °C, while exhibiting acceptable pot life, viscosity profiles, and low water absorption. Moreover, this system yielded high Tg parts with mechanical properties similar to the amine-epoxy systems, which are the mainstream two-component epoxy resin systems for automobiles. PMID:29702575
Iglesias, M Teresa; Martín-Alvarez, Pedro J; Polo, M Carmen; de Lorenzo, Cristina; Pueyo, Encarnación
2006-10-18
Fast protein liquid chromatography on a Superdex 75 HR column has been applied to analyze the proteins of 29 honeys, 12 of floral origin and 17 from honeydew. The molecular masses were comprised between 13100 and 94000 Da. Seven peaks have been separated; four of them were present in all of the honeys, and three were only present in some honeys. Direct observation of the chromatograms of the floral and honeydew honeys did not reveal any information about their botanical origins. However, both types of honeys can be distinguished with the percentages of the areas of four of the seven chromatographic peaks obtained.
Sreenilayam, Sithara P.; Panarin, Yuri P.; Vij, Jagdish K.; Panov, Vitaly P.; Lehmann, Anne; Poppe, Marco; Prehm, Marko; Tschierske, Carsten
2016-01-01
Liquid crystals (LCs) represent one of the foundations of modern communication and photonic technologies. Present display technologies are based mainly on nematic LCs, which suffer from limited response time for use in active colour sequential displays and limited image grey scale. Herein we report the first observation of a spontaneously formed helix in a polar tilted smectic LC phase (SmC phase) of achiral bent-core (BC) molecules with the axis of helix lying parallel to the layer normal and a pitch much shorter than the optical wavelength. This new phase shows fast (∼30 μs) grey-scale switching due to the deformation of the helix by the electric field. Even more importantly, defect-free alignment is easily achieved for the first time for a BC mesogen, thus providing potential use in large-scale devices with fast linear and thresholdless electro-optical response. PMID:27156514
NASA Astrophysics Data System (ADS)
Sreenilayam, Sithara P.; Panarin, Yuri P.; Vij, Jagdish K.; Panov, Vitaly P.; Lehmann, Anne; Poppe, Marco; Prehm, Marko; Tschierske, Carsten
2016-05-01
Liquid crystals (LCs) represent one of the foundations of modern communication and photonic technologies. Present display technologies are based mainly on nematic LCs, which suffer from limited response time for use in active colour sequential displays and limited image grey scale. Herein we report the first observation of a spontaneously formed helix in a polar tilted smectic LC phase (SmC phase) of achiral bent-core (BC) molecules with the axis of helix lying parallel to the layer normal and a pitch much shorter than the optical wavelength. This new phase shows fast (~30 μs) grey-scale switching due to the deformation of the helix by the electric field. Even more importantly, defect-free alignment is easily achieved for the first time for a BC mesogen, thus providing potential use in large-scale devices with fast linear and thresholdless electro-optical response.
Vercruysse, Jurgen; Toiviainen, Maunu; Fonteyne, Margot; Helkimo, Niko; Ketolainen, Jarkko; Juuti, Mikko; Delaet, Urbain; Van Assche, Ivo; Remon, Jean Paul; Vervaet, Chris; De Beer, Thomas
2014-04-01
Over the last decade, there has been increased interest in the application of twin screw granulation as a continuous wet granulation technique for pharmaceutical drug formulations. However, the mixing of granulation liquid and powder material during the short residence time inside the screw chamber and the atypical particle size distribution (PSD) of granules produced by twin screw granulation is not yet fully understood. Therefore, this study aims at visualizing the granulation liquid mixing and distribution during continuous twin screw granulation using NIR chemical imaging. In first instance, the residence time of material inside the barrel was investigated as function of screw speed and moisture content followed by the visualization of the granulation liquid distribution as function of different formulation and process parameters (liquid feed rate, liquid addition method, screw configuration, moisture content and barrel filling degree). The link between moisture uniformity and granule size distributions was also studied. For residence time analysis, increased screw speed and lower moisture content resulted to a shorter mean residence time and narrower residence time distribution. Besides, the distribution of granulation liquid was more homogenous at higher moisture content and with more kneading zones on the granulator screws. After optimization of the screw configuration, a two-level full factorial experimental design was performed to evaluate the influence of moisture content, screw speed and powder feed rate on the mixing efficiency of the powder and liquid phase. From these results, it was concluded that only increasing the moisture content significantly improved the granulation liquid distribution. This study demonstrates that NIR chemical imaging is a fast and adequate measurement tool for allowing process visualization and hence for providing better process understanding of a continuous twin screw granulation system. Copyright © 2013 Elsevier B.V. All rights reserved.
Mata, Dani C; Davis, John F; Figueroa, Ariana K; Stanford, Mary June
2016-01-01
An ultra performance liquid chromatography triple quadrupole mass spectrometry (LC-MS-MS) method for the quantification of 14 benzodiazepines and three sedative hypnotics is presented. The fast and inexpensive assay was developed for California's Orange County Crime Lab for use in antemortem (AM) and postmortem casework. The drugs were rapidly cleaned up from AM blood, postmortem blood, urine, liver, brain and stomach contents using DPX(®) Weak Anion Exchange (DPX WAX) tips fitted on a pneumatic extractor, which can process up to 48 samples at one time. Assay performance was determined for validation based on recommendations by the Scientific Working Group for Forensic Toxicology for linearity, limit of quantitation, limit of detection, bias, precision (within run and between run), dilution integrity, carry-over, selectivity, recovery, ion suppression and extracted sample stability. Linearity was verified using the therapeutic and toxic ranges of all 17 analytes. Final verification of the method was confirmed by four analysts using 20 blind matrix matched samples. All results were within 20% of each other and the expected value. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Novel, Integrated Reactor/Power Conversion System (LMR-AMTEC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dmitry V. Paramonov, Lead Collaborator
2001-07-31
The overall objective of NERI Project Number 99-0198 is to assess the technical and economic feasibility, develop engineering solutions and determine a range of potential applications for ''Novel Integrated Reactor/Energy conversion Systems''. The near term goal is the design of a power supply for developing countries in remote locations in a proliferation resistant, reliable and economical way. The heart of the concept is the use of a single loop liquid metal fast reactor (LMR) with conversion of the heat directly into electricity in a Alkali Metal Thermal to Electric Converter (AMTEC). The first year of the project focused on themore » feasibility issues with a long life, high temperature liquid metal-cooled core; selection of the working fluid, core-to-AMTEC coupling scheme and interface parameters; and, energy conversion systems design and performance. Report Number STD-ES-01-0028, Revision 0, dated July 31, 2001, summarizes the work performed by Westinghouse personnel in Year One and report number UNM-ISNPS-3-2000, dated October 2000, summarizes the work performed by the Institute for Space and Nuclear Power Studies at the University of New Mexico in Year One.« less
Zhou, Shujun; Cao, Jiliang; Qiu, Feng; Kong, Weijun; Yang, Shihai; Yang, Meihua
2013-01-01
Glycyrrhizae species are popular ingredients of herbal medicine in most traditional Chinese medicine prescriptions, and they mainly contain flavonoids and triterpene saponins. The contents of these bioactive compounds may vary in different batches and affect the therapeutic effects. Thus comprehensive quality control and monitoring of their herbal formulation are of paramount concern. To establish a rapid, effective pressurised liquid extraction (PLE) and ultra-performance liquid chromatography coupled with photodiode array (UPLC-PDA) method to evaluate the quality of Glycyrrhizae species. Radix Glycyrrhizae was extracted by PLE using 70% ethanol at 100°C for 15 min during three static extraction cycles. Separation was performed using an UPLC system to quantify five bioactive compounds, namely liquiritin apioside, liquiritin, liquiritigenin, glycyrrhizic acid and glycyrrhetinic acid, in 12 batches of samples of different origins in China. Furthermore, the samples were analysed using an ultra-performance liquid chromatography coupled with electrospray ionisation and time-of-flight mass spectrometry (UPLC/ESI-QTOF-MS) system to confirm the results. The calibration curves of all five analytes showed good linearity (R(2) > 0.9997). Accuracy, precision and repeatability were all within required limits. The mean recoveries measured at the three concentrations were higher than 93.7% with RSDs lower than < 3.33% for the targets. The established PLE and UPLC-PDA method could serve as a rapid and effective method for quality evaluation of Radix Glycyrrhizae. The UPLC technique can be considered as an attractive alternative to HPLC in routine quality control of Chinese medicine, especially in situations where high sample throughput and fast analytical speed are required. Copyright © 2013 John Wiley & Sons, Ltd.
Effects of monoclinic symmetry on the properties of biaxial liquid crystals
NASA Astrophysics Data System (ADS)
Solodkov, Nikita V.; Nagaraj, Mamatha; Jones, J. Cliff
2018-04-01
Tilted smectic liquid crystal phases such as the smectic-C phase seen in calamitic liquid crystals are usually treated using the assumption of biaxial orthorhombic symmetry. However, the smectic-C phase has monoclinic symmetry, thereby allowing disassociation of the principal optic and dielectric axes based on symmetry and invariance principles. This is demonstrated here by comparing optical and dielectric measurements for two materials with highly first-order direct transitions from nematic to smectic-C phases. The results show a high difference between the orientations of the principal axes sets, which is interpreted as the existence of two distinct cone angles for optical and dielectric frequencies. Both materials exhibit an increasing degree of monoclinic behavior with decreasing temperature. Due to fast switching speeds, ferroelectric smectic-C* materials are important for fast modulators and LCoS devices, where the dielectric biaxiality influences device operation.
Characterization of fast neutron spectrum in the TRIGA for hardness testing of electronic components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, George W.
1986-07-01
Argonne National Laboratory-West, operated by the University of Chicago, is located near Idaho Falls, ID, on the Idaho National Engineering Laboratory Site. ANL-West performs work in support of the Liquid Metal Fast Breeder Reactor Program (LMFBR) sponsored by the United States Department of Energy. The NRAD reactor is located at the Argonne Site within the Hot Fuel Examination Facility/North, a large hot cell facility where both non-destructive and destructive examinations are performed on highly irradiated reactor fuels and materials in support of the LMFBR program. The NRAD facility utilizes a 250-kW TRIGA reactor and is completely dedicated to neutron radiographymore » and the development of radiography techniques. Criticality was first achieved at the NRAD reactor in October of 1977. Since that time, a number of modifications have been implemented to improve operational efficiency and radiography production. This paper describes the modifications and changes that significantly improved operational efficiency and reliability of the reactor and the essential auxiliary reactor systems. (author)« less
Dhole, Seema M; Khedekar, Pramod B; Amnerkar, Nikhil D
2012-07-01
Repaglinide is a miglitinide class of antidiabetic drug used for the treatment of type 2 diabetes mellitus. A fast and reliable method for the determination of repaglinide was highly desirable to support formulation screening and quality control. UV spectrophotometric and reversed-phase high performance liquid chromatography (RP-HPLC) methods were developed for determination of repaglinide in the tablet dosage form. The UV spectrum recorded between 200 400 nm using methanol as solvent and the wavelength 241 nm was selected for the determination of repaglinide. RP-HPLC analysis was carried out using Agilent TC-C18 (2) column and mobile phase composed of methanol and water (80:20 v/v, pH adjusted to 3.5 with orthophosphoric acid) at a flow rate of 1.0 ml/min. Parameters such as linearity, precision, accuracy, recovery, specificity and ruggedness are studied as reported in the International Conference on Harmonization (ICH) guidelines. The developed methods illustrated excellent linearity (r(2) > 0.999) in the concentration range of 5-30 μg/ml and 5-50 μg/ml for UV spectrophotometric and HPLC methods, respectively. Precision (%R.S.D < 1.50) and mean recoveries were found in the range of 99.63-100.45% for UV spectrophotometric method and 99.71-100.25% for HPLC method which shows accuracy of the methods. The developed methods were found to be reliable, simple, fast, accurate and successfully used for the quality control of repaglinide as a bulk drug and in pharmaceutical formulations.
Dhole, Seema M.; Khedekar, Pramod B.; Amnerkar, Nikhil D.
2012-01-01
Background: Repaglinide is a miglitinide class of antidiabetic drug used for the treatment of type 2 diabetes mellitus. A fast and reliable method for the determination of repaglinide was highly desirable to support formulation screening and quality control. Objective: UV spectrophotometric and reversed-phase high performance liquid chromatography (RP-HPLC) methods were developed for determination of repaglinide in the tablet dosage form. Materials and Methods: The UV spectrum recorded between 200 400 nm using methanol as solvent and the wavelength 241 nm was selected for the determination of repaglinide. RP-HPLC analysis was carried out using Agilent TC-C18 (2) column and mobile phase composed of methanol and water (80:20 v/v, pH adjusted to 3.5 with orthophosphoric acid) at a flow rate of 1.0 ml/min. Parameters such as linearity, precision, accuracy, recovery, specificity and ruggedness are studied as reported in the International Conference on Harmonization (ICH) guidelines. Results: The developed methods illustrated excellent linearity (r2 > 0.999) in the concentration range of 5-30 μg/ml and 5-50 μg/ml for UV spectrophotometric and HPLC methods, respectively. Precision (%R.S.D < 1.50) and mean recoveries were found in the range of 99.63-100.45% for UV spectrophotometric method and 99.71-100.25% for HPLC method which shows accuracy of the methods. Conclusion: The developed methods were found to be reliable, simple, fast, accurate and successfully used for the quality control of repaglinide as a bulk drug and in pharmaceutical formulations. PMID:23781481
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pasley, J.N.; Rice, R.L.; McCullough, S.S.
The role of gastrointestinal peptides in eating disorders has yet to be determined. Methods: In this study we examined plasma levels of gastrin (G), cholecystokinin (CCK), and pancreatic polypeptide (PP) in adolescent anorexic, and obese female subjects hospitalized for feeding behavior disorders. Six anorexic, six obese and six control young females (ages 13-26) were studied after an overnight fast and after consuming a liquid test meal. The liquid test meal (Ensure, Ross Laboratories; Columbus OH) consisted of 14% calories as protein, 31.5% calories as fat and 54.5% calories as carbohydrate in a 240ml volume. Plasma levels of gastrointestinal peptides, G,more » CCK and PP were determined by specific radioimmunoassay. The data were analyzed by one way analysis of variance and the Student's t-test. Results: show that fasting levels of G were greater in control and obese groups than the anorexic subjects. Postprandial G levels for controls were higher than the anorexic, and obese groups respectively. When fasting and postprandial G levels were compared among the same groups only the controls increased after eating. Fasting CCK levels were lower in control and anorexic groups than the obese group. Postprandial CCK levels were higher among control patients compared to anorexic and obese subjects. When fasting and postprandial CCK levels were compared among groups, only control levels increased after eating. Fasting and postprandial PP levels were not different between groups. Postprandial PP levels increased over fasting PP levels only in controls.« less
[A study of the value of three molecular diagnostic techniques in the diagnosis of tuberculosis].
Huang, Fang; Dang, Liyun; Sun, Huiping; Yang, Han; Wu, Xia
2015-09-01
To evaluate the diagnostic value of real-time fluorescent RNA isothermal amplification detection technology (simultaneous amplification and testing, SAT), Mycobacterium nucleic acid detection (PCR-fluorescence probe)method (TB-NTM-PCR) and Xpert MTB/RIF detection in the diagnosis of tuberculosis. A total of 378 sputum specimens from pulmonary tuberculosis patients were collected between April to July 2014 in Xi'an Thoracic Tumor and Tuberculosis Hospital. The specimens were detected by 5 methods at the same time including acid-fast stain, SAT method, TB-NTM-PCR method, TB 960 rapid liquid culture and Xpert MTB/RIF. The sensitivity and specificity of SAT method, TB-NTM-PCR method and Xpert MTB/RIF were calculated according to the results of TB 960 rapid liquid culture and staining. The difference among all the 3 methods was analyzed by Chi-squared test. The positive rate of SAT-TB,TB-NTM-PCR and Xpert MTB/RIF were 37.6% (142/378), 37.8% (143/378) and 53.4% (202/378), respectively. In specimens both positive for acid-fast stain and culture, the positive rate of SAT method was 84.6% (77/91), that of TB-NTM-PCR was 91.2% (83/91), and that of Xpert MTB/RIF was 96.7% (88/91), the difference being significant (P=0.018 2). In specimens negative for acid-fast stain but positive for culture, the positive rate of SAT method was 61.9% (60 /97), that of TB-NTM-PCR was 44.3% (43/97), and that of Xpert MTB/RIF was 80.4% (78/97), the difference being significant (P<0.000 1). In specimens both negative for acid-fast stain and culture, the positive rate of SAT method was 1.6% (3/185), that of TB-NTM-PCR was 6.5% (12/185), and that of Xpert MTB/RIF was 16.8% (31/185), the difference being significant (P=0.018). In specimens positive for acid-fast stain but negative for culture, the number of positive samples of SAT,TB-NTM-PCR and Xpert MTB/RIF were 3 (3/5), 5 (5/5),and 5 (5/5), respectively. With the result of TB 960 rapid liquid culture and staining as the reference, Xpert MTB/RIF showed the highest sensitivity of 87.6% (163/186), the minimum rate of missed diagnosis of 12.4% (24/193), and the highest negative predictive value of 88.5% (185/209); SAT-TB showed the highest specificity of 98.2% (214/218), the minimum rate of misdiagnosis of 1.8%(4/218), the highest positive predictive value of 97.2% (138/142). With the result of TB 960 rapid liquid culture as the reference, the sensitivity and the specificity of Xpert MTB/RIF were 95.52% (128/134) and 95.24% (20/21). The accordance rate of Xpert MTB/RIF and TB 960 rapid liquid culture was 95.48%(148/155). The 3 molecular detection methods showed good results for the auxiliary diagnosis of tuberculosis. Xpert MTB/RIF had the best performance both in smear positive and negative specimens and it can detect rifampicin related rpoB gene mutations at the same time.
Magnet Design with High B0 Homogeneity for Fast-Field-Cycling NMR Applications
NASA Astrophysics Data System (ADS)
Lips, O.; Privalov, A. F.; Dvinskikh, S. V.; Fujara, F.
2001-03-01
The design, construction, and performance of a low-inductance solenoidal coil with high B0 homogeneity for fast-field-cycling NMR is presented. It consists of six concentric layers. The conductor width is varied to minimize the B0 inhomogeneity in the volume of the sample. This is done using an algorithm which takes the real shape of the conductor directly into account. The calculated coil geometry can be manufactured easily using standard computerized numeric control equipment, which keeps the costs low. The coil is liquid cooled and produces a B0 field of 0.95 T at 800 A . The field inhomogeneity in a cylindrical volume (diameter 5 mm, length 10 mm) is about 10 ppm, and the inductance is 190 μH. Switching times below 200 μs can be achieved. During 6 months of operation the coil has shown good stability and reliability.
Assessment of pre-gastroscopy fasting period using ultrasonography.
Spahn, Thomas Werner; Wessels, Anne; Grosse-Thie, Wolfram; Mueller, Michael Karl
2009-03-01
Discomfort is frequent in patients undergoing esophagogastroduodenoscopy who are routinely recommended to abstain at least for 6 h from liquid or solid food prior to the procedure. We investigated the minimal period of time required for the stomach to clear fluids in order to define a safe minimal pre-endoscopy fasting period. Gastric emptying was sonographically assessed in 54 patients by measurement of the antrum surface area prior to, immediately after, and 30, 60, and 90 min after ingestion of 300 ml water and water containing 75 g glucose or apple juice. Esophagogastroduodenoscopy was performed subsequently. Ingestion of water required 1 h for complete clearance. Three hundred milliliters glucose solution and apple juice were cleared more slowly, 90 min after drinking. Ingestion of water or glucose solution prior to esophagogastroduodenoscopy in patients without a history of gastric emptying dysfunction is safe when observing a 90 min latency period and might prevent discomfort.
A fast passive and planar liquid sample micromixer.
Melin, Jessica; Gimenéz, Guillem; Roxhed, Niclas; van der Wijngaart, Wouter; Stemme, Göran
2004-06-01
A novel microdevice for passively mixing liquid samples based on surface tension and a geometrical mixing chamber is presented. Due to the laminar flow regime on the microscale, mixing becomes difficult if not impossible. We present a micromixer where a constantly changing time dependent flow pattern inside a two sample liquid plug is created as the plug simply passes through the planar mixer chamber. The device requires no actuation during mixing and is fabricated using a single etch process. The effective mixing of two coloured liquid samples is demonstrated.
Simal-Gándara, J; Sarria-Vidal, M; Koorevaar, A; Rijk, R
2000-08-01
The advent of the functional barrier concept in food packaging has brought with it a requirement for fast tests of permeation through potential barrier materials. In such tests it would be convenient for both foodstuffs and materials below the functional barrier (sub-barrier materials) to be represented by standard simulants. By means of inverse gas chromatography, liquid paraffin spiked with appropriate permeants was considered as a potential simulant of sub-barrier materials based on polypropylene (PP) or similar polyolefins. Experiments were performed to characterize the kinetics of the permeation of low molecular weight model permeants (octene, toluene and isopropanol) from liquid paraffin, through a surrogate potential functional barrier (25 microns-thick oriented PP) into the food stimulants olive oil and 3% (w/v) acetic acid. These permeation results were interpreted in terms of three permeation kinetic models regarding the solubility of a particular model permeant in the post-barrier medium (i.e. the food simulant). The results obtained justify the development and evaluation of liquid sub-barrier simulants that would allow flexible yet rigorous testing of new laminated multilayer packaging materials.
Ceramic micro-injection molded nozzles for serial femtosecond crystallography sample delivery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beyerlein, K. R.; Heymann, M.; Kirian, R.
Serial femtosecond crystallography (SFX) using X-ray Free-Electron Lasers (XFELs) allows for room temperature protein structure determination without evidence of conventional radiation damage. In this method, a liquid suspension of protein microcrystals can be delivered to the X-ray beam in vacuum as a micro-jet, which replenishes the crystals at a rate that exceeds the current XFEL pulse repetition rate. Gas dynamic virtual nozzles produce the required micrometer-sized streams by the focusing action of a coaxial sheath gas and have been shown to be effective for SFX experiments. Here, we describe the design and characterization of such nozzles assembled from ceramic micro-injectionmore » molded outer gas-focusing capillaries. Trends of the emitted jet diameter and jet length as a function of supplied liquid and gas flow rates are measured by a fast imaging system. The observed trends are explained by derived relationships considering choked gas flow and liquid flow conservation. Finally, the performance of these nozzles in a SFX experiment is presented, including an analysis of the observed background.« less
Formation of methane nano-bubbles during hydrate decomposition and their effect on hydrate growth.
Bagherzadeh, S Alireza; Alavi, Saman; Ripmeester, John; Englezos, Peter
2015-06-07
Molecular dynamic simulations are performed to study the conditions for methane nano-bubble formation during methane hydrate dissociation in the presence of water and a methane gas reservoir. Hydrate dissociation leads to the quick release of methane into the liquid phase which can cause methane supersaturation. If the diffusion of methane molecules out of the liquid phase is not fast enough, the methane molecules agglomerate and form bubbles. Under the conditions of our simulations, the methane-rich quasi-spherical bubbles grow to become cylindrical with a radius of ∼11 Å. The nano-bubbles remain stable for about 35 ns until they are gradually and homogeneously dispersed in the liquid phase and finally enter the gas phase reservoirs initially set up in the simulation box. We determined that the minimum mole fraction for the dissolved methane in water to form nano-bubbles is 0.044, corresponding to about 30% of hydrate phase composition (0.148). The importance of nano-bubble formation to the mechanism of methane hydrate formation, growth, and dissociation is discussed.
New Technique for Retrieving Liquid Water Path over Land using Satellite Microwave Observations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deeter, M.N.; Vivekanandan, J.
2005-03-18
We present a new methodology for retrieving liquid water path over land using satellite microwave observations. As input, the technique exploits the Advanced Microwave Scanning Radiometer for earth observing plan (EOS) (AMSR-E) polarization-difference signals at 37 and 89 GHz. Regression analysis performed on model simulations indicates that over variable atmospheric and surface conditions the polarization-difference signals can be simply parameterized in terms of the surface emissivity polarization difference ({Delta}{var_epsilon}), surface temperature, liquid water path (LWP), and precipitable water vapor (PWV). The resulting polarization-difference parameterization (PDP) enables fast and direct (noniterative) retrievals of LWP with minimal requirements for ancillary data. Single-more » and dual-channel retrieval methods are described and demonstrated. Data gridding is used to reduce the effects of instrumental noise. The methodology is demonstrated using AMSR-E observations over the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site during a six day period in November and December, 2003. Single- and dual-channel retrieval results mostly agree with ground-based microwave retrievals of LWP to within approximately 0.04 mm.« less
NASA Astrophysics Data System (ADS)
Klim, Adam; Morrison, J. T.; Orban, C.; Feister, S.; Ngirmang, G. K.; Smith, J.; Frische, K.; Peterson, A. C.; Chowdhury, E. A.; Freeman, R. R.; Roquemore, W. M.
2016-10-01
The success of laser-accelerated ion experiments depends crucially on a number of factors including how thin the targets can be created. We present experimental results demonstrating extremely thin (under 200 nm) water sheet targets that can be used for ultra-intense laser-accelerated ion experiments conducted at the Air Force Research Laboratory at Wright-Patterson Air Force Base. Importantly, these experiments operate at a kHz repetition rate and the recovery time of the liquid targets is fast enough to allow the laser to interact with a refreshed, thin target on every shot. We present results from liquid water targets which are useful for proton acceleration experiments via the mechanism of Target Normal Sheath Acceleration (TNSA). In future work, we will create thin sheets from deuterated water in order to perform laser-accelerated deuteron experiments. This research was sponsored by the Quantum and Non-Equilibrium Processes Division of the AFOSR, under the management of Dr. Enrique Parra, and support from the DOD HPCMP Internship Program.
Automated High-Throughput Permethylation for Glycosylation Analysis of Biologics Using MALDI-TOF-MS.
Shubhakar, Archana; Kozak, Radoslaw P; Reiding, Karli R; Royle, Louise; Spencer, Daniel I R; Fernandes, Daryl L; Wuhrer, Manfred
2016-09-06
Monitoring glycoprotein therapeutics for changes in glycosylation throughout the drug's life cycle is vital, as glycans significantly modulate the stability, biological activity, serum half-life, safety, and immunogenicity. Biopharma companies are increasingly adopting Quality by Design (QbD) frameworks for measuring, optimizing, and controlling drug glycosylation. Permethylation of glycans prior to analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) is a valuable tool for glycan characterization and for screening of large numbers of samples in QbD drug realization. However, the existing protocols for manual permethylation and liquid-liquid extraction (LLE) steps are labor intensive and are thus not practical for high-throughput (HT) studies. Here we present a glycan permethylation protocol, based on 96-well microplates, that has been developed into a kit suitable for HT work. The workflow is largely automated using a liquid handling robot and includes N-glycan release, enrichment of N-glycans, permethylation, and LLE. The kit has been validated according to industry analytical performance guidelines and applied to characterize biopharmaceutical samples, including IgG4 monoclonal antibodies (mAbs) and recombinant human erythropoietin (rhEPO). The HT permethylation enabled glycan characterization and relative quantitation with minimal side reactions: the MALDI-TOF-MS profiles obtained were in good agreement with hydrophilic liquid interaction chromatography (HILIC) and ultrahigh performance liquid chromatography (UHPLC) data. Automated permethylation and extraction of 96 glycan samples was achieved in less than 5 h and automated data acquisition on MALDI-TOF-MS took on average less than 1 min per sample. This automated and HT glycan preparation and permethylation showed to be convenient, fast, and reliable and can be applied for drug glycan profiling and clinical glycan biomarker studies.
Ma, Wen; Wang, Weihui; Peng, Yan; Bian, Qiaoxia; Wang, Nannan; Lee, David Y-W; Dai, Ronghua
2016-06-01
A fast, sensitive, and reliable ultra-high performance liquid chromatography with tandem mass spectrometry method has been developed and validated for the simultaneous quantitation and pharmacokinetic study of five phthalides (senkyunolide A, ligustilide, butylidenephthalide, 3-butylphthalide, and levistilide A) in rat plasma after oral administration of Huo Luo Xiao Ling Dan (HLXLD) or Angelica sinensis--Ligusticum chuanxiong herb pair (DG-CX) between normal and arthritis rats. After extraction from blood, the analytes and internal standard were subjected to ultra-high performance liquid chromatography with a Shim-pack XR-ODS column (75 × 3.0 mm(2) , 2.2 μm particles) and mobile phase was composed of methanol and water (containing 0.05% formic acid) under gradient elution conditions, with an electrospray ionization source in the positive ionization and multiple reaction monitoring mode. The lower limits of quantification were 0.192-0.800 ng/mL for all the analytes. Satisfactory linearity, precision, accuracy, mean extraction recovery, and acceptable matrix effect have been achieved. The validated method was successfully applied to a comparative pharmacokinetic study of five bioactive components in rat plasma after oral administration of HLXLD or DG-CX alone, respectively, between normal and arthritic rats. The results showed that there were unlike characters of pharmacokinetics among different groups. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thermophysical Properties of Solid and Liquid Ti-6Al-4V (TA6V) Alloy
NASA Astrophysics Data System (ADS)
Boivineau, M.; Cagran, C.; Doytier, D.; Eyraud, V.; Nadal, M.-H.; Wilthan, B.; Pottlacher, G.
2006-03-01
Ti-6Al-4V (TA6V) titanium alloy is widely used in industrial applications such as aeronautic and aerospace due to its good mechanical properties at high temperatures. Experiments on two different resistive pulse heating devices (CEA Valduc and TU-Graz) have been carried out in order to study thermophysical properties (such as electrical resistivity, volume expansion, heat of fusion, heat capacity, normal spectral emissivity, thermal diffusivity, and thermal conductivity) of both solid and liquid Ti-6Al-4V. Fast time-resolved measurements of current, voltage, and surface radiation and shadowgraphs of the volume have been undertaken. At TU-Graz, a fast laser polarimeter has been used for determining the emissivity of liquid Ti-6Al-4V at 684.5 nm and a differential scanning calorimeter (DSC) for measuring the heat capacity of solid Ti-6Al-4V. This study deals with the specific behavior of the different solid phase transitions (effect of heating rate) and the melting region, and emphasizes the liquid state ( T > 2000 K).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samin, Adib; Li, Xiang; Zhang, Jinsuo
For liquid-sodium-cooled fast nuclear reactor systems, it is crucial to understand the behavior of lanthanides and other potential fission products in liquid sodium or other liquid metal solutions such as liquid cesium-sodium. In this study, we focus on lanthanide behavior in liquid sodium. Using ab initio molecular dynamics, we found that the solubility of cerium in liquid sodium at 1000 K was less than 0.78 at. %, and the diffusion coefficient of cerium in liquid sodium was calculated to be 5.57 × 10{sup −9} m{sup 2}/s. Furthermore, it was found that cerium in small amounts may significantly alter the heat capacity of themore » liquid sodium system. Our results are consistent with the experimental results for similar materials under similar conditions.« less
Chen, Hongping; Gao, Guanwei; Liu, Pingxiang; Pan, Meiling; Chai, Yunfeng; Liu, Xin; Lu, Chengyin
2018-04-25
A fast, sensitive and reliable method for the determination of fipronil and its metabolites in tea and chrysanthemum was developed using a modified QuEChERS technique and an ultra performance liquid chromatography Q-Exactive Orbitrap mass spectrometry. The mixture of adsorbents containing primary secondary amine (PSA), octadecylsilane (C 18 ) and carbon nanotubes (CNTs), was used as QuEChERS adsorbents. The use of mass resolution at 70000 full width at half maximum (FWHM) and narrow mass windows at 5 ppm achieved high selectivity and repeatability. Satisfactory linearity with correlative coefficient (R 2 ) higher than 0.996 was achieved for all compounds. Recoveries at three levels (2, 10 and 50 μg kg -1 ) ranged from 86% to 112%, while the intra- and inter-day accuracies were less than 15%. Limits of quantification for fipronil and its metabolites were 2 μg kg -1 , which fulfils the requirement of maximum residue limits formulated by European Union and Japan. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rizzetti, Tiele M; de Souza, Maiara P; Prestes, Osmar D; Adaime, Martha B; Zanella, Renato
2018-04-25
In this study a simple and fast multi-class method for the determination of veterinary drugs in bovine liver, kidney and muscle was developed. The method employed acetonitrile for extraction followed by clean-up with EMR-Lipid® sorbent and trichloracetic acid. Tests indicated that the use of TCA was most effective when added in the final step of the clean-up procedure instead of during extraction. Different sorbents were tested and optimized using central composite design and the analytes determined by ultra-high-performance liquid chromatographic-tandem mass spectrometry (UHPLC-MS/MS). The method was validated according the European Commission Decision 2002/657 presenting satisfactory results for 69 veterinary drugs in bovine liver and 68 compounds in bovine muscle and kidney. The method was applied in real samples and in proficiency tests and proved to be adequate for routine analysis. Residues of abamectin, doramectin, eprinomectin and ivermectin were found in samples of bovine muscle and only ivermectin in bovine liver. Copyright © 2017 Elsevier Ltd. All rights reserved.
Highly Stretchable and Transparent Microfluidic Strain Sensors for Monitoring Human Body Motions.
Yoon, Sun Geun; Koo, Hyung-Jun; Chang, Suk Tai
2015-12-16
We report a new class of simple microfluidic strain sensors with high stretchability, transparency, sensitivity, and long-term stability with no considerable hysteresis and a fast response to various deformations by combining the merits of microfluidic techniques and ionic liquids. The high optical transparency of the strain sensors was achieved by introducing refractive-index matched ionic liquids into microfluidic networks or channels embedded in an elastomeric matrix. The microfluidic strain sensors offer the outstanding sensor performance under a variety of deformations induced by stretching, bending, pressing, and twisting of the microfluidic strain sensors. The principle of our microfluidic strain sensor is explained by a theoretical model based on the elastic channel deformation. In order to demonstrate its capability of practical usage, the simple-structured microfluidic strain sensors were performed onto a finger, wrist, and arm. The highly stretchable and transparent microfluidic strain sensors were successfully applied as potential platforms for distinctively monitoring a wide range of human body motions in real time. Our novel microfluidic strain sensors show great promise for making future stretchable electronic devices.
He, Kang-Hao; Zou, Xiao-Li; Liu, Xiang; Zeng, Hong-Yan
2012-01-01
A method using reversed phase high performance liquid chromatography (RP-HPLC) coupled with diode array detector (DAD) was developed for the simultaneous determination of canthaxanthin and astaxanthin in egg yolks. Samples were extracted with acetonitrile in ultrasonic bath for 20 minutes and then purified by freezing-lipid filtration and solid phase extraction (SPE). After being vaporized to dryness by nitrogen blowing and made up to volume with methanol, the extract solution was chromatographically separated in C18 column with a unitary mobile phase consisting of acetonitrile. The proposed method was validated in terms of linearity, precision, accuracy, and limit of detection (LOD). Regression analysis revealed a good linearity between peak area of each analyte and its concentration (r > or = 0.998). The intra- and inter-day relative standard deviations (RSDs) were less than 3.6% and 5.2%, respectively. LODs of canthaxanthin and astaxanthin were 0.035 and 0.027 microg/mL (S/N = 3). The average recoveries of canthaxanthin and astaxanthin were 91.5% and 88.7%. The proposed method is simple, fast and easy to apply.
Cifuentes, A; Valencia, J; Sanz, E; Sánchez, M J; Rodríguez-Delgado, M A
1997-08-22
A comparative study on the use of reversed-phase high-performance liquid chromatography (RP-HPLC) and capillary electrophoresis (CE) for the determination of debrisoquine (D) and its metabolite, 4-hydroxydebrisoquine (4-HD), in human urine is presented. Four different urine pre-treatments are compared for purification of samples prior to their injection in HPLC and CE. The use of a solid-phase extraction with a C18 cartridge provides the best results for the urine sample treatment, with good recoveries, i.e., 94.5% for D and 93.4% for 4-HD, and high reproducibility, i.e., R.S.D. N = 10 values of 1.7% and 1.2%, respectively. Under our separation conditions it is shown that CE is twice as fast and provides slightly better analysis time reproducibility than HPLC for this type of sample. Both the sensitivity and peak area reproducibility are better when HPLC is used. The two techniques show good agreement when employed for determination of phenotypes for hydroxylation, which seems to corroborate the usefulness of CE for this type of study.
Stipcovich, Tea; Barbero, Gerardo F; Ferreiro-González, Marta; Palma, Miguel; Barroso, Carmelo G
2018-01-15
A rapid high-performance liquid chromatography method with a C18 reverse-phase fused-core column has been developed for the determination and quantification of the main capsaicinoids (nornordihydrocapsaicin, nordihydrocapsaicin, capsaicin, dihydrocapsaicin, homocapsaicin and homodihydrocapsaicin) present in Naga Jolokia peppers. A fused-core Kinetex™ C18 column (50×2.1mm i.d.; 2.6μm) was used for the analysis. The chromatographic separation was obtained with a gradient method in which the mobile phase was water (0.1% acetic acid) as solvent A and acetonitrile (0.1% acetic acid) as solvent B. The separation of all compounds was achieved in less than 3min with a total analysis time (sample-to-sample) of 10min. The robustness of the method was evaluated. The method showed excellent repeatability and intermediate precision expressed as coefficient of variance of less than 2%. The developed method was employed for the quantification of the major capsaicinoids present in different peppers and commercial products containing chilli peppers. Copyright © 2017 Elsevier Ltd. All rights reserved.
Benton, Christopher M; Lim, Chang Kee; Moniz, Caje; Jones, Donald J L
2012-06-01
Ultra high-performance liquid chromatographic (UHPLC) systems on columns packed with materials ranging from 1.9 to 2.7 µm average particle size were assessed for the fast and sensitive analysis of porphyrins in clinical materials. The fastest separation was achieved on an Agilent Poroshell C(18) column (2.7 µm particle size, 50 × 4.6 mm i.d.), followed by a Thermo Hypersil Gold C(18) column (1.9 µm particle size, 50 × 2.1 mm i.d.) and the Thermo Hypersil BDS C(18) column (2.4 µm particle size, 100 × 2.1 mm i.d.). All columns required a mobile phase containing 1 m ammonium acetate buffer, pH 5.16, with a mixture of acetonitrile and methanol as the organic modifiers for optimum resolution of the type I and III isomers, particularly for uroporphyrin I and III isomers. All UHPLC columns were suitable and superior to conventional HPLC columns packed with 5 µm average particle size materials for clinical sample analysis. Copyright © 2011 John Wiley & Sons, Ltd.
Saberkari, Hamidreza; Ghavifekr, Habib Badri; Shamsi, Mousa
2015-01-01
In recent years, demand for biological sensors which are capable of fast and accurate detection of minor amounts of pathogens in real-time form has been intensified. Acoustic wave (AW) devices whose performance is determined by mass sensitivity parameters and quality factor are used in biological sensors as platforms with high quality. Yet, current AW devices are facing many challenges such as the low value of their quality factor in practical applications and also their difficulty to use in liquids. The main focus of this article is to study on the magnetostrictive sensors which include milli/microcantilever (MSMC) type. In comparison with AW devices, MSMC has a lot of advantages; (1) its actuation and sensing unit is wirelessly controlled. (2) Its fabrication process is easy. (3) It works well in liquids. (4) It has a high-quality factor (in the air > 500). Simulation results demonstrate that the amount of quality factor depends on environment properties (density and viscosity), MSMC geometry, and its resonant behavior of harmonic modes. PMID:26120566
Hrouzková, Svetlana; Brišová, Mária; Szarka, Agneša
2017-07-14
A fast, ecological, and efficient method employing vortex-assisted dispersive liquid-liquid microextraction (DLLME) method for isolation and preconcentration of selected endocrine disrupting pesticides from beverages containing some degree of alcohol was developed. The effect of several extraction parameters, such as selection of extractive solvent, its volume and extraction time, the salt addition was investigated. Four different extractive solvents (chloroform, tetrachloroethane, tetrachloromethane and toluene) and their combinations were evaluated for DLLME. Under the following conditions: 1mL of fortified sample, 80μL of tetrachloroethane, 1.5mL of water, vortex assistance for 3min at the speed of 1800rpm, and no salt addition, the method was validated. Linearity was studied in the concentration range of 0.01-250μg/L with coefficient of correlation ranging between 0.9940 and 1.0000, limits of detection and quantification ranging between 0.02-1.4μg/L and 0.07-4.7μg/L, respectively. Recoveries were satisfactory in the range of 70-120%, with the exception of diphenyl, alachlor and fenarimol at the lowest concentration level and p,p-DDE at concentration level of 100 and 250μg/L. The applicability of the developed and validated method was proved by the analysis of real samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Experiments on microjets of undercooled liquid hydrogen
NASA Astrophysics Data System (ADS)
Fernández, José M.; Kühnel, Matthias; Tejeda, Guzmán; Kalinin, Anton; Grisenti, Robert E.; Montero, Salvador
2012-11-01
Novel experiments on liquid microjets (filaments) of hydrogen and deuterium, carried out at the Laboratory of Molecular Fluid Dynamics of the IEM, are reported. These filaments, less than 10 microns in diameter, are an ideal medium to produce highly undercooled liquid samples and to investigate the homogeneous solidification process, free from wall effects. The filaments exit from cryogenic capillary nozzles into a vacuum chamber, to cool down very fast by surface evaporation. Finite size radius leads to a temperature gradient across the filament, determined by thermal conductivity, and, possibly, to a velocity gradient as well. The filaments are monitored by laser shadowgraphy, and analyzed by means of high performance Raman spectroscopy. Real-time measurements in the rotational and vibrational spectral regions reveal the structure and temperature along the filaments, allowing to track the crystal growth process. The high spatial resolution of Raman spectroscopy allows observing in situ the structural changes of the liquid microjets, with a time resolution of ˜ 10 ns. The filaments of pure para-H2 can be cooled down to 9 K (65% of its melting point at 13.8 K), while staying liquid, before eventually solidifying into a metastable polymorph. Crystallization kinetics revealed a growth rate of 33 cm/s, much higher than expected for a thermally activated process. The time and spatial control attained in these experiments offers new opportunities for investigating the processes of nonequilibrium phase transformations in undercooled fluids, as well as the propagation of liquid jets into a rarefied gas media.
3D pulsed laser-triggered high-speed microfluidic fluorescence-activated cell sorter
Chen, Yue; Wu, Ting-Hsiang; Kung, Yu-Chun; Teitell, Michael A.; Chiou, Pei-Yu
2014-01-01
We report a 3D microfluidic pulsed laser-triggered fluorescence-activated cell sorter capable of sorting at a throughput of 23,000 cells sec−1 with 90% purity in high-purity mode and at a throughput of 45,000 cells sec−1 with 45% purity in enrichment mode in one stage and in a single channel. This performance is realized by exciting laser-induced cavitation bubbles in a 3D PDMS microfluidic channel to generate high-speed liquid jets that deflect detected fluorescent cells and particles focused by 3D sheath flows. The ultrafast switching mechanism (20 μsec complete on-off cycle), small liquid jet perturbation volume, and three-dimensional sheath flow focusing for accurate timing control of fast (1.5 m sec−1) passing cells and particles are three critical factors enabling high-purity sorting at high-throughput in this sorter. PMID:23844418
Direct detection of saponins in crude extracts of soapnuts by FTIR.
Almutairi, Meshari Saad; Ali, Muhammad
2015-01-01
Direct detection of saponins in soapnuts (Sapindus mukorossi) using Fourier transform infrared (FTIR) spectroscopy is investigated in this project. Potassium bromide powder was mixed with extracted powder of soapnuts and compressed to a thin pellet for examination process. The outcome of the FTIR spectra of saponin demonstrated characteristic triterpenoid saponin absorptions of OH, C = O, C-H, and C = C, while the glycoside linkages to the sapogenins were indicated by the absorptions of C-O. The significance of this study is that saponin absorption peaks are directly detectable in crude aqueous and 95% ethanol extracts of soapnuts powder using FTIR spectroscopy, thereby eliminating the need of further expensive and exhaustive purification steps. The extracts of soapnuts were screened for saponins along with controls by phytochemical tests, and advanced spectroscopic techniques such as ultra fast liquid chromatography and ultra performance liquid chromatography quadrupole-time of flight-mass spectrometry were also implemented to validate the saponins.
Lechowicz, Wojciech
2009-01-01
Toxicological analyses performed in individuals who died in unclear circumstances constitute a key element of research aiming at providing a complete explanation of cause of death. The entire panel of examinations of the corpse of general Sikorski also included toxicological analyses for drugs and organic poisons of synthetic and natural origin. Attention was focused on fast-acting and potent poisons known and used in the forties of the century. The internal organs (stomach, liver, lung, brain) and hair, as well as other materials collected from the body and found in the coffin were analyzed. The classic method of sample preparation, i.e. homogenization, deproteinization, headspace and liquid-liquid extraction were applied. Hyphenated methods, mainly chromatographic with mass spectrometry were used for identification of the analytes. Organic poisons were not identified in the material as a result of the research.
Zhang, Li; Luo, Xin; Niu, Zengyuan; Ye, Xiwen; Tang, Zhixu; Yao, Peng
2015-03-20
A new analytical method was established and validated for the analysis of 19 substances of very high concern (SVHCs) in textiles, including phthalic acid esters (PAEs), organotins (OTs), perfluorochemicals (PFCs) and flame retardants (FRs). After ultrasonic extraction in methanol, the textile samples were analyzed by high performance liquid chromatography-hybrid linear ion trap Orbitrap high resolution mass spectrometry (HPLC-LTQ/Orbitrap). The values of LOQ were in the range of 2-200mg/kg. Recoveries at two levels (at the LOQ and at half the limit of regulation) ranged from 68% to 120%, and the repeatability was lower than 13%. This method was successfully applied to the screening of SVHCs in commercial textile samples and is useful for the fast screening of various SVHCs. Copyright © 2015 Elsevier B.V. All rights reserved.
Science and technology of stressed liquid crystals: display and non-display applications
NASA Astrophysics Data System (ADS)
Melnyk, Olha; Garbovskiy, Yuriy; Glushchenko, Anatoliy
2017-08-01
Stressed liquid crystals (SLCs) have emerged as promising tunable electro-optical materials more than a decade ago. They are optically transparent and are characterized by a giant phase modulation of the incident light (Nπ, N >> 1), fast (millisecond and shorter) electro-optical response, and a relatively low driving voltage (∼1 V/μm). Surprisingly, despite their advanced electro-optical performance, these new materials did not receive due attention in the research community. One possible reason of such an inadequate interest in SLCs is the lack of the well-documented procedure describing how to actually produce these materials. This paper is aimed at the development of such a step-by-step practical guide suitable for experimentalist and engineers. The proposed technology is applied to produce and characterize SLCs. In addition, some applications of the materials are briefly discussed and a broader overview of their possible use is outlined.
Chrzanowski, Lukasz; Stasiewicz, Monika; Owsianiak, Mikołaj; Szulc, Alicja; Piotrowska-Cyplik, Agnieszka; Olejnik-Schmidt, Agnieszka K; Wyrwas, Bogdan
2009-09-01
Fast development of ionic liquids as gaining more and more attention valuable chemicals will undoubtedly lead to environmental pollution. New formulations and application of ionic liquids may result in contamination in the presence of hydrophobic compounds, such as petroleum mixtures. We hypothesize that in the presence of diesel fuel low-water-soluble ionic liquids may become more toxic to hydrocarbon-degrading microorganisms. In this study the influence of 1-alkoxymethyl-2-methyl-5-hydroxypyridinium chloride homologues (side-chain length from C(3) to C(18)) on biodegradation of diesel fuel by a bacterial consortium was investigated. Whereas test performed for the consortium cultivated on disodium succinate showed that toxicity of the investigated ionic liquids decreased with increase in side-chain length, only higher homologues (C(8)-C(18)) caused a decrease in diesel fuel biodegradation. As a result of exposure to toxic compounds also modification in cell surface hydrophobicity was observed (MATH). Disulphine blue active substances method was employed to determine partitioning index of ionic liquids between water and diesel fuel phase, which varied from 1.1 to 51% for C(3) and C(18) homologues, respectively. We conclude that in the presence of hydrocarbons acting as a solvent, the increased bioavailability of hydrophobic homologues is responsible for the decrease in biodegradation efficiency of diesel fuel.
Investigation of ferroelectric liquid crystal orientation in the silica microcapillaries
NASA Astrophysics Data System (ADS)
Budaszewski, D.; Domański, A. W.; Woliński, T. R.
2013-05-01
In the paper we present our recent results concerning the orientation of ferroelectric liquid crystal molecules inside silica micro capillaries. We have infiltrated the silica micro capillaries with experimental ferroelectric liquid crystal material W-260K synthesized in the Military University of Technology. The infiltrated micro capillaries were observed under the polarization microscope while both a polarizer and an analyzer were crossed. The studies on the orientation of ferroelectric liquid crystal molecules may contribute to further studies on behavior of this group of liquid crystal materials inside photonic crystal fiber. The obtained results may lead to design of a new type of fast optical fiber sensors.
Facile and fast synthesis of SnS2 nanoparticles by pulsed laser ablation in liquid
NASA Astrophysics Data System (ADS)
Johny, J.; Sepulveda-Guzman, S.; Krishnan, B.; Avellaneda, D.; Shaji, S.
2018-03-01
Nanoparticles (NPs) of tin disulfide (SnS2) were synthesized using pulsed laser ablation in liquid (PLAL) technique. Effects of different liquid media and ablation wavelengths on the morphology and optical properties of the nanoparticles were studied. Nd: YAG laser wavelengths of 532 nm and 1064 nm (frequency 10 Hz and pulse width 10 ns) were used to irradiate SnS2 target immersed in liquid for the synthesis of SnS2 nanoparticles. Here PLAL was a fast synthesis technique, the ablation was only for 30 s. Transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, UV-vis absorption spectroscopy and photoluminescence spectroscopy were used to characterize the SnS2 NPs. TEM images showed that the liquid medium and laser wavelength influence the morphology of the NPs. SAED patterns and high resolution TEM (HRTEM) images confirmed the crystallinity of the particles. XRD and XPS analyses confirmed that SnS2 NPs were having exact crystalline structure and chemical states as that of the target. Raman analysis also supported the results obtained by XRD and XPS. Optical band gaps of the nanocolloids evaluated from their UV-vis absorption spectra were 2.4-3.05 eV. SnS2 NPs were having luminescence spectra in the blue-green region irrespective of the liquid media and ablation wavelength.
Rocha, Bruno Alves; da Costa, Bruno Ruiz Brandão; de Albuquerque, Nayara Cristina Perez; de Oliveira, Anderson Rodrigo Moraes; Souza, Juliana Maria Oliveira; Al-Tameemi, Maha; Campiglia, Andres Dobal; Barbosa, Fernando
2016-07-01
In this study, a novel method combining dispersive liquid-liquid microextraction (DLLME) and fast liquid chromatography coupled to mass spectrometry (LC-MS/MS) was developed and validated for the extraction and determination of bisphenol A (BPA) and six bisphenol analogues, namely bisphenol S (BPS), bisphenol F (BPF), bisphenol P (BPP), bisphenol Z (BPZ), bisphenol AP (BPAP) and bisphenol AF (BPAF) in human urine samples. Type and volume of extraction and disperser solvents, pH sample, ionic strength, and agitation were evaluated. The matrix-matched calibration curves of all analytes were linear with correlation coefficients higher than 0.99 in the range level of 0.5-20.0ngmL(-1). The relative standard deviation (RSD), precision, at three concentrations (1.0, 8.0 and 15.0ngmL(-1)) was lower than 15% with accuracy ranging from 90 to 112%. The biomonitoring capability of the new method was confirmed with the analysis of 50 human urine samples randomly collected from Brazilians. BPA was detected in 92% of the analyzed samples at concentrations ranging
Implications of oxidative stress in the brain plasticity originated by fasting: a BOLD-fMRI study.
Belaïch, Rachida; Boujraf, Saïd; Benzagmout, Mohammed; Magoul, Rabia; Maaroufi, Mustapha; Tizniti, Siham
2017-11-01
The goal of this study was assessing the intermittent fasting effect on brain plasticity and oxidative stress (OS) using blood-oxygenation-level dependent (BOLD)-functional magnetic resonance image (fMRI) approach. Evidences of physiological and molecular phenomena involved in this process are discussed and compared to reported literature. Six fully healthy male non-smokers volunteered in this study. All volunteers were right handed, and have an equilibrated, consistent and healthy daily nutritional habit, and a healthy lifestyle. Participants were allowed consuming food during evening and night time while fasting with self-prohibiting food and liquids during 14 hours/day from sunrise to sunset. All participants underwent identical brain BOLD-fMRI protocol. The images were acquired in the Department of Radiology and Clinical Imaging of the University Hospital of Fez, Fez, Morocco. The anatomical brain and BOLD-fMRIs were acquired using a 1.5-Tesla scanner (Signa, General Electric, Milwaukee, United States). BOLD-fMRI image acquisition was done using single-shot gradient echo echo-planer imaging sequence. BOLD-fMRI paradigm consisted of the motor task where volunteers were asked to perform finger taping of the right hand. Two BOLD-fMRI scan sessions were performed, the first one between the 5th and 10th days preceding the start of fasting and the second between days 25th and 28th of the fasting month. All sessions were performed between 3:30 PM and 5:30 PM. Although individual maps were originated from different individual participants, they cover the same anatomic area in each case. Image processing and statistical analysis were conducted with Statistical Parameter Mapping version 8 (2008, Welcome Department of Cognitive Neurology, London UK). The maximal BOLD signal changes were calculated for each subject in the motor area M1; Activation maps were calculated and overlaid on the anatomical images. Group analysis of the data was performed, and the average volume and the maximum intensity of BOLD signal in the activated area M1 was determined for all studied volunteers. The current study allowed measuring regional brain volumes and neural network activity before and during an extended period of fasting using BOLD-fMRI. This demonstrated and confirmed the impact of fasting on human brain structure and function. Further studies are required to elucidate mechanisms and enable direct inference of a diet-induced OS effect on the brain.
Transport of heat and mass in near-critical fluids
NASA Astrophysics Data System (ADS)
Garrabos, Yves; Leneindre, B.; Guenoun, P.; Perrot, F.; Beysens, Daniel
1992-08-01
In order to investigate some aspects of heat and mass transport in fluids in the absence of gravity, thermal cycles were performed near the liquid-phase critical point of CO2 and SF6 in the TEXUS 25 rocket and during the International Microgravity Laboratory (IML-1) Spacelab mission. In the absence of gravity driven convection, the heat transport is expected to be diffusive and very slow. Experimentally, although the local density and temperature gradients indeed relax by a diffusive process, clear evidence is found of fast and uniform thermal equilibration. This new mechanism is a 'piston effect'.
Assessment of a satellite power system and six alternative technologies
NASA Technical Reports Server (NTRS)
Wolsko, T.; Whitfield, R.; Samsa, M.; Habegger, L. S.; Levine, E.; Tanzman, E.
1981-01-01
The satellite power system is assessed in comparison to six alternative technologies. The alternatives are: central-station terrestrial photovoltaic systems, conventional coal-fired power plants, coal-gasification/combined-cycle power plants, light water reactor power plants, liquid-metal fast-breeder reactors, and fusion. The comparison is made regarding issues of cost and performance, health and safety, environmental effects, resources, socio-economic factors, and institutional issues. The criteria for selecting the issues and the alternative technologies are given, and the methodology of the comparison is discussed. Brief descriptions of each of the technologies considered are included.
Cirri, Marzia; Roghi, Alessandra; Valleri, Maurizio; Mura, Paola
2016-07-01
The aim of this work was to develop effective fast-dissolving tablet formulations of glyburide, endowed with improved dissolution and technological properties, investigating the actual effectiveness of the Solid-Self MicroEmulsifying Drug Delivery System (S-SMEDDS) approach. An initial screening aimed to determine the solubility of the drug in different oils, Surfactants and CoSurfactants allowed the selection of the most suitable components for liquid SMEDDS, whose relative amounts were defined by the construction of pseudo-ternary phase diagrams. The selected liquid SMEDDS formulations (Capyol 90 as oil, Tween 20 as Surfactant and Glycofurol or Transcutol as CoSurfactant) were converted into Solid-SMEDDS, by adsorbing them onto Neusilin (1:1 and 1:0.8w/w S-SMEDDS:carrier), and fully characterized in terms of solid state (DSC and X-ray powder diffraction), morphological (ESEM) and dissolution properties, particle size and reconstitution ability. Finally, the 1:1 S-SMEDDS containing Glycofurol as CoSurfactant, showing the best performance, was selected to prepare two final tablet formulations. The ratio test (t10 min ratio and DE60 ratio) and pair-wise procedures (difference (f1) and similarity (f2) factors) highlighted the similarity of the new developed tablets and the marked difference between their drug dissolution profiles and those of formulations based on the micronized drug. The S-SMEDDS approach allowed to develop fast-dissolving tablets of glyburide, endowed with good technological properties and able to achieve the complete drug dissolution in a time ranging from 10 to 15min, depending on the formulation composition. Copyright © 2016 Elsevier B.V. All rights reserved.
Glass and liquid phase diagram of a polyamorphic monatomic system
NASA Astrophysics Data System (ADS)
Reisman, Shaina; Giovambattista, Nicolas
2013-02-01
We perform out-of-equilibrium molecular dynamics (MD) simulations of a monatomic system with Fermi-Jagla (FJ) pair potential interactions. This model system exhibits polyamorphism both in the liquid and glass state. The two liquids, low-density (LDL) and high-density liquid (HDL), are accessible in equilibrium MD simulations and can form two glasses, low-density (LDA) and high-density amorphous (HDA) solid, upon isobaric cooling. The FJ model exhibits many of the anomalous properties observed in water and other polyamorphic liquids and thus, it is an excellent model system to explore qualitatively the thermodynamic properties of such substances. The liquid phase behavior of the FJ model system has been previously characterized. In this work, we focus on the glass behavior of the FJ system. Specifically, we perform systematic isothermal compression and decompression simulations of LDA and HDA at different temperatures and determine "phase diagrams" for the glass state; these phase diagrams varying with the compression/decompression rate used. We obtain the LDA-to-HDA and HDA-to-LDA transition pressure loci, PLDA-HDA(T) and PHDA-LDA(T), respectively. In addition, the compression-induced amorphization line, at which the low-pressure crystal (LPC) transforms to HDA, PLPC-HDA(T), is determined. As originally proposed by Poole et al. [Phys. Rev. E 48, 4605 (1993)], 10.1103/PhysRevE.48.4605 simulations suggest that the PLDA-HDA(T) and PHDA-LDA(T) loci are extensions of the LDL-to-HDL and HDL-to-LDL spinodal lines into the glass domain. Interestingly, our simulations indicate that the PLPC-HDA(T) locus is an extension, into the glass domain, of the LPC metastability limit relative to the liquid. We discuss the effects of compression/decompression rates on the behavior of the PLDA-HDA(T), PHDA-LDA(T), PLPC-HDA(T) loci. The competition between glass polyamorphism and crystallization is also addressed. At our "fast rate," crystallization can be partially suppressed and the glass phase diagram can be related directly with the liquid phase diagram. However, at our "slow rate," crystallization cannot be prevented at intermediate temperatures, within the glass region. In these cases, multiple crystal-crystal transformations are found upon compression/decompression (polymorphism).
Glass and liquid phase diagram of a polyamorphic monatomic system.
Reisman, Shaina; Giovambattista, Nicolas
2013-02-14
We perform out-of-equilibrium molecular dynamics (MD) simulations of a monatomic system with Fermi-Jagla (FJ) pair potential interactions. This model system exhibits polyamorphism both in the liquid and glass state. The two liquids, low-density (LDL) and high-density liquid (HDL), are accessible in equilibrium MD simulations and can form two glasses, low-density (LDA) and high-density amorphous (HDA) solid, upon isobaric cooling. The FJ model exhibits many of the anomalous properties observed in water and other polyamorphic liquids and thus, it is an excellent model system to explore qualitatively the thermodynamic properties of such substances. The liquid phase behavior of the FJ model system has been previously characterized. In this work, we focus on the glass behavior of the FJ system. Specifically, we perform systematic isothermal compression and decompression simulations of LDA and HDA at different temperatures and determine "phase diagrams" for the glass state; these phase diagrams varying with the compression/decompression rate used. We obtain the LDA-to-HDA and HDA-to-LDA transition pressure loci, P(LDA-HDA)(T) and P(HDA-LDA)(T), respectively. In addition, the compression-induced amorphization line, at which the low-pressure crystal (LPC) transforms to HDA, P(LPC-HDA)(T), is determined. As originally proposed by Poole et al. [Phys. Rev. E 48, 4605 (1993)] simulations suggest that the P(LDA-HDA)(T) and P(HDA-LDA)(T) loci are extensions of the LDL-to-HDL and HDL-to-LDL spinodal lines into the glass domain. Interestingly, our simulations indicate that the P(LPC-HDA)(T) locus is an extension, into the glass domain, of the LPC metastability limit relative to the liquid. We discuss the effects of compression/decompression rates on the behavior of the P(LDA-HDA)(T), P(HDA-LDA)(T), P(LPC-HDA)(T) loci. The competition between glass polyamorphism and crystallization is also addressed. At our "fast rate," crystallization can be partially suppressed and the glass phase diagram can be related directly with the liquid phase diagram. However, at our "slow rate," crystallization cannot be prevented at intermediate temperatures, within the glass region. In these cases, multiple crystal-crystal transformations are found upon compression/decompression (polymorphism).
Zhao, Lu; Wen, E; Upur, Halmuart; Tian, Shuge
2017-01-01
Sea buckthorn ( Hippophae rhamnoides L.) as a traditional Chinese medicinal plant has various uses in Xinjiang. A reversed-phase rapid-resolution liquid-chromatography method with diode array detector was developed for simultaneous determination of protocatechuic acid, rutin, quercetin, kaempferol, and isorhamnetin in the pulp and seed of sea buckthorn, a widely used traditional Chinese medicine for promoting metabolism and treating scurvy and other diseases. Compounds were separated on an Agilent ZORBAX SB-C18 column (4.6 mm × 250 mm, 5 μm; USA) with gradient elution using methanol and 0.4% phosphoric acid (v/v) at 1.0 mL/min. Detection wavelength was set at 280 nm. The fruits of wild sea buckthorn were collected from Wushi County in Aksu, Xinjiang Province. The RSD of precision test of the five compounds were in the range of 0.60-2.22%, and the average recoveries ranged from 97.36% to 101.19%. Good linearity between specific chromatographic peak and component qualities were observed in the investigated ranges for all the analytes ( R 2 > 0.9997). The proposed method was successfully applied to determine the levels of five active components in sea buckthorn samples from Aksu in Xinjiang. The proposed method is simple, fast, sensitive, accurate, and suitable for quantitative assessment of the pulp and seed of sea buckthorn. Quantitative analysis method of protocatechuic acid, rutin, quercetin, kaempferol, and isorhamnetin in the extract of sea buckthorn pulp and seed is developed by high-performance liquid chromatography (HPLC) diode array detection.This method is simple and accurate; has strong specificity, good precision, and high recovery rate; and provides a reliable basis for further development of the substances in the pulp and seed of sea buckthorn.The method is widely used for content determination of active ingredients or physiologically active components in traditional Chinese medicine and its preparation Abbreviation used: PR: protocatechuic acid, RU: rutin, QU: quercetin, KA: kaempferol, IS: isorhamnetin, HPLC: high-performance liquid chromatography, HPLC-DAD: high performance liquid chromatographydiode array detector, LOD: linearity and limit of detection, LOQ: limit of quantitation, RSD: relative standard deviation.
Márquez-Ruiz, G; Holgado, F; García-Martínez, M C; Dobarganes, M C
2007-09-21
A new method based on high-performance size-exclusion chromatography (HPSEC) is proposed to quantitate primary and secondary oxidation compounds in model fatty acid methyl esters (FAMEs). The method consists on simply injecting an aliquot sample in HPSEC, without preliminary isolation procedures neither addition of standard internal. Four groups of compounds can be quantified, namely, unoxidised FAME, oxidised FAME monomers including hydroperoxides, FAME dimers and FAME polymers. Results showed high repeatability and sensitivity, and substantial advantages versus determination of residual substrate by gas-liquid chromatography. Applicability of the method is shown through selected data obtained by numerous oxidation experiments on pure FAME, mainly methyl linoleate, at ambient and moderate temperatures.
Minarik, Marek; Franc, Martin; Minarik, Milan
2018-06-15
A new instrumental approach to recycling HPLC is described. The concept is based on fast reintroduction of incremental peak sections back onto the separation column. The re-circulation is performed within a closed loop containing only the column and two synchronized switching valves. By having HPLC pump out of the cycle, the method minimizes peak broadening due to dead volume. As a result the efficiency is dramatically increased allowing for the most demanding analytical applications. In addition, a parking loop is employed for temporary storage of analytes from the middle section of the separated mixture prior to their recycling. Copyright © 2018 Elsevier B.V. All rights reserved.
Scintillation properties of the Ce-doped multicomponent garnet epitaxial films
NASA Astrophysics Data System (ADS)
Prusa, P.; Kucera, M.; Mares, J. A.; Hanus, M.; Beitlerova, A.; Onderisinova, Z.; Nikl, M.
2013-10-01
(Lu,Y,Gd)3(Al,Ga)5O12:Ce garnet scintillator single crystalline films were grown onto LuAG, YAG and GGG substrates by liquid phase epitaxy method. Absorption, radioluminescence spectra and photoluminescence excitation, emission spectra, and decay kinetics were measured. Photoelectron yield, its dependence on amplifier shaping time and energy resolution were determined to evaluate scintillation performance. Most of the samples exhibited strong UV emission caused by trapped excitons and/or Gd3+ 4f-4f transition. However, emission spectrum of the best performing Gd2YAl5O12:Ce is dominated by the Ce3+ fast 5d-4f luminescence. This sample has outperformed photoelectron yield of all the garnet films studied so far.
Enhanced Response Time of Electrowetting Lenses with Shaped Input Voltage Functions.
Supekar, Omkar D; Zohrabi, Mo; Gopinath, Juliet T; Bright, Victor M
2017-05-16
Adaptive optical lenses based on the electrowetting principle are being rapidly implemented in many applications, such as microscopy, remote sensing, displays, and optical communication. To characterize the response of these electrowetting lenses, the dependence upon direct current (DC) driving voltage functions was investigated in a low-viscosity liquid system. Cylindrical lenses with inner diameters of 2.45 and 3.95 mm were used to characterize the dynamic behavior of the liquids under DC voltage electrowetting actuation. With the increase of the rise time of the input exponential driving voltage, the originally underdamped system response can be damped, enabling a smooth response from the lens. We experimentally determined the optimal rise times for the fastest response from the lenses. We have also performed numerical simulations of the lens actuation with input exponential driving voltage to understand the variation in the dynamics of the liquid-liquid interface with various input rise times. We further enhanced the response time of the devices by shaping the input voltage function with multiple exponential rise times. For the 3.95 mm inner diameter lens, we achieved a response time improvement of 29% when compared to the fastest response obtained using single-exponential driving voltage. The technique shows great promise for applications that require fast response times.
Properties of injectable ready-to-use calcium phosphate cement based on water-immiscible liquid.
Heinemann, S; Rössler, S; Lemm, M; Ruhnow, M; Nies, B
2013-04-01
Calcium phosphate cements (CPCs) are highly valuable materials for filling bone defects and bone augmentation by minimal invasive application via percutaneous injection. In the present study some key features were significantly improved by developing a novel injectable ready-to-use calcium phosphate cement based on water-immiscible carrier liquids. A combination of two surfactants was identified to facilitate the targeted discontinuous exchange of the liquid for water after contact with aqueous solutions, enabling the setting reaction to take place at distinct ratios of cement components to water. This prolonged the shelf life of the pre-mixed paste and enhanced reproducibility during application and setting reactions. The developed paste technology is applicable for different CPC formulations. Evaluations were performed for the formulation of an α-TCP-based CPC as a representative example for the preparation of injectable pastes with a powder-to-carrier liquid ratio of up to 85:15. We demonstrate that the resulting material retains the desirable properties of conventional CPC counterparts for fast setting, mechanical strength and biocompatibility, shows improved cohesion and will most probably show a similar degree of resorbability due to identical mineral structure of the set products. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Design of container velocity profile for the suppression of liquid sloshing
NASA Astrophysics Data System (ADS)
Kim, Dongjoo
2016-11-01
In many industrial applications, high-speed position control of a liquid container causes undesirable liquid vibrations called 'sloshing' which poses a control challenge in fast maneuvering and accurate positioning of containers. Recently, it has been shown that a control theory called 'input shaping' is successfully applied to reduce the sloshing, but its success comes at a cost of longer process time. Therefore, we aim to minimize liquid sloshing without increasing the process time when a container moves horizontally by a target distance within a limited time. In this study, sensing and feedback actuation are not permitted but the container velocity is allowed to be modified from a given triangular profile. A new design is proposed by applying input shaping to the container velocity with carefully selected acceleration time. That is, the acceleration time is chosen to be the 1st mode natural period, and the input shaper is determined based on the 3rd mode natural frequency. The proposed approach is validated by performing numerical simulations, which show that the simple modification of container velocity reduces the sloshing significantly without additional process time in a feedforward manner. Supported by the NRF programs (NRF-2015R1D1A1A01059675) of Korean government.
Pacheco-Fernández, Idaira; Herrera-Fuentes, Ariadna; Delgado, Bárbara; Pino, Verónica; Ayala, Juan H; Afonso, Ana M
2017-03-01
The environmental monitoring of trihalomethanes (THMs) has been performed by setting up a dispersive liquid-liquid microextraction method in combination with gas chromatography (GC)-mass spectrometry (MS). The optimized method only requires ∼26 µL of decanol as extractant solvent, dissolved in ∼1 mL of acetone (dispersive solvent) for 5 mL of the environmental water containing THMs. The mixture is then subjected to vortex for 1 min and then centrifuged for 2 min at 3500 rpm. The microdroplet containing the extracted THMs is then sampled with a micro-syringe, and injected (1 µL) in the GC-MS. The method is characterized for being fast (3 min for the entire sample preparation step) and environmentally friendly (low amounts of solvents required, being all non-chlorinated), and also for getting average relative recoveries of 90.2-106% in tap waters; relative standard deviation values always lower than 11%; average enrichment factors of 48-49; and detection limits down to 0.7 µg·L-1. Several waters: tap waters, pool waters, and wastewaters were successfully analyzed with the method proposed. Furthermore, the method was used to monitor the formation of THMs in wastewaters when different chlorination parameters, namely temperature and pH, were varied.
Impact of Ramadan on physical performance in professional soccer players
Zerguini, Yacine; Kirkendall, Donald; Junge, Astrid; Dvorak, Jiri
2007-01-01
Objective Ramadan is a period of daylight abstention from liquid or solid nutrients. As sports continue to be scheduled, an understanding of the effects of Ramadan on Muslim athletes is warranted. Design Two Algerian professional soccer teams (55 men) were studied. Field tests of physical and soccer performance were collected before, at the end and 2 weeks after Ramadan in 2004. Players were queried on sleeping habits and personal perception of training and match performance. Setting Field setting at club training ground. Main outcome measures Performance on fitness and skill tests. Results Performance declined significantly (p<0.05) for speed, agility, dribbling speed and endurance, and most stayed low after the conclusion of Ramadan. Nearly 70% of the players thought that their training and performance were adversely affected during the fast. Conclusions The phase shift of food intake and disruption of sleep patterns affect actual and perceived physical performance. Islamic athletes need to explore strategies that will maximise performance during Ramadan. PMID:17224435
Galinstan liquid metal breakup and droplet formation in a shock-induced cross-flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yi; Wagner, Justin L.; Farias, Paul Abraham
Liquid metal breakup processes are important for understanding a variety of physical phenomena including metal powder formation, thermal spray coatings, fragmentation in explosive detonations and metalized propellant combustion. Since the breakup behaviors of liquid metals are not well studied, we experimentally investigate the roles of higher density and fast elastic surface oxide formation on breakup morphology and droplet characteristics. This work compares the column breakup of water with Galinstan, a room-temperature eutectic liquid metal alloy of gallium, indium and tin. A shock tube is used to generate a step change in convective velocity and back-lit imaging is used to classifymore » morphologies for Weber numbers up to 250. Digital in-line holography (DIH) is then used to quantitatively capture droplet size, velocity and three-dimensional position information. Differences in geometry between canonical spherical drops and the liquid columns utilized in this paper are likely responsible for observations of earlier transition Weber numbers and uni-modal droplet volume distributions. Scaling laws indicate that Galinstan and water share similar droplet size-velocity trends and root-normal volume probability distributions. Furthermore, measurements indicate that Galinstan breakup occurs earlier in non-dimensional time and produces more non-spherical droplets due to fast oxide formation.« less
NASA Astrophysics Data System (ADS)
Guoxin, Cheng
2015-01-01
In recent years, several calibration-independent transmission/reflection methods have been developed to determine the complex permittivity of liquid materials. However, these methods experience their own respective defects, such as the requirement of multi measurement cells, or the presence of air gap effect. To eliminate these drawbacks, a fast calibration-independent method is proposed in this paper. There are two main advantages of the present method over those in the literature. First, only one measurement cell is required. The cell is measured when it is empty and when it is filled with liquid. This avoids the air gap effect in the approach, in which the structure with two reference ports connected with each other is needed to be measured. Second, it eliminates the effects of uncalibrated coaxial cables, adaptors, and plug sections; systematic errors caused by the experimental setup are avoided by the wave cascading matrix manipulations. Using this method, three dielectric reference liquids, i.e., ethanol, ethanediol, and pure water, and low-loss transformer oil are measured over a wide frequency range to validate the proposed method. Their accuracy is assessed by comparing the results with those obtained from the other well known techniques. It is demonstrated that this proposed method can be used as a robust approach for fast complex permittivity determination of liquid materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jasperson, Louis V.; McDougal, Rubin J.; Diky, Vladimir
Here in this paper we report liquid-liquid mutual solubilities for binary aqueous mixtures involving 2-, 3-, and 4-ethylphenol, 2-, 3-, and 4-methoxyphenol, benzofuran, and 1H-indene for the temperature range (300 < T/K < 360). Measurements in the water-rich phase for (2-ethylphenol + water) were extended to T = 440 K to facilitate comparison with literature values. Liquid-liquid equilibrium tie-line determinations were made for four ternary systems involving (water + toluene) mixed with a third component; phenol, 3-ethylphenol, 4-methoxyphenol, or 2,4-dimethylphenol. Literature values at higher temperatures are available for the three (ethylphenol + water) systems, and, in general, good agreement ismore » seen. The ternary system (water + toluene + phenol) has been studied previously with inconsistent results reported in the literature, and one report is shown to be anomalous. All systems are modeled with the predictive methods NIST-Modified-UNIFAC and NIST-COSMO-SAC, with generally good success in the temperature range of interest (300 < T/K < 360). This work is part of a larger project on the testing and development of predictive phase equilibrium models for compound types occurring in catalytic fast pyrolysis of biomass, and background information for the larger project is provided.« less
Jasperson, Louis V.; McDougal, Rubin J.; Diky, Vladimir; ...
2016-11-02
Here in this paper we report liquid-liquid mutual solubilities for binary aqueous mixtures involving 2-, 3-, and 4-ethylphenol, 2-, 3-, and 4-methoxyphenol, benzofuran, and 1H-indene for the temperature range (300 < T/K < 360). Measurements in the water-rich phase for (2-ethylphenol + water) were extended to T = 440 K to facilitate comparison with literature values. Liquid-liquid equilibrium tie-line determinations were made for four ternary systems involving (water + toluene) mixed with a third component; phenol, 3-ethylphenol, 4-methoxyphenol, or 2,4-dimethylphenol. Literature values at higher temperatures are available for the three (ethylphenol + water) systems, and, in general, good agreement ismore » seen. The ternary system (water + toluene + phenol) has been studied previously with inconsistent results reported in the literature, and one report is shown to be anomalous. All systems are modeled with the predictive methods NIST-Modified-UNIFAC and NIST-COSMO-SAC, with generally good success in the temperature range of interest (300 < T/K < 360). This work is part of a larger project on the testing and development of predictive phase equilibrium models for compound types occurring in catalytic fast pyrolysis of biomass, and background information for the larger project is provided.« less
Galinstan liquid metal breakup and droplet formation in a shock-induced cross-flow
Chen, Yi; Wagner, Justin L.; Farias, Paul Abraham; ...
2018-05-22
Liquid metal breakup processes are important for understanding a variety of physical phenomena including metal powder formation, thermal spray coatings, fragmentation in explosive detonations and metalized propellant combustion. Since the breakup behaviors of liquid metals are not well studied, we experimentally investigate the roles of higher density and fast elastic surface oxide formation on breakup morphology and droplet characteristics. This work compares the column breakup of water with Galinstan, a room-temperature eutectic liquid metal alloy of gallium, indium and tin. A shock tube is used to generate a step change in convective velocity and back-lit imaging is used to classifymore » morphologies for Weber numbers up to 250. Digital in-line holography (DIH) is then used to quantitatively capture droplet size, velocity and three-dimensional position information. Differences in geometry between canonical spherical drops and the liquid columns utilized in this paper are likely responsible for observations of earlier transition Weber numbers and uni-modal droplet volume distributions. Scaling laws indicate that Galinstan and water share similar droplet size-velocity trends and root-normal volume probability distributions. Furthermore, measurements indicate that Galinstan breakup occurs earlier in non-dimensional time and produces more non-spherical droplets due to fast oxide formation.« less
Peters, Job H C; Wierdsma, Nicolette J; Teerlink, Tom; van Leeuwen, Paul A M; Mulder, Chris J J; van Bodegraven, Ad A
2007-12-01
Our aim was to explore the diagnostic value of fasting citrulline concentrations to detect decreased intestinal energy absorption in patients with recently diagnosed celiac disease (CeD), refractory celiac disease (RCeD), and short bowel syndrome (SBS). Decreased intestinal energy absorption is regarded a marker of intestinal failure. Fasting plasma citrulline concentrations were determined by high performance liquid chromatography (HPLC) in a prospective study of 30 consecutive adult patients (15 CeD, 9 RCeD, and 16 SBS) and 21 healthy subjects. Intestinal energy absorption capacity using bomb calorimetry was determined in all patients and healthy subjects and was regarded as the gold standard for intestinal energy absorption function. The mean fasting plasma citrulline concentration was lower in RCeD patients than in healthy subjects (28.5+/-9.9 vs 38.1+/-8.0 micromol/L, P<0.05) and CeD patients (28.5+/-9.9 vs 38.1+/-6.4 micromol/L, P<0.05), however, clearly within reference values. The mean intestinal energy absorption capacity was lower in SBS patients than in healthy subjects (64.3+/-18.2 vs 90.3+/-3.5%, P<0.001), CeD patients (64.3+/-18.2 vs 89.2+/-3.4%, P<0.001), and the RCeD group (64.3+/-18.2 vs 82.3+/-11.7%, P<0.01). No relation was observed between fasting plasma citrulline concentration and intestinal energy absorption capacity (Pearson r=0.09, P=0.56). The area under the ROC curve for fasting plasma citrulline to detect decreased intestinal energy absorption capacity (i.e., <85%) was 0.50. Fasting plasma citrulline concentrations have poor test characteristics for detection of decreased intestinal energy absorption capacity in patients with enterocyte damage.
ERIC Educational Resources Information Center
Penteado, Jose C.; Masini, Jorge Cesar
2011-01-01
Influence of the solvent strength determined by the addition of a mobile-phase organic modifier and pH on chromatographic separation of sorbic acid and vanillin has been investigated by the relatively new technique, liquid sequential injection chromatography (SIC). This technique uses reversed-phase monolithic stationary phase to execute fast…
Effect of maternal vitamin A supplementation on retinol concentration in colostrum.
Grilo, Evellyn C; Lima, Mayara S R; Cunha, Lahyana R F; Gurgel, Cristiane S S; Clemente, Heleni A; Dimenstein, Roberto
2015-01-01
To investigate the effect of vitamin A supplementation on the retinol concentration in colostrum under fasting and postprandial conditions. This was a quasi-experimental study, with before and after assessments, conducted with 33 patients treated at a public maternity hospital. Blood and colostrum samples were collected under fasting conditions in the immediate postpartum period. A second colostrum collection occurred two hours after the first meal of the day, at which time a mega dose of 200,000 IU of retinyl palmitate was administered. On the following day, the colostrum was collected again under fasting and postprandial conditions. Serum and colostrum retinol concentrations were determined by high performance liquid chromatography. The serum retinol concentration was 37.3 (16.8-62.2) μg/dL, indicating adequate nutritional status. The colostrum retinol concentration before supplementation was 46.8 (29.7-158.9) μg/dL in fasting and 67.3 (31.1-148.7) μg/dL in postprandial condition (p < 0.05), showing an increase of 43.8%. After supplementation, the values were 89.5 (32.9-264.2) μg/dL and 102.7 (37.3-378.3) μg/dL in fasting and postprandial conditions, respectively (p < 0.05), representing an increase of 14.7%. This study demonstrated that maternal supplementation with high doses of vitamin A in postpartum resulted in a significant increase of the retinol concentration in colostrum under fasting conditions, with an even greater increase after a meal. Copyright © 2014 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.
Dual-beam laser autofocusing system based on liquid lens
NASA Astrophysics Data System (ADS)
Zhang, Fumin; Yao, Yannan; Qu, Xinghua; Zhang, Tong; Pei, Bing
2017-02-01
A dual-beam laser autofocusing system is designed in this paper. The autofocusing system is based on a liquid lens with less moving parts and fast response time, which makes the system simple, reliable, compact and fast. A novel scheme ;Time-sharing focus, fast conversion; is innovatively proposed. The scheme effectively solves the problem that the guiding laser and the working laser cannot focus at the same target point because of the existence of chromatic aberration. This scheme not only makes both guiding laser and working laser achieve optimal focusing in guiding stage and working stage respectively, but also greatly reduces the system complexity and simplifies the focusing process as well as makes autofocusing time of the working laser reduce to about 10 ms. In the distance range of 1 m to 30 m, the autofocusing spot size is kept under 4.3 mm at 30 m and just 0.18 mm at 1 m. The spot size is much less influenced by the target distance compared with the collimated laser with a micro divergence angle for its self-adaptivity. The dual-beam laser autofocusing system based on liquid lens is fully automatic, compact and efficient. It is fully meet the need of dynamicity and adaptivity and it will play an important role in a number of long-range control applications.
Catalytic fast pyrolysis of lignocellulosic biomass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Changjun; Wang, Huamin; Karim, Ayman M.
2014-11-21
Increasing energy demand, especially in the transportation sector, and soaring CO2 emissions necessitate the exploitation of renewable sources of energy. Despite the large variety of new energy Q3 carriers, liquid hydrocarbon still appears to be the most attractive and feasible form of transportation fuel taking into account the energy density, stability and existing infrastructure. Biomass is an abundant, renewable source of energy; however, utilizing it in a cost-effective way is still a substantial challenge. Lignocellulose is composed of three major biopolymers, namely cellulose, hemicellulose and lignin. Fast pyrolysis of biomass is recognized as an efficient and feasible process to selectivelymore » convert lignocellulose into a liquid fuel—bio-oil. However bio-oil from fast pyrolysis contains a large amount of oxygen, distributed in hundreds of oxygenates. These oxygenates are the cause of many negative properties, such as low heating values, high corrosiveness, high viscosity, and instability; they also greatly Q4 limit the application of bio-oil particularly as transportation fuel. Hydrocarbons derived from biomass are most attractive because of their high energy density and compatibility with the existing infrastructure. Thus, converting lignocellulose into transportation fuels via catalytic fast pyrolysis has attracted much attention. Many studies related to catalytic fast pyrolysis of biomass have been published. The main challenge of this process is the development of active and stable catalysts that can deal with a large variety of decomposition intermediates from lignocellulose. This review starts with the current understanding of the chemistry in fast pyrolysis of lignocellulose and focuses on the development of catalysts in catalytic fast pyrolysis. Recent progress in the experimental studies on catalytic fast pyrolysis of biomass is also summarized with the emphasis on bio-oil yields and quality.« less
Voehringer, Patrizia; Fuertig, René; Ferger, Boris
2013-11-15
Glycine is an important amino acid neurotransmitter in the central nervous system (CNS) and a useful biomarker to indicate biological activity of drugs such as glycine reuptake inhibitors (GRI) in the brain. Here, we report how a liquid chromatography/tandem mass spectrometry (LC-MS/MS) method for the fast and reliable analysis of glycine in brain microdialysates and cerebrospinal fluid (CSF) samples has been established. Additionally, we compare this method with the conventional approach of high performance liquid chromatography (HPLC) coupled to fluorescence detection (FD). The present LC-MS/MS method did not require any derivatisation step. Fifteen microliters of sample were injected for analysis. Glycine was detected by a triple quadrupole mass spectrometer in the positive electrospray ionisation (ESI) mode. The total running time was 5min. The limit of quantitation (LOQ) was determined as 100nM, while linearity was given in the range from 100nM to 100μM. In order to demonstrate the feasibility of the LC-MS/MS method, we measured glycine levels in striatal in vivo microdialysates and CSF of rats after administration of the commercially available glycine transporter 1 (GlyT1) inhibitor LY 2365109 (10mg/kg, p.o.). LY 2365109 produced 2-fold and 3-fold elevated glycine concentrations from 1.52μM to 3.6μM in striatal microdialysates and from 10.38μM to 36μM in CSF, respectively. In conclusion, we established a fast and reliable LC-MS/MS method, which can be used for the quantification of glycine in brain microdialysis and CSF samples in biomarker studies. Copyright © 2013 Elsevier B.V. All rights reserved.
Two detector arrays for fast neutrons at LANSCE
NASA Astrophysics Data System (ADS)
Haight, R. C.; Lee, H. Y.; Taddeucci, T. N.; O'Donnell, J. M.; Perdue, B. A.; Fotiades, N.; Devlin, M.; Ullmann, J. L.; Laptev, A.; Bredeweg, T.; Jandel, M.; Nelson, R. O.; Wender, S. A.; White, M. C.; Wu, C. Y.; Kwan, E.; Chyzh, A.; Henderson, R.; Gostic, J.
2012-03-01
The neutron spectrum from neutron-induced fission needs to be known in designing new fast reactors, predicting criticality for safety analyses, and developing techniques for global security application. The experimental data base of fission neutron spectra is very incomplete and most present evaluated libraries are based on the approach of the Los Alamos Model. To validate these models and to provide improved data for applications, a program is underway to measure the fission neutron spectrum for a wide range of incident neutron energies using the spallation source of fast neutrons at the Weapons Neutron Research (WNR) facility at the Los Alamos Neutron Science Center (LANSCE). In a double time-of-flight experiment, fission neutrons are detected by arrays of neutron detectors to increase the solid angle and also to investigate possible angular dependence of the fission neutrons. The challenge is to measure the spectrum from low energies, down to 100 keV or so, to energies over 10 MeV, where the evaporation-like spectrum decreases by 3 orders of magnitude from its peak around 1 MeV. For these measurements, we are developing two arrays of neutron detectors, one based on liquid organic scintillators and the other on 6Li-glass detectors. The range of fission neutrons detected by organic liquid scintillators extends from about 600 keV to well over 10 MeV, with the lower limit being defined by the limit of pulse-shape discrimination. The 6Li-glass detectors have a range from very low energies to about 1 MeV, where their efficiency then becomes small. Various considerations and tests are in progress to understand important contributing factors in designing these two arrays and they include selection and characterization of photomultiplier tubes (PM), the performance of relatively thin (1.8 cm) 6Li-glass scintillators on 12.5 cm diameter PM tubes, use of 17.5 cm diameter liquid scintillators with 12.5 cm PM tubes, measurements of detector efficiencies with tagged neutrons from the WNR/LANSCE neutron beam, and efficiency calibration with 252Cf spontaneous fission neutrons. Design considerations and test results are presented.
Surface Interaction of Bent-Core Liquid Crystals "Slipping on a Banana Peel"
NASA Astrophysics Data System (ADS)
Iglesias Gonzalez, Wilder G.
The main emphasis and focus of this talk revolves around liquid crystalline molecules with frustrated symmetry, molecules with a kink in the core resembling the shape of a banana. These novel materials are not only suitable and interesting for the common liquid crystal display field as fast switching candidates, but for a whole wide range of potential applications, such as: power generation, microscale actuators, optical storage devices, to name a few. Understanding surface interactions of these mesogens is a key factor in controlling and unveiling the vast potential capabilities of such liquid crystals.
Optical biosensor based on liquid crystal droplets for detection of cholic acid
NASA Astrophysics Data System (ADS)
Niu, Xiaofang; Luo, Dan; Chen, Rui; Wang, Fei; Sun, Xiaowei; Dai, Haitao
2016-12-01
A highly sensitive cholic acid biosensor based on 4-cyano-4‧-penthlbiphenyl (5CB) Liquid crystal droplets in phosphate buffer saline solution was reported. A radial-to-bipolar transition of 5CB droplet would be triggered during competitive reaction of CA at the sodium dodecyl sulfate surfactant-laden 5CB droplet surface. Our liquid crystal droplet sensor is a low-cost, simple and fast method for CA detection. The detection limit (5 μM) of our method is 2.4 times lower than previously report by using liquid crystal film to detection of CA.
Tölgyesi, Ádám; Barta, Enikő; Simon, Andrea; McDonald, Thomas J; Sharma, Virender K
2017-10-25
Veterinary drugs containing synthetic anabolic steroid and nitroimidazole active agents are not allowed for their applications in livestock of the European Union (EU). This paper presents analyses of twelve selected steroids and six nitroimidazole antibiotics at low levels (1.56μg/L-4.95μg/L and 0.17μg/kg-2.14μg/kg, respectively) in body fluids and egg incurred samples. Analyses involved clean-up procedures, high performance liquid chromatography (HPLC) separation, and tandem mass spectrometric screening and confirmatory methods. Target steroids and nitroimidazoles in samples were cleaned by two independent supported liquid extraction and solid phase extraction procedures. Separation of the selected compounds was conducted on Kinetex XB C-18 HPLC column using gradient elution. The screening methods utilised supported liquid extraction that enabled fast and cost effective clean-up. The confirmatory methods were improved by extending the number of matrices and compounds, and by introducing an isotope dilution mass spectrometry for nitroimidazoles. The new methods were validated according to the recommendation of the European Union Reference Laboratories and the performance characteristics evaluated met fully the criteria. The methods were applied to incurred samples in the proficiency tests. The obtained results of Z-scores demonstrated the applicability of developed protocols of the methods to real samples. The confirmatory methods were applied to the national monitoring program and natural contamination of prednisolone could be detected in urine at low concentration in few samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Effect of Energetic Plasma Flux on Flowing Liquid Lithium Surfaces
NASA Astrophysics Data System (ADS)
Kalathiparambil, Kishor; Jung, Soonwook; Christenson, Michael; Fiflis, Peter; Xu, Wenyu; Szott, Mathew; Ruzic, David
2014-10-01
An operational liquid lithium system with steady state flow driven by thermo-electric magneto-hydrodynamic force and capable of constantly refreshing the plasma exposed surface have been demonstrated at U of I. To evaluate the system performance in reactor relevant conditions, specifically to understand the effect of disruptive plasma events on the performance of the liquid metal PFCs, the setup was integrated to a pulsed plasma generator. A coaxial plasma generator drives the plasma towards a theta pinch which preferentially heats the ions, simulating ELM like flux, and the plasma is further guided towards the target chamber which houses the flowing lithium system. The effect of the incident flux is examined using diagnostic tools including triple Langmuir probe, calorimeter, rogowski coils, Ion energy analyzers, and fast frame spectral image acquisition with specific optical filters. The plasma have been well characterized and a density of ~1021 m-3, with electron temperature ~10 - 20 eV is measured, and final plasma velocities of 34 - 74 kms-1 have been observed. Calorimetric measurements using planar molybdenum targets indicate a maximum plasma energy (with 6 kV plasma gun and 20 kV theta pinch) of 0.08 MJm-2 with plasma divergence effects resulting in marginal reduction of 40 +/- 23 J in plasma energy. Further results from the other diagnostic tools, using the flowing lithium targets and the planar targets coated with lithium will be presented. DOE DE-SC0008587.
Blomqvist, Maria; Borén, Jan; Zetterberg, Henrik; Blennow, Kaj; Månsson, Jan-Eric; Ståhlman, Marcus
2017-07-01
Sulfatides (STs) are a group of glycosphingolipids that are highly expressed in brain. Due to their importance for normal brain function and their potential involvement in neurological diseases, development of accurate and sensitive methods for their determination is needed. Here we describe a high-throughput oriented and quantitative method for the determination of STs in cerebrospinal fluid (CSF). The STs were extracted using a fully automated liquid/liquid extraction method and quantified using ultra-performance liquid chromatography coupled to tandem mass spectrometry. With the high sensitivity of the developed method, quantification of 20 ST species from only 100 μl of CSF was performed. Validation of the method showed that the STs were extracted with high recovery (90%) and could be determined with low inter- and intra-day variation. Our method was applied to a patient cohort of subjects with an Alzheimer's disease biomarker profile. Although the total ST levels were unaltered compared with an age-matched control group, we show that the ratio of hydroxylated/nonhydroxylated STs was increased in the patient cohort. In conclusion, we believe that the fast, sensitive, and accurate method described in this study is a powerful new tool for the determination of STs in clinical as well as preclinical settings. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.
NASA Astrophysics Data System (ADS)
Wandekoken, Flávia G.; Duyck, Christiane B.; Fonseca, Teresa C. O.; Saint'Pierre, Tatiana D.
2016-05-01
High performance liquid chromatography hyphenated by flow injection to inductively coupled plasma mass spectrometry (HPLC-FI-ICP-MS) was used to investigate V linked to porphyrins present in fractions of crude oil. First, the crude oil sample was submitted to fractionation by preparative liquid chromatography with UV detection, at the porphyrin Soret band wavelength (400 nm). The obtained porphyrin fractions were then separated in a 250 mm single column, in the HPLC, and eluted with different mobile phases (methanol or methanol:toluene (80:20; v:v)). The quantification of V-porphyrins in the fractions eluted from HPLC was carried out by online measuring the 51V isotope in the ICP-MS, against vanadyl octaethylporphine standard solutions (VO-OEP), prepared in the same solvent as the mobile phase, and injected post-column directly into the plasma. A 20 μg L- 1 Ge in methanol was used as internal standard for minimizing non-spectral interference, such as short-term variations due to injection. The mathematical treatment of the signal based on Fast Fourier Transform smoothing algorithm was employed to improve the precision. The concentrations of V as V-porphyrins were between 2.7 and 11 mg kg- 1 in the fractions, which were close to the total concentration of V in the porphyrin fractions of the studied crude oil.
Yuan, Su-Fen; Liu, Ze-Hua; Lian, Hai-Xian; Yang, Chuang-Tao; Lin, Qing; Yin, Hua; Lin, Zhang; Dang, Zhi
2018-02-01
A fast and reliable method was developed for simultaneous trace determination of nine odorous and estrogenic chloro- and bromo-phenolic compounds (CPs and BPs) in water samples using solid-phase extraction (SPE) coupled with liquid chromatography tandem mass spectrometry (LC-MS/MS). For sample preparation, the extraction efficiencies of two widely applied cartridges Oasis HLB and Sep-Pak C18 were compared, and the Oasis HLB cartridge showed much better extraction performance; pH of water sample also plays important role on extraction, and pH = 2-3 was found to be most appropriate. For separation of the target compounds, small addition of ammonium hydroxide can obviously improve the detection sensitivity, and the optimized addition concentration was determined as 0.2%. The developed efficient method was validated and showed excellent linearity (R 2 > 0.995), low limit of detection (LOD, 1.9-6.2 ng/L), and good recovery efficiencies of 57-95% in surface and tap water with low relative standard deviation (RSD, 1.3-17.4%). The developed method was finally applied to one tap and one surface water samples and most of these nine targets were detected, but all of them were below their odor thresholds, and their estrogen equivalent (EEQ) were also very low.
Timing Characterization of Helium-4 Fast Neutron Detector with EJ-309 Organic Liquid Scintillator
NASA Astrophysics Data System (ADS)
Liang, Yinong; Zhu, Ting; Enqvist, Andreas
2018-01-01
Recently, the Helium-4 gas fast neutron scintillation detectors is being used in time-sensitive measurements, such time-of-flight and multiplicity counting. In this paper, a set of time aligned signals was acquired in a coincidence measurement using the Helium-4 gas detectors and EJ-309 liquid scintillators. The high-speed digitizer system is implanted with a trigger moving average window (MAW) unit combing with its constant fraction discriminator (CFD) feature. It can calculate a "time offset" to the timestamp value to get a higher resolution timestamp (up to 50 ps), which is better than the digitizer's time resolution (4 ns) [1]. The digitized waveforms were saved to the computer hard drive and post processed with digital analysis code to determine the difference of their arrival times. The full-width at half-maximum (FWHM) of the Gaussian fit was used as to examine the resolution. For the cascade decay of Cobalt-60 (1.17 and 1.33 MeV), the first version of the Helium-4 detector with two Hamamatsu R580 photomultipliers (PMT) installed at either end of the cylindrical gas chamber (20 cm in length and 4.4 cm in diameter) has a time resolution which is about 3.139 ns FWHM. With improved knowledge of the timing performance, the Helium-4 scintillation detectors are excellent for neutron energy spectrometry applications requiring high temporal and energy resolutions.
Wan, Hao; Yin, Heyu; Mason, Andrew J.
2016-01-01
Intense study on gas sensors has been conducted to implement fast gas sensing with high sensitivity, reliability and long lifetime. This paper presents a rapid amperometric method for gas sensing based on a room temperature ionic liquid electrochemical gas sensor. To implement a miniaturized sensor with a fast response time, a three electrode system with gold interdigitated electrodes was fabricated by photolithography on a porous polytetrafluoroethylene substrate that greatly enhances gas diffusion. Furthermore, based on the reversible reaction of oxygen, a new transient double potential amperometry (DPA) was explored for electrochemical analysis to decrease the measurement time and reverse reaction by-products that could cause current drift. Parameters in transient DPA including oxidation potential, oxidation period, reduction period and sample point were investigated to study their influence on the performance of the sensor. Oxygen measurement could be accomplished in 4 s, and the sensor presented a sensitivity of 0.2863 μA/[%O2] and a linearity of 0.9943 when tested in air samples with different oxygen concentrations. Repeatability and long-term stability were also investigated, and the sensor was shown to exhibit good reliability. In comparison to conventional constant potential amperometry, transient DPA was shown to reduce relative standard deviation by 63.2%. With transient DPA, the sensitivity, linearity, repeatability, measurement time and current drift characteristics demonstrated by the presented gas sensor are promising for acute exposure applications. PMID:28603384
Kim, Junghyun; Suh, Joon Hyuk; Cho, Hyun-Deok; Kang, Wonjae; Choi, Yong Seok; Han, Sang Beom
2016-01-01
A multi-class, multi-residue analytical method based on LC-MS/MS detection was developed for the screening and confirmation of 28 veterinary drug and metabolite residues in flatfish, shrimp and eel. The chosen veterinary drugs are prohibited or unauthorised compounds in Korea, which were categorised into various chemical classes including nitroimidazoles, benzimidazoles, sulfones, quinolones, macrolides, phenothiazines, pyrethroids and others. To achieve fast and simultaneous extraction of various analytes, a simple and generic liquid extraction procedure using EDTA-ammonium acetate buffer and acetonitrile, without further clean-up steps, was applied to sample preparation. The final extracts were analysed by ultra-high-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS). The method was validated for each compound in each matrix at three different concentrations (5, 10 and 20 ng g(-1)) in accordance with Codex guidelines (CAC/GL 71-2009). For most compounds, the recoveries were in the range of 60-110%, and precision, expressed as the relative standard deviation (RSD), was in the range of 5-15%. The detection capabilities (CCβs) were below or equal to 5 ng g(-1), which indicates that the developed method is sufficient to detect illegal fishery products containing the target compounds above the residue limit (10 ng g(-1)) of the new regulatory system (Positive List System - PLS).
Wang, Shengnan; Hua, Yujiao; Zou, Lisi; Liu, Xunhong; Yan, Ying; Zhao, Hui; Luo, Yiyuan; Liu, Juanxiu
2018-02-01
Scrophulariae Radix is one of the most popular traditional Chinese medicines (TCMs). Primary processing of Scrophulariae Radix is an important link which closely related to the quality of products in this TCM. The aim of this study is to explore the influence of different processing methods on chemical constituents in Scrophulariae Radix. The difference of chemical constituents in Scrophulariae Radix processed by different methods was analyzed by using ultra fast liquid chromatography-triple quadrupole-time of flight mass spectrometry coupled with principal component analysis and orthogonal partial least squares discriminant analysis. Furthermore, the contents of 12 index differential constituents in Scrophulariae Radix processed by different methods were simultaneously determined by using ultra fast liquid chromatography coupled with triple quadrupole-linear ion trap mass spectrometry. Gray relational analysis was performed to evaluate the different processed samples according to the contents of 12 constituents. All of the results demonstrated that the quality of Scrophulariae Radix processed by "sweating" method was better. This study will provide the basic information for revealing the change law of chemical constituents in Scrophulariae Radix processed by different methods and facilitating selection of the suitable processing method of this TCM. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Wan, Hao; Yin, Heyu; Mason, Andrew J
2017-04-01
Intense study on gas sensors has been conducted to implement fast gas sensing with high sensitivity, reliability and long lifetime. This paper presents a rapid amperometric method for gas sensing based on a room temperature ionic liquid electrochemical gas sensor. To implement a miniaturized sensor with a fast response time, a three electrode system with gold interdigitated electrodes was fabricated by photolithography on a porous polytetrafluoroethylene substrate that greatly enhances gas diffusion. Furthermore, based on the reversible reaction of oxygen, a new transient double potential amperometry (DPA) was explored for electrochemical analysis to decrease the measurement time and reverse reaction by-products that could cause current drift. Parameters in transient DPA including oxidation potential, oxidation period, reduction period and sample point were investigated to study their influence on the performance of the sensor. Oxygen measurement could be accomplished in 4 s, and the sensor presented a sensitivity of 0.2863 μA/[%O 2 ] and a linearity of 0.9943 when tested in air samples with different oxygen concentrations. Repeatability and long-term stability were also investigated, and the sensor was shown to exhibit good reliability. In comparison to conventional constant potential amperometry, transient DPA was shown to reduce relative standard deviation by 63.2%. With transient DPA, the sensitivity, linearity, repeatability, measurement time and current drift characteristics demonstrated by the presented gas sensor are promising for acute exposure applications.
Preliminary design of high temperature ultrasonic transducers for liquid sodium environments
NASA Astrophysics Data System (ADS)
Prowant, M. S.; Dib, G.; Qiao, H.; Good, M. S.; Larche, M. R.; Sexton, S. S.; Ramuhalli, P.
2018-04-01
Advanced reactor concepts include fast reactors (including sodium-cooled fast reactors), gas-cooled reactors, and molten-salt reactors. Common to these concepts is a higher operating temperature (when compared to light-water-cooled reactors), and the proposed use of new alloys with which there is limited operational experience. Concerns about new degradation mechanisms, such as high-temperature creep and creep fatigue, that are not encountered in the light-water fleet and longer operating cycles between refueling intervals indicate the need for condition monitoring technology. Specific needs in this context include periodic in-service inspection technology for the detection and sizing of cracking, as well as technologies for continuous monitoring of components using in situ probes. This paper will discuss research on the development and evaluation of high temperature (>550°C; >1022°F) ultrasonic probes that can be used for continuous monitoring of components. The focus of this work is on probes that are compatible with a liquid sodium-cooled reactor environment, where the core outlet temperatures can reach 550°C (1022°F). Modeling to assess sensitivity of various sensor configurations and experimental evaluation have pointed to a preferred design and concept of operations for these probes. This paper will describe these studies and ongoing work to fabricate and fully evaluate survivability and sensor performance over extended periods at operational temperatures.
Junker, Laura V; Ensminger, Ingo
2016-12-01
Rapid developments in remote-sensing of vegetation and high-throughput precision plant phenotyping promise a range of real-life applications using leaf optical properties for non-destructive assessment of plant performance. Use of leaf optical properties for assessing plant performance requires the ability to use photosynthetic pigments as proxies for physiological properties and the ability to detect these pigments fast, reliably and at low cost. We describe a simple and cost-effective protocol for the rapid analysis of chlorophylls, carotenoids and tocopherols using high-performance liquid chromatography (HPLC). Many existing methods are based on the expensive solvent acetonitrile, take a long time or do not include lutein epoxide and α-carotene. We aimed to develop an HPLC method which separates all major chlorophylls and carotenoids as well as lutein epoxide, α-carotene and α-tocopherol. Using a C 30 -column and a mobile phase with a gradient of methanol, methyl-tert-butyl-ether (MTBE) and water, our method separates the above pigments and isoprenoids within 28 min. The broad applicability of our method is demonstrated using samples from various plant species and tissue types, e.g. leaves of Arabidopsis and avocado plants, several deciduous and conifer tree species, various crops, stems of parasitic dodder, fruit of tomato, roots of carrots and Chlorella algae. In comparison to previous methods, our method is very affordable, fast and versatile and can be used to analyze all major photosynthetic pigments that contribute to changes in leaf optical properties and which are of interest in most ecophysiological studies. © 2016 Scandinavian Plant Physiology Society.
Liquid-Spray Formulation Of Scopolamine
NASA Technical Reports Server (NTRS)
Putcha, Lakshmi; Cintron, Nitza M.
1992-01-01
Scopolamine, fast-acting anticholinergic drug, formulated into drops administered intranasally. Formulation very useful for people who need immediate relief from motion sickness, and they can administer it to themselves. Also used in other clinical situations in which fast-acting anticholinergic medication required. Modified into such other forms as gel preparation, aqueous-base ointment, or aerosol spray or mist; also dispensed in metered-dose delivery system.
USDA-ARS?s Scientific Manuscript database
Biochar (BC) is a product of thermochemical conversion of biomass via pyrolysis, together with gas (syngas), liquid (bio-oil), and heat. Fast pyrolysis is a promising process for bio-oil generation, which leaves 10-30% of the original biomass as char. When applied to soils, BC may increase soil C s...
Packed rod neutron shield for fast nuclear reactors
Eck, John E.; Kasberg, Alvin H.
1978-01-01
A fast neutron nuclear reactor including a core and a plurality of vertically oriented neutron shield assemblies surrounding the core. Each assembly includes closely packed cylindrical rods within a polygonal metallic duct. The shield assemblies are less susceptible to thermal stresses and are less massive than solid shield assemblies, and are cooled by liquid coolant flow through interstices among the rods and duct.
Li, Hsin-Yi; Chen, Chien-Yuan; Cheng, Hui-Ting; Chu, Yen-Ho
2016-10-13
Based on a common structural core of 4,5,6,7-tetrahydro[1,2,3]triazolo[1,5- a ]pyridine, a number of bicyclic triazolium ionic liquids 1 - 3 were designed and successfully prepared. In our hands, this optimized synthesis of ionic liquids 1 and 2 requires no chromatographic separation. Also in this work, ionic liquids 1 , 2 were shown to be efficient ionic solvents for fast synthesis of tryptanthrin natural product. Furthermore, a new affinity ionic liquid 3 was tailor-synthesized and displayed its effectiveness in chemoselective extraction of both Cu(II) ions and, for the first time, histidine-containing peptides.
PLUTONIUM METALLIC FUELS FOR FAST REACTORS
DOE Office of Scientific and Technical Information (OSTI.GOV)
STAN, MARIUS; HECKER, SIEGFRIED S.
2007-02-07
Early interest in metallic plutonium fuels for fast reactors led to much research on plutonium alloy systems including binary solid solutions with the addition of aluminum, gallium, or zirconium and low-melting eutectic alloys with iron and nickel or cobalt. There was also interest in ternaries of these elements with plutonium and cerium. The solid solution and eutectic alloys have most unusual properties, including negative thermal expansion in some solid-solution alloys and the highest viscosity known for liquid metals in the Pu-Fe system. Although metallic fuels have many potential advantages over ceramic fuels, the early attempts were unsuccessful because these fuelsmore » suffered from high swelling rates during burn up and high smearing densities. The liquid metal fuels experienced excessive corrosion. Subsequent work on higher-melting U-PuZr metallic fuels was much more promising. In light of the recent rebirth of interest in fast reactors, we review some of the key properties of the early fuels and discuss the challenges presented by the ternary alloys.« less
NASA Astrophysics Data System (ADS)
Scherzinger, J.; Al Jebali, R.; Annand, J. R. M.; Fissum, K. G.; Hall-Wilton, R.; Kanaki, K.; Lundin, M.; Nilsson, B.; Perrey, H.; Rosborg, A.; Svensson, H.
2016-12-01
The response of a NE-213 liquid-scintillator detector has been measured using tagged neutrons from 2 to 6 MeV originating from an Am/Be neutron source. The neutron energies were determined using the time-of-flight technique. Pulse-shape discrimination was employed to discern between gamma-rays and neutrons. The behavior of both the fast (35 ns) and the combined fast and slow (475 ns) components of the neutron scintillation-light pulses were studied. Three different prescriptions were used to relate the neutron maximum energy-transfer edges to the corresponding recoil-proton scintillation-light yields, and the results were compared to simulations. The overall normalizations of parametrizations which predict the fast or total light yield of the scintillation pulses were also tested. Our results agree with both existing data and existing parametrizations. We observe a clear sensitivity to the portion and length of the neutron scintillation-light pulse considered.
Hemanth Kumar, A. K.; Ramesh, K.; Kannan, T.; Sudha, V.; Haribabu, Hemalatha; Lavanya, J.; Swaminathan, Soumya; Ramachandran, Geetha
2017-01-01
Background & objectives: Variations in the N-acetyltransferase (NAT2) gene among different populations could affect the metabolism and disposition of isoniazid (INH). This study was performed to genotype NAT2 gene polymorphisms in tuberculosis (TB) patients from Chennai, India, and compare plasma INH concentrations among the different genotypes. Methods: Adult patients with TB treated in the Revised National TB Control Programme (RNTCP) in Chennai, Tamil Nadu, were genotyped for NAT2 gene polymorphism, and two-hour post-dosing INH concentrations were compared between the different genotypes. Plasma INH was determined by high-performance liquid chromatography. Genotyping of the NAT2 gene polymorphism was performed by real-time polymerase chain reaction method. Results: Among the 326 patients genotyped, there were 189 (58%), 114 (35%) and 23 (7%) slow, intermediate and fast acetylators, respectively. The median two-hour INH concentrations in slow, intermediate and fast acetylators were 10.2, 8.1 and 4.1 μg/ml, respectively. The differences in INH concentrations among the three genotypes were significant (P<0.001). Interpretation & conclusions: Genotyping of TB patients from south India for NAT2 gene polymorphism revealed that 58 per cent of the study population comprised slow acetylators. Two-hour INH concentrations differed significantly among the three genotypes. PMID:28574024
High Voltage, Sub Nanosecond Feedthrough Design for Liquid Breakdown Studies
NASA Astrophysics Data System (ADS)
Cevallos, Michael; Dickens, James; Neuber, Andreas; Krompholz, Herman
2002-12-01
Experiments in self-breakdown mode and pulsed breakdown at high over-voltages in standard electrode geometries are performed for liquids to gain a better understanding of their fundamental breakdown physics. Different liquids of interest include liquids such as super-cooled liquid nitrogen, oils, glycerols and water. A typical setup employs a discharge chamber with a cable discharge into a coaxial system with axial discharge, and a load line to simulate a matched terminating impedance, thus providing a sub-nanosecond response. This study is focused on the feed-through design of the coaxial cable into this type of discharge chamber, with the feed-through being the critical element with respect to maximum hold-off voltage. Diverse feedthroughs were designed and simulated using Maxwell 3-D Field Simulator Version 5. Several geometrically shaped feed-through transitions were simulated, including linearly and exponentially tapered, to minimize electrostatic fields, thus ensuring that the discharge occurs in the volume of interest and not between the inner and outer conductor at the transition from the insulation of the coaxial cable to the liquid. All feedthroughs are designed to match the incoming impedance of the coaxial cable. The size of the feedthroughs will vary from liquid to liquid in order to match the coaxial cable impedance of 50Ω. The discharge chamber has two main ports where the feed-through will enter the chamber. Each feed-through is built through a flange that covers the two main ports. This allows the use of the same discharge chamber for various liquids by changing the flanges on the main ports to match the particular liquid. The feedthroughs were designed and built to withstand voltages of up to 200 kV. The feedthroughs are also fitted with transmission line type current sensors and capacitive voltage dividers with fast amplifiers/attenuators in order to attain a complete range of information from amplitudes of 0.1mA to 1 kA with a temporal resolution of 300 ps.
Montesdeoca-Esponda, Sarah; Sosa-Ferrera, Zoraida; Kabir, Abuzar; Furton, Kenneth G; Santana-Rodríguez, José Juan
2015-10-01
A fast and sensitive sample preparation strategy using fabric phase sorptive extraction followed by ultra-high-performance liquid chromatography and tandem mass spectrometry detection has been developed to analyse benzotriazole UV stabilizer compounds in aqueous samples. Benzotriazole UV stabilizer compounds are a group of compounds added to sunscreens and other personal care products which may present detrimental effects to aquatic ecosystems. Fabric phase sorptive extraction is a novel solvent minimized sample preparation approach that integrates the advantages of sol-gel derived hybrid inorganic-organic nanocomposite sorbents and the flexible, permeable and hydrophobic surface chemistry of polyester fabric. It is a highly sensitive, fast, efficient and inexpensive device that can be reused and does not suffer from coating damage, unlike SPME fibres or stir bars. In this paper, we optimized the extraction of seven benzotriazole UV filters evaluating the majority of the parameters involved in the extraction process, such as sorbent chemistry selection, extraction time, back-extraction solvent, back-extraction time and the impact of ionic strength. Under the optimized conditions, fabric phase sorptive extraction allows enrichment factors of 10 times with detection limits ranging from 6.01 to 60.7 ng L(-1) and intra- and inter-day % RSDs lower than 11 and 30 % for all compounds, respectively. The optimized sample preparation technique followed by ultra-high-performance liquid chromatography and tandem mass spectrometry detection was applied to determine the target analytes in sewage samples from wastewater treatment plants with different purification processes of Gran Canaria Island (Spain). Two UV stabilizer compounds were measured in ranges 17.0-60.5 ng mL(-1) (UV 328) and 69.3-99.2 ng mL(-1) (UV 360) in the three sewage water samples analysed.
Lien, Guang-Wen; Wen, Ting-Wen; Hsieh, Wu-Shiun; Wu, Kuen-Yuh; Chen, Chia-Yang; Chen, Pau-Chung
2011-03-15
Perfluorinated compounds (PFCs) can cross the placental barrier and enter fetal circulation. This study aimed at developing a fast and sensitive ultra-high performance liquid chromatography/tandem mass spectrometry method for the determination of twelve perfluorinated compounds in cord blood. Samples were processed with protein precipitation using formic acid and methanol, mixed with stable isotope labeled standard, followed by sonication and centrifugation, and were analyzed using a Waters ACQUITY UPLC coupled with a Waters Quattro Premier XE triple-quadrupole mass spectrometer. The instrument was operated in selected reaction monitoring (SRM) with negative electrospray ionization. Using BEH C(18) column (2.1 mm×50 mm, 1.7 μm) with 10-mM N-methylmorpholine/methanol gradient elution provided a fast chromatographic separation (5.5 min) and sharp peaks. Intra- and inter-day calibration bias was less than 7% and intra- and inter-day calibration of relative standard deviations were within 0.02-8.22% for all the analytes and concentrations. The recoveries of PFCs spiked into bovine serum ranged from 85 to 104% with relative standard deviations from 0.02 to 6.37%. The limits of quantitation (LOQs), defined as a signal-to-noise ratio of ten, ranged from 0.15 to 3.1 ng/mL for the twelve PFCs. Perfluorooctanoic acid (PFOA), perfluorooctyl sulfonate (PFOS), perfluoroundecanoic acid (PFUA) and perfluorononanoic acid (PFNA) were detected in up to 68% of umbilical cord plasma (n=444) in Taiwan Birth Panel Study and the health effect of these chemicals on children developmental deserves further investigation. Copyright © 2011 Elsevier B.V. All rights reserved.
do Carmo, S J C; Alves, V H P; Alves, F; Abrunhosa, A J
2017-10-31
Following our previous work on the production of radiometals, such as 64 Cu and 68 Ga, through the irradiation of liquid targets using a medical cyclotron, we describe in this paper a technique to produce 61 Cu through the irradiation of natural zinc using a liquid target. The proposed method is very cost-effective, as it avoids the use of expensive enriched material, and is fast, as a purified solution of 61 CuCl 2 is obtained in less than 30 min after the end of beam. Considering its moderate half-life of 3.33 h and favourable decay properties as a positron emitter, 61 Cu is a very attractive nuclide for the labelling of PET tracers for pre-clinical and clinical use with PET as well as to support the intense R&D programmes being carried out worldwide by taking advantage of the rich and versatile chemistry of copper.
In Vitro Mass Propagation of Cymbopogon citratus Stapf., a Medicinal Gramineae.
Quiala, Elisa; Barbón, Raúl; Capote, Alina; Pérez, Naivy; Jiménez, Elio
2016-01-01
Cymbopogon citratus (D.C.) Stapf. is a medicinal plant source of lemon grass oils with multiple uses in the pharmaceutical and food industry. Conventional propagation in semisolid culture medium has become a fast tool for mass propagation of lemon grass, but the production cost must be lower. A solution could be the application of in vitro propagation methods based on liquid culture advantages and automation. This chapter provides two efficient protocols for in vitro propagation via organogenesis and somatic embryogenesis of this medicinal plant. Firstly, we report the production of shoots using a temporary immersion system (TIS). Secondly, a protocol for somatic embryogenesis using semisolid culture for callus formation and multiplication, and liquid culture in a rotatory shaker and conventional bioreactors for the maintenance of embryogenic culture, is described. Well-developed plants can be achieved from both protocols. Here we provide a fast and efficient technology for mass propagation of this medicinal plant taking the advantage of liquid culture and automation.
Paul, Debjani; Saias, Laure; Pedinotti, Jean-Cedric; Chabert, Max; Magnifico, Sebastien; Pallandre, Antoine; De Lambert, Bertrand; Houdayer, Claude; Brugg, Bernard; Peyrin, Jean-Michel; Viovy, Jean-Louis
2011-01-01
A broad range of microfluidic applications, ranging from cell culture to protein crystallization, requires multilevel devices with different heights and feature sizes (from micrometers to millimeters). While state-of-the-art direct-writing techniques have been developed for creating complex three-dimensional shapes, replication molding from a multilevel template is still the preferred method for fast prototyping of microfluidic devices in the laboratory. Here, we report on a “dry and wet hybrid” technique to fabricate multilevel replication molds by combining SU-8 lithography with a dry film resist (Ordyl). We show that the two lithography protocols are chemically compatible with each other. Finally, we demonstrate the hybrid technique in two different microfluidic applications: (1) a neuron culture device with compartmentalization of different elements of a neuron and (2) a two-phase (gas-liquid) global micromixer for fast mixing of a small amount of a viscous liquid into a larger volume of a less viscous liquid. PMID:21559239
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsunoda, Hirokazu; Sato, Osamu; Okajima, Shigeaki
2002-07-01
In order to achieve fully automated reactor operation of RAPID-L reactor, innovative reactivity control systems LEM, LIM, and LRM are equipped with lithium-6 as a liquid poison. Because lithium-6 has not been used as a neutron absorbing material of conventional fast reactors, measurements of the reactivity worth of Lithium-6 were performed at the Fast Critical Assembly (FCA) of Japan Atomic Energy Research Institute (JAERI). The FCA core was composed of highly enriched uranium and stainless steel samples so as to simulate the core spectrum of RAPID-L. The samples of 95% enriched lithium-6 were inserted into the core parallel to themore » core axis for the measurement of the reactivity worth at each position. It was found that the measured reactivity worth in the core region well agreed with calculated value by the method for the core designs of RAPID-L. Bias factors for the core design method were obtained by comparing between experimental and calculated results. The factors were used to determine the number of LEM and LIM equipped in the core to achieve fully automated operation of RAPID-L. (authors)« less
Wang, Shalong; Dou, Kang; Zou, Yousheng; Dong, Yuhang; Li, Jubin; Ju, Dan; Zeng, Haibo
2017-03-01
High-performance electrochromic films based on tungsten oxide hydrate ([WO 2 (O 2 )H 2 O]·1.66H 2 O) colloidal nanocrystals with fast switching speed were fabricated by laser ablation in a mixture of water and hydrogen peroxide followed by electrophoretic methods. Through electrophoretic deposition, the nanoparticles in the colloids synthesized by laser ablation aggregated onto the FTO coated glass substrate forming a lager cell with a uniform size of around 200nm, which subsequently self-assembled into a porous tungsten oxide hydrate film. By optimizing the electrophoretic time (800s) and voltage (-0.5V), the mesh-like porous tungsten oxide hydrate film achieved a wide optical modulation of 32% at 632nm, fast coloration and bleaching response speed of 7.8 s and 1.7s respectively due to the synergetic effect of the unique atomic structure of [WO 2 (O 2 )H 2 O]·1.66H 2 O and porous structure with large surface area that facilitates the ion insertion/extraction. Thus the tungsten oxide hydrate can be a promising electrochromic material for practical applications. Copyright © 2016 Elsevier Inc. All rights reserved.
Roussel, Anne-Marie; Hininger, Isabelle; Benaraba, Rachida; Ziegenfuss, Tim N; Anderson, Richard A
2009-02-01
To determine the effects of a dried aqueous extract of cinnamon on antioxidant status of people with impaired fasting glucose that are overweight or obese. Twenty-two subjects, with impaired fasting blood glucose with BMI ranging from 25 to 45, were enrolled in a double-blind placebo-controlled trial. Subjects were given capsules containing either a placebo or 250 mg of an aqueous extract of cinnamon (Cinnulin PF) two times per day for 12 weeks. Plasma malondialdehyde (MDA) concentrations were assessed using high performance liquid chromatography and plasma antioxidant status was evaluated using ferric reducing antioxidant power (FRAP) assay. Erythrocyte Cu-Zn superoxide (Cu-Zn SOD) activity was measured after hemoglobin precipitation by monitoring the auto-oxidation of pyrogallol and erythrocyte glutathione peroxidase (GPx) activity by established methods. FRAP and plasma thiol (SH) groups increased, while plasma MDA levels decreased in subjects receiving the cinnamon extract. Effects were larger after 12 than 6 weeks. There was also a positive correlation (r = 0.74; p = 0.014) between MDA and plasma glucose. This study supports the hypothesis that the inclusion of water soluble cinnamon compounds in the diet could reduce risk factors associated with diabetes and cardiovascular disease.
Bertolini, Tiziana; Vicentini, Lorenza; Boschetti, Silvia; Andreatta, Paolo; Gatti, Rita
2016-09-10
A simple and fast chromatographic method using ultraviolet diode-array detector (UV-DAD) was developed for the automatic high performance liquid chromatography (HPLC) determination of the title of oleuropein in a new dietary supplements in form of effervescent granules. The chromatographic separations were performed on a C18 core-shell column with detection at λ=232nm. The mobile phase consisted of deionized water with 0.1% TFA and acetonitrile under gradient conditions at a flow-rate of 0.8mL/min. Oleuropein and oleuroside present in the raw material were characterized by high performance liquid chromatography-electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). The validation of the analytical procedure has been performed determining the following parameters: specificity, linearity, repeatability, reproducibility, accuracy, limit of quantification (LOQ), stability of the standard and sample solutions. Linear response was observed in fortified placebo solutions (determination coefficient: 0.9998). Intra-day precision (relative standard deviation, RSD) was ≤5.0% for peak area and for retention times (tR) without significant differences between intra- and inter-day data. The limits of quantitation (LOQ) was about 5μg/mL and 9pmol/inject. Oleuropein recovery studies gave good results (99.9%) with a R.S.D. of 0.5%. The speed of analysis and the stability of the solutions with a fluctuation Δ (%) ≤2.0 at room temperature means an undoubted advantage of the method allowing the simultaneous preparation of many samples and consecutive chromatographic analyses by using an autosampler. The developed method is suitable for the quality control of oleuropein in raw material and industrial products. The method can be applied in any analytical laboratory not requiring a sophisticated instrumentation. Copyright © 2016 Elsevier B.V. All rights reserved.
Trujillo-Rodríguez, María J; Nacham, Omprakash; Clark, Kevin D; Pino, Verónica; Anderson, Jared L; Ayala, Juan H; Afonso, Ana M
2016-08-31
This work describes the applicability of magnetic ionic liquids (MILs) in the analytical determination of a group of heavy polycyclic aromatic hydrocarbons. Three different MILs, namely, benzyltrioctylammonium bromotrichloroferrate (III) (MIL A), methoxybenzyltrioctylammonium bromotrichloroferrate (III) (MIL B), and 1,12-di(3-benzylbenzimidazolium) dodecane bis[(trifluoromethyl)sulfonyl)]imide bromotrichloroferrate (III) (MIL C), were designed to exhibit hydrophobic properties, and their performance examined in a microextraction method for hydrophobic analytes. The magnet-assisted approach with these MILs was performed in combination with high performance liquid chromatography and fluorescence detection. The study of the extraction performance showed that MIL A was the most suitable solvent for the extraction of polycyclic aromatic hydrocarbons and under optimum conditions the fast extraction step required ∼20 μL of MIL A for 10 mL of aqueous sample, 24 mmol L(-1) NaOH, high ionic strength content of NaCl (25% (w/v)), 500 μL of acetone as dispersive solvent, and 5 min of vortex. The desorption step required the aid of an external magnetic field with a strong NdFeB magnet (the separation requires few seconds), two back-extraction steps for polycyclic aromatic hydrocarbons retained in the MIL droplet with n-hexane, evaporation and reconstitution with acetonitrile. The overall method presented limits of detection down to 5 ng L(-1), relative recoveries ranging from 91.5 to 119%, and inter-day reproducibility values (expressed as relative standard derivation) lower than 16.4% for a spiked level of 0.4 μg L(-1) (n = 9). The method was also applied for the analysis of real samples, including tap water, wastewater, and tea infusion. Copyright © 2016 Elsevier B.V. All rights reserved.
Avagyan, Rozanna; Nyström, Robin; Boman, Christoffer; Westerholm, Roger
2015-06-01
A simple and fast method for analysis of hydroxylated polycyclic aromatic hydrocarbons using pressurized liquid extraction and high performance liquid chromatography utilizing photoionization tandem mass spectrometry was developed. Simultaneous separation and determination of nine hydroxylated polycyclic aromatic hydrocarbons and two hydroxy biphenyls could be performed in negative mode with a run time of 12 min, including equilibration in 5 min. The calibration curves were in two concentration ranges; 1-50 ng/mL and 0.01-50 μg/mL, with coefficients of correlation R (2) > 0.997. The limits of detection and method quantification limits were in the range of 9-56 pg and 5-38 ng/g, respectively. A two-level full factorial experimental design was used for screening of conditions with the highest impact on the extraction. The extraction procedure was automated and suitable for a large number of samples. The extraction recoveries ranged from 70 to 102 % and the matrix effects were between 92 and 104 %. The overall method was demonstrated on wood smoke particles and soil samples with good analytical performance, and five OH-PAHs were determined in the concentration range of 0.19-210 μg/g. As far as we know, hydroxylated polycyclic aromatic hydrocarbons were determined in wood smoke and soil samples using photoionization mass spectrometry for the first time in this present study. Accordingly, this study shows that high performance liquid chromatography photoionization tandem mass spectrometry can be a good option for the determination of hydroxylated polycyclic aromatic hydrocarbons in complex environmental samples. Graphical Abstract The method developed in this study was used to determine hydroxylated polycyclic aromatic hydrocarbons in wood smoke and soil.
Stereolithography of perfluoropolyethers for the microfabrication of robust omniphobic surfaces
NASA Astrophysics Data System (ADS)
Credi, Caterina; Levi, Marinella; Turri, Stefano; Simeone, Giovanni
2017-05-01
In this work, we provide a simple and straightforward method for the fabrication of stable highly hydrophobic and oleophobic surfaces by applying stereolithography (SL) to perfluoropolyethers (PFPEs). Inspired by the liquid repellency widely shown in nature, our approach enables to easily mimic the interplay between the chemistry and physics by microtexturing low surface tension PFPEs. To this end, UV-curable resins suitable for SL-processing were formulated by blending multifunctional (meth-)acrylates PFPEs oligomers with photoinitiator and visible dyes whose content was tuned to tailor resin SL sensitivities. Photocalorimetric studies were also performed to investigate the curing behavior of the different formulations upon SL light exposure. Being the first example of stereolithography applied to PFPEs, stereolithographic processability of new developed PFPEs photopolymer was compared with a standard photoresist taken as benchmark (DL260®). Optimized formulations were characterized by reduced laser penetration depth (<75 μm) and small critical energies thus enabling for fast printing of micrometric structures. Arrays of cylindrical pillars (85 μm diameter, 400 μm height) characterized by varied pillars spacing (200 ÷ 350 μm) were rapidly printed with high fidelity as attested by SEM examination. Contact angle measurements in static and dynamic conditions were performed to investigate the surface properties of textured samples using water and oil as the probing liquids. PFPEs liquid repellent performances were compared with those from DL260® textured surfaces arrayed by SL. High water contact angles coupled with low hysteresis asserted that high hydrophobic surfaces were successfully obtained and best-performing textured surfaces were also characterized by high oil repellency. Finally, this study demonstrated that omniphobic surfaces can be easily realized via a single-step, cost-effective, and time-saving process.
Formation of Polymer Networks for Fast In-Plane Switching of Liquid Crystals at Low Temperatures
NASA Astrophysics Data System (ADS)
Yu, Byeong-Hun; Song, Dong Han; Kim, Ki-Han; Wok Park, Byung; Choi, Sun-Wook; Park, Sung Il; Kang, Sung Gu; Yoon, Jeong Hwan; Kim, Byeong Koo; Yoon, Tae-Hoon
2013-09-01
We formed a polymer structure to enable fast in-plane switching of liquid crystals at low temperatures. The problem of the inevitable slow response at low temperatures was reduced by the formation of in-cell polymer networks in in-plane switching (IPS) cells. The electro-optic characteristics of polymer-networked IPS cells were measured at temperatures ranging from -10 to 20 °C. The turn-on and turn-off times of an IPS cell were reduced by 44.5 and 47.2% at -10 °C by the formation of polymer networks. We believe that the proposed technology can be applied to emerging display devices such as mobile phones and automotive displays that may be used at low temperatures.
Detection of liquid hazardous molecules using linearly focused Raman spectroscopy
NASA Astrophysics Data System (ADS)
Cho, Soo Gyeong; Chung, Jin Hyuk
2013-05-01
In security, it is an important issue to analyze hazardous materials in sealed bottles. Particularly, prompt nondestructive checking of sealed liquid bottles in a very short time at the checkpoints of crowded malls, stadiums, or airports is of particular importance to prevent probable terrorist attack using liquid explosives. Aiming to design and fabricate a detector for liquid explosives, we have used linearly focused Raman spectroscopy to analyze liquid materials in transparent or semi-transparent bottles without opening their caps. Continuous lasers with 532 nm wavelength and 58 mW/130 mW beam energy have been used for the Raman spectroscopy. Various hazardous materials including flammable liquids and explosive materials have successfully been distinguished and identified within a couple of seconds. We believe that our technique will be one of suitable methods for fast screening of liquid materials in sealed bottles.
Zhao, Lu; Wen, E; Upur, Halmuart; Tian, Shuge
2017-01-01
Context: Sea buckthorn (Hippophae rhamnoides L.) as a traditional Chinese medicinal plant has various uses in Xinjiang. Objective: A reversed-phase rapid-resolution liquid-chromatography method with diode array detector was developed for simultaneous determination of protocatechuic acid, rutin, quercetin, kaempferol, and isorhamnetin in the pulp and seed of sea buckthorn, a widely used traditional Chinese medicine for promoting metabolism and treating scurvy and other diseases. Settings and design: Compounds were separated on an Agilent ZORBAX SB-C18 column (4.6 mm × 250 mm, 5 μm; USA) with gradient elution using methanol and 0.4% phosphoric acid (v/v) at 1.0 mL/min. Detection wavelength was set at 280 nm. Materials and Methods: The fruits of wild sea buckthorn were collected from Wushi County in Aksu, Xinjiang Province. Statistical performances: The RSD of precision test of the five compounds were in the range of 0.60-2.22%, and the average recoveries ranged from 97.36% to 101.19%. Good linearity between specific chromatographic peak and component qualities were observed in the investigated ranges for all the analytes (R2 > 0.9997). Results: The proposed method was successfully applied to determine the levels of five active components in sea buckthorn samples from Aksu in Xinjiang. Conclusions: The proposed method is simple, fast, sensitive, accurate, and suitable for quantitative assessment of the pulp and seed of sea buckthorn. SUMMARY Quantitative analysis method of protocatechuic acid, rutin, quercetin, kaempferol, and isorhamnetin in the extract of sea buckthorn pulp and seed is developed by high-performance liquid chromatography (HPLC) diode array detection.This method is simple and accurate; has strong specificity, good precision, and high recovery rate; and provides a reliable basis for further development of the substances in the pulp and seed of sea buckthorn.The method is widely used for content determination of active ingredients or physiologically active components in traditional Chinese medicine and its preparation Abbreviation used: PR: protocatechuic acid, RU: rutin, QU: quercetin, KA: kaempferol, IS: isorhamnetin, HPLC: high-performance liquid chromatography, HPLC-DAD: high performance liquid chromatographydiode array detector, LOD: linearity and limit of detection, LOQ: limit of quantitation, RSD: relative standard deviation PMID:28216897
Ali, Imran; Kulsum, Umma; Al-Othman, Zeid A; Alwarthan, Abdulrahman; Saleem, Kishwar
2016-07-01
Iron nanoparticles were prepared by a green method following functionalization using 1-butyl-3-methylimidazolium bromide. 1-Butyl-3-methylimidazole iron nanoparticles were characterized using FTIR spectroscopy, energy dispersive X-ray fluorescence, X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The nanoparticles were used in solid-phase membrane micro-tip extraction to separate vitamin B complex from plasma before high-performance liquid chromatography. The optimum conditions obtained were sorbent (15 mg), agitation time (30 min), pH (9.0), desorbing solvent [water (5 mL) + methanol (5 mL) + sodium hydroxide (0.1 N) + acetic acid (d = 1.05 kg/L, pH 5.5), desorbing volume (10 mL) and desorption time (30 min). The percentage recoveries of all the eight vitamin B complex were from 60 to 83%. A high-performance liquid chromatography method was developed using a PhE column (250 × 4.6 mm, 5.0 μm) and water/acetonitrile (95:5, v/v; pH 4.0 with 0.1% formic acid) mobile phase. The flow rate was 1.0 mL/min with detection at 270 and 210 nm. The values of the capacity, separation and resolution factor were 0.57-39.47, 1.12-6.00 and 1.84-26.26, respectively. The developed sample preparation and chromatographic methods were fast, selective, inexpensive, economic and reproducible. The developed method can be applied for analyzing these drugs in biological and environmental matrices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Schmidt, A; Schreiner, M G; Mayer, H K
2017-06-02
As the formation of pyridoxal phosphate, the active cofactor of vitamin B 6 , is dependent on riboflavin 5-phosphate, we propose a fast and simple ultra-high performance liquid chromatography method for the simultaneous determination of the native B 6 vitamers pyridoxal, pyridoxine, pyridoxamine, their mono phosphorus esters and 4-pyridoxic acid as well as vitamin B 2 as riboflavin and its phosphorus ester riboflavin 5-phosphate in milk. Separation was achieved under 6.0min by reversed-phase and pH gradient elution. Sample preparation was optimized regarding various acids and pH levels. Changes in those parameters led to significant deviations of sample matrix breakdown efficiency. The optimized method was then validated regarding specificity, accuracy, precision, linearity, range, detection and quantification limits. As the method performed satisfactory, is was used to study commercial liquid cow's milk (n=31), regarding effects of the employed preservation technique (pasteurization, extended shelf-life, ultra-high temperature) on the composition and content of B 6 and B 2 vitamers. In cow's milk, vitamin B 6 mostly consists of pyridoxal and its phosphate ester, with pyridoxal phosphate being the bulk component. The catabolite of the vitamin B 6 metabolism, 4-pyridoxic acid was present in significant amounts in all studied samples, with up to 2.69μmolL -1 . Vitamin B 2 was present as riboflavin and its phosphate ester up to 12.86μmolL -1 . Copyright © 2017 Elsevier B.V. All rights reserved.
Hu, Yanxue; Yang, Xiumin; Wang, Zhi; Wang, Chun; Zhao, Jin
2005-11-01
A novel method for the determination of carbendazim (MBC) and thiabendazole (TBZ) in tomatoes by solid-phase microextraction (SPME) coupled with high performance liquid chromatography (HPLC) and fluorescence detection was developed. The experimental conditions of SPME, including extraction fiber, extraction time, extraction temperature, desorption time, desorption solvent, desorption mode, pH value, organic solvent and ionic strength, and HPLC conditions were optimized. The SPME for MBC and TBZ was performed on a 65 microm polydimethylsiloxane/divinylbenzene (PDMS/DVB) fibre for 50 min at room temperature with the solution being stirred at 1 100 r/min. The florescence detection was made at 315 nm with excitation wavelength at 280 nm. The method is linear for MBC and TBZ over the range assayed from 0.01 to 1.0 mg/kg tomatoes with the detection limits of 0.003 mg/kg and 0. 001 mg/kg and the correlation coefficients of 0.995 8 and 0.996 7, respectively. The average recoveries for MBC and TBZ were 83.5% and 85.6% with the relative standard deviations (RSDs) of 6.5% and 3.8%, respectively. The method is fast, simple, sensitive, solvent-free and suitable for the determination of MBC and TBZ in tomatoes.
Fu, Yanqing; Zhou, Zhihui; Kong, Hongwei; Lu, Xin; Zhao, Xinjie; Chen, Yihui; Chen, Jia; Wu, Zeming; Xu, Zhiliang; Zhao, Chunxia; Xu, Guowang
2016-09-06
Identification of illegal additives in complex matrixes is important in the food safety field. In this study a nontargeted screening strategy was developed to find illegal additives based on ultrahigh-performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS). First, an analytical method for possible illegal additives in complex matrixes was established including fast sample pretreatment, accurate UHPLC separation, and HRMS detection. Second, efficient data processing and differential analysis workflow were suggested and applied to find potential risk compounds. Third, structure elucidation of risk compounds was performed by (1) searching online databases [Metlin and the Human Metabolome Database (HMDB)] and an in-house database which was established at the above-defined conditions of UHPLC-HRMS analysis and contains information on retention time, mass spectra (MS), and tandem mass spectra (MS/MS) of 475 illegal additives, (2) analyzing fragment ions, and (3) referring to fragmentation rules. Fish was taken as an example to show the usefulness of the nontargeted screening strategy, and six additives were found in suspected fish samples. Quantitative analysis was further carried out to determine the contents of these compounds. The satisfactory application of this strategy in fish samples means that it can also be used in the screening of illegal additives in other kinds of food samples.
Li, Hong; Gao, Yu-Mei; Zhang, Jing; Wang, Lin; Wang, Xiao-Xin
2013-01-01
Objective: To establish an ultra-performance liquid chromatography (UPLC) fingerprinting method for quality control of Phragmitis rhizoma from Baiyangdian. Materials and Methods: Ultrasonic extraction with 70% methanol was performed on 10 samples of P. rhizoma collected from 10 different villages in Baiyangdian. The sample solutions were analyzed by Waters UPLC equipped with the ACQUITY UPLC BEH C18 column and photodiode array (PDA) detector, and gradient eluted with acetonitrile/water as the mobile phase. The flow rate was set to 0.1 mL/min; the column temperature was set to 25°C; and the detection wavelength was set to 285 nm. Results: The chromatograms of the 10 samples showed 27 common peaks, of which one was identified as the ferulic acid standard. The similarity indexes were all above 0.82. Hierarchical cluster analysis showed that the constituents and their quantities differed according to the diameter of the original plant, which is related to its age. Conclusion: The UPLC fingerprinting method had the advantages of being fast, accurate, and highly efficient; this indicated that it can be used for quality control of P. rhizoma produced in Baiyangdian. Also, the relation between the quality and diameter/age of the plant needs to be further investigated. PMID:24124278
Gerace, E.; Salomone, A.; Abbadessa, G.; Racca, S.; Vincenti, M.
2011-01-01
A fast screening protocol was developed for the simultaneous determination of nine anti-estrogenic agents (aminoglutethimide, anastrozole, clomiphene, drostanolone, formestane, letrozole, mesterolone, tamoxifen, testolactone) plus five of their metabolites in human urine. After an enzymatic hydrolysis, these compounds can be extracted simultaneously from urine with a simple liquid–liquid extraction at alkaline conditions. The analytes were subsequently analyzed by fast-gas chromatography/mass spectrometry (fast-GC/MS) after derivatization. The use of a short column, high-flow carrier gas velocity and fast temperature ramping produced an efficient separation of all analytes in about 4 min, allowing a processing rate of 10 samples/h. The present analytical method was validated according to UNI EN ISO/IEC 17025 guidelines for qualitative methods. The range of investigated parameters included the limit of detection, selectivity, linearity, repeatability, robustness and extraction efficiency. High MS-sampling rate, using a benchtop quadrupole mass analyzer, resulted in accurate peak shape definition under both scan and selected ion monitoring modes, and high sensitivity in the latter mode. Therefore, the performances of the method are comparable to the ones obtainable from traditional GC/MS analysis. The method was successfully tested on real samples arising from clinical treatments of hospitalized patients and could profitably be used for clinical studies on anti-estrogenic drug administration. PMID:29403714
Sommella, Eduardo; Conte, Giulio Maria; Salviati, Emanuela; Pepe, Giacomo; Bertamino, Alessia; Ostacolo, Carmine; Sansone, Francesca; Prete, Francesco Del; Aquino, Rita Patrizia; Campiglia, Pietro
2018-05-11
Arthrospira platensis , better known as Spirulina, is one of the most important microalgae species. This cyanobacterium possesses a rich metabolite pattern, including high amounts of natural pigments. In this study, we applied a combined strategy based on Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS) and Ultra High-Performance Liquid Chromatography (UHPLC) for the qualitative/quantitative characterization of Spirulina pigments in three different commercial dietary supplements. FT-ICR was employed to elucidate the qualitative profile of Spirulina pigments, in both direct infusion mode (DIMS) and coupled to UHPLC. DIMS showed to be a very fast (4 min) and accurate (mass accuracy ≤ 0.01 ppm) tool. 51 pigments were tentatively identified. The profile revealed different classes, such as carotenes, xanthophylls and chlorophylls. Moreover, the antioxidant evaluation of the major compounds was assessed by pre-column reaction with the DPPH radical followed by fast UHPLC-PDA separation, highlighting the contribution of single analytes to the antioxidant potential of the entire pigment fraction. β-carotene, diadinoxanthin and diatoxanthin showed the highest scavenging activity. The method took 40 min per sample, comprising reaction. This strategy could represent a valid tool for the fast and comprehensive characterization of Spirulina pigments in dietary supplements, as well as in other microalgae-based products.
[Fast identification of constituents of Lagotis brevituba by using UPLC-Q-TOF-MS/MS method].
Xie, Jing; Zhang, Li; Zeng, Jin-Xiang; Li, Min; Wang, Juan; Xie, Xiong-Xiong; Zhong, Guo-Yue; Luo, Guang-Ming; Yuan, Jin-Bin; Liang, Jian
2017-06-01
The chemical constituents of Lagotis brevituba were rapidly determined and analyzed by using ultra performance liquid chromatography tandem quadrupole time of flight mass spectrometry (UPLC-Q-TOF-MS/MS) method, providing material basis for the clinical application of L. brevituba. The separation was performed on UPLC YMC-Triart C₁₈ (2.1 mm×100 mm, 1.9 μm) column, with acetonitrile-water containing 0.2% formic acid as mobile phase for gradient elution. The flow rate was 0.4 mL•min-1 gradient elution and column temperature was 40 ℃, the injection volume was 2 μL. ESI ion source was used to ensure the data collected in a negative ion mode. The chemical components of L. brevituba were identified through retention time, exact relative molecular mass, cleavage fragments of MS/MS and reported data. The results showed that a total of 22 compounds were identified, including 11 flavones, 6 phenylethanoid glycosides, 1 iridoid glucosides, and 4 organic acid. The UPLC-Q-TOF-MS/MS method could fast identify the chemical components of L. brevituba, providing valuable information about L. brevituba for its clinical application. Copyright© by the Chinese Pharmaceutical Association.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heard, F.J.; Harris, R.A.; Padilla, A.
The SASSYS/SAS4A systems analysis code was used to simulate a series of unprotected loss of flow (ULOF) tests planned at the Fast Flux Test Facility (FFTF). The subject tests were designed to investigate the transient performance of the FFTF during various ULOF scenarios for two different loading patterns designed to produce extremes in the assembly load pad clearance and the direction of the initial assembly bows. The tests are part of an international program designed to extend the existing data base on the performance of liquid metal reactors (LMR). The analyses demonstrate that a wide range of power-to-flow ratios canmore » be reached during the transients and, therefore, will yield valuable data on the dynamic character of the structural feedbacks in LMRS. These analyses will be repeated once the actual FFTF core loadings for the tests are available. These predictions, similar ones obtained by other international participants in the FFTF program, and post-test analyses will be used to upgrade and further verify the computer codes used to predict the behavior of LMRS.« less
On-line MSPD-SPE-HPLC/FLD analysis of polycyclic aromatic hydrocarbons in bovine tissues.
Gutiérrez-Valencia, Tania M; García de Llasera, Martha P
2017-05-15
A fast method was optimized and validated for simultaneous trace determination of four polycyclic aromatic hydrocarbons: benzo[a]anthracene, benzo[b]fluoranthene, benzo[k]fluoranthene and benzo[a]pyrene in bovine tissues. The determination was performed by matrix solid-phase dispersion (MSPD) coupled on-line to solid phase extraction (SPE) and high performance liquid chromatography (HPLC) with fluorescence detection (FLD). The sample was dispersed on C 18 silica sorbent and then the on-line MSPD-SPE-HPLC/FLD method was applied. Several parameters were optimized: cleaning and elution sequences applied to the MSPD cartridge, the flow rate and dilution of extract used for SPE loading. The on-line method was validated over a concentration range of 0.1-0.6ngg -1 obtaining good linearity (r⩾0.998) and precision (RSD)⩽10%. Recovery ranged from 96 to 99% and the limits of detection were 0.012ngg -1 . This methodology was applied to liver samples from unhealthy animals. The results demonstrate that MSDP-SPE-HPLC/FLD method provides reliable, sensitive, accurate and fast data to the food control. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zong, Shi-Yu; Han, Han; Wang, Bing; Li, Ning; Dong, Tina Ting-Xia; Zhang, Tong; Tsim, Karl W K
2015-12-04
A reliable ultra-high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UHPLC-ESI-MS/MS) method for the fast simultaneous determination of 13 nucleosides and nucleobases in Cordyceps sinensis (C. sinensis) with 2-chloroadenosine as internal standard was developed and validated. Samples were ultrasonically extracted in an ice bath thrice, and the optimum analyte separation was performed on an ACQUITY UPLC(TM) HSS C18 column (100 mm × 2.1 mm, 1.8 μm) with gradient elution. All targeted analytes were separated in 5.5 min. Furthermore, all calibration curves showed good linear regression (r > 0.9970) within the test ranges, and the limits of quantitation and detection of the 13 analytes were less than 150 and 75 ng/mL, respectively. The relative standard deviations (RSDs) of intra- and inter-day precisions were <6.23%. Recoveries of the quantified analytes ranged within 85.3%-117.3%, with RSD < 6.18%. The developed UHPLC-ESI-MS/MS method was successfully applied to determine nucleosides and nucleobases in 11 batches of C. sinensis samples from different regions in China. The range for the total content in the analyzed samples was 1329-2057 µg/g.
Li, Zhenglong; Choi, Jae-Soon; Wang, Huamin; ...
2017-08-18
Low-temperature hydrogenation of carbonyl fractions can greatly improve the thermal stability of fast pyrolysis bio-oil which is crucial to achieve long-term operation of high-temperature upgrading reactors. The current state of the art, precious metals such as ruthenium, although highly effective in carbonyl hydrogenation, rapidly loses performance due to sulfur sensitivity. The present work showed that molybdenum carbides were active and sulfur-tolerant in low-temperature conversion carbonyl compounds. Furthermore, due to surface bifunctionality (presence of both metallic and acid sites), carbides catalyzed both C=O bond hydrogenation and C-C coupling reactions retaining most of carbon atoms in liquid products as more stable andmore » higher molecular weight oligomeric compounds while consuming less hydrogen than ruthenium. The carbides proved to be resistant to other deactivation mechanisms including hydrothermal aging, oxidation, coking and leaching. These properties enabled carbides to achieve and maintain good catalytic performance in both aqueous-phase furfural conversion and real bio-oil stabilization with sulfur present. This finding strongly suggests that molybdenum carbides can provide a catalyst solution necessary for the development of commercially viable bio-oil stabilization technology.« less
Rostagno, M A; Manchón, N; D'Arrigo, M; Guillamón, E; Villares, A; García-Lafuente, A; Ramos, A; Martínez, J A
2011-01-31
A fast HPLC method with diode-array absorbance detector and fluorescence detector for the analysis of 19 phenolic acids, flavan-3-ols, flavones, flavonols and caffeine in different types of samples was developed. Using a C(18) reverse-phase fused-core column separation of all compounds was achieved in less than 5 min with an overall sample-to-sample time of 10 min. Evaluation of chromatographic performance revealed excellent reproducibility, resolution, selectivity and peak symmetry. Limits of detection for all analyzed compounds ranged from 0.5 to 211 μg L(-1), while limits of quantitation ranged between 1.5 and 704 μg L(-1). The developed method was used for the determination of analytes present in different samples, including teas (black, white, green), mate, coffee, cola soft drink and an energetic drink. Concentration of the analyzed compounds occurring in the samples ranged from 0.4 to 314 mg L(-1). Caffeine was the analyte found in higher concentrations in all samples. Phytochemical profiles of the samples were consistent with those reported in the literature. Copyright © 2010 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhenglong; Choi, Jae-Soon; Wang, Huamin
Low-temperature hydrogenation of carbonyl fractions can greatly improve the thermal stability of fast pyrolysis bio-oil which is crucial to achieve long-term operation of high-temperature upgrading reactors. The current state of the art, precious metals such as ruthenium, although highly effective in carbonyl hydrogenation, rapidly loses performance due to sulfur sensitivity. The present work showed that molybdenum carbides were active and sulfur-tolerant in low-temperature conversion carbonyl compounds. Furthermore, due to surface bifunctionality (presence of both metallic and acid sites), carbides catalyzed both C=O bond hydrogenation and C-C coupling reactions retaining most of carbon atoms in liquid products as more stable andmore » higher molecular weight oligomeric compounds while consuming less hydrogen than ruthenium. The carbides proved to be resistant to other deactivation mechanisms including hydrothermal aging, oxidation, coking and leaching. These properties enabled carbides to achieve and maintain good catalytic performance in both aqueous-phase furfural conversion and real bio-oil stabilization with sulfur present. This finding strongly suggests that molybdenum carbides can provide a catalyst solution necessary for the development of commercially viable bio-oil stabilization technology.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dalla Palma, M.; Quaranta, A.; INFN, Laboratori Nazionali di Legnaro,Viale dell'Universita, 2, 35020 Legnaro - Padova
In the last decade, attention toward neutron detection has been growing in the scientific community, driven by new requirements in different fields of application ranging from homeland security to medical and material analysis, from research physics, to nuclear energy production. So far neutron detection, with particular attention to fast neutrons, has been mainly based on organic liquid scintillators, owing to their good efficiency and pulse shape discrimination (PSD) capability. Most of these liquids have however some main drawbacks given by toxicity, flammability, volatility and sensitivity to dissolved oxygen that limits the duration and the quality of their performances with worsemore » handiness and increased costs. Phenyl-substituted polysiloxanes could address most of these issues, being characterized by low toxicity, low volatility and low flammability. Their optical properties can be tailored by changing the phenyl distribution and concentration thus allowing to increase the solubility of organic dyes, to modify the fluorescence spectra and to vary the refractive index of the medium. Furthermore, polysiloxanes have been recently exploited for the production of plastic scintillators with very good chemical and thermal stability and very good radiation hardness and the development of polysiloxane liquid scintillators could allow to combine these interesting properties with the supremacy of liquid scintillators as regarding PSD over plastics. For these reasons, the properties of several phenyl-substituted polysiloxane with different phenyl amounts and different viscosities have been investigated, with particular attention to the scintillation response and the pulse shape discrimination capability, and the results of the investigation are reported in this work. More in details, the scintillation light yield towards gamma rays ({sup 60}Co and {sup 137}Cs) of several polysiloxane liquids has been analyzed and compared with the light yield of a commercial non-toxic liquid scintillator (EJ309). The results have been related to the optical characterization of these materials, especially as regarding the fluorescence response, and the best performing material (1,1,5,5-Tetraphenyl 1,3,3,5-Tetramethyl Trisiloxane) showed a scintillation light-yield only slightly lower than EJ309, proving to be a promising candidate for the production of an efficient polysiloxane based liquid scintillator. The results as regarding the neutron-gamma pulse shape discrimination capability of the best performing materials are also reported in this work and the scintillation decay time of these materials are compared to the results of fluorescence lifetime analysis. PSD tests have been performed at CN accelerator in Legnaro National Laboratories with a 2.2 MeV pulsed neutron beam using TOF procedure and the pulses have been analyzed in order to evidence the PSD capability of every sample. The reported results pave the way to the development of a new promising class of non-toxic liquid scintillating materials for neutron detection, with good light output and interesting PSD characteristics. (authors)« less
Solid-Liquid Electrolyte as a Nanoion Modulator for Dendrite-Free Lithium Anodes.
Wen, Kaihua; Wang, Yanlei; Chen, Shimou; Wang, Xi; Zhang, Suojiang; Archer, Lynden A
2018-06-20
Rechargeable lithium (Li) metal batteries are considered the most promising of Li-based energy storage technologies. However, tree-like dendrite produced by irregular Li + electrodeposition restricts it wide applications. Herein, based on a cation-microphase-regulation strategy, we create solid-liquid electrolytes (SLEs) by absorbing commercial liquid electrolytes into polyethylene glycol (PEG) engineered nanoporous Al 2 O 3 ceramic membranes. By means of molecular dynamics simulations and comprehensive experiments, we show that Li ions are regulated and promoted in the two microphases, the channel phase and nonchannel phase, respectively. The channel phase can achieve homogeneous Li + flux distribution by multiple mechanisms, including its uniform array of nanochannels and ability to suppress lateral dendrite growth by its high modulus. In the nonchannel phase, PEG chains swollen by electrolyte facilitate desolvation and fast conduction of Li + . As a result, the studied SLEs exhibit high ionic conductivity, low interfacial resistance, and the unique ability to stabilize deposition at the Li anode. By means of galvanostatic cycling studies in symmetric Li cells and Li/Li 4 Ti 5 O 12 cells, we further show that the materials open a path to Li metal batteries with excellent cycling performance.
Ullah, Habib; Wilfred, Cecilia Devi; Shaharun, Maizatul Shima
2018-06-06
The present work reports the extraction of phenolic compounds from Polygonum minus using ionic liquid as extracting solvent. In this work, 1-Butyl-3-methylimidazolium hydrogen sulfate [BMIM][HSO 4 ] was used for the extraction of bioactive compounds. Accordingly, ionic liquids based microwave-assisted extraction treatment for separating of bioactive compounds from polygonum minus was first performed in the present study. The results obtained in this work have high extraction yield in comparison with conventional solvent. UV/Vis results showed that microwave synthesis was fast, well dispersed and nanosized copper nanoparticle (CuNPs) in comparison with conventional synthesis. CuNPs was characterized by X-Rays diffractometer (XRD), Fourier transform infrared (FTIR), dynamic light scattering (DLS), field emission scanning electron microscopy combined with energy dispersive x-rays (FESEM-EDX), and thermogravimetric analysis (TGA). All the instrumental analyses confirmed the particles were nanosized. Furthermore, the antibacterial activity of as-synthesized CuNPs showed effective inhibitory zone against three different bacteria. The photocatalytic degradation of copper nanoparticles was studied using methylene blue (MB) and methyl orange (MO) dyes under UV light and degraded 99.9% within short time 8 and 7 minutes.
NASA Astrophysics Data System (ADS)
Gomez-Cadenas, J. J.; Benlloch-Rodríguez, J. M.; Ferrario, P.
2017-08-01
In this paper we use detailed Monte Carlo simulations to demonstrate that liquid xenon (LXe) can be used to build a Cherenkov-based TOF-PET, with an intrinsic coincidence resolving time (CRT) in the vicinity of 10 ps. This extraordinary performance is due to three facts: a) the abundant emission of Cherenkov photons by liquid xenon; b) the fact that LXe is transparent to Cherenkov light; and c) the fact that the fastest photons in LXe have wavelengths higher than 300 nm, therefore making it possible to separate the detection of scintillation and Cherenkov light. The CRT in a Cherenkov LXe TOF-PET detector is, therefore, dominated by the resolution (time jitter) introduced by the photosensors and the electronics. However, we show that for sufficiently fast photosensors (e.g, an overall 40 ps jitter, which can be achieved by current micro-channel plate photomultipliers) the overall CRT varies between 30 and 55 ps, depending on the detection efficiency. This is still one order of magnitude better than commercial CRT devices and improves by a factor 3 the best CRT obtained with small laboratory prototypes.
NASA Astrophysics Data System (ADS)
Astefanei, Alina; van Bommel, Maarten; Corthals, Garry L.
2017-10-01
Surface acoustic wave nebulisation (SAWN) mass spectrometry (MS) is a method to generate gaseous ions compatible with direct MS of minute samples at femtomole sensitivity. To perform SAWN, acoustic waves are propagated through a LiNbO3 sampling chip, and are conducted to the liquid sample, which ultimately leads to the generation of a fine mist containing droplets of nanometre to micrometre diameter. Through fission and evaporation, the droplets undergo a phase change from liquid to gaseous analyte ions in a non-destructive manner. We have developed SAWN technology for the characterisation of organic colourants in textiles. It generates electrospray-ionisation-like ions in a non-destructive manner during ionisation, as can be observed by the unmodified chemical structure. The sample size is decreased by tenfold to 1000-fold when compared with currently used liquid chromatography-MS methods, with equal or better sensitivity. This work underscores SAWN-MS as an ideal tool for molecular analysis of art objects as it is non-destructive, is rapid, involves minimally invasive sampling and is more sensitive than current MS-based methods. [Figure not available: see fulltext.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ning; Rutherford, Phil; Lee, Majelle
2005-09-01
This Annual Site Environmental Report (ASER) for 2004 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). In the past, the Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder components. All nuclear work was terminated inmore » 1988; all subsequent radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Closure of the liquid metal test facilities began in 1996. Results of the radiological monitoring program for the calendar year 2004 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ning; Rutherford, Phil
2007-09-01
This Annual Site Environmental Report (ASER) for 2006 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). In the past, the Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder components. All nuclear work was terminated inmore » 1988; all subsequent radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Closure of the liquid metal test facilities began in 1996. Results of the radiological monitoring program for the calendar year 2006 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ning; Rutherford, Phil; Samuels, Sandy
2004-09-30
This Annual Site Environmental Report (ASER) for 2003 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing Rocketdyne’s Santa Susana Field Laboratory (SSFL). In the past, the Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations at ETEC included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities at ETEC involved the operation of large-scale liquid metal facilities that were used for testing liquid metal fast breeder components. All nuclear work was terminated in 1988; allmore » subsequent radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Closure of the liquid metal test facilities began in 1996. Results of the radiological monitoring program for the calendar year 2003 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.« less
Optimization of ferroelectric liquid crystal optically addressed spatial light modulator performance
NASA Astrophysics Data System (ADS)
Perennes, Frederic; Crossland, William A.
1997-08-01
The switching mechanisms of ferroelectric liquid crystal optically addressed spatial light modulators (OASLMs) using a photosensitive structure made of an intrinsic amorphous silicon layer sandwiched in between an indium tin oxide coated glass sheet and a reflective metal layer are reviewed. Devices based on photoconductor and photodiode layers are briefly reviewed and attention is focused on pixelated metal mirror devices, which offer fast switching and good optical characteristics with the same sensitivity range as the photodiode OASLMs. They are particularly suitable for high frame rate SLMs with intense read beams. Optimum drive conditions for this type of device are considered. An equivalent electrical circuit is proposed for the photosensitive structure and the voltage drop across the liquid crystal layer is investigated and related to the optical response of the device. Experimental work is carried out to demonstrate the validity of our equivalent circuit. We show that the synchronization of a light source with the case pulse enables the OASLM to work at frame rates of a few kilohertz. We also demonstrate that the exact synchronization of the write light source with the write pulse enhances the potential memory of the device.
NASA Astrophysics Data System (ADS)
Klim, Adam; Morrison, J.; Orban, C.; Chowdhury, E.; Frische, K.; Feister, S.; Roquemore, M.
2017-10-01
The success of laser-accelerated ion experiments depends crucially on a number of factors including how thin the targets can be created. We present experimental results demonstrating extremely thin (under 200 nm) glycol sheet targets that can be used for ultra-intense laser-accelerated ion experiments conducted at the Air Force Research Laboratory at Wright-Patterson Air Force Base. Importantly, these experiments operate at a kHz repetition rate and the recovery time of the liquid targets is fast enough to allow the laser to interact with a refreshed, thin target on every shot. These thin targets can be used to produce energetic electrons, light ions, and neutrons as well as x-rays, we present results from liquid glycol targets which are useful for proton acceleration experiments via the mechanism of Target Normal Sheath Acceleration (TNSA). In future work, we will create thin sheets from deuterated water in order to perform laser-accelerated deuteron experiments. This research was sponsored by the Quantum and Non-Equilibrium Processes Division of the AFOSR, under the management of Dr. Enrique Parra, and support from the DOD HPCMP Internship Program.
NASA Astrophysics Data System (ADS)
Cherdantsev, Andrey; Hann, David; Azzopardi, Barry
2013-11-01
High-speed LIF-technique is applied to study gas-sheared liquid film in horizontal rectangular duct with 161 mm width. Instantaneous distributions of film thickness resolved in both longitudinal and transverse coordinates were obtained with a frequency of 10 kHz and spatial resolution from 0.125 mm to 0.04 mm. Processes of generation of fast and slow ripples by disturbance waves are the same as described in literature for downwards annular pipe flow. Disturbance waves are often localized by transverse coordinate and may have curved or slanted fronts. Fast ripples, covering disturbance waves, are typically horseshoe-shaped and placed in staggered order. Their characteristic transverse size is of order 1 cm and it decreases with gas velocity. Entrainment of liquid from film surface can also be visualized. Mechanisms of ripple disruption, known as ``bag break-up'' and ``ligament break-up,'' were observed. Both mechanisms may occur on the same disturbance waves. Various scenarios of droplet deposition on the liquid film are observed, including the impact, slow sinking and bouncing, characterized by different outcome of secondary droplets or entrapped bubbles. Number and size of bubbles increase greatly inside the disturbance waves. Both quantities increase with gas and liquid flow rates. EPSRC Programme Grant MEMPHIS (EP/K003976/1), and Roll-Royce UTC (Nottingham, for access to flow facility).
Camacho-Muñoz, Dolores; Kasprzyk-Hordern, Barbara; Thomas, Kevin V
2016-08-31
In order to assess the true impact of each single enantiomer of pharmacologically active compounds (PACs) in the environment, highly efficient, fast and sensitive analytical methods are needed. For the first time this paper focuses on the use of ultrahigh performance supercritical fluid based chromatography coupled to a triple quadrupole mass spectrometer to develop multi-residue enantioselective methods for chiral PACs in environmental matrices. This technique exploits the advantages of supercritical fluid chromatography, ultrahigh performance liquid chromatography and mass spectrometry. Two coated modified 2.5 μm-polysaccharide-based chiral stationary phases were investigated: an amylose tris-3,5-dimethylphenylcarbamate column and a cellulose tris-3-chloro-4-methylphenylcarbamate column. The effect of different chromatographic variables on chiral recognition is highlighted. This novel approach resulted in the baseline resolution of 13 enantiomers PACs (aminorex, carprofen, chloramphenicol, 3-N-dechloroethylifosfamide, flurbiprofen, 2-hydroxyibuprofen, ifosfamide, imazalil, naproxen, ofloxacin, omeprazole, praziquantel and tetramisole) and partial resolution of 2 enantiomers PACs (ibuprofen and indoprofen) under fast-gradient conditions (<10 min analysis time). The overall performance of the methods was satisfactory. The applicability of the methods was tested on influent and effluent wastewater samples. To the best of our knowledge, this is the first feasibility study on the simultaneous separation of chemically diverse chiral PACs in environmental matrices using ultrahigh performance supercritical fluid based chromatography coupled with tandem mass spectrometry. Copyright © 2016 Elsevier B.V. All rights reserved.
Wolf, Magnus; Chen, Shili; Zhao, Xinjie; Scheler, Mika; Irmler, Martin; Staiger, Harald; Beckers, Johannes; de Angelis, Martin Hrabé; Fritsche, Andreas; Häring, Hans-Ulrich; Schleicher, Erwin D; Xu, Guowang; Lehmann, Rainer; Weigert, Cora
2013-06-01
Acylcarnitines are biomarkers of incomplete β-oxidation and mitochondrial lipid overload but indicate also high rates of mitochondrial fatty acid oxidation. It is unknown whether the production of acylcarnitines in primary human myotubes obtained from lean, metabolically healthy subjects reflects the fat oxidation in vivo. Our objective was to quantify the acylcarnitine production in myotubes obtained from subjects with low and high fasting respiratory quotient (RQ). Fasting RQ was determined by indirect calorimetry. Muscle biopsies from the vastus lateralis muscle were taken from 6 subjects with low fasting RQ (mean 0.79 ± 0.03) and 6 with high fasting RQ (0.90 ± 0.03), and satellite cells were isolated, cultured, and differentiated to myotubes. Myotubes were cultivated with 125 μM (13)C-labeled palmitate for 30 minutes and 4 and 24 hours. Quantitative profiling of 42 intracellular and 31 extracellular acylcarnitines was performed by stable isotope dilution-based metabolomics analysis by liquid chromatography coupled to mass spectrometry. Myotubes from donors with high fasting RQ produced and released significant higher amounts of medium-chain acylcarnitines. High (13)C8 and (13)C10 acylcarnitine levels in the extracellular compartment correlated with high fasting RQ. The decreased expression of medium-chain acyl-coenzyme A dehydrogenase (MCAD) in these myotubes can explain the higher rate of incomplete fatty acid oxidation. A lower intracellular [(13)C]acetylcarnitine to carnitine and lower intracellular (13)C16/(13)C18 acylcarnitine to carnitine ratio indicate reduced fatty acid oxidation capacity in these myotubes. Mitochondrial DNA content was not different. Acylcarnitine production and release from primary human myotubes of donors with high fasting RQ indicate a reduced fatty acid oxidation capacity and a higher rate of incomplete fatty acid oxidation. Thus, quantitative profiling of acylcarnitine production in human myotubes can be a suitable tool to identify muscular determinants of fat oxidation in vivo.
Quantitative Single-Ion Irradiation by ASIPP Microbeam
NASA Astrophysics Data System (ADS)
Wang, Xu-Fei; Chen, Lian-Yun; Hu, Zhi-Wen; Wang, Xiao-Hua; Zhang, Jun; Li, Jun; Chen, Bin; Hu, Su-Hua; Shi, Zhong-Tao; Wu, Yu; Xu, Ming-Liang; Wu, Li-Jun; Wang, Shao-Hu; Yu, Zeng-Liang
2004-05-01
A single-ion microbeam facility has been constructed by the microbeam research group in ASIPP (Institute of Plasma Physics, Chinese Academy of Science). The system was designed to deliver defined numbers of hydrogen ions produced by a van de Graaff accelerator, covering an energy range from 200 keV to 3 MeV, into living cells (5 mum-20 mum diameter) growing in culture on thin plastic films. The beam is collimated by a 1- mum inner diameter HPLC (high performance liquid chromatography) capillary, which forms the micron-dimensional beam-line exit. A microbeam collimator, a scintillation ion counting system and a fast beam shutter, which constitute a precise dosage measuring and controlling system, jointly perform quantitative single-ion irradiation. With this facility, we can presently acquire ion-hitting efficiency close to 95%.
Dynamic thermal expansivity of liquids near the glass transition.
Niss, Kristine; Gundermann, Ditte; Christensen, Tage; Dyre, Jeppe C
2012-04-01
Based on previous works on polymers by Bauer et al. [Phys. Rev. E 61, 1755 (2000)], this paper describes a capacitative method for measuring the dynamical expansion coefficient of a viscous liquid. Data are presented for the glass-forming liquid tetramethyl tetraphenyl trisiloxane (DC704) in the ultraviscous regime. Compared to the method of Bauer et al., the dynamical range has been extended by making time-domain experiments and by making very small and fast temperature steps. The modeling of the experiment presented in this paper includes the situation in which the capacitor is not full because the liquid contracts when cooling from room temperature down to around the glass-transition temperature, which is relevant when measuring on a molecular liquid rather than a polymer.
Liquid crystal devices based on photoalignment and photopatterning materials
NASA Astrophysics Data System (ADS)
Chigrinov, Vladimir
2014-02-01
Liquid crystal (LC) display and photonics devices based on photo-alignment and photo-patterning LC cells are developed. A fast switchable grating based on ferroelectric liquid crystals and orthogonal planar alignment by means of photo alignments. Both 1D and 2D gratings have been constructed. The proposed diffracting element provides fast response time of around 20 μs, contrast of 7000:1 and high diffraction efficiency, at the electric field of 6V/μm. A switchable LC Fresnel zone lens was also developed with the efficiency of ~42% that can be further improved, and the switching time for the 3 μm thick cell is ~6.7 ms which is relatively fast in comparison of existing devices. Thus, because of the photoalignment technology the fabrication of Fresnel lens became considerably simpler than others. A thin high spatial resolution, photo-patterned micropolarizer array for complementary metal-oxide-semiconductor (CMOS) image sensors was implemented for the complete optical visualization of so called "invisible" objects, which are completely transparent (reflective) and colorless. Four Stokes parameters, which fully characterized the reflected light beam can be simultaneously detected using the array of photo-patterned polarizers on CMOS sensor plate. The cheap, high resolution photo-patterned LC matrix sensor was developed to be able successfully compete with the expensive and low reliable wire grid polarizer patterned arrays currently used for the purpose.
Magiera, Sylwia; Baranowska, Irena; Lautenszleger, Anna
2015-01-01
A simple and rapid ultra-high performance liquid chromatographic (UHPLC) method coupled with an ultraviolet detector (UV) has been developed and validated for the separation and determination of 14 major flavonoids ((±)-catechin, (-)-epicatechin, glycitin, (-)-epicatechin gallate, rutin, quercitrin, hesperidine, neohesperidine, daidzein, glycitein, quercetin, genistein, hesperetin, and biochanin A) in herbal dietary supplements. The flavonoids have been separated on a Chromolith Fast Gradient Monolithic RP-18e column utilizing a mobile phase composed of 0.05% trifluoroacetic acid in water and acetonitrile in gradient elution mode. Under these conditions, flavonoids were separated in a 5 min run. The selectivity of the developed UHPLC-UV method was confirmed by comparison with ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) analysis. The validation parameters such as linearity, sensitivity, precision, and accuracy were found to be highly satisfactory. The optimized method was applied to determination of flavonoids in different dietary supplements. Additionally, the developed HPLC-UV method combined with 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) assay was used in the evaluation of antioxidant activity of the selected flavonoids. Copyright © 2014 Elsevier B.V. All rights reserved.
Advanced Launch Vehicle Upper Stages Using Liquid Propulsion and Metallized Propellants
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan A.
1990-01-01
Metallized propellants are liquid propellants with a metal additive suspended in a gelled fuel or oxidizer. Typically, aluminum (Al) particles are the metal additive. These propellants provide increase in the density and/or the specific impulse of the propulsion system. Using metallized propellant for volume-and mass-constrained upper stages can deliver modest increases in performance for low earth orbit to geosynchronous earth orbit (LEO-GEO) and other earth orbital transfer missions. Metallized propellants, however, can enable very fast planetary missions with a single-stage upper stage system. Trade studies comparing metallized propellant stage performance with non-metallized upper stages and the Inertial Upper Stage (IUS) are presented. These upper stages are both one- and two-stage vehicles that provide the added energy to send payloads to altitudes and onto trajectories that are unattainable with only the launch vehicle. The stage designs are controlled by the volume and the mass constraints of the Space Transportation System (STS) and Space Transportation System-Cargo (STS-C) launch vehicles. The influences of the density and specific impulse increases enabled by metallized propellants are examined for a variety of different stage and propellant combinations.
Faizan, Mohammad; Esatbeyoglu, Tuba; Bayram, Banu; Rimbach, Gerald
2014-04-01
Malondialdehyde (MDA) is a biomarker of lipid peroxidation and is present in foods and biological samples such as plasma. A high-performance liquid chromatography (HPLC) method was applied to determine MDA in fish liver samples after derivatization with 2,4-dinitrophenylhydrazine (DNPH) using a ODS2 column (10 cm × 4.6 mm, 3 μm) and a photodiode array detector. The mobile phase consisted of 0.2% acetic acid (v/v) in distilled water and acetonitrile (42:58, v/v). The present method was validated in terms of linearity, lower limit of quantification, lower limit of detection, precision, accuracy, recovery, and stability of MDA according to U.S. Food and Drug Administration (FDA) guidelines. The limit of quantification of MDA was 0.39 μmol/L, which is comparable to other methods. The recovery of the spiked MDA liver samples was in the range of 92.4% to 104.2%. This newly modified HPLC method is specific, sensitive, and accurate and allows the analysis of MDA within 4 min in fish liver but also in other tissues and plasma. © 2014 Institute of Food Technologists®
Derogis, Priscilla Bento Matos; Sanches, Livia Rentas; de Aranda, Valdir Fernandes; Colombini, Marjorie Paris; Mangueira, Cristóvão Luis Pitangueira; Katz, Marcelo; Faulhaber, Adriana Caschera Leme; Mendes, Claudio Ernesto Albers; Ferreira, Carlos Eduardo Dos Santos; França, Carolina Nunes; Guerra, João Carlos de Campos
2017-01-01
Rivaroxaban is an oral direct factor Xa inhibitor, therapeutically indicated in the treatment of thromboembolic diseases. As other new oral anticoagulants, routine monitoring of rivaroxaban is not necessary, but important in some clinical circumstances. In our study a high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was validated to measure rivaroxaban plasmatic concentration. Our method used a simple sample preparation, protein precipitation, and a fast chromatographic run. It was developed a precise and accurate method, with a linear range from 2 to 500 ng/mL, and a lower limit of quantification of 4 pg on column. The new method was compared to a reference method (anti-factor Xa activity) and both presented a good correlation (r = 0.98, p < 0.001). In addition, we validated hemolytic, icteric or lipemic plasma samples for rivaroxaban measurement by HPLC-MS/MS without interferences. The chromogenic and HPLC-MS/MS methods were highly correlated and should be used as clinical tools for drug monitoring. The method was applied successfully in a group of 49 real-life patients, which allowed an accurate determination of rivaroxaban in peak and trough levels.
Sawant, Tukaram B; Wakchaure, Vikas S; Rakibe, Udyakumar K; Musmade, Prashant B; Chaudhari, Bhata R; Mane, Dhananjay V
2017-07-01
The present study was aimed to develop an analytical method for quantification of memantine (MEM) hydrochloride in dissolution samples using high-performance liquid chromatography with refractive index (RI) detector. The chromatographic separation was achieved on C18 (250 × 4.5 mm, 5 μm) column using isocratic mobile phase comprises of buffer (pH 5.2):methanol (40:60 v/v) pumped at a flow rate of 1.0 mL/min. The column effluents were monitored using RI detector. The retention time of MEM was found to be ~6.5 ± 0.3 min. The developed chromatographic method was validated and found to be linear over the concentration range of 5.0-45.0 μg/mL for MEM. Mean recovery of MEM was found to be 99.2 ± 0.5% (w/w). The method was found to be simple, fast, precise and accurate, which can be utilized for the quantification of MEM in dissolution samples. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Measurement of Neutron and Muon Fluxes 100~m Underground with the SciBath Detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garrison, Lance
2014-01-01
The SciBath detector is an 80 liter liquid scintillator detector read out by a three dimensional grid of 768 wavelength-shifting fibers. Initially conceived as a fine-grained charged particle detector for neutrino studies that could image charged particle tracks in all directions, it is also sensitive to fast neutrons (15-200 MeV). In fall of 2011 the apparatus performed a three month run to measure cosmic-induced muons and neutrons 100~meters underground in the FNAL MINOS near-detector area. Data from this run has been analyzed and resulted in measurements of the cosmic muon flux as \
1986-09-01
analysis ’" methods in environmental samples. The hepatotoxins from laboratory cultures of M. aeruginosa Strain 7820,15 Anabena flos- aguae (A. 4flos...flos- aguae S-23-g-1l (8 lug) F1 The results from the amino acid analysis using the Llqui-Mat Analyzer are listed in Table 2. The elution times of the...Runnegar, M.T.C., and Huynh, V.L. Effec- tiveness of Activated Carbon in the Removal of Algal Toxin from Potable Water Supplies: A Pilot Plant
3D-printed and CNC milled flow-cells for chemiluminescence detection.
Spilstead, Kara B; Learey, Jessica J; Doeven, Egan H; Barbante, Gregory J; Mohr, Stephan; Barnett, Neil W; Terry, Jessica M; Hall, Robynne M; Francis, Paul S
2014-08-01
Herein we explore modern fabrication techniques for the development of chemiluminescence detection flow-cells with features not attainable using the traditional coiled tubing approach. This includes the first 3D-printed chemiluminescence flow-cells, and a milled flow-cell designed to split the analyte stream into two separate detection zones within the same polymer chip. The flow-cells are compared to conventional detection systems using flow injection analysis (FIA) and high performance liquid chromatography (HPLC), with the fast chemiluminescence reactions of an acidic potassium permanganate reagent with morphine and a series of adrenergic phenolic amines. Copyright © 2014 Elsevier B.V. All rights reserved.
Detecting Single-Nucleotides by Tunneling Current Measurements at Sub-MHz Temporal Resolution.
Morikawa, Takanori; Yokota, Kazumichi; Tanimoto, Sachie; Tsutsui, Makusu; Taniguchi, Masateru
2017-04-18
Label-free detection of single-nucleotides was performed by fast tunneling current measurements in a polar solvent at 1 MHz sampling rate using SiO₂-protected Au nanoprobes. Short current spikes were observed, suggestive of trapping/detrapping of individual nucleotides between the nanoelectrodes. The fall and rise features of the electrical signatures indicated signal retardation by capacitance effects with a time constant of about 10 microseconds. The high temporal resolution revealed current fluctuations, reflecting the molecular conformation degrees of freedom in the electrode gap. The method presented in this work may enable direct characterizations of dynamic changes in single-molecule conformations in an electrode gap in liquid.
Monks, K; Molnár, I; Rieger, H-J; Bogáti, B; Szabó, E
2012-04-06
Robust HPLC separations lead to fewer analysis failures and better method transfer as well as providing an assurance of quality. This work presents the systematic development of an optimal, robust, fast UHPLC method for the simultaneous assay of two APIs of an eye drop sample and their impurities, in accordance with Quality by Design principles. Chromatography software is employed to effectively generate design spaces (Method Operable Design Regions), which are subsequently employed to determine the final method conditions and to evaluate robustness prior to validation. Copyright © 2011 Elsevier B.V. All rights reserved.
Erro, Javier; Zamarreño, Angel M; Yvin, Jean-Claude; Garcia-Mina, Jose M
2009-05-27
This article describes a fast and simple methodology for the extraction and determination of organic acids in tissues and root exudates of maize, lupin, and chickpea by LC/MS/MS. Its main advantage is that it does not require sample prepurification before HPLC analysis or sample derivatization to improve sensibility. The results obtained showed good precision and accuracy, a recovery close to 100%, and no significant matrix effect. Moreover, the sensibility of the method is in general better than that of previously described methodologies, with detection limits between 15 and 900 pg injected.
DESCANT - Testing and Commissioning
NASA Astrophysics Data System (ADS)
Bildstein, Vinzenz; Garrett, P. E.; Bandyopadhay, D.; Bangay, J.; Bianco, L.; Demand, G.; Hadinia, B.; Leach, K. G.; Sumithrarachchi, C.; Turko, J.; Wong, J.; Ashley, S. F.; Crider, B. P.; McEllistrem, M. T.; Peters, E. E.; Prados-Estévez, F. M.; Yates, S. W.; Vanhoy, J. R.; Ball, G. C.; Bishop, D. P.; Garnsworthy, A. B.; Hackman, G.; Pearson, C. J.; Shaw, B.; Sarazin, F.
2017-09-01
The DESCANT array at TRIUMF is designed to detect neutrons from RIB experiments. DESCANT is composed of 70 close-packed deuterated organic liquid scintillators coupled to digital fast read-out ADC modules. This configuration permits online pulse-shape discrimination between neutron and γ-ray events. A prototype detector was tested with monoenergetic neutrons at the University of Kentucky Accelerator Laboratory. The data from these tests was compared to Geant4 simulations. A first commissioning experiment of the full array, using the decay of
Pharmacokinetic study of arctigenin in rat plasma and organ tissue by RP-HPLC method.
He, Fan; Dou, De-Qiang; Hou, Qiang; Sun, Yu; Kang, Ting-Guo
2013-01-01
A high-performance liquid chromatography (HPLC) technique was developed for the determination of arctigenin in plasma and various organs of rats after the oral administration of 30, 50 and 70 mgkg(-1) of arctigenin to the Sprague-Dawley rats. Results showed that the validated HPLC method was simple, fast, reproducible and suitable to the determination of arctigenin in rat plasma and organ tissue and one-compartmental model with zero-order absorption process can well describe the changes of arctigenin concentration in the plasma. The concentration of compound was highest in the spleen, less in the liver and the least in the lung.
Tunable liquid crystal photonic devices
NASA Astrophysics Data System (ADS)
Fan, Yun-Hsing
2005-07-01
Liquid crystal (LC)-based adaptive optics are important for information processing, optical interconnections, photonics, integrated optics, and optical communications due to their tunable optical properties. In this dissertation, we describe novel liquid crystal photonic devices. In Chap. 3, we demonstrate a novel electrically tunable-efficiency Fresnel lens which is devised for the first time using nanoscale PDLC. The tunable Fresnel lens is very desirable to eliminate the need of external spatial light modulator. The nanoscale LC devices are polarization independent and exhibit a fast response time. Because of the small droplet sizes, the operating voltage is higher than 100 Vrms. To lower the driving voltage, in Chap. 2 and Chap. 3, we have investigated tunable Fresnel lens using polymer-network liquid crystal (PNLC) and phase-separated composite film (PSCOF). The operating voltage is below 12 Vrms. The PNLC and PSCOF devices are polarization dependent. To overcome this shortcoming, stacking two cells with orthogonal alignment directions is a possibility. Using PNLC, we also demonstrated LC blazed grating. The diffraction efficiency of these devices is continuously controlled by the electric field. We also develop a system with continuously tunable focal length. A conventional mechanical zooming system is bulky and power hungry. In Chap. 4, we developed an electrically tunable-focus flat LC spherical lens and microlens array. A huge tunable range from 0.6 m to infinity is achieved by the applied voltage. In Chap. 5, we describe a LC microlens array whose focal length can be switched from positive to negative by the applied voltage. The fast response time feature of our LC microlens array will be very helpful in developing 3-D animated images. In Chap. 6, we demonstrate polymer network liquid crystals for switchable polarizers and optical shutters. The use of dual-frequency liquid crystal and special driving scheme leads to a sub-millisecond response time. In Chap. 7, for the first time, we demonstrate a fast-response and scattering-free homogeneously-aligned PNLC light modulator. The PNLC response time is ˜300x faster than that of a pure LC mixture. The PNLC cell also holds promise for mid and long infrared applications where response time is a critical issue.
Novel pulsed switched power supply for a fast field cycling NMR spectrometer.
Sousa, D M; Fernandes, P A L; Marques, G D; Ribeiro, A C; Sebastião, P J
2004-01-01
In this paper, we outline the operating principles of a pulsed switched power supply for a fast field-cycling nuclear magnetic resonance spectrometer. The power supply uses a variant of a four-quadrant chopper with a duty cycle that defines the average output current. With this topology only two semiconductors are necessary to drive hundreds of amperes with an output power of several kilowatts. The output current ripple has a well-defined shape that can be reduced to acceptable values by a careful design of the semiconductors' controlling circuits and drivers. A power supply prototype was tested with a home build air-core magnet operating with fields between 0 and 0.21 T. The system is computer controlled using pulse generator and data acquisition PC cards, and specific user-friendly home-developed software. A comparative proton relaxometry study in two well-known liquid crystal compounds 5CB and MBBA was performed to check the reproducibility of the T1 measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukarakate, C.; Robichaud, D.; Donohoe, B.
2012-01-01
We have constructed a captive sample reactor (CSR) to study fast pyrolysis of biomass. The reactor uses a stainless steel wire mesh to surround biomass materials with an isothermal environment by independent controlling of heating rates and pyrolysis temperatures. The vapors produced during pyrolysis are immediately entrained and transported in He carrier gas to a molecular beam mass spectrometer (MBMS). Formation of secondary products is minimized by rapidly quenching the sample support with liquid nitrogen. A range of alkali and alkaline earth metal (AAEM) and transition metal salts were tested to study their effect on composition of primary pyrolysis products.more » Multivariate curve resolution (MCR) analysis of the MBMS data shows that transition metal salts enhance pyrolysis of carbohydrates and AAEM salts enhances pyrolysis of lignin. This was supported by performing similar separate studies on cellulose, hemicellulose and extracted lignin. The effect of salts on char formation is also discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Sieno, Laura, E-mail: laura.disieno@polimi.it; Dalla Mora, Alberto; Contini, Davide
2016-03-15
We present a system for non-contact time-resolved diffuse reflectance imaging, based on small source-detector distance and high dynamic range measurements utilizing a fast-gated single-photon avalanche diode. The system is suitable for imaging of diffusive media without any contact with the sample and with a spatial resolution of about 1 cm at 1 cm depth. In order to objectively assess its performances, we adopted two standardized protocols developed for time-domain brain imagers. The related tests included the recording of the instrument response function of the setup and the responsivity of its detection system. Moreover, by using liquid turbid phantoms with absorbingmore » inclusions, depth-dependent contrast and contrast-to-noise ratio as well as lateral spatial resolution were measured. To illustrate the potentialities of the novel approach, the characteristics of the non-contact system are discussed and compared to those of a fiber-based brain imager.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dutta, Abhijit; Sahir, Asad; Tan, Eric
This report was developed as part of the U.S. Department of Energy’s Bioenergy Technologies Office’s efforts to enable the development of technologies for the production of infrastructurecompatible, cost-competitive liquid hydrocarbon fuels from biomass. Specifically, this report details two conceptual designs based on projected product yields and quality improvements via catalyst development and process integration. It is expected that these research improvements will be made within the 2022 timeframe. The two conversion pathways detailed are (1) in situ and (2) ex situ upgrading of vapors produced from the fast pyrolysis of biomass. While the base case conceptual designs and underlying assumptionsmore » outline performance metrics for feasibility, it should be noted that these are only two of many other possibilities in this area of research. Other promising process design options emerging from the research will be considered for future techno-economic analysis.« less
Abad, Sergi; Pérez, Xavier; Planas, Antoni; Turon, Xavier
2014-04-01
Recently, the need for crude glycerol valorisation from the biodiesel industry has generated many studies for practical and economic applications. Amongst them, fermentations based on glycerol media for the production of high value metabolites are prominent applications. This has generated a need to develop analytical techniques which allow fast and simple glycerol monitoring during fermentation. The methodology should be fast and inexpensive to be adopted in research, as well as in industrial applications. In this study three different methods were analysed and compared: two common methodologies based on liquid chromatography and enzymatic kits, and the new method based on a DotBlot assay coupled with image analysis. The new methodology is faster and cheaper than the other conventional methods, with comparable performance. Good linearity, precision and accuracy were achieved in the lower range (10 or 15 g/L to depletion), the most common range of glycerol concentrations to monitor fermentations in terms of growth kinetics. Copyright © 2014 Elsevier B.V. All rights reserved.
Fast response liquid crystal devices
NASA Astrophysics Data System (ADS)
Wu, Yung-Hsun
Liquid crystal (LC) has been widely used for displays, spatial light modulators, variable optical attenuators (VOAs) and other tunable photonic devices. The response time of these devices is mainly determined by the employed liquid crystal material. The response time of a LC device depends on the visco-elastic coefficient (gamma1/K11), LC cell gap (d), and applied voltage. Hence, low visco-elastic coefficient LC materials and thinner cell gap are favorable for reducing the response time. However, low visco-elastic coefficient LCs are usually associated with a low birefringence because of shorter molecular conjugation. For display applications, such as LCD TVs, low birefringence (Deltan<0.1) LCs are commonly used. However, for optical communications at 1550 nm, low birefringence requires to a thick cell gap which, in turn, increases the response time. How to obtain fast response for the LC devices is a fundamentally important and technically challenging task. In this dissertation, we investigate several methods to improve liquid crystal response time, for examples, using dual-frequency liquid crystals, polymer stabilized liquid crystals, and sheared polymer network liquid crystals. We discover a new class of material, denoted as sheared polymer network liquid crystal (SPNLC) which exhibits a submillisecond response time. Moreover, this response time is insensitive to the LC cell gap. This is the first LC device exhibiting such an interesting property. Chapters 1 and 2 describe the motivation and background of this dissertation. From chapter 3 to chapter 6, dual-frequency liquid crystals and polymer network methods are demonstrated as examples for the variable optical attenuators. Variable optical attenuator (VOA) is a key component in optical communications. Especially, the sheared PNLC VOA shows the best result; its dynamic range reaches 43 dB while the response time is in the submillisecond range at 1550 nm wavelength, which is 50 times faster than the commercial LC-based VOA. In Chapter 7, we report a new device called axially-symmetric sheared polymer network liquid crystals (AS-SPNLC) and use it as LC devices. Through analyzing the structure of this axially-symmetric SPNLC, we construct a 3-D model to explain the observed phenomena. An axially-symmetric sheared polymer network liquid crystal has several attractive features: (1) it is polarization independent, (2) it has gradient phase change, and (3) its response time is fast. It can be used for polarization converter and divergent LC lens. In addition, a new method for simultaneously measuring the phase retardation and optic axis of a compensation film is demonstrated using an axially-symmetric sheared polymer network liquid crystal. By overlaying a tested compensation film with a calibrated SPNLC cell between crossed polarizers, the optic axis and phase retardation value of the compensation film can be determined. This simple technique can be used for simultaneously measuring the optic axis and phase retardations of both A- and C-plates. These compensation films have been used extensively in wide-view LCD industry. Therefore, this method will make an important impact to the LCD industry.
Diabetes and fasting during Ramadan.
Hui, Elaine; Devendra, Devasenan
2010-11-01
Abstinence from food and liquid during daylight hours is observed by Muslim individuals during the month of Ramadan. Even though the Koran exempts the sick from fasting, many people with diabetes still fast during this religious period. It is essential for patients, family and healthcare professionals to be aware of the religious attitude to and health implications of fasting. Major changes in dietary habits, daily physical activities and sleeping patterns during Ramadan have significant impact on the glycaemic control, lipid profile, weight and dietary intake. Hence, the patient is encouraged to have appropriate pre-Ramadan assessment and education in order to stratify and modify his or her risk with fasting. Dose and timing adjustments to insulin and to some oral hypoglycaemic agents, especially sulphonylureas, may well be necessary during Ramadan. Copyright © 2010 John Wiley & Sons, Ltd.
Carmo, Ana Paula Barbosa do; Borborema, Manoella; Ribeiro, Stephan; De-Oliveira, Ana Cecilia Xavier; Paumgartten, Francisco Jose Roma; Moreira, Davyson de Lima
2017-01-01
Primaquine (PQ) diphosphate is an 8-aminoquinoline antimalarial drug with unique therapeutic properties. It is the only drug that prevents relapses of Plasmodium vivax or Plasmodium ovale infections. In this study, a fast, sensitive, cost-effective, and robust method for the extraction and high-performance liquid chromatography with diode array ultraviolet detection (HPLC-DAD-UV ) analysis of PQ in the blood plasma was developed and validated. After plasma protein precipitation, PQ was obtained by liquid-liquid extraction and analyzed by HPLC-DAD-UV with a modified-silica cyanopropyl column (250mm × 4.6mm i.d. × 5μm) as the stationary phase and a mixture of acetonitrile and 10mM ammonium acetate buffer (pH = 3.80) (45:55) as the mobile phase. The flow rate was 1.0mL·min-1, the oven temperature was 50OC, and absorbance was measured at 264nm. The method was validated for linearity, intra-day and inter-day precision, accuracy, recovery, and robustness. The detection (LOD) and quantification (LOQ) limits were 1.0 and 3.5ng·mL-1, respectively. The method was used to analyze the plasma of female DBA-2 mice treated with 20mg.kg-1 (oral) PQ diphosphate. By combining a simple, low-cost extraction procedure with a sensitive, precise, accurate, and robust method, it was possible to analyze PQ in small volumes of plasma. The new method presents lower LOD and LOQ limits and requires a shorter analysis time and smaller plasma volumes than those of previously reported HPLC methods with DAD-UV detection. The new validated method is suitable for kinetic studies of PQ in small rodents, including mouse models for the study of malaria.
Kwok, Wai Him; Choi, Timmy L S; Kwok, Karen Y; Chan, George H M; Wong, Jenny K Y; Wan, Terence S M
2016-06-17
The high sensitivity of ultra high performance liquid chromatography coupled with high resolution mass spectrometry (UHPLC-HRMS) allows the identification of many prohibited substances without pre-concentration, leading to the development of simple and fast 'dilute-and-shoot' methods for doping control for human and equine sports. While the detection of polar drugs in plasma and urine is difficult using liquid-liquid or solid-phase extraction as these substances are poorly extracted, the 'dilute-and-shoot' approach is plausible. This paper describes a 'dilute-and-shoot' UHPLC-HRMS screening method to detect 46 polar drugs in equine urine and plasma, including some angiotensin-converting enzyme (ACE) inhibitors, sympathomimetics, anti-epileptics, hemostatics, the new doping agent 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR), as well as two threshold substances, namely dimethyl sulfoxide and theobromine. For plasma, the sample (200μL) was protein precipitated using trichloroacetic acid, and the resulting supernatant was diluted using Buffer A with an overall dilution factor of 3. For urine, the sample (20μL) was simply diluted 50-fold with Buffer A. The diluted plasma or urine sample was then analysed using a UHPLC-HRMS system in full-scan ESI mode. The assay was validated for qualitative identification purpose. This straightforward and reliable approach carried out in combination with other screening procedures has increased the efficiency of doping control analysis in the laboratory. Moreover, since the UHPLC-HRMS data were acquired in full-scan mode, the method could theoretically accommodate an unlimited number of existing and new doping agents, and would allow a retrospectively search for drugs that have not been targeted at the time of analysis. Copyright © 2016 Elsevier B.V. All rights reserved.
Peng, Xiaojun; Pang, Jinshan; Deng, Aihua
2011-12-01
A novel method for the simultaneous determination of seven phenoxyacid herbicides such as dicamba, fluroxypyr, 4-chlorophenoxyacetic acid (4-CPA), 2-methyl-4-chlorophenoxyacetic acid (MCPA), 2, 4-dichlorophenoxyacetic acid (2,4-D), 2,4-dichlorophenoxybutyric acid (2,4-DB) and 4-(2-methyl-4-chlorophenoxy) butyric acid (MCPB) in environmental water by three phase hollow fiber liquid phase microextraction (HF-LPME) coupled with high performance liquid chromatography (HPLC) was developed. In order to optimize the experimental conditions, the orthogonal test has been used. The effects of extraction solvent, pH of the donor phase and acceptor phase, extraction time, stirring speed and salt concentration on the detection were investigated. The optimal experimental conditions were as follows: octanol as organic solvent, pH 3 of donor phase, pH 12 of acceptor phase, extraction time of 30 min, stirring speed of 400 r/min. The results showed that the proposed method provided a wide linear range for 7 phenoxyacid herbicides with correlation coefficients of 0.995 3 - 0.998 8. The detection limits ranged from 0.2 to 1.0 microg/L. The enrichment factors were in the range of 76.7 - 121. The recoveries were in the range of 68% - 104% and the relative standard deviations (RSDs) were less than 8.1% for the environmental water samples. The method has the advantages of sensitivity, simplicity, fastness and the use of very small amounts of organic solvent. The method can meet the requirements of the determination of trace phenoxyacid herbicides in the environmental water samples, and the study provided a useful method for the analysis of trace substances in water samples.
Dai, Xingping; Wang, Dongsheng; Li, Hui; Chen, Yanyi; Gong, Zhicheng; Xiang, Haiyan; Shi, Shuyun; Chen, Xiaoqing
2017-02-10
Polar and hydrophilic properties of hydroxybenzoic acids usually made them coelute with interferences in high performance liquid chromatography (HPLC) analysis. Then selective analysis of them was necessary. Herein, hollow porous ionic liquids composite polymers (PILs) based solid phase extraction (SPE) was firstly fabricated and coupled online with HPLC for selective analysis of hydroxybenzoic acids from complex matrices. Hollow porous PILs were firstly synthesized using Mobil Composition of Matter No. 48 (MCM-48) spheres as sacrificial support, 1-vinyl-3-methylimidazolium chloride (VMIM + Cl - ) as monomer, and ethylene glycol dimethacrylate (EGDMA) as cross-linker. Various parameters affecting synthesis, adsorption and desorption behaviors were investigated and optimized. Steady-state adsorption studies showed the resulting hollow porous PILs exhibited high adsorption capacity, fast adsorption kinetics, and excellent specific adsorption. Subsequently, the application of online SPE system was studied by selective analysis of protocatechuic acid (PCA), 4-hydroxybenzoic acid (4-HBA), and vanillic acid (VA) from Pollen Typha angustifolia. The obtained limit of detection (LOD) varied from 0.002 to 0.01μg/mL, the linear range (0.05-5.0μg/mL) was wide with correlation coefficient (R) from 0.9982 to 0.9994, and the average recoveries at three spiking levels ranged from 82.7 to 102.4%, with column-to-column relative standard deviation (RSD) below 8.1%. The proposed online method showed good accuracy, precision, specificity and convenience, which opened up a universal and efficient route for selective analysis of hydroxybenzoic acids from complex samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Mohamed, Dalia; Hegazy, Maha A; Elshahed, Mona S; Toubar, Safaa S; Helmy, Marwa I
2018-07-01
A facile, fast and specific method based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the simultaneous quantitation of paracetamol, chlorzoxazone and aceclofenac in human plasma was developed and validated. Sample preparation was achieved by liquid-liquid extraction. The analysis was performed on a reversed-phase C 18 HPLC column (5 μm, 4.6 × 50 mm) using acetonitrile-10 mM ammonium formate pH 3.0 (65:35, v/v) as the mobile phase where atrovastatin was used as an internal standard. A very small injection volume (3 μL) was applied and the run time was 2.0 min. The detection was carried out by electrospray positive and negative ionization mass spectrometry in the multiple-reaction monitoring mode. The developed method was capable of determining the analytes over the concentration ranges of 0.03-30.0, 0.015-15.00 and 0.15-15.00 μg/mL for paracetamol, chlorzoxazone and aceclofenac, respectively. Intraday and interday precisions (as coefficient of variation) were found to be ≤12.3% with an accuracy (as relative error) of ±5.0%. The method was successfully applied to a pharmacokinetic study of the three analytes after being orally administered to six healthy volunteers. Copyright © 2018 John Wiley & Sons, Ltd.
Koçoğlu, Elif Seda; Bakırdere, Sezgin; Keyf, Seyfullah
2017-09-01
A simple, green and fast analytical method was developed for the determination of sertraline in tap and waste water samples at trace levels by using supportive liquid-liquid extraction with gas chromatography-mass spectrometry. Different parameters affecting extraction efficiency such as types and volumes of extraction and supporter solvents, extraction period, salt type and amount were optimized to get lower detection limits. Ethyl acetate was selected as optimum extraction solvent. In order to improve the precision, anthracene-D10 was used as an internal standard. The calibration plot of sertraline was linear from 1.0 to 1000 ng/mL with a correlation coefficient of 0.999. The limit of detection value under the optimum conditions was found to be 0.43 ng/mL. In real sample measurements, spiking experiments were performed to check the reliability of the method for these matrices. The spiking experiments yielded satisfactory recoveries of 91.19 ± 2.48%, 90.48 ± 5.19% and 95.46 ± 6.56% for 100, 250 and 500 ng/mL sertraline for tap water, and 85.80 ± 2.15% and 92.43 ± 4.02% for 250 and 500 ng/mL sertraline for waste water.
Eicosapentaenoic acid improves glycemic control in elderly bedridden patients with type 2 diabetes.
Ogawa, Susumu; Abe, Takaaki; Nako, Kazuhiro; Okamura, Masashi; Senda, Miho; Sakamoto, Takuya; Ito, Sadayoshi
2013-01-01
Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are ω3-polyunsaturated fatty acids mainly contained in the blue-backed fish oil, and are effective in decreasing the lipids disorder and the cardiovascular incidence among diabetic patients. Moreover, it has been suggested that EPA and DHA may improve the insulin resistance and glucose metabolism. However, the clinical effects of EPA and DHA on glucose metabolism remain unclear. We aimed to clarify the effects of EPA/DHA treatment on glycemic control in type 2 diabetes mellitus. This study was a multicenter prospective randomized controlled trial involving 30 elderly type 2 diabetic patients on a liquid diet. Their exercises were almost zero and the content of their meals was strictly managed and understood well. Therefore, the difference by the individual's life was a minimum. The subjects were divided into two groups: those receiving EPA/DHA-rich liquid diet [EPA/DHA (+)] or liquid diet lacking EPA/DHA [EPA/DHA (-)]. Changes in factors related to glucose and lipid metabolism were assessed after the three-month study. Serum concentrations of EPA rose in EPA/DHA (+), although the levels of DHA and fasting C-peptide remained unchanged in EPA/DHA (+). In addition, there was a significant decline in the fasting plasma glucose (FPG), hemoglobin A1c (HbA1c), fasting remnant-like particles and apolipoprotein (apo) B in EPA/DHA (+), compared with the values in EPA/DHA (-). EPA/DHA-rich diet might improve glucose metabolism in elderly type 2 diabetic patients on a liquid diet. This phenomenon may be due to the improved insulin resistance mediated by the rise in serum EPA concentrations.
Salomone, Alberto; Gerace, Enrico; Brizio, Paola; Gennaro, M Carla; Vincenti, Marco
2011-11-01
A fast liquid chromatographic/tandem mass spectrometric method was developed for the simultaneous determination in human urine of seventeen benzodiazepines, four relevant metabolites together plus zolpidem and zopiclone. The sample preparation, optimized to take into account the matrix effect, was based on enzymatic hydrolysis and liquid-liquid extraction. The separation of the twenty-three analytes was achieved in less than eight minutes. The whole methodology was fully validated according to UNI EN ISO/IEC 17025:2005 rules and 2006 SOFT/AAFS guidelines. Selectivity, linearity range, identification (LOD) and quantitation (LOQ) limits, precision, accuracy and recovery were evaluated. For all the species the signal/concentration linearity was satisfactory in the 50-1000 ng/mL concentration range. The limits of detection ranged from 0.5 to 30 ng/mL and LOQs from 1.7 to 100.0 ng/mL. Precisions were in the ranges 5.0-11.8%, 1.5-11.0% and 1.1-4.4% for low (100 ng/mL), medium (300 ng/mL) and high (1000 ng/mL) concentration, respectively. The accuracy, expressed as bias% was within ± 25 % for all the analytes. The recovery values, evaluated at 300 ng/mL concentration, ranged from 56.2% to 98.8%. The present method for the determination of several benzodiazepines, zolpidem and zopiclone in human urine proved to be simple, fast, specific and sensitive. The quantification by LC-MS/MS was successfully applied to 329 forensic cases among driving re-licensing, car accidents and alleged sexual violence cases. Copyright © 2011 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Il S.; Yu, Yong H.; Son, Hyoung M.
2006-07-01
An experimental study is performed to investigate the natural convection heat transfer characteristics with subcooled coolant to create engineering database for basic applications in a lead alloy cooled reactor. Tests are performed in the ALTOS (Applied Liquid-metal Thermal Operation Study) apparatus as part of MITHOS (Metal Integrated Thermo Hydrodynamic Operation System). A relationship is determined between the Nusselt number Nu and the Rayleigh number Ra in the liquid metal rectangular pool. Results are compared with correlations and experimental data in the literature. Given the similar Ra condition, the present test results for Nu of the liquid metal pool with topmore » subcooling are found to be similar to those predicted by the existing correlations or experiments. The current test results are utilized to develop natural convection heat transfer correlations applicable to low Prandtl number Pr fluids that are heated from below and cooled by the external coolant above. Results from this study are slated to be used in designing BORIS (Battery Optimized Reactor Integral System), a small lead cooled modular fast reactor for deployment at remote sites cycled with MOBIS (Modular Optimized Brayton Integral System) for electricity generation, tied with NAVIS (Naval Application Vessel Integral System) for ship propulsion, joined with THAIS (Thermochemical Hydrogen Acquisition Integral System) for hydrogen production, and coupled with DORIS (Desalination Optimized Reactor Integral System) for seawater desalination. Tests are performed with Wood's metal (Pb-Bi-Sn-Cd) filling a rectangular pool whose lower surface is heated and upper surface cooled by forced convection of water. The test section is 20 cm long, 11.3 cm high and 15 cm wide. The simulant has a melting temperature of 78 deg. C. The constant temperature and heat flux condition was realized for the bottom heating once the steady state had been met. The test parameters include the heated bottom surface temperature of the liquid metal pool, the input power to the bottom surface of the section, and the coolant temperature. (authors)« less
Nayek, Prasenjit; Li, Guoqiang
2015-01-01
A superior electro-optic (E-O) response has been achieved when multiferroic bismuth ferrite (BiFeO3/BFO) nanoparticles (NPs) were doped in nematic liquid crystal (NLC) host E7 and the LC device was addressed in the large signal regime by an amplitude modulated square wave signal at the frequency of 100 Hz. The optimized concentration of BFO is 0.15 wt%, and the corresponding total optical response time (rise time + decay time) for a 5 μm-thick cell is 2.5 ms for ~7 Vrms. This might be exploited for the construction of adaptive lenses, modulators, displays, and other E-O devices. The possible reason behind the fast response time could be the visco-elastic constant and restoring force imparted by the locally ordered LCs induced by the multiferroic nanoparticles (MNPs). Polarized optical microscopic textural observation shows that the macroscopic dislocation-free excellent contrast have significant impact on improving the image quality and performance of the devices. PMID:26041701
Comparison of Computational Results with a Low-g, Nitrogen Slosh and Boiling Experiment
NASA Technical Reports Server (NTRS)
Stewart, Mark E.; Moder, Jeffrey P.
2015-01-01
This paper compares a fluid/thermal simulation, in Fluent, with a low-g, nitrogen slosh and boiling experiment. In 2010, the French Space Agency, CNES, performed cryogenic nitrogen experiments in a low-g aircraft campaign. From one parabolic flight, a low-g interval was simulated that focuses on low-g motion of nitrogen liquid and vapor with significant condensation, evaporation, and boiling. The computational results are compared with high-speed video, pressure data, heat transfer, and temperature data from sensors on the axis of the cylindrically shaped tank. These experimental and computational results compare favorably. The initial temperature stratification is in good agreement, and the two-phase fluid motion is qualitatively captured. Temperature data is matched except that the temperature sensors are unable to capture fast temperature transients when the sensors move from wet to dry (liquid to vapor) operation. Pressure evolution is approximately captured, but condensation and evaporation rate modeling and prediction need further theoretical analysis.
Occurence and prediction of sigma phase in fuel cladding alloys for breeder reactors. [LMFBR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anantatmula, R.P.
1982-01-01
In sodium-cooled fast reactor systems, fuel cladding materials will be exposed for several thousand hours to liquid sodium. Satisfactory performance of the materials depends in part on the sodium compatibility and phase stability of the materials. This paper mainly deals with the phase stability aspect, with particular emphasis on sigma phase formation of the cladding materials upon extended exposures to liquid sodium. A new method of predicting sigma phase formation is proposed for austenitic stainless steels and predictions are compared with the experimental results on fuel cladding materials. Excellent agreement is obtained between theory and experiment. The new method ismore » different from the empirical methods suggested for superalloys and does not suffer from the same drawbacks. The present method uses the Fe-Cr-Ni ternary phase diagram for predicting the sigma-forming tendencies and exhibits a wide range of applicability to austenitic stainless steels and heat-resistant Fe-Cr-Ni alloys.« less
Temperature characterisation of the CLOUD chamber at CERN
NASA Astrophysics Data System (ADS)
Dias, A. M.; Almeida, J.; Kirkby, J.; Mathot, S.; Onnela, A.; Vogel, A.; Ehrhart, S.
2014-12-01
Temperature stability, uniformity and absolute scale inside the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber at CERN are important for experiments on aerosol particle nucleation and ice/liquid cloud formation. In order to measure the air temperature, a comprehensive set of arrays ("strings") of platinum resistance thermometers, thermocouples and optical sensors have been installed inside the 26 m3 chamber. The thermal sensors must meet several challenging design requirements: ultra-clean materials, 0.01 K measurement sensitivity, high absolute precision (<0.1 K), 200 K - 373 K range, ability to operate in high electric fields (20 kV/m), and fast response in air (~1 s) in order to measure rapid changes of temperature during ice/liquid cloud formation in the chamber by adiabatic pressure reductions. This presentation will focus on the design of the thermometer strings and the thermal performance of the chamber during the CLOUD8 and CLOUD9 campaigns, 2013-2014, together with the planned upgrades of the CLOUD thermal system.
Du, Wei; Sun, Min; Guo, Pengqi; Chang, Chun; Fu, Qiang
2018-09-01
Nowadays, the abuse of antibiotics in aquaculture has generated considerable problems for food safety. Therefore, it is imperative to develop a simple and selective method for monitoring illegal use of antibiotics in aquatic products. In this study, a method combined molecularly imprinted membranes (MIMs) extraction and liquid chromatography was developed for the selective analysis of cloxacillin from shrimp samples. The MIMs was synthesized by UV photopolymerization, and characterized by scanning electron microscope, Fourier transform infrared spectra, thermo-gravimetric analysis and swelling test. The results showed that the MIMs exhibited excellent permselectivity, high adsorption capacity and fast adsorption rate for cloxacillin. Finally, the method was utilized to determine cloxacillin from shrimp samples, with good accuracies and acceptable relative standard deviation values for precision. The proposed method was a promising alternative for selective analysis of cloxacillin in shrimp samples, due to the easy-operation and excellent selectivity. Copyright © 2018. Published by Elsevier Ltd.
Chen, R; Hahn, C E W; Farmery, A D
2012-08-15
The development of a methodology for testing the time response, linearity and performance characteristics of ultra fast fibre optic oxygen sensors in the liquid phase is presented. Two standard medical paediatric oxygenators are arranged to provide two independent extracorporeal circuits. Flow from either circuit can be diverted over the sensor under test by means of a system of rapid cross-over solenoid valves exposing the sensor to an abrupt change in oxygen partial pressure, P O2. The system is also capable of testing the oxygen sensor responses to changes in temperature, carbon dioxide partial pressure P CO2 and pH in situ. Results are presented for a miniature fibre optic oxygen sensor constructed in-house with a response time ≈ 50 ms and a commercial fibre optic sensor (Ocean Optics Foxy), when tested in flowing saline and stored blood. Copyright © 2012 Elsevier B.V. All rights reserved.
Accelerator-driven transmutation of spent fuel elements
Venneri, Francesco; Williamson, Mark A.; Li, Ning
2002-01-01
An apparatus and method is described for transmuting higher actinides, plutonium and selected fission products in a liquid-fuel subcritical assembly. Uranium may also be enriched, thereby providing new fuel for use in conventional nuclear power plants. An accelerator provides the additional neutrons required to perform the processes. The size of the accelerator needed to complete fuel cycle closure depends on the neutron efficiency of the supported reactors and on the neutron spectrum of the actinide transmutation apparatus. Treatment of spent fuel from light water reactors (LWRs) using uranium-based fuel will require the largest accelerator power, whereas neutron-efficient high temperature gas reactors (HTGRs) or CANDU reactors will require the smallest accelerator power, especially if thorium is introduced into the newly generated fuel according to the teachings of the present invention. Fast spectrum actinide transmutation apparatus (based on liquid-metal fuel) will take full advantage of the accelerator-produced source neutrons and provide maximum utilization of the actinide-generated fission neutrons. However, near-thermal transmutation apparatus will require lower standing
Hu, Dan; Xu, Xu; Cai, Tian; Wang, Wei-Ying; Wu, Chun-Jie; Ye, Li-Ming
2017-12-01
A rapid and sensitive analytical method based on high-performance liquid chromatography-tandem mass spectrometry was developed and validated for the determination of isopyrazam (IZM) and azoxystrobin (AZT) in cucumbers. A modified QuEChERS (quick, easy, cheap, effective, rugged, and safe) method was used as the pretreatment procedure. The samples were extracted with acetonitrile and cleaned up with octadecylsilyl silica (C18) and graphite carbon black. The proposed method resulted in satisfactory recovery of IZM and AZT (91.48 to 114.62%), and relative standard deviations were less than 13.1% at fortification concentrations of 1, 20, and 500 μg kg -1 (n = 3). The limits of quantification for IZM and AZT were 0.498 and 0.499 μg kg -1 , respectively, which are far below the maximum residue level (0.5 mg kg -1 ) established for this type of sample. Matrix effects were also evaluated. This study established a sensitive and fast method for the detection of IZM and AZT in cucumber samples.
Spray-loading: A cryogenic deposition method for diamond anvil cell
NASA Astrophysics Data System (ADS)
Scelta, Demetrio; Ceppatelli, Matteo; Ballerini, Riccardo; Hajeb, Ahmed; Peruzzini, Maurizio; Bini, Roberto
2018-05-01
An efficient loading technique has been developed for flammable, toxic, or explosive gases which can be condensed at liquid nitrogen temperature and ambient pressure in membrane diamond anvil cells (DACs). This cryogenic technique consists in a deposition of small quantities of the desired gas directly into the sample chamber. The deposition is performed using a capillary that reaches the space between the diamond anvils. The DAC is kept under inert gas overpressure during the whole process, in order to avoid contamination from atmospheric O2, CO2, and H2O. This technique provides significant advantages over standard cryo-loading and gas-loading when the condensation of dangerous samples at liquid nitrogen temperature raises safety concerns because it allows dealing with minimum quantities of condensed gases. The whole procedure is particularly fast and efficient. The "spray-loading" has been successfully used in our laboratory to load several samples including acetylene, ammonia, ethylene, and carbon dioxide/water or red phosphorus/NH3 mixtures.
Shelley, Jacob T; Hieftje, Gary M
2010-04-01
The recent development of ambient desorption/ionization mass spectrometry (ADI-MS) has enabled fast, simple analysis of many different sample types. The ADI-MS sources have numerous advantages, including little or no required sample pre-treatment, simple mass spectra, and direct analysis of solids and liquids. However, problems of competitive ionization and limited fragmentation require sample-constituent separation, high mass accuracy, and/or tandem mass spectrometry (MS/MS) to detect, identify, and quantify unknown analytes. To maintain the inherent high throughput of ADI-MS, it is essential for the ion source/mass analyzer combination to measure fast transient signals and provide structural information. In the current study, the flowing atmospheric-pressure afterglow (FAPA) ionization source is coupled with a time-of-flight mass spectrometer (TOF-MS) to analyze fast transient signals (<500 ms FWHM). It was found that gas chromatography (GC) coupled with the FAPA source resulted in a reproducible (<5% RSD) and sensitive (detection limits of <6 fmol for a mixture of herbicides) system with analysis times of ca. 5 min. Introducing analytes to the FAPA in a transient was also shown to significantly reduce matrix effects caused by competitive ionization by minimizing the number and amount of constituents introduced into the ionization source. Additionally, MS/MS with FAPA-TOF-MS, enabling analyte identification, was performed via first-stage collision-induced dissociation (CID). Lastly, molecular and structural information was obtained across a fast transient peak by modulating the conditions that caused the first-stage CID.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, Pimphan A.; Snowden-Swan, Lesley J.; Rappé, Kenneth G.
This work shows preliminary results from techno-economic analysis and life cycle greenhouse gas analysis of the conversion of seven (7) biomass feedstocks to produce liquid transportation fuels via fast pyrolysis and upgrading via hydrodeoxygenation. The biomass consists of five (5) pure feeds (pine, tulip poplar, hybrid poplar, switchgrass, corn stover) and two blends. Blend 1 consists of equal weights of pine, tulip poplar and switchgrass, and blend 2 is 67% pine and 33% hybrid poplar. Upgraded oil product yield is one of the most significant parameters affecting the process economics, and is a function of both fast pyrolysis oil yieldmore » and hydrotreating oil yield. Pure pine produced the highest overall yield, while switchgrass produced the lowest. Interestingly, herbaceous materials blended with woody biomass performed nearly as well as pure woody feedstock, suggesting a non-trivial relationship between feedstock attributes and production yield. Production costs are also highly dependent upon hydrotreating catalyst-related costs. The catalysts contribute an average of ~15% to the total fuel cost, which can be reduced through research and development focused on achieving performance at increased space velocity (e.g., reduced catalyst loading) and prolonging catalyst lifetime. Green-house-gas reduction does not necessarily align with favorable economics. From the greenhouse gas analysis, processing tulip poplar achieves the largest GHG emission reduction relative to petroleum (~70%) because of its lower hydrogen consumption in the upgrading stage that results in a lower natural gas requirement for hydrogen production. Conversely, processing blend 1 results in the smallest GHG emission reduction from petroleum (~58%) because of high natural gas demand for hydrogen production.« less
Mo, Jingke; Zhang, Feng -Yuan; Dehoff, Ryan R.; ...
2016-01-14
The electron beam melting (EBM) additive manufacturing technology was used to fabricate titanium liquid/gas diffusion media with high-corrosion resistances and well-controllable multifunctional parameters, including two-phase transport and excellent electric/thermal conductivities, has been first demonstrated. Their applications in proton exchange membrane eletrolyzer cells have been explored in-situ in a cell and characterized ex-situ with SEM and XRD. Compared with the conventional woven liquid/gas diffusion layers (LGDLs), much better performance with EBM fabricated LGDLs is obtained due to their significant reduction of ohmic loss. The EBM technology components exhibited several distinguished advantages in fabricating gas diffusion layer: well-controllable pore morphology and structure,more » rapid prototyping, fast manufacturing, highly customizing and economic. In addition, by taking advantage of additive manufacturing, it possible to fabricate complicated three-dimensional designs of virtually any shape from a digital model into one single solid object faster, cheaper and easier, especially for titanium. More importantly, this development will provide LGDLs with control of pore size, pore shape, pore distribution, and therefore porosity and permeability, which will be very valuable to develop modeling and to validate simulations of electrolyzers with optimal and repeatable performance. Further, it will lead to a manufacturing solution to greatly simplify the PEMEC/fuel cell components and to couple the LGDLs with other parts, since they can be easily integrated together with this advanced manufacturing process« less
Amrhein, Sven; Schwab, Marie-Luise; Hoffmann, Marc; Hubbuch, Jürgen
2014-11-07
Over the last decade, the use of design of experiment approaches in combination with fully automated high throughput (HTP) compatible screenings supported by robotic liquid handling stations (LHS), adequate fast analytics and data processing has been developed in the biopharmaceutical industry into a strategy of high throughput process development (HTPD) resulting in lower experimental effort, sample reduction and an overall higher degree of process optimization. Apart from HTP technologies, lab-on-a-chip technology has experienced an enormous growth in the last years and allows further reduction of sample consumption. A combination of LHS and lab-on-a-chip technology is highly desirable and realized in the present work to characterize aqueous two phase systems with respect to tie lines. In particular, a new high throughput compatible approach for the characterization of aqueous two phase systems regarding tie lines by exploiting differences in phase densities is presented. Densities were measured by a standalone micro fluidic liquid density sensor, which was integrated into a liquid handling station by means of a developed generic Tip2World interface. This combination of liquid handling stations and lab-on-a-chip technology enables fast, fully automated, and highly accurate density measurements. The presented approach was used to determine the phase diagram of ATPSs composed of potassium phosphate (pH 7) and polyethylene glycol (PEG) with a molecular weight of 300, 400, 600 and 1000 Da respectively in the presence and in the absence of 3% (w/w) sodium chloride. Considering the whole ATPS characterization process, two complete ATPSs could be characterized within 24h, including four runs per ATPS for binodal curve determination (less than 45 min/run), and tie line determination (less than 45 min/run for ATPS preparation and 8h for density determination), which can be performed fully automated over night without requiring man power. The presented methodology provides a cost, time and material effective approach for characterization of ATPS phase diagram on base on highly accurate and comprehensive data. By this means the derived data opens the door for a more detailed description of ATPS towards generating mechanistic based models, since molecular approaches such as MD simulations or molecular descriptions along the line of QSAR heavily rely on accurate and comprehensive data. Copyright © 2014 Elsevier B.V. All rights reserved.
Jourdil, Jean François; Bartoli, Mireille; Stanke-Labesque, Françoise
2009-11-01
Raltegravir is the first antiretroviral agent to target the human immunodeficiency virus-1 (HIV-1) integrase. It is indicated, in association with other antiretrovirals, in the treatment of acquired immunodeficiency syndrome (AIDS) in antiretroviral treatment-experienced adult patients with viral resistance. To evaluate the feasibility of raltegravir therapeutic drug monitoring, we developed a rapid and specific analytical method for the quantification of raltegravir in human plasma by online sample clean-up liquid chromatography-tandem mass spectrometry (LC-MS/MS). After protein precipitation (with 100 microL of acetonitrile/methanol (50/50)) of 25 microL of plasma, fast online matrix-clean-up was performed using a column switching program. The chromatographic step was optimized to separate raltegravir and its glucuronide metabolite (G-raltegravir). Multiple reaction monitoring (MRM) was used for detection of raltegravir and G-raltegravir. In the absence of G-raltegravir standard, G-raltegravir identification was confirmed by beta-glucuronidase pre-treatment. A total analysis of 3.8 min was needed to separate raltegravir to G-raltegravir. The method was linear between 10 and 3000 ng/mL for raltegravir. Analytical recovery was 94+/-1%. Variation coefficients ranged between 5% and 8.4%. Pre-treatment of plasma from a patient under raltegravir treatment with beta-glucuronidase suppressed G-raltegravir peak. We describe a fast online LC-MS/MS assay that is valid and reliable for the quantification of raltegravir, despite the lack of specificity that could occur in MRM scanning mode experiments.