Sample records for fast phase change

  1. Microstructural effects of Ramadan fasting on the brain: a diffusion tensor imaging study.

    PubMed

    Bakan, Ayse Ahsen; Yıldız, Seyma; Alkan, Alpay; Yetis, Huseyin; Kurtcan, Serpil; Ilhan, Mahmut Muzaffer

    2015-01-01

    We aimed to examine whether the brain displays any microstructural changes after a three-week Ramadan fasting period using diffusion tenson imaging. This study included a study and a control group of 25 volunteers each. In the study group, we examined and compared apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values of the participants during (phase 1) and after (phase 2) a period of fasting. The control group included individuals who did not fast. ADC and FA values obtained in phase 1 and phase 2 were compared between the study and control groups. In the study group, ADC values of hypothalamus and, to a lesser extent, of insula were lower in phase 1 compared with phase 2 and the control group. The FA values of amygdala, middle temporal cortex, thalamus and, to a lesser extent, of medial prefrontal cortex were lower in phase 1 compared with phase 2 and the control group. Phase 2 ADC and FA values of the study group were not significantly different compared with the control group at any brain location. A three-week Ramadan fasting period can cause microstructural changes in the brain, and diffusion tensor imaging enables the visualization of these changes. The identification of brain locations where changes occurred in ADC and FA values during fasting can be helpful in diagnostic imaging and understanding the pathophysiology of eating disorders.

  2. Microstructural effects of Ramadan fasting on the brain: a diffusion tensor imaging study

    PubMed Central

    Bakan, Ayse Ahsen; Yıldız, Seyma; Alkan, Alpay; Yetis, Huseyin; Kurtcan, Serpil; Ilhan, Mahmut Muzaffer

    2015-01-01

    PURPOSE We aimed to examine whether the brain displays any microstructural changes after a three-week Ramadan fasting period using diffusion tenson imaging. METHODS This study included a study and a control group of 25 volunteers each. In the study group, we examined and compared apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values of the participants during (phase 1) and after (phase 2) a period of fasting. The control group included individuals who did not fast. ADC and FA values obtained in phase 1 and phase 2 were compared between the study and control groups. RESULTS In the study group, ADC values of hypothalamus and, to a lesser extent, of insula were lower in phase 1 compared with phase 2 and the control group. The FA values of amygdala, middle temporal cortex, thalamus and, to a lesser extent, of medial prefrontal cortex were lower in phase 1 compared with phase 2 and the control group. Phase 2 ADC and FA values of the study group were not significantly different compared with the control group at any brain location. CONCLUSION A three-week Ramadan fasting period can cause microstructural changes in the brain, and diffusion tensor imaging enables the visualization of these changes. The identification of brain locations where changes occurred in ADC and FA values during fasting can be helpful in diagnostic imaging and understanding the pathophysiology of eating disorders. PMID:25835077

  3. Fast Crystallization of the Phase Change Compound GeTe by Large-Scale Molecular Dynamics Simulations.

    PubMed

    Sosso, Gabriele C; Miceli, Giacomo; Caravati, Sebastiano; Giberti, Federico; Behler, Jörg; Bernasconi, Marco

    2013-12-19

    Phase change materials are of great interest as active layers in rewritable optical disks and novel electronic nonvolatile memories. These applications rest on a fast and reversible transformation between the amorphous and crystalline phases upon heating, taking place on the nanosecond time scale. In this work, we investigate the microscopic origin of the fast crystallization process by means of large-scale molecular dynamics simulations of the phase change compound GeTe. To this end, we use an interatomic potential generated from a Neural Network fitting of a large database of ab initio energies. We demonstrate that in the temperature range of the programming protocols of the electronic memories (500-700 K), nucleation of the crystal in the supercooled liquid is not rate-limiting. In this temperature range, the growth of supercritical nuclei is very fast because of a large atomic mobility, which is, in turn, the consequence of the high fragility of the supercooled liquid and the associated breakdown of the Stokes-Einstein relation between viscosity and diffusivity.

  4. The phase-space dependence of fast-ion interaction with tearing modes

    DOE PAGES

    Heidbrink, William W.; Bardoczi, Laszlo; Collins, Cami S.; ...

    2018-03-19

    Modulation of various neutral beam sources probes the interaction of fast ions with tearing modes (TM) in the DIII-D tokamak. As measured by electron cyclotron emission, the (m,n) = (2,1) tearing modes have an island width of ~8 cm and change phase 180 at the q = 2 surface. (Here, m is the poloidal mode number and n is the toroidal mode number.) Deuterium neutral beam injection by six sources with differing injection geometries produces the fast ions. To study the interaction in different parts of phase space, on successive discharges, one of the six sources is modulated at 20more » Hz to populate different fast-ion orbits. The modulation only changes the island width by a few millimeters, implying that any fast-ion effect on mode stability is below detection limits. When compared to the expected signals in the absence of TM-induced transport, both the average and modulated neutron signals deviate, implying that fast-ion transport occurs in much of phase space. Fast-ion D-α (FIDA) measurements detect reductions in signal at wavelengths that are sensitive to counter-passing ions. Neutral particle analyzer data imply poor confinement of trapped fast ions. Lastly, calculations of the expected fast-ion transport that use measured TM properties successfully reproduce the data.« less

  5. The phase-space dependence of fast-ion interaction with tearing modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heidbrink, William W.; Bardoczi, Laszlo; Collins, Cami S.

    Modulation of various neutral beam sources probes the interaction of fast ions with tearing modes (TM) in the DIII-D tokamak. As measured by electron cyclotron emission, the (m,n) = (2,1) tearing modes have an island width of ~8 cm and change phase 180 at the q = 2 surface. (Here, m is the poloidal mode number and n is the toroidal mode number.) Deuterium neutral beam injection by six sources with differing injection geometries produces the fast ions. To study the interaction in different parts of phase space, on successive discharges, one of the six sources is modulated at 20more » Hz to populate different fast-ion orbits. The modulation only changes the island width by a few millimeters, implying that any fast-ion effect on mode stability is below detection limits. When compared to the expected signals in the absence of TM-induced transport, both the average and modulated neutron signals deviate, implying that fast-ion transport occurs in much of phase space. Fast-ion D-α (FIDA) measurements detect reductions in signal at wavelengths that are sensitive to counter-passing ions. Neutral particle analyzer data imply poor confinement of trapped fast ions. Lastly, calculations of the expected fast-ion transport that use measured TM properties successfully reproduce the data.« less

  6. Simulating a topological transition in a superconducting phase qubit by fast adiabatic trajectories

    NASA Astrophysics Data System (ADS)

    Wang, Tenghui; Zhang, Zhenxing; Xiang, Liang; Gong, Zhihao; Wu, Jianlan; Yin, Yi

    2018-04-01

    The significance of topological phases has been widely recognized in the community of condensed matter physics. The well controllable quantum systems provide an artificial platform to probe and engineer various topological phases. The adiabatic trajectory of a quantum state describes the change of the bulk Bloch eigenstates with the momentum, and this adiabatic simulation method is however practically limited due to quantum dissipation. Here we apply the "shortcut to adiabaticity" (STA) protocol to realize fast adiabatic evolutions in the system of a superconducting phase qubit. The resulting fast adiabatic trajectories illustrate the change of the bulk Bloch eigenstates in the Su-Schrieffer-Heeger (SSH) model. A sharp transition is experimentally determined for the topological invariant of a winding number. Our experiment helps identify the topological Chern number of a two-dimensional toy model, suggesting the applicability of the fast adiabatic simulation method for topological systems.

  7. Key experimental information on intermediate-range atomic structures in amorphous Ge2Sb2Te5 phase change material

    NASA Astrophysics Data System (ADS)

    Hosokawa, Shinya; Pilgrim, Wolf-Christian; Höhle, Astrid; Szubrin, Daniel; Boudet, Nathalie; Bérar, Jean-François; Maruyama, Kenji

    2012-04-01

    Laser-induced crystalline-amorphous phase change of Ge-Sb-Te alloys is the key mechanism enabling the fast and stable writing/erasing processes in rewritable optical storage devices, such as digital versatile disk (DVD) or blu-ray disk. Although the structural information in the amorphous phase is essential for clarifying this fast process, as well as long lasting stabilities of both the phases, experimental works were mostly limited to the short-range order by x ray absorption fine structure. Here we show both the short and intermediate-range atomic structures of amorphous DVD material, Ge2Sb2Te5 (GST), investigated by a combination of anomalous x ray scattering and reverse Monte Carlo modeling. From the obtained atomic configurations of amorphous GST, we have found that the Sb atoms and half of the Ge atoms play roles in the fast phase change process of order-disorder transition, while the remaining Ge atoms act for the proper activation energy of barriers between the amorphous and crystalline phases.

  8. Kinematic principles of primate rotational vestibulo-ocular reflex. I. Spatial organization of fast phase velocity axes

    NASA Technical Reports Server (NTRS)

    Hess, B. J.; Angelaki, D. E.

    1997-01-01

    The spatial organization of fast phase velocity vectors of the vestibulo-ocular reflex (VOR) was studied in rhesus monkeys during yaw rotations about an earth-horizontal axis that changed continuously the orientation of the head relative to gravity ("barbecue spit" rotation). In addition to a velocity component parallel to the rotation axis, fast phases also exhibited a velocity component that invariably was oriented along the momentary direction of gravity. As the head rotated through supine and prone positions, torsional components of fast phase velocity axes became prominent. Similarly, as the head rotated through left and right ear-down positions, fast phase velocity axes exhibited prominent vertical components. The larger the speed of head rotation the greater the magnitude of this fast phase component, which was collinear with gravity. The main sequence properties of VOR fast phases were independent of head position. However, peak amplitude as well as peak velocity of fast phases were both modulated as a function of head orientation, exhibiting a minimum in prone position. The results suggest that the fast phases of vestibulo-ocular reflexes not only redirect gaze and reposition the eye in the direction of head motion but also reorient the eye with respect to earth-vertical when the head moves relative to gravity. As further elaborated in the companion paper, the underlying mechanism could be described as a dynamic, gravity-dependent modulation of the coordinates of ocular rotations relative to the head.

  9. Ti-Sb-Te alloy: a candidate for fast and long-life phase-change memory.

    PubMed

    Xia, Mengjiao; Zhu, Min; Wang, Yuchan; Song, Zhitang; Rao, Feng; Wu, Liangcai; Cheng, Yan; Song, Sannian

    2015-04-15

    Phase-change memory (PCM) has great potential for numerous attractive applications on the premise of its high-device performances, which still need to be improved by employing a material with good overall phase-change properties. In respect to fast speed and high endurance, the Ti-Sb-Te alloy seems to be a promising candidate. Here, Ti-doped Sb2Te3 (TST) materials with different Ti concentrations have been systematically studied with the goal of finding the most suitable composition for PCM applications. The thermal stability of TST is improved dramatically with increasing Ti content. The small density change of T0.32Sb2Te3 (2.24%), further reduced to 1.37% for T0.56Sb2Te3, would greatly avoid the voids generated at phase-change layer/electrode interface in a PCM device. Meanwhile, the exponentially diminished grain size (from ∼200 nm to ∼12 nm), resulting from doping more and more Ti, enhances the adhesion between phase-change film and substrate. Tests of TST-based PCM cells have demonstrated a fast switching rate of ∼10 ns. Furthermore, because of the lower thermal conductivities of TST materials, compared with Sb2Te3-based PCM cells, T0.32Sb2Te3-based ones exhibit lower required pulse voltages for Reset operation, which largely decreases by ∼50% for T0.43Sb2Te3-based ones. Nevertheless, the operation voltages for T0.56Sb2Te3-based cells dramatically increase, which may be due to the phase separation after doping excessive Ti. Finally, considering the decreased resistance ratio, TixSb2Te3 alloy with x around 0.43 is proved to be a highly promising candidate for fast and long-life PCM applications.

  10. Temporal partitioning of adaptive responses of the murine heart to fasting.

    PubMed

    Brewer, Rachel A; Collins, Helen E; Berry, Ryan D; Brahma, Manoja K; Tirado, Brian A; Peliciari-Garcia, Rodrigo A; Stanley, Haley L; Wende, Adam R; Taegtmeyer, Heinrich; Rajasekaran, Namakkal Soorappan; Darley-Usmar, Victor; Zhang, Jianhua; Frank, Stuart J; Chatham, John C; Young, Martin E

    2018-03-15

    Recent studies suggest that the time of day at which food is consumed dramatically influences clinically-relevant cardiometabolic parameters (e.g., adiposity, insulin sensitivity, and cardiac function). Meal feeding benefits may be the result of daily periods of feeding and/or fasting, highlighting the need for improved understanding of the temporal adaptation of cardiometabolic tissues (e.g., heart) to fasting. Such studies may provide mechanistic insight regarding how time-of-day-dependent feeding/fasting cycles influence cardiac function. We hypothesized that fasting during the sleep period elicits beneficial adaptation of the heart at transcriptional, translational, and metabolic levels. To test this hypothesis, temporal adaptation was investigated in wild-type mice fasted for 24-h, or for either the 12-h light/sleep phase or the 12-h dark/awake phase. Fasting maximally induced fatty acid responsive genes (e.g., Pdk4) during the dark/active phase; transcriptional changes were mirrored at translational (e.g., PDK4) and metabolic flux (e.g., glucose/oleate oxidation) levels. Similarly, maximal repression of myocardial p-mTOR and protein synthesis rates occurred during the dark phase; both parameters remained elevated in the heart of fasted mice during the light phase. In contrast, markers of autophagy (e.g., LC3II) exhibited peak responses to fasting during the light phase. Collectively, these data show that responsiveness of the heart to fasting is temporally partitioned. Autophagy peaks during the light/sleep phase, while repression of glucose utilization and protein synthesis is maximized during the dark/active phase. We speculate that sleep phase fasting may benefit cardiac function through augmentation of protein/cellular constituent turnover. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Fast ferroelectric phase shifters for energy recovery linacs

    DOE PAGES

    Kazakov, S. Yu; Shchelkunov, S. V.; Yakovlev, V. P.; ...

    2010-11-24

    Fast phase shifters are described that use a novel barium strontium titanate ceramic that can rapidly change its dielectric constant as an external bias voltage is changed. These phase shifters promise to reduce by ~10 times the power requirements for the rf source needed to drive an energy recovery linac (ERL). Such phase shifters will be coupled with superconducting radiofrequency cavities so as to tune them to compensate for phase instabilities, whether beam-driven or those caused by microphonics. The most promising design is presented, which was successfully cold tested and demonstrated a switching speed of ~30 ns for 77 deg, correspondingmore » to < 0.5 ns per deg of rf phase. As a result, other crucial issues (losses, phase shift values, etc.) are discussed.« less

  12. Atomic structure and pressure-induced phase transformations in a phase-change alloy

    NASA Astrophysics Data System (ADS)

    Xu, Ming

    Phase-change materials exist in at least two phases under the ambient condition. One is the amorphous state and another is crystalline phase. These two phases have vastly different physical properties, such as electrical conductivity, optical reflectivity, mass density, thermal conductivity, etc. The distinct physical properties and the fast transformation between amorphous and crystalline phases render these materials the ability to store information. For example, the DVD and the Blue-ray discs take advantage of the optical reflectivity contrast, and the newly developed solid-state memories make use of the large conductivity difference. In addition, both the amorphous and crystalline phases in phase-change memories (PCMs) are very stable at room temperature, and they are easy to be scaled up in the production of devices with large storage density. All these features make phase-change materials the ideal candidates for the next-generation memories. Despite of the fast development of these new memory materials in industry, many fundamental physics problems underlying these interesting materials are still not fully resolved. This thesis is aiming at solving some of the key issues in phase-change materials. Most of phase-change materials are composed of Ge-Sb-Te constituents. Among all these Ge-Sb-Te based materials, Ge2Sb2Te5 (GST) has the best performance and has been frequently studied as a prototypical phase-change material. The first and foremost issue is the structure of the two functioning phases. In this thesis, we investigate the unique atomic structure and bonding nature of amorphous GST (a-GST) and crystalline GST ( c-GST), using ab initio tools and X-ray diffraction (XRD) methods. Their local structures and bonding scenarios are then analyzed using electronic structure calculations. In order to gain insight into the fast phase transformation mechanism, we also carried out a series of high-pressure experiments on GST. Several new polymorphs and their transformations have been revealed under high pressure via in situ XRD and in situ electrical resistivity measurements. The mechanisms of the structural and property changes have been uncovered via ab initio molecular dynamics simulations.

  13. Apparatus and Method to Enable Precision and Fast Laser Frequency Tuning

    NASA Technical Reports Server (NTRS)

    Chen, Jeffrey R. (Inventor); Numata, Kenji (Inventor); Wu, Stewart T. (Inventor); Yang, Guangning (Inventor)

    2015-01-01

    An apparatus and method is provided to enable precision and fast laser frequency tuning. For instance, a fast tunable slave laser may be dynamically offset-locked to a reference laser line using an optical phase-locked loop. The slave laser is heterodyned against a reference laser line to generate a beatnote that is subsequently frequency divided. The phase difference between the divided beatnote and a reference signal may be detected to generate an error signal proportional to the phase difference. The error signal is converted into appropriate feedback signals to phase lock the divided beatnote to the reference signal. The slave laser frequency target may be rapidly changed based on a combination of a dynamically changing frequency of the reference signal, the frequency dividing factor, and an effective polarity of the error signal. Feed-forward signals may be generated to accelerate the slave laser frequency switching through laser tuning ports.

  14. Changes in responsiveness to serotonin on rat ventromedial hypothalamic neurons after food deprivation.

    PubMed

    Nishimura, F; Nishihara, M; Torii, K; Takahashi, M

    1996-07-01

    The effects of food deprivation on responsiveness of neurons in the ventromedial nucleus of the hypothalamus (VMH) to serotonin (5-HT), norepinephrine (NE), gamma-aminobutyric acid (GABA), and neuropeptide Y (NPY) were investigated using brain slices in vitro along with behavioral changes in vivo during fasting. Adult male rats were fasted for 48 h starting at the beginning of the dark phase (lights on: 0700-1900 h). The animals showed a significant loss of body weight on the second day of fasting and an increase in food consumption on the first day of refeeding. During fasting, voluntary locomotor activity was significantly increased in the light phase but not during the dark phase. Plasma catecholamine levels were not affected by fasting. In vitro electrophysiological study showed that, in normally fed rats, 5-HT and NE induced both excitatory and inhibitory responses, while GABA and NPY intensively suppressed unit activity in the VMH. Food deprivation for 48 h significantly changed the responsiveness of VMH neurons to 5-HT, for instance, the ratio of neurons whose activity was facilitated by 5-HT was significantly decreased. The responsiveness of VMH neurons to NE, GABA, and NPY was not affected by food deprivation. These results suggest that food deprivation decreases the facilitatory response of VMH neurons to 5-HT, and that this change in responsiveness to 5-HT is at least partially involved in the increase in food intake motivation and locomotor activity during fasting.

  15. Motion detection, novelty filtering, and target tracking using an interferometric technique with GaAs phase conjugate mirror

    NASA Technical Reports Server (NTRS)

    Cheng, Li-Jen (Inventor); Liu, Tsuen-Hsi (Inventor)

    1991-01-01

    A method and apparatus for detecting and tracking moving objects in a noise environment cluttered with fast- and slow-moving objects and other time-varying background. A pair of phase conjugate light beams carrying the same spatial information commonly cancel each other out through an image subtraction process in a phase conjugate interferometer, wherein gratings are formed in a fast photorefractive phase conjugate mirror material. In the steady state, there is no output. When the optical path of one of the two phase conjugate beams is suddenly changed, the return beam loses its phase conjugate nature and the interferometer is out of balance, resulting in an observable output. The observable output lasts until the phase conjugate nature of the beam has recovered. The observable time of the output signal is roughly equal to the formation time of the grating. If the optical path changing time is slower than the formation time, the change of optical path becomes unobservable, because the index grating can follow the change. Thus, objects traveling at speeds which result in a path changing time which is slower than the formation time are not observable and do not clutter the output image view.

  16. Fast and slow active control of combustion instabilities in liquid-fueled combustors

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Yeon

    This thesis describes an experimental investigation of two different novel active control approaches that are employed to suppress combustion instabilities in liquid-fueled combustors. A "fast" active controller requires continuous modulation of the fuel injection rate at the frequency of the instability with proper phase and gain. Use of developed optical tools reveals that the "fast" active control system suppresses the instability by changing the nearly flat distribution of the phase between pressure and heat release oscillations to a gradually varying phase distribution, thus dividing the combustion zone into regions that alternately damp and drive combustor oscillations. The effects of these driving/damping regions tend to counter one another, which result in significant damping of the unstable oscillations. In contrast, a "slow" active controller operates at a rate commensurate with that at which operating conditions change during combustor operation. Consequently, "slow" controllers need infrequent activation in response to changes in engine operating conditions to assure stable operation at all times. Using two types of fuel injectors that can produce large controllable variation of fuel spray properties, it is shown that by changing the spray characteristics it is possible to significantly damp combustion instabilities. Similar to the aforementioned result of the "fast" active control study, "slow" change of the fuel spray properties also modifies the nearly flat phase distribution during unstable operation to a gradually varying phase distribution, resulting in combustor "stabilization". Furthermore, deconvolutions of CH*-chemiluminescence images reveal the presence of vortex-flame interaction during unstable operation. Strong driving of instabilities occurs where the mean axial velocity of the flow is approximately zero, a short distance downstream of the flame holder where a significant fraction of the fuel burns in phase with the pressure oscillations. It is shown that the "fast" and "slow" active control approaches suppress combustion instabilities in a different manner. Nevertheless, the both control approaches successfully suppress combustion instabilities by modifying the temporal and spatial behavior of the combustion process heat release that is responsible for driving the instability.

  17. Ga-doped indium oxide nanowire phase change random access memory cells

    NASA Astrophysics Data System (ADS)

    Jin, Bo; Lim, Taekyung; Ju, Sanghyun; Latypov, Marat I.; Kim, Hyoung Seop; Meyyappan, M.; Lee, Jeong-Soo

    2014-02-01

    Phase change random access memory (PCRAM) devices are usually constructed using tellurium based compounds, but efforts to seek other materials providing desirable memory characteristics have continued. We have fabricated PCRAM devices using Ga-doped In2O3 nanowires with three different Ga compositions (Ga/(In+Ga) atomic ratio: 2.1%, 11.5% and 13.0%), and investigated their phase switching properties. The nanowires (˜40 nm in diameter) can be repeatedly switched between crystalline and amorphous phases, and Ga concentration-dependent memory switching behavior in the nanowires was observed with ultra-fast set/reset rates of 80 ns/20 ns, which are faster than for other competitive phase change materials. The observations of fast set/reset rates and two distinct states with a difference in resistance of two to three orders of magnitude appear promising for nonvolatile information storage. Moreover, we found that increasing the Ga concentration can reduce the power consumption and resistance drift; however, too high a level of Ga doping may cause difficulty in achieving the phase transition.

  18. Characteristics of phase 3-like activity and rebound excitation triggered by hexamethonium and atropine administration in the ovine small bowel.

    PubMed

    Romański, K W

    2010-02-01

    Administration of hexamethonium (Hx) and atropine inhibits myoelectric and motor activity and then evokes a stimulatory effect called rebound excitation (RE) in the ovine small bowel. RE has not been precisely characterized so far and it is possible that it is composed of different types of motility. This study was thus devoted to characterizing these excitatory changes in the myoelectric and motor activity of the small bowel, particularly in the duodenum in conscious sheep. These alterations occurred in response to different intravenous doses of Hx and atropine administered alone or in combinations during various phases of the migrating myoelectric or motor complex (MMC) in the fasted and non-fasted sheep. Initially two basic types of excitatory response to the cholinergic blockade were found. In the course of chronic experiments different doses of Hx and atropine evoked phase 3-like activity (unorganized phase 3 of the MMC or its fragments) alternating with the less regular RE and the duration of these changes was related to the drug dose. In the nonfasted sheep these changes were less pronounced than in the fasted animals. When the drug was given during phase 1 of the MMC, RE did not occur or was greatly reduced. Administration of Hx and atropine in the course of phase 2a and phase 2b of the MMC produced roughly similar effects. Hx triggered stronger phase 3-like activity and RE than atropine. Combinations of Hx and atropine induced an additive effect, more evident in the fasted animals. These actions of Hx and atropine, thus, appear to involve at least partly the same intramural pathways. It is concluded that Hx and atropine evoke phase 3-like activity alternating with RE as the secondary stimulatory response in conscious sheep and both these types of the intestinal motility represent two distinct motility patterns.

  19. Motion detection, novelty filtering, and target tracking using an interferometric technique with a GaAs phase conjugate mirror

    NASA Technical Reports Server (NTRS)

    Cheng, Li-Jen (Inventor); Liu, Tsuen-Hsi (Inventor)

    1990-01-01

    A method and apparatus is disclosed for detecting and tracking moving objects in a noise environment cluttered with fast-and slow-moving objects and other time-varying background. A pair of phase conjugate light beams carrying the same spatial information commonly cancel each other out through an image subtraction process in a phase conjugate interferometer, wherein gratings are formed in a fast photo-refractive phase conjugate mirror material. In the steady state, there is no output. When the optical path of one of the two phase conjugate beams is suddenly changed, the return beam loses its phase conjugate nature and the inter-ferometer is out of balance, resulting in an observable output. The observable output lasts until the phase conjugate nature of the beam has recovered. The observable time of the output signal is roughly equal to the formation time of the grating. If the optical path changing time is slower than the formation time, the change of optical path becomes unobservable, because the index grating can follow the change. Thus, objects traveling at speeds which result in a path changing time which is slower than the formation time are not observable and do not clutter the output image view.

  20. Interactions of cervico-ocular and vestibulo-ocular fast-phase signals in the control of eye position in rabbits.

    PubMed Central

    Barmack, N H; Errico, P; Ferraresi, A; Pettorossi, V E

    1989-01-01

    1. Eye movements in unanaesthetized rabbits were studied during horizontal neck-proprioceptive stimulation (movement of the body with respect to the fixed head), when this stimulation was given alone and when it was given simultaneously with vestibular stimulation (rotation of the head-body). The effect of neck-proprioceptive stimulation on modifying the anticompensatory fast-phase eye movements (AFPs) evoked by vestibular stimulation was studied with a 'conditioning-test' protocol; the 'conditioning' stimulus was a neck-proprioceptive signal evoked by a step-like change in body position with respect to the head and the 'test' stimulus was a vestibular signal evoked by a step rotation of the head-body. 2. The influence of eye position and direction of slow eye movements on the occurrence of compensatory fast-phase eye movements (CFPs) evoked by neck-proprioceptive stimulation was also examined. 3. The anticompensatory fast phase (AFP) evoked by vestibular stimulation was attenuated by a preceding neck-proprioceptive stimulus which when delivered alone evoked compensatory slow-phase eye movements (CSP) in the same direction as the CSP evoked by vestibular stimulation. Conversely, the vestibularly evoked AFP was potentiated by a neck-proprioceptive stimulus which evoked CSPs opposite to that of vestibularly evoked CSPs. 4. Eccentric initial eye positions increased the probability of occurrence of midline-directed compensatory fast-phase eye movements (CFPs) evoked by appropriate neck-proprioceptive stimulation. 5. The gain of the horizontal cervico-ocular reflex (GHCOR) was measured from the combined changes in eye position resulting from AFPs and CSPs. GHCOR was potentiated during simultaneous vestibular stimulation. This enhancement of GHCOR occurred at neck-proprioceptive stimulus frequencies which, in the absence of conjoint vestibular stimulation, do not evoke CSPs. PMID:2795479

  1. The growth and structure of dark matter haloes

    NASA Astrophysics Data System (ADS)

    Zhao, D. H.; Mo, H. J.; Jing, Y. P.; Börner, G.

    2003-02-01

    In this paper, we analyse in detail the mass-accretion histories and structural properties of dark haloes in high-resolution N-body simulations. We model the density distribution in individual haloes using the Navarro-Frenk-White (NFW) profile. For a given halo, there is a tight correlation between its inner-scale radius rs and the mass within it, Ms, for all its main progenitors. Using this correlation, one can predict quite well the structural properties of a dark halo at any time in its history from its mass-accretion history, implying that the structure properties and the mass-accretion history are closely correlated. The predicted growing rate of concentration c with time tends to increase with decreasing mass-accretion rate. The build-up of dark haloes in cold dark matter (CDM) models generally consists of an early phase of fast accretion (where the halo mass Mh increases with time much faster than the expansion rate of the Universe) and a late phase of slow accretion (where Mh increases with time approximately as the expansion rate). These two phases are separated at a time when c~ 4 and the typical binding energy of the halo is approximately equal to that of a singular isothermal sphere with the same circular velocity. Haloes in the two accretion phases show systematically different properties, for example, the circular velocity vh increases rapidly with time in the fast accretion phase but remains almost constant in the slow accretion phase, the inner properties of a halo, such as rs and Ms increase rapidly with time in the fast accretion phase but change only slowly in the slow accretion phase, the inner circular velocity vs is approximately equal to vh in the fast accretion phase but is larger in the slow accretion phase. The potential well associated with a halo is built up mainly in the fast accretion phase, while a large amount of mass can be accreted in the slow accretion phase without changing the potential well significantly. We discuss our results in connection with the formation of dark haloes and galaxies in hierarchical models.

  2. Brain responses to food images during the early and late follicular phase of the menstrual cycle in healthy young women: relation to fasting and feeding1234

    PubMed Central

    Ziemke, Florencia; Magkos, Faidon; Barrios, Fernando A; Brinkoetter, Mary; Boyd, Ingrid; Rifkin-Graboi, Anne; Yannakoulia, Mary; Rojas, Rafael; Pascual-Leone, Alvaro; Mantzoros, Christos S

    2011-01-01

    Background: Food intake fluctuates throughout the menstrual cycle; it is greater during the early follicular and luteal phases than in the late follicular (periovulatory) phase. Ovarian steroids can influence brain areas that process food-related information, but the specific contribution of individual hormones and the importance of the prandial state remain unknown. Objective: The objective was to examine whether brain activation during food visualization is affected by changes in estradiol concentration in the fasted and fed conditions. Design: Nine eumenorrheic, lean young women [mean (±SD) age: 26.2 ± 3.2 y; body mass index (in kg/m2): 22.4 ± 1.2] completed 2 visits, one in the early (low estradiol) and one in the late (high estradiol) follicular phase of their menstrual cycle. At each visit, subjects underwent functional magnetic resonance imaging while they viewed food and nonfood images, before and after a standardized meal. Region-of-interest analysis was used to examine the effect of follicular phase and prandial state on brain activation (food > nonfood contrast) and its association with estradiol concentration. Results: Differences were identified in the inferior frontal and fusiform gyri. In these areas, visualization of food elicited greater activation in the fed state than during fasting but only in the late follicular phase, when estradiol concentration was high. The change in estradiol concentration across the follicular phase (late minus early) was inversely correlated with the change in fusiform gyrus activation in the fasted state but not in the fed state. Conclusion: Our findings suggest that estradiol may reduce food intake by decreasing sensitivity to food cues in the ventral visual pathway under conditions of energy deprivation. This trial was registered at clinicaltrials.gov as NCT00130117. PMID:21593494

  3. A New Observation Technique Applied to Early/Fast VLF Scattering Events

    NASA Astrophysics Data System (ADS)

    Kotovsky, D. A.; Moore, R. C.

    2012-12-01

    Early/fast very low frequency (VLF, 3-30 kHz) events are understood to result from ionospheric conductivity changes associated with lightning. Early/fast amplitude and phase perturbations have been observed coincidentally with various optical observations of transient luminous events (TLEs), including elves, sprites, and sprite halos, each of which can have temporal characteristics consistent with those of early/fast VLF events. It is yet unresolved, however, whether a specific type of TLE is directly related to the ionospheric conductivity changes responsible for the typical early/fast event. In this paper, we present spread spectrum VLF scattering observations of early/fast events. The spread spectrum analysis technique determines the amplitude and phase of a subionospherically propagating VLF signal as a function of time during the early/fast event and as a function of frequency across the 200 Hz bandwidth of the VLF transmission. VLF scattering observations, each identified with causative lightning logged by the National Lightning Detection Network (NLDN), are compared with the predictions of the Long-Wave Propagation Capability (LWPC) code, a three-dimensional earth-ionosphere waveguide propagation and scattering model. Theoretical predictions for VLF scattering from ionization changes associated with elves are compared with those associated with sprite halos, and each are compared with experimental observations. Results indicate that the observed frequency dependence of VLF scattering during early/fast events results from the combination of scattering source properties and Earth-ionosphere waveguide propagation effects. Observations are more consistent with the modeled amplitude perturbations associated with sprite halos than those with elves.

  4. Improved frequency/voltage converters for fast quartz crystal microbalance applications.

    PubMed

    Torres, R; García, J V; Arnau, A; Perrot, H; Kim, L To Thi; Gabrielli, C

    2008-04-01

    The monitoring of frequency changes in fast quartz crystal microbalance (QCM) applications is a real challenge in today's instrumentation. In these applications, such as ac electrogravimetry, small frequency shifts, in the order of tens of hertz, around the resonance of the sensor can occur up to a frequency modulation of 1 kHz. These frequency changes have to be monitored very accurately both in magnitude and phase. Phase-locked loop techniques can be used for obtaining a high performance frequency/voltage converter which can provide reliable measurements. Sensitivity higher than 10 mVHz, for a frequency shift resolution of 0.1 Hz, with very low distortion in tracking both the magnitude and phase of the frequency variations around the resonance frequency of the sensor are required specifications. Moreover, the resonance frequency can vary in a broad frequency range from 5 to 10 MHz in typical QCM sensors, which introduces an additional difficulty. A new frequency-voltage conversion system based on a double tuning analog-digital phase-locked loop is proposed. The reported electronic characterization and experimental results obtained with conducting polymers prove its reliability for ac-electrogravimetry measurements and, in general, for fast QCM applications.

  5. Improved frequency/voltage converters for fast quartz crystal microbalance applications

    NASA Astrophysics Data System (ADS)

    Torres, R.; García, J. V.; Arnau, A.; Perrot, H.; Kim, L. To Thi; Gabrielli, C.

    2008-04-01

    The monitoring of frequency changes in fast quartz crystal microbalance (QCM) applications is a real challenge in today's instrumentation. In these applications, such as ac electrogravimetry, small frequency shifts, in the order of tens of hertz, around the resonance of the sensor can occur up to a frequency modulation of 1kHz. These frequency changes have to be monitored very accurately both in magnitude and phase. Phase-locked loop techniques can be used for obtaining a high performance frequency/voltage converter which can provide reliable measurements. Sensitivity higher than 10mV/Hz, for a frequency shift resolution of 0.1Hz, with very low distortion in tracking both the magnitude and phase of the frequency variations around the resonance frequency of the sensor are required specifications. Moreover, the resonance frequency can vary in a broad frequency range from 5to10MHz in typical QCM sensors, which introduces an additional difficulty. A new frequency-voltage conversion system based on a double tuning analog-digital phase-locked loop is proposed. The reported electronic characterization and experimental results obtained with conducting polymers prove its reliability for ac-electrogravimetry measurements and, in general, for fast QCM applications.

  6. Understanding the fast phase-change mechanism of tetrahedrally bonded Cu2GeTe3 : Comprehensive analyses of electronic structure and transport phenomena

    NASA Astrophysics Data System (ADS)

    Kobayashi, Keisuke; Skelton, Jonathan M.; Saito, Yuta; Shindo, Satoshi; Kobata, Masaaki; Fons, Paul; Kolobov, Alexander V.; Elliott, Stephen; Ando, Daisuke; Sutou, Yuji

    2018-05-01

    Cu2GeTe3 (CGT) phase-change material, a promising candidate for advanced fast nonvolatile random-access-memory devices, has a chalcopyritelike structure with s p3 bonding in the crystalline phase; thus, the phase-change (PC) mechanism is considered to be essentially different from that of the standard PC materials (e.g., Ge-Sb-Te) with threefold to sixfold p -like bonding. In order to reveal the PC mechanism of CGT, the electronic structure change due to PC has been investigated by laboratory hard x-ray photoelectron spectroscopy and combined first-principles density-functional theory molecular-dynamics simulations. The valence-band spectra, in both crystalline and amorphous phases, are well simulated by the calculations. An inherent tendency of Te 5 s lone-pair formation and an enhanced participation of Cu 3 d orbitals in the bonding are found to play dominant roles in the PC mechanism. The electrical conductivity of as-deposited films and its change during the PC process is investigated in connection with valence-band spectral changes near the Fermi level. The results are successfully analyzed, based on a model proposed by Davis and Mott for chalcogenide amorphous semiconductors. The results suggest that robustness of the defect-band states against thermal stress is a key to the practical application of this material for memory devices.

  7. Adaptive Time Stepping for Transient Network Flow Simulation in Rocket Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok K.; Ravindran, S. S.

    2017-01-01

    Fluid and thermal transients found in rocket propulsion systems such as propellant feedline system is a complex process involving fast phases followed by slow phases. Therefore their time accurate computation requires use of short time step initially followed by the use of much larger time step. Yet there are instances that involve fast-slow-fast phases. In this paper, we present a feedback control based adaptive time stepping algorithm, and discuss its use in network flow simulation of fluid and thermal transients. The time step is automatically controlled during the simulation by monitoring changes in certain key variables and by feedback. In order to demonstrate the viability of time adaptivity for engineering problems, we applied it to simulate water hammer and cryogenic chill down in pipelines. Our comparison and validation demonstrate the accuracy and efficiency of this adaptive strategy.

  8. Influence of crystal allomorph and crystallinity on the products and behavior of cellulose during fast pyrolysis

    DOE PAGES

    Mukarakate, Calvin; Mittal, Ashutosh; Ciesielski, Peter N.; ...

    2016-07-19

    Here, cellulose is the primary biopolymer responsible for maintaining the structural and mechanical integrity of cell walls and, during the fast pyrolysis of biomass, may be restricting cell wall expansion and inhibiting phase transitions that would otherwise facilitate efficient escape of pyrolysis products. Here, we test whether modifications in two physical properties of cellulose, its crystalline allomorph and degree of crystallinity, alter its performance during fast pyrolysis. We show that both crystal allomorph and relative crystallinity of cellulose impact the slate of primary products produced by fast pyrolysis. For both cellulose-I and cellulose-II, changes in crystallinity dramatically impact the fastmore » pyrolysis product portfolio. In both cases, only the most highly crystalline samples produced vapors dominated by levoglucosan. Cellulose-III, on the other hand, produces largely the same slate of products regardless of its relative crystallinity and produced as much or more levoglucosan at all crystallinity levels compared to cellulose-I or II. In addition to changes in products, the different cellulose allomorphs affected the viscoelastic properties of cellulose during rapid heating. Real-time hot-stage pyrolysis was used to visualize the transition of the solid material through a molten phase and particle shrinkage. SEM analysis of the chars revealed additional differences in viscoelastic properties and molten phase behavior impacted by cellulose crystallinity and allomorph. Regardless of relative crystallinity, the cellulose-III samples displayed the most obvious evidence of having transitioned through a molten phase.« less

  9. System analysis of the dynamic response of the coronary circulation to a sudden change in heart rate.

    PubMed

    Dankelman, J; Stassen, H G; Spaan, J A

    1990-03-01

    In this study the response of driving pressure/flow ration on an abrupt change in heart rate was analysed. The difference between the response obtained with constant pressure and constant flow perfusion was also studied. The responses show a fast initial reversed phase followed by a slow phase caused by regulation. To test whether the initial phase could be the result of mechanical changes in the coronary circulation, a model for regulation was extended by the addition of four different mechanical models originating from the literature. These extended models were able to explain the fast initial phase. However, the mechanical model consisting of an intramyocardial compliance (C = 0.08 ml mm Hg-1 100 g-1) with a variable venous resistance, and the model consisting of a waterfall and a small compliance (C = 0.007 ml mm Hg-1 100g-1) both explained these responses best. The analysis showed that there is no direct relationship between rate of change of vascular tone and rate of change of pressure/flow ratio. However, on the basis of the two extended models, it can be predicted that the half-time for the response of regulation to be complete is about 9s with constant pressure perfusion and 15 s with constant flow perfusion.

  10. Ferroelectric Based High Power Components for L-Band Accelerator Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanareykin, Alex; Jing, Chunguang; Kostin, Roman

    2018-01-16

    We are developing a new electronic device to control the power in particle accelerators. The key technology is a new nanostructured material developed by Euclid that changes its properties with an applied electric field. Both superconducting and conventional accelerating structures require fast electronic control of the input rf power. A fast controllable phase shifter would allow for example the control of the rf power delivered to multiple accelerating cavities from a single power amplifier. Nonlinear ferroelectric microwave components can control the tuning or the input power coupling for rf cavities. Applying a bias voltage across a nonlinear ferroelectric changes itsmore » permittivity. This effect can be used to cause a phase change of a propagating rf signal or change the resonant frequency of a cavity. The key is the development of a low loss highly tunable ferroelectric material.« less

  11. Phase recovery from a single interferogram with closed fringes by phase unwrapping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munoz-Maciel, Jesus; Casillas-Rodriguez, Francisco J.; Mora-Gonzalez, Miguel

    2011-01-01

    We describe a new algorithm for phase determination from a single interferogram with closed fringes based on an unwrapping procedure. Here we use bandpass filtering in the Fourier domain, obtaining two wrapped phases with sign changes corresponding to the orientation of the applied filters. An unwrapping scheme that corrects the sign ambiguities by comparing the local derivatives is then proposed. This can be done, assuming that the phase derivatives do not change abruptly among adjacent areas as occurs with smooth continuous phase maps. The proposed algorithm works fast and is robust against noise, as demonstrated in experimental and simulated data.

  12. Two-step interrogation then recognition of DNA binding site by Integration Host Factor: an architectural DNA-bending protein.

    PubMed

    Velmurugu, Yogambigai; Vivas, Paula; Connolly, Mitchell; Kuznetsov, Serguei V; Rice, Phoebe A; Ansari, Anjum

    2018-02-28

    The dynamics and mechanism of how site-specific DNA-bending proteins initially interrogate potential binding sites prior to recognition have remained elusive for most systems. Here we present these dynamics for Integration Host factor (IHF), a nucleoid-associated architectural protein, using a μs-resolved T-jump approach. Our studies show two distinct DNA-bending steps during site recognition by IHF. While the faster (∼100 μs) step is unaffected by changes in DNA or protein sequence that alter affinity by >100-fold, the slower (1-10 ms) step is accelerated ∼5-fold when mismatches are introduced at DNA sites that are sharply kinked in the specific complex. The amplitudes of the fast phase increase when the specific complex is destabilized and decrease with increasing [salt], which increases specificity. Taken together, these results indicate that the fast phase is non-specific DNA bending while the slow phase, which responds only to changes in DNA flexibility at the kink sites, is specific DNA kinking during site recognition. Notably, the timescales for the fast phase overlap with one-dimensional diffusion times measured for several proteins on DNA, suggesting that these dynamics reflect partial DNA bending during interrogation of potential binding sites by IHF as it scans DNA.

  13. Preparation of Paraffin@Poly(styrene-co-acrylic acid) Phase Change Nanocapsules via Combined Miniemulsion/Emulsion Polymerization.

    PubMed

    Zhang, Feng; Liu, Tian-Yu; Hou, Gui-Hua; Guan, Rong-Feng; Zhang, Jun-Hao

    2018-06-01

    The fast development of solid-liquid phase change materials calls for nanomaterials with large specific surface area for rapid heat transfer and encapsulation of phase change materials to prevent potential leakage. Here we report a combined miniemulsion/emulsion polymerization method to prepare poly(styrene-co-acrylic acid)-encapsulated paraffin (paraffin@P(St-co-AA)) nanocapsules. The method could suppress the shortcomings of common miniemulsion polymerization (such as evaporation of monomer and decomposition of initiator during ultrasonication). The paraffin@P(St-co-AA) nanocapsules are uniform in size and the polymer shell can be controlled by the weight ratio of St to paraffin. The phase change behavior of the nanocapsules is similar to that of pure paraffin. We believe our method can also be utilized to synthesize other core-shell phase change materials.

  14. Enabling universal memory by overcoming the contradictory speed and stability nature of phase-change materials.

    PubMed

    Wang, Weijie; Loke, Desmond; Shi, Luping; Zhao, Rong; Yang, Hongxin; Law, Leong-Tat; Ng, Lung-Tat; Lim, Kian-Guan; Yeo, Yee-Chia; Chong, Tow-Chong; Lacaita, Andrea L

    2012-01-01

    The quest for universal memory is driving the rapid development of memories with superior all-round capabilities in non-volatility, high speed, high endurance and low power. Phase-change materials are highly promising in this respect. However, their contradictory speed and stability properties present a key challenge towards this ambition. We reveal that as the device size decreases, the phase-change mechanism changes from the material inherent crystallization mechanism (either nucleation- or growth-dominated), to the hetero-crystallization mechanism, which resulted in a significant increase in PCRAM speeds. Reducing the grain size can further increase the speed of phase-change. Such grain size effect on speed becomes increasingly significant at smaller device sizes. Together with the nano-thermal and electrical effects, fast phase-change, good stability and high endurance can be achieved. These findings lead to a feasible solution to achieve a universal memory.

  15. Enabling Universal Memory by Overcoming the Contradictory Speed and Stability Nature of Phase-Change Materials

    PubMed Central

    Wang, Weijie; Loke, Desmond; Shi, Luping; Zhao, Rong; Yang, Hongxin; Law, Leong-Tat; Ng, Lung-Tat; Lim, Kian-Guan; Yeo, Yee-Chia; Chong, Tow-Chong; Lacaita, Andrea L.

    2012-01-01

    The quest for universal memory is driving the rapid development of memories with superior all-round capabilities in non-volatility, high speed, high endurance and low power. Phase-change materials are highly promising in this respect. However, their contradictory speed and stability properties present a key challenge towards this ambition. We reveal that as the device size decreases, the phase-change mechanism changes from the material inherent crystallization mechanism (either nucleation- or growth-dominated), to the hetero-crystallization mechanism, which resulted in a significant increase in PCRAM speeds. Reducing the grain size can further increase the speed of phase-change. Such grain size effect on speed becomes increasingly significant at smaller device sizes. Together with the nano-thermal and electrical effects, fast phase-change, good stability and high endurance can be achieved. These findings lead to a feasible solution to achieve a universal memory. PMID:22496956

  16. Reading Open Education in the Age of Mankind: Reproduction of Meaning in the Derridean Sense

    ERIC Educational Resources Information Center

    Gurses, Gulfem; Kalkan, Basak

    2017-01-01

    The rapid change in the communication technologies plays a significant role in the transformation processes of societies. The studies studying the industrial revolution in two phases inform us that the first phase of the revolution involved a revolution in machinery while the second phase saw a revolution in technology. Fast forwarding to the…

  17. Localized diffusive motion on two different time scales in solid alkane nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, S.-K.; Mamontov, E.; Bai, M.; Hansen, F. Y.; Taub, H.; Copley, J. R. D.; García Sakai, V.; Gasparovic, G.; Jenkins, T.; Tyagi, M.; Herwig, K. W.; Neumann, D. A.; Montfrooij, W.; Volkmann, U. G.

    2010-09-01

    High-energy-resolution quasielastic neutron scattering on three complementary spectrometers has been used to investigate molecular diffusive motion in solid nano- to bulk-sized particles of the alkane n-C32H66. The crystalline-to-plastic and plastic-to-fluid phase transition temperatures are observed to decrease as the particle size decreases. In all samples, localized molecular diffusive motion in the plastic phase occurs on two different time scales: a "fast" motion corresponding to uniaxial rotation about the long molecular axis; and a "slow" motion attributed to conformational changes of the molecule. Contrary to the conventional interpretation in bulk alkanes, the fast uniaxial rotation begins in the low-temperature crystalline phase.

  18. In vivo fascicle behavior of the flexor hallucis longus muscle at different walking speeds.

    PubMed

    Péter, A; Hegyi, A; Finni, T; Cronin, N J

    2017-12-01

    Ankle plantar flexor muscles support and propel the body in the stance phase of locomotion. Besides the triceps surae, flexor hallucis longus muscle (FHL) may also contribute to this role, but very few in vivo studies have examined FHL function during walking. Here, we investigated FHL fascicle behavior at different walking speeds. Ten healthy males walked overground at three different speeds while FHL fascicle length changes were recorded with ultrasound and muscle activity was recorded with surface electromyography (EMG). Fascicle length at heel strike at toe off and at peak EMG activity did not change with speed. Range of FHL fascicle length change (3.5-4.5 and 1.9-2.9 mm on average in stance and push-off phase, respectively), as well as minimum (53.5-54.9 and 53.8-55.7 mm) and maximum (58-58.4 and 56.8-57.7 mm) fascicle length did not change with speed in the stance or push-off phase. Mean fascicle velocity did not change in the stance phase, but increased significantly in the push-off phase between slow and fast walking speeds (P=.021). EMG activity increased significantly in both phases from slow to preferred and preferred to fast speed (P<.02 in all cases). FHL muscle fascicles worked near-isometrically during the whole stance phase (at least during slow walking) and operated at approximately the same length at different walking speeds. FHL and medial gastrocnemius (MG) have similar fiber length to muscle belly length ratios and, according to our results, also exhibit similar fascicle behavior at different walking speeds. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Microwave phase shifter with controllable power response based on slow- and fast-light effects in semiconductor optical amplifiers.

    PubMed

    Xue, Weiqi; Sales, Salvador; Capmany, José; Mørk, Jesper

    2009-04-01

    We suggest and experimentally demonstrate a method for increasing the tunable rf phase shift of semiconductor waveguides while at the same time enabling control of the rf power. This method is based on the use of slow- and fast-light effects in a cascade of semiconductor optical amplifiers combined with the use of spectral filtering to enhance the role of refractive index dynamics. A continuously tunable phase shift of approximately 240 degrees at a microwave frequency of 19 GHz is demonstrated in a cascade of two semiconductor optical amplifiers, while maintaining an rf power change of less than 1.6 dB. The technique is scalable to more amplifiers and should allow realization of an rf phase shift of 360 degrees.

  20. Understanding Phase-Change Memory Alloys from a Chemical Perspective

    NASA Astrophysics Data System (ADS)

    Kolobov, A. V.; Fons, P.; Tominaga, J.

    2015-09-01

    Phase-change memories (PCM) are associated with reversible ultra-fast low-energy crystal-to-amorphous switching in GeTe-based alloys co-existing with the high stability of the two phases at ambient temperature, a unique property that has been recently explained by the high fragility of the glass-forming liquid phase, where the activation barrier for crystallisation drastically increases as the temperature decreases from the glass-transition to room temperature. At the same time the atomistic dynamics of the phase-change process and the associated changes in the nature of bonding have remained unknown. In this work we demonstrate that key to this behavior is the formation of transient three-center bonds in the excited state that is enabled due to the presence of lone-pair electrons. Our findings additionally reveal previously ignored fundamental similarities between the mechanisms of reversible photoinduced structural changes in chalcogenide glasses and phase-change alloys and offer new insights into the development of efficient PCM materials.

  1. Understanding Phase-Change Memory Alloys from a Chemical Perspective.

    PubMed

    Kolobov, A V; Fons, P; Tominaga, J

    2015-09-01

    Phase-change memories (PCM) are associated with reversible ultra-fast low-energy crystal-to-amorphous switching in GeTe-based alloys co-existing with the high stability of the two phases at ambient temperature, a unique property that has been recently explained by the high fragility of the glass-forming liquid phase, where the activation barrier for crystallisation drastically increases as the temperature decreases from the glass-transition to room temperature. At the same time the atomistic dynamics of the phase-change process and the associated changes in the nature of bonding have remained unknown. In this work we demonstrate that key to this behavior is the formation of transient three-center bonds in the excited state that is enabled due to the presence of lone-pair electrons. Our findings additionally reveal previously ignored fundamental similarities between the mechanisms of reversible photoinduced structural changes in chalcogenide glasses and phase-change alloys and offer new insights into the development of efficient PCM materials.

  2. Analysis of corridor delay under SCATS control : FAST-TRAC Phase III deliverable

    DOT National Transportation Integrated Search

    1998-04-01

    The study was designed to determine the change in travel time following the implementation of the Sydney Coordinated Adaptive Traffic System (SCATS) in Oakland County, Michigan. A before/after comparison was used to examine the change in travel time ...

  3. Photo-induced optical activity in phase-change memory materials.

    PubMed

    Borisenko, Konstantin B; Shanmugam, Janaki; Williams, Benjamin A O; Ewart, Paul; Gholipour, Behrad; Hewak, Daniel W; Hussain, Rohanah; Jávorfi, Tamás; Siligardi, Giuliano; Kirkland, Angus I

    2015-03-05

    We demonstrate that optical activity in amorphous isotropic thin films of pure Ge2Sb2Te5 and N-doped Ge2Sb2Te5N phase-change memory materials can be induced using rapid photo crystallisation with circularly polarised laser light. The new anisotropic phase transition has been confirmed by circular dichroism measurements. This opens up the possibility of controlled induction of optical activity at the nanosecond time scale for exploitation in a new generation of high-density optical memory, fast chiroptical switches and chiral metamaterials.

  4. Reusable fast opening switch

    DOEpatents

    Van Devender, J.P.; Emin, D.

    1983-12-21

    A reusable fast opening switch for transferring energy, in the form of a high power pulse, from an electromagnetic storage device such as an inductor into a load. The switch is efficient, compact, fast and reusable. The switch comprises a ferromagnetic semiconductor which undergoes a fast transition between conductive and metallic states at a critical temperature and which undergoes the transition without a phase change in its crystal structure. A semiconductor such as europium rich europhous oxide, which undergoes a conductor to insulator transition when it is joule heated from its conductor state, can be used to form the switch.

  5. Reusable fast opening switch

    DOEpatents

    Van Devender, John P.; Emin, David

    1986-01-01

    A reusable fast opening switch for transferring energy, in the form of a high power pulse, from an electromagnetic storage device such as an inductor into a load. The switch is efficient, compact, fast and reusable. The switch comprises a ferromagnetic semiconductor which undergoes a fast transition between conductive and insulating states at a critical temperature and which undergoes the transition without a phase change in its crystal structure. A semiconductor such as europium rich europhous oxide, which undergoes a conductor to insulator transition when it is joule heated from its conductor state, can be used to form the switch.

  6. How fragility makes phase-change data storage robust: insights from ab initio simulations

    PubMed Central

    Zhang, Wei; Ronneberger, Ider; Zalden, Peter; Xu, Ming; Salinga, Martin; Wuttig, Matthias; Mazzarello, Riccardo

    2014-01-01

    Phase-change materials are technologically important due to their manifold applications in data storage. Here we report on ab initio molecular dynamics simulations of crystallization of the phase change material Ag4In3Sb67Te26 (AIST). We show that, at high temperature, the observed crystal growth mechanisms and crystallization speed are in good agreement with experimental data. We provide an in-depth understanding of the crystallization mechanisms at the atomic level. At temperatures below 550 K, the computed growth velocities are much higher than those obtained from time-resolved reflectivity measurements, due to large deviations in the diffusion coefficients. As a consequence of the high fragility of AIST, experimental diffusivities display a dramatic increase in activation energies and prefactors at temperatures below 550 K. This property is essential to ensure fast crystallization at high temperature and a stable amorphous state at low temperature. On the other hand, no such change in the temperature dependence of the diffusivity is observed in our simulations, down to 450 K. We also attribute this different behavior to the fragility of the system, in combination with the very fast quenching times employed in the simulations. PMID:25284316

  7. Fast Effects of Efferent Stimulation on Basilar Membrane Motion

    NASA Astrophysics Data System (ADS)

    Guinan, J. J.; Cooper, N. P.

    2003-02-01

    To aid in understanding the mechanisms by which medial olivocochlear efferents produce their effects, we measured basilar membrane (BM) motion in response to tones in the basal turn of guinea pigs, with and without electrical stimulation of efferents, using a paradigm that selected only efferent fast effects. As previously reported, efferents produced (1) a reduction in BM motion for low-level tones near the charactristic frequency (CF), (2) an enhancement of BM motion for high-level tones above-CF, and (3) at most small effects for tones an octave or more below CF. In addition, we found consistent changes in BM phase: (1) a phase lead at CF increasing to about 45 degrees above CF, and (2) below CF, small phase lags at low levels, sometimes becoming phase leads at high levels. We hypothesize that the efferent enhancement of BM motion is due to the reduction of one of two out-of-phase components of BM motion.

  8. Atomic-level study of a thickness-dependent phase change in gold thin films heated by an ultrafast laser.

    PubMed

    Gan, Yong; Shi, Jixiang; Jiang, Shan

    2012-08-20

    An ultrafast laser-induced phase change in gold thin films with different thicknesses has been simulated by the method of coupling the two-temperature model and the molecular dynamics, including transient optical properties. Numerical results show that the decrease of film thickness leads to faster melting in the early nonequilibrium time and a larger melting depth. Moreover, earlier occurrence and a higher rate of resolidification are observed for the thicker film. Further analysis reveals that the mechanism for the thickness-dependent phase change in the films is the fast electron thermal conduction in the nonequilibrium state.

  9. Effects of walking speed on asymmetry and bilateral coordination of gait

    PubMed Central

    Plotnik, Meir; Bartsch, Ronny P.; Zeev, Aviva; Giladi, Nir; Hausdorff, Jeffery M.

    2013-01-01

    The mechanisms regulating the bilateral coordination of gait in humans are largely unknown. Our objective was to study how bilateral coordination changes as a result of gait speed modifications during over ground walking. 15 young adults wore force sensitive insoles that measured vertical forces used to determine the timing of the gait cycle events under three walking conditions (i.e., usual-walking, fast and slow). Ground reaction force impact (GRFI) associated with heel-strikes was also quantified, representing the potential contribution of sensory feedback to the regulation of gait. Gait asymmetry (GA) was quantified based on the differences between right and left swing times and the bilateral coordination of gait was assessed using the phase coordination index (PCI), a metric that quantifies the consistency and accuracy of the anti-phase stepping pattern. GA was preserved in the three different gait speeds. PCI was higher (reduced coordination) in the slow gait condition, compared to usual-walking (3.51% vs. 2.47%, respectively, p=0.002), but was not significantly affected in the fast condition. GRFI values were lower in the slow walking as compared to usual-walking and higher in the fast walking condition (p<0.001). Stepwise regression revealed that slowed gait related changes in PCI were not associated with the slowed gait related changes in GRFI. The present findings suggest that left-right anti-phase stepping is similar in normal and fast walking, but altered during slowed walking. This behavior might reflect a relative increase in attention resources required to regulate a slow gait speed, consistent with the possibility that cortical function and supraspinal input influences the bilateral coordination of gait. PMID:23680424

  10. Effects of an in vacancy on local distortion of fast phase transition in Bi-doped In3SbTe2

    NASA Astrophysics Data System (ADS)

    Choi, Minho; Choi, Heechae; Kim, Seungchul; Ahn, Jinho; Kim, Yong Tae

    2017-12-01

    Indium vacancies in Bi-doped In3SbTe2 (BIST) cause local distortion or and faster phase transition of BIST with good stability. The formation energy of the In vacancy in the BIST is relatively lower compared to that in IST due to triple negative charge state of the In vacancy ( V 3- In) and higher concentration of the V 3- In in BIST. The band gap of BIST is substantially reduced with increasing concentrations of the V 3- In and the hole carriers, which results in a higher electrical conductivity. The phase-change memory (PRAM) device fabricated with the BIST shows very fast, stable switching characteristics at lower voltages.

  11. Dynamic measurements of flowing cells labeled by gold nanoparticles using full-field photothermal interferometric imaging

    NASA Astrophysics Data System (ADS)

    Turko, Nir A.; Roitshtain, Darina; Blum, Omry; Kemper, Björn; Shaked, Natan T.

    2017-06-01

    We present highly dynamic photothermal interferometric phase microscopy for quantitative, selective contrast imaging of live cells during flow. Gold nanoparticles can be biofunctionalized to bind to specific cells, and stimulated for local temperature increase due to plasmon resonance, causing a rapid change of the optical phase. These phase changes can be recorded by interferometric phase microscopy and analyzed to form an image of the binding sites of the nanoparticles in the cells, gaining molecular specificity. Since the nanoparticle excitation frequency might overlap with the sample dynamics frequencies, photothermal phase imaging was performed on stationary or slowly dynamic samples. Furthermore, the computational analysis of the photothermal signals is time consuming. This makes photothermal imaging unsuitable for applications requiring dynamic imaging or real-time analysis, such as analyzing and sorting cells during fast flow. To overcome these drawbacks, we utilized an external interferometric module and developed new algorithms, based on discrete Fourier transform variants, enabling fast analysis of photothermal signals in highly dynamic live cells. Due to the self-interference module, the cells are imaged with and without excitation in video-rate, effectively increasing signal-to-noise ratio. Our approach holds potential for using photothermal cell imaging and depletion in flow cytometry.

  12. Phase-space dependent critical gradient behavior of fast-ion transport due to Alfvén eigenmodes

    DOE PAGES

    Collins, C. S.; Heidbrink, W. W.; Podestà, M.; ...

    2017-06-09

    Experiments in the DIII-D tokamak show that many overlapping small-amplitude Alfv en eigenmodes (AEs) cause fast-ion transport to sharply increase above a critical threshold, leading to fast-ion density profile resilience and reduced fusion performance. The threshold is above the AE linear stability limit and varies between diagnostics that are sensitive to different parts of fast-ion phase-space. A comparison with theoretical analysis using the nova and orbit codes shows that, for the neutral particle diagnostic, the threshold corresponds to the onset of stochastic particle orbits due to wave-particle resonances with AEs in the measured region of phase space. We manipulated themore » bulk fast-ion distribution and instability behavior through variations in beam deposition geometry, and no significant differences in the onset threshold outside of measurement uncertainties were found, in agreement with the theoretical stochastic threshold analysis. Simulations using the `kick model' produce beam ion density gradients consistent with the empirically measured radial critical gradient and highlight the importance of including the energy and pitch dependence of the fast-ion distribution function in critical gradient models. The addition of electron cyclotron heating changes the types of AEs present in the experiment, comparatively increasing the measured fast-ion density and radial gradient. Our studies provide the basis for understanding how to avoid AE transport that can undesirably redistribute current and cause fast-ion losses, and the measurements are being used to validate AE-induced transport models that use the critical gradient paradigm, giving greater confidence when applied to ITER.« less

  13. Phase-space dependent critical gradient behavior of fast-ion transport due to Alfvén eigenmodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, C. S.; Heidbrink, W. W.; Podestà, M.

    Experiments in the DIII-D tokamak show that many overlapping small-amplitude Alfv en eigenmodes (AEs) cause fast-ion transport to sharply increase above a critical threshold, leading to fast-ion density profile resilience and reduced fusion performance. The threshold is above the AE linear stability limit and varies between diagnostics that are sensitive to different parts of fast-ion phase-space. A comparison with theoretical analysis using the nova and orbit codes shows that, for the neutral particle diagnostic, the threshold corresponds to the onset of stochastic particle orbits due to wave-particle resonances with AEs in the measured region of phase space. We manipulated themore » bulk fast-ion distribution and instability behavior through variations in beam deposition geometry, and no significant differences in the onset threshold outside of measurement uncertainties were found, in agreement with the theoretical stochastic threshold analysis. Simulations using the `kick model' produce beam ion density gradients consistent with the empirically measured radial critical gradient and highlight the importance of including the energy and pitch dependence of the fast-ion distribution function in critical gradient models. The addition of electron cyclotron heating changes the types of AEs present in the experiment, comparatively increasing the measured fast-ion density and radial gradient. Our studies provide the basis for understanding how to avoid AE transport that can undesirably redistribute current and cause fast-ion losses, and the measurements are being used to validate AE-induced transport models that use the critical gradient paradigm, giving greater confidence when applied to ITER.« less

  14. Spatiotemporal change of intraseasonal oscillation intensity over the tropical Indo-Pacific Ocean associated with El Niño and La Niña events

    NASA Astrophysics Data System (ADS)

    Wu, Renguang; Song, Lei

    2018-02-01

    The present study analyzes the intraseasonal oscillation (ISO) intensity change over the tropical Indo-Pacific associated with the El Niño-Southern Oscillation (ENSO) and compares the intensity change between El Niño and La Niña years and between the 10-20-day and 30-60-day ISOs. The ISO intensity change tends to be opposite between El Niño and La Niña years in the developing and mature phases. The intensity change features a contrast between the tropical southeastern Indian Ocean and the tropical western North Pacific (WNP) in the developing phases and between the Maritime Continent and the tropical central Pacific in the mature phase. In the decaying phases, the intensity change shows notable differences between El Niño and La Niña events and between fast and slow decaying El Niño events. Large intensity change is observed over the tropical WNP in the developing summer, over the tropical southeastern Indian Ocean in the developing fall, and over the tropical WNP in the fast decaying El Niño summer due to a combined effect of vertical shear, vertical motion, and lower-level moisture. In the ENSO developing summer and in the El Niño decaying summer, the 10-20-day ISO intensity change displays a northwest-southeast tilted distribution over the tropical WNP, whereas the large 30-60-day ISO intensity change is confined to the off-equatorial WNP. In the La Niña decaying summer, the 30-60-day ISO intensity change features a large zonal contrast across the Philippines, whereas the 10-20-day ISO intensity anomaly is characterized by a north-south contrast over the tropical WNP.

  15. Time scales of relaxation dynamics during transient conditions in two-phase flow: RELAXATION DYNAMICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlüter, Steffen; Berg, Steffen; Li, Tianyi

    2017-06-01

    The relaxation dynamics toward a hydrostatic equilibrium after a change in phase saturation in porous media is governed by fluid reconfiguration at the pore scale. Little is known whether a hydrostatic equilibrium in which all interfaces come to rest is ever reached and which microscopic processes govern the time scales of relaxation. Here we apply fast synchrotron-based X-ray tomography (X-ray CT) to measure the slow relaxation dynamics of fluid interfaces in a glass bead pack after fast drainage of the sample. The relaxation of interfaces triggers internal redistribution of fluids, reduces the surface energy stored in the fluid interfaces, andmore » relaxes the contact angle toward the equilibrium value while the fluid topology remains unchanged. The equilibration of capillary pressures occurs in two stages: (i) a quick relaxation within seconds in which most of the pressure drop that built up during drainage is dissipated, a process that is to fast to be captured with fast X-ray CT, and (ii) a slow relaxation with characteristic time scales of 1–4 h which manifests itself as a spontaneous imbibition process that is well described by the Washburn equation for capillary rise in porous media. The slow relaxation implies that a hydrostatic equilibrium is hardly ever attained in practice when conducting two-phase experiments in which a flux boundary condition is changed from flow to no-flow. Implications for experiments with pressure boundary conditions are discussed.« less

  16. Multilayer SnSb4-SbSe Thin Films for Phase Change Materials Possessing Ultrafast Phase Change Speed and Enhanced Stability.

    PubMed

    Liu, Ruirui; Zhou, Xiao; Zhai, Jiwei; Song, Jun; Wu, Pengzhi; Lai, Tianshu; Song, Sannian; Song, Zhitang

    2017-08-16

    A multilayer thin film, comprising two different phase change material (PCM) components alternatively deposited, provides an effective means to tune and leverage good properties of its components, promising a new route toward high-performance PCMs. The present study systematically investigated the SnSb 4 -SbSe multilayer thin film as a potential PCM, combining experiments and first-principles calculations, and demonstrated that these multilayer thin films exhibit good electrical resistivity, robust thermal stability, and superior phase change speed. In particular, the potential operating temperature for 10 years is shown to be 122.0 °C and the phase change speed reaches 5 ns in the device test. The good thermal stability of the multilayer thin film is shown to come from the formation of the Sb 2 Se 3 phase, whereas the fast phase change speed can be attributed to the formation of vacancies and a SbSe metastable phase. It is also demonstrated that the SbSe metastable phase contributes to further enhancing the electrical resistivity of the crystalline state and the thermal stability of the amorphous state, being vital to determining the properties of the multilayer SnSb 4 -SbSe thin film.

  17. First-principles Study of Phonons in Structural Phase Change of Ge-Sb-Te Compounds

    NASA Astrophysics Data System (ADS)

    Song, Young-Sun; Kim, Jeongwoo; Kim, Minjae; Jhi, Seung-Hoon

    Ge-Sb-Te (GST) compounds, exhibiting substantial electrical and optical contrast at extremely fast switching modes, have attracted great attention for application as non-volatile memory devices. Despite extensive studies of GST compounds, the underlying mechanism for fast transitions between amorphous and crystalline phases is yet to be revealed. We study the vibrational property of various GST compounds and the role of nitrogen doping on phase-change processes using first-principles calculations. We find that a certain vibrational mode (Eu) plays a crucial role to determine transition temperatures, and that its frequency depends on the amount of Ge in GST. We also find that the nitrogen doping drives crystalline-amorphous transition at low power consumption modes. In addition, we discuss the effect of the spin-orbit coupling on vibration modes, which is known essential for correct description of the electrical property of GST. Our understanding of phonon modes in GST compounds paves the way for the improving the device performance especially in terms of switching speed and operating voltage.

  18. Microscopic Mechanism of Doping-Induced Kinetically Constrained Crystallization in Phase-Change Materials.

    PubMed

    Lee, Tae Hoon; Loke, Desmond; Elliott, Stephen R

    2015-10-07

    A comprehensive microscopic mechanism of doping-induced kinetically constrained crystallization in phase-change materials is provided by investigating structural and dynamical dopant characteristics via ab initio molecular dynamics simulations. The information gained from this study may provide a basis for a fast screening of dopant species for electronic memory devices, or for understanding the general physics involved in the crystallization of doped glasses. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Fasting, circadian rhythms, and time restricted feeding in healthy lifespan

    PubMed Central

    Longo, Valter D.; Panda, Satchidananda

    2016-01-01

    Summary Feeding in most animals is confined to a defined period, leaving short periods of fasting that coincide with sleep. Fasting enables organisms to enter alternative metabolic phases, which rely less on glucose and more on ketone body-like carbon sources. Both intermittent and periodic fasting result in benefits ranging from prevention to the enhanced treatment of diseases. Similarly, time-restricted feeding (TRF), in which feeding time is restricted to certain hours of the day, allows the daily fasting period to last >12 h, thus imparting pleiotropic benefits in multiple organisms. Understanding the mechanistic link between nutrients and the fasting benefits is leading to the identification of fasting mimicking diets (FMDs) that achieve changes similar to those caused by fasting. Given the pleiotropic and sustained benefits of TRF and FMD, both basic science and translational research are warranted to develop fasting-associated interventions into effective and inexpensive treatments with the potential to improve healthspan. PMID:27304506

  20. Afferent control of central pattern generators: experimental analysis of locomotion in the decerebrate cat.

    PubMed

    Baev, K V; Esipenko, V B; Shimansky YuP

    1991-01-01

    Changes in the motor activity of the spinal locomotor generator evoked by tonic and phasic peripheral afferent signals during fictitious locomotion of both slow and fast rhythms were analysed in the cat. The tonic afferent inflow was conditioned by the position of the hindlimb. The phasic afferent signals were imitated by electrical stimulation of hindlimb nerves. The correlation between the kinematics of hindlimb locomotor movement and sensory inflow was investigated during actual locomotion. Reliable correlations between motor activity parameters during fictitious locomotion were revealed in cases of both slow and fast "locomotor" rhythms. The main difference between these cases was that correlations "duration-intensity" were positive in the first and negative in the second case. The functional role of "locomotor" pattern dependence on tonic sensory inflow consisted of providing stability for planting the hindlimb on the ground. For any investigated afferent input the phase moments in the "locomotor" cycle were found, in which an afferent signal caused no rearrangement in locomotor generator activity. These moments corresponded to the transitions between "flexion" and "extension" phases and to the bursts of integral afferent activity observed during real locomotion. The data obtained are compared with the results previously described for the scratching generator. The character of changes in "locomotor" activity in response to tonic and phasic sensory signals was similar to that of such changes in "scratching" rhythm in the case of fast "locomotion". Intensification of the "flexion" phase caused by phasic high-intensity stimulation of cutaneous afferents during low "locomotor" rhythm was changed to inhibition (such as observed during "scratching") when this rhythm was fast. It is concluded that the main regularities of peripheral afferent control for both the locomotor and scratching generators are the same. Moreover, these central pattern generators are just working regimes of a general spinal motor optimal control system containing the intrinsic model of limb movement dynamics. The consequences of this concept and ways of further research are discussed.

  1. Age-related changes in tree growth and physiology

    Treesearch

    Andrew Groover

    2017-01-01

    Trees pass through specific developmental phases as they age, including juvenile to adult, and vegetative to reproductive phases. The timing of these transitions is regulated genetically but is also highly influenced by the environment. Tree species have evolved different strategies and life histories that affect how they age – for example some pioneer species are fast...

  2. Cardiovascular response to short-term fasting in menstrual phases in young women: an observational study.

    PubMed

    Ohara, Kumiko; Okita, Yoshimitsu; Kouda, Katsuyasu; Mase, Tomoki; Miyawaki, Chiemi; Nakamura, Harunobu

    2015-08-28

    Menstrual cycle-related symptoms are an important health issue for many women, and some may affect cardiac autonomic regulation. In the present study, we evaluated the cardiovascular and physiological stress response to 12-h short-term fasting in the menstrual phases of healthy young women. We performed a randomized crossover study. Subjects were seven female university students (age: 22.3 ± 1.0 years). The experiments comprised four sessions: meal intake in the follicular phase, meal intake in the luteal phase, fasting in the follicular phase, and fasting in the luteal phase. All subjects participated in a total of four experimental sessions during two successive phases (follicular and luteal phase in the same menstrual cycle, or luteal phase and follicular phase in the next menstrual cycle) according to a randomized crossover design. R-R intervals were continuously recorded before and after meals, and power spectral analysis of heart rate variability was performed. Other physiological data were obtained before and 20, 40, 60, and 80 min after meal intake or after the corresponding time point of meal intake (fasting in the follicular or luteal phase). Heart rate decreased during fasting in the follicular and luteal phases. High frequency power increased during fasting in the follicular and luteal phases. In addition, salivary cortisol concentrations decreased during fasting in the luteal phase. In the present study, short-term fasting resulted in higher parasympathetic activity and lower cortisol levels in the luteal phase in these young women. These results indicate a possibility to produce an anti-stress effect in the luteal phase, which may reduce menstrual symptoms.

  3. High-speed spatial frequency domain imaging of rat cortex detects dynamic optical and physiological properties following cardiac arrest and resuscitation.

    PubMed

    Wilson, Robert H; Crouzet, Christian; Torabzadeh, Mohammad; Bazrafkan, Afsheen; Farahabadi, Maryam H; Jamasian, Babak; Donga, Dishant; Alcocer, Juan; Zaher, Shuhab M; Choi, Bernard; Akbari, Yama; Tromberg, Bruce J

    2017-10-01

    Quantifying rapidly varying perturbations in cerebral tissue absorption and scattering can potentially help to characterize changes in brain function caused by ischemic trauma. We have developed a platform for rapid intrinsic signal brain optical imaging using macroscopically structured light. The device performs fast, multispectral, spatial frequency domain imaging (SFDI), detecting backscattered light from three-phase binary square-wave projected patterns, which have a much higher refresh rate than sinusoidal patterns used in conventional SFDI. Although not as fast as "single-snapshot" spatial frequency methods that do not require three-phase projection, square-wave patterns allow accurate image demodulation in applications such as small animal imaging where the limited field of view does not allow single-phase demodulation. By using 655, 730, and 850 nm light-emitting diodes, two spatial frequencies ([Formula: see text] and [Formula: see text]), three spatial phases (120 deg, 240 deg, and 360 deg), and an overall camera acquisition rate of 167 Hz, we map changes in tissue absorption and reduced scattering parameters ([Formula: see text] and [Formula: see text]) and oxy- and deoxyhemoglobin concentration at [Formula: see text]. We apply this method to a rat model of cardiac arrest (CA) and cardiopulmonary resuscitation (CPR) to quantify hemodynamics and scattering on temporal scales ([Formula: see text]) ranging from tens of milliseconds to minutes. We observe rapid concurrent spatiotemporal changes in tissue oxygenation and scattering during CA and following CPR, even when the cerebral electrical signal is absent. We conclude that square-wave SFDI provides an effective technical strategy for assessing cortical optical and physiological properties by balancing competing performance demands for fast signal acquisition, small fields of view, and quantitative information content.

  4. Radar Waveform Pulse Analysis Measurement System for High-Power GaN Amplifiers

    NASA Technical Reports Server (NTRS)

    Thrivikraman, Tushar; Perkovic-Martin, Dragana; Jenabi, Masud; Hoffman, James

    2012-01-01

    This work presents a measurement system to characterize the pulsed response of high-power GaN amplifiers for use in space-based SAR platforms that require very strict amplitude and phase stability. The measurement system is able to record and analyze data on three different time scales: fast, slow, and long, which allows for greater detail of the mechanisms that impact amplitude and phase stability. The system is fully automated through MATLAB, which offers both instrument control capability and in-situ data processing. To validate this system, a high-power GaN HEMT amplifier operated in saturation was characterized. The fast time results show that variations to the amplitude and phase are correlated to DC supply transients, while long time characteristics are correlated to temperature changes.

  5. FREQUENCY STABILIZING SYSTEM

    DOEpatents

    Kerns, Q.A.; Anderson, O.A.

    1960-05-01

    An electronic control circuit is described in which a first signal frequency is held in synchronization with a second varying reference signal. The circuit receives the first and second signals as inputs and produces an output signal having an amplitude dependent upon rate of phase change between the two signals and a polarity dependent on direction of the phase change. The output may thus serve as a correction signal for maintaining the desired synchronization. The response of the system is not dependent on relative phase angle between the two compared signals. By having practically no capacitance in the circuit, there is minimum delay between occurrence of a phase shift and a response in the output signal and therefore very fast synchronization is effected.

  6. An ultra-fast optical shutter exploiting total light absorption in a phase change material

    NASA Astrophysics Data System (ADS)

    Jafari, Mohsen; Guo, L. Jay; Rais-Zadeh, Mina

    2017-02-01

    In this paper, we present an ultra-fast and high-contrast optical shutter with applications in atomic clock assemblies, integrated photonic systems, communication hardware, etc. The shutter design exploits the total light absorption phenomenon in a thin phase change (PC) material placed over a metal layer. The shutter switches between ON and OFF states by changing PC material phase and thus its refractive index. The PC material used in this work is Germanium Telluride (GeTe), a group IV-VI chalcogenide compound, which exhibits good optical contrast when switching from amorphous to crystalline state and vice versa. The stable phase changing behavior and reliability of GeTe and GeSbTe (GST) have been verified in optical memories and RF switches. Here, GeTe is used as it has a lower extinction coefficient in near-IR regions compared to GST. GeTe can be thermally transitioned between two phases by applying electrical pulses to an integrated heater. The memory behavior of GeTe results in zero static power consumption which is useful in applications requiring long time periods between switching activities. We previously demonstrated a meta-surface employing GeTe in sub-wavelength slits with >14 dB isolation at 1.5 μm by exciting the surface plasmon polariton and localized slit resonances. In this work, strong interference effects in a thin layer of GeTe over a gold mirror result in near total light absorption of up to 40 dB (21 dB measured) in the amorphous phase of the shutter at 780 nm with much less fabrication complexity. The optical loss at the shutter ON state is less than 1.5 dB. A nickel chrome (NiCr) heater provides the Joule heating energy required to achieve the crystallographic phase change. The measured switching speed is 2 μs.

  7. Spectroscopic vector analysis for fast pattern quality monitoring

    NASA Astrophysics Data System (ADS)

    Sohn, Younghoon; Ryu, Sungyoon; Lee, Chihoon; Yang, Yusin

    2018-03-01

    In semiconductor industry, fast and effective measurement of pattern variation has been key challenge for assuring massproduct quality. Pattern measurement techniques such as conventional CD-SEMs or Optical CDs have been extensively used, but these techniques are increasingly limited in terms of measurement throughput and time spent in modeling. In this paper we propose time effective pattern monitoring method through the direct spectrum-based approach. In this technique, a wavelength band sensitive to a specific pattern change is selected from spectroscopic ellipsometry signal scattered by pattern to be measured, and the amplitude and phase variation in the wavelength band are analyzed as a measurement index of the pattern change. This pattern change measurement technique is applied to several process steps and verified its applicability. Due to its fast and simple analysis, the methods can be adapted to the massive process variation monitoring maximizing measurement throughput.

  8. Dynamics of the human linear vestibulo-ocular reflex at medium frequency and modification by short-term training

    NASA Technical Reports Server (NTRS)

    Shelhamer, M.; Roberts, D. C.; Zee, D. S.

    2000-01-01

    We study here the effect of a short-term training paradigm on the gain and phase of the human translational VOR (the linear VOR: LVOR). Subjects were exposed to lateral sinusoidal translations on a sled, at 0.5 Hz, 0.3 g peak acceleration. With subjects tracking a remembered target at 1.2 m, the LVOR (slow-phase) under these conditions typically has a phase lead or lag, and a gain that falls short of compensatory. To induce short-term adaptation (training), we presented an earth-fixed visual scene at 1.2 m during sinusoidal translation (x 1 viewing) for 20 minutes, so as to drive the LVOR toward compensatory phase and gain. We examined both the slow-phase and the saccadic responses to these stimuli. Testing after training showed changes in slow-component gain and phase which were mostly but not always in the compensatory direction. These changes were more consistent in naive subjects than in subjects who had previous LVOR experience. Changes in gain were seen with step as well as sinusoidal test stimuli; gain changes were not correlated with vergence changes. There was a strong correlation between gain changes and phase changes across subjects. Fast phases (catch-up saccades) formed a large component of the LVOR under our testing conditions (approximately 30% of the changes in gain but not in phase due to training.

  9. The boundary of the N=90 shape phase transition: 148Ce

    NASA Astrophysics Data System (ADS)

    Koseoglou, P.; Werner, V.; Pietralla, N.; Ilieva, S.; Thürauf, M.; Bernards, C.; Blanc, A.; Bruce, A. M.; Cakirli, R. B.; Cooper, N.; Fraile, L. M.; de France, G.; Jentschel, M.; Jolie, J.; Koester, U.; Korten, W.; Kröll, T.; Lalkovski, S.; Mach, H.; Mărginean, N.; Mutti, P.; Patel, Z.; Paziy, V.; Podolyák, Z.; Regan, P. H.; Régis, J.-M.; Roberts, O. J.; Saed-Samii, N.; Simpson, G. S.; Soldner, T.; Ur, C. A.; Urban, W.; Wilmsen, D.; Wilson, E.

    2018-05-01

    The even-even N=90 isotones with Z=60-66 are known to undergo a first order phase transition. Such a phase transition in atomic nuclei is characterized by a sudden change of the shape of the nucleus due to changes in the location of the potential minimum. In these proceedings we report a measurement of the B4/2 ratio of 148Ce, which will probe the location of the low-Z boundary of the N=90 phase transitional region. The measured B4/2 value is compared to the prediction from the X(5) symmetry within the interacting boson model at the critical point between the geometrical limits of vibrators and rigid/axial rotors. The EXILL&FATIMA campaign took place at the high-flux reactor of the Institut Laue Langevin, Grenoble, were 235U and 241Pu fission fragments were measured by a hybrid spectrometer consisting of high-resolution HPGe and fast LaBr3(Ce)-scintillator detectors. The fast LaBr3(Ce) detectors in combination with the generalized centroid difference method allowed lifetime measurements in the picosecond region. Furthermore, this kind of analysis can serve as preparation for the FATIMA experiments at FAIR.

  10. Partial Accretion in the Propeller Stage of Low-mass X-Ray Binary Aql X-1

    NASA Astrophysics Data System (ADS)

    Güngör, C.; Ekşi, K. Y.; Göğüş, E.; Güver, T.

    2017-10-01

    Aql X-1 is one of the most prolific low-mass X-ray binary transients (LMXBTs) showing outbursts almost annually. We present the results of our spectral analyses of Rossi X-Ray Timing Explorer/proportional counter-array observations of the 2000 and 2011 outbursts. We investigate the spectral changes related to the changing disk-magnetosphere interaction modes of Aql X-1. The X-ray light curves of the outbursts of LMXBTs typically show phases of fast rise and exponential decay. The decay phase shows a “knee” where the flux goes from the slow-decay to the rapid-decay stage. We assume that the rapid decay corresponds to a weak propeller stage at which a fraction of the inflowing matter in the disk accretes onto the star. We introduce a novel method for inferring, from the light curve, the fraction of the inflowing matter in the disk that accretes onto the neutron star depending on the fastness parameter. We determine the fastness parameter range within which the transition from the accretion to the partial propeller stage is realized. This fastness parameter range is a measure of the scale height of the disk in units of the inner disk radius. We applied the method to a sample of outbursts of Aql X-1 with different maximum flux and duration times. We show that different outbursts with different maximum luminosity and duration follow a similar path in the parameter space of accreted/inflowing mass flux fraction versus fastness parameter.

  11. Sphingomyelinase-Induced Domain Shape Relaxation Driven by Out-of-Equilibrium Changes of Composition

    PubMed Central

    Fanani, Maria Laura; De Tullio, Luisina; Hartel, Steffen; Jara, Jorge; Maggio, Bruno

    2009-01-01

    Abstract Sphingomyelinase (SMase)-induced ceramide (Cer)-enriched domains in a lipid monolayer are shown to result from an out-of-equilibrium situation. This is induced by a change of composition caused by the enzymatic production of Cer in a sphingomyelin (SM) monolayer that leads to a fast SM/Cer demixing into a liquid-condensed (LC), Cer-enriched and a liquid-expanded, SM-enriched phases. The morphological evolution and kinetic dependence of Cer-enriched domains is studied under continuous observation by epifluorescence microscopy. Domain shape annealing is observed from branched to rounded shapes after SMase activity quenching by EDTA, with a decay halftime of ∼10 min. An out-of-equilibrium fast domain growth is not the determinant factor for domain morphology. Domain shape rearrangement in nearly equilibrium conditions result from the counteraction of intradomain dipolar repulsion and line tension, according to McConnell's shape transition theory. Phase separation causes a transient compositional overshoot within the LC phase that implies an increased out-of-equilibrium enrichment of Cer into the LC domains. As a consequence, higher intradomain repulsion leads to transient branched structures that relax to rounded shapes by lowering the proportion of Cer in the domain to equilibrium values. The fast action of SMase can be taken as a compositional perturbation that brings about important consequences for the surface organization. PMID:18849413

  12. Fasting in king penguin. II. Hormonal and metabolic changes during molt.

    PubMed

    Cherel, Y; Leloup, J; Le Maho, Y

    1988-02-01

    The coincidence of fast and molt in penguins is an interesting condition for investigating the factors controlling protein metabolism; avian molt involves the utilization of amino acids for synthesis of new feathers, whereas a major factor for adaptation to fasting in birds, as for mammals, is reduction in net protein breakdown. Hormonal and biochemical changes were studied in seven molting king penguins. Their initial body mass was 18 kg. It decreased by 58% over 41 days of fasting. Feather synthesis lasted for the first 3 wk of the fast. It was marked by plasma concentrations of alanine and uric acid 1.5 to 2 times those for nonmolting fast, and plasma thyroxine was increased five times. At the completion of molt all these values returned to levels comparable to those in nonmolting fast. As indicated by high plasma levels of beta-hydroxybutyrate, lipid stores were mobilized readily during molting. The fast ended by a phase of enhancement in protein utilization that was characterized by a fivefold increase in uricacidemia and coincided with an 80% drop in plasma beta-hydroxybutyrate and a fourfold increase in plasma corticosterone. These data suggest that two different hormones control the two successive periods marked by an increased protein mobilization during the molting fast, i.e., thyroxine during feather growth and corticosterone toward the end of the fast, when the molt is completed.

  13. Recent Advances on Neuromorphic Systems Using Phase-Change Materials

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Lu, Shu-Ren; Wen, Jing

    2017-05-01

    Realization of brain-like computer has always been human's ultimate dream. Today, the possibility of having this dream come true has been significantly boosted due to the advent of several emerging non-volatile memory devices. Within these innovative technologies, phase-change memory device has been commonly regarded as the most promising candidate to imitate the biological brain, owing to its excellent scalability, fast switching speed, and low energy consumption. In this context, a detailed review concerning the physical principles of the neuromorphic circuit using phase-change materials as well as a comprehensive introduction of the currently available phase-change neuromorphic prototypes becomes imperative for scientists to continuously progress the technology of artificial neural networks. In this paper, we first present the biological mechanism of human brain, followed by a brief discussion about physical properties of phase-change materials that recently receive a widespread application on non-volatile memory field. We then survey recent research on different types of neuromorphic circuits using phase-change materials in terms of their respective geometrical architecture and physical schemes to reproduce the biological events of human brain, in particular for spike-time-dependent plasticity. The relevant virtues and limitations of these devices are also evaluated. Finally, the future prospect of the neuromorphic circuit based on phase-change technologies is envisioned.

  14. Recent Advances on Neuromorphic Systems Using Phase-Change Materials.

    PubMed

    Wang, Lei; Lu, Shu-Ren; Wen, Jing

    2017-12-01

    Realization of brain-like computer has always been human's ultimate dream. Today, the possibility of having this dream come true has been significantly boosted due to the advent of several emerging non-volatile memory devices. Within these innovative technologies, phase-change memory device has been commonly regarded as the most promising candidate to imitate the biological brain, owing to its excellent scalability, fast switching speed, and low energy consumption. In this context, a detailed review concerning the physical principles of the neuromorphic circuit using phase-change materials as well as a comprehensive introduction of the currently available phase-change neuromorphic prototypes becomes imperative for scientists to continuously progress the technology of artificial neural networks. In this paper, we first present the biological mechanism of human brain, followed by a brief discussion about physical properties of phase-change materials that recently receive a widespread application on non-volatile memory field. We then survey recent research on different types of neuromorphic circuits using phase-change materials in terms of their respective geometrical architecture and physical schemes to reproduce the biological events of human brain, in particular for spike-time-dependent plasticity. The relevant virtues and limitations of these devices are also evaluated. Finally, the future prospect of the neuromorphic circuit based on phase-change technologies is envisioned.

  15. On the studies of thermodynamics properties of fast neutron irradiated (LixK1-x)2SO4 crystals

    NASA Astrophysics Data System (ADS)

    El-Khatib, A. M.; Kassem, M. E.; Gomaa, N. G.; Mahmoud, S. A.

    The effect of fast neutron irradiation on the thermodynamic properties of (LixK1-x)2SO4, (x = 0.1, 0.2,˙˙˙˙˙˙˙˙0.5) has been studied. The measurements were carried out in the vicinity of phase transition. The study reveals that as the lithium content decreases the first high temperature phase Tc = 705 K disappears, while the second one is shifted to lower temperature. It is observed also that the specific heat, Cp, decreases sharply with neutron integrated fluence φ and increases once more. Both entropy and enthalpy changes increase with the increase of neutron integrated fluence.

  16. Fast synthesis and consolidation of porous FeAl by pressureless Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Dudina, D. V.; Brester, A. E.; Anisimov, A. G.; Bokhonov, B. B.; Legan, M. A.; Novoselov, A. N.; Skovorodin, I. N.; Uvarov, N. F.

    2017-07-01

    We report one-step fast synthesis and consolidation of iron aluminide FeAl of high open porosity by pressureless reactive Spark Plasma Sintering (SPS). The starting material of the Fe-40at.%Al composition was a mixture of an iron powder with an average particle diameter of 4 μm and an aluminum powder with an average particle diameter of 6 μm. The rationale behind the choice of the SPS as a processing technique and fine and comparable sizes of the two reactants for the synthesis of high-open porosity FeAl was realization of fast full chemical conversion of Fe and Al into single-phase FeAl reducing the time available for the compact shrinkage. According to the XRD phase analysis, single-phase FeAl compacts formed after SPS at 800 and 900°C. These compacts had open porosities of 41 and 46%, respectively. The transverse rupture strength of the compacts sintered at 700-900°C was found to change little with the sintering temperature in the selected range.

  17. Optical contrast and laser-induced phase transition in GeCu2Te3 thin film

    NASA Astrophysics Data System (ADS)

    Saito, Yuta; Sutou, Yuji; Koike, Junichi

    2013-02-01

    Fast crystallization and low power amorphization are essential to achieve rapid data recording and low power consumption in phase-change memory. This work investigated the laser-induced phase transition behaviors of GeCu2Te3 film based on the reflectance of amorphous and crystalline states. The GeCu2Te3 film showed a reflectance decrease upon crystallization, which was the opposite behavior in Ge2Sb2Te5 film. The crystallization starting time of the as-deposited GeCu2Te3 film was as fast as that of the as-deposited Ge2Sb2Te5 film. Furthermore, the GeCu2Te3 crystalline film was found to be reamorphized by laser irradiation at lower power and shorter pulse width than the Ge2Sb2Te5.

  18. Role of Helium-Hydrogen ratio on energetic interchange mode behaviour and its effect on ion temperature and micro-turbulence in LHD

    NASA Astrophysics Data System (ADS)

    Michael, C. A.; Tanaka, K.; Akiyama, T.; Ozaki, T.; Osakabe, M.; Sakakibara, S.; Yamaguchi, H.; Murakami, S.; Yokoyama, M.; Shoji, M.; Vyacheslavov, L. N.; LHD Experimental Group

    2018-04-01

    In the Large helical device, a change of energetic particle mode is observed as He concentration is varied in ion-ITB type experiments, having constant electron density and input heating power but with a clear increase of central ion temperature in He rich discharges. This activity consists of bursty, but damped energetic interchange modes (EICs, Du et al 2015 Phys. Rev. Lett. 114 155003), whose occurrence rate is dramatically lower in the He-rich discharges. Mechanisms are discussed for the changes in drive and damping of the modes with He concentration. These EIC bursts consist of marked changes in the radial electric field, which is derived from the phase velocity of turbulence measured with the 2D phase contrast imaging (PCI) system. Similar bursts are detected in edge fast ion diagnostics. Ion thermal transport by gyro-Bohm scaling is recognised as a contribution to the change in ion temperature, though fast ion losses by these EIC modes may also contribute to the ion temperature dependence on He concentration, most particularly controlling the height of an ‘edge-pedestal’ in the Ti profile. The steady-state level of fast ions is shown to be larger in helium rich discharges on the basis of a compact neutral particle analyser (CNPA), and the fast-ion component of the diamagnetic stored energy. These events also have an influence on turbulence and transport. The large velocity shear induced produced during these events transiently improves confinement and suppresses turbulence, and has a larger net effect when bursts are more frequent in hydrogen discharges. This exactly offsets the increased gyro-Bohm related turbulence drive in hydrogen which results in the same time-averaged turbulence level in hydrogen as in helium.

  19. Maxillary molar distalization: Pendulum and Fast-Back, comparison between two approaches for Class II malocclusion.

    PubMed

    Caprioglio, Alberto; Beretta, Matteo; Lanteri, Claudio

    2011-01-01

    To compare the dento-alveolar and skeletal effects produced by two different molar intraoral distalization appliances, Pendulum and Fast-Back, both followed by fixed appliances, in the treatment of Class II malocclusion. 41 patients for Pendulum (18 males and 23 females) and 35 for Fast-Back (14 males and 21 females) were selected, with a mean age at the start of treatment of 12.11 years in the Pendulum group and 13.3 for in the Fast-Back group. The durations of the distalization phase were 8 months in the Pendulum group and 9 months in the Fast-Back group, and the durations of the second phase of treatment with fixed appliances were 19 months in the Pendulum group and 20 months in the Fast-Back group. Lateral cephalograms were analyzed at 3 observation times: before treatment, after distalization and after comprehensive orthodontic treatment. During molar distalization the Pendulum subjects showed greater distal molar movement and less anchorage loss at both the premolars and maxillary incisors than the Fast-Back subjects. Pendulum and Fast-Back produced similar amounts of distal molar movement and overcorrection of molar relationship at the end of distalization though the Fast-Back induced a more bodily movement. Very little change occurred in the inclination of the mandibular plane at the end of the 2-phase treatment in both groups. At the end of treatment the maxillary first molars were on average 1mm more distal in the Pendulum group compared to the Fast-Back group, while the total molar correction was 3.2mm with 3.9° of distal inclination for the Pendulum and 2mm with 1.1° of mesial inclination for the Fast-Back. Both appliance were equally effective in inducing a satisfactory Class I relationship in 97.2% of the cases. The Pendulum and the Fast-Back induce similar dentoskeletal effects. The use of the two distalization devices, therefore, can be considered clinically equivalent. Copyright © 2011 Società Italiana di Ortodonzia SIDO. Published by Elsevier Srl. All rights reserved.

  20. [Nystagmus].

    PubMed

    Jutila, Topi; Hirvonen, Timo P

    2013-01-01

    Physiological nystagmus stabilizes gaze during head movements and pathological nystagmus reflects a disorder of the vestibulo-ocular reflex (VOR). Pathological nystagmus appears or strengthens usually during change in head position. Therefore, dizziness or nystagmus associated with head movements is not specific to benign paroxysmal positional vertigo unless it is verified in specific positional test. Peripheral nystagmus decelerates during visual fixation, accelerates when gaze is turned towards the fast phase, does not change direction, and is usually composed of several directional components unlike central nystagmus. The velocity and frequency of the slow phase of nystagmus can be measured with electronystagmography or video-oculography.

  1. Thermally coupled moving boundary model for charge-discharge of LiFePO4/C cells

    NASA Astrophysics Data System (ADS)

    Khandelwal, Ashish; Hariharan, Krishnan S.; Gambhire, Priya; Kolake, Subramanya Mayya; Yeo, Taejung; Doo, Seokgwang

    2015-04-01

    Optimal thermal management is a key requirement in commercial utilization of lithium ion battery comprising of phase change electrodes. In order to facilitate design of battery packs, thermal management systems and fast charging profiles, a thermally coupled electrochemical model that takes into account the phase change phenomenon is required. In the present work, an electrochemical thermal model is proposed which includes the biphasic nature of phase change electrodes, such as lithium iron phosphate (LFP), via a generalized moving boundary model. The contribution of phase change to the heat released during the cell operation is modeled using an equivalent enthalpy approach. The heat released due to phase transformation is analyzed in comparison with other sources of heat such as reversible, irreversible and ohmic. Detailed study of the thermal behavior of the individual cell components with changing ambient temperature, rate of operation and heat transfer coefficient is carried out. Analysis of heat generation in the various regimes is used to develop cell design and operating guidelines. Further, different charging protocols are analyzed and a model based methodology is suggested to design an efficient quick charging protocol.

  2. The cross-bridge dynamics is determined by two length-independent kinetics: Implications on muscle economy and Frank-Starling Law.

    PubMed

    Amiad Pavlov, Daria; Landesberg, Amir

    2016-01-01

    The cellular mechanisms underlying the Frank-Starling Law of the heart and the skeletal muscle force-length relationship are not clear. This study tested the effects of sarcomere length (SL) on the average force per cross-bridge and on the rate of cross-bridge cycling in intact rat cardiac trabeculae (n=9). SL was measured by laser diffraction and controlled with a fast servomotor to produce varying initial SLs. Tetanic contractions were induced by addition of cyclopiazonic acid, to maintain a constant activation. Stress decline and redevelopment in response to identical ramp shortenings, starting at various initial SLs, was analyzed. Both stress decline and redevelopment responses revealed two distinct kinetics: a fast and a slower phase. The duration of the rapid phases (4.2 ± 0.1 msec) was SL-independent. The second slower phase depicted a linear dependence of the rate of stress change on the instantaneous stress level. Identical slopes (70.5 ± 1.6 [1/s], p=0.33) were obtained during ramp shortening at all initial SLs, indicating that the force per cross-bridge and cross-bridge cycling kinetics are length-independent. A decrease in the slope at longer SLs was obtained during stress redevelopment, due to internal shortening. The first phase is attributed to rapid changes in the average force per cross-bridge. The second phase is ascribed to both cross-bridge cycling between its strong and weak conformations and to changes in the number of strong cross-bridges. Cross-bridge cycling kinetics and muscle economy are length-independent and the Frank-Starling Law cannot be attributed to changes in the force per cross-bridge or in the single cross-bridge cycling rates. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Effects of a Six-Week Strength Training Programme on Change of Direction Performance in Youth Team Sport Athletes

    PubMed Central

    Bourgeois, Frank A.; Gamble, Paul; Gill, Nic D.; McGuigan, Mike R.

    2017-01-01

    This study investigated the effects of eccentric phase-emphasis strength training (EPE) on unilateral strength and performance in 180- and 45-degree change of direction (COD) tasks in rugby union players. A 12-week cross-over design was used to compare the efficacy of resistance training executed with 3 s eccentric duration (EPE, n = 12) against conventional strength training, with no constraints on tempo (CON, n = 6). Players in each condition were categorised as ‘fast’ (FAST) or ‘slow’ (SLOW) using median trial times from baseline testing. Players recorded greater isometric strength improvements following EPE (ES = −0.54 to 1.80). Whilst these changes were not immediate, players improved in strength following cessation. Improvements in 180-degree COD performance was recorded at all test-points following EPE (ES = −1.32 to −0.15). Improvements in 45-degree COD performance were apparent for FAST following CON (ES = −0.96 to 0.10), but CON was deleterious for SLOW (ES = −0.60 to 1.53). Eccentric phase-emphasis strength training shows potential for sustained strength enhancement. Positive performance changes in COD tasks were category- and condition-specific. The data indicate the greatest improvement occurred at nine weeks following resistance training in these players. Performance benefits may also be specific to COD task, player category, and relative to emphasis on eccentric phase activity. PMID:29910443

  4. Effects of non-steroidal anti-inflammatory drug treatments on cognitive decline vary by phase of pre-clinical Alzheimer disease: findings from the randomized controlled Alzheimer's Disease Anti-inflammatory Prevention Trial.

    PubMed

    Leoutsakos, Jeannie-Marie S; Muthen, Bengt O; Breitner, John C S; Lyketsos, Constantine G

    2012-04-01

    We examined the effects of non-steroidal anti-inflammatory drugs on cognitive decline as a function of phase of pre-clinical Alzheimer disease. Given recent findings that cognitive decline accelerates as clinical diagnosis is approached, we used rate of decline as a proxy for phase of pre-clinical Alzheimer disease. We fit growth mixture models of Modified Mini-Mental State (3MS) Examination trajectories with data from 2388 participants in the Alzheimer's Disease Anti-inflammatory Prevention Trial and included class-specific effects of naproxen and celecoxib. We identified three classes: "no decline", "slow decline", and "fast decline", and examined the effects of celecoxib and naproxen on linear slope and rate of change by class. Inclusion of quadratic terms improved fit of the model (-2 log likelihood difference: 369.23; p < 0.001) but resulted in reversal of effects over time. Over 4 years, participants in the slow-decline class on placebo typically lost 6.6 3MS points, whereas those on naproxen lost 3.1 points (p-value for difference: 0.19). Participants in the fast-decline class on placebo typically lost 11.2 points, but those on celecoxib first declined and then gained points (p-value for difference from placebo: 0.04), whereas those on naproxen showed a typical decline of 24.9 points (p-value for difference from placebo: <0.0001). Our results appeared statistically robust but provided some unexpected contrasts in effects of different treatments at different times. Naproxen may attenuate cognitive decline in slow decliners while accelerating decline in fast decliners. Celecoxib appeared to have similar effects at first but then attenuated change in fast decliners. Copyright © 2011 John Wiley & Sons, Ltd.

  5. Equatorial anisotropy of the Earth's inner-inner core

    NASA Astrophysics Data System (ADS)

    Song, X.; Wang, T.; Xia, H.

    2015-12-01

    Anisotropy of Earth's inner core is a key to understand its evolution and the generation of the Earth's magnetic field. All the previous inner core anisotropy models have assumed a cylindrical anisotropy with the symmetry axis parallel (or nearly parallel) to the Earth's spin axis. However, we have recently found that the fast axis in the inner part of the inner core is close to the equator from inner-core waves extracted from earthquake coda. We obtained inner core phases, PKIIKP2 and PKIKP2 (round-trip phases between the station and its antipode that passes straight through the center of the Earth and that is reflected from the inner core boundary, respectively), from stackings of autocorrelations of the coda of large earthquakes (10,000~40,000 s after Mw>=7.0 earthquakes) at seismic station clusters around the world. We observed large variation of up to 10 s along equatorial paths in the differential travel times PKIIKP2 - PKIKP2, which are sensitive to inner-core structure. The observations can be explained by a cylindrical anisotropy in the inner inner core (IIC) (with a radius of slightly less than half the inner core radius) that has a fast axis aligned near the equator and a cylindrical anisotropy in the outer inner core (OIC) that has a fast axis along the north-south direction. We have obtained more observations using the combination of autocorrelations and cross-correlations at low-latitude station arrays. The results further confirm that the IIC has an equatorial anisotropy and a pattern different from the OIC. The equatorial fast axis of the IIC is near the Central America and the Southeast Asia. The drastic change in the fast axis and the form of anisotropy from the IIC to the OIC may suggest a phase change of the iron or a major shift in the crystallization and deformation during the formation and growth of the inner core.

  6. Master-equation approach to the study of phase-change processes in data storage media

    NASA Astrophysics Data System (ADS)

    Blyuss, K. B.; Ashwin, P.; Bassom, A. P.; Wright, C. D.

    2005-07-01

    We study the dynamics of crystallization in phase-change materials using a master-equation approach in which the state of the crystallizing material is described by a cluster size distribution function. A model is developed using the thermodynamics of the processes involved and representing the clusters of size two and greater as a continuum but clusters of size one (monomers) as a separate equation. We present some partial analytical results for the isothermal case and for large cluster sizes, but principally we use numerical simulations to investigate the model. We obtain results that are in good agreement with experimental data and the model appears to be useful for the fast simulation of reading and writing processes in phase-change optical and electrical memories.

  7. Partial Accretion in the Propeller Stage of Low-mass X-Ray Binary Aql X–1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Güngör, C.; Ekşi, K. Y.; Göğüş, E.

    Aql X–1 is one of the most prolific low-mass X-ray binary transients (LMXBTs) showing outbursts almost annually. We present the results of our spectral analyses of Rossi X-Ray Timing Explorer /proportional counter-array observations of the 2000 and 2011 outbursts. We investigate the spectral changes related to the changing disk-magnetosphere interaction modes of Aql X–1. The X-ray light curves of the outbursts of LMXBTs typically show phases of fast rise and exponential decay. The decay phase shows a “knee” where the flux goes from the slow-decay to the rapid-decay stage. We assume that the rapid decay corresponds to a weak propellermore » stage at which a fraction of the inflowing matter in the disk accretes onto the star. We introduce a novel method for inferring, from the light curve, the fraction of the inflowing matter in the disk that accretes onto the neutron star depending on the fastness parameter. We determine the fastness parameter range within which the transition from the accretion to the partial propeller stage is realized. This fastness parameter range is a measure of the scale height of the disk in units of the inner disk radius. We applied the method to a sample of outbursts of Aql X–1 with different maximum flux and duration times. We show that different outbursts with different maximum luminosity and duration follow a similar path in the parameter space of accreted/inflowing mass flux fraction versus fastness parameter.« less

  8. Phase Difference between Model Cortical Areas Determines Level of Information Transfer

    PubMed Central

    ter Wal, Marije; Tiesinga, Paul H.

    2017-01-01

    Communication between cortical sites is mediated by long-range synaptic connections. However, these connections are relatively static, while everyday cognitive tasks demand a fast and flexible routing of information in the brain. Synchronization of activity between distant cortical sites has been proposed as the mechanism underlying such a dynamic communication structure. Here, we study how oscillatory activity affects the excitability and input-output relation of local cortical circuits and how it alters the transmission of information between cortical circuits. To this end, we develop model circuits showing fast oscillations by the PING mechanism, of which the oscillatory characteristics can be altered. We identify conditions for synchronization between two brain circuits and show that the level of intercircuit coherence and the phase difference is set by the frequency difference between the intrinsic oscillations. We show that the susceptibility of the circuits to inputs, i.e., the degree of change in circuit output following input pulses, is not uniform throughout the oscillation period and that both firing rate, frequency and power are differentially modulated by inputs arriving at different phases. As a result, an appropriate phase difference between the circuits is critical for the susceptibility windows of the circuits in the network to align and for information to be efficiently transferred. We demonstrate that changes in synchrony and phase difference can be used to set up or abolish information transfer in a network of cortical circuits. PMID:28232796

  9. Fast, externally triggered, digital phase controller for an optical lattice

    NASA Astrophysics Data System (ADS)

    Sadgrove, Mark; Nakagawa, Ken'ichi

    2011-11-01

    We present a method to control the phase of an optical lattice according to an external trigger signal. The method has a latency of less than 30 μs. Two phase locked digital synthesizers provide the driving signal for two acousto-optic modulators which control the frequency and phase of the counter-propagating beams which form a standing wave (optical lattice). A micro-controller with an external interrupt function is connected to the desired external signal, and updates the phase register of one of the synthesizers when the external signal changes. The standing wave (period λ/2 = 390 nm) can be moved by units of 49 nm with a mean jitter of 28 nm. The phase change is well known due to the digital nature of the synthesizer, and does not need calibration. The uses of the scheme include coherent control of atomic matter-wave dynamics.

  10. Direct and real time probe of photoinduced structure transition in colossal magnetoresistive material

    DOE PAGES

    Li, Junjie; Wang, Xuan; Zhou, Haidong; ...

    2016-07-29

    Here, we report a direct and real time measurement of photoinduced structure phase transition in single crystal La 0.84Sr 0.16MnO 3 using femtosecond electron diffraction. The melting of orthorhombic lattice ordering under femtosecond optical excitation is found involving two distinct processes with different time scales, an initial fast melting of orthorhombic phase in about 4 ps and a subsequent slower transformation in 90 ps and longer timescales. Furthermore, the fast process is designated as the initial melting of orthorhombic phase induced by the Mn-O bond change that is most likely driven by the quenching of the dynamic Jahn-Teller distortion followingmore » the photo-excitation. We attribute the slow process to the growing of newly formed structure domain from the photo-excited sites to the neighboring non-excited orthorhombic sites.« less

  11. Using colloidal silica as isolator, diverter and blocking agent for subsurface geological applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bourcier, William L.; Roberts, Sarah K.; Roberts, Jeffery J.

    A system for blocking fast flow paths in geological formations includes preparing a solution of colloidal silica having a nonviscous phase and a solid gel phase. The solution of colloidal silica is injected into the geological formations while the solution of colloidal silica is in the nonviscous phase. The solution of colloidal silica is directed into the fast flow paths and reaches the solid gel phase in the fast flow paths thereby blocking flow of fluid in the fast paths.

  12. Reducing the Federal Budget: Strategies and Examples, Fiscal Years 1982- 1986.

    DTIC Science & Technology

    1981-02-01

    Small issues are being used with increasing frequency to finance a wide range of facilities including manufacturing plants, fast- food franchises , and...Funding for Amtrak .......... 79 Phasing Out of Conrail Funding ........ 81 Reduction in New Subway Commitments ...... ... 83 Reduced Spending on...Grant ............... 166 Changes in Food Stamp Program . . . . . . . 168 Recoupment of Food Stamp Benefits . . . . .. 171 Change in the Low Income

  13. Control of finger forces during fast, slow and moderate rotational hand movements.

    PubMed

    Kazemi, Hamed; Kearney, Robert E; Milner, Theodore E

    2014-01-01

    The goal of this study was to investigate the effect of speed on patterns of grip forces during twisting movement involving forearm supination against a torsional load (combined elastic and inertial load). For slow and moderate speed rotations, the grip force increased linearly with load torque. However, for fast rotations in which the contribution of the inertia to load torque was significantly greater than slower movements, the grip force-load torque relationship could be segmented into two phases: a linear ascending phase corresponding to the acceleration part of the movement followed by a plateau during deceleration. That is, during the acceleration phase, the grip force accurately tracked the combined elastic and inertial load. However, the coupling between grip force and load torque was not consistent during the deceleration phase of the movement. In addition, as speed increased, both the position and the force profiles became smoother. No differences in the baseline grip force, safety margin to secure the grasp during hold phase or the overall change in grip force were observed across different speeds.

  14. Sub-nanometre resolution of atomic motion during electronic excitation in phase-change materials.

    PubMed

    Mitrofanov, Kirill V; Fons, Paul; Makino, Kotaro; Terashima, Ryo; Shimada, Toru; Kolobov, Alexander V; Tominaga, Junji; Bragaglia, Valeria; Giussani, Alessandro; Calarco, Raffaella; Riechert, Henning; Sato, Takahiro; Katayama, Tetsuo; Ogawa, Kanade; Togashi, Tadashi; Yabashi, Makina; Wall, Simon; Brewe, Dale; Hase, Muneaki

    2016-02-12

    Phase-change materials based on Ge-Sb-Te alloys are widely used in industrial applications such as nonvolatile memories, but reaction pathways for crystalline-to-amorphous phase-change on picosecond timescales remain unknown. Femtosecond laser excitation and an ultrashort x-ray probe is used to show the temporal separation of electronic and thermal effects in a long-lived (>100 ps) transient metastable state of Ge2Sb2Te5 with muted interatomic interaction induced by a weakening of resonant bonding. Due to a specific electronic state, the lattice undergoes a reversible nondestructive modification over a nanoscale region, remaining cold for 4 ps. An independent time-resolved x-ray absorption fine structure experiment confirms the existence of an intermediate state with disordered bonds. This newly unveiled effect allows the utilization of non-thermal ultra-fast pathways enabling artificial manipulation of the switching process, ultimately leading to a redefined speed limit, and improved energy efficiency and reliability of phase-change memory technologies.

  15. Sub-nanometre resolution of atomic motion during electronic excitation in phase-change materials

    DOE PAGES

    Mitrofanov, Kirill V.; Fons, Paul; Makino, Kotaro; ...

    2016-02-12

    Phase-change materials based on Ge-Sb-Te alloys are widely used in industrial applications such as nonvolatile memories, but reaction pathways for crystalline-to-amorphous phase-change on picosecond timescales remain unknown. Femtosecond laser excitation and an ultrashort x-ray probe is used to show the temporal separation of electronic and thermal effects in a long-lived (>100 ps) transient metastable state of Ge 2Sb 2Te 5 with muted interatomic interaction induced by a weakening of resonant bonding. Due to a specific electronic state, the lattice undergoes a reversible nondestructive modification over a nanoscale region, remaining cold for 4 ps. An independent time-resolved x-ray absorption fine structuremore » experiment confirms the existence of an intermediate state with disordered bonds. Furthermore, this newly unveiled effect allows the utilization of non-thermal ultra-fast pathways enabling artificial manipulation of the switching process, ultimately leading to a redefined speed limit, and improved energy efficiency and reliability of phase-change memory technologies.« less

  16. Abrupt plate acceleration during rifted margin formation: Cause and effect

    NASA Astrophysics Data System (ADS)

    Brune, Sascha; Williams, Simon; Butterworth, Nathaniel; Müller, Dietmar

    2017-04-01

    Extension rate is known to control key processes during rifted margin formation such as crust-mantle coupling, decompression melting, magmatism, and serpentinisation. Here we build on recent advances in plate tectonic reconstructions by quantifying the extension velocity history of Earth's major rifted margins during the last 240 million years. We find that many successful rifts start with a slow phase of extension followed by rapid acceleration that introduces a fast phase. The transition from slow to fast rifting takes place long before crustal break-up: approximately half of the present day rifted margin area was created during the slow, and the other half during the fast rift phase. We reproduce the rapid transition from slow to fast extension using analytical and numerical modelling with constant force boundary conditions. In these models, rift velocities are not imposed but instead evolve naturally in response to the changing strength of the rift. Our results demonstrate that abrupt plate acceleration during continental rifting is controlled by a rift-intrinsic strength-velocity feedback. The abruptness of rift acceleration is thereby governed by the nonlinearity of lithospheric localization. Realistic brittle and power-law rheologies lead to a speed-up duration between two and ten million years. For successful rifts that generate a new ocean basin, the duration of rift speed-up is notably almost independent of the applied extensional force. Instead, the force controls the duration of the slow phase: higher forces shorten the slow phase while lower forces prolong it. If the force is too low, however, delocalisation processes prevent the rift from reaching the point of speed-up and produce a failed rift, even if the extensional system was active for many million years.

  17. A 12-week randomized clinical trial investigating the potential for sucralose to affect glucose homeostasis.

    PubMed

    Grotz, V Lee; Pi-Sunyer, Xavier; Porte, Daniel; Roberts, Ashley; Richard Trout, J

    2017-08-01

    The discovery of gut sweet taste receptors has led to speculations that non-nutritive sweeteners, including sucralose, may affect glucose control. A double-blind, parallel, randomized clinical trial, reported here and previously submitted to regulatory agencies, helps to clarify the role of sucralose in this regard. This was primarily an out-patient study, with 4-week screening, 12-week test, and 4-week follow-up phases. Normoglycemic male volunteers (47) consumed ∼333.3 mg encapsulated sucralose or placebo 3x/day at mealtimes. HbA1c, fasting glucose, insulin, and C-peptide were measured weekly. OGTTs were conducted in-clinic overnight, following overnight fasting twice during screening phase, twice during test phase, and once at follow-up. Throughout the study, glucose, insulin, C-peptide and HbA1c levels were within normal range. No statistically significant differences between sucralose and placebo groups in change from baseline for fasting glucose, insulin, C-peptide and HbA1c, no clinically meaningful differences in time to peak levels or return towards basal levels in OGTTs, and no treatment group differences in mean glucose, insulin, or C-peptide AUC change from baseline were observed. The results of other relevant clinical trials and studies of gastrointestinal sweet taste receptors are compared to these findings. The collective evidence supports that sucralose has no effect on glycemic control. Copyright © 2017 Heartland Food Products Group. Published by Elsevier Inc. All rights reserved.

  18. MULTIGRAIN: a smoothed particle hydrodynamic algorithm for multiple small dust grains and gas

    NASA Astrophysics Data System (ADS)

    Hutchison, Mark; Price, Daniel J.; Laibe, Guillaume

    2018-05-01

    We present a new algorithm, MULTIGRAIN, for modelling the dynamics of an entire population of small dust grains immersed in gas, typical of conditions that are found in molecular clouds and protoplanetary discs. The MULTIGRAIN method is more accurate than single-phase simulations because the gas experiences a backreaction from each dust phase and communicates this change to the other phases, thereby indirectly coupling the dust phases together. The MULTIGRAIN method is fast, explicit and low storage, requiring only an array of dust fractions and their derivatives defined for each resolution element.

  19. Investigations of effect of phase change mass transfer rate on cavitation process with homogeneous relaxation model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Zhixia; Zhang, Liang; Saha, Kaushik

    The super high fuel injection pressure and micro size of nozzle orifice has been an important development trend for the fuel injection system. Accordingly, cavitation transient process, fuel compressibility, amount of noncondensable gas in the fuel and cavitation erosion have attracted more attention. Based on the fact of cavitation in itself is a kind of thermodynamic phase change process, this paper takes the perspective of the cavitation phase change mass transfer process to analyze above mentioned phenomenon. The two-phase cavitating turbulent flow simulations with VOF approach coupled with HRM cavitation model and U-RANS of standard k-ε turbulence model were performedmore » for investigations of cavitation phase change mass transfer process. It is concluded the mass transfer time scale coefficient in the Homogenous Relaxation Model (HRM) representing mass transfer rate should tend to be as small as possible in a condition that ensured the solver stable. At very fast mass transfer rate, the phase change occurs at very thin interface between liquid and vapor phase and condensation occurs more focused and then will contribute predictably to a more serious cavitation erosion. Both the initial non-condensable gas in fuel and the fuel compressibility can accelerate the cavitation mass transfer process.« less

  20. Seismic Anisotropy Beneath the Eastern Flank of the Rio Grande Rift

    NASA Astrophysics Data System (ADS)

    Benton, N. W.; Pulliam, J.

    2015-12-01

    Shear wave splitting was measured across the eastern flank of the Rio Grande Rift (RGR) to investigate mechanisms of upper mantle anisotropy. Earthquakes recorded at epicentral distances of 90°-130° from EarthScope Transportable Array (TA) and SIEDCAR (SC) broadband seismic stations were examined comprehensively, via the Matlab program "Splitlab", to determine whether SKS and SKKS phases indicated anisotropic properties. Splitlab allows waveforms to be rotated, filtered, and windowed interactively and splitting measurements are made on a user-specified waveform segment via three independent methods simultaneously. To improve signal-to-noise and improve reliability, we stacked the error surfaces that resulted from grid searches in the measurements for each station location. Fast polarization directions near the Rio Grande Rift tend to be sub-parallel to the RGR but then change to angles that are consistent with North America's average plate motion, to the east. The surface erosional depression of the Pecos Valley coincides with fast polarization directions that are aligned in a more northerly direction than their neighbors, whereas the topographic high to the east coincides with an easterly change of the fast axis.The area above a mantle high velocity anomaly discovered separately via seismic tomography which may indicate thickened lithosphere, corresponds to unusually large delay times and fast polarization directions that are more closely aligned to a north-south orientation. The area of southeastern New Mexico that falls between the mantle fast anomaly and the Great Plains craton displays dramatically smaller delay times, as well as changes in fast axis directions toward the northeast. Changes in fast axis directions may indicate flow around the mantle anomaly; small delay times could indicate vertical or attenuated flow.

  1. Characterization of morphological response of red cells in a sucrose solution.

    PubMed

    Rudenko, Sergey V

    2009-01-01

    The dynamics of red cell shape changes following transfer into sucrose media having a low chloride content was studied. Based on a large number of measurements, six types of morphological response (MR), differing both in the degree of shape changes and the time course of the process, were identified. The most prominent type of response is a triphasic sequence of shape changes consisting of a fast transformation into a sphere (phase 1), followed by restoration of the discoid shape (phase 2) and final transformation into spherostomatocytes (phase 3), with individual parameters which could vary significantly. It was found that individual morphological response exhibited day to day variations, depending on the initial state of the red blood cells and the donor, but to a larger extent depended on the composition of the sucrose solution, such as concentration and type of buffers, the presence of EDTA, calcium, as well as very small amounts of extracellular hemoglobin. MR shows strong pH and ionic strength dependence. Low pH inhibited phase 1 and high pH changed dramatically the time course of the response. Increasing ionic strength inhibited all phases of MR, and at concentrations above 10-20 mM NaCl it was fully suppressed. Tris and phosphate were also inhibitory whereas HEPES, MOPS and Tricine were less effective. MR occurred also in hypertonic or hypotonic sucrose solutions, with exception of extreme hypotonicity due to volume restrictions. It is concluded that strong membrane depolarization per se is not a causal factor leading to MR, and its different phases could be regulated independently. For some types of morphological response the fast shape transformation from sphere to disc and back to sphere occurs within a 10 s time interval and could be accelerated several fold in the presence of a small amount of hemoglobin. It is suggested that MR represents a type of general cell reaction that occurs upon exposure to low ionic strength.

  2. 78 FR 64916 - Application(s) for Duty-Free Entry of Scientific Instruments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-30

    ...., light to heat), crystallization, melting, phase transformations, fracture, and other dynamic events. The... Sciences University, 1120 15th Street, Augusta, GA 30912. Instrument: Imaging System/Digital Microscope... the instrument include fast wavelength change, a dichromotome system, and two different light sources...

  3. Fast assessment of planar chromatographic layers quality using pulse thermovision method.

    PubMed

    Suszyński, Zbigniew; Świta, Robert; Loś, Joanna; Zarzycka, Magdalena B; Kaleniecka, Aleksandra; Zarzycki, Paweł K

    2014-12-19

    The main goal of this paper is to demonstrate capability of pulse thermovision (thermal-wave) methodology for sensitive detection of photothermal non-uniformities within light scattering and semi-transparent planar stationary phases. Successful visualization of stationary phases defects required signal processing protocols based on wavelet filtration, correlation analysis and k-means 3D segmentation. Such post-processing data handling approach allows extremely sensitive detection of thickness and structural changes within commercially available planar chromatographic layers. Particularly, a number of TLC and HPTLC stationary phases including silica, cellulose, aluminum oxide, polyamide and octadecylsilane coated with adsorbent layer ranging from 100 to 250μm were investigated. Presented detection protocol can be used as an efficient tool for fast screening the overall heterogeneity of any layered materials. Moreover, described procedure is very fast (few seconds including acquisition and data processing) and may be applied for fabrication processes online controlling. In spite of planar chromatographic plates this protocol can be used for assessment of different planar separation tools like paper based analytical devices or micro total analysis systems, consisted of organic and non-organic layers. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Dynamic imaging with electron microscopy

    ScienceCinema

    Campbell, Geoffrey; McKeown, Joe; Santala, Melissa

    2018-02-13

    Livermore researchers have perfected an electron microscope to study fast-evolving material processes and chemical reactions. By applying engineering, microscopy, and laser expertise to the decades-old technology of electron microscopy, the dynamic transmission electron microscope (DTEM) team has developed a technique that can capture images of phenomena that are both very small and very fast. DTEM uses a precisely timed laser pulse to achieve a short but intense electron beam for imaging. When synchronized with a dynamic event in the microscope's field of view, DTEM allows scientists to record and measure material changes in action. A new movie-mode capability, which earned a 2013 R&D 100 Award from R&D Magazine, uses up to nine laser pulses to sequentially capture fast, irreversible, even one-of-a-kind material changes at the nanometer scale. DTEM projects are advancing basic and applied materials research, including such areas as nanostructure growth, phase transformations, and chemical reactions.

  5. Features of structure-phase transformations and segregation processes under irradiation of austenitic and ferritic-martensitic steels

    NASA Astrophysics Data System (ADS)

    Neklyudov, I. M.; Voyevodin, V. N.

    1994-09-01

    The difference between crystal lattices of austenitic and ferritic steels leads to distinctive features in mechanisms of physical-mechanical change. This paper presents the results of investigations of dislocation structure and phase evolution, and segregation phenomena in austenitic and ferritic-martensitic steels and alloys during irradiation with heavy ions in the ESUVI and UTI accelerators and by neutrons in fast reactors BOR-60 and BN-600. The influence of different factors (including different alloying elements) on processes of structure-phase transformation was studied.

  6. Competing covalent and ionic bonding in Ge-Sb-Te phase change materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subedi, Alaska; Siegrist, Theo; Singh, David J.

    Ge 2Sb 2Te 5 and related phase change materials are highly unusual in that they can be readily transformed between amorphous and crystalline states using very fast melt, quench, anneal cycles, although the resulting states are extremely long lived at ambient temperature. These states have remarkably different physical properties including very different optical constants in the visible in strong contrast to common glass formers such as silicates or phosphates. This behavior has been described in terms of resonant bonding, but puzzles remain, particularly regarding different physical properties of crystalline and amorphous phases. Here we show that there is a strongmore » competition between ionic and covalent bonding in cubic phase providing a link between the chemical basis of phase change memory property and origins of giant responses of piezoelectric materials (PbTiO 3, BiFeO 3). This has important consequences for dynamical behavior in particular leading to a simultaneous hardening of acoustic modes and softening of high frequency optic modes in crystalline phase relative to amorphous. As a result, this different bonding in amorphous and crystalline phases provides a direct explanation for different physical properties and understanding of the combination of long time stability and rapid switching and may be useful in finding new phase change compositions with superior properties.« less

  7. Competing covalent and ionic bonding in Ge-Sb-Te phase change materials

    DOE PAGES

    Subedi, Alaska; Siegrist, Theo; Singh, David J.; ...

    2016-05-19

    Ge 2Sb 2Te 5 and related phase change materials are highly unusual in that they can be readily transformed between amorphous and crystalline states using very fast melt, quench, anneal cycles, although the resulting states are extremely long lived at ambient temperature. These states have remarkably different physical properties including very different optical constants in the visible in strong contrast to common glass formers such as silicates or phosphates. This behavior has been described in terms of resonant bonding, but puzzles remain, particularly regarding different physical properties of crystalline and amorphous phases. Here we show that there is a strongmore » competition between ionic and covalent bonding in cubic phase providing a link between the chemical basis of phase change memory property and origins of giant responses of piezoelectric materials (PbTiO 3, BiFeO 3). This has important consequences for dynamical behavior in particular leading to a simultaneous hardening of acoustic modes and softening of high frequency optic modes in crystalline phase relative to amorphous. As a result, this different bonding in amorphous and crystalline phases provides a direct explanation for different physical properties and understanding of the combination of long time stability and rapid switching and may be useful in finding new phase change compositions with superior properties.« less

  8. Competing covalent and ionic bonding in Ge-Sb-Te phase change materials.

    PubMed

    Mukhopadhyay, Saikat; Sun, Jifeng; Subedi, Alaska; Siegrist, Theo; Singh, David J

    2016-05-19

    Ge2Sb2Te5 and related phase change materials are highly unusual in that they can be readily transformed between amorphous and crystalline states using very fast melt, quench, anneal cycles, although the resulting states are extremely long lived at ambient temperature. These states have remarkably different physical properties including very different optical constants in the visible in strong contrast to common glass formers such as silicates or phosphates. This behavior has been described in terms of resonant bonding, but puzzles remain, particularly regarding different physical properties of crystalline and amorphous phases. Here we show that there is a strong competition between ionic and covalent bonding in cubic phase providing a link between the chemical basis of phase change memory property and origins of giant responses of piezoelectric materials (PbTiO3, BiFeO3). This has important consequences for dynamical behavior in particular leading to a simultaneous hardening of acoustic modes and softening of high frequency optic modes in crystalline phase relative to amorphous. This different bonding in amorphous and crystalline phases provides a direct explanation for different physical properties and understanding of the combination of long time stability and rapid switching and may be useful in finding new phase change compositions with superior properties.

  9. Non-linear wave-particle interactions and fast ion loss induced by multiple Alfvén eigenmodes in the DIII-D tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xi; Kramer, Gerrit J.; Heidbrink, William W.

    2014-05-21

    A new non-linear feature has been observed in fast-ion loss from tokamak plasmas in the form of oscillations at the sum, difference and second harmonic frequencies of two independent Alfvén eigenmodes (AEs). Full orbit calculations and analytic theory indicate this non-linearity is due to coupling of fast-ion orbital response as it passes through each AE — a change in wave-particle phase k • r by one mode alters the force exerted by the next. Furthermore, the loss measurement is of barely confined, non-resonant particles, while similar non-linear interactions can occur between well-confined particles and multiple AEs leading to enhanced fast-ionmore » transport.« less

  10. Bounded tracking for nonminimum phase nonlinear systems with fast zero dynamics

    DOT National Transportation Integrated Search

    1996-12-01

    A PostScript file. In this paper, tracking control laws for nonminimum phase nonlinear systems with both fast and slow, possibly unstable, zero dynamics are derived. The fast zero dynamics arise from a perturbation of a nominal system. These fast zer...

  11. Vanadium doped Sb{sub 2}Te{sub 3} material with modified crystallization mechanism for phase-change memory application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Xinglong; Zheng, Yonghui; Zhou, Wangyang

    2015-06-15

    In this paper, V{sub 0.21}Sb{sub 2}Te{sub 3} (VST) has been proposed for phase-change memory applications. With vanadium incorporating, VST has better thermal stability than Sb{sub 2}Te{sub 3} and can maintain in amorphous phase at room temperature. Two resistance steps were observed in temperature dependent resistance measurements. By real-time observing the temperature dependent lattice structure evolution, VST presents as a homogenous phase throughout the whole thermal process. Combining Hall measurement and transmission electron microscopy results, we can ascribe the two resistance steps to the unique crystallization mechanism of VST material. Then, the amorphous thermal stability enhancement can also be rooted inmore » the suppression of the fast growth crystallization mechanism. Furthermore, the applicability of VST is demonstrated by resistance-voltage measurement, and the phase transition of VST can be triggered by a 15 ns electric pulse. In addition, endurance up to 2.7×10{sup 4} cycles makes VST a promising candidate for phase-change memory applications.« less

  12. A Bayesian method to quantify azimuthal anisotropy model uncertainties: application to global azimuthal anisotropy in the upper mantle and transition zone

    NASA Astrophysics Data System (ADS)

    Yuan, K.; Beghein, C.

    2018-04-01

    Seismic anisotropy is a powerful tool to constrain mantle deformation, but its existence in the deep upper mantle and topmost lower mantle is still uncertain. Recent results from higher mode Rayleigh waves have, however, revealed the presence of 1 per cent azimuthal anisotropy between 300 and 800 km depth, and changes in azimuthal anisotropy across the mantle transition zone boundaries. This has important consequences for our understanding of mantle convection patterns and deformation of deep mantle material. Here, we propose a Bayesian method to model depth variations in azimuthal anisotropy and to obtain quantitative uncertainties on the fast seismic direction and anisotropy amplitude from phase velocity dispersion maps. We applied this new method to existing global fundamental and higher mode Rayleigh wave phase velocity maps to assess the likelihood of azimuthal anisotropy in the deep upper mantle and to determine whether previously detected changes in anisotropy at the transition zone boundaries are robustly constrained by those data. Our results confirm that deep upper-mantle azimuthal anisotropy is favoured and well constrained by the higher mode data employed. The fast seismic directions are in agreement with our previously published model. The data favour a model characterized, on average, by changes in azimuthal anisotropy at the top and bottom of the transition zone. However, this change in fast axes is not a global feature as there are regions of the model where the azimuthal anisotropy direction is unlikely to change across depths in the deep upper mantle. We were, however, unable to detect any clear pattern or connection with surface tectonics. Future studies will be needed to further improve the lateral resolution of this type of model at transition zone depths.

  13. Modeling rate sensitivity of exercise transient responses to limb motion.

    PubMed

    Yamashiro, Stanley M; Kato, Takahide

    2014-10-01

    Transient responses of ventilation (V̇e) to limb motion can exhibit predictive characteristics. In response to a change in limb motion, a rapid change in V̇e is commonly observed with characteristics different than during a change in workload. This rapid change has been attributed to a feed-forward or adaptive response. Rate sensitivity was explored as a specific hypothesis to explain predictive V̇e responses to limb motion. A simple model assuming an additive feed-forward summation of V̇e proportional to the rate of change of limb motion was studied. This model was able to successfully account for the adaptive phase correction observed during human sinusoidal changes in limb motion. Adaptation of rate sensitivity might also explain the reduction of the fast component of V̇e responses previously reported following sudden exercise termination. Adaptation of the fast component of V̇e response could occur by reduction of rate sensitivity. Rate sensitivity of limb motion was predicted by the model to reduce the phase delay between limb motion and V̇e response without changing the steady-state response to exercise load. In this way, V̇e can respond more quickly to an exercise change without interfering with overall feedback control. The asymmetry between responses to an incremental and decremental ramp change in exercise can also be accounted for by the proposed model. Rate sensitivity leads to predicted behavior, which resembles responses observed in exercise tied to expiratory reserve volume. Copyright © 2014 the American Physiological Society.

  14. Monitoring/Verification using DMS: TATP Example

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephan Weeks, Kevin Kyle, Manuel Manard

    Field-rugged and field-programmable differential mobility spectrometry (DMS) networks provide highly selective, universal monitoring of vapors and aerosols at detectable levels from persons or areas involved with illicit chemical/biological/explosives (CBE) production. CBE sensor motes used in conjunction with automated fast gas chromatography with DMS detection (GC/DMS) verification instrumentation integrated into situational operations-management systems can be readily deployed and optimized for changing application scenarios. The feasibility of developing selective DMS motes for a “smart dust” sampling approach with guided, highly selective, fast GC/DMS verification analysis is a compelling approach to minimize or prevent the illegal use of explosives or chemical and biologicalmore » materials. DMS is currently one of the foremost emerging technologies for field separation and detection of gas-phase chemical species. This is due to trace-level detection limits, high selectivity, and small size. Fast GC is the leading field analytical method for gas phase separation of chemical species in complex mixtures. Low-thermal-mass GC columns have led to compact, low-power field systems capable of complete analyses in 15–300 seconds. A collaborative effort optimized a handheld, fast GC/DMS, equipped with a non-rad ionization source, for peroxide-based explosive measurements.« less

  15. Distinguishing splanchnic nerve and chromaffin cell stimulation in mouse adrenal slices with fast-scan cyclic voltammetry

    PubMed Central

    Walsh, Paul L.; Petrovic, Jelena

    2011-01-01

    Electrical stimulation is an indispensible tool in studying electrically excitable tissues in neurobiology and neuroendocrinology. In this work, the consequences of high-intensity electrical stimulation on the release of catecholamines from adrenal gland slices were examined with fast-scan cyclic voltammetry at carbon fiber microelectrodes. A biphasic signal, consisting of a fast and slow phase, was observed when electrical stimulations typically used in tissue slices (10 Hz, 350 μA biphasic, 2.0 ms/phase pulse width) were applied to bipolar tungsten-stimulating electrodes. This signal was found to be stimulation dependent, and the slow phase of the signal was abolished when smaller (≤250 μA) and shorter (1 ms/phase) stimulations were used. The slow phase of the biphasic signal was found to be tetrodotoxin and hexamethonium independent, while the fast phase was greatly reduced using these pharmacological agents. Two different types of calcium responses were observed, where the fast phase was abolished by perfusion with a low-calcium buffer while both the fast and slow phases could be modulated when Ca2+ was completely excluded from the solution using EGTA. Perfusion with nifedipine resulted in the reduction of the slow catecholamine release to 29% of the original signal, while the fast phase was only decreased to 74% of predrug values. From these results, it was determined that high-intensity stimulations of the adrenal medulla result in depolarizing not only the splanchnic nerves, but also the chromaffin cells themselves resulting in a biphasic catecholamine release. PMID:21048165

  16. Seasonal and life-phase related differences in growth in Scarus ferrugineus on a southern Red Sea fringing reef.

    PubMed

    Afeworki, Y; Videler, J J; Berhane, Y H; Bruggemann, J H

    2014-05-01

    Temporal trends in growth of the rusty parrotfish Scarus ferrugineus were studied on a southern Red Sea fringing reef that experiences seasonal changes in environmental conditions and benthic algal resources. Length increment data from tagging and recapture were compared among periods and sexes and modelled using GROTAG, a von Bertalanffy growth model. The growth pattern of S. ferrugineus was highly seasonal with a maximum occurring between April and June and a minimum between December and March. Body condition followed the seasonal variation in growth, increasing from April to June and decreasing from December to March. The season of maximum growth coincided with high irradiation, temperature increases and peak abundance of the primary food source, the epilithic algal community. There was a decline in growth rate during summer (July to October) associated with a combination of extreme temperatures and lowered food availability. There were strong sexual size dimorphism (SSD) and life-history traits. Terminal-phase (TP) males achieved larger asymptotic lengths than initial-phase individuals (IP) (L(∞) 34·55 v. 25·12 cm) with growth coefficients (K) of 0·26 and 0·38. The TPs were growing four times as fast as IPs of similar size. Three individuals changed from IP to TP while at liberty and grew eight times faster than IPs of similar size, suggesting that sex change in S. ferrugineus is accompanied by a surge in growth rate. The SSD in S. ferrugineus thus coincided with fast growth that started during sex change and continued into the TP. Faster growth during sex change suggests that the cost associated with sex change is limited. © 2014 The Fisheries Society of the British Isles.

  17. Temporal phase mask encrypted optical steganography carried by amplified spontaneous emission noise.

    PubMed

    Wu, Ben; Wang, Zhenxing; Shastri, Bhavin J; Chang, Matthew P; Frost, Nicholas A; Prucnal, Paul R

    2014-01-13

    A temporal phase mask encryption method is proposed and experimentally demonstrated to improve the security of the stealth channel in an optical steganography system. The stealth channel is protected in two levels. In the first level, the data is carried by amplified spontaneous emission (ASE) noise, which cannot be detected in either the time domain or spectral domain. In the second level, even if the eavesdropper suspects the existence of the stealth channel, each data bit is covered by a fast changing phase mask. The phase mask code is always combined with the wide band noise from ASE. Without knowing the right phase mask code to recover the stealth data, the eavesdropper can only receive the noise like signal with randomized phase.

  18. Phonon Instability and Broken Long-Ranged p Bond in Ge-Sb-Te Phase-Change Materials from First Principles

    NASA Astrophysics Data System (ADS)

    Song, Young-Sun; Kim, Jeongwoo; Jhi, Seung-Hoon

    2018-05-01

    Ge-Sb-Te (GST) compounds exhibit substantial electrical and optical contrast between the amorphous and crystalline phases. Despite extensive studies of GST compounds, the underlying mechanism for fast transitions between the amorphous and crystalline phases is yet to be revealed. In this paper, we study the properties of phonons and a long-ranged p -orbital network of hexagonal GST compounds using first-principles calculations. By investigating volume-dependent phonon dispersions, we observe the structural instability at elevated temperature due to the spontaneous softening of a specific in-plane vibrational mode (Eu ). We find that the atomic distortion by the Eu mode is associated with weakening of delocalized p bonding inducing large structural and electrical changes. We also discuss how to manipulate the Eu mode to control the device performance. Our finding helps deepen the understanding of the phase-change mechanism and improve the device performance, especially the switching power and operating temperature.

  19. Western North Pacific Tropical Cyclone Formation and Structure Change in TCS08

    DTIC Science & Technology

    2013-09-30

    transition to a fast-moving and rapidly- developing extratropical cyclone that may contain gale-, storm -, or hurricane-force winds, there is a need to...improve understanding and prediction of the extratropical transition phase of a decaying tropical cyclone. The structural evolution of the transition from...a tropical to an extratropical circulation involves rapid changes to the wind, cloud, and precipitation patterns that potentially impact maritime

  20. Western North Pacific Tropical Cyclone Formation and Structure Change in TCS-08

    DTIC Science & Technology

    2012-09-30

    cyclones often transition to a fast-moving and rapidly- developing extratropical cyclone that may contain gale-, storm -, or hurricane-force winds...there is a need to improve understanding and prediction of the extratropical transition phase of a decaying tropical cyclone. The structural evolution...of the transition from a tropical to an extratropical circulation involves rapid changes to the wind, cloud, and precipitation patterns that

  1. Subsampling phase retrieval for rapid thermal measurements of heated microstructures.

    PubMed

    Taylor, Lucas N; Talghader, Joseph J

    2016-07-15

    A subsampling technique for real-time phase retrieval of high-speed thermal signals is demonstrated with heated metal lines such as those found in microelectronic interconnects. The thermal signals were produced by applying a current through aluminum resistors deposited on soda-lime-silica glass, and the resulting refractive index changes were measured using a Mach-Zehnder interferometer with a microscope objective and high-speed camera. The temperatures of the resistors were measured both by the phase-retrieval method and by monitoring the resistance of the aluminum lines. The method used to analyze the phase is at least 60× faster than the state of the art but it maintains a small spatial phase noise of 16 nm, remaining comparable to the state of the art. For slowly varying signals, the system is able to perform absolute phase measurements over time, distinguishing temperature changes as small as 2 K. With angular scanning or structured illumination improvements, the system could also perform fast thermal tomography.

  2. K-space data processing for magnetic resonance elastography (MRE).

    PubMed

    Corbin, Nadège; Breton, Elodie; de Mathelin, Michel; Vappou, Jonathan

    2017-04-01

    Magnetic resonance elastography (MRE) requires substantial data processing based on phase image reconstruction, wave enhancement, and inverse problem solving. The objective of this study is to propose a new, fast MRE method based on MR raw data processing, particularly adapted to applications requiring fast MRE measurement or high elastogram update rate. The proposed method allows measuring tissue elasticity directly from raw data without prior phase image reconstruction and without phase unwrapping. Experimental feasibility is assessed both in a gelatin phantom and in the liver of a porcine model in vivo. Elastograms are reconstructed with the raw MRE method and compared to those obtained using conventional MRE. In a third experiment, changes in elasticity are monitored in real-time in a gelatin phantom during its solidification by using both conventional MRE and raw MRE. The raw MRE method shows promising results by providing similar elasticity values to the ones obtained with conventional MRE methods while decreasing the number of processing steps and circumventing the delicate step of phase unwrapping. Limitations of the proposed method are the influence of the magnitude on the elastogram and the requirement for a minimum number of phase offsets. This study demonstrates the feasibility of directly reconstructing elastograms from raw data.

  3. Reinnervation of the lateral gastrocnemius and soleus muscles in the rat by their common nerve.

    PubMed Central

    Gillespie, M J; Gordon, T; Murphy, P R

    1986-01-01

    To determine whether there is any specificity of regenerating nerves for their original muscles, the common lateral gastrocnemius soleus nerve (l.g.s.) innervating the fast-twitch lateral gastrocnemius (l.g.) and slow-twitch soleus muscles was sectioned in the hind limb of twenty adult rats. The proximal nerve stump was sutured to the dorsal surface of the l.g. muscle and 4-14 months later, the contractile properties of the reinnervated l.g. and soleus muscles and their single motor units were studied by dissection and stimulation of the ventral root filaments. Contractile properties of normal contralateral muscles were examined for comparison and motor units were isolated in l.g. and soleus muscles for study in a group of untreated animals. Measurement of time and rate parameters of maximal twitch and tetanic contractions showed that the rate of development of force increased significantly in reinnervated soleus muscles and approached the speed of l.g. muscles but rate of relaxation did not change appreciably. In reinnervated l.g. muscles, contraction speed was similar to normal l.g. muscles but relaxation rate declined toward the rates of relaxation in control soleus muscles. After reinnervation by the common l.g.s. nerve, the proportion of slow motor units in l.g. increased from 10 to 31% and decreased in soleus from 80 to 31%. The relative proportions of fast and slow motor units in each muscle were the same as the proportions of fast and slow units in the normal l.g. and soleus muscles combined. It was concluded that fast and slow muscles do not show any preference for their former nerves and that the change in the force profile of the reinnervated muscles is indicative of the relative proportions of fast and slow motor units: fast units dominate the contraction phase and slow units the relaxation phase of twitch and tetanic contractions of the muscle. PMID:3723414

  4. Orientation of Vanadium Dioxide Grains on Various Substrates

    NASA Astrophysics Data System (ADS)

    Rivera, Felipe; Davis, Robert; Vanfleet, Richard

    2010-10-01

    Crystalline vanadium dioxide VO2 experiences a fast and reversible semiconductor-to-metal structural phase transition near 68^oC. The changes exhibited during this phase transition comprise a well known change in resistivity of several orders of magnitude, as well as a significant drop in optical transmittance in the infrared. Due to the changes in these optical and electronic properties, vanadium dioxide shows promise as a material to be used in many applications ranging from thermochromic window coatings to optoelectronic devices. However, since there is a structural component to the phase transition of VO2, it is of interest to study the orientation of the crystalline grains deposited. Substrates such as glass, SiO2, Sapphire, and TiO2 have been used for the deposition of this material. We used orientation imaging microscopy to study and characterize the orientation of the grains deposited on several of these substrates. Here we present results on this study.

  5. Dynamic tuning of optical absorbers for accelerated solar-thermal energy storage.

    PubMed

    Wang, Zhongyong; Tong, Zhen; Ye, Qinxian; Hu, Hang; Nie, Xiao; Yan, Chen; Shang, Wen; Song, Chengyi; Wu, Jianbo; Wang, Jun; Bao, Hua; Tao, Peng; Deng, Tao

    2017-11-14

    Currently, solar-thermal energy storage within phase-change materials relies on adding high thermal-conductivity fillers to improve the thermal-diffusion-based charging rate, which often leads to limited enhancement of charging speed and sacrificed energy storage capacity. Here we report the exploration of a magnetically enhanced photon-transport-based charging approach, which enables the dynamic tuning of the distribution of optical absorbers dispersed within phase-change materials, to simultaneously achieve fast charging rates, large phase-change enthalpy, and high solar-thermal energy conversion efficiency. Compared with conventional thermal charging, the optical charging strategy improves the charging rate by more than 270% and triples the amount of overall stored thermal energy. This superior performance results from the distinct step-by-step photon-transport charging mechanism and the increased latent heat storage through magnetic manipulation of the dynamic distribution of optical absorbers.

  6. Analyses of phase change materials’ efficiency in warm-summer humid continental climate conditions

    NASA Astrophysics Data System (ADS)

    Ratnieks, J.; Gendelis, S.; Jakovics, A.; Bajare, D.

    2017-10-01

    The usage of phase change materials (PCMs) is a way to store excess energy produced during the hot time of the day and release it during the night thereby reducing the overheating problem. While, in Latvian climate conditions overheating is not a big issue in traditional buildings since it happens only a couple of weeks per year air conditioners must still be installed to maintain thermal comfort. The need for cooling in recently built office buildings with large window area can increase significantly. It is therefore of great interest if the thermal comfort conditions can be maintained by PCMs alone or with reduced maximum power of installed cooling systems. Our initial studies show that if the test building is well-insulated (necessary to reduce heat loss in winter), phase change material is not able to solidify fast enough during the relatively short night time. To further investigate the problem various experimental setups with two different phase change materials were installed in test buildings. Experimental results are compared with numerical modelling made in software COMSOL Multiphysics. The effectiveness of PCM using different situations is widely analysed.

  7. Reducing abrupt climate change risk using the Montreal Protocol and other regulatory actions to complement cuts in CO2 emissions.

    PubMed

    Molina, Mario; Zaelke, Durwood; Sarma, K Madhava; Andersen, Stephen O; Ramanathan, Veerabhadran; Kaniaru, Donald

    2009-12-08

    Current emissions of anthropogenic greenhouse gases (GHGs) have already committed the planet to an increase in average surface temperature by the end of the century that may be above the critical threshold for tipping elements of the climate system into abrupt change with potentially irreversible and unmanageable consequences. This would mean that the climate system is close to entering if not already within the zone of "dangerous anthropogenic interference" (DAI). Scientific and policy literature refers to the need for "early," "urgent," "rapid," and "fast-action" mitigation to help avoid DAI and abrupt climate changes. We define "fast-action" to include regulatory measures that can begin within 2-3 years, be substantially implemented in 5-10 years, and produce a climate response within decades. We discuss strategies for short-lived non-CO(2) GHGs and particles, where existing agreements can be used to accomplish mitigation objectives. Policy makers can amend the Montreal Protocol to phase down the production and consumption of hydrofluorocarbons (HFCs) with high global warming potential. Other fast-action strategies can reduce emissions of black carbon particles and precursor gases that lead to ozone formation in the lower atmosphere, and increase biosequestration, including through biochar. These and other fast-action strategies may reduce the risk of abrupt climate change in the next few decades by complementing cuts in CO(2) emissions.

  8. Examining the influence of formative assessment on conceptual accumulation and conceptual change

    NASA Astrophysics Data System (ADS)

    Tomita, Miki K.

    This study explored the effect of formative assessment on student achievement in science. Research in science education has shown that students enter science classrooms with previously formed explanatory models of the natural world; these naive "mental models" have a substantial influence on their learning of scientific conceptions. In general, conceptual change describes the pathway from pre-instructional or prior conceptions to a post-instructional or desired conception. Conceptual change involves a fundamental restructuring of a network of concepts rather than fitting new concepts into an existing conceptual network or structure. Research has shown that conceptual change is difficult to promote; for example, students may accumulate multiple conceptions over the course of instruction, including both new misconceptions and more scientifically-sound conceptions. Hellden and Solomon (2004) found that although students tended to evoke the same, less-scientific conceptions over time, they could produce more scientifically-sound conceptions during interviews with appropriate prompting; thus, students undergo conceptual accumulation rather than conceptual change. Students can recall scientifically-sound conceptions they have learned and may use them to reason, but they do so in partnership or hybridization with their less-scientific prior conceptions. Formative assessment, which focuses on providing immediate feedback by acting upon student understanding during the course of instruction, and conceptual change have both been linked to increased student achievement. Formative assessment is an instructional strategy that helps teachers to assess students' current understanding, identify the gap between current understanding and expected understanding, and provide immediate and useful feedback to students on how to close the gap. Formative assessment ranges from formal (e.g. embedded, planned-for interactions between teacher and entire class) to informal (e.g. on-the-fly interactions between teacher and class or student). In this study, the links between formative assessment and conceptual accumulation and conceptual change were explored. Specifically, this study asked: (1) Does formative assessment promote conceptual accumulation, and (2) Does formative assessment promote conceptual change? It was hypothesized that conceptual change-focused formative assessment would foster conceptual change, in addition to supporting conceptual accumulation. It was further hypothesized that all students will show gains in conceptual accumulation as indicated by measures of declarative and procedural knowledge, but that students exposed to conceptual change-focused formative assessment would also show gains in conceptual change as indicated by measures of schematic knowledge or mental models. To research the effect of formative assessment on conceptual accumulation and conceptual change, a small randomized experiment involving 102 middle school students was conducted. In Phase I of the study, 52 6th graders were randomly assigned to a treatment or control group; in Phase II of this study, 50 7th graders were randomly assigned to a treatment or control group. Both the control and experimental groups in both phases were taught about sinking and floating by the same teacher (the author) with identical curriculum materials and activities. In addition, the experimental group received three sets of embedded formative assessments focused on conceptual change around the topic of why things sink and float during the course of instruction. In Phase I of this study, both groups were kept at the same pace through the entire sequence of investigations. The control condition spent more time on some of the more critical FAST lessons, gathering additional data to support the theories the curriculum expected they would develop at a particular juncture but not receiving structured experiences aimed at addressing misconceptions. In Phase II, students in the control condition spent roughly the same time on each FAST lesson as those in the experimental condition (e.g. they finished the sequence of activities earlier because they did not have class sessions devoted to the RLs inserted at critical junctures) but participated in the formal assessments as a block of activities after they finished the FAST investigations and posttest measures. In other words, in addition to replicating Phase I, Phase II included a Reflective Lesson section for the control group after the end of the experiment proper, followed by a post-posttest. Overall, it was found that embedding conceptual change-focused formative assessments in the FAST curriculum significantly influenced conceptual change. It was also found that all students experienced significant gains in terms of their conceptual accumulation, regardless of exposure to the formative assessments. This study connected two previously isolated but theoretically linked educational frameworks: conceptual change and formative assessment. It was found that formative assessments can be used to promote conceptual change. It was also found that conceptual change is different than conceptual accumulation, in that students who show gains on measures of declarative and procedural knowledge do not necessarily show gains on measures of schematic knowledge. (Abstract shortened by UMI.)

  9. Simulation of Voltage SET Operation in Phase-Change Random Access Memories with Heater Addition and Ring-Type Contactor for Low-Power Consumption by Finite Element Modeling

    NASA Astrophysics Data System (ADS)

    Gong, Yue-Feng; Song, Zhi-Tang; Ling, Yun; Liu, Yan; Li, Yi-Jin

    2010-06-01

    A three-dimensional finite element model for phase change random access memory is established to simulate electric, thermal and phase state distribution during (SET) operation. The model is applied to simulate the SET behaviors of the heater addition structure (HS) and the ring-type contact in the bottom electrode (RIB) structure. The simulation results indicate that the small bottom electrode contactor (BEC) is beneficial for heat efficiency and reliability in the HS cell, and the bottom electrode contactor with size Fx = 80 nm is a good choice for the RIB cell. Also shown is that the appropriate SET pulse time is 100 ns for the low power consumption and fast operation.

  10. Evidence for intermittency and a truncated power law from highly resolved aphid movement data.

    PubMed

    Mashanova, Alla; Oliver, Tom H; Jansen, Vincent A A

    2010-01-06

    Power laws are increasingly used to describe animal movement. Despite this, the use of power laws has been criticized on both empirical and theoretical grounds, and alternative models based on extensions of conventional random walk theory (Brownian motion) have been suggested. In this paper, we analyse a large volume of data of aphid walking behaviour (65,068 data points), which provides a highly resolved dataset to investigate the pattern of movement. We show that aphid movement is intermittent--with alternations of a slow movement with frequent change of direction and a fast, relatively directed movement--and that the fast movement consists of two phases--a strongly directed phase that gradually changes into an uncorrelated random walk. By measuring the mean-squared displacement and the duration of non-stop movement episodes we found that both spatial and temporal aspects of aphid movement are best described using a truncated power law approach. We suggest that the observed spatial pattern arises from the duration of non-stop movement phases rather than from correlations in turning angles. We discuss the implications of these findings for interpreting movement data, such as distinguishing between movement and non-movement, and the effect of the range of data used in the analysis on the conclusions.

  11. Scheduled meal accelerates entrainment to a 6-h phase advance by shifting central and peripheral oscillations in rats.

    PubMed

    Ubaldo-Reyes, L M; Buijs, R M; Escobar, C; Ángeles-Castellanos, M

    2017-08-01

    Travelling across several time zones requires a fast adjustment of the circadian system and the differential adjustment speeds of organs and systems results in what is commonly referred as jet lag. During this transitory state of circadian disruption, individuals feel discomfort, appetite loss, fatigue, disturbed sleep and deficient performance of multiple tasks. We have demonstrated that after a 6-h phase advance of the light-dark cycle (LD) scheduled food in phase with the new night onset can speed up re-entrainment. In this study, we explored the possible mechanisms underlying the fast re-entrainment due to the feeding schedule. We focused on first- and second-order structures that provide metabolic information to the suprachiasmatic nucleus (SCN). We compared (i) control rats without change in LD cycle; (ii) rats exposed to a 6-h phase advance of the LD cycle with food ad libitum; and (iii) rats exposed to the 6-h phase advance combined with food access in phase with the new night. We found an immediate synchronizing effect of food on stomach distention and on c-Fos expression in the nucleus of the solitary tract, arcuate nucleus of the hypothalamus, dorsomedial hypothalamic nucleus and paraventricular nucleus. These observations indicate that in a model of jet lag, scheduled feeding can favour an immediate shift in first- and second-order relays to the SCN and that by keeping feeding schedules coupled to the new night, a fast re-entrainment may be achieved by shifting peripheral and extra-SCN oscillations. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  12. Dissociation of Calcium Transients and Force Development following a Change in Stimulation Frequency in Isolated Rabbit Myocardium.

    PubMed

    Haizlip, Kaylan M; Milani-Nejad, Nima; Brunello, Lucia; Varian, Kenneth D; Slabaugh, Jessica L; Walton, Shane D; Gyorke, Sandor; Davis, Jonathan P; Biesiadecki, Brandon J; Janssen, Paul M L

    2015-01-01

    As the heart transitions from one exercise intensity to another, changes in cardiac output occur, which are modulated by alterations in force development and calcium handling. Although the steady-state force-calcium relationship at various heart rates is well investigated, regulation of these processes during transitions in heart rate is poorly understood. In isolated right ventricular muscle preparations from the rabbit, we investigated the beat-to-beat alterations in force and calcium during the transition from one stimulation frequency to another, using contractile assessments and confocal microscopy. We show that a change in steady-state conditions occurs in multiple phases: a rapid phase, which is characterized by a fast change in force production mirrored by a change in calcium transient amplitude, and a slow phase, which follows the rapid phase and occurs as the muscle proceeds to stabilize at the new frequency. This second/late phase is characterized by a quantitative dissociation between the calcium transient amplitude and developed force. Twitch timing kinetics, such as time to peak tension and 50% relaxation rate, reached steady-state well before force development and calcium transient amplitude. The dynamic relationship between force and calcium upon a switch in stimulation frequency unveils the dynamic involvement of myofilament-based properties in frequency-dependent activation.

  13. Phase-change materials for non-volatile memory devices: from technological challenges to materials science issues

    NASA Astrophysics Data System (ADS)

    Noé, Pierre; Vallée, Christophe; Hippert, Françoise; Fillot, Frédéric; Raty, Jean-Yves

    2018-01-01

    Chalcogenide phase-change materials (PCMs), such as Ge-Sb-Te alloys, have shown outstanding properties, which has led to their successful use for a long time in optical memories (DVDs) and, recently, in non-volatile resistive memories. The latter, known as PCM memories or phase-change random access memories (PCRAMs), are the most promising candidates among emerging non-volatile memory (NVM) technologies to replace the current FLASH memories at CMOS technology nodes under 28 nm. Chalcogenide PCMs exhibit fast and reversible phase transformations between crystalline and amorphous states with very different transport and optical properties leading to a unique set of features for PCRAMs, such as fast programming, good cyclability, high scalability, multi-level storage capability, and good data retention. Nevertheless, PCM memory technology has to overcome several challenges to definitively invade the NVM market. In this review paper, we examine the main technological challenges that PCM memory technology must face and we illustrate how new memory architecture, innovative deposition methods, and PCM composition optimization can contribute to further improvements of this technology. In particular, we examine how to lower the programming currents and increase data retention. Scaling down PCM memories for large-scale integration means the incorporation of the PCM into more and more confined structures and raises materials science issues in order to understand interface and size effects on crystallization. Other materials science issues are related to the stability and ageing of the amorphous state of PCMs. The stability of the amorphous phase, which determines data retention in memory devices, can be increased by doping the PCM. Ageing of the amorphous phase leads to a large increase of the resistivity with time (resistance drift), which has up to now hindered the development of ultra-high multi-level storage devices. A review of the current understanding of all these issues is provided from a materials science point of view.

  14. Low-Cost Phased Array Antenna for Sounding Rockets, Missiles, and Expendable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Mullinix, Daniel; Hall, Kenneth; Smith, Bruce; Corbin, Brian

    2012-01-01

    A low-cost beamformer phased array antenna has been developed for expendable launch vehicles, rockets, and missiles. It utilizes a conformal array antenna of ring or individual radiators (design varies depending on application) that is designed to be fed by the recently developed hybrid electrical/mechanical (vendor-supplied) phased array beamformer. The combination of these new array antennas and the hybrid beamformer results in a conformal phased array antenna that has significantly higher gain than traditional omni antennas, and costs an order of magnitude or more less than traditional phased array designs. Existing omnidirectional antennas for sounding rockets, missiles, and expendable launch vehicles (ELVs) do not have sufficient gain to support the required communication data rates via the space network. Missiles and smaller ELVs are often stabilized in flight by a fast (i.e. 4 Hz) roll rate. This fast roll rate, combined with vehicle attitude changes, greatly increases the complexity of the high-gain antenna beam-tracking problem. Phased arrays for larger ELVs with roll control are prohibitively expensive. Prior techniques involved a traditional fully electronic phased array solution, combined with highly complex and very fast inertial measurement unit phased array beamformers. The functional operation of this phased array is substantially different from traditional phased arrays in that it uses a hybrid electrical/mechanical beamformer that creates the relative time delays for steering the antenna beam via a small physical movement of variable delay lines. This movement is controlled via an innovative antenna control unit that accesses an internal measurement unit for vehicle attitude information, computes a beam-pointing angle to the target, then points the beam via a stepper motor controller. The stepper motor on the beamformer controls the beamformer variable delay lines that apply the appropriate time delays to the individual array elements to properly steer the beam. The array of phased ring radiators is unique in that it provides improved gain for a small rocket or missile that uses spin stabilization for stability. The antenna pattern created is symmetric about the roll axis (like an omnidirectional wraparound), and is thus capable of providing continuous coverage that is compatible with very fast spinning rockets. For larger ELVs with roll control, a linear array of elements can be used for the 1D scanned beamformer and phased array, or a 2D scanned beamformer can be used with an NxN element array.

  15. Multi-level storage and ultra-high speed of superlattice-like Ge50Te50/Ge8Sb92 thin film for phase-change memory application.

    PubMed

    Wu, Weihua; Chen, Shiyu; Zhai, Jiwei; Liu, Xinyi; Lai, Tianshu; Song, Sannian; Song, Zhitang

    2017-10-06

    Superlattice-like Ge 50 Te 50 /Ge 8 Sb 92 (SLL GT/GS) thin film was systematically investigated for multi-level storage and ultra-fast switching phase-change memory application. In situ resistance measurement indicates that SLL GT/GS thin film exhibits two distinct resistance steps with elevated temperature. The thermal stability of the amorphous state and intermediate state were evaluated with the Kissinger and Arrhenius plots. The phase-structure evolution revealed that the amorphous SLL GT/GS thin film crystallized into rhombohedral Sb phase first, then the rhombohedral GeTe phase. The microstructure, layered structure, and interface stability of SLL GT/GS thin film was confirmed by using transmission electron microscopy. The transition speed of crystallization and amorphization was measured by the picosecond laser pump-probe system. The volume variation during the crystallization was obtained from x-ray reflectivity. Phase-change memory (PCM) cells based on SLL GT/GS thin film were fabricated to verify the multi-level switching under an electrical pulse as short as 30 ns. These results illustrate that the SLL GT/GS thin film has great potentiality in high-density and high-speed PCM applications.

  16. Molecularly imprinted microspheres synthesized by a simple, fast, and universal suspension polymerization for selective extraction of the topical anesthetic benzocaine in human serum and fish tissues.

    PubMed

    Sun, Hui; Lai, Jia-Ping; Chen, Fang; Zhu, De-Rong

    2015-02-01

    A simple, fast, and universal suspension polymerization method was used to synthesize the molecularly imprinted microspheres (MIMs) for the topical anesthetic benzocaine (BZC). The desired diameter (10-20 μm) and uniform morphology of the MIMs were obtained easily by changing one or more of the synthesis conditions, including type and amount of surfactant, stirring rate, and ratio of organic to water phase. The MIMs obtained were used as a molecular-imprinting solid-phase-extraction (MISPE) material for extraction of BZC in human serum and fish tissues. The MISPE results revealed that the BZC in these biosamples could be enriched effectively after the MISPE operation. The recoveries of BZC on MIMs cartridges were higher than 90% (n = 3). Finally, an MISPE-HPLC method with UV detection was developed for highly selective extraction and fast detection of trace BZC in human serum and fish tissues. The developed method could also be used for the enrichment and detection of BZC in other complex biosamples.

  17. Design rules for phase-change materials in data storage applications.

    PubMed

    Lencer, Dominic; Salinga, Martin; Wuttig, Matthias

    2011-05-10

    Phase-change materials can rapidly and reversibly be switched between an amorphous and a crystalline phase. Since both phases are characterized by very different optical and electrical properties, these materials can be employed for rewritable optical and electrical data storage. Hence, there are considerable efforts to identify suitable materials, and to optimize them with respect to specific applications. Design rules that can explain why the materials identified so far enable phase-change based devices would hence be very beneficial. This article describes materials that have been successfully employed and dicusses common features regarding both typical structures and bonding mechanisms. It is shown that typical structural motifs and electronic properties can be found in the crystalline state that are indicative for resonant bonding, from which the employed contrast originates. The occurence of resonance is linked to the composition, thus providing a design rule for phase-change materials. This understanding helps to unravel characteristic properties such as electrical and thermal conductivity which are discussed in the subsequent section. Then, turning to the transition kinetics between the phases, the current understanding and modeling of the processes of amorphization and crystallization are discussed. Finally, present approaches for improved high-capacity optical discs and fast non-volatile electrical memories, that hold the potential to succeed present-day's Flash memory, are presented. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. The relationship between reorientational molecular motions and phase transitions in [Mg(H{sub 2}O){sub 6}](BF{sub 4}){sub 2}, studied with the use of {sup 1}H and {sup 19}F NMR and FT-MIR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikuli, Edward, E-mail: mikuli@chemia.uj.edu.pl; Hetmańczyk, Joanna; Grad, Bartłomiej

    2015-02-14

    A {sup 1}H and {sup 19}F nuclear magnetic resonance study of [Mg(H{sub 2}O){sub 6}](BF{sub 4}){sub 2} has confirmed the existence of two phase transitions at T{sub c1} ≈ 257 K and T{sub c2} ≈ 142 K, detected earlier by the DSC method. These transitions were reflected by changes in the temperature dependences of both proton and fluorine of second moments M{sub 2}{sup H} and M{sub 2}{sup F} and of spin-lattice relaxation times T{sub 1}{sup H} and T{sub 1}{sup F}. The study revealed anisotropic reorientations of whole [Mg(H{sub 2}O){sub 6}]{sup 2+} cations, reorientations by 180° jumps of H{sub 2}O ligands, andmore » aniso- and isotropic reorientations of BF{sub 4}{sup −} anions. The activation parameters for these motions were obtained. It was found that the phase transition at T{sub c1} is associated with the reorientation of the cation as a whole unit around the C{sub 3} axis and that at T{sub c2} with isotropic reorientation of the BF{sub 4}{sup −} anions. The temperature dependence of the full width at half maximum value of the infrared band of ρ{sub t}(H{sub 2}O) mode (at ∼596 cm{sup −1}) indicated that in phases I and II, all H{sub 2}O ligands in [Mg(H{sub 2}O){sub 6}]{sup 2+} perform fast reorientational motions (180° jumps) with a mean value of activation energy equal to ca 10 kJ mole{sup −1}, what is fully consistent with NMR results. The phase transition at T{sub c1} is associated with a sudden change of speed of fast (τ{sub R} ≈ 10{sup −12} s) reorientational motions of H{sub 2}O ligands. Below T{sub c2} (in phase III), the reorientations of certain part of the H{sub 2}O ligands significantly slow down, while others continue their fast reorientation with an activation energy of ca 2 kJ mole{sup −1}. This fast reorientation cannot be evidenced in NMR relaxation experiments. Splitting of certain IR bands connected with H{sub 2}O ligands at the observed phase transitions suggests a reduction of the symmetry of the octahedral [Mg(H{sub 2}O){sub 6}]{sup 2+} complex cation.« less

  19. Calculating with light using a chip-scale all-optical abacus.

    PubMed

    Feldmann, J; Stegmaier, M; Gruhler, N; Ríos, C; Bhaskaran, H; Wright, C D; Pernice, W H P

    2017-11-02

    Machines that simultaneously process and store multistate data at one and the same location can provide a new class of fast, powerful and efficient general-purpose computers. We demonstrate the central element of an all-optical calculator, a photonic abacus, which provides multistate compute-and-store operation by integrating functional phase-change materials with nanophotonic chips. With picosecond optical pulses we perform the fundamental arithmetic operations of addition, subtraction, multiplication, and division, including a carryover into multiple cells. This basic processing unit is embedded into a scalable phase-change photonic network and addressed optically through a two-pulse random access scheme. Our framework provides first steps towards light-based non-von Neumann arithmetic.

  20. ESR and PALS detection of the dynamic crossover in the supercooled liquid states of short and medium-sized n-alkanes

    NASA Astrophysics Data System (ADS)

    Bartoš, J.; Zgardzinska, B.; Švajdlenková, H.; Lukešová, M.; Zaleski, R.

    2018-05-01

    A joint study of the spin probe TEMPO dynamics by ESR and the annihilation rate of ortho-positronium by PALS in four short-and medium-sized n-alkanes is presented. In addition to the usually observed changes in both the reorientation dynamics and size of free volumes at the temperature of melting, Tm, and solid-solid phase transition, Tss, an additional coincidence between the characteristic ESR and PALS temperatures TX1fast ≅ Tb1sol < Tm, Tss was found. The phenomenological analysis of the viscosity data of n-alkanes using the power law equation indicates a presence of locally disordered regions in which the dynamic change occurs at the crossover temperature TX ≅ TX1fast ≅ Tb1sol.

  1. Differential changes in myoelectric characteristics of slow and fast fatigable frog muscle fibres during long-lasting activity.

    PubMed

    Vydevska-Chichova, M; Mileva, K; Radicheva, N

    2007-04-01

    The electrical activity of different muscle fibre types during fatigue at varying stimulation frequency and fibre stretch was studied. Extracellular action potentials (ECAPs) were recorded from isolated frog muscle fibres at initial length and stretched by 15%, 25% and 35% and stimulated for 180 s by suprathreshold pulses with frequencies of 5, 6.7 and 10Hz. The changes in ECAP negative phase duration (T(0)), propagation velocity of excitation (PV), potential power spectrum and its median frequency (MDF) were analysed for the period of uninterrupted activity (endurance time, ET). Slow (SMF) and fast (FMF) fatigable muscle fibre types were distinguished by the rate of PV decrease during ET. With the increase of stimulation frequency and fibre stretch, the rate of ECAP parameter changes increased and was larger in FMF, but this proportion was reversed with stretching over 25% and 10Hz stimulation. In both fibre types the power spectrum shift to lower frequencies during continuous activity was more pronounced with higher stimulation frequency. In FMFs the rates of MDF changes were positively and more strongly correlated with the rates of PV changes, whilst in SMFs the inverse correlation between the rates of changes of MDF and T(0) was stronger. The results indicate specific adaptation of slow and fast fatigable muscle fibres to stretch and activation frequency due to the differences in their membrane processes.

  2. First-principles study of the liquid and amorphous phases of In2Te3

    NASA Astrophysics Data System (ADS)

    Dragoni, D.; Gabardi, S.; Bernasconi, M.

    2017-08-01

    Structural, dynamical, and electronic properties of the liquid and amorphous phase of the In2Te3 compound have been studied by means of density functional molecular dynamics simulations. This system is of interest as a phase change material, undergoing a fast and reversible change between the crystalline and amorphous phases upon heating. It can be seen as a constituent of ternary InSbTe alloys which are receiving attention for application in electronic phase change memories. Amorphous models of In2Te3 300 -atom large have been generated by quenching from the melt by using different exchange and correlation functionals and different descriptions of the van der Waals interaction. It turns out the local bonding geometry of the amorphous phase is mostly tetrahedral with corner and edge sharing tetrahedra similar to those found in the crystalline phases of the InTe, In2Te3 , and In2Te5 compounds. Benchmark calculations on the crystalline α phase of In2Te3 in the defective zincblend geometry have also been performed. The calculations reveal that the high symmetric F 4 ¯3 m structure inferred experimentally from x-ray diffraction for the α phase must actually result from a random distribution of Te-Te bonds in different octahedral cages formed by the coalescence of vacancies in the In sublattice.

  3. Effect of lattice-mismatch-induced strains on coupled diffusive and displacive phase transformations

    NASA Astrophysics Data System (ADS)

    Bouville, Mathieu; Ahluwalia, Rajeev

    2007-02-01

    Materials which can undergo slow diffusive transformations as well as fast displacive transformations are studied using the phase-field method. The model captures the essential features of the time-temperature-transformation (TTT) diagrams, continuous cooling transformation (CCT) diagrams, and microstructure formation of these alloys. In some material systems there can exist an intrinsic volume change associated with these transformations. We show that these coherency strains can stabilize mixed microstructures (such as retained austenite-martensite and pearlite-martensite mixtures) by an interplay between diffusive and displacive mechanisms, which can alter TTT and CCT diagrams. Depending on the conditions there can be competitive or cooperative nucleation of the two kinds of phases. The model also shows that small differences in volume changes can have noticeable effects on the early stages of martensite formation and on the resulting microstructures.

  4. Dual-Color Monitoring Overcomes the Limitations of Single Bioluminescent Reporters in Fast-Growing Microbes and Reveals Phase-Dependent Protein Productivity during the Metabolic Rhythms of Saccharomyces cerevisiae

    PubMed Central

    Krishnamoorthy, Archana

    2015-01-01

    Luciferase is a useful, noninvasive reporter of gene regulation that can be continuously monitored over long periods of time; however, its use is problematic in fast-growing microbes like bacteria and yeast because rapidly changing cell numbers and metabolic states also influence bioluminescence, thereby confounding the reporter's signal. Here we show that these problems can be overcome in the budding yeast Saccharomyces cerevisiae by simultaneously monitoring bioluminescence from two different colors of beetle luciferase, where one color (green) reports activity of a gene of interest, while a second color (red) is stably expressed and used to continuously normalize green bioluminescence for fluctuations in signal intensity that are unrelated to gene regulation. We use this dual-luciferase strategy in conjunction with a light-inducible promoter system to test whether different phases of yeast respiratory oscillations are more suitable for heterologous protein production than others. By using pulses of light to activate production of a green luciferase while normalizing signal variation to a red luciferase, we show that the early reductive phase of the yeast metabolic cycle produces more luciferase than other phases. PMID:26162874

  5. Reducing abrupt climate change risk using the Montreal Protocol and other regulatory actions to complement cuts in CO2 emissions

    PubMed Central

    Molina, Mario; Zaelke, Durwood; Sarma, K. Madhava; Andersen, Stephen O.; Ramanathan, Veerabhadran; Kaniaru, Donald

    2009-01-01

    Current emissions of anthropogenic greenhouse gases (GHGs) have already committed the planet to an increase in average surface temperature by the end of the century that may be above the critical threshold for tipping elements of the climate system into abrupt change with potentially irreversible and unmanageable consequences. This would mean that the climate system is close to entering if not already within the zone of “dangerous anthropogenic interference” (DAI). Scientific and policy literature refers to the need for “early,” “urgent,” “rapid,” and “fast-action” mitigation to help avoid DAI and abrupt climate changes. We define “fast-action” to include regulatory measures that can begin within 2–3 years, be substantially implemented in 5–10 years, and produce a climate response within decades. We discuss strategies for short-lived non-CO2 GHGs and particles, where existing agreements can be used to accomplish mitigation objectives. Policy makers can amend the Montreal Protocol to phase down the production and consumption of hydrofluorocarbons (HFCs) with high global warming potential. Other fast-action strategies can reduce emissions of black carbon particles and precursor gases that lead to ozone formation in the lower atmosphere, and increase biosequestration, including through biochar. These and other fast-action strategies may reduce the risk of abrupt climate change in the next few decades by complementing cuts in CO2 emissions. PMID:19822751

  6. 1H NMR relaxometry and quadrupole relaxation enhancement as a sensitive probe of dynamical properties of solids—[C(NH2)3]3Bi2I9 as an example

    NASA Astrophysics Data System (ADS)

    Florek-Wojciechowska, M.; Wojciechowski, M.; Jakubas, R.; Brym, Sz.; Kruk, D.

    2016-02-01

    1H nuclear magnetic resonance relaxometry has been applied to reveal information on dynamics and structure of Gu3Bi2I9 ([Gu = C(NH2)3] denotes guanidinium cation). The data have been analyzed in terms of a theory of quadrupole relaxation enhancement, which has been extended here by including effects associated with quadrupole (14N) spin relaxation caused by a fast fluctuating component of the electric field gradient tensor. Two motional processes have been identified: a slow one occurring on a timescale of about 8 × 10-6 s which has turned out to be (almost) temperature independent, and a fast process in the range of 10-9 s. From the 1H-14N relaxation contribution (that shows "quadrupole peaks") the quadrupole parameters, which are a fingerprint of the arrangement of the anionic network, have been determined. It has been demonstrated that the magnitude of the quadrupole coupling considerably changes with temperature and the changes are not caused by phase transitions. At the same time, it has been shown that there is no evidence of abrupt changes in the cationic dynamics and the anionic substructure upon the phase transitions.

  7. Thermodynamic and kinetic characterization of polycyclic aromatic hydrocarbons in reversed-phase liquid chromatography.

    PubMed

    Howerton, Samuel B; McGuffin, Victoria L

    2003-07-15

    The retention of six polycyclic aromatic hydrocarbons (PAHs) was characterized by reversed-phase liquid chromatography. The PAHs were detected by laser-induced fluorescence at four points along an optically transparent capillary column. The profiles were characterized in space and time using an exponentially modified Gaussian equation. The resulting parameters were used to calculate the retention factors, as well as the concomitant changes in molar enthalpy and molar volume, for each PAH on monomeric (2.7 micromol/m2) and polymeric (5.4 micromol/m2) octadecylsilica. The changes in molar enthalpy become more exothermic as ring number increases and as annelation structure becomes less condensed. The changes in molar volume become more negative as ring number increases for the planar PAHs, but are positive for the nonplanar solutes. In addition, the rate constants, as well as the concomitant activation enthalpy and activation volume, are calculated for the first time. The kinetic data demonstrate that many of the PAHs exhibit very fast transitions between the mobile and stationary phases. The transition state is very high in energy, and the activation enthalpies and volumes become greater as ring number increases and as annelation structure becomes less condensed. The changes in thermodynamic and kinetic behavior are much more pronounced for the polymeric phase than for the monomeric phase.

  8. Diamine-Appended Mg 2 (dobpdc) Nanorods as Phase-Change Fillers in Mixed-Matrix Membranes for Efficient CO 2/N 2 Separations

    DOE PAGES

    Maserati, Lorenzo; Meckler, Stephen M.; Bachman, Jonathan E.; ...

    2017-10-18

    Despite the availability of chemistries to tailor the pore architectures of microporous polymer membranes for chemical separations, trade-offs in permeability and selectivity with functional group manipulations nevertheless persist, which ultimately places an upper bound on membrane performance. We introduce a new design strategy to uncouple these attributes of the membrane. Key to our success is the incorporation of phase-change metal-organic frameworks (MOFs) into the polymer matrix, which can be used to increase the solubility of a specific gas in the membrane, and thereby its permeability. We further show that it is necessary to scale the size of the phase-change MOFmore » to nanoscopic dimensions, in order to take advantage of this effect in a gas separation. Our observation of an increase in solubility and permeability of only one of the gases during steady-state permeability measurements suggests fast exchange between free and chemisorbed gas molecules within the MOF pores. While the kinetics of this exchange in phase-change MOFs are not yet fully understood, their role in enhancing the efficacy and efficiency of the separation is clearly a compelling new direction for membrane technology.« less

  9. The time course of phase correction: A kinematic investigation of motor adjustment to timing perturbations during sensorimotor synchronization

    PubMed Central

    Hove, Michael J.; Balasubramaniam, Ramesh; Keller, Peter E.

    2014-01-01

    Synchronizing movements with a beat requires rapid compensation for timing errors. The phase-correction response (PCR) has been studied extensively in finger tapping by shifting a metronome onset and measuring the adjustment of the following tap time. How the response unfolds during the subsequent tap cycle remains unknown. Using motion capture, we examined finger kinematics during the PCR. Participants tapped with a metronome containing phase perturbations. They tapped in ‘legato’ and ‘staccato’ style at various tempi, which altered the timing of the constituent movement stages (dwell at the surface, extension, flexion). After a phase perturbation, tapping kinematics changed compared to baseline, and the PCR was distributed differently across movement stages. In staccato tapping, the PCR trajectory changed primarily during finger extension across tempi. In legato tapping, at fast tempi the PCR occurred primarily during extension, whereas at slow tempi most phase correction was already completed during dwell. Across conditions, timing adjustments occurred primarily 100-250 ms into the following tap cycle. The change in movement around 100 ms represents the time to integrate information into an already planned movement and the rapidity suggests a subcortical route. PMID:25151103

  10. A Pedestrian Detection Scheme Using a Coherent Phase Difference Method Based on 2D Range-Doppler FMCW Radar

    PubMed Central

    Hyun, Eugin; Jin, Young-Seok; Lee, Jong-Hun

    2016-01-01

    For an automotive pedestrian detection radar system, fast-ramp based 2D range-Doppler Frequency Modulated Continuous Wave (FMCW) radar is effective for distinguishing between moving targets and unwanted clutter. However, when a weak moving target such as a pedestrian exists together with strong clutter, the pedestrian may be masked by the side-lobe of the clutter even though they are notably separated in the Doppler dimension. To prevent this problem, one popular solution is the use of a windowing scheme with a weighting function. However, this method leads to a spread spectrum, so the pedestrian with weak signal power and slow Doppler may also be masked by the main-lobe of clutter. With a fast-ramp based FMCW radar, if the target is moving, the complex spectrum of the range- Fast Fourier Transform (FFT) is changed with a constant phase difference over ramps. In contrast, the clutter exhibits constant phase irrespective of the ramps. Based on this fact, in this paper we propose a pedestrian detection for highly cluttered environments using a coherent phase difference method. By detecting the coherent phase difference from the complex spectrum of the range-FFT, we first extract the range profile of the moving pedestrians. Then, through the Doppler FFT, we obtain the 2D range-Doppler map for only the pedestrian. To test the proposed detection scheme, we have developed a real-time data logging system with a 24 GHz FMCW transceiver. In laboratory tests, we verified that the signal processing results from the proposed method were much better than those expected from the conventional 2D FFT-based detection method. PMID:26805835

  11. A Pedestrian Detection Scheme Using a Coherent Phase Difference Method Based on 2D Range-Doppler FMCW Radar.

    PubMed

    Hyun, Eugin; Jin, Young-Seok; Lee, Jong-Hun

    2016-01-20

    For an automotive pedestrian detection radar system, fast-ramp based 2D range-Doppler Frequency Modulated Continuous Wave (FMCW) radar is effective for distinguishing between moving targets and unwanted clutter. However, when a weak moving target such as a pedestrian exists together with strong clutter, the pedestrian may be masked by the side-lobe of the clutter even though they are notably separated in the Doppler dimension. To prevent this problem, one popular solution is the use of a windowing scheme with a weighting function. However, this method leads to a spread spectrum, so the pedestrian with weak signal power and slow Doppler may also be masked by the main-lobe of clutter. With a fast-ramp based FMCW radar, if the target is moving, the complex spectrum of the range- Fast Fourier Transform (FFT) is changed with a constant phase difference over ramps. In contrast, the clutter exhibits constant phase irrespective of the ramps. Based on this fact, in this paper we propose a pedestrian detection for highly cluttered environments using a coherent phase difference method. By detecting the coherent phase difference from the complex spectrum of the range-FFT, we first extract the range profile of the moving pedestrians. Then, through the Doppler FFT, we obtain the 2D range-Doppler map for only the pedestrian. To test the proposed detection scheme, we have developed a real-time data logging system with a 24 GHz FMCW transceiver. In laboratory tests, we verified that the signal processing results from the proposed method were much better than those expected from the conventional 2D FFT-based detection method.

  12. The reaction of fully reduced cytochrome c oxidase with oxygen studied by flow-flash spectrophotometry at room temperature. Evidence for new pathways of electron transfer.

    PubMed Central

    Hill, B C; Greenwood, C

    1984-01-01

    Absorption changes during the O2 reaction of reduced bovine cytochrome c oxidase were investigated by the rapid-reaction technique of flow-flash spectrophotometry in the Soret, visible and near-i.r. spectral regions. New features in the time courses of absorption change were observed relative to the earlier findings reported by Greenwood & Gibson [(1967) J. Biol. Chem. 242, 1782-1787]. These new features arise in the Soret and near-i.r. regions and allow the reaction to be described at all wavelengths as a composite of three exponential processes. There is a rapid O2-sensitive phase detectable in the Soret and visible region. The second phase has a rate that is somewhat less dependent on O2 concentration than is the fastest phase rate and is detectable in all three spectral regions. The rate of the third phase is almost independent of the O2 concentration and is also detectable in all spectral regions. Analysis of the three phases gives their rates and absorption amplitudes. The fast phase reaches a rate of 2.5 X 10(4) s-1 at the highest O2 concentration available at 20 degrees C, whereas the phase of intermediate rate is limited at a value of 7 X 10(3) s-1 and the slow phase rate is limited at 700 s-1. The ratios of the kinetic difference spectra for the fast phase and the slow phase do not correspond to the spectra of the individual haem centres. A branched mechanism is advanced that is able to reconcile the kinetic and static difference spectra. This mechanism suggests that some of the cytochrome a is oxidized along with cytochrome a3 in the initial O2-sensitive phase. In addition, the model requires that CuA is oxidized heterogeneously. This fits with the complex time course of oxidation observed at 830 nm while retaining CuA as virtually the sole contributor to absorbance at this wavelength. PMID:6326750

  13. Tune Evaluation From Phased BPM Turn-By-Turn Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexahin, Y.; Gianfelice-Wendt, E.; Marsh, W.

    2010-05-18

    In fast ramping synchrotrons like the Fermilab Booster the conventional methods of betatron tune evaluation from the turn-by-turn data may not work due to rapid changes of the tunes (sometimes in a course of a few dozens of turns) and a high level of noise. We propose a technique based on phasing of signals from a large number of BPMs which significantly increases the signal to noise ratio. Implementation of the method in the Fermilab Booster control system is described and some measurement results are presented.

  14. Unusual MRI findings in an immunocompetent patient with EBV encephalitis: a case report

    PubMed Central

    2011-01-01

    Blackground It is well-known that Epstein-Barr virus (EBV) can affect the central nervous system (CNS). Case presentation Herein the authors report unusual timely Magnetic Resonance Imaging (MRI) brain scan findings in an immunocompetent patient with EBV encephalitis. Diffusion weighted MRI sequence performed during the acute phase of the disease was normal, whereas the Fast Relaxation Fast Spin Echo T2 image showed diffuse signal intensity changes in white matter. The enhancement pattern suggested an inflammatory response restricted to the brain microcirculation. Acyclovir and corticosteroid therapy was administered. After three weeks, all signal intensities returned to normal and the patient showed clinical recovery. Conclusion This report demonstrates that EBV in an immunocompetent adult can present with diffuse, reversible brain white matter involvement in the acute phase of mononucleosis. Moreover, our case suggests that a negative DWI sequence is associated with a favorable improvement in severe EBV CNS infection. More extensive studies are needed to assess what other instrumental data can help to distinguish viral lesions from other causes in the acute phase of disease. PMID:21435249

  15. Blue phase-change recording at high data densities and data rates

    NASA Astrophysics Data System (ADS)

    Dekker, Martijn K.; Pfeffer, Nicola; Kuijper, Maarten; Ubbens, Igolt P.; Coene, Wim M. J.; Meinders, E. R.; Borg, Herman J.

    2000-09-01

    For the DVR system with the use of a blue laser diode (wavelength 405 nm) we developed (12 cm) discs with a total capacity of 22.4 GB. The land/groove track pitch is 0.30 micrometers and the channel bit length is 87 nm. The DVR system uses a d equals 1 code. These phase change discs can be recorded at continuous angular velocity at a maximum of 50 Mbps user data rate (including all format and ECC overhead) and meet the system specifications. Fast growth determined phase change materials (FGM) are used for the active layer. In order to apply these FGM discs at small track pitch special attention has been paid to the issue of thermal cross-write. Finally routes towards higher capacities such as advanced bit detection schemes and the use of a smaller track pitch are considered. These show the feasibility in the near future of at least 26.0 GB on a disc for the DVR system with a blue laser diode.

  16. The investigations of characteristics of Sb2Te as a base phase-change material

    NASA Astrophysics Data System (ADS)

    Liu, Guangyu; Wu, Liangcai; Zhu, Min; Song, Zhitang; Rao, Feng; Song, Sannian; Cheng, Yan

    2017-09-01

    Chalcogenide alloys are paid much attention in the study of nonvolatile phase-change memory (PCM). A comprehensive research is investigated on Sb2Te (ST), a base material, from properties to performances in this paper. For the characteristics of ST films, the sheet resistance is extremely stable during cooling process in resistance-temperature measurement and the thickness change of ST film is 5.7%. However, low 10-year data retention temperature (∼55 °C) and large crystal grain are the demerits for ST. In addition, the structure characteristics show stable hexagonal phase and large grain of several hundred nanometers at crystalline state after annealing. As for electrical properties, although the ST-based PCM devices are characterized by fast operation speed of ∼20 ns, only about 8 × 103 times of stable operation cycles can be obtained. After that, the endurance performance deteriorates gradually due to the growth of grains. About resistance drift, the drift coefficients are very small both in crystalline state and in amorphous state.

  17. Impedance spectroscopy applied to the fast wounding dynamics of an electrical wound-healing assay in mammalian cells

    NASA Astrophysics Data System (ADS)

    Bellotti, Mariela I.; Giana, Fabián E.; Bonetto, Fabián J.

    2015-08-01

    Electrical wound-healing assays are often used as a means to study in vitro cell migration and proliferation. In such analysis, a cell monolayer that sits on a small electrode is electrically wounded and its spectral impedance is then continuously measured in order to monitor the healing process. The relatively slow dynamics of the cell healing have been extensively studied, while those of the much faster wounding phase have not yet been investigated. An analysis of the electrical properties of a particular cell type during this phase could give extra information about the changes in the cell membrane due to the application of the wounding current, and could also be useful to optimize the wounding regime for different cell types. The main issue when trying to register information about these dynamics is that the traditional measurement scheme employed in typical wound-healing assays doesn’t allow the simultaneous application of the wounding signal and measurement of the system’s impedance. In this paper, we overcome this limitation by implementing a measurement strategy consisting of cycles of fast alternating low- and high-voltage signals applied on electrodes covered with mammalian cells. This approach is capable of registering the fast impedance changes during the transient regime corresponding to the cell wounding process. Furthermore, these quasi-simultaneous high- and low-voltage measurements can be compared in order to obtain an empirical correlation between both quantities.

  18. Fast-response IR spatial light modulators with a polymer network liquid crystal

    NASA Astrophysics Data System (ADS)

    Peng, Fenglin; Chen, Haiwei; Tripathi, Suvagata; Twieg, Robert J.; Wu, Shin-Tson

    2015-03-01

    Liquid crystals (LC) have widespread applications for amplitude modulation (e.g. flat panel displays) and phase modulation (e.g. beam steering). For phase modulation, a 2π phase modulo is required. To extend the electro-optic application into infrared region (MWIR and LWIR), several key technical challenges have to be overcome: 1. low absorption loss, 2. high birefringence, 3. low operation voltage, and 4. fast response time. After three decades of extensive development, an increasing number of IR devices adopting LC technology have been demonstrated, such as liquid crystal waveguide, laser beam steering at 1.55μm and 10.6 μm, spatial light modulator in the MWIR (3~5μm) band, dynamic scene projectors for infrared seekers in the LWIR (8~12μm) band. However, several fundamental molecular vibration bands and overtones exist in the MWIR and LWIR regions, which contribute to high absorption coefficient and hinder its widespread application. Therefore, the inherent absorption loss becomes a major concern for IR devices. To suppress IR absorption, several approaches have been investigated: 1) Employing thin cell gap by choosing a high birefringence liquid crystal mixture; 2) Shifting the absorption bands outside the spectral region of interest by deuteration, fluorination and chlorination; 3) Reducing the overlap vibration bands by using shorter alkyl chain compounds. In this paper, we report some chlorinated LC compounds and mixtures with a low absorption loss in the near infrared and MWIR regions. To achieve fast response time, we have demonstrated a polymer network liquid crystal with 2π phase change at MWIR and response time less than 5 ms.

  19. Visualization of lithium-ion transport and phase evolution within and between manganese oxide nanorods.

    PubMed

    Xu, Feng; Wu, Lijun; Meng, Qingping; Kaltak, Merzuk; Huang, Jianping; Durham, Jessica L; Fernandez-Serra, Marivi; Sun, Litao; Marschilok, Amy C; Takeuchi, Esther S; Takeuchi, Kenneth J; Hybertsen, Mark S; Zhu, Yimei

    2017-05-24

    Multiple lithium-ion transport pathways and local phase changes upon lithiation in silver hollandite are revealed via in situ microscopy including electron diffraction, imaging and spectroscopy, coupled with density functional theory and phase field calculations. We report unexpected inter-nanorod lithium-ion transport, where the reaction fronts and kinetics are maintained within the neighbouring nanorod. Notably, this is the first time-resolved visualization of lithium-ion transport within and between individual nanorods, where the impact of oxygen deficiencies is delineated. Initially, fast lithium-ion transport is observed along the long axis with small net volume change, resulting in two lithiated silver hollandite phases distinguishable by orthorhombic distortion. Subsequently, a slower reaction front is observed, with formation of polyphase lithiated silver hollandite and face-centred-cubic silver metal with substantial volume expansion. These results indicate lithium-ion transport is not confined within a single nanorod and may provide a paradigm shift for one-dimensional tunnelled materials, particularly towards achieving high-rate capability.

  20. Visualization of lithium-ion transport and phase evolution within and between manganese oxide nanorods

    DOE PAGES

    Xu, Feng; Wu, Lijun; Meng, Qingping; ...

    2017-05-24

    Multiple lithium-ion transport pathways and local phase changes upon lithiation in silver hollandite are revealed via in situ microscopy including electron diffraction, imaging and spectroscopy, coupled with density functional theory and phase field calculations. Here, we report unexpected inter-nanorod lithium-ion transport, where the reaction fronts and kinetics are maintained within the neighbouring nanorod. Notably, this is the first time-resolved visualization of lithium-ion transport within and between individual nanorods, where the impact of oxygen deficiencies is delineated. Initially, fast lithium-ion transport is observed along the long axis with small net volume change, resulting in two lithiated silver hollandite phases distinguishable bymore » orthorhombic distortion. As a result, a slower reaction front is observed, with formation of polyphase lithiated silver hollandite and face-centred-cubic silver metal with substantial volume expansion. Our results indicate lithium-ion transport is not confined within a single nanorod and may provide a paradigm shift for one-dimensional tunnelled materials, particularly towards achieving high-rate capability.« less

  1. Visualization of lithium-ion transport and phase evolution within and between manganese oxide nanorods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Feng; Wu, Lijun; Meng, Qingping

    Multiple lithium-ion transport pathways and local phase changes upon lithiation in silver hollandite are revealed via in situ microscopy including electron diffraction, imaging and spectroscopy, coupled with density functional theory and phase field calculations. Here, we report unexpected inter-nanorod lithium-ion transport, where the reaction fronts and kinetics are maintained within the neighbouring nanorod. Notably, this is the first time-resolved visualization of lithium-ion transport within and between individual nanorods, where the impact of oxygen deficiencies is delineated. Initially, fast lithium-ion transport is observed along the long axis with small net volume change, resulting in two lithiated silver hollandite phases distinguishable bymore » orthorhombic distortion. As a result, a slower reaction front is observed, with formation of polyphase lithiated silver hollandite and face-centred-cubic silver metal with substantial volume expansion. Our results indicate lithium-ion transport is not confined within a single nanorod and may provide a paradigm shift for one-dimensional tunnelled materials, particularly towards achieving high-rate capability.« less

  2. Controllable crystal growth and fast reversible crystallization-to-amorphization in Sb2Te-TiO2 films

    PubMed Central

    Wang, Guoxiang; Li, Chao; Shi, Daotian; Nie, Qiuhua; Wang, Hui; Shen, Xiang; Lu, Yegang

    2017-01-01

    The structure evolution and crystallization processes of Sb2Te-TiO2 films have been investigated. The Sb2Te-rich nanocrystals, surrounded by TiO2 amorphous phases, are observed in the annealed Sb2Te-TiO2 composite films. The segregated domains exhibit obvious chalcogenide/TiOx interfaces, which elevate crystallization temperature, impede the grain growth and increase crystalline resistance. Compared with that in conventional Ge2Sb2Te5 film, the shorter time for onset crystallization (25 ns) and amorphization (100 ns) has been achieved in as-deposited (Sb2Te)94.7(TiO2)5.3 film under 60 mW laser irradiation. The corresponding recrystallization and re-amorphization can also be realized in the film. From Johnson-Mehl-Avrami (JMA) analysis, it is further found that the one-dimensional grain growth with controlled interface is dominant for the film during the fast phase-change process. Therefore, (Sb2Te)94.7(TiO2)5.3 film with improved crystallization mechanism is promising for high-stable and fast-speed memory applications. PMID:28397858

  3. Controllable crystal growth and fast reversible crystallization-to-amorphization in Sb2Te-TiO2 films.

    PubMed

    Wang, Guoxiang; Li, Chao; Shi, Daotian; Nie, Qiuhua; Wang, Hui; Shen, Xiang; Lu, Yegang

    2017-04-11

    The structure evolution and crystallization processes of Sb 2 Te-TiO 2 films have been investigated. The Sb 2 Te-rich nanocrystals, surrounded by TiO 2 amorphous phases, are observed in the annealed Sb 2 Te-TiO 2 composite films. The segregated domains exhibit obvious chalcogenide/TiO x interfaces, which elevate crystallization temperature, impede the grain growth and increase crystalline resistance. Compared with that in conventional Ge 2 Sb 2 Te 5 film, the shorter time for onset crystallization (25 ns) and amorphization (100 ns) has been achieved in as-deposited (Sb 2 Te) 94.7 (TiO 2 ) 5.3 film under 60 mW laser irradiation. The corresponding recrystallization and re-amorphization can also be realized in the film. From Johnson-Mehl-Avrami (JMA) analysis, it is further found that the one-dimensional grain growth with controlled interface is dominant for the film during the fast phase-change process. Therefore, (Sb 2 Te) 94.7 (TiO 2 ) 5.3 film with improved crystallization mechanism is promising for high-stable and fast-speed memory applications.

  4. Do hunger and exposure to food affect scores on a measure of hedonic hunger? An experimental study.

    PubMed

    Witt, Ashley A; Raggio, Greer A; Butryn, Meghan L; Lowe, Michael R

    2014-03-01

    Research suggests that visceral bodily states, such as hunger, can affect participants' responses on self-report measures of eating behavior. The present study evaluated the influence of hunger and exposure to palatable food on self-reported hedonic appetite, measured using the Power of Food Scale (PFS). A secondary aim was to evaluate the effects of these manipulations on self-reported external eating and disinhibition. Participants (N=67) ate a standardized meal followed by a 4-h fast. Participants were randomized to one of four groups (Fasted/Food Absence, Fasted/Food Exposure, Fed/Food Absence, or Fed/Food Exposure). In Phase I of the experiment (Hunger Manipulation), participants randomized to the "Fed" group drank a protein shake, while those in the "Fasted" group did not receive a shake. In Phase II (Palatable Food Exposure), participants in the "Food Exposure" group were visually exposed to palatable food items, while "Food Absence" participants were not. All participants completed the PFS, Dutch Eating Behavior Questionnaire External Eating subscale, and the Disinhibition subscale from the Eating Inventory during Phase II. Results showed no significant main or interactive effects of Hunger condition or Food Exposure condition on PFS, External Eating, or Disinhibition scores (all p's<.33). All effect sizes were small (partial etas squared ⩽.015). Manipulation checks confirmed that the intended hunger and exposure interventions were successful. Results suggest that relatively short fasting periods (e.g., 4h) analogous to typical breaks between meals are not associated with changes in scores on the PFS, External Eating, or Disinhibition scales. Hedonic hunger, at least as measured by the PFS, may represent a relatively stable construct that is not substantially affected by daily variations in hunger. In addition, individual differences in exposure to food in the immediate environment are unlikely to confound research using these measures. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Complex Seismic Anisotropy at the Edges of a Very-low Velocity Province in the Lowermost Mantle

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Wen, L.

    2005-12-01

    A prominent very-low velocity province (VLVP) in the lowermost mantle is revealed, and has been extensively mapped out in recent seismic studies (e.g., Wang and Wen, 2004). Seismic evidence unambiguously indicates that the VLVP is compositionally distinct, and its seismic structure can be best explained by partial melting driven by a compositional change produced in the early Earth's history (Wen, 2001; Wen et. al, 2001; Wang and Wen, 2004). In this presentation, we study the seismic anisotropic behavior inside the VLVP and its surrounding area using SKS and SKKS waveform data. We collect 272 deep earthquakes recorded by more than 80 stations in the Kaapvaal seismic array in southern Africa from 1997 to 1999. Based on the data quality, we choose SKS and SKKS waveform data for 16 earthquakes to measure the anisotropic parameters: the fast polarization direction and the splitting time, using the method of Silver and Chan (1991). A total of 162 high-quality measurements are obtained based on the statistics analysis of shear wave splitting results. The obtained anisotropy exhibits different patterns for the SKS and SKKS phases sampling inside the VLVP and at the edges of the VLVP. When the SKS and SKKS phases sample inside the VLVP, their fast polarization directions exhibit a pattern that strongly correlates with stations, gradually changing from 11°N~to 80°N~across the seismic array from south to north and rotating back to the North direction over short distances for several northernmost stations. The anisotropy pattern obtained from the analysis of the SKKS phases is the same as that from the SKS phases. However, when the SKS and SKKS phases sample at the edges of the VLVP, the measured anisotropy exhibits a very complex pattern. The obtained fast polarization directions change rapidly over a small distance, and they no longer correlate with stations; the measurements obtained from the SKS analysis also differ with those from the SKKS analysis. As the SKS and SKKS phases have similar propagation paths in the lithosphere beneath the array, but different sampling points near the core mantle boundary. The anisotropy in the lithosphere should have a similar influence on SKS and SKKS phases. Therefore, the similar anisotropy obtained from the SKS and SKKS phases sampling inside the VLVP and its correlation with seismic stations suggest that the observed anisotropy variation across the seismic array is mainly due to the anisotropy in the lithosphere beneath the Kaapvaal seismic array, and the interior of the VLVP is isotropic or weakly anisotropic. On the other hand, for the SKS and SKKS phases sampling at the edges of the VLVP, the observed complex anisotropy pattern and the lack of correlation between the results from the SKS and SKKS analyses indicate that part of that anisotropy has to originate from the lowermost mantle near the exit points of these phases at the core mantle boundary, revealing a complex flow pattern at the edges of the VLVP.

  6. Homeostatic joint amplification of pulsatile and 24-hour rhythmic cortisol secretion by fasting stress in midluteal phase women: concurrent disruption of cortisol-growth hormone, cortisol-luteinizing hormone, and cortisol-leptin synchrony.

    PubMed

    Bergendahl, M; Iranmanesh, A; Pastor, C; Evans, W S; Veldhuis, J D

    2000-11-01

    Short-term fasting as a metabolic stress evokes prominent homeostatic reactions of the reproductive, corticotropic, thyrotropic, somatotropic, and leptinergic axes in men and women. Although reproductive adaptations to fasting are incompletely studied in the female, nutrient deprivation can have major neuroendocrine consequences in the follicular phase. Unexpectedly, a recent clinical study revealed relatively preserved sex steroid and gonadotropin secretion during short-term caloric restriction in the midluteal phase of the menstrual cycle. This observation suggested that female stress-adaptive responses might be muted in this sex steroid-replete milieu. To test this hypothesis, we investigated the impact of fasting on daily cortisol secretion in healthy young women during the midluteal phase of the normal menstrual cycle. Eight volunteers were each studied twice in separate and randomly ordered short-term (2.5-day) fasting and fed sessions. Pulsatile cortisol secretion, 24-h rhythmic cortisol release, and the orderliness of cortisol secretory patterns were quantified. Within-subject statistical comparisons revealed that fasting increased the mean serum cortisol concentration significantly from a baseline value of 8.0+/-0.61 to 12.8+/-0.85 microg/dL (P = 0.0003). (For Systeme International conversion to nanomoles per L, multiply micrograms per dL value by 28.) Pulsatile cortisol secretion rose commensurately, viz. from 101+/-11 to 173+/-16 microg/dL/day (P = 0.0025). Augmented 24-h cortisol production was due to amplification of cortisol secretory burst mass from 8.2+/-1.5 to 12.9+/-2.0 microg/dL (P = 0.017). In contrast, the estimated half-life of endogenous cortisol (104+/-9 min), the calculated duration of underlying cortisol secretory bursts (16+/-7 min) and their mean frequency (14+/-2/day) were not altered by short-term fasting. The quantifiable orderliness of cortisol secretory patterns was also not influenced by caloric restriction. Nutrient deprivation elevated the mean of the 24-h serum cortisol concentration rhythm from 12.4+/-1.3 to 18.4+/-1.9 microg/dL (P = 0.0005), without affecting its diurnal amplitude or timing. Correlation analysis disclosed that fasting reversed the positive relationship between cortisol and LH release evident in the fed state, and abolished the negative association between cortisol and GH as well as between cortisol and leptin observed during nutrient repletion (P < 0.001). Pattern synchrony between cortisol and GH as well as that between cortisol and LH release was also significantly disrupted by fasting stress. In summary, short-term caloric deprivation enhances daily cortisol secretion by 1.7-fold in healthy midluteal phase young women by selectively amplifying cortisol secretory burst mass and elevating the 24-h rhythmic cortisol mean. Augmentation of daily cortisol production occurs without any concomitant changes in cortisol pulse frequency or half-life or any disruption of the timing of the 24-h rhythmicity or orderliness of cortisol release. Fasting degrades the physiological coupling between cortisol and LH, cortisol and GH, and cortisol and leptin secretion otherwise evident in calorie-sufficient women. We conclude that the corticotropic axis in the young adult female is not resistant to the stress-activating effects of short-term nutrient deprivation, but, rather, evinces strong adaptive homeostasis both monohormonally (cortisol) and bihormonally (cortisol paired with GH, LH, and leptin).

  7. Standardization of collection requirements for fasting samples: for the Working Group on Preanalytical Phase (WG-PA) of the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM).

    PubMed

    Simundic, A M; Cornes, M; Grankvist, K; Lippi, G; Nybo, M

    2014-05-15

    Standardized protocols for patient preparation for laboratory testing are currently lacking. Moreover, a great heterogeneity exists in the definitions of "fasting" currently being used among healthcare workers and in the literature. Marked metabolic and hormonal changes occur after food ingestion, mainly due to the absorption of fluids, lipids, proteins, carbohydrates and other food constituents. This postprandial response varies markedly in response to numerous factors, such as eating behavior, food composition, fasting duration, time of the day, chronic and acute smoking, coffee and alcohol consumption. It is therefore crucial to minimize the total variability by controlling as many of these modifying factors as possible. Control of the abovementioned effects on postprandial response can only be achieved by standardizing the way patients are prepared for laboratory testing, i.e. by defining the fasting duration, as well as what is and what is not allowed (e.g., coffee, tea, smoking, water) during the period of fasting prior to sample collection. The aim of this article is to describe the range of effects of different approaches to fasting on laboratory tests, and to provide a framework for the harmonization of definitions for fasting requirements for laboratory tests. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Statistical study of auroral omega bands

    NASA Astrophysics Data System (ADS)

    Partamies, Noora; Weygand, James M.; Juusola, Liisa

    2017-09-01

    The presence of very few statistical studies on auroral omega bands motivated us to test-use a semi-automatic method for identifying large-scale undulations of the diffuse aurora boundary and to investigate their occurrence. Five identical all-sky cameras with overlapping fields of view provided data for 438 auroral omega-like structures over Fennoscandian Lapland from 1996 to 2007. The results from this set of omega band events agree remarkably well with previous observations of omega band occurrence in magnetic local time (MLT), lifetime, location between the region 1 and 2 field-aligned currents, as well as current density estimates. The average peak emission height of omega forms corresponds to the estimated precipitation energies of a few keV, which experienced no significant change during the events. Analysis of both local and global magnetic indices demonstrates that omega bands are observed during substorm expansion and recovery phases that are more intense than average substorm expansion and recovery phases in the same region. The omega occurrence with respect to the substorm expansion and recovery phases is in a very good agreement with an earlier observed distribution of fast earthward flows in the plasma sheet during expansion and recovery phases. These findings support the theory that omegas are produced by fast earthward flows and auroral streamers, despite the rarity of good conjugate observations.

  9. Underlying mechanism of the cyclic migrating motor complex in Suncus murinus: a change in gastrointestinal pH is the key regulator.

    PubMed

    Mondal, Anupom; Koyama, Kouhei; Mikami, Takashi; Horita, Taichi; Takemi, Shota; Tsuda, Sachiko; Sakata, Ichiro; Sakai, Takafumi

    2017-01-01

    In the fasted gastrointestinal (GI) tract, a characteristic cyclical rhythmic migrating motor complex (MMC) occurs in an ultradian rhythm, at 90-120 min time intervals, in many species. However, the underlying mechanism directing this ultradian rhythmic MMC pattern is yet to be completely elucidated. Therefore, this study aimed to identify the possible causes or factors that involve in the occurrence of the fasting gastric contractions by using Suncus murinus a small model animal featuring almost the same rhythmic MMC as that found in humans and dogs. We observed that either intraduodenal infusion of saline at pH 8 evoked the strong gastric contraction or continuously lowering duodenal pH to 3-evoked gastric phase II-like and phase III-like contractions, and both strong contractions were essentially abolished by the intravenous administration of MA 2029 (motilin receptor antagonist) and D-Lys3-GHRP6 (ghrelin receptor antagonist) in a vagus-independent manner. Moreover, we observed that the prostaglandin E2-alpha (PGE2 - α) and serotonin type 4 (5HT4) receptors play important roles as intermediate molecules in changes in GI pH and motilin release. These results suggest a clear insight mechanism that change in the duodenal pH to alkaline condition is an essential factor for stimulating the endogenous release of motilin and governs the fasting MMC in a vagus-independent manner. Finally, we believe that the changes in duodenal pH triggered by flowing gastric acid and the release of duodenal bicarbonate through the involvement of PGE2 - α and 5HT4 receptor are the key events in the occurrence of the MMC. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  10. {sup 1}H NMR relaxometry and quadrupole relaxation enhancement as a sensitive probe of dynamical properties of solids—[C(NH{sub 2}){sub 3}]{sub 3}Bi{sub 2}I{sub 9} as an example

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Florek-Wojciechowska, M.; Wojciechowski, M.; Brym, Sz.

    {sup 1}H nuclear magnetic resonance relaxometry has been applied to reveal information on dynamics and structure of Gu{sub 3}Bi{sub 2}I{sub 9} ([Gu = C(NH{sub 2}){sub 3}] denotes guanidinium cation). The data have been analyzed in terms of a theory of quadrupole relaxation enhancement, which has been extended here by including effects associated with quadrupole ({sup 14}N) spin relaxation caused by a fast fluctuating component of the electric field gradient tensor. Two motional processes have been identified: a slow one occurring on a timescale of about 8 × 10{sup −6} s which has turned out to be (almost) temperature independent, andmore » a fast process in the range of 10{sup −9} s. From the {sup 1}H-{sup 14}N relaxation contribution (that shows “quadrupole peaks”) the quadrupole parameters, which are a fingerprint of the arrangement of the anionic network, have been determined. It has been demonstrated that the magnitude of the quadrupole coupling considerably changes with temperature and the changes are not caused by phase transitions. At the same time, it has been shown that there is no evidence of abrupt changes in the cationic dynamics and the anionic substructure upon the phase transitions.« less

  11. A novel algorithm for fast and efficient multifocus wavefront shaping

    NASA Astrophysics Data System (ADS)

    Fayyaz, Zahra; Nasiriavanaki, Mohammadreza

    2018-02-01

    Wavefront shaping using spatial light modulator (SLM) is a popular method for focusing light through a turbid media, such as biological tissues. Usually, in iterative optimization methods, due to the very large number of pixels in SLM, larger pixels are formed, bins, and the phase value of the bins are changed to obtain an optimum phase map, hence a focus. In this study an efficient optimization algorithm is proposed to obtain an arbitrary map of focus utilizing all the SLM pixels or small bin sizes. The application of such methodology in dermatology, hair removal in particular, is explored and discussed

  12. Pressure-induced reversible amorphization and an amorphous–amorphous transition in Ge2Sb2Te5 phase-change memory material

    PubMed Central

    Sun, Zhimei; Zhou, Jian; Pan, Yuanchun; Song, Zhitang; Mao, Ho-Kwang; Ahuja, Rajeev

    2011-01-01

    Ge2Sb2Te5 (GST) is a technologically very important phase-change material that is used in digital versatile disks-random access memory and is currently studied for the use in phase-change random access memory devices. This type of data storage is achieved by the fast reversible phase transition between amorphous and crystalline GST upon heat pulse. Here we report pressure-induced reversible crystalline-amorphous and polymorphic amorphous transitions in NaCl structured GST by ab initio molecular dynamics calculations. We have showed that the onset amorphization of GST starts at approximately 18 GPa and the system become completely random at approximately 22 GPa. This amorphous state has a cubic framework (c-amorphous) of sixfold coordinations. With further increasing pressure, the c-amorphous transforms to a high-density amorphous structure with trigonal framework (t-amorphous) and an average coordination number of eight. The pressure-induced amorphization is investigated to be due to large displacements of Te atoms for which weak Te–Te bonds exist or vacancies are nearby. Upon decompressing to ambient conditions, the original cubic crystalline structure is restored for c-amorphous, whereas t-amorphous transforms to another amorphous phase that is similar to the melt-quenched amorphous GST. PMID:21670255

  13. Pressure-induced reversible amorphization and an amorphous-amorphous transition in Ge₂Sb₂Te₅ phase-change memory material.

    PubMed

    Sun, Zhimei; Zhou, Jian; Pan, Yuanchun; Song, Zhitang; Mao, Ho-Kwang; Ahuja, Rajeev

    2011-06-28

    Ge(2)Sb(2)Te(5) (GST) is a technologically very important phase-change material that is used in digital versatile disks-random access memory and is currently studied for the use in phase-change random access memory devices. This type of data storage is achieved by the fast reversible phase transition between amorphous and crystalline GST upon heat pulse. Here we report pressure-induced reversible crystalline-amorphous and polymorphic amorphous transitions in NaCl structured GST by ab initio molecular dynamics calculations. We have showed that the onset amorphization of GST starts at approximately 18 GPa and the system become completely random at approximately 22 GPa. This amorphous state has a cubic framework (c-amorphous) of sixfold coordinations. With further increasing pressure, the c-amorphous transforms to a high-density amorphous structure with trigonal framework (t-amorphous) and an average coordination number of eight. The pressure-induced amorphization is investigated to be due to large displacements of Te atoms for which weak Te-Te bonds exist or vacancies are nearby. Upon decompressing to ambient conditions, the original cubic crystalline structure is restored for c-amorphous, whereas t-amorphous transforms to another amorphous phase that is similar to the melt-quenched amorphous GST.

  14. Extratropical response to Fast and Slow episodes of Madden-Julian Oscillation in observation and using intervention experiments with CFSv2

    NASA Astrophysics Data System (ADS)

    Yadav, P.; Straus, D. M.

    2017-12-01

    The Madden-Julian Oscillation (MJO) is a potential source of predictability in the extratropics in extended range weather forecasting. The nature of MJO is sporadic and therefore, the mid-latitude response may depend on the nature of the MJO event, in particular the phase speed. We discuss the results of our observational and modeling study of mid-latitude circulation response to Fast and Slow MJO episodes using wintertime ERA-Interim reanalysis data and the CFSv2 coupled model of NOAA. The observational study shows that the mid-latitude response to different propagating speeds is not the same. The propagation speed is defined by the time the OLR takes to propagate from phase 3 to phase 6. The mid-latitude response is assessed in terms of composite maps and frequency of occurrence of robust circulation regimes. Fast episode composite anomalies of 500hPa height show a developing Rossby wave in the mid-Pacific with downstream propagation through MJO phases 2- 4. Development of NAO+ teleconnection pattern is stronger in Slow that in Fast MJO episodes, and occurs with a greater time lag after MJO heating is in the Indian Ocean (phase 3). Previous results find an increase in occurrence of NAO- regime following phase 6. We have found that much of this behavior is due to the slow episodes. Based on these observational results, intervention experiments using CFSv2 are designed to better understand the impact of heating/cooling and to estimate mid-latitude response to Fast and Slow MJO episodes. The added heating experiments consist of 31 year reforecasts for December 1 initial conditions from CFS reanalysis (1980-2011) in which the identical MJO evolution of three-dimensional diabatic heating has been added, thus producing fast and slow MJO episodes with well-defined phase speeds. We will discuss the results of these experiments with a focus on understanding the role of phase speed and interference in setting up the response, and to understand the mechanisms that distinguish fast and slow types of response We will also discuss the diagnostics using Predictable Component Analysis to distinguish the signal forced by common diabatic heating signal from noise, and weather regime response to fast and slow MJO using cluster analysis.

  15. Interferometric tomography of fuel cells for monitoring membrane water content.

    PubMed

    Waller, Laura; Kim, Jungik; Shao-Horn, Yang; Barbastathis, George

    2009-08-17

    We have developed a system that uses two 1D interferometric phase projections for reconstruction of 2D water content changes over time in situ in a proton exchange membrane (PEM) fuel cell system. By modifying the filtered backprojection tomographic algorithm, we are able to incorporate a priori information about the object distribution into a fast reconstruction algorithm which is suitable for real-time monitoring.

  16. Structure of semiconducting versus fast-ion conducting glasses in the Ag-Ge-Se system.

    PubMed

    Zeidler, Anita; Salmon, Philip S; Whittaker, Dean A J; Piarristeguy, Andrea; Pradel, Annie; Fischer, Henry E; Benmore, Chris J; Gulbiten, Ozgur

    2018-01-01

    The transition from a semiconductor to a fast-ion conductor with increasing silver content along the Ag x (Ge 0.25 Se 0.75 ) (100- x ) tie line (0≤ x ≤25) was investigated on multiple length scales by employing a combination of electric force microscopy, X-ray diffraction, and neutron diffraction. The microscopy results show separation into silver-rich and silver-poor phases, where the Ag-rich phase percolates at the onset of fast-ion conductivity. The method of neutron diffraction with Ag isotope substitution was applied to the x =5 and x =25 compositions, and the results indicate an evolution in structure of the Ag-rich phase with change of composition. The Ag-Se nearest-neighbours are distributed about a distance of 2.64(1) Å, and the Ag-Se coordination number increases from 2.6(3) at x =5 to 3.3(2) at x =25. For x =25, the measured Ag-Ag partial pair-distribution function gives 1.9(2) Ag-Ag nearest-neighbours at a distance of 3.02(2) Å. The results show breakage of Se-Se homopolar bonds as silver is added to the Ge 0.25 Se 0.75 base glass, and the limit of glass-formation at x ≃28 coincides with an elimination of these bonds. A model is proposed for tracking the breakage of Se-Se homopolar bonds as silver is added to the base glass.

  17. Structure of semiconducting versus fast-ion conducting glasses in the Ag–Ge–Se system

    PubMed Central

    2018-01-01

    The transition from a semiconductor to a fast-ion conductor with increasing silver content along the Agx(Ge0.25Se0.75)(100−x) tie line (0≤x≤25) was investigated on multiple length scales by employing a combination of electric force microscopy, X-ray diffraction, and neutron diffraction. The microscopy results show separation into silver-rich and silver-poor phases, where the Ag-rich phase percolates at the onset of fast-ion conductivity. The method of neutron diffraction with Ag isotope substitution was applied to the x=5 and x=25 compositions, and the results indicate an evolution in structure of the Ag-rich phase with change of composition. The Ag–Se nearest-neighbours are distributed about a distance of 2.64(1) Å, and the Ag–Se coordination number increases from 2.6(3) at x=5 to 3.3(2) at x=25. For x=25, the measured Ag–Ag partial pair-distribution function gives 1.9(2) Ag–Ag nearest-neighbours at a distance of 3.02(2) Å. The results show breakage of Se–Se homopolar bonds as silver is added to the Ge0.25Se0.75 base glass, and the limit of glass-formation at x≃28 coincides with an elimination of these bonds. A model is proposed for tracking the breakage of Se–Se homopolar bonds as silver is added to the base glass. PMID:29410843

  18. The Role of the Interplay between Stimulus Type and Timing in Explaining BCI-Illiteracy for Visual P300-Based Brain-Computer Interfaces

    PubMed Central

    Carabalona, Roberta

    2017-01-01

    Visual P300-based Brain-Computer Interface (BCI) spellers enable communication or interaction with the environment by flashing elements in a matrix and exploiting consequent changes in end-user's brain activity. Despite research efforts, performance variability and BCI-illiteracy still are critical issues for real world applications. Moreover, there is a quite unaddressed kind of BCI-illiteracy, which becomes apparent when the same end-user operates BCI-spellers intended for different applications: our aim is to understand why some well performers can become BCI-illiterate depending on speller type. We manipulated stimulus type (factor STIM: either characters or icons), color (factor COLOR: white, green) and timing (factor SPEED: fast, slow). Each BCI session consisted of training (without feedback) and performance phase (with feedback), both in copy-spelling. For fast flashing spellers, we observed a performance worsening for white icon-speller. Our findings are consistent with existing results reported on end-users using identical white×fast spellers, indicating independence of worsening trend from users' group. The use of slow stimulation timing shed a new light on the perceptual and cognitive phenomena related to the use of a BCI-speller during both the training and the performance phase. We found a significant STIM main effect for the N1 component on Pz and PO7 during the training phase and on PO8 during the performance phase, whereas in both phases neither the STIM×COLOR interaction nor the COLOR main effect was statistically significant. After collapsing data for factor COLOR, it emerged a statistically significant modulation of N1 amplitude depending to the phase of BCI session: N1 was more negative for icons than for characters both on Pz and PO7 (training), whereas the opposite modulation was observed for PO8 (performance). Results indicate that both feedback and expertise with respect to the stimulus type can modulate the N1 component and that icons require more perceptual analysis. Therefore, fast flashing is likely to be more detrimental for end-users' performance in case of icon-spellers. In conclusion, the interplay between stimulus type and timing seems relevant for a satisfactory and efficient end-user's BCI-experience. PMID:28713233

  19. The Role of the Interplay between Stimulus Type and Timing in Explaining BCI-Illiteracy for Visual P300-Based Brain-Computer Interfaces.

    PubMed

    Carabalona, Roberta

    2017-01-01

    Visual P300-based Brain-Computer Interface (BCI) spellers enable communication or interaction with the environment by flashing elements in a matrix and exploiting consequent changes in end-user's brain activity. Despite research efforts, performance variability and BCI-illiteracy still are critical issues for real world applications. Moreover, there is a quite unaddressed kind of BCI-illiteracy, which becomes apparent when the same end-user operates BCI-spellers intended for different applications: our aim is to understand why some well performers can become BCI-illiterate depending on speller type. We manipulated stimulus type (factor STIM: either characters or icons), color (factor COLOR: white, green) and timing (factor SPEED: fast, slow). Each BCI session consisted of training (without feedback) and performance phase (with feedback), both in copy-spelling. For fast flashing spellers, we observed a performance worsening for white icon-speller. Our findings are consistent with existing results reported on end-users using identical white×fast spellers, indicating independence of worsening trend from users' group. The use of slow stimulation timing shed a new light on the perceptual and cognitive phenomena related to the use of a BCI-speller during both the training and the performance phase. We found a significant STIM main effect for the N1 component on P z and PO 7 during the training phase and on PO 8 during the performance phase, whereas in both phases neither the STIM×COLOR interaction nor the COLOR main effect was statistically significant. After collapsing data for factor COLOR, it emerged a statistically significant modulation of N1 amplitude depending to the phase of BCI session: N1 was more negative for icons than for characters both on P z and PO 7 (training), whereas the opposite modulation was observed for PO 8 (performance). Results indicate that both feedback and expertise with respect to the stimulus type can modulate the N1 component and that icons require more perceptual analysis. Therefore, fast flashing is likely to be more detrimental for end-users' performance in case of icon-spellers. In conclusion, the interplay between stimulus type and timing seems relevant for a satisfactory and efficient end-user's BCI-experience.

  20. Precursory changes in seismic velocity for the spectrum of earthquake failure modes

    PubMed Central

    Scuderi, M.M.; Marone, C.; Tinti, E.; Di Stefano, G.; Collettini, C.

    2016-01-01

    Temporal changes in seismic velocity during the earthquake cycle have the potential to illuminate physical processes associated with fault weakening and connections between the range of fault slip behaviors including slow earthquakes, tremor and low frequency earthquakes1. Laboratory and theoretical studies predict changes in seismic velocity prior to earthquake failure2, however tectonic faults fail in a spectrum of modes and little is known about precursors for those modes3. Here we show that precursory changes of wave speed occur in laboratory faults for the complete spectrum of failure modes observed for tectonic faults. We systematically altered the stiffness of the loading system to reproduce the transition from slow to fast stick-slip and monitored ultrasonic wave speed during frictional sliding. We find systematic variations of elastic properties during the seismic cycle for both slow and fast earthquakes indicating similar physical mechanisms during rupture nucleation. Our data show that accelerated fault creep causes reduction of seismic velocity and elastic moduli during the preparatory phase preceding failure, which suggests that real time monitoring of active faults may be a means to detect earthquake precursors. PMID:27597879

  1. Extraction of fast neuronal changes from multichannel functional near-infrared spectroscopy signals using independent component analysis

    NASA Astrophysics Data System (ADS)

    Morren, Geert; Wolf, Martin; Lemmerling, Philippe; Wolf, Ursula; Choi, Jee H.; Gratton, Enrico; De Lathauwer, Lieven; Van Huffel, Sabine

    2002-06-01

    Fast changes in the range of milliseconds in the optical properties of cerebral tissue, which are associated with brain activity, can be detected using non-invasive near-infrared spectroscopy (NIRS). These changes in light scattering are due to an alteration in the refractive index at neuronal membranes. The aim of this study was to develop highly sensitive data analysis algorithms to detect this fast signal, which is small compared to other physiological signals. A frequency-domain tissue oximeter, whose laser diodes were modulated at 110MHz was used. The amplitude, mean intensity and phase of the modulated optical signal was measured at 96Hz sample rate. The probe consisting of 4 crossed source detector pairs was placed above the motor cortex, contralateral to the hand performing a tapping exercise consisting of alternating rest- and tapping periods of 20s each. The tapping frequency, which was set to 3.55Hz or 2.5 times the heart rate of the subject to avoid the influence of harmonics on the signal, could not be observed in any of the individual signals measured by the detectors. An adaptive filter was used to remove the arterial pulsatility from the optical signals. Independent Component Analysis allowed to separate signal components in which the tapping frequency was clearly visible.

  2. FAST Spacecraft Battery Design and Performance

    NASA Technical Reports Server (NTRS)

    Jung, David S.; Rao, Gopalakrishna; Ahmad, Anisa

    1997-01-01

    The Fast Auroral Snapshot (FAST) Explorer spacecraft is to study the physical processes that produce the aurora borealis and aurora australis. It is a unique plasma physics experiment that will take fundamental measurements of the magnetic and electrical fields. This investigation will add significantly to our understanding of the near-earth space environments and its effect. The FAST has a 1 year requirement and 3-year goal for its mission life in low earth orbit. The FAST power power system topology is a Direct Energy Transfer (DET) system based on the SAMPEX design. The FAST flight battery supplies power to the satellite during pre-launch operations, the launch phase, the eclipse periods for all mission phases, and when the load is about 50 watts.

  3. Modulation of phase durations, phase variations, and temporal coordination of the four limbs during quadrupedal split-belt locomotion in intact adult cats

    PubMed Central

    D'Angelo, Giuseppe; Thibaudier, Yann; Telonio, Alessandro; Hurteau, Marie-France; Kuczynski, Victoria; Dambreville, Charline

    2014-01-01

    Stepping along curvilinear paths produces speed differences between the inner and outer limb(s). This can be reproduced experimentally by independently controlling left and right speeds with split-belt locomotion. Here we provide additional details on the pattern of the four limbs during quadrupedal split-belt locomotion in intact cats. Six cats performed tied-belt locomotion (same speed bilaterally) and split-belt locomotion where one side (constant side) stepped at constant treadmill speed while the other side (varying side) stepped at several speeds. Cycle, stance, and swing durations changed in parallel in homolateral limbs with shorter and longer stance and swing durations on the fast side, respectively, compared with the slow side. Phase variations were quantified in all four limbs by measuring the slopes of the regressions between stance and cycle durations (rSTA) and between swing and cycle durations (rSW). For a given limb, rSTA and rSW were not significantly different from one another on the constant side whereas on the varying side rSTA increased relative to tied-belt locomotion while rSW became more negative. Phase variations were similar for homolateral limbs. Increasing left-right speed differences produced a large increase in homolateral double support on the slow side, while triple-support periods decreased. Increasing left-right speed differences altered homologous coupling, homolateral coupling on the fast side, and coupling between the fast hindlimb and slow forelimb. Results indicate that homolateral limbs share similar control strategies, only certain features of the interlimb pattern adjust, and spinal locomotor networks of the left and right sides are organized symmetrically. PMID:25031257

  4. Application of space periodic variation of light polarization in imaging polarimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drobczynski, Slawomir; Kasprzak, Henryk

    The application of space periodic variation of light polarization for measurement and calculation of the distribution of the phase retardation between two eigenwaves propagating inside a linearly birefringent media and the distribution of the azimuth angle of the first eigenvector is described. The measuring method proposed does not require any mechanical movements or rotations of any optical elements. Application of a liquid crystal (LC) modulator instead of a quarter-wave plate gives an opportunity to introduce the required phase shift. The space periodic modulation of the polarization of light is achieved by the use of a Wollaston prism placed inside themore » path of the light beam. Then a fast Fourier transform is used for further calculations. The number of measurements of the light intensity at the output of the system is minimized to two. These assumptions make the proposed method very fast, which is especially important in measurements of the objects with optical anisotropy that is changing in time.« less

  5. The Application of Waiting Lines System in Improving Customer Service Management: The Examination of Malaysia Fast Food Restaurants Industry

    NASA Astrophysics Data System (ADS)

    Ismail, Zurina; Shokor, Shahrul Suhaimi AB

    2016-03-01

    Rapid life time change of the Malaysian lifestyle had served the overwhelming growth in the service operation industry. On that occasion, this paper will provide the idea to improve the waiting line system (WLS) practices in Malaysia fast food chains. The study will compare the results in between the single server single phase (SSSP) and the single server multi-phase (SSMP) which providing Markovian Queuing (MQ) to be used for analysis. The new system will improve the current WLS, plus intensifying the organization performance. This new WLS were designed and tested in a real case scenario and in order to develop and implemented the new styles, it need to be focusing on the average number of customers (ANC), average number of customer spending time waiting in line (ACS), and the average time customers spend in waiting and being served (ABS). We introduced new WLS design and there will be prompt discussion upon theories of benefits and potential issues that will benefit other researchers.

  6. Inverse lithography using sparse mask representations

    NASA Astrophysics Data System (ADS)

    Ionescu, Radu C.; Hurley, Paul; Apostol, Stefan

    2015-03-01

    We present a novel optimisation algorithm for inverse lithography, based on optimization of the mask derivative, a domain inherently sparse, and for rectilinear polygons, invertible. The method is first developed assuming a point light source, and then extended to general incoherent sources. What results is a fast algorithm, producing manufacturable masks (the search space is constrained to rectilinear polygons), and flexible (specific constraints such as minimal line widths can be imposed). One inherent trick is to treat polygons as continuous entities, thus making aerial image calculation extremely fast and accurate. Requirements for mask manufacturability can be integrated in the optimization without too much added complexity. We also explain how to extend the scheme for phase-changing mask optimization.

  7. Implementation of nitrogen-doped titanium-tungsten tunable heater in phase change random access memory and its effects on device performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Chun Chia; Zhao, Rong, E-mail: zhao-rong@sutd.edu.sg; Chong, Tow Chong

    2014-10-13

    Nitrogen-doped titanium-tungsten (N-TiW) was proposed as a tunable heater in Phase Change Random Access Memory (PCRAM). By tuning N-TiW's material properties through doping, the heater can be tailored to optimize the access speed and programming current of PCRAM. Experiments reveal that N-TiW's resistivity increases and thermal conductivity decreases with increasing nitrogen-doping ratio, and N-TiW devices displayed (∼33% to ∼55%) reduced programming currents. However, there is a tradeoff between the current and speed for heater-based PCRAM. Analysis of devices with different N-TiW heaters shows that N-TiW doping levels could be optimized to enable low RESET currents and fast access speeds.

  8. Phase division multiplexed EIT for enhanced temporal resolution.

    PubMed

    Dowrick, T; Holder, D

    2018-03-29

    The most commonly used EIT paradigm (time division multiplexing) limits the temporal resolution of impedance images due to the need to switch between injection electrodes. Advances have previously been made using frequency division multiplexing (FDM) to increase temporal resolution, but in cases where a fixed range of frequencies is available, such as imaging fast neural activity, an upper limit is placed on the total number of simultaneous injections. The use of phase division multiplexing (PDM) where multiple out of phase signals can be injected at each frequency is investigated to increase temporal resolution. TDM, FDM and PDM were compared in head tank experiments, to compare transfer impedance measurements and spatial resolution between the three techniques. A resistor phantom paradigm was established to investigate the imaging of one-off impedance changes, of magnitude 1% and with durations as low as 500 µs (similar to those seen in nerve bundles), using both PDM and TDM approaches. In head tank experiments, a strong correlation (r  >  0.85 and p  <  0.001) was present between the three sets of measured transfer impedances, and no statistically significant difference was found in reconstructed image quality. PDM was able to image impedance changes down to 500 µs in the phantom experiments, while the minimum duration imaged using TDM was 5 ms. PDM offers a possible solution to the imaging of fast moving impedance changes (such as in nerves), where the use of triggering or coherent averaging is not possible. The temporal resolution presents an order of magnitude improvement of the TDM approach, and the approach addresses the limited spatial resolution of FDM by increasing the number of simultaneous EIT injections.

  9. Analysis of black pepper volatiles by solid phase microextraction-gas chromatography: A comparison of terpenes profiles with hydrodistillation.

    PubMed

    Jeleń, Henryk H; Gracka, Anna

    2015-10-30

    Solid phase microextraction (SPME) is widely used in food flavor compounds analysis in majority for profiling volatile compounds. Based on such profiles conclusions are often drawn concerning the percentage composition of volatile compounds in particular food, spices or raw materials. This paper focuses on the usefulness of SPME for the profiling of volatile compounds from spices using black pepper as an example. SPME profiles obtained in different analytical conditions were compared to the profile of pepper volatiles obtained using hydrodistillation in Clevenger apparatus. The profiles of both monoterpenes and sesquiterpenes of black pepper were highly dependent on sample weight (0.1 and 1g samples were tested), and extraction time (durations from 2 to 120min were tested), regardless of the SPME fiber used (PDMS and CAR/PDMS coatings were used). The characteristic phenomenon for extraction from dry ground pepper was the decrease of monoterpenes % share in volatiles with increasing extraction times, whereas at the same time the % contents of sesquiterpenes increased. Addition of water to ground pepper substantially changed extraction kinetics and mutual proportions of mono to sesquiterpenes compared to dry samples by minimizing changes in mono- to sesquiterpenes ratio in different extraction times. Obtained results indicate that SPME can be a fast extraction method for volatiles of black pepper. Short extraction times (2-10min) in conjunction with the fast GC analysis (2.1min) proposed here may offer fast alternative to hydrodistillation allowing black pepper terpenes characterization. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Photoperiod Modulates Fast Delayed Rectifier Potassium Currents in the Mammalian Circadian Clock.

    PubMed

    Farajnia, Sahar; Meijer, Johanna H; Michel, Stephan

    2016-10-01

    One feature of the mammalian circadian clock, situated in the suprachiasmatic nucleus (SCN), is its ability to measure day length and thereby contribute to the seasonal adaptation of physiology and behavior. The timing signal from the SCN, namely the 24 hr pattern of electrical activity, is adjusted according to the photoperiod being broader in long days and narrower in short days. Vasoactive intestinal peptide and gamma-aminobutyric acid play a crucial role in intercellular communication within the SCN and contribute to the seasonal changes in phase distribution. However, little is known about the underlying ionic mechanisms of synchronization. The present study was aimed to identify cellular mechanisms involved in seasonal encoding by the SCN. Mice were adapted to long-day (light-dark 16:8) and short-day (light-dark 8:16) photoperiods and membrane properties as well as K + currents activity of SCN neurons were measured using patch-clamp recordings in acute slices. Remarkably, we found evidence for a photoperiodic effect on the fast delayed rectifier K + current, that is, the circadian modulation of this ion channel's activation reversed in long days resulting in 50% higher peak values during the night compared with the unaltered day values. Consistent with fast delayed rectifier enhancement, duration of action potentials during the night was shortened and afterhyperpolarization potentials increased in amplitude and duration. The slow delayed rectifier, transient K + currents, and membrane excitability were not affected by photoperiod. We conclude that photoperiod can change intrinsic ion channel properties of the SCN neurons, which may influence cellular communication and contribute to photoperiodic phase adjustment. © The Author(s) 2016.

  11. General purpose algorithms for characterization of slow and fast phase nystagmus

    NASA Technical Reports Server (NTRS)

    Lessard, Charles S.

    1987-01-01

    In the overall aim for a better understanding of the vestibular and optokinetic systems and their roles in space motion sickness, the eye movement responses to various dynamic stimuli are measured. The vestibulo-ocular reflex (VOR) and the optokinetic response, as the eye movement responses are known, consist of slow phase and fast phase nystagmus. The specific objective is to develop software programs necessary to characterize the vestibulo-ocular and optokinetic responses by distinguishing between the two phases of nystagmus. The overall program is to handle large volumes of highly variable data with minimum operator interaction. The programs include digital filters, differentiation, identification of fast phases, and reconstruction of the slow phase with a least squares fit such that sinusoidal or psuedorandom data may be processed with accurate results. The resultant waveform, slow phase velocity eye movements, serves as input data to the spectral analysis programs previously developed for NASA to analyze nystagmus responses to pseudorandom angular velocity inputs.

  12. Fast-scale non-linear distortion analysis of peak-current-controlled buck-boost inverters

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Dong, Shuai; Yi, Chuanzhi; Guan, Weimin

    2018-02-01

    This paper deals with fast-scale non-linear distortion behaviours including asymmetrical period-doubling bifurcation and zero-crossing distortion in peak-current-controlled buck-boost inverters. The underlying mechanisms of the fast-scale non-linear distortion behaviours in inverters are revealed. The folded bifurcation diagram is presented to analyse the asymmetrical phenomenon of fast-scale period-doubling bifurcation. In view of the effect of phase shift and current ripple, the analytical expressions for one pair of critical phase angles are derived by using the design-oriented geometrical current approach. It is shown that the phase shift between inductor current and capacitor voltage should be responsible for the zero-crossing distortion phenomenon. These results obtained here are useful to optimise the circuit design and improve the circuit performance.

  13. Phase change cellular automata modeling of GeTe, GaSb and SnSe stacked chalcogenide films

    NASA Astrophysics Data System (ADS)

    Mihai, C.; Velea, A.

    2018-06-01

    Data storage needs are increasing at a rapid pace across all economic sectors, so the need for new memory technologies with adequate capabilities is also high. Phase change memories (PCMs) are a leading contender in the emerging race for non-volatile memories due to their fast operation speed, high scalability, good reliability and low power consumption. However, in order to meet the present and future storage demands, PCM technologies must further increase the storage density. Here, we employ a probabilistic cellular automata approach to explore the multi-step threshold switching from the reset (off) to the set (on) state in chalcogenide stacked structures. Simulations have shown that in order to obtain multi-step switching with high contrast among different resistance states, the stacked structure needs to contain materials with a large difference among their crystallization temperatures and careful tuning of strata thicknesses. The crystallization dynamics can be controlled through the external energy pulses applied to the system, in such a way that a balance between nucleation and growth in phase change behavior can be achieved, optimized for PCMs.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maserati, Lorenzo; Meckler, Stephen M.; Bachman, Jonathan E.

    Despite the availability of chemistries to tailor the pore architectures of microporous polymer membranes for chemical separations, trade-offs in permeability and selectivity with functional group manipulations nevertheless persist, which ultimately places an upper bound on membrane performance. We introduce a new design strategy to uncouple these attributes of the membrane. Key to our success is the incorporation of phase-change metal-organic frameworks (MOFs) into the polymer matrix, which can be used to increase the solubility of a specific gas in the membrane, and thereby its permeability. We further show that it is necessary to scale the size of the phase-change MOFmore » to nanoscopic dimensions, in order to take advantage of this effect in a gas separation. Our observation of an increase in solubility and permeability of only one of the gases during steady-state permeability measurements suggests fast exchange between free and chemisorbed gas molecules within the MOF pores. While the kinetics of this exchange in phase-change MOFs are not yet fully understood, their role in enhancing the efficacy and efficiency of the separation is clearly a compelling new direction for membrane technology.« less

  15. Fasting-induced apoptosis in rat liver is blocked by cycloheximide.

    PubMed

    Tessitore, L; Tomasi, C; Greco, M

    1999-08-01

    The effect of cycloheximide (CH) on the fasting-induced changes of rat liver cell and protein turnover has been investigated. Late starvation phase (3-4-day-fasting period) was characterised by a decrease in liver weight and protein and DNA content. The loss of DNA was not related to liver cell necrosis but due not only to depression of cell proliferation as shown by the drop in the labelling index but also induction of apoptosis. This type of apoptosis was documented by the increase in the apoptotic index (cells labelled by TUNEL) and transglutaminase activity as well as by DNA fragmentation. The liver cells of fasted rats appeared smaller as shown by the higher cell density and DNA/protein ratio than in controls. Females were more resistant to fasting-induced apoptosis than males. A single dose of CH, a drug primary known as inhibitor of protein synthesis, induced or enhanced apoptosis in fed and 2-days fasted male rats, respectively, without any sign of cell necrosis. On the contrary, the administration of repeated doses of CH blocked apoptosis induced by fasting. CH "froze" protein and DNA content as well as apoptotic process at the level of 2 days-fasted rats. While fasting-induced liver protein loss resulted from a marked reduction in protein synthesis with a slight decrease in degradation, repeated treatment with CH virtually blocked protein loss by abolishing protein catabolism. These data suggest a direct relationship between the catabolic side of protein turnover and the apoptotic process.

  16. Growth and Morphology of Phase Separating Supercritical Fluids

    NASA Technical Reports Server (NTRS)

    Hegseth, John; Beysens, Daniel; Perrot, Francoise; Nikolayev, Vadim; Garrabos, Yves

    1996-01-01

    The scientific objective is to study the relation between the morphology and the growth kinetics of domains during phase separation. We know from previous experiments performed near the critical point of pure fluids and binary liquids that there are two simple growth laws at late times. The 'fast' growth appears when the volumes of the phases are nearly equal and the droplet pattern is interconnected. In this case the size of the droplets grows linearly in time. The 'slow' growth appears when the pattern of droplets embedded in the majority phase is disconnected. In this case the size of the droplets increases in proportion to time to the power 1/3. The volume fraction of the minority phase is a good candidate to determine this change of behavior. All previous attempts to vary the volume fraction in a single experimental cell have failed because of the extreme experimental difficulties.

  17. The effect of cooling rate on the phase formation and magnetocaloric properties in La0.6Ce0.4Fe11.0Si2.0 alloys

    NASA Astrophysics Data System (ADS)

    Yang, Jian; Shao, Yanyan; Feng, Zaixin; Liu, Jian

    2018-04-01

    In this work, the microstructure, phase formation behavior of the NaZn13-type 1:13 phase and related magnetocaloric effect have been investigated in La0.6Ce0.4Fe11.0Si2.0 as-cast bulk and melt-spun ribbons with different cooling rates. A multi-phase structure consisting of 1:13, α-Fe and La-rich phases is observed in the induction-melted sample with slow cooling. By fast cooling in the melt spinning processing, the La-rich phase can be almost eliminated and thus 1:13 phases with volume fraction as high as 74.4% directly form in the absence of further heat treatment. The resulting maximum magnetic entropy change of 3.1 J/kg K in 2 T field appears at its Curie temperature of 210 K for the La0.6Ce0.4Fe11.0Si2.0 ribbon prepared in 25 m/s.

  18. Speckle-interferometric measurement system of 3D deformation to obtain thickness changes of thin specimen under tensile loads

    NASA Astrophysics Data System (ADS)

    Kowarsch, Robert; Zhang, Jiajun; Sguazzo, Carmen; Hartmann, Stefan; Rembe, Christian

    2017-06-01

    The analysis of materials and geometries in tensile tests and the extraction of mechanic parameters is an important field in solid mechanics. Especially the measurement of thickness changes is important to obtain accurate strain information of specimens under tensile loads. Current optical measurement methods comprising 3D digital image correlation enable thickness-change measurement only with nm-resolution. We present a phase-shifting electronic speckle-pattern interferometer in combination with speckle-correlation technique to measure the 3D deformation. The phase-shift for the interferometer is introduced by fast wavelength tuning of a visible diode laser by injection current. In a post-processing step, both measurements can be combined to reconstruct the 3D deformation. In this contribution, results of a 3Ddeformation measurement for a polymer membrane are presented. These measurements show sufficient resolution for the detection of 3D deformations of thin specimen in tensile test. In future work we address the thickness changes of thin specimen under tensile loads.

  19. Phase-Field Simulation of Concentration and Temperature Distribution During Dendritic Growth in a Forced Liquid Metal Flow

    NASA Astrophysics Data System (ADS)

    Du, Lifei; Zhang, Rong

    2014-12-01

    A phase-field model with convection is employed to investigate the effect of liquid flow on the dendritic structure formation of a Ni-Cu alloy during rapid solidification. Temperature and solute diffusion are significantly changed with induced liquid metal flow, and distribution changes of concentration and temperature are also analyzed and discussed. The solute segregation is affected due to the concentration diffusion layer thickness change caused by the liquid flow. The flow reduces the solute segregation in the upstream and leads to a fast dendrite growing, while solidifying in the downstream gets constrained with the large solute diffusion layer. Increasing flow velocity increases the asymmetry of dendrite morphology with much more suppressed growth in the downstream. The temperature distribution is also asymmetrical due to the non-uniform latent heat released during solidification coupling with heat diffusion changed by the liquid flow. Therefore, the forced liquid flow significantly affects the dendrite morphology, concentration, and temperature distributions in the solidifying microstructure.

  20. Modulating complex beams in amplitude and phase using fast tilt-micromirror arrays and phase masks.

    PubMed

    Roth, Matthias; Heber, Jörg; Janschek, Klaus

    2018-06-15

    The Letter proposes a system for the spatial modulation of light in amplitude and phase at kilohertz frame rates and high spatial resolution. The focus is fast spatial light modulators (SLMs) consisting of continuously tiltable micromirrors. We investigate the utilization of such SLMs in combination with a static phase mask in a 4f setup. The phase mask enables the complex beam modulation in a linear optical arrangement. Furthermore, adding so-called phase steps to the phase mask increases both the number of image pixels at constant SLM resolution and the optical efficiency. We illustrate our concept based on numerical simulations.

  1. FastChem: An ultra-fast equilibrium chemistry

    NASA Astrophysics Data System (ADS)

    Kitzmann, Daniel; Stock, Joachim

    2018-04-01

    FastChem is an equilibrium chemistry code that calculates the chemical composition of the gas phase for given temperatures and pressures. Written in C++, it is based on a semi-analytic approach, and is optimized for extremely fast and accurate calculations.

  2. Kinematic principles of primate rotational vestibulo-ocular reflex. II. Gravity-dependent modulation of primary eye position

    NASA Technical Reports Server (NTRS)

    Hess, B. J.; Angelaki, D. E.

    1997-01-01

    The kinematic constraints of three-dimensional eye positions were investigated in rhesus monkeys during passive head and body rotations relative to gravity. We studied fast and slow phase components of the vestibulo-ocular reflex (VOR) elicited by constant-velocity yaw rotations and sinusoidal oscillations about an earth-horizontal axis. We found that the spatial orientation of both fast and slow phase eye positions could be described locally by a planar surface with torsional variation of <2.0 +/- 0.4 degrees (displacement planes) that systematically rotated and/or shifted relative to Listing's plane. In supine/prone positions, displacement planes pitched forward/backward; in left/right ear-down positions, displacement planes were parallel shifted along the positive/negative torsional axis. Dynamically changing primary eye positions were computed from displacement planes. Torsional and vertical components of primary eye position modulated as a sinusoidal function of head orientation in space. The torsional component was maximal in ear-down positions and approximately zero in supine/prone orientations. The opposite was observed for the vertical component. Modulation of the horizontal component of primary eye position exhibited a more complex dependence. In contrast to the torsional component, which was relatively independent of rotational speed, modulation of the vertical and horizontal components of primary position depended strongly on the speed of head rotation (i.e., on the frequency of oscillation of the gravity vector component): the faster the head rotated relative to gravity, the larger was the modulation. Corresponding results were obtained when a model based on a sinusoidal dependence of instantaneous displacement planes (and primary eye position) on head orientation relative to gravity was fitted to VOR fast phase positions. When VOR fast phase positions were expressed relative to primary eye position estimated from the model fits, they were confined approximately to a single plane with a small torsional standard deviation ( approximately 1.4-2.6 degrees). This reduced torsional variation was in contrast to the large torsional spread (well >10-15 degrees ) of fast phase positions when expressed relative to Listing's plane. We conclude that primary eye position depends dynamically on head orientation relative to space rather than being fixed to the head. It defines a gravity-dependent coordinate system relative to which the torsional variability of eye positions is minimized even when the head is moved passively and vestibulo-ocular reflexes are evoked. In this general sense, Listing's law is preserved with respect to an otolith-controlled reference system that is defined dynamically by gravity.

  3. Solid state amorphization of metastable Al 0.5TiZrPdCuNi high entropy alloy investigated by high voltage electron microscopy

    DOE PAGES

    Nagase, Takeshi; Takeuchi, Akira; Amiya, Kenji; ...

    2017-07-18

    Here, the phase stability of high entropy alloy (HEA), Al 0.5TiZrPdCuNi, under fast electron irradiation was studied by in-situ high voltage electron microscopy (HVEM). The initial phase of this alloy quenched from the melt was dependent on cooling rate. At high cooling rates an amorphous phase was obtained, whereas a body-centered cubic ( b.c.c.) phase were obtained at low cooling rates. By thermal crystallization of the amorphous phase b.c.c. phase nano-crystals were formed. Upon fast electron irradiation solid state amorphization (SSA) was observed in b.c.c. phase regardless of the initial microstructure (i.e., “coarse crystalline structure” or “nano-crystalline structure with grainmore » boundaries as a sink for point defects”). SSA behavior in the Al 0.5TiZrPdCuNi HEAs was investigated by in-situ transmission electron microscopy observations. Because the amorphization is very rarely achieved in a solid solution phase under fast electron irradiation in common metallic materials, this result suggests that the Al 0.5TiZrPdCuNi HEA from other common alloys and the other HEAs. The differences in phase stability against the irradiation between the Al 0.5TiZrPdCuNi HEA and the other HEAs were discussed. This is the first experimental evidence of SSA in HEAs stimulated by fast electron irradiation.« less

  4. Using dynamic interferometric synthetic aperature radar (InSAR) to image fast-moving surface waves

    DOEpatents

    Vincent, Paul

    2005-06-28

    A new differential technique and system for imaging dynamic (fast moving) surface waves using Dynamic Interferometric Synthetic Aperture Radar (InSAR) is introduced. This differential technique and system can sample the fast-moving surface displacement waves from a plurality of moving platform positions in either a repeat-pass single-antenna or a single-pass mode having a single-antenna dual-phase receiver or having dual physically separate antennas, and reconstruct a plurality of phase differentials from a plurality of platform positions to produce a series of desired interferometric images of the fast moving waves.

  5. Prolonged preoperative fasting in elective surgical patients: why should we reduce it?

    PubMed

    Pimenta, Gunther Peres; de Aguilar-Nascimento, José Eduardo

    2014-02-01

    Despite the abundance of evidence to the contrary, 6-8 hours of total preoperative fasting is still considered essential by many surgeons and anesthesiologists, based on the strength of old concepts. Patients frequently end up fasting for 12 hours or more because of delays and changes in operating room schedules. The metabolic response to long fasting leads to intensification of the organic response occurring after trauma, which is mainly manifested as increased insulin resistance, an acute-phase response, and loss of lean body mass. In fact, there has not been any evidence indicating that a shorter fast of 2-3 hours, which includes oral clear or carbohydrate (CHO)-rich (12.5% carbohydrates, 50 kcal/100 mL) fluids, results in an increased risk of aspiration, regurgitation, or related morbidity compared with the standard policy of "nil by mouth after midnight." In addition, preoperative treatment with CHO-rich fluids may reduce postoperative discomfort and, for patients undergoing major abdominal surgery, may decrease the duration of postoperative hospitalization. New formulas for preoperative oral fluids containing amino acid or protein such as glutamine or whey protein are also potential candidates for early preoperative treatment and merit further study.

  6. Seismic Anisotropy Beneath Eastern North America: Results from Multi-Event Inversion

    NASA Astrophysics Data System (ADS)

    Li, Y.; Levin, V. L.; Chen, X.

    2017-12-01

    Seismic anisotropy observed from the split core-refracted shear phases reflects upper mantle deformation. To characterize anisotropic signatures beneath eastern North America, we collected observations along a 1300 km long array from James Bay to the Fundy Basin. The averaged splitting parameters of individual sites show uniform fast polarization orientation of 80° and delay times linearly decreasing from 1.0 s in the Appalachians to 0.5 s in the Superior Province. We also see directional variation of fast polarizations at most sites, which is a likely effect of vertical changes in anisotropic properties. For sites with 10 or more observations, we used a multi-event inversion technique to solve for the underlying anisotropic structure. The technique considers the NULL observations from single-event analysis that are excluded from the averaged splitting parameters. For models with a single 100 km thick anisotropic layer with a horizontal fast axis, we find up to 6% of anisotropy in the Appalachian Orogen, equivalent to a splitting delay time of 1.5 s. Anisotropy strength reduces to 1.8% in the Superior Province, equivalent to delay times under 0.5 s. The overall decrease in anisotropic strength is modified by local changes of up to 2%, suggesting small-scale local variations near the surface. Orientations of the fast axes change from 60° in the Appalachian Orogen to 90° in the Superior Province, and are also modulated by local deviations. In the Appalachian Orogen the fast axes are close to the absolute plate motion in a hot-spot reference frame, while those in the Superior Province differ from it by almost 30°. Average values of splitting delays agree well with results of inversions in the Superior Province, and diverge in the Appalachians. Conversely, averaged fast polarizations match inversion results in the Appalachians, and are systematically different in the Superior Province. For an set of sites with recording periods exceeding 5 years, we will test more complicated models of anisotropy, including dipping fast axes and multiple layers. Figure 1. The best fit anisotropic parameters, orientations of fast axes (top) and strength of anisotropy (bottom), assuming a single 100 km thick horizontal layer with a horizontal fast axis. The red line in top represents the absolute plate motion in a hot spot reference frame.

  7. Heterogeneous Sensitivity of Tropical Precipitation Extremes during Growth and Mature Phases of Atmospheric Warming

    NASA Astrophysics Data System (ADS)

    Parhi, P.; Giannini, A.; Lall, U.; Gentine, P.

    2016-12-01

    Assessing and managing risks posed by climate variability and change is challenging in the tropics, from both a socio-economic and a scientific perspective. Most of the vulnerable countries with a limited climate adaptation capability are in the tropics. However, climate projections, particularly of extreme precipitation, are highly uncertain there. The CMIP5 (Coupled Model Inter- comparison Project - Phase 5) inter-model range of extreme precipitation sensitivity to the global temperature under climate change is much larger in the tropics as compared to the extra-tropics. It ranges from nearly 0% to greater than 30% across models (O'Gorman 2012). The uncertainty is also large in historical gauge or satellite based observational records. These large uncertainties in the sensitivity of tropical precipitation extremes highlight the need to better understand how tropical precipitation extremes respond to warming. We hypothesize that one of the factors explaining the large uncertainty is due to differing sensitivities during different phases of warming. We consider the `growth' and `mature' phases of warming under climate variability case- typically associated with an El Niño event. In the remote tropics (away from tropical Pacific Ocean), the response of the precipitation extremes during the two phases can be through different pathways: i) a direct and fast changing radiative forcing in an atmospheric column, acting top-down due to the tropospheric warming, and/or ii) an indirect effect via changes in surface temperatures, acting bottom-up through surface water and energy fluxes. We also speculate that the insights gained here might be useful in interpreting the large sensitivity under climate change scenarios, since the physical mechanisms during the two warming phases under climate variability case, have some correspondence with an increasing and stabilized green house gas emission scenarios.

  8. Investigating fast enzyme-DNA kinetics using multidimensional fluorescence imaging and microfluidics

    NASA Astrophysics Data System (ADS)

    Robinson, Tom; Manning, Hugh B.; Dunsby, Christopher; Neil, Mark A. A.; Baldwin, Geoff S.; de Mello, Andrew J.; French, Paul M. W.

    2010-02-01

    We have developed a rapid microfluidic mixing device to image fast kinetics. To verify the performance of the device it was simulated using computational fluid dynamics (CFD) and the results were directly compared to experimental fluorescence lifetime imaging (FLIM) measurements. The theoretical and measured mixing times of the device were found to be in agreement over a range of flow rates. This mixing device is being developed with the aim of analysing fast enzyme kinetics in the sub-millisecond time domain, which cannot be achieved with conventional macro-stopped flow devices. Here we have studied the binding of a DNA repair enzyme, uracil DNA glycosylase (UDG), to a fluorescently labelled DNA substrate. Bulk phase fluorescence measurements have been used to measure changes on binding: it was found that the fluorescence lifetime increased along with an increase in the polarisation anisotropy and rotational correlation time. Analysis of the same reaction in the microfluidic mixer by CFD enabled us to predict the mixing time of the device to be 46 μs, more than 20 times faster than current stopped-flow techniques. We also demonstrate that it is possible to image UDG-DNA interactions within the micromixer using the signal changes observed from the multidimensional spectrofluorometer.

  9. Fast simulation of packet loss rates in a shared buffer communications switch

    NASA Technical Reports Server (NTRS)

    Chang, Cheng-Shang; Heidelberger, Philip; Shahabuddin, Perwez

    1993-01-01

    This paper describes an efficient technique for estimating, via simulation, the probability of buffer overflows in a queueing model that arises in the analysis of ATM (Asynchronous Transfer Mode) communication switches. There are multiple streams of (autocorrelated) traffic feeding the switch that has a buffer of finite capacity. Each stream is designated as either being of high or low priority. When the queue length reaches a certain threshold, only high priority packets are admitted to the switch's buffer. The problem is to estimate the loss rate of high priority packets. An asymptotically optimal importance sampling approach is developed for this rare event simulation problem. In this approach, the importance sampling is done in two distinct phases. In the first phase, an importance sampling change of measure is used to bring the queue length up to the threshold at which low priority packets get rejected. In the second phase, a different importance sampling change of measure is used to move the queue length from the threshold to the buffer capacity.

  10. Numerical investigation of cryogen re-gasification in a plate heat exchanger

    NASA Astrophysics Data System (ADS)

    Malecha, Ziemowit; Płuszka, Paweł; Brenk, Arkadiusz

    2017-12-01

    The efficient re-gasification of cryogen is a crucial process in many cryogenic installations. It is especially important in the case of LNG evaporators used in stationary and mobile applications (e.g. marine and land transport). Other gases, like nitrogen or argon can be obtained at highest purity after re-gasification from their liquid states. Plate heat exchangers (PHE) are characterized by a high efficiency. Application of PHE for liquid gas vaporization processes can be beneficial. PHE design and optimization can be significantly supported by numerical modelling. Such calculations are very challenging due to very high computational demands and complexity related to phase change modelling. In the present work, a simplified mathematical model of a two phase flow with phase change was introduced. To ensure fast calculations a simplified two-dimensional (2D) numerical model of a real PHE was developed. It was validated with experimental measurements and finally used for LNG re-gasification modelling. The proposed numerical model showed to be orders of magnitude faster than its full 3D original.

  11. Digital multi-channel high resolution phase locked loop for surveillance radar systems

    NASA Astrophysics Data System (ADS)

    Rizk, Mohamed; Shaaban, Shawky; Abou-El-Nadar, Usama M.; Hafez, Alaa El-Din Sayed

    This paper present a multi-channel, high resolution, fast lock phase locked loop (PLL) for surveillance radar applications. Phase detector based PLLs are simple to design, suffer no systematic phase error, and can run at the highest speed. Reducing loop gain can proportionally improve jitter performance, but also reduces locking time and pull-in range. The proposed system is based on digital process and control the error signal to the voltage controlled oscillator (VCO) adaptively to control its gain in order to achieve fast lock times while improving in lock jitter performance. Under certain circumstances the design also improves the frequency agility capability of the radar system. The results show a fast lock, high resolution PLL with transient time less than 10 µ sec which is suitable to radar applications.

  12. Outcome of focused pre-Ramadan education on metabolic and glycaemic parameters in patients with type 2 diabetes mellitus.

    PubMed

    El Toony, Lobna F; Hamad, Dina Ali; Omar, Omar Mohammed

    2018-04-25

    Ramadan fasting is associated with the risk of acute complications including hypoglycaemia. Therefore, patients' education before Ramadan and follow up during Ramadan is essential for safe fasting. To evaluate the effect of pre-Ramadan education program on biochemical parameters and the risk of hypoglycaemia in patients with type 2 diabetes mellitus. A prospective interventional controlled design was carried out on 320 Muslim patients with type 2 diabetes. They were divided into 2 groups; the control group (n = 200) who received standard diabetic care and the intervention group (n = 120) who received focused individualized diabetic education sessions before Ramadan. The study was carried out on 3 phases (before, during and after Ramadan). Post-education change of hypoglycaemia risk and biochemical parameters during Ramadan fasting were the primary outcomes. Fasting blood glucose decreased significantly during, and after Ramadan in both groups (P < 0.001). Hypoglycaemia during fasting occurred in 4.1% of patients in the intervention group vs. 19.5% in the control group. Post Ramadan reduction of HbA1c < 7% increased statistically significantly in the intervention group (from 20.8% of patients before Ramadan to 55.8% after Ramadan). Low-density lipoprotein cholesterol decreased in the intervention group (P = 0.024). The body weight of the patients did not significantly change in both groups. There was a significant impact of pre-Ramadan educational program on reduction of hypoglycaemic risk and other acute complications, reduction of low-density lipoprotein cholesterol and improvement of high-density lipoprotein cholesterol. Therefore, it is recommended for the fasting patients especially those with high and very high risk during Ramadan. Copyright © 2018. Published by Elsevier Ltd.

  13. The effect of Ramadan fasting on quiescent systemic lupus erythematosus (SLE) patients' disease activity, health quality of life and lipid profile: a pilot study.

    PubMed

    Goharifar, Hamid; Faezi, Seyedeh Tahereh; Paragomi, Pedram; Montazeri, Ali; Banihashemi, Arash Tehrani; Akhlaghkhah, Maryam; Abdollahi, Bahar Sadeghi; Kamazani, Zahra; Akbarian, Mahmood

    2015-08-01

    SLE is a common autoimmune disease with considerable morbidity. Ramadan fasting is a religious custom Muslims regularly practice. We aimed to evaluate the effect of Ramadan fasting on SLE patients' disease activity, health quality of life and lipid profile. We conducted this case control study as a pilot study in 40 quiescent SLE patients, 21 cases who decided to fast and 19 controls who decided not to have Ramadan fasting between August and November 2009 in lupus unit of Rheumatology Research Center in Tehran University of Medical Sciences, Iran. They were assessed for SLE Disease Activity Index, lipid profile and quality of life with Short-Form 36 (SF-36) Health Survey, 1 day before Ramadan, the day after and 3 months after Ramadan fasting. After 24.1 ± 5.4 (mean ± SD) days of fasting, anti-ds DNA increased for 0.34 ± 0.41 mmol/dL in cases versus 0.07 ± 0.31 in controls (P = 0.026). Likewise C3 increased more dramatically in cases (16.8 ± 17.5 vs. 2.3 ± 13.2 mg/dL, P = 0.006). Three months after fasting, anti-ds DNA was still increased 0.28 ± 0.46 mmol/dL in cases while a 0.02 ± 0.43 mmol/dL drop in controls was detected (P = 0.04). On the contrary, C3 returned to baseline. These changes were not accompanied with significant changes in disease activity and health quality of life. Ramadan fasting had no effect on lipid profile except for delayed total cholesterol decrease in cases in comparison with controls (16.4 ± 29.4 decrease vs. 4.6 ± 23.9 mg/dL decrease, P = 0.018). Ramadan fasting probably has no detrimental effect on SLE patients' disease activity and their quality of life in the quiescent phase of disease.

  14. Emulating the Fast-Start Swimming Performance of the Chain Pickerel (Esox niger) Using a Mechanical Fish Design

    DTIC Science & Technology

    2006-09-01

    locomotion. The final stage is a variable phase that may include subsequent propulsive strokes or simply coasting (Ahlborn et al ., 1997...from a simulated fast-start apparatus are (Ahlborn et al ., 1997). The apparatus included a preparatory phase and propulsive phase. The paper...Science in Oceanographic Engineering at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2006

  15. From perception to action: phase-locked gamma oscillations correlate with reaction times in a speeded response task

    PubMed Central

    Fründ, Ingo; Busch, Niko A; Schadow, Jeanette; Körner, Ursula; Herrmann, Christoph S

    2007-01-01

    Background Phase-locked gamma oscillations have so far mainly been described in relation to perceptual processes such as sensation, attention or memory matching. Due to its very short latency (≈90 ms) such oscillations are a plausible candidate for very rapid integration of sensory and motor processes. Results We measured EEG in 13 healthy participants in a speeded reaction task. Participants had to press a button as fast as possible whenever a visual stimulus was presented. The stimulus was always identical and did not have to be discriminated from other possible stimuli. In trials in which the participants showed a fast response, a slow negative potential over central electrodes starting approximately 800 ms before the response and highly phase-locked gamma oscillations over central and posterior electrodes between 90 and 140 ms after the stimulus were observed. In trials in which the participants showed a slow response, no slow negative potential was observed and phase-locked gamma oscillations were significantly reduced. Furthermore, for slow response trials the phase-locked gamma oscillations were significantly delayed with respect to fast response trials. Conclusion These results indicate the relevance of phase-locked gamma oscillations for very fast (not necessarily detailed) integration processes. PMID:17439642

  16. Effects of intermittent fasting on health markers in those with type 2 diabetes: A pilot study.

    PubMed

    Arnason, Terra G; Bowen, Matthew W; Mansell, Kerry D

    2017-04-15

    To determine the short-term biochemical effects and clinical tolerability of intermittent fasting (IF) in adults with type 2 diabetes mellitus (T2DM). We describe a three-phase observational study (baseline 2 wk, intervention 2 wk, follow-up 2 wk) designed to determine the clinical, biochemical, and tolerability of IF in community-dwelling volunteer adults with T2DM. Biochemical, anthropometric, and physical activity measurements (using the Yale Physical Activity Survey) were taken at the end of each phase. Participants reported morning, afternoon and evening self-monitored blood glucose (SMBG) and fasting duration on a daily basis throughout all study stages, in addition to completing a remote food photography diary three times within each study phase. Fasting blood samples were collected on the final days of each study phase. At baseline, the ten participants had a confirmed diagnosis of T2DM and were all taking metformin, and on average were obese [mean body mass index (BMI) 36.90 kg/m 2 ]. We report here that a short-term period of IF in a small group of individuals with T2DM led to significant group decreases in weight (-1.395 kg, P = 0.009), BMI (-0.517, P = 0.013), and at-target morning glucose (SMBG). Although not a study requirement, all participants preferentially chose eating hours starting in the midafternoon. There was a significant increase ( P < 0.001) in daily hours fasted in the IF phase (+5.22 h), although few attained the 18-20 h fasting goal (mean 16.82 ± 1.18). The increased fasting duration improved at-goal (< 7.0 mmol/L) morning SMBG to 34.1%, from a baseline of 13.8%. Ordinal Logistic Regression models revealed a positive relationship between the increase in hours fasted and fasting glucose reaching target values ( χ 2 likelihood ratio = 8.36, P = 0.004) but not for afternoon or evening SMBG (all P > 0.1). Postprandial SMBGs were also improved during the IF phase, with 60.5% readings below 9.05 mmol/L, compared to 52.6% at baseline, and with less glucose variation. Neither insulin resistance (HOMA-IR), nor inflammatory markers (C-reactive protein) normalized during the IF phase. IF led to an overall spontaneous decrease in caloric intake as measured by food photography (Remote Food Photography Method). The data demonstrated discernable trends during IF for lower energy, carbohydrate, and fat intake when compared to baseline. Physical activity, collected by a standardized measurement tool (Yale Physical Activity Survey), increased during the intervention phase and subsequently decreased in the follow-up phase. IF was well tolerated in the majority of individuals with 6/10 participants stating they would continue with the IF regimen after the completion of the study, in a full or modified capacity ( i.e. , every other day or reduced fasting hours). The results from this pilot study indicate that short-term daily IF may be a safe, tolerable, dietary intervention in T2DM patients that may improve key outcomes including body weight, fasting glucose and postprandial variability. These findings should be viewed as exploratory, and a larger, longer study is necessary to corroborate these findings.

  17. Effects of intermittent fasting on health markers in those with type 2 diabetes: A pilot study

    PubMed Central

    Arnason, Terra G; Bowen, Matthew W; Mansell, Kerry D

    2017-01-01

    AIM To determine the short-term biochemical effects and clinical tolerability of intermittent fasting (IF) in adults with type 2 diabetes mellitus (T2DM). METHODS We describe a three-phase observational study (baseline 2 wk, intervention 2 wk, follow-up 2 wk) designed to determine the clinical, biochemical, and tolerability of IF in community-dwelling volunteer adults with T2DM. Biochemical, anthropometric, and physical activity measurements (using the Yale Physical Activity Survey) were taken at the end of each phase. Participants reported morning, afternoon and evening self-monitored blood glucose (SMBG) and fasting duration on a daily basis throughout all study stages, in addition to completing a remote food photography diary three times within each study phase. Fasting blood samples were collected on the final days of each study phase. RESULTS At baseline, the ten participants had a confirmed diagnosis of T2DM and were all taking metformin, and on average were obese [mean body mass index (BMI) 36.90 kg/m2]. We report here that a short-term period of IF in a small group of individuals with T2DM led to significant group decreases in weight (-1.395 kg, P = 0.009), BMI (-0.517, P = 0.013), and at-target morning glucose (SMBG). Although not a study requirement, all participants preferentially chose eating hours starting in the midafternoon. There was a significant increase (P < 0.001) in daily hours fasted in the IF phase (+5.22 h), although few attained the 18-20 h fasting goal (mean 16.82 ± 1.18). The increased fasting duration improved at-goal (< 7.0 mmol/L) morning SMBG to 34.1%, from a baseline of 13.8%. Ordinal Logistic Regression models revealed a positive relationship between the increase in hours fasted and fasting glucose reaching target values (χ2 likelihood ratio = 8.36, P = 0.004) but not for afternoon or evening SMBG (all P > 0.1). Postprandial SMBGs were also improved during the IF phase, with 60.5% readings below 9.05 mmol/L, compared to 52.6% at baseline, and with less glucose variation. Neither insulin resistance (HOMA-IR), nor inflammatory markers (C-reactive protein) normalized during the IF phase. IF led to an overall spontaneous decrease in caloric intake as measured by food photography (Remote Food Photography Method). The data demonstrated discernable trends during IF for lower energy, carbohydrate, and fat intake when compared to baseline. Physical activity, collected by a standardized measurement tool (Yale Physical Activity Survey), increased during the intervention phase and subsequently decreased in the follow-up phase. IF was well tolerated in the majority of individuals with 6/10 participants stating they would continue with the IF regimen after the completion of the study, in a full or modified capacity (i.e., every other day or reduced fasting hours). CONCLUSION The results from this pilot study indicate that short-term daily IF may be a safe, tolerable, dietary intervention in T2DM patients that may improve key outcomes including body weight, fasting glucose and postprandial variability. These findings should be viewed as exploratory, and a larger, longer study is necessary to corroborate these findings. PMID:28465792

  18. Low voltage polymer network liquid crystal for infrared spatial light modulators.

    PubMed

    Peng, Fenglin; Xu, Daming; Chen, Haiwei; Wu, Shin-Tson

    2015-02-09

    We report a low-voltage and fast-response polymer network liquid crystal (PNLC) infrared phase modulator. To optimize device performance, we propose a physical model to understand the curing temperature effect on average domain size. Good agreement between model and experiment is obtained. By optimizing the UV curing temperature and employing a large dielectric anisotropy LC host, we have lowered the 2π phase change voltage to 22.8V at 1.55μm wavelength while keeping response time at about 1 ms. Widespread application of such a PNLC integrated into a high resolution liquid-crystal-on-silicon (LCoS) for infrared spatial light modulator is foreseeable.

  19. Automated nystagmus analysis. [on-line computer technique for eye data processing

    NASA Technical Reports Server (NTRS)

    Oman, C. M.; Allum, J. H. J.; Tole, J. R.; Young, L. R.

    1973-01-01

    Several methods have recently been used for on-line analysis of nystagmus: A digital computer program has been developed to accept sampled records of eye position, detect fast phase components, and output cumulative slow phase position, continuous slow phase velocity, instantaneous fast phase frequency, and other parameters. The slow phase velocity is obtained by differentiation of the calculated cumulative position rather than the original eye movement record. Also, a prototype analog device has been devised which calculates the velocity of the slow phase component during caloric testing. Examples of clinical and research eye movement records analyzed with these devices are shown.

  20. Transfer Behavior of the Weakly Acidic BCS Class II Drug Valsartan from the Stomach to the Small Intestine During Fasted and Fed States.

    PubMed

    Hamed, Rania; Alnadi, Sabreen Hasan

    2018-05-07

    The objective of this study was to investigate the transfer behavior of the weakly acidic BCS class II drug valsartan from the stomach to the small intestine during fasted and fed states. An in vitro transfer model previously introduced by Kostewicz et al. (J Pharm Pharmacol 56(1):43-51, 2004) based on a syringe pump and a USP paddle apparatus was used to determine the concentration profiles of valsartan in the small intestine. Donor phases of simulated gastric fluid during fasted (FaSSGF) and fed (FeSSGF) states were used to predisperse Diovan® tablets (160 mg valsartan). The initial concentrations of valsartan in FaSSGF and FeSSGF were 6.2 and 91.8%, respectively. Valsartan dispersions were then transferred to acceptor phases that simulate intestinal fluid and cover the physiological properties (pH, buffer capacity, and ionic strength) of the gastrointestinal fluid at a flow rate of 2 mL/min. The pH measurements were reported at time intervals corresponded to those of the transfer experiments to investigate the effect of percent dissolved of valsartan in the donor phase on lowering the pH of the acceptor phases. The f2 similarity test was used to compare the concentration profiles in the acceptor phases. In fasted state, the concentration of valsartan in the acceptor phases ranged between 33.1 and 89.4% after 240 min. Whereas in fed state, valsartan was fully dissolved in all acceptor phases within a range of 94.5-104.9% after 240 min. Therefore, the transfer model provides a useful screen for the concentrations of valsartan in the small intestine during fasted and fed states.

  1. Lower Extremity Muscle Activity During a Women’s Overhand Lacrosse Shot

    PubMed Central

    Millard, Brianna M.; Mercer, John A.

    2014-01-01

    The purpose of this study was to describe lower extremity muscle activity during the lacrosse shot. Participants (n=5 females, age 22±2 years, body height 162.6±15.2 cm, body mass 63.7±23.6 kg) were free from injury and had at least one year of lacrosse experience. The lead leg was instrumented with electromyography (EMG) leads to measure muscle activity of the rectus femoris (RF), biceps femoris (BF), tibialis anterior (TA), and medial gastrocnemius (GA). Participants completed five trials of a warm-up speed shot (Slow) and a game speed shot (Fast). Video analysis was used to identify the discrete events defining specific movement phases. Full-wave rectified data were averaged per muscle per phase (Crank Back Minor, Crank Back Major, Stick Acceleration, Stick Deceleration). Average EMG per muscle was analyzed using a 4 (Phase) × 2 (Speed) ANOVA. BF was greater during Fast vs. Slow for all phases (p<0.05), while TA was not influenced by either Phase or Speed (p>0.05). RF and GA were each influenced by the interaction of Phase and Speed (p<0.05) with GA being greater during Fast vs. Slow shots during all phases and RF greater during Crank Back Minor and Major as well as Stick Deceleration (p<0.05) but only tended to be greater during Stick Acceleration (p=0.076) for Fast vs. Slow. The greater muscle activity (BF, RF, GA) during Fast vs. Slow shots may have been related to a faster approach speed and/or need to create a stiff lower extremity to allow for faster upper extremity movements. PMID:25114727

  2. Optically addressed and submillisecond response phase only liquid crystal spatial light modulator

    NASA Astrophysics Data System (ADS)

    Zhao, Xiangjie; Duan, Jiazhu; Zhang, Dayong; Luo, Yongquan

    2014-10-01

    Liquid crystal based phase only spatial light modulator has attracted many research interests since last decades because of its superior advantage. Until now the liquid crystal spatial light modulator has been applied in many fields, but the response speed of nematic LC limited its further application. In this paper, an optically addressed phase only LC spatial light modulator was proposed based on polymer network liquid crystal. Morphology effect on the light scattering of PNLC was studied, which was mainly consisted of fiber and fiber bundles. The morphology nearly determined the light scattering and electro-optical property. Due to the high threshold voltage, to address the PNLC phase modulator was also concerned. Optical addressing method was proposed, in which BSO crystal was selected to replace one of the glass substrate. The response speed of PNLC was so fast that the reorientation of liquid crystal director will follow the change of effective voltage applied on LC layer, which was related with the voltage signal and especially with electron transport of photo-induced carriers due to diffusion and drift. The on state dynamic response of phase change was investigated. Based on this device, beam steering was also achieved by loading 488nm laser strip on the optical addressed phase only spatial light modulator.

  3. Metabolic effects of green tea and of phases of weight loss.

    PubMed

    Diepvens, K; Kovacs, E M R; Vogels, N; Westerterp-Plantenga, M S

    2006-01-30

    The effect of ingestion of green tea (GT) extract along with a low-energy diet (LED) on health-related blood parameters, and the relationships among changes in metabolic parameters and phases of weight loss were assessed. A double-blind, placebo-controlled, parallel design was used. 46 female subjects (BMI 27.7+/-1.8 kg/m(2)) were fed in energy balance from days 1 to 3, followed by a LED with GT (n=23) or placebo (PLAC, n=23) from days 4 to 87. The LED-period consisted of a phase 1 of 4 weeks (days 4-32) followed by a phase 2 of 8 weeks (days 32-87). Body composition and fasting blood samples were determined on days 4, 32 and 87. No significant differences were observed between the blood parameters of the PLAC and GT group. In phase 1 compared to phase 2 the rate of weight loss was 0.09+/-0.05 kg/day vs. 0.03+/-0.03 kg/day (p<0.001); Fat free mass (FFM) was 21% of weight loss in phase 1 vs. 7% in phase 2 (ns). Surprisingly, favourable changes in free fatty acids, triacylglycerol, beta-hydroxybutyrate, glucose and total cholesterol in phase 1 were reversed in phase 2 (p<0.01). Taken together, GT supplementation during a LED had no effect on health-related blood parameters. Initial improvements in several blood measures at day 32 were reversed by day 87, despite continued weight loss. Modest weight loss improved HDL cholesterol and blood pressure.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharyya, M.H.; Larsen, R.P.; Oldham, R.D.

    The fraction of plutonium absorbed after oral administration of Pu(VI) to 24-h-fasted mice was 19 X 10(-4), 13-fold higher than in fed mice, 1.4 X 10(-4). We have investigated the relevance of the high gastrointestinal (GI) absorption value for the 24-h-fasted animals in setting drinking water standards for humans. When fasting was initiated at the beginning of the active phase of the mouse's daily activity cycle (when they would normally eat), plutonium GI absorption rose from 2.8 X 10(-4) at zero-time to a level typical of the 24-h-fasted mouse after only 2 h of fasting. In contrast, in mice allowedmore » to eat for 4 h into their active phase prior to initiation of the fast (meal-fed mice), 8 h of fasting were required before GI absorption rose to a level similar to that of the 24-h-fasted mouse. The fraction of plutonium retained after gavage administration of Pu(VI) to 1-day-old rats was 74 X 10(-4), 70-fold higher than the value for fed adults. Retention after GI absorption in neonates remained 30- to 70-fold higher than in adults until weaning. One week after weaning, the fraction absorbed and retained by fed weanling rats was the same as that for fed adults, 1 X 10(-4). Drinking water standards for plutonium have been set based on GI absorption values for fed adult animals. The 10- to 100-fold increases in plutonium absorption in young and fasted animals reported by ourselves and others, and the rapid rise to fasted levels of absorption at the start of the animal's active phase, indicate that consideration should be given to elevated levels of plutonium absorption in young and fasted individuals.« less

  5. Precision and Fast Wavelength Tuning of a Dynamically Phase-Locked Widely-Tunable Laser

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Chen, Jeffrey R.; Wu, Stewart T.

    2012-01-01

    We report a precision and fast wavelength tuning technique demonstrated for a digital-supermode distributed Bragg reflector laser. The laser was dynamically offset-locked to a frequency-stabilized master laser using an optical phase-locked loop, enabling precision fast tuning to and from any frequencies within a 40-GHz tuning range. The offset frequency noise was suppressed to the statically offset-locked level in less than 40 s upon each frequency switch, allowing the laser to retain the absolute frequency stability of the master laser. This technique satisfies stringent requirements for gas sensing lidars and enables other applications that require such well-controlled precision fast tuning.

  6. Ethanol- and trifluoroethanol-induced changes in phase states of DPPC membranes. Prodan emission-excitation fluorescence spectroscopy supported by PARAFAC analysis

    NASA Astrophysics Data System (ADS)

    Horochowska, Martyna; Cieślik-Boczula, Katarzyna; Rospenk, Maria

    2018-03-01

    It has been shown that Prodan emission-excitation fluorescence spectroscopy supported by Parallel Factor (PARAFAC) analysis is a fast, simple and sensitive method used in the study of the phase transition from the noninterdigitated gel (Lβ‧) state to the interdigitated gel (LβI) phase, triggered by ethanol and 2,2,2-trifluoroethanol (TFE) molecules in dipalmitoylphosphatidylcholines (DPPC) membranes. The relative contribution of lipid phases with spectral characteristics of each pure phase component has been presented as a function of an increase in alcohol concentration. It has been stated that both alcohol molecules can induce a formation of the LβI phase, but TFE is over six times stronger inducer of the interdigitated phase in DPPC membranes than ethanol molecules. Moreover, in the TFE-mixed DPPC membranes, the transition from the Lβ‧ to LβI phase is accompanied by a formation of the fluid phase, which most probably serves as a boundary phase between the Lβ‧ and LβI regions. Contrary to the three phase-state model of TFE-mixed DPPC membranes, in ethanol-mixed DPPC membranes only the two phase-state model has been detected.

  7. An oscilloscope spot intensifier, to improve photographic recordings of action potentials.

    PubMed

    Evans, M H

    1985-06-01

    A circuit diagram is shown for a semiconductor device to intensify the brightness of an oscilloscope during the rapidly rising and falling phases of signals such as action potentials. Brightening pulses proportional in amplitude to the rate of change in the Y-axis are available for connection to an oscilloscope with an external intensity ('Z') modulation input. The circuit requires one transistor, one dual operational amplifier and two single fast operational amplifiers.

  8. Range safety signal propagation through the SRM exhaust plume of the space shuttle

    NASA Technical Reports Server (NTRS)

    Boynton, F. P.; Davies, A. R.; Rajasekhar, P. S.; Thompson, J. A.

    1977-01-01

    Theoretical predictions of plume interference for the space shuttle range safety system by solid rocket booster exhaust plumes are reported. The signal propagation was calculated using a split operator technique based upon the Fresnel-Kirchoff integral, using fast Fourier transforms to evaluate the convolution and treating the plume as a series of absorbing and phase-changing screens. Talanov's lens transformation was applied to reduce aliasing problems caused by ray divergence.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stubos, A.K.; Caseiras, C.P.; Buchlin, J.M.

    The transient two-phase flow and phase change heat transfer processes in porous media are investigated. Based on an enthalpic approach, a one-domain formulation of the problem is developed, avoiding explicit internal boundary tracking between single- and two-phase regions. An efficient numerical scheme is applied to obtain the solution on a fixed two-dimensional grid. The transient response of a liquid-saturated, self-heated porous bed is examined in detail. A physical interpretation of a liquid-saturated, self-heated porous bed is examined in detail. A physical interpretation of the computed response to fast power transients is attempted. Comparisons with experimental data are made regarding themore » average void fraction and the limiting dryout heat flux. The numerical approach is extended, keeping the one-domain formulation, to include the surrounding wall structure in the calculation.« less

  10. Research on the phase adjustment method for dispersion interferometer on HL-2A tokamak

    NASA Astrophysics Data System (ADS)

    Tongyu, WU; Wei, ZHANG; Haoxi, WANG; Yan, ZHOU; Zejie, YIN

    2018-06-01

    A synchronous demodulation system is proposed and deployed for CO2 dispersion interferometer on HL-2A, which aims at high plasma density measurements and real-time feedback control. In order to make sure that the demodulator and the interferometer signal are synchronous in phase, a phase adjustment (PA) method has been developed for the demodulation system. The method takes advantages of the field programmable gate array parallel and pipeline process capabilities to carry out high performance and low latency PA. Some experimental results presented show that the PA method is crucial to the synchronous demodulation system and reliable to follow the fast change of the electron density. The system can measure the line-integrated density with a high precision of 2.0 × 1018 m‑2.

  11. Support for equatorial anisotropy of Earth's inner-inner core from seismic interferometry at low latitudes

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Song, Xiaodong

    2018-03-01

    Anisotropy of Earth's inner core provides a key role to understand its evolution and the Earth's magnetic field. Recently, using autocorrelations from earthquake's coda, we found an equatorial anisotropy of the inner-inner core (IIC), in apparent contrast to the polar anisotropy of the outer-inner core (OIC). To reduce the influence of the polar anisotropy and reduce possible contaminations from the large Fresnel zone of the PKIKP2 and PKIIKP2 phases at low frequencies, we processed coda noise of large earthquakes (10,000-40,000 s after magnitude ≥7.0) from stations at low latitudes (within ±35°) during 1990-2013. Using a number of improved procedures of both autocorrelation and cross-correlation, we extracted 52 array-stacked high-quality empirical Green's functions (EGFs), an increase of over 60% from our previous study. The high-quality data allow us to measure the relative arrival times by automatic waveform cross correlation. The results show large variation (∼10.9 s) in the differential times between the PKIKP2 and PKIIKP2 phases. The estimated influence of the Fresnel zone is insignificant (<1.1 s), compared to the observed data variation and measurement uncertainty. The observed time residuals match very well previous IIC model with a quasi-equatorial fast axis (near Central America and the Southeast Asia) and the spatial pattern from the low-latitude measurements is similar to the previous global dataset, including the fast axis and two low-velocity open rings, thus providing further support for the equatorial anisotropy model of the IIC. Speculations for the shift of the fast axis between the OIC and the IIC include: change of deformation regimes during the inner core history, change of geomagnetic field, and a proto-inner core.

  12. Feasibility of precise navigation in high and low latitude regions under scintillation conditions

    NASA Astrophysics Data System (ADS)

    Juan, José Miguel; Sanz, Jaume; González-Casado, Guillermo; Rovira-Garcia, Adrià; Camps, Adriano; Riba, Jaume; Barbosa, José; Blanch, Estefania; Altadill, David; Orus, Raul

    2018-02-01

    Scintillation is one of the most challenging problems in Global Navigation Satellite Systems (GNSS) navigation. This phenomenon appears when the radio signal passes through ionospheric irregularities. These irregularities represent rapid changes on the refraction index and, depending on their size, they can produce also diffractive effects affecting the signal amplitude and, eventually producing cycle slips. In this work, we show that the scintillation effects on the GNSS signal are quite different in low and high latitudes. For low latitude receivers, the main effects, from the point of view of precise navigation, are the increase of the carrier phase noise (measured by σϕ) and the fade on the signal intensity (measured by S4) that can produce cycle slips in the GNSS signal. With several examples, we show that the detection of these cycle slips is the most challenging problem for precise navigation, in such a way that, if these cycle slips are detected, precise navigation can be achieved in these regions under scintillation conditions. For high-latitude receivers the situation differs. In this region the size of the irregularities is typically larger than the Fresnel length, so the main effects are related with the fast change on the refractive index associated to the fast movement of the irregularities (which can reach velocities up to several km/s). Consequently, the main effect on the GNSS signals is a fast fluctuation of the carrier phase (large σϕ), but with a moderate fade in the amplitude (moderate S4). Therefore, as shown through several examples, fluctuations at high-latitude usually do not produce cycle slips, being the effect quite limited on the ionosphere-free combination and, in general, precise navigation can be achieved also during strong scintillation conditions.

  13. Time effects of food intake on the pharmacokinetics and pharmacodynamics of quazepam

    PubMed Central

    Yasui-Furukori, Norio; Takahata, Takenori; Kondo, Tsuyoshi; Mihara, Kazuo; Kaneko, Sunao; Tateishi, Tomonori

    2003-01-01

    Aims There is little information on interaction between food and the hypnotic agent quazepam. We therefore studied the effects of food and its time interval on the pharmacokinetics and pharmacodynamics of quazepam. Methods A randomized three-phase crossover study with 2-week intervals was conducted. Nine healthy male volunteers took a single oral 20 mg dose of quazepam under the following conditions: 1) after fasting overnight; 2) 30 min after eating standard meal; or 3) 3 h after eating the same meal. Plasma concentrations of quazepam and its metabolite, 2-oxoquazepam and psychomotor function using the Digit Symbol Substitute Test (DSST), Stanford Sleepiness Scale (SSS) and Visual Analogue Scale were measured up to 48 h. Results During the food treatments at 30 min and 3 h before dosing, the peak concentrations (Cmax) were 300% (95% CI 260, 340%; P < 0.001) and 250% (95% CI 210, 290%; P < 0.01) of the corresponding value during the fasting phase. For quazepam, the area under the plasma concentration–time curve from 0 to 8 h measured at 30 min and 3 h before dosing was significantly increased, with the food treatments by 2.4-fold (95% CI 2.0; 2.8-fold; P < 0.001) and 2.1-fold (95% CI 1.7; 2.4-fold; P < 0.01), respectively. In response to pharmacokinetic changes, some of the pharmacodynamics (DSST, P < 0.05; SSS, P < 0.05) differed significantly between fasted status and fed status. No difference was found in any pharmacokinetic or pharmacodynamic parameters between the two food treatment phases. Conclusions A food effect on quazepam absorption is evident and continues at least until 3 h after food intake. The dosing of quazepam after a long period of ordinary fasting might reduce its efficacy because a 3 h interval between the timing of the evening meal and bedtime administration of hypnotics is regarded as normal in daily life. PMID:12680887

  14. Evaluation of gastrointestinal solubilization of petroleum hydrocarbon residues in soil using an in vitro physiologically based model.

    PubMed

    Holman, Hoi-Ying N; Goth-Goldstein, Regine; Aston, David; Yun, Mao; Kengsoontra, Jenny

    2002-03-15

    Petroleum hydrocarbon residues in weathered soils may pose risks to humans through the ingestion pathway. To understand the factors controlling their gastrointestinal (GI) absorption, a newly developed experimental extraction protocol was used to model the GI solubility of total petroleum hydrocarbon (TPH) residues in highly weathered soils from different sites. The GI solubility of TPH residues was significantly higher for soil contaminated with diesel than with crude oil. Compared to the solubility of TPH residues during fasted state,the solubility of TPH residues during fat digestion was much greater. Diesel solubility increased from an average of 8% during the "gallbladder empty" phase of fasting (and less than 0.2% during the otherfasting phase) to an average of 16% during fat digestion. For crude oil, the solubility increased from an average of 1.2% during the gallbladder empty phase of fasting (and undetectable during the other fasting phase) to an average of 4.5% during fat digestion. Increasing the concentration of bile salts also increased GI solubility. GI solubility was reduced by soil organic carbon but enhanced by the TPH content.

  15. Comparison of High-Protein, Intermittent Fasting Low-Calorie Diet and Heart Healthy Diet for Vascular Health of the Obese.

    PubMed

    Zuo, Li; He, Feng; Tinsley, Grant M; Pannell, Benjamin K; Ward, Emery; Arciero, Paul J

    2016-01-01

    It has been debated whether different diets are more or less effective in long-term weight loss success and cardiovascular disease prevention among men and women. To further explore these questions, the present study evaluated the combined effects of a high-protein, intermittent fasting, low-calorie diet plan compared with a heart healthy diet plan during weight loss, and weight loss maintenance on blood lipids and vascular compliance of obese individuals. The experiment involved 40 obese adults (men, n = 21; women, n = 19) and was divided into two phases: (a) 12-week high-protein, intermittent fasting, low-calorie weight loss diet comparing men and women (Phase 1) and (b) a 1-year weight maintenance phase comparing high-protein, intermittent fasting with a heart healthy diet (Phase 2). Body weight, body mass index (BMI), blood lipids, and arterial compliance outcomes were assessed at weeks 1 (baseline control), 12 (weight loss), and 64 (12 + 52 week; weight loss maintenance). At the end of weight loss intervention, concomitant reductions in body weight, BMI and blood lipids were observed, as well as enhanced arterial compliance. No sex-specific differences in responses were observed. During phase 2, the high-protein, intermittent fasting group demonstrated a trend for less regain in BMI, low-density lipoprotein (LDL), and aortic pulse wave velocity than the heart healthy group. Our results suggest that a high-protein, intermittent fasting and low-calorie diet is associated with similar reductions in BMI and blood lipids in obese men and women. This diet also demonstrated an advantage in minimizing weight regain as well as enhancing arterial compliance as compared to a heart healthy diet after 1 year.

  16. Comparison of High-Protein, Intermittent Fasting Low-Calorie Diet and Heart Healthy Diet for Vascular Health of the Obese

    PubMed Central

    Zuo, Li; He, Feng; Tinsley, Grant M.; Pannell, Benjamin K.; Ward, Emery; Arciero, Paul J.

    2016-01-01

    Aim: It has been debated whether different diets are more or less effective in long-term weight loss success and cardiovascular disease prevention among men and women. To further explore these questions, the present study evaluated the combined effects of a high-protein, intermittent fasting, low-calorie diet plan compared with a heart healthy diet plan during weight loss, and weight loss maintenance on blood lipids and vascular compliance of obese individuals. Methods: The experiment involved 40 obese adults (men, n = 21; women, n = 19) and was divided into two phases: (a) 12-week high-protein, intermittent fasting, low-calorie weight loss diet comparing men and women (Phase 1) and (b) a 1-year weight maintenance phase comparing high-protein, intermittent fasting with a heart healthy diet (Phase 2). Body weight, body mass index (BMI), blood lipids, and arterial compliance outcomes were assessed at weeks 1 (baseline control), 12 (weight loss), and 64 (12 + 52 week; weight loss maintenance). Results: At the end of weight loss intervention, concomitant reductions in body weight, BMI and blood lipids were observed, as well as enhanced arterial compliance. No sex-specific differences in responses were observed. During phase 2, the high-protein, intermittent fasting group demonstrated a trend for less regain in BMI, low-density lipoprotein (LDL), and aortic pulse wave velocity than the heart healthy group. Conclusion: Our results suggest that a high-protein, intermittent fasting and low-calorie diet is associated with similar reductions in BMI and blood lipids in obese men and women. This diet also demonstrated an advantage in minimizing weight regain as well as enhancing arterial compliance as compared to a heart healthy diet after 1 year. PMID:27621707

  17. The Wide-area Energy Management System Phase 2 Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Ning; Makarov, Yuri V.; Weimar, Mark R.

    2010-08-31

    The higher penetration of intermittent generation resources (including wind and solar generation) in the Bonneville Power Administration (BPA) and California Independent System Operator (CAISO) balancing authorities (BAs) raises issue of requiring expensive additional fast grid balancing services in response to additional intermittency and fast up and down power ramps in the electric supply system. The overall goal of the wide-area energy management system (WAEMS) project is to develop the principles, algorithms, market integration rules, a functional design, and a technical specification for an energy storage system to help cope with unexpected rapid changes in renewable generation power output. The resultingmore » system will store excess energy, control dispatchable load and distributed generation, and utilize inter-area exchange of the excess energy between the California ISO and Bonneville Power Administration control areas. A further goal is to provide a cost-benefit analysis and develop a business model for an investment-based practical deployment of such a system. There are two tasks in Phase 2 of the WAEMS project: the flywheel field tests and the battery evaluation. Two final reports, the Wide-area Energy Management System Phase 2 Flywheel Field Tests Final Report and the Wide-area Energy Storage and Management System Battery Storage Evaluation, were written to summarize the results of the two tasks.« less

  18. Rapid Determination of Bile Acids in Bile from Various Mammals by Reversed-Phase Ultra-Fast Liquid Chromatography.

    PubMed

    Si, Gu Leng Ri; Yao, Peng; Shi, Luwen

    2015-08-01

    A valid and efficient reversed-phase ultra-fast liquid chromatography method was developed for the simultaneous determination of 13 bile acids in the bile of three mammal species, including rat, pig and human gallstone patients. Chromatographic separation was performed with a Shim-pack XR-ODS column, and the mobile phase consisted of acetonitrile and potassium phosphate buffer (pH 2.6) at a flow rate of 0.5 mL min(-1). The linear detection range of most bile acids ranged from 2 to 600 ng µL(-1) with a good correlation coefficient (>0.9995). The precision of each bile acid was <1.8% for intraday and <4.8% for interday. All bile acids were separated in 15 min with satisfactory resolution, and the total analysis time was 18 min, including equilibration. The method was successfully applied in rapid screening of bile samples from the three mammals. Significant metabolic frameworks of bile acids among various species were observed, whereas considerable quantitative variations in both inter- and intraspecies were also observed, especially for gallstone patients. Our results suggest that detecting the change of bile acid profiles could be applied for the diagnosis of gallstone disease. © Crown copyright 2014.

  19. Disorder trapping by rapidly moving phase interface in an undercooled liquid

    NASA Astrophysics Data System (ADS)

    Galenko, Peter; Danilov, Denis; Nizovtseva, Irina; Reuther, Klemens; Rettenmayr, Markus

    2017-08-01

    Non-equilibrium phenomena such as the disappearance of solute drag, the origin of solute trapping and evolution of disorder trapping occur during fast transformations with originating metastable phases [D.M. Herlach, P.K. Galenko, D. Holland-Moritz, Metastable solids from undrercooled melts (Elsevier, Amsterdam, 2007)]. In the present work, a theoretical investigation of disorder trapping by a rapidly moving phase interface is presented. Using a model of fast phase transformations, a system of governing equations for the diffusion of atoms, and the evolution of both long-range order parameter and phase field variable is formulated. First numerical solutions are carried out for a congruently melting binary alloy system.

  20. FPGA-based prototype storage system with phase change memory

    NASA Astrophysics Data System (ADS)

    Li, Gezi; Chen, Xiaogang; Chen, Bomy; Li, Shunfen; Zhou, Mi; Han, Wenbing; Song, Zhitang

    2016-10-01

    With the ever-increasing amount of data being stored via social media, mobile telephony base stations, and network devices etc. the database systems face severe bandwidth bottlenecks when moving vast amounts of data from storage to the processing nodes. At the same time, Storage Class Memory (SCM) technologies such as Phase Change Memory (PCM) with unique features like fast read access, high density, non-volatility, byte-addressability, positive response to increasing temperature, superior scalability, and zero standby leakage have changed the landscape of modern computing and storage systems. In such a scenario, we present a storage system called FLEET which can off-load partial or whole SQL queries to the storage engine from CPU. FLEET uses an FPGA rather than conventional CPUs to implement the off-load engine due to its highly parallel nature. We have implemented an initial prototype of FLEET with PCM-based storage. The results demonstrate that significant performance and CPU utilization gains can be achieved by pushing selected query processing components inside in PCM-based storage.

  1. Example of a Fluid-Phase Change Examined with MD Simulation: Evaporative Cooling of a Nanoscale Droplet.

    PubMed

    Ao, Takashi; Matsumoto, Mitsuhiro

    2017-10-24

    We carried out a series of molecular dynamics simulations in order to examine the evaporative cooling of a nanoscale droplet of a Lennard-Jones liquid. After thermally equilibrating a droplet at a temperature T ini /T t ≃ 1.2 (T t is the triple-point temperature), we started the evaporation into vacuum by removing vaporized particles and monitoring the change in droplet size and the temperature inside. As free evaporation proceeds, the droplet reaches a deep supercooled liquid state of T/T t ≃ 0.7. The temperature was found to be uniform in spite of the fast evaporative cooling on the surface. The time evolution of the evaporating droplet properties was satisfactorily explained with a simple one-dimensional phase-change model. After a sufficiently long run, the supercooled droplet was crystallized into a polycrystalline fcc structure. The crystallization is a stochastic nucleation process. The time and the temperature of inception were evaluated over 42 samples, which indicate the existence of a stability limit.

  2. Spectromicroscopic insights for rational design of redox-based memristive devices

    PubMed Central

    Baeumer, Christoph; Schmitz, Christoph; Ramadan, Amr H. H.; Du, Hongchu; Skaja, Katharina; Feyer, Vitaliy; Müller, Philipp; Arndt, Benedikt; Jia, Chun-Lin; Mayer, Joachim; De Souza, Roger A.; Michael Schneider, Claus; Waser, Rainer; Dittmann, Regina

    2015-01-01

    The demand for highly scalable, low-power devices for data storage and logic operations is strongly stimulating research into resistive switching as a novel concept for future non-volatile memory devices. To meet technological requirements, it is imperative to have a set of material design rules based on fundamental material physics, but deriving such rules is proving challenging. Here, we elucidate both switching mechanism and failure mechanism in the valence-change model material SrTiO3, and on this basis we derive a design rule for failure-resistant devices. Spectromicroscopy reveals that the resistance change during device operation and failure is indeed caused by nanoscale oxygen migration resulting in localized valence changes between Ti4+ and Ti3+. While fast reoxidation typically results in retention failure in SrTiO3, local phase separation within the switching filament stabilizes the retention. Mimicking this phase separation by intentionally introducing retention-stabilization layers with slow oxygen transport improves retention times considerably. PMID:26477940

  3. Phase and flow behavior of mixed gas hydrate systems during gas injection

    NASA Astrophysics Data System (ADS)

    Darnell, K.; Flemings, P. B.; DiCarlo, D. A.

    2017-12-01

    We present one-dimensional, multi-phase flow model results for injections of carbon dioxide and nitrogen mixtures, or flue gas, into methane hydrate bearing reservoirs. Our flow model is coupled to a thermodynamic simulator that predicts phase stabilities as a function of composition, so multiple phases can appear, disappear, or change composition as the injection invades the reservoir. We show that the coupling of multi-phase fluid flow with phase behavior causes preferential phase fractionation in which each component flows through the system at different speeds and in different phases. We further demonstrate that phase and flow behavior within the reservoir are driven by hydrate stability of each individual component in addition to the hydrate stability of the injection composition. For example, if carbon dioxide and nitrogen are both individually hydrate stable at the reservoir P-T conditions, then any injection composition will convert all available water into hydrate and plug the reservoir. In contrast, if only carbon dioxide is hydrate stable at the reservoir P-T conditions, then nitrogen preferentially stays in the gaseous phase, while the carbon dioxide partitions into the hydrate and liquid water phases. For all injections of this type, methane originally held in hydrate is released by dissociation into the nitrogen-rich gaseous phase. The net consequence is that a gas phase composed of nitrogen and methane propagates through the reservoir in a fast-moving front. A slower-moving front lags behind where carbon dioxide and nitrogen form a mixed hydrate, but methane is absent due to dissociation-induced methane stripping from the first, fast-moving front. The entire composition path traces through the phase space as the flow develops with each front moving at different, constant velocities. This behavior is qualitatively similar to the dynamics present in enhanced oil recovery or enhanced coalbed methane recovery. These results explain why the inclusion of nitrogen in mixed gas injection into methane hydrate reservoirs has been far more successful at producing methane than pure carbon dioxide injections. These results also provide a test for the validity of equilibrium thermodynamics in transport-dominated mixed hydrate systems that can be validated by laboratory-scale flow-through experiments.

  4. Evidence for thermally assisted threshold switching behavior in nanoscale phase-change memory cells

    NASA Astrophysics Data System (ADS)

    Le Gallo, Manuel; Athmanathan, Aravinthan; Krebs, Daniel; Sebastian, Abu

    2016-01-01

    In spite of decades of research, the details of electrical transport in phase-change materials are still debated. In particular, the so-called threshold switching phenomenon that allows the current density to increase steeply when a sufficiently high voltage is applied is still not well understood, even though there is wide consensus that threshold switching is solely of electronic origin. However, the high thermal efficiency and fast thermal dynamics associated with nanoscale phase-change memory (PCM) devices motivate us to reassess a thermally assisted threshold switching mechanism, at least in these devices. The time/temperature dependence of the threshold switching voltage and current in doped Ge2Sb2Te5 nanoscale PCM cells was measured over 6 decades in time at temperatures ranging from 40 °C to 160 °C. We observe a nearly constant threshold switching power across this wide range of operating conditions. We also measured the transient dynamics associated with threshold switching as a function of the applied voltage. By using a field- and temperature-dependent description of the electrical transport combined with a thermal feedback, quantitative agreement with experimental data of the threshold switching dynamics was obtained using realistic physical parameters.

  5. Critical temperature transitions in laser-mediated cartilage reshaping

    NASA Astrophysics Data System (ADS)

    Wong, Brian J.; Milner, Thomas E.; Kim, Hong H.; Telenkov, Sergey A.; Chew, Clifford; Kuo, Timothy C.; Smithies, Derek J.; Sobol, Emil N.; Nelson, J. Stuart

    1998-07-01

    In this study, we attempted to determine the critical temperature [Tc] at which accelerated stress relaxation occurred during laser mediated cartilage reshaping. During laser irradiation, mechanically deformed cartilage tissue undergoes a temperature dependent phase transformation which results in accelerated stress relaxation. When a critical temperature is attained, cartilage becomes malleable and may be molded into complex new shapes that harden as the tissue cools. Clinically, reshaped cartilage tissue can be used to recreate the underlying cartilaginous framework of structures such as the ear, larynx, trachea, and nose. The principal advantages of using laser radiation for the generation of thermal energy in tissue are precise control of both the space-time temperature distribution and time- dependent thermal denaturation kinetics. Optimization of the reshaping process requires identification of the temperature dependence of this phase transformation and its relationship to observed changes in cartilage optical, mechanical, and thermodynamic properties. Light scattering, infrared radiometry, and modulated differential scanning calorimetry (MDSC) were used to measure temperature dependent changes in the biophysical properties of cartilage tissue during fast (laser mediated) and slow (conventional calorimetric) heating. Our studies using MDSC and laser probe techniques have identified changes in cartilage thermodynamic and optical properties suggestive of a phase transformation occurring near 60 degrees Celsius.

  6. Redefining the Speed Limit of Phase Change Memory Revealed by Time-resolved Steep Threshold-Switching Dynamics of AgInSbTe Devices

    NASA Astrophysics Data System (ADS)

    Shukla, Krishna Dayal; Saxena, Nishant; Durai, Suresh; Manivannan, Anbarasu

    2016-11-01

    Although phase-change memory (PCM) offers promising features for a ‘universal memory’ owing to high-speed and non-volatility, achieving fast electrical switching remains a key challenge. In this work, a correlation between the rate of applied voltage and the dynamics of threshold-switching is investigated at picosecond-timescale. A distinct characteristic feature of enabling a rapid threshold-switching at a critical voltage known as the threshold voltage as validated by an instantaneous response of steep current rise from an amorphous off to on state is achieved within 250 picoseconds and this is followed by a slower current rise leading to crystallization. Also, we demonstrate that the extraordinary nature of threshold-switching dynamics in AgInSbTe cells is independent to the rate of applied voltage unlike other chalcogenide-based phase change materials exhibiting the voltage dependent transient switching characteristics. Furthermore, numerical solutions of time-dependent conduction process validate the experimental results, which reveal the electronic nature of threshold-switching. These findings of steep threshold-switching of ‘sub-50 ps delay time’, opens up a new way for achieving high-speed non-volatile memory for mainstream computing.

  7. Seasonal changes in hormone-sensitive and lipoprotein lipase mRNA concentrations in marmot white adipose tissue.

    PubMed

    Wilson, B E; Deeb, S; Florant, G L

    1992-02-01

    White adipose tissue (WAT) and plasma samples were obtained from yellow-bellied marmots (Marmota flaviventris) throughout the year. Mean plasma triacylglycerol (TG), free fatty acids (FFAs), and glycerol were determined. There was a clear increase in FFAs and decrease in mean TG and glycerol during the hibernation period when animals were fasting, suggesting increased lipolysis. RNA was isolated from WAT biopsies at four times in the year: spring, summer, fall, and winter. There were significant changes in the relative levels of mRNA for lipoprotein lipase (LPL) and hormone-sensitive lipase (HSL) during the body mass cycle of the marmot. The relative levels of LPL mRNA are high during the mass gain phase of the year and that of HSL mRNA are high during the fasting period when endogenous lipid is utilized. These results suggest that the genes for LPL and HSL are regulated seasonally to control the adipose mass depot in marmots.

  8. Proline 54 trans-cis isomerization is responsible for the kinetic partitioning at the last-step photocycle of photoactive yellow protein

    PubMed Central

    Lee, Byoung-Chul; Hoff, Wouter D.

    2008-01-01

    Photoactive yellow protein (PYP), a blue-light photoreceptor for Ectothiorhodospira halophila, has provided a unique system for studying protein folding that is coupled with a photocycle. Upon receptor activation by blue light, PYP proceeds through a photocycle that includes a partially folded signaling state. The last-step photocycle is a thermal recovery reaction from the signaling state to the native state. Bi-exponential kinetics had been observed for the last-step photocycle; however, the slow phase of the bi-exponential kinetics has not been extensively studied. Here we analyzed both fast and slow phases of the last-step photocycle in PYP. From the analysis of the denaturant dependence of the fast and slow phases, we found that the last-step photocycle proceeds through parallel channels of the folding pathway. The burial of the solvent-accessible area was responsible for the transition state of the fast phase, while structural rearrangement from the compact state to the native state was responsible for the transition state of the slow phase. The photocycle of PYP was linked to the thermodynamic cycle that includes both unfolding and refolding of the fast- and slow-phase intermediates. In order to test the hypothesis of proline-limited folding for the slow phase, we constructed two proline mutants: P54A and P68A. We found that only a single phase of the last-step photocycle was observed in P54A. This suggests that there is a low energy barrier between trans to cis conformation in P54 in the light-induced state of PYP, and the resulting cis conformation of P54 generates a slow-phase kinetic trap during the photocycle-coupled folding pathway of PYP. PMID:18794212

  9. Novel method to assess gastric emptying in humans: the Pellet Gastric Emptying Test

    NASA Technical Reports Server (NTRS)

    Choe, S. Y.; Neudeck, B. L.; Welage, L. S.; Amidon, G. E.; Barnett, J. L.; Amidon, G. L.

    2001-01-01

    To further validate the Pellet Gastric Emptying Test (PGET) as a marker of gastric emptying, a randomized, four-way crossover study was conducted with 12 healthy subjects. The study consisted of oral co-administration of enteric coated caffeine (CAFF) and acetaminophen (APAP) pellets in four treatment phases: Same Size (100 kcal), Fasted, Small Liquid Meal (100 kcal), and Standard Meal (847 kcal). The time of first appearance of measurable drug marker in plasma, t(initial), was taken as the emptying time for the markers. Co-administration of same size enteric coated pellets of CAFF and APAP (0.7 mm in diameter) revealed no statistically significant differences in t(initial) values indicating that emptying was dependent only on size and not on chemical make-up of the pellets. Co-administration of different size pellets indicated that the smaller 0.7-mm diameter (CAFF) pellets were emptied and absorbed significantly earlier than the larger 3.6-mm diameter (APAP) pellets with both the Small Liquid Meal (by 35 min) and the Standard Meal (by 33 min) (P<0.05). The differences in emptying of the pellets were not significant in the Fasted Phase. The results suggest that the pellet gastric emptying test could prove useful in monitoring changes in transit times in the fasted and fed states and their impact on drug absorption.

  10. Possible Existence of Two Amorphous Phases of D-Mannitol Related by a First-Order Transition

    NASA Astrophysics Data System (ADS)

    Zhu, Men; Wang, Jun-Qiang; Perepezko, John; Yu, Lian

    We report that the common polyalcohol D-mannitol may have two amorphous phases related by a first-order transition. Slightly above Tg (284 K), the supercooled liquid (SCL) of D-mannitol transforms to a low-energy, apparently amorphous phase (Phase X). The enthalpy of Phase X is roughly halfway between those of the known amorphous and crystalline phases. The amorphous nature of Phase X is suggested by its absence of birefringence, transparency, broad X-ray diffraction, and broad Raman and NIR spectra. Phase X has greater molecular spacing, higher molecular order, fewer intra- and more inter-molecular hydrogen bonds than the normal liquid. On fast heating, Phase X transforms back to SCL near 330 K. Upon temperature cycling, it shows a glass-transition-like change of heat capacity. The presence of D-sorbitol enables a first-order liquid-liquid transition (LLT) from SCL to Phase X. This is the first report of polyamorphism at 1 atm for a pharmaceutical relevant substance. As amorphous solids are explored for many applications, polyamorphism could offer a tool to engineer the properties of materials. (Ref: M. Zhu et al., J. Chem. Phys. 2015, 142, 244504)

  11. Precision and fast wavelength tuning of a dynamically phase-locked widely-tunable laser.

    PubMed

    Numata, Kenji; Chen, Jeffrey R; Wu, Stewart T

    2012-06-18

    We report a precision and fast wavelength tuning technique demonstrated for a digital-supermode distributed Bragg reflector laser. The laser was dynamically offset-locked to a frequency-stabilized master laser using an optical phase-locked loop, enabling precision fast tuning to and from any frequencies within a ~40-GHz tuning range. The offset frequency noise was suppressed to the statically offset-locked level in less than ~40 μs upon each frequency switch, allowing the laser to retain the absolute frequency stability of the master laser. This technique satisfies stringent requirements for gas sensing lidars and enables other applications that require such well-controlled precision fast tuning.

  12. Change Theory for Accounting System Reform in Health Sector: A Case Study of Kerman University of Medical Sciences in Iran

    PubMed Central

    Mehrolhassani, Mohammad Hossein; Emami, Mozhgan

    2013-01-01

    Background: Change theories provide an opportunity for organizational managers to plan, monitor and evaluate changes using a framework which enable them, among others, to show a fast response to environmental fluctuations and to predict the changing patterns of individuals and technology. The current study aimed to explore whether the change in the public accounting system of the Iranian health sector has followed Kurt Lewin’s change theory or not. Methods: This study which adopted a mixed methodology approach, qualitative and quantitative methods, was conducted in 2012. In the first phase of the study, 41 participants using purposive sampling and in the second phase, 32 affiliated units of Kerman University of Medical Sciences (KUMS) were selected as the study sample. Also, in phase one, we used face-to-face in-depth interviews (6 participants) and the quote method (35 participants) for data collection. We used a thematic framework analysis for analyzing data. In phase two, a questionnaire with a ten-point Likert scale was designed and then, data were analyzed using descriptive indicators, principal component and factorial analyses. Results: The results of phase one yielded a model consisting of four categories of superstructure, apparent infrastructure, hidden infrastructure and common factors. By linking all factors, totally, 12 components based on the quantitative results showed that the state of all components were not satisfactory at KUMS (5.06±2.16). Leadership and management; and technology components played the lowest and the greatest roles in implementing the accrual accounting system respectively. Conclusion: The results showed that the unfreezing stage did not occur well and the components were immature, mainly because the emphasis was placed on superstructure components rather than the components of hidden infrastructure. The study suggests that a road map should be developed in the financial system based on Kurt Lewin’s change theory and the model presented in this paper underpins the change management in any organizations. PMID:24596885

  13. Change theory for accounting system reform in health sector: a case study of kerman university of medical sciences in iran.

    PubMed

    Mehrolhassani, Mohammad Hossein; Emami, Mozhgan

    2013-11-01

    Change theories provide an opportunity for organizational managers to plan, monitor and evaluate changes using a framework which enable them, among others, to show a fast response to environmental fluctuations and to predict the changing patterns of individuals and technology. The current study aimed to explore whether the change in the public accounting system of the Iranian health sector has followed Kurt Lewin's change theory or not. This study which adopted a mixed methodology approach, qualitative and quantitative methods, was conducted in 2012. In the first phase of the study, 41 participants using purposive sampling and in the second phase, 32 affiliated units of Kerman University of Medical Sciences (KUMS) were selected as the study sample. Also, in phase one, we used face-to-face in-depth interviews (6 participants) and the quote method (35 participants) for data collection. We used a thematic framework analysis for analyzing data. In phase two, a questionnaire with a ten-point Likert scale was designed and then, data were analyzed using descriptive indicators, principal component and factorial analyses. The results of phase one yielded a model consisting of four categories of superstructure, apparent infrastructure, hidden infrastructure and common factors. By linking all factors, totally, 12 components based on the quantitative results showed that the state of all components were not satisfactory at KUMS (5.06±2.16). Leadership and management; and technology components played the lowest and the greatest roles in implementing the accrual accounting system respectively. The results showed that the unfreezing stage did not occur well and the components were immature, mainly because the emphasis was placed on superstructure components rather than the components of hidden infrastructure. The study suggests that a road map should be developed in the financial system based on Kurt Lewin's change theory and the model presented in this paper underpins the change management in any organizations.

  14. Inverse Resistance Change Cr2Ge2Te6-Based PCRAM Enabling Ultralow-Energy Amorphization.

    PubMed

    Hatayama, Shogo; Sutou, Yuji; Shindo, Satoshi; Saito, Yuta; Song, Yun-Heub; Ando, Daisuke; Koike, Junichi

    2018-01-24

    Phase-change random access memory (PCRAM) has attracted much attention for next-generation nonvolatile memory that can replace flash memory and can be used for storage-class memory. Generally, PCRAM relies on the change in the electrical resistance of a phase-change material between high-resistance amorphous (reset) and low-resistance crystalline (set) states. Herein, we present an inverse resistance change PCRAM with Cr 2 Ge 2 Te 6 (CrGT) that shows a high-resistance crystalline reset state and a low-resistance amorphous set state. The inverse resistance change was found to be due to a drastic decrease in the carrier density upon crystallization, which causes a large increase in contact resistivity between CrGT and the electrode. The CrGT memory cell was demonstrated to show fast reversible resistance switching with a much lower operating energy for amorphization than a Ge 2 Sb 2 Te 5 memory cell. This low operating energy in CrGT should be due to a small programmed amorphous volume, which can be realized by a high-resistance crystalline matrix and a dominant contact resistance. Simultaneously, CrGT can break the trade-off relationship between the crystallization temperature and operating speed.

  15. Fast optimization method of designing a wideband metasurface without using the Pancharatnam-Berry phase.

    PubMed

    Sui, Sai; Ma, Hua; Lv, Yueguang; Wang, Jiafu; Li, Zhiqiang; Zhang, Jieqiu; Xu, Zhuo; Qu, Shaobo

    2018-01-22

    Arbitrary control of electromagnetic waves remains a significant challenge although it promises many important applications. Here, we proposed a fast optimization method of designing a wideband metasurface without using the Pancharatnam-Berry (PB) phase, of which the elements are non-absorptive and capable of predicting the wideband and smooth phase-shift. In our design method, the metasurface is composed of low-Q-factor resonant elements without using the PB phase, and is optimized by the genetic algorithm and nonlinear fitting method, having the advantages that the far field scattering patterns can be quickly synthesized by the hybrid array patterns. To validate the design method, a wideband low radar cross section metasurface is demonstrated, showing good feasibility and performance of wideband RCS reduction. This work reveals an opportunity arising from a metasurface in effective manipulation of microwave and flexible fast optimal design method.

  16. Diffuse-interface model for rapid phase transformations in nonequilibrium systems.

    PubMed

    Galenko, Peter; Jou, David

    2005-04-01

    A thermodynamic approach to rapid phase transformations within a diffuse interface in a binary system is developed. Assuming an extended set of independent thermodynamic variables formed by the union of the classic set of slow variables and the space of fast variables, we introduce finiteness of the heat and solute diffusive propagation at the finite speed of the interface advancing. To describe transformations within the diffuse interface, we use the phase-field model which allows us to follow steep but smooth changes of phase within the width of the diffuse interface. Governing equations of the phase-field model are derived for the hyperbolic model, a model with memory, and a model of nonlinear evolution of transformation within the diffuse interface. The consistency of the model is proved by the verification of the validity of the condition of positive entropy production and by outcomes of the fluctuation-dissipation theorem. A comparison with existing sharp-interface and diffuse-interface versions of the model is given.

  17. Energy spectra and pitch angle distributions of storm-time and substorm injected protons.

    NASA Technical Reports Server (NTRS)

    Konradi, A.; Williams, D. J.; Fritz, T. A.

    1973-01-01

    Discussion of the energy spectra and pitch angle distributions of ring current protons observed with the solid-state proton detector of Explorer 45 during the main and fast recovery phases of a storm on Dec. 17, 1971. Appearances of characteristic changes in the pitch angle distributions of roughly 100-eV protons are interpreted as pitch angle dispersion of rapidly injected protons during their azimuthal drift at L values above 5.

  18. Coding rate and duration of vocalizations of the frog, Xenopus laevis.

    PubMed

    Zornik, Erik; Yamaguchi, Ayako

    2012-08-29

    Vocalizations involve complex rhythmic motor patterns, but the underlying temporal coding mechanisms in the nervous system are poorly understood. Using a recently developed whole-brain preparation from which "fictive" vocalizations are readily elicited in vitro, we investigated the cellular basis of temporal complexity of African clawed frogs (Xenopus laevis). Male advertisement calls contain two alternating components--fast trills (∼300 ms) and slow trills (∼700 ms) that contain clicks repeated at ∼60 and ∼30 Hz, respectively. We found that males can alter the duration of fast trills without changing click rates. This finding led us to hypothesize that call rate and duration are regulated by independent mechanisms. We tested this by obtaining whole-cell patch-clamp recordings in the "fictively" calling isolated brain. We discovered a single type of premotor neuron with activity patterns correlated with both the rate and duration of fast trills. These "fast-trill neurons" (FTNs) exhibited long-lasting depolarizations (LLDs) correlated with each fast trill and action potentials that were phase-locked with motor output-neural correlates of call duration and rate, respectively. When depolarized without central pattern generator activation, FTNs produced subthreshold oscillations and action potentials at fast-trill rates, indicating FTN resonance properties are tuned to, and may dictate, the fast-trill rhythm. NMDA receptor (NMDAR) blockade eliminated LLDs in FTNs, and NMDAR activation in synaptically isolated FTNs induced repetitive LLDs. These results suggest FTNs contain an NMDAR-dependent mechanism that may regulate fast-trill duration. We conclude that a single premotor neuron population employs distinct mechanisms to regulate call rate and duration.

  19. Edge turbulence effect on ultra-fast swept reflectometry core measurements in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Zadvitskiy, G. V.; Heuraux, S.; Lechte, C.; Hacquin, S.; Sabot, R.

    2018-02-01

    Ultra-fast frequency-swept reflectometry (UFSR) enables one to provide information about the turbulence radial wave-number spectrum and perturbation amplitude with good spatial and temporal resolutions. However, a data interpretation of USFR is quiet tricky. An iterative algorithm to solve this inverse problem was used in past works, Gerbaud (2006 Rev. Sci. Instrum. 77 10E928). For a direct solution, a fast 1D Helmholtz solver was used. Two-dimensional effects are strong and should be taken into account during data interpretation. As 2D full-wave codes are still too time consuming for systematic application, fast 2D approaches based on the Born approximation are of prime interest. Such methods gives good results in the case of small turbulence levels. However in tokamak plasmas, edge turbulence is usually very strong and can distort and broaden the probing beam Sysoeva et al (2015 Nucl. Fusion 55 033016). It was shown that this can change reflectometer phase response from the plasma core. Comparison between 2D full wave computation and the simplified Born approximation was done. The approximated method can provide a right spectral shape, but it is unable to describe a change of the spectral amplitude with an edge turbulence level. Computation for the O-mode wave with the linear density profile in the slab geometry and for realistic Tore-Supra density profile, based on the experimental data turbulence amplitude and spectrum, were performed to investigate the role of strong edge turbulence. It is shown that the spectral peak in the signal amplitude variation spectrum which rises with edge turbulence can be a signature of strong edge turbulence. Moreover, computations for misaligned receiving and emitting antennas were performed. It was found that the signal amplitude variation peak changes its position with a receiving antenna poloidal displacement.

  20. Mechanical and Infrared Thermography Analysis of Shape Memory Polyurethane

    NASA Astrophysics Data System (ADS)

    Pieczyska, Elzbieta Alicja; Maj, Michal; Kowalczyk-Gajewska, Katarzyna; Staszczak, Maria; Urbanski, Leszek; Tobushi, Hisaaki; Hayashi, Shunichi; Cristea, Mariana

    2014-07-01

    Multifunctional new material—polyurethane shape memory polymer (PU-SMP)—was subjected to tension carried out at room temperature at various strain rates. The influence of effects of thermomechanical couplings on the SMP mechanical properties was studied, based on the sample temperature changes, measured by a fast and sensitive infrared camera. It was found that the polymer deformation process strongly depends on the strain rate applied. The initial reversible strain is accompanied by a small drop in temperature, called thermoelastic effect. Its maximal value is related to the SMP yield point and increases upon increase of the strain rate. At higher strains, the stress and temperature significantly increase, caused by reorientation of the polymer molecular chains, followed by the stress drop and its subsequent increase accompanying the sample rupture. The higher strain rate, the higher stress, and temperature changes were obtained, since the deformation process was more dynamic and has occurred in almost adiabatic conditions. The constitutive model of SMP valid in finite strain regime was developed. In the proposed approach, SMP is described as a two-phase material composed of hyperelastic rubbery phase and elastic-viscoplastic glassy phase, while the volume content of phases is specified by the current temperature.

  1. A NAD(P) reductase like protein is the salicylic acid receptor in the appendix of the Sauromatum guttatum inflorescence

    PubMed Central

    Skubatz, Hanna; Orellana, Mónica V; Howald, William N

    2013-01-01

    The mode of action of the thermogenic inducers (salicylic acid, aspirin, and 2,6-dihydroxybenzoic acid) in the appendix of the Sauromatum guttatum inflorescence is poorly understood. Using ESI-MS and light scattering analysis, we have demonstrated that NAD(P) reductase like protein (RL) is the salicylic acid receptor in the Sauromatum appendix. RL was self-assembled in water into a large unit with a hydrodynamic diameter of 800 nm. In the presence of 1 pM salicylic acid, RL exhibited discontinuous and reversible volume phase transitions. The volume phase changed from 800 to 300 nm diameter and vice versa. RL stayed at each volume phase for ~4–5 min with a fast relaxation time between the 2 phases. ESI-MS analysis of RL extracted from appendices treated with salicylic acid, aspirin, and 2,6-DHBA at a micromolar range demonstrated that these compounds are capable of inducing graded conformational changes that are concentration-dependent. A strong correlation between RL conformations and heat-production induced by salicylic acid was also observed. These preliminary findings reveal structural and conformational roles for RL by which plants regulate their temperature and synchronize their time keeping mechanisms. PMID:28516022

  2. Phase stabilization for mode locked lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baer, M.T.

    A method is described for stabilizing a phase relationship between two mode locked lasers, comprising: driving through a power splitter the mode lockers of both lasers from a single stable radio frequency source; monitoring the phase of pulses from each laser utilizing a fast photodiode output of each laser; feeding the output of the fast photodiodes to a phase detector and comparator; measuring a relative phase difference between the lasers with a phase detector and comparator, producing a voltage output signal or phase error signal representing the phase difference; amplifying and filtering the voltage output signal with an amplifier andmore » loop filter; feeding the resulting output signal to a voltage controlled phase delay between the power splitter and one of the lasers; and delaying the RF drive to the one laser to achieve a desired phase relationship, between the two lasers.« less

  3. Ultra fast polymer network blue phase liquid crystals

    NASA Astrophysics Data System (ADS)

    Hussain, Zakir; Masutani, Akira; Danner, David; Pleis, Frank; Hollfelder, Nadine; Nelles, Gabriele; Kilickiran, Pinar

    2011-06-01

    Polymer-stabilization of blue phase liquid crystal systems within a host polymer network are reported, which enables ultrafast switching flexible displays. Our newly developed method to stabilize the blue phase in an existing polymer network (e.g., that of a polymer network liquid crystal; PNLC) has shown wide temperature stability and fast response speeds. Systems where the blue phase is stabilized in an already existing polymer network are attractive candidates for ultrafast LCDs. The technology also promises to be applied to flexible PNLC and/or polymer dispersed liquid crystal (PDLC) displays using plastic substrate such as polyethylene terephthalate (PET).

  4. LOS selective fading and AN/FRC-170(V) radio hybrid computer simulation phase A report

    NASA Astrophysics Data System (ADS)

    Klukis, M. K.; Lyon, T. I.; Walker, R.

    1981-09-01

    This report documents results of the first phase of modeling, simulation and study of the dual diversity AN/FRC-170(V) radio and frequency selective fading line of sight channel. Both hybrid computer and circuit technologies were used to develop a fast, accurate and flexible simulation tool to investigate changes and proposed improvements to the design of the AN/FRC-170(V) radio. In addition to the simulation study, a remote hybrid computer terminal was provided to DCEC for interactive study of the modeled radio and channel. Simulated performance of the radio for Rayleigh, line of sight two ray channels, and additive noise are included in the report.

  5. Applications of compressed sensing image reconstruction to sparse view phase tomography

    NASA Astrophysics Data System (ADS)

    Ueda, Ryosuke; Kudo, Hiroyuki; Dong, Jian

    2017-10-01

    X-ray phase CT has a potential to give the higher contrast in soft tissue observations. To shorten the measure- ment time, sparse-view CT data acquisition has been attracting the attention. This paper applies two major compressed sensing (CS) approaches to image reconstruction in the x-ray sparse-view phase tomography. The first CS approach is the standard Total Variation (TV) regularization. The major drawbacks of TV regularization are a patchy artifact and loss in smooth intensity changes due to the piecewise constant nature of image model. The second CS method is a relatively new approach of CS which uses a nonlinear smoothing filter to design the regularization term. The nonlinear filter based CS is expected to reduce the major artifact in the TV regular- ization. The both cost functions can be minimized by the very fast iterative reconstruction method. However, in the past research activities, it is not clearly demonstrated how much image quality difference occurs between the TV regularization and the nonlinear filter based CS in x-ray phase CT applications. We clarify the issue by applying the two CS applications to the case of x-ray phase tomography. We provide results with numerically simulated data, which demonstrates that the nonlinear filter based CS outperforms the TV regularization in terms of textures and smooth intensity changes.

  6. Three-dimensional label-free imaging and quantification of lipid droplets in live hepatocytes

    NASA Astrophysics Data System (ADS)

    Kim, Kyoohyun; Lee, Seoeun; Yoon, Jonghee; Heo, Jihan; Choi, Chulhee; Park, Yongkeun

    2016-11-01

    Lipid droplets (LDs) are subcellular organelles with important roles in lipid storage and metabolism and involved in various diseases including cancer, obesity, and diabetes. Conventional methods, however, have limited ability to provide quantitative information on individual LDs and have limited capability for three-dimensional (3-D) imaging of LDs in live cells especially for fast acquisition of 3-D dynamics. Here, we present an optical method based on 3-D quantitative phase imaging to measure the 3-D structural distribution and biochemical parameters (concentration and dry mass) of individual LDs in live cells without using exogenous labelling agents. The biochemical change of LDs under oleic acid treatment was quantitatively investigated, and 4-D tracking of the fast dynamics of LDs revealed the intracellular transport of LDs in live cells.

  7. Splanchnic, Thoracoabdominal, and Cerebral Blood Flow Volumes in Healthy Children and Young Adults in Fasting and Postprandial States: Determining Reference Ranges by Using Phase-Contrast MR Imaging.

    PubMed

    Muthusami, Prakash; Yoo, Shi-Joon; Chaturvedi, Rajiv; Gill, Navjot; Windram, Jonathan; Schantz, Daryl; Prsa, Milan; Caro-Dominguez, Pablo; Seed, Mike; Grosse-Wortmann, Lars; Ling, Simon C; Chavhan, Govind B

    2017-10-01

    Purpose To estimate reference ranges for blood flow volume (BFV) in major splanchnic, thoracoabdominal, and neck vessels by using phase-contrast magnetic resonance (MR) imaging in children and young adults in fasting and postprandial states. Materials and Methods In this institutional research ethics board-approved prospective study, healthy volunteers underwent phase-contrast MR imaging in a fasting state and again after a standardized meal. BFV values were reported as medians and ranges, and postmeal to premeal BFV ratios were calculated. BFVs in volunteers divided into two groups according to age (≤18 years old and >18 years old) were compared by using the Mann-Whitney test adjusted for multiple comparisons. Linear regression for internal validation of BFV and Pearson correlation and Bland-Altman analysis for interobserver agreement were used. Results Reference ranges for BFVs were estimated in 39 volunteers (23 male and 16 female; mean age, 21.2 years ± 8.5; range, 9-40 years) and were indexed according to body surface area, with internal validation (R 2 = 0.84-0.92) and excellent interobserver agreement (R 2 = 0.9928). There was an almost 30% increase in total abdominal BFV (P < .0001) in response to a meal, which was the result of a threefold increase in superior mesenteric artery BFV (P < .0001). BFV after the meal remained unaffected in the celiac artery and cerebral circulation. Significantly higher normalized BFVs in the cerebral circulation were measured in children with both preprandial (P = .039) and postprandial (P = .008) status than those in adults. Conclusion Reference ranges for BFVs and changes in BFVs in response to a meal in major splanchnic, thoracoabdominal, and neck vessels were estimated by using phase-contrast MR imaging in healthy volunteers to allow hemodynamic assessment of children and young adults with various diseases. © RSNA, 2017 Online supplemental material is available for this article.

  8. Backside imaging of a microcontroller with common-path digital holography

    NASA Astrophysics Data System (ADS)

    Finkeldey, Markus; Göring, Lena; Schellenberg, Falk; Gerhardt, Nils C.; Hofmann, Martin

    2017-03-01

    The investigation of integrated circuits (ICs), such as microcontrollers (MCUs) and system on a chip (SoCs) devices is a topic with growing interests. The need for fast and non-destructive imaging methods is given by the increasing importance of hardware Trojans, reverse engineering and further security related analysis of integrated cryptographic devices. In the field of side-channel attacks, for instance, the precise spot for laser fault attacks is important and could be determined by using modern high resolution microscopy methods. Digital holographic microscopy (DHM) is a promising technique to achieve high resolution phase images of surface structures. These phase images provide information about the change of the refractive index in the media and the topography. For enabling a high phase stability, we use the common-path geometry to create the interference pattern. The interference pattern, or hologram, is captured with a water cooled sCMOS camera. This provides a fast readout while maintaining a low level of noise. A challenge for these types of holograms is the interference of the reflected waves from the different interfaces inside the media. To distinguish between the phase signals from the buried layer and the surface reflection we use specific numeric filters. For demonstrating the performance of our setup we show results with devices under test (DUT), using a 1064 nm laser diode as light source. The DUTs are modern microcontrollers thinned to different levels of thickness of the Si-substrate. The effect of the numeric filter compared to unfiltered images is analyzed.

  9. Fast, automatically darkening welding filter offering an improved level of safety.

    PubMed

    Palmer, S

    1996-03-01

    A mode of operation is introduced for the standard 90° twisted nematic (TN) liquid-crystal cell when placed together with an interference filter and positioned between crossed polarizers such that a small stimulating voltage of between ±2.0 and ±13.0 V is required in order to attain the light state. Further incrementation of the driving electronics reverts the system back to a darker phase. Such cells offer advantages over those of the standard 90° TN device operating in the normally white mode, in that the unit maintains the fast response time from the light to the dark state associated with the employment of TN cells placed between crossed polarizers. In addition, a low transmittance state is achieved when the unit is in the inactivated phase; this is an effect usually correlated with the normally black mode of operation. These cells are therefore ideal candidates for incorporation into fast, automatically darkening, welding filters that are designed to change rapidly from the light to the dark protective state, while offering an improved level of safety by not holding in a potentially hazardous light state should the controlling electronics malfunction. The requirement for this phenomenon to be observed is that the cell displays a low optical transmittance over the green wavelengths of the visible spectrum when in the inactivated phase and placed between crossed polarizers. The presence of an interference filter that possesses a peak transmittance over the central part of the visible spectrum is also necessary. It is shown that there are only two possible cell types that satisfy this criteria, and the optical properties of such cells are analyzed in some detail.

  10. Irradiation creep of various ferritic alloys irradiated at {approximately}400{degrees}C in the PFR and FFTF reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toloczko, M.B.; Garner, F.A.; Eiholzer, C.R.

    1997-04-01

    Three ferritic alloys were irradiated in two fast reactors to doses of 50 dpa or more at temperatures near 400{degrees}C. One martensitic alloy, HT9, was irradiated in both the FFTF and PFR reactors. PFR is the Prototype Fast Reactor in Dourneay, Scotland, and FFTF is the Fast Flux Test Facility in Richland, WA. D57 is a developmental alloy that was irradiated in PFR only, and MA957 is a Y{sub 2}O{sub 3} dispersion-hardened ferritic alloy that was irradiated only in FFTF. These alloys exhibited little or no void swelling at {approximately}400{degrees}C. Depending on the alloy starting condition, these steels develop amore » variety of non-creep strains early in the irradiation that are associated with phase changes. Each of these alloys creeps at a rate that is significantly lower than that of austenitic steels irradiated in the same experiments. The creep compliance for ferritic alloys in general appears to be {approximately}0.5 x 10{sup {minus}6} MPa{sup {minus}1} dpa{sup {minus}1}, independent of both composition and starting state. The addition of Y{sub 2}O{sub 3} as a dispersoid does not appear to change the creep behavior.« less

  11. Cortical Specializations Underlying Fast Computations

    PubMed Central

    Volgushev, Maxim

    2016-01-01

    The time course of behaviorally relevant environmental events sets temporal constraints on neuronal processing. How does the mammalian brain make use of the increasingly complex networks of the neocortex, while making decisions and executing behavioral reactions within a reasonable time? The key parameter determining the speed of computations in neuronal networks is a time interval that neuronal ensembles need to process changes at their input and communicate results of this processing to downstream neurons. Theoretical analysis identified basic requirements for fast processing: use of neuronal populations for encoding, background activity, and fast onset dynamics of action potentials in neurons. Experimental evidence shows that populations of neocortical neurons fulfil these requirements. Indeed, they can change firing rate in response to input perturbations very quickly, within 1 to 3 ms, and encode high-frequency components of the input by phase-locking their spiking to frequencies up to 300 to 1000 Hz. This implies that time unit of computations by cortical ensembles is only few, 1 to 3 ms, which is considerably faster than the membrane time constant of individual neurons. The ability of cortical neuronal ensembles to communicate on a millisecond time scale allows for complex, multiple-step processing and precise coordination of neuronal activity in parallel processing streams, while keeping the speed of behavioral reactions within environmentally set temporal constraints. PMID:25689988

  12. Prolonged fasting increases glutathione biosynthesis in postweaned northern elephant seals.

    PubMed

    Vázquez-Medina, José Pablo; Zenteno-Savín, Tania; Forman, Henry Jay; Crocker, Daniel E; Ortiz, Rudy M

    2011-04-15

    Northern elephant seals experience prolonged periods of absolute food and water deprivation (fasting) while breeding, molting or weaning. The postweaning fast in elephant seals is characterized by increases in the renin-angiotensin system, expression of the oxidant-producing protein Nox4, and NADPH oxidase activity; however, these increases are not correlated with increased oxidative damage or inflammation. Glutathione (GSH) is a potent reductant and a cofactor for glutathione peroxidases (GPx), glutathione-S transferases (GST) and 1-cys peroxiredoxin (PrxVI) and thus contributes to the removal of hydroperoxides, preventing oxidative damage. The effects of prolonged food deprivation on the GSH system are not well described in mammals. To test our hypothesis that GSH biosynthesis increases with fasting in postweaned elephant seals, we measured circulating and muscle GSH content at the early and late phases of the postweaning fast in elephant seals along with the activity/protein content of glutamate-cysteine ligase [GCL; catalytic (GCLc) and modulatory (GCLm) subunits], γ-glutamyl transpeptidase (GGT), glutathione disulphide reductase (GR), glucose-6-phosphate dehydrogenase (G6PDH), GST and PrxVI, as well as plasma changes in γ-glutamyl amino acids, glutamate and glutamine. GSH increased two- to four-fold with fasting along with a 40-50% increase in the content of GCLm and GCLc, a 75% increase in GGT activity, a two- to 2.5-fold increase in GR, G6PDH and GST activities and a 30% increase in PrxVI content. Plasma γ-glutamyl glutamine, γ-glutamyl isoleucine and γ-glutamyl methionine also increased with fasting whereas glutamate and glutamine decreased. Results indicate that GSH biosynthesis increases with fasting and that GSH contributes to counteracting hydroperoxide production, preventing oxidative damage in fasting seals.

  13. Prolonged fasting increases glutathione biosynthesis in postweaned northern elephant seals

    PubMed Central

    Vázquez-Medina, José Pablo; Zenteno-Savín, Tania; Forman, Henry Jay; Crocker, Daniel E.; Ortiz, Rudy M.

    2011-01-01

    SUMMARY Northern elephant seals experience prolonged periods of absolute food and water deprivation (fasting) while breeding, molting or weaning. The postweaning fast in elephant seals is characterized by increases in the renin–angiotensin system, expression of the oxidant-producing protein Nox4, and NADPH oxidase activity; however, these increases are not correlated with increased oxidative damage or inflammation. Glutathione (GSH) is a potent reductant and a cofactor for glutathione peroxidases (GPx), glutathione-S transferases (GST) and 1-cys peroxiredoxin (PrxVI) and thus contributes to the removal of hydroperoxides, preventing oxidative damage. The effects of prolonged food deprivation on the GSH system are not well described in mammals. To test our hypothesis that GSH biosynthesis increases with fasting in postweaned elephant seals, we measured circulating and muscle GSH content at the early and late phases of the postweaning fast in elephant seals along with the activity/protein content of glutamate-cysteine ligase [GCL; catalytic (GCLc) and modulatory (GCLm) subunits], γ-glutamyl transpeptidase (GGT), glutathione disulphide reductase (GR), glucose-6-phosphate dehydrogenase (G6PDH), GST and PrxVI, as well as plasma changes in γ-glutamyl amino acids, glutamate and glutamine. GSH increased two- to four-fold with fasting along with a 40–50% increase in the content of GCLm and GCLc, a 75% increase in GGT activity, a two- to 2.5-fold increase in GR, G6PDH and GST activities and a 30% increase in PrxVI content. Plasma γ-glutamyl glutamine, γ-glutamyl isoleucine and γ-glutamyl methionine also increased with fasting whereas glutamate and glutamine decreased. Results indicate that GSH biosynthesis increases with fasting and that GSH contributes to counteracting hydroperoxide production, preventing oxidative damage in fasting seals. PMID:21430206

  14. Microstructure and electrical properties of Sb2Te phase-change material

    NASA Astrophysics Data System (ADS)

    Liu, Guangyu; Wu, Liangcai; Li, Tao; Rao, Feng; Song, Sannian; Liu, Bo; Song, Zhitang

    2016-10-01

    Phase Change Memory (PCM) has great potential for commercial applications of next generation non-volatile memory (NVM) due to its high operation speed, high endurance and low power consumption. Sb2Te (ST) is a common phase-change material and has fast crystallization speed, while thermal stability is relatively poor and its crystallization temperature is about 142°C. According to the Arrhenius law, the extrapolated failure temperature is about 55°C for ten years. When heated above the crystallization temperature while below the melting point, its structure can be transformed from amorphous phase to hexagonal phase. Due to the growth-dominated crystallization mechanism, the grain size of ST film is large and the diameter of about 300 nm is too large compared with Ge2Sb2Te5 (GST), which may deteriorate the device performance. High resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) were employed to study the microstructures and the results indicate that the crystal plane is {110}. In addition, device cells were manufactured and their current-voltage (I-V) and resistance-voltage characteristics were tested, and the results reveal that the threshold voltage (Vth) of ST film is 0.87 V. By researching the basic properties of ST, we can understand its disadvantages and manage to improve its performance by doping or other proper methods. Finally, the improved ST can be a candidate for optical discs and PCM.

  15. Effects of Intermittent Fasting on Experimental Autoimune Encephalomyelitis in C57BL/6 Mice.

    PubMed

    Razeghi Jahromi, Soodeh; Ghaemi, Amir; Alizadeh, Akram; Sabetghadam, Fatemeh; Moradi Tabriz, Hedieh; Togha, Mansoureh

    2016-06-01

    Several religions recommend periods of fasting. One of the most frequently asked questions of MS patients before the holy month of Ramadan is weather fasting might have an unfavorable effect on their disease course. This debate became more challenging after the publication of experimental studies suggesting that calorie restriction prior to disease induction attenuates disease severity. We conducted this study to assess early and late effects of fasting on the animal model of MS, known as autoimmune encephalomyelitis. EAE was induced in the C57BL/6 mice, using Myelin Oligodendrocyte Glycopeptide  (MOG) 35-55 and they fasted every other day either after the appearance of the first clinical sign or 30 days after disease induction for ten days. Thereafter, the mice were sacrificed for further histological and immunological evaluations. Intermittent fasting after the establishment of EAE did not have any unfavorable effect on the course of disease. Moreover, fasting at the early phase of disease alleviated EAE severity by ameliorating spinal cord demyelination. Fasting suppressed the secretion of IFN-γ, TNF-α and raised IL-10 production in splenocytes. Fasting was also associated with a lower percent of cytotoxicity. Intermittent fasting not only had no unfavorable effect on EAE but also reduced EAE severity if started at early phase of disease.

  16. Shoulder motor performance assessment in the sagittal plane in children with hemiplegia during single joint pointing tasks.

    PubMed

    Formica, Domenico; Petrarca, Maurizio; Rossi, Stefano; Zollo, Loredana; Guglielmelli, Eugenio; Cappa, Paolo

    2014-07-29

    Pointing is a motor task extensively used during daily life activities and it requires complex visuo-motor transformation to select the appropriate movement strategy. The study of invariant characteristics of human movements has led to several theories on how the brain solves the redundancy problem, but the application of these theories on children affected by hemiplegia is limited. This study aims at giving a quantitative assessment of the shoulder motor behaviour in children with hemiplegia during pointing tasks. Eight children with hemiplegia were involved in the study and were asked to perform movements on the sagittal plane with both arms, at low and high speed. Subject movements were recorded using an optoelectronic system; a 4-DOF model of children arm has been developed to calculate kinematic and dynamic variables. A set of evaluation indexes has been extracted in order to quantitatively assess whether and how children modify their motor control strategies when perform movements with the more affected or less affected arm. In low speed movements, no differences can be seen in terms of movement duration and peak velocity between the More Affected arm (MA) and the Less Affected arm (LA), as well as in the main characteristics of movement kinematics and dynamics. As regards fast movements, remarkable differences in terms of strategies of motor control can be observed: while movements with LA did not show any significant difference in Dimensionless Jerk Index (JI) and Dimensionless Torque-change Cost index (TC) between the elevation and lowering phases, suggesting that motor control optimization is similar for movements performed with or against gravity, movements with MA showed a statistically significant increase of both JI and TC during lowering phase. Results suggest the presence of a different control strategy for fast movements in particular during lowering phase. Results suggest that motor control is not able to optimize Jerk and Torque-change cost functions in the same way when controls the two arms, suggesting that children with hemiplegia do not actively control MA lowering fast movements, in order to take advantage of the passive inertial body properties, rather than to attempt its optimal control.

  17. What is the difference between a 2, 3, 4, or 5 °C world and how good are we at telling this difference? Results from ISI-MIP the first Inter-Sectoral Impact Model Intercomparison Project

    NASA Astrophysics Data System (ADS)

    Frieler, K.; Huber, V.; Piontek, F.; Schewe, J.; Serdeczny, O.; Warszawski, L.

    2012-12-01

    The Inter-sectoral Impact Model Intercomparison Project (ISI-MIP) aims to synthesize the state-of-the-art knowledge of climate change impacts at different levels of global warming. Over 25 climate impact modelling teams from around the world, working within the agriculture, water, biomes, infrastructure and health sectors, are collaborating to find answers to the question "What is the difference between a 2, 3, 4, or 5 °C world and how good are we at telling this difference?". The analysis is based on common, bias-corrected climate projections, and socio-economic pathways. The first, fast-tracked phase of the ISI-MIP has a focus on global impact models. The project's experimental design is formulated to distinguish the uncertainty introduced by the impact models themselves, from the inherent uncertainty in the climate projections and the variety of plausible socio-economic futures. Novel metrics, developed to emphasize societal impacts, will be used to identify regional 'hot-spots' of climate change impacts, as well as to quantify the cross-sectoral impact of the increasing frequency of extreme events in future climates. We present here first results from the Fast-Track phase of the project covering impact simulations in the biomes, agriculture and water sectors, in which the societal impacts of climate change are quantified for different levels of global warming. We also discuss the design of the scenario set-up and impact indicators chosen to suit the unique cross-sectoral, multi-model nature of the project.

  18. Fast ion transport during applied 3D magnetic perturbations on DIII-D

    DOE PAGES

    Van Zeeland, Michael A.; Ferraro, Nathaniel M.; Grierson, Brian A.; ...

    2015-06-26

    In this paper, measurements show fast ion losses correlated with applied three-dimensional (3D) fields in a variety of plasmas ranging from L-mode to resonant magnetic perturbation (RMP) edge localized mode (ELM) suppressed H-mode discharges. In DIII-D L-mode discharges with a slowly rotatingmore » $n=2$ magnetic perturbation, scintillator detector loss signals synchronized with the applied fields are observed to decay within one poloidal transit time after beam turn-off indicating they arise predominantly from prompt loss orbits. Full orbit following using M3D-C1 calculations of the perturbed fields and kinetic profiles reproduce many features of the measured losses and points to the importance of the applied 3D field phase with respect to the beam injection location in determining the overall impact on prompt beam ion loss. Modeling of these results includes a self-consistent calculation of the 3D perturbed beam ion birth profiles and scrape-off-layer ionization, a factor found to be essential to reproducing the experimental measurements. Extension of the simulations to full slowing down timescales, including fueling and the effects of drag and pitch angle scattering, show the applied $n=3$ RMPs in ELM suppressed H-mode plasmas can induce a significant loss of energetic particles from the core. With the applied $n=3$ fields, up to 8.4% of the injected beam power is predicted to be lost, compared to 2.7% with axisymmetric fields only. These fast ions, originating from minor radii $$\\rho >0.7$$ , are predicted to be primarily passing particles lost to the divertor region, consistent with wide field-of-view infrared periscope measurements of wall heating in $n=3$ RMP ELM suppressed plasmas. Edge fast ion $${{\\text{D}}_{\\alpha}}$$ (FIDA) measurements also confirm a large change in edge fast ion profile due to the $n=3$ fields, where the effect was isolated by using short 50 ms RMP-off periods during which ELM suppression was maintained yet the fast ion profile was allowed to recover. Finally, the role of resonances between fast ion drift motion and the applied 3D fields in the context of selectively targeting regions of fast ion phase space is also discussed.« less

  19. Shear wave anisotropy in northwestern South America and its link to the Caribbean and Nazca subduction geodynamics

    NASA Astrophysics Data System (ADS)

    Idárraga-García, J.; Kendall, J.-M.; Vargas, C. A.

    2016-09-01

    To investigate the subduction dynamics in northwestern South America, we measured SKS and slab-related local S splitting at 38 seismic stations. Comparison between the delay times of both phases shows that most of the SKS splitting is due to entrained mantle flow beneath the subducting Nazca and Caribbean slabs. On the other hand, the fast polarizations of local S-waves are consistently aligned with regional faults, which implies the existence of a lithosphere-confined anisotropy in the overriding plate, and that the mantle wedge is not contributing significantly to the splitting. Also, we identified a clear change in SKS fast directions at the trace of the Caldas Tear (˜5°N), which represents a variation in the subduction style. To the north of ˜5°N, fast directions are consistently parallel to the flat subduction of the Caribbean plate-Panama arc beneath South America, while to the south fast polarizations are subparallel to the Nazca-South America subduction direction. A new change in the SKS splitting pattern is detected at ˜2.8°N, which is related to another variation in the subduction geometry marked by the presence of a lithosphere-scale tearing structure, named here as Malpelo Tear; in this region, NE-SW-oriented SKS fast directions are consistent with the general dip direction of the underthrusting of the Carnegie Ridge beneath South America. Further inland, this NE-SW-trending mantle flow continues beneath the Eastern Cordillera of Colombia and Merida Andes of Venezuela. Finally, our results suggest that the subslab mantle flow in northwestern South America is strongly controlled by the presence of lithospheric tearing structures.

  20. Fast correction approach for wavefront sensorless adaptive optics based on a linear phase diversity technique.

    PubMed

    Yue, Dan; Nie, Haitao; Li, Ye; Ying, Changsheng

    2018-03-01

    Wavefront sensorless (WFSless) adaptive optics (AO) systems have been widely studied in recent years. To reach optimum results, such systems require an efficient correction method. This paper presents a fast wavefront correction approach for a WFSless AO system mainly based on the linear phase diversity (PD) technique. The fast closed-loop control algorithm is set up based on the linear relationship between the drive voltage of the deformable mirror (DM) and the far-field images of the system, which is obtained through the linear PD algorithm combined with the influence function of the DM. A large number of phase screens under different turbulence strengths are simulated to test the performance of the proposed method. The numerical simulation results show that the method has fast convergence rate and strong correction ability, a few correction times can achieve good correction results, and can effectively improve the imaging quality of the system while needing fewer measurements of CCD data.

  1. Detailed study of upper mantle anisotropy in the upper mantle of eastern North America

    NASA Astrophysics Data System (ADS)

    Chen, X.; Levin, V. L.; Li, Y.

    2016-12-01

    We collected observations of core-refracted shear waves on a 1300 km long array crossing the eastern part of the North American continent from James Bay to the Fundy Basin. We combine data from the Earthscope Transportable Array, Canadian and US permanent observatories, and the recently completed Earthscope FlexArray QMIII.Past studies found ample evidence for directional dependence (anisotropy) of seismic wave speed in the upper mantle of this region. However, to date the lateral spacing of seismic observatories made direct comparisons between anisotropic structure and tectonic divisions evident on the surface challenging. With instruments spacing 50 km, and less near major tectonic boundaries such as the Grenville Front and the Appalachian Front, we can discriminate between gradual changes in anisotropic properties due to asthenospheric flow variations, and abrupt and localized changes likely to arise from juxtaposition of distinct lithospheric blocks.To insure lateral consistency of measurements we selected core-refracted shear waves that were observed over the entire length of our array. Also, since directional dependence of splitting parameters is a well recognized signature of vertical changes in anisotropic properties we examine observations from different directions, and look for systematic changes.Most locations show evidence for some degree of splitting in observed shear waves. Delays between fast and slow components estimated using rotation-correlation method range from 0.3 to 1.5 s. At most sites delay values vary considerably between individual phases measured. Fast polarizations are predominantly NE-SW, which agrees with numerous past studies of the region. Systematic directional dependence of fast polarization is seen at all sites we studied. Furthermore, the values of fast polarization appear to be similar along the entire array for individual events but vary from event to event. Both of these observations are consistent with the previously proposed notion of layered anisotropy in the upper mantle of the North American continent. We find localized changes in splitting parameters at the Grenville Front. The Appalachian Front, or the internal divisions of the Appalachian Orogen do not have obvious changes in splitting parameters associated with them.

  2. Joint angles during successful and unsuccessful tennis serves kinematics of tennis serve.

    PubMed

    Göktepe, Ayhan; Ak, Emre; Söğüt, Mustafa; Karabörk, Hakan; Korkusuz, Feza

    2009-01-01

    The aim of this study was to investigate the joint angle differences in successful and unsuccessful tennis serves of junior tennis players. Nine healthy junior tennis players (5 girls, 4 boys; mean age 11.8+/-0.8 years; height 153.6+/-7.2 cm; body mass index 42.3+/-4.1 kg; playing experience 6.2+/-1.5 years) volunteered to participate in this study. They were asked to perform tennis serves as fast as they can as if they were in an actual game. Successful and unsuccessful serves were recorded using two high speed cameras and then analyzed using Pictran software. Angle changes in pre-impact, impact and post-impact phases were compared. The results of paired sample t-tests revealed nosignificant differences between successful and unsuccessful tennis serves in all three phases. This study failed to show differences between successful and unsuccessful tennis serves in pre-impact, impact and post-impact phases. However, future research with more detailed analyses would be needed to reveal the possible changes in the joints while serving.

  3. Ingestive behavior and body temperature during the ovarian cycle in normotensive and hypertensive rats.

    PubMed

    Rashotte, Michael E; Ackert, Allison M; Overton, J Michael

    2002-01-01

    The relationship between ingestive behavior (eating + drinking) and core body temperature (T(b)) in naturally cycling female rats was compared in a normotensive strain (Sprague-Dawley; SD) and a hypertensive strain reputed to have chronically elevated T(b) (spontaneously hypertensive rats; SHR). T(b) (by telemetry) and ingestive behavior (automated recording) were quantified every 30 s. Ingestive behavior and T(b) were related on all days of the ovarian cycle in both strains, but the strength of that relationship was reduced on the day of estrus (E) compared with nonestrous days. Several strain differences in T(b) were found as well. In SHR, dark-phase T(b) was elevated on E, whereas SD remained at the lower nonestrous values. Fluctuations in dark-phase T(b) were correlated with ingestive behavior in both strains but had greater amplitude in SHR except on E. Short-term fasting or sucrose availability did not eliminate elevated dark-phase T(b) on E in SHR. We propose that estrus-related changes unique to SHR may indicate heightened thermal reactivity to hormonal changes, ingestive behavior, and general locomotor activity.

  4. Effect of alcohol consumption on hormones involved in carbohydrate and lipid metabolism in premenopausal women

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Law, J.S.; Bhathena, S.J.; Kim, Y.C.

    Alcohol consumption alters carbohydrate and lipid metabolism which are in part regulated by pancreatic and adrenal hormones. The menstrual cycle per se produces changes in several peptide and steroid hormones besides the sex hormones. The authors investigated the effect of moderate alcohol consumption on plasma hormone levels in 40 premenopausal women. The subjects were fed controlled diets containing 35% of calories from fat. In a random crossover design women were given either alcohol or a soft-drink of equal caloric value for 3 menstrual cycles. Fasting blood samples were collected in the third cycle during follicular, ovulatory and luteal phases. Plasmamore » dehydroepiandrosterone-sulphate (DHEA-S), insulin, glucagon and cortisol levels were measured by radioimmunoassay. Moderate alcohol consumption had no effect on plasma insulin and DHEA-S levels but significantly increased glucagon and cortisol levels. Menstrual cycle per se affected plasma glucagon level in that the levels were higher during follicular phase than luteal phase. Thus, changes in carbohydrate and lipid metabolism following alcohol consumption are mediated in part by alterations in hormones involved in their metabolism.« less

  5. Optical Diagnostics of Solution Crystal Growth

    NASA Technical Reports Server (NTRS)

    Kim, Yongkee; Reddy, B. R.; George, T. G.; Lal, R. B.

    1996-01-01

    Non-contact optical techniques such as, optical heterodyne, ellipsometry and interferometry, for real time in-situ monitoring of solution crystal growth are demonstrated. Optical heterodyne technique has the capability of measuring the growth rate as small as 1A/sec. In a typical Michelson interferometer set up, the crystal is illuminated by a Zeeman laser with frequency omega(sub 1) and the reference beam with frequency omega(sub 2). As the crystal grows, the phase of the rf signal changes with respect to the reference beam and this phase change is related to the crystal growth rate. This technique is demonstrated with two examples: (1) by measuring the copper tip expansion/shrinkage rate and (2) by measuring the crystal growth rate of L-Arginine Phosphate (LAP). The first test shows that the expansion/shrinkage rate of copper tip was fast in the beginning, and gets slower as the expansion begins to stabilize with time. In crystal growth, the phase change due the crystal growth is measured using a phase meter and a strip chart recorder. Our experimental results indicate a varied growth rate from 69.4 to 92.6A per sec. The ellipsometer is used to study the crystal growth interface. From these measurements and a theoretical modeling of the interface, the various optical parameters can be deduced. Interferometry can also be used to measure the growth rate and concentration gradient in the vicinity of the crystal.

  6. Simultaneous fast scanning XRF, dark field, phase-, and absorption contrast tomography

    NASA Astrophysics Data System (ADS)

    Medjoubi, Kadda; Bonissent, Alain; Leclercq, Nicolas; Langlois, Florent; Mercère, Pascal; Somogyi, Andrea

    2013-09-01

    Scanning hard X-ray nanoprobe imaging provides a unique tool for probing specimens with high sensitivity and large penetration depth. Moreover, the combination of complementary techniques such as X-ray fluorescence, absorption, phase contrast and dark field imaging gives complete quantitative information on the sample structure, composition and chemistry. The multi-technique "FLYSCAN" data acquisition scheme developed at Synchrotron SOLEIL permits to perform fast continuous scanning imaging and as such makes scanning tomography techniques feasible in a time-frame well-adapted to typical user experiments. Here we present the recent results of simultaneous fast scanning multi-technique tomography performed at Soleil. This fast scanning scheme will be implemented at the Nanoscopium beamline for large field of view 2D and 3D multimodal imaging.

  7. Interpretation of fast-ion signals during beam modulation experiments

    DOE PAGES

    Heidbrink, W. W.; Collins, C. S.; Stagner, L.; ...

    2016-07-22

    Fast-ion signals produced by a modulated neutral beam are used to infer fast-ion transport. The measured quantity is the divergence of perturbed fast-ion flux from the phase-space volume measured by the diagnostic, ∇•more » $$\\bar{Γ}$$. Since velocity-space transport often contributes to this divergence, the phase-space sensitivity of the diagnostic (or “weight function”) plays a crucial role in the interpretation of the signal. The source and sink make major contributions to the signal but their effects are accurately modeled by calculations that employ an exponential decay term for the sink. Recommendations for optimal design of a fast-ion transport experiment are given, illustrated by results from DIII-D measurements of fast-ion transport by Alfv´en eigenmodes. Finally, the signal-to-noise ratio of the diagnostic, systematic uncertainties in the modeling of the source and sink, and the non-linearity of the perturbation all contribute to the error in ∇•$$\\bar{Γ}$$.« less

  8. Probing Photoinduced Structural Phase Transitions by Fast or Ultra-Fast Time-Resolved X-Ray Diffraction

    NASA Astrophysics Data System (ADS)

    Cailleau, Hervé Collet, Eric; Buron-Le Cointe, Marylise; Lemée-Cailleau, Marie-Hélène Koshihara, Shin-Ya

    A new frontier in the field of structural science is the emergence of the fast and ultra-fast X-ray science. Recent developments in time-resolved X-ray diffraction promise direct access to the dynamics of electronic, atomic and molecular motions in condensed matter triggered by a pulsed laser irradiation, i.e. to record "molecular movies" during the transformation of matter initiated by light pulse. These laser pump and X-ray probe techniques now provide an outstanding opportunity for the direct observation of a photoinduced structural phase transition as it takes place. The use of X-ray short-pulse of about 100ps around third-generation synchrotron sources allows structural investigations of fast photoinduced processes. Other new X-ray sources, such as laser-produced plasma ones, generate ultra-short pulses down to 100 fs. This opens the way to femtosecond X-ray crystallography, but with rather low X-ray intensities and more limited experimental possibilities at present. However this new ultra-fast science rapidly progresses around these sources and new large-scale projects exist. It is the aim of this contribution to overview the state of art and the perspectives of fast and ultra-fast X-ray scattering techniques to study photoinduced phase transitions (here, the word ultra-fast is used for sub-picosecond time resolution). In particular we would like to largely present the contribution of crystallographic methods in comparison with optical methods, such as pump-probe reflectivity measurements, the reader being not necessary familiar with X-ray scattering. Thus we want to present which type of physical information can be obtained from the positions of the Bragg peaks, their intensity and their shape, as well as from the diffuse scattering beyond Bragg peaks. An important physical feature is to take into consideration the difference in nature between a photoinduced phase transition and conventional homogeneous photoinduced chemical or biochemical processes where molecules transform in an independent way each other. Actually the photoinduced phase transition with the establishment of the new electronic and structural oscopic order is preceded by precursor co-operative phenomena due to the formation of nano-scale correlated objects. These are the counterpart of pre-transitional fluctuations at thermal equilibrium which take place above the transition temperature (short range order preceding long range one). Moreover ultra-fast X-ray scattering will play a central role within the fascinating field of manipulating coherence, for instance to directly observe coherent atomic motions induced by a light pulse, such as optical phonons. In the first part of this contribution we present what experimental features are accessible by X-ray scattering to describe the physical picture for a photoinduced structural phase transition. The second part shows how a time-resolved X-ray scattering experiment can be performed with regards to the different pulsed X-ray sources. The first time-resolved X-ray diffraction experiments on photoinduced phase transitions are described and discussed in the third part. Finally some challenges for future are briefly indicated in the conclusion.

  9. Surge of a Complex Glacier System - The Current Surge of the Bering-Bagley Glacier System, Alaska

    NASA Astrophysics Data System (ADS)

    Herzfeld, U. C.; McDonald, B.; Trantow, T.; Hale, G.; Stachura, M.; Weltman, A.; Sears, T.

    2013-12-01

    Understanding fast glacier flow and glacial accelerations is important for understanding changes in the cryosphere and ultimately in sea level. Surge-type glaciers are one of four types of fast-flowing glaciers --- the other three being continuously fast-flowing glaciers, fjord glaciers and ice streams --- and the one that has seen the least amount of research. The Bering-Bagley Glacier System, Alaska, the largest glacier system in North America, surged in 2011 and 2012. Velocities decreased towards the end of 2011, while the surge kinematics continued to expand. A new surge phase started in summer and fall 2012. In this paper, we report results from airborne observations collected in September 2011, June/July and September/October 2012 and in 2013. Airborne observations include simultaneously collected laser altimeter data, videographic data, GPS data and photographic data and are complemented by satellite data analysis. Methods range from classic interpretation of imagery to analysis and classification of laser altimeter data and connectionist (neural-net) geostatistical classification of concurrent airborne imagery. Results focus on the characteristics of surge progression in a large and complex glacier system (as opposed to a small glacier with relatively simple geometry). We evaluate changes in surface elevations including mass transfer and sudden drawdowns, crevasse types, accelerations and changes in the supra-glacial and englacial hydrologic system. Supraglacial water in Bering Glacier during Surge, July 2012 Airborne laser altimeter profile across major rift in central Bering Glacier, Sept 2011

  10. Effect of Alternate-Day Fasting on Weight Loss, Weight Maintenance, and Cardioprotection Among Metabolically Healthy Obese Adults: A Randomized Clinical Trial.

    PubMed

    Trepanowski, John F; Kroeger, Cynthia M; Barnosky, Adrienne; Klempel, Monica C; Bhutani, Surabhi; Hoddy, Kristin K; Gabel, Kelsey; Freels, Sally; Rigdon, Joseph; Rood, Jennifer; Ravussin, Eric; Varady, Krista A

    2017-07-01

    Alternate-day fasting has become increasingly popular, yet, to date, no long-term randomized clinical trials have evaluated its efficacy. To compare the effects of alternate-day fasting vs daily calorie restriction on weight loss, weight maintenance, and risk indicators for cardiovascular disease. A single-center randomized clinical trial of obese adults (18 to 64 years of age; mean body mass index, 34) was conducted between October 1, 2011, and January 15, 2015, at an academic institution in Chicago, Illinois. Participants were randomized to 1 of 3 groups for 1 year: alternate-day fasting (25% of energy needs on fast days; 125% of energy needs on alternating "feast days"), calorie restriction (75% of energy needs every day), or a no-intervention control. The trial involved a 6-month weight-loss phase followed by a 6-month weight-maintenance phase. The primary outcome was change in body weight. Secondary outcomes were adherence to the dietary intervention and risk indicators for cardiovascular disease. Among the 100 participants (86 women and 14 men; mean [SD] age, 44 [11] years), the dropout rate was highest in the alternate-day fasting group (13 of 34 [38%]), vs the daily calorie restriction group (10 of 35 [29%]) and control group (8 of 31 [26%]). Mean weight loss was similar for participants in the alternate-day fasting group and those in the daily calorie restriction group at month 6 (-6.8% [95% CI, -9.1% to -4.5%] vs -6.8% [95% CI, -9.1% to -4.6%]) and month 12 (-6.0% [95% CI, -8.5% to -3.6%] vs -5.3% [95% CI, -7.6% to -3.0%]) relative to those in the control group. Participants in the alternate-day fasting group ate more than prescribed on fast days, and less than prescribed on feast days, while those in the daily calorie restriction group generally met their prescribed energy goals. There were no significant differences between the intervention groups in blood pressure, heart rate, triglycerides, fasting glucose, fasting insulin, insulin resistance, C-reactive protein, or homocysteine concentrations at month 6 or 12. Mean high-density lipoprotein cholesterol levels at month 6 significantly increased among the participants in the alternate-day fasting group (6.2 mg/dL [95% CI, 0.1-12.4 mg/dL]), but not at month 12 (1.0 mg/dL [95% CI, -5.9 to 7.8 mg/dL]), relative to those in the daily calorie restriction group. Mean low-density lipoprotein cholesterol levels were significantly elevated by month 12 among the participants in the alternate-day fasting group (11.5 mg/dL [95% CI, 1.9-21.1 mg/dL]) compared with those in the daily calorie restriction group. Alternate-day fasting did not produce superior adherence, weight loss, weight maintenance, or cardioprotection vs daily calorie restriction. clinicaltrials.gov Identifier: NCT00960505.

  11. Accelerating acquisition strategies for low-frequency conductivity imaging using MREIT

    NASA Astrophysics Data System (ADS)

    Song, Yizhuang; Seo, Jin Keun; Chauhan, Munish; Indahlastari, Aprinda; Ashok Kumar, Neeta; Sadleir, Rosalind

    2018-02-01

    We sought to improve efficiency of magnetic resonance electrical impedance tomography data acquisition so that fast conductivity changes or electric field variations could be monitored. Undersampling of k-space was used to decrease acquisition times in spin-echo-based sequences by a factor of two. Full MREIT data were reconstructed using continuity assumptions and preliminary scans gathered without current. We found that phase data were reconstructed faithfully from undersampled data. Conductivity reconstructions of phantom data were also possible. Therefore, undersampled k-space methods can potentially be used to accelerate MREIT acquisition. This method could be an advantage in imaging real-time conductivity changes with MREIT.

  12. Physiological validation of photochemical reflectance index (PRI) as a photosynthetic parameter using Arabidopsis thaliana mutants.

    PubMed

    Kohzuma, Kaori; Hikosaka, Kouki

    2018-03-25

    Non-photochemical quenching (NPQ) is the most important photoprotective system in higher plants. NPQ can be divided into several steps according to the timescale of relaxation of chlorophyll fluorescence after reaching a steady state (i.e., the fast phase, qE; middle phase, qZ or qT; and slow phase, qI). The dissipation of excess energy as heat during the xanthophyll cycle, a large component of NPQ, is detectable during the fast to middle phase (sec to min). Although thermal dissipation is primarily investigated using indirect methods such as chlorophyll a fluorescence measurements, such analyses require dark adaptation or the application of a saturating pulse during measurement, making it difficult to continuously monitor this process. Here, we designed an unconventional technique for real-time monitoring of changes in thylakoid lumen pH (as reflected by changes in xanthophyll pigment content) based on the photochemical reflectance index (PRI), which we estimated by measuring light-driven leaf reflectance at 531 nm. We analyzed two Arabidopsis thaliana mutants, npq1 (unable to convert violaxanthin to zeaxanthin due to inhibited violaxanthin de-epoxidase [VDE] activity) and npq4 (lacking PsbS protein), to uncover the regulator of the PRI. The PRI was variable in wild-type and npq4 plants, but not in npq1, indicating that the PRI is related to xanthophyll cycle-dependent thermal energy quenching (qZ) rather than the linear electron transport rate or NPQ. In situ lumen pH substitution using a pH-controlled buffer solution caused a shift in PRI. These results suggest that the PRI reflects only xanthophyll cycle conversion and is therefore a useful parameter for monitoring thylakoid lumen pH (reflecting VDE activity) in vivo. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Adiabatic description of long range frequency sweeping

    NASA Astrophysics Data System (ADS)

    Breizman, Boris; Nyqvist, Robert; Lilley, Matthew

    2012-10-01

    A theoretical framework is developed to describe long range frequency sweeping events in the 1D electrostatic bump-on-tail model with fast particle sources and collisions. The model includes three collision operators (Krook, drag (dynamical friction) and velocity space diffusion), and allows for a general shape of the fast particle distribution function. The behavior of phase space holes and clumps is analyzed, and the effect of particle trapping due to separatrix expansion is discussed. With a fast particle distribution function whose slope decays above the resonant phase velocity, hooked frequency sweeping is found for holes in the presence of drag collisions alone.

  14. Is fledging in king penguin chicks related to changes in metabolic or endocrinal status?

    PubMed

    Corbel, Hélène; Morlon, Francis; Groscolas, René

    2008-02-01

    This study examines the possibility that metabolic or endocrinal factors initiate fledging in the king penguin, a semi-altricial seabird species breeding a single chick on the ground. Chick fledging (departure to sea) occurred 5d after completion of the molt. It was preceded by a 16d fasting period and by a 7-fold increase in locomotor activity. From the measurement of the plasma concentration of metabolites and of glucagon and insulin, pre-fledging king penguin chicks were found to adapt to fasting in a classical way, i.e. by sparing body protein and mobilizing fat stores. At fledging, chicks were in phase II of fasting and their departure to sea was not stimulated by reaching critical energy depletion (phase III), in contrast to that which has been reported in breeding-fasting adults. The plasma level of corticosterone remained unchanged throughout the whole pre-fledging period, providing no support for a role of this stress-hormone in the facilitation of fledging. Thus, king penguin fledglings did not appear to be environmentally or nutritionally stressed. The plasma levels of thyroid hormones were elevated during the pre-fledging molt, in accordance with their key role in molt control in adult penguins. These levels declined by the time of the molt end, the plasma level of T4 thereafter being directly related to the time left before fledging. These results do not support the view that chronically elevated levels of thyroid hormones are required for the energy-demanding transition between being ashore and in cold water, but they suggest that the maintenance of high T4 levels may delay fledging.

  15. Microseismic techniques for avoiding induced seismicity during fluid injection

    DOE PAGES

    Matzel, Eric; White, Joshua; Templeton, Dennise; ...

    2014-01-01

    The goal of this research is to develop a fundamentally better approach to geological site characterization and early hazard detection. We combine innovative techniques for analyzing microseismic data with a physics-based inversion model to forecast microseismic cloud evolution. The key challenge is that faults at risk of slipping are often too small to detect during the site characterization phase. Our objective is to devise fast-running methodologies that will allow field operators to respond quickly to changing subsurface conditions.

  16. Effects of Ramadan on physical capacities of North African boys fasting for the first time

    PubMed Central

    Fenneni, Mohamed A.; Latiri, Imed; Aloui, Asma; Rouatbi, Sonia; Saafi, Mohamed A.; Bougmiza, Iheb; Chamari, Karim; Saad, Helmi Ben

    2014-01-01

    Introduction Most of the literature related to the effects of Ramadan fasting on physical performance has focused on adults, and only three studies have examined its impact on children’s physical performance. Aims To examine the effects of Ramadan fasting on first-time fasting boys’ performance in short-term explosive exercises [vertical and horizontal jump tests (VJT and HJT), 20-m and 30-m sprints and medicine-ball throw (MBT)], as well as in sub-maximal endurance [6-min walking distance (6MWD) measured during the 6-min walk test (6MWT)]. Methods Eighteen Tunisian boys [mean±standard deviation (SD) of age and body mass (BM): 11.9±0.8 y and 55.4±18.2 kg, respectively] were included. The experimental design comprised four testing phases: 2-weeks before Ramadan (BR), the end of the second week (R2) and the fourth week (R4) of Ramadan, and 10–12 days after the end of Ramadan (AR). At each phase, boys performed two test sessions in the afternoon (15:00–17:00 h) interrupted by 48 h of recovery (first test session: BM, VJT, HJT, and 20-m and 30-m sprint tests; second session: MBT and 6MWT). The study was conducted during the summer of 2012 from July 5 to August 29. Results 6MWDs (m) were significantly shorter during R2 (652±101) and R4 (595±123) compared to BR (697±86) and came back to baseline values AR. BM (kg) mean±SD did not significantly change during R2 (52±15) and during R4 (53±15) compared to BR (55±17), and short-term explosive performances were unchanged throughout the study. Conclusion In non-athletic children, first-ever Ramadan fasting impairs sub-maximal aerobic capacity but has no effect on BM or short-term explosive performance. PMID:25261691

  17. Effects of Ramadan on physical capacities of North African boys fasting for the first time.

    PubMed

    Fenneni, Mohamed A; Latiri, Imed; Aloui, Asma; Rouatbi, Sonia; Saafi, Mohamed A; Bougmiza, Iheb; Chamari, Karim; Ben Saad, Helmi

    2014-01-01

    Most of the literature related to the effects of Ramadan fasting on physical performance has focused on adults, and only three studies have examined its impact on children's physical performance. To examine the effects of Ramadan fasting on first-time fasting boys' performance in short-term explosive exercises [vertical and horizontal jump tests (VJT and HJT), 20-m and 30-m sprints and medicine-ball throw (MBT)], as well as in sub-maximal endurance [6-min walking distance (6MWD) measured during the 6-min walk test (6MWT)]. Eighteen Tunisian boys [mean±standard deviation (SD) of age and body mass (BM): 11.9±0.8 y and 55.4±18.2 kg, respectively] were included. The experimental design comprised four testing phases: 2-weeks before Ramadan (BR), the end of the second week (R2) and the fourth week (R4) of Ramadan, and 10-12 days after the end of Ramadan (AR). At each phase, boys performed two test sessions in the afternoon (15:00-17:00 h) interrupted by 48 h of recovery (first test session: BM, VJT, HJT, and 20-m and 30-m sprint tests; second session: MBT and 6MWT). The study was conducted during the summer of 2012 from July 5 to August 29. 6MWDs (m) were significantly shorter during R2 (652±101) and R4 (595±123) compared to BR (697±86) and came back to baseline values AR. BM (kg) mean±SD did not significantly change during R2 (52±15) and during R4 (53±15) compared to BR (55±17), and short-term explosive performances were unchanged throughout the study. In non-athletic children, first-ever Ramadan fasting impairs sub-maximal aerobic capacity but has no effect on BM or short-term explosive performance.

  18. Dysfunction in gastric myoelectric and motor activity in Helicobacter pylori positive gastritis patients with non-ulcer dyspesia.

    PubMed

    Thor, P; Lorens, K; Tabor, S; Herman, R; Konturek, J W; Konturek, S J

    1996-09-01

    Helicobacter pylori (Hp) infection has been shown to affect gastric acid secretion and the somatostatin-gastrin ratio but its effects on gastric motility have not been evaluated. This study was carried out in 12 patients (10 males and 2 females, mean age 33 +/- 6 yrs) who underwent endoscopy and Campylobacter-like Organism (CLO)-test. All patients were found initially to be Hp positive according to CLO-test. Gastric emptying was evaluated by measuring antral diameter with ultrasonography (Hitachi EUB 240) in fasted and fed patients. Electrogastrography (EGG) with antral manometry were done 5 h before and 4 h after a meal before the therapy and one month after the eradication with triple therapy (lanzoprazole 30 mg daily- 2 x 250 mg clarithromycin 500 mg t.i.d.-3 x 500 mg and metronidazole 500 mg b.i.d.-2 x 500 mg). In Hp positive patients before the triple therapy the mean fasted antral diameter was 4.3 cm2, initial EGG showed significant dysrhythmia of electrical control activity (ECA) with tachygastria up to 25% of recording time in 9 of 12 Hp positive patients without normal increase of the power of signal in any of tested subjects. In 7 Hp positive fasted antral manometry failed to exhibit gastric phases III of the migrating motor complex (MMC). Hp eradication was accomplished in 10 of 12 examined patients and this was followed by a decrease in tachygastria to 3 cpm rhythm with an increase of the ECA power after meal. Phase III of MMC was observed again in 7 Hp negative patients with a decrease of fasted antral diameter (p < 0.05). Fasted and fed antral motility pattern increased after eradication. Two patients remained Hp positive after standard therapy. We conclude that most symptomatic non ulcer dyspeptic Hp positive patients show changes in ECA and antral hypomotility that are associated with Hp infections.

  19. Modification of Agility Running Technique in Reaction to a Defender in Rugby Union

    PubMed Central

    Wheeler, Keane W.; Sayers, Mark G.L.

    2010-01-01

    Three-dimensional kinematic analysis examined agility running technique during pre-planned and reactive performance conditions specific to attacking ball carries in rugby union. The variation to running technique of 8 highly trained rugby union players was compared between agility conditions (pre-planned and reactive) and also agility performance speeds (fast, moderate and slow). Kinematic measures were used to determine the velocity of the centre of mass (COM) in the anteroposterior (running speed) and mediolateral (lateral movement speed) planes. The position of foot-strike and toe-off was also examined for the step prior to the agility side- step (pre-change of direction phase) and then the side-step (change of direction phase). This study demonstrated that less lateral movement speed towards the intended direction change occurred during reactive compared to pre-planned conditions at pre-change of direction (0.08 ± 0.28 m·s-1 and 0.42 ± 0.25 m·s-1, respectively) and change of direction foot-strikes (0.25 ± 0.42 m·s-1 and 0.69 ± 0.43 m·s-1, respectively). Less lateral movement speed during reactive conditions was associated with greater lateral foot displacement (44.52 ± 6.10% leg length) at the change of direction step compared to pre-planned conditions (41.35 ± 5.85%). Importantly, the anticipation abilities during reactive conditions provided a means to differentiate between speeds of agility performance, with faster performances displaying greater lateral movement speed at the change of direction foot- strike (0.52 ± 0.34 m·s-1) compared to moderate (0.20 ± 0.37 m·s-1) and slow (-0.08 ± 0.31 m·s-1). The changes to running technique during reactive conditions highlight the need to incorporate decision-making in rugby union agility programs. Key points Changes to running technique occur when required to make a decision. Fast agility performers use different stepping strategies in reactive conditions. Decision-making must be incorporated in agility training programs. PMID:24149639

  20. Benchmark of multi-phase method for the computation of fast ion distributions in a tokamak plasma in the presence of low-amplitude resonant MHD activity

    NASA Astrophysics Data System (ADS)

    Bierwage, A.; Todo, Y.

    2017-11-01

    The transport of fast ions in a beam-driven JT-60U tokamak plasma subject to resonant magnetohydrodynamic (MHD) mode activity is simulated using the so-called multi-phase method, where 4 ms intervals of classical Monte-Carlo simulations (without MHD) are interlaced with 1 ms intervals of hybrid simulations (with MHD). The multi-phase simulation results are compared to results obtained with continuous hybrid simulations, which were recently validated against experimental data (Bierwage et al., 2017). It is shown that the multi-phase method, in spite of causing significant overshoots in the MHD fluctuation amplitudes, accurately reproduces the frequencies and positions of the dominant resonant modes, as well as the spatial profile and velocity distribution of the fast ions, while consuming only a fraction of the computation time required by the continuous hybrid simulation. The present paper is limited to low-amplitude fluctuations consisting of a few long-wavelength modes that interact only weakly with each other. The success of this benchmark study paves the way for applying the multi-phase method to the simulation of Abrupt Large-amplitude Events (ALE), which were seen in the same JT-60U experiments but at larger time intervals. Possible implications for the construction of reduced models for fast ion transport are discussed.

  1. A fast two-plus-one phase-shifting algorithm for high-speed three-dimensional shape measurement system

    NASA Astrophysics Data System (ADS)

    Wang, Wenyun; Guo, Yingfu

    2008-12-01

    Phase-shifting methods for 3-D shape measurement have long been employed in optical metrology for their speed and accuracy. For real-time, accurate, 3-D shape measurement, a four-step phase-shifting algorithm which has the advantage of its symmetry is a good choice; however, its measurement error is sensitive to any fringe image errors caused by various sources such as motion blur. To alleviate this problem, a fast two-plus-one phase-shifting algorithm is proposed in this paper. This kind of technology will benefit many applications such as medical imaging, gaming, animation, computer vision, computer graphics, etc.

  2. Charge Exchange Contribution to the Decay of the Ring Current, Measured by Energetic Neutral Atoms (ENAs)

    NASA Technical Reports Server (NTRS)

    Jorgensen, A. M.; Henderson, M. G.; Roelof, E. C.; Reeves, G. D.; Spence, H. E.

    2001-01-01

    In this paper we calculate the contribution of charge exchange to the decay of the ring current. Past works have suggested that charge exchange of ring current protons is primarily responsible for the decay of the ring current during the late recovery phase, but there is still much debate about the fast decay of the early recovery phase. We use energetic neutral atom (ENA) measurements from Polar to calculate the total ENA energy escape. To get the total ENA escape we apply a forward modeling technique, and to estimate the total ring current energy escape we use the Dessler-Parker-Sckopke relationship. We find that during the late recovery phase of the March 10, 1998 storm ENAs with energies greater than 17.5 keV can account for 75% of the estimated energy loss from the ring current. During the fast recovery the measured ENAs can only account for a small portion of the total energy loss. We also find that the lifetime of the trapped ions is significantly shorter during the fast recovery phase than during the late recovery phase, suggesting that different processes are operating during the two phases.

  3. Solar demonstration project in a fast-food restaurant

    NASA Astrophysics Data System (ADS)

    McClenahan, D.

    1980-11-01

    The results of a two-phase program in which the first phase included the successful use of heat reclamation equipment and energy conservation techniques at a typical fast-food restaurant are described. The project's second phase involved the engineering, designing, installation and interfacing of a solar collector system at the facility. The report will help to serve as a guide for other restaurants around the state, and possibly the nation, which wish to install energy saving systems, or adopt energy-saving techniques, geared to their special needs and equipment.

  4. Novel Optical Processor for Phased Array Antenna.

    DTIC Science & Technology

    1992-10-20

    parallel glass slide into the signal beam optical loop. The parallel glass acts like a variable phase shifter to the signal beam simulating phase drift...A list of possible designs are given as follows , _ _ Velocity fa (100dB/cm) Lumit Wavelength I M2I1 TeO2 Longi 4.2 /m/ns about 3 GHz 1.4 4m 34 Fast...subject to achievable acoustic frequency, the preferred materials are the slow shear wave in TeO2 , the fast shear wave in TeO2 or the shear waves in

  5. Ultrafast Electric Field Pulse Control of Giant Temperature Change in Ferroelectrics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Y.; Liu, S.; Lindenberg, A. M.

    There is a surge of interest in developing environmentally friendly solid-state-based cooling technology. Here, we point out that a fast cooling rate (≈ 10 11 K/s) can be achieved by driving solid crystals to a high-temperature phase with a properly designed electric field pulse. Specifically, we predict that an ultrafast electric field pulse can cause a giant temperature decrease up to 32 K in PbTiO 3 occurring on few picosecond time scales. Here, we explain the underlying physics of this giant electric field pulse-induced temperature change with the concept of internal energy redistribution: the electric field does work on amore » ferroelectric crystal and redistributes its internal energy, and the way the kinetic energy is redistributed determines the temperature change and strongly depends on the electric field temporal profile. This concept is supported by our all-atom molecular dynamics simulations of PbTiO 3 and BaTiO 3. Moreover, this internal energy redistribution concept can also be applied to understand electrocaloric effect. We further propose new strategies for inducing giant cooling effect with ultrafast electric field pulse. This Letter offers a general framework to understand electric-field-induced temperature change and highlights the opportunities of electric field engineering for controlled design of fast and efficient cooling technology.« less

  6. Ultrafast Electric Field Pulse Control of Giant Temperature Change in Ferroelectrics

    DOE PAGES

    Qi, Y.; Liu, S.; Lindenberg, A. M.; ...

    2018-01-30

    There is a surge of interest in developing environmentally friendly solid-state-based cooling technology. Here, we point out that a fast cooling rate (≈ 10 11 K/s) can be achieved by driving solid crystals to a high-temperature phase with a properly designed electric field pulse. Specifically, we predict that an ultrafast electric field pulse can cause a giant temperature decrease up to 32 K in PbTiO 3 occurring on few picosecond time scales. Here, we explain the underlying physics of this giant electric field pulse-induced temperature change with the concept of internal energy redistribution: the electric field does work on amore » ferroelectric crystal and redistributes its internal energy, and the way the kinetic energy is redistributed determines the temperature change and strongly depends on the electric field temporal profile. This concept is supported by our all-atom molecular dynamics simulations of PbTiO 3 and BaTiO 3. Moreover, this internal energy redistribution concept can also be applied to understand electrocaloric effect. We further propose new strategies for inducing giant cooling effect with ultrafast electric field pulse. This Letter offers a general framework to understand electric-field-induced temperature change and highlights the opportunities of electric field engineering for controlled design of fast and efficient cooling technology.« less

  7. Ultrafast Electric Field Pulse Control of Giant Temperature Change in Ferroelectrics

    NASA Astrophysics Data System (ADS)

    Qi, Y.; Liu, S.; Lindenberg, A. M.; Rappe, A. M.

    2018-01-01

    There is a surge of interest in developing environmentally friendly solid-state-based cooling technology. Here, we point out that a fast cooling rate (≈1011 K /s ) can be achieved by driving solid crystals to a high-temperature phase with a properly designed electric field pulse. Specifically, we predict that an ultrafast electric field pulse can cause a giant temperature decrease up to 32 K in PbTiO3 occurring on few picosecond time scales. We explain the underlying physics of this giant electric field pulse-induced temperature change with the concept of internal energy redistribution: the electric field does work on a ferroelectric crystal and redistributes its internal energy, and the way the kinetic energy is redistributed determines the temperature change and strongly depends on the electric field temporal profile. This concept is supported by our all-atom molecular dynamics simulations of PbTiO3 and BaTiO3 . Moreover, this internal energy redistribution concept can also be applied to understand electrocaloric effect. We further propose new strategies for inducing giant cooling effect with ultrafast electric field pulse. This Letter offers a general framework to understand electric-field-induced temperature change and highlights the opportunities of electric field engineering for controlled design of fast and efficient cooling technology.

  8. MR imaging of the inner ear: comparison of a three-dimensional fast spin-echo sequence with use of a dedicated quadrature-surface coil with a gadolinium-enhanced spoiled gradient-recalled sequence.

    PubMed

    Naganawa, S; Ito, T; Fukatsu, H; Ishigaki, T; Nakashima, T; Ichinose, N; Kassai, Y; Miyazaki, M

    1998-09-01

    To prospectively evaluate the sensitivity and specificity of magnetic resonance (MR) imaging in the inner ear with a long echo train, three-dimensional (3D), asymmetric Fourier-transform, fast spin-echo (SE) sequence with use of a dedicated quadrature-surface phased-array coil to detect vestibular schwannoma in the cerebellopontine angle and the internal auditory canal. In 205 patients (410 ears) with ear symptoms, 1.5-T MR imaging was performed with unenhanced 3D asymmetric fast SE and gadolinium-enhanced 3D gradient-recalled (SPGR) sequences with use of a quadrature surface phased-array coil. The 3D asymmetric fast SE images were reviewed by two radiologists, with the gadolinium-enhanced 3D SPGR images used as the standard of reference. Nineteen lesions were detected in the 410 ears (diameter range, 2-30 mm; mean, 10.5 mm +/- 6.4 [standard deviation]; five lesions were smaller than 5 mm). With 3D asymmetric fast SE, sensitivity, specificity, and accuracy, respectively, were 100%, 99.5%, and 99.5% for observer 1 and 100%, 99.7%, and 99.8% for observer 2. The unenhanced 3D asymmetric fast SE sequence with a quadrature-surface phased-array coli allows the reliable detection of vestibular schwannoma in the cerebellopontine angle and internal auditory canal.

  9. Fast decomposition of two ultrasound longitudinal waves in cancellous bone using a phase rotation parameter for bone quality assessment: Simulation study.

    PubMed

    Taki, Hirofumi; Nagatani, Yoshiki; Matsukawa, Mami; Kanai, Hiroshi; Izumi, Shin-Ichi

    2017-10-01

    Ultrasound signals that pass through cancellous bone may be considered to consist of two longitudinal waves, which are called fast and slow waves. Accurate decomposition of these fast and slow waves is considered to be highly beneficial in determination of the characteristics of cancellous bone. In the present study, a fast decomposition method using a wave transfer function with a phase rotation parameter was applied to received signals that have passed through bovine bone specimens with various bone volume to total volume (BV/TV) ratios in a simulation study, where the elastic finite-difference time-domain method is used and the ultrasound wave propagated parallel to the bone axes. The proposed method succeeded to decompose both fast and slow waves accurately; the normalized residual intensity was less than -19.5 dB when the specimen thickness ranged from 4 to 7 mm and the BV/TV value ranged from 0.144 to 0.226. There was a strong relationship between the phase rotation value and the BV/TV value. The ratio of the peak envelope amplitude of the decomposed fast wave to that of the slow wave increased monotonically with increasing BV/TV ratio, indicating the high performance of the proposed method in estimation of the BV/TV value in cancellous bone.

  10. External and Internal Reconnection in Two Filament-Carrying Magnetic-Cavity Solar Eruptions

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.; Moore, Ronald L.

    2004-01-01

    We observe two near-limb solar filament eruptions, one of 2000 February 26 and the other of 2002 January 4. For both we use 195 Angstroms Fe XII images from the Extreme-Ultraviolet (EUV) Imaging Telescope (EIT) and magnetograms from the Michelson Doppler Imager (MDI), both on the Solar and Heliospheric Observatory (SOHO) satellite. For the earlier event we also use soft X-ray telescope (SXT), hard X-ray telescope (HXT), and Bragg Crystal Spectrometer (BCS) data from the Yohkoh satellite, and hard X-ray data from the BATSE experiment on the Compton Gamma Ray Observatory (CGRO). Both events occur in quadrupolar magnetic regions, and both have coronal features that we infer belong to the same magnetic-cavity structures as the filaments. In both cases the cavity and filament first rise slowly at approximately 10 kilometers per second prior to eruption, and then accelerate to approximately 100 kilometers per second during the eruption, although the slow-rise movement for the higher-altitude cavity elements is clearer in the later event. We estimate both filaments and both cavities to contain masses of approximately 10(exp 14-15) g and approximately 10(exp 15-16) g respectively. We consider whether two specific magnetic-reconnection-based models for eruption onset, the tether cutting and the breakout models, are consistent with our observations. In the earlier event soft X-rays from SXT show an intensity increase during the 12-minute interval over whch fast eruption begins, which is consistent with tether-cutting-model predictions. Substantial hard X-rays, however, do not occur until after fast eruption is underway, and so this is a constraint the tether-cutting model must satisfy. During the same 12-minute interval over which fast eruption begins, there are brightenings and topological changes in the corona indicative of high-altitude reconnection early in the eruption, and this is consistent with breakout predictions. In both eruptions, however, the onset of the filament fast-rise phase occurs while overlying cavity-related coronal loops are still evolving from a "closed" state to an "open" state, and our observations of the time evolution of these loops compared to the eruption state in both events are constraints the breakout model must meet. Therefore our findings are consistent with runaway-tether-cutting-type reconnection and fast breakout-type reconnection both occurring early in the fast phase of the February eruption and with both types of reconnection being important in unleashing the explosion, but we are not able to say which, if either, type of reconnection actually triggered the fast phase. We have also found specific constraints that either model, or any other model, must satisfy if correct.

  11. External and Internal Reconnection in Two Filament-Carrying Magnetic Cavity Solar Eruptions

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.; Moore, Ronald L.

    2004-01-01

    We observe two near-limb solar filament eruptions. one of 2000 February 26 and the other of 2002 January 4. For both we use 195 A Fe XII images from the Extreme-Ultraviolet Imaging Telescope (EIT) and magnetograms from the Michelson Doppler Imager (MDI). both of which are on the Solar and Heliospheric Observatory. (SOHO). For the earlier event we also use soft X-ray telescope (SXT). hard X-ray telescope (HXT). and Bragg Crystal Spectrometer (BCS) data from the Yohkoh satellite. and hard X-ray data from the BATSE experiment on the Compton Gamma Ray Observatory. (CGRO). Both events occur in quadrupolar magnetic regions. and both have coronal features that we infer belong to the same magnetic cavity structures as the filaments. In both cases. the cavity and filament first rise slowly at approx. 10 km/s prior to eruption and then accelerate to approx. 100 km/s during the eruption. although the slow-rise movement for the higher altitude cavity elements is clearer in the later event. We estimate that both filaments and both cavities contain masses of approx. 10(exp14) - 1 0(exp 15) and approx. l0(exp 15) - l0(exp 16) g. respectively. We consider whether two specific magnetic reconnection-based models for eruption onset. the "tether cutting" and the "breakout" models. are consistent with our observations. In the earlier event, soft X-rays from SXT show an intensity increase during the 12 minute interval over which fast eruption begins. which is consistent with tether- cutting-model predictions. Substantial hard X-ray. however. do not occur until after fast eruption is underway. and so this is a constraint the tether-cutting model must satisfy. During the same 12 minute interval over which fast eruption begins, there are brightenings and topological changes in the corona indicative of high-altitude reconnection early in the eruption. and this is consistent with breakout predictions. In both eruptions. the state of the overlying loops at the time of onset of the fast-rise phase of the corresponding filament can be compared with expectations from the breakout model. thereby setting constraints that the breakout model must meet. Our findings are consistent with both runaway tether-cutting-type reconnection and fast breakout-type reconnection. occurring early in the fast phase of the February eruption and with both types of reconnection being important in unleashing the explosion, but we are not able to say which. if either, type of reconnection actually triggered the fast phase. In any case. we have found specific constraints that either model. or any other model. must satisfy if correct.

  12. External and Internal Reconnection in Two Filament-Carrying Magnetic-Cavity Solar Eruptions

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.; Moore, Ronald L.

    2004-01-01

    We observe two near-limb solar filament eruptions, one of 2000 February 26 and the other of 2002 January 4. For both we use 195 A Fe XII images from the Extreme-Ultraviolet Imaging Telescope (EIT) and magnetograms from the Michelson Doppler Imager (MDI), both of which are on the Solar and Heliospheric Observatory (SOHO). For the earlier event we also use soft X-ray telescope (SXT), hard X-ray telescope (HXT), and Bragg Crystal Spectrometer (BCS) data from the Yohkoh satellite, and hard X-ray data from the BATSE experiment on the Compton Gamma Ra.v Observatory (CGRO). Both events occur in quadrupolar magnetic regions, and both have coronal features that we infer belong to the same magnetic cavity structures as the filaments. In both cases, the cavity and filament first rise slowly at approx.10 km/s prior to eruption and then accelerate to approx.100 km/s during the eruption, although the slow-rise movement for the higher altitude cavity elements is clearer in the later event. We estimate that both filaments and both cavities contain masses of approx.10(exp 14)-10(exp 15) and approx.10(exp 15)-10(exp 16) g, respectively. We consider whether two specific magnetic reconnection-based models for eruption onset, the "tether cutting" and the "breakout" models, are consistent with our observations. In the earlier event, soft X-rays from SXT show an intensity increase during the 12 minute interval over which fast eruption begins, which is consistent with tether- cutting-model predictions. Substantial hard X-rays, however, do not occur until after fast eruption is underway, and so this is a constraint the tether-cutting model must satisfy. During the same 12 minute interval over which fast eruption begins, there are brightenings and topological changes in the corona indicative of high-altitude reconnection early in the eruption, and this is consistent with breakout predictions. In both eruptions, the state of the overlying loops at the time of onset of the fast-rise phase of the corresponding filament can be compared with expectations from the breakout model, thereby setting constraints that the breakout model must meet. Our findings are consistent with both runaway tether-cutting-type reconnection and fast breakout-type reconnection, occurring early in the fast phase of the February eruption and with both types of reconnection being important in unleashing the explosion, but we are not able to say which, if either, type of reconnection actually triggered the fast phase. In any case, we have found specific constraints that either model, or any other model, must satisfy if correct.

  13. External and Internal Reconnection in Two Filament-Carrying Magnetic-Cavity Solar Eruptions

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.; Moore, Ronald L.

    2004-01-01

    We observe two near-limb solar filament eruptions, one of 2000 February 26 and the other of 2002 January 4. For both we use 195 Angstroms, Fe XII images from the Extreme-Ultraviolet Imaging Telescope (EIT) and magnetograms from the Michelson Doppler Imager (MDI), both of which are on the Solar arid Heliospheric Observatory (SOHO). For the earlier event we also use soft X-ray telescope (SXT), hard X-ray telescope (HXT), and Bragg Crystal Spectrometer (BCS) data from the Yohkoh satellite, and hard X-ray data from the BATSE experiment on the Compton Gamma Ray Observation, (CGRO). Both events occur in quadrupolar magnetic regions, and both have coronal features that we infer belong to the same magnetic cavity structures as the filaments. In both cases, the cavity and filament first rise slowly at approximately 10 kilometers per second prior to eruption and then accelerate to approximately 100 kilometers per second during the eruption, although the slow-rise movement for the higher altitude cavity elements is clearer in the later event. We estimate that both filaments and both cavities contain masses of approximately 10(exp 14)-10(exp 15) and approximately 10(exp 15)-10(exp 16)g, respectively. We consider whether two specific magnetic reconnection-based models for eruption onset, the tether cutting and the breakout models, are consistent with our observations. In the earlier event, soft X-rays from SXT show an intensity increase during the 12 minute interval over which fast eruption begins, which is consistent with tether-cutting-model predictions. Substantial hard X-rays, however, do not occur until after fast eruption is underway, and so this is a constraint the tether-cutting model must satisfy. During the same 12 minute interval over which fast eruption begins, there are brightenings and topological changes in the corona indicative of high-altitude reconnection early in the eruption, and this is consistent with breakout predictions. In both eruptions, the state of the overlying loops at the time of onset of the fast-rise phase of the corresponding filament can be compared with expectations from the breakout model, thereby setting constraints that the breakout model must meet. Our findings are consistent with both runaway tether-cutting-type reconnection and fast breakout-type reconnection, occurring early in the fast phase of the February eruption and with both types of reconnection being important in unleashing the explosion, but we are not able to say which, if either, type of reconnection actually triggered the fast phase. In any case, we have found specific constraints that either model, or any other model, must satisfy if correct.

  14. Electric-field effects in the twist-bend nematic phase

    NASA Astrophysics Data System (ADS)

    Meyer, Claire; Dozov, Ivan; Davidson, Patrick; Luckhurst, Geoffrey R.; Dokli, Irena; Knezevic, Anamarija; Lesac, Andreja

    2018-02-01

    In the recently discovered Twist-Bend Nematic (NTB) phase, the nematic director is spontaneously distorted and twisted along a conical helix with an extremely short pitch, 10 nm. We have investigated the behavior of the NTB phase subject to an electric-field. We show that, due to the periodic NTB structure, the electro-optic effects are not nematic-like but are close analogs to those in the smectic and cholesteric phases. In particular, we have studied the fast (sub-microsecond) flexoelectrically-induced rotation of the optic axis, which is similar to the electroclinic effect in the SmA* phase and the flexoelectric response of short-pitch cholesterics. We discuss the possible applications of the fast NTB electro-optic effects.

  15. Rhythm generation, coordination, and initiation in the vocal pathways of male African clawed frogs

    PubMed Central

    Cavin Barnes, Jessica; Appleby, Todd

    2016-01-01

    Central pattern generators (CPGs) in the brain stem are considered to underlie vocalizations in many vertebrate species, but the detailed mechanisms underlying how motor rhythms are generated, coordinated, and initiated remain unclear. We addressed these issues using isolated brain preparations of Xenopus laevis from which fictive vocalizations can be elicited. Advertisement calls of male X. laevis that consist of fast and slow trills are generated by vocal CPGs contained in the brain stem. Brain stem central vocal pathways consist of a premotor nucleus [dorsal tegmental area of medulla (DTAM)] and a laryngeal motor nucleus [a homologue of nucleus ambiguus (n.IX-X)] with extensive reciprocal connections between the nuclei. In addition, DTAM receives descending inputs from the extended amygdala. We found that unilateral transection of the projections between DTAM and n.IX-X eliminated premotor fictive fast trill patterns but did not affect fictive slow trills, suggesting that the fast and slow trill CPGs are distinct; the slow trill CPG is contained in n.IX-X, and the fast trill CPG spans DTAM and n.IX-X. Midline transections that eliminated the anterior, posterior, or both commissures caused no change in the temporal structure of fictive calls, but bilateral synchrony was lost, indicating that the vocal CPGs are contained in the lateral halves of the brain stem and that the commissures synchronize the two oscillators. Furthermore, the elimination of the inputs from extended amygdala to DTAM, in addition to the anterior commissure, resulted in autonomous initiation of fictive fast but not slow trills by each hemibrain stem, indicating that the extended amygdala provides a bilateral signal to initiate fast trills. NEW & NOTEWORTHY Central pattern generators (CPGs) are considered to underlie vocalizations in many vertebrate species, but the detailed mechanisms underlying their functions remain unclear. We addressed this question using an isolated brain preparation of African clawed frogs. We discovered that two vocal phases are mediated by anatomically distinct CPGs, that there are a pair of CPGs contained in the left and right half of the brain stem, and that mechanisms underlying initiation of the two vocal phases are distinct. PMID:27760822

  16. The key to success in elite athletes? Explicit and implicit motor learning in youth elite and non-elite soccer players.

    PubMed

    Verburgh, L; Scherder, E J A; van Lange, P A M; Oosterlaan, J

    2016-09-01

    In sports, fast and accurate execution of movements is required. It has been shown that implicitly learned movements might be less vulnerable than explicitly learned movements to stressful and fast changing circumstances that exist at the elite sports level. The present study provides insight in explicit and implicit motor learning in youth soccer players with different expertise levels. Twenty-seven youth elite soccer players and 25 non-elite soccer players (aged 10-12) performed a serial reaction time task (SRTT). In the SRTT, one of the sequences must be learned explicitly, the other was implicitly learned. No main effect of group was found for implicit and explicit learning on mean reaction time (MRT) and accuracy. However, for MRT, an interaction was found between learning condition, learning phase and group. Analyses showed no group effects for the explicit learning condition, but youth elite soccer players showed better learning in the implicit learning condition. In particular, during implicit motor learning youth elite soccer showed faster MRTs in the early learning phase and earlier reached asymptote performance in terms of MRT. Present findings may be important for sports because children with superior implicit learning abilities in early learning phases may be able to learn more (durable) motor skills in a shorter time period as compared to other children.

  17. Market Assessment For Traveler Services, A Choice Modeling Study Phase Iii, Fast-Trac Deliverable, #16B: Final Choice Modeling Report

    DOT National Transportation Integrated Search

    1999-02-12

    FAST-TRAC : THIS REPORT DESCRIBES THE CHOICE MODEL STUDY OF THE FAST-TRAC (FASTER AND SAFER TRAVEL THROUGH TRAFFIC ROUTING AND ADVANCED CONTROLS) OPERATIONAL TEST IN SOUTHEAST MICHIGAN. CHOICE MODELING IS A STATED-PREFERENCE APPROACH IN WHICH RESP...

  18. An Efficient Pipeline Wavefront Phase Recovery for the CAFADIS Camera for Extremely Large Telescopes

    PubMed Central

    Magdaleno, Eduardo; Rodríguez, Manuel; Rodríguez-Ramos, José Manuel

    2010-01-01

    In this paper we show a fast, specialized hardware implementation of the wavefront phase recovery algorithm using the CAFADIS camera. The CAFADIS camera is a new plenoptic sensor patented by the Universidad de La Laguna (Canary Islands, Spain): international patent PCT/ES2007/000046 (WIPO publication number WO/2007/082975). It can simultaneously measure the wavefront phase and the distance to the light source in a real-time process. The pipeline algorithm is implemented using Field Programmable Gate Arrays (FPGA). These devices present architecture capable of handling the sensor output stream using a massively parallel approach and they are efficient enough to resolve several Adaptive Optics (AO) problems in Extremely Large Telescopes (ELTs) in terms of processing time requirements. The FPGA implementation of the wavefront phase recovery algorithm using the CAFADIS camera is based on the very fast computation of two dimensional fast Fourier Transforms (FFTs). Thus we have carried out a comparison between our very novel FPGA 2D-FFTa and other implementations. PMID:22315523

  19. An efficient pipeline wavefront phase recovery for the CAFADIS camera for extremely large telescopes.

    PubMed

    Magdaleno, Eduardo; Rodríguez, Manuel; Rodríguez-Ramos, José Manuel

    2010-01-01

    In this paper we show a fast, specialized hardware implementation of the wavefront phase recovery algorithm using the CAFADIS camera. The CAFADIS camera is a new plenoptic sensor patented by the Universidad de La Laguna (Canary Islands, Spain): international patent PCT/ES2007/000046 (WIPO publication number WO/2007/082975). It can simultaneously measure the wavefront phase and the distance to the light source in a real-time process. The pipeline algorithm is implemented using Field Programmable Gate Arrays (FPGA). These devices present architecture capable of handling the sensor output stream using a massively parallel approach and they are efficient enough to resolve several Adaptive Optics (AO) problems in Extremely Large Telescopes (ELTs) in terms of processing time requirements. The FPGA implementation of the wavefront phase recovery algorithm using the CAFADIS camera is based on the very fast computation of two dimensional fast Fourier Transforms (FFTs). Thus we have carried out a comparison between our very novel FPGA 2D-FFTa and other implementations.

  20. Time-resolved Fast Neutron Radiography of Air-water Two-phase Flows

    NASA Astrophysics Data System (ADS)

    Zboray, Robert; Dangendorf, Volker; Mor, Ilan; Tittelmeier, Kai; Bromberger, Benjamin; Prasser, Horst-Michael

    Neutron imaging, in general, is a useful technique for visualizing low-Z materials (such as water or plastics) obscured by high-Z materials. However, when significant amounts of both materials are present and full-bodied samples have to be examined, cold and thermal neutrons rapidly reach their applicability limit as the samples become opaque. In such cases one can benefit from the high penetrating power of fast neutrons. In this work we demonstrate the feasibility of time-resolved, fast neutron radiography of generic air-water two-phase flows in a 1.5 cm thick flow channel with Aluminum walls and rectangular cross section. The experiments have been carried out at the high-intensity, white-beam facility of the Physikalisch-Technische Bundesanstalt, Germany. Exposure times down to 3.33 ms have been achieved at reasonable image quality and acceptable motion artifacts. Different two-phase flow regimes such as bubbly slug and churn flows have been examined. Two-phase flow parameters like the volumetric gas fraction, bubble size and bubble velocities have been measured.

  1. Kinetic studies of the folding of heterodimeric monellin: evidence for switching between alternative parallel pathways.

    PubMed

    Aghera, Nilesh; Udgaonkar, Jayant B

    2012-07-13

    Determining whether or not a protein uses multiple pathways to fold is an important goal in protein folding studies. When multiple pathways are present, defined by transition states that differ in their compactness and structure but not significantly in energy, they may manifest themselves by causing the dependence on denaturant concentration of the logarithm of the observed rate constant of folding to have an upward curvature. In this study, the folding mechanism of heterodimeric monellin [double-chain monellin (dcMN)] has been studied over a range of protein and guanidine hydrochloride (GdnHCl) concentrations, using the intrinsic tryptophan fluorescence of the protein as the probe for the folding reaction. Refolding is shown to occur in multiple kinetic phases. In the first stage of refolding, which is silent to any change in intrinsic fluorescence, the two chains of monellin bind to one another to form an encounter complex. Interrupted folding experiments show that the initial encounter complex folds to native dcMN via two folding routes. A productive folding intermediate population is identified on one route but not on both of these routes. Two intermediate subpopulations appear to form in a fast kinetic phase, and native dcMN forms in a slow kinetic phase. The chevron arms for both the fast and slow phases of refolding are shown to have upward curvatures, suggesting that at least two pathways each defined by a different intermediate are operational during these kinetic phases of structure formation. Refolding switches from one pathway to the other as the GdnHCl concentration is increased. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Unusual electro-optical behavior in a wide-temperature BPIII cell.

    PubMed

    Chen, Hui-Yu; Lu, Sheng-Feng; Hsieh, Yi-Chun

    2013-04-22

    A low driving voltage and fast response blue phase III (BPIII) liquid-crystal device with very low dielectric anisotropy is demonstrated. To stabilize BPIII in a wide temperature range (> 15°C), a chiral molecule with good solubility was chosen. By studying field-dependent polarization state of the transmitting light, it was found that the field-induced birefringence becomes saturated in the high field. However, the transmitting intensity exhibits a tendency to increase as the electric field increases. This indicates that the electro-optical behavior in BPIII device may be from the flexoelectric effect, which induces tilted optical axis and then induces birefringence. Because the phase transition from BPIII to chiral nematic phase does not happen, the device shows no hysteresis effect and no residual birefringence, exhibits fast response, and can be a candidate for fast photonic application.

  3. Atom-probe tomography and transmission electron microscopy of the kamacite-taenite interface in the fast-cooled Bristol IVA iron meteorite

    NASA Astrophysics Data System (ADS)

    Rout, Surya S.; Heck, Philipp R.; Isheim, Dieter; Stephan, Thomas; Zaluzec, Nestor J.; Miller, Dean J.; Davis, Andrew M.; Seidman, David N.

    2017-12-01

    We report the first combined atom-probe tomography (APT) and transmission electron microscopy (TEM) study of a kamacite-tetrataenite (K-T) interface region within an iron meteorite, Bristol (IVA). Ten APT nanotips were prepared from the K-T interface with focused ion beam scanning electron microscopy (FIB-SEM) and then studied using TEM followed by APT. Near the K-T interface, we found 3.8 ± 0.5 wt% Ni in kamacite and 53.4 ± 0.5 wt% Ni in tetrataenite. High-Ni precipitate regions of the cloudy zone (CZ) have 50.4 ± 0.8 wt% Ni. A region near the CZ and martensite interface has <10 nm sized Ni-rich precipitates with 38.4 ± 0.7 wt% Ni present within a low-Ni matrix having 25.5 ± 0.6 wt% Ni. We found that Cu is predominantly concentrated in tetrataenite, whereas Co, P, and Cr are concentrated in kamacite. Phosphorus is preferentially concentrated along the K-T interface. This study is the first precise measurement of the phase composition at high spatial resolution and in 3-D of the K-T interface region in a IVA iron meteorite and furthers our knowledge of the phase composition changes in a fast-cooled iron meteorite below 400 °C. We demonstrate that APT in conjunction with TEM is a useful approach to study the major, minor, and trace elemental composition of nanoscale features within fast-cooled iron meteorites.

  4. Fast novel nonlinear optical NLC system with local response

    NASA Astrophysics Data System (ADS)

    Iljin, Andrey; Residori, Stefania; Bortolozzo, Umberto

    2017-06-01

    Nonlinear optical performance of a novel liquid crystalline (LC) cell has been studied in two-wave mixing experiments revealing high diffraction efficiency within extremely wide intensity range, fast recording times and spatial resolution. Photo-induced modulation of the LC order parameter resulting from trans-cis isomerisation of dye molecules causes consequent changes of refractive indices of the medium (Light-Induced Order Modification, LIOM-mechanism) and is proved to be the main mechanism of optical nonlinearity. The proposed arrangement of the electric-field-stabilised homeotropic alignment hinders the LC director reorientation, prevents appearance of surface effects and ensures the optical cell quality. The LIOM-type nonlinearity, characterised with the substantially local nonlinear optical response, could also be extended for the recording of arbitrary phase profiles as requested in several applications for light-beam manipulation, recording of dynamic volume holograms and photonic lattices.

  5. Locational Sensitivity Investigation on PV Hosting Capacity and Fast Track PV Screening

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Fei; Mather, Barry; Ainsworth, Nathan

    A 15% PV penetration threshold is commonly used by utilities to define photovoltaic (PV) screening methods where PV penetration is defined as the ratio of total solar PV capacity on a line section to peak load. However, this method doesn't take into account PV locational impact or feeder characteristics that could strongly change the feeder's capability to host PVs. This paper investigates the impact of PV location and phase connection type on PV hosting capacity, and then proposes a fast-track PV screening approach that leverages various PV hosting capacity metric responding to different PV locations and types. The proposed studymore » could help utilities to evaluate PV interconnection requests and also help increase the PV hosting capacity of distribution feeders without adverse impacts on system voltages.« less

  6. Programming Nanoparticles in Multiscale: Optically Modulated Assembly and Phase Switching of Silicon Nanoparticle Array.

    PubMed

    Wang, Letian; Rho, Yoonsoo; Shou, Wan; Hong, Sukjoon; Kato, Kimihiko; Eliceiri, Matthew; Shi, Meng; Grigoropoulos, Costas P; Pan, Heng; Carraro, Carlo; Qi, Dongfeng

    2018-03-27

    Manipulating and tuning nanoparticles by means of optical field interactions is of key interest for nanoscience and applications in electronics and photonics. We report scalable, direct, and optically modulated writing of nanoparticle patterns (size, number, and location) of high precision using a pulsed nanosecond laser. The complex nanoparticle arrangement is modulated by the laser pulse energy and polarization with the particle size ranging from 60 to 330 nm. Furthermore, we report fast cooling-rate induced phase switching of crystalline Si nanoparticles to the amorphous state. Such phase switching has usually been observed in compound phase change materials like GeSbTe. The ensuing modification of atomic structure leads to dielectric constant switching. Based on these effects, a multiscale laser-assisted method of fabricating Mie resonator arrays is proposed. The number of Mie resonators, as well as the resonance peaks and dielectric constants of selected resonators, can be programmed. The programmable light-matter interaction serves as a mechanism to fabricate optical metasurfaces, structural color, and multidimensional optical storage devices.

  7. Study of the radiated energy loss during massive gas injection mitigated disruptions on EAST

    NASA Astrophysics Data System (ADS)

    Duan, Y. M.; Hao, Z. K.; Hu, L. Q.; Wang, L.; Xu, P.; Xu, L. Q.; Zhuang, H. D.; EAST Team

    2015-08-01

    The MGI mitigated disruption experiments were carried out on EAST with a new fast gas controlling valve in 2012. Different amounts of noble gas He or mixed gas of 99% He + 1% Ar are injected into plasma in current flat-top phase and current ramp-down phase separately. The initial results of MGI experiments are described. The MGI system and the radiation measurement system are briefly introduced. The characteristics of radiation distribution and radiation energy loss are analyzed. About 50% of the stored thermal energy Wdia is dissipated by radiation during the entire disruption process and the impurities of C and Li from the PFC play important roles to radiative energy loss. The amount of the gas can affect the pre-TQ phase. Strong poloidal asymmetry of radiation begins to appear in the CQ phase, which is possibly caused by the plasma configuration changes as a result of VDE. No toroidal radiation asymmetry is observed presently.

  8. Evidence for thermally assisted threshold switching behavior in nanoscale phase-change memory cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Gallo, Manuel; Athmanathan, Aravinthan; Krebs, Daniel

    2016-01-14

    In spite of decades of research, the details of electrical transport in phase-change materials are still debated. In particular, the so-called threshold switching phenomenon that allows the current density to increase steeply when a sufficiently high voltage is applied is still not well understood, even though there is wide consensus that threshold switching is solely of electronic origin. However, the high thermal efficiency and fast thermal dynamics associated with nanoscale phase-change memory (PCM) devices motivate us to reassess a thermally assisted threshold switching mechanism, at least in these devices. The time/temperature dependence of the threshold switching voltage and current inmore » doped Ge{sub 2}Sb{sub 2}Te{sub 5} nanoscale PCM cells was measured over 6 decades in time at temperatures ranging from 40 °C to 160 °C. We observe a nearly constant threshold switching power across this wide range of operating conditions. We also measured the transient dynamics associated with threshold switching as a function of the applied voltage. By using a field- and temperature-dependent description of the electrical transport combined with a thermal feedback, quantitative agreement with experimental data of the threshold switching dynamics was obtained using realistic physical parameters.« less

  9. Phase transitions in trajectories of a superconducting single-electron transistor coupled to a resonator.

    PubMed

    Genway, Sam; Garrahan, Juan P; Lesanovsky, Igor; Armour, Andrew D

    2012-05-01

    Recent progress in the study of dynamical phase transitions has been made with a large-deviation approach to study trajectories of stochastic jumps using a thermodynamic formalism. We study this method applied to an open quantum system consisting of a superconducting single-electron transistor, near the Josephson quasiparticle resonance, coupled to a resonator. We find that the dynamical behavior shown in rare trajectories can be rich even when the mean dynamical activity is small, and thus the formalism gives insights into the form of fluctuations. The structure of the dynamical phase diagram found from the quantum-jump trajectories of the resonator is studied, and we see that sharp transitions in the dynamical activity may be related to the appearance and disappearance of bistabilities in the state of the resonator as system parameters are changed. We also demonstrate that for a fast resonator, the trajectories of quasiparticles are similar to the resonator trajectories.

  10. High precision, fast ultrasonic thermometer based on measurement of the speed of sound in air

    NASA Astrophysics Data System (ADS)

    Huang, K. N.; Huang, C. F.; Li, Y. C.; Young, M. S.

    2002-11-01

    This study presents a microcomputer-based ultrasonic system which measures air temperature by detecting variations in the speed of sound in the air. Changes in the speed of sound are detected by phase shift variations of a 40 kHz continuous ultrasonic wave. In a test embodiment, two 40 kHz ultrasonic transducers are set face to face at a constant distance. Phase angle differences between transmitted and received signals are determined by a FPGA digital phase detector and then analyzed in an 89C51 single-chip microcomputer. Temperature is calculated and then sent to a LCD display and, optionally, to a PC. Accuracy of measurement is within 0.05 degC at an inter-transducer distance of 10 cm. Temperature variations are displayed within 10 ms. The main advantages of the proposed system are high resolution, rapid temperature measurement, noncontact measurement and easy implementation.

  11. Reconstruction methods for phase-contrast tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raven, C.

    Phase contrast imaging with coherent x-rays can be distinguished in outline imaging and holography, depending on the wavelength {lambda}, the object size d and the object-to-detector distance r. When r << d{sup 2}{lambda}, phase contrast occurs only in regions where the refractive index fastly changes, i.e. at interfaces and edges in the sample. With increasing object-to-detector distance we come in the area of holographic imaging. The image contrast outside the shadow region of the object is due to interference of the direct, undiffracted beam and a beam diffracted by the object, or, in terms of holography, the interference of amore » reference wave with the object wave. Both, outline imaging and holography, offer the possibility to obtain three dimensional information of the sample in conjunction with a tomographic technique. But the data treatment and the kind of information one can obtain from the reconstruction is different.« less

  12. High-Rate Charging Induced Intermediate Phases and Structural Changes of Layer-Structured Cathode for Lithium-Ion Batteries

    DOE PAGES

    Zhou, Yong-Ning; Yue, Ji-Li; Hu, Enyuan; ...

    2016-08-08

    Using fast time-resolved in situ X-ray diffraction, charge-rate dependent phase transition processes of layer structured cathode material LiNi 1/3Mn 1/3Co 1/3O 2 for lithium-ion batteries are studied. During first charge, intermediate phases emerge at high rates of 10C, 30C, and 60C, but not at low rates of 0.1C and 1C. These intermediate phases can be continuously observed during relaxation after the charging current is switched off. After half-way charging at high rate, sample studied by scanning transmission electron microscopy shows Li-rich and Li-poor phases' coexistence with tetrahedral occupation of Li in Li-poor phase. Also, the high rate induced overpotential ismore » thought to be the driving force for the formation of this intermediate Li-poor phase. The in situ quick X-ray absorption results show that the oxidation of Ni accelerates with increasing charging rate and the Ni 4+ state can be reached at the end of charge with 30C rate. Finally, these results give new insights in the understanding of the layered cathodes during high-rate charging.« less

  13. Reduced gamma frequency in the medial frontal cortex of aged rats during behavior and rest: implications for age-related behavioral slowing.

    PubMed

    Insel, Nathan; Patron, Lilian A; Hoang, Lan T; Nematollahi, Saman; Schimanski, Lesley A; Lipa, Peter; Barnes, Carol A

    2012-11-14

    Age-related cognitive and behavioral slowing may be caused by changes in the speed of neural signaling or by changes in the number of signaling steps necessary to achieve a given function. In the mammalian cortex, neural communication is organized by a 30-100 Hz "gamma" oscillation. There is a putative link between the gamma frequency and the speed of processing in a neural network: the dynamics of pyramidal neuron membrane time constants suggest that synaptic integration is framed by the gamma cycle, and pharmacological slowing of gamma also slows reaction times on behavioral tasks. The present experiments identify reductions in a robust 40-70 Hz gamma oscillation in the aged rat medial frontal cortex. The reductions were observed in the form of local field potentials, later peaks in fast-spiking neuron autocorrelations, and delays in the spiking of inhibitory neurons following local excitatory signals. Gamma frequency did not vary with movement speed, but rats with slower gamma also moved more slowly. Gamma frequency age differences were not observed in hippocampus. Hippocampal CA1 fast-spiking neurons exhibited interspike intervals consistent with a fast (70-100 Hz) gamma frequency, a pattern maintained across theta phases and theta frequencies independent of fluctuations in the average firing rates of the neurons. We propose that an average lengthening of the cortical 15-25 ms gamma cycle is one factor contributing to age-related slowing and that future attempts to offset cognitive declines will find a target in the response of fast-spiking inhibitory neurons to excitatory inputs.

  14. Cancellous bone analysis with modified least squares Prony's method and chirp filter: phantom experiments and simulation.

    PubMed

    Wear, Keith A

    2010-10-01

    The presence of two longitudinal waves in porous media is predicted by Biot's theory and has been confirmed experimentally in cancellous bone. When cancellous bone samples are interrogated in through-transmission, these two waves can overlap in time. Previously, the Modified Least-Squares Prony's (MLSP) method was validated for estimation of amplitudes, attenuation coefficients, and phase velocities of fast and slow waves, but tended to overestimate phase velocities by up to about 5%. In the present paper, a pre-processing chirp filter to mitigate the phase velocity bias is derived. The MLSP/chirp filter (MLSPCF) method was tested for decomposition of a 500 kHz-center-frequency signal containing two overlapping components: one passing through a low-density-polyethylene plate (fast wave) and another passing through a cancellous-bone-mimicking phantom material (slow wave). The chirp filter reduced phase velocity bias from 100 m/s (5.1%) to 69 m/s (3.5%) (fast wave) and from 29 m/s (1.9%) to 10 m/s (0.7%) (slow wave). Similar improvements were found for 1) measurements in polycarbonate (fast wave) and a cancellous-bone-mimicking phantom (slow wave), and 2) a simulation based on parameters mimicking bovine cancellous bone. The MLSPCF method did not offer consistent improvement in estimates of attenuation coefficient or amplitude.

  15. Use of a genetic algorithm for the analysis of eye movements from the linear vestibulo-ocular reflex

    NASA Technical Reports Server (NTRS)

    Shelhamer, M.

    2001-01-01

    It is common in vestibular and oculomotor testing to use a single-frequency (sine) or combination of frequencies [sum-of-sines (SOS)] stimulus for head or target motion. The resulting eye movements typically contain a smooth tracking component, which follows the stimulus, in which are interspersed rapid eye movements (saccades or fast phases). The parameters of the smooth tracking--the amplitude and phase of each component frequency--are of interest; many methods have been devised that attempt to identify and remove the fast eye movements from the smooth. We describe a new approach to this problem, tailored to both single-frequency and sum-of-sines stimulation of the human linear vestibulo-ocular reflex. An approximate derivative is used to identify fast movements, which are then omitted from further analysis. The remaining points form a series of smooth tracking segments. A genetic algorithm is used to fit these segments together to form a smooth (but disconnected) wave form, by iteratively removing biases due to the missing fast phases. A genetic algorithm is an iterative optimization procedure; it provides a basis for extending this approach to more complex stimulus-response situations. In the SOS case, the genetic algorithm estimates the amplitude and phase values of the component frequencies as well as removing biases.

  16. Phase-unwrapping algorithm by a rounding-least-squares approach

    NASA Astrophysics Data System (ADS)

    Juarez-Salazar, Rigoberto; Robledo-Sanchez, Carlos; Guerrero-Sanchez, Fermin

    2014-02-01

    A simple and efficient phase-unwrapping algorithm based on a rounding procedure and a global least-squares minimization is proposed. Instead of processing the gradient of the wrapped phase, this algorithm operates over the gradient of the phase jumps by a robust and noniterative scheme. Thus, the residue-spreading and over-smoothing effects are reduced. The algorithm's performance is compared with four well-known phase-unwrapping methods: minimum cost network flow (MCNF), fast Fourier transform (FFT), quality-guided, and branch-cut. A computer simulation and experimental results show that the proposed algorithm reaches a high-accuracy level than the MCNF method by a low-computing time similar to the FFT phase-unwrapping method. Moreover, since the proposed algorithm is simple, fast, and user-free, it could be used in metrological interferometric and fringe-projection automatic real-time applications.

  17. Adiabatic description of long range frequency sweeping

    NASA Astrophysics Data System (ADS)

    Nyqvist, R. M.; Lilley, M. K.; Breizman, B. N.

    2012-09-01

    A theoretical framework is developed to describe long range frequency sweeping events in the 1D electrostatic bump-on-tail model with fast particle sources and collisions. The model includes three collision operators (Krook, drag (dynamical friction) and velocity space diffusion), and allows for a general shape of the fast particle distribution function. The behaviour of phase space holes and clumps is analysed in the absence of diffusion, and the effect of particle trapping due to separatrix expansion is discussed. With a fast particle distribution function whose slope decays above the resonant phase velocity, hooked frequency sweeping is found for holes in the presence of drag collisions alone.

  18. Lateral heterogeneity and azimuthal anistropy of the upper mantle: Love and Rayleigh waves 100-250 sec

    NASA Technical Reports Server (NTRS)

    Tanimoto, T.; Anderson, D. L.

    1983-01-01

    The lateral heterogeneity and apparent anisotropy of the upper mantle are studied by measuring Rayleigh and Love wave phase velocities in the period range 100-250 sec. Spherical harmonic descriptions of the lateral heterogeneity are obtained for order and degree up to 1=m=10. Slow regions are evident at the East Pacific rise, northeast Africa, Tibet, Tasman sea, southwestern North America and triple junctions in the Northern Atlantic and Indian oceans. Fast regions occur in Australia, western Pacific and the eastern Atlantic. Details which are not evident in previous studies include two fast regions in the central Pacific and the subduction zone in the Scotia Arc region. Inversion for azimuthal dependence showed (1) little correlation between the fast phase velocity directions and the plate motion vector in plate interiors, but (2) correlation of the fast direction with the perpendicular direction to trenches and ridges. Phase velocity is high when waves propagate perpendicular to these structures. Severe tradeoffs exist between heterogeneity and azimuthal dependence because of the yet unsatisfactory path coverage.

  19. Lateral heterogeneity and azimuthal anisotropy of the upper mantle - Love and Rayleigh waves 100-250 sec

    NASA Technical Reports Server (NTRS)

    Tanimoto, T.; Anderson, D. L.

    1985-01-01

    The lateral heterogeneity and apparent anisotropy of the upper mantle are studied by measuring Rayleigh and Love wave phase velocities in the period range 100-250 sec. Spherical harmonic descriptions of the lateral heterogeneity are obtained for order and degree up to 1=m=10. Slow regions are evident at the East Pacific rise, northeast Africa, Tibet, Tasman sea, southwestern North America and triple junctions in the Northern Atlantic and Indian oceans. Fast regions occur in Australia, western Pacific and the eastern Atlantic. Details which are not evident in previous studies include two fast regions in the central Pacific and the subduction zone in the Scotia Arc region. Inversion for azimuthal dependence showed (1) little correlation between the fast phase velocity directions and the plate motion vector in plate interiors, but (2) correlation of the fast direction with the perpendicular direction to trenches and ridges. Phase velocity is high when waves propagate perpendicular to these structures. Severe tradeoffs exist between heterogeneity and azimuthal dependence because of the yet unsatisfactory path coverage.

  20. Functional cortical network in alpha band correlates with social bargaining.

    PubMed

    Billeke, Pablo; Zamorano, Francisco; Chavez, Mario; Cosmelli, Diego; Aboitiz, Francisco

    2014-01-01

    Solving demanding tasks requires fast and flexible coordination among different brain areas. Everyday examples of this are the social dilemmas in which goals tend to clash, requiring one to weigh alternative courses of action in limited time. In spite of this fact, there are few studies that directly address the dynamics of flexible brain network integration during social interaction. To study the preceding, we carried out EEG recordings while subjects played a repeated version of the Ultimatum Game in both human (social) and computer (non-social) conditions. We found phase synchrony (inter-site-phase-clustering) modulation in alpha band that was specific to the human condition and independent of power modulation. The strength and patterns of the inter-site-phase-clustering of the cortical networks were also modulated, and these modulations were mainly in frontal and parietal regions. Moreover, changes in the individuals' alpha network structure correlated with the risk of the offers made only in social conditions. This correlation was independent of changes in power and inter-site-phase-clustering strength. Our results indicate that, when subjects believe they are participating in a social interaction, a specific modulation of functional cortical networks in alpha band takes place, suggesting that phase synchrony of alpha oscillations could serve as a mechanism by which different brain areas flexibly interact in order to adapt ongoing behavior in socially demanding contexts.

  1. Functional Cortical Network in Alpha Band Correlates with Social Bargaining

    PubMed Central

    Billeke, Pablo; Zamorano, Francisco; Chavez, Mario; Cosmelli, Diego; Aboitiz, Francisco

    2014-01-01

    Solving demanding tasks requires fast and flexible coordination among different brain areas. Everyday examples of this are the social dilemmas in which goals tend to clash, requiring one to weigh alternative courses of action in limited time. In spite of this fact, there are few studies that directly address the dynamics of flexible brain network integration during social interaction. To study the preceding, we carried out EEG recordings while subjects played a repeated version of the Ultimatum Game in both human (social) and computer (non-social) conditions. We found phase synchrony (inter-site-phase-clustering) modulation in alpha band that was specific to the human condition and independent of power modulation. The strength and patterns of the inter-site-phase-clustering of the cortical networks were also modulated, and these modulations were mainly in frontal and parietal regions. Moreover, changes in the individuals’ alpha network structure correlated with the risk of the offers made only in social conditions. This correlation was independent of changes in power and inter-site-phase-clustering strength. Our results indicate that, when subjects believe they are participating in a social interaction, a specific modulation of functional cortical networks in alpha band takes place, suggesting that phase synchrony of alpha oscillations could serve as a mechanism by which different brain areas flexibly interact in order to adapt ongoing behavior in socially demanding contexts. PMID:25286240

  2. Finite element analysis of the tetragonal to monoclinic phase transformation during oxidation of zirconium alloys

    NASA Astrophysics Data System (ADS)

    Platt, P.; Frankel, P.; Gass, M.; Howells, R.; Preuss, M.

    2014-11-01

    Corrosion is a key limiting factor in the degradation of zirconium alloys in light water reactors. Developing a mechanistic understanding of the corrosion process offers a route towards improving safety and efficiency as demand increases for higher burn-up of fuel. Oxides formed on zirconium alloys are composed of both monoclinic and meta-stable tetragonal phases, and are subject to a number of potential mechanical degradation mechanisms. The work presented investigates the link between the tetragonal to monoclinic oxide phase transformation and degradation of the protective character of the oxide layer. To achieve this, Abaqus finite element analysis of the oxide phase transformation has been carried out. Study of the change in transformation strain energy shows how relaxation of oxidation induced stress and fast fracture at the metal-oxide interface could destabilise the tetragonal phase. Central to this is the identification of the transformation variant most likely to form, and understanding why twinning of the transformed grain is likely to occur. Development of transformation strain tensors and analysis of the strain components allows some separation of dilatation and shear effects. Maximum principal stress is used as an indication of fracture in the surrounding oxide layer. Study of the stress distributions shows the way oxide fracture is likely to occur and the differing effects of dilatation and shape change. Comparison with literature provides qualitative validation of the finite element simulations.

  3. A fast-locking PLL with all-digital locked-aid circuit

    NASA Astrophysics Data System (ADS)

    Kao, Shao-Ku; Hsieh, Fu-Jen

    2013-02-01

    In this article, a fast-locking phase-locked loop (PLL) with an all-digital locked-aid circuit is proposed and analysed. The proposed topology is based on two tuning loops: frequency and phase detections. A frequency detection loop is used to accelerate frequency locking time, and a phase detection loop is used to adjust fine phase errors between the reference and feedback clocks. The proposed PLL circuit is designed based on the 0.35 µm CMOS process with a 3.3 V supply voltage. Experimental results show that the locking time of the proposed PLL achieves a 87.5% reduction from that of a PLL without the locked-aid circuit.

  4. Effects of seawater transfer and fasting on the endocrine and biochemical growth indices in juvenile chum salmon (Oncorhynchus keta).

    PubMed

    Taniyama, Natsumi; Kaneko, Nobuto; Inatani, Yu; Miyakoshi, Yasuyuki; Shimizu, Munetaka

    2016-09-15

    Insulin-like growth factor (IGF)-I, IGF-binding protein (IGFBP)-1 and RNA/DNA ratio are endocrine and biochemical parameters used as growth indices in fish, however, they are subjected to environmental modulation. Chum salmon (Oncorhynchus keta) migrate from freshwater (FW) to seawater (SW) at fry/juvenile stage weighing around 1g and suffer growth-dependent mortality during the early phase of their marine life. In order to reveal environmental modulation of the IGF/IGFBP system and establish a reliable growth index for juvenile chum salmon, we examined effects of SW transfer and fasting on IGF-I, IGFBP-1 and RNA/DNA ratio, and correlated them to individual growth rate. Among serum IGF-I, liver and muscle igf-1, igfbp-1a, igfbp-1b and RNA/DNA ratio examined, muscle RNA/DNA ratio and muscle igfbp-1a responded to SW transfer. Serum IGF-I, liver igf-1 and liver RNA/DNA ratio were sensitive to nutritional change by being reduced in 1week in both FW and SW while muscle igf-1 was reduced 2weeks after fasting. In contrast, igfbp-1a in both tissues was increased by 2weeks of fasting and igfbp-1b in the liver of SW fish was increased in 1week. These results suggest that the sensitivity of igf-1 and igfbp-1s to fasting differs between tissues and subtypes, respectively. When chum salmon juveniles in SW were marked and subjected to feeding or fasting, serum IGF-I showed the highest correlation with individual growth rate. Liver igfbp-1a and -1b, and muscle igf-1 exhibited moderate correlation coefficients with growth rate. These results show that serum IGF-I is superior to the other parameters as a growth index in juvenile chum salmon in term of its stability to salinity change, high sensitivity to fasting and strong relationship with growth rate. On the one hand, when collecting blood from chum salmon fry/juveniles is not practical, measuring liver igfbp-1a and -1b, or/and muscle igf-1 is an alternative. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Registration of retinal sequences from new video-ophthalmoscopic camera.

    PubMed

    Kolar, Radim; Tornow, Ralf P; Odstrcilik, Jan; Liberdova, Ivana

    2016-05-20

    Analysis of fast temporal changes on retinas has become an important part of diagnostic video-ophthalmology. It enables investigation of the hemodynamic processes in retinal tissue, e.g. blood-vessel diameter changes as a result of blood-pressure variation, spontaneous venous pulsation influenced by intracranial-intraocular pressure difference, blood-volume changes as a result of changes in light reflection from retinal tissue, and blood flow using laser speckle contrast imaging. For such applications, image registration of the recorded sequence must be performed. Here we use a new non-mydriatic video-ophthalmoscope for simple and fast acquisition of low SNR retinal sequences. We introduce a novel, two-step approach for fast image registration. The phase correlation in the first stage removes large eye movements. Lucas-Kanade tracking in the second stage removes small eye movements. We propose robust adaptive selection of the tracking points, which is the most important part of tracking-based approaches. We also describe a method for quantitative evaluation of the registration results, based on vascular tree intensity profiles. The achieved registration error evaluated on 23 sequences (5840 frames) is 0.78 ± 0.67 pixels inside the optic disc and 1.39 ± 0.63 pixels outside the optic disc. We compared the results with the commonly used approaches based on Lucas-Kanade tracking and scale-invariant feature transform, which achieved worse results. The proposed method can efficiently correct particular frames of retinal sequences for shift and rotation. The registration results for each frame (shift in X and Y direction and eye rotation) can also be used for eye-movement evaluation during single-spot fixation tasks.

  6. Developments in Polarization and Energy Control of APPLE-II Undulators at Diamond Light Source

    NASA Astrophysics Data System (ADS)

    Longhi, E. C.; Bencok, P.; Dobrynin, A.; Rial, E. C. M.; Rose, A.; Steadman, P.; Thompson, C.; Thomson, A.; Wang, H.

    2013-03-01

    A pair of 2m long APPLE-II type undulators have been built for the I10 BLADE beamline at Diamond Light Source. These 48mm period devices have gap as well as four moveable phase axes which provide the possibility to produce the full range of elliptical polarizations as well as linear polarization tilted through a full 180deg. The mechanical layout chosen has a 'master and slave' arrangement of the phase axes on the top and bottom. This arrangement allows the use of symmetries to provide operational ease for both changing energy using only the master phase while keeping fixed linear horizontal or circular polarization, as well as changing linear polarization angle while keeping fixed energy [1]. The design allows very fast motion of the master phase arrays, without sacrifice of accuracy, allowing the possibility of mechanical polarization switching at 1Hz for dichroism experiments. We present the mechanical design features of these devices, as well as the results of magnetic measurements and shimming from before installation. Finally, we present the results of characterization of these devices by the beamline, including polarimetry, which has been done on the various modes of motion to control energy and polarization. These modes of operation have been available to users since 2011.

  7. Cortical Power-Density Changes of Different Frequency Bands in Visually Guided Associative Learning: A Human EEG-Study

    PubMed Central

    Puszta, András; Katona, Xénia; Bodosi, Balázs; Pertich, Ákos; Nyujtó, Diána; Braunitzer, Gábor; Nagy, Attila

    2018-01-01

    The computer-based Rutgers Acquired Equivalence test (RAET) is a widely used paradigm to test the function of subcortical structures in visual associative learning. The test consists of an acquisition (pair learning) and a test (rule transfer) phase, associated with the function of the basal ganglia and the hippocampi, respectively. Obviously, such a complex task also requires cortical involvement. To investigate the activity of different cortical areas during this test, 64-channel EEG recordings were recorded in 24 healthy volunteers. Fast-Fourier and Morlet wavelet convolution analyses were performed on the recordings. The most robust power changes were observed in the theta (4–7 Hz) and gamma (>30 Hz) frequency bands, in which significant power elevation was observed in the vast majority of the subjects, over the parieto-occipital and temporo-parietal areas during the acquisition phase. The involvement of the frontal areas in the acquisition phase was remarkably weaker. No remarkable cortical power elevations were found in the test phase. In fact, the power of the alpha and beta bands was significantly decreased over the parietooccipital areas. We conclude that the initial acquisition of the image pairs requires strong cortical involvement, but once the pairs have been learned, neither retrieval nor generalization requires strong cortical contribution. PMID:29867412

  8. Matrix-type transdermal films to enhance simvastatin ex vivo skin permeability.

    PubMed

    El-Say, Khalid M; Ahmed, Osama A A; Aljaeid, Bader M; Zidan, Ahmed S

    2017-06-01

    This study aimed at employing Plackett-Burman design in screening formulation variables that affect quality of matrix-type simvastatin (SMV) transdermal film. To achieve this goal, 12 formulations were prepared by casting method. The investigated variables were Eudragit RL percentage, polymer mixture percentage, plasticizer type, plasticizer percentage, enhancer type, enhancer percentage and dichloromethane fraction in organic phase. The films were evaluated for physicochemical properties and ex vivo SMV permeation. SMV initial, delayed flux, diffusivity and permeability coefficient were calculated on the delayed flux phase with constraint to minimize the initial flux and approaching steady-state flux. The obtained results revealed flat films with homogeneous distribution of SMV within the films. Thickness values changed from 65 to 180 μm by changing the factors' combinations. Most of the permeation profiles showed sustained release feature with fast permeation phase followed by slow phase. Analysis of variance (ANOVA) showed significant effects (p < 0.05) of the investigated variables on the responses with Prob > F values of 0.0147, 0.0814, 0.0063 and 0.0142 for the initial and delayed fluxes, permeability coefficients and diffusivities, respectively. The findings of screening study showed the importance of the significant variables to be scaled up for full optimization study as a promising alternative drug delivery system.

  9. Cortical Power-Density Changes of Different Frequency Bands in Visually Guided Associative Learning: A Human EEG-Study.

    PubMed

    Puszta, András; Katona, Xénia; Bodosi, Balázs; Pertich, Ákos; Nyujtó, Diána; Braunitzer, Gábor; Nagy, Attila

    2018-01-01

    The computer-based Rutgers Acquired Equivalence test (RAET) is a widely used paradigm to test the function of subcortical structures in visual associative learning. The test consists of an acquisition (pair learning) and a test (rule transfer) phase, associated with the function of the basal ganglia and the hippocampi, respectively. Obviously, such a complex task also requires cortical involvement. To investigate the activity of different cortical areas during this test, 64-channel EEG recordings were recorded in 24 healthy volunteers. Fast-Fourier and Morlet wavelet convolution analyses were performed on the recordings. The most robust power changes were observed in the theta (4-7 Hz) and gamma (>30 Hz) frequency bands, in which significant power elevation was observed in the vast majority of the subjects, over the parieto-occipital and temporo-parietal areas during the acquisition phase. The involvement of the frontal areas in the acquisition phase was remarkably weaker. No remarkable cortical power elevations were found in the test phase. In fact, the power of the alpha and beta bands was significantly decreased over the parietooccipital areas. We conclude that the initial acquisition of the image pairs requires strong cortical involvement, but once the pairs have been learned, neither retrieval nor generalization requires strong cortical contribution.

  10. From Modeling of Plasticity in Single-Crystal Superalloys to High-Resolution X-rays Three-Crystal Diffractometer Peaks Simulation

    NASA Astrophysics Data System (ADS)

    Jacques, Alain

    2016-12-01

    The dislocation-based modeling of the high-temperature creep of two-phased single-crystal superalloys requires input data beyond strain vs time curves. This may be obtained by use of in situ experiments combining high-temperature creep tests with high-resolution synchrotron three-crystal diffractometry. Such tests give access to changes in phase volume fractions and to the average components of the stress tensor in each phase as well as the plastic strain of each phase. Further progress may be obtained by a new method making intensive use of the Fast Fourier Transform, and first modeling the behavior of a representative volume of material (stress fields, plastic strain, dislocation densities…), then simulating directly the corresponding diffraction peaks, taking into account the displacement field within the material, chemical variations, and beam coherence. Initial tests indicate that the simulated peak shapes are close to the experimental ones and are quite sensitive to the details of the microstructure and to dislocation densities at interfaces and within the soft γ phase.

  11. Ultra-fast switching blue phase liquid crystals diffraction grating stabilized by chiral monomer

    NASA Astrophysics Data System (ADS)

    Manda, Ramesh; Pagidi, Srinivas; Sarathi Bhattacharya, Surjya; Yoo, Hyesun; T, Arun Kumar; Lim, Young Jin; Lee, Seung Hee

    2018-05-01

    We have demonstrated an ultra-fast switching and efficient polymer stabilized blue phase liquid crystal (PS-BPLC) diffraction grating utilizing a chiral monomer. We have obtained a 0.5 ms response time by a novel polymer stabilization method which is three times faster than conventional PS-BPLC. In addition, the diffraction efficiency was improved 2% with a much wider phase range and the driving voltage to switch the device is reduced. The polarization properties of the diffracted beam are unaffected by this novel polymer stabilization. This device can be useful for future photonic applications.

  12. Physiological adaptations to fasting in an actively wintering canid, the Arctic blue fox (Alopex lagopus).

    PubMed

    Mustonen, Anne-Mari; Pyykönen, Teija; Puukka, Matti; Asikainen, Juha; Hänninen, Sari; Mononen, Jaakko; Nieminen, Petteri

    2006-01-01

    This study investigated the physiological adaptations to fasting using the farmed blue fox (Alopex lagopus) as a model for the endangered wild arctic fox. Sixteen blue foxes were fed throughout the winter and 32 blue foxes were fasted for 22 d in Nov-Dec 2002. Half of the fasted blue foxes were food-deprived again for 22 d in Jan-Feb 2003. The farmed blue fox lost weight at a slower rate (0.97-1.02% body mass d(-1)) than observed previously in the arctic fox, possibly due to its higher initial body fat content. The animals experienced occasional fasting-induced hypoglycaemia, but their locomotor activity was not affected. The plasma triacylglycerol and glycerol concentrations were elevated during phase II of fasting indicating stimulated lipolysis, probably induced by the high growth hormone concentrations. The total cholesterol, HDL- and LDL-cholesterol, urea, uric acid and total protein levels and the urea:creatinine ratio decreased during fasting. Although the plasma levels of some essential amino acids increased, the blue foxes did not enter phase III of starvation characterized by stimulated proteolysis during either of the 22-d fasting procedures. Instead of excessive protein catabolism, it is liver dysfunction, indicated by the increased plasma bilirubin levels and alkaline phosphatase, alanine aminotransferase and aspartate aminotransferase activities, that may limit the duration of fasting in the species.

  13. Spontaneous helix formation in non-chiral bent-core liquid crystals with fast linear electro-optic effect

    PubMed Central

    Sreenilayam, Sithara P.; Panarin, Yuri P.; Vij, Jagdish K.; Panov, Vitaly P.; Lehmann, Anne; Poppe, Marco; Prehm, Marko; Tschierske, Carsten

    2016-01-01

    Liquid crystals (LCs) represent one of the foundations of modern communication and photonic technologies. Present display technologies are based mainly on nematic LCs, which suffer from limited response time for use in active colour sequential displays and limited image grey scale. Herein we report the first observation of a spontaneously formed helix in a polar tilted smectic LC phase (SmC phase) of achiral bent-core (BC) molecules with the axis of helix lying parallel to the layer normal and a pitch much shorter than the optical wavelength. This new phase shows fast (∼30 μs) grey-scale switching due to the deformation of the helix by the electric field. Even more importantly, defect-free alignment is easily achieved for the first time for a BC mesogen, thus providing potential use in large-scale devices with fast linear and thresholdless electro-optical response. PMID:27156514

  14. Spontaneous helix formation in non-chiral bent-core liquid crystals with fast linear electro-optic effect

    NASA Astrophysics Data System (ADS)

    Sreenilayam, Sithara P.; Panarin, Yuri P.; Vij, Jagdish K.; Panov, Vitaly P.; Lehmann, Anne; Poppe, Marco; Prehm, Marko; Tschierske, Carsten

    2016-05-01

    Liquid crystals (LCs) represent one of the foundations of modern communication and photonic technologies. Present display technologies are based mainly on nematic LCs, which suffer from limited response time for use in active colour sequential displays and limited image grey scale. Herein we report the first observation of a spontaneously formed helix in a polar tilted smectic LC phase (SmC phase) of achiral bent-core (BC) molecules with the axis of helix lying parallel to the layer normal and a pitch much shorter than the optical wavelength. This new phase shows fast (~30 μs) grey-scale switching due to the deformation of the helix by the electric field. Even more importantly, defect-free alignment is easily achieved for the first time for a BC mesogen, thus providing potential use in large-scale devices with fast linear and thresholdless electro-optical response.

  15. Non-mydriatic video ophthalmoscope to measure fast temporal changes of the human retina

    NASA Astrophysics Data System (ADS)

    Tornow, Ralf P.; Kolář, Radim; Odstrčilík, Jan

    2015-07-01

    The analysis of fast temporal changes of the human retina can be used to get insight to normal physiological behavior and to detect pathological deviations. This can be important for the early detection of glaucoma and other eye diseases. We developed a small, lightweight, USB powered video ophthalmoscope that allows taking video sequences of the human retina with at least 25 frames per second without dilating the pupil. Short sequences (about 10 s) of the optic nerve head (20° x 15°) are recorded from subjects and registered offline using two-stage process (phase correlation and Lucas-Kanade approach) to compensate for eye movements. From registered video sequences, different parameters can be calculated. Two applications are described here: measurement of (i) cardiac cycle induced pulsatile reflection changes and (ii) eye movements and fixation pattern. Cardiac cycle induced pulsatile reflection changes are caused by changing blood volume in the retina. Waveform and pulse parameters like amplitude and rise time can be measured in any selected areas within the retinal image. Fixation pattern ΔY(ΔX) can be assessed from eye movements during video acquisition. The eye movements ΔX[t], ΔY[t] are derived from image registration results with high temporal (40 ms) and spatial (1,86 arcmin) resolution. Parameters of pulsatile reflection changes and fixation pattern can be affected in beginning glaucoma and the method described here may support early detection of glaucoma and other eye disease.

  16. Low-Frequency Waves in Cold Three-Component Plasmas

    NASA Astrophysics Data System (ADS)

    Fu, Qiang; Tang, Ying; Zhao, Jinsong; Lu, Jianyong

    2016-09-01

    The dispersion relation and electromagnetic polarization of the plasma waves are comprehensively studied in cold electron, proton, and heavy charged particle plasmas. Three modes are classified as the fast, intermediate, and slow mode waves according to different phase velocities. When plasmas contain positively-charged particles, the fast and intermediate modes can interact at the small propagating angles, whereas the two modes are separate at the large propagating angles. The near-parallel intermediate and slow waves experience the linear polarization, circular polarization, and linear polarization again, with the increasing wave number. The wave number regime corresponding to the above circular polarization shrinks as the propagating angle increases. Moreover, the fast and intermediate modes cause the reverse change of the electromagnetic polarization at the special wave number. While the heavy particles carry the negative charges, the dispersion relations of the fast and intermediate modes are always separate, being independent of the propagating angles. Furthermore, this study gives new expressions of the three resonance frequencies corresponding to the highly-oblique propagation waves in the general three-component plasmas, and shows the dependence of the resonance frequencies on the propagating angle, the concentration of the heavy particle, and the mass ratio among different kinds of particles. supported by National Natural Science Foundation of China (Nos. 11303099, 41531071 and 41574158), and the Youth Innovation Promotion Association CAS

  17. Hysteresis and fast timescales in transport relations of toroidal plasmas

    NASA Astrophysics Data System (ADS)

    Itoh, K.; Itoh, S.-I.; Ida, K.; Inagaki, S.; Kamada, Y.; Kamiya, K.; Dong, J. Q.; Hidalgo, C.; Evans, T.; Ko, W. H.; Park, H.; Tokuzawa, T.; Kubo, S.; Kobayashi, T.; Kosuga, Y.; Sasaki, M.; Yun, G. S.; Song, S. D.; Kasuya, N.; Nagashima, Y.; Moon, C.; Yoshinuma, M.; Makino, R.; Tsujimura, T.; Tsuchiya, H.; Stroth, U.

    2017-10-01

    This article assesses current understanding of hysteresis in transport relations, and its impact on the field. The rapid changes of fluxes compared to slow changes of plasma parameters are overviewed for both core and edge plasmas. The modulation ECH experiment is explained, in which the heating power cycles on-and-off periodically, revealing hysteresis and fast changes in the gradient-flux relation. The key finding is that hystereses were observed simultaneously in both the the gradient-flux and gradient-fluctuation relations. Hysteresis with rapid timescale exists in the channels of energy, electron and impurity densities, and plausibly in momentum. Advanced methods of data analysis are explained. Transport hysteresis can be studied by observing the higher harmonics of temperature perturbation δ Tm in heating modulation experiments. The hysteresis introduces the term δ Tm , which depends on the harmonic number m in an algebraic manner (not exponential decay). Next, the causes of hysteresis and its fast timescale are discussed. The nonlocal-in-space coupling works here, but does not suffice. One mechanism for ‘the heating heats turbulence’ is that the external source S in phase space for heating has its fluctuation in turbulent plasma. This coupling can induce the direct input of heating power into fluctuations. The height of the jump in transport hysteresis is smaller for heavier hydrogen isotopes, and could be one of the origins of isotope effects on confinement. Finally, the impacts of transport hysteresis on the control system are assessed. Control systems must be designed so as to protect the system from sudden plasma loss.

  18. Load characteristics of a suspended carbon nanotube film heater and the fabrication of a fast-response thermochromic display prototype.

    PubMed

    Liu, Peng; Zhou, Duanliang; Wei, Yang; Jiang, Kaili; Wang, Jiaping; Zhang, Lina; Li, Qunqing; Fan, Shoushan

    2015-04-28

    The influence of heating load on the thermal response of a CNT film heater has been studied. Two kinds of heat dissipation modes, thermal radiation in a vacuum and convection in the atmosphere, are investigated, respectively. It is found that the thermal response slows down with the load quantities in the both cases. We have further studied the thermal response of a CNT film loaded with thermochromic pigment, which is a kind of phase change material. In addition to the thermal response slowing down with the load quantity, it is also found that the phase change of the thermochromic pigments can also slow down the thermal response. With a suspended CNT film heater structure, we have fabricated a thermochromic display prototype, which can switch from room temperature to 50 °C in about 1 s with a brightness contrast of 4.8 under normal indoor illumination. A 16 × 16 pixel thermochromic display prototype can dynamically display Chinese characters driven by a homemade circuit.

  19. Simulations of fast crab cavity failures in the high luminosity Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Yee-Rendon, Bruce; Lopez-Fernandez, Ricardo; Barranco, Javier; Calaga, Rama; Marsili, Aurelien; Tomás, Rogelio; Zimmermann, Frank; Bouly, Frédéric

    2014-05-01

    Crab cavities (CCs) are a key ingredient of the high luminosity Large Hadron Collider (HL-LHC) project for increasing the luminosity of the LHC. At KEKB, CCs have exhibited abrupt changes of phase and voltage during a time period of the order of a few LHC turns and considering the significant stored energy in the HL-LHC beam, CC failures represent a serious threat in regard to LHC machine protection. In this paper, we discuss the effect of CC voltage or phase changes on a time interval similar to, or longer than, the one needed to dump the beam. The simulations assume a quasistationary-state distribution to assess the particles losses for the HL-LHC. These distributions produce beam losses below the safe operation threshold for Gaussian tails, while, for non-Gaussian tails are on the same order of the limit. Additionally, some mitigation strategies are studied for reducing the damage caused by the CC failures.

  20. Water Hydrogen-Bonding Network Structure and Dynamics at Phospholipid Multibilayer Surface: Femtosecond Mid-IR Pump-Probe Spectroscopy.

    PubMed

    Kundu, Achintya; Błasiak, Bartosz; Lim, Joon-Hyung; Kwak, Kyungwon; Cho, Minhaeng

    2016-03-03

    The water hydrogen-bonding network at a lipid bilayer surface is crucial to understanding membrane structures and its functional activities. With a phospholipid multibilayer mimicking a biological membrane, we study the temperature dependence of water hydrogen-bonding structure, distribution, and dynamics at a lipid multibilayer surface using femtosecond mid-IR pump-probe spectroscopy. We observe two distinguished vibrational lifetime components. The fast component (0.6 ps) is associated with water interacting with a phosphate part, whereas the slow component (1.9 ps) is with bulk-like choline-associated water. With increasing temperature, the vibrational lifetime of phosphate-associated water remains constant though its relative fraction dramatically increases. The OD stretch vibrational lifetime of choline-bound water slows down in a sigmoidal fashion with respect to temperature, indicating a noticeable change of the water environment upon the phase transition. The water structure and dynamics are thus shown to be in quantitative correlation with the structural change of liquid multibilayer upon the gel-to-liquid crystal phase transition.

  1. An improved fast acquisition phase frequency detector for high speed phase-locked loops

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Wang, Zongmin; Zhang, Tieliang; Peng, Xinmang

    2018-04-01

    Phase-locked loops (PLL) have been widely applied in many high-speed designs, such as microprocessors or communication systems. In this paper, an improved fast acquisition phase frequency detector for high speed phase-locked loops is proposed. An improved structure based on dynamic latch is used to eliminate the non-ideal effect such as dead zone and blind zone. And frequency dividers are utilized to vastly extend the phase difference detection range and enhance the operation frequency of the PLL. Proposed PFD has been implemented in 65nm CMOS technology, which occupies an area of 0.0016mm2 and consumes 1.5mW only. Simulation results demonstrate that maximum operation frequency can be up to 5GHz. In addition, the acquisition time of PLL using proposed PFD is 1.0us which is 2.6 times faster than that of the PLL using latch-based PFD without divider.

  2. Phase-synchroniser based on gm-C all-pass filter chain with sliding mode control

    NASA Astrophysics Data System (ADS)

    Mitić, Darko B.; Jovanović, Goran S.; Stojčev, Mile K.; Antić, Dragan S.

    2015-03-01

    Phase-synchronisers have many applications in VLSI circuit designs. They are used in CMOS RF circuits including phase (de)modulators, phase recovery circuits, multiphase synthesis, etc. In this article, a phase-synchroniser based on gm-C all-pass filter chain with sliding mode control is presented. The filter chain provides good controllable delay characteristics over the full range of phase and frequency regulation, without deterioration of input signal amplitude and waveform, while the sliding mode control enables us to achieve fast and predetermined finite locking time. IHP 0.25 µm SiGe BiCMOS technology has been used in design and verification processes. The circuit operates in the frequency range from 33 MHz up to 150 MHz. Simulation results indicate that it is possible to achieve very fast synchronisation time period, which is approximately four time intervals of the input signal during normal operation, and 20 time intervals during power-on.

  3. Deuterium and carbon-13 NMR of the solid polymorphism of benzenehexoyl hexa-n-hexanoate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lifshitz, E.; Goldfarb,, D.; Vega, S.

    Deuterium and carbon-13 NMR of specifically labeled benzenehexoyl hexa-n-hexanoate in the various solid-state phases are reported. The spectra exhibit dynamic line shapes which change discontinuously at the phase transitions. The results are interpreted in terms of sequential melting of the side chains on going from the low-temperature solid phases IV, III, etc., toward the liquid. In phase IV the molecules are very nearly static, except for fast rotation of the methyl groups about their C/sub 3/ axes. The results in phase III were quantitatively interpreted in terms of a two-site isomerization process involving simultaneous rotation by 95/sup 0/ about C/submore » 1/-C/sub 2/ and transition from gtg to g'g't (or equivalently g'tg' to ggt) for the rest of the chain. The specific rate of this reaction at 0/sup 0/C is approx. 10/sup 5/s/sup -1/. In phase II additional chain isomerization processes set-in which were, however, not analyzed quantitatively. Further motional modes, involving reorientation of whole chains about their C/sup ar/-O bonds, appear on going to phase I. In all solid phases the benzene ring remains static.« less

  4. Force transients and minimum cross-bridge models in muscular contraction

    PubMed Central

    Halvorson, Herbert R.

    2010-01-01

    Two- and three-state cross-bridge models are considered and examined with respect to their ability to predict three distinct phases of the force transients that occur in response to step change in muscle fiber length. Particular attention is paid to satisfying the Le Châtelier–Brown Principle. This analysis shows that the two-state model can account for phases 1 and 2 of a force transient, but is barely adequate to account for phase 3 (delayed force) unless a stretch results in a sudden increase in the number of cross-bridges in the detached state. The three-state model (A → B → C → A) makes it possible to account for all three phases if we assume that the A → B transition is fast (corresponding to phase 2), the B → C transition is of intermediate speed (corresponding to phase 3), and the C → A transition is slow; in such a scenario, states A and C can support or generate force (high force states) but state B cannot (detached, or low-force state). This model involves at least one ratchet mechanism. In this model, force can be generated by either of two transitions: B → A or B → C. To determine which of these is the major force-generating step that consumes ATP and transduces energy, we examine the effects of ATP, ADP, and phosphate (Pi) on force transients. In doing so, we demonstrate that the fast transition (phase 2) is associated with the nucleotide-binding step, and that the intermediate-speed transition (phase 3) is associated with the Pi-release step. To account for all the effects of ligands, it is necessary to expand the three-state model into a six-state model that includes three ligand-bound states. The slowest phase of a force transient (phase 4) cannot be explained by any of the models described unless an additional mechanism is introduced. Here we suggest a role of series compliance to account for this phase, and propose a model that correlates the slowest step of the cross-bridge cycle (transition C → A) to: phase 4 of step analysis, the rate constant ktr of the quick-release and restretch experiment, and the rate constant kact for force development time course following Ca2+ activation. PMID:18425593

  5. Force transients and minimum cross-bridge models in muscular contraction.

    PubMed

    Kawai, Masataka; Halvorson, Herbert R

    2007-01-01

    Two- and three-state cross-bridge models are considered and examined with respect to their ability to predict three distinct phases of the force transients that occur in response to step change in muscle fiber length. Particular attention is paid to satisfying the Le Châtelier-Brown Principle. This analysis shows that the two-state model can account for phases 1 and 2 of a force transient, but is barely adequate to account for phase 3 (delayed force) unless a stretch results in a sudden increase in the number of cross-bridges in the detached state. The three-state model (A-->B-->C-->A) makes it possible to account for all three phases if we assume that the A-->B transition is fast (corresponding to phase 2), the B-->A transition is of intermediate speed (corresponding to phase 3), and the C-->A transition is slow; in such a scenario, states A and C can support or generate force (high force states) but state B cannot (detached, or low-force state). This model involves at least one ratchet mechanism. In this model, force can be generated by either of two transitions: B-->A or B-->C. To determine which of these is the major force-generating step that consumes ATP and transduces energy, we examine the effects of ATP, ADP, and phosphate (Pi) on force transients. In doing so, we demonstrate that the fast transition (phase 2) is associated with the nucleotide-binding step, and that the intermediate-speed transition (phase 3) is associated with the Pi-release step. To account for all the effects of ligands, it is necessary to expand the three-state model into a six-state model that includes three ligand-bound states. The slowest phase of a force transient (phase 4) cannot be explained by any of the models described unless an additional mechanism is introduced. Here we suggest a role of series compliance to account for this phase, and propose a model that correlates the slowest step of the cross-bridge cycle (transition C-->A) to: phase 4 of step analysis, the rate constant k(tr) of the quick-release and restretch experiment, and the rate constant k(act) for force development time course following Ca(2+) activation.

  6. Quantitative phase imaging of biological cells and tissues using singleshot white light interference microscopy and phase subtraction method for extended range of measurement

    NASA Astrophysics Data System (ADS)

    Mehta, Dalip Singh; Sharma, Anuradha; Dubey, Vishesh; Singh, Veena; Ahmad, Azeem

    2016-03-01

    We present a single-shot white light interference microscopy for the quantitative phase imaging (QPI) of biological cells and tissues. A common path white light interference microscope is developed and colorful white light interferogram is recorded by three-chip color CCD camera. The recorded white light interferogram is decomposed into the red, green and blue color wavelength component interferograms and processed it to find out the RI for different color wavelengths. The decomposed interferograms are analyzed using local model fitting (LMF)" algorithm developed for reconstructing the phase map from single interferogram. LMF is slightly off-axis interferometric QPI method which is a single-shot method that employs only a single image, so it is fast and accurate. The present method is very useful for dynamic process where path-length changes at millisecond level. From the single interferogram a wavelength-dependent quantitative phase imaging of human red blood cells (RBCs) are reconstructed and refractive index is determined. The LMF algorithm is simple to implement and is efficient in computation. The results are compared with the conventional phase shifting interferometry and Hilbert transform techniques.

  7. Fast-track surgery: Toward comprehensive peri-operative care

    PubMed Central

    Nanavati, Aditya J.; Prabhakar, S.

    2014-01-01

    Fast-track surgery is a multimodal approach to patient care using a combination of several evidence-based peri-operative interventions to expedite recovery after surgery. It is an extension of the critical pathway that integrates modalities in surgery, anesthesia, and nutrition, enforces early mobilization and feeding, and emphasizes reduction of the surgical stress response. It entails a great partnership between a surgeon and an anesthesiologist with several other specialists to form a multi-disciplinary team, which may then engage in patient care. The practice of fast-track surgery has yielded excellent results and there has been a significant reduction in hospital stay without a rise in complications or re-admissions. The effective implementation begins with the formulation of a protocol, carrying out each intervention and gathering outcome data. The care of a patient is divided into three phases: Before, during, and after surgery. Each stage needs active participation of few or all the members of the multi-disciplinary team. Other than surgical technique, anesthetic drugs, and techniques form the cornerstone in the ability of the surgeon to carry out a fast-track surgery safely. It is also the role of this team to keep abreast with the latest development in fast-track methodology and make appropriate changes to policy. In the Indian healthcare system, there is a huge benefit that may be achieved by the successful implementation of a fast-track surgery program at an institutional level. The lack of awareness regarding this concept, fear and apprehension regarding its implementation are the main barriers that need to be overcome. PMID:25886214

  8. Fast-track surgery: Toward comprehensive peri-operative care.

    PubMed

    Nanavati, Aditya J; Prabhakar, S

    2014-01-01

    Fast-track surgery is a multimodal approach to patient care using a combination of several evidence-based peri-operative interventions to expedite recovery after surgery. It is an extension of the critical pathway that integrates modalities in surgery, anesthesia, and nutrition, enforces early mobilization and feeding, and emphasizes reduction of the surgical stress response. It entails a great partnership between a surgeon and an anesthesiologist with several other specialists to form a multi-disciplinary team, which may then engage in patient care. The practice of fast-track surgery has yielded excellent results and there has been a significant reduction in hospital stay without a rise in complications or re-admissions. The effective implementation begins with the formulation of a protocol, carrying out each intervention and gathering outcome data. The care of a patient is divided into three phases: Before, during, and after surgery. Each stage needs active participation of few or all the members of the multi-disciplinary team. Other than surgical technique, anesthetic drugs, and techniques form the cornerstone in the ability of the surgeon to carry out a fast-track surgery safely. It is also the role of this team to keep abreast with the latest development in fast-track methodology and make appropriate changes to policy. In the Indian healthcare system, there is a huge benefit that may be achieved by the successful implementation of a fast-track surgery program at an institutional level. The lack of awareness regarding this concept, fear and apprehension regarding its implementation are the main barriers that need to be overcome.

  9. Kinematic markers dissociate error correction from sensorimotor realignment during prism adaptation.

    PubMed

    O'Shea, Jacinta; Gaveau, Valérie; Kandel, Matthieu; Koga, Kazuo; Susami, Kenji; Prablanc, Claude; Rossetti, Yves

    2014-03-01

    This study investigated the motor control mechanisms that enable healthy individuals to adapt their pointing movements during prism exposure to a rightward optical shift. In the prism adaptation literature, two processes are typically distinguished. Strategic motor adjustments are thought to drive the pattern of rapid endpoint error correction typically observed during the early stage of prism exposure. This is distinguished from so-called 'true sensorimotor realignment', normally measured with a different pointing task, at the end of prism exposure, which reveals a compensatory leftward 'prism after-effect'. Here, we tested whether each mode of motor compensation - strategic adjustments versus 'true sensorimotor realignment' - could be distinguished, by analyzing patterns of kinematic change during prism exposure. We hypothesized that fast feedforward versus slower feedback error corrective processes would map onto two distinct phases of the reach trajectory. Specifically, we predicted that feedforward adjustments would drive rapid compensation of the initial (acceleration) phase of the reach, resulting in the rapid reduction of endpoint errors typically observed early during prism exposure. By contrast, we expected visual-proprioceptive realignment to unfold more slowly and to reflect feedback influences during the terminal (deceleration) phase of the reach. The results confirmed these hypotheses. Rapid error reduction during the early stage of prism exposure was achieved by trial-by-trial adjustments of the motor plan, which were proportional to the endpoint error feedback from the previous trial. By contrast, compensation of the terminal reach phase unfolded slowly across the duration of prism exposure. Even after 100 trials of pointing through prisms, adaptation was incomplete, with participants continuing to exhibit a small rightward shift in both the reach endpoints and in the terminal phase of reach trajectories. Individual differences in the degree of adaptation of the terminal reach phase predicted the magnitude of prism after-effects. In summary, this study identifies distinct kinematic signatures of fast strategic versus slow sensorimotor realignment processes, which combine to adjust motor performance to compensate for a prismatic shift. © 2013 Elsevier Ltd. All rights reserved.

  10. Changes in contractile properties and action potentials of motor units in the rat medial gastrocnemius muscle during maturation.

    PubMed

    Dobrzynska, Z; Celichowski, J

    2016-02-01

    The early phase of development of muscles stops following the disappearance of embryonic and neonatal myosin and the elimination of polyneuronal innervation of muscle fibres with the formation of motor units (MUs), but later the muscle mass still considerably increases. It is unknown whether the three types are visible among newly formed MUs soon after the early postnatal period and whether their proportion is similar to that in adult muscle. Moreover, the processes responsible for MU-force regulation by changes in motoneuronal firing rate as well as properties of motor unit action potentials (MUAPs) during maturation are unknown. Three groups of Wistar rats were investigated - 1 month old, 2 months old and the adult, 9 months old. The basic contractile properties and action potentials of MUs in the medial gastrocnemius (MG) muscle were analysed. The three types of MUs were distinguishable in all age groups, but higher proportion of slow MUs was noticed in young rats (29%, 18% and 11% in 1, 2 and 9 months rats, respectively). The fatigue index for fast fatigable MUs in 1 month old rats was about 2 times higher than in 9 months old rats. The twitch time parameters of fast MUs were shortened during the maturation; for these units, the force-frequency curves in young rats were shifted towards lower frequencies, which suggested that fast motoneurons of young animals generate lower firing rates. Higher twitch-to-tetanus ratios noted for the three MU types in young rats suggested the smaller role of rate coding in force regulation processes, and the higher role of MU recruitment in young rats. No significant differences in MUAP parameters between two groups of young and adult animals were observed. Concluding, the maturation process evokes deeper changes in fast MUs than in slow ones.

  11. Hubble space telescope observations and geometric models of compact multipolar planetary nebulae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsia, Chih-Hao; Chau, Wayne; Zhang, Yong

    2014-05-20

    We report high angular resolution Hubble Space Telescope observations of 10 compact planetary nebulae (PNs). Many interesting internal structures, including multipolar lobes, arcs, two-dimensional rings, tori, and halos, are revealed for the first time. These results suggest that multipolar structures are common among PNs, and these structures develop early in their evolution. From three-dimensional geometric models, we have determined the intrinsic dimensions of the lobes. Assuming the lobes are the result of interactions between later-developed fast winds and previously ejected asymptotic giant branch winds, the geometric structures of these PNs suggest that there are multiple phases of fast winds separatedmore » by temporal variations and/or directional changes. A scenario of evolution from lobe-dominated to cavity-dominated stages is presented. The results reported here will provide serious constraints on any dynamical models of PNs.« less

  12. Fast Wave Transmission Measurements on Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Reardon, J.; Bonoli, P. T.; Porkolab, M.; Takase, Y.; Wukitch, S. J.

    1997-11-01

    Data are presented from an array of single-turn loop probes newly installed on the inner wall of C-Mod, directly opposite one of the two fast-wave antennas. The 8-loop array extends 32^circ in the toroidal direction at the midplane and can distinguish electromagnetic from electrostatic modes. Data are acquired by 1GHz digitizer, spectrum analyzer, and RF detector circuit. Phase measurements during different heating scenarios show evidence of both standing and travelling waves. The measurement of toroidal mode number N_tor (conserved under the assumption of axisymmetry) is used to guide the toroidal full-wave code TORIC(Brambilla, M., IPP Report 5/66, February 1996). Amplitude measurements show modulation both by Type III ELMs and sawteeth; the observed sawtooth modulation may be interpreted as due to changes in central absorption. The amplitude of tildeB_tor measured at the inner wall is compared to the prediction of TORIC.

  13. Dynamics in the Plastic Crystalline Phases of Cyclohexanol and Cyclooctanol Studied by Quasielastic Neutron Scattering.

    PubMed

    Novak, E; Jalarvo, N; Gupta, S; Hong, K; Förster, S; Egami, T; Ohl, M

    2018-06-01

    Plastic crystals are a promising candidate for solid state ionic conductors. In this work, quasielastic neutron scattering is employed to investigate the center of mass diffusive motions in two types of plastic crystalline cyclic alcohols: cyclohexanol and cyclooctanol. Two separate motions are observed which are attributed to long-range translational diffusion (α-process) and cage rattling (fast β-process). Residence times and diffusion coefficients are calculated for both processes, along with the confinement distances for the cage rattling. In addition, a binary mixture of these two materials is measured to understand how the dynamics change when a second type of molecule is added to the matrix. It is observed that, upon the addition of the larger cyclooctanol molecules into the cyclohexanol solution, the cage size decreases, which causes a decrease in the observed diffusion rates for both the α- and fast β-processes.

  14. Fast spatial beam shaping by acousto-optic diffraction for 3D non-linear microscopy.

    PubMed

    Akemann, Walther; Léger, Jean-François; Ventalon, Cathie; Mathieu, Benjamin; Dieudonné, Stéphane; Bourdieu, Laurent

    2015-11-02

    Acousto-optic deflection (AOD) devices offer unprecedented fast control of the entire spatial structure of light beams, most notably their phase. AOD light modulation of ultra-short laser pulses, however, is not straightforward to implement because of intrinsic chromatic dispersion and non-stationarity of acousto-optic diffraction. While schemes exist to compensate chromatic dispersion, non-stationarity remains an obstacle. In this work we demonstrate an efficient AOD light modulator for stable phase modulation using time-locked generation of frequency-modulated acoustic waves at the full repetition rate of a high power laser pulse amplifier of 80 kHz. We establish the non-local relationship between the optical phase and the generating acoustic frequency function and verify the system for temporal stability, phase accuracy and generation of non-linear two-dimensional phase functions.

  15. The role of community structure on the nature of explosive synchronization.

    PubMed

    Lotfi, Nastaran; Rodrigues, Francisco A; Darooneh, Amir Hossein

    2018-03-01

    In this paper, we analyze explosive synchronization in networks with a community structure. The results of our study indicate that the mesoscopic structure of the networks could affect the synchronization of coupled oscillators. With the variation of three parameters, the degree probability distribution exponent, the community size probability distribution exponent, and the mixing parameter, we could have a fast or slow phase transition. Besides, in some cases, we could have communities which are synchronized inside but not with other communities and vice versa. We also show that there is a limit in these mesoscopic structures which suppresses the transition from the second-order phase transition and results in explosive synchronization. This could be considered as a tuning parameter changing the transition of the system from the second order to the first order.

  16. On-board B-ISDN fast packet switching architectures. Phase 2: Development. Proof-of-concept architecture definition report

    NASA Technical Reports Server (NTRS)

    Shyy, Dong-Jye; Redman, Wayne

    1993-01-01

    For the next-generation packet switched communications satellite system with onboard processing and spot-beam operation, a reliable onboard fast packet switch is essential to route packets from different uplink beams to different downlink beams. The rapid emergence of point-to-point services such as video distribution, and the large demand for video conference, distributed data processing, and network management makes the multicast function essential to a fast packet switch (FPS). The satellite's inherent broadcast features gives the satellite network an advantage over the terrestrial network in providing multicast services. This report evaluates alternate multicast FPS architectures for onboard baseband switching applications and selects a candidate for subsequent breadboard development. Architecture evaluation and selection will be based on the study performed in phase 1, 'Onboard B-ISDN Fast Packet Switching Architectures', and other switch architectures which have become commercially available as large scale integration (LSI) devices.

  17. Quantifying Neural Oscillatory Synchronization: A Comparison between Spectral Coherence and Phase-Locking Value Approaches

    PubMed Central

    Lowet, Eric; Roberts, Mark J.; Bonizzi, Pietro; Karel, Joël; De Weerd, Peter

    2016-01-01

    Synchronization or phase-locking between oscillating neuronal groups is considered to be important for coordination of information among cortical networks. Spectral coherence is a commonly used approach to quantify phase locking between neural signals. We systematically explored the validity of spectral coherence measures for quantifying synchronization among neural oscillators. To that aim, we simulated coupled oscillatory signals that exhibited synchronization dynamics using an abstract phase-oscillator model as well as interacting gamma-generating spiking neural networks. We found that, within a large parameter range, the spectral coherence measure deviated substantially from the expected phase-locking. Moreover, spectral coherence did not converge to the expected value with increasing signal-to-noise ratio. We found that spectral coherence particularly failed when oscillators were in the partially (intermittent) synchronized state, which we expect to be the most likely state for neural synchronization. The failure was due to the fast frequency and amplitude changes induced by synchronization forces. We then investigated whether spectral coherence reflected the information flow among networks measured by transfer entropy (TE) of spike trains. We found that spectral coherence failed to robustly reflect changes in synchrony-mediated information flow between neural networks in many instances. As an alternative approach we explored a phase-locking value (PLV) method based on the reconstruction of the instantaneous phase. As one approach for reconstructing instantaneous phase, we used the Hilbert Transform (HT) preceded by Singular Spectrum Decomposition (SSD) of the signal. PLV estimates have broad applicability as they do not rely on stationarity, and, unlike spectral coherence, they enable more accurate estimations of oscillatory synchronization across a wide range of different synchronization regimes, and better tracking of synchronization-mediated information flow among networks. PMID:26745498

  18. Crustal origin of trench-parallel shear-wave fast polarizations in the Central Andes

    NASA Astrophysics Data System (ADS)

    Wölbern, I.; Löbl, U.; Rümpker, G.

    2014-04-01

    In this study, SKS and local S phases are analyzed to investigate variations of shear-wave splitting parameters along two dense seismic profiles across the central Andean Altiplano and Puna plateaus. In contrast to previous observations, the vast majority of the measurements reveal fast polarizations sub-parallel to the subduction direction of the Nazca plate with delay times between 0.3 and 1.2 s. Local phases show larger variations of fast polarizations and exhibit delay times ranging between 0.1 and 1.1 s. Two 70 km and 100 km wide sections along the Altiplano profile exhibit larger delay times and are characterized by fast polarizations oriented sub-parallel to major fault zones. Based on finite-difference wavefield calculations for anisotropic subduction zone models we demonstrate that the observations are best explained by fossil slab anisotropy with fast symmetry axes oriented sub-parallel to the slab movement in combination with a significant component of crustal anisotropy of nearly trench-parallel fast-axis orientation. From the modeling we exclude a sub-lithospheric origin of the observed strong anomalies due to the short-scale variations of the fast polarizations. Instead, our results indicate that anisotropy in the Central Andes generally reflects the direction of plate motion while the observed trench-parallel fast polarizations likely originate in the continental crust above the subducting slab.

  19. Phase-linking and the perceived motion during off-vertical axis rotation.

    PubMed

    Holly, Jan E; Wood, Scott J; McCollum, Gin

    2010-01-01

    Human off-vertical axis rotation (OVAR) in the dark typically produces perceived motion about a cone, the amplitude of which changes as a function of frequency. This perception is commonly attributed to the fact that both the OVAR and the conical motion have a gravity vector that rotates about the subject. Little-known, however, is that this rotating-gravity explanation for perceived conical motion is inconsistent with basic observations about self-motion perception: (a) that the perceived vertical moves toward alignment with the gravito-inertial acceleration (GIA) and (b) that perceived translation arises from perceived linear acceleration, as derived from the portion of the GIA not associated with gravity. Mathematically proved in this article is the fact that during OVAR these properties imply mismatched phase of perceived tilt and translation, in contrast to the common perception of matched phases which correspond to conical motion with pivot at the bottom. This result demonstrates that an additional perceptual rule is required to explain perception in OVAR. This study investigates, both analytically and computationally, the phase relationship between tilt and translation at different stimulus rates-slow (45 degrees /s) and fast (180 degrees /s), and the three-dimensional shape of predicted perceived motion, under different sets of hypotheses about self-motion perception. We propose that for human motion perception, there is a phase-linking of tilt and translation movements to construct a perception of one's overall motion path. Alternative hypotheses to achieve the phase match were tested with three-dimensional computational models, comparing the output with published experimental reports. The best fit with experimental data was the hypothesis that the phase of perceived translation was linked to perceived tilt, while the perceived tilt was determined by the GIA. This hypothesis successfully predicted the bottom-pivot cone commonly reported and a reduced sense of tilt during fast OVAR. Similar considerations apply to the hilltop illusion often reported during horizontal linear oscillation. Known response properties of central neurons are consistent with this ability to phase-link translation with tilt. In addition, the competing "standard" model was mathematically proved to be unable to predict the bottom-pivot cone regardless of the values used for parameters in the model.

  20. Expansion of visual space during optokinetic afternystagmus (OKAN).

    PubMed

    Kaminiarz, André; Krekelberg, Bart; Bremmer, Frank

    2008-05-01

    The mechanisms underlying visual perceptual stability are usually investigated using voluntary eye movements. In such studies, errors in perceptual stability during saccades and pursuit are commonly interpreted as mismatches between actual eye position and eye-position signals in the brain. The generality of this interpretation could in principle be tested by investigating spatial localization during reflexive eye movements whose kinematics are very similar to those of voluntary eye movements. Accordingly, in this study, we determined mislocalization of flashed visual targets during optokinetic afternystagmus (OKAN). These eye movements are quite unique in that they occur in complete darkness and are generated by subcortical control mechanisms. We found that during horizontal OKAN slow phases, subjects mislocalize targets away from the fovea in the horizontal direction. This corresponds to a perceived expansion of visual space and is unlike mislocalization found for any other voluntary or reflexive eye movement. Around the OKAN fast phases, we found a bias in the direction of the fast phase prior to its onset and opposite to the fast-phase direction thereafter. Such a biphasic modulation has also been reported in the temporal vicinity of saccades and during optokinetic nystagmus (OKN). A direct comparison, however, showed that the modulation during OKAN was much larger and occurred earlier relative to fast-phase onset than during OKN. A simple mismatch between the current eye position and the eye-position signal in the brain is unlikely to explain such disparate results across similar eye movements. Instead, these data support the view that mislocalization arises from errors in eye-centered position information.

  1. High-speed swept source optical coherence Doppler tomography for deep brain microvascular imaging

    NASA Astrophysics Data System (ADS)

    Chen, Wei; You, Jiang; Gu, Xiaochun; Du, Congwu; Pan, Yingtian

    2016-12-01

    Noninvasive microvascular imaging using optical coherence Doppler tomography (ODT) has shown great promise in brain studies; however, high-speed microcirculatory imaging in deep brain remains an open quest. A high-speed 1.3 μm swept-source ODT (SS-ODT) system is reported which was based on a 200 kHz vertical-cavity-surface-emitting laser. Phase errors induced by sweep-trigger desynchronization were effectively reduced by spectral phase encoding and instantaneous correlation among the A-scans. Phantom studies have revealed a significant reduction in phase noise, thus an enhancement of minimally detectable flow down to 268.2 μm/s. Further in vivo validation was performed, in which 3D cerebral-blood-flow (CBF) networks in mouse brain over a large field-of-view (FOV: 8.5 × 5 × 3.2 mm3) was scanned through thinned skull. Results showed that fast flows up to 3 cm/s in pial vessels and minute flows down to 0.3 mm/s in arterioles or venules were readily detectable at depths down to 3.2 mm. Moreover, the dynamic changes of the CBF networks elicited by acute cocaine such as heterogeneous responses in various vessel compartments and at different cortical layers as well as transient ischemic events were tracked, suggesting the potential of SS-ODT for brain functional imaging that requires high flow sensitivity and dynamic range, fast frame rate and a large FOV to cover different brain regions.

  2. A Fast and Validated Reversed-Phase HPLC Method for Simultaneous Determination of Simvastatin, Atorvastatin, Telmisartan and Irbesartan in Bulk Drugs and Tablet Formulations

    PubMed Central

    Alhazmi, Hassan A.; Alnami, Ahmed M.; Arishi, Mohammed A. A.; Alameer, Raad K.; Al Bratty, Mohammed; Rehman, Zia ur; Javed, Sadique A.; Arbab, Ismail A.

    2017-01-01

    The aim of this study was to develop and validate a fast and simple reversed-phase HPLC method for simultaneous determination of four cardiovascular agents—atorvastatin, simvastatin, telmisartan and irbesartan in bulk drugs and tablet oral dosage forms. The chromatographic separation was accomplished by using Symmetry C18 column (75 mm × 4.6 mm; 3.5 μ) with a mobile phase consisting of ammonium acetate buffer (10 mM; pH 4.0) and acetonitrile in a ratio 40:60 v/v. Flow rate was maintained at 1 mL/min up to 3.5 min, and then suddenly changed to 2 mL/min till the end of the run (7.5 min). The data was acquired using ultraviolet detector monitored at 220 nm. The method was validated for linearity, precision, accuracy and specificity. The developed method has shown excellent linearity (R2 > 0.999) over the concentration range of 1–16 µg/mL. The limits of detection (LODs) and limits of quantification (LOQs) were in the range of 0.189–0.190 and 0.603–0.630 µg/mL, respectively. Inter-day and intra-day accuracy and precision data were recorded in the acceptable limits. The new method has successfully been applied for quantification of all four drugs in their tablet dosage forms with percent recovery within 100 ± 2%. PMID:29257120

  3. Proline Can Have Opposite Effects on Fast and Slow Protein Folding Phases

    PubMed Central

    Osváth, Szabolcs; Gruebele, Martin

    2003-01-01

    Proline isomerization is well known to cause additional slow phases during protein refolding. We address a new question: does the presence of prolines significantly affect the very fast kinetics that lead to the formation of folding intermediates? We examined both the very slow (10–100 min) and very fast (4 μs–2.5 ms) folding kinetics of the two-domain enzyme yeast phosphoglycerate kinase by temperature-jump relaxation. Phosphoglycerate kinase contains a conserved cis-proline in position 204, in addition to several trans-prolines. Native cis-prolines have the largest effect on folding kinetics because the unfolded state favors trans isomerization, so we compared the kinetics of a P204H mutant with the wild-type as a proof of principle. The presence of Pro-204 causes an additional slow phase upon refolding from the cold denatured state, as reported in the literature. Contrary to this, the fast folding events are sped up in the presence of the cis-proline, probably by restriction of the conformational space accessible to the molecule. The wild-type and Pro204His mutant would be excellent models for off-lattice simulations probing the effects of conformational restriction on short timescales. PMID:12885665

  4. A combined long-range phasing and long haplotype imputation method to impute phase for SNP genotypes

    PubMed Central

    2011-01-01

    Background Knowing the phase of marker genotype data can be useful in genome-wide association studies, because it makes it possible to use analysis frameworks that account for identity by descent or parent of origin of alleles and it can lead to a large increase in data quantities via genotype or sequence imputation. Long-range phasing and haplotype library imputation constitute a fast and accurate method to impute phase for SNP data. Methods A long-range phasing and haplotype library imputation algorithm was developed. It combines information from surrogate parents and long haplotypes to resolve phase in a manner that is not dependent on the family structure of a dataset or on the presence of pedigree information. Results The algorithm performed well in both simulated and real livestock and human datasets in terms of both phasing accuracy and computation efficiency. The percentage of alleles that could be phased in both simulated and real datasets of varying size generally exceeded 98% while the percentage of alleles incorrectly phased in simulated data was generally less than 0.5%. The accuracy of phasing was affected by dataset size, with lower accuracy for dataset sizes less than 1000, but was not affected by effective population size, family data structure, presence or absence of pedigree information, and SNP density. The method was computationally fast. In comparison to a commonly used statistical method (fastPHASE), the current method made about 8% less phasing mistakes and ran about 26 times faster for a small dataset. For larger datasets, the differences in computational time are expected to be even greater. A computer program implementing these methods has been made available. Conclusions The algorithm and software developed in this study make feasible the routine phasing of high-density SNP chips in large datasets. PMID:21388557

  5. Runaway electron generation as possible trigger for enhancement of magnetohydrodynamic plasma activity and fast changes in runaway beam behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pankratov, I. M., E-mail: pankratov@kipt.kharkov.ua, E-mail: rjzhou@ipp.ac.cn; Zhou, R. J., E-mail: pankratov@kipt.kharkov.ua, E-mail: rjzhou@ipp.ac.cn; Hu, L. Q.

    2015-07-15

    Peculiar phenomena were observed during experiments with runaway electrons: rapid changes in the synchrotron spot and its intensity that coincided with stepwise increases in the electron cyclotron emission (ECE) signal (cyclotron radiation of suprathermal electrons). These phenomena were initially observed in TEXTOR (Tokamak Experiment for Technology Oriented Research), where these events only occurred in the current decay phase or in discharges with thin stable runaway beams at a q = 1 drift surface. These rapid changes in the synchrotron spot were interpreted by the TEXTOR team as a fast pitch angle scattering event. Recently, similar rapid changes in the synchrotron spot andmore » its intensity that coincided with stepwise increases in the non-thermal ECE signal were observed in the EAST (Experimental Advanced Superconducting Tokamak) runaway discharge. Runaway electrons were located around the q = 2 rational magnetic surface (ring-like runaway electron beam). During the EAST runaway discharge, stepwise ECE signal increases coincided with enhanced magnetohydrodynamic (MHD) activity. This behavior was peculiar to this shot. In this paper, we show that these non-thermal ECE step-like jumps were related to the abrupt growth of suprathermal electrons induced by bursting electric fields at reconnection events during this MHD plasma activity. Enhancement of the secondary runaway electron generation also occurred simultaneously. Local changes in the current-density gradient appeared because of local enhancement of the runaway electron generation process. These current-density gradient changes are considered to be a possible trigger for enhancement of the MHD plasma activity and the rapid changes in runaway beam behavior.« less

  6. Runaway electron generation as possible trigger for enhancement of magnetohydrodynamic plasma activity and fast changes in runaway beam behavior

    NASA Astrophysics Data System (ADS)

    Pankratov, I. M.; Zhou, R. J.; Hu, L. Q.

    2015-07-01

    Peculiar phenomena were observed during experiments with runaway electrons: rapid changes in the synchrotron spot and its intensity that coincided with stepwise increases in the electron cyclotron emission (ECE) signal (cyclotron radiation of suprathermal electrons). These phenomena were initially observed in TEXTOR (Tokamak Experiment for Technology Oriented Research), where these events only occurred in the current decay phase or in discharges with thin stable runaway beams at a q = 1 drift surface. These rapid changes in the synchrotron spot were interpreted by the TEXTOR team as a fast pitch angle scattering event. Recently, similar rapid changes in the synchrotron spot and its intensity that coincided with stepwise increases in the non-thermal ECE signal were observed in the EAST (Experimental Advanced Superconducting Tokamak) runaway discharge. Runaway electrons were located around the q = 2 rational magnetic surface (ring-like runaway electron beam). During the EAST runaway discharge, stepwise ECE signal increases coincided with enhanced magnetohydrodynamic (MHD) activity. This behavior was peculiar to this shot. In this paper, we show that these non-thermal ECE step-like jumps were related to the abrupt growth of suprathermal electrons induced by bursting electric fields at reconnection events during this MHD plasma activity. Enhancement of the secondary runaway electron generation also occurred simultaneously. Local changes in the current-density gradient appeared because of local enhancement of the runaway electron generation process. These current-density gradient changes are considered to be a possible trigger for enhancement of the MHD plasma activity and the rapid changes in runaway beam behavior.

  7. Slab detachment under the Eastern Alps seen by seismic anisotropy

    PubMed Central

    Qorbani, Ehsan; Bianchi, Irene; Bokelmann, Götz

    2015-01-01

    We analyze seismic anisotropy for the Eastern Alpine region by inspecting shear-wave splitting from SKS and SKKS phases. The Eastern Alpine region is characterized by a breakdown of the clear mountain-chain-parallel fast orientation pattern that has been previously documented for the Western Alps and for the western part of the Eastern Alps. The main interest of this paper is a more detailed analysis of the anisotropic character of the Eastern Alps, and the transition to the Carpathian–Pannonian region. SK(K)S splitting measurements reveal a rather remarkable lateral change in the anisotropy pattern from the west to the east of the Eastern Alps with a transition area at about 12°E. We also model the backazimuthal variation of the measurements by a vertical change of anisotropy. We find that the eastern part of the study area is characterized by the presence of two layers of anisotropy, where the deeper layer has characteristics similar to those of the Central Alps, in particular SW–NE fast orientations of anisotropic axes. We attribute the deeper layer to a detached slab from the European plate. Comparison with tomographic studies of the area indicates that the detached slab might possibly connect with the lithosphere that is still in place to the west of our study area, and may also connect with the slab graveyard to the East, at the depth of the upper mantle transition zone. On the other hand, the upper layer has NW–SE fast orientations coinciding with a low-velocity layer which is found above a more-or-less eastward dipping high-velocity body. The anisotropy of the upper layer shows large-scale NW–SE fast orientation, which is consistent with the presence of asthenospheric flow above the detached slab foundering into the deeper mantle. PMID:25843968

  8. Reduced gamma frequency in the medial frontal cortex of aged rats during behavior and rest: implications for age-related behavioral slowing

    PubMed Central

    Insel, Nathan; Patron, Lilian A.; Hoang, Lan T.; Nematollahi, Saman; Schimanski, Lesley A.; Lipa, Peter; Barnes, Carol A.

    2012-01-01

    Age-related cognitive and behavioral slowing may be caused by changes in the speed of neural signaling or by changes in the number of signaling steps necessary to achieve a given function. In the mammalian cortex, neural communication is organized by a 30–100 Hz “gamma” oscillation. There is a putative link between the gamma frequency and the speed of processing in a neural network: the dynamics of pyramidal neuron membrane time constants suggest that synaptic integration is framed by the gamma cycle, and pharmacological slowing of gamma also slows reaction times on behavioral tasks. The present experiments identify reductions in a robust 40–70 Hz gamma oscillation in the aged rat medial frontal cortex. The reductions were observed in the form of local field potentials (LFPs), later peaks in fast-spiking neuron autocorrelations, and delays in the spiking of inhibitory neurons following local excitatory signals. Gamma frequency did not vary with movement speed, but rats with slower gamma also moved more slowly. Gamma frequency age differences were not observed in hippocampus. Hippocampal CA1 fast-spiking neurons exhibited inter-spike intervals consistent with a fast (70–100 Hz) gamma frequency, a pattern maintained across theta phases and theta frequencies independent of fluctuations in the neurons’ average firing rates. We propose that an average lengthening of the cortical 15–25 ms gamma cycle is one factor contributing to age-related slowing, and that future attempts to offset cognitive declines will find a target in the response of fast-spiking inhibitory neurons to excitatory inputs. PMID:23152616

  9. Slab detachment under the Eastern Alps seen by seismic anisotropy

    NASA Astrophysics Data System (ADS)

    Qorbani, Ehsan; Bianchi, Irene; Bokelmann, Götz

    2015-01-01

    We analyze seismic anisotropy for the Eastern Alpine region by inspecting shear-wave splitting from SKS and SKKS phases. The Eastern Alpine region is characterized by a breakdown of the clear mountain-chain-parallel fast orientation pattern that has been previously documented for the Western Alps and for the western part of the Eastern Alps. The main interest of this paper is a more detailed analysis of the anisotropic character of the Eastern Alps, and the transition to the Carpathian-Pannonian region. SK(K)S splitting measurements reveal a rather remarkable lateral change in the anisotropy pattern from the west to the east of the Eastern Alps with a transition area at about 12°E. We also model the backazimuthal variation of the measurements by a vertical change of anisotropy. We find that the eastern part of the study area is characterized by the presence of two layers of anisotropy, where the deeper layer has characteristics similar to those of the Central Alps, in particular SW-NE fast orientations of anisotropic axes. We attribute the deeper layer to a detached slab from the European plate. Comparison with tomographic studies of the area indicates that the detached slab might possibly connect with the lithosphere that is still in place to the west of our study area, and may also connect with the slab graveyard to the East, at the depth of the upper mantle transition zone. On the other hand, the upper layer has NW-SE fast orientations coinciding with a low-velocity layer which is found above a more-or-less eastward dipping high-velocity body. The anisotropy of the upper layer shows large-scale NW-SE fast orientation, which is consistent with the presence of asthenospheric flow above the detached slab foundering into the deeper mantle.

  10. FOOD-INTAKE DYSREGULATION IN TYPE 2 DIABETIC GOTO-KAKIZAKI RATS: HYPOTHESIZED ROLE OF DYSFUNCTIONAL BRAINSTEM THYROTROPIN-RELEASING HORMONE AND IMPAIRED VAGAL OUTPUT

    PubMed Central

    Zhao, K.; Ao, Y.; Harper, R.M.; Go, V. L.W.; Yang, H.

    2013-01-01

    Thyrotropin-releasing hormone (TRH), a neuropeptide contained in neural terminals innervating brainstem vagal motor neurons, enhances vagal outflow to modify multisystemic visceral functions and food intake. Type 2 diabetes (T2D) and obesity are accompanied by impaired vagal functioning. We examined the possibility that impaired brainstem TRH action may contribute to the vagal dysregulation of food intake in Goto-Kakizaki (GK) rats, a T2D model with hyperglycemia and impaired central vagal activation by TRH. Food intake induced by intracisternal injection of TRH analog was reduced significantly by 50% in GK rats, compared to Wistar rats. Similarly, natural food intake in the dark phase or food intake after an overnight fast was reduced by 56–81% in GK rats. Fasting (48 h) and refeeding (2 h)-associated changes in serum ghrelin, insulin, peptide YY, pancreatic polypeptide and leptin, and the concomitant changes in orexigenic or anorexigenic peptide expression in the brainstem and hypothalamus, all apparent in Wistar rats, were absent or markedly reduced in GK rats, with hormone release stimulated by vagal activation, such as ghrelin and pancreatic polypeptide, decreased substantially. Fasting-induced Fos expression accompanying endogenous brainstem TRH action decreased by 66% and 91%, respectively, in the nucleus tractus solitarius (NTS) and the dorsal motor nucleus of the vagus (DMV) in GK rats, compared to Wistar rats. Refeeding abolished fasting-induced Fos-expression in the NTS, while that in the DMV remained in Wistar but not GK rats. These findings indicate that dysfunctional brainstem TRH-elicited vagal impairment contributes to the disturbed food intake in T2D GK rats, and may provide a pathophysiological mechanism which prevents further weight gain in T2D and obesity. PMID:23701881

  11. Food-intake dysregulation in type 2 diabetic Goto-Kakizaki rats: hypothesized role of dysfunctional brainstem thyrotropin-releasing hormone and impaired vagal output.

    PubMed

    Zhao, K; Ao, Y; Harper, R M; Go, V L W; Yang, H

    2013-09-05

    Thyrotropin-releasing hormone (TRH), a neuropeptide contained in neural terminals innervating brainstem vagal motor neurons, enhances vagal outflow to modify multisystemic visceral functions and food intake. Type 2 diabetes (T2D) and obesity are accompanied by impaired vagal functioning. We examined the possibility that impaired brainstem TRH action may contribute to the vagal dysregulation of food intake in Goto-Kakizaki (GK) rats, a T2D model with hyperglycemia and impaired central vagal activation by TRH. Food intake induced by intracisternal injection of TRH analog was reduced significantly by 50% in GK rats, compared to Wistar rats. Similarly, natural food intake in the dark phase or food intake after an overnight fast was reduced by 56-81% in GK rats. Fasting (48h) and refeeding (2h)-associated changes in serum ghrelin, insulin, peptide YY, pancreatic polypeptide and leptin, and the concomitant changes in orexigenic or anorexigenic peptide expression in the brainstem and hypothalamus, all apparent in Wistar rats, were absent or markedly reduced in GK rats, with hormone release stimulated by vagal activation, such as ghrelin and pancreatic polypeptide, decreased substantially. Fasting-induced Fos expression accompanying endogenous brainstem TRH action decreased by 66% and 91%, respectively, in the nucleus tractus solitarius (NTS) and the dorsal motor nucleus of the vagus (DMV) in GK rats, compared to Wistar rats. Refeeding abolished fasting-induced Fos-expression in the NTS, while that in the DMV remained in Wistar but not GK rats. These findings indicate that dysfunctional brainstem TRH-elicited vagal impairment contributes to the disturbed food intake in T2D GK rats, and may provide a pathophysiological mechanism which prevents further weight gain in T2D and obesity. Published by Elsevier Ltd.

  12. Development of Early Warning System Using ALOS-2/PALSAR-2 Data to Detect and Prevent Deforestation

    NASA Astrophysics Data System (ADS)

    Hayashi, M.; Nagatani, I.; Watanabe, T.; Tadono, T.; Miyoshi, H.; Watanabe, M.; Koyama, C.; Shimada, M.; Ogawa, T.; Ishii, K.; Higashiuwatoko, T.; Miura, M.; Okonogi, H.; Adachi, K.; Morita, T.

    2017-12-01

    Satellite observation is an efficient method for monitoring deforestation, and a synthetic aperture radar (SAR) is useful especially in cloudy tropical forest regions. In this context, JICA and JAXA cooperate to operate the deforestation monitoring system acquired data by the Phased Array type L-band SAR-2 (PALSAR-2) onboard the Advanced Land Observing Satellite-2 (ALOS-2), which is named as "JICA-JAXA Forest Early Warning System in the Tropics" (JJ-FAST), and it have been released on November 2016. JJ-FAST detects deforestation areas, and provides their positional information for 77 countries, which is covering almost all tropical forests. It uses PALSAR-2 ScanSAR observation mode (wide-observation swath width) image, which is 50 m spatial resolution acquired at 1.5 months interval. The dark change areas compared with in two acquisitions by PALSAR-2 HV-polarization images are identified as deforestations in the system. We conducted field surveys to validate detection accuracy of the JJ-FAST in Peru (November and December, 2016), Botswana (April, 2017), and Gabon (July, 2017). As the results, 15 of 18 detected areas were correct deforestation areas, therefore user's accuracy could be confirmed as 83.3 % from limited number of the validation data. Erroneous detection areas were caused by seasonal change in agricultural land and open burning in grass land. For improvement of the accuracy, such areas must be excluded from the analysis by additional algorithms e.g. estimation of accurate masking for non-forested areas. Therefore, we are revising the forest map used for pre-processing step in the system. The JJ-FAST can be expected to contribute to monitor and reduce illegal deforestation activities in tropical forests.

  13. Inhomogeneities and superconductivity in poly-phase Fe-Se-Te systems

    NASA Astrophysics Data System (ADS)

    Hartwig, S.; Schäfer, N.; Schulze, M.; Landsgesell, S.; Abou-Ras, D.; Blum, Ch. G. F.; Wurmehl, S.; Sokolowski, A.; Büchner, B.; Prokeš, K.

    2018-02-01

    The impact of synthesis conditions, post-preparation heating procedure, aging and influence of pressure on the superconducting properties of FeSe0.4Te0.6 crystals is reported. Two FeSe0.4Te0.6 single crystals were used in the study, prepared from stoichiometric melt but cooled down with very different cooling rates, and investigated using magnetic bulk and electrical-resistivity methods. The fast-cooled crystal contains large inclusions of Fe3Se2.1Te1.8 and exhibits bulk superconductivity in its as-prepared state, while the other is homogeneous and shows only traces of superconductivity. AC susceptibility measurements under hydrostatic pressure show that the superconducting transition temperature of the inhomogeneous crystal increases from 12.3 K at ambient pressure to Tsc = 17.9 K at 9 kbar. On the other hand, neither pressure nor mechanically-induced stress is sufficient to induce superconductivity in the homogeneous crystal. However, an additional heat treatment at 673 K followed by fast cooling down and/or long-term aging at ambient conditions leads to the appearance of bulk superconductivity also in the latter sample. This sample remains homogeneous on a scale down to few μm but shows an additional magnetic phase transition around 130 K suggesting that it must be inhomogeneous. For comparison also Fe3Se2.1Te1.8 polycrystals have been prepared and their magnetic properties have been studied. It appears that this phase is not superconducting by itself. It is concluded that nano-scale inhomogeneities that appear in the FeSexTe1-x system due to a spinodal decomposition in the solid state are necessary for bulk superconductivity, possibly due to minor changes in the crystal structure and microstructure. Macroscopic inclusions quenched by fast cooling from high temperatures lead obviously to strain and hence variations in the lattice constants, an effect that is further supported by application of pressure/stress.

  14. Substrate water exchange in photosystem II depends on the peripheral proteins.

    PubMed

    Hillier, W; Hendry, G; Burnap, R L; Wydrzynski, T

    2001-12-14

    The (18)O exchange rates for the substrate water bound in the S(3) state were determined in different photosystem II sample types using time-resolved mass spectrometry. The samples included thylakoid membranes, salt-washed Triton X-100-prepared membrane fragments, and purified core complexes from spinach and cyanobacteria. For each sample type, two kinetically distinct isotopic exchange rates could be resolved, indicating that the biphasic exchange behavior for the substrate water is inherent to the O(2)-evolving catalytic site in the S(3) state. However, the fast phase of exchange became somewhat slower (by a factor of approximately 2) in NaCl-washed membrane fragments and core complexes from spinach in which the 16- and 23-kDa extrinsic proteins have been removed, compared with the corresponding rate for the intact samples. For CaCl(2)-washed membrane fragments in which the 33-kDa manganese stabilizing protein (MSP) has also been removed, the fast phase of exchange slowed down even further (by a factor of approximately 3). Interestingly, the slow phase of exchange was little affected in the samples from spinach. For core complexes prepared from Synechocystis PCC 6803 and Synechococcus elongatus, the fast and slow exchange rates were variously affected. Nevertheless, within the experimental error, nearly the same exchange rates were measured for thylakoid samples made from wild type and an MSP-lacking mutant of Synechocystis PCC 6803. This result could indicate that the MSP has a slightly different function in eukaryotic organisms compared with prokaryotic organisms. In all samples, however, the differences in the exchange rates are relatively small. Such small differences are unlikely to arise from major changes in the metal-ligand structure at the catalytic site. Rather, the observed differences may reflect subtle long range effects in which the exchange reaction coordinates become slightly altered. We discuss the results in terms of solvent penetration into photosystem II and the regional dielectric around the catalytic site.

  15. Metal matrix-metal nanoparticle composites with tunable melting temperature and high thermal conductivity for phase-change thermal storage.

    PubMed

    Liu, Minglu; Ma, Yuanyu; Wu, Hsinwei; Wang, Robert Y

    2015-02-24

    Phase-change materials (PCMs) are of broad interest for thermal storage and management applications. For energy-dense storage with fast thermal charging/discharging rates, a PCM should have a suitable melting temperature, large enthalpy of fusion, and high thermal conductivity. To simultaneously accomplish these traits, we custom design nanocomposites consisting of phase-change Bi nanoparticles embedded in an Ag matrix. We precisely control nanoparticle size, shape, and volume fraction in the composite by separating the nanoparticle synthesis and nanocomposite formation steps. We demonstrate a 50-100% thermal energy density improvement relative to common organic PCMs with equivalent volume fraction. We also tune the melting temperature from 236-252 °C by varying nanoparticle diameter from 8.1-14.9 nm. Importantly, the silver matrix successfully prevents nanoparticle coalescence, and no melting changes are observed during 100 melt-freeze cycles. The nanocomposite's Ag matrix also leads to very high thermal conductivities. For example, the thermal conductivity of a composite with a 10% volume fraction of 13 nm Bi nanoparticles is 128 ± 23 W/m-K, which is several orders of magnitude higher than typical thermal storage materials. We complement these measurements with calculations using a modified effective medium approximation for nanoscale thermal transport. These calculations predict that the thermal conductivity of composites with 13 nm Bi nanoparticles varies from 142 to 47 W/m-K as the nanoparticle volume fraction changes from 10 to 35%. Larger nanoparticle diameters and/or smaller nanoparticle volume fractions lead to larger thermal conductivities.

  16. Changes in portal blood flow and liver functions in cirrhotics during Ramadan fasting in the summer; a pilot study

    PubMed Central

    Mohamed, Salem Y; Emara, Mohamed H; Hussien, Hala IM; Elsadek, Hany M

    2016-01-01

    Aim: Assessment of short term changes in portal blood flow and long term changes in liver functions in cirrhotic patients who chose to fast during the month of Ramadan in summer. Background: During Ramadan, healthy Muslims obligated to fast from predawn to sunset. Patients and methods: Forty cirrhotic patients intended to fast during the month of Ramadan in the year 2014, were examined by Congestion index (CI) as a non-invasive indicator of short term changes in the portal blood flow, while liver function tests were determined as an indicator of long term changes in liver functions. Results: A total of 38 patients completed the whole month fasting and two patients discontinued fasting due to variceal bleeding. The complicated patients were 7. CI showed a statistically significant increase from fasting to postprandial status (P<0.001), with statistically significant increases from fasting to postprandial status in Child class A (P<0.001), and B (P<0.001). We did not find a statistical significance between patients with complications and those without complications (P=0.6). There was a statistically significant rise in the serum bilirubin after Ramadan. Deterioration noticed as advanced Child classes, development of lower limb edema, increasing ascites, increasing jaundice and overt encephalopathy. Conclusion: Cirrhotic patients showed significant short-term changes in the portal blood flow. However, these changes are not linked to complications or deterioration of liver functions and accommodated especially in patients with Child class A and B. Child class C patients should not fast. PMID:27458510

  17. Real-time terahertz imaging through self-mixing in a quantum-cascade laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wienold, M., E-mail: martin.wienold@dlr.de; Rothbart, N.; Hübers, H.-W.

    2016-07-04

    We report on a fast self-mixing approach for real-time, coherent terahertz imaging based on a quantum-cascade laser and a scanning mirror. Due to a fast deflection of the terahertz beam, images with frame rates up to several Hz are obtained, eventually limited by the mechanical inertia of the employed scanning mirror. A phase modulation technique allows for the separation of the amplitude and phase information without the necessity of parameter fitting routines. We further demonstrate the potential for transmission imaging.

  18. Subscale Fast Cookoff Testing and Modeling for the Hazard Assessment of Large Rocket Motors

    DTIC Science & Technology

    2001-03-01

    41 LIST OF TABLES Table 1 Heats of Vaporization Parameter for Two-liner Phase Transformation - Complete Liner Sublimation and/or Combined Liner...One-dimensional 2-D Two-dimensional ALE3D Arbitrary-Lagrange-Eulerian (3-D) Computer Code ALEGRA 3-D Arbitrary-Lagrange-Eulerian Computer Code for...case-liner bond areas and in the grain inner bore to explore the pre-ignition and ignition phases , as well as burning evolution in rocket motor fast

  19. 2D DOST based local phase pattern for face recognition

    NASA Astrophysics Data System (ADS)

    Moniruzzaman, Md.; Alam, Mohammad S.

    2017-05-01

    A new two dimensional (2-D) Discrete Orthogonal Stcokwell Transform (DOST) based Local Phase Pattern (LPP) technique has been proposed for efficient face recognition. The proposed technique uses 2-D DOST as preliminary preprocessing and local phase pattern to form robust feature signature which can effectively accommodate various 3D facial distortions and illumination variations. The S-transform, is an extension of the ideas of the continuous wavelet transform (CWT), is also known for its local spectral phase properties in time-frequency representation (TFR). It provides a frequency dependent resolution of the time-frequency space and absolutely referenced local phase information while maintaining a direct relationship with the Fourier spectrum which is unique in TFR. After utilizing 2-D Stransform as the preprocessing and build local phase pattern from extracted phase information yield fast and efficient technique for face recognition. The proposed technique shows better correlation discrimination compared to alternate pattern recognition techniques such as wavelet or Gabor based face recognition. The performance of the proposed method has been tested using the Yale and extended Yale facial database under different environments such as illumination variation and 3D changes in facial expressions. Test results show that the proposed technique yields better performance compared to alternate time-frequency representation (TFR) based face recognition techniques.

  20. Digital-only PLL with adaptive search step

    NASA Astrophysics Data System (ADS)

    Lin, Ming-Lang; Huang, Shu-Chuan; Liu, Jie-Cherng

    2014-06-01

    In this paper, an all-digital phase-locked loop (PLL) with adaptively controlled up/down counter serves as the loop filter is presented, and it is implemented on a field-programmable gate array. The detailed circuit of the adaptive up/down counter implementing the adaptive search algorithm is also given, in which the search step for frequency acquisition is adaptively scaled down in half until it is reduced to zero. The phase jitter of the proposed PLL can be lowered, yet keeping with fast lock-in time. Thus, the dilemma between the low phase jitter and fast lock-in time of the traditional PLL can be resolved. Simulation results and circuit implementation show that the locked count, phase jitter and lock-in time of the proposed PLL are consistent with the theoretical predictions.

  1. Theobromine does not affect postprandial lipid metabolism and duodenal gene expression, but has unfavorable effects on postprandial glucose and insulin responses in humans.

    PubMed

    Smolders, Lotte; Mensink, Ronald P; Boekschoten, Mark V; de Ridder, Rogier J J; Plat, Jogchum

    2018-04-01

    Chocolate consumption is associated with a decreased risk for CVD. Theobromine, a compound in cocoa, may explain these effects as it favorably affected fasting serum lipids. However, long-term effects of theobromine on postprandial metabolism as well as underlying mechanisms have never been studied. The objective was to evaluate the effects of 4-week theobromine consumption (500 mg/day) on fasting and postprandial lipid, lipoprotein and glucose metabolism, and duodenal gene expression. In a randomized, double-blind crossover study, 44 healthy men and women, with low baseline HDL-C concentrations consumed 500 mg theobromine or placebo daily. After 4-weeks, fasting blood was sampled and subjects participated in a 4-h postprandial test. Blood was sampled frequently for analysis of lipid and glucose metabolism. In a subgroup of 10 men, 5 h after meal consumption duodenal biopsies were taken for microarray analysis. 4-weeks theobromine consumption lowered fasting LDL-C (-0.21 mmol/L; P = 0.006), and apoB100 (-0.04 g/L; P = 0.022), tended to increase HDL-C (0.03 mmol/L; P = 0.088) and increased hsCRP (1.2 mg/L; P = 0.017) concentrations. Fasting apoA-I, TAG, FFA, glucose and insulin concentrations were unchanged. In the postprandial phase, theobromine consumption increased glucose (P = 0.026), insulin (P = 0.011) and FFA (P = 0.003) concentrations, while lipids and (apo)lipoproteins were unchanged. In duodenal biopsies, microarray analysis showed no consistent changes in expression of genes, pathways or gene sets related to lipid, cholesterol or glucose metabolism. It is not likely that the potential beneficial effects of cocoa on CVD can be ascribed to theobromine. Although theobromine lowers serum LDL-C concentrations, it did not change fasting HDL-C, apoA-I, or postprandial lipid concentrations and duodenal gene expression, and unfavorably affected postprandial glucose and insulin responses. This trial was registered on clinicaltrials.gov under study number NCT02209025. Copyright © 2017 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  2. Interlayer Communication in Aurivillius Vanadate to Enable Defect Structures and Charge Ordering.

    PubMed

    Zhang, Yaoqing; Yamamoto, Takafumi; Green, Mark A; Kageyama, Hiroshi; Ueda, Yutaka

    2015-11-16

    The fluorite-like [Bi2O2](2+) layer is a fundamental building unit in a great variety of layered compounds. Here in this contribution, we presented a comprehensive study on an unusual Aurivillius phase Bi3.6V2O10 with respect to its defect chemistry and polymorphism control as well as implications for fast oxide ion transport at lower temperatures. The bismuth oxide layer in Bi4V2O11 is found to tolerate a large number of Bi vacancies without breaking the high temperature prototype I4/mmm structure (γ-phase). On cooling, an orthorhombic distortion occurs to the γ-phase, giving rise to a different type of phase (B-phase) in the intermediate temperature region. Cooling to room temperature causes a further transition to an oxygen-vacancy ordered A-phase, which is accompanied by the charge ordering of V(4+) and V(5+) cations, providing magnetic (d(1)) and nonmagnetic (d(0)) chains along the a axis. This is a novel charge ordering transition in terms of the concomitant change of oxygen coordination. Interestingly, upon quenching, both the γ- and B-phase can be kinetically trapped, enabling the structural probing of the two phases at ambient temperature. Driven by the thermodynamic forces, the oxide anion in the γ-phase undergoes an interlayer diffusion process to reshuffle the compositions of both Bi-O and V-O layers.

  3. Slippery interfaces: lubrication of director and helix rotation motions (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yamamoto, Jun; Sakatsuji, Waki; Nishiyama, Isa

    2017-02-01

    Anchoring effects on the polymer films in the liquid crystal (LC) display devices plays key role to create the restoring force to the black state. However, the chiral materials with spontaneous helix, such as deformed helix mode in SmC* (DH-FLC) or the polymer stabilized blue phase (PSChBP), can recover black state by rewinding motion of the helix itself. We have invented the principle and design of slippery interfaces, which has zero anchoring force for attached LC molecules on the interfaces, and confirmed the drastic reduction of driving voltage in DH-FLC mode of SmC* (<1 order) keeping the fast switching response (tau 50 micro sec). We have reported the lateral slippery interfaces consist of the phase separated liquid phases created by tran-cis isomerization of doped azo dye. It is not enough to the complete transmission of the light(I/I0 1) by applying the typical driving voltage ( 1.0V/micro m) for current IPS panels. It is also problem that slippery interface become effective only just below the I-SmC phase transition temperature (TIC-T<20°). Here, we report new type of the vertical slippery interface realized by the spin coated swollen azo-LC gel films on the glass substrates. Under UV irradiation, trans-cis isomerization of the azo-dye co-polymerized in the azo-LC gel film, induces the vertical slippery interfaces by the disordering effect. Since the co-polymerized azo-dye cannot be dissolved into LC, the disordering effect is completely localized in the interface between swollen azo-LC gel and bulk SmC* material. Then the slippery interfaces can be stabilized over wide temperature range. We greatly improve the reduction of the driving voltage, I/Io=1, 1.0V/micro m for rather slow change of the driving voltage (tau 1msec 2.5msec pulse), I/I0=0.6, 1.5V/micro m for fast change (tau 50 micro sec, 250 micro sec pulse) by lubrication of intra and inter helix C-director rotation motions.

  4. Properties of Supergiant Fast X-Ray Transients as Observed by Swift

    NASA Technical Reports Server (NTRS)

    Romano, P.; Vercellone, S.; Krimm, H. A.; Esposito, P.; Cusumano, C.; LaParola, V.; Mangano, V.; Kennea, J. A.; Burrows, D. N.; Pagani, C.; hide

    2011-01-01

    We present the most recent results from our investigation on Supergiant Fast X-ray Transients, a class of High-Mass X-ray Binaries, with a possible counterpart in the gamma-ray energy band. Since 2007 Swift has contributed to this new field by detecting outbursts from these fast transients with the BAT and by following them for days with the XRT. Thus, we demonstrated that while the brightest phase of the outburst only lasts a few hours, further activity is observed at lower fluxes for a remarkably longer time, up to weeks. Furthermore, we have performed several campaigns of intense monitoring with the XRT, assessing the fraction of the time these sources spend in each phase, and their duty cycle of inactivity.

  5. Fast non-interferometric iterative phase retrieval for holographic data storage.

    PubMed

    Lin, Xiao; Huang, Yong; Shimura, Tsutomu; Fujimura, Ryushi; Tanaka, Yoshito; Endo, Masao; Nishimoto, Hajimu; Liu, Jinpeng; Li, Yang; Liu, Ying; Tan, Xiaodi

    2017-12-11

    Fast non-interferometric phase retrieval is a very important technique for phase-encoded holographic data storage and other phase based applications due to its advantage of easy implementation, simple system setup, and robust noise tolerance. Here we present an iterative non-interferometric phase retrieval for 4-level phase encoded holographic data storage based on an iterative Fourier transform algorithm and known portion of the encoded data, which increases the storage code rate to two-times that of an amplitude based method. Only a single image at the Fourier plane of the beam is captured for the iterative reconstruction. Since beam intensity at the Fourier plane of the reconstructed beam is more concentrated than the reconstructed beam itself, the requirement of diffractive efficiency of the recording media is reduced, which will improve the dynamic range of recording media significantly. The phase retrieval only requires 10 iterations to achieve a less than 5% phase data error rate, which is successfully demonstrated by recording and reconstructing a test image data experimentally. We believe our method will further advance the holographic data storage technique in the era of big data.

  6. Shock initiated reactions of reactive multi-phase blast explosives

    NASA Astrophysics Data System (ADS)

    Wilson, Dennis; Granier, John; Johnson, Richard; Littrell, Donald

    2017-01-01

    This paper describes a new class of non-ideal explosive compositions made of perfluoropolyether (PFPE), nanoaluminum, and a micron-size, high mass density, reactive metal. Unlike high explosives, these compositions release energy via a fast self-oxidized combustion wave rather than a true self-sustaining detonation. Their reaction rates are shock dependent and they can be overdriven to change their energy release rate. These compositions are fuel rich and have an extended aerobic energy release phase. The term "reactive multiphase blast" refers to the post-dispersion blast behavior: multiphase in that there are a gas phase that imparts pressure and a solid (particulate) phase that imparts energy and momentum [1]; and reactive in that the hot metal particles react with atmospheric oxygen and the explosive gas products to give an extended pressure pulse. Tantalum-based RMBX formulations were tested in two spherical core-shell configurations - an RMBX shell exploded by a high explosive core, and an RMBX core imploded by a high explosive shell. The fireball and blast characteristics were compared to a C-4 baseline charge.

  7. A model of systems integration to facilitate ITS deployment : FAST-TRAC phase IV deliverable

    DOT National Transportation Integrated Search

    2003-04-01

    The FAST-TRAC (Faster and Safer Travel through Traffic Routing and Advanced Controls) Intelligent Transportation Systems (ITS) Field Test in Oakland County, an urbanized county in metropolitan Detroit, represents a large and successful systems integr...

  8. Anisotropic Rayleigh-wave phase velocities beneath northern Vietnam

    NASA Astrophysics Data System (ADS)

    Legendre, Cédric P.; Zhao, Li; Huang, Win-Gee; Huang, Bor-Shouh

    2015-02-01

    We explore the Rayleigh-wave phase-velocity structure beneath northern Vietnam over a broad period range of 5 to 250 s. We use the two-stations technique to derive the dispersion curves from the waveforms of 798 teleseismic events recoded by a set of 23 broadband seismic stations deployed in northern Vietnam. These dispersion curves are then inverted for both isotropic and azimuthally anisotropic Rayleigh-wave phase-velocity maps in the frequency range of 10 to 50 s. Main findings include a crustal expression of the Red River Shear Zone and the Song Ma Fault. Northern Vietnam displays a northeast/southwest dichotomy in the lithosphere with fast velocities beneath the South China Block and slow velocities beneath the Simao Block and between the Red River Fault and the Song Da Fault. The anisotropy in the region is relatively simple, with a high amplitude and fast directions parallel to the Red River Shear Zone in the western part. In the eastern part, the amplitudes are generally smaller and the fast axis displays more variations with periods.

  9. Fast and Epsilon-Optimal Discretized Pursuit Learning Automata.

    PubMed

    Zhang, JunQi; Wang, Cheng; Zhou, MengChu

    2015-10-01

    Learning automata (LA) are powerful tools for reinforcement learning. A discretized pursuit LA is the most popular one among them. During an iteration its operation consists of three basic phases: 1) selecting the next action; 2) finding the optimal estimated action; and 3) updating the state probability. However, when the number of actions is large, the learning becomes extremely slow because there are too many updates to be made at each iteration. The increased updates are mostly from phases 1 and 3. A new fast discretized pursuit LA with assured ε -optimality is proposed to perform both phases 1 and 3 with the computational complexity independent of the number of actions. Apart from its low computational complexity, it achieves faster convergence speed than the classical one when operating in stationary environments. This paper can promote the applications of LA toward the large-scale-action oriented area that requires efficient reinforcement learning tools with assured ε -optimality, fast convergence speed, and low computational complexity for each iteration.

  10. Design and Analysis of an Axisymmetric Phased Array Fed Gregorian Reflector System for Limited Scanning

    DTIC Science & Technology

    2016-01-22

    Numerical electromagnetic simulations based on the multilevel fast multipole method (MLFMM) were used to analyze and optimize the antenna...and are not necessarily endorsed by the United States Government. numerical simulations with the multilevel fast multipole method (MLFMM...and optimized using numerical simulations conducted with the multilevel fast multipole method (MLFMM) using FEKO software (www.feko.info). The

  11. ALMA Long Baseline Campaigns: Phase Characteristics of Atmosphere at Long Baselines in the Millimeter and Submillimeter Wavelengths

    NASA Astrophysics Data System (ADS)

    Matsushita, Satoki; Asaki, Yoshiharu; Fomalont, Edward B.; Morita, Koh-Ichiro; Barkats, Denis; Hills, Richard E.; Kawabe, Ryohei; Maud, Luke T.; Nikolic, Bojan; Tilanus, Remo P. J.; Vlahakis, Catherine; Whyborn, Nicholas D.

    2017-03-01

    We present millimeter- and submillimeter-wave phase characteristics measured between 2012 and 2014 of Atacama Large Millimeter/submillimeter Array long baseline campaigns. This paper presents the first detailed investigation of the characteristics of phase fluctuation and phase correction methods obtained with baseline lengths up to ˜15 km. The basic phase fluctuation characteristics can be expressed with the spatial structure function (SSF). Most of the SSFs show that the phase fluctuation increases as a function of baseline length, with a power-law slope of ˜0.6. In many cases, we find that the slope becomes shallower (average of ˜0.2-0.3) at baseline lengths longer than ˜1 km, namely showing a turn-over in SSF. These power law slopes do not change with the amount of precipitable water vapor (PWV), but the fitted constants have a weak correlation with PWV, so that the phase fluctuation at a baseline length of 10 km also increases as a function of PWV. The phase correction method using water vapor radiometers (WVRs) works well, especially for the cases where PWV > 1 {mm}, which reduces the degree of phase fluctuations by a factor of two in many cases. However, phase fluctuations still remain after the WVR phase correction, suggesting the existence of other turbulent constituent that cause the phase fluctuation. This is supported by occasional SSFs that do not exhibit any turn-over; these are only seen when the PWV is low (i.e., when the WVR phase correction works less effectively) or after WVR phase correction. This means that the phase fluctuation caused by this turbulent constituent is inherently smaller than that caused by water vapor. Since in these rare cases there is no turn-over in the SSF up to the maximum baseline length of ˜15 km, this turbulent constituent must have scale height of 10 km or more, and thus cannot be water vapor, whose scale height is around 1 km. Based on the characteristics, this large scale height turbulent constituent is likely to be water ice or a dry component. Excess path length fluctuation after the WVR phase correction at a baseline length of 10 km is large (≳ 200 μ {{m}}), which is significant for high frequency (> 450 {GHz} or < 700 μ {{m}}) observations. These results suggest the need for an additional phase correction method to reduce the degree of phase fluctuation, such as fast switching, in addition to the WVR phase correction. We simulated the fast switching phase correction method using observations of single quasars, and the result suggests that it works well, with shorter cycle times linearly improving the coherence.

  12. The transience and nature of cognitive impairments in transient global amnesia: a meta-analysis.

    PubMed

    Jäger, Theodor; Bäzner, Hansjörg; Kliegel, Matthias; Szabo, Kristina; Hennerici, Michael G

    2009-01-01

    Transient global amnesia (TGA) is a clinical syndrome characterized by the sudden onset of severe amnesia without concomitant focal neurological symptoms. This meta-analysis of the cognitive characteristics of TGA addressed two main issues. First, we examined the hypothesis that the acute phase of TGA is associated with changes of anterograde and retrograde episodic long-term memory sparing semantic and short-term memory, while we had no clear prediction for potential reductions of executive functions due to the relative lack of previous studies addressing this issue. Second, we analyzed the time-course of changes in cognitive functions throughout three time intervals--acute (0-24 hours after TGA onset), postacute (24 hours to 5 days), and long-term phase (5-30 days)--to reveal whether there is a fast versus a delayed recovery. The results of the meta-analysis on 152 effect sizes from 25 studies showed that TGA is characterized by an extraordinarily large reduction of anterograde (d* = 1.89) and a somewhat milder reduction of retrograde (d* = 1.28) episodic long-term memory. Moreover, our results indicate the existence of additional, nonamnestic cognitive changes during TGA, because executive functions were also diminished (d* = 0.79). Reductions in both anterograde episodic long-term memory and executive function recover slowly, as slightly poorer performance in these cognitive domains can be found in the postacute phase (d*s = 0.32 and 0.44). All cognitive diminutions resolved within the long-term phase, by this calling into question previous reports of poorer performance of TGA patients relative to comparison subjects weeks or months after the attack.

  13. Atomically resolved calcium phosphate coating on a gold substrate.

    PubMed

    Metoki, Noah; Baik, Sung-Il; Isheim, Dieter; Mandler, Daniel; Seidman, David N; Eliaz, Noam

    2018-05-10

    Some articles have revealed that the electrodeposition of calcium phosphate (CaP) coatings entails a precursor phase, similarly to biomineralization in vivo. The chemical composition of the initial layer and its thickness are, however, still arguable, to the best of our knowledge. Moreover, while CaP and electrodeposition of metal coatings have been studied utilizing atom-probe tomography (APT), the electrodeposition of CaP ceramics has not been heretofore studied. Herein, we present an investigation of the CaP deposition on a gold substrate. Using APT and transmission electron microscopy (TEM) it is found that a mixture of phases, which could serve as transient precursor phases to hydroxyapatite (HAp), can be detected. The thickness of these phases is tens of nanometers, and they consist of amorphous CaP (ACP), dibasic calcium phosphate dihydrate (DCPD), and octacalcium phosphate (OCP). This demonstrates the value of using atomic-resolved characterization techniques for identifying the precursor phases. It also indicates that the kinetics of their transformation into the more stable HAp is not too fast to enable their observation. The coating gradually displays higher Ca/P atomic ratios, a porous nature, and concomitantly a change in its density.

  14. Maintenance of Distal Intestinal Structure in the Face of Prolonged Fasting: A Comparative Examination of Species From Five Vertebrate Classes.

    PubMed

    McCue, Marshall D; Passement, Celeste A; Meyerholz, David K

    2017-12-01

    It was recently shown that fasting alters the composition of microbial communities residing in the distal intestinal tract of animals representing five classes of vertebrates [i.e., fishes (tilapia), amphibians (toads), reptiles (leopard geckos), birds (quail), and mammals (mice)]. In this study, we tested the hypothesis that the extent of tissue reorganization in the fasted distal intestine was correlated with the observed changes in enteric microbial diversity. Segments of intestine adjacent to those used for the microbiota study were examined histologically to quantify cross-sectional and mucosal surface areas and thicknesses of mucosa, submucosa, and tunica muscularis. We found no fasting-induced differences in the morphology of distal intestines of the mice (3 days), quail (7 days), or geckos (28 days). The toads, which exhibited a general increase in phylogenetic diversity of their enteric microbiota with fasting, also exhibited reduced mucosal circumference at 14 and 21 days of fasting. Tilapia showed increased phylogenetic diversity of their enteric microbiota, and showed a thickened tunica muscularis at 21 days of fasting; but this morphological change was not related to microbial diversity or absorptive surface area, and thus, is unlikely to functionally match the changes in their microbiome. Given that fasting caused significant increases and reductions in the enteric microbial diversity of mice and quail, respectively, but no detectable changes in distal intestine morphology, we conclude that reorganization is not the primary factor shaping changes in microbial diversity within the fasted colon, and the observed modest structural changes are more related to the fasted state. Anat Rec, 300:2208-2219, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. The microRNA machinery regulates fasting-induced changes in gene expression and longevity in Caenorhabditis elegans.

    PubMed

    Kogure, Akiko; Uno, Masaharu; Ikeda, Takako; Nishida, Eisuke

    2017-07-07

    Intermittent fasting (IF) is a dietary restriction regimen that extends the lifespans of Caenorhabditis elegans and mammals by inducing changes in gene expression. However, how IF induces these changes and promotes longevity remains unclear. One proposed mechanism involves gene regulation by microRNAs (miRNAs), small non-coding RNAs (∼22 nucleotides) that repress gene expression and whose expression can be altered by fasting. To test this proposition, we examined the role of the miRNA machinery in fasting-induced transcriptional changes and longevity in C. elegans We revealed that fasting up-regulated the expression of the miRNA-induced silencing complex (miRISC) components, including Argonaute and GW182, and the miRNA-processing enzyme DRSH-1 (the ortholog of the Drosophila Drosha enzyme). Our lifespan measurements demonstrated that IF-induced longevity was suppressed by knock-out or knockdown of miRISC components and was completely inhibited by drsh-1 ablation. Remarkably, drsh-1 ablation inhibited the fasting-induced changes in the expression of the target genes of DAF-16, the insulin/IGF-1 signaling effector in C. elegans Fasting-induced transcriptome alterations were substantially and modestly suppressed in the drsh-1 null mutant and the null mutant of ain-1 , a gene encoding GW182, respectively. Moreover, miRNA array analyses revealed that the expression levels of numerous miRNAs changed after 2 days of fasting. These results indicate that components of the miRNA machinery, especially the miRNA-processing enzyme DRSH-1, play an important role in mediating IF-induced longevity via the regulation of fasting-induced changes in gene expression. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Tuataras and salamanders show that walking and running mechanics are ancient features of tetrapod locomotion

    PubMed Central

    Reilly, Stephen M; McElroy, Eric J; Andrew Odum, R; Hornyak, Valerie A

    2006-01-01

    The lumbering locomotor behaviours of tuataras and salamanders are the best examples of quadrupedal locomotion of early terrestrial vertebrates. We show they use the same walking (out-of-phase) and running (in-phase) patterns of external mechanical energy fluctuations of the centre-of-mass known in fast moving (cursorial) animals. Thus, walking and running centre-of-mass mechanics have been a feature of tetrapods since quadrupedal locomotion emerged over 400 million years ago. When walking, these sprawling animals save external mechanical energy with the same pendular effectiveness observed in cursorial animals. However, unlike cursorial animals (that change footfall patterns and mechanics with speed), tuataras and salamanders use only diagonal couplet gaits and indifferently change from walking to running mechanics with no significant change in total mechanical energy. Thus, the change from walking to running is not related to speed and the advantage of walking versus running is unclear. Furthermore, lumbering mechanics in primitive tetrapods is reflected in having total mechanical energy driven by potential energy (rather than kinetic energy as in cursorial animals) and relative centre-of-mass displacements an order of magnitude greater than cursorial animals. Thus, large vertical displacements associated with lumbering locomotion in primitive tetrapods may preclude their ability to increase speed. PMID:16777753

  17. Changes of statistical structural fluctuations unveils an early compacted degraded stage of PNS myelin

    NASA Astrophysics Data System (ADS)

    Poccia, Nicola; Campi, Gaetano; Ricci, Alessandro; Caporale, Alessandra S.; di Cola, Emanuela; Hawkins, Thomas A.; Bianconi, Antonio

    2014-06-01

    Degradation of the myelin sheath is a common pathology underlying demyelinating neurological diseases from Multiple Sclerosis to Leukodistrophies. Although large malformations of myelin ultrastructure in the advanced stages of Wallerian degradation is known, its subtle structural variations at early stages of demyelination remains poorly characterized. This is partly due to the lack of suitable and non-invasive experimental probes possessing sufficient resolution to detect the degradation. Here we report the feasibility of the application of an innovative non-invasive local structure experimental approach for imaging the changes of statistical structural fluctuations in the first stage of myelin degeneration. Scanning micro X-ray diffraction, using advances in synchrotron x-ray beam focusing, fast data collection, paired with spatial statistical analysis, has been used to unveil temporal changes in the myelin structure of dissected nerves following extraction of the Xenopus laevis sciatic nerve. The early myelin degeneration is a specific ordered compacted phase preceding the swollen myelin phase of Wallerian degradation. Our demonstration of the feasibility of the statistical analysis of SµXRD measurements using biological tissue paves the way for further structural investigations of degradation and death of neurons and other cells and tissues in diverse pathological states where nanoscale structural changes may be uncovered.

  18. Fast Implementation of Quantum Phase Gates and Creation of Cluster States via Transitionless Quantum Driving

    NASA Astrophysics Data System (ADS)

    Zhang, Chun-Ling; Liu, Wen-Wu

    2018-05-01

    In this paper, combining transitionless quantum driving and quantum Zeno dynamics, we propose an efficient scheme to fast implement a two-qubit quantum phase gate which can be used to generate cluster state of atoms trapped in distant cavities. The influence of various of various error sources including spontaneous emission and photon loss on the fidelity is analyzed via numerical simulation. The results show that this scheme not only takes less time than adiabatic scheme but also is not sensitive to both error sources. Additionally, a creation of N-atom cluster states is put forward as a typical example of the applications of the phase gates.

  19. Long-Time Variation of Magnetic Structure in (Pr xLa 1-x)Co 2Si 2: Coexistence of Slow and Fast Processes in Magnetic Phase Transition

    DOE PAGES

    Motoya, Kiyoichiro; Hagihala, Masato; Shigeoka, Toru; ...

    2017-03-14

    In this paper, long-time variations of the magnetic structure in PrCo 2Si 2 and (Pr 0.98La 0.02)Co 2Si 2 were studied by magnetization and time-resolved neutron scattering measurements. The amplitudes of magnetic Bragg peaks showed marked time variations after cooling or heating across the magnetic transition temperature T 1 between two different antiferromagnetic phases. However, the amplitude of the time variation decreased rapidly with increasing distance from T 1. Finally, we analyzed the results on the basis of a phase transition model that includes the coexistence of fast and slow processes.

  20. Plasmonic phased array feeder enabling ultra-fast beam steering at millimeter waves.

    PubMed

    Bonjour, R; Burla, M; Abrecht, F C; Welschen, S; Hoessbacher, C; Heni, W; Gebrewold, S A; Baeuerle, B; Josten, A; Salamin, Y; Haffner, C; Johnston, P V; Elder, D L; Leuchtmann, P; Hillerkuss, D; Fedoryshyn, Y; Dalton, L R; Hafner, C; Leuthold, J

    2016-10-31

    In this paper, we demonstrate an integrated microwave phoneeded for beamtonics phased array antenna feeder at 60 GHz with a record-low footprint. Our design is based on ultra-compact plasmonic phase modulators (active area <2.5µm2) that not only provide small size but also ultra-fast tuning speed. In our design, the integrated circuit footprint is in fact only limited by the contact pads of the electrodes and by the optical feeding waveguides. Using the high speed of the plasmonic modulators, we demonstrate beam steering with less than 1 ns reconfiguration time, i.e. the beam direction is reconfigured in-between 1 GBd transmitted symbols.

  1. Experimental state control by fast non-Abelian holonomic gates with a superconducting qutrit

    NASA Astrophysics Data System (ADS)

    Danilin, S.; Vepsäläinen, A.; Paraoanu, G. S.

    2018-05-01

    Quantum state manipulation with gates based on geometric phases acquired during cyclic operations promises inherent fault-tolerance and resilience to local fluctuations in the control parameters. Here we create a general non-Abelian and non-adiabatic holonomic gate acting in the (∣0〉, ∣2〉) subspace of a three-level (qutrit) transmon device fabricated in a fully coplanar design. Experimentally, this is realized by simultaneously coupling the first two transitions by microwave pulses with amplitudes and phases defined such that the condition of parallel transport is fulfilled. We demonstrate the creation of arbitrary superpositions in this subspace by changing the amplitudes of the pulses and the relative phase between them. We use two-photon pulses acting in the holonomic subspace to reveal the coherence of the state created by the geometric gate pulses and to prepare different superposition states. We also test the action of holonomic NOT and Hadamard gates on superpositions in the (| 0> ,| 2> ) subspace.

  2. Model of heterogeneous material dissolution in simulated biological fluid

    NASA Astrophysics Data System (ADS)

    Knyazeva, A. G.; Gutmanas, E. Y.

    2015-11-01

    In orthopedic research, increasing attention is being paid to bioresorbable/biodegradable implants as an alternative to permanent metallic bone healing devices. Biodegradable metal based implants possessing high strength and ductility potentially can be used in load bearing sites. Biodegradable Mg and Fe are ductile and Fe possess high strength, but Mg degrades too fast and Fe degrades too slow, Ag is a noble metal and should cause galvanic corrosion of the more active metallic iron - thus, corrosion of Fe can be increased. Nanostructuring should results in higher strength and can result in higher rate of dissolution/degradation from grain boundaries. In this work, a simple dissolution model of heterogeneous three phase nanocomposite material is considered - two phases being metal Fe and Ag and the third - nanopores. Analytical solution for the model is presented. Calculations demonstrate that the changes in the relative amount of each phase depend on mass exchange and diffusion coefficients. Theoretical results agree with preliminary experimental results.

  3. Fluctuation in the Intermediate Magnetic Phase of Triangular Ising Antiferromagnet (CeS)1.16[Fe0.33(NbS2)2

    NASA Astrophysics Data System (ADS)

    Michioka, Chishiro; Suzuki, Kazuya; Mibu, Ko

    2002-10-01

    We applied 57Fe Mössbauer spectroscopy for investigating the Ising spin triangular lattice antiferromagnet (TLA) (CeS)1.16[Fe0.33(NbS2)2] between 2 and 300 K. The spectra revealed that the relaxation time of the hyperfine field markedly changes in the intermediate phase between TN1=22 K and TN2=15 K due to strong spin fluctuation. The relaxation of the hyperfine field is not sufficiently fast as a paramagnet even at 77 K, which is much higher than TN1, and the inverse susceptibility of (LaS)1.14[Fe0.33(NbS2)2] deviates from the Curie-Weiss law below 100 K. These results indicate that an unusual short-range order exists above TN1. The temperature dependence of the Mössbauer spectra can be explained by phase transition of the three-dimensional TLA model with weak interlayer exchange interactions.

  4. Induction of a shorter compression phase is correlated with a deeper chest compression during metronome-guided cardiopulmonary resuscitation: a manikin study.

    PubMed

    Chung, Tae Nyoung; Bae, Jinkun; Kim, Eui Chung; Cho, Yun Kyung; You, Je Sung; Choi, Sung Wook; Kim, Ok Jun

    2013-07-01

    Recent studies have shown that there may be an interaction between duty cycle and other factors related to the quality of chest compression. Duty cycle represents the fraction of compression phase. We aimed to investigate the effect of shorter compression phase on average chest compression depth during metronome-guided cardiopulmonary resuscitation. Senior medical students performed 12 sets of chest compressions following the guiding sounds, with three down-stroke patterns (normal, fast and very fast) and four rates (80, 100, 120 and 140 compressions/min) in random sequence. Repeated-measures analysis of variance was used to compare the average chest compression depth and duty cycle among the trials. The average chest compression depth increased and the duty cycle decreased in a linear fashion as the down-stroke pattern shifted from normal to very fast (p<0.001 for both). Linear increase of average chest compression depth following the increase of the rate of chest compression was observed only with normal down-stroke pattern (p=0.004). Induction of a shorter compression phase is correlated with a deeper chest compression during metronome-guided cardiopulmonary resuscitation.

  5. Understanding rapid evolution in predator‐prey interactions using the theory of fast‐slow dynamical systems.

    PubMed

    Cortez, Michael H; Ellner, Stephen P

    2010-11-01

    The accumulation of evidence that ecologically important traits often evolve at the same time and rate as ecological dynamics (e.g., changes in species' abundances or spatial distributions) has outpaced theory describing the interplay between ecological and evolutionary processes with comparable timescales. The disparity between experiment and theory is partially due to the high dimensionality of models that include both evolutionary and ecological dynamics. Here we show how the theory of fast-slow dynamical systems can be used to reduce model dimension, and we use that body of theory to study a general predator-prey system exhibiting fast evolution in either the predator or the prey. Our approach yields graphical methods with predictive power about when new and unique dynamics (e.g., completely out-of-phase oscillations and cryptic dynamics) can arise in ecological systems exhibiting fast evolution. In addition, we derive analytical expressions for determining when such behavior arises and how evolution affects qualitative properties of the ecological dynamics. Finally, while the theory requires a separation of timescales between the ecological and evolutionary processes, our approach yields insight into systems where the rates of those processes are comparable and thus is a step toward creating a general ecoevolutionary theory.

  6. The heat-transfer method: a versatile low-cost, label-free, fast, and user-friendly readout platform for biosensor applications.

    PubMed

    van Grinsven, Bart; Eersels, Kasper; Peeters, Marloes; Losada-Pérez, Patricia; Vandenryt, Thijs; Cleij, Thomas J; Wagner, Patrick

    2014-08-27

    In recent years, biosensors have become increasingly important in various scientific domains including medicine, biology, and pharmacology, resulting in an increased demand for fast and effective readout techniques. In this Spotlight on Applications, we report on the recently developed heat-transfer method (HTM) and illustrate the use of the technique by zooming in on four established bio(mimetic) sensor applications: (i) mutation analysis in DNA sequences, (ii) cancer cell identification through surface-imprinted polymers, (iii) detection of neurotransmitters with molecularly imprinted polymers, and (iv) phase-transition analysis in lipid vesicle layers. The methodology is based on changes in heat-transfer resistance at a functionalized solid-liquid interface. To this extent, the device applies a temperature gradient over this interface and monitors the temperature underneath and above the functionalized chip in time. The heat-transfer resistance can be obtained by dividing this temperature gradient by the power needed to achieve a programmed temperature. The low-cost, fast, label-free and user-friendly nature of the technology in combination with a high degree of specificity, selectivity, and sensitivity makes HTM a promising sensor technology.

  7. [EFFECTS OF ELECTRICAL STIMULATION OF NUCLEUS RETICULARIS PONTIS ORALIS ON THE SLEEP-WAKING STATES IN KRUSHINSKII-MOLODKINA STRAIN RATS].

    PubMed

    Vataev, S I; Malgina, N A; Oganesyan, G A

    2015-07-01

    The effects of electrical stimulation of nucleus reticularis pontis oralis on the behavior and brain electrical activity during all phases of the sleep-waking cycle was studied in Krushinskii-Molodkina strain rats, which have an inherited predisposition to audiogenic seizures. Electrical stimulation with 7 Hz frequency in the deep stage of slow-wave sleep cause appearance the fast-wave sleep. Similar stimulation during fast-wave sleep periods did not effects on the electrographic patterns and EEG spectral characteristics of hippocampus, visual, auditory and somatocnen nrnrenc nf the cnrtey ThPe sfimul1stinns did nnt break a fast-wave sleenhut increased almost twice due the duration of these sleep episodes. After electrical stimulation by same frequency during the wakeftlness and superficial slow-wave sleep states, the patterns and spectral characteristics of brain electrical activity in rats showed no significant changes as compared with controls. The results of this study indicate that the state of the animals sleep-waking cycle at the time of stimulation is a critical variable that influences the responses which are induced by electrical stimulation of the nucleus reticularis pontis oralis.

  8. Fast-degrading PLA/ORMOGLASS fibrous composite scaffold leads to a calcium-rich angiogenic environment

    PubMed Central

    Sachot, Nadège; Roguska, Agata; Planell, Josep Anton; Lewandowska, Malgorzata; Engel, Elisabeth; Castaño, Oscar

    2017-01-01

    The success of scaffold implantation in acellular tissue engineering approaches relies on the ability of the material to interact properly with the biological environment. This behavior mainly depends on the design of the graft surface and, more precisely, on its capacity to biodegrade in a well-defined manner (nature of ions released, surface-to-volume ratio, dissolution profile of this release, rate of material resorption, and preservation of mechanical properties). The assessment of the biological behavior of temporary templates is therefore very important in tissue engineering, especially for composites, which usually exhibit complicated degradation behavior. Here, blended polylactic acid (PLA) calcium phosphate ORMOGLASS (organically modified glass) nanofibrous mats have been incubated up to 4 weeks in physiological simulated conditions, and their morphological, topographical, and chemical changes have been investigated. The results showed that a significant loss of inorganic phase occurred at the beginning of the immersion and the ORMOGLASS maintained a stable composition afterward throughout the degradation period. As a whole, the nanostructured scaffolds underwent fast and heterogeneous degradation. This study reveals that an angiogenic calcium-rich environment can be achieved through fast-degrading ORMOGLASS/PLA blended fibers, which seems to be an excellent alternative for guided bone regeneration. PMID:28744124

  9. Monitoring/Verification Using DMS: TATP Example

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kevin Kyle; Stephan Weeks

    Field-rugged and field-programmable differential mobility spectrometry (DMS) networks provide highly selective, universal monitoring of vapors and aerosols at detectable levels from persons or areas involved with illicit chemical/biological/explosives (CBE) production. CBE sensor motes used in conjunction with automated fast gas chromatography with DMS detection (GC/DMS) verification instrumentation integrated into situational operationsmanagement systems can be readily deployed and optimized for changing application scenarios. The feasibility of developing selective DMS motes for a “smart dust” sampling approach with guided, highly selective, fast GC/DMS verification analysis is a compelling approach to minimize or prevent the illegal use of explosives or chemical and biologicalmore » materials. DMS is currently one of the foremost emerging technologies for field separation and detection of gas-phase chemical species. This is due to trace-level detection limits, high selectivity, and small size. GC is the leading analytical method for the separation of chemical species in complex mixtures. Low-thermal-mass GC columns have led to compact, low-power field systems capable of complete analyses in 15–300 seconds. A collaborative effort optimized a handheld, fast GC/DMS, equipped with a non-rad ionization source, for peroxide-based explosive measurements.« less

  10. Effect of food on the bioavailability and tolerability of the JAK2-selective inhibitor fedratinib (SAR302503): Results from two phase I studies in healthy volunteers.

    PubMed

    Zhang, Meng; Xu, Christine; Ma, Lei; Shamiyeh, Elias; Yin, Jianyun; von Moltke, Lisa L; Smith, William B

    2015-07-01

    Fedratinib (SAR302503/TG101348) is a Janus kinase 2 (JAK2)-selective inhibitor developed for treatment of patients with myelofibrosis. The effect of food intake on the pharmacokinetics (PKs) and tolerability of single-dose fedratinib was investigated in two Phase I studies (FED12258: 100 mg or 500 mg under fasted or fed [high-fat breakfast] conditions; ALI13451: 500 mg under fasted or fed [low- or high-fat breakfast] conditions) in healthy male subjects. At the 500 mg dose the fed:fasted ratio estimate for area under the plasma concentration-time curve extrapolated to infinity was 0.96 (100 mg; high-fat/fasted), 1.19-1.24 (500 mg; high-fat/fasted), and 1.22 (500 mg; low-fat/fasted). Fedratinib 500 mg attained peak plasma concentration 4 hours after a high-fat breakfast and 2-2.5 hours after a low-fat breakfast or under fasted conditions; terminal half-life was 76-88 hours (fasted) and 73-78 hours (fed). The most frequent adverse events were mild gastrointestinal toxicities, the incidence of which decreased following a high-fat breakfast compared with both fasted and low-fat breakfast conditions (17%, 67%, and 59% of subjects, respectively, in ALI13451). In conclusion, food intake had minimal impact on the PKs of fedratinib, and the tolerability of this drug was improved when taken following a high-fat breakfast. © 2014, The American College of Clinical Pharmacology.

  11. Surface transport mechanisms in molecular glasses probed by the exposure of nano-particles

    NASA Astrophysics Data System (ADS)

    Ruan, Shigang; Musumeci, Daniele; Zhang, Wei; Gujral, Ankit; Ediger, M. D.; Yu, Lian

    2017-05-01

    For a glass-forming liquid, the mechanism by which its surface contour evolves can change from bulk viscous flow at high temperatures to surface diffusion at low temperatures. We show that this mechanistic change can be conveniently detected by the exposure of nano-particles native in the material. Despite its high chemical purity, the often-studied molecular glass indomethacin contains low-concentration particles approximately 100 nm in size and 0.3% in volume fraction. Similar particles are present in polystyrene, another often-used model. In the surface-diffusion regime, particles are gradually exposed in regions vacated by host molecules, for example, the peak of a surface grating and the depletion zone near a surface crystal. In the viscous-flow regime, particle exposure is not observed. The surface contour around an exposed particle widens over time in a self-similar manner as 3 (Bt)1/4, where B is a surface mobility constant and the same constant obtained by surface grating decay. This work suggests that in a binary system composed of slow- and fast-diffusing molecules, slow-diffusing molecules can be stranded in surface regions vacated by fast-diffusing molecules, effectively leading to phase separation.

  12. Physiological adaptations to prolonged fasting in the overwintering striped skunk (Mephitis mephitis).

    PubMed

    Mustonen, Anne-Mari; Bowman, Jeff; Sadowski, Carrie; Nituch, Larissa A; Bruce, Laura; Halonen, Toivo; Puukka, Katri; Rouvinen-Watt, Kirsti; Aho, Jari; Nieminen, Petteri

    2013-12-01

    Wintertime physiology of captive striped skunks (Mephitis mephitis) in response to cold ambient temperature (Ta) and fasting was investigated with body temperature (Tb) and activity recordings and analyses of hematology, plasma biochemistry and tissue fatty acids (FA). After 105 days of food deprivation, the skunks were in phase II of fasting indicated by the elevated plasma nonesterified FA and glycerol but no accumulation of nitrogen end products. Shorter-chain saturated and monounsaturated FA together with C18-20 n-3 polyunsaturated FA were preferentially mobilized. Individual amino acids responded to fasting in a complex manner, while essential and nonessential amino acid sums remained stable. Increases in hemoglobin and hematocrit suggested dehydration. The activity levels were lower in mid-January-early March, and the activity bouts were mostly displayed between 17:00-23:00 h. Daily torpor was observed in two females with 29 and 46 bouts. The deepest torpor (Tb<31 °C) occurred between dawn and early afternoon and lasted for 3.3 ± 0.18 h. The average minimum Tb was 29.2 ± 0.15 °C and the lowest recorded Tb was 25.8 °C. There was significant relation between the average 24-h Tb and Ta. Increases in wintertime Ta, as predicted by climate change scenarios, could influence torpor patterns in the species. © 2013.

  13. Improving biomass pyrolysis economics by integrating vapor and liquid phase upgrading

    DOE PAGES

    Iisa, Kristiina; Robichaud, David J.; Watson, Michael J.; ...

    2017-11-24

    Partial deoxygenation of bio-oil by catalytic fast pyrolysis with subsequent coupling and hydrotreating can lead to improved economics and will aid commercial deployment of pyrolytic conversion of biomass technologies. Biomass pyrolysis efficiently depolymerizes and deconstructs solid plant matter into carbonaceous molecules that, upon catalytic upgrading, can be used for fuels and chemicals. Upgrading strategies include catalytic deoxygenation of the vapors before they are condensed (in situ and ex situ catalytic fast pyrolysis), or hydrotreating following condensation of the bio-oil. In general, deoxygenation carbon efficiencies, one of the most important cost drivers, are typically higher for hydrotreating when compared to catalyticmore » fast pyrolysis alone. However, using catalytic fast pyrolysis as the primary conversion step can benefit the entire process chain by: (1) reducing the reactivity of the bio-oil, thereby mitigating issues with aging and transport and eliminating need for multi-stage hydroprocessing configurations; (2) producing a bio-oil that can be fractionated through distillation, which could lead to more efficient use of hydrogen during hydrotreating and facilitate integration in existing petroleum refineries; and (3) allowing for the separation of the aqueous phase. In this perspective, we investigate in detail a combination of these approaches, where some oxygen is removed during catalytic fast pyrolysis and the remainder removed by downstream hydrotreating, accompanied by carbon–carbon coupling reactions in either the vapor or liquid phase to maximize carbon efficiency toward value-driven products (e.g. fuels or chemicals). The economic impact of partial deoxygenation by catalytic fast pyrolysis will be explored in the context of an integrated two-stage process. In conclusion, improving the overall pyrolysis-based biorefinery economics by inclusion of production of high-value co-products will be examined.« less

  14. Improving biomass pyrolysis economics by integrating vapor and liquid phase upgrading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iisa, Kristiina; Robichaud, David J.; Watson, Michael J.

    Partial deoxygenation of bio-oil by catalytic fast pyrolysis with subsequent coupling and hydrotreating can lead to improved economics and will aid commercial deployment of pyrolytic conversion of biomass technologies. Biomass pyrolysis efficiently depolymerizes and deconstructs solid plant matter into carbonaceous molecules that, upon catalytic upgrading, can be used for fuels and chemicals. Upgrading strategies include catalytic deoxygenation of the vapors before they are condensed (in situ and ex situ catalytic fast pyrolysis), or hydrotreating following condensation of the bio-oil. In general, deoxygenation carbon efficiencies, one of the most important cost drivers, are typically higher for hydrotreating when compared to catalyticmore » fast pyrolysis alone. However, using catalytic fast pyrolysis as the primary conversion step can benefit the entire process chain by: (1) reducing the reactivity of the bio-oil, thereby mitigating issues with aging and transport and eliminating need for multi-stage hydroprocessing configurations; (2) producing a bio-oil that can be fractionated through distillation, which could lead to more efficient use of hydrogen during hydrotreating and facilitate integration in existing petroleum refineries; and (3) allowing for the separation of the aqueous phase. In this perspective, we investigate in detail a combination of these approaches, where some oxygen is removed during catalytic fast pyrolysis and the remainder removed by downstream hydrotreating, accompanied by carbon–carbon coupling reactions in either the vapor or liquid phase to maximize carbon efficiency toward value-driven products (e.g. fuels or chemicals). The economic impact of partial deoxygenation by catalytic fast pyrolysis will be explored in the context of an integrated two-stage process. In conclusion, improving the overall pyrolysis-based biorefinery economics by inclusion of production of high-value co-products will be examined.« less

  15. Photo-generated metamaterials induce modulation of CW terahertz quantum cascade lasers

    PubMed Central

    Mezzapesa, Francesco P.; Columbo, Lorenzo L.; Rizza, Carlo; Brambilla, Massimo; Ciattoni, Alessardro; Dabbicco, Maurizio; Vitiello, Miriam S.; Scamarcio, Gaetano

    2015-01-01

    Periodic patterns of photo-excited carriers on a semiconductor surface profoundly modifies its effective permittivity, creating a stationary all-optical quasi-metallic metamaterial. Intriguingly, one can tailor its artificial birefringence to modulate with unprecedented degrees of freedom both the amplitude and phase of a quantum cascade laser (QCL) subject to optical feedback from such an anisotropic reflector. Here, we conceive and devise a reconfigurable photo-designed Terahertz (THz) modulator and exploit it in a proof-of-concept experiment to control the emission properties of THz QCLs. Photo-exciting sub-wavelength metastructures on silicon, we induce polarization-dependent changes in the intra-cavity THz field, that can be probed by monitoring the voltage across the QCL terminals. This inherently flexible approach promises groundbreaking impact on THz photonics applications, including THz phase modulators, fast switches, and active hyperbolic media. PMID:26549166

  16. Scalable, large area compound array refractive lens for hard X-rays

    NASA Astrophysics Data System (ADS)

    Reich, Stefan; dos Santos Rolo, Tomy; Letzel, Alexander; Baumbach, Tilo; Plech, Anton

    2018-04-01

    We demonstrate the fabrication of a 2D Compound Array Refractive Lens (CARL) for multi-contrast X-ray imaging. The CARL consists of six stacked polyimide foils with each displaying a 2D array of lenses with a 65 μm pitch aiming for a sensitivity on sub-micrometer structures with a (few-)micrometer resolution in sensing through phase and scattering contrast at multiple keV. The parabolic lenses are formed by indents in the foils by a paraboloid needle. The ability for fast single-exposure multi-contrast imaging is demonstrated by filming the kinetics of pulsed laser ablation in liquid. The three contrast channels, absorption, differential phase, and scattering, are imaged with a time resolution of 25 μs. By changing the sample-detector distance, it is possible to distinguish between nanoparticles and microbubbles.

  17. Model calculations for the airborne Fast Ice Nuclei CHamber FINCH-HALO

    NASA Astrophysics Data System (ADS)

    Nillius, B.; Bingemer, H.; Bundke, U.; Jaenicke, R.; Reimann, B.; Wetter, T.

    2009-04-01

    Ice nuclei (IN) initiate the formation of primary ice in tropospheric clouds. In mixed phase clouds the primary ice crystals can grow very fast by the Bergeron-Findeisen process (Findeisen, 1938) at the expense of evaporating water droplets, and form precipitation. Thus, IN are essential for the development of precipitation in mixed phase clouds in the middle latitude. However, the role of IN in the development of clouds is still poorly understood and needs to be studied (Levin and Cotton, 2007). A Fast Ice Nuclei CHamber (FINCH-HALO) for airborne operation on the High And LOng Range research aircraft (HALO) is under development at the Institute for Atmosphere and Environment University Frankfurt. IN particles are activated within the chamber at certain ice super-saturation and temperature by mixing three gas flows, a warm moist, a cold dry, and an aerosol flow. After activation the particles will grow within a processing chamber. In an optical depolarisation detector droplets and ice crystals are detected separately. The setup of the new FINCH-HALO instrument is based on the ground based IN counter FINCH (Bundke, 2008). In FINCH-HALO a new cooling unit is used. Thus, measurements down to -40°C are possible. Furthermore minor changes of the inlet section where the mixing occurs were done. The contribution will present 3D model calculations with FLUENT of the flow conditions in the new inlet section for different pressure levels during a flight typical for HALO. Growth rates of ice crystals in the chamber at different temperature and super-saturation will be shown. References: Bundke U., B. Nillius, R. Jaenicke, T. Wetter, H. Klein, H. Bingemer, (2008). The Fast Ice Nucleus Chamber FINCH, Atmospheric Research, doi:10.1016/j.atmosres.2008.02.008 Findeisen, R., (1938). Meteorologisch-physikalische Begebenheiten der Vereisung in der Atmosphäre. Hauptversammlung 1938 der Lilienthal-Gesellschaft. Levin, Z., W. Cotton, (2007). Aerosol pollution impact on precipitation: a scientific review. The WMO/IUGG International Aerosol Precipitation Science Assessment Group (IAPSAG). World Meteorological Organization, Geneva. Acknowledgements: This work was supported by the German Research Foundation, SFB 641 "Tropospheric Ice Phase" TP A1, SPP 1294, BU 1432/3-1, JA 344/12-1, by the Helmholtz Association, VI-233 "Aerosol Cloud Interactions" and by the EU FP6 Infrastructure Project EUSAAR.

  18. Genetic variation of fasting glucose and changes in glycemia in response to 2-year weight-loss diet intervention: the POUNDS Lost trial

    PubMed Central

    Wang, Tiange; Huang, Tao; Zheng, Yan; Rood, Jennifer; Bray, George A.; Sacks, Frank M.; Qi, Lu

    2016-01-01

    Objective Weight loss intervention through diet modification has been widely used to improve obesity-related hyperglycemia; however, little is known about whether genetic variation modifies the intervention effect. We examined the interaction between weight-loss diets and genetic variation of fasting glucose on changes in glycemic traits in a dietary intervention trial. Research Design and Methods The Preventing Overweight Using Novel Dietary Strategies (POUNDS LOST) trial is a randomized, controlled 2-year weight-loss trial. We assessed overall genetic variation of fasting glucose by calculating a genetic risk score (GRS) based on 14 fasting glucose-associated single nucleotide polymorphisms, and examined the progression in fasting glucose and insulin levels, and insulin resistance and insulin sensitivity in 733 adults from this trial. Results The GRS was associated with 6-month changes in fasting glucose (P<0.001), fasting insulin (P=0.042), homeostasis model assessment of insulin resistance (HOMA-IR, P=0.009) and insulin sensitivity (HOMA-S, P=0.043). We observed significant interaction between the GRS and dietary fat on 6-month changes in fasting glucose, HOMA-IR and HOMA-S after multivariable adjustment (P-interaction=0.007, 0.045, and 0.028, respectively). After further adjustment for weight loss, the interaction remained significant on change in fasting glucose (P=0.015). In the high-fat diet group, participants in the highest GRS tertile showed increased fasting glucose, whereas participants in the lowest tertile showed decreased fasting glucose (P-trend<0.001); in contrast, the genetic association was not significant in the low-fat diet group (P-trend=0.087). Conclusions Our data suggest that participants with a higher genetic risk may benefit more by eating a low-fat diet to improve glucose metabolism. PMID:27113490

  19. Genetic variation of fasting glucose and changes in glycemia in response to 2-year weight-loss diet intervention: the POUNDS LOST trial.

    PubMed

    Wang, T; Huang, T; Zheng, Y; Rood, J; Bray, G A; Sacks, F M; Qi, L

    2016-07-01

    Weight-loss intervention through diet modification has been widely used to improve obesity-related hyperglycemia; however, little is known about whether genetic variation modifies the intervention effect. We examined the interaction between weight-loss diets and genetic variation of fasting glucose on changes in glycemic traits in a dietary intervention trial. The Preventing Overweight Using Novel Dietary Strategies (POUNDS LOST) trial is a randomized, controlled 2-year weight-loss trial. We assessed overall genetic variation of fasting glucose by calculating a genetic risk score (GRS) based on 14 fasting glucose-associated single nucleotide polymorphisms, and examined the progression in fasting glucose and insulin levels, and insulin resistance and insulin sensitivity in 733 adults from this trial. The GRS was associated with 6-month changes in fasting glucose (P<0.001), fasting insulin (P=0.042), homeostasis model assessment of insulin resistance (HOMA-IR, P=0.009) and insulin sensitivity (HOMA-S, P=0.043). We observed significant interaction between the GRS and dietary fat on 6-month changes in fasting glucose, HOMA-IR and HOMA-S after multivariable adjustment (P-interaction=0.007, 0.045 and 0.028, respectively). After further adjustment for weight loss, the interaction remained significant on change in fasting glucose (P=0.015). In the high-fat diet group, participants in the highest GRS tertile showed increased fasting glucose, whereas participants in the lowest tertile showed decreased fasting glucose (P-trend <0.001); in contrast, the genetic association was not significant in the low-fat diet group (P-trend=0.087). Our data suggest that participants with a higher genetic risk may benefit more by eating a low-fat diet to improve glucose metabolism.

  20. Short Range 10 Gb/s THz Communications. Proof of Concept Phase 2

    DTIC Science & Technology

    2011-12-01

    heterodyned are phase locked to spectral lines selected from the optical frequency comb generator (OFCG) using optical phase locked loops ( OPLLs ) or by...systems by optical heterodyne generation (OHG), in which the outputs of two phase - locked lasers are combined, and detection in a fast photodiode, such... Heterodyning of two CW optical signals, each phase locked to lines in an

  1. A portable intra-oral scanner based on sinusoidal pattern of fast phase-shifting

    NASA Astrophysics Data System (ADS)

    Jan, Chia-Ming; Lin, Ying-Chieh

    2016-03-01

    This paper presented our current research about the intra-oral scanner made by MIRDC. Utilizing the sinusoidal pattern for fast phase-shifting technique to deal with 3D digitalization of human dental surface profile, the development of pseudo-phase shifting digital projection can easily achieve one type of full-field scanning instead of the common technique of the laser line scanning. Based on traditional Moiré method, we adopt projecting fringes and retrieve phase reconstruction to forward phase unwrapping. The phase difference between the plane and object can be exactly calculated from the desired fringe images, and the surface profile of object was probably reconstructed by using the phase differences information directly. According to our algorithm of space mapping between projections and capturing orientation exchange of our intra-oral scanning configuration, the system we made certainly can be proved to achieve the required accuracy of +/-10μm to deal with intra-oral scanning on the basis of utilizing active triangulation method. The final purpose aimed to the scanning of object surface profile with its size about 10x10x10mm3.

  2. X-ray spectra and electron structure of A15 compounds of transition metals

    NASA Astrophysics Data System (ADS)

    Kurmaev, E. Z.; Iarmoshenko, Iu. M.

    1988-01-01

    Results of an X-ray emission spectroscopy study of the electron structure of A15 compounds are reported. In particular, attention is given to the X-ray spectra of A15 compounds of the A3B type with transition and nontransition elements, effect of alloying on the formation of the electron structure of ternary phases, and effect of atomic ordering in the X-ray spectra of A15 compounds with changes in heat treament and concentration. The X-ray spectra of A15 compounds irradiated by fast neutrons are also examined.

  3. The Inter-Sectoral Impact Model Intercomparison Project (ISI–MIP): Project framework

    PubMed Central

    Warszawski, Lila; Frieler, Katja; Huber, Veronika; Piontek, Franziska; Serdeczny, Olivia; Schewe, Jacob

    2014-01-01

    The Inter-Sectoral Impact Model Intercomparison Project offers a framework to compare climate impact projections in different sectors and at different scales. Consistent climate and socio-economic input data provide the basis for a cross-sectoral integration of impact projections. The project is designed to enable quantitative synthesis of climate change impacts at different levels of global warming. This report briefly outlines the objectives and framework of the first, fast-tracked phase of Inter-Sectoral Impact Model Intercomparison Project, based on global impact models, and provides an overview of the participating models, input data, and scenario set-up. PMID:24344316

  4. Fast Response Shape Memory Effect Titanium Nickel (TiNi) Foam Torque Tubes

    NASA Technical Reports Server (NTRS)

    Jardine, Peter

    2014-01-01

    Shape Change Technologies has developed a process to manufacture net-shaped TiNi foam torque tubes that demonstrate the shape memory effect. The torque tubes dramatically reduce response time by a factor of 10. This Phase II project matured the actuator technology by rigorously characterizing the process to optimize the quality of the TiNi and developing a set of metrics to provide ISO 9002 quality assurance. A laboratory virtual instrument engineering workbench (LabVIEW'TM')-based, real-time control of the torsional actuators was developed. These actuators were developed with The Boeing Company for aerospace applications.

  5. Gold fillings unravel the vacancy role in the phase transition of GeTe

    NASA Astrophysics Data System (ADS)

    Feng, Jinlong; Xu, Meng; Wang, Xiaojie; Lin, Qi; Cheng, Xiaomin; Xu, Ming; Tong, Hao; Miao, Xiangshui

    2018-02-01

    Phase change memory (PCM) is an important candidate for future memory devices. The crystalline phase of PCM materials contains abundant intrinsic vacancies, which plays an important role in the rapid phase transition upon memory switching. However, few experimental efforts have been invested to study these invisible entities. In this work, Au dopants are alloyed into the crystalline GeTe to fill the intrinsic Ge vacancies so that the role of these vacancies in the amorphization of GeTe can be indirectly studied. As a result, the reduction of Ge vacancies induced by Au dopants hampers the amorphization of GeTe as the activation energy of this process becomes higher. This is because the vacancy-interrupted lattice can be "repaired" by Au dopants with the recovery of bond connectivity. Our results demonstrate the importance of vacancies in the phase transition of chalcogenides, and we employ the percolation theory to explain the impact of these intrinsic defects on this vacancy-ridden crystal quantitatively. Specifically, the threshold of amorphization increases with the decrease in vacancies. The understanding of the vacancy effect sheds light on the long-standing puzzle of the mechanism of ultra-fast phase transition in PCMs. It also paves the way for designing low-power-consumption electronic devices by reducing the threshold of amorphization in chalcogenides.

  6. Mathematical Modeling and Analysis of a Wide Bandwidth Bipolar Power Supply for the Fast Correctors in the APS Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Byeong M.; Wang, Ju

    This paper presents the mathematical modeling and analysis of a wide bandwidth bipolar power supply for the fast correctors in the APS Upgrade. A wide bandwidth current regulator with a combined PI and phase-lead compensator has been newly proposed, analyzed, and simulated through both a mathematical model and a physical electronic circuit model using MATLAB and PLECS. The proposed regulator achieves a bandwidth with a -1.23dB attenuation and a 32.40° phase-delay at 10 kHz for a small signal less than 1% of the DC scale. The mathematical modeling and design, simulation results of a fast corrector power supply control systemmore » are presented in this paper.« less

  7. Atomistic insights into the nanosecond long amorphization and crystallization cycle of nanoscale G e2S b2T e5 : An ab initio molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Branicio, Paulo S.; Bai, Kewu; Ramanarayan, H.; Wu, David T.; Sullivan, Michael B.; Srolovitz, David J.

    2018-04-01

    The complete process of amorphization and crystallization of the phase-change material G e2S b2T e5 is investigated using nanosecond ab initio molecular dynamics simulations. Varying the quench rate during the amorphization phase of the cycle results in the generation of a variety of structures from entirely crystallized (-0.45 K/ps) to entirely amorphized (-16 K/ps). The 1.5-ns annealing simulations indicate that the crystallization process depends strongly on both the annealing temperature and the initial amorphous structure. The presence of crystal precursors (square rings) in the amorphous matrix enhances nucleation/crystallization kinetics. The simulation data are used to construct a combined continuous-cooling-transformation (CCT) and temperature-time-transformation (TTT) diagram. The nose of the CCT-TTT diagram corresponds to the minimum time for the onset of homogenous crystallization and is located at 600 K and 70 ps. That corresponds to a critical cooling rate for amorphization of -4.5 K/ps. The results, in excellent agreement with experimental observations, suggest that a strategy that utilizes multiple quench rates and annealing temperatures may be used to effectively optimize the reversible switching speed and enable fast and energy-efficient phase-change memories.

  8. Studies of the underlying mechanisms for optical nonlinearities of blue phase liquid crystals (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Wei; Khoo, Iam Choon; Zhao, Shuo; Lin, Tsung-Hsien; Ho, Tsung-Jui

    2015-10-01

    We have investigated the mechanisms responsible for nonlinear optical processes occurring in azobenzene-doped blue phase liquid crystals (BPLC), which exhibit two thermodynamically stable BPs: BPI and BPII. In coherent two wave-mixing experiments, a slow (minutes) and a fast (few milliseconds) side diffractions are observed. The underlying mechanisms were disclosed by monitoring the dynamics of grating formation and relaxation as well as by some supplementary experiments. We found the photothermal indexing and dye/LC intermolecular torque leading to lattice distortion to be the dominant mechanisms for the observed nonlinear response in BPLC. Moreover, the response time of the nonlinear optical process varied with operating phase. The rise time of the thermal indexing process was in good agreement with our findings on the temperature dependence of BP refractive index: τ(ISO) > τ(BPI) > τ(BPII). The relaxation time of the torque-induced lattice distortion was analogue to its electrostriction counterpart: τ'(BPI) > τ'(BPII). In a separate experiment, lattice swelling with selective reflection of <110> direction changed from green to red was also observed. This was attributable to the isomerization-induced change in cholesteric pitch, which directly affects the lattice spacing. The phenomenon was confirmed by measuring the optical rotatory power of the BPLC.

  9. Initiation of the Slow-Rise and Fast-Rise Phases of an Erupting Solar Filament by Localized Emerging Magnetic Field via Microflaring

    NASA Technical Reports Server (NTRS)

    Sterling, A. C.; Moore, R. L.; Harra, L. K.

    2006-01-01

    EUV data from EIT show that a filament of 2001 February 28 underwent a slow-rise phase lasting about 6 hrs, before rapidly erupting in a fast-rise phase. Concurrent images in soft X-rays (SXRs) from Yohkoh/SXT show that a series of three microflares, prominent in SXT images but weak in EIT approx.195 Ang EUV images, occurred near one end of the filament. The first and last microflares occurred respectively in conjunction with the start of the slow-rise phase and the start of the fast-rise phase, and the second microflare corresponded to a kink in the filament trajectory. Beginning within 10 hours of the start of the slow rise, new magnetic flux emerged at the location of the microflaring. This localized new flux emergence and the resulting microflares, consistent with reconnection between the emerging field and the sheared sigmoid core magnetic field holding the filament, apparently caused the slow rise of this field and the transition to explosive eruption. For the first time in such detail, the observations show this direct action of localized emerging flux in the progressive destabilization of a sheared core field in the onset of a coronal mass ejection (CME). Similar processes may have occurred in other recently-studied events, NASA supported this work through NASA SR&T and SEC GI grants.

  10. Carotid body denervation prevents fasting hyperglycemia during chronic intermittent hypoxia.

    PubMed

    Shin, Mi-Kyung; Yao, Qiaoling; Jun, Jonathan C; Bevans-Fonti, Shannon; Yoo, Doo-Young; Han, Woobum; Mesarwi, Omar; Richardson, Ria; Fu, Ya-Yuan; Pasricha, Pankaj J; Schwartz, Alan R; Shirahata, Machiko; Polotsky, Vsevolod Y

    2014-10-01

    Obstructive sleep apnea causes chronic intermittent hypoxia (IH) and is associated with impaired glucose metabolism, but mechanisms are unknown. Carotid bodies orchestrate physiological responses to hypoxemia by activating the sympathetic nervous system. Therefore, we hypothesized that carotid body denervation would abolish glucose intolerance and insulin resistance induced by chronic IH. Male C57BL/6J mice underwent carotid sinus nerve dissection (CSND) or sham surgery and then were exposed to IH or intermittent air (IA) for 4 or 6 wk. Hypoxia was administered by decreasing a fraction of inspired oxygen from 20.9% to 6.5% once per minute, during the 12-h light phase (9 a.m.-9 p.m.). As expected, denervated mice exhibited blunted hypoxic ventilatory responses. In sham-operated mice, IH increased fasting blood glucose, baseline hepatic glucose output (HGO), and expression of a rate-liming hepatic enzyme of gluconeogenesis phosphoenolpyruvate carboxykinase (PEPCK), whereas the whole body glucose flux during hyperinsulinemic euglycemic clamp was not changed. IH did not affect glucose tolerance after adjustment for fasting hyperglycemia in the intraperitoneal glucose tolerance test. CSND prevented IH-induced fasting hyperglycemia and increases in baseline HGO and liver PEPCK expression. CSND trended to augment the insulin-stimulated glucose flux and enhanced liver Akt phosphorylation at both hypoxic and normoxic conditions. IH increased serum epinephrine levels and liver sympathetic innervation, and both increases were abolished by CSND. We conclude that chronic IH induces fasting hyperglycemia increasing baseline HGO via the CSN sympathetic output from carotid body chemoreceptors, but does not significantly impair whole body insulin sensitivity. Copyright © 2014 the American Physiological Society.

  11. Indirect measurement of the solid/liquid interface using the minimization technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, H.; Chun, M.

    1985-11-01

    The phenomenon of solidification of a flowing fluid in a vertical tube is closely related to the relocation dynamics of molten nuclear fuels in hypothetical core-disruptive accidents of a liquid-metal fast breeder reactor. The knowledge of the transient shape and the position of the liquid/solid interface is of practical importance in analysis of phase change processes. Sparrow and Broadbent directly measured the solid liquid interface via experiments, whereas Viskanta observed the solid/liquid interface motion via a photographic method. In this paper, a new method to predict the transient position of the solid/liquid interface is developed. This method is based onmore » the minimization technique. To use this method one needs the temperature of the wall on which the phase change is to take place. The new technique is useful, in particular, for the case of inward solidification of a flowing fluid in a tube where direct measurement of the solid/liquid interface is not possible, whereas the tube wall temperature measurement is relatively easy.« less

  12. The radiation-belt electron phase-space-density response to stream-interaction regions: A study combining multi-point observations, data-assimilation, and physics-based modeling

    NASA Astrophysics Data System (ADS)

    Kellerman, A. C.; Shprits, Y.; McPherron, R. L.; Kondrashov, D. A.; Weygand, J. M.; Zhu, H.; Drozdov, A.

    2017-12-01

    Presented is an analysis of the phase-space density (PSD) response to the stream-interaction region (SIR), which utilizes a reanalysis dataset principally comprised of the data-assimilative Versatile Electron Radiation Belt (VERB) code, Van Allen Probe and GOES observations. The dataset spans the period 2012-2017, and includes several SIR (and CIR) storms. The PSD is examined for evidence of injections, transport, acceleration, and loss by considering the instantaneous and time-averaged change at adiabatic invariant values that correspond to ring-current, relativistic, and ultra-relativistic energies. In the solar wind, the following variables in the slow and fast wind on either side of the stream interface (SI) are considered in each case: the coronal hole polarity, IMF, solar wind speed, density, pressure, and SI tilt angle. In the magnetosphere, the Dst, AE, and past PSD state are considered. Presented is an analysis of the dominant mechanisms, both external and internal to the magnetosphere, that cause radiation-belt electron non-adiabatic changes during the passage of these fascinating solar wind structures.

  13. Combining a Complex Network Approach and a SEIR Compartmental Model to link Fast Spreading of Infectious Diseases with Climate Change

    NASA Astrophysics Data System (ADS)

    Brenner, F.; Hoffmann, P.; Marwan, N.

    2016-12-01

    Infectious diseases are a major threat to human health. The spreading of airborne diseases has become fast and hard to predict. Global air travelling created a network which allows a pathogen to migrate worldwide in only a few days. Pandemics of SARS (2002/03) and H1N1 (2009) have impressively shown the epidemiological danger in a strongly connected world. In this study we simulate the outbreak of an airborne infectious disease that is directly transmitted from human to human. We use a regular Susceptible-Infected-Recovered (SIR) model and a modified Susceptible-Exposed-Infected-Recovered (SEIR) compartmental approach with the basis of a complex network built by global air traffic data (from openflights.org). Local Disease propagation is modeled with a global population dataset (from SEDAC and MaxMind) and parameterizations of human behavior regarding mobility, contacts and awareness. As a final component we combine the worldwide outbreak simulation with daily averaged climate data from WATCH-Forcing-Data-ERA-Interim (WFDEI) and Coupled Model Intercomparison Project Phase 5 (CMIP5). Here we focus on Influenza-like illnesses (ILI), whose transmission rate has a dependency on relative humidity and temperature. Even small changes in relative humidity are sufficient to trigger significant differences in the global outbreak behavior. Apart from the direct effect of climate change on the transmission of airborne diseases, there are indirect ramifications that alter spreading patterns. For example seasonal changing human mobility is influenced by climate settings.

  14. Effects of Ramadan intermittent fasting on North African children's heart rate and oxy-haemoglobin saturation at rest and during sub-maximal exercise.

    PubMed

    Fenneni, Mohamed Amine; Latiri, Imed; Aloui, Asma; Rouatbi, Sonia; Chamari, Karim; Saad, Helmi Ben

    To examine the effects of Ramadan intermittent fasting (RIF) on the heart rate (HR) and oxyhaemoglobin saturation levels (oxy-sat) of boys at rest and during a six-minute walking test (6MWT). Eighteen boys (age: 11.9 ± 0.8 years, height: 153.00 ± 8.93 cm, body mass: 55.4 ± 18.2 kg), who fasted the entire month of Ramadan in 2012 for the first time in their lives, were included. The experimental protocol comprised four testing phases: two weeks before Ramadan (pre-R), the end of the second week of Ramadan (R-2), the end of the fourth week of Ramadan (R-4), and 10 to 12 days after the end of Ramadan (post-R). During each phase, participants performed the 6MWT at approximately 15:00. HR (expressed as percentage of maximal predicted HR) and oxy-sat (%) were determined at rest and in each minute of the 6MWT. R-4 HR values were lower than those of (1) pre-R (in the second minute), (2) R-2 (in the first and second minutes), and (3) post-R (in the first, second, fourth, fifth and sixth minutes). R-2 oxy-sat values were higher than those of pre-R (in the third minute) and those of post-R (in the fifth minute). Post-R oxy-sat values were lower than those of pre-R and R-4 in the fifth minute. These oxy-sat changes were not clinically significant since the difference was less than five points. In non-athletic children, their first RIF influenced their heart rate data but had a minimal effect on oxy-sat values.

  15. Effect of body mass index on diabetogenesis factors at a fixed fasting plasma glucose level.

    PubMed

    Lin, Jiunn-Diann; Hsu, Chun-Hsien; Wu, Chung-Ze; Hsieh, An-Tsz; Hsieh, Chang-Hsun; Liang, Yao-Jen; Chen, Yen-Lin; Pei, Dee; Chang, Jin-Biou

    2018-01-01

    The present study evaluated the relative influence of body mass index (BMI) on insulin resistance (IR), first-phase insulin secretion (FPIS), second-phase insulin secretion (SPIS), and glucose effectiveness (GE) at a fixed fasting plasma glucose level in an older ethnic Chinese population. In total, 265 individuals aged 60 years with a fasting plasma glucose level of 5.56 mmol/L were enrolled. Participants had BMIs of 20.0-34.2 kg/m2. IR, FPIS, SPIS, and GE were estimated using our previously developed equations. Pearson correlation analysis was conducted to assess the correlations between the four diabetogenesis factors and BMI. A general linear model was used to determine the differences in the percentage of change among the four factor slopes against BMI. Significant correlations were observed between BMI and FPIS, SPIS, IR, and GE in both women and men, which were higher than those reported previously. In men, BMI had the most profound effect on SPIS, followed by IR, FPIS, and GE, whereas in women, the order was slightly different: IR, followed by FPIS, SPIS, and GE. Significant differences were observed among all these slopes, except for the slopes between FPIS and SPIS in women (p = 0.856) and IR and FPIS in men (p = 0.258). The contribution of obesity to all diabetes factors, except GE, was higher than that reported previously. BMI had the most profound effect on insulin secretion in men and on IR in women in this 60-year-old cohort, suggesting that lifestyle modifications for obesity reduction in women remain the most important method for improving glucose metabolism and preventing future type 2 diabetes mellitus.

  16. Robust G2 pausing of adult stem cells in Hydra.

    PubMed

    Buzgariu, Wanda; Crescenzi, Marco; Galliot, Brigitte

    2014-01-01

    Hydra is a freshwater hydrozoan polyp that constantly renews its two tissue layers thanks to three distinct stem cell populations that cannot replace each other, epithelial ectodermal, epithelial endodermal, and multipotent interstitial. These adult stem cells, located in the central body column, exhibit different cycling paces, slow for the epithelial, fast for the interstitial. To monitor the changes in cell cycling in Hydra, we established a fast and efficient flow cytometry procedure, which we validated by confirming previous findings, as the Nocodazole-induced reversible arrest of cell cycling in G2/M, and the mitogenic signal provided by feeding. Then to dissect the cycling and differentiation behaviors of the interstitial stem cells, we used the AEP_cnnos1 and AEP_Icy1 transgenic lines that constitutively express GFP in this lineage. For the epithelial lineages we used the sf-1 strain that rapidly eliminates the fast cycling cells upon heat-shock and progressively becomes epithelial. This study evidences similar cycling patterns for the interstitial and epithelial stem cells, which all alternate between the G2 and S-phases traversing a minimal G1-phase. We also found interstitial progenitors with a shorter G2 that pause in G1/G0. At the animal extremities, most cells no longer cycle, the epithelial cells terminally differentiate in G2 and the interstitial progenitors in G1/G0. At the apical pole ~80% cells are post-mitotic differentiated cells, reflecting the higher density of neurons and nematocytes in this region. We discuss how the robust G2 pausing of stem cells, maintained over weeks of starvation, may contribute to regeneration. Copyright © 2014 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  17. Effect of amoxicillin/clavulanate on gastrointestinal motility in children.

    PubMed

    Gomez, Roberto; Fernandez, Sergio; Aspirot, Ann; Punati, Jaya; Skaggs, Beth; Mousa, Hayat; Di Lorenzo, Carlo

    2012-06-01

    The aim of the present study was to evaluate the effect of amoxicillin/clavulanate (A/C) on gastrointestinal motility. Twenty consecutive pediatric patients referred for antroduodenal manometry received 20 mg/kg of A/C into the small bowel lumen. In 10 patients (group A), A/C was given 1 hour after and in 10 (group B), 1 hour before ingestion of a meal. Characteristics of the migrating motor complex, including presence, frequency, amplitude, and propagation of duodenal phase III and phase I duration and phase II motility index (MI), were evaluated 30 minutes before and after A/C administration. There were no statistically significant differences in age and sex between the 2 groups. Manometry studies were considered normal in 8 patients in each group. In group A, 2 patients developed duodenal phase III after receiving A/C, and no significant difference was found in the MI before and after the drug administration. In group B, 9 patients developed duodenal phase III (P <0.05 vs group A). All phase III occurred within a few minutes from the medication administration. Most duodenal phase III contractions were preceded by an antral component during fasting but never after the medication was administered in either of the 2 groups (P<0.001 vs fasting). In group B, the duration of duodenal phase I was shorter after drug administration (P<0.05). There was no significant difference in duodenal phase II MI before and after A/C administration for the 2 study groups. In children, administration of A/C directly into the small bowel before a meal induces phase III-type contractions in the duodenum, with characteristics similar to those present in the fasting state. These data suggest the possible use of A/C as a prokinetic agent. Further studies are needed to clarify its specific mechanism of action and the group of patients most likely to benefit from its use.

  18. Advanced, phase-locked, 100 kW, 1.3 GHz magnetron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Read, Michael; Ives, R. Lawrence; Bui, Thuc

    Calabazas Creek Research, Inc., in collaboration with Fermilab and Communications & Power Industries, LLC, is developing a phase-locked, 100 kW peak, 10 kW average power magnetron-based RF system for driving accelerators. Here, phase locking will be achieved using an approach originating at Fermilab that includes control of both amplitude and phase on a fast time scale.

  19. Advanced, phase-locked, 100 kW, 1.3 GHz magnetron

    DOE PAGES

    Read, Michael; Ives, R. Lawrence; Bui, Thuc; ...

    2017-03-06

    Calabazas Creek Research, Inc., in collaboration with Fermilab and Communications & Power Industries, LLC, is developing a phase-locked, 100 kW peak, 10 kW average power magnetron-based RF system for driving accelerators. Here, phase locking will be achieved using an approach originating at Fermilab that includes control of both amplitude and phase on a fast time scale.

  20. Kinetics of Ca2+ binding to parvalbumin in bovine chromaffin cells: implications for [Ca2+] transients of neuronal dendrites

    PubMed Central

    Lee, Suk-Ho; Schwaller, Beat; Neher, Erwin

    2000-01-01

    The effect of parvalbumin (PV) on [Ca2+] transients was investigated by perfusing adrenal chromaffin cells with fura-2 and fluorescein isothiocyanate (FITC)-labelled PV. As PV diffused into cells, the decay of [Ca2+] transients was transformed from monophasic into biphasic. The proportion of the initial fast decay phase increased in parallel with the fluorescence intensity of FITC, indicating that PV is responsible for the initial fast decay phase.The relationship between the fast decay phase and the [Ca2+] level was investigated using depolarizing trains of stimuli. Within a train the relative amplitude of the fast decay phase was inversely dependent on the [Ca2+] level preceding a given stimulus.Based on these observations, we estimated the Ca2+ binding ratio of PV (κP), the apparent dissociation constant of PV for Ca2+ (Kdc,app), and the unbinding rate constant of Ca2+ from PV (kc-) in the cytosol of chromaffin cells. Assuming free [Mg2+] to be 0.14 mm, we obtained values of 51.4 ± 2.0 nm (n = 3) and 0.95 ± 0.026 s−1 (n = 3), for Kdc,app and kc-, respectively.With the parameters obtained in the perfusion study, we simulated [Ca2+] transients, using two different Ca2+ extrusion rates (γ) – 20 and 300 s−1– which represent typical values for chromaffin cells and neuronal dendrites, respectively. The simulation indicated that Ca2+ is pumped out before it is equilibrated with PV, when γ is comparable to the equilibration rates between PV and Ca2+, resulting in the fast decay phase of a biexponential [Ca2+] transient.From these results we conclude that Ca2+ buffers with slow kinetics, such as PV, may cause biexponential decays in [Ca2+] transients, thereby complicating the analysis of endogenous Ca2+ binding ratios (κS) based on time constants. Nevertheless, estimates of κS based on Ca2+ increments provide reasonable estimates for Ca2+ binding ratios before equilibration with PV. PMID:10835044

  1. Volumetric imaging of fast biological dynamics in deep tissue via wavefront engineering

    NASA Astrophysics Data System (ADS)

    Kong, Lingjie; Tang, Jianyong; Cui, Meng

    2016-03-01

    To reveal fast biological dynamics in deep tissue, we combine two wavefront engineering methods that were developed in our laboratory, namely optical phase-locked ultrasound lens (OPLUL) based volumetric imaging and iterative multiphoton adaptive compensation technique (IMPACT). OPLUL is used to generate oscillating defocusing wavefront for fast axial scanning, and IMPACT is used to compensate the wavefront distortions for deep tissue imaging. We show its promising applications in neuroscience and immunology.

  2. Proportion of adults fasting for lipid testing relative to guideline changes in Alberta.

    PubMed

    Ma, Irene; Viczko, Jeannine; Naugler, Christopher

    2017-04-01

    Guidelines have historically recommended measuring lipid profile tests in a fasting state. However, in April 2011 and 2014, the Canadian city of Calgary and its province of Alberta, respectively, have changed their lipid guidelines to allow testing for individuals in any fasting state; several years prior to the release of the 2016 Canadian Cardiovascular Society and Hypertension Canada guidelines. The purpose of this study was to document the proportion of individuals in Calgary who fasted for a lipid encounter in relation to the change in various guidelines and policies. Counts were collected each month per gender from January 1, 2010 to June 30, 2016 for community-based adults ≥18years old who fasted (≥8h) or did not fast (<8h) for a lipid encounter. During the study period, 793,719 community-based lipid profiles were performed, 590,174 in a fasting state. The proportion of adults who fasted declined from 98.59%±0.379% (mean±SD) in 2010 to 41.65%±1.295% (mean±SD) in 2016. However, a marked decline in the proportion of adults fasting for a lipid encounter was not observed until February 2015, which coincided with the release of Alberta's Toward Optimized Practice Clinical Practice Guidelines. This documentation of individuals fasting for a lipid encounter may assist other jurisdictions in Canada with the new nonfasting lipid guideline changes. We recommend releasing provincial clinical practice guidelines, in addition to laboratory bulletins and continuing medical education presentations, regarding the new nonfasting lipid recommendations in other jurisdictions to ensure community patients are aware of this change. Copyright © 2016 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  3. Scene segmentation by spike synchronization in reciprocally connected visual areas. II. Global assemblies and synchronization on larger space and time scales.

    PubMed

    Knoblauch, Andreas; Palm, Günther

    2002-09-01

    We present further simulation results of the model of two reciprocally connected visual areas proposed in the first paper [Knoblauch and Palm (2002) Biol Cybern 87:151-167]. One area corresponds to the orientation-selective subsystem of the primary visual cortex, the other is modeled as an associative memory representing stimulus objects according to Hebbian learning. We examine the scene-segmentation capability of our model on larger time and space scales, and relate it to experimental findings. Scene segmentation is achieved by attention switching on a time-scale longer than the gamma range. We find that the time-scale can vary depending on habituation parameters in the range of tens to hundreds of milliseconds. The switching process can be related to findings concerning attention and biased competition, and we reproduce experimental poststimulus time histograms (PSTHs) of single neurons under different stimulus and attentional conditions. In a larger variant the model exhibits traveling waves of activity on both slow and fast time-scales, with properties similar to those found in experiments. An apparent weakness of our standard model is the tendency to produce anti-phase correlations for fast activity from the two areas. Increasing the inter-areal delays in our model produces alternations of in-phase and anti-phase oscillations. The experimentally observed in-phase correlations can most naturally be obtained by the involvement of both fast and slow inter-areal connections; e.g., by two axon populations corresponding to fast-conducting myelinated and slow-conducting unmyelinated axons.

  4. Possible existence of two amorphous phases of d-mannitol related by a first-order transition

    NASA Astrophysics Data System (ADS)

    Zhu, Men; Wang, Jun-Qiang; Perepezko, John H.; Yu, Lian

    2015-06-01

    We report that the common polyalcohol d-mannitol may have two amorphous phases related by a first-order transition. Slightly above its glass transition temperature Tg (284 K), the supercooled liquid (SCL) of d-mannitol transforms to a low-energy, apparently amorphous phase with stronger hydrogen bonds. The enthalpy of this so-called Phase X is approximately halfway between those of the known amorphous and crystalline phases, a position low for glass aging and high for crystal polymorphs. Similar to the SCL, Phase X is transparent with broad X-ray diffraction and Raman scattering; upon temperature cycling, it exhibits a glass-transition-like change of heat capacity. On fast heating, Phase X transforms back to the SCL near Tg + 50 K, enabling a determination of their equilibrium temperature. The presence of d-sorbitol as a plasticizer enables observation of a first-order transition from the SCL to Phase X entirely in the liquid state (liquid-liquid transition). The transition from d-mannitol's SCL to Phase X has intriguing similarities with the formation of the glacial phase of triphenyl phosphite (TPP) and the conversion from high-density to low-density amorphous ice, both studied intensely in the context of polyamorphism. All three processes occur near Tg with substantial enthalpy decrease toward the crystalline phases; the processes in water and d-mannitol both strengthen the hydrogen bonds. In contrast to TPP, d-mannitol's Phase X forms more rapidly and can transform back to the SCL. These features make d-mannitol a valuable new model for understanding polyamorphism.

  5. To Be or not to Be: Simultaneous Spectroscopy and Photometry of Be Stars

    NASA Astrophysics Data System (ADS)

    Martin, John C.; O'Brien, J.; Cranford, K.; Gorski, L.; Hubbell-Thomas, J.; Lord, J.; McLain, D.; McLain, J.; Schlaf, E.; Schweighauser, C.

    2008-05-01

    After decades of study, aspects of the Be phenomenon still defy explanation. It is not clear how some stars are able to change from Be to Be-shell stars when the differences in the models of each type rely on differences in disk inclination with respect to the observer. It is also unclear what mechanism causes some Be stars to periodically cease showing emission in their spectra: thereby, entering a "normal" B star phase. The Barber Observatory at University of Illinois Springfield has embarked on a project to monitor simultaneously the photometry and spectra of selected bright Be and Be-shell stars and identify patterns in the variability of their brightness and line profiles that could provide insight into the Be mechanism. Our pilot study of Be-shell star Psi Per has identified sudden changes in the spectral line profiles that correlate with equally fast changes in V band brightness.

  6. Intricate but tight coupling of spiracular activity and abdominal ventilation during locust discontinuous gas exchange cycles.

    PubMed

    Talal, Stav; Gefen, Eran; Ayali, Amir

    2018-03-15

    Discontinuous gas exchange (DGE) is the best studied among insect gas exchange patterns. DGE cycles comprise three phases, which are defined by their spiracular state: closed, flutter and open. However, spiracle status has rarely been monitored directly; rather, it is often assumed based on CO 2 emission traces. In this study, we directly recorded electromyogram (EMG) signals from the closer muscle of the second thoracic spiracle and from abdominal ventilation muscles in a fully intact locust during DGE. Muscular activity was monitored simultaneously with CO 2 emission, under normoxia and under various experimental oxic conditions. Our findings indicate that locust DGE does not correspond well with the commonly described three-phase cycle. We describe unique DGE-related ventilation motor patterns, coupled to spiracular activity. During the open phase, when CO 2 emission rate is highest, the thoracic spiracles do not remain open; rather, they open and close rapidly. This fast spiracle activity coincides with in-phase abdominal ventilation, while alternating with the abdominal spiracle and thus facilitating a unidirectional air flow along the main trachea. A change in the frequency of rhythmic ventilation during the open phase suggests modulation by intra-tracheal CO 2 levels. A second, slow ventilatory movement pattern probably serves to facilitate gas diffusion during spiracle closure. Two flutter-like patterns are described in association with the different types of ventilatory activity. We offer a modified mechanistic model for DGE in actively ventilating insects, incorporating ventilatory behavior and changes in spiracle state. © 2018. Published by The Company of Biologists Ltd.

  7. To Which Extent can Aerosols Affect Alpine Mixed-Phase Clouds?

    NASA Astrophysics Data System (ADS)

    Henneberg, O.; Lohmann, U.

    2017-12-01

    Aerosol-cloud interactions constitute a high uncertainty in regional climate and changing weather patterns. Such uncertainties are due to the multiple processes that can be triggered by aerosol especially in mixed-phase clouds. Mixed-phase clouds most likely result in precipitation due to the formation of ice crystals, which can grow to precipitation size. Ice nucleating particles (INPs) determine how fast these clouds glaciate and form precipitation. The potential for INP to transfer supercooled liquid clouds to precipitating clouds depends on the available humidity and supercooled liquid. Those conditions are determined by dynamics. Moderately high updraft velocities result in persistent mixed-phase clouds in the Swiss Alps [1], which provide an ideal testbed to investigate the effect of aerosol on precipitation in mixed-phase clouds. To address the effect of aerosols in orographic winter clouds under different dynamic conditions, we run a number of real case ensembles with the regional climate model COSMO on a horizontal resolution of 1.1 km. Simulations with different INP concentrations within the range observed at the GAW research station Jungfraujoch in the Swiss Alps are conducted and repeated within the ensemble. Microphysical processes are described with a two-moment scheme. Enhanced INP concentrations enhance the precipitation rate of a single precipitation event up to 20%. Other precipitation events of similar strength are less affected by the INP concentration. The effect of CCNs is negligible for precipitation from orographic winter clouds in our case study. There is evidence for INP to change precipitation rate and location more effectively in stronger dynamic regimes due to the enhanced potential to transfer supercooled liquid to ice. The classification of the ensemble members according to their dynamics will quantify the interaction of aerosol effects and dynamics. Reference [1] Lohmann et al, 2016: Persistence of orographic mixed-phase clouds, GRL

  8. Ultrafast re-structuring of the electronic landscape of transparent dielectrics: new material states (Die-Met)

    NASA Astrophysics Data System (ADS)

    Gamaly, E. G.; Rode, A. V.

    2018-03-01

    Swift excitation of transparent dielectrics by ultrashort and highly intense laser pulse leads to ultra-fast re-structuring of the electronic landscape and generates many transient material states, which are continuously reshaped in accord with the changing pulse intensity. These unconventional transient material states, which exhibit simultaneously both dielectric and metallic properties, we termed here as the `Die-Met' states. The excited material is transparent and conductive at the same time. The real part of permittivity of the excited material changes from positive to negative values with the increase of excitation, which affects strongly the interaction process during the laser pulse. When the incident field has a component along the permittivity gradient, the amplitude of the field increases resonantly near the point of zero permittivity, which dramatically changes the interaction mode and increases absorption in a way that is similar to the resonant absorption in plasma. The complex 3D structure of the permittivity makes a transparent part of the excited dielectric (at ɛ 0 > ɛ re > 0) optically active. The electro-magnetic wave gets a twisted trajectory and accrues the geometric phase while passing through such a medium. Both the phase and the rotation of the polarisation plane depend on the 3D permittivity structure. Measuring the transmission, polarisation and the phase of the probe beam allows one to quantitatively identify these new transient states. We discuss the revelations of this effect in different experimental situations and their possible applications.

  9. Effects of monoclinic symmetry on the properties of biaxial liquid crystals

    NASA Astrophysics Data System (ADS)

    Solodkov, Nikita V.; Nagaraj, Mamatha; Jones, J. Cliff

    2018-04-01

    Tilted smectic liquid crystal phases such as the smectic-C phase seen in calamitic liquid crystals are usually treated using the assumption of biaxial orthorhombic symmetry. However, the smectic-C phase has monoclinic symmetry, thereby allowing disassociation of the principal optic and dielectric axes based on symmetry and invariance principles. This is demonstrated here by comparing optical and dielectric measurements for two materials with highly first-order direct transitions from nematic to smectic-C phases. The results show a high difference between the orientations of the principal axes sets, which is interpreted as the existence of two distinct cone angles for optical and dielectric frequencies. Both materials exhibit an increasing degree of monoclinic behavior with decreasing temperature. Due to fast switching speeds, ferroelectric smectic-C* materials are important for fast modulators and LCoS devices, where the dielectric biaxiality influences device operation.

  10. Incident Management, Fast-Trac, Phase Iib Deliverables, #20. The Model Analysis Report On The Benefits Of Scats In Alleviating The Impacts Of Incidents

    DOT National Transportation Integrated Search

    1996-01-01

    FAST-TRAC : SELECTING THE MOST APPROPRIATE TRAFFIC CONTROL STRATEGY FOR INCIDENT CONGESTION MANAGEMENT CAN HAVE A MAJOR IMPACT ON THE EXTENT AND DURATION OF THE RESULTING CONGESTION. THIS RESEARCH INVESTIGATED THE EFFECTIVENESSES OF SEVERAL CONTRO...

  11. Phase-locked loop design with fast-digital-calibration charge pump

    NASA Astrophysics Data System (ADS)

    Wang, San-Fu; Hwang, Tsuen-Shiau; Wang, Jhen-Ji

    2016-02-01

    A fast-digital-calibration technique is proposed for reducing current mismatch in the charge pump (CP) of a phase-locked loop (PLL). The current mismatch in the CP generates fluctuations, which is transferred to the input of voltage-controlled oscillator (VCO). Therefore, the current mismatch increases the reference spur in the PLL. Improving current match of CP will reduce the reference spur and decrease the static phase offset of PLLs. Moreover, the settling time, ripple and power consumption of the PLL are also improved by the proposed technique. This study evaluated a 2.27-2.88 GHz frequency synthesiser fabricated in TSMC 0.18 μm CMOS 1.8 V process. The tuning range of proposed VCO is about 26%. By using the fast-digital-calibration technique, current mismatch is reduced to lower than 0.97%, and the operation range of the proposed CP is between 0.2 and 1.6 V. The proposed PLL has a total power consumption of 22.57 mW and a settling time of 10 μs or less.

  12. Lower extremity sagittal joint moment production during split-belt treadmill walking

    PubMed Central

    Roemmich, Ryan T.; Stegemöller, Elizabeth L.; Hass, Chris J.

    2012-01-01

    The split-belt treadmill (SBT) has recently been used to rehabilitate locomotor asymmetries in clinical populations. However, the joint mechanics produced while walking on a SBT are not well-understood. The purpose of this study was to investigate the lower extremity sagittal joint moments produced by each limb during SBT walking and provide insight as to how these joint moment patterns may be useful in rehabilitating unilateral gait deficits. Thirteen healthy young volunteers walked on the SBT with the belts tied and in a “SPLIT” session in which one belt moved twice as fast as the other. Sagittal lower extremity joint moment and ground reaction force impulses were then calculated over the braking and propulsive phases of the gait cycle. Paired t-tests were performed to analyze magnitude differences between conditions (i.e. the fast and slow limbs during SPLIT vs. the same limb during tied-belt walking) and between the fast and slow limbs during SPLIT. During the SPLIT session, the fast limb produced higher ground reaction force and ankle moment impulses during the propulsive and braking phases, and lower knee moment impulses during the propulsive phase when compared to the slow limb. The knee moment impulse was also significantly higher during braking in the slow limb than in the fast limb. The mechanics of each limb during the SPLIT session also differed from the mechanics observed when the belt speeds were tied. Based on these findings, we suggest that each belt may have intrinsic value in rehabilitating specific unilateral locomotor deficits. PMID:22985473

  13. Characterization of beam-driven instabilities and current redistribution in MST plasmas

    NASA Astrophysics Data System (ADS)

    Parke, E.

    2015-11-01

    A unique, high-rep-rate (>10 kHz) Thomson scattering diagnostic and a high-bandwidth FIR interferometer-polarimeter on MST have enabled characterization of beam-driven instabilities and magnetic equilibrium changes observed during high power (1 MW) neutral beam injection (NBI). While NBI leads to negligible net current drive, an increase in on-axis current density observed through Faraday rotation is offset by a reduction in mid-radius current. Identification of the phase flip in temperature fluctuations associated with tearing modes provides a sensitive measure of rational surface locations. This technique strongly constrains the safety factor for equilibrium reconstruction and provides a powerful new tool for measuring the equilibrium magnetic field. For example, the n = 6 temperature structure is observed to shift inward 1.1 +/- 0.6 cm, with an estimated reduction of q0 by 5%. This is consistent with a mid-radius reduction in current, and together the Faraday rotation and Thomson scattering measurements corroborate an inductive redistribution of current that compares well with TRANSP/MSTFit predictions. Interpreting tearing mode temperature structures in the RFP remains challenging; the effects of multiple, closely-spaced tearing modes on the mode phase measurement require further verification. In addition to equilibrium changes, previous work has shown that the large fast ion population drives instabilities at higher frequencies near the Alfvén continuum. Recent observations reveal a new instability at much lower frequency (~7 kHz) with strongly chirping behavior. It participates in extensive avalanches of the higher frequency energetic particle and Alfvénic modes to drive enhanced fast ion transport. Internal structures measured from Te and ne fluctuations, their dependence on the safety factor, as well as frequency scaling motivate speculation about mode identity. Work supported by U.S. DOE.

  14. Insulin degludec/insulin aspart versus biphasic insulin aspart 30 twice daily in insulin-experienced Japanese subjects with uncontrolled type 2 diabetes: Subgroup analysis of a Pan-Asian, treat-to-target Phase 3 Trial.

    PubMed

    Taneda, Shinji; Hyllested-Winge, Jacob; Gall, Mari-Anne; Kaneko, Shizuka; Hirao, Koichi

    2017-03-01

    The present study was a subgroup analysis of a Pan-Asian Phase 3 open-label randomized treat-to-target trial evaluating insulin degludec/insulin aspart (IDegAsp) and biphasic insulin aspart 30 (BIAsp 30) in Japanese subjects with type 2 diabetes inadequately controlled on insulin. Eligible subjects (n = 178) were randomized (2: 1) to twice-daily (b.i.d.) IDegAsp or BIAsp 30 with or without metformin for 26 weeks, titrated to a blood glucose target of between 3.9 and <5.0 mmol/L. Changes in HbA 1c , the proportion of responders reaching the HbA 1c target, and changes in fasting plasma glucose, nine-point self-monitored plasma glucose profiles, and body weight were assessed. At 26 weeks, the decrease in HbA 1c was similar in both groups. Fasting plasma glucose was lower with IDegAsp than BIAsp 30 (estimated treatment difference -1.50 mmol/L; 95 % confidence interval [CI] -1.98, -1.01). Overall confirmed hypoglycemia rates were similar; the nocturnal confirmed hypoglycemia rate was lower with IDegAsp than BIAsp 30 (estimated rate ratio 0.44; 95 % CI 0.20, 0.99). No severe hypoglycemic episodes were reported. The results indicate that IDegAsp b.i.d. improves glycemic control and, compared with BIAsp 30, lowers the rate of nocturnal confirmed hypoglycemia. © 2016 The Authors. Journal of Diabetes published John Wiley & Sons Australia, Ltd and Ruijin Hospital, Shanghai Jiaotong University School of Medicine.

  15. SOME PROTECTION METHODS FOR CUTANEOUS IRRADIATION WITH FAST ELECTRONS (in Italian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trucchi, O.

    1962-09-01

    The influence exerted by some substances, particularly by fatty substances and cortisone derivatives, on the skin reaction to fast electrons is examined. The means employed were applied on the skin immediately before the irradiation; their effectiveness varies in relation with the dose fractionation; this decreases in general the capacity of the various substances tested of modifying the skin reaction. The changes induced by these means are both quantitative and relative to the course (anticipation of the appearance of the erythema); they may occur uniformly in all phases of the reaction or only in one (a change of the first phasemore » of the erythema is usually observed). The quality of the excipient, the action of which is often responsible for the aggravation of the skin reaction, is to be taken into account in the evaluation of the typical effect of the medications. Within the limits of the doses employed (1000 rad in only a sitting, 5000 rad in case of fractionation) the influence of fatty substances on the skin reactions due to irradiation with quick electrons proved not to be marked but only scarcely appreciable. The mineral fats may increase the reaction due to quick electrons in some cases: they do not have, however, either a protective or therapeutic effect during the acute phase of the reaction. The cortisone derivatives are uneffective when they are directly and exclusively applied on the irradiated skin, while they are successfully used by general route, especially in the reactions of the mucous membranes produced by quick electrons; in any way, the topical use of cortisone derivatives with excipients deprived from mineral fats proved to be preferable. Among the physical means employed, the compression gave the best results, in the cases where it could be applied. (auth)« less

  16. Phase change alloy viscosities down to T{sub g} using Adam-Gibbs-equation fittings to excess entropy data: A fragile-to-strong transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Shuai, E-mail: shuai.wei@asu.edu; Department of Materials Science and Engineering, University of Arizona, Tucson, Arizona 85712; Lucas, Pierre

    2015-07-21

    A striking anomaly in the viscosity of Te{sub 85}Ge{sub 15} alloys noted by Greer and coworkers from the work of Neumann et al. is reminiscent of the equally striking comparison of liquid tellurium and water anomalies documented long ago by Kanno et al. In view of the power laws that are used to fit the data on water, we analyze the data on Te{sub 85}Ge{sub 15} using the Speedy-Angell power-law form, and find a good account with a singularity T{sub s} only 25 K below the eutectic temperature. However, the heat capacity data in this case are not diverging, but insteadmore » exhibit a sharp maximum like that observed in fast cooling in the Molinero-Moore model of water. Applying the Adam-Gibbs viscosity equation to these calorimetric data, we find that there must be a fragile-to-strong liquid transition at the heat capacity peak temperature, and then predict the 'strong' liquid course of the viscosity down to T{sub g} at 406 K (403.6 K at 20 K min{sup −1} in this study). Since crystallization can be avoided by moderately fast cooling in this case, we can check the validity of the extrapolation by making a direct measurement of fragility at T{sub g}, using differential scanning calorimetric techniques, and then comparing with the value from the extrapolated viscosity at T{sub g}. The agreement is encouraging, and prompts discussion of relations between water and phase change alloy anomalies.« less

  17. Thalamic reticular nucleus induces fast and local modulation of arousal state

    PubMed Central

    Lewis, Laura D; Voigts, Jakob; Flores, Francisco J; Schmitt, L Ian; Wilson, Matthew A

    2015-01-01

    During low arousal states such as drowsiness and sleep, cortical neurons exhibit rhythmic slow wave activity associated with periods of neuronal silence. Slow waves are locally regulated, and local slow wave dynamics are important for memory, cognition, and behaviour. While several brainstem structures for controlling global sleep states have now been well characterized, a mechanism underlying fast and local modulation of cortical slow waves has not been identified. Here, using optogenetics and whole cortex electrophysiology, we show that local tonic activation of thalamic reticular nucleus (TRN) rapidly induces slow wave activity in a spatially restricted region of cortex. These slow waves resemble those seen in sleep, as cortical units undergo periods of silence phase-locked to the slow wave. Furthermore, animals exhibit behavioural changes consistent with a decrease in arousal state during TRN stimulation. We conclude that TRN can induce rapid modulation of local cortical state. DOI: http://dx.doi.org/10.7554/eLife.08760.001 PMID:26460547

  18. Influence of repetition frequency on streamer-to-spark breakdown mechanism in transient spark discharge

    NASA Astrophysics Data System (ADS)

    Janda, M.; Martišovitš, V.; Buček, A.; Hensel, K.; Molnár, M.; Machala, Z.

    2017-10-01

    Streamer-to-spark transition in a self-pulsing positive transient spark (TS) discharge was investigated at different repetition frequencies. The temporal evolution of the TS was recorded, showing the primary streamer and the secondary streamer phases. A streak camera-like images were obtained using spatio-temporal reconstruction of the discharge emission detected by a photomultiplier tube with light collection system placed on a micrometric translation stage. With increasing TS repetition frequency f (from ~1 to 6 kHz), the increase of the propagation velocity of both the primary and the secondary streamer was observed. Acceleration of the primary and secondary streamers, and shortening of streamer-to-spark transition time τ with increasing f was attributed to the memory effect composed of pre-heating and gas composition changes induced by the previous TS pulses. Fast propagation of the secondary streamer through the entire gap and fast gas heating could explain the short τ (~100 ns) at f above ~3 kHz.

  19. Assembly of hard spheres in a cylinder: a computational and experimental study.

    PubMed

    Fu, Lin; Bian, Ce; Shields, C Wyatt; Cruz, Daniela F; López, Gabriel P; Charbonneau, Patrick

    2017-05-14

    Hard spheres are an important benchmark of our understanding of natural and synthetic systems. In this work, colloidal experiments and Monte Carlo simulations examine the equilibrium and out-of-equilibrium assembly of hard spheres of diameter σ within cylinders of diameter σ≤D≤ 2.82σ. Although phase transitions formally do not exist in such systems, marked structural crossovers can nonetheless be observed. Over this range of D, we find in simulations that structural crossovers echo the structural changes in the sequence of densest packings. We also observe that the out-of-equilibrium self-assembly depends on the compression rate. Slow compression approximates equilibrium results, while fast compression can skip intermediate structures. Crossovers for which no continuous line-slip exists are found to be dynamically unfavorable, which is the main source of this difference. Results from colloidal sedimentation experiments at low diffusion rate are found to be consistent with the results of fast compressions, as long as appropriate boundary conditions are used.

  20. Fast widefield techniques for fluorescence and phase endomicroscopy

    NASA Astrophysics Data System (ADS)

    Ford, Tim N.

    Endomicroscopy is a recent development in biomedical optics which gives researchers and physicians microscope-resolution views of intact tissue to complement macroscopic visualization during endoscopy screening. This thesis presents HiLo endomicroscopy and oblique back-illumination endomicroscopy, fast wide-field imaging techniques with fluorescence and phase contrast, respectively. Fluorescence imaging in thick tissue is often hampered by strong out-of-focus background signal. Laser scanning confocal endomicroscopy has been developed for optically-sectioned imaging free from background, but reliance on mechanical scanning fundamentally limits the frame rate and represents significant complexity and expense. HiLo is a fast, simple, widefield fluorescence imaging technique which rejects out-of-focus background signal without the need for scanning. It works by acquiring two images of the sample under uniform and structured illumination and synthesizing an optically sectioned result with real-time image processing. Oblique back-illumination microscopy (OBM) is a label-free technique which allows, for the first time, phase gradient imaging of sub-surface morphology in thick scattering tissue with a reflection geometry. OBM works by back-illuminating the sample with the oblique diffuse reflectance from light delivered via off-axis optical fibers. The use of two diametrically opposed illumination fibers allows simultaneous and independent measurement of phase gradients and absorption contrast. Video-rate single-exposure operation using wavelength multiplexing is demonstrated.

  1. Time-resolved fast-neutron radiography of air-water two-phase flows in a rectangular channel by an improved detection system

    NASA Astrophysics Data System (ADS)

    Zboray, Robert; Dangendorf, Volker; Mor, Ilan; Bromberger, Benjamin; Tittelmeier, Kai

    2015-07-01

    In a previous work, we have demonstrated the feasibility of high-frame-rate, fast-neutron radiography of generic air-water two-phase flows in a 1.5 cm thick, rectangular flow channel. The experiments have been carried out at the high-intensity, white-beam facility of the Physikalisch-Technische Bundesanstalt, Germany, using an multi-frame, time-resolved detector developed for fast neutron resonance radiography. The results were however not fully optimal and therefore we have decided to modify the detector and optimize it for the given application, which is described in the present work. Furthermore, we managed to improve the image post-processing methodology and the noise suppression. Using the tailored detector and the improved post-processing, significant increase in the image quality and an order of magnitude lower exposure times, down to 3.33 ms, have been achieved with minimized motion artifacts. Similar to the previous study, different two-phase flow regimes such as bubbly slug and churn flows have been examined. The enhanced imaging quality enables an improved prediction of two-phase flow parameters like the instantaneous volumetric gas fraction, bubble size, and bubble velocities. Instantaneous velocity fields around the gas enclosures can also be more robustly predicted using optical flow methods as previously.

  2. Preliminary studies of bio-oil from fast pyrolysis of coconut fibers.

    PubMed

    Almeida, Tarciana M; Bispo, Mozart D; Cardoso, Anne R T; Migliorini, Marcelo V; Schena, Tiago; de Campos, Maria Cecilia V; Machado, Maria Elisabete; López, Jorge A; Krause, Laiza C; Caramão, Elina B

    2013-07-17

    This work studied fast pyrolysis as a way to use the residual fiber obtained from the shells of coconut ( Cocos nucifera L. var. Dwarf, from Aracaju, northeastern Brazil). The bio-oil produced by fast pyrolysis and the aqueous phase (formed during the pyrolysis) were characterized by GC/qMS and GC×GC/TOF-MS. Many oxygenated compounds such as phenols, aldehydes, and ketones were identified in the extracts obtained in both phases, with a high predominance of phenolic compounds, mainly alkylphenols. Eighty-one compounds were identified in the bio-oil and 42 in the aqueous phase using GC/qMS, and 95 and 68 in the same samples were identified by GC×GC/TOF-MS. The better performance of GC×GC/TOF-MS was due to the possibility of resolving some coeluted peaks in the one-dimension gas chromatography. Semiquantitative analysis of the samples verified that 59% of the area on the chromatogram of bio-oil is composed by phenols and 12% by aldehydes, mainly furfural. Using the same criterion, 77% of the organic compounds in the aqueous phase are phenols. Therefore, this preliminary assessment indicates that coconut fibers have the potential to be a cost-effective and promising alternative to obtain new products and minimize environmental impact.

  3. Hybrid carbon nanoparticles modified core-shell silica: a high efficiency carbon-based phase for hydrophilic interaction liquid chromatography.

    PubMed

    Ibrahim, Mohammed E A; Wahab, M Farooq; Lucy, Charles A

    2014-04-11

    Hydrophilic interaction liquid chromatography (HILIC) is a fast growing separation technique for hydrophilic and polar analytes. In this work, we combine the unique selectivity of carbon surfaces with the high efficiency of core-shell silica. First, 5 μm core-shell silica is electrostatically coated with 105 nm cationic latex bearing quaternary ammonium groups. Then 50 nm anionic carbon nanoparticles are anchored onto the surface of the latex coated core-shell silica particles to produce a hybrid carbon-silica phase. The hybrid phase shows different selectivity than ten previously classified HILIC column chemistries and 36 stationary phases. The hybrid HILIC phase has shape selectivity for positional isomeric pairs (phthalic/isophthalic and 1-naphthoic/2-naphthoic acids). Fast and high efficiency HILIC separations of biologically important carboxylates, phenols and pharmaceuticals are reported with efficiencies up to 85,000 plates m(-1). Reduced plate height of 1.9 (95,000 plates m(-1)) can be achieved. The hybrid phase is stable for at least 3 months of usage and storage under typical HILIC eluents. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Fast island phase identification for tearing mode feedback control on J-TEXT tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, B., E-mail: borao@hust.edu.cn; Li, D.; Hu, F. R.

    A new method to control the tearing mode (TM) in tokamaks has been proposed [Q. Hu and Q. Yu, Nucl. Fusion 56, 034001 (5pp.) (2016)], according to which, the external resonant magnetic perturbation needs to be applied in certain magnetic island phase regions. Therefore, it is very important to identify the helical phase of magnetic islands in real time. The TM in tokamak plasmas is normally rotating and carries magnetic oscillations, which are known as Mirnov oscillations and can be detected by Mirnov probes. When the O-point or X-point of the magnetic island passes through the probe, the signal willmore » experience a zero-crossing. A poloidal Mirnov probe array and a corresponding island phase identification method are presented. A field-programmable gate array is used to provide the magnetic island helical phase in real time by using multichannel zero crossing detection. This system has been developed on the J-TEXT tokamak and works well. This paper introduces the establishment of the fast magnetic island phase identifying system.« less

  5. Extensional Flow-Induced Dynamic Phase Transitions in Isotactic Polypropylene.

    PubMed

    Ju, Jianzhu; Wang, Zhen; Su, Fengmei; Ji, Youxin; Yang, Haoran; Chang, Jiarui; Ali, Sarmad; Li, Xiangyang; Li, Liangbin

    2016-09-01

    With a combination of fast extension rheometer and in situ synchrotron radiation ultra-fast small- and wide-angle X-ray scattering, flow-induced crystallization (FIC) of isotactic polypropylene (iPP) is studied at temperatures below and above the melting point of α crystals (Tmα). A flow phase diagram of iPP is constructed in strain rate-temperature space, composing of melt, non-crystalline shish, α and α&β coexistence regions, based on which the kinetic and dynamic competitions among these four phases are discussed. Above Tmα , imposing strong flow reverses thermodynamic stabilities of the disordered melt and the ordered phases, leading to the occurrence of FIC of β and α crystals as a dynamic phase transition. Either increasing temperature or stain rate favors the competiveness of the metastable β over the stable α crystals, which is attributed to kinetic rate rather than thermodynamic stability. The violent competitions among four phases near the boundary of crystal-melt may frustrate crystallization and result in the non-crystalline shish winning out. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. [Glycemic changes during menstrual cycles in women with type 1 diabetes].

    PubMed

    Herranz, Lucrecia; Saez-de-Ibarra, Lourdes; Hillman, Natalia; Gaspar, Ruth; Pallardo, Luis Felipe

    2016-04-01

    To determine frequency of women with type 1 diabetes showing menstrual cyclic changes in glycemia, analyze their clinical characteristics, and assess the pattern of glycemic changes. We analyzed glucose meter readings along 168 menstrual cycles of 26 women with type 1 diabetes. We evaluated mean glucose, mean glucose standard deviation, mean fasting glucose, percentage of glucose readings>7.8 mmol/L and<3.1 mmol/L, and mean insulin dose in 4 periods for each cycle. A woman was identified as having cyclic changes when mean glucose rose from early follicular to late luteal in two-thirds of her menstrual cycles. A percentage of 65.4 of the women had cyclic changes. Characteristics of women with and without cyclic changes, including self-perception of glycemic changes, were similar with exception of age at diabetes diagnosis (22.5 [7.5] vs. 14.4 [9.5] years; P=.039). In women with cyclic changes mean percentage of glucose readings>7.8 mmol/L rose from early follicular (52.2 [16.3] %) to early and late luteal (58.4 [16.0] %, P=.0269; 61.0 [16.9] %, P=.000). Almost two-thirds of women with type 1 diabetes experience a menstrual cycle phenomenon, attributable to an increase in hyperglycemic excursions during the luteal phase. Enabling women to evaluate their weekly mean glucose from their meter and exploring the causes of hyperglycemic excursions during luteal phase should ensure more accuracy when giving instructions for diabetes management in women with premenstrual hyperglycemia. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  7. Evidence of "Tether-Cutting" Reconnection in the Onset of a Quadrupolar Solar Magnetic Eruption

    NASA Technical Reports Server (NTRS)

    Choudhary, Debi Prasad; Sterling, Alphonse C.; Moore, Ronald L.; Yurchyshyn, Vasyl

    2004-01-01

    Extensive study of the near-limb solar filament eruption event on 2000 February 26, involving coronal images from YOHKOH, SOHO EIT and photospheric magnetogram from MID have shown that that both "runaway-tether-cutting-type reconnection" and "fast breakout-type reconnection" may have occurred early in the fast phase of the eruption and may have played an important role in unleashing the explosion (Sterling & Moore 2004). That study did not identify which or if either of these types of reconnection actually triggered the fast phase. Here, together with a magnetogram and He1 10830 A filtergram from NSO/KP, we present Halpha filtergrams from Big Bear Solar Observatory, that show evidence of "tether-cutting-type reconnection" before and during the eruption of the southern filament, situated at one of the neutral lines of the quadrupole magnetic structure.

  8. Phase-linking and the perceived motion during off-vertical axis rotation

    PubMed Central

    Wood, Scott J.; McCollum, Gin

    2010-01-01

    Human off-vertical axis rotation (OVAR) in the dark typically produces perceived motion about a cone, the amplitude of which changes as a function of frequency. This perception is commonly attributed to the fact that both the OVAR and the conical motion have a gravity vector that rotates about the subject. Little-known, however, is that this rotating-gravity explanation for perceived conical motion is inconsistent with basic observations about self-motion perception: (a) that the perceived vertical moves toward alignment with the gravito-inertial acceleration (GIA) and (b) that perceived translation arises from perceived linear acceleration, as derived from the portion of the GIA not associated with gravity. Mathematically proved in this article is the fact that during OVAR these properties imply mismatched phase of perceived tilt and translation, in contrast to the common perception of matched phases which correspond to conical motion with pivot at the bottom. This result demonstrates that an additional perceptual rule is required to explain perception in OVAR. This study investigates, both analytically and computationally, the phase relationship between tilt and translation at different stimulus rates—slow (45°/s) and fast (180°/s), and the three-dimensional shape of predicted perceived motion, under different sets of hypotheses about self-motion perception. We propose that for human motion perception, there is a phase-linking of tilt and translation movements to construct a perception of one’s overall motion path. Alternative hypotheses to achieve the phase match were tested with three-dimensional computational models, comparing the output with published experimental reports. The best fit with experimental data was the hypothesis that the phase of perceived translation was linked to perceived tilt, while the perceived tilt was determined by the GIA. This hypothesis successfully predicted the bottom-pivot cone commonly reported and a reduced sense of tilt during fast OVAR. Similar considerations apply to the hilltop illusion often reported during horizontal linear oscillation. Known response properties of central neurons are consistent with this ability to phase-link translation with tilt. In addition, the competing “standard” model was mathematically proved to be unable to predict the bottom-pivot cone regardless of the values used for parameters in the model. PMID:19937069

  9. Evaluation of Lipid Profile Changes in Pediatric Patients with Acute Mononucleosis

    PubMed Central

    2017-01-01

    Background Acute Epstein-Barr virus (EBV) infection could lead to atherogenic lipid profile changes in adults; while there is no evidence about the children with Infectious mononucleosis (IM). The aim of this study was to evaluate the lipid profile of the children in acute phase of mononucleosis and two months after the recovery. Materials and Methods From 2010 through 2012, 36 children with IM aged 1-10 years were enrolled in a prospective cross-sectional study. Fasting serum total cholesterol, high density lipoprotein (HDL), low density lipoprotein (LDL), and triglyceride level were measured during acute phase of the disease and after 2 months of the recovery. Results From 36 patients enrolled, 25 (69.4%) cases were male and the mean age of the patients was 4.1 ± 2.0 years. The mean of the total cholesterol level in the acute phase and 2 months after the recovery were149.5 ± 35.3 mg/dL and 145.7±30.6, respectively (P = 0.38). However, the serum level of HDL cholesterol in patients after 2 months of recovery was significantly increased (37.9 ± 9.3 mg/dL vs. 28.5 ± 10.6 mg/dL, P <0.001). The mean value of serum LDL cholesterol was significantly reduced, two months after recovery (81.4 ± 19.5 mg/dL, vs. 92.6 ± 28.8 mg/dL, P = 0.009). Furthermore, the serum triglyceride level was significantly reduced after the recovery (108.7 ± 36.9 mg/dL) compared with the acute phase (163.8 ± 114.3 mg/dL) (P = 0.004). Conclusion EBV infection in children could change lipid profile which is partially restored 2 months after the recovery. PMID:28332346

  10. Using Lean to Rapidly and Sustainably Transform a Behavioral Health Crisis Program: Impact on Throughput and Safety.

    PubMed

    Balfour, Margaret E; Tanner, Kathleen; Jurica, Paul J; Llewellyn, Dawn; Williamson, Robert G; Carson, Chris A

    2017-06-01

    Lean has been increasingly applied in health care to reduce waste and improve quality, particularly in fast-paced and high-acuity clinical settings such as emergency departments. In addition, Lean's focus on engagement of frontline staff in problem solving can be a catalyst for organizational change. In this study, ConnectionsAZ demonstrates how they applied Lean principles to rapidly and sustainably transform clinical operations in a behavioral health crisis facility. A multidisciplinary team of management and frontline staff defined values-based outcome measures, mapped the current and ideal processes, and developed new processes to achieve the ideal. Phase I was implemented within three months of assuming management of the facility and involved a redesign of flow, space utilization, and clinical protocols. Phase II was implemented three months later and improved the provider staffing model. Organizational changes such as the development of shift leads and daily huddles were implemented to sustain change and create an environment supportive of future improvements. Post-Phase I, there were significant decreases (pre vs. post and one-year post) in median door-to-door dwell time (343 min vs. 118 and 99), calls to security for behavioral emergencies (13.5 per month vs. 4.3 and 4.8), and staff injuries (3.3 per month vs. 1.2 and 1.2). Post-Phase II, there were decreases in median door-to-doctor time (8.2 hours vs. 1.6 and 1.4) and hours on diversion (90% vs. 17% and 34%). Lean methods can positively affect safety and throughput and are complementary to patient-centered clinical goals in a behavioral health setting. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. Linkage of microbial kinetics and bacterial community structure of MBR and hybrid MBBR-MBR systems to treat salinity-amended urban wastewater.

    PubMed

    Rodriguez-Sanchez, Alejandro; Leyva-Diaz, Juan Carlos; Gonzalez-Martinez, Alejandro; Poyatos, Jose Manuel

    2017-11-01

    Three pilot-scale bioreactors were started up and operated under salinity-amended urban wastewater feeding. The bioreactors were configured as membrane bioreactor and two different hybrid, moving bed biofilm reactor-membrane bioreactor and operated with a hydraulic retention time of 9.5 h, a solid residence time of 11.75 days and a total solids concentration of 2500 mg L -1 . The three systems showed excellent performance in suspended solids, BOD 5 , and COD removal (values of 96-100%, 97-99%, and 88-90%, respectively), but poor nitrogen removal (values of 20-30%). The bacterial community structure during the start-up phase and the stabilization phase were different, as showed by β-diversity analyses. The differences between aerobic and anoxic biomass-and between suspended and attached biomass-were higher at the start-up phase than at the stabilization phase. The start-up phase showed high abundances of Chiayiivirga (mean values around 3-12% relative abundance) and Luteimonas (5-8%), but in the stabilization phase, the domination belonged to Thermomonas (3-14%), Nitrobacter (3-7%), Ottowia (3-11.5%), and Comamonas (2-6%), among others. Multivariate redundancy analyses showed that Thermomonas and Nitrosomonas were positively correlated with fast autotrophic kinetics, while Caulobacter and Ottowia were positively correlated with fast heterotrophic kinetics. Nitrobacter, Rhodanobacter, and Comamonas were positively correlated with fast autotrophic and heterotrophic kinetics. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1483-1495, 2017. © 2017 American Institute of Chemical Engineers.

  12. A comparison of glycemic effects of glimepiride, repaglinide, and insulin glargine in type 2 diabetes mellitus during Ramadan fasting.

    PubMed

    Cesur, Mustafa; Corapcioglu, Demet; Gursoy, Alptekin; Gonen, Sait; Ozduman, Mine; Emral, Rifat; Uysal, Ali Riza; Tonyukuk, Vedia; Yilmaz, Arif Ender; Bayram, Fahri; Kamel, Nuri

    2007-02-01

    Although diabetics may be exempted from Ramadan fasting, many patients still insist on this worship. Aim of the present study is to compare the effects of glimepiride, repaglinide, and insulin glargine in type 2 diabetics during Ramadan fasting on the glucose metabolism. Patients, who were willing to fast, were treated with glimepiride (n=21), repaglinide (n=18), and insulin glargine (n=10). Sixteen non-fasting control type 2 diabetics matched for age, sex, and body mass index were also included. Fasting blood glucose (FBG), post-prandial blood glucose (PBG), HbA1c, and fructosamine as well as lipid metabolism were evaluated in pre-Ramadan, post-Ramadan, and 1-month post-Ramadan time points. There was no significant change from pre-Ramadan in FBG, PBG, and HbA1c variables in fasting diabetics at post-Ramadan and 1-month post-Ramadan. However, PBG was found higher in non-fasting control diabetics at post-Ramadan and 1-month post-Ramadan (p<0.05 and p<0.001, respectively). In fructosamine levels, a significant increase was noted both in fasting group and non-fasting group at 1-month post-Ramadan (p<0.01 for all). However, no significant difference was found in the comparison of the changes in fructosamine levels between fasting group and non-fasting group. Risk of hypoglycemia did not significantly differ between fasting and non-fasting diabetics. There was no significant difference between three drug therapies regarding glucose metabolism and rate of hypoglycemia. No adverse effects on plasma lipids were noted in fasting diabetics. In this fasting sample of patients with type 2 diabetes, glimepiride, repaglinide, and insulin glargine did not produce significant changes in glucose and lipid parameters.

  13. Favourable metabolic effects of a eucaloric lower-carbohydrate diet in women with PCOS.

    PubMed

    Gower, Barbara A; Chandler-Laney, Paula C; Ovalle, Fernando; Goree, Laura Lee; Azziz, Ricardo; Desmond, Renee A; Granger, Wesley M; Goss, Amy M; Bates, G Wright

    2013-10-01

    Diet-induced reduction in circulating insulin may be an attractive nonpharmacological treatment for women with polycystic ovary syndrome (PCOS) among whom elevated insulin may exacerbate symptoms by stimulating testosterone synthesis. This study was designed to determine whether a modest reduction in dietary carbohydrate (CHO) content affects β-cell responsiveness, serum testosterone concentration and insulin sensitivity in women with PCOS. In a crossover design, two diets ('Standard,' STD, 55:18:27% energy from carbohydrate/protein/fat; lower-carbohydrate, 41:19:40) were provided for 8 weeks in random order with a 4-week washout between. Thirty women with PCOS. β-cell responsiveness assessed as the C-peptide response to glucose during a liquid meal test; insulin sensitivity from insulin and glucose values throughout the test; insulin resistance (HOMA-IR); and total testosterone by immunoassay. Paired t-test indicated that the lower-CHO diet induced significant decreases in basal β-cell response (PhiB), fasting insulin, fasting glucose, HOMA-IR, total testosterone and all cholesterol measures, and significant increases in insulin sensitivity and dynamic ('first-phase') β-cell response. The STD diet induced a decrease in HDL-C and an increase in the total cholesterol-to-HDL-C ratio. Across all data combined, the change in testosterone was positively associated with the changes in fasting insulin, PhiB and insulin AUC (P < 0·05). In women with PCOS, modest reduction in dietary CHO in the context of a weight-maintaining diet has numerous beneficial effects on the metabolic profile that may lead to a decrease in circulating testosterone. © 2013 John Wiley & Sons Ltd.

  14. Cryo-EM structure of haemoglobin at 3.2 Å determined with the Volta phase plate

    NASA Astrophysics Data System (ADS)

    Khoshouei, Maryam; Radjainia, Mazdak; Baumeister, Wolfgang; Danev, Radostin

    2017-06-01

    With the advent of direct electron detectors, the perspectives of cryo-electron microscopy (cryo-EM) have changed in a profound way. These cameras are superior to previous detectors in coping with the intrinsically low contrast and beam-induced motion of radiation-sensitive organic materials embedded in amorphous ice, and hence they have enabled the structure determination of many macromolecular assemblies to atomic or near-atomic resolution. Nevertheless, there are still limitations and one of them is the size of the target structure. Here, we report the use of a Volta phase plate in determining the structure of human haemoglobin (64 kDa) at 3.2 Å. Our results demonstrate that this method can be applied to complexes that are significantly smaller than those previously studied by conventional defocus-based approaches. Cryo-EM is now close to becoming a fast and cost-effective alternative to crystallography for high-resolution protein structure determination.

  15. CPAS Preflight Drop Test Analysis Process

    NASA Technical Reports Server (NTRS)

    Englert, Megan E.; Bledsoe, Kristin J.; Romero, Leah M.

    2015-01-01

    Throughout the Capsule Parachute Assembly System (CPAS) drop test program, the CPAS Analysis Team has developed a simulation and analysis process to support drop test planning and execution. This process includes multiple phases focused on developing test simulations and communicating results to all groups involved in the drop test. CPAS Engineering Development Unit (EDU) series drop test planning begins with the development of a basic operational concept for each test. Trajectory simulation tools include the Flight Analysis and Simulation Tool (FAST) for single bodies, and the Automatic Dynamic Analysis of Mechanical Systems (ADAMS) simulation for the mated vehicle. Results are communicated to the team at the Test Configuration Review (TCR) and Test Readiness Review (TRR), as well as at Analysis Integrated Product Team (IPT) meetings in earlier and intermediate phases of the pre-test planning. The ability to plan and communicate efficiently with rapidly changing objectives and tight schedule constraints is a necessity for safe and successful drop tests.

  16. Field-temperature phase diagrams of freestanding and substrate-constrained epitaxial Ni-Mn-Ga-Co films for magnetocaloric applications

    NASA Astrophysics Data System (ADS)

    Diestel, A.; Niemann, R.; Schleicher, B.; Schwabe, S.; Schultz, L.; Fähler, S.

    2015-07-01

    Ferroic cooling processes that rely on field-induced first-order transformations of solid materials are a promising step towards a more energy-efficient refrigeration technology. In particular, thin films are discussed for their fast heat transfer and possible applications in microsystems. Substrate-constrained films are not useful since their substrates act as a heat sink. In this article, we examine a substrate-constrained and a freestanding epitaxial film of magnetocaloric Ni-Mn-Ga-Co. We compare phase diagrams and entropy changes obtained by magnetic field and temperature scans, which differ. We observe an asymmetry of the hysteresis between heating and cooling branch, which vanishes at high magnetic fields. These effects are discussed with respect to the vector character of a magnetic field, which acts differently on the nucleation and growth processes compared to the scalar character of the temperature.

  17. Fast and accurate read-out of interferometric optical fiber sensors

    NASA Astrophysics Data System (ADS)

    Bartholsen, Ingebrigt; Hjelme, Dag R.

    2016-03-01

    We present results from an evaluation of phase and frequency estimation algorithms for read-out instrumentation of interferometric sensors. Tests on interrogating a micro Fabry-Perot sensor made of semi-spherical stimuli-responsive hydrogel immobilized on a single mode fiber end face, shows that an iterative quadrature demodulation technique (IQDT) implemented on a 32-bit microcontroller unit can achieve an absolute length accuracy of ±50 nm and length change accuracy of ±3 nm using an 80 nm SLED source and a grating spectrometer for interrogation. The mean absolute error for the frequency estimator is a factor 3 larger than the theoretical lower bound for a maximum likelihood estimator. The corresponding factor for the phase estimator is 1.3. The computation time for the IQDT algorithm is reduced by a factor 1000 compared to the full QDT for the same accuracy requirement.

  18. Stimulus induced reset of 40-Hz auditory steady-state responses.

    PubMed

    Ross, B; Herdman, A T; Pantev, C

    2004-11-30

    Auditory steady-state responses (ASSR) were evoked with 40-Hz amplitude modulated 500-Hz tones. An additional impulse-like noise stimulus (2,000 +/- 500 Hz) with spectrum clearly distinct from the one of the AM sound, induced pronounced perturbations in the ASSR. The effect of the interfering noise was interpreted as (1) reset of the ASSR because of a sudden loss in phase coherence, (2) a decrease in signal power immediately after presentation of the noise impulse, and (3) a modulation of ASSR amplitude and phase resembling the time course of the ASSR onset. The time-course of the ASSR onset was interpreted as reflecting temporal integration over several 100 ms. The reset of the ASSR was discussed as a powerful mechanism, which allows for fast reaction to a short stimulus change that overcomes the disadvantage of the ASSR's long integration time constant.

  19. Multiple time scale analysis of pressure oscillations in solid rocket motors

    NASA Astrophysics Data System (ADS)

    Ahmed, Waqas; Maqsood, Adnan; Riaz, Rizwan

    2018-03-01

    In this study, acoustic pressure oscillations for single and coupled longitudinal acoustic modes in Solid Rocket Motor (SRM) are investigated using Multiple Time Scales (MTS) method. Two independent time scales are introduced. The oscillations occur on fast time scale whereas the amplitude and phase changes on slow time scale. Hopf bifurcation is employed to investigate the properties of the solution. The supercritical bifurcation phenomenon is observed for linearly unstable system. The amplitude of the oscillations result from equal energy gain and loss rates of longitudinal acoustic modes. The effect of linear instability and frequency of longitudinal modes on amplitude and phase of oscillations are determined for both single and coupled modes. For both cases, the maximum amplitude of oscillations decreases with the frequency of acoustic mode and linear instability of SRM. The comparison of analytical MTS results and numerical simulations demonstrate an excellent agreement.

  20. Polarization Perception Device

    NASA Technical Reports Server (NTRS)

    Whitehead, Victor S. (Inventor); Coulson, Kinsell L. (Inventor)

    1997-01-01

    A polarization perception device comprises a base and a polarizing filter having opposite broad sides and a centerline perpendicular thereto. The filter is mounted on the base for relative rotation and with a major portion of the area of the filter substantially unobstructed on either side. A motor on the base automatically moves the filter angularly about its centerline at a speed slow enough to permit changes in light transmission by virtue of such movement to be perceived as light-dark pulses by a human observer, but fast enough so that the light phase of each such pulse occurs prior to fading of the light phase image of the preceding pulse from the observer's retina. In addition to an observer viewing a scene in real time through the filter while it is so angularly moved, or instead of such observation, the scene can be photographed, filmed or taped by a camera whose lens is positioned behind the filter.

Top