Science.gov

Sample records for fast pyrolysis oil

  1. Fast pyrolysis of oil palm shell (OPS)

    NASA Astrophysics Data System (ADS)

    Abdullah, Nurhayati; Sulaiman, Fauziah; Aliasak, Zalila

    2015-04-01

    Biomass is an important renewable source of energy. Residues that are obtained from harvesting and agricultural products can be utilised as fuel for energy generation by conducting any thermal energy conversion technology. The conversion of biomass to bio oil is one of the prospective alternative energy resources. Therefore, in this study fast pyrolysis of oil palm shell was conducted. The main objective of this study was to find the optimum condition for high yield bio-oil production. The experiment was conducted using fixed-bed fluidizing pyrolysis system. The biomass sample was pyrolysed at variation temperature of 450°C - 650°C and at variation residence time of 0.9s - 1.35s. The results obtained were further discussed in this paper. The basic characteristic of the biomass sample was also presented here. The experiment shows that the optimum bio-oil yield was obtained at temperature of 500°C at residence time 1.15s.

  2. Acidity of biomass fast pyrolysis bio-oils

    SciTech Connect

    Oasmaa, Anja; Elliott, Douglas C.; Korhonen, Jaana

    2010-12-17

    The use of the TAN method for measuring the acidity of biomass fast pyrolysis bio-oil was evaluated. Suggestions for carrying out the analysis have been made. The TAN method by ASTM D664 or D3339 can be used for measuring the acidity of fast pyrolysis bio-oils and their hydrotreating products. The main difference between the methods is that ASTM D664 is specified for higher TAN values than ASTM D3339. Special focus should be placed on the interpretation of the TAN curves because they differ significantly from those of mineral oils. The curve for bio-oils is so gentle that the automatic detection may not observe the end point properly and derivatization should be used. The acidity of fast pyrolysis bio-oils is mainly derived (60-70%) from volatile acids. Other groups of compounds in fast pyrolysis bio-oils that influence acidity include phenolics, fatty and resin acids, and hydroxy acids.

  3. Stabilization of Fast Pyrolysis Oil: Post Processing Final Report

    SciTech Connect

    Elliott, Douglas C.; Lee, Suh-Jane; Hart, Todd R.

    2012-03-01

    UOP LLC, a Honeywell Company, assembled a comprehensive team for a two-year project to demonstrate innovative methods for the stabilization of pyrolysis oil in accordance with DOE Funding Opportunity Announcement (FOA) DE-PS36-08GO98018, Biomass Fast Pyrolysis Oil (Bio-oil) Stabilization. In collaboration with NREL, PNNL, the USDA Agricultural Research Service (ARS), Pall Fuels and Chemicals, and Ensyn Corporation, UOP developed solutions to the key technical challenges outlined in the FOA. The UOP team proposed a multi-track technical approach for pyrolysis oil stabilization. Conceptually, methods for pyrolysis oil stabilization can be employed during one or both of two stages: (1) during the pyrolysis process (In Process); or (2) after condensation of the resulting vapor (Post-Process). Stabilization methods fall into two distinct classes: those that modify the chemical composition of the pyrolysis oil, making it less reactive; and those that remove destabilizing components from the pyrolysis oil. During the project, the team investigated methods from both classes that were suitable for application in each stage of the pyrolysis process. The post processing stabilization effort performed at PNNL is described in this report. The effort reported here was performed under a CRADA between PNNL and UOP, which was effective on March 13, 2009, for 2 years and was subsequently modified March 8, 2011, to extend the term to December 31, 2011.

  4. Characterizing biomass fast pyrolysis oils by 13C-NMR and chemometric analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several biomass fast pyrolysis oils were characterized by 13C and DEPT NMR analysis to determine chemical functional group compositions as related to their energy content. Pyrolysis oils were produced from a variety of feedstocks including energy crops, woods, animal wastes and oil seed presscakes,...

  5. Structural analysis of pyrolytic lignins isolated from switchgrass fast pyrolysis oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Structural characterization of lignin extracted from the bio-oil produced by fast pyrolysis of switchgrass (Panicum virgatum) is reported. This new information is important to understanding the utility of lignin as a chemical feedstock in a pyrolysis based biorefinery. Pyrolysis induces a variety of...

  6. Process for preparing phenolic formaldehyde resole resin products derived from fractionated fast-pyrolysis oils

    DOEpatents

    Chum, Helena L.; Kreibich, Roland E.

    1992-01-01

    A process for preparing phenol-formaldehyde resole resins and adhesive compositions in which portions of the phenol normally contained in said resins are replaced by a phenol/neutral fractions extract obtained from fractionating fast-pyrolysis oils.

  7. Characterization of fast-pyrolysis bio-oil distillation residues and their potential applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A typical petroleum refinery makes use of the vacuum gas oil by cracking the large molecular weight compounds into light fuel hydrocarbons. For various types of fast pyrolysis bio-oil, successful analogous methods for processing heavy fractions could expedite integration into a petroleum refinery fo...

  8. Gluconic acid from biomass fast pyrolysis oils: specialty chemicals from the thermochemical conversion of biomass.

    PubMed

    Santhanaraj, Daniel; Rover, Marjorie R; Resasco, Daniel E; Brown, Robert C; Crossley, Steven

    2014-11-01

    Fast pyrolysis of biomass to produce a bio-oil followed by catalytic upgrading is a widely studied approach for the potential production of fuels from biomass. Because of the complexity of the bio-oil, most upgrading strategies focus on removing oxygen from the entire mixture to produce fuels. Here we report a novel method for the production of the specialty chemical, gluconic acid, from the pyrolysis of biomass. Through a combination of sequential condensation of pyrolysis vapors and water extraction, a solution rich in levoglucosan is obtained that accounts for over 30% of the carbon in the bio-oil produced from red oak. A simple filtration step yields a stream of high-purity levoglucosan. This stream of levoglucosan is then hydrolyzed and partially oxidized to yield gluconic acid with high purity and selectivity. This combination of cost-effective pyrolysis coupled with simple separation and upgrading could enable a variety of new product markets for chemicals from biomass.

  9. Fast microwave-assisted catalytic pyrolysis of sewage sludge for bio-oil production.

    PubMed

    Xie, Qinglong; Peng, Peng; Liu, Shiyu; Min, Min; Cheng, Yanling; Wan, Yiqin; Li, Yun; Lin, Xiangyang; Liu, Yuhuan; Chen, Paul; Ruan, Roger

    2014-11-01

    In this study, fast microwave-assisted catalytic pyrolysis of sewage sludge was investigated for bio-oil production, with HZSM-5 as the catalyst. Pyrolysis temperature and catalyst to feed ratio were examined for their effects on bio-oil yield and composition. Experimental results showed that microwave is an effective heating method for sewage sludge pyrolysis. Temperature has great influence on the pyrolysis process. The maximum bio-oil yield and the lowest proportions of oxygen- and nitrogen-containing compounds in the bio-oil were obtained at 550°C. The oil yield decreased when catalyst was used, but the proportions of oxygen- and nitrogen-containing compounds were significantly reduced when the catalyst to feed ratio increased from 1:1 to 2:1. Essential mineral elements were concentrated in the bio-char after pyrolysis, which could be used as a soil amendment in place of fertilizer. Results of XRD analyses demonstrated that HZSM-5 catalyst exhibited good stability during the microwave-assisted pyrolysis of sewage sludge.

  10. Fast microwave-assisted catalytic pyrolysis of sewage sludge for bio-oil production.

    PubMed

    Xie, Qinglong; Peng, Peng; Liu, Shiyu; Min, Min; Cheng, Yanling; Wan, Yiqin; Li, Yun; Lin, Xiangyang; Liu, Yuhuan; Chen, Paul; Ruan, Roger

    2014-11-01

    In this study, fast microwave-assisted catalytic pyrolysis of sewage sludge was investigated for bio-oil production, with HZSM-5 as the catalyst. Pyrolysis temperature and catalyst to feed ratio were examined for their effects on bio-oil yield and composition. Experimental results showed that microwave is an effective heating method for sewage sludge pyrolysis. Temperature has great influence on the pyrolysis process. The maximum bio-oil yield and the lowest proportions of oxygen- and nitrogen-containing compounds in the bio-oil were obtained at 550°C. The oil yield decreased when catalyst was used, but the proportions of oxygen- and nitrogen-containing compounds were significantly reduced when the catalyst to feed ratio increased from 1:1 to 2:1. Essential mineral elements were concentrated in the bio-char after pyrolysis, which could be used as a soil amendment in place of fertilizer. Results of XRD analyses demonstrated that HZSM-5 catalyst exhibited good stability during the microwave-assisted pyrolysis of sewage sludge. PMID:25260179

  11. Liquid-phase processing of fast pyrolysis bio-oil using platinum/HZSM-5 catalyst

    NASA Astrophysics Data System (ADS)

    Santos, Bjorn Sanchez

    Recent developments in converting biomass to bio-chemicals and liquid fuels provide a promising sight to an emerging biofuels industry. Biomass can be converted to energy via thermochemical and biochemical pathways. Thermal degradation processes include liquefaction, gasification, and pyrolysis. Among these biomass technologies, pyrolysis (i.e. a thermochemical conversion process of any organic material in the absence of oxygen) has gained more attention because of its simplicity in design, construction and operation. This research study focuses on comparative assessment of two types of pyrolysis processes and catalytic upgrading of bio-oil for production of transportation fuel intermediates. Slow and fast pyrolysis processes were compared for their respective product yields and properties. Slow pyrolysis bio-oil displayed fossil fuel-like properties, although low yields limit the process making it uneconomically feasible. Fast pyrolysis, on the other hand, show high yields but produces relatively less quality bio-oil. Catalytic transformation of the high-boiling fraction (HBF) of the crude bio-oil from fast pyrolysis was therefore evaluated by performing liquid-phase reactions at moderate temperatures using Pt/HZSM-5 catalyst. High yields of upgraded bio-oils along with improved heating values and reduced oxygen contents were obtained at a reaction temperature of 200°C and ethanol/HBF ratio of 3:1. Better quality, however, was observed at 240 °C even though reaction temperature has no significant effect on coke deposition. The addition of ethanol in the feed has greatly attenuated coke deposition in the catalyst. Major reactions observed are esterification, catalytic cracking, and reforming. Overall mass and energy balances in the conversion of energy sorghum biomass to produce a liquid fuel intermediate obtained sixteen percent (16 wt.%) of the biomass ending up as liquid fuel intermediate, while containing 26% of its initial energy.

  12. Hydrotreating of fast pyrolysis oils from protein-rich pennycress seed presscake

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fast pyrolysis oils produced from proteinaceous biomass, such as pennycress presscake differ significantly from those produced from biomass with mostly lignocellulosic composition. Those from proteinaceous biomass tend to be deoxygenated, contain more nitrogen, be less acidic and be more stable...

  13. Mass balance, energy and exergy analysis of bio-oil production by fast pyrolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mass, energy and exergy balances are analyzed for bio-oil production in a bench scale fast pyrolysis system developed by the USDA’s Agricultural Research Service (ARS) for the processing of commodity crops to fuel intermediates. Because mass balance closure is difficult to achieve due, in part, to ...

  14. The effect of torrefaction on the chemistry of fast-pyrolysis bio-oil.

    PubMed

    Meng, Jiajia; Park, Junyeong; Tilotta, David; Park, Sunkyu

    2012-05-01

    Fast pyrolysis was performed on torrefied loblolly pine and the collected bio-oils were analyzed to compare the effect of the torrefaction treatment on their quality. The results of the analyses show that bio-oils produced from torrefied wood have improved oxygen-to-carbon ratios compared to those from the original wood with the penalty of a decrease in bio-oil yield. The extent of this improvement depends on the torrefaction severity. Based on the GC/MS analysis of the pyrolysis bio-oils, bio-oils produced from torrefied biomass show different compositions compared to that from the original wood. Specifically, the former becomes more concentrated in pyrolytic lignin with less water content than the latter. It was considered that torrefaction could be a potential upgrading method to improve the quality of bio-oil, which might be a useful feedstock for phenolic-based chemicals. PMID:22370230

  15. The effect of torrefaction on the chemistry of fast-pyrolysis bio-oil.

    PubMed

    Meng, Jiajia; Park, Junyeong; Tilotta, David; Park, Sunkyu

    2012-05-01

    Fast pyrolysis was performed on torrefied loblolly pine and the collected bio-oils were analyzed to compare the effect of the torrefaction treatment on their quality. The results of the analyses show that bio-oils produced from torrefied wood have improved oxygen-to-carbon ratios compared to those from the original wood with the penalty of a decrease in bio-oil yield. The extent of this improvement depends on the torrefaction severity. Based on the GC/MS analysis of the pyrolysis bio-oils, bio-oils produced from torrefied biomass show different compositions compared to that from the original wood. Specifically, the former becomes more concentrated in pyrolytic lignin with less water content than the latter. It was considered that torrefaction could be a potential upgrading method to improve the quality of bio-oil, which might be a useful feedstock for phenolic-based chemicals.

  16. Impact of Miscanthus x giganteus senescence times on fast pyrolysis bio-oil quality.

    PubMed

    Mos, M; Banks, S W; Nowakowski, D J; Robson, P R H; Bridgwater, A V; Donnison, I S

    2013-02-01

    In this study the impact of senescence and harvest time in Miscanthus on the quality of fast pyrolysis liquid (bio-oil) was investigated. Bio-oil was produced using a 1 kg h(-1) fast pyrolysis reactor to obtain a quantity of bio-oil comparable with existing industrial reactors. Bio-oil stability was measured using viscosity, water content, pH and heating value changes under specific conditions. Plant developmental characteristics were significantly different (P≤0.05) between all harvest points. The stage of crop senescence was correlated with nutrient remobilisation (N, P, K; r2=0.9043, r2=0.9920, r2=0.9977 respectively) and affected bio-oil quality. Harvest time and senescence impacted bio-oil quality and stability. For fast pyrolysis processing of Miscanthus, the harvest time of Miscanthus can be extended to cover a wider harvest window whilst still maintaining bio-oil quality but this may impact mineral depletion in, and long term sustainability of, the crop unless these minerals can be recycled. PMID:23262009

  17. Bio-oil and biochar production from corn cobs and stover by fast pyrolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bio-oil and bio-char were produced from corn cobs and corn stover (stalks, leaves and husks) by fast pyrolysis using a pilot scale fluidized bed reactor. Yields of 60% (mass/mass) bio-oil (high heating values are ~20,000 kJ/kg, and densities > 1.0 g/mL) were realized from both corn cobs and from co...

  18. Production of hydrogen from biomass by catalytic steam reforming of fast pyrolysis oil

    SciTech Connect

    Czernik, S.; Wang, D.; Chornet, E.

    1998-08-01

    Hydrogen is the prototype of the environmentally cleanest fuel of interest for power generation using fuel cells and for transportation. The thermochemical conversion of biomass to hydrogen can be carried out through two distinct strategies: (a) gasification followed by water-gas shift conversion, and (b) catalytic steam reforming of specific fractions derived from fast pyrolysis and aqueous/steam processes of biomass. This paper presents the latter route that begins with fast pyrolysis of biomass to produce bio-oil. This oil (as a whole or its selected fractions) can be converted to hydrogen via catalytic steam reforming followed by a water-gas shift conversion step. Such a process has been demonstrated at the bench scale using model compounds, poplar oil aqueous fraction, and the whole pyrolysis oil with commercial Ni-based steam reforming catalysts. Hydrogen yields as high as 85% have been obtained. Catalyst initial activity can be recovered through regeneration cycles by steam or CO{sub 2} gasification of carbonaceous deposits.

  19. Gluconic acid from biomass fast pyrolysis oils: specialty chemicals from the thermochemical conversion of biomass.

    PubMed

    Santhanaraj, Daniel; Rover, Marjorie R; Resasco, Daniel E; Brown, Robert C; Crossley, Steven

    2014-11-01

    Fast pyrolysis of biomass to produce a bio-oil followed by catalytic upgrading is a widely studied approach for the potential production of fuels from biomass. Because of the complexity of the bio-oil, most upgrading strategies focus on removing oxygen from the entire mixture to produce fuels. Here we report a novel method for the production of the specialty chemical, gluconic acid, from the pyrolysis of biomass. Through a combination of sequential condensation of pyrolysis vapors and water extraction, a solution rich in levoglucosan is obtained that accounts for over 30% of the carbon in the bio-oil produced from red oak. A simple filtration step yields a stream of high-purity levoglucosan. This stream of levoglucosan is then hydrolyzed and partially oxidized to yield gluconic acid with high purity and selectivity. This combination of cost-effective pyrolysis coupled with simple separation and upgrading could enable a variety of new product markets for chemicals from biomass. PMID:25204798

  20. Preliminary studies of bio-oil from fast pyrolysis of coconut fibers.

    PubMed

    Almeida, Tarciana M; Bispo, Mozart D; Cardoso, Anne R T; Migliorini, Marcelo V; Schena, Tiago; de Campos, Maria Cecilia V; Machado, Maria Elisabete; López, Jorge A; Krause, Laiza C; Caramão, Elina B

    2013-07-17

    This work studied fast pyrolysis as a way to use the residual fiber obtained from the shells of coconut ( Cocos nucifera L. var. Dwarf, from Aracaju, northeastern Brazil). The bio-oil produced by fast pyrolysis and the aqueous phase (formed during the pyrolysis) were characterized by GC/qMS and GC×GC/TOF-MS. Many oxygenated compounds such as phenols, aldehydes, and ketones were identified in the extracts obtained in both phases, with a high predominance of phenolic compounds, mainly alkylphenols. Eighty-one compounds were identified in the bio-oil and 42 in the aqueous phase using GC/qMS, and 95 and 68 in the same samples were identified by GC×GC/TOF-MS. The better performance of GC×GC/TOF-MS was due to the possibility of resolving some coeluted peaks in the one-dimension gas chromatography. Semiquantitative analysis of the samples verified that 59% of the area on the chromatogram of bio-oil is composed by phenols and 12% by aldehydes, mainly furfural. Using the same criterion, 77% of the organic compounds in the aqueous phase are phenols. Therefore, this preliminary assessment indicates that coconut fibers have the potential to be a cost-effective and promising alternative to obtain new products and minimize environmental impact.

  1. Preliminary studies of bio-oil from fast pyrolysis of coconut fibers.

    PubMed

    Almeida, Tarciana M; Bispo, Mozart D; Cardoso, Anne R T; Migliorini, Marcelo V; Schena, Tiago; de Campos, Maria Cecilia V; Machado, Maria Elisabete; López, Jorge A; Krause, Laiza C; Caramão, Elina B

    2013-07-17

    This work studied fast pyrolysis as a way to use the residual fiber obtained from the shells of coconut ( Cocos nucifera L. var. Dwarf, from Aracaju, northeastern Brazil). The bio-oil produced by fast pyrolysis and the aqueous phase (formed during the pyrolysis) were characterized by GC/qMS and GC×GC/TOF-MS. Many oxygenated compounds such as phenols, aldehydes, and ketones were identified in the extracts obtained in both phases, with a high predominance of phenolic compounds, mainly alkylphenols. Eighty-one compounds were identified in the bio-oil and 42 in the aqueous phase using GC/qMS, and 95 and 68 in the same samples were identified by GC×GC/TOF-MS. The better performance of GC×GC/TOF-MS was due to the possibility of resolving some coeluted peaks in the one-dimension gas chromatography. Semiquantitative analysis of the samples verified that 59% of the area on the chromatogram of bio-oil is composed by phenols and 12% by aldehydes, mainly furfural. Using the same criterion, 77% of the organic compounds in the aqueous phase are phenols. Therefore, this preliminary assessment indicates that coconut fibers have the potential to be a cost-effective and promising alternative to obtain new products and minimize environmental impact. PMID:23815555

  2. Norms, Standards, and Legislation for Fast Pyrolysis Bio-oils from Lignocellulosic Biomass

    SciTech Connect

    Oasmaa, Anja; van de Beld, Bert; Saari, Pia; Elliott, Douglas C.; Solantausta, Yrjo

    2015-04-16

    Fast pyrolysis of woody biomass is close to full maturity, with first-of-its-kind commercial size installations for fuel production being commissioned in Finland (Fortum) and in The Netherlands (Empyro), and in the design phase in Brazil (Ensyn). In the industrial-scale combustion tests, the use of fast pyrolysis bio-oil (FPBO) has been demonstrated to be a viable option to replace heavy fuel oil in district heating applications. Commercially usable district heating boilers and burners suitable for FPBO are available. There is research on diesel-engine and gas-turbine applications but, so far, no proven demonstrations. FPBO is completely different from mineral oils; hence, standards are needed. Analytical methods have been systematically validated and modifications to the standards as well as completely new methods have been made. Two ASTM burner fuel standards already exist and European boiler fuel grades are being developed under CEN. The focus on CEN standardization is on boiler use, because of its commercial readiness.

  3. Biomass fast pyrolysis for bio-oil production in a fluidized bed reactor under hot flue atmosphere.

    PubMed

    Li, Ning; Wang, Xiang; Bai, Xueyuan; Li, Zhihe; Zhang, Ying

    2015-10-01

    Fast pyrolysis experiments of corn stalk were performed to investigate the optimal pyrolysis conditions of temperature and bed material for maximum bio-oil production under flue gas atmosphere. Under the optimized pyrolysis conditions, furfural residue, xylose residue and kelp seaweed were pyrolyzed to examine their yield distributions of products, and the physical characteristics of bio-oil were studied. The best flow rate of the flue gas at selected temperature is obtained, and the pyrolysis temperature at 500 degrees C and dolomite as bed material could give a maximum bio-oil yield. The highest bio-oil yield of 43.3% (W/W) was achieved from corn stalk under the optimal conditions. Two main fractions were recovered from the stratified bio-oils: light oils and heavy oils. The physical properties of heavy oils from all feedstocks varied little. The calorific values of heavy oils were much higher than that of light oils. The pyrolysis gas could be used as a gaseous fuel due to a relatively high calorific value of 6.5-8.5 MJ/m3. PMID:26964339

  4. Biocrude oils from the fast pyrolysis of poultry litter and hardwood.

    PubMed

    Agblevor, F A; Beis, S; Kim, S S; Tarrant, R; Mante, N O

    2010-02-01

    The safe and economical disposal of poultry litter is becoming a major problem for the USA poultry industry. Current disposal methods such as land application and feeding to cattle are now under pressure because of pollution of water resources due to leaching, runoffs and concern for mad cow disease contamination of the food chain. Incineration or combustion is potentially applicable to large scale operations, but for small scale growers and EPA non-attainment areas, this is not a suitable option because of the high cost of operation. Thus, there is a need for developing appropriate technologies to dispose poultry litter. Poultry litters from broiler chicken and turkey houses, as well as bedding material were converted into biocrude oil in a fast pyrolysis fluidized bed reactor. The biocrude oil yields were relatively low ranging from 36 wt% to 50 wt% depending on the age and bedding material content of the litter. The bedding material (which was mostly hardwood shavings) biocrude oil yield was 63 wt%. The higher heating value (HHV) of the poultry litter biocrude oils ranged from 26 MJ/kg to 29 MJ/kg while that of the bedding material was 24 MJ/kg. The oils had relatively high nitrogen content ranging from 4 wt% to 8 wt%, very low sulfur (<1 wt%) content and high viscosity. The viscosities of the oils appeared to be a function of both the source of litter and the pyrolysis temperature. The biochar yield ranged from 27 wt% to 40 wt% depending on the source, age and composition of the poultry litter. The biochar ash content ranged from 24 wt% to 54 wt% and was very rich in inorganic components such as potassium and phosphorous. PMID:19880302

  5. Biocrude oils from the fast pyrolysis of poultry litter and hardwood

    SciTech Connect

    Agblevor, F.A.; Beis, S.; Kim, S.S.; Tarrant, R.; Mante, N.O.

    2010-02-15

    The safe and economical disposal of poultry litter is becoming a major problem for the USA poultry industry. Current disposal methods such as land application and feeding to cattle are now under pressure because of pollution of water resources due to leaching, runoffs and concern for mad cow disease contamination of the food chain. Incineration or combustion is potentially applicable to large scale operations, but for small scale growers and EPA non-attainment areas, this is not a suitable option because of the high cost of operation. Thus, there is a need for developing appropriate technologies to dispose poultry litter. Poultry litters from broiler chicken and turkey houses, as well as bedding material were converted into biocrude oil in a fast pyrolysis fluidized bed reactor. The biocrude oil yields were relatively low ranging from 36 wt% to 50 wt% depending on the age and bedding material content of the litter. The bedding material (which was mostly hardwood shavings) biocrude oil yield was 63 wt%. The higher heating value (HHV) of the poultry litter biocrude oils ranged from 26 MJ/kg to 29 MJ/kg while that of the bedding material was 24 MJ/kg. The oils had relatively high nitrogen content ranging from 4 wt% to 8 wt%, very low sulfur (<1 wt%) content and high viscosity. The viscosities of the oils appeared to be a function of both the source of litter and the pyrolysis temperature. The biochar yield ranged from 27 wt% to 40 wt% depending on the source, age and composition of the poultry litter. The biochar ash content ranged from 24 wt% to 54 wt% and was very rich in inorganic components such as potassium and phosphorous.

  6. Biofuels from continuous fast pyrolysis of soybean oil: a pilot plant study.

    PubMed

    Wiggers, V R; Meier, H F; Wisniewski, A; Chivanga Barros, A A; Wolf Maciel, M R

    2009-12-01

    The continuous fast pyrolysis of soybean oil in a pilot plant was investigated. The experimental runs were carried out according to an experimental design alternating the temperature (from 450 to 600 degrees C) and the concentration of water (from 0% to 10%). The liquid products were analyzed by gas chromatography and by true boiling point (TPB) distillation. A simple distillation was used to obtain purified products such as gasoline and diesel. Physical-chemical analysis showed that these biofuels are similar to fossil fuels. Mass and energy balances were carried out in order to determine the vaporization enthalpy and the reaction enthalpy for each experiment. The thermal analysis showed that it is possible to use the products as an energy source for the process. PMID:19692230

  7. Catalytic Hydroprocessing of Fast Pyrolysis Bio-oil from Pine Sawdust

    SciTech Connect

    Elliott, Douglas C.; Hart, Todd R.; Neuenschwander, Gary G.; Rotness, Leslie J.; Olarte, Mariefel V.; Zacher, Alan H.; Solantausta, Yrjo

    2012-06-01

    Catalytic hydroprocessing has been applied to the fast pyrolysis liquid product (bio-oil) from softwood biomass in a bench-scale continuous-flow fixed-bed reactor system. The intent of the research was to develop process technology to convert the bio-oil into a petroleum refinery feedstock to supplement fossil energy resources and to displace imported feedstock. This paper is focused on the process experimentation and product analysis. The paper describes the experimental methods used and relates the results of the product analyses. A range of operating parameters including temperature, and flow-rate were tested with bio-oil derived from pine wood as recovered and pyrolyzed in the pilot pyrolyzer of Metso Power in Tampere, Finland. Effects of time on stream and catalyst activity were assessed. Details of the process results were presented included product yields and hydrogen consumption. Detailed analysis of the products were provided including elemental composition and product descriptors such as density, viscosity and Total Acid Number (TAN). In summation, the paper provides an initial understanding of the efficacy of hydroprocessing as applied to the Finnish pine bio-oil.

  8. Phenolic compounds containing/neutral fractions extract and products derived therefrom from fractionated fast-pyrolysis oils

    DOEpatents

    Chum, H.L.; Black, S.K.; Diebold, J.P.; Kreibich, R.E.

    1993-06-29

    A process is described for preparing phenol-formaldehyde novolak resins and molding compositions in which portions of the phenol normally contained in said resins are replaced by a phenol/neutral fractions extract obtained from fractionating fast-pyrolysis oils. The fractionation consists of a neutralization stage which can be carried out with aqueous solutions of bases or appropriate bases in the dry state, followed by solvent extraction with an organic solvent having at least a moderate solubility parameter and good hydrogen bonding capacity. Phenolic compounds-containing/neutral fractions extracts obtained by fractionating fast-pyrolysis oils from a lignocellulosic material, is such that the oil is initially in the pH range of 2-4, being neutralized with an aqueous bicarbonate base, and extracted into a solvent having a solubility parameter of approximately 8.4-9.11 [cal/cm[sup 3

  9. Molybdenum carbides, active and in situ regenerable catalysts in hydroprocessing of fast pyrolysis bio-oil

    DOE PAGES

    Choi, Jae -Soon; Zacher, Alan; Wang, Huamin; Olarte, Mariefel V.; Armstrong, Beth L.; Meyer, III, Harry M.; Schwartz, Viviane; Soykal, I. Ilgaz

    2016-05-19

    This paper describes properties of molybdenum carbides as a potential catalyst for fast pyrolysis bio-oil hydroprocessing. Currently, high catalyst cost, short catalyst lifetime, and lack of effective regeneration methods are hampering the development of this otherwise attractive renewable hydrocarbon technology. A series of metal-doped bulk Mo carbides were synthesized, characterized, and evaluated in sequential low-temperature stabilization and high-temperature deoxygenation of a pine-derived bio-oil. During a typical 60 h run, Mo carbides were capable of upgrading raw bio-oil to a level suitable for direct insertion into the current hydrocarbon infrastructure with residual oxygen content and total acid number of upgraded oilsmore » below 2 wt % and 0.01 mg KOH g–1, respectively. The performance was shown to be sensitive to the type of metal dopant, Ni-doped Mo carbides outperforming Co-, Cu-, or Ca-doped counterparts; a higher Ni loading led to a superior catalytic performance. No bulk oxidation or other significant structural changes were observed. Besides the structural robustness, another attractive property of Mo carbides was in situ regenerability. The effectiveness of regeneration was demonstrated by successfully carrying out four consecutive 60 h runs with a reductive decoking between two adjacent runs. These results strongly suggest that Mo carbides are a good catalyst candidate which could lead to a significant cost reduction in hydroprocessing bio-oils. Furthermore, we highlight areas for future research which will be needed to further understand carbide structure–function relationships and help design practical bio-oil upgrading catalysts based on Mo carbides.« less

  10. Fast Pyrolysis Oil Stabilization: An Integrated Catalytic and Membrane Approach for Improved Bio-oils. Final Report

    SciTech Connect

    George W. Huber; Upadhye, Aniruddha A.; Ford, David M.; Bhatia, Surita R.; Badger, Phillip C.

    2012-10-19

    This University of Massachusetts, Amherst project, "Fast Pyrolysis Oil Stabilization: An Integrated Catalytic and Membrane Approach for Improved Bio-oils" started on 1st February 2009 and finished on August 31st 2011. The project consisted following tasks: Task 1.0: Char Removal by Membrane Separation Technology The presence of char particles in the bio-oil causes problems in storage and end-use. Currently there is no well-established technology to remove char particles less than 10 micron in size. This study focused on the application of a liquid-phase microfiltration process to remove char particles from bio-oil down to slightly sub-micron levels. Tubular ceramic membranes of nominal pore sizes 0.5 and 0.8m were employed to carry out the microfiltration, which was conducted in the cross-flow mode at temperatures ranging from 38 to 45 C and at three different trans-membrane pressures varying from 1 to 3 bars. The results demonstrated the removal of the major quantity of char particles with a significant reduction in overall ash content of the bio-oil. The results clearly showed that the cake formation mechanism of fouling is predominant in this process. Task 2.0 Acid Removal by Membrane Separation Technology The feasibility of removing small organic acids from the aqueous fraction of fast pyrolysis bio-oils using nanofiltration (NF) and reverse osmosis (RO) membranes was studied. Experiments were carried out with a single solute solutions of acetic acid and glucose, binary solute solutions containing both acetic acid and glucose, and a model aqueous fraction of bio-oil (AFBO). Retention factors above 90% for glucose and below 0% for acetic acid were observed at feed pressures near 40 bar for single and binary solutions, so that their separation in the model AFBO was expected to be feasible. However, all of the membranes were irreversibly damaged when experiments were conducted with the model AFBO due to the presence of guaiacol in the feed solution. Experiments

  11. Oxygen speciation in upgraded fast pyrolysis bio-oils by comprehensive two-dimensional gas chromatography.

    PubMed

    Omais, Badaoui; Crepier, Julien; Charon, Nadège; Courtiade, Marion; Quignard, Alain; Thiébaut, Didier

    2013-04-21

    Biomass fast pyrolysis is considered as a promising route to produce liquid for the transportation field from a renewable resource. However, the derived bio-oils are mainly oxygenated (45-50%w/w O on a wet basis) and contain almost no hydrocarbons. Therefore, upgrading is necessary to obtain a liquid with lower oxygen content and characterization of oxygenated compounds in these products is essential to assist conversion reactions. For this purpose, comprehensive two-dimensional gas chromatography (GC × GC) can be investigated. Oxygen speciation in such matrices is hampered by the large diversity of oxygenated families and the complexity of the hydrocarbon matrix. Moreover, response factors must be taken into account for oxygenate quantification as the Flame Ionisation Detector (FID) response varies when a molecule contains heteroatoms. To conclude, no distillation cuts were accessible and the analysis had to cover a large range of boiling points (30-630 °C). To take up this analytical challenge, a thorough optimization approach was developed. In fact, four GC × GC column sets were investigated to separate oxygenated compounds from the hydrocarbon matrix. Both model mixtures and the upgraded biomass flash pyrolysis oil were injected using GC × GC-FID to reach a suitable chromatographic separation. The advantages and drawbacks of each column combination for oxygen speciation in upgraded bio-oils are highlighted in this study. Among the four sets, an original polar × semi-polar column combination was selected and enabled the identification by GC × GC-ToF/MS of more than 40 compounds belonging to eight chemical families: ketones, furans, alcohols, phenols, carboxylic acids, guaiacols, anisols, and esters. For quantification purpose, the GC × GC-FID chromatogram was divided into more than 60 blobs corresponding to the previously identified analyte and hydrocarbon zones. A database associating each blob to a molecule and its specific response factor (determined

  12. Oxygen speciation in upgraded fast pyrolysis bio-oils by comprehensive two-dimensional gas chromatography.

    PubMed

    Omais, Badaoui; Crepier, Julien; Charon, Nadège; Courtiade, Marion; Quignard, Alain; Thiébaut, Didier

    2013-04-21

    Biomass fast pyrolysis is considered as a promising route to produce liquid for the transportation field from a renewable resource. However, the derived bio-oils are mainly oxygenated (45-50%w/w O on a wet basis) and contain almost no hydrocarbons. Therefore, upgrading is necessary to obtain a liquid with lower oxygen content and characterization of oxygenated compounds in these products is essential to assist conversion reactions. For this purpose, comprehensive two-dimensional gas chromatography (GC × GC) can be investigated. Oxygen speciation in such matrices is hampered by the large diversity of oxygenated families and the complexity of the hydrocarbon matrix. Moreover, response factors must be taken into account for oxygenate quantification as the Flame Ionisation Detector (FID) response varies when a molecule contains heteroatoms. To conclude, no distillation cuts were accessible and the analysis had to cover a large range of boiling points (30-630 °C). To take up this analytical challenge, a thorough optimization approach was developed. In fact, four GC × GC column sets were investigated to separate oxygenated compounds from the hydrocarbon matrix. Both model mixtures and the upgraded biomass flash pyrolysis oil were injected using GC × GC-FID to reach a suitable chromatographic separation. The advantages and drawbacks of each column combination for oxygen speciation in upgraded bio-oils are highlighted in this study. Among the four sets, an original polar × semi-polar column combination was selected and enabled the identification by GC × GC-ToF/MS of more than 40 compounds belonging to eight chemical families: ketones, furans, alcohols, phenols, carboxylic acids, guaiacols, anisols, and esters. For quantification purpose, the GC × GC-FID chromatogram was divided into more than 60 blobs corresponding to the previously identified analyte and hydrocarbon zones. A database associating each blob to a molecule and its specific response factor (determined

  13. Guidelines for Transportation, Handling, and Use of Fast Pyrolysis Bio-Oil. Part 1. Flammability and Toxicity

    SciTech Connect

    Oasmaa, Anja; Kalli, Anssi; Lindfors, Christian; Elliott, Douglas C.; Springer, David L.; Peacocke, Cordner; Chiaramonti, David

    2012-05-04

    An alternative sustainable fuel, biomass-derived fast pyrolysis oil or 'bio-oil', is coming into the market. Fast pyrolysis pilot and demonstration plants for fuel applications producing tonnes of bio-oil are in operation, and commercial plants are under design. There will be increasingly larger amounts of bio-oil transportation on water and by land, leading to a need for specifications and supporting documentation. Bio-oil is different from conventional liquid fuels, and therefore must overcome both technical and marketing hurdles for its acceptability in the fuels market. A comprehensive Material Safety Data Sheet (MSDS) is required, backed with independent testing and certification. In order to standardise bio-oil quality specifications are needed. The first bio-oil burner fuel standard in ASTM (D7544) was approved in 2009. CEN standardisation has been initiated in Europe. In the EU a new chemical regulation system, REACH (Registration, Evaluation and Authorisation of Chemicals) is being applied. Registration under REACH has to be made if bio-oil is produced or imported to the EU. In the USA and Canada, bio-oil has to be filed under TOSCA (US Toxic Substances Control Act). In this paper the state of the art on standardisation is discussed, and new data for the transportation guidelines is presented. The focus is on flammability and toxicity.

  14. Hydrocarbon Liquid Production via Catalytic Hydroprocessing of Phenolic Oils Fractionated from Fast Pyrolysis of Red Oak and Corn Stover

    DOE PAGES

    Elliott, Douglas C.; Wang, Huamin; Rover, Majorie; Whitmer, Lysle; Smith, Ryan; Brown, Robert C.

    2015-04-13

    Phenolic oils were produced from fast pyrolysis of two different biomass feedstocks, red oak and corn stover and evaluated in hydroprocessing tests for production of liquid hydrocarbon products. The phenolic oils were produced with a bio-oil fractionating process in combination with a simple water wash of the heavy ends from the fractionating process. Phenolic oils derived from the pyrolysis of red oak and corn stover were recovered with yields (wet biomass basis) of 28.7 wt% and 14.9 wt%, respectively, and 54.3% and 58.6% on a carbon basis. Both precious metal catalysts and sulfided base metal catalyst were evaluated for hydrotreatingmore » the phenolic oils, as an extrapolation from whole bio-oil hydrotreatment. They were effective in removing heteroatoms with carbon yields as high as 81% (unadjusted for the 90% carbon balance). There was nearly complete heteroatom removal with residual O of only 0.4% to 5%, while N and S were reduced to less than 0.05%. Use of the precious metal catalysts resulted in more saturated products less completely hydrotreated compared to the sulfided base metal catalyst, which was operated at higher temperature. The liquid product was 42-52% gasoline range molecules and about 43% diesel range molecules. Particulate matter in the phenolic oils complicated operation of the reactors, causing plugging in the fixed-beds especially for the corn stover phenolic oil. This difficulty contrasts with the catalyst bed fouling and plugging, which is typically seen with hydrotreatment of whole bio-oil. This problem was substantially alleviated by filtering the phenolic oils before hydrotreating. More thorough washing of the phenolic oils during their preparation from the heavy ends of bio-oil or on-line filtration of pyrolysis vapors to remove particulate matter before condensation of the bio-oil fractions is recommended.« less

  15. Hydrocarbon Liquid Production via Catalytic Hydroprocessing of Phenolic Oils Fractionated from Fast Pyrolysis of Red Oak and Corn Stover

    SciTech Connect

    Elliott, Douglas C.; Wang, Huamin; Rover, Majorie; Whitmer, Lysle; Smith, Ryan; Brown, Robert C.

    2015-04-13

    Phenolic oils were produced from fast pyrolysis of two different biomass feedstocks, red oak and corn stover and evaluated in hydroprocessing tests for production of liquid hydrocarbon products. The phenolic oils were produced with a bio-oil fractionating process in combination with a simple water wash of the heavy ends from the fractionating process. Phenolic oils derived from the pyrolysis of red oak and corn stover were recovered with yields (wet biomass basis) of 28.7 wt% and 14.9 wt%, respectively, and 54.3% and 58.6% on a carbon basis. Both precious metal catalysts and sulfided base metal catalyst were evaluated for hydrotreating the phenolic oils, as an extrapolation from whole bio-oil hydrotreatment. They were effective in removing heteroatoms with carbon yields as high as 81% (unadjusted for the 90% carbon balance). There was nearly complete heteroatom removal with residual O of only 0.4% to 5%, while N and S were reduced to less than 0.05%. Use of the precious metal catalysts resulted in more saturated products less completely hydrotreated compared to the sulfided base metal catalyst, which was operated at higher temperature. The liquid product was 42-52% gasoline range molecules and about 43% diesel range molecules. Particulate matter in the phenolic oils complicated operation of the reactors, causing plugging in the fixed-beds especially for the corn stover phenolic oil. This difficulty contrasts with the catalyst bed fouling and plugging, which is typically seen with hydrotreatment of whole bio-oil. This problem was substantially alleviated by filtering the phenolic oils before hydrotreating. More thorough washing of the phenolic oils during their preparation from the heavy ends of bio-oil or on-line filtration of pyrolysis vapors to remove particulate matter before condensation of the bio-oil fractions is recommended.

  16. Fast pyrolysis of microalgae remnants in a fluidized bed reactor for bio-oil and biochar production.

    PubMed

    Wang, Kaige; Brown, Robert C; Homsy, Sally; Martinez, Liliana; Sidhu, Sukh S

    2013-01-01

    In this study, pyrolysis of microalgal remnants was investigated for recovery of energy and nutrients. Chlorella vulgaris biomass was first solvent-extracted for lipid recovery then the remnants were used as the feedstock for fast pyrolysis experiments using a fluidized bed reactor at 500 °C. Yields of bio-oil, biochar, and gas were 53, 31, and 10 wt.%, respectively. Bio-oil from C. vulgaris remnants was a complex mixture of aromatics and straight-chain hydrocarbons, amides, amines, carboxylic acids, phenols, and other compounds with molecular weights ranging from 70 to 1200 Da. Structure and surface topography of the biochar were analyzed. The high inorganic content (potassium, phosphorous, and nitrogen) of the biochar suggests it may be suitable to provide nutrients for crop production. The bio-oil and biochar represented 57% and 36% of the energy content of the microalgae remnant feedstock, respectively.

  17. Analysis of Oxygenated Compounds in Hydrotreated Biomass Fast Pyrolysis Oil Distillate Fractions

    SciTech Connect

    Christensen, Earl D.; Chupka, Gina; Luecke, Jon; Smurthwaite, Tricia D.; Alleman, Teresa L.; Iisa, Kristiina; Franz, James A.; Elliott, Douglas C.; McCormick, Robert L.

    2011-10-06

    Three hydrotreated bio-oils with different oxygen contents (8.2, 4.9, and 0.4 w/w) were distilled to produce Light, Naphtha, Jet, Diesel, and Gasoil boiling range fractions that were characterized for oxygen containing species by a variety of analytical methods. The bio-oils were originally generated from lignocellulosic biomass in an entrained-flow fast pyrolysis reactor. Analyses included elemental composition, carbon type distribution by {sup 13}C NMR, acid number, GC-MS, volatile organic acids by LC, and carbonyl compounds by DNPH derivatization and LC. Acid number titrations employed an improved titrant-electrode combination with faster response that allowed detection of multiple endpoints in many samples and for acid values attributable to carboxylic acids and to phenols to be distinguished. Results of these analyses showed that the highest oxygen content bio-oil fractions contained oxygen as carboxylic acids, carbonyls, aryl ethers, phenols, and alcohols. Carboxylic acids and carbonyl compounds detected in this sample were concentrated in the Light, Naphtha, and Jet fractions (<260 C boiling point). Carboxylic acid content of all of the high oxygen content fractions was likely too high for these materials to be considered as fuel blendstocks although potential for blending with crude oil or refinery intermediate streams may exist for the Diesel and Gasoil fractions. The 4.9 % oxygen sample contained almost exclusively phenolic compounds found to be present throughout the boiling range of this sample, but imparting measurable acidity primarily in the Light, Naphtha and Jet fractions. Additional study is required to understand what levels of the weakly acidic phenols could be tolerated in a refinery feedstock. The Diesel and Gasoil fractions from this upgraded oil had low acidity but still contained 3 to 4 wt% oxygen present as phenols that could not be specifically identified. These materials appear to have excellent potential as refinery feedstocks and some

  18. Investigation on the quality of bio-oil produced through fast pyrolysis of biomass-polymer waste mixture

    NASA Astrophysics Data System (ADS)

    Jourabchi, S. A.; Ng, H. K.; Gan, S.; Yap, Z. Y.

    2016-06-01

    A high-impact poly-styrene (HIPS) was mixed with dried and ground coconut shell (CS) at equal weight percentage. Fast pyrolysis was carried out on the mixture in a fixed bed reactor over a temperature range of 573 K to 1073 K, and a nitrogen (N2) linear velocity range of 7.8x10-5 m/s to 6.7x10-2 m/s to produce bio-oil. Heat transfer and fluid dynamics of the pyrolysis process inside the reactor was visualised by using Computational Fluid Dynamics (CFD). The CFD modelling was validated by experimental results and they both indicated that at temperature of 923 K and N2 linear velocity of 7.8x10-5 m/s, the maximum bio-oil yield of 52.02 wt% is achieved.

  19. Bio-oil production of softwood and hardwood forest industry residues through fast and intermediate pyrolysis and its chromatographic characterization.

    PubMed

    Torri, Isadora Dalla Vecchia; Paasikallio, Ville; Faccini, Candice Schmitt; Huff, Rafael; Caramão, Elina Bastos; Sacon, Vera; Oasmaa, Anja; Zini, Claudia Alcaraz

    2016-01-01

    Bio-oils were produced through intermediate (IP) and fast pyrolysis (FP), using Eucalyptus sp. (hardwood) and Picea abies (softwood), wood wastes produced in large scale in Pulp and Paper industries. Characterization of these bio-oils was made using GC/qMS and GC×GC/TOFMS. The use of GC×GC provided a broader characterization of bio-oils and it allowed tracing potential markers of hardwood bio-oil, such as dimethoxy-phenols, which might co-elute in 1D-GC. Catalytic FP increased the percentage of aromatic hydrocarbons in P. abies bio-oil, indicating its potential for fuel production. However, the presence of polyaromatic hydrocarbons (PAH) draws attention to the need of a proper management of pyrolysis process in order to avoid the production of toxic compounds and also to the importance of GC×GC/TOFMS use to avoid co-elutions and consequent inaccuracies related to identification and quantification associated with GC/qMS. Ketones and phenols were the major bio-oil compounds and they might be applied to polymer production. PMID:26556402

  20. Bio-oil production of softwood and hardwood forest industry residues through fast and intermediate pyrolysis and its chromatographic characterization.

    PubMed

    Torri, Isadora Dalla Vecchia; Paasikallio, Ville; Faccini, Candice Schmitt; Huff, Rafael; Caramão, Elina Bastos; Sacon, Vera; Oasmaa, Anja; Zini, Claudia Alcaraz

    2016-01-01

    Bio-oils were produced through intermediate (IP) and fast pyrolysis (FP), using Eucalyptus sp. (hardwood) and Picea abies (softwood), wood wastes produced in large scale in Pulp and Paper industries. Characterization of these bio-oils was made using GC/qMS and GC×GC/TOFMS. The use of GC×GC provided a broader characterization of bio-oils and it allowed tracing potential markers of hardwood bio-oil, such as dimethoxy-phenols, which might co-elute in 1D-GC. Catalytic FP increased the percentage of aromatic hydrocarbons in P. abies bio-oil, indicating its potential for fuel production. However, the presence of polyaromatic hydrocarbons (PAH) draws attention to the need of a proper management of pyrolysis process in order to avoid the production of toxic compounds and also to the importance of GC×GC/TOFMS use to avoid co-elutions and consequent inaccuracies related to identification and quantification associated with GC/qMS. Ketones and phenols were the major bio-oil compounds and they might be applied to polymer production.

  1. Catalytic fast pyrolysis of lignocellulosic biomass

    SciTech Connect

    Liu, Changjun; Wang, Huamin; Karim, Ayman M.; Sun, Junming; Wang, Yong

    2014-11-21

    Increasing energy demand, especially in the transportation sector, and soaring CO2 emissions necessitate the exploitation of renewable sources of energy. Despite the large variety of new energy Q3 carriers, liquid hydrocarbon still appears to be the most attractive and feasible form of transportation fuel taking into account the energy density, stability and existing infrastructure. Biomass is an abundant, renewable source of energy; however, utilizing it in a cost-effective way is still a substantial challenge. Lignocellulose is composed of three major biopolymers, namely cellulose, hemicellulose and lignin. Fast pyrolysis of biomass is recognized as an efficient and feasible process to selectively convert lignocellulose into a liquid fuel—bio-oil. However bio-oil from fast pyrolysis contains a large amount of oxygen, distributed in hundreds of oxygenates. These oxygenates are the cause of many negative properties, such as low heating values, high corrosiveness, high viscosity, and instability; they also greatly Q4 limit the application of bio-oil particularly as transportation fuel. Hydrocarbons derived from biomass are most attractive because of their high energy density and compatibility with the existing infrastructure. Thus, converting lignocellulose into transportation fuels via catalytic fast pyrolysis has attracted much attention. Many studies related to catalytic fast pyrolysis of biomass have been published. The main challenge of this process is the development of active and stable catalysts that can deal with a large variety of decomposition intermediates from lignocellulose. This review starts with the current understanding of the chemistry in fast pyrolysis of lignocellulose and focuses on the development of catalysts in catalytic fast pyrolysis. Recent progress in the experimental studies on catalytic fast pyrolysis of biomass is also summarized with the emphasis on bio-oil yields and quality.

  2. Catalytic fast pyrolysis of lignocellulosic biomass.

    PubMed

    Liu, Changjun; Wang, Huamin; Karim, Ayman M; Sun, Junming; Wang, Yong

    2014-11-21

    Increasing energy demand, especially in the transportation sector, and soaring CO2 emissions necessitate the exploitation of renewable sources of energy. Despite the large variety of new energy carriers, liquid hydrocarbon still appears to be the most attractive and feasible form of transportation fuel taking into account the energy density, stability and existing infrastructure. Biomass is an abundant, renewable source of energy; however, utilizing it in a cost-effective way is still a substantial challenge. Lignocellulose is composed of three major biopolymers, namely cellulose, hemicellulose and lignin. Fast pyrolysis of biomass is recognized as an efficient and feasible process to selectively convert lignocellulose into a liquid fuel-bio-oil. However bio-oil from fast pyrolysis contains a large amount of oxygen, distributed in hundreds of oxygenates. These oxygenates are the cause of many negative properties, such as low heating value, high corrosiveness, high viscosity, and instability; they also greatly limit the application of bio-oil particularly as transportation fuel. Hydrocarbons derived from biomass are most attractive because of their high energy density and compatibility with the existing infrastructure. Thus, converting lignocellulose into transportation fuels via catalytic fast pyrolysis has attracted much attention. Many studies related to catalytic fast pyrolysis of biomass have been published. The main challenge of this process is the development of active and stable catalysts that can deal with a large variety of decomposition intermediates from lignocellulose. This review starts with the current understanding of the chemistry in fast pyrolysis of lignocellulose and focuses on the development of catalysts in catalytic fast pyrolysis. Recent progress in the experimental studies on catalytic fast pyrolysis of biomass is also summarized with the emphasis on bio-oil yields and quality.

  3. Catalytic fast pyrolysis of lignocellulosic biomass.

    PubMed

    Liu, Changjun; Wang, Huamin; Karim, Ayman M; Sun, Junming; Wang, Yong

    2014-11-21

    Increasing energy demand, especially in the transportation sector, and soaring CO2 emissions necessitate the exploitation of renewable sources of energy. Despite the large variety of new energy carriers, liquid hydrocarbon still appears to be the most attractive and feasible form of transportation fuel taking into account the energy density, stability and existing infrastructure. Biomass is an abundant, renewable source of energy; however, utilizing it in a cost-effective way is still a substantial challenge. Lignocellulose is composed of three major biopolymers, namely cellulose, hemicellulose and lignin. Fast pyrolysis of biomass is recognized as an efficient and feasible process to selectively convert lignocellulose into a liquid fuel-bio-oil. However bio-oil from fast pyrolysis contains a large amount of oxygen, distributed in hundreds of oxygenates. These oxygenates are the cause of many negative properties, such as low heating value, high corrosiveness, high viscosity, and instability; they also greatly limit the application of bio-oil particularly as transportation fuel. Hydrocarbons derived from biomass are most attractive because of their high energy density and compatibility with the existing infrastructure. Thus, converting lignocellulose into transportation fuels via catalytic fast pyrolysis has attracted much attention. Many studies related to catalytic fast pyrolysis of biomass have been published. The main challenge of this process is the development of active and stable catalysts that can deal with a large variety of decomposition intermediates from lignocellulose. This review starts with the current understanding of the chemistry in fast pyrolysis of lignocellulose and focuses on the development of catalysts in catalytic fast pyrolysis. Recent progress in the experimental studies on catalytic fast pyrolysis of biomass is also summarized with the emphasis on bio-oil yields and quality. PMID:24801125

  4. Genetic and Quantitative Trait Locus Analysis for Bio-Oil Compounds after Fast Pyrolysis in Maize Cobs.

    PubMed

    Jeffrey, Brandon; Kuzhiyil, Najeeb; de Leon, Natalia; Lübberstedt, Thomas

    2016-01-01

    Fast pyrolysis has been identified as one of the biorenewable conversion platforms that could be a part of an alternative energy future, but it has not yet received the same attention as cellulosic ethanol in the analysis of genetic inheritance within potential feedstocks such as maize. Ten bio-oil compounds were measured via pyrolysis/gas chromatography-mass spectrometry (Py/GC-MS) in maize cobs. 184 recombinant inbred lines (RILs) of the intermated B73 x Mo17 (IBM) Syn4 population were analyzed in two environments, using 1339 markers, for quantitative trait locus (QTL) mapping. QTL mapping was performed using composite interval mapping with significance thresholds established by 1000 permutations at α = 0.05. 50 QTL were found in total across those ten traits with R2 values ranging from 1.7 to 5.8%, indicating a complex quantitative inheritance of these traits. PMID:26745365

  5. Genetic and Quantitative Trait Locus Analysis for Bio-Oil Compounds after Fast Pyrolysis in Maize Cobs.

    PubMed

    Jeffrey, Brandon; Kuzhiyil, Najeeb; de Leon, Natalia; Lübberstedt, Thomas

    2016-01-01

    Fast pyrolysis has been identified as one of the biorenewable conversion platforms that could be a part of an alternative energy future, but it has not yet received the same attention as cellulosic ethanol in the analysis of genetic inheritance within potential feedstocks such as maize. Ten bio-oil compounds were measured via pyrolysis/gas chromatography-mass spectrometry (Py/GC-MS) in maize cobs. 184 recombinant inbred lines (RILs) of the intermated B73 x Mo17 (IBM) Syn4 population were analyzed in two environments, using 1339 markers, for quantitative trait locus (QTL) mapping. QTL mapping was performed using composite interval mapping with significance thresholds established by 1000 permutations at α = 0.05. 50 QTL were found in total across those ten traits with R2 values ranging from 1.7 to 5.8%, indicating a complex quantitative inheritance of these traits.

  6. Genetic and Quantitative Trait Locus Analysis for Bio-Oil Compounds after Fast Pyrolysis in Maize Cobs

    PubMed Central

    Jeffrey, Brandon; Kuzhiyil, Najeeb; de Leon, Natalia; Lübberstedt, Thomas

    2016-01-01

    Fast pyrolysis has been identified as one of the biorenewable conversion platforms that could be a part of an alternative energy future, but it has not yet received the same attention as cellulosic ethanol in the analysis of genetic inheritance within potential feedstocks such as maize. Ten bio-oil compounds were measured via pyrolysis/gas chromatography-mass spectrometry (Py/GC-MS) in maize cobs. 184 recombinant inbred lines (RILs) of the intermated B73 x Mo17 (IBM) Syn4 population were analyzed in two environments, using 1339 markers, for quantitative trait locus (QTL) mapping. QTL mapping was performed using composite interval mapping with significance thresholds established by 1000 permutations at α = 0.05. 50 QTL were found in total across those ten traits with R2 values ranging from 1.7 to 5.8%, indicating a complex quantitative inheritance of these traits. PMID:26745365

  7. Phenolic compounds containing/neutral fractions extract and products derived therefrom from fractionated fast-pyrolysis oils

    DOEpatents

    Chum, Helena L.; Black, Stuart K.; Diebold, James P.; Kreibich, Roland E.

    1993-01-01

    A process for preparing phenol-formaldehyde novolak resins and molding compositions in which portions of the phenol normally contained in said resins are replaced by a phenol/neutral fractions extract obtained from fractionating fast-pyrolysis oils. The fractionation consists of a neutralization stage which can be carried out with aqueous solutions of bases or appropriate bases in the dry state, followed by solvent extraction with an organic solvent having at least a moderate solubility parameter and good hydrogen bonding capacity. Phenolic compounds-containing/neutral fractions extracts obtained by fractionating fast-pyrolysis oils from a lignocellulosic material, is such that the oil is initially in the pH range of 2-4, being neutralized with an aqueous bicarbonate base, and extracted into a solvent having a solubility parameter of approximately 8.4-9.11 [cal/cm.sup.3 ].sup.1/2 with polar components in the 1.8-3.0 range and hydrogen bonding components in the 2-4.8 range and the recovery of the product extract from the solvent with no further purification being needed for use in adhesives and molding compounds. The product extract is characterized as being a mixture of very different compounds having a wide variety of chemical functionalities, including phenolic, carbonyl, aldehyde, methoxyl, vinyl and hydroxyl. The use of the product extract on phenol-formaldehyde thermosetting resins is shown to have advantages over the conventional phenol-formaldehyde resins.

  8. The slow and fast pyrolysis of cherry seed.

    PubMed

    Duman, Gozde; Okutucu, Cagdas; Ucar, Suat; Stahl, Ralph; Yanik, Jale

    2011-01-01

    The slow and fast pyrolysis of cherry seeds (CWS) and cherry seeds shells (CSS) was studied in fixed-bed and fluidized bed reactors at different pyrolysis temperatures. The effects of reactor type and temperature on the yields and composition of products were investigated. In the case of fast pyrolysis, the maximum bio-oil yield was found to be about 44 wt% at pyrolysis temperature of 500 °C for both CWS and CSS, whereas the bio yields were of 21 and 15 wt% obtained at 500 °C from slow pyrolysis of CWS and CSS, respectively. Both temperature and reactor type affected the composition of bio-oils. The results showed that bio-oils obtained from slow pyrolysis of CWS and CSS can be used as a fuel for combustion systems in industry and the bio-oil produced from fast pyrolysis can be evaluated as a chemical feedstock.

  9. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels: Fast Pyrolysis and Hydrotreating Bio-Oil Pathway

    SciTech Connect

    Jones, Susanne B.; Meyer, Pimphan A.; Snowden-Swan, Lesley J.; Padmaperuma, Asanga B.; Tan, Eric; Dutta, Abhijit; Jacobson, Jacob; Cafferty, Kara

    2013-11-01

    This report describes a proposed thermochemical process for converting biomass into liquid transportation fuels via fast pyrolysis followed by hydroprocessing of the condensed pyrolysis oil. As such, the analysis does not reflect the current state of commercially-available technology but includes advancements that are likely, and targeted to be achieved by 2017. The purpose of this study is to quantify the economic impact of individual conversion targets to allow a focused effort towards achieving cost reductions.

  10. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels: Fast Pyrolysis and Hydrotreating Bio-oil Pathway

    SciTech Connect

    Jones, S.; Meyer, P.; Snowden-Swan, L.; Padmaperuma, A.; Tan, E.; Dutta, A.; Jacobson, J.; Cafferty, K.

    2013-11-01

    This report describes a proposed thermochemical process for converting biomass into liquid transportation fuels via fast pyrolysis followed by hydroprocessing of the condensed pyrolysis oil. As such, the analysis does not reflect the current state of commercially-available technology but includes advancements that are likely, and targeted to be achieved by 2017. The purpose of this study is to quantify the economic impact of individual conversion targets to allow a focused effort towards achieving cost reductions.

  11. Corrosivity Of Pyrolysis Oils

    SciTech Connect

    Keiser, James R; Bestor, Michael A; Lewis Sr, Samuel Arthur; Storey, John Morse

    2011-01-01

    Pyrolysis oils from several sources have been analyzed and used in corrosion studies which have consisted of exposing corrosion coupons and stress corrosion cracking U-bend samples. The chemical analyses have identified the carboxylic acid compounds as well as the other organic components which are primarily aromatic hydrocarbons. The corrosion studies have shown that raw pyrolysis oil is very corrosive to carbon steel and other alloys with relatively low chromium content. Stress corrosion cracking samples of carbon steel and several low alloy steels developed through-wall cracks after a few hundred hours of exposure at 50 C. Thermochemical processing of biomass can produce solid, liquid and/or gaseous products depending on the temperature and exposure time used for processing. The liquid product, known as pyrolysis oil or bio-oil, as produced contains a significant amount of oxygen, primarily as components of water, carboxylic acids, phenols, ketones and aldehydes. As a result of these constituents, these oils are generally quite acidic with a Total Acid Number (TAN) that can be around 100. Because of this acidity, bio-oil is reported to be corrosive to many common structural materials. Despite this corrosive nature, these oils have the potential to replace some imported petroleum. If the more acidic components can be removed from this bio-oil, it is expected that the oil could be blended with crude oil and then processed in existing petroleum refineries. The refinery products could be transported using customary routes - pipelines, barges, tanker trucks and rail cars - without a need for modification of existing hardware or construction of new infrastructure components - a feature not shared by ethanol.

  12. Process for fractionating fast-pyrolysis oils, and products derived therefrom

    DOEpatents

    Chum, Helena L.; Black, Stuart K.

    1990-01-01

    A process is disclosed for fractionating lignocellulosic materials fast-prolysis oils to produce phenol-containing compositions suitable for the manufacture of phenol-formaldehyde resins. The process includes admixing the oils with an organic solvent having at least a moderate solubility parameter and good hydrogen The United States Government has rights in this invention under Contract No. DE-AC02-83CH10093 between the United States Department of Energy and the Solar Energy Research Institute, a Division of the Midwest Research Institute.

  13. Selectively improving the bio-oil quality by catalytic fast pyrolysis of heavy-metal-polluted biomass: take copper (Cu) as an example.

    PubMed

    Liu, Wu-Jun; Tian, Ke; Jiang, Hong; Zhang, Xue-Song; Ding, Hong-Sheng; Yu, Han-Qing

    2012-07-17

    Heavy-metal-polluted biomass derived from phytoremediation or biosorption is widespread and difficult to be disposed of. In this work, simultaneous conversion of the waste woody biomass into bio-oil and recovery of Cu in a fast pyrolysis reactor were investigated. The results show that Cu can effectively catalyze the thermo-decomposition of biomass. Both the yield and high heating value (HHV) of the Cu-polluted fir sawdust biomass (Cu-FSD) derived bio-oil are significantly improved compared with those of the fir sawdust (FSD) derived bio-oil. The results of UV-vis and (1)H NMR spectra of bio-oil indicate pyrolytic lignin is further decomposed into small-molecular aromatic compounds by the catalysis of Cu, which is in agreement with the GC-MS results that the fractions of C7-C10 compounds in the bio-oil significantly increase. Inductively coupled plasma-atomic emission spectrometry, X-ray diffraction, and X-ray photoelectron spectroscopy analyses of the migration and transformation of Cu in the fast pyrolysis process show that more than 91% of the total Cu in the Cu-FSD is enriched in the char in the form of zerovalent Cu with a face-centered cubic crystalline phase. This study gives insight into catalytic fast pyrolysis of heavy metals, and demonstrates the technical feasibility of an eco-friendly process for disposal of heavy-metal-polluted biomass. PMID:22708628

  14. Characterization and Comparison of Fast Pyrolysis Bio-oils from Pinewood, Rapeseed Cake, and Wheat Straw Using 13C NMR and Comprehensive GC × GC

    PubMed Central

    2016-01-01

    Fast pyrolysis bio-oils are feasible energy carriers and a potential source of chemicals. Detailed characterization of bio-oils is essential to further develop its potential use. In this study, quantitative 13C nuclear magnetic resonance (13C NMR) combined with comprehensive two-dimensional gas chromatography (GC × GC) was used to characterize fast pyrolysis bio-oils originated from pinewood, wheat straw, and rapeseed cake. The combination of both techniques provided new information on the chemical composition of bio-oils for further upgrading. 13C NMR analysis indicated that pinewood-based bio-oil contained mostly methoxy/hydroxyl (≈30%) and carbohydrate (≈27%) carbons; wheat straw bio-oil showed to have high amount of alkyl (≈35%) and aromatic (≈30%) carbons, while rapeseed cake-based bio-oil had great portions of alkyl carbons (≈82%). More than 200 compounds were identified and quantified using GC × GC coupled to a flame ionization detector (FID) and a time of flight mass spectrometer (TOF-MS). Nonaromatics were the most abundant and comprised about 50% of the total mass of compounds identified and quantified via GC × GC. In addition, this analytical approach allowed the quantification of high value-added phenolic compounds, as well as of low molecular weight carboxylic acids and aldehydes, which exacerbate the unstable and corrosive character of the bio-oil.

  15. Characterization and Comparison of Fast Pyrolysis Bio-oils from Pinewood, Rapeseed Cake, and Wheat Straw Using 13C NMR and Comprehensive GC × GC

    PubMed Central

    2016-01-01

    Fast pyrolysis bio-oils are feasible energy carriers and a potential source of chemicals. Detailed characterization of bio-oils is essential to further develop its potential use. In this study, quantitative 13C nuclear magnetic resonance (13C NMR) combined with comprehensive two-dimensional gas chromatography (GC × GC) was used to characterize fast pyrolysis bio-oils originated from pinewood, wheat straw, and rapeseed cake. The combination of both techniques provided new information on the chemical composition of bio-oils for further upgrading. 13C NMR analysis indicated that pinewood-based bio-oil contained mostly methoxy/hydroxyl (≈30%) and carbohydrate (≈27%) carbons; wheat straw bio-oil showed to have high amount of alkyl (≈35%) and aromatic (≈30%) carbons, while rapeseed cake-based bio-oil had great portions of alkyl carbons (≈82%). More than 200 compounds were identified and quantified using GC × GC coupled to a flame ionization detector (FID) and a time of flight mass spectrometer (TOF-MS). Nonaromatics were the most abundant and comprised about 50% of the total mass of compounds identified and quantified via GC × GC. In addition, this analytical approach allowed the quantification of high value-added phenolic compounds, as well as of low molecular weight carboxylic acids and aldehydes, which exacerbate the unstable and corrosive character of the bio-oil. PMID:27668136

  16. Physicochemical properties of bio-oil and biochar produced by fast pyrolysis of stored single-pass corn stover and cobs.

    PubMed

    Shah, Ajay; Darr, Matthew J; Dalluge, Dustin; Medic, Dorde; Webster, Keith; Brown, Robert C

    2012-12-01

    Short harvest window of corn (Zea mays) stover necessitates its storage before utilization; however, there is not enough work towards exploring the fast pyrolysis behavior of stored biomass. This study investigated the yields and the physicochemical properties (proximate and ultimate analyses, higher heating values and acidity) of the fast pyrolysis products obtained from single-pass stover and cobs stored either inside a metal building or anaerobically within plastic wraps. Biomass samples were pyrolyzed in a 183 cm long and 2.1cm inner diameter free-fall fast pyrolysis reactor. Yields of bio-oil, biochar and non-condensable gases from different biomass samples were in the ranges of 45-55, 25-37 and 11-17 wt.%, respectively, with the highest bio-oil yield from the ensiled single-pass stover. Bio-oils generated from ensiled single-pass cobs and ensiled single-pass stover were, respectively, the most and the least acidic with the modified acid numbers of 95.0 and 65.2 mg g(-1), respectively.

  17. Two-step fast microwave-assisted pyrolysis of biomass for bio-oil production using microwave absorbent and HZSM-5 catalyst.

    PubMed

    Zhang, Bo; Zhong, Zhaoping; Xie, Qinglong; Liu, Shiyu; Ruan, Roger

    2016-07-01

    A novel technology of two-step fast microwave-assisted pyrolysis (fMAP) of corn stover for bio-oil production was investigated in the presence of microwave absorbent (SiC) and HZSM-5 catalyst. Effects of fMAP temperature and catalyst-to-biomass ratio on bio-oil yield and chemical components were examined. The results showed that this technology, employing microwave, microwave absorbent and HZSM-5 catalyst, was effective and promising for biomass fast pyrolysis. The fMAP temperature of 500°C was considered the optimum condition for maximum yield and best quality of bio-oil. Besides, the bio-oil yield decreased linearly and the chemical components in bio-oil were improved sequentially with the increase of catalyst-to-biomass ratio from 1:100 to 1:20. The elemental compositions of bio-char were also determined. Additionally, compared to one-step fMAP process, two-step fMAP could promote the bio-oil quality with a smaller catalyst-to-biomass ratio. PMID:27372139

  18. Two-step fast microwave-assisted pyrolysis of biomass for bio-oil production using microwave absorbent and HZSM-5 catalyst.

    PubMed

    Zhang, Bo; Zhong, Zhaoping; Xie, Qinglong; Liu, Shiyu; Ruan, Roger

    2016-07-01

    A novel technology of two-step fast microwave-assisted pyrolysis (fMAP) of corn stover for bio-oil production was investigated in the presence of microwave absorbent (SiC) and HZSM-5 catalyst. Effects of fMAP temperature and catalyst-to-biomass ratio on bio-oil yield and chemical components were examined. The results showed that this technology, employing microwave, microwave absorbent and HZSM-5 catalyst, was effective and promising for biomass fast pyrolysis. The fMAP temperature of 500°C was considered the optimum condition for maximum yield and best quality of bio-oil. Besides, the bio-oil yield decreased linearly and the chemical components in bio-oil were improved sequentially with the increase of catalyst-to-biomass ratio from 1:100 to 1:20. The elemental compositions of bio-char were also determined. Additionally, compared to one-step fMAP process, two-step fMAP could promote the bio-oil quality with a smaller catalyst-to-biomass ratio.

  19. Production of bio-oil rich in acetic acid and phenol from fast pyrolysis of palm residues using a fluidized bed reactor: Influence of activated carbons.

    PubMed

    Jeong, Jae-Yong; Lee, Uen-Do; Chang, Won-Seok; Jeong, Soo-Hwa

    2016-11-01

    In this study, palm residues were pyrolyzed in a bench-scale (3kg/h) fast pyrolysis plant equipped with a fluidized bed reactor and bio-oil separation system for the production of bio-oil rich in acetic acid and phenol. Pyrolysis experiments were performed to investigate the effects of reaction temperature and the types and amounts of activated carbon on the bio-oil composition. The maximum bio-oil yield obtained was approximately 47wt% at a reaction temperature of 515°C. The main compounds produced from the bio-oils were acetic acid, hydroxyacetone, phenol, and phenolic compounds such as cresol, xylenol, and pyrocatechol. When coal-derived activated carbon was applied, the acetic acid and phenol yields in the bio-oils reached 21 and 19wt%, respectively. Finally, bio-oils rich in acetic acid and phenol could be produced separately by using an in situ bio-oil separation system and activated carbon as an additive. PMID:27501032

  20. Production of bio-oil rich in acetic acid and phenol from fast pyrolysis of palm residues using a fluidized bed reactor: Influence of activated carbons.

    PubMed

    Jeong, Jae-Yong; Lee, Uen-Do; Chang, Won-Seok; Jeong, Soo-Hwa

    2016-11-01

    In this study, palm residues were pyrolyzed in a bench-scale (3kg/h) fast pyrolysis plant equipped with a fluidized bed reactor and bio-oil separation system for the production of bio-oil rich in acetic acid and phenol. Pyrolysis experiments were performed to investigate the effects of reaction temperature and the types and amounts of activated carbon on the bio-oil composition. The maximum bio-oil yield obtained was approximately 47wt% at a reaction temperature of 515°C. The main compounds produced from the bio-oils were acetic acid, hydroxyacetone, phenol, and phenolic compounds such as cresol, xylenol, and pyrocatechol. When coal-derived activated carbon was applied, the acetic acid and phenol yields in the bio-oils reached 21 and 19wt%, respectively. Finally, bio-oils rich in acetic acid and phenol could be produced separately by using an in situ bio-oil separation system and activated carbon as an additive.

  1. Pyrolysis of fast-growing aquatic biomass -Lemna minor (duckweed): Characterization of pyrolysis products.

    PubMed

    Muradov, Nazim; Fidalgo, Beatriz; Gujar, Amit C; T-Raissi, Ali

    2010-11-01

    The aim of this work was to conduct the experimental study of pyrolysis of fast-growing aquatic biomass -Lemna minor (commonly known as duckweed) with the emphasis on the characterization of main products of pyrolysis. The yields of pyrolysis gas, pyrolytic oil (bio-oil) and char were determined as a function of pyrolysis temperature and the sweep gas (Ar) flow rate. Thermogravimetric/differential thermogravimetric (TG/DTG) analyses of duckweed samples in inert (helium gas) and oxidative (air) atmosphere revealed differences in the TG/DTG patterns obtained for duckweed and typical plant biomass. The bio-oil samples produced by duckweed pyrolysis at different reaction conditions were analyzed using GC-MS technique. It was found that pyrolysis temperature had minor effect on the bio-oil product slate, but exerted major influence on the relative quantities of the individual pyrolysis products obtained. While, the residence time of the pyrolysis vapors had negligible effect on the yield and composition of the duckweed pyrolysis products.

  2. Hydrodeoxygenation of fast-pyrolysis bio-oils from various feedstocks using carbon-supported catalysts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While much work has been accomplished in developing hydrodeoxygenation technologies for bio-oil upgrading, very little translation has occurred to other biomass feedstocks and feedstock processing technologies. In this paper, we sought to elucidate the relationships between the feedstock type and th...

  3. Fast microwave-assisted catalytic co-pyrolysis of corn stover and scum for bio-oil production with CaO and HZSM-5 as the catalyst.

    PubMed

    Liu, Shiyu; Xie, Qinglong; Zhang, Bo; Cheng, Yanling; Liu, Yuhuan; Chen, Paul; Ruan, Roger

    2016-03-01

    This study investigated fast microwave-assisted catalytic co-pyrolysis of corn stover and scum for bio-oil production with CaO and HZSM-5 as the catalyst. Effects of reaction temperature, CaO/HZSM-5 ratio, and corn stover/scum ratio on co-pyrolysis product fractional yields and selectivity were investigated. Results showed that co-pyrolysis temperature was selected as 550°C, which provides the maximum bio-oil and aromatic yields. Mixed CaO and HZSM-5 catalyst with the weight ratio of 1:4 increased the aromatic yield to 35.77 wt.% of feedstock, which was 17% higher than that with HZSM-5 alone. Scum as the hydrogen donor, had a significant synergistic effect with corn stover to promote the production of bio-oil and aromatic hydrocarbons when the H/C(eff) value exceeded 1. The maximum yield of aromatic hydrocarbons (29.3 wt.%) were obtained when the optimal corn stover to scum ratio was 1:2. PMID:26773959

  4. Biofuel from fast pyrolysis and catalytic hydrodeoxygenation.

    SciTech Connect

    Elliott, Douglas C.

    2015-09-04

    This review addresses recent developments in biomass fast pyrolysis bio-oil upgrading by catalytic hydrotreating. The research in the field has expanded dramatically in the past few years with numerous new research groups entering the field while existing efforts from others expand. The issues revolve around the catalyst formulation and operating conditions. Much work in batch reactor tests with precious metal catalysts needs further validation to verify long-term operability in continuous flow systems. The effect of the low level of sulfur in bio-oil needs more study to be better understood. Utilization of the upgraded bio-oil for feedstock to finished fuels is still in an early stage of understanding.

  5. Consider Upgrading Pyrolysis Oils Into Renewale Fuels

    SciTech Connect

    Holmgren, J.; Marinangeli, R.; Nair, P.; Elliott, D.; Bain, R.

    2008-09-01

    To enable a sustained supply of biomass-based transportation fuels, the capability to process feedstocks outside the food chain must be developed. Significant industry efforts are underway to develop these new technologies, such as converting cellulosic wastes to ethanol. An alternate route being pursued involves using a fast pyrolysis operation to generate pyrolysis oil (pyoil for short). Current efforts are focused on developing a thermochemical platform to convert pyoils to renewable gasoline, diesel and jet fuel. The fuels produced will be indistinguishable from their fossil fuel counterparts and, therefore, will be compatible with existing transport and distribution infrastructure.

  6. Petroleomic Analysis of Bio- Oils from the Fast Pyrolysis or Biomass: Laser Desorption Ionization-Linear Ion Trap-Orbitrap mass Spectrometry Approach

    SciTech Connect

    Smith, Erica A.; Lee, Young Jin

    2010-08-23

    Fast pyrolysis of biomass produces bio-oils that can be upgraded into biofuels. Despite similar physical properties to petroleum, the chemical properties of bio-oils are quite different and their chemical compositions, particularly those of non-volatile compounds, are not well-known. Here, we report the first time attempt at analyzing bio-oils using high-resolution mass spectrometry (MS), which employed laser desorption ionization-linear ion trap-Orbitrap MS. Besides a few limitations, we could determine chemical compositions for over 100 molecular compounds in a bio-oil sample produced from the pyrolysis of a loblolly pine tree. These compounds consist of 3-6 oxygens and 9-17 double-bond equivalents (DBEs). Among those, O{sub 4} compounds with a DBE of 9-13 were most abundant. Unlike petroleum oils, the lack of nearby molecules within a {+-}2 Da mass window for major components enabled clear isolation of precursor ions for subsequent MS/MS structural investigations. Petroleomic analysis and a comparison to low-mass components in hydrolytic lignin suggest that they are dimers and trimers of depolymerized lignin.

  7. Effect of hot vapor filtration on the characterization of bio-oil from rice husks with fast pyrolysis in a fluidized-bed reactor.

    PubMed

    Chen, Tianju; Wu, Ceng; Liu, Ronghou; Fei, Wenting; Liu, Shiyu

    2011-05-01

    To produce high quality bio-oil from biomass using fast pyrolysis, rice husks were pyrolyzed in a 1-5 kg/h bench-scale fluidized-bed reactor. The effect of hot vapor filtration (HVF) was investigated to filter the solid particles and bio-char. The results showed that the total bio-oil yield decreased from 41.7% to 39.5% by weight and the bio-oil had a higher water content, higher pH, and lower alkali metal content when using HVF. One hundred and twelve different chemical compounds were detected by gas chromatography-mass spectrometry (GC-MS). The molecular weight of the chemical compounds from the condenser and the EP when the cyclone was coupled with HVF in the separation system decreased compared with those from the condenser and EP when only cyclone was used.

  8. Extent of pyrolysis impacts on fast pyrolysis biochar properties.

    PubMed

    Brewer, Catherine E; Hu, Yan-Yan; Schmidt-Rohr, Klaus; Loynachan, Thomas E; Laird, David A; Brown, Robert C

    2012-01-01

    A potential concern about the use of fast pyrolysis rather than slow pyrolysis biochars as soil amendments is that they may contain high levels of bioavailable C due to short particle residence times in the reactors, which could reduce the stability of biochar C and cause nutrient immobilization in soils. To investigate this concern, three corn ( L.) stover fast pyrolysis biochars prepared using different reactor conditions were chemically and physically characterized to determine their extent of pyrolysis. These biochars were also incubated in soil to assess their impact on soil CO emissions, nutrient availability, microorganism population growth, and water retention capacity. Elemental analysis and quantitative solid-state C nuclear magnetic resonance spectroscopy showed variation in O functional groups (associated primarily with carbohydrates) and aromatic C, which could be used to define extent of pyrolysis. A 24-wk incubation performed using a sandy soil amended with 0.5 wt% of corn stover biochar showed a small but significant decrease in soil CO emissions and a decrease in the bacteria:fungi ratios with extent of pyrolysis. Relative to the control soil, biochar-amended soils had small increases in CO emissions and extractable nutrients, but similar microorganism populations, extractable NO levels, and water retention capacities. Corn stover amendments, by contrast, significantly increased soil CO emissions and microbial populations, and reduced extractable NO. These results indicate that C in fast pyrolysis biochar is stable in soil environments and will not appreciably contribute to nutrient immobilization. PMID:22751053

  9. Extent of pyrolysis impacts on fast pyrolysis biochar properties.

    PubMed

    Brewer, Catherine E; Hu, Yan-Yan; Schmidt-Rohr, Klaus; Loynachan, Thomas E; Laird, David A; Brown, Robert C

    2012-01-01

    A potential concern about the use of fast pyrolysis rather than slow pyrolysis biochars as soil amendments is that they may contain high levels of bioavailable C due to short particle residence times in the reactors, which could reduce the stability of biochar C and cause nutrient immobilization in soils. To investigate this concern, three corn ( L.) stover fast pyrolysis biochars prepared using different reactor conditions were chemically and physically characterized to determine their extent of pyrolysis. These biochars were also incubated in soil to assess their impact on soil CO emissions, nutrient availability, microorganism population growth, and water retention capacity. Elemental analysis and quantitative solid-state C nuclear magnetic resonance spectroscopy showed variation in O functional groups (associated primarily with carbohydrates) and aromatic C, which could be used to define extent of pyrolysis. A 24-wk incubation performed using a sandy soil amended with 0.5 wt% of corn stover biochar showed a small but significant decrease in soil CO emissions and a decrease in the bacteria:fungi ratios with extent of pyrolysis. Relative to the control soil, biochar-amended soils had small increases in CO emissions and extractable nutrients, but similar microorganism populations, extractable NO levels, and water retention capacities. Corn stover amendments, by contrast, significantly increased soil CO emissions and microbial populations, and reduced extractable NO. These results indicate that C in fast pyrolysis biochar is stable in soil environments and will not appreciably contribute to nutrient immobilization.

  10. Methods and apparatuses for preparing upgraded pyrolysis oil

    DOEpatents

    Brandvold, Timothy A; Baird, Lance Awender; Frey, Stanley Joseph

    2013-10-01

    Methods and apparatuses for preparing upgraded pyrolysis oil are provided herein. In an embodiment, a method of preparing upgraded pyrolysis oil includes providing a biomass-derived pyrolysis oil stream having an original oxygen content. The biomass-derived pyrolysis oil stream is hydrodeoxygenated under catalysis in the presence of hydrogen to form a hydrodeoxygenated pyrolysis oil stream comprising a cyclic paraffin component. At least a portion of the hydrodeoxygenated pyrolysis oil stream is dehydrogenated under catalysis to form the upgraded pyrolysis oil.

  11. Screening acidic zeolites for catalytic fast pyrolysis of biomass and its components

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Zeolites have been shown to effectively promote cracking reactions during pyrolysis resulting in highly deoxygenated and hydrocarbon-rich compounds and stable pyrolysis oil product. Py/GC-MS was employed to study the catalytic fast pyrolysis of lignocellulosic biomass samples comprising oak, corn...

  12. Results of the IEA Round Robin on Viscosity and Aging of Fast Pyrolysis Bio-oils: Long-Term Tests and Repeatability

    SciTech Connect

    Elliott, Douglas C.; Oasmaa, Anja; Meier, Dietrich; Preto, Fernando; Bridgwater, Anthony V.

    2012-11-06

    An international round robin study of the viscosity and aging of fast pyrolysis bio-oil has been undertaken recently and this work is an outgrowth from that effort. Two bio-oil samples were distributed to the laboratories for aging tests and extended viscosity studies. The accelerated aging test was defined as the change in viscosity of a sealed sample of bio-oil held for 24 h at 80 °C. The test was repeated 10 times over consecutive days to determine the repeatability of the method. Other bio-oil samples were placed in storage at three temperatures, 21 °C, 4 °C and -17 °C for a period up to a year to evaluate the change in viscosity. The variation in the results of the aging test was shown to be low within a given laboratory. Storage of bio-oil under refrigeration can minimize the amount of change in viscosity. The accelerated aging test gives a measure of change similar to that of 6-12 months of storage at room temperature. These results can be helpful in setting standards for use of bio-oil, which is just coming into the marketplace.

  13. Comprehensive two dimensional gas chromatography with fast-quadrupole mass spectrometry detector analysis of polar compounds extracted from the bio-oil from the pyrolysis of sawdust.

    PubMed

    Schneider, Jaderson K; da Cunha, Michele E; dos Santos, Anaí L; Maciel, Gabriela P S; Brasil, Márcia C; Pinho, Andrea R; Mendes, Fábio L; Jacques, Rosângela A; Caramão, Elina B

    2014-08-22

    In this paper it is studied the most polar fractions of bio-oil produced by fast pyrolysis of Lignocel BK40-90 (sawdust from forest timber). The biomass was submitted to the pyrolysis in an existing FCC pilot plant that was adapted for this procedure. The equipment consists of a fluidized bed reactor with nitrogen injection. The unit operates with continuous biomass feeding and continuous solids circulation. The produced bio-oil was submitted to an aqueous alkaline extraction, isolating the acidic compounds that were analyzed by one-dimensional gas chromatography and comprehensive two-dimensional gas chromatography with quadrupole mass spectrometry detection (qMS). One hundred and thirty compounds (mainly phenols and ketones) were tentatively identified in the extract, some of them by the use of retention indexes. The main differences between chromatographic techniques were the substantial increasing in the peak capacity of GC×GC and the resolution of some co-elutions that occurred in GC/qMS. It is also possible to conclude that this extract is rich in important raw materials for the chemical industry and can be used for this end.

  14. Fast Pyrolysis Conversion Tests of Forest Concepts' Crumbles™. Final Report

    SciTech Connect

    Santosa, Daniel M.; Zacher, Alan H.; Eakin, David E.

    2012-04-02

    The report describes the work done by PNNL on assessing Forest Concept's engineered feedstock using the bench-scale continuous fast pyrolysis system to produce liquid bio-oil, char and gas. Specifically, bio-oil from the following process were evaluated for its yield and quality to determine impact of varying feed size parameters. Furthermore, the report also describes the handling process of the biomass and the challenges of operating the system with above average particle size.

  15. Fast pyrolysis of sweet soghum bagasse in a fluidized bed

    SciTech Connect

    Palm, M.; Peacocke, C.; Bridgewater, A.V.; Piskorz, J.; Scott, D.S.

    1993-12-31

    Samples of Italian sorghum bagasse were dried and ground and then pyrolyzed in the Waterloo Fast Pyrolysis bench scale reactor unit. Results were typical of agricultural grasses of this kind, and resembled those obtained from similar tests of sugar cane bagasse. A maximum liquid yield (dry feed basis) of 68% by weight of dry feed was achieved, with a corresponding char yield (ash included) of 16%. The high ash content of the bagasse (9.2%) gave a char with a very high ash content ({approx}50%), with calcium as the most abundant cation. Yields of hydroxyacetaldehyde were comparable to those obtained from softwoods. Deionized bagasse gave significant yields of anhydrosugars on pyrolysis. Sorghum bagasse appears to be a suitable feedstock, either for pyrolysis to yield an alternative fuel oil, or after pretreatment and pyrolysis, to yield a solution of fermentable sugars.

  16. Catalytic fast pyrolysis of mushroom waste to upgraded bio-oil products via pre-coked modified HZSM-5 catalyst.

    PubMed

    Wang, Jia; Zhong, Zhaoping; Ding, Kuan; Xue, Zeyu

    2016-07-01

    In this paper, HZSM-5 catalyst was modified by pre-coked to cover the strong external acid sites by methanol to olefins reaction, and the modified catalysts were then applied to conduct the catalyst fast pyrolysis of mushroom waste for upgraded bio-fuel production. Experiment results showed that the strong external acid sites and specific surface area decreased with pre-coked percentage increasing from 0% to 5.4%. Carbon yields of hydrocarbons increased at first and then decreased with a maximum value of 53.47%. While the obtained oxygenates presented an opposite variation tendency, and the minimum values could be reached when pre-coked percentage was 2.7%. Among the achieved hydrocarbons, toluene and p-xylene were found to be the main products, and the selectivity of p-xylene increased at first and then decreased with a maximum value of 34.22% when the pre-coked percentage was 1.3%, and the selectivity of toluene showed the opposite tendency with a minimum value of 25.47%. PMID:27065226

  17. Microwave-assisted catalytic fast pyrolysis of biomass for bio-oil production using chemical vapor deposition modified HZSM-5 catalyst.

    PubMed

    Zhang, Bo; Zhong, Zhaoping; Chen, Paul; Ruan, Roger

    2015-12-01

    Chemical vapor deposition with tetra-ethyl-orthosilicate as the modifier was applied to deposit the external acid sites of HZSM-5, and the modified HZSM-5 samples were used for the microwave-assisted catalytic fast pyrolysis (MACFP) of biomass for bio-oil production. The experimental results showed that the external acid sites of HZSM-5 decreased significantly when SiO2 deposited amount increased from 0% to 5.9%. For product distribution, the coke yield decreased, the oil fraction yield decreased at first and then increased, and the yields of water and gas first increased and then decreased over the range of SiO2 deposited amount studied. For chemical compositions in oil fraction, the relative contents of aliphatic hydrocarbons, aromatic hydrocarbons and oxygen-containing aromatic compounds first increased to maximum values and then decreased, while the relative content of oxygen-containing aliphatic compounds first decreased and then increased with increasing SiO2 deposited amount. PMID:26318925

  18. Biomass to hydrogen via fast pyrolysis and catalytic steam reforming

    SciTech Connect

    Chornet, E.; Wang, D.; Montane, D.

    1995-09-01

    Fast pyrolysis of biomass results in a pyrolytic oil which is a mixture of (a) carbohydrate-derived acids, aldehydes and polyols, (b) lignin-derived substituted phenolics, and (c) extractives-derived terpenoids and fatty acids. The conversion of this pyrolysis oil into H{sub 2} and CO{sub 2} is thermodynamically favored under appropriate steam reforming conditions. Our efforts have focused in understanding the catalysis of steam reforming which will lead to a successful process at reasonable steam/carbon ratios arid process severities. The experimental work, carried out at the laboratory and bench scale levels, has centered on the performance of Ni-based catalysts using model compounds as prototypes of the oxygenates present in the pyrolysis oil. Steam reforming of acetic acid, hydroxyacetaldehyde, furfural and syringol has been proven to proceed rapidly within a reasonable range of severities. Time-on-stream studies are now underway using a fixed bed barometric pressure reactor to ascertain the durability of the catalysts and thus substantiate the scientific and technical feasibility of the catalytic reforming option. Economic analyses are being carried out in parallel to determine the opportunity zones for the combined fast pyrolysis/steam reforming approach. A discussion on the current state of the project is presented.

  19. Review of NMR characterization of pyrolysis oils

    DOE PAGES

    Hao, Naijia; Ben, Haoxi; Yoo, Chang Geun; Adhikari, Sushil; Ragauskas, Arthur J.

    2016-08-24

    Here, pyrolysis of renewable biomass has been developed as a method to produce green fuels and chemicals in response to energy security concerns as well as to alleviate environmental issues incurred with fossil fuel usage. However, pyrolysis oils still have limited commercial application, mainly because unprocessed oils cannot be readily blended with current petroleum-based transportation fuels. To better understand these challenges, researchers have applied diverse characterization techniques in the development of bio-oil studies. In particular, nuclear magnetic resonance (NMR) is a key spectroscopic characterization method through analysis of bio-oil components. This review highlights the NMR strategies for pyrolysis oil characterizationmore » and critically discusses the applications of 1H, 13C, 31P, 19F, and two-dimensional (2-D NMR) analyses such as heteronuclear single quantum correlation (HSQC) in representative pyrolysis oil studies.« less

  20. Specialists' workshop on fast pyrolysis of biomass

    SciTech Connect

    Not Available

    1980-01-01

    This workshop brought together most of those who are currently working in or have published significant findings in the area of fast pyrolysis of biomass or biomass-derived materials, with the goal of attaining a better understanding of the dominant mechanisms which produce olefins, oxygenated liquids, char, and tars. In addition, background papers were given in hydrocarbon pyrolysis, slow pyrolysis of biomass, and techniques for powdered-feedstock preparation in order that the other papers did not need to introduce in depth these concepts in their presentations for continuity. In general, the authors were requested to present summaries of experimental data with as much interpretation of that data as possible with regard to mechanisms and process variables such as heat flux, temperatures, partial pressure, feedstock, particle size, heating rates, residence time, etc. Separate abstracts have been prepared of each presentation for inclusion in the Energy Data Base. (DMC)

  1. Total Acid Value Titration of Hydrotreated Biomass Fast Pyrolysis Oil: Determination of Carboxylic Acids and Phenolics with Multiple End-Point Detection

    SciTech Connect

    Christensen, E.; Alleman, T. L.; McCormick, R. L.

    2013-01-01

    Total acid value titration has long been used to estimate corrosive potential of petroleum crude oil and fuel oil products. The method commonly used for this measurement, ASTM D664, utilizes KOH in isopropanol as the titrant with potentiometric end point determination by pH sensing electrode and Ag/AgCl reference electrode with LiCl electrolyte. A natural application of the D664 method is titration of pyrolysis-derived bio-oil, which is a candidate for refinery upgrading to produce drop in fuels. Determining the total acid value of pyrolysis derived bio-oil has proven challenging and not necessarily amenable to the methodology employed for petroleum products due to the different nature of acids present. We presented an acid value titration for bio-oil products in our previous publication which also utilizes potentiometry using tetrabutylammonium hydroxide in place of KOH as the titrant and tetraethylammonium bromide in place of LiCl as the reference electrolyte to improve the detection of these types of acids. This method was shown to detect numerous end points in samples of bio-oil that were not detected by D664. These end points were attributed to carboxylic acids and phenolics based on the results of HPLC and GC-MS studies. Additional work has led to refinement of the method and it has been established that both carboxylic acids and phenolics can be determined accurately. Use of pH buffer calibration to determine half-neutralization potentials of acids in conjunction with the analysis of model compounds has allowed us to conclude that this titration method is suitable for the determination of total acid value of pyrolysis oil and can be used to differentiate and quantify weak acid species. The measurement of phenolics in bio-oil is subject to a relatively high limit of detection, which may limit the utility of titrimetric methodology for characterizing the acidic potential of pyrolysis oil and products.

  2. Thermogravimetric analysis and fast pyrolysis of Milkweed.

    PubMed

    Kim, Seung-Soo; Agblevor, Foster A

    2014-10-01

    Pyrolysis of Milkweed was carried out in a thermogravimetric analyzer and a bubbling fluidized bed reactor. Total liquid yield of Milkweed pyrolysis was between 40.74% and 44.19 wt% between 425 °C and 550 °C. The gas yield increased from 27.90 wt% to 33.33 wt% with increasing reaction temperature. The higher heating values (HHV) of the Milkweed bio-oil were relatively high (30.33-32.87 MJ/kg) and varied with reaction temperature, feeding rate and fluidization velocity. The selectivity for CO2 was highest within non-condensable gases, and the molar ratio of CO2/CO was about 3 at the different reaction conditions. The (13)C NMR analysis, of the bio-oil showed that the relative concentration carboxylic group and its derivatives was higher at 425 °C than 475 °C, which resulted in slightly higher oxygen content in bio-oil. The pH of aqueous phase obtained at 475 °C was 7.37 which is the highest reported for any lignocellulosic biomass pyrolysis oils. PMID:25064334

  3. Bactericidal Mechanism of Bio-oil Obtained from Fast Pyrolysis of Pinus densiflora Against Two Foodborne Pathogens, Bacillus cereus and Listeria monocytogenes.

    PubMed

    Patra, Jayanta Kumar; Hwang, Hyewon; Choi, Joon Weon; Baek, Kwang-Hyun

    2015-06-01

    Foodborne bacteria are the leading cause of food spoilage and other related diseases. In the present study, the antibacterial activity of bio-oil (BO) manufactured by fast pyrolysis of pinewood sawdust (Pinus densiflora Siebold and Zucc.) against two disease-causing foodborne pathogens (Bacillus cereus and Listeria monocytogenes) was evaluated. BO at a concentration of 1000 μg/disc was highly active against both B. cereus (10.0-10.6 mm-inhibition zone) and L. monocytogenes (10.6-12.0-mm inhibition zone). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration values of BO were 500 and 1000 μg/mL, respectively, for both pathogens. At the MIC concentration, BO exhibited an inhibitory effect on the viability of the bacterial pathogens. The mechanism of action of BO revealed its strong impairing effect on the membrane integrity of bacterial cells, which was confirmed by a marked release of 260-nm absorbing material, leakage of electrolytes and K(+) ions, and reduced capacity for osmoregulation under high salt concentration. Scanning electron microscopy clearly showed morphological alteration of the cell membrane due to the effect of BO. Overall, the results of this study suggest that BO exerts effective antibacterial potential against foodborne pathogens and can therefore potentially be used in food processing and preservation.

  4. Bactericidal Mechanism of Bio-oil Obtained from Fast Pyrolysis of Pinus densiflora Against Two Foodborne Pathogens, Bacillus cereus and Listeria monocytogenes.

    PubMed

    Patra, Jayanta Kumar; Hwang, Hyewon; Choi, Joon Weon; Baek, Kwang-Hyun

    2015-06-01

    Foodborne bacteria are the leading cause of food spoilage and other related diseases. In the present study, the antibacterial activity of bio-oil (BO) manufactured by fast pyrolysis of pinewood sawdust (Pinus densiflora Siebold and Zucc.) against two disease-causing foodborne pathogens (Bacillus cereus and Listeria monocytogenes) was evaluated. BO at a concentration of 1000 μg/disc was highly active against both B. cereus (10.0-10.6 mm-inhibition zone) and L. monocytogenes (10.6-12.0-mm inhibition zone). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration values of BO were 500 and 1000 μg/mL, respectively, for both pathogens. At the MIC concentration, BO exhibited an inhibitory effect on the viability of the bacterial pathogens. The mechanism of action of BO revealed its strong impairing effect on the membrane integrity of bacterial cells, which was confirmed by a marked release of 260-nm absorbing material, leakage of electrolytes and K(+) ions, and reduced capacity for osmoregulation under high salt concentration. Scanning electron microscopy clearly showed morphological alteration of the cell membrane due to the effect of BO. Overall, the results of this study suggest that BO exerts effective antibacterial potential against foodborne pathogens and can therefore potentially be used in food processing and preservation. PMID:25928035

  5. Fast Pyrolysis Process Development Unit for Validating Bench Scale Data

    SciTech Connect

    Brown, Robert C.; Jones, Samuel T.

    2010-03-31

    The purpose of this project was to prepare and operate a fast pyrolysis process development unit (PDU) that can validate experimental data generated at the bench scale. In order to do this, a biomass preparation system, a modular fast pyrolysis fluidized bed reactor, modular gas clean-up systems, and modular bio-oil recovery systems were designed and constructed. Instrumentation for centralized data collection and process control were integrated. The bio-oil analysis laboratory was upgraded with the addition of analytical equipment needed to measure C, H, O, N, S, P, K, and Cl. To provide a consistent material for processing through the fluidized bed fast pyrolysis reactor, the existing biomass preparation capabilities of the ISU facility needed to be upgraded. A stationary grinder was installed to reduce biomass from bale form to 5-10 cm lengths. A 25 kg/hr rotary kiln drier was installed. It has the ability to lower moisture content to the desired level of less than 20% wt. An existing forage chopper was upgraded with new screens. It is used to reduce biomass to the desired particle size of 2-25 mm fiber length. To complete the material handling between these pieces of equipment, a bucket elevator and two belt conveyors must be installed. The bucket elevator has been installed. The conveyors are being procured using other funding sources. Fast pyrolysis bio-oil, char and non-condensable gases were produced from an 8 kg/hr fluidized bed reactor. The bio-oil was collected in a fractionating bio-oil collection system that produced multiple fractions of bio-oil. This bio-oil was fractionated through two separate, but equally important, mechanisms within the collection system. The aerosols and vapors were selectively collected by utilizing laminar flow conditions to prevent aerosol collection and electrostatic precipitators to collect the aerosols. The vapors were successfully collected through a selective condensation process. The combination of these two mechanisms

  6. Life-Cycle Assessment of Pyrolysis Bio-Oil Production*

    SciTech Connect

    Steele, Philip; Puettmann, Maureen E.; Penmetsa, Venkata Kanthi; Cooper, Jerome E.

    2012-07-01

    As part ofthe Consortium for Research on Renewable Industrial Materials' Phase I life-cycle assessments ofbiofuels, lifecycle inventory burdens from the production of bio-oil were developed and compared with measures for residual fuel oil. Bio-oil feedstock was produced using whole southern pine (Pinus taeda) trees, chipped, and converted into bio-oil by fast pyrolysis. Input parameters and mass and energy balances were derived with Aspen. Mass and energy balances were input to SimaPro to determine the environmental performance of bio-oil compared with residual fuel oil as a heating fuel. Equivalent functional units of 1 MJ were used for demonstrating environmental preference in impact categories, such as fossil fuel use and global warming potential. Results showed near carbon neutrality of the bio-oil. Substituting bio-oil for residual fuel oil, based on the relative carbon emissions of the two fuels, estimated a reduction in CO2 emissions by 0.075 kg CO2 per MJ of fuel combustion or a 70 percent reduction in emission over residual fuel oil. The bio-oil production life-cycle stage consumed 92 percent of the total cradle-to-grave energy requirements, while feedstock collection, preparation, and transportation consumed 4 percent each. This model provides a framework to better understand the major factors affecting greenhouse gas emissions related to bio-oil production and conversion to boiler fuel during fast pyrolysis.

  7. A review of the chemical and physical mechanisms of the storage stability of fast pyrolysis bio-oils

    SciTech Connect

    Diebold, J.P.

    1999-01-27

    Understanding the fundamental chemical and physical aging mechanisms is necessary to learn how to produce a bio-oil that is more stable during shipping and storage. This review provides a basis for this understanding and identifies possible future research paths to produce bio-oils with better storage stability.

  8. CORROSIVITY AND COMPOSITION OF RAW AND TREATED PYROLYSIS OILS

    SciTech Connect

    Keiser, Jim; Howell, Michael; Connatser, Raynella M.; Lewis, Sam; Elliott, Douglas C.

    2012-10-14

    Fast pyrolysis offers a relatively low cost method of processing biomass to produce a liquid product that has the potential for conversion to several types of liquid fuels. The liquid product of fast pyrolysis, known as pyrolysis oil or bio-oil, contains a high oxygen content primarily in the form of water, carboxylic acids, phenols, ketones and aldehydes. These oils are typically very acidic with a Total Acid Number that is often in the range of 50 to 100, and previous studies have shown this material to be quite corrosive to common structural materials. Removal of at least some of the oxygen and conversion of this oil to a more useful product that is considerably less corrosive can be accomplished through a hydrogenation process. The product of such a treatment is considered to have the potential for blending with crude oil for processing in petroleum refineries. Corrosion studies and chemical analyses have been conducted using as produced bio-oil samples as well as samples that have been subjected to different levels of oxygen removal. Chemical analyses show treatment affected the concentrations of carboxylic acids contained in the oil, and corrosion studies showed a positive benefit of the oxygen removal. Results of these studies will be presented in this paper.

  9. Solar heated oil shale pyrolysis process

    NASA Technical Reports Server (NTRS)

    Qader, S. A. (Inventor)

    1985-01-01

    An improved system for recovery of a liquid hydrocarbon fuel from oil shale is presented. The oil shale pyrolysis system is composed of a retort reactor for receiving a bed of oil shale particules which are heated to pyrolyis temperature by means of a recycled solar heated gas stream. The gas stream is separated from the recovered shale oil and a portion of the gas stream is rapidly heated to pyrolysis temperature by passing it through an efficient solar heater. Steam, oxygen, air or other oxidizing gases can be injected into the recycle gas before or after the recycle gas is heated to pyrolysis temperature and thus raise the temperature before it enters the retort reactor. The use of solar thermal heat to preheat the recycle gas and optionally the steam before introducing it into the bed of shale, increases the yield of shale oil.

  10. Hydrocarbon Liquid Production from Biomass via Hot-Vapor-Filtered Fast Pyrolysis and Catalytic Hydroprocessing of the Bio-oil

    SciTech Connect

    Elliott, Douglas C.; Wang, Huamin; French, Richard; Deutch, Steve; Iisa, Kristiina

    2014-08-14

    Hot-vapor filtered bio-oils were produced from two different biomass feedstocks, oak and switchgrass, and the oils were evaluated in hydroprocessing tests for production of liquid hydrocarbon products. Hot-vapor filtering reduced bio-oil yields and increased gas yields. The yields of fuel carbon as bio-oil were reduced by ten percentage points by hot-vapor filtering for both feedstocks. The unfiltered bio-oils were evaluated alongside the filtered bio-oils using a fixed bed catalytic hydrotreating test. These tests showed good processing results using a two-stage catalytic hydroprocessing strategy. Equal-sized catalyst beds, a sulfided Ru on carbon catalyst bed operated at 220°C and a sulfided CoMo on alumina catalyst bed operated at 400°C were used with the entire reactor at 100 atm operating pressure. The products from the four tests were similar. The light oil phase product was fully hydrotreated so that nitrogen and sulfur were below the level of detection, while the residual oxygen ranged from 0.3 to 2.0%. The density of the products varied from 0.80 g/ml up to 0.86 g/ml over the period of the test with a correlated change of the hydrogen to carbon atomic ratio from 1.79 down to 1.57, suggesting some loss of catalyst activity through the test. These tests provided the data needed to assess the suite of liquid fuel products from the process and the activity of the catalyst in relationship to the existing catalyst lifetime barrier for the technology.

  11. Microwave induced pyrolysis of oil palm biomass.

    PubMed

    Salema, Arshad Adam; Ani, Farid Nasir

    2011-02-01

    The purpose of this paper was to carry out microwave induced pyrolysis of oil palm biomass (shell and fibers) with the help of char as microwave absorber (MA). Rapid heating and yield of microwave pyrolysis products such as bio-oil, char, and gas was found to depend on the ratio of biomass to microwave absorber. Temperature profiles revealed the heating characteristics of the biomass materials which can rapidly heat-up to high temperature within seconds in presence of MA. Some characterization of pyrolysis products was also presented. The advantage of this technique includes substantial reduction in consumption of energy, time and cost in order to produce bio-oil from biomass materials. Large biomass particle size can be used directly in microwave heating, thus saving grinding as well as moisture removal cost. A synergistic effect was found in using MA with oil palm biomass.

  12. Indirect heating pyrolysis of oil shale

    DOEpatents

    Jones, Jr., John B.; Reeves, Adam A.

    1978-09-26

    Hot, non-oxygenous gas at carefully controlled quantities and at predetermined depths in a bed of lump oil shale provides pyrolysis of the contained kerogen of the oil shale, and cool non-oxygenous gas is passed up through the bed to conserve the heat

  13. Aqueous extractive upgrading of bio-oils created by tail-gas reactive pyrolysis to produce pure hydrocarbons and phenols

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tail-gas reactive pyrolysis (TGRP) of biomass produces bio-oil that is lower in oxygen (~15 wt% total) and significantly more hydrocarbon-rich than traditional bio-oils or even catalytic fast pyrolysis. TGRP bio-oils lend themselves toward mild and inexpensive upgrading procedures. We isolated oxyge...

  14. Effects of various reactive gas atmospheres on the properties of bio-oil using microwave pyrolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fast pyrolysis of lignocellulosic biomass produces organic liquids (bio-oil), bio-char, water, and non-condensable gases. The non-condensable gas component typically contains syngas (H2, CO and CO2) as well as small hydrocarbons (CH4, C2H6, and C3H8). Tail Gas Reactive Pyrolysis (TGRP), a patent p...

  15. Effect of filter media size, mass flow rate and filtration stage number in a moving-bed granular filter on the yield and properties of bio-oil from fast pyrolysis of biomass.

    PubMed

    Paenpong, Chaturong; Inthidech, Sudsakorn; Pattiya, Adisak

    2013-07-01

    Fast pyrolysis of cassava rhizome was performed in a bench-scale fluidised-bed reactor unit incorporated with a cross-flow moving-bed granular filter. The objective of this research was to examine several process parameters including the granular size (425-1160 μm) and mass flow rate (0-12 g/min) as well as the number of the filtration stages (1-2 stages) on yields and properties of bio-oil. The results showed that the bio-oil yield decreased from 57.7 wt.% to 42.0-49.2 wt.% when increasing the filter media size, the mass flow rate and the filtration stage number. The effect of the process parameters on various properties of bio-oil is thoroughly discussed. In general, the bio-oil quality in terms of the solids content, ash content, initial viscosity, viscosity change and ageing rate could be enhanced by the hot vapour granular filtration. Therefore, bio-oil of high stability could be produced by the pyrolysis reactor configuration designed in this work.

  16. Fast microwave assisted pyrolysis of biomass using microwave absorbent.

    PubMed

    Borges, Fernanda Cabral; Du, Zhenyi; Xie, Qinglong; Trierweiler, Jorge Otávio; Cheng, Yanling; Wan, Yiqin; Liu, Yuhuan; Zhu, Rongbi; Lin, Xiangyang; Chen, Paul; Ruan, Roger

    2014-03-01

    A novel concept of fast microwave assisted pyrolysis (fMAP) in the presence of microwave absorbents was presented and examined. Wood sawdust and corn stover were pyrolyzed by means of microwave heating and silicon carbide (SiC) as microwave absorbent. The bio-oil was characterized, and the effects of temperature, feedstock loading, particle sizes, and vacuum degree were analyzed. For wood sawdust, a temperature of 480°C, 50 grit SiC, with 2g/min of biomass feeding, were the optimal conditions, with a maximum bio-oil yield of 65 wt.%. For corn stover, temperatures ranging from 490°C to 560°C, biomass particle sizes from 0.9mm to 1.9mm, and vacuum degree lower than 100mmHg obtained a maximum bio-oil yield of 64 wt.%. This study shows that the use of microwave absorbents for fMAP is feasible and a promising technology to improve the practical values and commercial application outlook of microwave based pyrolysis. PMID:24518438

  17. Fast microwave assisted pyrolysis of biomass using microwave absorbent.

    PubMed

    Borges, Fernanda Cabral; Du, Zhenyi; Xie, Qinglong; Trierweiler, Jorge Otávio; Cheng, Yanling; Wan, Yiqin; Liu, Yuhuan; Zhu, Rongbi; Lin, Xiangyang; Chen, Paul; Ruan, Roger

    2014-03-01

    A novel concept of fast microwave assisted pyrolysis (fMAP) in the presence of microwave absorbents was presented and examined. Wood sawdust and corn stover were pyrolyzed by means of microwave heating and silicon carbide (SiC) as microwave absorbent. The bio-oil was characterized, and the effects of temperature, feedstock loading, particle sizes, and vacuum degree were analyzed. For wood sawdust, a temperature of 480°C, 50 grit SiC, with 2g/min of biomass feeding, were the optimal conditions, with a maximum bio-oil yield of 65 wt.%. For corn stover, temperatures ranging from 490°C to 560°C, biomass particle sizes from 0.9mm to 1.9mm, and vacuum degree lower than 100mmHg obtained a maximum bio-oil yield of 64 wt.%. This study shows that the use of microwave absorbents for fMAP is feasible and a promising technology to improve the practical values and commercial application outlook of microwave based pyrolysis.

  18. Production of bio-based phenolic resin and activated carbon from bio-oil and biochar derived from fast pyrolysis of palm kernel shells.

    PubMed

    Choi, Gyung-Goo; Oh, Seung-Jin; Lee, Soon-Jang; Kim, Joo-Sik

    2015-02-01

    A fraction of palm kernel shells (PKS) was pyrolyzed in a fluidized bed reactor. The experiments were performed in a temperature range of 479-555 °C to produce bio-oil, biochar, and gas. All the bio-oils were analyzed quantitatively and qualitatively by GC-FID and GC-MS. The maximum content of phenolic compounds in the bio-oil was 24.8 wt.% at ∼500 °C. The maximum phenol content in the bio-oil, as determined by the external standard method, was 8.1 wt.%. A bio-oil derived from the pyrolysis of PKS was used in the synthesis of phenolic resin, showing that the bio-oil could substitute for fossil phenol up to 25 wt.%. The biochar was activated using CO2 at a final activation temperature of 900 °C with different activation time (1-3 h) to produce activated carbon. Activated carbons produced were microporous, and the maximum surface area of the activated carbons produced was 807 m(2)/g. PMID:25227587

  19. Production of bio-based phenolic resin and activated carbon from bio-oil and biochar derived from fast pyrolysis of palm kernel shells.

    PubMed

    Choi, Gyung-Goo; Oh, Seung-Jin; Lee, Soon-Jang; Kim, Joo-Sik

    2015-02-01

    A fraction of palm kernel shells (PKS) was pyrolyzed in a fluidized bed reactor. The experiments were performed in a temperature range of 479-555 °C to produce bio-oil, biochar, and gas. All the bio-oils were analyzed quantitatively and qualitatively by GC-FID and GC-MS. The maximum content of phenolic compounds in the bio-oil was 24.8 wt.% at ∼500 °C. The maximum phenol content in the bio-oil, as determined by the external standard method, was 8.1 wt.%. A bio-oil derived from the pyrolysis of PKS was used in the synthesis of phenolic resin, showing that the bio-oil could substitute for fossil phenol up to 25 wt.%. The biochar was activated using CO2 at a final activation temperature of 900 °C with different activation time (1-3 h) to produce activated carbon. Activated carbons produced were microporous, and the maximum surface area of the activated carbons produced was 807 m(2)/g.

  20. Biomass Feedstocks for Renewable Fuel Production: A review of the impacts of feedstock and pretreatment on the yield and product distribution of fast pyrolysis bio-oils and vapors

    SciTech Connect

    Daniel Carpenter; Stefan Czernik; Whitney Jablonski; Tyler L. Westover

    2014-02-01

    Renewable transportation fuels from biomass have the potential to substantially reduce greenhouse gas emissions and diversify global fuel supplies. Thermal conversion by fast pyrolysis converts up to 75% of the starting plant material (and its energy content) to a bio-oil intermediate suitable for upgrading to motor fuel. Woody biomass, by far the most widely-used and researched material, is generally preferred in thermochemical processes due to its low ash content and high quality bio-oil produced. However, the availability and cost of biomass resources, e.g. forest residues, agricultural residues, or dedicated energy crops, vary greatly by region and will be key determinates in the overall economic feasibility of a pyrolysis-to-fuel process. Formulation or blending of various feedstocks, combined with thermal and/or chemical pretreatment, could facilitate a consistent, high-volume, lower-cost biomass supply to an emerging biofuels industry. However, the impact of biomass type and pretreatment conditions on bio-oil yield and quality, and the potential process implications, are not well understood. This literature review summarizes the current state of knowledge regarding the effect of feedstock and pretreatments on the yield, product distribution, and upgradability of bio-oil.

  1. Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case

    SciTech Connect

    Jones, Susanne B.; Valkenburt, Corinne; Walton, Christie W.; Elliott, Douglas C.; Holladay, Johnathan E.; Stevens, Don J.; Kinchin, Christopher; Czernik, Stefan

    2009-02-28

    The purpose of this study is to evaluate a processing pathway for converting biomass into infrastructure-compatible hydrocarbon biofuels. This design case investigates production of fast pyrolysis oil from biomass and the upgrading of that bio-oil as a means for generating infrastructure-ready renewable gasoline and diesel fuels. This study has been conducted using the same methodology and underlying basis assumptions as the previous design cases for ethanol. The overall concept and specific processing steps were selected because significant data on this approach exists in the public literature. The analysis evaluates technology that has been demonstrated at the laboratory scale or is in early stages of commercialization. The fast pyrolysis of biomass is already at an early stage of commercialization, while upgrading bio-oil to transportation fuels has only been demonstrated in the laboratory and at small engineering development scale. Advanced methods of pyrolysis, which are under development, are not evaluated in this study. These may be the subject of subsequent analysis by OBP. The plant is designed to use 2000 dry metric tons/day of hybrid poplar wood chips to produce 76 million gallons/year of gasoline and diesel. The processing steps include: 1.Feed drying and size reduction 2.Fast pyrolysis to a highly oxygenated liquid product 3.Hydrotreating of the fast pyrolysis oil to a stable hydrocarbon oil with less than 2% oxygen 4.Hydrocracking of the heavy portion of the stable hydrocarbon oil 5.Distillation of the hydrotreated and hydrocracked oil into gasoline and diesel fuel blendstocks 6. Hydrogen production to support the hydrotreater reactors. The “as received” feedstock to the pyrolysis plant will be “reactor ready.” This development will likely further decrease the cost of producing the fuel. An important sensitivity is the possibility of co-locating the plant with an existing refinery. In this case, the plant consists only of the first three steps

  2. Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case

    SciTech Connect

    Jones, Susanne B.; Valkenburt, Corinne; Walton, Christie W.; Elliott, Douglas C.; Holladay, Johnathan E.; Stevens, Don J.; Kinchin, Christopher; Czernik, Stefan

    2009-02-25

    The purpose of this study is to evaluate a processing pathway for converting biomass into infrastructure-compatible hydrocarbon biofuels. This design case investigates production of fast pyrolysis oil from biomass and the upgrading of that bio-oil as a means for generating infrastructure-ready renewable gasoline and diesel fuels. This study has been conducted using similar methodology and underlying basis assumptions as the previous design cases for ethanol. The overall concept and specific processing steps were selected because significant data on this approach exists in the public literature. The analysis evaluates technology that has been demonstrated at the laboratory scale or is in early stages of commercialization. The fast pyrolysis of biomass is already at an early stage of commercialization, while upgrading bio-oil to transportation fuels has only been demonstrated in the laboratory and at small engineering development scale. Advanced methods of pyrolysis, which are under development, are not evaluated in this study. These may be the subject of subsequent analysis by OBP. The plant is designed to use 2000 dry metric tons/day of hybrid poplar wood chips to produce 76 million gallons/year of gasoline and diesel. The processing steps include: 1.Feed drying and size reduction 2.Fast pyrolysis to a highly oxygenated liquid product 3.Hydrotreating of the fast pyrolysis oil to a stable hydrocarbon oil with less than 2% oxygen 4.Hydrocracking of the heavy portion of the stable hydrocarbon oil 5.Distillation of the hydrotreated and hydrocracked oil into gasoline and diesel fuel blendstocks 6. Hydrogen production to support the hydrotreater reactors. The "as received" feedstock to the pyrolysis plant will be "reactor ready". This development will likely further decrease the cost of producing the fuel. An important sensitivity is the possibility of co-locating the plant with an existing refinery. In this case, the plant consists only of the first three steps: feed

  3. Fast Pyrolysis of Wood for Biofuels: Spatiotemporally Resolved Diffuse Reflectance In situ Spectroscopy of Particles.

    PubMed

    Paulsen, Alex D; Hough, Blake R; Williams, C Luke; Teixeira, Andrew R; Schwartz, Daniel T; Pfaendtner, Jim; Dauenhauer, Paul J

    2014-02-20

    Fast pyrolysis of woody biomass is a promising process capable of producing renewable transportation fuels to replace gasoline, diesel, and chemicals currently derived from nonrenewable sources. However, biomass pyrolysis is not yet economically viable and requires significant optimization before it can contribute to the existing oil-based transportation system. One method of optimization uses detailed kinetic models for predicting the products of biomass fast pyrolysis, which serve as the basis for the design of pyrolysis reactors capable of producing the highest value products. The goal of this work is to improve upon current pyrolysis models, usually derived from experiments with low heating rates and temperatures, by developing models that account for both transport and pyrolysis decomposition kinetics at high heating rates and high temperatures (>400 °C). A new experimental technique is proposed herein: spatiotemporally resolved diffuse reflectance in situ spectroscopy of particles (STR-DRiSP), which is capable of measuring biomass composition during fast pyrolysis with high spatial (10 μm) and temporal (1 ms) resolution. Compositional data were compared with a comprehensive 2D single-particle model, which incorporated a multistep, semiglobal reaction mechanism, prescribed particle shrinkage, and thermophysical properties that varied with temperature, composition, and orientation. The STR-DRiSP technique can be used to determine the transport-limited kinetic parameters of biomass decomposition for a wide variety of biomass feedstocks. PMID:24678023

  4. Effect of hydrothermal pretreatment on properties of bio-oil produced from fast pyrolysis of eucalyptus wood in a fluidized bed reactor.

    PubMed

    Chang, Sheng; Zhao, Zengli; Zheng, Anqing; Li, Xiaoming; Wang, Xiaobo; Huang, Zhen; He, Fang; Li, Haibin

    2013-06-01

    Eucalyptus wood powder was first subjected to hydrothermal pretreatment in a high-pressure reactor at 160-190°C, and subsequently fast pyrolyzed in a fluidized bed reactor at 500°C to obtain high quality bio-oil. This study focused on investigating effect of hydrothermal pretreatment on bio-oil properties. Hemicellulose and some metals were effectively removed from eucalyptus wood, while cellulose content was enhanced. No significant charring and carbonization of constituents was observed during hydrothermal pretreatment. Thus pretreated eucalyptus wood gave higher bio-oil yield than original eucalyptus wood. Chemical composition of bio-oil was examined by GC/MS and (13)C NMR analyses. Bio-oil produced from pretreated eucalyptus wood exhibited lower contents of ketones and acids, while much higher levoglucosan content than bio-oil produced from original eucalyptus wood, which would help to improve thermal stability of bio-oil and extract levoglucosan from bio-oil. Hydrothermal pretreatment also improved bio-oil fuel quality through lowering water content and enhancing heating value.

  5. Effect of hydrothermal pretreatment on properties of bio-oil produced from fast pyrolysis of eucalyptus wood in a fluidized bed reactor.

    PubMed

    Chang, Sheng; Zhao, Zengli; Zheng, Anqing; Li, Xiaoming; Wang, Xiaobo; Huang, Zhen; He, Fang; Li, Haibin

    2013-06-01

    Eucalyptus wood powder was first subjected to hydrothermal pretreatment in a high-pressure reactor at 160-190°C, and subsequently fast pyrolyzed in a fluidized bed reactor at 500°C to obtain high quality bio-oil. This study focused on investigating effect of hydrothermal pretreatment on bio-oil properties. Hemicellulose and some metals were effectively removed from eucalyptus wood, while cellulose content was enhanced. No significant charring and carbonization of constituents was observed during hydrothermal pretreatment. Thus pretreated eucalyptus wood gave higher bio-oil yield than original eucalyptus wood. Chemical composition of bio-oil was examined by GC/MS and (13)C NMR analyses. Bio-oil produced from pretreated eucalyptus wood exhibited lower contents of ketones and acids, while much higher levoglucosan content than bio-oil produced from original eucalyptus wood, which would help to improve thermal stability of bio-oil and extract levoglucosan from bio-oil. Hydrothermal pretreatment also improved bio-oil fuel quality through lowering water content and enhancing heating value. PMID:23624050

  6. Fast pyrolysis of 13C-labeled cellobioses: gaining insights into the mechanisms of fast pyrolysis of carbohydrates.

    PubMed

    Degenstein, John C; Murria, Priya; Easton, Mckay; Sheng, Huaming; Hurt, Matt; Dow, Alex R; Gao, Jinshan; Nash, John J; Agrawal, Rakesh; Delgass, W Nicholas; Ribeiro, Fabio H; Kenttämaa, Hilkka I

    2015-02-01

    A fast-pyrolysis probe/tandem mass spectrometer combination was utilized to determine the initial fast-pyrolysis products for four different selectively (13)C-labeled cellobiose molecules. Several products are shown to result entirely from fragmentation of the reducing end of cellobiose, leaving the nonreducing end intact in these products. These findings are in disagreement with mechanisms proposed previously. Quantum chemical calculations were used to identify feasible low-energy pathways for several products. These results provide insights into the mechanisms of fast pyrolysis of cellulose.

  7. Catalytic Fast Pyrolysis for the Production of the Hydrocarbon Biofuels

    SciTech Connect

    Nimlos, M. R.; Robichaud, D. J.; Mukaratate, C.; Donohoe, B. S.; Iisa, K.

    2013-01-01

    Catalytic fast pyrolysis is a promising technique for conversion of biomass into hydrocarbons for use as transportation fuels. For over 30 years this process has been studied and it has been demonstrated that oils can be produced with high concentrations of hydrocarbons and low levels of oxygen. However, the yields from this type of conversion are typically low and the catalysts, which are often zeolites, are quickly deactivated through coking. In addition, the hydrocarbons produced are primarily aromatic molecules (benzene, toluene, xylene) that not desirable for petroleum refineries and are not well suited for diesel or jet engines. The goals of our research are to develop new multifunction catalysts for the production of gasoline, diesel and jet fuel range molecules and to improve process conditions for higher yields and low coking rates. We are investigating filtration and the use of hydrogen donor molecules to improve catalyst performance.

  8. Methods for deoxygenating biomass-derived pyrolysis oil

    SciTech Connect

    Brandvold, Timothy A.

    2015-07-14

    Methods for deoxygenating a biomass-derived pyrolysis oil are provided. A method comprising the steps of diluting the biomass-derived pyrolysis oil with a phenolic-containing diluent to form a diluted pyoil-phenolic feed is provided. The diluted pyoil-phenolic feed is contacted with a deoxygenating catalyst in the presence of hydrogen at hydroprocessing conditions effective to form a low-oxygen biomass-derived pyrolysis oil effluent.

  9. Preliminary Economics for the Production of Pyrolysis Oil from Lignin in a Cellulosic Ethanol Biorefinery

    SciTech Connect

    Jones, Susanne B.; Zhu, Yunhua

    2009-04-01

    Cellulosic ethanol biorefinery economics can be potentially improved by converting by-product lignin into high valued products. Cellulosic biomass is composed mainly of cellulose, hemicellulose and lignin. In a cellulosic ethanol biorefinery, cellulose and hemicellullose are converted to ethanol via fermentation. The raw lignin portion is the partially dewatered stream that is separated from the product ethanol and contains lignin, unconverted feed and other by-products. It can be burned as fuel for the plant or can be diverted into higher-value products. One such higher-valued product is pyrolysis oil, a fuel that can be further upgraded into motor gasoline fuels. While pyrolysis of pure lignin is not a good source of pyrolysis liquids, raw lignin containing unconverted feed and by-products may have potential as a feedstock. This report considers only the production of the pyrolysis oil and does not estimate the cost of upgrading that oil into synthetic crude oil or finished gasoline and diesel. A techno-economic analysis for the production of pyrolysis oil from raw lignin was conducted. comparing two cellulosic ethanol fermentation based biorefineries. The base case is the NREL 2002 cellulosic ethanol design report case where 2000 MTPD of corn stover is fermented to ethanol (NREL 2002). In the base case, lignin is separated from the ethanol product, dewatered, and burned to produce steam and power. The alternate case considered in this report dries the lignin, and then uses fast pyrolysis to generate a bio-oil product. Steam and power are generated in this alternate case by burning some of the corn stover feed, rather than fermenting it. This reduces the annual ethanol production rate from 69 to 54 million gallons/year. Assuming a pyrolysis oil value similar to Btu-adjusted residual oil, the estimated ethanol selling price ranges from $1.40 to $1.48 (2007 $) depending upon the yield of pyrolysis oil. This is considerably above the target minimum ethanol selling

  10. Methods for deoxygenating biomass-derived pyrolysis oil

    DOEpatents

    Baird, Lance Awender; Brandvold, Timothy A.

    2015-06-30

    Methods for deoxygenating a biomass-derived pyrolysis oil are provided. A method for deoxygenating a biomass-derived pyrolysis oil comprising the steps of combining a biomass-derived pyrolysis oil stream with a heated low-oxygen-pyoil diluent recycle stream to form a heated diluted pyoil feed stream is provided. The heated diluted pyoil feed stream has a feed temperature of about 150.degree. C. or greater. The heated diluted pyoil feed stream is contacted with a first deoxygenating catalyst in the presence of hydrogen at first hydroprocessing conditions effective to form a low-oxygen biomass-derived pyrolysis oil effluent.

  11. Pyrolysis oil combustion in a horizontal box furnace with an externally mixed nozzle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Combustion characteristics of neat biomass fast-pyrolysis oil were studied in a horizontal combustion chamber with a rectangular cross-section. An air-assisted externally mixed nozzle known to successfully atomize heavy fuel oils was installed in a modified nominal 100 kW (350,000 BTU/h nominal cap...

  12. CONVERTING PYROLYSIS OILS TO RENEWABLE TRANSPORT FUELS: PROCESSING CHALLENGES & OPPORTUNITIES

    SciTech Connect

    Holmgren, Jennifer; Nair, Prabhakar N.; Elliott, Douglas C.; Bain, Richard; Marinangelli, Richard

    2008-03-11

    To enable a sustained supply of biomass-based transportation fuels, the capability to process feedstocks outside the food chain must be developed. Significant industry efforts are underway to develop these new technologies, such as converting cellulosic wastes to ethanol. UOP, in partnership with U.S. Government labs, NREL and PNNL, is developing an alternate route using cellulosic feedstocks. The waste biomass is first subjected to a fast pyrolysis operation to generate pyrolysis oil (pyoil for short). Current efforts are focused on developing a thermochemical platform to convert pyoils to renewable gasoline, diesel and jet fuel. The fuels produced will be indistinguishable from their fossil fuel counterparts and, therefore, will be compatible with existing transport and distribution infrastructure.

  13. Processes for converting lignocellulosics to reduced acid pyrolysis oil

    DOEpatents

    Kocal, Joseph Anthony; Brandvold, Timothy A

    2015-01-06

    Processes for producing reduced acid lignocellulosic-derived pyrolysis oil are provided. In a process, lignocellulosic material is fed to a heating zone. A basic solid catalyst is delivered to the heating zone. The lignocellulosic material is pyrolyzed in the presence of the basic solid catalyst in the heating zone to create pyrolysis gases. The oxygen in the pyrolysis gases is catalytically converted to separable species in the heating zone. The pyrolysis gases are removed from the heating zone and are liquefied to form the reduced acid lignocellulosic-derived pyrolysis oil.

  14. Electrocatalytic upgrading of biomass pyrolysis oils to chemical and fuel

    NASA Astrophysics Data System (ADS)

    Lam, Chun Ho

    The present project's aim is to liquefy biomass through fast pyrolysis and then upgrade the resulting "bio-oil" to renewable fuels and chemicals by intensifying its energy content using electricity. This choice reflects three points: (a) Liquid hydrocarbons are and will long be the most practical fuels and chemical feedstocks because of their energy density (both mass and volume basis), their stability and relative ease of handling, and the well-established infrastructure for their processing, distribution and use; (b) In the U.S., the total carbon content of annually harvestable, non-food biomass is significantly less than that in a year's petroleum usage, so retention of plant-captured carbon is a priority; and (c) Modern technologies for conversion of sunlight into usable energy forms---specifically, electrical power---are already an order of magnitude more efficient than plants are at storing solar energy in chemical form. Biomass fast pyrolysis (BFP) generates flammable gases, char, and "bio-oil", a viscous, corrosive, and highly oxygenated liquid consisting of large amounts of acetic acid and water together with hundreds of other organic compounds. With essentially the same energy density as biomass and a tendency to polymerize, this material cannot practically be stored or transported long distances. It must be upgraded by dehydration, deoxygenation, and hydrogenation to make it both chemically and energetically compatible with modern vehicles and fuels. Thus, this project seeks to develop low cost, general, scalable, robust electrocatalytic methods for reduction of bio-oil into fuels and chemicals.

  15. Entrained-Flow, Fast Ablative Pyrolysis of Biomass - Annual Report, 1 December 1984 - 31 December 1985

    SciTech Connect

    Diebold, J. P.; Scahill, J. W.; Evans, R. J.

    1986-07-01

    The ablative, fast pyrolysis system was relocated to SERI's new, permanent Field Test Laboratory. Pyrolysis system modifications were made to increase the energy available to the vortex reactor and to enhance the collection efficiency of primary pyrolysis vapors. Mathematical modeling of the vapor cracker has resulted in the ability to accurately predict experimental results with respect to the thermal cracking of the primary vapors, the generation of noncondensible gases, and the gas composition. The computer algorithm of this model can be readily used to perform experimental simulation and/or reactor scale-up due to its fundamental nature. Preliminary screening tests with pure ZSM-5 zeolite catalyst, supplied by Mobil Research and Development Corporation, have shown promise for the conversion of primary pyrolysis oil vapors to aromatic hydrocarbons; i.e., gasoline.

  16. Feedstock Supply System Design and Economics for Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels Conversion Pathway: Fast Pyrolysis and Hydrotreating Bio-Oil Pathway "The 2017 Design Case"

    SciTech Connect

    Kevin L. Kenney; Kara G. Cafferty; Jacob J. Jacobson; Ian J. Bonner; Garold L. Gresham; J. Richard Hess; William A. Smith; David N. Thompson; Vicki S. Thompson; Jaya Shankar Tumuluru; Neal Yancey

    2014-01-01

    The U.S. Department of Energy promotes the production of liquid fuels from lignocellulosic biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass sustainable supply, logistics, conversion, and overall system sustainability. As part of its involvement in this program, Idaho National Laboratory (INL) investigates the feedstock logistics economics and sustainability of these fuels. Between 2000 and 2012, INL quantified and the economics and sustainability of moving biomass from the field or stand to the throat of the conversion process using conventional equipment and processes. All previous work to 2012 was designed to improve the efficiency and decrease costs under conventional supply systems. The 2012 programmatic target was to demonstrate a biomass logistics cost of $55/dry Ton for woody biomass delivered to fast pyrolysis conversion facility. The goal was achieved by applying field and process demonstration unit-scale data from harvest, collection, storage, preprocessing, handling, and transportation operations into INL’s biomass logistics model.

  17. Fuel and fuel blending components from biomass derived pyrolysis oil

    DOEpatents

    McCall, Michael J.; Brandvold, Timothy A.; Elliott, Douglas C.

    2012-12-11

    A process for the conversion of biomass derived pyrolysis oil to liquid fuel components is presented. The process includes the production of diesel, aviation, and naphtha boiling point range fuels or fuel blending components by two-stage deoxygenation of the pyrolysis oil and separation of the products.

  18. Fast pyrolysis of eucalyptus waste in a conical spouted bed reactor.

    PubMed

    Amutio, Maider; Lopez, Gartzen; Alvarez, Jon; Olazar, Martin; Bilbao, Javier

    2015-10-01

    The fast pyrolysis of a forestry sector waste composed of Eucalyptus globulus wood, bark and leaves has been studied in a continuous bench-scale conical spouted bed reactor plant at 500°C. A high bio-oil yield of 75.4 wt.% has been obtained, which is explained by the suitable features of this reactor for biomass fast pyrolysis. Gas and bio-oil compositions have been determined by chromatographic techniques, and the char has also been characterized. The bio-oil has a water content of 35 wt.%, and phenols and ketones are the main organic compounds, with a concentration of 26 and 10 wt.%, respectively. In addition, a kinetic study has been carried out in thermobalance using a model of three independent and parallel reactions that allows quantifying this forestry waste's content of hemicellulose, cellulose and lignin.

  19. Fast pyrolysis of eucalyptus waste in a conical spouted bed reactor.

    PubMed

    Amutio, Maider; Lopez, Gartzen; Alvarez, Jon; Olazar, Martin; Bilbao, Javier

    2015-10-01

    The fast pyrolysis of a forestry sector waste composed of Eucalyptus globulus wood, bark and leaves has been studied in a continuous bench-scale conical spouted bed reactor plant at 500°C. A high bio-oil yield of 75.4 wt.% has been obtained, which is explained by the suitable features of this reactor for biomass fast pyrolysis. Gas and bio-oil compositions have been determined by chromatographic techniques, and the char has also been characterized. The bio-oil has a water content of 35 wt.%, and phenols and ketones are the main organic compounds, with a concentration of 26 and 10 wt.%, respectively. In addition, a kinetic study has been carried out in thermobalance using a model of three independent and parallel reactions that allows quantifying this forestry waste's content of hemicellulose, cellulose and lignin. PMID:26203554

  20. Report - Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case

    SciTech Connect

    Jones, S. B.; Valkenburg, C.; Walton, C. W.; Elliott, D. C.; Holladay, J. E.; Stevens, D. J.; Kinchin, C.; Czernik, S.

    2009-02-01

    The purpose of this design case study is to evaluate a processing pathway for converting biomass into infrastructure-compatible hydrocarbon biofuels. This design case investigates production of fast pyrolysis oil from biomass and the upgrading of that bio-oil as a means for generating infrastructure-ready renewable gasoline and diesel fuels.

  1. Combustion Properties of Biomass Flash Pyrolysis Oils: Final Project Report

    SciTech Connect

    C. R. Shaddix; D. R. Hardesty

    1999-04-01

    Thermochemical pyrolysis of solid biomass feedstocks, with subsequent condensation of the pyrolysis vapors, has been investigated in the U.S. and internationally as a means of producing a liquid fuel for power production from biomass. This process produces a fuel with significantly different physical and chemical properties from traditional petroleum-based fuel oils. In addition to storage and handling difficulties with pyrolysis oils, concern exists over the ability to use this fuel effectively in different combustors. The report endeavors to place the results and conclusions from Sandia's research into the context of international efforts to utilize pyrolysis oils. As a special supplement to this report, Dr. Steven Gust, of Finland's Neste Oy, has provided a brief assessment of pyrolysis oil combustion research efforts and commercialization prospects in Europe.

  2. [Bio-oil production from biomass pyrolysis in molten salt].

    PubMed

    Ji, Dengxiang; Cai, Tengyue; Ai, Ning; Yu, Fengwen; Jiang, Hongtao; Ji, Jianbing

    2011-03-01

    In order to investigate the effects of pyrolysis conditions on bio-oil production from biomass in molten salt, experiments of biomass pyrolysis were carried out in a self-designed reactor in which the molten salt ZnCl2-KCl (with mole ratio 7/6) was selected as heat carrier, catalyst and dispersion agent. The effects of metal salt added into ZnCl2-KCl and biomass material on biomass pyrolysis were discussed, and the main compositions of bio-oil were determined by GC-MS. Metal salt added into molten salt could affect pyrolysis production yields remarkably. Lanthanon salt could enhance bio-oil yield and decrease water content in bio-oil, when mole fraction of 5.0% LaCl3 was added, bio-oil yield could reach up to 32.0%, and water content of bio-oil could reduce to 61.5%. The bio-oil and char yields were higher when rice straw was pyrolysed, while gas yield was higher when rice husk was used. Metal salts showed great selectivity on compositions of bio-oil. LiCl and FeCl2 promoted biomass to pyrolyse into smaller molecular weight compounds. CrCl3, CaCl2 and LaCl3 could restrain second pyrolysis of bio-oil. The research provided a scientific reference for production of bio-oil from biomass pyrolysis in molten salt.

  3. Effect of torrefaction on biomass structure and hydrocarbon production from fast pyrolysis

    DOE PAGES

    Neupane, Sneha; Adhikari, Sushil; Wang, Zhouhong; Ragauskas, Arthur; Pu, Yunqiao

    2015-01-27

    Torrefaction has been shown to improve the chemical composition of bio-oils produced from fast pyrolysis by lowering its oxygen content and enhancing the aromatic yield. A Py-GC/MS study was employed to investigate the effect of torrefaction temperatures (225, 250 and 275 °C) and residence times (15, 30 and 45 min) on product distribution from non-catalytic and H+ZSM-5 catalyzed pyrolysis of pinewood. During torrefaction, structural transformations in biomass constitutive polymers: hemicellulose, cellulose and lignin took place, which were evaluated using component analysis, solid state CP/MAS 13C NMR and XRD techniques. Torrefaction caused deacetylation and decomposition of hemicellulose, cleavage of aryl ethermore » linkages and demethoxylation of lignin, degradation of cellulose and an overall increase in aromaticity of biomass, all of which affected the product yield from pyrolysis of torrefied biomass. For non-catalytic pyrolysis, selectivity of phenolic compounds increased with an increase in torrefaction severity while that of furan compounds decreased. In the case of catalytic pyrolysis, the sample torrefied at 225 °C-30 min and 250 °C-15 min resulted in a significant increase in aromatic hydrocarbon (HC) and also total carbon yield (approx. 1.6 times higher) as compared to catalytic pyrolysis of non-torrefied pine. Cleavage of aryl ether linkages and demethoxylation in lignin due to torrefaction caused increased yield of phenolic compounds, which in the presence of a catalyst were dehydrated to form aromatic HC.« less

  4. Effect of torrefaction on biomass structure and hydrocarbon production from fast pyrolysis

    SciTech Connect

    Neupane, Sneha; Adhikari, Sushil; Wang, Zhouhong; Ragauskas, Arthur; Pu, Yunqiao

    2015-01-27

    Torrefaction has been shown to improve the chemical composition of bio-oils produced from fast pyrolysis by lowering its oxygen content and enhancing the aromatic yield. A Py-GC/MS study was employed to investigate the effect of torrefaction temperatures (225, 250 and 275 °C) and residence times (15, 30 and 45 min) on product distribution from non-catalytic and H+ZSM-5 catalyzed pyrolysis of pinewood. During torrefaction, structural transformations in biomass constitutive polymers: hemicellulose, cellulose and lignin took place, which were evaluated using component analysis, solid state CP/MAS 13C NMR and XRD techniques. Torrefaction caused deacetylation and decomposition of hemicellulose, cleavage of aryl ether linkages and demethoxylation of lignin, degradation of cellulose and an overall increase in aromaticity of biomass, all of which affected the product yield from pyrolysis of torrefied biomass. For non-catalytic pyrolysis, selectivity of phenolic compounds increased with an increase in torrefaction severity while that of furan compounds decreased. In the case of catalytic pyrolysis, the sample torrefied at 225 °C-30 min and 250 °C-15 min resulted in a significant increase in aromatic hydrocarbon (HC) and also total carbon yield (approx. 1.6 times higher) as compared to catalytic pyrolysis of non-torrefied pine. Cleavage of aryl ether linkages and demethoxylation in lignin due to torrefaction caused increased yield of phenolic compounds, which in the presence of a catalyst were dehydrated to form aromatic HC.

  5. Co-pyrolysis of polypropylene waste with Brazilian heavy oil.

    PubMed

    Assumpção, Luiz C F N; Carbonell, Montserrat M; Marques, Mônica R C

    2011-01-01

    To evaluate the chemical recycling of plastic residues, co-pyrolysis of polypropylene (PP) waste with Brazilian crude oil was evaluated varying the temperature (400°C to 500°C) and the amount of PP fed to the reactor. The co-pyrolysis of plastic waste in an inert atmosphere provided around 80% of oil pyrolytic, and of these, half represent the fraction of diesel oil. This study can be used as a reference in chemical recycling of plastics, specially associated with plastics co-pyrolysis.

  6. In-Situ Catalytic Fast Pyrolysis Technology Pathway

    SciTech Connect

    Biddy, M.; Dutta, A.; Jones, S.; Meyer, A.

    2013-03-01

    This technology pathway case investigates converting woody biomass using in-situ catalytic fast pyrolysis followed by upgrading to gasoline-, diesel-, and jet-range hydrocarbon blendstocks. Technical barriers and key research needs that should be pursued for this pathway to be competitive with petroleum-derived blendstocks have been identified.

  7. Ex-Situ Catalytic Fast Pyrolysis Technology Pathway

    SciTech Connect

    Biddy, M.; Dutta, A.; Jones, S.; Meyer, A.

    2013-03-01

    This technology pathway case investigates converting woody biomass using ex-situ catalytic fast pyrolysis followed by upgrading to gasoline-, diesel-, and jet-range hydrocarbon blendstocks. Technical barriers and key research needs that should be pursued for this pathway to be competitive with petroleum-derived blendstocks have been identified.

  8. Fast pyrolysis of biomass thermally pretreated by torrefaction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Torrefied biomass samples were produced from hardwood and switchgrass pellets using the biochar experimenter’s kit (BEK) reactor and analyzed for their utility as pretreated feedstock for biofuels production via fast pyrolysis. The energy efficiency for the BEK torrefaction process with propane gas ...

  9. Validation Results for Core-Scale Oil Shale Pyrolysis

    SciTech Connect

    Staten, Josh; Tiwari, Pankaj

    2015-03-01

    This report summarizes a study of oil shale pyrolysis at various scales and the subsequent development a model for in situ production of oil from oil shale. Oil shale from the Mahogany zone of the Green River formation was used in all experiments. Pyrolysis experiments were conducted at four scales, powdered samples (100 mesh) and core samples of 0.75”, 1” and 2.5” diameters. The batch, semibatch and continuous flow pyrolysis experiments were designed to study the effect of temperature (300°C to 500°C), heating rate (1°C/min to 10°C/min), pressure (ambient and 500 psig) and size of the sample on product formation. Comprehensive analyses were performed on reactants and products - liquid, gas and spent shale. These experimental studies were designed to understand the relevant coupled phenomena (reaction kinetics, heat transfer, mass transfer, thermodynamics) at multiple scales. A model for oil shale pyrolysis was developed in the COMSOL multiphysics platform. A general kinetic model was integrated with important physical and chemical phenomena that occur during pyrolysis. The secondary reactions of coking and cracking in the product phase were addressed. The multiscale experimental data generated and the models developed provide an understanding of the simultaneous effects of chemical kinetics, and heat and mass transfer on oil quality and yield. The comprehensive data collected in this study will help advance the move to large-scale in situ oil production from the pyrolysis of oil shale.

  10. Catalytic partial oxidation of pyrolysis oils

    NASA Astrophysics Data System (ADS)

    Rennard, David Carl

    2009-12-01

    This thesis explores the catalytic partial oxidation (CPO) of pyrolysis oils to syngas and chemicals. First, an exploration of model compounds and their chemistries under CPO conditions is considered. Then CPO experiments of raw pyrolysis oils are detailed. Finally, plans for future development in this field are discussed. In Chapter 2, organic acids such as propionic acid and lactic acid are oxidized to syngas over Pt catalysts. Equilibrium production of syngas can be achieved over Rh-Ce catalysts; alternatively mechanistic evidence is derived using Pt catalysts in a fuel rich mixture. These experiments show that organic acids, present in pyrolysis oils up to 25%, can undergo CPO to syngas or for the production of chemicals. As the fossil fuels industry also provides organic chemicals such as monomers for plastics, the possibility of deriving such species from pyrolysis oils allows for a greater application of the CPO of biomass. However, chemical production is highly dependent on the originating molecular species. As bio oil comprises up to 400 chemicals, it is essential to understand how difficult it would be to develop a pure product stream. Chapter 3 continues the experimentation from Chapter 2, exploring the CPO of another organic functionality: the ester group. These experiments demonstrate that equilibrium syngas production is possible for esters as well as acids in autothermal operation with contact times as low as tau = 10 ms over Rh-based catalysts. Conversion for these experiments and those with organic acids is >98%, demonstrating the high reactivity of oxygenated compounds on noble metal catalysts. Under CPO conditions, esters decompose in a predictable manner: over Pt and with high fuel to oxygen, non-equilibrium products show a similarity to those from related acids. A mechanism is proposed in which ethyl esters thermally decompose to ethylene and an acid, which decarbonylates homogeneously, driven by heat produced at the catalyst surface. Chapter 4

  11. A case study of pyrolysis of oil palm wastes in Malaysia

    NASA Astrophysics Data System (ADS)

    Abdullah, Nurhayati; Sulaiman, Fauziah; Aliasak, Zalila

    2013-05-01

    Biomass seems to have a great potential as a source of renewable energy compared with other sources. The use of biomass as a source of energy could help to reduce the wastes and also to minimize the dependency on non-renewable energy, hence minimize environmental degradation. Among other types of biomass, oil palm wastes are the major contribution for energy production in Malaysia since Malaysia is one of the primary palm oil producers in the world. Currently, Malaysia's plantation area covers around 5 million hectares. In the oil palm mill, only 10% palm oil is produced and the other 90% is in the form of wastes such as empty fruit bunches (EFB), oil palm shells (OPS), oil palm fibre (OPFb) and palm oil mill effluent (POME). If these wastes are being used as a source of renewable energy, it is believed that it will help to increase the country's economy. Recently, the most potential and efficient thermal energy conversion technology is pyrolysis process. The objective of this paper is to review the current research on pyrolysis of oil palm wastes in Malaysia. The scope of this paper is to discuss on the types of pyrolysis process and its production. At present, most of the research conducted in this country is on EFB and OPS by fast, slow and microwave-assisted pyrolysis processes for fuel applications.

  12. Microwave-assisted catalytic pyrolysis of lignocellulosic biomass for production of phenolic-rich bio-oil.

    PubMed

    Mamaeva, Alisa; Tahmasebi, Arash; Tian, Lu; Yu, Jianglong

    2016-07-01

    Catalytic microwave pyrolysis of peanut shell (PT) and pine sawdust (PS) using activated carbon (AC) and lignite char (LC) for production of phenolic-rich bio-oil and nanotubes was investigated in this study. The effects of process parameters such as pyrolysis temperature and biomass/catalyst ratio on the yields and composition of pyrolysis products were investigated. Fast heating rates were achieved under microwave irradiation conditions. Gas chromatography-mass spectrometry (GC-MS) analysis of bio-oil showed that activated carbon significantly enhanced the selectivity of phenolic compounds in bio-oil. The highest phenolics content in the bio-oil (61.19 %(area)) was achieved at 300°C. The selectivity of phenolics in bio-oil was higher for PT sample compared to that of PS. The formation of nanotubes in PT biomass particles was observed for the first time in biomass microwave pyrolysis.

  13. Microwave-assisted catalytic pyrolysis of lignocellulosic biomass for production of phenolic-rich bio-oil.

    PubMed

    Mamaeva, Alisa; Tahmasebi, Arash; Tian, Lu; Yu, Jianglong

    2016-07-01

    Catalytic microwave pyrolysis of peanut shell (PT) and pine sawdust (PS) using activated carbon (AC) and lignite char (LC) for production of phenolic-rich bio-oil and nanotubes was investigated in this study. The effects of process parameters such as pyrolysis temperature and biomass/catalyst ratio on the yields and composition of pyrolysis products were investigated. Fast heating rates were achieved under microwave irradiation conditions. Gas chromatography-mass spectrometry (GC-MS) analysis of bio-oil showed that activated carbon significantly enhanced the selectivity of phenolic compounds in bio-oil. The highest phenolics content in the bio-oil (61.19 %(area)) was achieved at 300°C. The selectivity of phenolics in bio-oil was higher for PT sample compared to that of PS. The formation of nanotubes in PT biomass particles was observed for the first time in biomass microwave pyrolysis. PMID:27030958

  14. Maximizing the stability of pyrolysis oil/diesel fuel emulsions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several emulsions consisting of biomass pyrolysis oil (bio-oil) in diesel fuel were produced and analyzed for stability over time. An ultrasonic probe was used to generate microscopic droplets of bio-oil suspended in diesel fuel, and this emulsion was stabilized using surfactant chemicals. The most...

  15. Fast Pyrolysis of Biomass Residues in a Twin-screw Mixing Reactor.

    PubMed

    Funke, Axel; Richter, Daniel; Niebel, Andreas; Dahmen, Nicolaus; Sauer, Jörg

    2016-01-01

    Fast pyrolysis is being increasingly applied in commercial plants worldwide. They run exclusively on woody biomass, which has favorable properties for conversion with fast pyrolysis. In order to increase the synergies of food production and the energetic and/or material use of biomass, it is desirable to utilize residues from agricultural production, e.g., straw. The presented method is suitable for converting such a material on an industrial scale. The main features are presented and an example of mass balances from the conversion of several biomass residues is given. After conversion, fractionated condensation is applied in order to retrieve two condensates - an organic-rich and an aqueous-rich one. This design prevents the production of fast pyrolysis bio-oil that exhibits phase separation. A two phase bio-oil is to be expected because of the typically high ash content of straw biomass, which promotes the production of water of reaction during conversion. Both fractionated condensation and the use of biomass with high ash content demand a careful approach for establishing balances. Not all kind of balances are both meaningful and comparable to other results from the literature. Different balancing methods are presented, and the information that can be derived from them is discussed. PMID:27684439

  16. Fast Pyrolysis of Biomass Residues in a Twin-screw Mixing Reactor.

    PubMed

    Funke, Axel; Richter, Daniel; Niebel, Andreas; Dahmen, Nicolaus; Sauer, Jörg

    2016-01-01

    Fast pyrolysis is being increasingly applied in commercial plants worldwide. They run exclusively on woody biomass, which has favorable properties for conversion with fast pyrolysis. In order to increase the synergies of food production and the energetic and/or material use of biomass, it is desirable to utilize residues from agricultural production, e.g., straw. The presented method is suitable for converting such a material on an industrial scale. The main features are presented and an example of mass balances from the conversion of several biomass residues is given. After conversion, fractionated condensation is applied in order to retrieve two condensates - an organic-rich and an aqueous-rich one. This design prevents the production of fast pyrolysis bio-oil that exhibits phase separation. A two phase bio-oil is to be expected because of the typically high ash content of straw biomass, which promotes the production of water of reaction during conversion. Both fractionated condensation and the use of biomass with high ash content demand a careful approach for establishing balances. Not all kind of balances are both meaningful and comparable to other results from the literature. Different balancing methods are presented, and the information that can be derived from them is discussed.

  17. Fast pyrolysis char - Assessment of alternative uses within the bioliq® concept.

    PubMed

    Funke, A; Niebel, A; Richter, D; Abbas, M M; Müller, A-K; Radloff, S; Paneru, M; Maier, J; Dahmen, N; Sauer, J

    2016-01-01

    Experiments with a process development unit for fast pyrolysis of biomass residues of 10kgh(-1) have been performed to quantify the impact of two different product recovery options. Wheat straw, miscanthus and scrap wood have been used as feedstock. A separate recovery of char increases the organic oil yield as compared to a combined recovery of char and organic condensate (OC). Furthermore, it allows for an alternative use of the byproduct char which represents an important product fraction for the high ash biomass residues under consideration. The char produced shows little advantage over its biomass precursor when considered as energy carrier due to its high ash content. Significant value can be added by demineralizing and activating the char. The potential to increase the economic feasibility of fast pyrolysis is shown by an assessment of the bioliq® process chain. PMID:26609947

  18. Predicting properties of gas and solid streams by intrinsic kinetics of fast pyrolysis of wood

    DOE PAGES

    Klinger, Jordan; Bar-Ziv, Ezra; Shonnard, David; Westover, Tyler; Emerson, Rachel

    2015-12-12

    Pyrolysis has the potential to create a biocrude oil from biomass sources that can be used as fuel or as feedstock for subsequent upgrading to hydrocarbon fuels or other chemicals. The product distribution/composition, however, is linked to the biomass source. This work investigates the products formed from pyrolysis of woody biomass with a previously developed chemical kinetics model. Different woody feedstocks reported in prior literature are placed on a common basis (moisture, ash, fixed carbon free) and normalized by initial elemental composition through ultimate analysis. Observed product distributions over the full devolatilization range are explored, reconstructed by the model, andmore » verified with independent experimental data collected with a microwave-assisted pyrolysis system. These trends include production of permanent gas (CO, CO2), char, and condensable (oil, water) species. Elementary compositions of these streams are also investigated. As a result, close agreement between literature data, model predictions, and independent experimental data indicate that the proposed model/method is able to predict the ideal distribution from fast pyrolysis given reaction temperature, residence time, and feedstock composition.« less

  19. Predicting properties of gas and solid streams by intrinsic kinetics of fast pyrolysis of wood

    SciTech Connect

    Klinger, Jordan; Bar-Ziv, Ezra; Shonnard, David; Westover, Tyler; Emerson, Rachel

    2015-12-12

    Pyrolysis has the potential to create a biocrude oil from biomass sources that can be used as fuel or as feedstock for subsequent upgrading to hydrocarbon fuels or other chemicals. The product distribution/composition, however, is linked to the biomass source. This work investigates the products formed from pyrolysis of woody biomass with a previously developed chemical kinetics model. Different woody feedstocks reported in prior literature are placed on a common basis (moisture, ash, fixed carbon free) and normalized by initial elemental composition through ultimate analysis. Observed product distributions over the full devolatilization range are explored, reconstructed by the model, and verified with independent experimental data collected with a microwave-assisted pyrolysis system. These trends include production of permanent gas (CO, CO2), char, and condensable (oil, water) species. Elementary compositions of these streams are also investigated. As a result, close agreement between literature data, model predictions, and independent experimental data indicate that the proposed model/method is able to predict the ideal distribution from fast pyrolysis given reaction temperature, residence time, and feedstock composition.

  20. Processes for washing a spent ion exchange bed and for treating biomass-derived pyrolysis oil, and apparatuses for treating biomass-derived pyrolysis oil

    SciTech Connect

    Baird, Lance Awender; Brandvold, Timothy A.

    2015-11-24

    Processes and apparatuses for washing a spent ion exchange bed and for treating biomass-derived pyrolysis oil are provided herein. An exemplary process for washing a spent ion exchange bed employed in purification of biomass-derived pyrolysis oil includes the step of providing a ion-depleted pyrolysis oil stream having an original oxygen content. The ion-depleted pyrolysis oil stream is partially hydrotreated to reduce the oxygen content thereof, thereby producing a partially hydrotreated pyrolysis oil stream having a residual oxygen content that is less than the original oxygen content. At least a portion of the partially hydrotreated pyrolysis oil stream is passed through the spent ion exchange bed. Water is passed through the spent ion exchange bed after passing at least the portion of the partially hydrotreated pyrolysis oil stream therethrough.

  1. High severity pyrolysis of shale and petroleum gas oil mixtures

    SciTech Connect

    Leftin, H.P.; Newsome, D.S.

    1986-01-01

    Light gas oil and heavy gas oil from Paraho shale oil and their mixtures with a petroleum light gas oil were pyrolyzed in the presence of steam at 880-900/sup 0/C and contact times between 60 and 90 ms in a nonisothermal bench-scale pyrolysis reactor. Blending of petroleum LGO into the shale oil feeds provided product yields that were the weighted linear combination of the yields of the individual components of the blends. Partial denitrogenation and a pronounced decrease in the rate of coke deposition on the reactor walls were observed when petroleum gas oil was blended with the shale gas oils.

  2. The Influence of Process Conditions on the Chemical Composition of Pine Wood Catalytic Pyrolysis Oils

    DOE PAGES

    Pereira, J.; Agblevor, F. A.; Beis, S. H.

    2012-01-01

    Pine wood samples were used as model feedstock to study the properties of catalytic fast pyrolysis oils. The influence of two commercial zeolite catalysts (BASF and SudChem) and pretreatment of the pine wood with sodium hydroxide on pyrolysis products were investigated. The pyrolysis oils were first fractionated using column chromatography and characterized using GC-MS. Long chain aliphatic hydrocarbons, levoglucosan, aldehydes and ketones, guaiacols/syringols, and benzenediols were the major compounds identified in the pyrolysis oils. The catalytic pyrolysis increased the polycyclic hydrocarbons fraction. Significant decreases in phthalate derivatives using SudChem and long chain aliphatics using BASF catalyst were observed. Significant amountsmore » of aromatic heterocyclic hydrocarbons and benzene derivatives were formed, respectively, using BASF and SudChem catalysts. Guaiacyl/syringyl and benzenediols derivatives were partly suppressed by the zeolite catalysts, while the sodium hydroxide treatment enriched phenolic derivatives. Zeolite catalyst and sodium hydroxide were employed together; they showed different results for each catalyst.« less

  3. Production of valuable hydrocarbons by flash pyrolysis of oil shale

    DOEpatents

    Steinberg, M.; Fallon, P.T.

    1985-04-01

    A process for the production of gas and liquid hydrocarbons from particulated oil shale by reaction with a pyrolysis gas at a temperature of from about 700/sup 0/C to about 1100/sup 0/C, at a pressure of from about 400 psi to about 600 psi, for a period of about 0.2 second to about 20 seconds. Such a pyrolysis gas includes methane, helium, or hydrogen. 3 figs., 3 tabs.

  4. Fast pyrolysis of tropical biomass species and influence of water pretreatment on product distributions

    DOE PAGES

    Morgan, Trevor James; Turn, Scott Q.; Sun, Ning; George, Anthe; Gupta, Vijai

    2016-03-15

    Here, the fast pyrolysis behaviour of pretreated banagrass was examined at four temperatures (between 400 and 600 C) and four residence times (between ~1.2 and 12 s). The pretreatment used water washing/leaching to reduce the inorganic content of the banagrass. Yields of bio-oil, permanent gases and char were determined at each reaction condition and compared to previously published results from untreated banagrass. Comparing the bio-oil yields from the untreated and pretreated banagrass shows that the yields were greater from the pretreated banagrass by 4 to 11 wt% (absolute) at all reaction conditions. The effect of pretreatment (i.e. reducing the amountmore » of ash, and alkali and alkali earth metals) on pyrolysis products is: 1) to increase the dry bio-oil yield, 2) to decrease the amount of undetected material, 3) to produce a slight increase in CO yield or no change, 4) to slightly decrease CO2 yield or no change, and 5) to produce a more stable bio-oil (less aging). Char yield and total gas yield were unaffected by feedstock pretreatment. Four other tropical biomass species were also pyrolyzed under one condition (450°C and 1.4 s residence time) for comparison to the banagrass results. The samples include two hardwoods: leucaena and eucalyptus, and two grasses: sugarcane bagasse and energy-cane. A sample of pretreated energy-cane was also pyrolyzed. Of the materials tested, the best feedstocks for fast pyrolysis were sugarcane bagasse, pretreated energy cane and eucalyptus based on the yields of 'dry bio-oil', CO and CO2. On the same basis, the least productive feedstocks are untreated banagrass followed by pretreated banagrass and leucaena.« less

  5. Fast Pyrolysis of Tropical Biomass Species and Influence of Water Pretreatment on Product Distributions.

    PubMed

    Morgan, Trevor James; Turn, Scott Q; Sun, Ning; George, Anthe

    2016-01-01

    The fast pyrolysis behaviour of pretreated banagrass was examined at four temperatures (between 400 and 600 C) and four residence times (between ~1.2 and 12 s). The pretreatment used water washing/leaching to reduce the inorganic content of the banagrass. Yields of bio-oil, permanent gases and char were determined at each reaction condition and compared to previously published results from untreated banagrass. Comparing the bio-oil yields from the untreated and pretreated banagrass shows that the yields were greater from the pretreated banagrass by 4 to 11 wt% (absolute) at all reaction conditions. The effect of pretreatment (i.e. reducing the amount of ash, and alkali and alkali earth metals) on pyrolysis products is: 1) to increase the dry bio-oil yield, 2) to decrease the amount of undetected material, 3) to produce a slight increase in CO yield or no change, 4) to slightly decrease CO2 yield or no change, and 5) to produce a more stable bio-oil (less aging). Char yield and total gas yield were unaffected by feedstock pretreatment. Four other tropical biomass species were also pyrolyzed under one condition (450°C and 1.4 s residence time) for comparison to the banagrass results. The samples include two hardwoods: leucaena and eucalyptus, and two grasses: sugarcane bagasse and energy-cane. A sample of pretreated energy-cane was also pyrolyzed. Of the materials tested, the best feedstocks for fast pyrolysis were sugarcane bagasse, pretreated energy cane and eucalyptus based on the yields of 'dry bio-oil', CO and CO2. On the same basis, the least productive feedstocks are untreated banagrass followed by pretreated banagrass and leucaena.

  6. Fast Pyrolysis of Tropical Biomass Species and Influence of Water Pretreatment on Product Distributions.

    PubMed

    Morgan, Trevor James; Turn, Scott Q; Sun, Ning; George, Anthe

    2016-01-01

    The fast pyrolysis behaviour of pretreated banagrass was examined at four temperatures (between 400 and 600 C) and four residence times (between ~1.2 and 12 s). The pretreatment used water washing/leaching to reduce the inorganic content of the banagrass. Yields of bio-oil, permanent gases and char were determined at each reaction condition and compared to previously published results from untreated banagrass. Comparing the bio-oil yields from the untreated and pretreated banagrass shows that the yields were greater from the pretreated banagrass by 4 to 11 wt% (absolute) at all reaction conditions. The effect of pretreatment (i.e. reducing the amount of ash, and alkali and alkali earth metals) on pyrolysis products is: 1) to increase the dry bio-oil yield, 2) to decrease the amount of undetected material, 3) to produce a slight increase in CO yield or no change, 4) to slightly decrease CO2 yield or no change, and 5) to produce a more stable bio-oil (less aging). Char yield and total gas yield were unaffected by feedstock pretreatment. Four other tropical biomass species were also pyrolyzed under one condition (450°C and 1.4 s residence time) for comparison to the banagrass results. The samples include two hardwoods: leucaena and eucalyptus, and two grasses: sugarcane bagasse and energy-cane. A sample of pretreated energy-cane was also pyrolyzed. Of the materials tested, the best feedstocks for fast pyrolysis were sugarcane bagasse, pretreated energy cane and eucalyptus based on the yields of 'dry bio-oil', CO and CO2. On the same basis, the least productive feedstocks are untreated banagrass followed by pretreated banagrass and leucaena. PMID:26978265

  7. Fast Pyrolysis of Tropical Biomass Species and Influence of Water Pretreatment on Product Distributions

    PubMed Central

    Morgan, Trevor James; Turn, Scott Q.; Sun, Ning; George, Anthe

    2016-01-01

    The fast pyrolysis behaviour of pretreated banagrass was examined at four temperatures (between 400 and 600 C) and four residence times (between ~1.2 and 12 s). The pretreatment used water washing/leaching to reduce the inorganic content of the banagrass. Yields of bio-oil, permanent gases and char were determined at each reaction condition and compared to previously published results from untreated banagrass. Comparing the bio-oil yields from the untreated and pretreated banagrass shows that the yields were greater from the pretreated banagrass by 4 to 11 wt% (absolute) at all reaction conditions. The effect of pretreatment (i.e. reducing the amount of ash, and alkali and alkali earth metals) on pyrolysis products is: 1) to increase the dry bio-oil yield, 2) to decrease the amount of undetected material, 3) to produce a slight increase in CO yield or no change, 4) to slightly decrease CO2 yield or no change, and 5) to produce a more stable bio-oil (less aging). Char yield and total gas yield were unaffected by feedstock pretreatment. Four other tropical biomass species were also pyrolyzed under one condition (450°C and 1.4 s residence time) for comparison to the banagrass results. The samples include two hardwoods: leucaena and eucalyptus, and two grasses: sugarcane bagasse and energy-cane. A sample of pretreated energy-cane was also pyrolyzed. Of the materials tested, the best feedstocks for fast pyrolysis were sugarcane bagasse, pretreated energy cane and eucalyptus based on the yields of 'dry bio-oil', CO and CO2. On the same basis, the least productive feedstocks are untreated banagrass followed by pretreated banagrass and leucaena. PMID:26978265

  8. Fast Pyrolysis of Poplar Using a Captive Sample Reactor: Effects of Inorganic Salts on Primary Pyrolysis Products

    SciTech Connect

    Mukarakate, C.; Robichaud, D.; Donohoe, B.; Jarvis, M.; Mino, K.; Bahng, M. K.; Nimlos, M.

    2012-01-01

    We have constructed a captive sample reactor (CSR) to study fast pyrolysis of biomass. The reactor uses a stainless steel wire mesh to surround biomass materials with an isothermal environment by independent controlling of heating rates and pyrolysis temperatures. The vapors produced during pyrolysis are immediately entrained and transported in He carrier gas to a molecular beam mass spectrometer (MBMS). Formation of secondary products is minimized by rapidly quenching the sample support with liquid nitrogen. A range of alkali and alkaline earth metal (AAEM) and transition metal salts were tested to study their effect on composition of primary pyrolysis products. Multivariate curve resolution (MCR) analysis of the MBMS data shows that transition metal salts enhance pyrolysis of carbohydrates and AAEM salts enhances pyrolysis of lignin. This was supported by performing similar separate studies on cellulose, hemicellulose and extracted lignin. The effect of salts on char formation is also discussed.

  9. Methods and apparatuses for deoxygenating biomass-derived pyrolysis oil

    DOEpatents

    Baird, Lance Awender; Brandvold, Timothy A.

    2015-10-20

    Embodiments of methods and apparatuses for deoxygenating a biomass-derived pyrolysis oil are provided. In one example, a method comprises the steps of separating a low-oxygen biomass-derived pyrolysis oil effluent into a low-oxygen-pyoil organic phase stream and an aqueous phase stream. Phenolic compounds are removed from the aqueous phase stream to form a phenolic-rich diluent recycle stream. A biomass-derived pyrolysis oil stream is diluted and heated with the phenolic-rich diluent recycle stream to form a heated diluted pyoil feed stream. The heated diluted pyoil feed stream is contacted with a deoxygenating catalyst in the presence of hydrogen to deoxygenate the heated diluted pyoil feed stream.

  10. Sulfonation of phenols extracted from the pyrolysis oil of oil palm shells for enhanced oil recovery.

    PubMed

    Awang, Mariyamni; Seng, Goh Meng

    2008-01-01

    The cost of chemicals prohibits many technically feasible enhanced oil recovery methods to be applied in oil fields. It is shown that by-products from oil palm processing can be a source of valuable chemicals. Analysis of the pyrolysis oil from oil palm shells, a by-product of the palm oil industry, reveals a complex mixture of mainly phenolic compounds, carboxylic acids, and aldehydes. The phenolic compounds were extracted from the pyrolysis oil by liquid-liquid extraction using alkali and an organic solvent and analyzed, indicating the presence of over 93% phenols and phenolic compounds. Simultaneous sulfonation and alkylation of the pyrolysis oil was carried out to produce surfactants for application in oil fields. The lowest measured surface tension and critical micelle concentration was 30.2 mNm(-1) and 0.22 wt%, respectively. Displacement tests showed that 7-14% of the original oil in place was recovered by using a combination of surfactants and xanthan (polymer) as additives.

  11. Flash pyrolysis of oil shale with various gases

    SciTech Connect

    Steinberg, M.; Fallon, P.T.

    1983-10-01

    The flash pyrolysis of Colorado Oil Shale with methane at a temperature of 800/sup 0/C and pressure of 500 psi appears to give the highest yield of hydrocarbon gas and liquid followed by hydrogen and lowest with helium. In the methane pyrolysis over 54.5% of the carbon in the kerogen is converted to ethylene and benzene. The flash pyrolysis with hydrogen (flash hydropyrolysis) of the oil shale at increasing temperatures showed a rapidly increasing amount of methane formed and a decrease in ethane formation, while the BTX (benzene mainly) yield remained at approximately 10%. At 950/sup 0/C and 500 psi almost all (97.0%) of the carbon in the kerogen is converted to liquid and gaseous hydrocarbons. Experiments with a mixture of a New Mexico sub-bituminous coal and oil shale under flash hydropyrolysis and methane pyrolysis conditions indicated higher yields of methane and ethylene and slightly lower yields of benzene than predicted by partial additive calculations. These exploratory experiments appear to be of sufficient interest to warrant a fuller investigation of the interaction of the natural resources, oil shale, coal and natural gas under flash pyrolysis conditions.

  12. Chemical and ecotoxicological properties of three bio-oils from pyrolysis of biomasses.

    PubMed

    Campisi, Tiziana; Samorì, Chiara; Torri, Cristian; Barbera, Giuseppe; Foschini, Anna; Kiwan, Alisar; Galletti, Paola; Tagliavini, Emilio; Pasteris, Andrea

    2016-10-01

    In view of the potential use of pyrolysis-based technologies, it is crucial to understand the environmental hazards of pyrolysis-derived products, in particular bio-oils. Here, three bio-oils were produced from fast pyrolysis of pine wood and intermediate pyrolysis of corn stalk and poultry litter. They were fully characterized by chemical analysis and tested for their biodegradability and their ecotoxicity on the crustacean Daphnia magna and the green alga Raphidocelis subcapitata. These tests were chosen as required by the European REACH regulation. These three bio-oils were biodegradable, with 40-60% of biodegradation after 28 days, and had EC50 values above 100mgL(-1) for the crustacean and above 10mgL(-1) for the alga, showing low toxicity to the aquatic life. The toxic unit approach was applied to verify whether the observed toxicity could be predicted from the data available for the substances detected in the bio-oils. The predicted values largely underestimated the experimental values. PMID:27285282

  13. Chemical and ecotoxicological properties of three bio-oils from pyrolysis of biomasses.

    PubMed

    Campisi, Tiziana; Samorì, Chiara; Torri, Cristian; Barbera, Giuseppe; Foschini, Anna; Kiwan, Alisar; Galletti, Paola; Tagliavini, Emilio; Pasteris, Andrea

    2016-10-01

    In view of the potential use of pyrolysis-based technologies, it is crucial to understand the environmental hazards of pyrolysis-derived products, in particular bio-oils. Here, three bio-oils were produced from fast pyrolysis of pine wood and intermediate pyrolysis of corn stalk and poultry litter. They were fully characterized by chemical analysis and tested for their biodegradability and their ecotoxicity on the crustacean Daphnia magna and the green alga Raphidocelis subcapitata. These tests were chosen as required by the European REACH regulation. These three bio-oils were biodegradable, with 40-60% of biodegradation after 28 days, and had EC50 values above 100mgL(-1) for the crustacean and above 10mgL(-1) for the alga, showing low toxicity to the aquatic life. The toxic unit approach was applied to verify whether the observed toxicity could be predicted from the data available for the substances detected in the bio-oils. The predicted values largely underestimated the experimental values.

  14. Kinetic Study on Pyrolysis of Oil Palm Frond

    NASA Astrophysics Data System (ADS)

    Soon, V. S. Y.; Chin, B. L. F.; Lim, A. C. R.

    2016-03-01

    The pyrolysis of oil palm frond is studied using thermogravimetric analysis (TGA) equipment. The present study investigates the thermal degradation behaviour and determination of the kinetic parameters such as the activation energy (EA ) and pre-exponential factor (A) values of oil palm frond under pyrolysis condition. The kinetic data is produced based on first order rate of reaction. In this study, the experiments are conducted at different heating rates of 10, 20, 30, 40 and 50 K/min in the temperature range of 323-1173 K under non-isothermal condition. Argon gas is used as an inert gas to remove any entrapment of gases in the TGA equipment.

  15. Resources recovery of oil sludge by pyrolysis: Kinetics study

    SciTech Connect

    Shie, J.L.; Chang, C.Y.; Lin, J.P.; Wu, C.H.; Lee, D.J.

    1999-07-01

    Oil sludge, if unused, is one of the major industrial wastes needed to be treated for the petroleum refinery plant or petrochemical industry. It contains a large amount of combustibles with high heating values. The treatment of waste oil sludge by burning has certain benefit; however, it cannot provide the useful resource efficiently. On the other hand, the conversion of oil sludge to lower molecule weight organic compounds by pyrolysis not only solves the disposal problem but also matches the appeal of resource utilization. The major sources of oil sludge include the oil storage tank sludge, the biological sludge, the dissolve air flotation (DAF) scum, the American Petroleum Institute (API) separator sludge and the chemical sludge. In this study, the oil sludge from the oil storage tank of a typical petroleum refinery plant located in the northern Taiwan is used as the raw material of pyrolysis. Its heating value of dry basis and low heating value of wet basis are about 10,681 k cal/kg and 5,870 k cal/kg, respectively. The removal of the moisture of oil sludge significantly increases its heating value. The pyrolysis of oil sludge is conducted by the use of nitrogen as the carrier gas in the temperature range of 380 {approximately} 1,073 K and at various constant heating rates of 5.2, 12.8 and 21.8 K/min. The pyrolytic reaction is significant in 450 {approximately} 800 K and complex. For the sake of simplicity and engineering use, a one-reaction kinetic model is proposed for the pyrolysis of oil sludge, and is found to satisfactorily fit the experimental data. The activation energy, reaction order and frequency factor of the corresponding pyrolysis reaction in nitrogen for oil sludge are 78.22 kJ/mol, 2.92 and 9.48 105 l/min, respectively. These results are very useful for the proper design of the pyrolysis system of the oil sludge under investigation.

  16. The use of tyre pyrolysis oil in diesel engines.

    PubMed

    Murugan, S; Ramaswamy, M C; Nagarajan, G

    2008-12-01

    Tests have been carried out to evaluate the performance, emission, and combustion characteristics of a single cylinder direct injection diesel engine fueled with 10%, 30%, and 50% of tyre pyrolysis oil (TPO) blended with diesel fuel (DF). The TPO was derived from waste automobile tyres through vacuum pyrolysis. The combustion parameters such as heat release rate, cylinder peak pressure, and maximum rate of pressure rise also analysed. Results showed that the brake thermal efficiency of the engine fueled with TPO-DF blends increased with an increase in blend concentration and reduction of DF concentration. NO(x), HC, CO, and smoke emissions were found to be higher at higher loads due to the high aromatic content and longer ignition delay. The cylinder peak pressure increased from 71 bars to 74 bars. The ignition delays were longer than with DF. It is concluded that it is possible to use tyre pyrolysis oil in diesel engines as an alternate fuel in the future.

  17. Influence of mineral matter on pyrolysis of palm oil wastes

    SciTech Connect

    Yang, Haiping; Chen, Hanping; Zheng, Chuguang; Yan, Rong; Lee, Dong Ho; Liang, David Tee

    2006-09-15

    The influence of mineral matter on pyrolysis of biomass (including pure biomass components, synthesized biomass, and natural biomass) was investigated using a thermogravimetric analyzer (TGA). First, the mineral matter, KCl, K{sub 2}CO{sub 3}, Na{sub 2}CO{sub 3}, CaMg(CO{sub 3}){sub 2}, Fe{sub 2}O{sub 3}, and Al{sub 2}O{sub 3}, was mixed respectively with the three main biomass components (hemicellulose, cellulose, and lignin) at a weight ratio (C/W) of 0.1 and its pyrolysis characteristics were investigated. Most of these mineral additives, except for K{sub 2}CO{sub 3}, demonstrated negligible influence. Adding K{sub 2}CO{sub 3} inhibited the pyrolysis of hemicellulose by lowering its mass loss rate by 0.3 wt%/{sup o}C, while it enhanced the pyrolysis of cellulose by shifting the pyrolysis to a lower temperature. With increased K{sub 2}CO{sub 3} added, the weight loss of cellulose in the lower temperature zone (200-315 {sup o}C) increased greatly, and the activation energies of hemicellulose and cellulose pyrolysis decreased notably from 204 to 42 kJ/mol. Second, studies on the synthetic biomass of hemicellulose, cellulose, lignin, and K{sub 2}CO{sub 3} (as a representative of minerals) indicated that peaks of cellulose and hemicellulose pyrolysis became overlapped with addition of K{sub 2}CO{sub 3} (at C/W=0.05-0.1), due to the catalytic effect of K{sub 2}CO{sub 3} lowering cellulose pyrolysis to a lower temperature. Finally, a local representative biomass--palm oil waste (in the forms of original material and material pretreated through water washing or K{sub 2}CO{sub 3} addition)--was studied. Water washing shifted pyrolysis of palm oil waste to a higher temperature by 20 {sup o}C, while K{sub 2}CO{sub 3} addition lowered the peak temperature of pyrolysis by {approx}50{sup o}C. It was therefore concluded that the obvious catalytic effect of adding K{sub 2}CO{sub 3} might be attributed to certain fundamental changes in terms of chemical structure of

  18. Fast microwave-assisted pyrolysis of microalgae using microwave absorbent and HZSM-5 catalyst.

    PubMed

    Borges, Fernanda Cabral; Xie, Qinglong; Min, Min; Muniz, Luis Antônio Rezende; Farenzena, Marcelo; Trierweiler, Jorge Otávio; Chen, Paul; Ruan, Roger

    2014-08-01

    Fast microwave-assisted pyrolysis (fMAP) in the presence of a microwave absorbent (SiC) and catalyst (HZSM-5) was tested on a Chlorella sp. strain and on a Nannochloropsis strain. The liquid products were characterized, and the effects of temperature and catalyst:biomass ratio were analyzed. For Chlorella sp., a temperature of 550 °C, with no catalyst were the optimal conditions, resulting in a maximum bio-oil yield of 57 wt.%. For Nannochloropsis, a temperature of 500 °C, with 0.5 of catalyst ratio were shown to be the optimal condition, resulting in a maximum bio-oil yield of 59 wt.%. These results show that the use of microwave absorbents in fMAP increased bio-oil yields and quality, and it is a promising technology to improve the commercial application and economic outlook of microwave pyrolysis technology. Additionally, the use of a different catalyst needs to be considered to improve the bio-oil characteristics.

  19. Fast Pyrolysis Behavior of Banagrass as a Function of Temperature and Volatiles Residence Time in a Fluidized Bed Reactor

    SciTech Connect

    Morgan, Trevor James; Turn, Scott Q.; George, Anthe

    2015-08-26

    A reactor was designed and commissioned to study the fast pyrolysis behavior of banagrass as a function of temperature and volatiles residence time. Four temperatures between 400 and 600°C were examined as well as four residence times between ~1.0 and 10 seconds. Pyrolysis product distributions of bio-oil, char and permanent gases were determined at each reaction condition. The elemental composition of the bio-oils and chars was also assessed. The greatest bio-oil yield was recorded when working at 450°C with a volatiles residence time of 1.4 s, ~37 wt% relative to the dry ash free feedstock (excluding pyrolysis water). The amounts of char (organic fraction) and permanent gases under these conditions are ~4 wt% and 8 wt% respectively. The bio-oil yield stated above is for 'dry' bio-oil after rotary evaporation to remove solvent, which results in volatiles and pyrolysis water being removed from the bio-oil. The material removed during drying accounts for the remainder of the pyrolysis products. The 'dry' bio-oil produced under these conditions contains ~56 wt% carbon which is ~40 wt% of the carbon present in the feedstock. The oxygen content of the 450°C, 1.4 s 'dry' bio-oil is ~38 wt%, which accounts for ~33 wt% of the oxygen in the feedstock. At higher temperature or longer residence time less bio-oil and char is recovered and more gas and light volatiles are produced. Increasing the temperature has a more significant effect on product yields and composition than increasing the volatiles residence time. At 600°C and a volatiles residence time of 1.2 seconds the bio-oil yield is ~21 wt% of the daf feedstock, with a carbon content of 64 wt% of the bio-oil. The bio-oil yield from banagrass is significantly lower than from woody biomass or grasses such as switchgrass or miscanthus, but is similar to barley straw. In conclusion, the reason for the low bio-oil yield from banagrass is thought to be related to its high ash content (8.5 wt% dry basis) and high

  20. Fast Pyrolysis Behavior of Banagrass as a Function of Temperature and Volatiles Residence Time in a Fluidized Bed Reactor.

    PubMed

    Morgan, Trevor James; Turn, Scott Q; George, Anthe

    2015-01-01

    A reactor was designed and commissioned to study the fast pyrolysis behavior of banagrass as a function of temperature and volatiles residence time. Four temperatures between 400 and 600°C were examined as well as four residence times between ~1.0 and 10 seconds. Pyrolysis product distributions of bio-oil, char and permanent gases were determined at each reaction condition. The elemental composition of the bio-oils and chars was also assessed. The greatest bio-oil yield was recorded when working at 450°C with a volatiles residence time of 1.4 s, ~37 wt% relative to the dry ash free feedstock (excluding pyrolysis water). The amounts of char (organic fraction) and permanent gases under these conditions are ~4 wt% and 8 wt% respectively. The bio-oil yield stated above is for 'dry' bio-oil after rotary evaporation to remove solvent, which results in volatiles and pyrolysis water being removed from the bio-oil. The material removed during drying accounts for the remainder of the pyrolysis products. The 'dry' bio-oil produced under these conditions contains ~56 wt% carbon which is ~40 wt% of the carbon present in the feedstock. The oxygen content of the 450°C, 1.4 s 'dry' bio-oil is ~38 wt%, which accounts for ~33 wt% of the oxygen in the feedstock. At higher temperature or longer residence time less bio-oil and char is recovered and more gas and light volatiles are produced. Increasing the temperature has a more significant effect on product yields and composition than increasing the volatiles residence time. At 600°C and a volatiles residence time of 1.2 seconds the bio-oil yield is ~21 wt% of the daf feedstock, with a carbon content of 64 wt% of the bio-oil. The bio-oil yield from banagrass is significantly lower than from woody biomass or grasses such as switchgrass or miscanthus, but is similar to barley straw. The reason for the low bio-oil yield from banagrass is thought to be related to its high ash content (8.5 wt% dry basis) and high concentration of alkali

  1. Fast Pyrolysis Behavior of Banagrass as a Function of Temperature and Volatiles Residence Time in a Fluidized Bed Reactor

    PubMed Central

    Morgan, Trevor James; Turn, Scott Q.; George, Anthe

    2015-01-01

    A reactor was designed and commissioned to study the fast pyrolysis behavior of banagrass as a function of temperature and volatiles residence time. Four temperatures between 400 and 600°C were examined as well as four residence times between ~1.0 and 10 seconds. Pyrolysis product distributions of bio-oil, char and permanent gases were determined at each reaction condition. The elemental composition of the bio-oils and chars was also assessed. The greatest bio-oil yield was recorded when working at 450°C with a volatiles residence time of 1.4 s, ~37 wt% relative to the dry ash free feedstock (excluding pyrolysis water). The amounts of char (organic fraction) and permanent gases under these conditions are ~4 wt% and 8 wt% respectively. The bio-oil yield stated above is for 'dry' bio-oil after rotary evaporation to remove solvent, which results in volatiles and pyrolysis water being removed from the bio-oil. The material removed during drying accounts for the remainder of the pyrolysis products. The 'dry' bio-oil produced under these conditions contains ~56 wt% carbon which is ~40 wt% of the carbon present in the feedstock. The oxygen content of the 450°C, 1.4 s 'dry' bio-oil is ~38 wt%, which accounts for ~33 wt% of the oxygen in the feedstock. At higher temperature or longer residence time less bio-oil and char is recovered and more gas and light volatiles are produced. Increasing the temperature has a more significant effect on product yields and composition than increasing the volatiles residence time. At 600°C and a volatiles residence time of 1.2 seconds the bio-oil yield is ~21 wt% of the daf feedstock, with a carbon content of 64 wt% of the bio-oil. The bio-oil yield from banagrass is significantly lower than from woody biomass or grasses such as switchgrass or miscanthus, but is similar to barley straw. The reason for the low bio-oil yield from banagrass is thought to be related to its high ash content (8.5 wt% dry basis) and high concentration of alkali

  2. Fast Pyrolysis Behavior of Banagrass as a Function of Temperature and Volatiles Residence Time in a Fluidized Bed Reactor

    DOE PAGES

    Morgan, Trevor James; Turn, Scott Q.; George, Anthe

    2015-08-26

    A reactor was designed and commissioned to study the fast pyrolysis behavior of banagrass as a function of temperature and volatiles residence time. Four temperatures between 400 and 600°C were examined as well as four residence times between ~1.0 and 10 seconds. Pyrolysis product distributions of bio-oil, char and permanent gases were determined at each reaction condition. The elemental composition of the bio-oils and chars was also assessed. The greatest bio-oil yield was recorded when working at 450°C with a volatiles residence time of 1.4 s, ~37 wt% relative to the dry ash free feedstock (excluding pyrolysis water). The amountsmore » of char (organic fraction) and permanent gases under these conditions are ~4 wt% and 8 wt% respectively. The bio-oil yield stated above is for 'dry' bio-oil after rotary evaporation to remove solvent, which results in volatiles and pyrolysis water being removed from the bio-oil. The material removed during drying accounts for the remainder of the pyrolysis products. The 'dry' bio-oil produced under these conditions contains ~56 wt% carbon which is ~40 wt% of the carbon present in the feedstock. The oxygen content of the 450°C, 1.4 s 'dry' bio-oil is ~38 wt%, which accounts for ~33 wt% of the oxygen in the feedstock. At higher temperature or longer residence time less bio-oil and char is recovered and more gas and light volatiles are produced. Increasing the temperature has a more significant effect on product yields and composition than increasing the volatiles residence time. At 600°C and a volatiles residence time of 1.2 seconds the bio-oil yield is ~21 wt% of the daf feedstock, with a carbon content of 64 wt% of the bio-oil. The bio-oil yield from banagrass is significantly lower than from woody biomass or grasses such as switchgrass or miscanthus, but is similar to barley straw. In conclusion, the reason for the low bio-oil yield from banagrass is thought to be related to its high ash content (8.5 wt% dry basis) and high

  3. Hydrous pyrolysis of crude oil in gold-plated reactors

    USGS Publications Warehouse

    Curiale, J.A.; Lundegard, P.D.; Kharaka, Y.K.

    1992-01-01

    Crude oils from Iraq and California have been pyrolyzed under hydrous conditions at 200 and 300??C for time periods up to 210 days, in gold-plated reactors. Elemental (vanadium, nickel), stable isotopic (carbon), and molecular (n-alkanes, acyclic isoprenoids, steranes, terpanes and aromatic steroid hydrocarbons) analyses were made on the original and pyrolyzed oils. Various conventional crude oil maturity parameters, including 20S/(20S + 20R)-24-ethylcholestane ratios and the side-chain-length distribution of aliphatic and aromatic steroidal hydrocarbons, were measured in an effort to assess the modification of molecular maturity parameters in clay-free settings, similar to those encountered in "clean" reservoirs. Concentrations of vanadium and nickel in the Iraq oil decrease significantly and the V/(V + Ni) ratio decreases slightly, with increasing pyrolysis time/temperature. Whole oil carbon isotope ratios remain fairly constant during pyrolysis, as do hopane/sterane ratios and carbon number distribution of 5??(H),14??(H),17??(H),20R steranes. These latter three parameters are considered maturity-invariant. The ratios of short side-chain components to long side-chain components of the regular steranes [C21/(C21 + C29R)] and the triaromatic steroid hydrocarbons [C21/(C21 + C28)] vary systematically with increasing pyrolysis time, indicating that these parameters may be useful as molecular maturity parameters for crude oils in clay-free reservoir rocks. In addition, decreases in bisnorhopane/hopane ratio with increasing pyrolysis time, in a clay-free and kerogen-free environment, suggest that the distribution of these compounds is controlled by either differential thermal stabilities or preferential release from a higher-molecular weight portion of the oil. ?? 1992.

  4. Biofuels via Fast Pyrolysis of Perennial Grasses: A Life Cycle Evaluation of Energy Consumption and Greenhouse Gas Emissions.

    PubMed

    Zaimes, George G; Soratana, Kullapa; Harden, Cheyenne L; Landis, Amy E; Khanna, Vikas

    2015-08-18

    A well-to-wheel (WTW) life cycle assessment (LCA) model is developed to evaluate the environmental profile of producing liquid transportation fuels via fast pyrolysis of perennial grasses: switchgrass and miscanthus. The framework established in this study consists of (1) an agricultural model used to determine biomass growth rates, agrochemical application rates, and other key parameters in the production of miscanthus and switchgrass biofeedstock; (2) an ASPEN model utilized to simulate thermochemical conversion via fast pyrolysis and catalytic upgrading of bio-oil to renewable transportation fuel. Monte Carlo analysis is performed to determine statistical bounds for key sustainability and performance measures including life cycle greenhouse gas (GHG) emissions and Energy Return on Investment (EROI). The results of this work reveal that the EROI and GHG emissions (gCO2e/MJ-fuel) for fast pyrolysis derived fuels range from 1.52 to 2.56 and 22.5 to 61.0 respectively, over the host of scenarios evaluated. Further analysis reveals that the energetic performance and GHG reduction potential of fast pyrolysis-derived fuels are highly sensitive to the choice of coproduct scenario and LCA allocation scheme, and in select cases can change the life cycle carbon balance from meeting to exceeding the renewable fuel standard emissions reduction threshold for cellulosic biofuels. PMID:26196154

  5. Biofuels via Fast Pyrolysis of Perennial Grasses: A Life Cycle Evaluation of Energy Consumption and Greenhouse Gas Emissions.

    PubMed

    Zaimes, George G; Soratana, Kullapa; Harden, Cheyenne L; Landis, Amy E; Khanna, Vikas

    2015-08-18

    A well-to-wheel (WTW) life cycle assessment (LCA) model is developed to evaluate the environmental profile of producing liquid transportation fuels via fast pyrolysis of perennial grasses: switchgrass and miscanthus. The framework established in this study consists of (1) an agricultural model used to determine biomass growth rates, agrochemical application rates, and other key parameters in the production of miscanthus and switchgrass biofeedstock; (2) an ASPEN model utilized to simulate thermochemical conversion via fast pyrolysis and catalytic upgrading of bio-oil to renewable transportation fuel. Monte Carlo analysis is performed to determine statistical bounds for key sustainability and performance measures including life cycle greenhouse gas (GHG) emissions and Energy Return on Investment (EROI). The results of this work reveal that the EROI and GHG emissions (gCO2e/MJ-fuel) for fast pyrolysis derived fuels range from 1.52 to 2.56 and 22.5 to 61.0 respectively, over the host of scenarios evaluated. Further analysis reveals that the energetic performance and GHG reduction potential of fast pyrolysis-derived fuels are highly sensitive to the choice of coproduct scenario and LCA allocation scheme, and in select cases can change the life cycle carbon balance from meeting to exceeding the renewable fuel standard emissions reduction threshold for cellulosic biofuels.

  6. A CFD model for biomass fast pyrolysis in fluidized-bed reactors

    NASA Astrophysics Data System (ADS)

    Xue, Qingluan; Heindel, T. J.; Fox, R. O.

    2010-11-01

    A numerical study is conducted to evaluate the performance and optimal operating conditions of fluidized-bed reactors for fast pyrolysis of biomass to bio-oil. A comprehensive CFD model, coupling a pyrolysis kinetic model with a detailed hydrodynamics model, is developed. A lumped kinetic model is applied to describe the pyrolysis of biomass particles. Variable particle porosity is used to account for the evolution of particle physical properties. The kinetic scheme includes primary decomposition and secondary cracking of tar. Biomass is composed of reference components: cellulose, hemicellulose, and lignin. Products are categorized into groups: gaseous, tar vapor, and solid char. The particle kinetic processes and their interaction with the reactive gas phase are modeled with a multi-fluid model derived from the kinetic theory of granular flow. The gas, sand and biomass constitute three continuum phases coupled by the interphase source terms. The model is applied to investigate the effect of operating conditions on the tar yield in a fluidized-bed reactor. The influence of various parameters on tar yield, including operating temperature and others are investigated. Predicted optimal conditions for tar yield and scale-up of the reactor are discussed.

  7. Enhancing biogas production of corn stover by fast pyrolysis pretreatment.

    PubMed

    Wang, Fang; Zhang, Deli; Wu, Houkai; Yi, Weiming; Fu, Peng; Li, Yongjun; Li, Zhihe

    2016-10-01

    A new thermo-chemical pretreatment by a lower temperature fast pyrolysis (LTFP) was applied to promote anaerobic digestion (AD) efficiency of corn stover (CS). The pretreatment experiment was performed by a fluidized bed pyrolysis reactor at 180, 200 and 220°C with a carrier gas flow rate of 4 and 3m(3)/h. The components characteristics, Scanning Electron Microscope (SEM) images and Crystal Intensity (CrI) of the pretreated CS were tested to explore effectiveness of the pretreatment. The results showed that the cumulative methane production at 180°C for 4 and 3m(3)/h were 199.8 and 200.3mL/g TS, respectively. As compared to the untreated CS, the LTFP pretreatment significantly (a<0.05) increased the methane production by 18.07% and 18.33%, respectively. Methane production was well fitted by the Gompertz models, and the maximum methane potential and AD efficiency was obtained at 180°C for 3m(3)/h. PMID:27420161

  8. Low oxygen biomass-derived pyrolysis oils and methods for producing the same

    DOEpatents

    Marinangeli, Richard; Brandvold, Timothy A; Kocal, Joseph A

    2013-08-27

    Low oxygen biomass-derived pyrolysis oils and methods for producing them from carbonaceous biomass feedstock are provided. The carbonaceous biomass feedstock is pyrolyzed in the presence of a catalyst comprising base metal-based catalysts, noble metal-based catalysts, treated zeolitic catalysts, or combinations thereof to produce pyrolysis gases. During pyrolysis, the catalyst catalyzes a deoxygenation reaction whereby at least a portion of the oxygenated hydrocarbons in the pyrolysis gases are converted into hydrocarbons. The oxygen is removed as carbon oxides and water. A condensable portion (the vapors) of the pyrolysis gases is condensed to low oxygen biomass-derived pyrolysis oil.

  9. Oil production by entrained pyrolysis of biomass and processing of oil and char

    DOEpatents

    Knight, James A.; Gorton, Charles W.

    1990-01-02

    Entrained pyrolysis of lignocellulosic material proceeds from a controlled pyrolysis-initiating temperature to completion of an oxygen free environment at atmospheric pressure and controlled residence time to provide a high yield recovery of pyrolysis oil together with char and non-condensable, combustible gases. The residence time is a function of gas flow rate and the initiating temperature is likewise a function of the gas flow rate, varying therewith. A controlled initiating temperature range of about 400.degree. C. to 550.degree. C. with corresponding gas flow rates to maximize oil yield is disclosed.

  10. Hybrid thermochemical processing: fermentation of pyrolysis-derived bio-oil.

    PubMed

    Jarboe, Laura R; Wen, Zhiyou; Choi, DongWon; Brown, Robert C

    2011-09-01

    Thermochemical processing of biomass by fast pyrolysis provides a nonenzymatic route for depolymerization of biomass into sugars that can be used for the biological production of fuels and chemicals. Fermentative utilization of this bio-oil faces two formidable challenges. First is the fact that most bio-oil-associated sugars are present in the anhydrous form. Metabolic engineering has enabled utilization of the main anhydrosugar, levoglucosan, in workhorse biocatalysts. The second challenge is the fact that bio-oil is rich in microbial inhibitors. Collection of bio-oil in distinct fractions, detoxification of bio-oil prior to fermentation, and increased robustness of the biocatalyst have all proven effective methods for addressing this inhibition. PMID:21789490

  11. Impact of the lignocellulosic material on fast pyrolysis yields and product quality.

    PubMed

    Carrier, Marion; Joubert, Jan-Erns; Danje, Stephen; Hugo, Thomas; Görgens, Johann; Knoetze, Johannes Hansie

    2013-12-01

    The paper describes the fast pyrolysis conversion of lignocellulosic materials inside a bubbling fluidized bed. The impact of biopolymers distribution in the biomass feed, namely hemicelluloses, cellulose and lignin, on the yields and properties of pyrolytic bio-oils and chars was investigated. Although it is not possible to deconvoluate chemical phenomena from transfer phenomena using bubbling fluidized bed reactors, the key role of hemicelluloses in biomass feedstocks was illustrated by: (i) its influence on the production of pyrolytic water, (ii) its impact on the production of organics, apparently due to its bonding relationship with the lignin and (iii) its ability to inhibit the development of chars porosity, while the cellulose appeared to be the precursor for the microporous character of the biochars. These results are of interest for the selection of suitable feedstocks aimed at producing bio-oil and char as fuels and soil amendment, respectively. PMID:24161551

  12. Pyrolysis of sunflower seed hulls for obtaining bio-oils.

    PubMed

    Casoni, Andrés I; Bidegain, Maximiliano; Cubitto, María A; Curvetto, Nestor; Volpe, María A

    2015-02-01

    Bio-oils from pyrolysis of as received sunflower seed hulls (SSH), hulls previously washed with acid (SSHA) and hulls submitted to a mushroom enzymatic attack (BSSH) were analyzed. The concentration of lignin, hemicellulose and cellulose varied with the pre-treatment. The liquid corresponding to SSH presented a relatively high concentration of acetic acid and a high instability to storage. The bio-oil from SSHA showed a high concentration of furfural and an appreciable amount of levoglucosenone. Lignin was degraded upon enzymatic activity, for this reason BSSH led to the highest yield of bio-oil, with relative high concentration of acetic acid and stability to storage.

  13. In-Situ Catalytic Fast Pyrolysis Technology Pathway

    SciTech Connect

    Biddy, Mary J.; Dutta, Abhijit; Jones, Susanne B.; Meyer, Pimphan A.

    2013-03-31

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This pathway case investigates converting woody biomass using in-situ catalytic fast pyrolysis followed by upgrading to gasoline, diesel, and jet range blendstocks. Technical barriers and key research needs that should be pursued for this pathway to be competitive with petroleum-derived blendstocks have been identified.

  14. Ex-Situ Catalytic Fast Pyrolysis Technology Pathway

    SciTech Connect

    Biddy, Mary J.; Dutta, Abhijit; Jones, Susanne B.; Meyer, Pimphan A.

    2013-03-31

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This pathway case investigates converting woody biomass using ex-situ catalytic fast pyrolysis followed by upgrading to gasoline , diesel and jet range blendstocks . Technical barriers and key research needs that should be pursued for this pathway to be competitive with petroleum-derived blendstocks have been identified.

  15. Dissolved phosphorus speciation of flash carbonization, slow pyrolysis, and fast pyrolysis biochars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pyrolysis of waste biomass is a promising technology to produce sterile and renewable organic phosphorus fertilizers. Systematic studies are necessary to understand how different pyrolysis platforms influence the chemical speciation of dissolved (bioavailable) phosphorus. This study employed solut...

  16. Recent advances in hydrotreating of pyrolysis bio-oil and its oxygen-containing model compounds

    SciTech Connect

    Wang, Huamin; Male, Jonathan L.; Wang, Yong

    2013-05-01

    There is considerable world-wide interest in discovering renewable sources of energy that can substitute for fossil fuels. Lignocellulosic biomass, which is the most abundant and inexpensive renewable feedstock on the planet, has a great potential for sustainable production of fuels, chemicals, and carbon-based materials. Fast pyrolysis integrated with hydrotreating is one of the simplest, most cost-effective and most efficient processes to convert lignocellulosic biomass to liquid hydrocarbon fuels for transportation, which has attracted significant attention in recent decades. However, effective hydrotreating of pyrolysis bio-oil presents a daunting challenge to the commercialization of biomass conversion via pyrolysis-hydrotreating. Specifically, development of active, selective, and stable hydrotreating catalysts is the bottleneck due to the poor quality of pyrolysis bio-oil feedstock (high oxygen content, molecular complexity, coking propensity, and corrosiveness). Significant research has been conducted to address the practical issues and provide the fundamental understanding of the hydrotreating/hydrodeoxygenation (HDO) of bio-oils and their oxygen-containing model compounds, including phenolics, furans, and carboxylic acids. A wide range of catalysts have been studied, including conventional Mo-based sulfide catalysts and noble metal catalysts, with the latter being the primary focus of the recent research because of their excellent catalytic performances and no requirement of environmentally unfriendly sulfur. The reaction mechanisms of HDO of model compounds on noble metal catalysts as well as their efficacy for hydrotreating or stabilization of bio-oil have been recently reported. This review provides a survey of the relevant literatures of recent 10 years about the advances in the understanding of the HDO chemistry of bio-oils and their model compounds mainly on noble metal catalysts.

  17. Apparatuses and methods for deoxygenating biomass-derived pyrolysis oil

    SciTech Connect

    Kalnes, Tom N.

    2015-12-29

    Apparatuses and methods for deoxygenating a biomass-derived pyrolysis oil are provided herein. In one example, the method comprises of dividing a feedstock stream into first and second feedstock portions. The feedstock stream comprises the biomass-derived pyrolysis oil and has a temperature of about 60.degree. C. or less. The first feedstock portion is combined with a heated organic liquid stream to form a first heated diluted pyoil feed stream. The first heated diluted pyoil feed stream is contacted with a first deoxygenating catalyst in the presence of hydrogen to form an intermediate low-oxygen pyoil effluent. The second feedstock portion is combined with the intermediate low-oxygen pyoil effluent to form a second heated diluted pyoil feed stream. The second heated diluted pyoil feed stream is contacted with a second deoxygenating catalyst in the presence of hydrogen to form additional low-oxygen pyoil effluent.

  18. Catalytic Fast Pyrolysis of Wild Reed Over Nanoporous SBA-15 Catalysts.

    PubMed

    Park, Y K; Yoo, Myung Lang; Park, Sung Hoon

    2016-05-01

    Wild reed was pyrolyzed over two nanoporous SBA-15 catalysts with different acid characteristics: Si-SBA-15 and Al-SBA-15. Al was grafted on Si-SBA-15 to increase the acidity and enhance the catalytic activity. Fast pyrolysis was carried out using a pyrolysis-gas chromatography/mass spectrometry system at 550 degrees C for real-time analysis of the products. Significant improvement of the product bio-oil quality was attained by catalytic reforming over nanoporous Al-SBA-15. The fraction of total oxygenates was reduced because of the decrease in. the fraction of ketones, aldehydes, and carboxylates, which deteriorate the fuel quality of bio-oil. On the other hand, the fractions of furans and aromatics, which are the chemicals with high value-added, were increased by the catalytic reforming. The catalytic activity of Al-SBA-15 was considerably higher than that of Si-SBA-15 because the incorporation of Al increased the catalyst acidity. PMID:27483790

  19. ASPEN+ and economic modeling of equine waste utilization for localized hot water heating via fast pyrolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ASPEN Plus based simulation models have been developed to design a pyrolysis process for the on-site production and utilization of pyrolysis oil from equine waste at the Equine Rehabilitation Center at Morrisville State College (MSC). The results indicate that utilization of all available Equine Reh...

  20. Pore Scale Analysis of Oil Shale/Sands Pyrolysis

    SciTech Connect

    Lin, Chen-Luh; Miller, Jan

    2011-03-01

    There are important questions concerning the quality and volume of pore space that is created when oil shale is pyrolyzed for the purpose of producing shale oil. In this report, 1.9 cm diameter cores of Mahogany oil shale were pyrolyzed at different temperatures and heating rates. Detailed 3D imaging of core samples was done using multiscale X-ray computed tomography (CT) before and after pyrolysis to establish the pore structure. The pore structure of the unreacted material was not clear. Selected images of a core pyrolyzed at 400oC were obtained at voxel resolutions from 39 microns (Οm) to 60 nanometers (nm). Some of the pore space created during pyrolysis was clearly visible at these resolutions and it was possible to distinguish between the reaction products and the host shale rock. The pore structure deduced from the images was used in Lattice Boltzmann simulations to calculate the permeability in the pore space. The permeabilities of the pyrolyzed samples of the silicate-rich zone were on the order of millidarcies, while the permeabilities of the kerogen-rich zone after pyrolysis were very anisotropic and about four orders of magnitude higher.

  1. Field-to-Fuel Performance Testing of Lignocellulosic Feedstocks: An Integrated Study of the Fast Pyrolysis/Hydrotreating Pathway

    SciTech Connect

    Howe, Daniel T.; Westover, Tyler; Carpenter, Daniel; Santosa, Daniel M.; Emerson, Rachel; Deutch, Steve; Starace, Anne; Kutnyakov, Igor V.; Lukins, Craig D.

    2015-05-21

    Feedstock composition can affect final fuel yields and quality for the fast pyrolysis and hydrotreatment upgrading pathway. However, previous studies have focused on individual unit operations rather than the integrated system. In this study, a suite of six pure lignocellulosic feedstocks (clean pine, whole pine, tulip poplar, hybrid poplar, switchgrass, and corn stover) and two blends (equal weight percentages whole pine/tulip poplar/switchgrass and whole pine/clean pine/hybrid poplar) were prepared and characterized at Idaho National Laboratory. These blends then underwent fast pyrolysis at the National Renewable Energy Laboratory and hydrotreatment at Pacific Northwest National Laboratory. Although some feedstocks showed a high fast pyrolysis bio-oil yield such as tulip poplar at 57%, high yields in the hydrotreater were not always observed. Results showed overall fuel yields of 15% (switchgrass), 18% (corn stover), 23% (tulip poplar, Blend 1, Blend 2), 24% (whole pine, hybrid poplar) and 27% (clean pine). Simulated distillation of the upgraded oils indicated that the gasoline fraction varied from 39% (clean pine) to 51% (corn stover), while the diesel fraction ranged from 40% (corn stover) to 46% (tulip poplar). Little variation was seen in the jet fuel fraction at 11 to 12%. Hydrogen consumption during hydrotreating, a major factor in the economic feasibility of the integrated process, ranged from 0.051 g/g dry feed (tulip poplar) to 0.070 g/g dry feed (clean pine).

  2. Summary of Fast Pyrolysis and Upgrading GHG Analyses

    SciTech Connect

    Snowden-Swan, Lesley J.; Male, Jonathan L.

    2012-12-07

    by the rich dialogue and convergence around the energy content and GHG reduction of cellulosic ethanol (an example of these discussions can be found in Wang 2011). GHG analyses of fast pyrolysis technology routes are being developed and will require significant work to reach the levels of development and maturity of cellulosic ethanol models. This summary provides some of the first fast pyrolysis analyses and clarifies some of the reasons for differing results in an effort to begin the convergence on assumptions, discussion of quality of models, and harmonization.

  3. Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: 2012 State of Technology and Projections to 2017

    SciTech Connect

    Jones, Susanne B.; Snowden-Swan, Lesley J.

    2013-08-27

    This report summarizes the economic impact of the work performed at PNNL during FY12 to improve fast pyrolysis oil upgrading via hydrotreating. A comparison is made between the projected economic outcome and the actual results based on experimental data. Sustainability metrics are also included.

  4. The characteristic and evaluation method of fast pyrolysis of microalgae to produce syngas.

    PubMed

    Hu, Zhifeng; Ma, Xiaoqian; Li, Longjun

    2013-07-01

    The fast pyrolysis of Chlorella vulgaris was carried out in a quartz tube reactor under different pyrolysis temperature levels. The product fractional yields, gaseous products and the evaluation method based on heating value and energy consumption were analyzed in order to obtain the optimal condition to produce syngas. The results indicated that the higher the pyrolysis temperature level was, the higher the bio-fuel yield was. 900°C is the best temperature to obtain the maximum bio-fuel yield (91.09 wt.%). And the highest emission of CO and H2 were achieved under the pyrolysis temperature of 800 and 900°C, respectively. According to the evaluation method based on heating value and energy consumption, there was a significant impact on the syngas production under different pyrolysis temperatures. Furthermore, the evaluation method based on energy consumption indicated that 800°C was the optimal pyrolysis temperature to produce syngas. PMID:23693148

  5. Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida).

    PubMed

    Kim, Kwang Ho; Kim, Jae-Young; Cho, Tae-Su; Choi, Joon Weon

    2012-08-01

    The aim of this study was to investigate the influence of pyrolysis temperature on the physicochemical properties and structure of biochar. Biochar was produced by fast pyrolysis of pitch pine (Pinus rigida) using a fluidized bed reactor at different pyrolysis temperatures (300, 400 and 500 °C). The produced biochars were characterized by elemental analysis, Brunauer-Emmett-Teller (BET) surface area, particle size distributions, field-emission scanning electron microscopy (FE-SEM), Fourier transform infrared (FTIR) spectroscopy, solid-state (13)C nuclear magnetic resonance (NMR) and X-ray diffraction (XRD). The yield of biochar decreased sharply from 60.7% to 14.4%, based on the oven-dried biomass weight, when the pyrolysis temperature rose from 300 °C to 500 °C. In addition, biochars were further carbonized with an increase in pyrolysis temperature and the char's remaining carbons were rearranged in stable form. The experimental results suggested that the biochar obtained at 400 and 500 °C was composed of a highly ordered aromatic carbon structure.

  6. Production and characterization of pyrolytic oils by pyrolysis of waste machinery oil.

    PubMed

    Sinağ, Ali; Gülbay, Selen; Uskan, Burçin; Uçar, Suat; Ozgürler, Sara Bilge

    2010-01-15

    The main objective of this work is to propose an alternative method for evaluation of the waste machinery oil which is an environmental problem in Turkey. For this purpose, pyrolysis of waste machinery oil was conducted in a tubular reactor. Effect of the experimental conditions (various temperatures, catalyst type) on the formation of pyrolytic oil, gas, and char was investigated. Nickel supported on silica and zeolite (HZSM-5) were used as catalysts. Properties of the pyrolytic oils were characterized by gas chromatograph equipped with a mass selective detector (GC-MS), gas chromatography with flame ionization detector (GC-FID for boiling point range distribution), nuclear magnetic resonance ((1)H NMR) spectroscopy, higher heating value measurement, and elemental analysis. The behavior of the metals in the waste machinery oil and the pyrolytic oil samples was also quantitatively detected by inductively coupled plasma (ICP) analysis. As, Cd and Cr contents of the all pyrolytic oils were found as <0.05 ppm, while Cu content of the pyrolytic oils varied between 0.3 ppm and 0.61 ppm. Only Vanadium contents of the pyrolytic oils obtained at 800 degrees C (0.342 ppm) and in the presence of HZSM5 (0.57 ppm) increased compared to that obtained by waste machinery oil (0.1 ppm). Lower metal contents of the pyrolytic oils reveal that pyrolysis of the waste machinery oils leads to the formation of environmental friendly pyrolytic oils with higher heating values.

  7. Isolation of levoglucosan from pyrolysis oil derived from cellulose

    DOEpatents

    Moens, L.

    1994-12-06

    High purity levoglucosan is obtained from pyrolysis oil derived from cellulose by: mixing pyrolysis oil with water and a basic metal hydroxide, oxide, or salt in amount sufficient to elevate pH values to a range of from about 12 to about 12.5, and adding an amount of the hydroxide, oxide, or salt in excess of the amount needed to obtain the pH range until colored materials of impurities from the oil are removed and a slurry is formed; drying the slurry azeotropically with methyl isobutyl ketone solvent to form a residue, and further drying the residue by evaporation; reducing the residue into a powder; continuously extracting the powder residue with ethyl acetate to provide a levoglucosan-rich extract; and concentrating the extract by removing ethyl acetate to provide crystalline levoglucosan. Preferably, Ca(OH)[sub 2] is added to adjust the pH to the elevated values, and then Ca(OH)[sub 2] is added in an excess amount needed. 3 figures.

  8. Isolation of levoglucosan from pyrolysis oil derived from cellulose

    DOEpatents

    Moens, Luc

    1994-01-01

    High purity levoglucosan is obtained from pyrolysis oil derived from cellulose by: mixing pyrolysis oil with water and a basic metal hydroxide, oxide, or salt in amount sufficient to elevate pH values to a range of from about 12 to about 12.5, and adding an amount of the hydroxide, oxide, or salt in excess of the amount needed to obtain the pH range until colored materials of impurities from the oil are removed and a slurry is formed; drying the slurry azeotropically with methyl isobutyl ketone solvent to form a residue, and further drying the residue by evaporation; reducing the residue into a powder; continuously extracting the powder residue with ethyl acetate to provide a levoglucosan-rich extract; and concentrating the extract by removing ethyl acetate to provide crystalline levoglucosan. Preferably, Ca(OH).sub.2 is added to adjust the pH to the elevated values, and then Ca(OH).sub.2 is added in an excess amount needed.

  9. Techno-Economic Analysis of Biomass Fast Pyrolysis to Transportation Fuels

    SciTech Connect

    Wright, M. M.; Satrio, J. A.; Brown, R. C.; Daugaard, D. E.; Hsu, D. D.

    2010-11-01

    This study develops techno-economic models for assessment of the conversion of biomass to valuable fuel products via fast pyrolysis and bio-oil upgrading. The upgrading process produces a mixture of naphtha-range (gasoline blend stock) and diesel-range (diesel blend stock) products. This study analyzes the economics of two scenarios: onsite hydrogen production by reforming bio-oil, and hydrogen purchase from an outside source. The study results for an nth plant indicate that petroleum fractions in the naphtha distillation range and in the diesel distillation range are produced from corn stover at a product value of $3.09/gal ($0.82/liter) with onsite hydrogen production or $2.11/gal ($0.56/liter) with hydrogen purchase. These values correspond to a $0.83/gal ($0.21/liter) cost to produce the bio-oil. Based on these nth plant numbers, product value for a pioneer hydrogen-producing plant is about $6.55/gal ($1.73/liter) and for a pioneer hydrogen-purchasing plant is about $3.41/gal ($0.92/liter). Sensitivity analysis identifies fuel yield as a key variable for the hydrogen-production scenario. Biomass cost is important for both scenarios. Changing feedstock cost from $50-$100 per short ton changes the price of fuel in the hydrogen production scenario from $2.57-$3.62/gal ($0.68-$0.96/liter).

  10. Mass production of chemicals from biomass-derived oil by directly atmospheric distillation coupled with co-pyrolysis

    NASA Astrophysics Data System (ADS)

    Zhang, Xue-Song; Yang, Guang-Xi; Jiang, Hong; Liu, Wu-Jun; Ding, Hong-Sheng

    2013-01-01

    Production of renewable commodity chemicals from bio-oil derived from fast pyrolysis of biomass has received considerable interests, but hindered by the presence of innumerable components in bio-oil. In present work, we proposed and experimentally demonstrated an innovative approach combining atmospheric distillation of bio-oil with co-pyrolysis for mass production of renewable chemicals from biomass, in which no waste was produced. It was estimated that 51.86 wt.% of distillate just containing dozens of separable organic components could be recovered using this approach. Ten protogenetic and three epigenetic compounds in distillate were qualitatively identified by gas chromatography/mass spectrometry and quantified by gas chromatography. Among them, the recovery efficiencies of acetic acid, propanoic acid, and furfural were all higher than 80 wt.%. Formation pathways of the distillate components in this process were explored. This work opens up a fascinating prospect for mass production of chemical feedstock from waste biomass.

  11. Mass production of chemicals from biomass-derived oil by directly atmospheric distillation coupled with co-pyrolysis

    PubMed Central

    Zhang, Xue-Song; Yang, Guang-Xi; Jiang, Hong; Liu, Wu-Jun; Ding, Hong-Sheng

    2013-01-01

    Production of renewable commodity chemicals from bio-oil derived from fast pyrolysis of biomass has received considerable interests, but hindered by the presence of innumerable components in bio-oil. In present work, we proposed and experimentally demonstrated an innovative approach combining atmospheric distillation of bio-oil with co-pyrolysis for mass production of renewable chemicals from biomass, in which no waste was produced. It was estimated that 51.86 wt.% of distillate just containing dozens of separable organic components could be recovered using this approach. Ten protogenetic and three epigenetic compounds in distillate were qualitatively identified by gas chromatography/mass spectrometry and quantified by gas chromatography. Among them, the recovery efficiencies of acetic acid, propanoic acid, and furfural were all higher than 80 wt.%. Formation pathways of the distillate components in this process were explored. This work opens up a fascinating prospect for mass production of chemical feedstock from waste biomass. PMID:23350028

  12. Quality improvement of pyrolysis oil from waste rubber by adding sawdust

    SciTech Connect

    Wang, Wen-liang; Chang, Jian-min; Cai, Li-ping; Shi, Sheldon Q.

    2014-12-15

    Highlights: • Rubber-pyrolysis oil is difficult to be fuel due to high proportion of PAHs. • The efficiency of pyrolysis was increased as the percentage of sawdust increased. • The adding of sawdust improved pyrolysis oil quality by reducing the PAHs content. • Adding sawdust reduced nitrogen/sulfur in oil and was easier to convert to diesel. - Abstract: This work was aimed at improving the pyrolysis oil quality of waste rubber by adding larch sawdust. Using a 1 kg/h stainless pyrolysis reactor, the contents of sawdust in rubber were gradually increased from 0%, 50%, 100% and 200% (wt%) during the pyrolysis process. Using a thermo-gravimetric (TG) analyzer coupled with Fourier transform infrared (FTIR) analysis of evolving products (TG–FTIR), the weight loss characteristics of the heat under different mixtures of sawdust/rubber were observed. Using the pyrolysis–gas chromatography (GC)–mass spectrometry (Py–GC/MS), the vapors from the pyrolysis processes were collected and the compositions of the vapors were examined. During the pyrolysis process, the recovery of the pyrolysis gas and its composition were measured in-situ at a reaction temperature of 450 °C and a retaining time of 1.2 s. The results indicated that the efficiency of pyrolysis was increased and the residual carbon was reduced as the percentage of sawdust increased. The adding of sawdust significantly improved the pyrolysis oil quality by reducing the polycyclic aromatic hydrocarbons (PAHs) and nitrogen and sulfur compounds contents, resulting in an improvement in the combustion efficiency of the pyrolysis oil.

  13. Life cycle environmental and economic tradeoffs of using fast pyrolysis products for power generation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bio-oils produced from small-scale pyrolysis technology may have economic and environmental benefits for both densifying agricultural biomass and supplying local bio-energy markets (e.g., Renewable Portfolio Standards). This study presents a life cycle assessment (LCA) of a farm-scale bio-oil produ...

  14. Fast pyrolysis of an ensemble of biomass particles in a fluidized bed

    NASA Astrophysics Data System (ADS)

    Rabinovich, O. S.; Borodulya, V. A.; Vinogradov, L. M.; Korban, V. V.

    2010-09-01

    A combined approach to the modeling of fast pyrolysis of biomass particles in a fluidized bed has been used. We used models of different levels: two models of pyrolysis of a single particle — with lumped and distributed parameters — and a model of pyrolysis of an ensemble of biomass particles based on the continuum equations for the gas blown through the bed and the equations of motion for individual particles. We have determined optimal (in terms of the biofuel yield) temperatures of the process for various particle sizes of wood biomass and various values of its moisture.

  15. Chemicals from Lignin by Catalytic Fast Pyrolysis, from Product Control to Reaction Mechanism.

    PubMed

    Ma, Zhiqiang; Custodis, Victoria; Hemberger, Patrick; Bährle, Christian; Vogel, Frédéric; Jeschk, Gunnar; van Bokhoven, Jeroen A

    2015-01-01

    Conversion of lignin into renewable and value-added chemicals by thermal processes, especially pyrolysis, receives great attention. The products may serve as feedstock for chemicals and fuels and contribute to the development of a sustainable society. However, the application of lignin conversion is limited by the low selectivity from lignin to the desired products. The opportunities for catalysis to selectively convert lignin into useful chemicals by catalytic fast pyrolysis and our efforts to elucidate the mechanism of lignin pyrolysis are discussed. Possible research directions will be identified. PMID:26598403

  16. Quality improvement of pyrolysis oil from waste rubber by adding sawdust.

    PubMed

    Wang, Wen-liang; Chang, Jian-min; Cai, Li-ping; Shi, Sheldon Q

    2014-12-01

    This work was aimed at improving the pyrolysis oil quality of waste rubber by adding larch sawdust. Using a 1 kg/h stainless pyrolysis reactor, the contents of sawdust in rubber were gradually increased from 0%, 50%, 100% and 200% (wt%) during the pyrolysis process. Using a thermo-gravimetric (TG) analyzer coupled with Fourier transform infrared (FTIR) analysis of evolving products (TG-FTIR), the weight loss characteristics of the heat under different mixtures of sawdust/rubber were observed. Using the pyrolysis-gas chromatography (GC)-mass spectrometry (Py-GC/MS), the vapors from the pyrolysis processes were collected and the compositions of the vapors were examined. During the pyrolysis process, the recovery of the pyrolysis gas and its composition were measured in-situ at a reaction temperature of 450 °C and a retaining time of 1.2s. The results indicated that the efficiency of pyrolysis was increased and the residual carbon was reduced as the percentage of sawdust increased. The adding of sawdust significantly improved the pyrolysis oil quality by reducing the polycyclic aromatic hydrocarbons (PAHs) and nitrogen and sulfur compounds contents, resulting in an improvement in the combustion efficiency of the pyrolysis oil.

  17. Characterization and pyrolysis behavior of novel anthracene oil derivatives

    SciTech Connect

    P. Alvarez; M. Granda; J. Sutil; R. Menendez; J.J. Fernandez; J.A. Vina; T.J. Morgan; M. Millan; A.A. Herod; R. Kandiyoti

    2008-11-15

    The characterization and pyrolysis behavior of a set of pitches prepared from anthracene oil have been described. The pitches were obtained from four successive cycles of a sequential process that begins with blowing air through the heated anthracene oil, to bring about recombination reactions. Reaction products are distilled to give a pitch residue and a lighter fraction. Thermal treatment/distillation cycles of this reaction product yield a pitch and a distillate fraction (unreacted anthracene oil) during each subsequent stage. Products obtained during the process have been characterized by elemental analysis, Fourier transform infrared (FTIR) and ultraviolet (UV)-fluorescence spectroscopy, and size-exclusion chromatography (SEC). The pyrolytic behavior of the anthracene oil derivatives was examined using a thermogravimetric balance. Thermal treatment of the anthracene oil and its (distilled) reaction products at 440-460{degree}C under 5 bar pressure leads to a partially anisotropic pitch with the formation of a liquid crystal phase (mesophase). The formation and evolution of these mesophases were analyzed by optical microscopy. 25 refs., 9 figs., 3 tabs.

  18. Modeling a set of heavy oil aqueous pyrolysis experiments

    SciTech Connect

    Thorsness, C.B.; Reynolds, J.G.

    1996-11-01

    Aqueous pyrolysis experiments, aimed at mild upgrading of heavy oil, were analyzed using various computer models. The primary focus of the analysis was the pressure history of the closed autoclave reactors obtained during the heating of the autoclave to desired reaction temperatures. The models used included a means of estimating nonideal behavior of primary components with regard to vapor liquid equilibrium. The modeling indicated that to match measured autoclave pressures, which often were well below the vapor pressure of water at a given temperature, it was necessary to incorporate water solubility in the oil phase and an activity model for the water in the oil phase which reduced its fugacity below that of pure water. Analysis also indicated that the mild to moderate upgrading of the oil which occurred in experiments that reached 400{degrees}C or more using a FE(III) 2-ethylhexanoate could be reasonably well characterized by a simple first order rate constant of 1.7xl0{sup 8} exp(-20000/T)s{sup {minus}l}. Both gas production and API gravity increase were characterized by this rate constant. Models were able to match the complete pressure history of the autoclave experiments fairly well with relatively simple equilibria models. However, a consistent lower than measured buildup in pressure at peak temperatures was noted in the model calculations. This phenomena was tentatively attributed to an increase in the amount of water entering the vapor phase caused by a change in its activity in the oil phase.

  19. Jobs and Economic Development Impact (JEDI) User Reference Guide: Fast Pyrolysis Biorefinery Model

    SciTech Connect

    Zhang, Y.; Goldberg, M.

    2015-02-01

    This guide -- the JEDI Fast Pyrolysis Biorefinery Model User Reference Guide -- was developed to assist users in operating and understanding the JEDI Fast Pyrolysis Biorefinery Model. The guide provides information on the model's underlying methodology, as well as the parameters and data sources used to develop the cost data utilized in the model. This guide also provides basic instruction on model add-in features and a discussion of how the results should be interpreted. Based on project-specific inputs from the user, the JEDI Fast Pyrolysis Biorefinery Model estimates local (e.g., county- or state-level) job creation, earnings, and output from total economic activity for a given fast pyrolysis biorefinery. These estimates include the direct, indirect and induced economic impacts to the local economy associated with the construction and operation phases of biorefinery projects.Local revenue and supply chain impacts as well as induced impacts are estimated using economic multipliers derived from the IMPLAN software program. By determining the local economic impacts and job creation for a proposed biorefinery, the JEDI Fast Pyrolysis Biorefinery Model can be used to field questions about the added value biorefineries might bring to a local community.

  20. Obtaining fermentable sugars by dilute acid hydrolysis of hemicellulose and fast pyrolysis of cellulose.

    PubMed

    Jiang, Liqun; Zheng, Anqing; Zhao, Zengli; He, Fang; Li, Haibin; Liu, Weiguo

    2015-04-01

    The objective of this study was to get fermentable sugars by dilute acid hydrolysis of hemicellulose and fast pyrolysis of cellulose from sugarcane bagasse. Hemicellulose could be easily hydrolyzed by dilute acid as sugars. The remained solid residue of acid hydrolysis was utilized to get levoglucosan by fast pyrolysis economically. Levoglucosan yield from crystalline cellulose could be as high as 61.47%. Dilute acid hydrolysis was also a promising pretreatment for levoglucosan production from lignocellulose. The dilute acid pretreated sugarcane bagasse resulted in higher levoglucosan yield (40.50%) in fast pyrolysis by micropyrolyzer, which was more effective than water washed (29.10%) and un-pretreated (12.84%). It was mainly ascribed to the effective removal of alkali and alkaline earth metals and the accumulation of crystalline cellulose. This strategy seems a promising route to achieve inexpensive fermentable sugars from lignocellulose for biorefinery. PMID:25690683

  1. The comparison of obtaining fermentable sugars from cellulose by enzymatic hydrolysis and fast pyrolysis.

    PubMed

    Jiang, Liqun; Zheng, Anqing; Zhao, Zengli; He, Fang; Li, Haibin; Wu, Nannan

    2016-01-01

    Sugars are one of intermediates in the biological and chemical conversion of biomass. The objective of this study was to make comparison of obtaining fermentable sugars by enzymatic hydrolysis and fast pyrolysis of ball milling pretreated cellulose. After ball milling pretreatment for 0-18h, with the accumulation of alkali and alkali earth metals (from 50.8 to 276.4ppm) and decrease of the crystalline structure (from 89.8% to 10.1%), the hydrolysis yields increased from 23.6% to 56.0% in enzymatic saccharification, while the yields of levoglucosan diminished from 61.5% to 45.6% gradually in fast pyrolysis. Both enzymatic saccharification and fast pyrolysis had unique attractive features and unfavorable limitations. The present research provided a concept for considering choices among the technologies and feedstocks currently available. PMID:26476158

  2. Obtaining fermentable sugars by dilute acid hydrolysis of hemicellulose and fast pyrolysis of cellulose.

    PubMed

    Jiang, Liqun; Zheng, Anqing; Zhao, Zengli; He, Fang; Li, Haibin; Liu, Weiguo

    2015-04-01

    The objective of this study was to get fermentable sugars by dilute acid hydrolysis of hemicellulose and fast pyrolysis of cellulose from sugarcane bagasse. Hemicellulose could be easily hydrolyzed by dilute acid as sugars. The remained solid residue of acid hydrolysis was utilized to get levoglucosan by fast pyrolysis economically. Levoglucosan yield from crystalline cellulose could be as high as 61.47%. Dilute acid hydrolysis was also a promising pretreatment for levoglucosan production from lignocellulose. The dilute acid pretreated sugarcane bagasse resulted in higher levoglucosan yield (40.50%) in fast pyrolysis by micropyrolyzer, which was more effective than water washed (29.10%) and un-pretreated (12.84%). It was mainly ascribed to the effective removal of alkali and alkaline earth metals and the accumulation of crystalline cellulose. This strategy seems a promising route to achieve inexpensive fermentable sugars from lignocellulose for biorefinery.

  3. Combustion performance of pyrolysis oil/ethanol blends in a residential-scale oil-fired boiler

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A 40 kWth oil-fired commercial boiler was fueled with blends of biomass pyrolysis oil (py-oil) and ethanol to determine the feasibility of using these blends as a replacement for fuel oil in home heating applications. An optimal set of test parameters was determined for the combustion of these blend...

  4. Formation of dl-limonene in used tire vacuum pyrolysis oils. [dipentene

    SciTech Connect

    Pakdel, H.; Roy, C.; Aubin, H.; Jean, G. ); Coulombe, S. )

    1991-09-01

    Tire recycling has become an important environmental issue recently due to the huge piles of tires that threaten the environment. Thermal decomposition of tire, a synthetic rubber material, enables the recovery of carbon black and liquid hydrocarbon oils. Both have potential economic values. Pyrolysis oils obtained under vacuum conditions contain a significant portion of a volatile, naptha-like fraction with an octane number similar to petroleum naphtha fraction, in addition, contains approximately 15% limonene. Potential applications of vacuum pyrolysis oil and carbon black have been investigated. However, the process economics is greatly influenced by the quality of the oil and carbon black products. This paper discusses limonene formation during used tire vacuum pyrolysis and its postulated reaction mechanism. The limonene separation method from pyrolysis oil, as well as its purification in laboratory scale, and structural characterization are discussed. Large-scale limonene separation and purification is under investigation.

  5. Well-to-wheels analysis of fast pyrolysis pathways with the GREET model.

    SciTech Connect

    Han, J.; Elgowainy, A.; Palou-Rivera, I.; Dunn, J.B.; Wang, M.Q.

    2011-12-01

    The pyrolysis of biomass can help produce liquid transportation fuels with properties similar to those of petroleum gasoline and diesel fuel. Argonne National Laboratory conducted a life-cycle (i.e., well-to-wheels [WTW]) analysis of various pyrolysis pathways by expanding and employing the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model. The WTW energy use and greenhouse gas (GHG) emissions from the pyrolysis pathways were compared with those from the baseline petroleum gasoline and diesel pathways. Various pyrolysis pathway scenarios with a wide variety of possible hydrogen sources, liquid fuel yields, and co-product application and treatment methods were considered. At one extreme, when hydrogen is produced from natural gas and when bio-char is used for process energy needs, the pyrolysis-based liquid fuel yield is high (32% of the dry mass of biomass input). The reductions in WTW fossil energy use and GHG emissions relative to those that occur when baseline petroleum fuels are used, however, is modest, at 50% and 51%, respectively, on a per unit of fuel energy basis. At the other extreme, when hydrogen is produced internally via reforming of pyrolysis oil and when bio-char is sequestered in soil applications, the pyrolysis-based liquid fuel yield is low (15% of the dry mass of biomass input), but the reductions in WTW fossil energy use and GHG emissions are large, at 79% and 96%, respectively, relative to those that occur when baseline petroleum fuels are used. The petroleum energy use in all scenarios was restricted to biomass collection and transportation activities, which resulted in a reduction in WTW petroleum energy use of 92-95% relative to that found when baseline petroleum fuels are used. Internal hydrogen production (i.e., via reforming of pyrolysis oil) significantly reduces fossil fuel use and GHG emissions because the hydrogen from fuel gas or pyrolysis oil (renewable sources) displaces that from fossil fuel

  6. Production of higher quality bio-oils by in-line esterification of pyrolysis vapor

    SciTech Connect

    Hilten, Roger Norris; Das, Keshav; Kastner, James R; Bibens, Brian P

    2014-12-02

    The disclosure encompasses in-line reactive condensation processes via vapor phase esterification of bio-oil to decease reactive species concentration and water content in the oily phase of a two-phase oil, thereby increasing storage stability and heating value. Esterification of the bio-oil vapor occurs via the vapor phase contact and subsequent reaction of organic acids with ethanol during condensation results in the production of water and esters. The pyrolysis oil product can have an increased ester content and an increased stability when compared to a condensed pyrolysis oil product not treated with an atomized alcohol.

  7. Kinetics governing Michigan Antrim oil shale. I. Pyrolysis. II. Oxidation of carbonaceous residue

    SciTech Connect

    Rostam-Abadi, M.

    1982-01-01

    The intrinsic reaction rate kinetics for the pyrolysis of Michigan Antrim oil shale and the oxidation of the carbonaceous residue of this shale have been determined. The effect of heating rate, and oil shale minerals, particularly iron pyrite on the pyrolysis reaction was also investigated. As a part of the combustion process, the oxidation reactivity of carbonaceous residue prepared at several final pyrolysis temperatures, and the kinetics of chemisorption of oxygen on carbonaceous residue have been determined. Thermogravimetric and differential thermogravimetric techniques were employed in this research. The kinetics of the pyrolysis reaction were determined from both isothermal and nonisothermal rate data. No evidence of any reaction among the oil shale mineral constituents was observed at temperatures below 1173/sup 0/K. However, it was found that the presence of pyrite in oil shale reduces the primary devolatization rates of kerogen and increases the amount of residual char in the spent shale.

  8. Evaluation of Brazilian biomasses as potential feedstocks for fuel production via fast pyrolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The utilization of lignocellulosic materials to generate energy is constantly expanding around the world. In addition to the well-known biofuels such as ethanol and biodiesel, advanced biofuels obtained by thermochemical conversion routes have been explored, including pyrolysis oil, biochar and syng...

  9. Design Case Summary: Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating, and Hydrocracking

    SciTech Connect

    Jones, S. B.; Valkenburg, C.; Walkton, C. W.; Elliott, D. C.; Holladay, J. E.; Stevens, D. J.; Kinchin, C.; Czernik, S.

    2010-02-01

    The Biomass Program develops design cases to understand the current state of conversion technologies and to determine where improvements need to take place in the future. This design case is the first to establish detailed cost targest for the production of diesel and gasoline blendstock from biomass via a fast pyrolysis process.

  10. Catalytic fast pyrolysis of white oak wood in-situ using a bubbling fluidized bed reactor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Catalytic fast pyrolysis was performed on white oak wood using two zeolite-type catalysts as bed material in a bubbling fluidized bed reactor. The two catalysts chosen, based on a previous screening study, were Ca2+ exchanged Y54 (Ca-Y54) and a proprietary ß-zeolite type catalyst (catalyst M) both ...

  11. Fast pyrolysis of potassium impregnated poplar wood and characterization of its influence on the formation as well as properties of pyrolytic products.

    PubMed

    Hwang, Hyewon; Oh, Shinyoung; Cho, Tae-Su; Choi, In-Gyu; Choi, Joon Weon

    2013-12-01

    TGA results indicated that the maximum decomposition temperature of the biomass decreased from 373.9 to 359.0°C with increasing potassium concentration. For fast pyrolysis, char yield of potassium impregnated biomass doubled regardless of pyrolysis temperature compared to demineralized one. The presence of potassium also affected bio-oil properties. Water content increased from 14.4 to 19.7 wt% and viscosity decreased from 34 to 16.2 cSt, but the pH value of the bio-oil remained stable. Gas chromatography/mass spectroscopy (GC/MS) analysis revealed that potassium promoted thermochemical reactions, thus causing a decrease of levoglucosan and an increase of small molecules and lignin-derived phenols in bio-oil. Additionally, various forms of aromatic hydrocarbons, probably derived from lignins, were detected in non-condensed pyrolytic gas fractions.

  12. Preparation of brightness stabilization agent for lignin containing pulp from biomass pyrolysis oils

    DOEpatents

    Agblevor, Foster A.; Besler-Guran, Serpil

    2001-01-01

    A process for producing a brightness stabilization mixture of water-soluble organic compounds from biomass pyrolysis oils comprising: a) size-reducing biomass material and pyrolyzing the size-reduced biomass material in a fluidized bed reactor; b) separating a char/ash component while maintaining char-pot temperatures to avoid condensation of pyrolysis vapors; c) condensing pyrolysis gases and vapors, and recovering pyrolysis oils by mixing the oils with acetone to obtain an oil-acetone mixture; d) evaporating acetone and recovering pyrolysis oils; e) extracting the pyrolysis oils with water to obtain a water extract; f) slurrying the water extract with carbon while stirring, and filtering the slurry to obtain a colorless filtrate; g) cooling the solution and stabilizing the solution against thermally-induced gelling and solidification by extraction with ethyl acetate to form an aqueous phase lower layer and an organic phase upper layer; h) discarding the upper organic layer and extracting the aqueous layer with ethyl acetate, and discarding the ethyl acetate fraction to obtain a brown-colored solution not susceptible to gelling or solidification upon heating; i) heating the solution to distill off water and other light components and concentrating a bottoms fraction comprising hydroxyacetaldehyde and other non-volatile components having high boiling points; and j) decolorizing the stabilized brown solution with activated carbon to obtain a colorless solution.

  13. Life Cycle Assessment of Gasoline and Diesel Produced via Fast Pyrolysis and Hydroprocessing

    SciTech Connect

    Hsu, D. D.

    2011-03-01

    In this work, a life cycle assessment (LCA) estimating greenhouse gas (GHG) emissions and net energy value (NEV) of the production of gasoline and diesel from forest residues via fast pyrolysis and hydroprocessing, from production of the feedstock to end use of the fuel in a vehicle, is performed. The fast pyrolysis and hydrotreating and hydrocracking processes are based on a Pacific Northwest National Laboratory (PNNL) design report. The LCA results show GHG emissions of 0.142 kg CO2-equiv. per km traveled and NEV of 1.00 MJ per km traveled for a process using grid electricity. Monte Carlo uncertainty analysis shows a range of results, with all values better than those of conventional gasoline in 2005. Results for GHG emissions and NEV of gasoline and diesel from pyrolysis are also reported on a per MJ fuel basis for comparison with ethanol produced via gasification. Although pyrolysis-derived gasoline and diesel have lower GHG emissions and higher NEV than conventional gasoline does in 2005, they underperform ethanol produced via gasification from the same feedstock. GHG emissions for pyrolysis could be lowered further if electricity and hydrogen are produced from biomass instead of from fossil sources.

  14. Kinetic modeling of solid yields formation in the fast pyrolysis of mahogany wood

    NASA Astrophysics Data System (ADS)

    Wijayanti, W.; Sasongko, M. N.

    2016-03-01

    There have been many research of biomass pyrolysis not only in heat transfer point of view but also in chemical reaction point of view. In the present study, the rate of reaction (kinetic rate) formation of solid yield was calculated by varying the pyrolysis temperature that gives a chance of 250 °C, 350 °C, 450 °C, 500 °C, 600 °C, 700 °C, until 800°C with heating rate around 700 °C/hour. The heating rate used was the fast pyrolysis in which the heating rate for heating furnaces takes place quickly. Pyrolysis was accomplished by direct pyrolysis process in which each process was conducted at the certain pyrolysis temperature variation that took over 3 hours. Biomass used was mahogany wood, while the inert gas used to hold in order to avoid combustion was nitrogen gas. The decreasing of solid yields formation obtained was used to calculate the kinetic rate of the pyrolysis process. It was calculated by using the similar Arrhenius equation that considering the temperature changes during the process and the decreasing mass of solid yield formation occurred. The kinetic rate results showed the decomposition of biomass occurs tended in two stages, namely a stage of water evaporation and degradation of biomass solid yield coal followed by a stage of constant formation. The decomposition is expressed by the magnitude of the rate of reaction at 25˚C-517˚C temperature range with a reaction rate constant k1 = 2151.67 exp (-2141/Tp). While at pyrolysis temperatures above 517˚C, the reaction rate constant is expressed with k2 = 32.20 exp (-127.8 / Tp).

  15. The effect of clay catalyst on the chemical composition of bio-oil obtained by co-pyrolysis of cellulose and polyethylene

    SciTech Connect

    Solak, Agnieszka; Rutkowski, Piotr

    2014-02-15

    Highlights: • Non-catalytic and catalytic fast pyrolysis of cellulose/polyethylene blend was carried out in a laboratory scale reactor. • Optimization of process temperature was done. • Optimization of clay catalyst type and amount for co-pyrolysis of cellulose and polyethylene was done. • The product yields and the chemical composition of bio-oil was investigated. - Abstract: Cellulose/polyethylene (CPE) mixture 3:1, w/w with and without three clay catalysts (K10 – montmorillonite K10, KSF – montmorillonite KSF, B – Bentonite) addition were subjected to pyrolysis at temperatures 400, 450 and 500 °C with heating rate of 100 °C/s to produce bio-oil with high yield. The pyrolytic oil yield was in the range of 41.3–79.5 wt% depending on the temperature, the type and the amount of catalyst. The non-catalytic fast pyrolysis at 500 °C gives the highest yield of bio-oil (79.5 wt%). The higher temperature of catalytic pyrolysis of cellulose/polyethylene mixture the higher yield of bio-oil is. Contrarily, increasing amount of montmorillonite results in significant, almost linear decrease in bio-oil yield followed by a significant increase of gas yield. The addition of clay catalysts to CPE mixture has a various influence on the distribution of bio-oil components. The addition of montmorillonite K10 to cellulose/polyethylene mixture promotes the deepest conversion of polyethylene and cellulose. Additionally, more saturated than unsaturated hydrocarbons are present in resultant bio-oils. The proportion of liquid hydrocarbons is the highest when a montmorillonite K10 is acting as a catalyst.

  16. Fluidized-bed pyrolysis of oil shale: oil yield, composition, and kinetics

    SciTech Connect

    Richardson, J H; Huss, E B; Ott, L L; Clarkson, J E; Bishop, M O; Taylor, J R; Gregory, L J; Morris, C J

    1982-09-01

    A quartz isothermal fluidized-bed reactor has been used to measure kinetics and oil properties relevant to surface processing of oil shale. The rate of oil formation has been described with two sequential first-order rate equations characterized by two rate constants, k/sub 1/ = 2.18 x 10/sup 10/ exp(-41.6 kcal/RT) s/sup -1/ and k/sub 2/ = 4.4 x 10/sup 6/ exp(-29.7 kcal/RT) s/sup -1/. These rate constants together with an expression for the appropriate weighting coefficients describe approximately 97/sup +/% of the total oil produced. A description is given of the results of different attempts to mathematically describe the data in a manner suitable for modeling applications. Preliminary results are also presented for species-selective kinetics of methane, ethene, ethane and hydrogen, where the latter is clearly distinguished as the product of a distinct intermediate. Oil yields from Western oil shale are approximately 100% Fischer assay. Oil composition is as expected based on previous work and the higher heating rates (temperatures) inherent in fluidized-bed pyrolysis. Neither the oil yield, composition nor the kinetics varied with particle size between 0.2 and 2.0 mm within experimental error. The qualitatively expected change in oil composition due to cracking was observed over the temperature range studied (460 to 540/sup 0/C). Eastern shale exhibited significantly faster kinetics and higher oil yields than did Western shale.

  17. Utilization of palm oil sludge through pyrolysis for bio-oil and bio-char production.

    PubMed

    Thangalazhy-Gopakumar, Suchithra; Al-Nadheri, Wail Mohammed Ahmed; Jegarajan, Dinesh; Sahu, J N; Mubarak, N M; Nizamuddin, S

    2015-02-01

    In this study, pyrolysis technique was utilized for converting palm oil sludge to value added materials: bio-oil (liquid fuel) and bio-char (soil amendment). The bio-oil yield obtained was 27.4±1.7 wt.% having a heating value of 22.2±3.7 MJ/kg and a negligible ash content of 0.23±0.01 wt.%. The pH of bio-oil was in alkaline region. The bio-char yielded 49.9±0.3 wt.%, which was further investigated for sorption efficiency by adsorbing metal (Cd(2+) ions) from water. The removal efficiency of Cd(2+) was 89.4±2%, which was almost similar to the removal efficiency of a commercial activated carbon. The adsorption isotherm was well described by Langmuir model. Therefore, pyrolysis is proved as an efficient tool for palm oil sludge management, where the waste was converted into valuable products. PMID:25278112

  18. Utilization of palm oil sludge through pyrolysis for bio-oil and bio-char production.

    PubMed

    Thangalazhy-Gopakumar, Suchithra; Al-Nadheri, Wail Mohammed Ahmed; Jegarajan, Dinesh; Sahu, J N; Mubarak, N M; Nizamuddin, S

    2015-02-01

    In this study, pyrolysis technique was utilized for converting palm oil sludge to value added materials: bio-oil (liquid fuel) and bio-char (soil amendment). The bio-oil yield obtained was 27.4±1.7 wt.% having a heating value of 22.2±3.7 MJ/kg and a negligible ash content of 0.23±0.01 wt.%. The pH of bio-oil was in alkaline region. The bio-char yielded 49.9±0.3 wt.%, which was further investigated for sorption efficiency by adsorbing metal (Cd(2+) ions) from water. The removal efficiency of Cd(2+) was 89.4±2%, which was almost similar to the removal efficiency of a commercial activated carbon. The adsorption isotherm was well described by Langmuir model. Therefore, pyrolysis is proved as an efficient tool for palm oil sludge management, where the waste was converted into valuable products.

  19. Profiling fatty acids in vegetable oils by reactive pyrolysis-gas chromatography with dimethyl carbonate and titanium silicate.

    PubMed

    Fabbri, Daniele; Baravelli, Valentina; Chiavari, Giuseppe; Prati, Silvia

    2005-12-30

    A novel methodology in on-line pyrolysis-gas chromatography (Py-GC) for the fast analysis of fatty acids in vegetable oils with minimal sample treatment and the use of non-toxic reagents is described. Pyrolysis at 500 degrees C for 10 s of sub-microgram quantity of vegetable oil dissolved in dimethyl carbonate (DMC) and in the presence of nanopowder titanium silicon oxide resulted in the production of fatty acid methyl esters (FAMEs) as unique products. Pyrolysis performed by means of a resistively heated filament pyrolyser interfaced to a GC-MS apparatus enabled the direct analysis of evolved FAMEs. The DMC/Py-GC-MS analysis was tested on soybean, coconut, linseed, walnut and olive oil and the results compared to the classical BF(3)-methanol as reference methodology. The DMC method exhibited a lower precision and was biased towards lower levels of polyunsaturated fatty acids (PUFA) in comparison to the BF(3)-methanol method, but was more advantageous in terms of reduced sample treatment, waste generation and risk factors of employed chemicals.

  20. Profiling fatty acids in vegetable oils by reactive pyrolysis-gas chromatography with dimethyl carbonate and titanium silicate.

    PubMed

    Fabbri, Daniele; Baravelli, Valentina; Chiavari, Giuseppe; Prati, Silvia

    2005-12-30

    A novel methodology in on-line pyrolysis-gas chromatography (Py-GC) for the fast analysis of fatty acids in vegetable oils with minimal sample treatment and the use of non-toxic reagents is described. Pyrolysis at 500 degrees C for 10 s of sub-microgram quantity of vegetable oil dissolved in dimethyl carbonate (DMC) and in the presence of nanopowder titanium silicon oxide resulted in the production of fatty acid methyl esters (FAMEs) as unique products. Pyrolysis performed by means of a resistively heated filament pyrolyser interfaced to a GC-MS apparatus enabled the direct analysis of evolved FAMEs. The DMC/Py-GC-MS analysis was tested on soybean, coconut, linseed, walnut and olive oil and the results compared to the classical BF(3)-methanol as reference methodology. The DMC method exhibited a lower precision and was biased towards lower levels of polyunsaturated fatty acids (PUFA) in comparison to the BF(3)-methanol method, but was more advantageous in terms of reduced sample treatment, waste generation and risk factors of employed chemicals. PMID:16216255

  1. Investigating the use of phenolic rich fraction of pyrolysis bio-oils as an adhesive system

    NASA Astrophysics Data System (ADS)

    Sahaf, Amir

    Fast pyrolysis allows converting of up to 75 % of biomass into a crude bio-oil, which can be separated into a phenolic rich fraction (PRF) via ethyl acetate extraction while a sugar rich fraction preferentially concentrates in the aqueous phase. Rheological and thermal characterization of heat treated PRF from pyrolysis of Douglas Fir is performed using cone and plate rheology set up, dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC). The results show that this material demonstrates a unique thermoplastic behavior with low Tg and softening point that can be systematically manipulated through changes in thermal history. As these materials are good candidates for development of hot melt adhesives, lap shear tests were also performed using wood stripes to evaluate their mechanical properties as an adhesive. Optimization of properties of the PRF is sought in this study through polymer blending with other bio-degradable thermoplastic poly(epsilon-caprolactone) (PCL) and poly(lactic acid) (PLA). Blends of PRF/PCL and PRF/PLA of different ratios are prepared by solvent casting and melt blending and thermally and thermomechanically characterized for their miscibility and phase behavior. Presence of molecular interactions are furthur investigated using Fourier transform infrared spectoscopy (FTIR). The blends show complete miscibility based on their Tg and melting points and significant improvement in shear strength is observed. Mechanisms leading to changes in properties are described and a physical model is proposed. The blend systems have good potential to be used as a thermoplastic bio degradable adhesives with satisfactoty properies.

  2. Enhancing biochar yield by co-pyrolysis of bio-oil with biomass: impacts of potassium hydroxide addition and air pretreatment prior to co-pyrolysis.

    PubMed

    Veksha, Andrei; Zaman, Waheed; Layzell, David B; Hill, Josephine M

    2014-11-01

    The influence of KOH addition and air pretreatment on co-pyrolysis (600 °C) of a mixture of bio-oil and biomass (aspen wood) was investigated with the goal of increasing biochar yield. The bio-oil was produced as a byproduct of the pyrolysis of biomass and recycled in subsequent runs. Co-pyrolysis of the biomass with the recycled bio-oil resulted in a 16% mass increase in produced biochar. The yields were further increased by either air pretreatment or KOH addition prior to co-pyrolysis. Air pretreatment at 220 °C for 3 h resulted in the highest mass increase (32%) compared to the base case of pyrolysis of biomass only. No synergistic benefit was observed by combining KOH addition with air pretreatment. In fact, KOH catalyzed reactions that increased the bed temperature resulting in carbon loss via formation of CO and CO2.

  3. A novel energy-efficient pyrolysis process: self-pyrolysis of oil shale triggered by topochemical heat in a horizontal fixed bed.

    PubMed

    Sun, You-Hong; Bai, Feng-Tian; Lü, Xiao-Shu; Li, Qiang; Liu, Yu-Min; Guo, Ming-Yi; Guo, Wei; Liu, Bao-Chang

    2015-02-06

    This paper proposes a novel energy-efficient oil shale pyrolysis process triggered by a topochemical reaction that can be applied in horizontal oil shale formations. The process starts by feeding preheated air to oil shale to initiate a topochemical reaction and the onset of self-pyrolysis. As the temperature in the virgin oil shale increases (to 250-300°C), the hot air can be replaced by ambient-temperature air, allowing heat to be released by internal topochemical reactions to complete the pyrolysis. The propagation of fronts formed in this process, the temperature evolution, and the reaction mechanism of oil shale pyrolysis in porous media are discussed and compared with those in a traditional oxygen-free process. The results show that the self-pyrolysis of oil shale can be achieved with the proposed method without any need for external heat. The results also verify that fractured oil shale may be more suitable for underground retorting. Moreover, the gas and liquid products from this method were characterised, and a highly instrumented experimental device designed specifically for this process is described. This study can serve as a reference for new ideas on oil shale in situ pyrolysis processes.

  4. A Novel Energy-Efficient Pyrolysis Process: Self-pyrolysis of Oil Shale Triggered by Topochemical Heat in a Horizontal Fixed Bed

    PubMed Central

    Sun, You-Hong; Bai, Feng-Tian; Lü, Xiao-Shu; Li, Qiang; Liu, Yu-Min; Guo, Ming-Yi; Guo, Wei; Liu, Bao-Chang

    2015-01-01

    This paper proposes a novel energy-efficient oil shale pyrolysis process triggered by a topochemical reaction that can be applied in horizontal oil shale formations. The process starts by feeding preheated air to oil shale to initiate a topochemical reaction and the onset of self-pyrolysis. As the temperature in the virgin oil shale increases (to 250–300°C), the hot air can be replaced by ambient-temperature air, allowing heat to be released by internal topochemical reactions to complete the pyrolysis. The propagation of fronts formed in this process, the temperature evolution, and the reaction mechanism of oil shale pyrolysis in porous media are discussed and compared with those in a traditional oxygen-free process. The results show that the self-pyrolysis of oil shale can be achieved with the proposed method without any need for external heat. The results also verify that fractured oil shale may be more suitable for underground retorting. Moreover, the gas and liquid products from this method were characterised, and a highly instrumented experimental device designed specifically for this process is described. This study can serve as a reference for new ideas on oil shale in situ pyrolysis processes. PMID:25656294

  5. Development of a new peat-based oil sorbent using peat pyrolysis.

    PubMed

    Klavins, Maris; Porshnov, Dmitry

    2013-01-01

    The growing use and transport of crude oil and oil products has led to increasing numbers of oil spillages of various scales. Oil sorbents have been extensively used for remediation of the consequences of such accidents. The aim of this study is to investigate the possible use of peat and its thermal treatment products for oil sorption. Peat as an oil sorbent has poor buoyancy characteristics, relatively low oil sorption capacity and low hydrophobicity. However, thermal treatment (low-temperature pyrolysis and synthesis of peat-based activated coal) helps to significantly improve its sorptive characteristics. Peat is a potential material for oil sorption because it has such advantages as low cost, biodegradability and relatively high parameters of specific surface area and porosity. The processes and structural changes taking place during low-temperature pyrolysis have been studied by means of IR spectroscopy, thermogravimetry and scanning electron microscopy.

  6. Biomass-to-hydrogen via fast pyrolysis and catalytic steam reforming

    SciTech Connect

    Chornet, E.; Wang, D.; Czernik, S.

    1996-10-01

    Pyrolysis of lignocellulosic biomass and reforming the pyroligneous oils is being studied as a strategy for producing hydrogen. Novel technologies for the rapid pyrolysis of biomass have been developed in the past decade. They provide compact and efficient systems to transform biomass into vapors that are condensed to oils, with yields as high as 75-80 wt.% of the anhydrous biomass. This {open_quotes}bio-oil{close_quotes} is a mixture of aldehydes, alcohols, acids, oligomers from the constitutive carbohydrates and lignin, and some water derived from the dehydration reactions. Hydrogen can be produced by reforming the bio-oil or its fractions with steam. A process of this nature has the potential to be cost competitive with conventional means of producing hydrogen. The reforming facility can be designed to handle alternate feedstocks, such as natural gas and naphtha, if necessary. Thermodynamic modeling of the major constituents of the bio-oil has shown that reforming is possible within a wide range of temperatures and steam-to-carbon ratios. Existing catalytic data on the reforming of oxygenates have been studied to guide catalyst selection. Tests performed on a microreactor interfaced with a molecular beam mass spectrometer showed that, by proper selection of the process variables: temperature, steam-to-carbon ratio, gas hourly space velocity, and contact time, almost total conversion of carbon in the feed to CO and CO{sub 2} could be obtained. These tests also provided possible reaction mechanisms where thermal cracking competes with catalytic processes. Bench-scale, fixed bed reactor tests demonstrated high hydrogen yields from model compounds and carbohydrate-derived pyrolysis oil fractions. Reforming bio-oil or its fractions required proper dispersion of the liquid to avoid vapor-phase carbonization of the feed in the inlet to the reactor. A special spraying nozzle injector was designed and successfully tested with an aqueous fraction of bio-oil.

  7. Antioxidants from slow pyrolysis bio-oil of birch wood: Application for biodiesel and biobased lubricants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Birch wood was slowly pyrolyzed to produce bio-oil and biochar. Slow pyrolysis conditions including reaction temperature, residence time, and particle size of the feed were optimized to maximize bio-oil yield. Particle size had an insignificant effect, whereas yields of up to 56% were achieved using...

  8. Factors affecting the yield of bio-oil from the pyrolysis of coconut shell.

    PubMed

    Gao, Yun; Yang, Yi; Qin, Zhanbin; Sun, Yi

    2016-01-01

    Coconut is a high-quality agricultural product of the Asia-Pacific region. In this paper, coconut shell which mainly composed of cellulose, hemicellulose, lignin was used as a raw material for coconut shell oil from coconut shell pyrolysis. The influence of the pyrolysis temperature, heating rate and particle size on coconut oil yield was investigated, and the effect of heating rate on coconut oil components was discussed. Experimental results show that the maximum oil yield of 75.74 wt% (including water) were obtained under the conditions that the final pyrolysis temperature 575 °C, heating rate 20 °C/min, coconut shell diameter about 5 mm. Thermal gravimetric analysis was used and it can be seen that coconut shell pyrolysis process can be divided into three stages: water loss, pyrolysis and pyrocondensation. The main components of coconut-shell oil are water (about 50 wt%), aromatic, phenolic, acid, ketone and ether containing compounds.

  9. Factors affecting the yield of bio-oil from the pyrolysis of coconut shell.

    PubMed

    Gao, Yun; Yang, Yi; Qin, Zhanbin; Sun, Yi

    2016-01-01

    Coconut is a high-quality agricultural product of the Asia-Pacific region. In this paper, coconut shell which mainly composed of cellulose, hemicellulose, lignin was used as a raw material for coconut shell oil from coconut shell pyrolysis. The influence of the pyrolysis temperature, heating rate and particle size on coconut oil yield was investigated, and the effect of heating rate on coconut oil components was discussed. Experimental results show that the maximum oil yield of 75.74 wt% (including water) were obtained under the conditions that the final pyrolysis temperature 575 °C, heating rate 20 °C/min, coconut shell diameter about 5 mm. Thermal gravimetric analysis was used and it can be seen that coconut shell pyrolysis process can be divided into three stages: water loss, pyrolysis and pyrocondensation. The main components of coconut-shell oil are water (about 50 wt%), aromatic, phenolic, acid, ketone and ether containing compounds. PMID:27066356

  10. Computational fluid dynamics modelling of biomass fast pyrolysis in fluidised bed reactors, focusing different kinetic schemes.

    PubMed

    Ranganathan, Panneerselvam; Gu, Sai

    2016-08-01

    The present work concerns with CFD modelling of biomass fast pyrolysis in a fluidised bed reactor. Initially, a study was conducted to understand the hydrodynamics of the fluidised bed reactor by investigating the particle density and size, and gas velocity effect. With the basic understanding of hydrodynamics, the study was further extended to investigate the different kinetic schemes for biomass fast pyrolysis process. The Eulerian-Eulerian approach was used to model the complex multiphase flows in the reactor. The yield of the products from the simulation was compared with the experimental data. A good comparison was obtained between the literature results and CFD simulation. It is also found that CFD prediction with the advanced kinetic scheme is better when compared to other schemes. With the confidence obtained from the CFD models, a parametric study was carried out to study the effect of biomass particle type and size and temperature on the yield of the products.

  11. Co-production of furfural and acetic acid from corncob using ZnCl2 through fast pyrolysis in a fluidized bed reactor.

    PubMed

    Oh, Seung-Jin; Jung, Su-Hwa; Kim, Joo-Sik

    2013-09-01

    Corncob was pyrolyzed using ZnCl2 in a pyrolysis plant equipped with a fluidized bed reactor to co-produce furfural and acetic acid. The effects of reaction conditions, the ZnCl2 content and contacting method of ZnCl2 with corncob on the yields of furfural and acetic acid were investigated. The pyrolysis was performed within the temperature range between 310 and 410°C, and the bio-oil yield were 30-60 wt% of the product. The furfural yield increased up to 8.2 wt%. The acetic acid yield was maximized with a value of 13.1 wt%. A lower feed rate in the presence of ZnCl2 was advantageous for the production of acetic acid. The fast pyrolysis of a smaller corncob sample mechanically mixed with 20 wt% of ZnCl2 gave rise to a distinct increase in furfural. A high selectivity for furfural and acetic acid in bio-oil would make the pyrolysis of corncob with ZnCl2 very economically attractive.

  12. Novel Fast Pyrolysis/Catalytic Technology for the Production of Stable Upgraded Liquids

    SciTech Connect

    Oyama, Ted; Agblevor, Foster; Battaglia, Francine; Klein, Michael

    2013-01-18

    The objective of the proposed research is the demonstration and development of a novel biomass pyrolysis technology for the production of a stable bio-oil. The approach is to carry out catalytic hydrodeoxygenation (HDO) and upgrading together with pyrolysis in a single fluidized bed reactor with a unique two-level design that permits the physical separation of the two processes. The hydrogen required for the HDO will be generated in the catalytic section by the water-gas shift reaction employing recycled CO produced from the pyrolysis reaction itself. Thus, the use of a reactive recycle stream is another innovation in this technology. The catalysts will be designed in collaboration with BASF Catalysts LLC (formerly Engelhard Corporation), a leader in the manufacture of attrition-resistant cracking catalysts. The proposed work will include reactor modeling with state-of-the-art computational fluid dynamics in a supercomputer, and advanced kinetic analysis for optimization of bio-oil production. The stability of the bio-oil will be determined by viscosity, oxygen content, and acidity determinations in real and accelerated measurements. A multi-faceted team has been assembled to handle laboratory demonstration studies and computational analysis for optimization and scaleup.

  13. Determination of cadmium in water samples by fast pyrolysis-chemical vapor generation atomic fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Zhang, Jingya; Fang, Jinliang; Duan, Xuchuan

    2016-08-01

    A pyrolysis-vapor generation procedure to determine cadmium by atomic fluorescence spectrometry has been established. Under fast pyrolysis, cadmium ion can be reduced to volatile cadmium species by sodium formate. The presence of thiourea enhanced the efficiency of cadmium vapor generation and eliminated the interference of copper. The possible mechanism of vapor generation of cadmium was discussed. The optimization of the parameters for pyrolysis-chemical vapor generation, including pyrolysis temperature, amount of sodium formate, concentration of hydrochloric acid, and carrier argon flow rate were carried out. Under the optimized conditions, the absolute and concentration detection limits were 0.38 ng and 2.2 ng ml- 1, respectively, assuming that 0.17 ml of sample was injected. The generation efficiency of was 28-37%. The method was successfully applied to determine trace amounts of cadmium in two certified reference materials of Environmental Water (GSB07-1185-2000 and GSBZ 50009-88). The results were in good agreement with the certified reference values.

  14. Pyrolytic oil of banana (Musa spp.) pseudo-stem via fast process

    NASA Astrophysics Data System (ADS)

    Abdullah, Nurhayati; Sulaiman, Fauziah; Taib, Rahmad Mohd; Miskam, Muhamad Azman

    2015-04-01

    This study was an attempt to produce bio-oil from banana pseudo-stem, a waste of banana cultivation, using fast pyrolysis technology. The compositions were determined and the thermal degradation behaviour of the raw material was analyzed using Perkin-Elmer Simultaneous Thermal Analyzer.(STA) 6000. A 300 g/h fluidized bed bench scale fast pyrolysis unit, assembled with double screw feeders and cyclones, operating at atmospheric pressure, was used to obtain the pyrolysis liquid. The study involves the impact of the following key variables; the reactor temperature in the range of 450-650°C, and the residence time in the range of 1.00-3.00s. The particle size was set at 224-400µm. The properties of the liquid product were analyzed for calorific heating value, pH value, conductivity, water and char content. The basic functional groups of the compositions were also determined using FTIR. The properties of the liquid product were compared with other wood derived bio-oil. The pyrolysis liquids derived from banana pseudo-stem were found to be in an aqueous phase.

  15. Pyrolytic oil of banana (Musa spp.) pseudo-stem via fast process

    NASA Astrophysics Data System (ADS)

    Abdullah, Nurhayati; Sulaiman, Fauziah; Taib, Rahmad Mohd; Miskam, Muhamad Azman

    2015-04-01

    This study was an attempt to produce bio-oil from banana pseudo-stem, a waste of banana cultivation, using fast pyrolysis technology. The compositions were determined and the thermal degradation behaviour of the raw material was analyzed using Perkin-Elmer Simultaneous Thermal Analyzer (STA) 6000. A 300 g/h fluidized bed bench scale fast pyrolysis unit, assembled with double screw feeders and cyclones, operating at atmospheric pressure, was used to obtain the pyrolysis liquid. The study involves the impact of the following key variables; the reactor temperature in the range of 450-650 °C, and the residence time in the range of 1.00-3.00 s. The particle size was set at 224-400 µm. The properties of the liquid product were analyzed for calorific heating value, pH value, conductivity, water and char content. The basic functional groups of the compositions were also determined using FTIR. The properties of the liquid product were compared with other wood derived bio-oil. The pyrolysis liquids derived from banana pseudo-stem were found to be in an aqueous phase.

  16. Pyrolytic oil of banana (Musa spp.) pseudo-stem via fast process

    SciTech Connect

    Abdullah, Nurhayati; Sulaiman, Fauziah; Taib, Rahmad Mohd; Miskam, Muhamad Azman

    2015-04-24

    This study was an attempt to produce bio-oil from banana pseudo-stem, a waste of banana cultivation, using fast pyrolysis technology. The compositions were determined and the thermal degradation behaviour of the raw material was analyzed using Perkin-Elmer Simultaneous Thermal Analyzer (STA) 6000. A 300 g/h fluidized bed bench scale fast pyrolysis unit, assembled with double screw feeders and cyclones, operating at atmospheric pressure, was used to obtain the pyrolysis liquid. The study involves the impact of the following key variables; the reactor temperature in the range of 450–650 °C, and the residence time in the range of 1.00–3.00 s. The particle size was set at 224-400 µm. The properties of the liquid product were analyzed for calorific heating value, pH value, conductivity, water and char content. The basic functional groups of the compositions were also determined using FTIR. The properties of the liquid product were compared with other wood derived bio-oil. The pyrolysis liquids derived from banana pseudo-stem were found to be in an aqueous phase.

  17. Characterization of top phase oil obtained from co-pyrolysis of sewage sludge and poplar sawdust.

    PubMed

    Zuo, Wu; Jin, Baosheng; Huang, Yaji; Sun, Yu

    2014-01-01

    To research the impact of adding sawdust on top phase oil, a sewage sludge and poplar sawdust co-pyrolysis experiment was performed in a fixed bed. Gas chromatography (GC)/mass spectrometry (MS) was used to analyze the component distribution of top phase oil. Higher heating value, viscosity, water content, and pH of the top phase oil product were determined. The highest top phase oil yield (5.13 wt%) was obtained from the mixture containing 15% poplar sawdust, while the highest oil yield (16.51 wt%) was obtained from 20% poplar sawdust. Top phase oil collected from the 15% mixture also has the largest amount of aliphatics and the highest higher heating value (28.6 MJ/kg). Possible reaction pathways were proposed to explain the increase in the types of phenols present in the top phase oil as the proportion of poplar sawdust used in the mixture increased. It can be concluded that synergetic reactions occurred during co-pyrolysis of sewage sludge and poplar sawdust. The results indicate that the high ash content of the sewage sludge may be responsible for the characteristic change in the top phase oil obtained from the mixtures containing different proportions of sewage sludge and poplar sawdust. Consequently, co-pyrolysis of the mixture containing 15 % poplar sawdust can increase the yield and the higher heating value of top phase oil. PMID:24756683

  18. Catalytic pyrolysis of peat with additions of oil-slime and polymeric waste

    NASA Astrophysics Data System (ADS)

    Sulman, E.; Kosivtsov, Yu.; Sulman, M.; Alfyorov, V.; Lugovoy, Yu.; Chalov, K.; Misnikov, O.; Afanasjev, A.; Kumar, N.; Murzin, D.

    2012-09-01

    In this work the influence of natural and synthetic aluminosilicates, metal chlorides of iron subgroup on the peat low-temperature pyrolysis and co-pyrolysis of peat with oil-slime and polymeric waste was studied in variety of conditions (t = 350-650δC, catalyst loading: from 1 up to 30 % (wt.)). The use of bentonite clay (30 % (wt.)) at 460δC as a catalyst in peat pyrolysis resulted in increase of weight of gaseous and liquid products from 23 up to 30 % (wt.) and from 32 up to 45 % (wt.), respectively. Co-pyrolysis of peat and oil-slime in the presence of bentonite clay resulted in increase of gaseous product weight from 18 up to 26 % (wt.) and liquid fraction yield - from 45 up to 55 % (wt.) in comparison with precalculated value. The use of metal chlorides of iron subgroup (2 % (wt.) concentration) at 500 δC in the co-pyrolysis of peat and polymeric waste led to optimal conversion of substrate in desired products, 15 % increase of total weight of gaseous and liquid products formed during the pyrolysis process and simultaneous decrease of char formation.

  19. Decaking of coal or oil shale during pyrolysis in the presence of iron oxides

    DOEpatents

    Rashid Khan, M.

    1988-05-05

    A method for producing a fuel from the pyrolysis of coal or oil shale in the presence of iron oxide in an inert gas atmosphere is described. The method includes the steps of pulverizing feed coal or oil shale, pulverizing iron oxide, mixing the pulverized feed and iron oxide, and heating the mixture in a gas atmosphere which is substantially inert to the mixture so as to form a product fuel, which may be gaseous, liquid and/or solid. The method of the invention reduces the swelling of coals, such as bituminous coal and the like, which are otherwise known to swell during pyrolysis. 4 figs., 8 tabs.

  20. Decaking of coal or oil shale during pyrolysis in the presence of iron oxides

    DOEpatents

    Khan, M. Rashid

    1989-01-01

    A method for producing a fuel from the pyrolysis of coal or oil shale in the presence of iron oxide in an inert gas atmosphere. The method includes the steps of pulverizing feed coal or oil shale, pulverizing iron oxide, mixing the pulverized feed and iron oxide, and heating the mixture in a gas atmosphere which is substantially inert to the mixture so as to form a product fuel, which may be gaseous, liquid and/or solid. The method of the invention reduces the swelling of coals, such as bituminous coal and the like, which are otherwise known to swell during pyrolysis.

  1. Pyrolysis of oil palm empty fruit bunch biomass pellets using multimode microwave irradiation.

    PubMed

    Salema, Arshad Adam; Ani, Farid Nasir

    2012-12-01

    Oil palm empty fruit bunch pellets were subjected to pyrolysis in a multimode microwave (MW) system (1 kW and 2.45 GHz frequency) with and without the MW absorber, activated carbon. The ratio of biomass to MW absorber not only affected the temperature profiles of the EFB but also pyrolysis products such as bio-oil, char, and gas. The highest bio-oil yield of about 21 wt.% was obtained with 25% MW absorber. The bio-oil consisted of phenolic compounds of about 60-70 area% as detected by GC-MS and confirmed by FT-IR analysis. Ball lightning (plasma arc) occurred due to residual palm oil in the EFB biomass without using an MW absorber. The bio-char can be utilized as potential alternative fuel because of its heating value (25 MJ/kg).

  2. Pyrolysis of oil palm empty fruit bunch biomass pellets using multimode microwave irradiation.

    PubMed

    Salema, Arshad Adam; Ani, Farid Nasir

    2012-12-01

    Oil palm empty fruit bunch pellets were subjected to pyrolysis in a multimode microwave (MW) system (1 kW and 2.45 GHz frequency) with and without the MW absorber, activated carbon. The ratio of biomass to MW absorber not only affected the temperature profiles of the EFB but also pyrolysis products such as bio-oil, char, and gas. The highest bio-oil yield of about 21 wt.% was obtained with 25% MW absorber. The bio-oil consisted of phenolic compounds of about 60-70 area% as detected by GC-MS and confirmed by FT-IR analysis. Ball lightning (plasma arc) occurred due to residual palm oil in the EFB biomass without using an MW absorber. The bio-char can be utilized as potential alternative fuel because of its heating value (25 MJ/kg). PMID:23026320

  3. Synthesis of advanced materials for bio-oil production from rice straw by pyrolysis

    NASA Astrophysics Data System (ADS)

    Phuong Dang, Tuyet; Le, Gia Hy; Thu Giang Pham, Thi; Kien Nguyen, Trung; Canh Dao, Duc; Vu, Thi Minh Hong; Thu Thuy Hoang, Thi; Hoa Tran, Thi Kim; Vu, Anh Tuan

    2011-12-01

    Bio-oil from rice straw is produced by pyrolysis with and without solid acid catalysts. Solid acid catalysts used in rice straw pyrolysis synthesis were the diatomite acidified by an 'atomic implantation method' and nano-sized porous Al-SBA1SBA: Santa Barbara Amorphous type mesoporous silica.-15. Catalysts were characterized by a field emission-scanning electron microscope (FE-SEM), transmission electron microscopy (TEM), x-ray diffraction (XRD), infrared spectroscopy (IR), N2 adsorption/desorption, differential thermal analysis/thermogravimetric analysis (DTA/TGA) and NH3 temperature programmed desorption (NH3-TPD). The obtained results revealed that a similar bio-oil yield (liquid product) of 44–48% can be reached by pyrolysis in the presence of solid acid catalysts at 450 °C compared to that of pyrolysis without catalyst at 550 °C. Moreover, a low yield of gas product was observed. These results show significant potential applications of solid acid catalysts for the improvement of bio-oil yield in the pyrolysis of rice straw.

  4. Corrosion Studies Of Raw And Treated Biomass-Derived Pyrolysis Oils

    SciTech Connect

    Keiser, James R; Howell, Michael; Lewis Sr, Samuel Arthur; Connatser, Raynella M

    2012-01-01

    Rapid pyrolysis of biomass generates a liquid with properties that are particularly attractive for production of hydrocarbons that could be substituted for liquid fuels derived from petroleum. However, the high oxygen content of the biomass derived liquids presents a number of problems because of the high water content and the considerable concentration of carboxylic acids. Measurements of total acid number (TAN) of pyrolysis oil (bio-oil) samples show that values in the 90-100 range are fairly common. This level of acidity has been shown to cause corrosion problems that have to be addressed in the selection of structural materials that are used in the production, subsequent processing, storage and transport of the pyrolysis oils. Chemical analyses have been performed and laboratory corrosion studies have been conducted in order to assess the aggressiveness of the raw pyrolysis oil from several sources as well as the corrosion caused by a bio-oil that has been treated to reduce the acid and oxygen content. Components of biomass pyrolyzers have also been fabricated from various candidate alloys, and these components have been exposed for extended periods during operation of the pyrolyzers. This paper will report on results of these analyses and corrosion studies.

  5. Linking ramped pyrolysis isotope data to oil content through PAH analysis

    NASA Astrophysics Data System (ADS)

    Pendergraft, Matthew A.; Dincer, Zeynep; Sericano, José L.; Wade, Terry L.; Kolasinski, Joanna; Rosenheim, Brad E.

    2013-12-01

    Ramped pyrolysis isotope (13C and 14C) analysis coupled with polycyclic aromatic hydrocarbon (PAH) analysis demonstrates the utility of ramped pyrolysis in screening for oil content in sediments. Here, sediments from Barataria Bay, Louisiana, USA that were contaminated by oil from the 2010 BP Deepwater Horizon spill display relationships between oil contamination, pyrolysis profiles, and isotopic composition. Sediment samples with low PAH concentrations are thermochemically stable until higher temperatures, while samples containing high concentrations of PAHs pyrolyze at low temperatures. High PAH samples are also depleted in radiocarbon (14C), especially in the fractions that pyrolyze at low temperatures. This lack of radiocarbon in low temperature pyrolyzates is indicative of thermochemically unstable, 14C-free oil content. This study presents a proof of concept that oil contamination can be identified by changes in thermochemical stability in organic material and corroborated by isotope analysis of individual pyrolyzates, thereby providing a basis for application of ramped pyrolysis isotope analysis to samples deposited in different environments for different lengths of time.

  6. Dynamic imaging of oil shale pyrolysis using synchrotron X-ray microtomography

    NASA Astrophysics Data System (ADS)

    Saif, Tarik; Lin, Qingyang; Singh, Kamaljit; Bijeljic, Branko; Blunt, Martin J.

    2016-07-01

    The structure and connectivity of the pore space during the pyrolysis of oil shales determines hydrocarbon flow behavior and ultimate recovery. We image the time evolution of the pore and microfracture networks during oil shale pyrolysis using synchrotron X-ray microtomography. Immature Green River (Mahogany Zone) shale samples were thermally matured under vacuum conditions at temperatures up to 500°C while being periodically imaged with a 2 µm voxel size. The structural transformation of both organic-rich and organic-lean layers within the shale was quantified. The images reveal a dramatic change in porosity accompanying pyrolysis between 390 and 400°C with the formation of micron-scale heterogeneous pores. With a further increase in temperature, the pores steadily expand resulting in connected microfracture networks that predominantly develop along the kerogen-rich laminations.

  7. Comparison of real waste (MSW and MPW) pyrolysis in batch reactor over different catalysts. Part II: contaminants, char and pyrolysis oil properties.

    PubMed

    Miskolczi, Norbert; Ateş, Funda; Borsodi, Nikolett

    2013-09-01

    Pyrolysis of real wastes (MPW and MSW) has been investigated at 500°C, 550°C and 600°C using Y-zeolite, β-zeolite, equilibrium FCC, MoO3, Ni-Mo-catalyst, HZSM-5 and Al(OH)3 as catalysts. The viscosity of pyrolysis oils could be decreased by the using of catalysts, especially by β-zeolite and MoO3. Both carbon frame and double bound isomerization was found in case of thermo-catalytic pyrolysis. Char morphology and texture analysis showed more coke deposits on the catalyst surface using MSW raw material. Pyrolysis oils had K, S, P Cl, Ca, Zn, Fe, Cr, Br and Sb as contaminants; and the concentrations of K, S, P, Cl and Br could be decreased by the using of catalysts.

  8. Comparison of real waste (MSW and MPW) pyrolysis in batch reactor over different catalysts. Part II: contaminants, char and pyrolysis oil properties.

    PubMed

    Miskolczi, Norbert; Ateş, Funda; Borsodi, Nikolett

    2013-09-01

    Pyrolysis of real wastes (MPW and MSW) has been investigated at 500°C, 550°C and 600°C using Y-zeolite, β-zeolite, equilibrium FCC, MoO3, Ni-Mo-catalyst, HZSM-5 and Al(OH)3 as catalysts. The viscosity of pyrolysis oils could be decreased by the using of catalysts, especially by β-zeolite and MoO3. Both carbon frame and double bound isomerization was found in case of thermo-catalytic pyrolysis. Char morphology and texture analysis showed more coke deposits on the catalyst surface using MSW raw material. Pyrolysis oils had K, S, P Cl, Ca, Zn, Fe, Cr, Br and Sb as contaminants; and the concentrations of K, S, P, Cl and Br could be decreased by the using of catalysts. PMID:23891947

  9. Aspen Plus® and economic modeling of equine waste utilization for localized hot water heating via fast pyrolysis.

    PubMed

    Hammer, Nicole L; Boateng, Akwasi A; Mullen, Charles A; Wheeler, M Clayton

    2013-10-15

    Aspen Plus(®) based simulation models have been developed to design a pyrolysis process for on-site production and utilization of pyrolysis oil from equine waste at the Equine Rehabilitation Center at Morrisville State College (MSC). The results indicate that utilization of all the available waste from the site's 41 horses requires a 6 oven dry metric ton per day (ODMTPD) pyrolysis system but it will require a 15 ODMTPD system for waste generated by an additional 150 horses at the expanded area including the College and its vicinity. For this a dual fluidized bed combustion reduction integrated pyrolysis system (CRIPS) developed at USDA's Agricultural Research Service (ARS) was identified as the technology of choice for pyrolysis oil production. The Aspen Plus(®) model was further used to consider the combustion of the produced pyrolysis oil (bio-oil) in the existing boilers that generate hot water for space heating at the Equine Center. The model results show the potential for both the equine facility and the College to displace diesel fuel (fossil) with renewable pyrolysis oil and alleviate a costly waste disposal problem. We predict that all the heat required to operate the pyrolyzer could be supplied by non-condensable gas and about 40% of the biochar co-produced with bio-oil. Techno-economic Analysis shows neither design is economical at current market conditions; however the 15 ODMTPD CRIPS design would break even when diesel prices reach $11.40/gal. This can be further improved to $7.50/gal if the design capacity is maintained at 6 ODMTPD but operated at 4950 h per annum. PMID:23845952

  10. Aspen Plus® and economic modeling of equine waste utilization for localized hot water heating via fast pyrolysis.

    PubMed

    Hammer, Nicole L; Boateng, Akwasi A; Mullen, Charles A; Wheeler, M Clayton

    2013-10-15

    Aspen Plus(®) based simulation models have been developed to design a pyrolysis process for on-site production and utilization of pyrolysis oil from equine waste at the Equine Rehabilitation Center at Morrisville State College (MSC). The results indicate that utilization of all the available waste from the site's 41 horses requires a 6 oven dry metric ton per day (ODMTPD) pyrolysis system but it will require a 15 ODMTPD system for waste generated by an additional 150 horses at the expanded area including the College and its vicinity. For this a dual fluidized bed combustion reduction integrated pyrolysis system (CRIPS) developed at USDA's Agricultural Research Service (ARS) was identified as the technology of choice for pyrolysis oil production. The Aspen Plus(®) model was further used to consider the combustion of the produced pyrolysis oil (bio-oil) in the existing boilers that generate hot water for space heating at the Equine Center. The model results show the potential for both the equine facility and the College to displace diesel fuel (fossil) with renewable pyrolysis oil and alleviate a costly waste disposal problem. We predict that all the heat required to operate the pyrolyzer could be supplied by non-condensable gas and about 40% of the biochar co-produced with bio-oil. Techno-economic Analysis shows neither design is economical at current market conditions; however the 15 ODMTPD CRIPS design would break even when diesel prices reach $11.40/gal. This can be further improved to $7.50/gal if the design capacity is maintained at 6 ODMTPD but operated at 4950 h per annum.

  11. Rates and Mechanisms of Oil Shale Pyrolysis: A Chemical Structure Approach

    SciTech Connect

    Fletcher, Thomas; Pugmire, Ronald

    2015-01-01

    Three pristine Utah Green River oil shale samples were obtained and used for analysis by the combined research groups at the University of Utah and Brigham Young University. Oil shale samples were first demineralized and the separated kerogen and extracted bitumen samples were then studied by a host of techniques including high resolution liquid-state carbon-13 NMR, solid-state magic angle sample spinning 13C NMR, GC/MS, FTIR, and pyrolysis. Bitumen was extracted from the shale using methanol/dichloromethane and analyzed using high resolution 13C NMR liquid state spectroscopy, showing carbon aromaticities of 7 to 11%. The three parent shales and the demineralized kerogens were each analyzed with solid-state 13C NMR spectroscopy. Carbon aromaticity of the kerogen was 23-24%, with 10-12 aromatic carbons per cluster. Crushed samples of Green River oil shale and its kerogen extract were pyrolyzed at heating rates from 1 to 10 K/min at pressures of 1 and 40 bar and temperatures up to 1000°C. The transient pyrolysis data were fit with a first-order model and a Distributed Activation Energy Model (DAEM). The demineralized kerogen was pyrolyzed at 10 K/min in nitrogen at atmospheric pressure at temperatures up to 525°C, and the pyrolysis products (light gas, tar, and char) were analyzed using 13C NMR, GC/MS, and FTIR. Details of the kerogen pyrolysis have been modeled by a modified version of the chemical percolation devolatilization (CPD) model that has been widely used to model coal combustion/pyrolysis. This refined CPD model has been successful in predicting the char, tar, and gas yields of the three shale samples during pyrolysis. This set of experiments and associated modeling represents the most sophisticated and complete analysis available for a given set of oil shale samples.

  12. Review of the pyrolysis platform for coproducing bio-oil and biochar

    SciTech Connect

    Laird, David A.; Brown, Robert C.; Amonette, James E.; Lehmann, Johannes C.

    2009-09-01

    Pyrolysis is a relatively simple, inexpensive, and robust thermochemical technology for transforming biomass into bio-oil, biochar, and syngas. The robust nature of the pyrolysis technology, which allows considerable flexibility in both the type and quality of the biomass feedstock, combined with a distributed network of small pyrolysis plants, would be compatible with existing agriculture and forestry infrastructure. Bio-oil can be used as a fuel in existing industrial boilers. Biochar can be used with existing infrastructure as a replacement for pulverized coal; however, use of biochar as a soil amendment results in significant environmental and agronomic benefits. Soil application of biochar is a means of sequestering large amounts of C and may have other greenhouse gas benefits. Preliminary reports of the impact of soil biochar applications on crop yields indicate that biochar quality is very important. Biochar is an effective adsorbent for both nutrients and organic contaminants, hence the presence of biochar in soils has been shown to improve water quality in column leaching and field lysimeter studies and it is anticipated to do the same for agricultural watersheds. The pyrolysis platform for producing bio-oil and biochar from biomass appears to be a practical, effective, and environmentally sustainable means of producing large quantities of renewable bioenergy while simultaneously reducing emissions of greenhouse gases. At the present time, the pyrolysis platform is economically marginal because markets for bio-oil and biochar are highly competitive. However, if the USA adopts a program for controlling greenhouse gases, the pyrolysis platform would be highly competitive.

  13. Molecular characterization and comparison of shale oils generated by different pyrolysis methods

    USGS Publications Warehouse

    Birdwell, Justin E.; Jin, Jang Mi; Kim, Sunghwan

    2012-01-01

    Shale oils generated using different laboratory pyrolysis methods have been studied using standard oil characterization methods as well as Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) with electrospray ionization (ESI) and atmospheric photoionization (APPI) to assess differences in molecular composition. The pyrolysis oils were generated from samples of the Mahogany zone oil shale of the Eocene Green River Formation collected from outcrops in the Piceance Basin, Colorado, using three pyrolysis systems under conditions relevant to surface and in situ retorting approaches. Significant variations were observed in the shale oils, particularly the degree of conjugation of the constituent molecules and the distribution of nitrogen-containing compound classes. Comparison of FT-ICR MS results to other oil characteristics, such as specific gravity; saturate, aromatic, resin, asphaltene (SARA) distribution; and carbon number distribution determined by gas chromatography, indicated correspondence between higher average double bond equivalence (DBE) values and increasing asphaltene content. The results show that, based on the shale oil DBE distributions, highly conjugated species are enriched in samples produced under low pressure, high temperature conditions, and under high pressure, moderate temperature conditions in the presence of water. We also report, for the first time in any petroleum-like substance, the presence of N4 class compounds based on FT-ICR MS data. Using double bond equivalence and carbon number distributions, structures for the N4 class and other nitrogen-containing compounds are proposed.

  14. Organic compounds leached from fast pyrolysis mallee leaf and bark biochars.

    PubMed

    Lievens, Caroline; Mourant, Daniel; Gunawan, Richard; Hu, Xun; Wang, Yi

    2015-11-01

    Characterization of organic compounds leached from biochars is essential in assessing the possible toxicity of the biochar to the soils' biota. In this study the nature of the leached organic compounds from Mallee biochars, produced from pyrolysis of Mallee leaf and bark in a fluidised-bed pyrolyser at 400 and 580°C was investigated. Light bio-oil compounds and aromatic organic compounds were investigated. The 'bio-oil like' light compounds from leaf and bark biochars 'surfaces were obtained after leaching the chars with a solvent, suitable to dissolve the respective bio-oils. GC/MS was implemented to investigate the leachates. Phenolics, which are potentially harmful toxins, were detected and their concentration shown to be dependent on the char's origin and the char production temperature. Further, to simulate biochars amendment to soils, the chars were leached with water. The water-leached aromatic compounds from leaf and bark biochars were characterized using UV-fluorescence spectroscopy. Those results suggested that biochars contain leachable compounds of which the nature and amount is dependent on the biomass feedstock, pyrolysis temperature and leaching time. PMID:25434266

  15. Organic compounds leached from fast pyrolysis mallee leaf and bark biochars.

    PubMed

    Lievens, Caroline; Mourant, Daniel; Gunawan, Richard; Hu, Xun; Wang, Yi

    2015-11-01

    Characterization of organic compounds leached from biochars is essential in assessing the possible toxicity of the biochar to the soils' biota. In this study the nature of the leached organic compounds from Mallee biochars, produced from pyrolysis of Mallee leaf and bark in a fluidised-bed pyrolyser at 400 and 580°C was investigated. Light bio-oil compounds and aromatic organic compounds were investigated. The 'bio-oil like' light compounds from leaf and bark biochars 'surfaces were obtained after leaching the chars with a solvent, suitable to dissolve the respective bio-oils. GC/MS was implemented to investigate the leachates. Phenolics, which are potentially harmful toxins, were detected and their concentration shown to be dependent on the char's origin and the char production temperature. Further, to simulate biochars amendment to soils, the chars were leached with water. The water-leached aromatic compounds from leaf and bark biochars were characterized using UV-fluorescence spectroscopy. Those results suggested that biochars contain leachable compounds of which the nature and amount is dependent on the biomass feedstock, pyrolysis temperature and leaching time.

  16. Improving the conversion of biomass in catalytic fast pyrolysis via white-rot fungal pretreatment.

    PubMed

    Yu, Yanqing; Zeng, Yelin; Zuo, Jiane; Ma, Fuying; Yang, Xuewei; Zhang, Xiaoyu; Wang, Yujue

    2013-04-01

    This study investigated the effect of white-rot fungal pretreatment on corn stover conversion in catalytic fast pyrolysis (CFP). Corn stover pretreated by white-rot fungus Irpex lacteus CD2 was fast pyrolyzed alone (non-CFP) and with ZSM-5 zeolite (CFP) in a semi-batch pyroprobe reactor. The fungal pretreatment considerably increased the volatile product yields (predominantly oxygenated compounds) in non-CFP, indicating that fungal pretreatment enhances the corn stover conversion in fast pyrolysis. In the presence of ZSM-5 zeolite, these oxygenated volatiles were further catalytically converted to aromatic hydrocarbons, whose yield increased from 10.03 wt.% for the untreated corn stover to 11.49 wt.% for the pretreated sample. In contrast, the coke yield decreased from 14.29 to 11.93 wt.% in CFP following the fungal pretreatment. These results indicate that fungal pretreatment can enhance the production of valuable aromatics and decrease the amount of undesired coke, and thus has a beneficial effect on biomass conversion in CFP. PMID:23506976

  17. Varying relative degradation rates of oil in different forms and environments revealed by ramped pyrolysis.

    PubMed

    Pendergraft, Matthew A; Rosenheim, Brad E

    2014-09-16

    Degradation of oil contamination yields stabilized products by removing and transforming reactive and volatile compounds. In contaminated coastal environments, the processes of degradation are influenced by shoreline energy, which increases the surface area of the oil as well as exchange between oil, water, sediments, microbes, oxygen, and nutrients. Here, a ramped pyrolysis carbon isotope technique is employed to investigate thermochemical and isotopic changes in organic material from coastal environments contaminated with oil from the 2010 BP Deepwater Horizon oil spill. Oiled beach sediment, tar ball, and marsh samples were collected from a barrier island and a brackish marsh in southeast Louisiana over a period of 881 days. Stable carbon ((13)C) and radiocarbon ((14)C) isotopic data demonstrate a predominance of oil-derived carbon in the organic material. Ramped pyrolysis profiles indicate that the organic material was transformed into more stable forms. Our data indicate relative rates of stabilization in the following order, from fastest to slowest: high energy beach sediments > low energy beach sediments > marsh > tar balls. Oil was transformed most rapidly where shoreline energy and the rates of oil dispersion and exchange with water, sediments, microbes, oxygen, and nutrients were greatest. Still, isotope data reveal persistence of oil. PMID:25105342

  18. Varying relative degradation rates of oil in different forms and environments revealed by ramped pyrolysis.

    PubMed

    Pendergraft, Matthew A; Rosenheim, Brad E

    2014-09-16

    Degradation of oil contamination yields stabilized products by removing and transforming reactive and volatile compounds. In contaminated coastal environments, the processes of degradation are influenced by shoreline energy, which increases the surface area of the oil as well as exchange between oil, water, sediments, microbes, oxygen, and nutrients. Here, a ramped pyrolysis carbon isotope technique is employed to investigate thermochemical and isotopic changes in organic material from coastal environments contaminated with oil from the 2010 BP Deepwater Horizon oil spill. Oiled beach sediment, tar ball, and marsh samples were collected from a barrier island and a brackish marsh in southeast Louisiana over a period of 881 days. Stable carbon ((13)C) and radiocarbon ((14)C) isotopic data demonstrate a predominance of oil-derived carbon in the organic material. Ramped pyrolysis profiles indicate that the organic material was transformed into more stable forms. Our data indicate relative rates of stabilization in the following order, from fastest to slowest: high energy beach sediments > low energy beach sediments > marsh > tar balls. Oil was transformed most rapidly where shoreline energy and the rates of oil dispersion and exchange with water, sediments, microbes, oxygen, and nutrients were greatest. Still, isotope data reveal persistence of oil.

  19. Toxic potentiality of bio-oils, from biomass pyrolysis, in cultured cells and Caenorhabditis elegans.

    PubMed

    Chatterjee, Nivedita; Eom, Hyun-Jeong; Jung, Su-Hwa; Kim, Joo-Sik; Choi, Jinhee

    2014-12-01

    Bio-oils, which are multicomponent mixtures, were produced from two different biomass (rice straw (rice oil) and sawdust of oak tree (oak oil)) by using the slow pyrolysis process, and chemical compositional screening with GC-MS detected several hazardous compounds in both bio-oil samples. The two bio-oils vary in their chemical compositional nature and concentrations. To know the actual hazard potentialities of these bio-oils, toxicological assessments were carried out in a comparative approach by using in vitro (Jurkat T and HepG2 cell) as well as in vivo (Caenorhabditis elegans) systems. A dose-dependent increase in cytotoxicity, cell death (apoptosis), and genotoxicity were observed in cultured cell systems. Similarly, the in vivo system, C. elegans also displayed a dose-dependent decrease in survival. It was found that in comparison with rice oil, oak oil displayed higher toxicity to all models systems, and the susceptibility order of the model systems were Jurkat T > HepG2 > C. elegans. Pursuing the study further toward the underlying mechanism by exploiting the C. elegans mutants screening assay, the bio-oils seem to mediate toxicity through oxidative stress and impairment of immunity. Taken together, bio-oils compositions mainly depend on the feedstock used and the pyrolysis conditions which in turn modulate their toxic potentiality.

  20. Catalytic and non-catalytic pyrolysis of biomass in non-inert environments for production of deoxygenated bio-oil and chemicals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fast pyrolysis processes are among the most effective methods for liquefaction of lignocellulosic biomass. Catalytic fast pyrolysis (CFP) over HZSM-5 or other zeolites and/or utilization of reactive atmospheres such as in the non-catalytic Tail Gas Reactive Pyrolysis (TRGP) process, a recent patent...

  1. Life cycle assessment of the production of hydrogen and transportation fuels from corn stover via fast pyrolysis

    NASA Astrophysics Data System (ADS)

    Zhang, Yanan; Hu, Guiping; Brown, Robert C.

    2013-06-01

    This life cycle assessment evaluates and quantifies the environmental impacts of the production of hydrogen and transportation fuels from the fast pyrolysis and upgrading of corn stover. Input data for this analysis come from Aspen Plus modeling, a GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model database and a US Life Cycle Inventory Database. SimaPro 7.3 software is employed to estimate the environmental impacts. The results indicate that the net fossil energy input is 0.25 MJ and 0.23 MJ per km traveled for a light-duty vehicle fueled by gasoline and diesel fuel, respectively. Bio-oil production requires the largest fossil energy input. The net global warming potential (GWP) is 0.037 kg CO2eq and 0.015 kg CO2eq per km traveled for a vehicle fueled by gasoline and diesel fuel, respectively. Vehicle operations contribute up to 33% of the total positive GWP, which is the largest greenhouse gas footprint of all the unit processes. The net GWPs in this study are 88% and 94% lower than for petroleum-based gasoline and diesel fuel (2005 baseline), respectively. Biomass transportation has the largest impact on ozone depletion among all of the unit processes. Sensitivity analysis shows that fuel economy, transportation fuel yield, bio-oil yield, and electricity consumption are the key factors that influence greenhouse gas emissions.

  2. Isothermal fluidised-bed pyrolysis of Australian oil shales in superheated steam

    SciTech Connect

    Wall, G.C.

    1984-04-01

    Samples of three Australian oil shales (Condor, Nagoorin, Rundle) were pyrolysed in steam at 450, 500 and 550/sup 0/C in a bench-scale fluidised-bed reactor at atmospheric pressure; the yields and compositions of the oils and gases produced were compared with corresponding results from Fischer assays. The maximum yield of oil occurred at 500/sup 0/C for all three shales. The yields (expressed as percentages of the Fischer assay yield at 500/sup 0/C max.) were: Rundle 110%; Condor 128%; Nagoorin 134%. The yields of oil from the Rundle and Condor shales were almost identical with those obtained by fluidised-bed pyrolysis in steam at a heating rate of 12/sup 0/C min/sup -1/. This suggests that flash heating has no effect on the oil yields from these shales and that the yield enhancement is due entirely to the effect of the sweep gas. Reduced coking was identified as the primary reason for the increased oil yields but reduced cracking also appeared to be significant for the Nagoorin oil shale. At 550/sup 0/C, the three shales yielded less oil than at 500/sup 0/C but the yield of pyrolysis gas increased considerably, suggesting that at this temperature oil cracking was significant.

  3. Mild pyrolysis of P3HB/Switchgrass blends for the production of bio-oil enriched with crotonic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mild pyrolysis of switchgrass/poly-3-hydroxybutyrate (P3HB) blends that mimic P3HB-producing switchgrass lines was studied in a pilot scale fluidized bed reactor with the goal of simultaneously producing crotonic acid and switchgrass-based bio-oil. Factors such as pyrolysis temperature, residenc...

  4. Sustainability assessment of water hyacinth fast pyrolysis in the Upper Paraguay River basin, Brazil.

    PubMed

    Buller, Luz Selene; Ortega, Enrique; Bergier, Ivan; Mesa-Pérez, Juan Miguel; Salis, Suzana Maria; Luengo, Carlos Alberto

    2015-11-01

    Fast pyrolysis of naturally produced water hyacinth was assessed through Emergy accounting approach. Two analyses were carried out to evaluate the influence of additional services and externalities on Emergy indicators for a pyrolysis plant unit able to process 1000 kg of dry biomass per hour. The initial approach was a traditional Emergy assessment in which financial fluxes and externalities were not considered. The second approach included taxes and fees of the Brazilian government, interests related to financing operations and assumes a reserve financial fund of 5% of the total investment as externalities cost. For the first evaluation, the renewability of 86% indicates that local and renewable resources mainly support the process and the Emergy Yield Ratio of 3.2 shows that the system has a potential contribution to the regional economy due to the local resources use. The inclusion of financial fluxes and externalities in the second evaluation reduces both renewability and Emergy Yield Ratio, whereas it increases the Emergy Investment Ratio which means a higher dependence on external resources. The second analysis allows portraying significant forces of the industrial and financial systems and the evaluation of the externalities' impact on the general system Emergy behavior. A comparison of the renewability of water hyacinth fast pyrolysis with other biofuels like soybean biodiesel and sugarcane ethanol indicates that the former is less dependent on fossil fuel resources, machinery and fertilizers. To complement the sustainability assessment provided by the Emergy method, a regular financial analysis for the second defined system was done. It shows that the system is financially attractive even with the accounting of additional costs. The results obtained in this study could be used as the maximum and minimum thresholds to subsidize regulatory policies for new economic activities in tropical wetlands involving natural resources exploitation and bio

  5. Sustainability assessment of water hyacinth fast pyrolysis in the Upper Paraguay River basin, Brazil.

    PubMed

    Buller, Luz Selene; Ortega, Enrique; Bergier, Ivan; Mesa-Pérez, Juan Miguel; Salis, Suzana Maria; Luengo, Carlos Alberto

    2015-11-01

    Fast pyrolysis of naturally produced water hyacinth was assessed through Emergy accounting approach. Two analyses were carried out to evaluate the influence of additional services and externalities on Emergy indicators for a pyrolysis plant unit able to process 1000 kg of dry biomass per hour. The initial approach was a traditional Emergy assessment in which financial fluxes and externalities were not considered. The second approach included taxes and fees of the Brazilian government, interests related to financing operations and assumes a reserve financial fund of 5% of the total investment as externalities cost. For the first evaluation, the renewability of 86% indicates that local and renewable resources mainly support the process and the Emergy Yield Ratio of 3.2 shows that the system has a potential contribution to the regional economy due to the local resources use. The inclusion of financial fluxes and externalities in the second evaluation reduces both renewability and Emergy Yield Ratio, whereas it increases the Emergy Investment Ratio which means a higher dependence on external resources. The second analysis allows portraying significant forces of the industrial and financial systems and the evaluation of the externalities' impact on the general system Emergy behavior. A comparison of the renewability of water hyacinth fast pyrolysis with other biofuels like soybean biodiesel and sugarcane ethanol indicates that the former is less dependent on fossil fuel resources, machinery and fertilizers. To complement the sustainability assessment provided by the Emergy method, a regular financial analysis for the second defined system was done. It shows that the system is financially attractive even with the accounting of additional costs. The results obtained in this study could be used as the maximum and minimum thresholds to subsidize regulatory policies for new economic activities in tropical wetlands involving natural resources exploitation and bio

  6. Characterization of pyrolytic products obtained from fast pyrolysis of chromated copper arsenate (CCA)- and alkaline copper quaternary compounds (ACQ)-treated wood biomasses.

    PubMed

    Kim, Jae-Young; Kim, Tae-Sung; Eom, In-Yong; Kang, Sung Mo; Cho, Tae-Su; Choi, In Gyu; Choi, Joon Weon

    2012-08-15

    In this study, chromated copper arsenate-treated wood (CCA-W) and alkaline copper quaternary compounds-treated wood (ACQ-W) were subjected to fast pyrolysis at 500°C for ca. 2s to produce bio-oil and char. The physicochemical properties of the pyrolytic products as well as the distribution of heavy metals - arsenic, copper and chrome - during fast pyrolysis were investigated. The water content, viscosity, pH and higher heating value (HHV) of bio-oil from CCA-W were 24.8 wt%, 13.5 cSt, 2.1 and 16 MJ/kg, respectively, whereas those of bio-oil from ACQ-W were 27.9 wt%, 16 cSt, 3.0 and 14.1 MJ/kg, respectively. The yields of bio-oil from CCA-W and ACQ-W were 43.3% and 46.6%, respectively, significantly lower than that of control (61.6%). In the pyrolytic products of CCA-W, the concentrations of arsenic, copper and chromium were determined to be 36.4 wt%, 74.0 wt% and 75.4 wt% in char, respectively, 34.5 wt%, 10.3 wt% and 9.0 wt% in bio-oil, respectively, and 29.0 wt%, 15.7 wt% and 15.5 wt% in gas, respectively. In addition, most of the copper appeared in the char (98.8 wt%) and only a trace amount of copper was detected in the bio-oil (0.2 wt%) produced by ACQ-W.

  7. Porosity-Acidity Interplay in Hierarchical ZSM-5 Zeolites for Pyrolysis Oil Valorization to Aromatics.

    PubMed

    Puértolas, Begoña; Veses, Alberto; Callén, Maria Soledad; Mitchell, Sharon; García, Tomás; Pérez-Ramírez, Javier

    2015-10-12

    The properties of crude bio-oils attained by the pyrolysis of lignocellulosic biomass can be greatly enhanced by means of catalytic upgrading. Here, we demonstrate an efficient process concept coupling the production of pyrolysis oil from pine wood with a consecutive catalytic upgrading step over hierarchically structured ZSM-5 zeolites to attain aromatic-rich bio-oils. The selective upgrading of these complex mixtures is shown to be tightly connected to the extent of mesopore development and the density of Brønsted acid sites at the mesopore surface. A full product analysis enables elucidation of the impact of mesopore introduction and the acidic properties on the complex reaction network. The preferential occurrence of decarbonylation reactions in hierarchical zeolites versus dehydration transformations in the bulk counterparts is believed to be decisive in promoting increased aromatics formation.

  8. Porosity-Acidity Interplay in Hierarchical ZSM-5 Zeolites for Pyrolysis Oil Valorization to Aromatics.

    PubMed

    Puértolas, Begoña; Veses, Alberto; Callén, Maria Soledad; Mitchell, Sharon; García, Tomás; Pérez-Ramírez, Javier

    2015-10-12

    The properties of crude bio-oils attained by the pyrolysis of lignocellulosic biomass can be greatly enhanced by means of catalytic upgrading. Here, we demonstrate an efficient process concept coupling the production of pyrolysis oil from pine wood with a consecutive catalytic upgrading step over hierarchically structured ZSM-5 zeolites to attain aromatic-rich bio-oils. The selective upgrading of these complex mixtures is shown to be tightly connected to the extent of mesopore development and the density of Brønsted acid sites at the mesopore surface. A full product analysis enables elucidation of the impact of mesopore introduction and the acidic properties on the complex reaction network. The preferential occurrence of decarbonylation reactions in hierarchical zeolites versus dehydration transformations in the bulk counterparts is believed to be decisive in promoting increased aromatics formation. PMID:26336806

  9. Pt/Al₂O₃-catalytic deoxygenation for upgrading of Leucaena leucocephala-pyrolysis oil.

    PubMed

    Payormhorm, Jiraporn; Kangvansaichol, Kunn; Reubroycharoen, Presert; Kuchonthara, Prapan; Hinchiranan, Napida

    2013-07-01

    The aim of this study was to improve the quality of bio-oil produced from the pyrolysis of Leucaena leucocephala trunks via catalytic deoxygenation using Pt/Al2O3 (Pt content=1.32% (w/w)). The minimum molar ratio of oxygen/carbon (O/C) at 0.14 was achieved when the amount of catalyst was 10% (w/w, bio-oil) and was applied under 4 bar of initial nitrogen pressure at 340°C for 1h. The reaction mechanism of the catalytic deoxygenation, in terms of reforming, water-gas shift and dehydration reactions, was proposed. To consider the effect of different biomass types on the efficiency of catalytic deoxygenation, the bio-oils obtained from the pyrolysis of sawdust, rice straw and green microalgae were likewise evaluated for direct comparison. PMID:23648762

  10. Co-pyrolysis of corn cob and waste cooking oil in a fixed bed.

    PubMed

    Chen, Guanyi; Liu, Cong; Ma, Wenchao; Zhang, Xiaoxiong; Li, Yanbin; Yan, Beibei; Zhou, Weihong

    2014-08-01

    Corn cob (CC) and waste cooking oil (WCO) were co-pyrolyzed in a fixed bed. The effects of various temperatures of 500 °C, 550 °C, 600 °C and CC/WCO mass ratios of 1:0, 1:0.1, 1:0.5, 1:1 and 0:1 were investigated, respectively. Results show that co-pyrolysis of CC/WCO produce more liquid and less bio-char than pyrolysis of CC individually. Bio-oil and bio-char yields were found to be largely dependent on temperature and CC/WCO ratios. GC/MS of bio-oil show it consists of different classes and amounts of organic compounds other than that from CC pyrolysis. Temperature of 550 °C and CC/WCO ratio of 1:1 seem to be the optimum considering high bio-oil yields (68.6 wt.%) and good bio-oil properties (HHV of 32.78 MJ/kg). In this case, bio-char of 24.96 MJ/kg appears attractive as a renewable source, while gas with LHV of 16.06 MJ/Nm(3) can be directly used in boilers as fuel.

  11. Co-pyrolysis of corn cob and waste cooking oil in a fixed bed.

    PubMed

    Chen, Guanyi; Liu, Cong; Ma, Wenchao; Zhang, Xiaoxiong; Li, Yanbin; Yan, Beibei; Zhou, Weihong

    2014-08-01

    Corn cob (CC) and waste cooking oil (WCO) were co-pyrolyzed in a fixed bed. The effects of various temperatures of 500 °C, 550 °C, 600 °C and CC/WCO mass ratios of 1:0, 1:0.1, 1:0.5, 1:1 and 0:1 were investigated, respectively. Results show that co-pyrolysis of CC/WCO produce more liquid and less bio-char than pyrolysis of CC individually. Bio-oil and bio-char yields were found to be largely dependent on temperature and CC/WCO ratios. GC/MS of bio-oil show it consists of different classes and amounts of organic compounds other than that from CC pyrolysis. Temperature of 550 °C and CC/WCO ratio of 1:1 seem to be the optimum considering high bio-oil yields (68.6 wt.%) and good bio-oil properties (HHV of 32.78 MJ/kg). In this case, bio-char of 24.96 MJ/kg appears attractive as a renewable source, while gas with LHV of 16.06 MJ/Nm(3) can be directly used in boilers as fuel. PMID:24951937

  12. Heat and mass transfer processes during the pyrolysis of antrim oil shale

    NASA Astrophysics Data System (ADS)

    Piccirelli, R. A.

    1980-07-01

    A model of simultaneous heat and mass transfer processes during the pyrolysis of slabs of consolidated Michigan oil shale is presented. The manner in which the transport processes control the yield of pyrolysis product is emphasized; the model parameters are selected to reflect the conditions expected during in situ retorting. A single reaction describes the generation of gaseous pyrolysis product; numerical solution of the model mass transport equations indicates that the pressure and velocity profiles within the shale due to generation of gaseous reaction products can be assumed to be in a quasi-steady state. It is concluded that while the bulk convective transport is not essential to the energy equation, it is important for product yield calculations; the solution also suggests that the heat transfer through the surface convective layer and into the shale slab is the rate limiting process.

  13. Study on pyrolysis gas in thermal extraction of Bai Yinhua lignite with industrial washing oil

    NASA Astrophysics Data System (ADS)

    Cui, Y. M.; Lian, X. P.; Zhao, F. Y.; Xu, Y. Q.; Hu, Y. Q.; Yuan, Z. K.; Hao, X. R.

    2016-08-01

    Industrial washing oil as solvent, pyrolysis gas produced from Bai Yinhua lignite during thermal extraction was studied by gas chromatography. The effects of temperature and solvent coal ration on coal pyrolysis gas were investigated. The results showed that: Pyrolysis gas produced mainly in CO, CO2, O2, H2, CH4, and so on, in which the total amount of oxygen containing compounds nearly 40%, significant effects of deoxidation was achieved. The increase of heat extraction temperature can significantly increase the degree of bond breaking and the gas formation rate, the gas yield and the rate of oxygen increase significantly, while the gas yield increases with the decrease of the solvent coal ration.

  14. Process and economic model of in-field heavy oil upgrading using aqueous pyrolysis

    SciTech Connect

    Thorsness, C. B., LLNL

    1997-01-21

    A process and economic model for aqueous pyrolysis in-field upgrading of heavy oil has been developed. The model has been constructed using the ASPEN PLUS chemical process simulator. The process features cracking of heavy oil at moderate temperatures in the presence of water to increase oil quality and thus the value of the oil. Calculations with the model indicate that for a 464 Mg/day (3,000 bbl/day) process, which increases the oil API gravity of the processed oil from 13.5{degree} to 22.4{degree}, the required value increase of the oil would need to be at least $2.80/Mg{center_dot}{degree}API($0.40/bbl{center_dot}{degree}API) to make the process economically attractive. This level of upgrading has been demonstrated in preliminary experiments with candidate catalysts. For improved catalysts capable of having the coke make and increasing the pyrolysis rate, a required price increase for the oil as low as $1.34/Mg{center_dot}{degree}API ($0.21/bbl{center_dot}{degree}API)has been calculated.

  15. Generation of aliphatic acid anions and carbon dioxide by hydrous pyrolysis of crude oils

    USGS Publications Warehouse

    Kharaka, Y.K.; Lundegard, P.D.; Ambats, G.; Evans, William C.; Bischoff, J.L.

    1993-01-01

    Two crude oils with relatively high (0.60 wt%) and low (0.18 wt%) oxygen contents were heated in the presence of water in gold-plated reactors at 300??C for 2348 h. The high-oxygen oil was also heated at 200??C for 5711 h. The compositions of aqueous organic acid anions of the oils and of the headspace gases were monitored inn order to investigate the distribution of organic acids that can be generated from liquid petroleum. The oil with higher oxygen content generated about five times as much organic anions as the other oil. The dominant organic anions produced were acetate, propionate and butyrate. Small amounts of formate, succinate, methyl succinate and oxalate were also produced. The dominant oxygen-containing product was CO2, as has been observed in similar studies on the hydrous pyrolysis of kerogen. These results indicate that a significant portion (10-30%) of organic acid anions reported i be generated by thermal alteration of oils in reservoir rocks. The bulk of organic acid anions present in formation waters, however, is most likely generated by thermal alteration of kerogen in source rocks. Kerogen is more abundant than oil in sedimentary basins and the relative yields of organic acid anions reported from the hydrous pyrolysis of kerogen are much higher than the yields obtained for the two oils. ?? 1993.

  16. Production of phenol-rich bio-oil during catalytic fixed-bed and microwave pyrolysis of palm kernel shell.

    PubMed

    Omoriyekomwan, Joy Esohe; Tahmasebi, Arash; Yu, Jianglong

    2016-05-01

    Catalytic fixed-bed and microwave pyrolysis of palm kernel shell using activated carbon (AC) and lignite char (LC) as catalysts and microwave receptors are investigated. The effects of process parameters including temperature and biomass:catalyst ratio on the yield and composition of pyrolysis products were studied. The addition of catalyst increased the bio-oil yield, but decreased the selectivity of phenol in fixed-bed. Catalytic microwave pyrolysis of PKS significantly enhanced the selectivity of phenol production. The highest concentration of phenol in bio-oil of 64.58 %(area) and total phenolics concentration of 71.24 %(area) were obtained at 500°C using AC. Fourier transform infrared spectroscopy (FTIR) results indicated that concentration of OH, CH, CO and CO functional groups in char samples decreased after pyrolysis. Scanning electron microscopy (SEM) analysis clearly indicated the development of liquid phase in biomass particles during microwave pyrolysis, and the mechanism is also discussed.

  17. Assessment of transport processes using a combined pyrolysis-combustion model for the retorting of oil shale

    SciTech Connect

    Crowl, D.A.; Piccirelli, R.A.

    1982-09-01

    A mathematical model is developed to represent the coupled mass and energy transport effects of simultaneous pyrolysis and combustion processes occurring within a single piece of consolidated oil shale. Major emphasis is placed on assessing the relative importance of the coupled transport processes. Numerical solution of the resulting equations using Antrim oil shale parameters show a number of important effects. First, it is possible for the combustion oxygen to diffuse against the outgoing stream of pyrolysis products. Thus, simultaneous pyrolysis and combustion fronts can occur within the same localized region of shale. Second, the heat generated at the combustion front can conduct through the solid shale to the pyrolysis zone. This leads to a substantial increase in pyrolysis activity.

  18. Ketonization of Model Pyrolysis Oil Solutions in a Plug Flow Reactor over a Composite Oxide of Fe, Ce, and Al

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The stabilization and upgrading of pyrolysis oil requires the neutralization of the acidic components of the oil. The conversion of small organic acids, particularly acetic acid, to ketones is one approach to addressing the instability of the oils caused by low pH. In the ketonization reaction, acet...

  19. Insecticidal activity of bio-oil from the pyrolysis of straw from Brassica spp.

    PubMed

    Suqi, Liu; Cáceres, Luis A; Caceres, Luis; Schieck, Katie; McGarvey, Brian D; Booker, Christina J; McGarvey, Brian M; Yeung, Ken K-C; Pariente, Stephane; Briens, Cedric; Berruti, Franco; Scott, Ian M

    2014-04-23

    Agricultural crop residues can be converted through thermochemical pyrolysis to bio-oil, a sustainable source of biofuel and biochemicals. The pyrolysis bio-oil is known to contain many chemicals, some of which have insecticidal activity and can be a potential source of value-added pest control products. Brassicacae crops, cabbage, broccoli, and mustards, contain glucosinolates and isocyanates, compounds with recognized anti-herbivore activity. In Canada, canola Brassica napus straw is available from over 6 000 000 ha and mustard Brassica carinata and Brassica juncea straw is available from 200 000 ha. The straw can be converted by microbial lignocellulosic enzymes as a substrate for bioethanol production but can also be converted to bio-oil by thermochemical means. Straw from all three species was pyrolyzed, and the insecticidal components in the bio-oil were isolated by bioassay-guided solvent fractionation. Of particular interest were the mustard straw bio-oil aqueous fractions with insecticidal and feeding repellent activity to Colorado potato beetle larvae. Aqueous fractions further analyzed for active compounds were found not to contain many of the undesirable phenol compounds, which were previously found in other bio-oils seen in the dichloromethane (DCM) and ethyl acetate (EA) solvent phases of the present study. Identified within the most polar fractions were hexadecanoic and octadecanoic fatty acids, indicating that separation of these compounds during bio-oil production may provide a source of effective insecticidal compounds. PMID:24697626

  20. Insecticidal activity of bio-oil from the pyrolysis of straw from Brassica spp.

    PubMed

    Suqi, Liu; Cáceres, Luis A; Caceres, Luis; Schieck, Katie; McGarvey, Brian D; Booker, Christina J; McGarvey, Brian M; Yeung, Ken K-C; Pariente, Stephane; Briens, Cedric; Berruti, Franco; Scott, Ian M

    2014-04-23

    Agricultural crop residues can be converted through thermochemical pyrolysis to bio-oil, a sustainable source of biofuel and biochemicals. The pyrolysis bio-oil is known to contain many chemicals, some of which have insecticidal activity and can be a potential source of value-added pest control products. Brassicacae crops, cabbage, broccoli, and mustards, contain glucosinolates and isocyanates, compounds with recognized anti-herbivore activity. In Canada, canola Brassica napus straw is available from over 6 000 000 ha and mustard Brassica carinata and Brassica juncea straw is available from 200 000 ha. The straw can be converted by microbial lignocellulosic enzymes as a substrate for bioethanol production but can also be converted to bio-oil by thermochemical means. Straw from all three species was pyrolyzed, and the insecticidal components in the bio-oil were isolated by bioassay-guided solvent fractionation. Of particular interest were the mustard straw bio-oil aqueous fractions with insecticidal and feeding repellent activity to Colorado potato beetle larvae. Aqueous fractions further analyzed for active compounds were found not to contain many of the undesirable phenol compounds, which were previously found in other bio-oils seen in the dichloromethane (DCM) and ethyl acetate (EA) solvent phases of the present study. Identified within the most polar fractions were hexadecanoic and octadecanoic fatty acids, indicating that separation of these compounds during bio-oil production may provide a source of effective insecticidal compounds.

  1. Techno-economic and uncertainty analysis of in situ and ex situ fast pyrolysis for biofuel production

    SciTech Connect

    Li, Boyan; Ou, Longwen; Dang, Qi; Meyer, Pimphan A.; Jones, Susanne B.; Brown, Robert C.; Wright, Mark

    2015-11-01

    This study evaluates the techno-economic uncertainty in cost estimates for two emerging biorefinery technologies for biofuel production: in situ and ex situ catalytic pyrolysis. Stochastic simulations based on process and economic parameter distributions are applied to calculate biorefinery performance and production costs. The probability distributions for the minimum fuel-selling price (MFSP) indicate that in situ catalytic pyrolysis has an expected MFSP of $4.20 per gallon with a standard deviation of 1.15, while the ex situ catalytic pyrolysis has a similar MFSP with a smaller deviation ($4.27 per gallon and 0.79 respectively). These results suggest that a biorefinery based on ex situ catalytic pyrolysis could have a lower techno-economic risk than in situ pyrolysis despite a slightly higher MFSP cost estimate. Analysis of how each parameter affects the NPV indicates that internal rate of return, feedstock price, total project investment, electricity price, biochar yield and bio-oil yield are significant parameters which have substantial impact on the MFSP for both in situ and ex situ catalytic pyrolysis.

  2. Characterization and Catalytic Upgrading of Crude Bio-oil Produced by Hydrothermal Liquefaction of Swine Manure and Pyrolysis of Biomass

    NASA Astrophysics Data System (ADS)

    Cheng, Dan

    The distillation curve of crude bio-oil from glycerol-assisted hydrothermal liquefaction of swine manure was measured using an advanced distillation apparatus. The crude bio-oil had much higher distillation temperatures than diesel and gasoline and was more distillable than the bio-oil produced by the traditional liquefaction of swine manure and the pyrolysis of corn stover. Each 10% volumetric fraction was analyzed from aspects of its chemical compositions, chemical and physical properties. The appearance of hydrocarbons in the distillates collected at the temperature of 410.9°C and above indicated that the thermal cracking at a temperature from 410°C to 500°C may be a proper approach to upgrade the crude bio-oil produced from the glycerol-assisted liquefaction of swine manure. The effects of thermal cracking conditions including reaction temperature (350-425°C), retention time (15-60 min) and catalyst loadings (0-10 wt%) on the yield and quality of the upgraded oil were analyzed. Under the optimum thermal cracking conditions at 400°C, a catalyst loading of 5% by mass and the reaction time of 30 min, the yield of bio-oil was 46.14% of the mass of the crude bio-oil and 62.5% of the energy stored in the crude bio-oil was recovered in the upgraded bio-oil. The upgraded bio-oil with a heating value of 41.4 MJ/kg and viscosity of 3.6 cP was comparable to commercial diesel. In upgrading crude bio-oil from fast pyrolysis, converting organic acids into neutral esters is significant and can be achieved by sulfonated activated carbon/bio-char developed from fermentation residues. Acitivated carbon and bio-char were sulfonated by concentrated sulfuric acid at 150°C for 18 h. Sulfonation helped activated carbon/bio-char develop acid functional groups. Sulfonated activated carbon with BET surface area of 349.8 m2/g, was effective in converting acetic acid. Acetic acid can be effectively esterified by sulfonated activated carbon (5 wt%) at 78°C for 60 min with the

  3. Biological mineral range effects on biomass conversion to aromatic hydrocarbons via catalytic fast pyrolysis over HZSM-5

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A set of 20 biomass samples, comprising 10 genotypes of switchgrass, sorghum and miscanthus grown in two different soils with high and low poultry manure input conditions, and having a wide biological range of mineral content, were subjected to catalytic fast pyrolysis (CFP) over HZMS-5 using py-G...

  4. Resole resin products derived from fractionated organic and aqueous condensates made by fast-pyrolysis of biomass materials

    DOEpatents

    Chum, H.L.; Black, S.K.; Diebold, J.P.; Kreibich, R.E.

    1993-08-10

    A process for preparing phenol-formaldehyde resole resins by fractionating organic and aqueous condensates made by fast-pyrolysis of biomass materials while using a carrier gas to move feed into a reactor to produce phenolic-containing/neutrals in which portions of the phenol normally contained in said resins are replaced by a phenolic/neutral fractions extract obtained by fractionation.

  5. Resole resin products derived from fractionated organic and aqueous condensates made by fast-pyrolysis of biomass materials

    DOEpatents

    Chum, Helena L.; Black, Stuart K.; Diebold, James P.; Kreibich, Roland E.

    1993-01-01

    A process for preparing phenol-formaldehyde resole resins by fractionating organic and aqueous condensates made by fast-pyrolysis of biomass materials while using a carrier gas to move feed into a reactor to produce phenolic-containing/neutrals in which portions of the phenol normally contained in said resins are replaced by a phenolic/neutral fractions extract obtained by fractionation.

  6. Isolation of levoglucosan from lignocellulosic pyrolysis oil derived from wood or waste newsprint

    DOEpatents

    Moens, Luc

    1995-01-01

    A method is provided for preparing high purity levoglucosan from lignocellulosic pyrolysis oils derived from wood or waste newsprint. The method includes reducing wood or newsprint to fine particle sizes, treating the particles with a hot mineral acid for a predetermined period of time, and filtering off and drying resulting solid wood or newsprint material; pyrolyzing the dried solid wood or newsprint material at temperatures between about 350.degree. and 375.degree. C. to produce pyrolysis oils; treating the oils to liquid-liquid extraction with methyl isobutyl ketone to remove heavy tar materials from the oils, and to provide an aqueous fraction mixture of the oils containing primarily levoglucosan; treating the aqueous fraction mixtures with a basic metal salt in an amount sufficient to elevate pH values to a range of about 12 to about 12.5 and adding an amount of the salt in excess of the amount needed to obtain the pH range to remove colored materials of impurities from the oil and form a slurry, and freeze-drying the resulting slurry to produce a dry solid residue; and extracting the levoglucosan from the residue using ethyl acetate solvent to produce a purified crystalline levoglucosan.

  7. Isolation of levoglucosan from lignocellulosic pyrolysis oil derived from wood or waste newsprint

    DOEpatents

    Moens, L.

    1995-07-11

    A method is provided for preparing high purity levoglucosan from lignocellulosic pyrolysis oils derived from wood or waste newsprint. The method includes reducing wood or newsprint to fine particle sizes, treating the particles with a hot mineral acid for a predetermined period of time, and filtering off and drying resulting solid wood or newsprint material; pyrolyzing the dried solid wood or newsprint material at temperatures between about 350 and 375 C to produce pyrolysis oils; treating the oils to liquid-liquid extraction with methyl isobutyl ketone to remove heavy tar materials from the oils, and to provide an aqueous fraction mixture of the oils containing primarily levoglucosan; treating the aqueous fraction mixtures with a basic metal salt in an amount sufficient to elevate pH values to a range of about 12 to about 12.5 and adding an amount of the salt in excess of the amount needed to obtain the pH range to remove colored materials of impurities from the oil and form a slurry, and freeze-drying the resulting slurry to produce a dry solid residue; and extracting the levoglucosan from the residue using ethyl acetate solvent to produce a purified crystalline levoglucosan. 2 figs.

  8. Thermochemical Conversion of Sugarcane Bagasse into Bio-Crude Oils by Fluidized-Bed Pyrolysis Technology

    NASA Astrophysics Data System (ADS)

    Islam, Mohammad Rofiqul; Haniu, Hiroyuki; Islam, Mohammad Nurul; Uddin, Md. Shazib

    Thermochemical conversion of sugarcane bagasse into bio-crude oils by fluidized-bed reactor has been taken into consideration in this study. The bagasse in particle form was pyrolyzed in an externally heated 7cm diameter and 37.5cm high fluidized-bed reactor with nitrogen as a carrier gas. The reactor chamber and gas-preheater were heated by means of a renewable energy biomass source cylindrical heater. At a reactor bed temperature of 450°C for a feed particle size of 420-600µm and at a gas flow rate of 30 l/min, an oil yield of 48wt% of dry feed was obtained. The pyrolysis process temperature was found to have influenced on the product yields. Characterization of the whole pyrolysis liquids obtained at optimum operating conditions has been carried out including physical properties, elemental analyses, GCV, FT-IR, and 1H NMR analysis. The results show that pyrolysis of sugarcane bagasse waste is a good option for producing bio-crude oils to be used as alternative to petroleum fuels and valuable chemical feedstocks.

  9. Integrated supply chain design for commodity chemicals production via woody biomass fast pyrolysis and upgrading.

    PubMed

    Zhang, Yanan; Hu, Guiping; Brown, Robert C

    2014-04-01

    This study investigates the optimal supply chain design for commodity chemicals (BTX, etc.) production via woody biomass fast pyrolysis and hydroprocessing pathway. The locations and capacities of distributed preprocessing hubs and integrated biorefinery facilities are optimized with a mixed integer linear programming model. In this integrated supply chain system, decisions on the biomass chipping methods (roadside chipping vs. facility chipping) are also explored. The economic objective of the supply chain model is to maximize the profit for a 20-year chemicals production system. In addition to the economic objective, the model also incorporates an environmental objective of minimizing life cycle greenhouse gas emissions, analyzing the trade-off between the economic and environmental considerations. The capital cost, operating cost, and revenues for the biorefinery facilities are based on techno-economic analysis, and the proposed approach is illustrated through a case study of Minnesota, with Minneapolis-St. Paul serving as the chemicals distribution hub.

  10. Catalytic Fast Pyrolysis of Cellulose Using Nano Zeolite and Zeolite/Matrix Catalysts in a GC/Micro-Pyrolyzer.

    PubMed

    Lee, Kyong-Hwan

    2016-05-01

    Cellulose, as a model compound of biomass, was catalyzed over zeolite (HY,.HZSM-5) and zeolite/matrix (HY/Clay, HM/Clay) in a GC/micro-pyrolyzer at 500 degrees C, to produce the valuable products. The catalysts used were pure zeolite and zeolite/matrix including 20 wt% matrix content, which were prepared into different particle sizes (average size; 0.1 mm, 1.6 mm) to study the effect of the particle size of the catalyst for the distribution of product yields. Catalytic pyrolysis had much more volatile products as light components and less content of sugars than pyrolysis only. This phenomenon was strongly influenced by the particle size of the catalyst in catalytic fast pyrolysis. Also, in zeolite and zeolite/matrix catalysts the zeolite type gave the dominant impact on the distribution of product yields. PMID:27483802

  11. Catalytic Fast Pyrolysis of Cellulose Using Nano Zeolite and Zeolite/Matrix Catalysts in a GC/Micro-Pyrolyzer.

    PubMed

    Lee, Kyong-Hwan

    2016-05-01

    Cellulose, as a model compound of biomass, was catalyzed over zeolite (HY,.HZSM-5) and zeolite/matrix (HY/Clay, HM/Clay) in a GC/micro-pyrolyzer at 500 degrees C, to produce the valuable products. The catalysts used were pure zeolite and zeolite/matrix including 20 wt% matrix content, which were prepared into different particle sizes (average size; 0.1 mm, 1.6 mm) to study the effect of the particle size of the catalyst for the distribution of product yields. Catalytic pyrolysis had much more volatile products as light components and less content of sugars than pyrolysis only. This phenomenon was strongly influenced by the particle size of the catalyst in catalytic fast pyrolysis. Also, in zeolite and zeolite/matrix catalysts the zeolite type gave the dominant impact on the distribution of product yields.

  12. Successful scaling-up of self-sustained pyrolysis of oil palm biomass under pool-type reactor.

    PubMed

    Idris, Juferi; Shirai, Yoshihito; Andou, Yoshito; Mohd Ali, Ahmad Amiruddin; Othman, Mohd Ridzuan; Ibrahim, Izzudin; Yamamoto, Akio; Yasuda, Nobuhiko; Hassan, Mohd Ali

    2016-02-01

    An appropriate technology for waste utilisation, especially for a large amount of abundant pressed-shredded oil palm empty fruit bunch (OFEFB), is important for the oil palm industry. Self-sustained pyrolysis, whereby oil palm biomass was combusted by itself to provide the heat for pyrolysis without an electrical heater, is more preferable owing to its simplicity, ease of operation and low energy requirement. In this study, biochar production under self-sustained pyrolysis of oil palm biomass in the form of oil palm empty fruit bunch was tested in a 3-t large-scale pool-type reactor. During the pyrolysis process, the biomass was loaded layer by layer when the smoke appeared on the top, to minimise the entrance of oxygen. This method had significantly increased the yield of biochar. In our previous report, we have tested on a 30-kg pilot-scale capacity under self-sustained pyrolysis and found that the higher heating value (HHV) obtained was 22.6-24.7 MJ kg(-1) with a 23.5%-25.0% yield. In this scaled-up study, a 3-t large-scale procedure produced HHV of 22.0-24.3 MJ kg(-1) with a 30%-34% yield based on a wet-weight basis. The maximum self-sustained pyrolysis temperature for the large-scale procedure can reach between 600 °C and 700 °C. We concluded that large-scale biochar production under self-sustained pyrolysis was successfully conducted owing to the comparable biochar produced, compared with medium-scale and other studies with an electrical heating element, making it an appropriate technology for waste utilisation, particularly for the oil palm industry.

  13. Successful scaling-up of self-sustained pyrolysis of oil palm biomass under pool-type reactor.

    PubMed

    Idris, Juferi; Shirai, Yoshihito; Andou, Yoshito; Mohd Ali, Ahmad Amiruddin; Othman, Mohd Ridzuan; Ibrahim, Izzudin; Yamamoto, Akio; Yasuda, Nobuhiko; Hassan, Mohd Ali

    2016-02-01

    An appropriate technology for waste utilisation, especially for a large amount of abundant pressed-shredded oil palm empty fruit bunch (OFEFB), is important for the oil palm industry. Self-sustained pyrolysis, whereby oil palm biomass was combusted by itself to provide the heat for pyrolysis without an electrical heater, is more preferable owing to its simplicity, ease of operation and low energy requirement. In this study, biochar production under self-sustained pyrolysis of oil palm biomass in the form of oil palm empty fruit bunch was tested in a 3-t large-scale pool-type reactor. During the pyrolysis process, the biomass was loaded layer by layer when the smoke appeared on the top, to minimise the entrance of oxygen. This method had significantly increased the yield of biochar. In our previous report, we have tested on a 30-kg pilot-scale capacity under self-sustained pyrolysis and found that the higher heating value (HHV) obtained was 22.6-24.7 MJ kg(-1) with a 23.5%-25.0% yield. In this scaled-up study, a 3-t large-scale procedure produced HHV of 22.0-24.3 MJ kg(-1) with a 30%-34% yield based on a wet-weight basis. The maximum self-sustained pyrolysis temperature for the large-scale procedure can reach between 600 °C and 700 °C. We concluded that large-scale biochar production under self-sustained pyrolysis was successfully conducted owing to the comparable biochar produced, compared with medium-scale and other studies with an electrical heating element, making it an appropriate technology for waste utilisation, particularly for the oil palm industry. PMID:26612557

  14. Prediction of properties and elemental composition of biomass pyrolysis oils by NMR and partial least squares analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several partial least squares (PLS) models were created correlating various properties and chemical composition measurements with the 1H and 13C NMR spectra of 73 different of pyrolysis bio-oil samples from various biomass sources (crude and intermediate products), finished oils and small molecule s...

  15. The geology, geochemistry, and pyrolysis kinetics of several key world oil shales

    SciTech Connect

    Nuttall, H.E.; Guo, T.M.; Schrader, S.; Thakur, D.S.

    1983-02-01

    This study addresses the measurement, analysis, and comparison of pyrolysis kinetics and other characteristic parameters for several key international oil shales. Geologic and chemical information about each of the oil shale samples is presented to illustrate the widely varying nature of oil shale. A summary of the kinetic models and data analysis methods is presented below along with the more significant kinetic results. I. The weight loss data were first treated using the two parameter models (Coats-Redfern and Nuttall-Chen). The calculated activation energies were physically very low, thus leading to the evaluation of more sophisticated treatment methods and kinetic models. II. Next, the TGA data were treated using the models mentioned in 'I', but the temperature range was divided into two regions (i.e., a region above and below 375/sup 0/). This approach gave a better fit to the single heating rate data, but was not satisfactory for correlating the full multiple heating rate data. III. The three parameter model, by Anthony and Howard, was best for correlating the full range of nonisothermal data. This is the first time that the Anthony-Howard model has been used to treat nonisothermal oil shale pyrolysis data. The calculated activation energies were physically more reasonable and the overall fit to the data was improved as compared to the two parameter models.

  16. Characterization of bio-oil and biochar from high-temperature pyrolysis of sewage sludge.

    PubMed

    Chen, Hongmei; Zhai, Yunbo; Xu, Bibo; Xiang, Bobin; Zhu, Lu; Qiu, Lei; Liu, Xiaoting; Li, Caiting; Zeng, Guangming

    2015-01-01

    The influence of temperature (550-850°C) on the characteristics of bio-oil and biochar from the pyrolysis of sewage sludge (SS) in a horizontal tube reactor was investigated. Results showed that when the pyrolysis temperature increased from 550°C to 850°C, the yield of bio-oil decreased from 26.16% (dry ash-free basis) to 20.78% (dry ash-free basis). Main components of bio-oil were phenols, esters, cholests, ketones, amides, indoles, and nitriles. Besides, the elevated heating rate of 25°C/min was demonstrated to favour the complete combustion of bio-oil. Moreover, caused by the increase in temperature, the yield of biochar decreased from 54.9 to 50.6 wt%, Brunauer-Emmet-Teller surface area increased from 48.51 to 81.28 m2/g. Furthermore, pH was increased from 5.93 of SS to 7.15-8.96 of biochar. The negative ζ-potential was also strengthened (-13.87 to -11.30 mV) and principal functional groups on the surface of biochar were -OH, C=O, C=C, -NO2, and S=O.

  17. Proceedings of the Biomass Pyrolysis Oil Properties and Combustion Meeting, 26-28 September 1994, Estes Park, Colorado

    SciTech Connect

    Milne, T.

    1995-01-01

    The increasing scale-up of fast pyrolysis in North America and Europe, as well as the exploration and expansion of markets for the energy use of biocrude oils that now needs to take place, suggested that it was timely to convene an international meeting on the properties and combustion behavior of these oils. A common understanding of the state-of-the-art and technical and other challenges which need to be met during the commercialization of biocrude fuel use, can be achieved. The technical issues and understanding of combustion of these oils are rapidly being advanced through R&D in the United States. Canada, Europe and Scandinavia. It is obvious that for the maximum economic impact of biocrude, it will be necessary to have a common set of specifications so that oils can be used interchangeably with engines and combustors which require minimal modification to use these renewable fuels. Fundamental and applied studies being pursued in several countries are brought together in this workshop so that we can arrive at common strategies. In this way, both the science and the commercialization are advanced to the benefit of all, without detracting from the competitive development of both the technology and its applications. This United States-Canada-Finland collaboration has led to the two and one half day specialists meeting at which the technical basis for advances in biocrude development is discussed. The goal is to arrive at a common agenda on issues that cross national boundaries in this area. Examples of agenda items are combustion phenomena, the behavior of trace components of the oil (N, alkali metals), the formation of NOx in combustion, the need for common standards and environmental safety and health issues in the handling, storage and transportation of biocrudes.

  18. Effect of torrefaction on structure and fast pyrolysis behavior of corncobs.

    PubMed

    Zheng, Anqing; Zhao, Zengli; Chang, Sheng; Huang, Zhen; Wang, Xiaobo; He, Fang; Li, Haibin

    2013-01-01

    Pretreatment of corncobs using torrefaction was conducted in an auger reactor at 250-300 °C and residence times of 10-60 min. The torrefied corncobs were fast pyrolyzed in a bubbling fluidized bed reactor at 470 °C to obtain high-quality bio-oil. The heating value and pH of the bio-oil improved when the torrefaction as pretreatment was applied; however, increasing bio-oil yield penalties were observed with increasing torrefaction severity. Fourier transform infrared Spectroscopy (FTIR) and quantitative solid (13)C nuclear magnetic resonance spectrometry (NMR) analysis of torrefied corncobs showed that the devolatilization, crosslinking and charring of corncobs during torrefaction could be responsible for the bio-oil yield penalties. Gas chromatography-mass spectrometry (GC-MS) analysis showed that the acetic acid and furfural contents of the bio-oil decreased with torrefaction temperature or residence time. The results showed that torrefaction is an effective method of pretreatment for improving bio-oil quality if the crosslinking and charring of biomass can be restricted.

  19. Comparision of real waste (MSW and MPW) pyrolysis in batch reactor over different catalysts. Part I: product yields, gas and pyrolysis oil properties.

    PubMed

    Ateş, Funda; Miskolczi, Norbert; Borsodi, Nikolett

    2013-04-01

    Pyrolysis of municipal solid waste (MSW) and municipal plastic waste (MPW) have been investigated in batch reactor at 500, 550 and 600°C both in absence and presence of catalysts (Y-zeolite, β-zeolite, equilibrium FCC, MoO3, Ni-Mo-catalyst, HZSM-5 and Al(OH)3). The effect of the parameters on the product properties was investigated. Products were characterized using gas-chromatography, GC/MS, (13)C NMR. Yields of volatile fractions increased, while reaction time necessity for the total cracking decreased in the presence of catalysts. Catalysts have productivity and selectivity in converting aliphatic hydrocarbons to aromatic and cyclic compounds in oil products. Gases from MSW consisted of hydrogen CO, CO2, while exclusively hydrogen and hydrocarbons were detected from MPW. Catalyst efficiency was higher using MPW than MSW. Pyrolysis oils contained aliphatic hydrocarbons, aromatics, cyclic compounds and less ketones, alcohols, acids or esters depending on the raw materials. PMID:23455219

  20. Jute stick pyrolysis for bio-oil production in fluidized bed reactor.

    PubMed

    Asadullah, M; Anisur Rahman, M; Mohsin Ali, M; Abdul Motin, M; Borhanus Sultan, M; Robiul Alam, M; Sahedur Rahman, M

    2008-01-01

    Pyrolysis of jute stick for bio-oil production has been investigated in a continuous feeding fluidized bed reactor at different temperatures ranging from 300 degrees C to 600 degrees C. At 500 degrees C, the yields of bio-oil, char and non-condensable gas were 66.70 wt%, 22.60 wt% and 10.70 wt%, respectively based on jute stick. The carbon based non-condensable gas was the mixture of carbon monoxide, carbon dioxide, methane, ethane, ethene, propane and propene. The density and viscosity of bio-oil were found to be 1.11 g/mL and 2.34 cP, respectively. The lower heating value (LHV) of bio-oil was found to be 18.2 5 MJ/kg. Since bio-oil contains some organic acids such as formic acid, acetic acid, etc., the pH and acid value of the bio-oil were found to be around 4 and 135 mg KOH/g, respectively. The water, lignin, solid and ash contents of bio-oil were determined and found to be around 15 wt%, 4.90 wt%, 0.02 wt% and 0.10 wt%, respectively.

  1. Baseline NO{sub x} emissions during combustion of wood-derived pyrolysis oils

    SciTech Connect

    Baxter, L.; Jenkins, B.; Winter, F.

    1995-01-01

    NO{sub x} emissions from two pyrolysis oils of similar origin and overall composition but differing nitrogen contents (0.12 and 0.32% of dry fuel) are determined in a pilot-scale combustor. No NO{sub x} reduction technology is employed in these tests, establishing the baseline or uncontrolled levels of NO{sub x}. Measured effluent oxygen concentrations range from near 0% to near 21%, with stoichiometric ratios ranging from 0 to 1. NO and NO{sub x} are measured separately and found to differ by insignificant ({approx}10--25 ppmv) amounts. Other relevant gas species (CO{sub 2}, CO, total hydrocarbons, and O{sub 2}) are also reported. Peak NO{sub x} emissions from these fuels vary from about 300 to around 650 ppmv, with lower levels associated with low nitrogen content fuels. Trends with stoichiometric ratio and fuel nitrogen content agree qualitatively with behavior from other nitrogen containing fuels, including biomass, coal, and petroleum oils. Nitrogen conversion efficiencies as a function of stoichiometric and fuel nitrogen content are observed to decrease with increasing fuel nitrogen content and increase with increasing oxygen content. Measurements of thermal, prompt, and fuel NO{sub x} contributes indicate that fuel NO{sub x} is the dominant formation mechanism for these fuels. These data suggest that NO{sub x} formed during combustion of pyrolysis oil lends itself to many of the same control technologies as are used in other nitrogen-containing fuel.

  2. Steam reforming of fast pyrolysis-derived aqueous phase oxygenates over Co, Ni, and Rh metals supported on MgAl2O4

    DOE PAGES

    Xing, Rong; Dagle, Vanessa Lebarbier; Flake, Matthew; Kovarik, Libor; Albrecht, Karl O.; Deshmane, Chinmay; Dagle, Robert A.

    2016-02-03

    In this paper we examine the feasibility of steam reforming the mixed oxygenate aqueous fraction derived from fast pyrolysis bio-oils. Catalysts selective towards hydrogen formation and resistant to carbon formation utilizing feeds with relatively low steam-to-carbon (S/C) ratios are desired. Rh (5 wt%), Pt (5 wt%), Ru (5 wt%), Ir (5 wt%), Ni (15 wt%), and Co (15 wt%) metals supported on MgAl2O4 were evaluated for catalytic performance at 500 °C and 1 atm using a complex feed mixture comprising acids, polyols, cycloalkanes, and phenolic compounds. The Rh catalyst was found to be the most active and resistant to carbonmore » formation. The Ni and Co catalysts were found to be more active than the other noble metal catalysts investigated (Pt, Ru, and Ir).« less

  3. Techno-economic analysis of monosaccharide production via fast pyrolysis of lignocellulose.

    PubMed

    Zhang, Yanan; Brown, Tristan R; Hu, Guiping; Brown, Robert C

    2013-01-01

    The economic feasibility of a facility producing monosaccharides, hydrogen and transportation fuels via fast pyrolysis and upgrading pathway was evaluated by modeling a 2000 dry metric ton biomass/day facility using Aspen Plus®. Equipment sizing and cost were based on Aspen Economic Evaluation® software. The results indicate that monosaccharide production capacity could reach 338 metric tons/day. Co-product yields of hydrogen and gasoline were 23.4 and 141 metric tons/day, respectively. The total installed equipment and total capital costs were estimated to be $210 million and $326 million, respectively. A facility internal rate of return (IRR) of 11.4% based on market prices of $3.33/kg hydrogen, $2.92/gal gasoline and diesel, $0.64/kg monosaccharide was calculated. Sensitivity analysis demonstrates that fixed capital cost, feedstock cost, product yields, and product credits have the greatest impacts on facility IRR. Further research is needed to optimize yield of sugar via the proposed process to improve economic feasibility.

  4. Enhancement of biomass conversion in catalytic fast pyrolysis by microwave-assisted formic acid pretreatment.

    PubMed

    Feng, Yu; Li, Guangyu; Li, Xiangyu; Zhu, Ning; Xiao, Bo; Li, Jian; Wang, Yujue

    2016-08-01

    This study investigated microwave-assisted formic acid (MW-FA) pretreatment as a possible way to improve aromatic production from catalytic fast pyrolysis (CFP) of lignocellulosic biomass. Results showed that short duration of MW-FA pretreatment (5-10min) could effectively disrupt the recalcitrant structure of beech wood and selectively remove its hemicellulose and lignin components. This increased the accessibility of cellulose component of biomass to subsequent thermal conversion in CFP. Consequently, the MW-FA pretreated beech wood produced 14.0-28.3% higher yields (26.4-29.8C%) for valuable aromatic products in CFP than the untreated control (23.2C%). In addition, the yields of undesired solid residue (char/coke) decreased from 33.1C% for the untreated control to 28.6-29.8C% for the MW-FA pretreated samples. These results demonstrate that MW-FA pretreatment can provide an effective way to improve the product distribution from CFP of lignocellulose. PMID:27176672

  5. D/H isotope ratios of kerogen, bitumen, oil, and water in hydrous pyrolysis of source rocks containing kerogen types I, II, IIS, and III

    USGS Publications Warehouse

    Schimmelmann, A.; Lewan, M.D.; Wintsch, R.P.

    1999-01-01

    Immature source rock chips containing different types of kerogen (I, II, IIS, III) were artificially matured in isotopically distinct waters by hydrous pyrolysis and by pyrolysis in supercritical water. Converging isotopic trends of inorganic (water) and organic (kerogen, bitumen, oil) hydrogen with increasing time and temperature document that water-derived hydrogen is added to or exchanged with organic hydrogen, or both, during chemical reactions that take place during thermal maturation. Isotopic mass-balance calculations show that, depending on temperature (310-381??C), time (12-144 h), and source rock type, between ca. 45 and 79% of carbon-bound hydrogen in kerogen is derived from water. Estimates for bitumen and oil range slightly lower, with oil-hydrogen being least affected by water-derived hydrogen. Comparative hydrous pyrolyses of immature source rocks at 330??C for 72 h show that hydrogen in kerogen, bitumen, and expelled oil/wax ranks from most to least isotopically influenced by water-derived hydrogen in the order IIS > II ~ III > I. Pyrolysis of source rock containing type II kerogen in supercritical water at 381 ??C for 12 h yields isotopic results that are similar to those from hydrous pyrolysis at 350??C for 72 h, or 330??C for 144 h. Bulk hydrogen in kerogen contains several percent of isotopically labile hydrogen that exchanges fast and reversibly with hydrogen in water vapor at 115??C. The isotopic equilibration of labile hydrogen in kerogen with isotopic standard water vapors significantly reduces the analytical uncertainty of D/H ratios when compared with simple D/H determination of bulk hydrogen in kerogen. If extrapolation of our results from hydrous pyrolysis is permitted to natural thermal maturation at lower temperatures, we suggest that organic D/H ratios of fossil fuels in contact with formation waters are typically altered during chemical reactions, but that D/H ratios of generated hydrocarbons are subsequently little or not affected

  6. Physical and Chemical Properties of Bio-Oils From Microwave Pyrolysis of Corn Stover

    NASA Astrophysics Data System (ADS)

    Yu, Fei; Deng, Shaobo; Chen, Paul; Liu, Yuhuan; Wan, Yiqin; Olson, Andrew; Kittelson, David; Ruan, Roger

    This study was aimed to understand the physical and chemical properties of pyrolytic bio-oils produced from microwave pyrolysis of corn stover regarding their potential use as gas turbine and home heating fuels. The ash content, solids content, pH, heating value, minerals, elemental ratio, moisture content, and viscosity of the bio-oils were determined. The water content was approx 15.2 wt%, solids content 0.22 wt%, alkali metal content 12 parts per million, dynamic viscosity 185 mPa·s at 40°C, and gross high heating value 17.5 MJ/kg for a typical bio-oil produced. Our aging tests showed that the viscosity and water content increased and phase separation occurred during the storage at different temperatures. Adding methanol and/or ethanol to the bio-oils reduced the viscosity and slowed down the increase in viscosity and water content during the storage. Blending of methanol or ethanol with the bio-oils may be a simple and cost-effective approach to making the pyrolytic bio-oils into a stable gas turbine or home heating fuels.

  7. Accumulation of inorganic impurities on HZSM-5 during catalytic fast pyrolysis of switchgrass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fate of inorganic species present in switchgrass during fluidized bed catalytic pyrolysis over HZSM-5 catalysts was studied with emphasis on their accumulation on the catalyst. Five catalytic pyrolysis experiments were performed in two series, reusing the catalyst after each sample. Catalysts w...

  8. AN EVALUATION OF PYROLYSIS OIL PROPERTIES AND CHEMISTRY AS RELATED TO PROCESS AND UPGRADE CONDITIONS WITH SPECIAL CONSIDERATION TO PIPELINE SHIPMENT

    SciTech Connect

    Bunting, Bruce G; Boyd, Alison C

    2012-01-01

    One factor limiting the development of commercial biomass pyrolysis is challenges related to the transportation of the produced pyrolysis oil. The oil has different chemical and physical properties than crude oil, including more water and oxygen and has lower H/C ratio, higher specific gravity and density, higher acidity, and lower energy content. These differences could limit its ability to be transported by existing petroleum pipelines. Pyrolysis oil can also be treated, normally by catalytic hydrodeoxygenation, and approaches crude oil and petroleum condensates at higher severity levels. This improvement also results in lower liquid yield and high hydrogen consumption. Biomass resources for pyrolysis are expected to become plentiful and widely distributed in the future, mainly through the use of crop residuals and growing of energy crops such as perennial grasses, annual grasses, and woody crops. Crude oil pipelines are less well distributed and, when evaluated on a county level, could access about 18% of the total biomass supply. States with high potential include Texas, Oklahoma, California, and Louisiana. In this study, published data on pyrolysis oil was compiled into a data set along with bio-source source material, pyrolysis reactor conditions, and upgrading conditions for comparison to typical crude oils. Data of this type is expected to be useful in understanding the properties and chemistry and shipment of pyrolysis oil to refineries, where it can be further processed to fuel or used as a source of process heat.

  9. Catalytic fast co-pyrolysis of biomass and food waste to produce aromatics: Analytical Py-GC/MS study.

    PubMed

    Zhang, Bo; Zhong, Zhaoping; Min, Min; Ding, Kuan; Xie, Qinglong; Ruan, Roger

    2015-01-01

    In this study, catalytic fast co-pyrolysis (co-CFP) of corn stalk and food waste (FW) was carried out to produce aromatics using quantitative pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS), and ZSM-5 zeolite in the hydrogen form was employed as the catalyst. Co-CFP temperature and a parameter called hydrogen to carbon effective ratio (H/C(eff) ratio) were examined for their effects on the relative content of aromatics. Experimental results showed that co-CFP temperature of 600 °C was optimal for the formation of aromatics and other organic pyrolysis products. Besides, H/C(eff) ratio had an important influence on product distribution. The yield of total organic pyrolysis products and relative content of aromatics increased non-linearly with increasing H/C(eff) ratio. There was an apparent synergistic effect between corn stalk and FW during co-CFP process, which promoted the production of aromatics significantly. Co-CFP of biomass and FW was an effective method to produce aromatics and other petrochemicals.

  10. Catalytic fast co-pyrolysis of biomass and food waste to produce aromatics: Analytical Py-GC/MS study.

    PubMed

    Zhang, Bo; Zhong, Zhaoping; Min, Min; Ding, Kuan; Xie, Qinglong; Ruan, Roger

    2015-01-01

    In this study, catalytic fast co-pyrolysis (co-CFP) of corn stalk and food waste (FW) was carried out to produce aromatics using quantitative pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS), and ZSM-5 zeolite in the hydrogen form was employed as the catalyst. Co-CFP temperature and a parameter called hydrogen to carbon effective ratio (H/C(eff) ratio) were examined for their effects on the relative content of aromatics. Experimental results showed that co-CFP temperature of 600 °C was optimal for the formation of aromatics and other organic pyrolysis products. Besides, H/C(eff) ratio had an important influence on product distribution. The yield of total organic pyrolysis products and relative content of aromatics increased non-linearly with increasing H/C(eff) ratio. There was an apparent synergistic effect between corn stalk and FW during co-CFP process, which promoted the production of aromatics significantly. Co-CFP of biomass and FW was an effective method to produce aromatics and other petrochemicals. PMID:25864028

  11. Hydrogen-rich gas production via fast pyrolysis of biophysical dried sludge: Effect of particle size and moisture content on product yields and syngas composition.

    PubMed

    Han, Rong; Liu, Jinwen; Zhao, Chenxi; Li, Yuliang; Chen, Aixia

    2016-06-01

    After biophysical drying, a novel biophysical dried sludge particle was obtained. This work aims to investigate the function and effects of particle sizes and moisture contents on the fast pyrolysis of biophysical dried sludge particles. The results showed that large particles (>4 mm) favoured the oil generation with a maximum value of 19.0%, and small particles (<0.27 mm) favoured the char yield with a maximum value of 60.6%. Medium particle fractions (between 0.27 mm and 4 mm) benefited syngas production and induced higher H2 and CO emission, owing to the well-developed microstructure, enrichment of cellulose, and enhanced catalytic effects during the charring process. The introduction of proper moisture content (53.9% to 62.6%) to biophysical dried sludge was found to dramatically enhance syngas yield, hydrogen production, and carbon conversion efficiency. H2 molar concentration reached a maximum of 46.02% at a moisture content of 53.9%, which was attributed to the steam reforming and steam gasification accompanying the initial biophysical dried sludge pyrolysis. PMID:27118735

  12. Hydrogen-rich gas production via fast pyrolysis of biophysical dried sludge: Effect of particle size and moisture content on product yields and syngas composition.

    PubMed

    Han, Rong; Liu, Jinwen; Zhao, Chenxi; Li, Yuliang; Chen, Aixia

    2016-06-01

    After biophysical drying, a novel biophysical dried sludge particle was obtained. This work aims to investigate the function and effects of particle sizes and moisture contents on the fast pyrolysis of biophysical dried sludge particles. The results showed that large particles (>4 mm) favoured the oil generation with a maximum value of 19.0%, and small particles (<0.27 mm) favoured the char yield with a maximum value of 60.6%. Medium particle fractions (between 0.27 mm and 4 mm) benefited syngas production and induced higher H2 and CO emission, owing to the well-developed microstructure, enrichment of cellulose, and enhanced catalytic effects during the charring process. The introduction of proper moisture content (53.9% to 62.6%) to biophysical dried sludge was found to dramatically enhance syngas yield, hydrogen production, and carbon conversion efficiency. H2 molar concentration reached a maximum of 46.02% at a moisture content of 53.9%, which was attributed to the steam reforming and steam gasification accompanying the initial biophysical dried sludge pyrolysis.

  13. Pyrolysis of Uinta Basin Oil Sands in fluidized bed and rotary kiln reactors

    SciTech Connect

    Nagpal, S.; Fletcher, J.V.; Hanson, F.V.

    1995-12-31

    A pilot-scale fluidized bed reactor (FBR) was used to pyrolyze the mined and crushed ore from the PR Spring oil sands deposit which is located in the Uinta Basin of Utah. Liquid yields of approximately 80 wt% of the bitumen fed to the reactor were obtained. This compares to 55-70 wt% obtained from smaller laboratory scale fluidized bed reactors and a pilot-scale rotary kiln. The product yields and distributions exhibited no discernable trends with reactor temperature or solids retention time. The liquid products obtained from the pilot-scale fluidized bed reactor were upgraded compared to the bitumen in terms of volatility, viscosity, molecular weight, and metals (Ni and V) content. The nitrogen and sulphur contents of the total liquid products were also reduced relative to the bitumen. A comparison of oil sands pyrolysis yields from a pilot scale FBR and a rotary kiln of the same diameter (15.2 cm) was made. Under similar pyrolysis conditions, the rotary kiln produced a slightly more upgraded product but at lower total liquid yields. Kinetic modeling of the various reactors indicates that the pilot-scale FBR product distributions may be explained using a simplified two-reaction scheme. It is proposed that secondary cracking is suppressed in the large diameter FBR due to elimination of slugging and the superior quality of fluidization in the reactor. More experimental studies with the rotary kiln and an economic evaluation will be required before concluding which reactor is preferred for the thermal recovery process.

  14. Pyrolysis of Woody Residue Feedstocks: Upgrading of Bio-Oils from Mountain-Pine-Beetle-Killed Trees and Hog Fuel

    SciTech Connect

    Zacher, Alan H.; Elliott, Douglas C.; Olarte, Mariefel V.; Santosa, Daniel M.; Preto, Fernando; Iisa, Kristiina

    2014-12-01

    Liquid transportation fuel blend-stocks were produced by pyrolysis and catalytic upgrading of woody residue biomass. Mountain pine beetle killed wood and hog fuel from a saw mill were pyrolyzed in a 1 kg/h fluidized bed reactor and subsequently upgraded to hydrocarbons in a continuous fixed bed hydrotreater. Upgrading was performed by catalytic hydrotreatment in a two-stage bed at 170°C and 405°C with a per bed LHSV between 0.17 and 0.19. The overall yields from biomass to upgraded fuel were similar for both feeds: 24-25% despite the differences in bio-oil (intermediate) mass yield. Pyrolysis bio-oil mass yield was 61% from MPBK wood, and subsequent upgrading of the bio-oil gave an average mass yield of 41% to liquid fuel blend stocks. Hydrogen was consumed at an average of 0.042g/g of bio-oil fed, with final oxygen content in the product fuel ranging from 0.31% to 1.58% over the course of the test. Comparatively for hog fuel, pyrolysis bio-oil mass yield was lower at 54% due to inorganics in the biomass, but subsequent upgrading of that bio-oil had an average mass yield of 45% to liquid fuel, resulting in a similar final mass yield to fuel compared to the cleaner MPBK wood. Hydrogen consumption for the hog fuel upgrading averaged 0.041 g/g of bio-oil fed, and the final oxygen content of the product fuel ranged from 0.09% to 2.4% over the run. While it was confirmed that inorganic laded biomass yields less bio-oil, this work demonstrated that the resultant bio-oil can be upgraded to hydrocarbons at a higher yield than bio-oil from clean wood. Thus the final hydrocarbon yield from clean or residue biomass pyrolysis/upgrading was similar.

  15. Calorimetry for Fast Authentication of Edible Oils

    NASA Astrophysics Data System (ADS)

    Angiuli, Marco; Bussolino, Gian Carlo; Ferrari, Carlo; Matteoli, Enrico; Righetti, Maria Cristina; Salvetti, Giuseppe; Tombari, Elpidio

    2009-06-01

    There are little data in the literature on how to authenticate edible oils through calorimetry techniques. However, oil melting curves can be used to represent correlations between calorimetric results and oil quality. A calorimetric method has been developed for studying the solid-liquid phase transitions of olive oil and seed oils, in which melting peak behavior is correlated to the type, quality, and composition of the oil. Good reproducible thermograms were obtained by defining precise protocols for use in testing, which take into account the specific characteristics of a particular oil. This approach does not replace classical analytical methods; nevertheless, it is believed that calorimetric tests could be a useful preliminary stage for quality testing. The calorimetric technique allows the detection of the adulterant (seed oils or refined olive oil), oil origin, and possible photo-oxidation degradation processes, before more complex and expensive procedures and analyses are applied.

  16. Conceptual process design and techno-economic assessment of ex situ catalytic fast pyrolysis of biomass: A fixed bed reactor implementation scenario for future feasibility

    DOE PAGES

    Dutta, Abhijit; Schaidle, Joshua A.; Humbird, David; Baddour, Frederick G.; Sahir, Asad

    2015-10-06

    Ex situ catalytic fast pyrolysis of biomass is a promising route for the production of fungible liquid biofuels. There is significant ongoing research on the design and development of catalysts for this process. However, there are a limited number of studies investigating process configurations and their effects on biorefinery economics. Herein we present a conceptual process design with techno-economic assessment; it includes the production of upgraded bio-oil via fixed bed ex situ catalytic fast pyrolysis followed by final hydroprocessing to hydrocarbon fuel blendstocks. This study builds upon previous work using fluidized bed systems, as detailed in a recent design reportmore » led by the National Renewable Energy Laboratory (NREL/TP-5100-62455); overall yields are assumed to be similar, and are based on enabling future feasibility. Assuming similar yields provides a basis for easy comparison and for studying the impacts of areas of focus in this study, namely, fixed bed reactor configurations and their catalyst development requirements, and the impacts of an inline hot gas filter. A comparison with the fluidized bed system shows that there is potential for higher capital costs and lower catalyst costs in the fixed bed system, leading to comparable overall costs. The key catalyst requirement is to enable the effective transformation of highly oxygenated biomass into hydrocarbons products with properties suitable for blending into current fuels. Potential catalyst materials are discussed, along with their suitability for deoxygenation, hydrogenation and C–C coupling chemistry. This chemistry is necessary during pyrolysis vapor upgrading for improved bio-oil quality, which enables efficient downstream hydroprocessing; C–C coupling helps increase the proportion of diesel/jet fuel range product. One potential benefit of fixed bed upgrading over fluidized bed upgrading is catalyst flexibility, providing greater control over chemistry and product composition

  17. Conceptual process design and techno-economic assessment of ex situ catalytic fast pyrolysis of biomass: A fixed bed reactor implementation scenario for future feasibility

    SciTech Connect

    Dutta, Abhijit; Schaidle, Joshua A.; Humbird, David; Baddour, Frederick G.; Sahir, Asad

    2015-10-06

    Ex situ catalytic fast pyrolysis of biomass is a promising route for the production of fungible liquid biofuels. There is significant ongoing research on the design and development of catalysts for this process. However, there are a limited number of studies investigating process configurations and their effects on biorefinery economics. Herein we present a conceptual process design with techno-economic assessment; it includes the production of upgraded bio-oil via fixed bed ex situ catalytic fast pyrolysis followed by final hydroprocessing to hydrocarbon fuel blendstocks. This study builds upon previous work using fluidized bed systems, as detailed in a recent design report led by the National Renewable Energy Laboratory (NREL/TP-5100-62455); overall yields are assumed to be similar, and are based on enabling future feasibility. Assuming similar yields provides a basis for easy comparison and for studying the impacts of areas of focus in this study, namely, fixed bed reactor configurations and their catalyst development requirements, and the impacts of an inline hot gas filter. A comparison with the fluidized bed system shows that there is potential for higher capital costs and lower catalyst costs in the fixed bed system, leading to comparable overall costs. The key catalyst requirement is to enable the effective transformation of highly oxygenated biomass into hydrocarbons products with properties suitable for blending into current fuels. Potential catalyst materials are discussed, along with their suitability for deoxygenation, hydrogenation and C–C coupling chemistry. This chemistry is necessary during pyrolysis vapor upgrading for improved bio-oil quality, which enables efficient downstream hydroprocessing; C–C coupling helps increase the proportion of diesel/jet fuel range product. One potential benefit of fixed bed upgrading over fluidized bed upgrading is catalyst flexibility, providing greater control over chemistry and product composition. Since this

  18. Production of green aromatics and olefins by catalytic fast pyrolysis of wood sawdust

    SciTech Connect

    Carlson, Torren R.; Cheng, Yu-Ting; Jae, Jungho; Huber, George W.

    2011-10-26

    Catalytic fast pyrolysis of pine wood sawdust and furan (a model biomass compound) with ZSM-5 based catalysts was studied with three different reactors: a bench scale bubbling fluidized bed reactor, a fixed bed reactor and a semi-batch pyroprobe reactor. The highest aromatic yield from sawdust of 14% carbon in the fluidized bed reactor was obtained at low biomass weight hourly space velocities (less than 0.5 h-1) and high temperature (600 °C). Olefins (primarily ethylene and propylene) were also produced with a carbon yield of 5.4% carbon. The biomass weight hourly space velocity and the reactor temperature can be used to control both aromatic yield and selectivity. At low biomass WHSV the more valuable monocyclic aromatics are produced and the formation of less valuable polycyclic aromatics is inhibited. Lowering the reaction temperature also results in more valuable monocyclic aromatics. The olefins produced during the reaction can be recycled to the reactor to produce additional aromatics. Propylene is more reactive than ethylene. Co-feeding propylene to the reactor results in a higher aromatic yield in both continuous reactors and higher conversion of the intermediate furan in the fixed bed reactor. When olefins are recycled aromatic yields from wood of 20% carbon can be obtained. After ten reaction–regeneration cycles there were metal impurities deposited on the catalyst, however, the acid sites on the zeolite are not affected. Of the three reactors tested the batch pyroprobe reactor yielded the most aromatics, however, the aromatic product is largely naphthalene. The continuous reactors produce less naphthalene and the sum of aromatics plus olefin products is higher than the pyroprobe reactor.

  19. Gas chromatographic-mass spectrometric study of the oil fractions produced by microwave-assisted pyrolysis of different sewage sludges.

    PubMed

    Domínguez, A; Menéndez, J A; Inguanzo, M; Bernad, P L; Pis, J J

    2003-09-19

    The pyrolysis of sewage sludge was studied in a microwave oven using graphite as microwave absorber. The pyrolysis temperature ranged from 800 to 1000 degrees C depending on the type of sewage sludge. A conventional electrical furnace was also employed in order to compare the results obtained with both methods. The pyrolysis oils were trapped in a series of condensers and their characteristics such as elemental analysis and calorific value were determined and compared with those of the initial sludge. The oil composition was analyzed by GC-MS. The oils from the microwave oven had n-alkanes and 1-alkenes, aromatic compounds, ranging from benzene derivatives to polycyclic aromatic hydrocarbons (PAHs), nitrogenated compounds, long chain aliphatic carboxylic acids, ketones and esters and also monoterpenes and steroids. The oil from the electric oven was composed basically of PAHs such as naphthalene, acenapthylene, phenanthrene, fluoranthene, benzo[a]anthracene, benzofluoranthenes, benzopyrenes, indenepyrene, benzo[ghi]perylene, and anthanthrene. In contrast, these compounds were not produced in the case of microwave-assisted pyrolysis.

  20. Comparing biofuels obtained from pyrolysis, of soybean oil or soapstock, with traditional soybean biodiesel: Density, kinematic viscosity, and surface tensions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A product with diesel like properties was synthesized by a pyrolysis method, from either edible soybean oil, or an inedible soybean soapstock starting material (PD and SD, respectively). Some physical properties of the material were studied, neat, and in blends; with both high sulfur and low sulfur...

  1. [Effects of macrophytes pyrolysis bio-oil on Skeletonema costatum antioxidant enzyme activities].

    PubMed

    Yao, Yuan; Li, Feng-Min; Li, Yuan-Yuan; Shan, Shi; Li, Jie; Wang, Zhen-Yu

    2013-02-01

    In order to reveal the preliminary inhibition mechanisms of aquatic plants bio-oils on Skeletonema costatum, effects of Arundo donax L. 300 degees C, Ph. australis Trin. 400 degrees C and Typha orientalis Pres1 400 degrees C bio-oils on the concentration change of malondialdehyde (MDA) and the activity of antioxidant enzymes system (SOD, POD and CAT) were evaluated. The results showed that the higher Ihe Bio-oil concentrations, the higher the MDA contents in Skeletonema costatum was, and when the Bio-oil concentration was 10 mg.L-1 the MDA concentration increased with the reaction time. Superoxide dismutase (SOD) activity also increased with the increase of bio-oil concentration. For Arundo donax L 300 degrees C and Typha orientalis Presl 400 degrees C bio-oil, when the reaction time was longer, the S0D activity of Skeletonema costatum first increased and then decreased, and in both cases the maximum SOD activity was measured at 24 h. reaching 93.6 U (10(7) cells)-1 and 8.23 U (10(7) cells)-1, respectively. For Ph. australis Trin 400 degrees C bio-oil, the SOD activity kept increasing within 72 h. The peroxidase ( POD) activity of Skeletonema costatum also increased with the increase of bio-il concentrations. In the presence of Arundo donax L. 300 degrees C and Ph. australis Trin 400 degrees C bio-oil, the POD activity of Skeletonma, costatum first increased and then decreased, while with Typha orientalis Presl 400 degrees C bio-oil the POD activity increased with fluctuations. For all the three bio-oils, the catalase (CAT) activities increased first and then decreased when the reaction time was prolonged, and the higher the bio-oils concentration, the greater the CAT activity was. Pyrolysis bio-oils enhance the activity of antioxidant enzymes, leading to intracellular oxidative stress in the algae, which seems to be the main inhibitory mechanism for algae PMID:23668127

  2. Dual Layer Monolith ATR of Pyrolysis Oil for Distributed Synthesis Gas Production

    SciTech Connect

    Lawal, Adeniyi

    2012-09-29

    We have successfully demonstrated a novel reactor technology, based on BASF dual layer monolith catalyst, for miniaturizing the autothermal reforming of pyrolysis oil to syngas, the second and most critical of the three steps for thermochemically converting biomass waste to liquid transportation fuel. The technology was applied to aged as well as fresh samples of pyrolysis oil derived from five different biomass feedstocks, namely switch-grass, sawdust, hardwood/softwood, golden rod and maple. Optimization of process conditions in conjunction with innovative reactor system design enabled the minimization of carbon deposit and control of the H2/CO ratio of the product gas. A comprehensive techno-economic analysis of the integrated process using in part, experimental data from the project, indicates (1) net energy recovery of 49% accounting for all losses and external energy input, (2) weight of diesel oil produced as a percent of the biomass to be ~14%, and (3) for a demonstration size biomass to Fischer-Tropsch liquid plant of ~ 2000 daily barrels of diesel, the price of the diesel produced is ~$3.30 per gallon, ex. tax. However, the extension of catalyst life is critical to the realization of the projected economics. Catalyst deactivation was observed and the modes of deactivation, both reversible and irreversible were identified. An effective catalyst regeneration strategy was successfully demonstrated for reversible catalyst deactivation while a catalyst preservation strategy was proposed for preventing irreversible catalyst deactivation. Future work should therefore be focused on extending the catalyst life, and a successful demonstration of an extended (> 500 on-stream hours) catalyst life would affirm the commercial viability of the process.

  3. Microwave-assisted catalytic pyrolysis of switchgrass for improving bio-oil and biochar properties.

    PubMed

    Mohamed, Badr A; Kim, Chang Soo; Ellis, Naoko; Bi, Xiaotao

    2016-02-01

    Solid additives were used as a microwave absorber to improve the low microwave absorption rate of switchgrass going through pyrolysis, and as a catalyst to improve the bio-oil and biochar characteristics. The synergistic effects were manifested in the presence of a mixture of K3PO4 and clinoptilolite or bentonite compared with single catalyst, resulting in increased microwave absorption rate, and improved bio-oil and biochar quality. The sample of microwave heating switchgrass with 10wt.% K3PO4+10wt.% bentonite reached 400°C after 2.8min, compared with 28.8min through conventional heating, producing biochar with increase in BET surface area from 0.33m(2)/g to 76.3m(2)/g compared with conventional heating. Furthermore, water content of the bio-oil reduced from 22.7 to 15.0wt.% compared with biomass mixed with 20wt.% SiC, a chemically-inert microwave absorbing material used to increase microwave heating. Introducing catalysts showed a great potential for accelerating microwave heating and improving bio-oil and biochar qualities.

  4. Microwave-assisted catalytic pyrolysis of switchgrass for improving bio-oil and biochar properties.

    PubMed

    Mohamed, Badr A; Kim, Chang Soo; Ellis, Naoko; Bi, Xiaotao

    2016-02-01

    Solid additives were used as a microwave absorber to improve the low microwave absorption rate of switchgrass going through pyrolysis, and as a catalyst to improve the bio-oil and biochar characteristics. The synergistic effects were manifested in the presence of a mixture of K3PO4 and clinoptilolite or bentonite compared with single catalyst, resulting in increased microwave absorption rate, and improved bio-oil and biochar quality. The sample of microwave heating switchgrass with 10wt.% K3PO4+10wt.% bentonite reached 400°C after 2.8min, compared with 28.8min through conventional heating, producing biochar with increase in BET surface area from 0.33m(2)/g to 76.3m(2)/g compared with conventional heating. Furthermore, water content of the bio-oil reduced from 22.7 to 15.0wt.% compared with biomass mixed with 20wt.% SiC, a chemically-inert microwave absorbing material used to increase microwave heating. Introducing catalysts showed a great potential for accelerating microwave heating and improving bio-oil and biochar qualities. PMID:26642217

  5. Liquid oil and residual characteristics of printed circuit board recycle by pyrolysis.

    PubMed

    Lin, Kuo-Hsiung; Chiang, Hung-Lung

    2014-04-30

    Non-metal fractions of waste printed circuit boards (PCBs) were thermally treated (200-500°C) under nitrogen atmosphere. Carbon, hydrogen, and nitrogen were determined by elemental analyzer, bromine by instrumental neutron activation analysis (INAA), phosphorus by energy dispersive X-ray spectrometer (EDX), and 29 trace elements by inductively coupled plasma atomic emission spectrometer (ICP-AES) and mass spectrometry (ICP-MS) for raw material and pyrolysis residues. Organic compositions of liquid oil were identified by GC (gas chromatography)-MS, trace element composition by ICP system, and 12 water-soluble ions by IC (ionic chromatography). Elemental content of carbon was >450 mg/g, oxygen 300 mg/g, bromine and hydrogen 60 mg/g, nitrogen 30 mg/g, and phosphorus 28 mg/g. Sulfur was trace in PCBs. Copper content was 25-28 mg/g, iron 1.3-1.7 mg/g, tin 0.8-1.0mg/g and magnesium 0.4-1.0mg/g; those were the main metals in the raw materials and pyrolytic residues. In the liquid products, carbon content was 68-73%, hydrogen was 10-14%, nitrogen was 4-5%, and sulfur was less than 0.05% at pyrolysis temperatures from 300 to 500°C. Phenol, 3-bromophenol, 2-methylphenol and 4-propan-2-ylphenol were major species in liquid products, accounting for >50% of analyzed organic species. Bromides, ammonium and phosphate were the main species in water sorption samples for PCB pyrolysis exhaust.

  6. Nannochloropsis algae pyrolysis with ceria-based catalysts for production of high-quality bio-oils.

    PubMed

    Aysu, Tevfik; Sanna, Aimaro

    2015-10-01

    Pyrolysis of Nannochloropsis was carried out in a fixed-bed reactor with newly prepared ceria based catalysts. The effects of pyrolysis parameters such as temperature and catalysts on product yields were investigated. The amount of bio-char, bio-oil and gas products, as well as the compositions of the resulting bio-oils was determined. The results showed that both temperature and catalyst had significant effects on conversion of Nannochloropsis into solid, liquid and gas products. The highest bio-oil yield (23.28 wt%) and deoxygenation effect was obtained in the presence of Ni-Ce/Al2O3 as catalyst at 500°C. Ni-Ce/Al2O3 was able to retain 59% of the alga starting energy in the bio-oil, compared to only 41% in absence of catalyst. Lower content of acids and oxygen in the bio-oil, higher aliphatics (62%), combined with HHV show promise for production of high-quality bio-oil from Nannochloropsis via Ni-Ce/Al2O3 catalytic pyrolysis. PMID:26188553

  7. Nannochloropsis algae pyrolysis with ceria-based catalysts for production of high-quality bio-oils.

    PubMed

    Aysu, Tevfik; Sanna, Aimaro

    2015-10-01

    Pyrolysis of Nannochloropsis was carried out in a fixed-bed reactor with newly prepared ceria based catalysts. The effects of pyrolysis parameters such as temperature and catalysts on product yields were investigated. The amount of bio-char, bio-oil and gas products, as well as the compositions of the resulting bio-oils was determined. The results showed that both temperature and catalyst had significant effects on conversion of Nannochloropsis into solid, liquid and gas products. The highest bio-oil yield (23.28 wt%) and deoxygenation effect was obtained in the presence of Ni-Ce/Al2O3 as catalyst at 500°C. Ni-Ce/Al2O3 was able to retain 59% of the alga starting energy in the bio-oil, compared to only 41% in absence of catalyst. Lower content of acids and oxygen in the bio-oil, higher aliphatics (62%), combined with HHV show promise for production of high-quality bio-oil from Nannochloropsis via Ni-Ce/Al2O3 catalytic pyrolysis.

  8. Review of the Pyrolysis Platform for Producing Bio-oil and Biochar: Technology, Logistics, and Potential Impacts on Greenhouse Gas Emissions, Water Quality, Soil Quality, and Agricultural Productivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pyrolysis is a relatively simple, inexpensive, and robust thermochemical technology for transforming biomass into bio-oil, biochar, and syngas. The robust nature of the pyrolysis technology, which allows considerable flexibility in both the type and quality of the biomass feedstock, combined with a ...

  9. Thermogravimetric investigation of the co-combustion between the pyrolysis oil distillation residue and lignite.

    PubMed

    Li, Hao; Xia, Shuqian; Ma, Peisheng

    2016-10-01

    Co-combustion of lignite with distillation residue derived from rice straw pyrolysis oil was investigated by non-isothermal thermogravimetric analysis (TGA). The addition of distillation residue improved the reactivity and combustion efficiency of lignite, such as increasing the weight loss rate at peak temperature and decreasing the burnout temperature and the total burnout. With increasing distillation residue content in the blended fuels, the synergistic interactions between distillation residue and lignite firstly increased and then decreased during co-combustion stage. Results of XRF, FTIR, (13)C NMR and SEM analysis indicated that chemical structure, mineral components and morphology of samples have great influence on the synergistic interactions. The combustion mechanisms and kinetic parameters were calculated by the Coats Redfern model, suggesting that the lowest apparent activation energy (120.19kJ/mol) for the blended fuels was obtained by blending 60wt.% distillation residue during main co-combustion stage. PMID:27416511

  10. Thermogravimetric investigation of the co-combustion between the pyrolysis oil distillation residue and lignite.

    PubMed

    Li, Hao; Xia, Shuqian; Ma, Peisheng

    2016-10-01

    Co-combustion of lignite with distillation residue derived from rice straw pyrolysis oil was investigated by non-isothermal thermogravimetric analysis (TGA). The addition of distillation residue improved the reactivity and combustion efficiency of lignite, such as increasing the weight loss rate at peak temperature and decreasing the burnout temperature and the total burnout. With increasing distillation residue content in the blended fuels, the synergistic interactions between distillation residue and lignite firstly increased and then decreased during co-combustion stage. Results of XRF, FTIR, (13)C NMR and SEM analysis indicated that chemical structure, mineral components and morphology of samples have great influence on the synergistic interactions. The combustion mechanisms and kinetic parameters were calculated by the Coats Redfern model, suggesting that the lowest apparent activation energy (120.19kJ/mol) for the blended fuels was obtained by blending 60wt.% distillation residue during main co-combustion stage.

  11. Pyrolysis of de-oiled seed cake of Jatropha Curcas and catalytic steam reforming of pyrolytic bio-oil to hydrogen.

    PubMed

    Renny, Andrew; Santhosh, Viswanathan; Somkuwar, Nitin; Gokak, D T; Sharma, Pankaj; Bhargava, Sanjay

    2016-11-01

    The aim of this work was to study the pyrolysis of de-oiled seed cake of Jatropha Curcas and catalytic steam reforming of pyrolytic bio-oil to hydrogen. As per literature, presence of heavy nitrogenous and oxygenated compounds leads to catalyst deactivation. Here, an attempt has been made to tune pyrolytic reactions to optimize the N and O content of the pyrolytic bio-oil. Bio-oil conversion and hydrogen yield decreased as reaction progressed, which attributes to temporary loss of catalytic activity by blockage of catalyst pores by carbon deposition. Further, retention of steam reforming activity after repetitive steam activation suggests long-term catalyst usage.

  12. Pyrolysis of de-oiled seed cake of Jatropha Curcas and catalytic steam reforming of pyrolytic bio-oil to hydrogen.

    PubMed

    Renny, Andrew; Santhosh, Viswanathan; Somkuwar, Nitin; Gokak, D T; Sharma, Pankaj; Bhargava, Sanjay

    2016-11-01

    The aim of this work was to study the pyrolysis of de-oiled seed cake of Jatropha Curcas and catalytic steam reforming of pyrolytic bio-oil to hydrogen. As per literature, presence of heavy nitrogenous and oxygenated compounds leads to catalyst deactivation. Here, an attempt has been made to tune pyrolytic reactions to optimize the N and O content of the pyrolytic bio-oil. Bio-oil conversion and hydrogen yield decreased as reaction progressed, which attributes to temporary loss of catalytic activity by blockage of catalyst pores by carbon deposition. Further, retention of steam reforming activity after repetitive steam activation suggests long-term catalyst usage. PMID:27566523

  13. Pyrolysis bio-oils as additives for vegetable oil based lubricants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Softwood and hardwood lignins, along with hardwood as such, were pyrolyzed to afford bio-oil distillates in which phenols were major products. Extraction with alkali gave a range of lignin-related phenols having molecular weights (MWs) from 110 to 344. Because vegetable oil based lubricants have dra...

  14. Pyrolysis Oil Stabilization: Hot-Gas Filtration; Cooperative Research and Development Final Report, CRADA Number CRD-09-333

    SciTech Connect

    Baldwin, R.

    2012-07-01

    The hypothesis that was tested in this task was that separation of char, with its associated mineral matter from pyrolysis vapors before condensation, will lead to improved oil quality and stability with respect to storage and transportation. The metric used to evaluate stability in this case was a 10-fold reduction in the rate of increase of viscosity as determined by ASTM D445 (the accelerated aging test). The primary unit operation that was investigated for this purpose was hot-gas filtration. A custom-built heated candle filter system was fabricated by the Pall Corporation and furnished to NREL for this test campaign. This system consisted of a candle filter element in a containment vessel surrounded by heating elements on the external surface of the vessel. The filter element and housing were interfaced to NREL?s existing 0.5 MTD pyrolysis Process Development Unit (PDU). For these tests the pyrolysis reactor of the PDU was operated in the entrained-flow mode. The HGF test stand was installed on a slipstream from the PDU so that both hot-gas filtered oil and bio-oil that was not hot-gas filtered could be collected for purposes of comparison. Two filter elements from Pall were tested: (1) porous stainless steel (PSS) sintered metal powder; (2) sintered ceramic powder. An extremely sophisticated bio-oil condensation and collection system was designed and fabricated at NREL and interfaced to the filter unit.

  15. Characteristics of products from fast pyrolysis of fractions of waste square timber and ordinary plywood using a fluidized bed reactor.

    PubMed

    Jung, Su-Hwa; Kim, Seon-Jin; Kim, Joo-Sik

    2012-06-01

    Fractions of waste square timber and waste ordinary plywood were pyrolyzed in a pyrolysis plant equipped with a fluidized bed reactor and a dual char separation system. The maximum bio-oil yield of about 65 wt.% was obtained at reaction temperatures of 450-500 °C for both feed materials. For quantitative analysis of bio-oil, the relative response factor (RRF) of each component was calculated using an effective carbon number (ECN) that was multiplied by the peak area of each component detected by a GC-FID. The predominant compounds in the bio-oils were methyl acetate, acids, hydroxyacetone, furfural, non-aromatic ketones, levoglucosan and phenolic compounds. The WOP-derived bio-oil showed it to have relatively high nitrogen content. Increasing the reaction temperature was shown to have little effect on nitrogen removal. The ash and solid contents of both bio-oils were below 0.1 wt.% due to the excellent performance of the char separation system. PMID:22513256

  16. Speciation and environmental risk assessment of heavy metal in bio-oil from liquefaction/pyrolysis of sewage sludge.

    PubMed

    Yuan, Xingzhong; Leng, Lijian; Huang, Huajun; Chen, Xiaohong; Wang, Hou; Xiao, Zhihua; Zhai, Yunbo; Chen, Hongmei; Zeng, Guangming

    2015-02-01

    Liquefaction bio-oil (LBO) produced with ethanol (or acetone) as the solvent and pyrolysis bio-oil (PBO) produced at 550°C (or 850°C) from sewage sludge (SS) were produced, and were characterized and evaluated in terms of their heavy metal (HM) composition. The total concentration, speciation and leaching characteristic of HMs (Cu, Cr, Pb, Zn, Cd, and Ni) in both LBO and PBO were investigated. The total concentration and exchangeable fraction of Zn and Ni in bio-oils were at surprisingly high levels. Quantitative risk assessment of HM in bio-oils was performed by the method of risk assessment code (RAC), potential ecological risk index (PERI) and geo-accumulation index (GAI). Ni in bio-oil produced by pyrolysis at 850°C (PBO850) and Zn in bio-oil by liquefaction at 360°C with ethanol as solvent (LBO-360E) were evaluated to possess very high risk to the environment according to RAC. Additionally, Cd in PBO850 and LBO-360E were evaluated by PERI to have very high risk and high risk, respectively, while Cd in all bio-oils was assessed moderately contaminated according to GAI.

  17. Bio-oil production via catalytic pyrolysis of Anchusa azurea: Effects of operating conditions on product yields and chromatographic characterization.

    PubMed

    Aysu, Tevfik; Durak, Halil; Güner, Serkan; Bengü, Aydın Şükrü; Esim, Nevzat

    2016-04-01

    Pyrolysis of Anchusa azurea, a lignocellulosic gramineous plant, was carried out in a tubular, fixed-bed reactor in the presence of four catalysts (Ca(OH)2, Na2CO3, ZnCl2, Al2O3). The influences of pyrolysis parameters such as catalyst and temperature on the yields of products were studied. It was found that higher temperature resulted in lower liquid (bio-oil) and solid (bio-char) yields and higher gas yields. Catalysts effected the yields of products differently and the composition of bio-oils. Liquid yields were increased in the presence of Na2CO3, ZnCl2 and Al2O3 and decreased with Ca(OH)2. The highest bio-oil yield (34.05%) by weight including aqueous phase was produced with Na2CO3 catalyst at 450°C. The yields of products (bio-char, bio-oil and gas) and the compositions of the resulting bio-oils were determined by GC-MS, FT-IR and elemental analysis. GC-MS identified 124 and 164 different compounds in the bio-oils obtained at 350 and 550°C respectively.

  18. Distribution behavior and risk assessment of metals in bio-oils produced by liquefaction/pyrolysis of sewage sludge.

    PubMed

    Leng, Lijian; Yuan, Xingzhong; Huang, Huajun; Peng, Xin; Chen, Hongmei; Wang, Hou; Wang, Lele; Chen, Xiaohong; Zeng, Guangming

    2015-12-01

    The distribution behaviors of metals in bio-oils derived from sewage sludge (SS) by liquefaction with different solvents (ethanol, methanol, or acetone) and by pyrolysis at different temperatures (550-850 °C) were investigated. The concentrations of crust metals (K, Na, Ca, Mg, Fe, and Al) in bio-oils were much higher than those of the anthropogenic metals (Cu, Zn, Pb, Cd, Cr, Ni, V, Mn, Ba, Co, Ti, Sn, As, and Hg), but the anthropogenic metals were more inclined to distribute in bio-oil phase compared with crust metals. The anthropogenic metals in bio-oils can be divided in three groups in terms of the distribution similarities according to Cluster analysis: (A) Cu, Co, Ni, V, and Sn; (B) Cr, Ti, Mn, and Ba; (C) Pb, Cd, As, Hg, and Zn. Cu, Cr, Hg, Cd, V, Co, and Sn distributed in the liquefaction/pyrolysis bio-oils accounted for as high as 5-20% of the metals in SS and were evaluated "moderate enrichment" by the enrichment factors method. According to the potential ecological risk index (PERI) method, Hg presented very high risk, Cu presented moderate risk, and Cd presented low to moderate risk; and the overall risk levels of these bio-oils were very high risk (except P550, presented considerable risk).

  19. Molecular characterization and comparison of shale oils generated by different pyrolysis methods using FT-ICR mass spectrometry

    USGS Publications Warehouse

    Jin, J.M.; Kim, S.; Birdwell, J.E.

    2011-01-01

    Fourier transform ion cyclotron resonance mass spectrometry (FT ICR-MS) was applied in the analysis of shale oils generated using two different pyrolysis systems under laboratory conditions meant to simulate surface and in situ oil shale retorting. Significant variations were observed in the shale oils, particularly the degree of conjugation of the constituent molecules. Comparison of FT ICR-MS results to standard oil characterization methods (API gravity, SARA fractionation, gas chromatography-flame ionization detection) indicated correspondence between the average Double Bond Equivalence (DBE) and asphaltene content. The results show that, based on the average DBE values and DBE distributions of the shale oils examined, highly conjugated species are enriched in samples produced under low pressure, high temperature conditions and in the presence of water.

  20. Pyrolysis of Mesua ferrea and Pongamia glabra seed cover: characterization of bio-oil and its sub-fractions.

    PubMed

    Bordoloi, Neonjyoti; Narzari, Rumi; Chutia, Rahul Singh; Bhaskar, Thallada; Kataki, Rupam

    2015-02-01

    In the present study, pyrolysis of Mesua ferrea seed cover (MFSC) and Pongamia glabra seed cover (PGSC) was performed to investigate the characteristics of bio-oil and its sub fractions. In a fixed bed reactor, the effect of temperature (range of 350-650 °C) on product yield and quality of solid product were monitored. The maximum bio-oil yield of 28.5 wt.% and 29.6 wt.% for PGSC and MFSC respectively was obtained at 550 °C at heating rate of 40 °C/min. The chemical composition of bio-oil and its sub fractions were investigated using FTIR and (1)H NMR. GC-MS was performed for both PGSC and MFSC bio-oils and their corresponding n-hexane fractions. The results showed that bio-oil from the feedstocks and its sub-fractions might be a potential source of renewable fuel and value added chemicals.

  1. Coupling DAEM and CFD for simulating biomass fast pyrolysis in fluidized beds

    SciTech Connect

    Xiong, Qingang; Zhang, Jingchao; Wiggins, Gavin; Daw, C. Stuart; Xu, Fei

    2015-12-03

    We report results from computational simulations of an experimental, lab-scale bubbling bed biomass pyrolysis reactor that include a distributed activation energy model (DAEM) for the kinetics. In this study, we utilized multiphase computational fluid dynamics (CFD) to account for the turbulent hydrodynamics, and this was combined with the DAEM kinetics in a multi-component, multi-step reaction network. Our results indicate that it is possible to numerically integrate the coupled CFD–DAEM system without significantly increasing computational overhead. It is also clear, however, that reactor operating conditions, reaction kinetics, and multiphase flow dynamics all have major impacts on the pyrolysis products exiting the reactor. We find that, with the same pre-exponential factors and mean activation energies, inclusion of distributed activation energies in the kinetics can shift the predicted average value of the exit vapor-phase tar flux and its statistical distribution, compared to single-valued activation-energy kinetics. Perhaps the most interesting observed trend is that increasing the diversity of the DAEM activation energies appears to increase the mean tar yield, all else being equal. As a result, these findings imply that accurate resolution of the reaction activation energy distributions will be important for optimizing biomass pyrolysis processes.

  2. Coupling DAEM and CFD for simulating biomass fast pyrolysis in fluidized beds

    DOE PAGES

    Xiong, Qingang; Zhang, Jingchao; Wiggins, Gavin; Daw, C. Stuart; Xu, Fei

    2015-12-03

    We report results from computational simulations of an experimental, lab-scale bubbling bed biomass pyrolysis reactor that include a distributed activation energy model (DAEM) for the kinetics. In this study, we utilized multiphase computational fluid dynamics (CFD) to account for the turbulent hydrodynamics, and this was combined with the DAEM kinetics in a multi-component, multi-step reaction network. Our results indicate that it is possible to numerically integrate the coupled CFD–DAEM system without significantly increasing computational overhead. It is also clear, however, that reactor operating conditions, reaction kinetics, and multiphase flow dynamics all have major impacts on the pyrolysis products exiting themore » reactor. We find that, with the same pre-exponential factors and mean activation energies, inclusion of distributed activation energies in the kinetics can shift the predicted average value of the exit vapor-phase tar flux and its statistical distribution, compared to single-valued activation-energy kinetics. Perhaps the most interesting observed trend is that increasing the diversity of the DAEM activation energies appears to increase the mean tar yield, all else being equal. As a result, these findings imply that accurate resolution of the reaction activation energy distributions will be important for optimizing biomass pyrolysis processes.« less

  3. Modeling the impact of bubbling bed hydrodynamics on tar yield and its fluctuations during biomass fast pyrolysis

    DOE PAGES

    Xiong, Qingang; Ramirez, Emilio; Pannala, Sreekanth; Daw, C. Stuart; Xu, Fei

    2015-10-09

    The impact of bubbling bed hydrodynamics on temporal variations in the exit tar yield for biomass fast pyrolysis was investigated using computational simulations of an experimental laboratory-scale reactor. A multi-fluid computational fluid dynamics model was employed to simulate the differential conservation equations in the reactor, and this was combined with a multi-component, multi-step pyrolysis kinetics scheme for biomass to account for chemical reactions. The predicted mean tar yields at the reactor exit appear to match corresponding experimental observations. Parametric studies predicted that increasing the fluidization velocity should improve the mean tar yield but increase its temporal variations. Increases in themore » mean tar yield coincide with reducing the diameter of sand particles or increasing the initial sand bed height. However, trends in tar yield variability are more complex than the trends in mean yield. The standard deviation in tar yield reaches a maximum with changes in sand particle size. As a result, the standard deviation in tar yield increases with the increases in initial bed height in freely bubbling state, while reaches a maximum in slugging state.« less

  4. Modeling the impact of bubbling bed hydrodynamics on tar yield and its fluctuations during biomass fast pyrolysis

    SciTech Connect

    Xiong, Qingang; Ramirez, Emilio; Pannala, Sreekanth; Daw, C. Stuart; Xu, Fei

    2015-10-09

    The impact of bubbling bed hydrodynamics on temporal variations in the exit tar yield for biomass fast pyrolysis was investigated using computational simulations of an experimental laboratory-scale reactor. A multi-fluid computational fluid dynamics model was employed to simulate the differential conservation equations in the reactor, and this was combined with a multi-component, multi-step pyrolysis kinetics scheme for biomass to account for chemical reactions. The predicted mean tar yields at the reactor exit appear to match corresponding experimental observations. Parametric studies predicted that increasing the fluidization velocity should improve the mean tar yield but increase its temporal variations. Increases in the mean tar yield coincide with reducing the diameter of sand particles or increasing the initial sand bed height. However, trends in tar yield variability are more complex than the trends in mean yield. The standard deviation in tar yield reaches a maximum with changes in sand particle size. As a result, the standard deviation in tar yield increases with the increases in initial bed height in freely bubbling state, while reaches a maximum in slugging state.

  5. Effect of pH on surface characteristics of switchgrass-derived biochars produced by fast pyrolysis.

    PubMed

    Kim, Pyoungchung; Johnson, Amy M; Essington, Michael E; Radosevich, Mark; Kwon, Woo-Tech; Lee, Seung-Hwan; Rials, Timothy G; Labbé, Nicole

    2013-03-01

    Surface properties of switchgrass-derived biochars produced at fast pyrolysis temperatures of 450, 600 and 800 °C were characterized at different solution pHs in order to determine the structural and chemical changes of artificially-weathered biochars when incorporated into soil. As biochars were acidified from pH 7 to 3, crystalline minerals dissolved slowly releasing nutrients; however, residual minerals were still detected in biochars produced at higher pyrolysis temperatures after pH treatment. Moreover, the amount of exchangeable bases and other inorganic compounds released from the biochars increased when pH decreased. As minerals dissolved from the biochars, total surface area and pore volume were found to increase. Surface functional groups and water vapor adsorption capacity at 0.8 P/Po also increased, whereas the potential CEC of biochars decreased due to the replacement of exchangeable sites by hydrogen ion. Therefore, during the aging process, it is predicted that soil-incorporated biochars will slowly release nutrients with changes in surface functionality and porosity, which are expected to enhance water holding capacity of soil and provide a beneficial habitat for microbial colonization.

  6. Catalytic Fast Pyrolysis of Lignin over High-Surface-Area Mesoporous Aluminosilicates: Effect of Porosity and Acidity.

    PubMed

    Custodis, Victoria B F; Karakoulia, Stamatia A; Triantafyllidis, Kostas S; van Bokhoven, Jeroen A

    2016-05-23

    Catalytic fast pyrolysis (CFP) of lignin with amorphous mesoporous aluminosilicates catalysts yields a high fraction of aromatics and a relatively low amount of char/coke. The relationship between the acidity and porosity of Al-MCM-41, Al-SBA-15, and Al-MSU-J with product selectivity during lignin CFP is determined. The acid sites (mild Brønsted and stronger Lewis) are able to catalyze pyrolysis intermediates towards fewer oxygenated phenols and aromatic hydrocarbons. A generalized correlation of the product selectivity and yield with the aluminum content and acidity of the mesoporous aluminosilicates is hard to establish. Zeolitic strong acid sites are not required to achieve high conversion and selectivity to aromatic hydrocarbon because nanosized MCM-41 produces a high liquid yield and selectivity. The two most essential parameters are diffusion, which is influenced by pore and grain size, and the active site, which may be mildly acidic, but is dominated by Lewis acid sites. Nanosized grains and mild acidity are essential ingredients for a good lignin CFP catalyst. PMID:27079742

  7. Inactivation of E. coli O157:H7 in cultivable soil by fast and slow pyrolysis-generated biochar.

    PubMed

    Gurtler, Joshua B; Boateng, Akwasi A; Han, Yanxue Helen; Douds, David D

    2014-03-01

    An exploratory study was performed to determine the influence of fast pyrolysis (FP) and slow pyrolysis (SP) biochars on enterohemorrhagic Escherichia coli O157:H7 (EHEC) in soil. Soil + EHEC (inoculated at 7 log colony-forming units [CFU]/g of soil) + 1 of 12 types of biochar (10% total weight:weight in soil) was stored at 22°C and sampled for 8 weeks. FP switchgrass and FP horse litter biochars inactivated 2.8 and 2.1 log CFU/g more EHEC than no-biochar soils by day 14. EHEC was undetectable by surface plating at weeks 4 and 5 in standard FP switchgrass, FP oak, and FP switchgrass pellet biochars. Conversely, EHEC populations in no-biochar control samples remained as high as 5.8 and 4.0 log CFU/g at weeks 4 and 5, respectively. Additionally, three more SP hardwood pellet biochars (generated at 500°C for 1 h, or 2 h, or generated at 700°C for 30 min) inactivated greater numbers of EHEC than did the no-biochar control samples during weeks 4 and 5. These results suggest that biochar can inactivate E. coli O157:H7 in cultivable soil, which might mitigate risks associated with EHEC contamination on fresh produce.

  8. Catalytic Fast Pyrolysis of Lignin over High-Surface-Area Mesoporous Aluminosilicates: Effect of Porosity and Acidity.

    PubMed

    Custodis, Victoria B F; Karakoulia, Stamatia A; Triantafyllidis, Kostas S; van Bokhoven, Jeroen A

    2016-05-23

    Catalytic fast pyrolysis (CFP) of lignin with amorphous mesoporous aluminosilicates catalysts yields a high fraction of aromatics and a relatively low amount of char/coke. The relationship between the acidity and porosity of Al-MCM-41, Al-SBA-15, and Al-MSU-J with product selectivity during lignin CFP is determined. The acid sites (mild Brønsted and stronger Lewis) are able to catalyze pyrolysis intermediates towards fewer oxygenated phenols and aromatic hydrocarbons. A generalized correlation of the product selectivity and yield with the aluminum content and acidity of the mesoporous aluminosilicates is hard to establish. Zeolitic strong acid sites are not required to achieve high conversion and selectivity to aromatic hydrocarbon because nanosized MCM-41 produces a high liquid yield and selectivity. The two most essential parameters are diffusion, which is influenced by pore and grain size, and the active site, which may be mildly acidic, but is dominated by Lewis acid sites. Nanosized grains and mild acidity are essential ingredients for a good lignin CFP catalyst.

  9. Optimizing anti-coking abilities of zeolites by ethylene diamine tetraacetie acid modification on catalytic fast pyrolysis of corn stalk

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Zhong, Zhaoping; Song, Zuwei; Ding, Kuan; Chen, Paul; Ruan, Roger

    2015-12-01

    In order to minimize coke yield during biomass catalytic fast pyrolysis (CFP) process, ethylene diamine tetraacetie acid (EDTA) chemical modification method is carried out to selectively remove the external framework aluminum of HZSM-5 catalyst. X-ray diffraction (XRD), nitrogen (N2)-adsorption and ammonia-temperature programmed desorption (NH3-TPD) techniques are employed to investigate the porosity and acidity characteristics of original and modified HZSM-5 samples. Py-GC/MS and thermo-gravimetric analyzer (TGA) experiments are further conducted to explore the catalytic effect of modified HZSM-5 samples on biomass CFP and to verify the positive effect on coke reduction. Results show that EDTA treatment does not damage the crystal structure of HZSM-5 zeolites, but leads to a slight increase of pore volume and pore size. Meanwhile, the elimination of the strong acid peak indicates the dealumination of outer surface of HZSM-5 zeolites. Treatment time of 2 h (labeled EDTA-2H) is optimal for acid removal and hydrocarbon formation. Among all modified catalysts, EDTA-2H performs the best for deacidification and can obviously increase the yields of positive chemical compositions in pyrolysis products. Besides, EDTA modification can improve the anti-coking properties of HZSM-5 zeolites, and EDTA-2H gives rise to the lowest coke yield.

  10. Optimization and characterization of bio-oil produced by microwave assisted pyrolysis of oil palm shell waste biomass with microwave absorber.

    PubMed

    Mushtaq, Faisal; Abdullah, Tuan Amran Tuan; Mat, Ramli; Ani, Farid Nasir

    2015-08-01

    In this study, solid oil palm shell (OPS) waste biomass was subjected to microwave pyrolysis conditions with uniformly distributed coconut activated carbon (CAC) microwave absorber. The effects of CAC loading (wt%), microwave power (W) and N2 flow rate (LPM) were investigated on heating profile, bio-oil yield and its composition. Response surface methodology based on central composite design was used to study the significance of process parameters on bio-oil yield. The coefficient of determination (R(2)) for the bio-oil yield is 0.89017 indicating 89.017% of data variability is accounted to the model. The largest effect on bio-oil yield is from linear and quadratic terms of N2 flow rate. The phenol content in bio-oil is 32.24-58.09% GC-MS area. The bio-oil also contain 1,1-dimethyl hydrazine of 10.54-21.20% GC-MS area. The presence of phenol and 1,1-dimethyl hydrazine implies that the microwave pyrolysis of OPS with carbon absorber has the potential to produce valuable fuel products.

  11. Optimization and characterization of bio-oil produced by microwave assisted pyrolysis of oil palm shell waste biomass with microwave absorber.

    PubMed

    Mushtaq, Faisal; Abdullah, Tuan Amran Tuan; Mat, Ramli; Ani, Farid Nasir

    2015-08-01

    In this study, solid oil palm shell (OPS) waste biomass was subjected to microwave pyrolysis conditions with uniformly distributed coconut activated carbon (CAC) microwave absorber. The effects of CAC loading (wt%), microwave power (W) and N2 flow rate (LPM) were investigated on heating profile, bio-oil yield and its composition. Response surface methodology based on central composite design was used to study the significance of process parameters on bio-oil yield. The coefficient of determination (R(2)) for the bio-oil yield is 0.89017 indicating 89.017% of data variability is accounted to the model. The largest effect on bio-oil yield is from linear and quadratic terms of N2 flow rate. The phenol content in bio-oil is 32.24-58.09% GC-MS area. The bio-oil also contain 1,1-dimethyl hydrazine of 10.54-21.20% GC-MS area. The presence of phenol and 1,1-dimethyl hydrazine implies that the microwave pyrolysis of OPS with carbon absorber has the potential to produce valuable fuel products. PMID:25794811

  12. Bio-oil deoxygenation by catalytic pyrolysis: new catalysts for the conversion of biomass into densified and deoxygenated bio-oil.

    PubMed

    Sanna, Aimaro; Andrésen, John M

    2012-10-01

    This work proposes an innovative catalytic pyrolysis process that converts bio-refinery residues, such as spent grains, into intermediate bio-oil with improved properties compared to traditional bio-oils, which allows the use of existing crude-oil refinery settings for bio-oil upgrading into fuels. The integration of bio-oil into a crude-oil refinery would decrease the economic disadvantage of biomass compared to fossil fuels. The catalytic pyrolysis was able to produce bio-oil with a lower O and N content and high levels of aliphatics and H by using activated serpentine and olivine at 430-460 °C. The activated materials seem to be beneficial to the bio-oil energy content by increasing it from less than 20 MJ kg(-1) in the original biomass to 26 MJ kg(-1). Approximately 70-74 % of the starting energy remains in the bio-oil using activated olivine (ACOL) and activated serpentine (ACSE) at 430 °C, whereas only 52 % is retained using alumina (ALU) at the same temperature. There was a strong reduction of the O content in the bio-oils, and the deoxygenation power decreased in the following order: ACOL>ACSE>ALU. In particular, ACOL at 430-460 °C was able to reduce the O content of the bio-oil by 40 %. The oxygenated bio-oil macromolecules interact in the catalyst's active sites with the naturally present metallic species and undergo decarboxylation with the formation of C(5)-C(6) O-depleted species.

  13. Bio-oil deoxygenation by catalytic pyrolysis: new catalysts for the conversion of biomass into densified and deoxygenated bio-oil.

    PubMed

    Sanna, Aimaro; Andrésen, John M

    2012-10-01

    This work proposes an innovative catalytic pyrolysis process that converts bio-refinery residues, such as spent grains, into intermediate bio-oil with improved properties compared to traditional bio-oils, which allows the use of existing crude-oil refinery settings for bio-oil upgrading into fuels. The integration of bio-oil into a crude-oil refinery would decrease the economic disadvantage of biomass compared to fossil fuels. The catalytic pyrolysis was able to produce bio-oil with a lower O and N content and high levels of aliphatics and H by using activated serpentine and olivine at 430-460 °C. The activated materials seem to be beneficial to the bio-oil energy content by increasing it from less than 20 MJ kg(-1) in the original biomass to 26 MJ kg(-1). Approximately 70-74 % of the starting energy remains in the bio-oil using activated olivine (ACOL) and activated serpentine (ACSE) at 430 °C, whereas only 52 % is retained using alumina (ALU) at the same temperature. There was a strong reduction of the O content in the bio-oils, and the deoxygenation power decreased in the following order: ACOL>ACSE>ALU. In particular, ACOL at 430-460 °C was able to reduce the O content of the bio-oil by 40 %. The oxygenated bio-oil macromolecules interact in the catalyst's active sites with the naturally present metallic species and undergo decarboxylation with the formation of C(5)-C(6) O-depleted species. PMID:22899352

  14. Application of mineral bed materials during fast pyrolysis of rice husk to improve water-soluble organics production.

    PubMed

    Li, R; Zhong, Z P; Jin, B S; Zheng, A J

    2012-09-01

    Fast pyrolysis of rice husk was performed in a spout-fluid bed to produce water-soluble organics. The effects of mineral bed materials (red brick, calcite, limestone, and dolomite) on yield and quality of organics were evaluated with the help of principal component analysis (PCA). Compared to quartz sand, red brick, limestone, and dolomite increased the yield of the water-soluble organics by 6-55% and the heating value by 16-19%. The relative content of acetic acid was reduced by 23-43% with calcite, limestone and dolomite when compared with quartz sand. The results from PCA showed all minerals enhanced the ring-opening reactions of cellulose into furans and carbonyl compounds rather than into monomeric sugars. Moreover, calcite, limestone, and dolomite displayed the ability to catalyze the degradation of heavy compounds and the demethoxylation reaction of guaiacols into phenols. Minerals, especially limestone and dolomite, were beneficial to the production of water-soluble organics.

  15. Corn stalks char from fast pyrolysis as precursor material for preparation of activated carbon in fluidized bed reactor.

    PubMed

    Wang, Zhiqi; Wu, Jingli; He, Tao; Wu, Jinhu

    2014-09-01

    Corn stalks char from fast pyrolysis was activated by physical and chemical activation process in a fluidized bed reactor. The structure and morphology of the carbons were characterized by N2 adsorption and SEM. Effects of activation time and activation agents on the structure of activation carbon were investigated. The physically activated carbons with CO2 have BET specific surface area up to 880 m(2)/g, and exhibit microporous structure. The chemically activated carbons with H3PO4 have BET specific surface area up to 600 m(2)/g, and exhibit mesoporous structure. The surface morphology shows that physically activated carbons exhibit fibrous like structure in nature with long ridges, resembling parallel lines. Whereas chemically activated carbons have cross-interconnected smooth open pores without the fibrous like structure.

  16. Antibacterial Effects of Pyrolysis Oil Against Salmonella Typhimurium and Escherichia coli.

    PubMed

    Patra, Jayanta Kumar; Das, Gitishree; Choi, Joon Weon; Baek, Kwang-Hyun

    2016-01-01

    Many issues have been found to be related to food preservation and food contamination caused by various pathogenic bacteria in recent years. Many antibacterial agents act efficiently against Gram-positive foodborne bacteria; however, they are less effective against Gram-negative foodborne bacteria. In the present study, an attempt has been made to evaluate the antibacterial activity of pyrolysis oil manufactured from Pinus densiflora (PLO) against two Gram-negative foodborne pathogenic bacteria, Salmonella Typhimurium and Escherichia coli O157:H7. PLO possessed potent antibacterial activity against both foodborne pathogenic bacteria, as indicated by inhibition zones of 10.33-12.33 mm and minimum inhibitory concentration and minimum bactericidal concentration values of 250-500 μg/mL and 500-1000 μg/mL, respectively. PLO at the minimum inhibitory concentration exhibited an inhibitory effect on the viability of the bacterial pathogens with leakage of 260 nm absorbing materials, an increase in the relative electrical conductivity, and loss of salt tolerance capacity. PLO exhibited promising antibacterial activity against both of the Gram-negative foodborne pathogenic bacteria and thus it can be utilized in the food sector and pharmaceutical industries for the development of antibiotics and preservatives. PMID:26651059

  17. Production of aromatic green gasoline additives via catalytic pyrolysis of acidulated peanut oil soap stock.

    PubMed

    Hilten, R; Speir, R; Kastner, J; Das, K C

    2011-09-01

    Catalytic pyrolysis was used to generate gasoline-compatible fuel from peanut oil soap stock (PSS), a high free fatty acid feedstock, using a fixed-bed reactor at temperatures between 450 and 550°C with a zeolite catalyst (HZSM-5). PSS fed at 81 gh(-1) along with 100 mL min(-1) inert gas was passed across a 15 g catalyst bed (WHSV=5.4h(-1), gas phase residence time=34s). Results indicate that fuel properties of PSS including viscosity, heating value, and O:C ratio were improved significantly. For PSS processed at 500°C, viscosity was reduced from 59.6 to 0.9 mm(2)s(-1), heating value was increased from 35.8 to 39.3 MJL(-1), and the O:C ratio was reduced from 0.07 to 0.02. Aromatic gasoline components (e.g., BTEX), were formed in concentrations as high as 94% (v/v) in catalytically-cracked PSS with yields ranging from 22% to 35% (v/v of PSS feed).

  18. Microwave-assisted pyrolysis of biomass for liquid biofuels production.

    PubMed

    Yin, Chungen

    2012-09-01

    Production of 2nd-generation biofuels from biomass residues and waste feedstock is gaining great concerns worldwide. Pyrolysis, a thermochemical conversion process involving rapid heating of feedstock under oxygen-absent condition to moderate temperature and rapid quenching of intermediate products, is an attractive way for bio-oil production. Various efforts have been made to improve pyrolysis process towards higher yield and quality of liquid biofuels and better energy efficiency. Microwave-assisted pyrolysis is one of the promising attempts, mainly due to efficient heating of feedstock by "microwave dielectric heating" effects. This paper presents a state-of-the-art review of microwave-assisted pyrolysis of biomass. First, conventional fast pyrolysis and microwave dielectric heating is briefly introduced. Then microwave-assisted pyrolysis process is thoroughly discussed stepwise from biomass pretreatment to bio-oil collection. The existing efforts are summarized in a table, providing a handy overview of the activities (e.g., feedstock and pretreatment, reactor/pyrolysis conditions) and findings (e.g., pyrolysis products) of various investigations.

  19. Enhancement of bio-oil production via pyrolysis of wood biomass by pretreatment with H2SO4.

    PubMed

    Kumagai, Shogo; Matsuno, Ryo; Grause, Guido; Kameda, Tomohito; Yoshioka, Toshiaki

    2015-02-01

    In this work, a Japanese cedar wood sample was treated during the first step at ambient temperature and atmospheric pressure using several concentrations of sulfuric acid (H2SO4) in a stirred flask. During this pretreatment C-O bonds of cellulose, hemicellulose, and lignin were cleaved. The second step involved the pyrolysis of the pretreated wood sample at 550 °C in a quartz glass tube reactor. A maximum oil yield of 46.8 wt% with the minimum char yield of 10.1 wt% was obtained by the treatment with 3 M H2SO4, whereas untreated wood samples resulted in a 30.1 wt% yield of oil. The main components in the oils were levoglucosan and tar. These results suggest that moderate acid pretreatment produced shorter chain units of cellulose, hemicellulose, and lignin, thereby facilitating the conversion into oil by pyrolysis. The results of thermogravimetry-mass spectroscopy supported the presence of shorter chain units in the pretreated wood samples.

  20. Enhancement of bio-oil production via pyrolysis of wood biomass by pretreatment with H2SO4.

    PubMed

    Kumagai, Shogo; Matsuno, Ryo; Grause, Guido; Kameda, Tomohito; Yoshioka, Toshiaki

    2015-02-01

    In this work, a Japanese cedar wood sample was treated during the first step at ambient temperature and atmospheric pressure using several concentrations of sulfuric acid (H2SO4) in a stirred flask. During this pretreatment C-O bonds of cellulose, hemicellulose, and lignin were cleaved. The second step involved the pyrolysis of the pretreated wood sample at 550 °C in a quartz glass tube reactor. A maximum oil yield of 46.8 wt% with the minimum char yield of 10.1 wt% was obtained by the treatment with 3 M H2SO4, whereas untreated wood samples resulted in a 30.1 wt% yield of oil. The main components in the oils were levoglucosan and tar. These results suggest that moderate acid pretreatment produced shorter chain units of cellulose, hemicellulose, and lignin, thereby facilitating the conversion into oil by pyrolysis. The results of thermogravimetry-mass spectroscopy supported the presence of shorter chain units in the pretreated wood samples. PMID:25451777

  1. Diamondoid hydrocarbons as a molecular proxy for thermal maturity and oil cracking: Geochemical models from hydrous pyrolysis

    USGS Publications Warehouse

    Wei, Z.; Moldowan, J.M.; Zhang, S.; Hill, R.; Jarvie, D.M.; Wang, Hongfang; Song, F.; Fago, F.

    2007-01-01

    A series of isothermal hydrous pyrolysis experiments was performed on immature sedimentary rocks and peats of different lithology and organic source input to explore the generation of diamondoids during the thermal maturation of sediments. Oil generation curves indicate that peak oil yields occur between 340 and 360 ??C, followed by intense oil cracking in different samples. The biomarker maturity parameters appear to be insensitive to thermal maturation as most of the isomerization ratios of molecular biomarkers in the pyrolysates have reached their equilibrium values. Diamondoids are absent from immature peat extracts, but exist in immature sedimentary rocks in various amounts. This implies that they are not products of biosynthesis and that they may be generated during diagenesis, not just catagenesis and cracking. Most importantly, the concentrations of diamondoids are observed to increase with thermal stress, suggesting that they can be used as a molecular proxy for thermal maturity of source rocks and crude oils. Their abundance is most sensitive to thermal exposure above temperatures of 360-370 ??C (R0 = 1.3-1.5%) for the studied samples, which corresponds to the onset of intense cracking of other less stable components. Below these temperatures, diamondoids increase gradually due to competing processes of generation and dilution. Calibrations were developed between their concentrations and measured vitrinite reflectance through hydrous pyrolysis maturation of different types of rocks and peats. The geochemical models obtained from these methods may provide an alterative approach for determining thermal maturity of source rocks and crude oils, particularly in mature to highly mature Paleozoic carbonates. In addition, the extent of oil cracking was quantified using the concentrations of diamondoids in hydrous pyrolysates of rocks and peats, verifying that these hydrocarbons are valuable indicators of oil cracking in nature. ?? 2006 Elsevier Ltd. All rights

  2. Enhancement of biofuels production by means of co-pyrolysis of Posidonia oceanica (L.) and frying oil wastes: Experimental study and process modeling.

    PubMed

    Zaafouri, Kaouther; Ben Hassen Trabelsi, Aida; Krichah, Samah; Ouerghi, Aymen; Aydi, Abdelkarim; Claumann, Carlos Alberto; André Wüst, Zibetti; Naoui, Silm; Bergaoui, Latifa; Hamdi, Moktar

    2016-05-01

    Energy recovery from lignocellulosic solid marine wastes, Posidonia oceanica wastes (POW) with slow pyrolysis responds to the growing trend of alternative energies as well as waste management. Physicochemical, thermogravimetric (TG/DTG) and spectroscopic (FTIR) characterizations of POW were performed. POW were first converted by pyrolysis at different temperatures (450°C, 500°C, 550°C and 600°C) using a fixed-bed reactor. The obtained products (bio-oil, syngas and bio char) were analyzed. Since the bio-oil yield obtained from POW pyrolysis is low (2wt.%), waste frying oil (WFO) was added as a co-substrate in order to improve of biofuels production. The co-pyrolysis gave a better yield of liquid organic fraction (37wt.%) as well as syngas (CH4,H2…) with a calorific value around 20MJ/kg. The stoichiometric models of both pyrolysis and co-pyrolysis reactions were performed according to the biomass formula: CαHβOγNδSε. The thermal kinetic decomposition of solids was validated through linearized Arrhenius model.

  3. Enhancement of biofuels production by means of co-pyrolysis of Posidonia oceanica (L.) and frying oil wastes: Experimental study and process modeling.

    PubMed

    Zaafouri, Kaouther; Ben Hassen Trabelsi, Aida; Krichah, Samah; Ouerghi, Aymen; Aydi, Abdelkarim; Claumann, Carlos Alberto; André Wüst, Zibetti; Naoui, Silm; Bergaoui, Latifa; Hamdi, Moktar

    2016-05-01

    Energy recovery from lignocellulosic solid marine wastes, Posidonia oceanica wastes (POW) with slow pyrolysis responds to the growing trend of alternative energies as well as waste management. Physicochemical, thermogravimetric (TG/DTG) and spectroscopic (FTIR) characterizations of POW were performed. POW were first converted by pyrolysis at different temperatures (450°C, 500°C, 550°C and 600°C) using a fixed-bed reactor. The obtained products (bio-oil, syngas and bio char) were analyzed. Since the bio-oil yield obtained from POW pyrolysis is low (2wt.%), waste frying oil (WFO) was added as a co-substrate in order to improve of biofuels production. The co-pyrolysis gave a better yield of liquid organic fraction (37wt.%) as well as syngas (CH4,H2…) with a calorific value around 20MJ/kg. The stoichiometric models of both pyrolysis and co-pyrolysis reactions were performed according to the biomass formula: CαHβOγNδSε. The thermal kinetic decomposition of solids was validated through linearized Arrhenius model. PMID:26897417

  4. Formate-assisted pyrolysis

    DOEpatents

    DeSisto, William Joseph; Wheeler, Marshall Clayton; van Heiningen, Adriaan R. P.

    2015-03-17

    The present invention provides, among other thing, methods for creating significantly deoxygenated bio-oils form biomass including the steps of providing a feedstock, associating the feedstock with an alkali formate to form a treated feedstock, dewatering the treated feedstock, heating the dewatered treated feedstock to form a vapor product, and condensing the vapor product to form a pyrolysis oil, wherein the pyrolysis oil contains less than 30% oxygen by weight.

  5. [Fast discrimination of edible vegetable oil based on Raman spectroscopy].

    PubMed

    Zhou, Xiu-Jun; Dai, Lian-Kui; Li, Sheng

    2012-07-01

    A novel method to fast discriminate edible vegetable oils by Raman spectroscopy is presented. The training set is composed of different edible vegetable oils with known classes. Based on their original Raman spectra, baseline correction and normalization were applied to obtain standard spectra. Two characteristic peaks describing the unsaturated degree of vegetable oil were selected as feature vectors; then the centers of all classes were calculated. For an edible vegetable oil with unknown class, the same pretreatment and feature extraction methods were used. The Euclidian distances between the feature vector of the unknown sample and the center of each class were calculated, and the class of the unknown sample was finally determined by the minimum distance. For 43 edible vegetable oil samples from seven different classes, experimental results show that the clustering effect of each class was more obvious and the class distance was much larger with the new feature extraction method compared with PCA. The above classification model can be applied to discriminate unknown edible vegetable oils rapidly and accurately.

  6. Pyrolysis of waste animal fats in a fixed-bed reactor: Production and characterization of bio-oil and bio-char

    SciTech Connect

    Ben Hassen-Trabelsi, A.; Kraiem, T.; Naoui, S.; Belayouni, H.

    2014-01-15

    Highlights: • Produced bio-fuels (bio-oil and bio-char) from some animal fatty wastes. • Investigated the effects of main parameters on pyrolysis products distribution. • Determined the suitable conditions for the production of the maximum of bio-oil. • Characterized bio-oils and bio-chars obtained from several animal fatty wastes. - Abstract: Several animal (lamb, poultry and swine) fatty wastes were pyrolyzed under nitrogen, in a laboratory scale fixed-bed reactor and the main products (liquid bio-oil, solid bio-char and syngas) were obtained. The purpose of this study is to produce and characterize bio-oil and bio-char obtained from pyrolysis of animal fatty wastes. The maximum production of bio-oil was achieved at a pyrolysis temperature of 500 °C and a heating rate of 5 °C/min. The chemical (GC–MS analyses) and spectroscopic analyses (FTIR analyses) of bio-oil showed that it is a complex mixture consisting of different classes of organic compounds, i.e., hydrocarbons (alkanes, alkenes, cyclic compounds…etc.), carboxylic acids, aldehydes, ketones, esters,…etc. According to fuel properties, produced bio-oils showed good properties, suitable for its use as an engine fuel or as a potential source for synthetic fuels and chemical feedstock. Obtained bio-chars had low carbon content and high ash content which make them unattractive for as renewable source energy.

  7. Characterization of bio-oil from induction-heating pyrolysis of food-processing sewage sludges using chromatographic analysis.

    PubMed

    Tsai, Wen-Tien; Lee, Mei-Kuei; Chang, Jeng-Hung; Su, Ting-Yi; Chang, Yuan-Ming

    2009-05-01

    In this study, gas chromatography-mass spectrometry (GC-MS) was used to analyze the pyrolytic bio-oils and gas fractions derived from the pyrolysis of industrial sewage sludges using induction-heating technique. The liquid products were obtained from the cryogenic condensation of the devolatilization fraction in a nitrogen atmosphere using a heating rate of 300 degrees C/min ranging from 25 to 500 degrees C. The analytical results showed that the pyrolysis bio-oils were very complex mixtures of organic compounds and contained a lot of nitrogenated and/or oxygenated compounds such as aliphatic hydrocarbons, phenols, pyridines, pyrroles, amines, ketones, and so on. These organic hydrocarbons containing nitrogen and/or oxygen should originate from the protein and nucleic acid textures of the microbial organisms present in the sewage sludge. The non-condensable devolatilization fractions were also composed of nitrogenated and oxygenated compounds, but contained small fractions of phenols, 1H-indoles, and fatty carboxylic acids. On the other hand, the compositions in the non-condensable gas products were principally carbon dioxide, carbon monoxide and methane analyzed by gas chromatography-thermal conductivity detector (GC-TCD).

  8. Design, fabrication, operation and Aspen simulation of oil shale pyrolysis and biomass gasification process using a moving bed downdraft reactor

    NASA Astrophysics Data System (ADS)

    Golpour, Hassan

    Energy is the major facilitator of the modern life. Every developed and developing economy requires access to advanced sources of energy to support its growth and prosperity. Declining worldwide crude oil reserves and increasing energy needs has focused attention on developing existing unconventional fossil fuels like oil shale and renewable resources such as biomass. Sustainable, renewable and reliable resources of domestically produced biomass comparing to wind and solar energy is a sensible motivation to establish a small-scale power plant using biomass as feed to supply electricity demand and heat for rural development. The work in Paper I focuses on the possibility of water pollution from spent oil shale which should be studied before any significant commercial production is attempted. In Paper II, the proposed Aspen models for oil shale pyrolysis is to identify the key process parameters for the reactor and optimize the rate of production of syncrude from oil shale. The work in Paper III focuses on (1) Design and operation of a vertical downdraft reactor, (2) Establishing an optimum operating methodology and parameters to maximize syngas production through process testing. Finally in Paper IV, a proposed Aspen model for biomass gasification simulates a real biomass gasification system discussed in Paper III.

  9. Stable bio-oil production from proteinaceous cyanobacteria: tail gas reactive pyrolysis of spirulina

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pyrolysis of Spirulina, a cyanobacteria with high levels of protein (74 wt %) and low levels of lipid (0.8 wt %) content, has the potential to produce fuels and platform chemicals that differ from those produced from lignocellulosic materials. The yields and product distribution from fluidized-bed p...

  10. Distillation and isolation of commodity chemicals from Bio-oil made by tail-gas reactive prolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Owing to instabilities, very little has been accomplished with regards to simple cost-effective separations of fast-pyrolysis bio-oil. However, recent developments in the use of tail-gas reactive pyrolysis (TGRP) (Mullen and Boateng 2013) provide higher quality bio-oils that are thermally stable. We...

  11. Standardization of chemical analytical techniques for pyrolysis bio-oil: history, challenges, and current status of methods

    DOE PAGES

    Ferrell, Jack R.; Olarte, Mariefel V.; Christensen, Earl D.; Padmaperuma, Asanga B.; Connatser, Raynella M.; Stankovikj, Filip; Meier, Dietrich; Paasikallio, Ville

    2016-07-05

    Here, we discuss the standardization of analytical techniques for pyrolysis bio-oils, including the current status of methods, and our opinions on future directions. First, the history of past standardization efforts is summarized, and both successful and unsuccessful validation of analytical techniques highlighted. The majority of analytical standardization studies to-date has tested only physical characterization techniques. In this paper, we present results from an international round robin on the validation of chemical characterization techniques for bio-oils. Techniques tested included acid number, carbonyl titrations using two different methods (one at room temperature and one at 80 °C), 31P NMR for determination ofmore » hydroxyl groups, and a quantitative gas chromatography–mass spectrometry (GC-MS) method. Both carbonyl titration and acid number methods have yielded acceptable inter-laboratory variabilities. 31P NMR produced acceptable results for aliphatic and phenolic hydroxyl groups, but not for carboxylic hydroxyl groups. As shown in previous round robins, GC-MS results were more variable. Reliable chemical characterization of bio-oils will enable upgrading research and allow for detailed comparisons of bio-oils produced at different facilities. Reliable analytics are also needed to enable an emerging bioenergy industry, as processing facilities often have different analytical needs and capabilities than research facilities. We feel that correlations in reliable characterizations of bio-oils will help strike a balance between research and industry, and will ultimately help to -determine metrics for bio-oil quality. Lastly, the standardization of additional analytical methods is needed, particularly for upgraded bio-oils.« less

  12. Enhancing the quality of bio-oil and selectivity of phenols compounds from pyrolysis of anaerobic digested rice straw.

    PubMed

    Liang, Jiajin; Lin, Yunqin; Wu, Shubin; Liu, Chao; Lei, Ming; Zeng, Chao

    2015-04-01

    This study investigated the thermal decomposition characteristics and pyrolytic products of anaerobic digested rice straw (ADRS) by thermogravimetric (TG) and pyrolysis-gas chromatograph/mass spectrometry (Py-GC/MS) analysis. Compared with the raw rice straw (RS), the thermal decomposition temperature of ADRS was shifted to higher temperature zone and the second decomposition zone of cellulose (Toffset(c)-Tpeak) became narrower (14 °C less), which indicated that the composition of rice straw were changed significantly by the anaerobic digestion pretreatment. Py-GC/MS analysis showed that the quality of the bio-oil and the selectivity of pyrolytic products could be obviously improved by anaerobic digestion. The total yields of alcohols, acids, aldehydes, furans, anhydrosugars, and ketones pyrolysis substances decreased, while the yield of phenols increased. The yield of 4-Vinylphenol (4-VP) increased from 29.33%, 8.21% and 5.76% to 34.93%, 12.46% and 7.68% at 330, 450 and 650 °C, respectively, after anaerobic digestion.

  13. Enhancing the quality of bio-oil and selectivity of phenols compounds from pyrolysis of anaerobic digested rice straw.

    PubMed

    Liang, Jiajin; Lin, Yunqin; Wu, Shubin; Liu, Chao; Lei, Ming; Zeng, Chao

    2015-04-01

    This study investigated the thermal decomposition characteristics and pyrolytic products of anaerobic digested rice straw (ADRS) by thermogravimetric (TG) and pyrolysis-gas chromatograph/mass spectrometry (Py-GC/MS) analysis. Compared with the raw rice straw (RS), the thermal decomposition temperature of ADRS was shifted to higher temperature zone and the second decomposition zone of cellulose (Toffset(c)-Tpeak) became narrower (14 °C less), which indicated that the composition of rice straw were changed significantly by the anaerobic digestion pretreatment. Py-GC/MS analysis showed that the quality of the bio-oil and the selectivity of pyrolytic products could be obviously improved by anaerobic digestion. The total yields of alcohols, acids, aldehydes, furans, anhydrosugars, and ketones pyrolysis substances decreased, while the yield of phenols increased. The yield of 4-Vinylphenol (4-VP) increased from 29.33%, 8.21% and 5.76% to 34.93%, 12.46% and 7.68% at 330, 450 and 650 °C, respectively, after anaerobic digestion. PMID:25647031

  14. Copyrolysis of Seyitomer-lignite and safflower seed: influence of the blending ratio and pyrolysis temperature on product yields and oil characterization

    SciTech Connect

    Ozlem Onay; Evren Bayram; O. Mete Kockar

    2007-09-15

    Pyrolytic behaviors of biomass/coal mixtures were investigated under a heating rate of 7{sup o}C min{sup -1}, over a range of pyrolysis temperatures between 400 and 700{sup o}C, and the blending ratio of coal in mixtures was varied between 0 and 100 wt %. The results indicated that considerable synergistic effects were observed during the copyrolysis in a fixed-bed reactor leading to an increase in the oil yield at lower than coal blending ratios of 33%. At the lower blending coal ratio conditions, the oil yields are higher than the expected ones, calculated as the sum of oil fractions produced by pyrolysis of each separated component. The maximum pyrolysis oil yield of 39.5% was obtained with 5% of lignite mixed with safflower seed. The obtained oils are characterized by Fourier transform infrared spectroscopy, {sup 1}H nuclear magnetic resonance, gas chromatography mass spectrometry, and elemental analysis. These findings can potentially help to understand and predict the behavior of coal/biomass blends in practical liquefaction systems. 33 refs., 8 figs., 4 tabs.

  15. Enhanced diesel fuel fraction from waste high-density polyethylene and heavy gas oil pyrolysis using factorial design methodology.

    PubMed

    Joppert, Ney; da Silva, Alexsandro Araujo; da Costa Marques, Mônica Regina

    2015-02-01

    Factorial Design Methodology (FDM) was developed to enhance diesel fuel fraction (C9-C23) from waste high-density polyethylene (HDPE) and Heavy Gas Oil (HGO) through co-pyrolysis. FDM was used for optimization of the following reaction parameters: temperature, catalyst and HDPE amounts. The HGO amount was constant (2.00 g) in all experiments. The model optimum conditions were determined to be temperature of 550 °C, HDPE = 0.20 g and no FCC catalyst. Under such conditions, 94% of pyrolytic oil was recovered, of which diesel fuel fraction was 93% (87% diesel fuel fraction yield), no residue was produced and 6% of noncondensable gaseous/volatile fraction was obtained. Seeking to reduce the cost due to high process temperatures, the impact of using higher catalyst content (25%) with a lower temperature (500 °C) was investigated. Under these conditions, 88% of pyrolytic oil was recovered (diesel fuel fraction yield was also 87%) as well as 12% of the noncondensable gaseous/volatile fraction. No waste was produced in these conditions, being an environmentally friendly approach for recycling the waste plastic. This paper demonstrated the usefulness of using FDM to predict and to optimize diesel fuel fraction yield with a great reduction in the number of experiments. PMID:25532672

  16. Enhanced diesel fuel fraction from waste high-density polyethylene and heavy gas oil pyrolysis using factorial design methodology.

    PubMed

    Joppert, Ney; da Silva, Alexsandro Araujo; da Costa Marques, Mônica Regina

    2015-02-01

    Factorial Design Methodology (FDM) was developed to enhance diesel fuel fraction (C9-C23) from waste high-density polyethylene (HDPE) and Heavy Gas Oil (HGO) through co-pyrolysis. FDM was used for optimization of the following reaction parameters: temperature, catalyst and HDPE amounts. The HGO amount was constant (2.00 g) in all experiments. The model optimum conditions were determined to be temperature of 550 °C, HDPE = 0.20 g and no FCC catalyst. Under such conditions, 94% of pyrolytic oil was recovered, of which diesel fuel fraction was 93% (87% diesel fuel fraction yield), no residue was produced and 6% of noncondensable gaseous/volatile fraction was obtained. Seeking to reduce the cost due to high process temperatures, the impact of using higher catalyst content (25%) with a lower temperature (500 °C) was investigated. Under these conditions, 88% of pyrolytic oil was recovered (diesel fuel fraction yield was also 87%) as well as 12% of the noncondensable gaseous/volatile fraction. No waste was produced in these conditions, being an environmentally friendly approach for recycling the waste plastic. This paper demonstrated the usefulness of using FDM to predict and to optimize diesel fuel fraction yield with a great reduction in the number of experiments.

  17. Chemicals derived from pyrolysis bio-oils as antioxidants in fuels and lubricants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Softwood and hardwood lignins and hardwood were pyrolyzed to produce bio-oils to produce lignin-derived bio-oils of which phenols were the major component. These bio-oils were extracted with alkali to yield a range of lignin-related phenols having molecular weights (MWs) from 110 to 344. When tested...

  18. Low temperature pyrolysis of coal or oil shale in the presence of calcium compounds

    DOEpatents

    Khan, M. Rashid

    1988-01-01

    A coal pyrolysis technique or process is described in which particulate coal is pyrolyzed in the presence of about 5 to 21 wt. % of a calcium compound selected from calcium oxide, calcined (hydrate) dolomite, or calcined calcium hydrate to produce a high quality hydrocarbon liquid and a combustible product gas which are characterized by low sulfur content. The pyrolysis is achieved by heating the coal-calcium compound mixture at a relatively slow rate at a temperature of about 450.degree. to 700.degree. C. over a duration of about 10 to 60 minutes in a fixed or moving bed reactor. The gas exhibits an increased yield in hydrogen and C.sub.1 -C.sub.8 hydrocarbons and a reduction in H.sub.2 S over gas obtainable by pyrolyzing cola without the calcium compound. The liquid product obtained is of a sufficient quality to permit its use directly as a fuel and has a reduced sulfur and oxygen content which inhibits polymerization during storage.

  19. Decoupling HZSM-5 catalyst activity from deactivation during upgrading of pyrolysis oil vapors.

    PubMed

    Wan, Shaolong; Waters, Christopher; Stevens, Adam; Gumidyala, Abhishek; Jentoft, Rolf; Lobban, Lance; Resasco, Daniel; Mallinson, Richard; Crossley, Steven

    2015-02-01

    The independent evaluation of catalyst activity and stability during the catalytic pyrolysis of biomass is challenging because of the nature of the reaction system and rapid catalyst deactivation that force the use of excess catalyst. In this contribution we use a modified pyroprobe system in which pulses of pyrolysis vapors are converted over a series of HZSM-5 catalysts in a separate fixed-bed reactor controlled independently. Both the reactor-bed temperature and the Si/Al ratio of the zeolite are varied to evaluate catalyst activity and deactivation rates independently both on a constant surface area and constant acid site basis. Results show that there is an optimum catalyst-bed temperature for the production of aromatics, above which the production of light gases increases and that of aromatics decrease. Zeolites with lower Si/Al ratios give comparable initial rates for aromatics production, but far more rapid catalyst deactivation rates than those with higher Si/Al ratios. PMID:25504857

  20. Kinetic studies on the evolution of hydrocarbons by pyrolysis of oil shale and vitrinite samples

    SciTech Connect

    Esser, W.; Schwochau, K. )

    1989-03-01

    Kinetic parameters for the evolution of hydrocarbons (C{sub 1}-C{sub 4}) by pyrolysis of Toarcian shales, northern Germany, and vitrinite samples of the Upper Carboniferous, western Germany, were derived according to the nonisothermal method. The solvent-extracted samples were heated in a flow of helium gas at a constant heating rate of 0.1 K/min and the purified hydrocarbons were analyzed by capillary GC. The activation energies for the evolution of alkanes and alkenes (C{sub 2}-C{sub 4}) from type II kerogen in the shales increase with increasing maturity up to a maximum whose position depends on the individual hydrocarbon. Methane generation proceeds via four discernible reactions. The evolution profiles of alkanes (C{sub 1}-C{sub 4}) released by pyrolysis of the vitrinite samples reveal relatively low activation energies. Mixing of vitrinite with finely ground quartz or calcite results in an evident change of the evolution profiles and the kinetic parameters, indicating vitrinite-mineral interactions.

  1. Guayule (parthenium argentatum) pyrolysis biorefining: production of hydrocarbon compatible bio-oils from guayule bagasse via tail-gas reactive pyrolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Guayule (Parthenium argentatum) is a woody desert shrub grown in the southwestern United States as a source of natural rubber, organic resins, and high energy biofuel feedstock from crop residues. We used guayule bagasse, the residual biomass after latex extraction as feedstock in a pyrolysis proces...

  2. Co-pyrolysis of sunflower-oil cake with potassium carbonate and zinc oxide using plasma torch to produce bio-fuels.

    PubMed

    Shie, Je-Lueng; Chang, Chia-Chi; Chang, Ching-Yuan; Tzeng, Chin-Ching; Wu, Chung-Yu; Lin, Kae-Long; Tseng, Jyi-Yeong; Yuan, Min-Hao; Li, Heng-Yi; Kuo, Ching-Hui; Yu, Yuh-Jeng; Chang, Lieh-Chih

    2011-12-01

    This study examined the effects of additives of potassium carbonate (K2CO3) and zinc oxide (ZnO) on the pyrolysis of waste sunflower-oil cake using a 60 kW pilot-scale plasma torch reactor. The major gaseous products were CO and H2. The productions of CO and CH4 increased while that of H2 decreased with the addition of K2CO3. The use of ZnO reduced while enhanced the formation of CO and H2, respectively. In order to match the appeal of resource reutilization, one can use the waste K2CO3 resulted from the sorption of CO2 with KOH in greenhouse gas control and the waste ZnO obtained from the melting process as additives for the co-pyrolysis of sunflower-oil cake, yielding fuels rich in CO and H2, respectively.

  3. CFD modeling of space-time evolution of fast pyrolysis products in a bench-scale fluidized-bed reactor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A model for the evolution of pyrolysis products in a fluidized bed has been developed. In this study the unsteady constitutive transport equations for inert gas flow and decomposition kinetics were modeled using the commercial computational fluid dynamics (CFD) software FLUENT-12. The model system d...

  4. Pyrolysis kinetics applied to prediction of oil generation in the Maracaibo Basin, Venezuela

    SciTech Connect

    Sweeney, J.J.; Talukdar, S.; Burnham, A.K.; Vallejos, C.; DGSI, The Woodlands, TX; Lawrence Livermore National Lab., CA; INTEVEP, Filial de Petroleos de Venezuela, SA, Caracas )

    1989-09-01

    We use chemical kinetic parameters for oil generation derived from modified Rock-Eval and Pyromat instruments, coupled with thermal history models, to predict the timing and extent of oil generation in the Maracaibo Basin of Venezuela. The vitrinite reflectance model developed at Lawrence Livermore National Laboratory is used to calibrate thermal history models with measured vitrinite reflectance profiles. We examine the way differences in the kinetic parameters affect predictions of oil maturation in several parts of the basin with different thermal histories. Maturity indicators, such as H/C atomic ratio and API gravity, are compared to the calculated extent of oil generation. We use the comparison to check the accuracy of the coupled oil generation and thermal history models. 20 refs., 13 figs.

  5. Pressurized pyrolysis of rice husk in an inert gas sweeping fixed-bed reactor with a focus on bio-oil deoxygenation.

    PubMed

    Qian, Yangyang; Zhang, Jie; Wang, Jie

    2014-12-01

    The pyrolysis of rice husk was conducted in a fixed-bed reactor with a sweeping nitrogen gas to investigate the effects of pressure on the pyrolytic behaviors. The release rates of main gases during the pyrolysis, the distributions of four products (char, bio-oil, water and gas), the elemental compositions of char, bio-oil and gas, and the typical compounds in bio-oil were determined. It was found that the elevation of pressure from 0.1MPa to 5.0MPa facilitated the dehydration and decarboxylation of bio-oil, and the bio-oils obtained under the elevated pressures had significantly less oxygen and higher calorific value than those obtained under atmospheric pressure. The former bio-oils embraced more acetic acid, phenols and guaiacols. The elevation of pressure increased the formation of CH4 partially via the gas-phase reactions. An attempt is made in this study to clarify "the pure pressure effect" and "the combined effect with residence time".

  6. Characteristics and potential values of bio-oil, syngas and biochar derived from Salsola collina Pall. in a fixed bed slow pyrolysis system.

    PubMed

    Yue, Yan; Lin, Qimei; Irfan, Muhammad; Chen, Qun; Zhao, Xiaorong

    2016-11-01

    Salsola collina Pall. as a typical euhalophyte was slowly pyrolyzed at 300°C, 500°C and 700°C in a fixed-bed system. The physiochemical properties of syngas, bio-oil and biochar were assayed to understand the impact of pyrolysis temperature on these parameters and then to evaluate their potential values. The results showed that syngas yield (26.07-46.37%) increased with pyrolysis temperature, while biochar yield (47.54-26.83%) decreased. Bio-oil yield (26-30%) was hardly affected by pyrolysis temperature. Both syngas and bio-oil had poor values as direct fuel. The euhalophyte-derived biochar had higher aromaticity (H/C 0.16-0.85, O/C 0.06-0.26), higher cation exchange capacity (198.82-435.74cmolkg(-1)), and higher K(+) (59.35-80.42gkg(-1)) and Na(+) (37.56-53.26gkg(-1)) compared with glycophyte-derived biochars. Our findings imply that halophyte biochar may be more suitable to use as a soil conditioner, which is worthy of further study.

  7. Co-production of activated carbon, fuel-gas, and oil from the pyrolysis of corncob mixtures with wet and dried sewage sludge.

    PubMed

    Shao, Linlin; Jiang, Wenbo; Feng, Li; Zhang, Liqiu

    2014-06-01

    This study explored the amount and composition of pyrolysis gas and oil derived from wet material or dried material during the preparation of sludge-corncob activated carbon, and evaluated the physicochemical and surface properties of the obtained two types of sludge-corncob-activated carbons. For wet material, owing to the presence of water, the yields of sludge-corncob activated carbon and the oil fraction slightly decreased while the yield of gases increased. The main pyrolysis gas compounds were H2 and CO2, and more H2 was released from wet material than dried material, whereas the opposite holds for CO2 Heterocyclics, nitriles, organic acids, and steroids were the major components of pyrolysis oil. Furthermore, the presence of water in wet material reduced the yield of polycyclic aromatic hydrocarbons from 6.76% to 5.43%. The yield of furfural, one of heterocyclics, increased sharply from 3.51% to 21.4%, which could be explained by the enhanced hydrolysis of corncob. In addition, the surface or chemical properties of the two sludge-corncob activated carbons were almost not affected by the moisture content of the raw material, although their mesopore volume and diameter were different. In addition, the adsorption capacities of the two sludge-corncob activated carbons towards Pb and nitrobenzene were nearly identical.

  8. Characteristics and potential values of bio-oil, syngas and biochar derived from Salsola collina Pall. in a fixed bed slow pyrolysis system.

    PubMed

    Yue, Yan; Lin, Qimei; Irfan, Muhammad; Chen, Qun; Zhao, Xiaorong

    2016-11-01

    Salsola collina Pall. as a typical euhalophyte was slowly pyrolyzed at 300°C, 500°C and 700°C in a fixed-bed system. The physiochemical properties of syngas, bio-oil and biochar were assayed to understand the impact of pyrolysis temperature on these parameters and then to evaluate their potential values. The results showed that syngas yield (26.07-46.37%) increased with pyrolysis temperature, while biochar yield (47.54-26.83%) decreased. Bio-oil yield (26-30%) was hardly affected by pyrolysis temperature. Both syngas and bio-oil had poor values as direct fuel. The euhalophyte-derived biochar had higher aromaticity (H/C 0.16-0.85, O/C 0.06-0.26), higher cation exchange capacity (198.82-435.74cmolkg(-1)), and higher K(+) (59.35-80.42gkg(-1)) and Na(+) (37.56-53.26gkg(-1)) compared with glycophyte-derived biochars. Our findings imply that halophyte biochar may be more suitable to use as a soil conditioner, which is worthy of further study. PMID:27595703

  9. Pyrolysis of oil-plant wastes in a TGA and a fixed-bed reactor: Thermochemical behaviors, kinetics, and products characterization.

    PubMed

    Chen, Jianbiao; Fan, Xiaotian; Jiang, Bo; Mu, Lin; Yao, Pikai; Yin, Hongchao; Song, Xigeng

    2015-09-01

    Pyrolysis characteristics of four distinct oil-plant wastes were investigated using TGA and fixed-bed reactor coupled with GC. TGA experiments showed that the pyrolysis behaviors were related to biomass species and heating rates. As the heating rate increased, TG and DTG curves shifted to the higher temperatures, and the comprehensive devolatilization index obviously increased. The remaining chars from TGA experiments were higher than those obtained from the fixed-bed experiments. The crack of tars at high temperatures enhanced the formation of non-condensable gases. During the pyrolysis, C-O and CO2 were the major gases. Chars FTIR showed that the functional groups of O-H, C-H(n), C=O, C-O, and C-C gradually disappeared from 400 °C on. The kinetic parameters were calculated by Coats-Redfern approach. The results manifested that the most appropriate pyrolysis mechanisms were the order reaction models. The existence of kinetic compensation effect was evident. PMID:26093253

  10. Pyrolysis of oil-plant wastes in a TGA and a fixed-bed reactor: Thermochemical behaviors, kinetics, and products characterization.

    PubMed

    Chen, Jianbiao; Fan, Xiaotian; Jiang, Bo; Mu, Lin; Yao, Pikai; Yin, Hongchao; Song, Xigeng

    2015-09-01

    Pyrolysis characteristics of four distinct oil-plant wastes were investigated using TGA and fixed-bed reactor coupled with GC. TGA experiments showed that the pyrolysis behaviors were related to biomass species and heating rates. As the heating rate increased, TG and DTG curves shifted to the higher temperatures, and the comprehensive devolatilization index obviously increased. The remaining chars from TGA experiments were higher than those obtained from the fixed-bed experiments. The crack of tars at high temperatures enhanced the formation of non-condensable gases. During the pyrolysis, C-O and CO2 were the major gases. Chars FTIR showed that the functional groups of O-H, C-H(n), C=O, C-O, and C-C gradually disappeared from 400 °C on. The kinetic parameters were calculated by Coats-Redfern approach. The results manifested that the most appropriate pyrolysis mechanisms were the order reaction models. The existence of kinetic compensation effect was evident.

  11. Pyrolysis of waste animal fats in a fixed-bed reactor: production and characterization of bio-oil and bio-char.

    PubMed

    Ben Hassen-Trabelsi, A; Kraiem, T; Naoui, S; Belayouni, H

    2014-01-01

    Several animal (lamb, poultry and swine) fatty wastes were pyrolyzed under nitrogen, in a laboratory scale fixed-bed reactor and the main products (liquid bio-oil, solid bio-char and syngas) were obtained. The purpose of this study is to produce and characterize bio-oil and bio-char obtained from pyrolysis of animal fatty wastes. The maximum production of bio-oil was achieved at a pyrolysis temperature of 500 °C and a heating rate of 5 °C/min. The chemical (GC-MS analyses) and spectroscopic analyses (FTIR analyses) of bio-oil showed that it is a complex mixture consisting of different classes of organic compounds, i.e., hydrocarbons (alkanes, alkenes, cyclic compounds...etc.), carboxylic acids, aldehydes, ketones, esters,...etc. According to fuel properties, produced bio-oils showed good properties, suitable for its use as an engine fuel or as a potential source for synthetic fuels and chemical feedstock. Obtained bio-chars had low carbon content and high ash content which make them unattractive for as renewable source energy.

  12. Fast procedure for the analysis of poly(hydroxyalkanoates) in bacterial cells by off-line pyrolysis/gas-chromatography with flame ionization detector.

    PubMed

    Torri, Cristian; Cordiani, Helena; Samorì, Chiara; Favaro, Lorenzo; Fabbri, Daniele

    2014-09-12

    Poly(hydroxyalkanoates) (PHAs) are polyesters formed by saturated short chain hydroxyacids, among which 3-hydroxybutanoic (HB) and 3-hydroxypentanoic (3-hydroxyvalerate, HV) are the most common monomers of homopolymers (e.g. poly(3-hydroxybutyrate), PHB) and copolymers (e.g. poly(3-hydroxybutyrate-co-3-hydroxyhexanoate), PHB-HC). The most widely used approach for their determination is the polymer methanolysis followed by gas chromatography-mass spectrometry (GC-MS) analysis of the methylated monomers; this procedure generally requires the use of additional reagents (e.g. sulfuric acid) and is performed with harmful chlorinated solvents, such as chloroform. The development of fast routine solventless methods for the quantitative determination of PHAs and their monomeric composition is highly desirable to reduce sample pretreatment, speed up the analysis and decrease overall costs. It has been reported that under thermal treatment (e.g. pyrolysis, Py), PHAs are degraded in high yield (>40%, w/wPHA) into the corresponding 2-alkenoic acid (e.g. crotonic acid from PHB). This work aimed at investigating this reaction for direct analysis of PHAs in bacterial cells. The sample was directly subjected to pyrolysis and trapped pyrolysis products were analyzed by GC-FID. Off-line Py/GC-FID was first optimized on pure polymers with different monomer composition (PHB, PHB-HV, PHB-HC) and then applied to bacterial samples deriving from both mixed microbial cultures or selected strains, containing various types and amounts of PHAs. The Py/GC-FID method provided RSD <15% range, limit of detection of 100μg (1% PHAs in biomass), and results comparable to that of methanolysis (R(2)=0.9855), but with minimal sample pretreatment. PMID:25069742

  13. Catalytic pyrolysis of model compounds and waste cooking oil for production of light olefins over La/ZSM-5 catalysts

    NASA Astrophysics Data System (ADS)

    Li, F. W.; Ding, S. L.; Li, L.; Gao, C.; Zhong, Z.; Wang, S. X.; Li, Z. X.

    2016-08-01

    Waste cooking oil (WCO) and its model compounds (oleic acid and methyl laurate) are catalytically pyrolyzed in a fixed-bed reactor over La modified ZSM-5 catalysts (La/ZSM-5) aiming for production of C2-C4 light olefins. The LaO content in catalysts was set at 0, 2, 6, 10 and 14 wt%. The gas and liquid products are analyzed. The La/ZSM-5 catalyst with 6% LaO showed higher selectivity to light olefins when WCO and methyl laurate were pyrolyzed, and olefin content was 26% for WCO and 21% for methyl laurate. The catalyst with 10% LaO showed high selectivity to light olefins (28.5%) when oleic acid was pyrolyzed. The liquid products from WCO and model compounds mainly contain esters and aromatic hydrocarbons. More esters were observed in liquid products from methyl laurate and WCO pyrolysis, indicating that it is more difficult to pyrolyze esters and WCO than oleic acid. The coked catalysts were analyzed by temperature-programmed oxidation. The result shows that graphite is the main component of coke. The conversion of WCO to light olefins potentially provides an alternative and sustainable route for production of the key petrochemicals.

  14. Characterization of Japanese cedar bio-oil produced using a bench-scale auger pyrolyzer.

    PubMed

    Kato, Yoshiaki; Enomoto, Ryohei; Akazawa, Minami; Kojima, Yasuo

    2016-01-01

    A bench-scale auger reactor was designed for use as a laboratory-scale fast pyrolyzer for producing bio-oil from Japanese cedar. An analytical pyrolysis method was performed simultaneously to determine the distribution of pyrolysis products. The pyrolysis temperature was found to have the greatest influence on the bio-oil characteristics; bio-oil yields increased as the pyrolysis temperature increased from 450 to 550 °C. The concentration of levoglucosan in the bio-oil, however, decreased significantly with increasing pyrolysis temperature, while it increased following analytical pyrolysis. The same results were obtained for 4-vinylguaiacol and E-isoeugenol, which were the major secondary products produced in the present study. Compared to the yields of these major products obtained via analytical pyrolysis, the yields from the auger reactor were very low, indicating that the auger reactor process had a longer vapor residence time than the analytical pyrolysis process, resulting in the acceleration of secondary reactions of the pyrolysates. The pH values and densities of the bio-oils produced in the auger reactor were similar to those reported by researchers using woody biomass, despite their lower viscosities. From these results, it was concluded that the pyrolysis temperature and residence time of the pyrolysates played a significant role in determining the characteristics of the cedar bio-oil.

  15. Characterization of Japanese cedar bio-oil produced using a bench-scale auger pyrolyzer.

    PubMed

    Kato, Yoshiaki; Enomoto, Ryohei; Akazawa, Minami; Kojima, Yasuo

    2016-01-01

    A bench-scale auger reactor was designed for use as a laboratory-scale fast pyrolyzer for producing bio-oil from Japanese cedar. An analytical pyrolysis method was performed simultaneously to determine the distribution of pyrolysis products. The pyrolysis temperature was found to have the greatest influence on the bio-oil characteristics; bio-oil yields increased as the pyrolysis temperature increased from 450 to 550 °C. The concentration of levoglucosan in the bio-oil, however, decreased significantly with increasing pyrolysis temperature, while it increased following analytical pyrolysis. The same results were obtained for 4-vinylguaiacol and E-isoeugenol, which were the major secondary products produced in the present study. Compared to the yields of these major products obtained via analytical pyrolysis, the yields from the auger reactor were very low, indicating that the auger reactor process had a longer vapor residence time than the analytical pyrolysis process, resulting in the acceleration of secondary reactions of the pyrolysates. The pH values and densities of the bio-oils produced in the auger reactor were similar to those reported by researchers using woody biomass, despite their lower viscosities. From these results, it was concluded that the pyrolysis temperature and residence time of the pyrolysates played a significant role in determining the characteristics of the cedar bio-oil. PMID:27047705

  16. Effects of smectite on the oil-expulsion efficiency of the Kreyenhagen Shale, San Joaquin Basin, California, based on hydrous-pyrolysis experiments

    USGS Publications Warehouse

    Lewan, Michael D.; Dolan, Michael P.; Curtis, John B.

    2014-01-01

    The amount of oil that maturing source rocks expel is expressed as their expulsion efficiency, which is usually stated in milligrams of expelled oil per gram of original total organic carbon (TOCO). Oil-expulsion efficiency can be determined by heating thermally immature source rocks in the presence of liquid water (i.e., hydrous pyrolysis) at temperatures between 350°C and 365°C for 72 hr. This pyrolysis method generates oil that is compositionally similar to natural crude oil and expels it by processes operative in the subsurface. Consequently, hydrous pyrolysis provides a means to determine oil-expulsion efficiencies and the rock properties that influence them. Smectite in source rocks has previously been considered to promote oil generation and expulsion and is the focus of this hydrous-pyrolysis study involving a representative sample of smectite-rich source rock from the Eocene Kreyenhagen Shale in the San Joaquin Basin of California. Smectite is the major clay mineral (31 wt. %) in this thermally immature sample, which contains 9.4 wt. % total organic carbon (TOC) comprised of type II kerogen. Compared to other immature source rocks that lack smectite as their major clay mineral, the expulsion efficiency of the Kreyenhagen Shale was significantly lower. The expulsion efficiency of the Kreyenhagen whole rock was reduced 88% compared to that of its isolated kerogen. This significant reduction is attributed to bitumen impregnating the smectite interlayers in addition to the rock matrix. Within the interlayers, much of the bitumen is converted to pyrobitumen through crosslinking instead of oil through thermal cracking. As a result, smectite does not promote oil generation but inhibits it. Bitumen impregnation of the rock matrix and smectite interlayers results in the rock pore system changing from water wet to bitumen wet. This change prevents potassium ion (K+) transfer and dissolution and precipitation reactions needed for the conversion of smectite to

  17. Catalytic fast pyrolysis of cellulose and biomass to produce levoglucosenone using magnetic SO4(2-)/TiO2-Fe3O4.

    PubMed

    Lu, Qiang; Ye, Xiao-ning; Zhang, Zhi-bo; Dong, Chang-qing; Zhang, Ying

    2014-11-01

    Magnetic superacid (SO4(2-)/TiO2-Fe3O4) was prepared for catalytic fast pyrolysis of cellulose and poplar wood to produce levoglucosenone (LGO). Its catalytic activity was evaluated via pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) experiments, and compared with the non-magnetic SO4(2-)/TiO2, phosphoric acid (H3PO4) and sulfur acid (H2SO4) catalysts. Moreover, the LGO yield was quantitatively determined. The results indicated that the magnetic SO4(2-)/TiO2-Fe3O4 was effective to selectively produce LGO from both cellulose and poplar wood. Its catalytic capability was a little better than the non-magnetic SO4(2-)/TiO2 and H3PO4, and much better than the H2SO4. The maximal LGO yields from both cellulose and poplar wood were obtained at 300 °C with the feedstock/catalyst ratio of 1/1, reaching as high as 15.43 wt% from cellulose and 7.06 wt% from poplar wood, respectively. PMID:25173471

  18. Techno-economic evaluation of the integrated biosorption-pyrolysis technology for lead (Pb) recovery from aqueous solution.

    PubMed

    Liu, Wu-Jun; Zeng, Fan-Xin; Jiang, Hong; Zhang, Xue-Song; Yu, Han-Qing

    2011-05-01

    An integrated biosorption-pyrolysis technology was employed to recover Pb from aqueous solution. A series of biosorption, fast pyrolysis and leaching experiments were carried out. The optimum pH and adsorbent dose for Pb adsorption from aqueous solution are 6.0 and 3.0 g L(-1), respectively. The temperature is a key factor influencing the yields of pyrolysis products, and the maximum yield of bio-oil is 45.7% at 773 K. The pyrolysis technology can effectively recover Pb from Pb polluted Typha angustifolia biomass (Pb-TAB) and its recovery efficiency is not notably influenced by temperature. According to the economic evaluation, the biosorption-pyrolysis technology has great techno-economic advantages over the conventional biosorption-leaching technology.

  19. Gas Chromatography/Atmospheric Pressure Chemical Ionization-Fourier Transform Ion Cyclotron Resonance Mass Spectrometry of Pyrolysis Oil from German Brown Coal

    PubMed Central

    Zuber, Jan; Kroll, Marius M.; Rathsack, Philipp; Otto, Matthias

    2016-01-01

    Pyrolysis oil from the slow pyrolysis of German brown coal from Schöningen, obtained at a temperature of 500°C, was separated and analyzed using hyphenation of gas chromatography with an atmospheric pressure chemical ionization source operated in negative ion mode and Fourier transform ion cyclotron resonance mass spectrometry (GC-APCI-FT-ICR-MS). Development of this ultrahigh-resolving analysis method is described, that is, optimization of specific GC and APCI parameters and performed data processing. The advantages of GC-APCI-FT-ICR-MS hyphenation, for example, soft ionization, ultrahigh-resolving detection, and most important isomer separation, were demonstrated for the sample liquid. For instance, it was possible to separate and identify nine different propylphenol, ethylmethylphenol, and trimethylphenol isomers. Furthermore, homologous series of different acids, for example, alkyl and alkylene carboxylic acids, were verified, as well as homologous series of alkyl phenols, alkyl dihydroxy benzenes, and alkoxy alkyl phenols. PMID:27066076

  20. Gas Chromatography/Atmospheric Pressure Chemical Ionization-Fourier Transform Ion Cyclotron Resonance Mass Spectrometry of Pyrolysis Oil from German Brown Coal.

    PubMed

    Zuber, Jan; Kroll, Marius M; Rathsack, Philipp; Otto, Matthias

    2016-01-01

    Pyrolysis oil from the slow pyrolysis of German brown coal from Schöningen, obtained at a temperature of 500°C, was separated and analyzed using hyphenation of gas chromatography with an atmospheric pressure chemical ionization source operated in negative ion mode and Fourier transform ion cyclotron resonance mass spectrometry (GC-APCI-FT-ICR-MS). Development of this ultrahigh-resolving analysis method is described, that is, optimization of specific GC and APCI parameters and performed data processing. The advantages of GC-APCI-FT-ICR-MS hyphenation, for example, soft ionization, ultrahigh-resolving detection, and most important isomer separation, were demonstrated for the sample liquid. For instance, it was possible to separate and identify nine different propylphenol, ethylmethylphenol, and trimethylphenol isomers. Furthermore, homologous series of different acids, for example, alkyl and alkylene carboxylic acids, were verified, as well as homologous series of alkyl phenols, alkyl dihydroxy benzenes, and alkoxy alkyl phenols. PMID:27066076

  1. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels. Thermochemical Research Pathways with In Situ and Ex Situ Upgrading of Fast Pyrolysis Vapors

    SciTech Connect

    Dutta, Abhijit; Sahir, Asad; Tan, Eric; Humbird, David; Snowden-Swan, Lesley J.; Meyer, Pimphan; Ross, Jeff; Sexton, Danielle; Yap, Raymond; Lukas, John Lukas

    2015-03-01

    This report was developed as part of the U.S. Department of Energy’s Bioenergy Technologies Office’s efforts to enable the development of technologies for the production of infrastructurecompatible, cost-competitive liquid hydrocarbon fuels from biomass. Specifically, this report details two conceptual designs based on projected product yields and quality improvements via catalyst development and process integration. It is expected that these research improvements will be made within the 2022 timeframe. The two conversion pathways detailed are (1) in situ and (2) ex situ upgrading of vapors produced from the fast pyrolysis of biomass. While the base case conceptual designs and underlying assumptions outline performance metrics for feasibility, it should be noted that these are only two of many other possibilities in this area of research. Other promising process design options emerging from the research will be considered for future techno-economic analysis.

  2. Catalytic fast pyrolysis of straw biomass in an internally interconnected fluidized bed to produce aromatics and olefins: effect of different catalysts.

    PubMed

    Zhang, Huiyan; Xiao, Rui; Jin, Baosheng; Shen, Dekui; Chen, Ran; Xiao, Guomin

    2013-06-01

    A novel reactor, named internally interconnected fluidized bed (IIFB), was specially designed for catalytic fast pyrolysis (CFP) of straw biomass. Catalytic characteristics of four types of catalysts (ZSM-5, LOSA-1, Gamma-Al2O3 and spent FCC catalysts) for producing aromatics and olefins were investigated in this reactor. The results show that IIFB reactor can realize CFP process. The maximum carbon yields of aromatics (12.8%) and C2-C4 olefins (10.5%) were obtained with ZSM-5. ZSM-5 shows the highest selectivity of naphthalene (12.1%), whereas spent FCC catalyst presents the highest selectivity of benzene (45.5%). The selectivity of ethylene and propylene are equal in the present of ZSM-5 and LOSA-1. Gamma-Al2O3 and spent FCC catalysts show a higher selectivity of ethylene than that of propylene. This paper provides a new reactor for CFP process and some suggestions for choosing catalyst. PMID:23587812

  3. Promotion of hydrogen-rich gas and phenolic-rich bio-oil production from green macroalgae Cladophora glomerata via pyrolysis over its bio-char.

    PubMed

    Norouzi, Omid; Jafarian, Sajedeh; Safari, Farid; Tavasoli, Ahmad; Nejati, Behnam

    2016-11-01

    Conversion of Cladophora glomerata (C. glomerata) as a Caspian Sea's green macroalgae into gaseous, liquid and solid products was carried out via pyrolysis at different temperatures to determine its potential for bio-oil and hydrogen-rich gas production for further industrial utilization. Non-catalytic tests were performed to determine the optimum condition for bio-oil production. The highest portion of bio-oil was retrieved at 500°C. The catalytic test was performed using the bio-char derived at 500°C as a catalyst. Effect of the addition of the algal bio-char on the composition of the bio-oil and also gaseous products was investigated. Pyrolysis derived bio-char was characterized by BET, FESEM and ICP method to show its surface area, porosity, and presence of inorganic metals on its surface, respectively. Phenols were increased from 8.5 to 20.76area% by the addition of bio-char. Moreover, the hydrogen concentration and hydrogen selectivity were also enhanced by the factors of 1.37, 1.59 respectively. PMID:27544914

  4. Promotion of hydrogen-rich gas and phenolic-rich bio-oil production from green macroalgae Cladophora glomerata via pyrolysis over its bio-char.

    PubMed

    Norouzi, Omid; Jafarian, Sajedeh; Safari, Farid; Tavasoli, Ahmad; Nejati, Behnam

    2016-11-01

    Conversion of Cladophora glomerata (C. glomerata) as a Caspian Sea's green macroalgae into gaseous, liquid and solid products was carried out via pyrolysis at different temperatures to determine its potential for bio-oil and hydrogen-rich gas production for further industrial utilization. Non-catalytic tests were performed to determine the optimum condition for bio-oil production. The highest portion of bio-oil was retrieved at 500°C. The catalytic test was performed using the bio-char derived at 500°C as a catalyst. Effect of the addition of the algal bio-char on the composition of the bio-oil and also gaseous products was investigated. Pyrolysis derived bio-char was characterized by BET, FESEM and ICP method to show its surface area, porosity, and presence of inorganic metals on its surface, respectively. Phenols were increased from 8.5 to 20.76area% by the addition of bio-char. Moreover, the hydrogen concentration and hydrogen selectivity were also enhanced by the factors of 1.37, 1.59 respectively.

  5. The production and evaluation of oils from the steam pyrolysis of poplar chips

    SciTech Connect

    Boocock, D.G.B.; Chowdhury, A.; Allen, S.G.

    1987-04-01

    In the early 1970's, as a response to the world oil crisis, two water-based technologies for the thermal liquefaction of woody biomass were studied extensively. The first of these employed sodium carbonate as a soluble catalyst, and carbon monoxide as a reducing gas. The second technology, also based on earlier work, used nickel metal catalysts and hydrogen. In all cases the substrate was powdered wood slurried in water, and, in those studies using nickel metal as catalyst, it was not clear what role the catalyst played. In particular it was realised that the wood must yield gases or liquid before the catalyst could intervene. If liquids were formed, then the role of the catalyst/hydrogen system would be stabilisation, since under moderate heating rates, biomass alone in water does not yield significant quantities of oil. The stabilisation could also involve upgrading, if such things as oxygen content and viscosity were also decreased.

  6. A review of the toxicity of biomass pyrolysis liquids formed at low temperatures

    SciTech Connect

    Diebold, J P

    1997-04-01

    The scaleup of biomass fast pyrolysis systems to large pilot and commercial scales will expose an increasingly large number of personnel to potential health hazards, especially during the evaluation of the commercial use of the pyrolysis condensates. Although the concept of fast pyrolysis to optimize liquid products is relatively new, low-temperature pyrolysis processes have been used over the aeons to produce charcoal and liquid by-products, e.g., smoky food flavors, food preservatives, and aerosols containing narcotics, e.g., nicotine. There are a number of studies in the historical literature that concern the hazards of acute and long-term exposure to smoke and to the historical pyrolysis liquids formed at low temperatures. The reported toxicity of smoke, smoke food flavors, and fast pyrolysis oils is reviewed. The data found for these complex mixtures suggest that the toxicity may be less than that of the individual components. It is speculated that there may be chemical reactions that take place that serve to reduce the toxicity during aging. 81 refs.

  7. Characterization of oil shale, isolated kerogen, and post-pyrolysis residues using advanced 13 solid-state nuclear magnetic resonance spectroscopy

    USGS Publications Warehouse

    Cao, Xiaoyan; Birdwell, Justin E.; Chappell, Mark A.; Li, Yuan; Pignatello, Joseph J.; Mao, Jingdong

    2013-01-01

    Characterization of oil shale kerogen and organic residues remaining in postpyrolysis spent shale is critical to the understanding of the oil generation process and approaches to dealing with issues related to spent shale. The chemical structure of organic matter in raw oil shale and spent shale samples was examined in this study using advanced solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. Oil shale was collected from Mahogany zone outcrops in the Piceance Basin. Five samples were analyzed: (1) raw oil shale, (2) isolated kerogen, (3) oil shale extracted with chloroform, (4) oil shale retorted in an open system at 500°C to mimic surface retorting, and (5) oil shale retorted in a closed system at 360°C to simulate in-situ retorting. The NMR methods applied included quantitative direct polarization with magic-angle spinning at 13 kHz, cross polarization with total sideband suppression, dipolar dephasing, CHn selection, 13C chemical shift anisotropy filtering, and 1H-13C long-range recoupled dipolar dephasing. The NMR results showed that, relative to the raw oil shale, (1) bitumen extraction and kerogen isolation by demineralization removed some oxygen-containing and alkyl moieties; (2) unpyrolyzed samples had low aromatic condensation; (3) oil shale pyrolysis removed aliphatic moieties, leaving behind residues enriched in aromatic carbon; and (4) oil shale retorted in an open system at 500°C contained larger aromatic clusters and more protonated aromatic moieties than oil shale retorted in a closed system at 360°C, which contained more total aromatic carbon with a wide range of cluster sizes.

  8. The effects of torrefaction on compositions of bio-oil and syngas from biomass pyrolysis by microwave heating.

    PubMed

    Ren, Shoujie; Lei, Hanwu; Wang, Lu; Bu, Quan; Chen, Shulin; Wu, Joan; Julson, James; Ruan, Roger

    2013-05-01

    Microwave pyrolysis of torrefied Douglas fir sawdust pellet was investigated to determine the effects of torrefaction on the biofuel production. Compared to the pyrolysis of raw biomass, the increased concentrations of phenols and sugars and reduced concentrations of guaiacols and furans were obtained from pyrolysis of torrefied biomass, indicating that torrefaction as a pretreatment favored the phenols and sugars production. Additionally, about 3.21-7.50 area% hydrocarbons and the reduced concentration of organic acids were obtained from pyrolysis of torrefied biomass. Torrefaction also altered the compositions of syngas by reducing CO2 and increasing H2 and CH4. The syngas was rich in H2, CH4, and CO implying that the syngas quality was significantly improved by torrefaction process. PMID:22840200

  9. The effects of torrefaction on compositions of bio-oil and syngas from biomass pyrolysis by microwave heating.

    PubMed

    Ren, Shoujie; Lei, Hanwu; Wang, Lu; Bu, Quan; Chen, Shulin; Wu, Joan; Julson, James; Ruan, Roger

    2013-05-01

    Microwave pyrolysis of torrefied Douglas fir sawdust pellet was investigated to determine the effects of torrefaction on the biofuel production. Compared to the pyrolysis of raw biomass, the increased concentrations of phenols and sugars and reduced concentrations of guaiacols and furans were obtained from pyrolysis of torrefied biomass, indicating that torrefaction as a pretreatment favored the phenols and sugars production. Additionally, about 3.21-7.50 area% hydrocarbons and the reduced concentration of organic acids were obtained from pyrolysis of torrefied biomass. Torrefaction also altered the compositions of syngas by reducing CO2 and increasing H2 and CH4. The syngas was rich in H2, CH4, and CO implying that the syngas quality was significantly improved by torrefaction process.

  10. Use of bark-derived pyrolysis oils ass a phenol substitute in structural panel adhesives

    SciTech Connect

    Louisiana Pacific Corp

    2004-03-01

    The main objective of this program was to pilot the world's first commercial-scale production of an acceptable phenol formaldehyde (PF) resin containing natural resin (NR) ingredients, for use as an adhesive in Oriented-Strand Board (OSB) and plywood panel products. Natural Resin products, specifically MNRP are not lignin ''fillers''. They are chemically active, natural phenolics that effectively displace significant amounts of phenol in PF resins, and which are extracted from bark-derived and wood-derived bio-oils. Other objectives included the enhancement of the economics of NR (MNRP) production by optimizing the production of certain Rapid Thermal Processing (RTP{trademark}) byproducts, particularly char and activated carbon. The options were to activate the char for use in waste-water and/or stack gas purification. The preliminary results indicate that RTP{trademark} carbon may ultimately serve as a feedstock for activated carbon synthesis, as a fuel to be used within the wood product mill, or a fuel for an electrical power generating facility. Incorporation of the char as an industrial heat source for use in mill operations was L-P's initial intention for the carbon, and was also of interest to Weyerhaeuser as they stepped into in the project.

  11. Effect of catalytic pyrolysis conditions using pulse current heating method on pyrolysis products of wood biomass.

    PubMed

    Honma, Sensho; Hata, Toshimitsu; Watanabe, Takashi

    2014-01-01

    The influence of catalysts on the compositions of char and pyrolysis oil obtained by pyrolysis of wood biomass with pulse current heating was studied. The effects of catalysts on product compositions were analyzed using GC-MS and TEM. The compositions of some aromatic compounds changed noticeably when using a metal oxide species as the catalyst. The coexistence or dissolution of amorphous carbon and iron oxide was observed in char pyrolyzed at 800 °C with Fe3O4. Pyrolysis oil compositions changed remarkably when formed in the presence of a catalyst compared to that obtained from the uncatalyzed pyrolysis of wood meal. We observed a tendency toward an increase in the ratio of polyaromatic hydrocarbons in the pyrolysis oil composition after catalytic pyrolysis at 800 °C. Pyrolysis of biomass using pulse current heating and an adequate amount of catalyst is expected to yield a higher content of specific polyaromatic compounds.

  12. Effect of Catalytic Pyrolysis Conditions Using Pulse Current Heating Method on Pyrolysis Products of Wood Biomass

    PubMed Central

    Honma, Sensho; Hata, Toshimitsu; Watanabe, Takashi

    2014-01-01

    The influence of catalysts on the compositions of char and pyrolysis oil obtained by pyrolysis of wood biomass with pulse current heating was studied. The effects of catalysts on product compositions were analyzed using GC-MS and TEM. The compositions of some aromatic compounds changed noticeably when using a metal oxide species as the catalyst. The coexistence or dissolution of amorphous carbon and iron oxide was observed in char pyrolyzed at 800°C with Fe3O4. Pyrolysis oil compositions changed remarkably when formed in the presence of a catalyst compared to that obtained from the uncatalyzed pyrolysis of wood meal. We observed a tendency toward an increase in the ratio of polyaromatic hydrocarbons in the pyrolysis oil composition after catalytic pyrolysis at 800°C. Pyrolysis of biomass using pulse current heating and an adequate amount of catalyst is expected to yield a higher content of specific polyaromatic compounds. PMID:25614894

  13. Effect of catalytic pyrolysis conditions using pulse current heating method on pyrolysis products of wood biomass.

    PubMed

    Honma, Sensho; Hata, Toshimitsu; Watanabe, Takashi

    2014-01-01

    The influence of catalysts on the compositions of char and pyrolysis oil obtained by pyrolysis of wood biomass with pulse current heating was studied. The effects of catalysts on product compositions were analyzed using GC-MS and TEM. The compositions of some aromatic compounds changed noticeably when using a metal oxide species as the catalyst. The coexistence or dissolution of amorphous carbon and iron oxide was observed in char pyrolyzed at 800 °C with Fe3O4. Pyrolysis oil compositions changed remarkably when formed in the presence of a catalyst compared to that obtained from the uncatalyzed pyrolysis of wood meal. We observed a tendency toward an increase in the ratio of polyaromatic hydrocarbons in the pyrolysis oil composition after catalytic pyrolysis at 800 °C. Pyrolysis of biomass using pulse current heating and an adequate amount of catalyst is expected to yield a higher content of specific polyaromatic compounds. PMID:25614894

  14. Pyrolysis of Table Sugar

    PubMed Central

    Karagöz, Selhan

    2013-01-01

    Table sugars were pyrolyzed at different temperatures (300, 400, and 500°C) in a fixed-bed reactor. The effect of pyrolysis temperature on yields of liquid, solid, and gaseous products was investigated. As expected the yield of liquid products gradually increased and the yield of solid products gradually decreased when the pyrolysis temperature was raised. The yield of liquid products was greatest (52 wt%) at 500°C. The composition of bio-oils extracted with diethyl ether was identified by means of gas chromatography mass spectrometry (GC-MS), nuclear magnetic resonance (1H-NMR), and Fourier transform infrared spectroscopy (FTIR). The following compounds were observed in bio-oils produced from the pyrolysis of table sugar at 500°C: 1,4:3,6-dianhydro-α-d-glucopyranose, 5-(hydroxymethyl) furfural, 5-acetoxymethyl-2-furaldehyde, and cyclotetradecane liquid product. The relative concentration of 5-(hydroxymethyl) furfural was the highest in bio-oils obtained from pyrolysis of table sugars at 500°C. PMID:24223500

  15. Investigation on thermochemical behaviour of low rank Malaysian coal, oil palm biomass and their blends during pyrolysis via thermogravimetric analysis (TGA).

    PubMed

    Idris, Siti Shawalliah; Abd Rahman, Norazah; Ismail, Khudzir; Alias, Azil Bahari; Abd Rashid, Zulkifli; Aris, Mohd Jindra

    2010-06-01

    This study aims to investigate the behaviour of Malaysian sub-bituminous coal (Mukah Balingian), oil palm biomass (empty fruit bunches (EFB), kernel shell (PKS) and mesocarp fibre (PMF)) and their respective blends during pyrolysis using thermogravimetric analysis (TGA). The coal/palm biomass blends were prepared at six different weight ratios and experiments were carried out under dynamic conditions using nitrogen as inert gas at various heating rates to ramp the temperature from 25 degrees C to 900 degrees C. The derivative thermogravimetric (DTG) results show that thermal decomposition of EFB, PMF and PKS exhibit one, two and three distinct evolution profiles, respectively. Apparently, the thermal profiles of the coal/oil palm biomass blends appear to correlate with the percentage of biomass added in the blends, thus, suggesting lack of interaction between the coal and palm biomass. First-order reaction model were used to determine the kinetics parameters for the pyrolysis of coal, palm biomass and their respective blends. PMID:20153633

  16. Comparison of direct and indirect pyrolysis of micro-algae Isochrysis.

    PubMed

    Wang, Xin; Zhao, Bingwei; Tang, Xiaohan; Yang, Xiaoyi

    2015-03-01

    Yield and composition of pyrolysis oil in direct and indirect pyrolysis process were investigated which indicated that pyrolysis of defatted microalgae provided a potential way to convert protein and carbohydrate to biofuels. Defatted microalgae pyrolysis with lipid extraction has higher total oil yield than only microalgae direct pyrolysis. There was an increase for N-heterocyclic compounds and phenols and a decrease for hydrocarbons in defatted microalgae pyrolysis oil. There is an apparent decrease from C12 to C16 and nearly no carbon distribution from C17 to C22 for defatted microalgae pyrolysis. Based on composition of pyrolysis feedstock, pyrolysis oil yields were simulated by Compounds Biofuel Model and their accuracy was less than ±4.4%. Considering total oil yield and characteristics, microalgae pyrolysis after lipid extraction process is a promising way for microalgae utilization.

  17. Phytotoxicity assessment on corn stover biochar, derived from fast pyrolysis, based on seed germination, early growth, and potential plant cell damage.

    PubMed

    Li, Yang; Shen, Fei; Guo, Haiyan; Wang, Zhanghong; Yang, Gang; Wang, Lilin; Zhang, Yanzong; Zeng, Yongmei; Deng, Shihuai

    2015-06-01

    The potential phytotoxicity of water extractable toxicants in a typical corn stover biochar, the product of fast pyrolysis, was investigated using an aqueous biochar extract on a soil-less bioassay with tomato plants. The biochar dosage of 0.0-16.0 g beaker(-1) resulted in an inverted U-shaped dose-response relationship between biochar doasage and seed germination/seedling growth. This indicated that tomato growth was slightly stimulated by low dosages of biochar and inhibited with higher dosages of biochar. Additionally, antioxidant enzyme activities in the roots and leaves were enhanced at lower dosages, but rapidly decreased with higher dosages of biochar. With the increased dosages of biochar, the malondialdehyde content in the roots and leaves increased, in addition with the observed morphology of necrotic root cells, suggesting that serious damage to tomato seedlings occurred. EC50 of root length inhibition occurred with biochar dosages of 9.2 g beaker(-1) (3.5th day) and 16.7 g beaker(-1) (11th day) (equivalent to 82.8 and 150.3 t ha(-1), respectively), which implied that toxicity to the early growth of tomato can potentially be alleviated as the plant grows.

  18. Direct determination of arsenic in soil samples by fast pyrolysis-chemical vapor generation using sodium formate as a reductant followed by nondispersive atomic fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Duan, Xuchuan; Zhang, Jingya; Bu, Fanlong

    2015-09-01

    This new study shows for the first time that sodium formate can react with trace arsenic to form volatile species via fast pyrolysis - chemical vapor generation. We found that the presence of thiourea greatly enhanced the generation efficiency and eliminated the interference of copper. We studied the reaction temperature, the volume of sodium formate, the reaction acidity, and the carried argon rate using nondispersive atomic fluorescence spectrometry. Under optimal conditions of T = 500 °C, the volumes of 30% sodium formate and 10% thiourea were 0.2 ml and 0.05 ml, respectively. The carrier argon rate was 300 ml min- 1 and the detection limit and precision of arsenic were 0.39 ng and 3.25%, respectively. The amount of arsenic in soil can be directly determined by adding trace amount of hydrochloric acid as a decomposition reagent without any sample pretreatment. The method was successfully applied to determine trace amount of arsenic in two soil-certified reference materials (GBW07453 and GBW07450), and the results were found to be in agreement with certified reference values.

  19. Phytotoxicity assessment on corn stover biochar, derived from fast pyrolysis, based on seed germination, early growth, and potential plant cell damage.

    PubMed

    Li, Yang; Shen, Fei; Guo, Haiyan; Wang, Zhanghong; Yang, Gang; Wang, Lilin; Zhang, Yanzong; Zeng, Yongmei; Deng, Shihuai

    2015-06-01

    The potential phytotoxicity of water extractable toxicants in a typical corn stover biochar, the product of fast pyrolysis, was investigated using an aqueous biochar extract on a soil-less bioassay with tomato plants. The biochar dosage of 0.0-16.0 g beaker(-1) resulted in an inverted U-shaped dose-response relationship between biochar doasage and seed germination/seedling growth. This indicated that tomato growth was slightly stimulated by low dosages of biochar and inhibited with higher dosages of biochar. Additionally, antioxidant enzyme activities in the roots and leaves were enhanced at lower dosages, but rapidly decreased with higher dosages of biochar. With the increased dosages of biochar, the malondialdehyde content in the roots and leaves increased, in addition with the observed morphology of necrotic root cells, suggesting that serious damage to tomato seedlings occurred. EC50 of root length inhibition occurred with biochar dosages of 9.2 g beaker(-1) (3.5th day) and 16.7 g beaker(-1) (11th day) (equivalent to 82.8 and 150.3 t ha(-1), respectively), which implied that toxicity to the early growth of tomato can potentially be alleviated as the plant grows. PMID:25628114

  20. Carbon abatement via treating the solid waste from the Australian olive industry in mobile pyrolysis units: LCA with uncertainty analysis.

    PubMed

    El Hanandeh, Ali

    2013-04-01

    The olive oil industry in Australia has been growing at a rapid rate over the past decade. It is forecast to continue growing due to the steady increase in demand for olive oil and olive products in the local and regional market. However, the olive oil extraction process generates large amounts of solid waste called olive husk which is currently underutilized. This paper uses life-cycle methodology to analyse the carbon emission reduction potential of utilizing olive husk as a feedstock in a mobile pyrolysis unit. Four scenarios, based on different combinations of pyrolysis technologies (slow versus fast) and end-use of products (land application versus energy utilization), are constructed. The performance of each scenario under conditions of uncertainty was also investigated. The results show that all scenarios result in significant carbon emission abatement. Processing olive husk in mobile fast pyrolysis units and the utilization of bio-oil and biochar as substitutes for heavy fuel oil and coal is likely to realize a carbon offset greater than 32.3 Gg CO2-eq annually in 90% of the time. Likewise, more than 3.2 Gg-C (11.8 Gg CO2-eq) per year could be sequestered in the soil in the form of fixed carbon if slow mobile pyrolysis units were used to produce biochar.

  1. Carbon abatement via treating the solid waste from the Australian olive industry in mobile pyrolysis units: LCA with uncertainty analysis.

    PubMed

    El Hanandeh, Ali

    2013-04-01

    The olive oil industry in Australia has been growing at a rapid rate over the past decade. It is forecast to continue growing due to the steady increase in demand for olive oil and olive products in the local and regional market. However, the olive oil extraction process generates large amounts of solid waste called olive husk which is currently underutilized. This paper uses life-cycle methodology to analyse the carbon emission reduction potential of utilizing olive husk as a feedstock in a mobile pyrolysis unit. Four scenarios, based on different combinations of pyrolysis technologies (slow versus fast) and end-use of products (land application versus energy utilization), are constructed. The performance of each scenario under conditions of uncertainty was also investigated. The results show that all scenarios result in significant carbon emission abatement. Processing olive husk in mobile fast pyrolysis units and the utilization of bio-oil and biochar as substitutes for heavy fuel oil and coal is likely to realize a carbon offset greater than 32.3 Gg CO2-eq annually in 90% of the time. Likewise, more than 3.2 Gg-C (11.8 Gg CO2-eq) per year could be sequestered in the soil in the form of fixed carbon if slow mobile pyrolysis units were used to produce biochar. PMID:23129610

  2. Coal structure vs flash pyrolysis products

    SciTech Connect

    Calkins, W.H.

    1983-01-01

    The fast pyrolysis of coal produces tar, char and a range of low molecular weight gases in various proportions and amounts depending on the pyrolysis conditions (temperature, pressure) and the coal being pyrolyzed. Much research effort has been devoted to study of the reaction kinetics and effect of process variables, attempting thereby to elucidate the pyrolysis mechanism. Less effort has been focused on coal chemical structure and its relationship to the pyrolysis reactions and pyrolysis products. It was to attempt to better understand coal structure and its influence on pyrolysis products and pyrolysis mechanisms that this project was undertaken. This paper reports only on that portion of the work concerned with the aliphatic hydrocarbon products and particularly the light olefins. (7 tables, 12 figures, 16 refs.)

  3. Desulfurized gas production from vertical kiln pyrolysis

    DOEpatents

    Harris, Harry A.; Jones, Jr., John B.

    1978-05-30

    A gas, formed as a product of a pyrolysis of oil shale, is passed through hot, retorted shale (containing at least partially decomposed calcium or magnesium carbonate) to essentially eliminate sulfur contaminants in the gas. Specifically, a single chambered pyrolysis vessel, having a pyrolysis zone and a retorted shale gas into the bottom of the retorted shale zone and cleaned product gas is withdrawn as hot product gas near the top of such zone.

  4. Cr(VI)/Cr(III) and As(V)/As(III) ratio assessments in Jordanian spent oil shale produced by aerobic combustion and Anaerobic Pyrolysis.

    PubMed

    El-Hasan, Tayel; Szczerba, Wojciech; Buzanich, Günter; Radtke, Martin; Riesemeier, Heinrich; Kersten, Michael

    2011-11-15

    With the increase in the awareness of the public in the environmental impact of oil shale utilization, it is of interest to reveal the mobility of potentially toxic trace elements in spent oil shale. Therefore, the Cr and As oxidation state in a representative Jordanian oil shale sample from the El-Lajjoun area were investigated upon different lab-scale furnace treatments. The anaerobic pyrolysis was performed in a retort flushed by nitrogen gas at temperatures in between 600 and 800 °C (pyrolytic oil shale, POS). The aerobic combustion was simply performed in porcelain cups heated in a muffle furnace for 4 h at temperatures in between 700 and 1000 °C (burned oil shale, BOS). The high loss-on-ignition in the BOS samples of up to 370 g kg(-1) results from both calcium carbonate and organic carbon degradation. The LOI leads to enrichment in the Cr concentrations from 480 mg kg(-1) in the original oil shale up to 675 mg kg(-1) in the ≥ 850 °C BOS samples. Arsenic concentrations were not much elevated beyond that in the average shale standard (13 mg kg(-1)). Synchrotron-based X-ray absorption near-edge structure (XANES) analysis revealed that within the original oil shale the oxidation states of Cr and As were lower than after its aerobic combustion. Cr(VI) increased from 0% in the untreated or pyrolyzed oil shale up to 60% in the BOS ash combusted at 850 °C, while As(V) increased from 64% in the original oil shale up to 100% in the BOS ash at 700 °C. No Cr was released from original oil shale and POS products by the European compliance leaching test CEN/TC 292 EN 12457-1 (1:2 solid/water ratio, 24 h shaking), whereas leachates from BOS samples showed Cr release in the order of one mmol L(-1). The leachable Cr content is dominated by chromate as revealed by catalytic adsorptive stripping voltammetry (CAdSV) which could cause harmful contamination of surface and groundwater in the semiarid environment of Jordan.

  5. Cr(VI)/Cr(III) and As(V)/As(III) ratio assessments in Jordanian spent oil shale produced by aerobic combustion and Anaerobic Pyrolysis.

    PubMed

    El-Hasan, Tayel; Szczerba, Wojciech; Buzanich, Günter; Radtke, Martin; Riesemeier, Heinrich; Kersten, Michael

    2011-11-15

    With the increase in the awareness of the public in the environmental impact of oil shale utilization, it is of interest to reveal the mobility of potentially toxic trace elements in spent oil shale. Therefore, the Cr and As oxidation state in a representative Jordanian oil shale sample from the El-Lajjoun area were investigated upon different lab-scale furnace treatments. The anaerobic pyrolysis was performed in a retort flushed by nitrogen gas at temperatures in between 600 and 800 °C (pyrolytic oil shale, POS). The aerobic combustion was simply performed in porcelain cups heated in a muffle furnace for 4 h at temperatures in between 700 and 1000 °C (burned oil shale, BOS). The high loss-on-ignition in the BOS samples of up to 370 g kg(-1) results from both calcium carbonate and organic carbon degradation. The LOI leads to enrichment in the Cr concentrations from 480 mg kg(-1) in the original oil shale up to 675 mg kg(-1) in the ≥ 850 °C BOS samples. Arsenic concentrations were not much elevated beyond that in the average shale standard (13 mg kg(-1)). Synchrotron-based X-ray absorption near-edge structure (XANES) analysis revealed that within the original oil shale the oxidation states of Cr and As were lower than after its aerobic combustion. Cr(VI) increased from 0% in the untreated or pyrolyzed oil shale up to 60% in the BOS ash combusted at 850 °C, while As(V) increased from 64% in the original oil shale up to 100% in the BOS ash at 700 °C. No Cr was released from original oil shale and POS products by the European compliance leaching test CEN/TC 292 EN 12457-1 (1:2 solid/water ratio, 24 h shaking), whereas leachates from BOS samples showed Cr release in the order of one mmol L(-1). The leachable Cr content is dominated by chromate as revealed by catalytic adsorptive stripping voltammetry (CAdSV) which could cause harmful contamination of surface and groundwater in the semiarid environment of Jordan. PMID:21970732

  6. Combustion, pyrolysis, gasification, and liquefaction of biomass

    SciTech Connect

    Reed, T.B.

    1980-09-01

    All the products now obtained from oil can be provided by thermal conversion of the solid fuels biomass and coal. As a feedstock, biomass has many advantages over coal and has the potential to supply up to 20% of US energy by the year 2000 and significant amounts of energy for other countries. However, it is imperative that in producing biomass for energy we practice careful land use. Combustion is the simplest method of producing heat from biomass, using either the traditional fixed-bed combustion on a grate or the fluidized-bed and suspended combustion techniques now being developed. Pyrolysis of biomass is a particularly attractive process if all three products - gas, wood tars, and charcoal - can be used. Gasification of biomass with air is perhaps the most flexible and best-developed process for conversion of biomass to fuel today, yielding a low energy gas that can be burned in existing gas/oil boilers or in engines. Oxygen gasification yields a gas with higher energy content that can be used in pipelines or to fire turbines. In addition, this gas can be used for producing methanol, ammonia, or gasoline by indirect liquefaction. Fast pyrolysis of biomass produces a gas rich in ethylene that can be used to make alcohols or gasoline. Finally, treatment of biomass with high pressure hydrogen can yield liquid fuels through direct liquefaction.

  7. Oil/source rock correlations in the Polish Flysch Carpathians and Mesozoic basement and organic facies of the Oligocene Menilite Shales: Insights from hydrous pyrolysis experiments

    USGS Publications Warehouse

    Curtis, John B.; Kotarba, M.J.; Lewan, M.D.; Wieclaw, D.

    2004-01-01

    The Oligocene Menilite Shales in the study area in the Polish Flysch Carpathians are organic-rich and contain varying mixtures of Type-II, Type-IIS and Type-III kerogen. The kerogens are thermally immature to marginally mature based on atomic H/C ratios and Rock-Eval data. This study defined three organic facies, i.e., sedimentary strata with differing hydrocarbon-generation potentials due to varying types and concentrations of organic matter. These facies correspond to the Silesian Unit and the eastern and western portions of the Skole Unit. Analysis of oils generated by hydrous pyrolysis of outcrop samples of Menilite Shales demonstrates that natural crude oils reservoired in the flysch sediments appear to have been generated from the Menilite Shales. Natural oils reservoired in the Mesozoic basement of the Carpathian Foredeep appear to be predominantly derived and migrated from Menilite Shales, with a minor contribution from at least one other source rock most probably within Middle Jurassic strata. Definition of organic facies may have been influenced by the heterogeneous distribution of suitable Menilite Shales outcrops and producing wells, and subsequent sample selection during the analytical phases of the study. ?? 2004 Elsevier Ltd. All rights reserved.

  8. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels: Thermochemical Research Pathways with In Situ and Ex Situ Upgrading of Fast Pyrolysis Vapors

    SciTech Connect

    Dutta, Abhijit; Sahir, A. H.; Tan, Eric; Humbird, David; Snowden-Swan, Lesley J.; Meyer, Pimphan A.; Ross, Jeff; Sexton, Danielle; Yap, Raymond; Lukas, John

    2015-03-01

    This report was developed as part of the U.S. Department of Energy’s Bioenergy Technologies Office’s efforts to enable the development of technologies for the production of infrastructure-compatible, cost-competitive liquid hydrocarbon fuels from biomass. Specifically, this report details two conceptual designs based on projected product yields and quality improvements via catalyst development and process integration. It is expected that these research improvements will be made within the 2022 timeframe. The two conversion pathways detailed are (1) in situ and (2) ex situ upgrading of vapors produced from the fast pyrolysis of biomass. While the base case conceptual designs and underlying assumptions outline performance metrics for feasibility, it should be noted that these are only two of many other possibilities in this area of research. Other promising process design options emerging from the research will be considered for future techno-economic analysis. Both the in situ and ex situ conceptual designs, using the underlying assumptions, project MFSPs of approximately $3.5/gallon gasoline equivalent (GGE). The performance assumptions for the ex situ process were more aggressive with higher distillate (diesel-range) products. This was based on an assumption that more favorable reaction chemistry (such as coupling) can be made possible in a separate reactor where, unlike in an in situ upgrading reactor, one does not have to deal with catalyst mixing with biomass char and ash, which pose challenges to catalyst performance and maintenance. Natural gas was used for hydrogen production, but only when off gases from the process was not sufficient to meet the needs; natural gas consumption is insignificant in both the in situ and ex situ base cases. Heat produced from the burning of char, coke, and off-gases allows for the production of surplus electricity which is sold to the grid allowing a reduction of approximately 5¢/GGE in the MFSP.

  9. Pyrolysis Research at the National Renewable Energy Laboratory

    SciTech Connect

    Iisa, Kristiina; Ciesielski, Peter N.; Nimlos, Mark R.

    2014-01-01

    The overwhelming majority of biomass pyrolysis research at NREL is supported by the US Department of Energy's Office of the Biomass Program and is focused on the production of 'drop-in' transportation fuels. This includes studies of fast pyrolysis and vapor phase upgrading of pyrolysis vapors to produce hydrocarbon fuel blendstocks or refinery feedstocks.

  10. Comparison of Pyrolysis Characteristics of degreased and synthesized Mongolian Pine

    NASA Astrophysics Data System (ADS)

    Wang, Kaige; Wang, Shurong; Guo, Xiujuan; Luo, Zhongyang; Fransson, Torsten

    2010-11-01

    In order to study the influence of components' cross-interaction on biomass pyrolysis, research of degreased and synthesized Mongolian Pine (MP) was performed on a thermogravimetric analyzer coupled with a Fourier transform infrared spectroscopy (TG-FTIR) and the fast pyrolysis device. Compared with synthesized MP, the thermal behavior of degreased MP is much closer to the original and the degreased MP produces less aldehydes, alcohols or phenols and acids due to the cross-interactions of components. Synthesized MP has lower bio-oil yield and higher gas production than the degreased one. And the contents of furfural, acetic acid and levoglucosan change with the kind of samples obviously due to the intense cross-interactions of components.

  11. Valorization of cotton stalks by fast pyrolysis and fixed bed air gasification for syngas production as precursor of second generation biofuels and sustainable agriculture.

    PubMed

    Kantarelis, E; Zabaniotou, A

    2009-01-01

    In the present study, the potential of cotton stalks utilization for H(2) and syngas production with respect to CO(2) mitigation, by means of thermochemical conversion (pyrolysis and gasification) was investigated. Pyrolysis was conducted at temperature range of 400-760 degrees C and the main parametric study concerned the effect of temperature on pyrolysis product distribution. Atmospheric pressure, air gasification at 750-950 degrees C for various lambda (0.02-0.07) was also studied. Experimental results showed that high temperature favors gas production in both processes; while low lambda gasification gave high gas yield. Syngas (CO and H(2)) was increased with temperature, while CO(2) followed an opposite trend. By pyrolysis, higher H(2) concentration in the produced gas (approximately 39% v/v) was achieved and at the same time lower amounts of CO(2) produced, compared to air gasification.

  12. Distributed Reforming of Biomass Pyrolysis Oils: Cooperative Research and Development Final Report, CRADA number CRD-06-00192

    SciTech Connect

    Czernik, S.

    2010-07-01

    The objective of this project is for Chevron and NREL to collaborate in determining the effect of bio-oil composition variability on autothermal reforming performance including bio-oil volatilization, homogeneous oxidative cracking, and catalytic reforming.

  13. Pyrolysis of waste tyres: A review

    SciTech Connect

    Williams, Paul T.

    2013-08-15

    Graphical abstract: - Highlights: • Pyrolysis of waste tyres produces oil, gas and char, and recovered steel. • Batch, screw kiln, rotary kiln, vacuum and fluidised-bed are main reactor types. • Product yields are influenced by reactor type, temperature and heating rate. • Pyrolysis oils are complex and can be used as chemical feedstock or fuel. • Research into higher value products from the tyre pyrolysis process is reviewed. - Abstract: Approximately 1.5 billion tyres are produced each year which will eventually enter the waste stream representing a major potential waste and environmental problem. However, there is growing interest in pyrolysis as a technology to treat tyres to produce valuable oil, char and gas products. The most common reactors used are fixed-bed (batch), screw kiln, rotary kiln, vacuum and fluidised-bed. The key influence on the product yield, and gas and oil composition, is the type of reactor used which in turn determines the temperature and heating rate. Tyre pyrolysis oil is chemically very complex containing aliphatic, aromatic, hetero-atom and polar fractions. The fuel characteristics of the tyre oil shows that it is similar to a gas oil or light fuel oil and has been successfully combusted in test furnaces and engines. The main gases produced from the pyrolysis of waste tyres are H{sub 2}, C{sub 1}–C{sub 4} hydrocarbons, CO{sub 2}, CO and H{sub 2}S. Upgrading tyre pyrolysis products to high value products has concentrated on char upgrading to higher quality carbon black and to activated carbon. The use of catalysts to upgrade the oil to a aromatic-rich chemical feedstock or the production of hydrogen from waste tyres has also been reported. Examples of commercial and semi-commercial scale tyre pyrolysis systems show that small scale batch reactors and continuous rotary kiln reactors have been developed to commercial scale.

  14. [Fast analysis of common fatty acids in edible vegetable oils by ultra-performance convergence chromatography-mass spectrometry].

    PubMed

    Lin, Chunhua; Xie, Xianqing; Fan, Naili; Tu, Yuanhong; Chen, Yan; Liao, Weilin

    2015-04-01

    A fast analytical method for five common fatty acids in six edible vegetable oils was developed by ultra-performance convergence chromatography-mass spectrometry (UPC2-MS). The five fatty acids are palmitic acid, stearic acid, oleic acid, linoleic acid and linolenic acid. Their contents in the corn oil, sunflower oil, soybean oil, tea oil, rapeseed oil and peanut oil were compared. The chromatographic separation was performed on an ACQUITY UPC2 BEH 2-EP column (100 mm x 2.1 mm, 1.7 µm) using the mobile phases of carbon dioxide and methanol/acetonitrile (1:1, v/v) with gradient elution. The separated compounds were detected by negative electrospray ionization ESF-MS. The results showed that the reasonable linearities were achieved for all the analytes over the range of 0.5-100 mg/L with the correlation coefficients (R2) of 0.9985-0.9998. The limits of quantification (S/N ≥ 10) of the five fatty acids were 0.15-0.50 mg/L. The recoveries of the five fatty acids at three spiked levels were in the range of 89.61%-108.50% with relative standard deviations of 0.69%-3.01%. The developed method showed high performance, good resolution and fast analysis for the underivatized fatty acids. It has been successfully used to detect the five fatty acids from corn oil, sunflower oil, soybean oil, tea oil rapeseed oil and peanut oil.

  15. Vacuum pyrolysis of used tires

    SciTech Connect

    Roy, C.; Darmstadt, H.; Benallal, B.; Chaala, A.; Schwerdtfeger, A.E.

    1995-11-01

    The vacuum pyrolysis of used tires enables the recovery of useful products, such as pyrolytic oil and pyrolytic carbon black (CB{sub P}). The light part of the pyrolytic oil contains dl-limonene which has a high price on the market. The naphtha fraction can be used as a high octane number component for gasoline. The middle distillate demonstrated mechanical and lubricating properties similar to those of the commercial aromatic oil Dutrex R 729. The heavy oil was tested as a feedstock for the production of needle coke. It was found that the surface morphology of CB{sub P} produced by vacuum pyrolysis resembles that of commercial carbon black. The CB{sub P} contains a higher concentration of inorganic compounds (especially ZnO and S) than commercial carbon black. The pyrolysis process feasibility looks promising. One old tire can generate upon vacuum pyrolysis, incomes of at least $2.25 US with a potential of up to $4.83 US/tire upon further product improvement. The process has been licensed to McDermott Marketing Servicing Inc. (Houston) for its exploitation in the US.

  16. Catalytic pyrolysis of palm kernel shell waste in a fluidized bed.

    PubMed

    Kim, Sung Won; Koo, Bon Seok; Lee, Dong Hyun

    2014-09-01

    The catalytic pyrolysis of palm kernel shell was investigated in a fluidized bed with zsm-5 and equilibrium FCC (Ecat) catalysts. Catalytic pyrolysis oil yields were remarkably reduced and gas yields were increased due to the higher catalytic reaction of primary volatiles compared to non-catalytic pyrolysis. Char yields were affected by temperature and the pore structure of the catalysts. The pyrolysis oil was characterized by lower H/C and O/C molar ratios due to aromatization and deoxygenation of volatiles by the catalysts. The catalytic pyrolysis oils contained more oxygen and nitrogen and less sulfur than petroleum oils. The oils had a high concentration of nitriles, with a carbon number distribution similar to fatty acids. The catalytic pyrolysis oils featured high nitriles yield with Ecat and high aromatics yield in the light fraction with zsm-5, due to characteristics of the catalyst. The catalytic pyrolysis oils showed potentials as feedstocks for bio-diesel and chemicals.

  17. Experimental controls on D/H and 13C/12C ratios of kerogen, bitumen and oil during hydrous pyrolysis

    USGS Publications Warehouse

    Schimmelmann, A.; Boudou, J.-P.; Lewan, M.D.; Wintsch, R.P.

    2001-01-01

    Large isotopic transfers between water-derived hydrogen and organic hydrogen occurred during hydrous pyrolysis experiments of immature source rocks, in spite of only small changes in organic 13C/12C. Experiments at 330 ??C over 72 h using chips or powder containing kerogen types I and III identify the rock/water ratio as a main factor affecting ????D for water and organic hydrogen. Our data suggest that larger rock permeability and smaller rock grain size increase the H-isotopic transfer between water-derived hydrogen and thermally maturing organic matter. Increasing hydrostatic pressure may have a similar effect, but the evidence remains inconclusive. ?? 2001 Elsevier Science Ltd. All rights reserved.

  18. Combustion, pyrolysis, gasification, and liquefaction of biomas

    NASA Astrophysics Data System (ADS)

    Reed, T. B.

    1980-09-01

    The advantages of biomass as a feedstock are examined and biomass conversion techniques are described. Combustion is the simplest method of producing heat from biomass, using either the traditional fixed bed combustion on a grate or the fluidized bed and suspended combustion techniques now being developed. Pyrolysis of biomass is a particularly attractive process if all three products gas, wood tars, and charcoal can be used. Gasification of biomass with air is perhaps the most flexible and best developed process for conversion of biomass to fuel, yielding a low energy gas that can be burned in existing gas/oil boilers or in engines. Oxygen gasification yields a gas with higher energy content that can be used in pipelines or to fire turbines. In addition, this gas can be used for producing methanol, ammonia, or gasoline by indirect liquefaction. Fast pyrolysis of biomass produces a gas rich in ethylene that can be used to make alcohols or gasoline. Finally, treatment of biomass with high pressure hydrogen can yield liquid fuels through direct liquefaction.

  19. Properties of bio-oil generated by a pyrolysis of forest cedar residuals with the movable Auger-type reactor

    NASA Astrophysics Data System (ADS)

    Nishimura, Shun; Miyazato, Akio; Ebitani, Kohki

    2016-02-01

    Our research project has developed the new movable reactor for bio-oil production in 2013 on the basis of Auger-type system. This package would be a great impact due to the concept of local production for local consumption in the hilly and mountainous area in not only Japan but also in the world. Herein, we would like to report the properties of the bio-oil generated by the developing Auger-type movable reactor. The synthesized bio-oil possessed C: 46.2 wt%, H: 6.5 wt%, N: wt%, S: <0.1 wt%, O: 46.8 wt% and H2O: 18.4 wt%, and served a good calorific value of 18.1 MJ/kg. The spectroscopic and mass analyses such as FT-IR, GC-MS, 13C-NMR and FT-ICR MS supported that the bio-oil was composed by the fine mixtures of methoxy phenols and variety of alcohol or carboxylic acid functional groups. Thus, it is suggested that the bio-oil generated by the new movable Auger-type reactor has a significant potential as well as the existing bio-oil reported previously.

  20. Fixed-bed pyrolysis of cottonseed cake: Product yields and compositions

    SciTech Connect

    Puetuen, A.E.; Oezbay, N.; Kockar, O.M.; Puetuen, E.

    1997-11-01

    Fixed-bed pyrolysis experiments have been conducted on a sample of cottonseed cake to determine the possibility of being a potential source of renewable fuels and chemical feedstocks. The effects of heating rate, pyrolysis atmosphere, and pyrolysis temperature on the pyrolysis product yields and chemical compositions have been investigated. The maximum oil yield of 27% was obtained in N{sub 2} atmosphere at pyrolysis temperature of 550 C and heating rate of 7 C/min. The chemical characterization has shown that the oil obtained from cottonseed cake was quite similar to the crude oil and shale oil.

  1. High dose flaxseed oil supplementation may affect fasting blood serum glucose management in human type 2 diabetics.

    PubMed

    Barre, Douglas E; Mizier-Barre, Kazimiera A; Griscti, Odette; Hafez, Kevin

    2008-01-01

    Type 2 diabetes is characterized partially by elevated fasting blood serum glucose and insulin concentrations and the percentage of hemoglobin as HbA1c. It was hypothesized that each of blood glucose and its co-factors insulin and HbA1c and would show a more favorable profile as the result of flaxseed oil supplementation. Patients were recruited at random from a population pool responding to a recruitment advertisement in the local newspaper and 2 area physicians. Completing the trial were 10 flaxseed oil males, 8 flaxseed oil females, 8 safflower (placebo) oil males and 6 safflower oil females. Patients visited on two pre-treatment occasions each three months apart (visits 1 and 2). At visit 2 subjects were randomly assigned in double blind fashion and in equal gender numbers to take flaxseed oil or safflower oil for three further months until visit 3. Oil consumption in both groups was approximately 10 g/d. ALA intake in the intervention group was approximately 5.5 g/d. Power was 0.80 to see a difference of 1 mmol of glucose /L using 12 subjects per group with a p < 0.05. Flaxseed oil had no impact on fasting blood serum glucose, insulin or HbA1c levels. It is concluded that high doses of flaxseed oil have no effect on glycemic control in type 2 diabetics.

  2. Valorization of Rhizoclonium sp. algae via pyrolysis and catalytic pyrolysis.

    PubMed

    Casoni, Andrés I; Zunino, Josefina; Piccolo, María C; Volpe, María A

    2016-09-01

    The valorization of Rhizoclonium sp. algae through pyrolysis for obtaining bio-oils is studied in this work. The reaction is carried out at 400°C, at high contact time. The bio-oil has a practical yield of 35% and is rich in phytol. Besides, it is simpler than the corresponding to lignocellulosic biomass due to the absence of phenolic compounds. This property leads to a bio-oil relatively stable to storage. In addition, heterogeneous catalysts (Al-Fe/MCM-41, SBA-15 and Cu/SBA-15), in contact with algae during pyrolysis, are analyzed. The general trend is that the catalysts decrease the concentration of fatty alcohols and other high molecular weight products, since their mild acidity sites promote degradation reactions. Thus, the amount of light products increases upon the use of the catalysts. Particularly, acetol concentration in the bio-oils obtained from the catalytic pyrolysis with SBA-15 and Cu/SBA-15 is notably high.

  3. Valorization of Rhizoclonium sp. algae via pyrolysis and catalytic pyrolysis.

    PubMed

    Casoni, Andrés I; Zunino, Josefina; Piccolo, María C; Volpe, María A

    2016-09-01

    The valorization of Rhizoclonium sp. algae through pyrolysis for obtaining bio-oils is studied in this work. The reaction is carried out at 400°C, at high contact time. The bio-oil has a practical yield of 35% and is rich in phytol. Besides, it is simpler than the corresponding to lignocellulosic biomass due to the absence of phenolic compounds. This property leads to a bio-oil relatively stable to storage. In addition, heterogeneous catalysts (Al-Fe/MCM-41, SBA-15 and Cu/SBA-15), in contact with algae during pyrolysis, are analyzed. The general trend is that the catalysts decrease the concentration of fatty alcohols and other high molecular weight products, since their mild acidity sites promote degradation reactions. Thus, the amount of light products increases upon the use of the catalysts. Particularly, acetol concentration in the bio-oils obtained from the catalytic pyrolysis with SBA-15 and Cu/SBA-15 is notably high. PMID:27253478

  4. Catalytic pyrolysis of biomass by novel nanostructured catalysts

    NASA Astrophysics Data System (ADS)

    Dang, Phuong T.; Le, Hy G.; Pham, Giang T. T.; Vu, Hông T. M.; Nguyen, Kien T.; Dao, Canh D.; Le, Giang H.; Hoang, Thuy T. T.; Tran, Hoa T. K.; Nguyen, Quang K.; Vu, Tuan A.

    2013-12-01

    Nanostructured catalysts were successfully prepared by acidification of diatomites and the regeneration of used FCC catalysts. The obtained samples were characterized by IR, XRD, SEM, EDX, MAS-NMR (27Al and 29Si), NH3-TPD and tested in catalytic pyrolysis of biomass (rice straw). The results showed that the similar bio-oil yield of 41,4% can be obtained by pyrolysis in presence of catalysts at 450°C as compared to that of the pyrolysis without catalyst at 550°C. The bio-oil yield reached a maximum of 42,55 % at the pyrolysis temperature of 500°C with catalytic content of 20%. Moreover, by catalytic pyrolysis, bio-oil quality was better as reflected in higher ratio of H/C, lower ratio of O/C. This clearly indicated high application potential of these new nanostructured catalysts in the production of bio-oil with low oxygenated compounds.

  5. Fish oil decreases hepatic lipogenic genes in rats fasted and refed on a high fructose diet.

    PubMed

    de Castro, Gabriela S; Cardoso, João Felipe R; Calder, Philip C; Jordão, Alceu A; Vannucchi, Helio

    2015-03-01

    Fasting and then refeeding on a high-carbohydrate diet increases serum and hepatic triacylglycerol (TAG) concentrations compared to standard diets. Fructose is a lipogenic monosaccharide which stimulates de novo fatty acid synthesis. Omega-3 (n-3) fatty acids stimulate hepatic β-oxidation, partitioning fatty acids away from TAG synthesis. This study investigated whether dietary n-3 fatty acids from fish oil (FO) improve the hepatic lipid metabolic response seen in rats fasted and then refed on a high-fructose diet. During the post-prandial (fed) period, rats fed a FO rich diet showed an increase in hepatic peroxisome proliferator-activated receptor α (PPAR-α) gene expression and decreased expression of carbohydrate responsive element binding protein (ChREBP), fatty acid synthase (FAS) and microsomal triglyceride transfer protein (MTTP). Feeding a FO rich diet for 7 days prior to 48 h of fasting resulted in lower hepatic TAG, lower PPAR-α expression and maintenance of hepatic n-3 fatty acid content. Refeeding on a high fructose diet promoted an increase in hepatic and serum TAG and in hepatic PPAR-α, ChREBP and MTTP expression. FO did not prevent the increase in serum and hepatic TAG after fructose refeeding, but did decrease hepatic expression of lipogenic genes and increased the n-3 fatty acid content of the liver. n-3 Fatty acids can modify some components of the hepatic lipid metabolic response to later feeding with a high fructose diet.

  6. Regulation for Optimal Liquid Products during Biomass Pyrolysis: A Review

    NASA Astrophysics Data System (ADS)

    Wang, F.; Hu, L. J.; Zheng, Y. W.; Huang, Y. B.; Yang, X. Q.; Liu, C.; Kang, J.; Zheng, Z. F.

    2016-08-01

    The liquid product obtained from biomass pyrolysis is very valuable that it could be used for extraction of chemicals as well as for liquid fuel. The desire goal is to obtain the most bio-oil with desired higher heating value (HHV), high physicochemical stability. The yields and chemical composition of products from biomass pyrolysis are closely related to the feedstock, pyrolysis parameters and catalysts. Current researches mainly concentrated on the co-pyrolysis of different biomass and introduce of novel catalysts as well as the combined effect of catalysts and pyrolysis parameters. This review starts with the chemical composition of biomass and the fundamental parameters and focuses on the influence of catalysts on bio-oil. What is more, the pyrolysis facilities at commercial scales were also involved. The classic researches and the current literature about the yield and composition of products (mainly liquid products) are summarized.

  7. Pyrolysis of scrap tyres with zeolite USY.

    PubMed

    Shen, Boxiong; Wu, Chunfei; Wang, Rui; Guo, Binbin; Liang, Cai

    2006-09-21

    A zeolite catalyst of ultrastable Y-type (USY) was investigated in the research of two staged pyrolysis-catalysis of scrap tyres. Scrap tyres were pyrolysed in a fixed bed reactor and the evolved pyrolysis gases were passed through a secondary catalytic reactor. The main objective of this paper was to investigate the effect of zeolite USY on the yield of products and the composition of derived oil. The influences of several parameters such as pyrolysis temperature, catalytic temperature, catalyst/tyre ratio, heating rate, etc. on the yield of the derived oil, char and gas were investigated. It showed that the increase of catalytic temperature and catalyst/tyre ratio resulted in high yield of gas at the expense of the oil yield. For example, when the catalyst/tyre ratio increased from 0.25 to 1.0, the yield of gas increased from 30.5 to 49.9 wt.%, and the oil yield decreased nearly two-fold from 31.6 to 12.7 wt.%. The concentration of light naphtha (boiling point < 160 degrees C) was also investigated in this study. And the high catalyst/tyre ratio favored to increase the concentration of light naphtha (< 160 degrees C) in oil. In order to study the composition of derived oil, a distilled fraction (< 280 degrees C), which was 92.5 wt.% of the oil obtained from catalytic pyrolysis of scrap tyre at a pyrolysis temperature, catalytic temperature and catalyst/tyre ratio of 500, 400 degrees C and 0.5, respectively, was analyzed with gas chromatography/mass spectrometry (GC/MS). The distillate was found to contain 1.23 wt.% benzene, 9.35 wt.% toluene, 3.68 wt.% ethylbenzene, 12.64 wt.% xylenes, 1.81 wt.% limonene and 13.89 wt.% PAHs, etc., where the single ring aromatics represented a significant potential use as chemicals.

  8. Fast gas chromatography characterisation of purified semiochemicals from essential oils of Matricaria chamomilla L. (Asteraceae) and Nepeta cataria L. (Lamiaceae).

    PubMed

    Heuskin, Stéphanie; Godin, Bruno; Leroy, Pascal; Capella, Quentin; Wathelet, Jean-Paul; Verheggen, François; Haubruge, Eric; Lognay, Georges

    2009-04-01

    The chemical composition of Matricaria chamomilla L. and Nepeta cataria L. essential oils was determined by GC-MS on an apolar stationary phase by comparison of the characteristic fragmentation patterns with those of the Wiley 275L database. The GC-MS chromatograms were compared with those obtained by fast GC equipped with a direct resistively heated column (Ultra Fast Module 5% phenyl, 5 mx 0.1 mm, 0.1 microm film thickness). Analytical conditions were optimised to reach a good peak resolution (split ratio=1:100), with analysis time lower than 5 min versus 35-45 min required by conventional GC-MS. The fast chromatographic method was completely validated for the analysis of mono- and sesquiterpene compounds. Essential oils were then fractionated by column chromatography packed with silica gel. Three main fractions with high degree of purity in E-beta-farnesene were isolated from the oil of M. chamomilla. One fraction enriched in (Z,E)-nepetalactone and one enriched in beta-caryophyllene were obtained from the oil of N. cataria. These semiochemical compounds could act as attractants of aphid's predators and parasitoids.

  9. [Influence of impurities on waste plastics pyrolysis: products and emissions].

    PubMed

    Zhao, Lei; Wang, Zhong-Hui; Chen, De-Zhen; Ma, Xiao-Bo; Luan, Jian

    2012-01-01

    The study is aimed to evaluate the impact of impurities like food waste, paper, textile and especially soil on the pyrolysis of waste plastics. For this purpose, emissions, gas and liquid products from pyrolysis of waste plastics and impurities were studied, as well as the transfer of element N, Cl, S from the substrates to the pyrolysis products. It was found that the presence of food waste would reduce the heat value of pyrolysis oil to 27 MJ/kg and increase the moisture in the liquid products, therefore the food residue should be removed from waste plastics; and the soil, enhance the waste plastics' pyrolysis by improving the quality of gas and oil products. The presence of food residue, textile and paper leaded to higher gas emissions.

  10. [Influence of impurities on waste plastics pyrolysis: products and emissions].

    PubMed

    Zhao, Lei; Wang, Zhong-Hui; Chen, De-Zhen; Ma, Xiao-Bo; Luan, Jian

    2012-01-01

    The study is aimed to evaluate the impact of impurities like food waste, paper, textile and especially soil on the pyrolysis of waste plastics. For this purpose, emissions, gas and liquid products from pyrolysis of waste plastics and impurities were studied, as well as the transfer of element N, Cl, S from the substrates to the pyrolysis products. It was found that the presence of food waste would reduce the heat value of pyrolysis oil to 27 MJ/kg and increase the moisture in the liquid products, therefore the food residue should be removed from waste plastics; and the soil, enhance the waste plastics' pyrolysis by improving the quality of gas and oil products. The presence of food residue, textile and paper leaded to higher gas emissions. PMID:22452230

  11. Fast synthesis of multilayer carbon nanotubes from camphor oil as an energy storage material.

    PubMed

    TermehYousefi, Amin; Bagheri, Samira; Shinji, Kawasaki; Rouhi, Jalal; Rusop Mahmood, Mohamad; Ikeda, Shoichiro

    2014-01-01

    Among the wide range of renewable energy sources, the ever-increasing demand for electricity storage represents an emerging challenge. Utilizing carbon nanotubes (CNTs) for energy storage is closely being scrutinized due to the promising performance on top of their extraordinary features. In this work, well-aligned multilayer carbon nanotubes were successfully synthesized on a porous silicon (PSi) substrate in a fast process using renewable natural essential oil via chemical vapor deposition (CVD). Considering the influx of vaporized multilayer vertical carbon nanotubes (MVCNTs) to the PSi, the diameter distribution increased as the flow rate decreased in the reactor. Raman spectroscopy results indicated that the crystalline quality of the carbon nanotubes structure exhibits no major variation despite changes in the flow rate. Fourier transform infrared (FT-IR) spectra confirmed the hexagonal structure of the carbon nanotubes because of the presence of a peak corresponding to the carbon double bond. Field emission scanning electron microscopy (FESEM) images showed multilayer nanotubes, each with different diameters with long and straight multiwall tubes. Moreover, the temperature programmed desorption (TPD) method has been used to analyze the hydrogen storage properties of MVCNTs, which indicates that hydrogen adsorption sites exist on the synthesized multilayer CNTs.

  12. Fast synthesis of multilayer carbon nanotubes from camphor oil as an energy storage material.

    PubMed

    TermehYousefi, Amin; Bagheri, Samira; Shinji, Kawasaki; Rouhi, Jalal; Rusop Mahmood, Mohamad; Ikeda, Shoichiro

    2014-01-01

    Among the wide range of renewable energy sources, the ever-increasing demand for electricity storage represents an emerging challenge. Utilizing carbon nanotubes (CNTs) for energy storage is closely being scrutinized due to the promising performance on top of their extraordinary features. In this work, well-aligned multilayer carbon nanotubes were successfully synthesized on a porous silicon (PSi) substrate in a fast process using renewable natural essential oil via chemical vapor deposition (CVD). Considering the influx of vaporized multilayer vertical carbon nanotubes (MVCNTs) to the PSi, the diameter distribution increased as the flow rate decreased in the reactor. Raman spectroscopy results indicated that the crystalline quality of the carbon nanotubes structure exhibits no major variation despite changes in the flow rate. Fourier transform infrared (FT-IR) spectra confirmed the hexagonal structure of the carbon nanotubes because of the presence of a peak corresponding to the carbon double bond. Field emission scanning electron microscopy (FESEM) images showed multilayer nanotubes, each with different diameters with long and straight multiwall tubes. Moreover, the temperature programmed desorption (TPD) method has been used to analyze the hydrogen storage properties of MVCNTs, which indicates that hydrogen adsorption sites exist on the synthesized multilayer CNTs. PMID:25258714

  13. Fast formation of superhydrophobic octadecylphosphonic acid (ODPA) coating for self-cleaning and oil/water separation.

    PubMed

    Dai, Chunai; Liu, Na; Cao, Yingze; Chen, Yuning; Lu, Fei; Feng, Lin

    2014-10-28

    A simple and fast method to prepare robust superhydrophobic octadecylphosphonic acid (ODPA) coating on oxidized copper mesh for self-cleaning and oil/water separation is reported here. The substrate of the copper mesh was first oxidized by simple immersion in an aqueous solution of 1.0 M NaOH and 0.05 M K2S2O8 at room temperature for 30 min, which was then covered with micro- and nanoscale Cu(OH)2 on the surface. Subsequently, the oxidized copper mesh was immersed in 2 × 10(-4) M octadecylphosphonic acid/tetrahydrofuran (ODPA/THF) solution, an ODPA coating formed on the oxidised copper mesh. The ODPA coating formation process takes place rapidly, almost in 1 second, which makes the as-prepared mesh exhibit superhydrophobicity with the water contact angle of approximately 158.9° and superoleophilicity with the oil contact angle of 0°. Moreover, the as-prepared mesh has self-cleaning effect and can be repeatedly used to efficiently separate a series of oil/water mixtures like gasoline/water and diesel/water. Interestingly, straightforward oxidation of a copper substrate produces a "water-removing" type oil/water separation mesh with underwater superoleophobicity, whereas ODPA coating on the oxidized copper mesh produces an "oil-removing" type oil/water separation mesh with superhydrophobicity and superoleophilicity. This interesting conversion results from a small amount of ODPA and takes place very rapidly.

  14. Pyrolysis: theory and industrial practice

    SciTech Connect

    Albright, L.F.; Crynes, B.L.; Corcoran, W.H.

    1983-01-01

    This book is useful for the study of pyrolysis from two perspectives: theory and industrial practice. Topics included are thermal decompositions and reactions of methane pyrolysis of ethane and propane, pyrolysis of n-butane, thermal reaction of olefins and diolefins, pyrolysis of heavy hydrocarbons, formation of aromatics, hydrogenolysis of toluene, mathematical modeling of hydrocarbon pyrolysis reactions, nonpetroleum feedstocks, formation and gasification of coke, surface reactions in pyrolysis units, pyrolysis furnace design, laboratory reactors for pyrolysis, and economic considerations in the design and operation of conventional pyrolysis furnaces.

  15. Vacuum pyrolysis of waste tires with basic additives

    SciTech Connect

    Zhang Xinghua; Wang Tiejun Ma Longlong; Chang Jie

    2008-11-15

    Granules of waste tires were pyrolyzed under vacuum (3.5-10 kPa) conditions, and the effects of temperature and basic additives (Na{sub 2}CO{sub 3}, NaOH) on the properties of pyrolysis were thoroughly investigated. It was obvious that with or without basic additives, pyrolysis oil yield increased gradually to a maximum and subsequently decreased with a temperature increase from 450 deg. C to 600 deg. C, irrespective of the addition of basic additives to the reactor. The addition of NaOH facilitated pyrolysis dramatically, as a maximal pyrolysis oil yield of about 48 wt% was achieved at 550 deg. C without the addition of basic additives, while a maximal pyrolysis oil yield of about 50 wt% was achieved at 480 deg. C by adding 3 wt% (w/w, powder/waste tire granules) of NaOH powder. The composition analysis of pyrolytic naphtha (i.b.p. (initial boiling point) {approx}205 deg. C) distilled from pyrolysis oil showed that more dl-limonene was obtained with basic additives and the maximal content of dl-limonene in pyrolysis oil was 12.39 wt%, which is a valuable and widely-used fine chemical. However, no improvement in pyrolysis was observed with Na{sub 2}CO{sub 3} addition. Pyrolysis gas was mainly composed of H{sub 2}, CO, CH{sub 4}, CO{sub 2}, C{sub 2}H{sub 4} and C{sub 2}H{sub 6}. Pyrolytic char had a surface area comparable to commercial carbon black, but its proportion of ash (above 11.5 wt%) was much higher.

  16. Synthesis and characterization of a porous and hydrophobic cellulose-based composite for efficient and fast oil-water separation.

    PubMed

    Wang, Xiangyun; Xu, Shimei; Tan, Yun; Du, Juan; Wang, Jide

    2016-04-20

    Oily wastewater is generated in diverse industrial processes, and its treatment has become crucial due to increasing environmental concerns. Herein, silanized cellulose was prepared by sol-gel reaction between microcrystalline cellulose (MCC) and hexadecyltrimethoxysilane (HDTMS) using for oil-water separation. The silanized cellulose was characterized by Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and thermal gravimetric analysis (TGA). A higher mass ratio of HDTMS to MCC made silanized cellulose become looser, and showed lower water absorbency. The silanized cellulose exhibited specific separation performance towards vegetable oil-water mixture (not for mineral oil-water mixture) with separation efficiency of 99.93%. Moreover, the separation was fast with a water flux of 4628.5Lm(-2)h(-1). The separation efficiency still remained at 99.77% even after recycling for 10 times. PMID:26876843

  17. FTIR study of ageing of fast drying oil colour (FDOC) alkyd paint replicas

    NASA Astrophysics Data System (ADS)

    Duce, Celia; Della Porta, Valentina; Tiné, Maria Rosaria; Spepi, Alessio; Ghezzi, Lisa; Colombini, Maria Perla; Bramanti, Emilia

    2014-09-01

    We propose ATR-FTIR spectroscopy for the characterization of the spectral changes in alkyd resin from the Griffin Alkyd Fast Drying Oil Colour range (Winsor & Newton), occurring over 550 days (∼18 months) of natural ageing and over six months of artificial ageing under an acetic acid atmosphere. Acetic acid is one of the atmospheric pollutants found inside museums in concentrations that can have a significant effect on the works exhibited. During natural ageing we observed an increase and broadening of the OH group band around 3300 cm-1 and an increase in bands in the region 1730-1680 cm-1 due to carbonyl stretching. We found a broad band around 1635 cm-1 likely due to Cdbnd O stretching vibrations of β dichetons. These spectral changes are the result of autooxidation reactions during natural ageing and crosslinking, which then form f alcohols and carbonyl species. The increase in absorbance at 1635 cm-1 was selected as a parameter to monitor the ageing process of paintings prepared with FDOC, without the need for any extractive procedure. FTIR spectra of paint replicas kept under an acetic acid atmosphere indicated the chemical groups involved in the reaction with acid, thus suggesting which spectral FTIR regions could be investigated in order to follow any degradation in real paintings. A red paint sample from a hyper-realistic artwork (“Racconta storie”, 2003) by the Italian painter Patrizia Zara was investigated by FTIR in order to evaluate the effects of 10 years natural ageing on alkyd colours. The results obtained suggested that after the end of chemical drying (autooxidation), alkyd colours are very stable.

  18. FTIR study of ageing of fast drying oil colour (FDOC) alkyd paint replicas.

    PubMed

    Duce, Celia; Della Porta, Valentina; Tiné, Maria Rosaria; Spepi, Alessio; Ghezzi, Lisa; Colombini, Maria Perla; Bramanti, Emilia

    2014-09-15

    We propose ATR-FTIR spectroscopy for the characterization of the spectral changes in alkyd resin from the Griffin Alkyd Fast Drying Oil Colour range (Winsor & Newton), occurring over 550 days (∼18 months) of natural ageing and over six months of artificial ageing under an acetic acid atmosphere. Acetic acid is one of the atmospheric pollutants found inside museums in concentrations that can have a significant effect on the works exhibited. During natural ageing we observed an increase and broadening of the OH group band around 3300 cm(-1) and an increase in bands in the region 1730-1680 cm(-1) due to carbonyl stretching. We found a broad band around 1635 cm(-1) likely due to CO stretching vibrations of β dichetons. These spectral changes are the result of autooxidation reactions during natural ageing and crosslinking, which then form f alcohols and carbonyl species. The increase in absorbance at 1635 cm(-1) was selected as a parameter to monitor the ageing process of paintings prepared with FDOC, without the need for any extractive procedure. FTIR spectra of paint replicas kept under an acetic acid atmosphere indicated the chemical groups involved in the reaction with acid, thus suggesting which spectral FTIR regions could be investigated in order to follow any degradation in real paintings. A red paint sample from a hyper-realistic artwork ("Racconta storie", 2003) by the Italian painter Patrizia Zara was investigated by FTIR in order to evaluate the effects of 10 years natural ageing on alkyd colours. The results obtained suggested that after the end of chemical drying (autooxidation), alkyd colours are very stable.

  19. FTIR study of ageing of fast drying oil colour (FDOC) alkyd paint replicas.

    PubMed

    Duce, Celia; Della Porta, Valentina; Tiné, Maria Rosaria; Spepi, Alessio; Ghezzi, Lisa; Colombini, Maria Perla; Bramanti, Emilia

    2014-09-15

    We propose ATR-FTIR spectroscopy for the characterization of the spectral changes in alkyd resin from the Griffin Alkyd Fast Drying Oil Colour range (Winsor & Newton), occurring over 550 days (∼18 months) of natural ageing and over six months of artificial ageing under an acetic acid atmosphere. Acetic acid is one of the atmospheric pollutants found inside museums in concentrations that can have a significant effect on the works exhibited. During natural ageing we observed an increase and broadening of the OH group band around 3300 cm(-1) and an increase in bands in the region 1730-1680 cm(-1) due to carbonyl stretching. We found a broad band around 1635 cm(-1) likely due to CO stretching vibrations of β dichetons. These spectral changes are the result of autooxidation reactions during natural ageing and crosslinking, which then form f alcohols and carbonyl species. The increase in absorbance at 1635 cm(-1) was selected as a parameter to monitor the ageing process of paintings prepared with FDOC, without the need for any extractive procedure. FTIR spectra of paint replicas kept under an acetic acid atmosphere indicated the chemical groups involved in the reaction with acid, thus suggesting which spectral FTIR regions could be investigated in order to follow any degradation in real paintings. A red paint sample from a hyper-realistic artwork ("Racconta storie", 2003) by the Italian painter Patrizia Zara was investigated by FTIR in order to evaluate the effects of 10 years natural ageing on alkyd colours. The results obtained suggested that after the end of chemical drying (autooxidation), alkyd colours are very stable. PMID:24792194

  20. Microwave pyrolysis of oily sludge with activated carbon.

    PubMed

    Chen, Yi-Rong

    2016-12-01

    The aim of this study is to explore catalytic microwave pyrolysis of crude oil storage tank sludge for fuels using granular activated carbon (GAC) as a catalyst. The effect of GAC loading on the yield of pyrolysis products was also investigated. Heating rate of oily sludge and yield of microwave pyrolysis products such as oil and fuel gas was found to depend on the ratio of GAC to oily sludge. The optimal GAC loading was found to be 10%, while much smaller and larger feed sizes adversely influenced production. During oily sludge pyrolysis, a maximum oil yield of 77.5% was achieved. Pyrolytic oils with high concentrations of diesel oil and gasoline (about 70 wt% in the pyrolytic oil) were obtained. The leaching of heavy metals, such as Cr, As and Pb, was also suppressed in the solid residue after pyrolysis. This technique provides advantages such as harmless treatment of oily sludge and substantial reduction in the consumption of energy, time and cost.

  1. Catalytic pyrolysis using UZM-39 aluminosilicate zeolite

    SciTech Connect

    Nicholas, Christopher P; Boldingh, Edwin P

    2014-10-07

    A new family of coherently grown composites of TUN and IMF zeotypes has been synthesized and shown to be effective catalysts for catalytic pyrolysis of biomass. These zeolites are represented by the empirical formula. Na.sub.nM.sub.m.sup.n+R.sub.rQ.sub.qAl.sub.1-xE.sub.xSi.sub.yO.s- ub.z where M represents zinc or a metal or metals from Group 1, Group 2, Group 3 or the lanthanide series of the periodic table, R is an A,.OMEGA.-dihalosubstituted paraffin such as 1,4-dibromobutane, Q is a neutral amine containing 5 or fewer carbon atoms such as 1-methylpyrrolidine and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-39 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hydrocarbons into hydrocarbons and removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

  2. Catalytic pyrolysis using UZM-39 aluminosilicate zeolite

    SciTech Connect

    Nicholas, Christpher P; Boldingh, Edwin P

    2013-12-17

    A new family of coherently grown composites of TUN and IMF zeotypes has been synthesized and show to be effective catalysts for catalytic pyrolysis of biomass. These zeolites are represented by the empirical formula. Na.sub.nM.sub.m.sup.n+R.sub.rQ.sub.qAl.sub1-xE.sub.xSi.sub.yO.s- ub.z where M represents zinc or a metal or metals from Group 1, Group 2, Group 3 or the lanthanide series of the periodic table, R is an A,.OMEGA.-dihalosubstituted paraffin such as 1,4-dibromobutane, Q is a neutral amine containing 5 or fewer carbon atoms such as 1-methylpyrrolidine and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-39 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hyrdocarbons into hydrocarbons removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

  3. Pyrolysis system evaluation study

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An evaluation of two different pyrolysis concepts which recover energy from solid waste was conducted in order to determine the merits of each concept for integration into a Integrated Utility System (IUS). The two concepts evaluated were a Lead Bath Furnace Pyrolysis System and a Slagging Vertical Shaft, Partial Air Oxidation Pyrolysis System. Both concepts will produce a fuel gas from the IUS waste and sewage sludge which can be used to offset primary fuel consumption in addition to the sanitary disposal of the waste. The study evaluated the thermal integration of each concept as well as the economic impact on the IUS resulting from integrating each pyrolysis concepts. For reference, the pyrolysis concepts were also compared to incineration which was considered the baseline IUS solid waste disposal system.

  4. Pyrolysis polygeneration of poplar wood: Effect of heating rate and pyrolysis temperature.

    PubMed

    Chen, Dengyu; Li, Yanjun; Cen, Kehui; Luo, Min; Li, Hongyan; Lu, Bin

    2016-10-01

    The pyrolysis of poplar wood were comprehensively investigated at different pyrolysis temperatures (400, 450, 500, 550, and 600°C) and at different heating rates (10, 30, and 50°C/min). The results showed that BET surface area of biochar, the HHV of non-condensable gas and bio-oil reached the maximum values of 411.06m(2)/g, 14.56MJ/m(3), and 14.39MJ/kg, under the condition of 600°C and 30°C/min, 600°C and 50°C/min, and 550°C and 50°C/min, respectively. It was conducive to obtain high mass and energy yield of bio-oil at 500°C and higher heating rate, while lower pyrolysis temperature and heating rate contributed towards obtaining both higher mass yield and energy yield of biochar. However, higher pyrolysis temperature and heating rate contributed to obtain both higher mass yield and energy yield of the non-condensable gas. In general, compared to the heating rate, the pyrolysis temperature had more effect on the product properties.

  5. Effect of torrefaction pretreatment and catalytic pyrolysis on the pyrolysis poly-generation of pine wood.

    PubMed

    Chen, Dengyu; Li, Yanjun; Deng, Minsi; Wang, Jiayang; Chen, Miao; Yan, Bei; Yuan, Qiqiang

    2016-08-01

    Torrefaction of pine wood was performed in a tube furnace at three temperatures (220, 250, and 280°C) for 30min. Then catalytic pyrolysis of raw and torrefied pine wood was performed using HZSM-5 catalyst in a fixed-bed pyrolysis reactor at 550°C for 15min. Torrefaction pretreatment and catalytic pyrolysis have an very important effect on the yield, property, and energy distribution of pyrolysis products. The results showed that the yield of biochar rapidly increased, while that of bio-oil decreased with increasing torrefaction temperature. The oxy-compound content of bio-oil, such as acids and aldehydes, sharply decreased. However, the aromatic hydrocarbon content not only increased but also further promoted by HZSM-5 catalyst. With highest mass yields and energy yields, biochar was also the very important product of pyrolysis. The oxygen content in biomass was mainly removed in the form of CO2 and H2O, leading to increasing CO2 content in non-condensable gas. PMID:27183238

  6. Effect of torrefaction pretreatment and catalytic pyrolysis on the pyrolysis poly-generation of pine wood.

    PubMed

    Chen, Dengyu; Li, Yanjun; Deng, Minsi; Wang, Jiayang; Chen, Miao; Yan, Bei; Yuan, Qiqiang

    2016-08-01

    Torrefaction of pine wood was performed in a tube furnace at three temperatures (220, 250, and 280°C) for 30min. Then catalytic pyrolysis of raw and torrefied pine wood was performed using HZSM-5 catalyst in a fixed-bed pyrolysis reactor at 550°C for 15min. Torrefaction pretreatment and catalytic pyrolysis have an very important effect on the yield, property, and energy distribution of pyrolysis products. The results showed that the yield of biochar rapidly increased, while that of bio-oil decreased with increasing torrefaction temperature. The oxy-compound content of bio-oil, such as acids and aldehydes, sharply decreased. However, the aromatic hydrocarbon content not only increased but also further promoted by HZSM-5 catalyst. With highest mass yields and energy yields, biochar was also the very important product of pyrolysis. The oxygen content in biomass was mainly removed in the form of CO2 and H2O, leading to increasing CO2 content in non-condensable gas.

  7. Flash Pyrolysis and Fractional Pyrolysis of Oleaginous Biomass in a Fluidized-bed Reactor

    NASA Astrophysics Data System (ADS)

    Urban, Brook

    Thermochemical conversion methods such as pyrolysis have the potential for converting diverse biomass feedstocks into liquid fuels. In particular, bio-oil yields can be maximized by implementing flash pyrolysis to facilitate rapid heat transfer to the solids along with short vapor residence times to minimize secondary degradation of bio-oils. This study first focused on the design and construction of a fluidized-bed flash pyrolysis reactor with a high-efficiency bio-oil recovery unit. Subsequently, the reactor was used to perform flash pyrolysis of soybean pellets to assess the thermochemical conversion of oleaginous biomass feedstocks. The fluidized bed reactor design included a novel feed input mechanism through suction created by flow of carrier gas through a venturi which prevented plugging problems that occur with a more conventional screw feeders. In addition, the uniquely designed batch pyrolysis unit comprised of two tubes of dissimilar diameters. The bottom section consisted of a 1" tube and was connected to a larger 3" tube placed vertically above. At the carrier gas flow rates used in these studies, the feed particles remained fluidized in the smaller diameter tube, but a reduction in carrier gas velocity in the larger diameter "disengagement chamber" prevented the escape of particles into the condensers. The outlet of the reactor was connected to two Allihn condensers followed by an innovative packed-bed dry ice condenser. Due to the high carrier gas flow rates in fluidized bed reactors, bio-oil vapors form dilute aerosols upon cooling which that are difficult to coalesce and recover by traditional heat exchange condensers. The dry ice condenser provided high surface area for inertial impaction of these aerosols and also allowed easy recovery of bio-oils after natural evaporation of the dry ice at the end of the experiments. Single step pyrolysis was performed between 250-610°C with a vapor residence time between 0.3-0.6s. At 550°C or higher, 70% of

  8. INTEGRATED PYROLYSIS COMBINED CYCLE BIOMASS POWER SYSTEM CONCEPT DEFINITION

    SciTech Connect

    Eric Sandvig; Gary Walling; Robert C. Brown; Ryan Pletka; Desmond Radlein; Warren Johnson

    2003-03-01

    Advanced power systems based on integrated gasification/combined cycles (IGCC) are often presented as a solution to the present shortcomings of biomass as fuel. Although IGCC has been technically demonstrated at full scale, it has not been adopted for commercial power generation. Part of the reason for this situation is the continuing low price for coal. However, another significant barrier to IGCC is the high level of integration of this technology: the gas output from the gasifier must be perfectly matched to the energy demand of the gas turbine cycle. We are developing an alternative to IGCC for biomass power: the integrated (fast) pyrolysis/ combined cycle (IPCC). In this system solid biomass is converted into liquid rather than gaseous fuel. This liquid fuel, called bio-oil, is a mixture of oxygenated organic compounds and water that serves as fuel for a gas turbine topping cycle. Waste heat from the gas turbine provides thermal energy to the steam turbine bottoming cycle. Advantages of the biomass-fueled IPCC system include: combined cycle efficiency exceeding 37 percent efficiency for a system as small as 7.6 MW{sub e}; absence of high pressure thermal reactors; decoupling of fuel processing and power generation; and opportunities for recovering value-added products from the bio-oil. This report provides a technical overview of the system including pyrolyzer design, fuel clean-up strategies, pyrolysate condenser design, opportunities for recovering pyrolysis byproducts, gas turbine cycle design, and Rankine steam cycle. The report also reviews the potential biomass fuel supply in Iowa, provide and economic analysis, and present a summery of benefits from the proposed system.

  9. A critical view on catalytic pyrolysis of biomass.

    PubMed

    Venderbosch, R H

    2015-04-24

    The rapid heating of biomass in an oxygen-free environment optimizes the yield of fast-pyrolysis liquids. This liquid comprises a mix of acids, (dehydrated) carbohydrates, aldehydes, ketones, lignin fragments, aromatics, and alcohols, limiting its use. Deoxygenation of these liquids to replace hydrocarbons represents significant challenges. Catalytic pyrolysis is seen as a promising route to yield liquids with a higher quality. In this paper, literature data on catalytic fast pyrolysis of biomass are reviewed and deoxygenation results correlated with the overall carbon yield. Evidence is given that in an initial stage of the catalytic process reactive components are converted to coke, gas, and water, and only to a limited extent to a liquid product. Catalysts are not yet good enough, and an appropriate combination of pyrolysis conditions, reactive products formed, and different reactions to take place to yield improved quality liquids may be practically impossible.

  10. Pyrolysis and dehalogenation of plastics from waste electrical and electronic equipment (WEEE): a review.

    PubMed

    Yang, Xiaoning; Sun, Lushi; Xiang, Jun; Hu, Song; Su, Sheng

    2013-02-01

    Plastics from waste electrical and electronic equipment (WEEE) have been an important environmental problem because these plastics commonly contain toxic halogenated flame retardants which may cause serious environmental pollution, especially the formation of carcinogenic substances polybrominated dibenzo dioxins/furans (PBDD/Fs), during treat process of these plastics. Pyrolysis has been proposed as a viable processing route for recycling the organic compounds in WEEE plastics into fuels and chemical feedstock. However, dehalogenation procedures are also necessary during treat process, because the oils collected in single pyrolysis process may contain numerous halogenated organic compounds, which would detrimentally impact the reuse of these pyrolysis oils. Currently, dehalogenation has become a significant topic in recycling of WEEE plastics by pyrolysis. In order to fulfill the better resource utilization of the WEEE plastics, the compositions, characteristics and dehalogenation methods during the pyrolysis recycling process of WEEE plastics were reviewed in this paper. Dehalogenation and the decomposition or pyrolysis of WEEE plastics can be carried out simultaneously or successively. It could be 'dehalogenating prior to pyrolysing plastics', 'performing dehalogenation and pyrolysis at the same time' or 'pyrolysing plastics first then upgrading pyrolysis oils'. The first strategy essentially is the two-stage pyrolysis with the release of halogen hydrides at low pyrolysis temperature region which is separate from the decomposition of polymer matrixes, thus obtaining halogenated free oil products. The second strategy is the most common method. Zeolite or other type of catalyst can be used in the pyrolysis process for removing organohalogens. The third strategy separate pyrolysis and dehalogenation of WEEE plastics, which can, to some degree, avoid the problem of oil value decline due to the use of catalyst, but obviously, this strategy may increase the cost of

  11. Pyrolysis and dehalogenation of plastics from waste electrical and electronic equipment (WEEE): a review.

    PubMed

    Yang, Xiaoning; Sun, Lushi; Xiang, Jun; Hu, Song; Su, Sheng

    2013-02-01

    Plastics from waste electrical and electronic equipment (WEEE) have been an important environmental problem because these plastics commonly contain toxic halogenated flame retardants which may cause serious environmental pollution, especially the formation of carcinogenic substances polybrominated dibenzo dioxins/furans (PBDD/Fs), during treat process of these plastics. Pyrolysis has been proposed as a viable processing route for recycling the organic compounds in WEEE plastics into fuels and chemical feedstock. However, dehalogenation procedures are also necessary during treat process, because the oils collected in single pyrolysis process may contain numerous halogenated organic compounds, which would detrimentally impact the reuse of these pyrolysis oils. Currently, dehalogenation has become a significant topic in recycling of WEEE plastics by pyrolysis. In order to fulfill the better resource utilization of the WEEE plastics, the compositions, characteristics and dehalogenation methods during the pyrolysis recycling process of WEEE plastics were reviewed in this paper. Dehalogenation and the decomposition or pyrolysis of WEEE plastics can be carried out simultaneously or successively. It could be 'dehalogenating prior to pyrolysing plastics', 'performing dehalogenation and pyrolysis at the same time' or 'pyrolysing plastics first then upgrading pyrolysis oils'. The first strategy essentially is the two-stage pyrolysis with the release of halogen hydrides at low pyrolysis temperature region which is separate from the decomposition of polymer matrixes, thus obtaining halogenated free oil products. The second strategy is the most common method. Zeolite or other type of catalyst can be used in the pyrolysis process for removing organohalogens. The third strategy separate pyrolysis and dehalogenation of WEEE plastics, which can, to some degree, avoid the problem of oil value decline due to the use of catalyst, but obviously, this strategy may increase the cost of

  12. Pyrolysis of waste plastic crusts of televisions.

    PubMed

    Liu, Xinmin; Wang, Zhen; Xu, Dongyan; Guo, Qingjie

    2012-09-01

    The disposal of waste plastic crusts of televisions is an issue that is gaining increasing interest around the world. In this investigation, the pyrolysis and catalytic cracking of the waste television crusts mainly composed of acrylonitrile--butadiene-styrene copolymer was studied. Thermogravimetric analysis was used for initial characterization of the pyrolysis of the waste plastic, but most of the investigations were carried out using a 600 mL tubing reactor. Effects of temperature, reaction time and catalyst on the pyrolysis of the waste television crusts were investigated. The results showed that the oil yield increased with increasing temperature or with prolongation of reaction time. With increasing temperature, the generating percentage of gasoline and diesel oil increased, but the heavy oil yield decreased. Zinc oxide, iron oxide and fluid catalytic cracking catalyst (FCC catalyst) were employed to perform a series of experiments. It was demonstrated that the liquid product was markedly improved and the reaction temperature decreased 100 degrees C when FCC was used. The composition ofpyrolysis oils was analysed using gas chromatography-mass spectrometry, and they contained 36.49% styrene, 19.72% benzenebutanenitrile, 12.1% alpha-methylstyrene and 9.69% dimethylbenzene. PMID:23240191

  13. Generate rigorous pyrolysis models for olefins production by computer

    SciTech Connect

    Klein, M.T.; Broadbelt, L.J.; Grittman, D.H.

    1997-04-01

    With recent advances in the automation of the model-building process for large networks of kinetic equations, it may become feasible to generate computer pyrolysis models for naphthas and gas oil feedstocks. The potential benefit of a rigorous mechanistic model for these relatively complex liquid feedstocks is great, due to diverse characterizations and yield spectrums. An ethane pyrolysis example is used to illustrate the computer generation of reaction mechanism models.

  14. Pyrolysis and co-pyrolysis of Laminaria japonica and polypropylene over mesoporous Al-SBA-15 catalyst

    NASA Astrophysics Data System (ADS)

    Lee, Hyung Won; Choi, Suek Joo; Park, Sung Hoon; Jeon, Jong-Ki; Jung, Sang-Chul; Kim, Sang Chai; Park, Young-Kwon

    2014-08-01

    The catalytic co-pyrolysis of a seaweed biomass, Laminaria japonica, and a typical polymer material, polypropylene, was studied for the first time. A mesoporous material Al-SBA-15 was used as a catalyst. Pyrolysis experiments were conducted using a fixed-bed reactor and pyrolysis gas chromatography/mass spectrometry (Py-GC/MS). BET surface area, N2 adsorption-desorption isotherms, and NH3 temperature programmed desorption were measured to examine the catalyst characteristics. When only L. japonica was pyrolyzed, catalytic reforming slightly increased the gas yield and decreased the oil yield. The H2O content in bio-oil was increased by catalytic reforming from 42.03 to 50.32 wt% due to the dehydration reaction occurring on the acid sites inside the large pores of Al-SBA-15. Acids, oxygenates, mono-aromatics, poly aromatic hydrocarbons, and phenolics were the main components of the bio-oil obtained from the pyrolysis of L. japonica. Upon catalytic reforming over Al-SBA-15, the main oxygenate species 1,4-anhydro- d-galactitol and 1,5-anhydro- d-manitol were completely removed. When L. japonica was co-pyrolyzed with polypropylene, the H2O content in bio-oil was decreased dramatically (8.93 wt% in the case of catalytic co-pyrolysis), contributing to the improvement of the oil quality. A huge increase in the content of gasoline-range and diesel-range hydrocarbons in bio-oil was the most remarkable change that resulted from the co-pyrolysis with polypropylene, suggesting its potential as a transport fuel. The content of mono-aromatics with high economic value was also increased significantly by catalytic co-pyrolysis.

  15. Pyrolysis and co-pyrolysis of Laminaria japonica and polypropylene over mesoporous Al-SBA-15 catalyst

    PubMed Central

    2014-01-01

    The catalytic co-pyrolysis of a seaweed biomass, Laminaria japonica, and a typical polymer material, polypropylene, was studied for the first time. A mesoporous material Al-SBA-15 was used as a catalyst. Pyrolysis experiments were conducted using a fixed-bed reactor and pyrolysis gas chromatography/mass spectrometry (Py-GC/MS). BET surface area, N2 adsorption-desorption isotherms, and NH3 temperature programmed desorption were measured to examine the catalyst characteristics. When only L. japonica was pyrolyzed, catalytic reforming slightly increased the gas yield and decreased the oil yield. The H2O content in bio-oil was increased by catalytic reforming from 42.03 to 50.32 wt% due to the dehydration reaction occurring on the acid sites inside the large pores of Al-SBA-15. Acids, oxygenates, mono-aromatics, poly aromatic hydrocarbons, and phenolics were the main components of the bio-oil obtained from the pyrolysis of L. japonica. Upon catalytic reforming over Al-SBA-15, the main oxygenate species 1,4-anhydro-d-galactitol and 1,5-anhydro-d-manitol were completely removed. When L. japonica was co-pyrolyzed with polypropylene, the H2O content in bio-oil was decreased dramatically (8.93 wt% in the case of catalytic co-pyrolysis), contributing to the improvement of the oil quality. A huge increase in the content of gasoline-range and diesel-range hydrocarbons in bio-oil was the most remarkable change that resulted from the co-pyrolysis with polypropylene, suggesting its potential as a transport fuel. The content of mono-aromatics with high economic value was also increased significantly by catalytic co-pyrolysis. PMID:25136282

  16. Versatile fabrication of magnetic carbon fiber aerogel applied for bidirectional oil-water separation

    NASA Astrophysics Data System (ADS)

    Li, Yong; Zhu, Xiaotao; Ge, Bo; Men, Xuehu; Li, Peilong; Zhang, Zhaozhu

    2015-09-01

    Fabricating functional materials that can solve environmental problems resulting from oil or organic solvent pollution is highly desired. However, expensive materials or complicated procedures and unidirectional oil-water separation hamper their applications. Herein, a magnetic superhydrophobic carbon fiber aerogel with high absorption capacity was developed by one-step pyrolysis of Fe(NO3)3-coated cotton in an argon atmosphere. The obtained aerogel can selectively collect oils from oil-polluted region by a magnet bar owing to its magnetic properties and achieves fast oil-water separation for its superhydrophobicity and superoleophilicity. Furthermore, the aerogel performs recyclable oil absorption capacity even after ten cycles of oil-water separation and bears organic solvent immersion. Importantly, the obtained aerogel turns to superhydrophilic and underwater superoleophobic after thermal treatment, allowing it as a promising and efficient material for bidirectional oil-water separation and organic contaminants removal.

  17. Catalytic Hydroprocessing of Chemical Models for Bio-oil

    SciTech Connect

    Elliott, Douglas C.; Hart, Todd R.

    2008-12-12

    Bio-oil (product liquids from fast pyrolysis of biomass) is a complex mixture of oxygenates derived from the thermal breakdown of the bio-polymers in biomass. In the case of lignocellulosic biomass, the structures of three major components, cellulose, hemicellulose and lignin, are well represented by the bio-oil components. In order to study the chemical mechanisms of catalytic hydroprocessing of bio-oil, three model compounds were chosen to represent those components. Guaiacol represents the large number of mono- and di-methoxy phenols found in bio-oil derived from softwood or hardwood, respectively. Furfural represents a major pyrolysis product group from cellulosics. Acetic acid is a major product from biomass pyrolysis, derived from the hemicellulose, which has important impacts on the further processing of the bio-oil because of the acidic character. These three compounds were processed using palladium or ruthenium catalyst over a temperature range from 150°C to 300°C. The batch reactor was sampled during each test over a period of four hours. The samples were analyzed by gas chromatography with both a mass selective detector and a flame ionization detector. The products were determined and the reaction pathways for their formation are suggested based on these results. Both temperature and catalyst metal have significant effects on the product composition.

  18. Catalytic microwave pyrolysis of biomass for renewable phenols and fuels

    NASA Astrophysics Data System (ADS)

    Bu, Quan

    Bio-oil is an unstable intermediate and needs to be upgraded before its use. This study focused on improving the selectivity of bio-oilby catalytic pyrolysis of biomass using activated carbon (AC) catalysts. Firstly, the effects of process conditions on product quality and product yield were investigated by catalytic microwave pyrolysis of biomass using AC as a catalyst. The optimized reaction condition for bio-oil and volatile was determined. Chemical composition analysis by GC/MS showed that phenols rich bio-oils were obtained. Furthermore, the effects of different carbon sources based AC catalysts on products yield and chemical composition selectivity of obtained bio-oils were investigated during microwave pyrolysis of Douglas fir pellet. The catalysts recycling test of the selected catalysts indicated that the AC catalysts can be used for 3-4 times with high concentration of phenolic compounds. The individual surface polar/acidic oxygen functional groups analysis suggested the changes of functional groups in ACs explained the reaction mechanism of this process. In addition, the potential for production of renewable phenols and fuels by catalytic pyrolysis of biomass using lignin as a model compound was explored. The main chemical compounds of the obtained bio-oils were phenols, guaiacols, hydrocarbons and esters. The thermal decomposition behaviors of lignin and kinetics study were investigated by TGA. The change of functional groups of AC catalyst indicated the bio-oil reduction was related to the reaction mechanism of this process. Finally, the effects of Fe-modified AC catalyst on bio-oil upgrading and kintic study of biomass pyrolysis were investigated. The catalytic pyrolysis of biomass using the Fe-modified AC catalyst may promote the occurrence of the fragmentation of cellulose, rather than repolymerization as in the non-catalytic pyrolysis which leads to partial of guaiacols derived from furans. Results showed that the main chemical compounds of bio-oils

  19. Pyrolysis with staged recovery

    DOEpatents

    Green, Norman W.; Duraiswamy, Kandaswamy; Lumpkin, Robert E.; Winter, Bruce L.

    1979-03-20

    In a continuous process for recovery of values contained in a solid carbonaceous material, the carbonaceous material is comminuted and then subjected to flash pyrolysis in the presence of a particulate heat source fed over an overflow weir to form a pyrolysis product stream containing a carbon containing solid residue and volatilized hydrocarbons. After the carbon containing solid residue is separated from the pyrolysis product stream, values are obtained by condensing volatilized hydrocarbons. The particulate source of heat is formed by oxidizing carbon in the solid residue.

  20. Auto shredder residue recycling: Mechanical separation and pyrolysis

    SciTech Connect

    Santini, Alessandro; Passarini, Fabrizio; Vassura, Ivano; Serrano, David; Dufour, Javier

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer In this work, we exploited mechanical separation and pyrolysis to recycle ASR. Black-Right-Pointing-Pointer Pyrolysis of the floating organic fraction is promising in reaching ELV Directive targets. Black-Right-Pointing-Pointer Zeolite catalyst improve pyrolysis oil and gas yield. - Abstract: sets a goal of 85% material recycling from end-of-life vehicles (ELVs) by the end of 2015. The current ELV recycling rate is around 80%, while the remaining waste is called automotive shredder residue (ASR), or car fluff. In Europe, this is mainly landfilled because it is extremely heterogeneous and often polluted with car fluids. Despite technical difficulties, in the coming years it will be necessary to recover materials from car fluff in order to meet the ELV Directive requirement. This study deals with ASR pretreatment and pyrolysis, and aims to determine whether the ELV material recycling target may be achieved by car fluff mechanical separation followed by pyrolysis with a bench scale reactor. Results show that flotation followed by pyrolysis of the light, organic fraction may be a suitable ASR recycling technique if the oil can be further refined and used as a chemical. Moreover, metals are liberated during thermal cracking and can be easily separated from the pyrolysis char, amounting to roughly 5% in mass. Lastly, pyrolysis can be a good starting point from a 'waste-to-chemicals' perspective, but further research should be done with a focus on oil and gas refining, in order both to make products suitable for the chemical industry and to render the whole recycling process economically feasible.

  1. Waste tire recycling by pyrolysis

    SciTech Connect

    Not Available

    1992-10-01

    This project examines the City of New Orleans' waste tire problem. Louisiana State law, as of January 1, 1991, prohibits the knowing disposal of whole waste tires in landfills. Presently, the numerous waste tire stockpiles in New Orleans range in size from tens to hundreds of tires. New Orleans' waste tire problem will continue to increase until legal disposal facilities are made accessible and a waste tire tracking and regulatory system with enforcement provisions is in place. Tires purchased outside of the city of New Orleans may be discarded within the city's limits; therefore, as a practical matter this study analyzes the impact stemming from the entire New Orleans metropolitan area. Pyrolysis mass recovery (PMR), a tire reclamation process which produces gas, oil, carbon black and steel, is the primary focus of this report. The technical, legal and environmental aspects of various alternative technologies are examined. The feasibility of locating a hypothetical PMR operation within the city of New Orleans is analyzed based on the current economic, regulatory, and environmental climate in Louisiana. A thorough analysis of active, abandoned, and proposed Pyrolysis operations (both national and international) was conducted as part of this project. Siting a PMR plant in New Orleans at the present time is technically feasible and could solve the city's waste tire problem. Pending state legislation could improve the city's ability to guarantee a long term supply of waste tires to any large scale tire reclamation or recycling operation, but the local market for PMR end products is undefined.

  2. Aromatics and phenols from catalytic pyrolysis of Douglas fir pellets in microwave with ZSM-5 as a catalyst

    SciTech Connect

    Wang, Lu; Lei, Hanwu; Ren, Shoujie; Bu, Quan; Liang, Jing; Wei, Yi; Liu, Yupeng; Lee, Guo-Shuh J.; Chen, Shulin; Tang, Juming; Zhang, Qin; Ruan, Roger

    2012-11-04

    Microwave assisted catalytic pyrolysis was investigated to convert Douglas fir pellets to bio-oils by a ZSM-5 Zeolite catalyst. A central composite experimental design (CCD) was used to optimize the catalytic pyrolysis process. The effects of reaction time, temperature and catalyst to biomass ratio on the bio-oil, syngas, and biochar yields were determined. GC/MS analysis results showed that the bio-oil contained a series of important and useful chemical compounds. Phenols, guaiacols, and aromatic hydrocarbons were the most abundant compounds which were about 50-82 % in bio-oil depending on the pyrolysis conditions. Comparison between the bio-oils from microwave pyrolysis with and without catalyst showed that the catalyst increased the content of aromatic hydrocarbons and phenols. A reaction pathway was proposed for microwave assisted catalyst pyrolysis of Douglas fir pellets.

  3. Development of advanced technologies for biomass pyrolysis

    NASA Astrophysics Data System (ADS)

    Xu, Ran

    The utilization of biomass resources as a renewable energy resource is of great importance in responding to concerns over the protection of the environment and the security of energy supply. This PhD research focuses on the investigation of the conversion of negative value biomass residues into value-added fuels through flash pyrolysis. Pyrolysis Process Study. A pilot plant bubbling fluidized bed pyrolyzer has been set up and extensively used to thermally crack various low or negative value agricultural, food and biofuel processing residues to investigate the yields and quality of the liquid [bio-oil] and solid (bio-char] products. Another novel aspect of this study is the establishment of an energy balance from which the thermal self-sustainability of the pyrolysis process can be assessed. Residues such as grape skins and mixture of grape skins and seeds, dried distiller's grains from bio-ethanol plants, sugarcane field residues (internal bagasse, external and whole plant) have been tested. The pyrolysis of each residue has been carried out at temperatures ranging from 300 to 600°C and at different vapor residence times, to determine its pyrolysis behavior including yields and the overall energy balance. The thermal sustainability of the pyrolysis process has been estimated by considering the energy contribution of the product gases and liquid bio-oll in relation to the pyrolysis heat requirements. The optimum pyrolysis conditions have been identified in terms of maximizing the liquid blo-oil yield, energy density and content of the product blo-oil, after ensuring a self-sustainable process by utilizing the product gases and part of char or bio-oil as heat sources. Adownflow pyrolyzer has also been set up. Preliminary tests have been conducted using much shorter residence times. Bio-oil Recovery. Bio-oil recovery from the pyrolysis unit includes condensation followed by demisting. A blo-oil cyclonic condensing system is designed A nearly tangential entry forces

  4. Pyrolysis characteristics and pyrolysis products separation for recycling organic materials from waste liquid crystal display panels.

    PubMed

    Wang, Ruixue; Xu, Zhenming

    2016-01-25

    Waste liquid crystal display (LCD) panels mainly contain inorganic materials (glass substrate with indium-tin oxide film), and organic materials (polarizing film and liquid crystal). The organic materials should be removed beforehand since the organic matters would hinder the indium recycling process. In the present study, pyrolysis process is used to remove the organic materials and recycle acetic as well as and triphenyl phosphate (TPP) from waste LCD panels in an environmental friendly way. Several highlights of this study are summarized as follows: (i) Pyrolysis characteristics and pyrolysis kinetics analysis are conducted which is significant to get a better understanding of the pyrolysis process. (ii) Optimum design is developed by applying Box-Behnken Design (BBD) under response surface methodology (RSM) for engineering application which is significant to guide the further industrial recycling process. The oil yield could reach 70.53 wt% and the residue rate could reach 14.05 wt% when the pyrolysis temperature is 570 °C, nitrogen flow rate is 6 L min(-1) and the particle size is 0.5 mm. (iii) Furthermore, acetic acid and TPP are recycled, and then separated by rotary evaporation, which could reduce the consumption of fossil energy for producing acetic acid, and be reused in electronics manufacturing industry.

  5. Pyrolysis characteristics and pyrolysis products separation for recycling organic materials from waste liquid crystal display panels.

    PubMed

    Wang, Ruixue; Xu, Zhenming

    2016-01-25

    Waste liquid crystal display (LCD) panels mainly contain inorganic materials (glass substrate with indium-tin oxide film), and organic materials (polarizing film and liquid crystal). The organic materials should be removed beforehand since the organic matters would hinder the indium recycling process. In the present study, pyrolysis process is used to remove the organic materials and recycle acetic as well as and triphenyl phosphate (TPP) from waste LCD panels in an environmental friendly way. Several highlights of this study are summarized as follows: (i) Pyrolysis characteristics and pyrolysis kinetics analysis are conducted which is significant to get a better understanding of the pyrolysis process. (ii) Optimum design is developed by applying Box-Behnken Design (BBD) under response surface methodology (RSM) for engineering application which is significant to guide the further industrial recycling process. The oil yield could reach 70.53 wt% and the residue rate could reach 14.05 wt% when the pyrolysis temperature is 570 °C, nitrogen flow rate is 6 L min(-1) and the particle size is 0.5 mm. (iii) Furthermore, acetic acid and TPP are recycled, and then separated by rotary evaporation, which could reduce the consumption of fossil energy for producing acetic acid, and be reused in electronics manufacturing industry. PMID:26444486

  6. Pyrolysis Strategies for Effective Utilization of Lignocellulosic and Algal Biomass

    NASA Astrophysics Data System (ADS)

    Maddi, Balakrishna

    Pyrolysis is a processing technique involving thermal degradation of biomass in the absence of oxygen. The bio-oils obtained following the condensation of the pyrolysis vapors form a convenient starting point for valorizing the major components of lignocellulosic as well as algal biomass feed stocks for the production of fuels and value-added chemicals. Pyrolysis can be implemented on whole biomass or on residues left behind following standard fractionation methods. Microalgae and oil seeds predominantly consist of protein, carbohydrate and triglycerides, whereas lignocellulose is composed of carbohydrates (cellulose and hemicellulose) and lignin. The differences in the major components of these two types of biomass will necessitate different pyrolysis strategies to derive the optimal benefits from the resulting bio-oils. In this thesis, novel pyrolysis strategies were developed that enable efficient utilization of the bio-oils (and/or their vapors) from lignocellulose, algae, as well as oil seed feed stocks. With lignocellulosic feed stocks, pyrolysis of whole biomass as well as the lignin residue left behind following well-established pretreatment and saccharification (i.e., depolymerization of cellulose and hemicellulose to their monomeric-sugars) of the biomass was studied with and without catalysts. Following this, pyrolysis of (lipid-deficient) algae and lignocellulosic feed stocks, under similar reactor conditions, was performed for comparison of product (bio-oil, gas and bio-char) yields and composition. In spite of major differences in component bio-polymers, feedstock properties relevant to thermo-chemical conversions, such as overall C, H and O-content, C/O and H/C molar ratio as well as calorific values, were found to be similar for algae and lignocellulosic material. Bio-oil yields from algae and some lignocellulosic materials were similar; however, algal bio-oils were compositionally different and contained several N-compounds (most likely from

  7. 90 Seconds of Discovery: Fast Pyrolysis

    SciTech Connect

    Weber, Robert; Elliot, Douglas

    2013-01-08

    Fossil fuels have provided a time-proven, energy-dense fuel for more than a century. The challenge facing America today is developing alternatives that work within our existing infrastructure; to decrease environmental impact; and to increase energy security.

  8. 90 Seconds of Discovery: Fast Pyrolysis

    ScienceCinema

    Weber, Robert; Elliot, Douglas

    2016-07-12

    Fossil fuels have provided a time-proven, energy-dense fuel for more than a century. The challenge facing America today is developing alternatives that work within our existing infrastructure; to decrease environmental impact; and to increase energy security.

  9. Catalytic pyrolysis using UZM-44 aluminosilicate zeolite

    SciTech Connect

    Nicholas, Christopher P; Boldingh, Edwin P

    2013-12-17

    A new family of aluminosilicate zeolites designated UZM-44 has been synthesized. These zeolites are represented by the empirical formula Na.sub.nM.sub.m.sup.k+T.sub.tAl.sub.1-xE.sub.xSi.sub.yO.sub.z where "n" is the mole ratio of Na to (Al+E), M represents a metal or metals from zinc, Group 1, Group 2, Group 3 and or the lanthanide series of the periodic table, "m" is the mole ratio of M to (Al+E), "k" is the average charge of the metal or metals M, T is the organic structure directing agent or agents, and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-44 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hydrocarbons into hydrocarbons and removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

  10. Catalytic pyrolysis using UZM-44 aluminosilicate zeolite

    SciTech Connect

    Nicholas, Christopher P; Boldingh, Edwin P

    2014-04-29

    A new family of aluminosilicate zeolites designated UZM-44 has been synthesized. These zeolites are represented by the empirical formula. Na.sub.nM.sub.m.sup.k+T.sub.tAl.sub.1-xE.sub.xSi.sub.yO.sub.z where "n" is the mole ratio of Na to (Al+E), M represents a metal or metals from zinc, Group 1, Group 2, Group 3 and or the lanthanide series of the periodic table, "m" is the mole ratio of M to (Al+E), "k" is the average charge of the metal or metals M, T is the organic structure directing agent or agents, and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-44 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hydrocarbons into hydrocarbons and removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

  11. Fast, easy ethanolysis of coconut oil for biodiesel production assisted by ultrasonication.

    PubMed

    Kumar, Dharmendra; Kumar, Gajendra; Poonam; Singh, C P

    2010-03-01

    Biodiesel is a renewable fuel, consistituting an alternative to petroleum-based diesel fuel. It is non-toxic and biodegradable and has a low emission profile, is better from environmentally sensitive areas. Research study on alternative fuels is essential for increased energy security. Presently, biodiesel is produced mainly is batch reactor. In this process the required energy is given by heating accompanied by mechanical stirring which has several disadvantages because of time consuming high labour cost. Being methanol is a toxic chemical; the objective of this work is to produce coconut oil ethyl ester by using ultrasonic irradiation. The advantages of ethanol are non-toxic domestic all available, having higher carbon atoms which provide higher heat content. The optical conditions for biodiesel production is the molar ratio oil to ethanol 1:6, KOH catalyst 0.75wt.% of oil and 7min reaction time. The reaction time reduced 15-40 times comparing to the conventional batch processes and found >or=98% biodiesel yield. PMID:19945331

  12. Flash vacuum pyrolysis of lignin model compounds

    SciTech Connect

    Cooney, M.J.; Britt, P.F.; Buchanan, A.C. III

    1997-03-01

    Despite the extensive research into the pyrolysis of lignin, the underlying chemical reactions that lead to product formation are poorly understood. Detailed mechanistic studies on the pyrolysis of biomass and lignin under conditions relevant to current process conditions could provide insight into utilizing this renewable resource for the production of chemicals and fuel. Currently, flash or fast pyrolysis is the most promising process to maximize the yields of liquid products (up to 80 wt %) from biomass by rapidly heating the substrate to moderate temperatures, typically 500{degrees}C, for short residence times, typically less than two seconds. To provide mechanistic insight into the primary reaction pathways under process relevant conditions, we are investigating the flash vacuum pyrolysis (FVP) of lignin model compounds that contain a {beta}-ether. linkage and {alpha}- or {gamma}-alcohol, which are key structural elements in lignin. The dominant products from the FVP of PhCH{sub 2}CH{sub 2}OPh (PPE), PhC(OH)HCH{sub 2}OPh, and PhCH{sub 2}CH(CH{sub 2}OH)OPh at 500{degrees}C can be attributed to homolysis of the weakest bond in the molecule (C-O bond) or 1,2-elimination. Surprisingly, the hydroxy-substituent dramatically increases the decomposition of PPE. It is proposed that internal hydrogen bonding is accelerating the reaction.

  13. WEEE recycling: Pyrolysis of fire retardant model polymers.

    PubMed

    Luda, M P; Euringer, N; Moratti, U; Zanetti, M

    2005-01-01

    Pyrolysis treatments of model polymers were made with the aim of studying the recycling of wastes from electronic, electric equipment containing brominated flame retardants. Pyrolysis of flame retarded high impact polystyrene and epoxy resins were made both in flow and closed systems. Products of pyrolysis were analysed with FT-IR spectroscopy and GC-MS and the evolution of bromine was followed with a bromine ion specific electrode. The effect of alkali on pyrolysis was also studied demonstrating, as far epoxy resin is concerned, to be effective on decreasing bromine content in oil and volatile products leading to the recovery of bromine from the residue by washing. The alkali treatment was shown to be less effective in styrenic polymers containing brominated flame retardants.

  14. Low-Severity Hydroprocessing to Stabilize Bio-oil: TechnoEconomic Assessment

    SciTech Connect

    Tews, Iva J.; Elliott, Douglas C.

    2014-08-31

    The impetus for this study was the suggestion that recent developments in fast pyrolysis (FP) bio-oil production had indicated instability of the bio-oil in storage which might lead to unacceptable viscosity increases. Commercial operation of FP in Finland began in 2014 and the distribution of the bio-oil to isolated users has been proposed as the long-term plan. Stability of the shipped bio-oil therefore became a concern. Experimental results at PNNL with low-severity hydroprocessing of bio-oil for stabilization has validated a process in which the stability of the bio-oil could be improved, as measured by viscosity increase following storage of the product at 80 °C for 24h. In the work reported here the assessed process configuration consists of fast pyrolysis followed by low temperature and pressure hydroprocessing to produce a stable fuel oil product. The product could then be stored for an extended period of time without significant viscosity increase. This work was carried out as part of a collaborative project between Technical Research Centre of Finland (VTT) and Pacific Northwest National Laboratory (PNNL). The public funding agents for the work were Tekes in Finland and the Bioenergy Technologies Office of the U.S. Department of Energy. The effort was proposed as an evaluation of the process developed in earlier collaboration and jointly invented by VTT and PNNL researchers.

  15. Interval ridge regression (iRR) as a fast and robust method for quantitative prediction and variable selection applied to edible oil adulteration.

    PubMed

    Jović, Ozren; Smrečki, Neven; Popović, Zora

    2016-04-01

    A novel quantitative prediction and variable selection method called interval ridge regression (iRR) is studied in this work. The method is performed on six data sets of FTIR, two data sets of UV-vis and one data set of DSC. The obtained results show that models built with ridge regression on optimal variables selected with iRR significantly outperfom models built with ridge regression on all variables in both calibration (6 out of 9 cases) and validation (2 out of 9 cases). In this study, iRR is also compared with interval partial least squares regression (iPLS). iRR outperfomed iPLS in validation (insignificantly in 6 out of 9 cases and significantly in one out of 9 cases for p<0.05). Also, iRR can be a fast alternative to iPLS, especially in case of unknown degree of complexity of analyzed system, i.e. if upper limit of number of latent variables is not easily estimated for iPLS. Adulteration of hempseed (H) oil, a well known health beneficial nutrient, is studied in this work by mixing it with cheap and widely used oils such as soybean (So) oil, rapeseed (R) oil and sunflower (Su) oil. Binary mixture sets of hempseed oil with these three oils (HSo, HR and HSu) and a ternary mixture set of H oil, R oil and Su oil (HRSu) were considered. The obtained accuracy indicates that using iRR on FTIR and UV-vis data, each particular oil can be very successfully quantified (in all 8 cases RMSEP<1.2%). This means that FTIR-ATR coupled with iRR can very rapidly and effectively determine the level of adulteration in the adulterated hempseed oil (R(2)>0.99).

  16. A Comparative study of microwave-induced pyrolysis of lignocellulosic and algal biomass.

    PubMed

    Wang, Nan; Tahmasebi, Arash; Yu, Jianglong; Xu, Jing; Huang, Feng; Mamaeva, Alisa

    2015-08-01

    Microwave (MW) pyrolysis of algal and lignocellulosic biomass samples were studied using a modified domestic oven. The pyrolysis temperature was recorded continuously by inserting a thermocouple into the samples. Temperatures as high as 1170 and 1015°C were achieved for peanut shell and Chlorella vulgaris. The activation energy for MW pyrolysis was calculated by Coats-Redfern method and the values were 221.96 and 214.27kJ/mol for peanut shell and C. vulgaris, respectively. Bio-oil yields reached to 27.7wt.% and 11.0wt.% during pyrolysis of C. vulgaris and peanut shell, respectively. The bio-oil samples from pyrolysis were analyzed by a gas chromatography-mass spectrometry (GC-MS). Bio-oil from lignocellulosic biomass pyrolysis contained more phenolic compounds while that from microalgae pyrolysis contained more nitrogen-containing species. Fourier transform infrared spectroscopy (FTIR) analysis results showed that concentration of OH, CH, CO, OCH3, and CO functional groups in char samples decreased significantly after pyrolysis.

  17. Pyrolysis of a waste from the grinding of scrap tyres.

    PubMed

    Fernández, A M; Barriocanal, C; Alvarez, R

    2012-02-15

    The fibres that are used to reinforce tyres can be recovered as a waste in the process of grinding of scrap tyres. In this paper beneficiation through pyrolysis is studied since the fibres are made up of polymers with a small amount of rubber because the latter is difficult to separate. The experiments were performed at three temperatures (400, 550 and 900°C) in a horizontal oven. The three products - gas, oil and char - obtained from the pyrolysis were investigated. The composition of the gas was analyzed by means of gas chromatography. The oil was studied by gas chromatography and infrared spectroscopy. The char porous structure was determined by N(2) adsorption. In addition, the topography of the chars was studied by means of scanning electron microscopy (SEM). The products resulting from the pyrolysis of the fibres were compared with those obtained from scrap rubber.

  18. Headspace screening: A novel approach for fast quality assessment of the essential oil from culinary sage.

    PubMed

    Cvetkovikj, Ivana; Stefkov, Gjoshe; Acevska, Jelena; Karapandzova, Marija; Dimitrovska, Aneta; Kulevanova, Svetlana

    2016-07-01

    Quality assessment of essential oil (EO) from culinary sage (Salvia officinalis L., Lamiaceae) is limited by the long pharmacopoeial procedure. The aim of this study was to employ headspace (HS) sampling in the quality assessment of sage EO. Different populations (30) of culinary sage were assessed using GC/FID/MS analysis of the hydrodistilled EO (pharmacopoeial method) and HS sampling directly from leaves. Compound profiles from both procedures were evaluated according to ISO 9909 and GDC standards for sage EO quality, revealing compliance for only 10 populations. Factors to convert HS values, for the target ISO and GDC components, into theoretical EO values were calculated. Statistical analysis revealed a significant relationship between HS and EO values for seven target components. Consequently, HS sampling could be used as a complementary extraction technique for rapid screening in quality assessment of sage EOs. PMID:26920277

  19. Headspace screening: A novel approach for fast quality assessment of the essential oil from culinary sage.

    PubMed

    Cvetkovikj, Ivana; Stefkov, Gjoshe; Acevska, Jelena; Karapandzova, Marija; Dimitrovska, Aneta; Kulevanova, Svetlana

    2016-07-01

    Quality assessment of essential oil (EO) from culinary sage (Salvia officinalis L., Lamiaceae) is limited by the long pharmacopoeial procedure. The aim of this study was to employ headspace (HS) sampling in the quality assessment of sage EO. Different populations (30) of culinary sage were assessed using GC/FID/MS analysis of the hydrodistilled EO (pharmacopoeial method) and HS sampling directly from leaves. Compound profiles from both procedures were evaluated according to ISO 9909 and GDC standards for sage EO quality, revealing compliance for only 10 populations. Factors to convert HS values, for the target ISO and GDC components, into theoretical EO values were calculated. Statistical analysis revealed a significant relationship between HS and EO values for seven target components. Consequently, HS sampling could be used as a complementary extraction technique for rapid screening in quality assessment of sage EOs.

  20. Fusion of microlitre water-in-oil droplets for simple, fast and green chemical assays.

    PubMed

    Chiu, S-H; Urban, P L

    2015-08-01

    A simple format for microscale chemical assays is proposed. It does not require the use of test tubes, microchips or microtiter plates. Microlitre-range (ca. 0.7-5.0 μL) aqueous droplets are generated by a commercial micropipette in a non-polar matrix inside a Petri dish. When two droplets are pipetted nearby, they spontaneously coalesce within seconds, priming a chemical reaction. Detection of the reaction product is accomplished by colorimetry, spectrophotometry, or fluorimetry using simple light-emitting diode (LED) arrays as the sources of monochromatic light, while chemiluminescence detection of the analytes present in single droplets is conducted in the dark. A smartphone camera is used as the detector. The limits of detection obtained for the developed in-droplet assays are estimated to be: 1.4 nmol (potassium permanganate by colorimetry), 1.4 pmol (fluorescein by fluorimetry), and 580 fmol (sodium hypochlorite by chemiluminescence detection). The format has successfully been used to monitor the progress of chemical and biochemical reactions over time with sub-second resolution. A semi-quantitative analysis of ascorbic acid using Tillman's reagent is presented. A few tens of individual droplets can be scanned in parallel. Rapid switching of the LED light sources with different wavelengths enables a spectral analysis of multiple droplets. Very little solid waste is produced. The assay matrix is readily recycled, thus the volume of liquid waste produced each time is also very small (typically, 1-10 μL per analysis). Various water-immiscible translucent liquids can be used as the reaction matrix: including silicone oil, 1-octanol as well as soybean cooking oil.