Science.gov

Sample records for fast ramped superconducting

  1. CABLE DESIGN FOR FAST RAMPED SUPERCONDUCTING MAGNETS (COS-0 DESIGN).

    SciTech Connect

    GHOSH,A.

    2004-03-22

    The new heavy ion synchrotron facility proposed by GSI will have two superconducting magnet rings in the same tunnel, with rigidities of 300 T-m and 100 T-m. Fast ramp times are needed, which can cause significant problems for the magnets, particularly in the areas of ac loss and magnetic field distortion. The development of the low loss Rutherford cable that can be used is described, together with a novel insulation scheme designed to promote efficient cooling. Measurements of contact resistance in the cable are presented and the results of these measurements are used to predict the ac losses, in the magnets during fast ramp operation. For the high energy ring, a lm model dipole magnet was built, based on the RHIC dipole design. This magnet was tested under boiling liquid helium in a vertical cryostat. The quench current showed very little dependence on ramp rate. The ac losses, measured by an electrical method, were fitted to straight line plots of loss/cycle versus ramp rate, thereby separating the eddy current and hysteresis components. These results were compared with calculated values, using parameters which had previously been measured on short samples of cable. Reasonably good agreement between theory and experiment was found, although the measured hysteresis loss is higher than expected in ramps to the highest field levels.

  2. INITIAL TEST OF A FAST RAMPED SUPERCONDUCTING MODEL DIPOLE FOR GSIS PROPOSED SIS200 ACCELERATOR.

    SciTech Connect

    WANDERER,P.; ANERELLA,M.; GANETIS,G.; GHOSH,A.; JOSHI,P.; MARONE,A.; MURATORE,J.; SCHMALZLE,J.; SOIKA,R.; THOMAS,R.; KAUGERTS,J.; MORITZ,G.; HASSENZAHL,W.; WILSON,N.M.

    2003-05-12

    Gesellschaft fur Schwerionenforschung (GSI) has proposed a large expansion of the existing facility in Darmstadt, Germany. The proposal includes an accelerator, SIS200, with rigidity of 200 Tam that utilizes 4 T superconducting dipoles ramped at 1 T/s. An R&D program including both the superconductor and the magnet is directed at achieving the desired ramp rate with minimal energy loss. The RHIC arc dipoles, with 8 cm aperture, possess adequate aperture and field strength but are ramped at only 1/20 of the desired rate. However, for reasons of speed and economy, the RHIC dipole is being used as the basis for this work. The superconductor R&D has progressed far enough to permit the manufacture of an initial cable with satisfactory properties. This cable has been used in the construction of a I m model magnet, appropriately modified from the RHIC design. The magnet has been tested successfully at 2 T/s to 4.38 T.

  3. Main Design Principles of the Cold Beam Pipe in the FastRamped Superconducting Accelerator Magnets for Heavy Ion Synchrotron SIS100

    NASA Astrophysics Data System (ADS)

    Mierau, A.; Schnizer, P.; Fischer, E.; Macavei, J.; Wilfert, S.; Koch, S.; Weiland, T.; Kurnishov, R.; Shcherbakov, P.

    SIS100, the world second large scale heavy ion synchrotron using fast ramped superconducting magnets, is to be built at FAIR. Its high current operation of intermediate charge state ions requires stable vacuum pressures < 10-12 mbar under dynamic machine conditions which are only achievable when the whole beam pipe is used as an huge cryopump. In order to find technological feasible design solutions, three opposite requirements have to be met: minimum magnetic field distortion caused by AC losses, mechanical stability and low and stable wall temperatures of the beam pipe. We present the possible design versions of the beam pipe for the high current curved dipole. The pros and cons of these proposed designs were studied using simplified analytical models, FEM calculations and tests on models.

  4. Fast current ramp experiments on TFTR

    SciTech Connect

    Fredrickson, E.D.; McGuire, K.; Goldston, R.J.; Bell, M.; Grek, B.; Johnson, D.; Morris, A.W.; Stauffer, F.J.; Taylor, G.; Zarnstorff, M.C.

    1987-05-01

    Electron heat transport on TFTR and other tokamaks is several orders of magnitude larger than neoclassical calculations would predict. Despite considerable effort, there is still no clear theoretical understanding of this anomalous transport. The electron temperature profile T/sub e/(r), shape has shown a marked consistency on many machines, including TFTR, for a wide range of plasma parameters and heating profiles. This could be an important clue as to the process responsible for this enhanced thermal transport. In this paper 'profile consistency' in TFTR is described and an experiment which uses a fast current ramp to transiently decouple the current density profile J(r), and the T/sub e/(r) profiles is discussed. From this experiment the influence of J(r) on electron temperature profile consistency can be determined.

  5. Fast superconducting magnetic field switch

    DOEpatents

    Goren, Yehuda; Mahale, Narayan K.

    1996-01-01

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles.

  6. Fast superconducting magnetic field switch

    DOEpatents

    Goren, Y.; Mahale, N.K.

    1996-08-06

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. 6 figs.

  7. A VERY FAST RAMPING MUON SYNCHROTRON FOR A NEUTRINO FACTORY.

    SciTech Connect

    SUMMERS,D.J.BERG,J.S.PALMER,R.B.GARREN,A.A.

    2003-05-12

    A 4600 Hz fast ramping synchrotron is studied as an economical way of accelerating muons from 4 to 20 GeV/c for a neutrino factory. Eddy current losses are minimized by the low machine duty cycle plus thin grain oriented silicon steel laminations and thin copper wires. Combined function magnets with high gradients alternating within single magnets form the lattice. Muon survival is 83%.

  8. MUON ACCELERATION WITH A VERY FAST RAMPING SYNCHROTRON FOR A NEUTRINO FACTORY.

    SciTech Connect

    SUMMERS,D.J.BERG,J.S.GARREN,A.A.PALMER,R.B.

    2002-07-01

    A 4600 Hz fast ramping synchrotron is explored as an economical way of accelerating muons from 4 to 20 GeV/c for a neutrino factory. Eddy current losses are minimized by the low machine duty cycle plus thin grain oriented silicon steel laminations and thin copper wires. Combined function magnets with high gradients alternating within single magnets form the lattice we describe. Muon survival is 83%.

  9. Fast thermometry for superconducting rf cavity testing

    SciTech Connect

    Orris, Darryl; Bellantoni, Leo; Carcagno, Ruben H.; Edwards, Helen; Harms, Elvin Robert; Khabiboulline, Timergali N.; Kotelnikov, Sergey; Makulski, Andrzej; Nehring, Roger; Pischalnikov, Yuriy; /Fermilab

    2007-06-01

    Fast readout of strategically placed low heat capacity thermometry can provide valuable information of Superconducting RF (SRF) cavity performance. Such a system has proven very effective for the development and testing of new cavity designs. Recently, several resistance temperature detectors (RTDs) were installed in key regions of interest on a new 9 cell 3.9 GHz SRF cavity with integrated HOM design at FNAL. A data acquisition system was developed to read out these sensors with enough time and temperature resolution to measure temperature changes on the cavity due to heat generated from multipacting or quenching within power pulses. The design and performance of the fast thermometry system will be discussed along with results from tests of the 9 cell 3.9GHz SRF cavity.

  10. Superconducting High Resolution Fast-Neutron Spectrometers

    SciTech Connect

    Hau, Ionel Dragos

    2006-01-01

    Superconducting high resolution fast-neutron calorimetric spectrometers based on 6LiF and TiB{sub 2} absorbers have been developed. These novel cryogenic spectrometers measure the temperature rise produced in exothermal (n, α) reactions with fast neutrons in 6Li and 10B-loaded materials with heat capacity C operating at temperatures T close to 0.1 K. Temperature variations on the order of 0.5 mK are measured with a Mo/Cu thin film multilayer operated in the transition region between its superconducting and its normal state. The advantage of calorimetry for high resolution spectroscopy is due to the small phonon excitation energies kBT on the order of μeV that serve as signal carriers, resulting in an energy resolution ΔE ~ (kBT2C)1/2, which can be well below 10 keV. An energy resolution of 5.5 keV has been obtained with a Mo/Cu superconducting sensor and a TiB2 absorber using thermal neutrons from a 252Cf neutron source. This resolution is sufficient to observe the effect of recoil nuclei broadening in neutron spectra, which has been related to the lifetime of the first excited state in 7Li. Fast-neutron spectra obtained with a 6Li-enriched LiF absorber show an energy resolution of 16 keV FWHM, and a response in agreement with the 6Li(n, α)3H reaction cross section and Monte Carlo simulations for energies up to several MeV. The energy resolution of order of a few keV makes this novel instrument applicable to fast-neutron transmission spectroscopy based on the unique elemental signature provided by the neutron absorption and scattering resonances. The optimization of the energy resolution based on analytical and numerical models of the detector response is discussed in the context of these applications.

  11. Fast tuning of superconducting microwave cavities

    SciTech Connect

    Sandberg, M.; Wilson, C. M.; Persson, F.; Johansson, G.; Shumeiko, V.; Bauch, T.; Duty, T.; Delsing, P.

    2008-11-07

    Photons are fundamental excitations of electromagnetic fields and can be captured in cavities. For a given cavity with a certain size, the fundamental mode has a fixed frequency f which gives the photons a specific 'color'. The cavity also has a typical lifetime {tau}, which results in a finite linewidth {delta}f. If the size of the cavity is changed fast compared to {tau}, and so that the frequency change {delta}f>>{delta}f, then it is possible to change the 'color' of the captured photons. Here we demonstrate superconducting microwave cavities, with tunable effective lengths. The tuning is obtained by varying a Josephson inductance at one end of the cavity. We show data on four different samples and demonstrate tuning by several hundred linewidths in a time {delta}t<<{tau}. Working in the few photon limit, we show that photons stored in the cavity at one frequency will leak out from the cavity with the new frequency after the detuning. The characteristics of the measured devices make them suitable for different applications such as dynamic coupling of qubits and parametric amplification.

  12. Calculation of eddy-currents induced in a compact synchrotron superconducting magnet structure during a current ramp

    SciTech Connect

    Kalsi, S. . Space and Electronics Systems Div.); Heese, R. )

    1991-01-01

    Under DARPA sponsorship, a compact Superconducting X-Ray Light Source (SXSL) is being designed and built by the Brookhaven National Laboratory (BNL) with industry participation from Grumman Corporation and General Dynamics. The SXLS machine employs two 180{degrees} curved 4 telsa superconducting dipole magnets. These magnets are required to produce a dipole field for bending the beam but at the same time they must produce finite amounts of higher multipoles which are required for conditioning the beam. In fact uniformity of the field to less than 1 part in 10,000 must be maintained under all operating conditions. When a superconducting magnet is ramped from zero to full field, the changing magnetic field produces eddy-currents in the magnet structure which in turn can produce undesirable multipoles. This paper discusses a simple method for estimating these eddy-currents and their effect on the field harmonics. The paper present the analysis basis and its application to the SXLS magnet support structure and to the beam chamber components. 5 figs., 1 tab.

  13. Tune Determination of Strongly Coupled Betatron Oscillations in a Fast-Ramping Synchrotron

    SciTech Connect

    Alexahin, Y.; Gianfelice-Wendt, E.; Marsh, W; Triplett, K.; /Fermilab

    2012-05-01

    Tune identification -- i.e. attribution of the spectral peak to a particular normal de of oscillations -- can present a significant difficulty in the presence of strong transverse coupling when the normal mode with a lower damping rate dominates spectra of Turn-by-Turn oscillations in both planes. The introduced earlier phased sum algorithm helped to recover the weaker normal mode signal from the noise, but by itself proved to be insufficient for automatic peak identification in the case of close phase advance distribution in both planes. To resolve this difficulty we modified the algorithm by taking and analyzing Turn-by-Turn data for two different ramps with the beam oscillation excited in each plane in turn. Comparison of relative amplitudes of Fourier components allows for correct automatic tune identification. The proposed algorithm was implemented in the Fermilab Booster B38 console application and successfully used for tune, coupling and chromaticity measurements.

  14. Fast Ferroelectric L-Band Tuner for Superconducting Cavities

    SciTech Connect

    Jay L. Hirshfield

    2011-03-01

    Analysis and modeling is presented for a fast microwave tuner to operate at 700 MHz which incorporates ferroelectric elements whose dielectric permittivity can be rapidly altered by application of an external voltage. This tuner could be used to correct unavoidable fluctuations in the resonant frequency of superconducting cavities in accelerator structures, thereby greatly reducing the RF power needed to drive the cavities. A planar test version of the tuner has been tested at low levels of RF power, but at 1300 MHz to minimize the physical size of the test structure. This test version comprises one-third of the final version. The tests show performance in good agreement with simulations, but with losses in the ferroelectric elements that are too large for practical use, and with issues in bonding of ferroelectric elements to the metal walls of the tuner structure.

  15. Behavior of a high-temperature superconducting conductor on a round core cable at current ramp rates as high as 67.8 kA s-1 in background fields of up to 19 T

    NASA Astrophysics Data System (ADS)

    Michael, P. C.; Bromberg, L.; van der Laan, D. C.; Noyes, P.; Weijers, H. W.

    2016-04-01

    High temperature superconducting (HTS) conductor-on-round-core (CORC®) cables have been developed for use in power transmission systems and large high-field magnets. The use of high-current conductors for large-scale magnets reduces system inductance and limits the peak voltage needed for ramped field operation. A CORC® cable contains a large number of RE-Ba2Cu3O7-δ (RE = rare earth) (REBCO) coated conductors, helically wound in multiple layers on a thin, round former. Large-scale applications, such as fusion and accelerator magnets, require current ramp rates of several kilo-Amperes per second during pulsed operation. This paper presents results that demonstrate the electromagnetic stability of a CORC® cable during transient conditions. Measurements were performed at 4.2 K using a 1.55 m long CORC® cable in background fields of up to 19 T. Repeated current pulses in a background field of 19 T at current ramp rates of up to 67.8 kA s-1 to approximately 90% of the cable’s quench current at that field, did not show any sign of degradation in cable performance due to excessive ac loss or electromagnetic instability. The very high current ramp rates applied during these tests were used to compensate, to the extent possible, the limited cable length accommodated by the test facility, assuming that the measured results could be extrapolated to longer length cables operated at proportionally lower current ramp rates. No shift of the superconducting transition to lower current was measured when the current ramp rate was increased from 25 A s-1 to 67.8 kA s-1. These results demonstrate the viability of CORC® cables for use in low-inductance magnets that operate at moderate to high current ramp rates.

  16. Generation and Characterization of Electron Bunches with Ramped Current Profiles in a Dual-Frequency Superconducting Linear Accelerator

    DOE PAGES

    Piot, P.; Behrens, C.; Gerth, C.; ...

    2011-09-07

    We report on the successful experimental generation of electron bunches with ramped current profiles. The technique relies on impressing nonlinear correlations in the longitudinal phase space using a superconducing radiofrequency linear accelerator operating at two frequencies and a current-enhancing dispersive section. The produced {approx} 700-MeV bunches have peak currents of the order of a kilo-Ampere. Data taken for various accelerator settings demonstrate the versatility of the method and in particular its ability to produce current profiles that have a quasi-linear dependency on the longitudinal (temporal) coordinate. The measured bunch parameters are shown, via numerical simulations, to produce gigavolt-per-meter peak acceleratingmore » electric fields with transformer ratios larger than 2 in dielectric-lined waveguides.« less

  17. Generation and characterization of electron bunches with ramped current profiles in a dual-frequency superconducting linear accelerator.

    PubMed

    Piot, P; Behrens, C; Gerth, C; Dohlus, M; Lemery, F; Mihalcea, D; Stoltz, P; Vogt, M

    2012-01-20

    We report on the successful experimental generation of electron bunches with ramped current profiles. The technique relies on impressing nonlinear correlations in the longitudinal phase space using a superconducing radio frequency linear accelerator operating at two frequencies and a current-enhancing dispersive section. The produced ~700-MeV bunches have peak currents of the order of a kilo-Ampère. Data taken for various accelerator settings demonstrate the versatility of the method and, in particular, its ability to produce current profiles that have a quasilinear dependency on the longitudinal (temporal) coordinate. The measured bunch parameters are shown, via numerical simulations, to produce gigavolt-per-meter peak accelerating electric fields with transformer ratios larger than 2 in dielectric-lined waveguides.

  18. Generation and Characterization of Electron Bunches with Ramped Current Profiles in a Dual-Frequency Superconducting Linear Accelerator

    SciTech Connect

    Piot, P.; Behrens, C.; Gerth, C.; Dohlus, M.; Lemery, F.; Mihalcea, D.; Stoltz, P.; Vogt, M.

    2011-09-07

    We report on the successful experimental generation of electron bunches with ramped current profiles. The technique relies on impressing nonlinear correlations in the longitudinal phase space using a superconducing radiofrequency linear accelerator operating at two frequencies and a current-enhancing dispersive section. The produced {approx} 700-MeV bunches have peak currents of the order of a kilo-Ampere. Data taken for various accelerator settings demonstrate the versatility of the method and in particular its ability to produce current profiles that have a quasi-linear dependency on the longitudinal (temporal) coordinate. The measured bunch parameters are shown, via numerical simulations, to produce gigavolt-per-meter peak accelerating electric fields with transformer ratios larger than 2 in dielectric-lined waveguides.

  19. Superconducting gamma and fast-neutron spectrometers with high energy resolution

    DOEpatents

    Friedrich, Stephan; , Niedermayr, Thomas R.; Labov, Simon E.

    2008-11-04

    Superconducting Gamma-ray and fast-neutron spectrometers with very high energy resolution operated at very low temperatures are provided. The sensor consists of a bulk absorber and a superconducting thermometer weakly coupled to a cold reservoir, and determines the energy of the incident particle from the rise in temperature upon absorption. A superconducting film operated at the transition between its superconducting and its normal state is used as the thermometer, and sensor operation at reservoir temperatures around 0.1 K reduces thermal fluctuations and thus enables very high energy resolution. Depending on the choice of absorber material, the spectrometer can be configured either as a Gamma-spectrometer or as a fast-neutron spectrometer.

  20. Fast Ferroelectric L-Band Tuner for Superconducting Cavities

    SciTech Connect

    Jay L. Hirshfield

    2012-07-03

    Design, analysis, and low-power tests are described on a ferroelectric tuner concept that could be used for controlling external coupling to RF cavities for the superconducting Energy Recovery Linac (ERL) in the electron cooler of the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). The tuner configuration utilizes several small donut-shaped ferroelectric assemblies, which allow the design to be simpler and more flexible, as compared to previous designs. Design parameters for 704 and 1300 MHz versions of the tuner are given. Simulation results point to efficient performance that could reduce by a factor-of-ten the RF power levels required for driving superconducting cavities in the BNL ERL.

  1. Hybrid Fast-Ramping Accelerator to 750 GeV/c: Refinement and Parameters over Full Energy Range

    SciTech Connect

    Berg J. S.; Garren, A. A.

    2012-03-02

    Starting with the lattice design specified in [Garren and Berg, MAP-doc-4307, 2011], we refine parameters to get precise dispersion suppression in the straight sections and eliminate beta beating in the arcs. We then compute ramped magnet fields over the entire momentum range of 375 GeV/c to 750 GeV/c, and fit them to a polynomial in the momentum. We compute the time of flight and frequency slip factor over the entire momentum range, and discuss the consequences for longitudinal dynamics.

  2. Fast reciprocating probe system on the EAST superconducting tokamak.

    PubMed

    Zhang, W; Chang, J F; Wan, B N; Xu, G S; Xiao, C J; Li, B; Xu, C S; Yan, N; Wang, L; Liu, S C; Jiang, M; Liu, P

    2010-11-01

    A new fast reciprocating probe system (FRPS) has been built and installed on the outer midplane of the EAST tokamak to investigate the profiles of the boundary plasma parameters such as electron density and temperature. The system consists of a two-stage motion drive mechanism: slow motion and fast motion. The fast motion is powered by a servo motor, which drives the probe horizontally up to 50 cm to scan the edge region of the EAST tokamak. The maximum velocity achieved is 2 m/s. High velocity and flexible control of the fast motion are the remarkable features of this FRPS. A specially designed connector installed at the front end of the probe shaft makes it easy to install or replace the probe head on FRPS. During the latest experimental campaign in the spring of 2010, a probe head with seven tips, including two tips for a Mach probe, has been used. An example is given for simultaneous profile measurements of the plasma temperature, plasma density, and the plasma flow velocity.

  3. Fast-cycling superconducting synchrotrons and possible path to the future of US experimental high-energy particle physics

    SciTech Connect

    Piekarz, Henryk; /Fermilab

    2008-02-01

    The authors outline primary physics motivation, present proposed new arrangement for Fermilab accelerator complex, and then discuss possible long-range application of fast-cycling superconducting synchrotrons at Fermilab.

  4. Mixed Linear/Square-Root Encoded Single Slope Ramp Provides a Fast, Low Noise Analog to Digital Converter with Very High Linearity for Focal Plane Arrays

    NASA Technical Reports Server (NTRS)

    Wrigley, Christopher James (Inventor); Hancock, Bruce R. (Inventor); Newton, Kenneth W. (Inventor); Cunningham, Thomas J. (Inventor)

    2014-01-01

    An analog-to-digital converter (ADC) converts pixel voltages from a CMOS image into a digital output. A voltage ramp generator generates a voltage ramp that has a linear first portion and a non-linear second portion. A digital output generator generates a digital output based on the voltage ramp, the pixel voltages, and comparator output from an array of comparators that compare the voltage ramp to the pixel voltages. A return lookup table linearizes the digital output values.

  5. Conceptual design of a fast-ion D-alpha diagnostic on experimental advanced superconducting tokamak

    SciTech Connect

    Huang, J. Wan, B.; Hu, L.; Hu, C.; Heidbrink, W. W.; Zhu, Y.; Hellermann, M. G. von; Gao, W.; Wu, C.; Li, Y.; Fu, J.; Lyu, B.; Yu, Y.; Ye, M.; Shi, Y.

    2014-11-15

    To investigate the fast ion behavior, a fast ion D-alpha (FIDA) diagnostic system has been planned and is presently under development on Experimental Advanced Superconducting Tokamak. The greatest challenges for the design of a FIDA diagnostic are its extremely low intensity levels, which are usually significantly below the continuum radiation level and several orders of magnitude below the bulk-ion thermal charge-exchange feature. Moreover, an overlaying Motional Stark Effect (MSE) feature in exactly the same wavelength range can interfere. The simulation of spectra code is used here to guide the design and evaluate the diagnostic performance. The details for the parameters of design and hardware are presented.

  6. Fast Non-Destructive Evaluation of Superconducting Magnet Wires using a Flow-Through SQUID Microscope

    NASA Astrophysics Data System (ADS)

    Matthews, John; Wellstood, Frederick; Weinstock, Harold

    2006-03-01

    We have developed a cryocooled high-Tc SQUID microscope for fast non-destructive evaluation (NDE) of long wires, designed for detecting defects in superconducting magnet wire. A feedthrough mechanism pulls the wire at speeds of up to 20 cm/s through a thin mylar tube that separates the room temperature wire from the SQUID. We present results on test wires where we detect defects down to about 0.3 mm diameter. We discuss how we extract information from the data, such as defect size and location, and also outline a method for fast automated detection of defects in long wires.

  7. Influence of fast magnetic pulses on the superconducting magnet test facility TOSKA

    SciTech Connect

    Biro, O.; Maurer, W.

    1994-09-01

    An overview is given about the influence of fast magnetic field pulses (up to 40 T/s) on components of the TOSKA magnet test facility at KfK, Karlsruhe. Such fast magnetic field changes occur during the operation of poloidal field coils and accidental plasma disruptions in a Tokamak and also during safety discharges of superconducting magnets. Induced eddy currents in surrounding conductive components can cause some detrimental damage. FEM calculations were performed in order to study the influence on critical components of TOSKA and to identify necessary modifications of the facility. The paper presents the results of these calculations.

  8. Fast 704 MHz Ferroelectric Tuner for Superconducting Cavities

    SciTech Connect

    Jay L. Hirshfield

    2012-04-12

    The Omega-P SBIR project described in this Report has as its goal the development, test, and evaluation of a fast electrically-controlled L-band tuner for BNL Energy Recovery Linac (ERL) in the Electron Ion Collider (EIC) upgrade of the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). The tuner, that employs an electrically-controlled ferroelectric component, is to allow fast compensation to cavity resonance changes. In ERLs, there are several factors which significantly affect the amount of power required from the wall-plug to provide the RF-power level necessary for the operation. When beam loading is small, the power requirements are determined by (i) ohmic losses in cavity walls, (ii) fluctuations in amplitude and/or phase for beam currents, and (iii) microphonics. These factors typically require a substantial change in the coupling between the cavity and the feeding line, which results in an intentional broadening of the cavity bandwidth, which in turn demands a significant amount of additional RF power. If beam loading is not small, there is a variety of beam-drive phase instabilities to be managed, and microphonics will still remain an issue, so there remain requirements for additional power. Moreover ERL performance is sensitive to changes in beam arrival time, since any such change is equivalent to phase instability with its vigorous demands for additional power. In this Report, we describe the new modular coaxial tuner, with specifications suitable for the 704 MHz ERL application. The device would allow changing the RF-coupling during the cavity filling process in order to effect significant RF power savings, and also will provide rapid compensation for beam imbalance and allow for fast stabilization against phase fluctuations caused by microphonics, beam-driven instabilities, etc. The tuner is predicted to allow a reduction of about ten times in the required power from the RF source, as compared to a compensation system

  9. Superconductivity

    DTIC Science & Technology

    1989-07-01

    SUPERCONDUCTIVITY HIGH-POWER APPLICATIONS Electric power generation/transmission Energy storage Acoustic projectors Weapon launchers Catapult Ship propulsion • • • Stabilized...temperature superconductive shields could be substantially enhanced by use of high-Tc materials. 27 28 NRAC SUPERCONDUCTIVITY SHIP PROPULSION APPLICATIONS...motor shown in the photograph. As a next step in the evolution of electric-drive ship propulsion technology, DTRC has proposed to scale up the design

  10. Superconductivity

    NASA Astrophysics Data System (ADS)

    Yeo, Yung K.

    Many potential high-temperature superconductivity (HTS) military applications have been demonstrated by low-temperature superconductivity systems; they encompass high efficiency electric drives for naval vessels, airborne electric generators, energy storage systems for directed-energy weapons, electromechanical launchers, magnetic and electromagnetic shields, and cavity resonators for microwave and mm-wave generation. Further HST applications in militarily relevant fields include EM sensors, IR focal plane arrays, SQUIDs, magnetic gradiometers, high-power sonar sources, and superconducting antennas and inertial navigation systems. The development of SQUID sensors will furnish novel magnetic anomaly detection methods for ASW.

  11. A systematic muscle model covering regions from the fast ramp stretches in the muscle fibres to the relatively slow stretches in the human triceps surae.

    PubMed

    Tamura, Youjiro; Ito, Akira; Cresswell, Andrew G

    2015-01-01

    We have proposed a muscle model which consists of two Maxwell elements and a Voigt element in parallel. The muscle model was applied on the experiment of the force responses by the fast ramp stretch in muscle fibres to determine the mechanical parameters. In the simulation, the Maxwell element with a flexible spring and a long relaxation time seemed to correspond with the force-generating state of the cross-bridges. Next, we tried the muscle model to simulate the relatively slow movement. Experimentally, we have measured torque changes by the stretch responses in the human triceps surae. In the experiments, the derivation of torque by rotation angle showed two peaks P1 and P2. The first peak P1 originated from the elastic properties of engaged cross-bridges, while the second peak P2 was due to stretch reflex signals. The model of a single-joint system simulated well with the experimental results to show a good adaptability of the muscle model.

  12. A technique for monitoring fast tuner piezoactuator preload forces for superconducting rf cavities

    SciTech Connect

    Pischalnikov, Y.; Branlard, J.; Carcagno, R.; Chase, B.; Edwards, H.; Orris, D.; Makulski, A.; McGee, M.; Nehring, R.; Poloubotko, V.; Sylvester, C.; /Fermilab

    2007-06-01

    The technology for mechanically compensating Lorentz Force detuning in superconducting RF cavities has already been developed at DESY. One technique is based on commercial piezoelectric actuators and was successfully demonstrated on TESLA cavities [1]. Piezo actuators for fast tuners can operate in a frequency range up to several kHz; however, it is very important to maintain a constant static force (preload) on the piezo actuator in the range of 10 to 50% of its specified blocking force. Determining the preload force during cool-down, warm-up, or re-tuning of the cavity is difficult without instrumentation, and exceeding the specified range can permanently damage the piezo stack. A technique based on strain gauge technology for superconducting magnets has been applied to fast tuners for monitoring the preload on the piezoelectric assembly. The design and testing of piezo actuator preload sensor technology is discussed. Results from measurements of preload sensors installed on the tuner of the Capture Cavity II (CCII)[2] tested at FNAL are presented. These results include measurements during cool-down, warmup, and cavity tuning along with dynamic Lorentz force compensation.

  13. Superconductivity:

    NASA Astrophysics Data System (ADS)

    Sacchetti, N.

    In this paper a short historical account of the discovery of superconductivity and of its gradual development is given. The physical interpretation of its various aspects took about forty years (from 1911 to 1957) to reach a successful description of this phenomenon in terms of a microscopic theory At the very end it seemed that more or less everything could be reasonably interpreted even if modifications and refinements of the original theory were necessary. In 1986 the situation changed abruptly when a cautious but revolutionary paper appeared showing that superconductivity was found in certain ceramic oxides at temperatures above those up to then known. A rush of frantic experimental activity started world-wide and in less than one year it was shown that superconductivity is a much more widespread phenomenon than deemed before and can be found at temperatures well above the liquid air boiling point. The complexity and the number of the substances (mainly ceramic oxides) involved call for a sort of modern alchemy if compounds with the best superconducting properties are to be manufactured. We don't use the word alchemy in a deprecatory sense but just to emphasise that till now nobody can say why these compounds are what they are: superconductors.

  14. GLOBAL DECOUPLING ON THE RHIC RAMP.

    SciTech Connect

    LUO, Y.; CAMERON, P.; DELLA PENNA, A.; FISCHER, W.; ET AL.

    2005-05-16

    The global betatron decoupling on the ramp is an important issue for the operation of the Relativistic Heavy Ion Collider (RHIC), especially in the RHIC polarized proton (pp) run. To avoid the major betatron and spin resonances on the ramp, the betatron tunes are constrained. And the rms value of the vertical closed orbit should be smaller than 0.5mm. Both require the global coupling on the ramp to be well corrected. Several ramp decoupling schemes were found and tested at RHIC, like N-turn map decoupling, three-ramp correction, coupling amplitude modulation, and coupling phase modulation. In this article, the principles of these methods are shortly reviewed and compared. Among them, coupling angle modulation is a robust and fast one. It has been applied to the global decoupling in the routine RHIC operation.

  15. Supersonic Elliptical Ramp Inlet

    NASA Technical Reports Server (NTRS)

    Adamson, Eric E. (Inventor); Fink, Lawrence E. (Inventor); Fugal, Spencer R. (Inventor)

    2016-01-01

    A supersonic inlet includes a supersonic section including a cowl which is at least partially elliptical, a ramp disposed within the cowl, and a flow inlet disposed between the cowl and the ramp. The ramp may also be at least partially elliptical.

  16. Fast NDE of Superconducting Magnet Wires using a Flow-Through SQUID Microscope with Coaxial Current Injection

    NASA Astrophysics Data System (ADS)

    Matthews, J.; Wellstood, F. C.; Weinstock, H.

    2007-03-01

    We have developed a cryocooled high-Tc SQUID microscope for fast non-destructive evaluation (NDE) of long wires, designed for detecting defects in superconducting magnet wire. A feedthrough mechanism pulls the wire at speeds of up to 20 cm/s through a thin mylar tube that separates the room temperature wire from the SQUID. In order to null the magnetic field from bulk current flow the current return path is coaxial with the wire. We present results on test wires and samples of NbTi superconducting wire. By comparison with analytical and numerical models, we extract information from the data, such as defect size and location, and also outline a method for fast automated detection of defects in long wires.

  17. 43. VIEW OF THE RAMP ABOVE LOWER PORTAL AND RAMP, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    43. VIEW OF THE RAMP ABOVE LOWER PORTAL AND RAMP, LOOKING NORTHWEST. THE RAMP WAS USED TO GUIDE RUN-OFF FROM THUNDERSTORMS AWAY FROM THE PORTAL. - Independent Coal & Coke Company, Kenilworth, Carbon County, UT

  18. Fast valve based on double-layer eddy-current repulsion for disruption mitigation in Experimental Advanced Superconducting Tokamak.

    PubMed

    Zhuang, H D; Zhang, X D

    2015-05-01

    A fast valve based on the double-layer eddy-current repulsion mechanism has been developed on Experimental Advanced Superconducting Tokamak (EAST). In addition to a double-layer eddy-current coil, a preload system was added to improve the security of the valve, whereby the valve opens more quickly and the open-valve time becomes shorter, making it much safer than before. In this contribution, testing platforms, open-valve characteristics, and throughput of the fast valve are discussed. Tests revealed that by choosing appropriate parameters the valve opened within 0.15 ms, and open-valve times were no longer than 2 ms. By adjusting working parameter values, the maximum number of particles injected during this open-valve time was estimated at 7 × 10(22). The fast valve will become a useful tool to further explore disruption mitigation experiments on EAST in 2015.

  19. Simulation of fast-ion-driven Alfvén eigenmodes on the Experimental Advanced Superconducting Tokamak

    NASA Astrophysics Data System (ADS)

    Hu, Youjun; Todo, Y.; Pei, Youbin; Li, Guoqiang; Qian, Jinping; Xiang, Nong; Zhou, Deng; Ren, Qilong; Huang, Juan; Xu, Liqing

    2016-02-01

    Kinetic-MHD hybrid simulations are carried out to investigate possible fast-ion-driven modes on the Experimental Advanced Superconducting Tokamak. Three typical kinds of fast-ion-driven modes, namely, toroidicity-induced Alfvén eigenmodes, reversed shear Alfvén eigenmodes, and energetic-particle continuum modes, are observed simultaneously in the simulations. The simulation results are compared with the results of an ideal MHD eigenvalue code, which shows agreement with respect to the mode frequency, dominant poloidal mode numbers, and radial location. However, the modes in the hybrid simulations take a twisted structure on the poloidal plane, which is different from the results of the ideal MHD eigenvalue code. The twist is due to the radial phase variation of the eigenfunction, which may be attributed to the non-perturbative kinetic effects of the fast ions. By varying the stored energy of fast ions to change the fast ion drive in the simulations, it is demonstrated that the twist (i.e., the radial phase variation) is positively correlated with the fast ion drive.

  20. RAMP MANAGEMENT IN RHIC.

    SciTech Connect

    KEWISCH,J.; VAN ZEIJTS,J.; PEGGS,S.; SATOGATA,T.

    1999-03-29

    In RHIC, magnets and RF cavities are controlled by Wave Form Generators (WFGs), simple real time computers which generate the set points. The WFGs are programmed to change set points from one state to another in a synchronized way. Such transition is called a ''Ramp'' and consists of a sequence of ''stepping stones'' which contain the set point of every WFG controlled device at a point in time. An appropriate interpolation defines the set points between these stepping stones. This report describes the implementation of the ramp system. The user interface, tools to create and modify ramps, interaction with modeling tools and measurements and correction programs are discussed.

  1. Wind Plant Ramping Behavior

    SciTech Connect

    Ela, E.; Kemper, J.

    2009-12-01

    With the increasing wind penetrations, utilities and operators (ISOs) are quickly trying to understand the impacts on system operations and planning. This report focuses on ramping imapcts within the Xcel service region.

  2. Kinetic-MHD hybrid simulation of fishbone modes excited by fast ions on the experimental advanced superconducting tokamak (EAST)

    NASA Astrophysics Data System (ADS)

    Pei, Youbin; Xiang, Nong; Hu, Youjun; Todo, Y.; Li, Guoqiang; Shen, Wei; Xu, Liqing

    2017-03-01

    Kinetic-MagnetoHydroDynamic hybrid simulations are carried out to investigate fishbone modes excited by fast ions on the Experimental Advanced Superconducting Tokamak. The simulations use realistic equilibrium reconstructed from experiment data with the constraint of the q = 1 surface location (q is the safety factor). Anisotropic slowing down distribution is used to model the distribution of the fast ions from neutral beam injection. The resonance condition is used to identify the interaction between the fishbone mode and the fast ions, which shows that the fishbone mode is simultaneously in resonance with the bounce motion of the trapped particles and the transit motion of the passing particles. Both the passing and trapped particles are important in destabilizing the fishbone mode. The simulations show that the mode frequency chirps down as the mode reaches the nonlinear stage, during which there is a substantial flattening of the perpendicular pressure of fast ions, compared with that of the parallel pressure. For passing particles, the resonance remains within the q = 1 surface, while, for trapped particles, the resonant location moves out radially during the nonlinear evolution. In addition, parameter scanning is performed to examine the dependence of the linear frequency and growth rate of fishbones on the pressure and injection velocity of fast ions.

  3. Precision linear ramp function generator

    DOEpatents

    Jatko, W.B.; McNeilly, D.R.; Thacker, L.H.

    1984-08-01

    A ramp function generator is provided which produces a precise linear ramp function which is repeatable and highly stable. A derivative feedback loop is used to stabilize the output of an integrator in the forward loop and control the ramp rate. The ramp may be started from a selected baseline voltage level and the desired ramp rate is selected by applying an appropriate constant voltage to the input of the integrator.

  4. Precision linear ramp function generator

    DOEpatents

    Jatko, W. Bruce; McNeilly, David R.; Thacker, Louis H.

    1986-01-01

    A ramp function generator is provided which produces a precise linear ramp unction which is repeatable and highly stable. A derivative feedback loop is used to stabilize the output of an integrator in the forward loop and control the ramp rate. The ramp may be started from a selected baseline voltage level and the desired ramp rate is selected by applying an appropriate constant voltage to the input of the integrator.

  5. Meniscal Ramp Lesions

    PubMed Central

    Chahla, Jorge; Dean, Chase S.; Moatshe, Gilbert; Mitchell, Justin J.; Cram, Tyler R.; Yacuzzi, Carlos; LaPrade, Robert F.

    2016-01-01

    Meniscal ramp lesions are more frequently associated with anterior cruciate ligament (ACL) injuries than previously recognized. Some authors suggest that this entity results from disruption of the meniscotibial ligaments of the posterior horn of the medial meniscus, whereas others support the idea that it is created by a tear of the peripheral attachment of the posterior horn of the medial meniscus. Magnetic resonance imaging (MRI) scans have been reported to have a low sensitivity, and consequently, ramp lesions often go undiagnosed. Therefore, to rule out a ramp lesion, an arthroscopic evaluation with probing of the posterior horn of the medial meniscus should be performed. Several treatment options have been reported, including nonsurgical management, inside-out meniscal repair, or all-inside meniscal repair. In cases of isolated ramp lesions, a standard meniscal repair rehabilitation protocol should be followed. However, when a concomitant ACL reconstruction (ACLR) is performed, the rehabilitation should follow the designated ACLR postoperative protocol. The purpose of this article was to review the current literature regarding meniscal ramp lesions and summarize the pertinent anatomy, biomechanics, diagnostic strategies, recommended treatment options, and postoperative protocol. PMID:27504467

  6. Beam and spin dynamics in the fast ramping storage ring ELSA: Concepts and measures to increase beam energy, current and polarization

    NASA Astrophysics Data System (ADS)

    Hillert, Wolfgang; Balling, Andreas; Boldt, Oliver; Dieckmann, Andreas; Eberhardt, Maren; Frommberger, Frank; Heiliger, Dominik; Heurich, Nikolas; Koop, Rebecca; Klarner, Fabian; Preisner, Oliver; Proft, Dennis; Pusch, Thorsten; Roth, André; Sauerland, Dennis; Schedler, Manuel; Schmidt, Jan Felix; Switka, Michael; Thiry, Jens-Peter; Wittschen, Jürgen; Zander, Sven

    2017-01-01

    The electron accelerator facility ELSA has been operated for almost 30 years serving nuclear physics experiments investigating the sub-nuclear structure of matter. Within the 12 years funding period of the collaborative research center SFB/TR 16, linearly and circularly polarized photon beams with energies up to more than 3 GeV were successfully delivered to photoproduction experiments. In order to fulfill the increasing demands on beam polarization and intensity, a comprehensive research and upgrade program has been carried out. Beam and spin dynamics have been studied theoretically and experimentally, and sophisticated new devices have been developed and installed. The improvements led to a significant increase of the available beam polarization and intensity. A further increase of beam energy seems feasible with the implementation of superconducting cavities.

  7. Pathfinder Rear Ramp

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Mars Pathfinder's rear rover ramp can be seen successfully unfurled in this image, taken at the end of Sol 2 by the Imager for Mars Pathfinder (IMP). This ramp was later used for the deployment of the microrover Sojourner, which occurred at the end of Sol 2. Areas of a lander petal and deflated airbag are visible at left. The image helped Pathfinder scientists determine that the rear ramp was the one to use for rover deployment. At upper right is the rock dubbed 'Barnacle Bill,' which Sojourner will later study.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C.

  8. Superconducting Switch for Fast On-Chip Routing of Quantum Microwave Fields

    NASA Astrophysics Data System (ADS)

    Pechal, M.; Besse, J.-C.; Mondal, M.; Oppliger, M.; Gasparinetti, S.; Wallraff, A.

    2016-08-01

    A switch capable of routing microwave signals at cryogenic temperatures is a desirable component for state-of-the-art experiments in many fields of applied physics, including but not limited to quantum-information processing, communication, and basic research in engineered quantum systems. Conventional mechanical switches provide low insertion loss but disturb operation of dilution cryostats and the associated experiments by heat dissipation. Switches based on semiconductors or microelectromechanical systems have a lower thermal budget but are not readily integrated with current superconducting circuits. Here we design and test an on-chip switch built by combining tunable transmission-line resonators with microwave beam splitters. The device is superconducting and as such dissipates a negligible amount of heat. It is compatible with current superconducting circuit fabrication techniques, operates with a bandwidth exceeding 100 MHz, is capable of handling photon fluxes on the order of 1 05 μ s-1 , equivalent to powers exceeding -90 dBm , and can be switched within approximately 6-8 ns. We successfully demonstrate operation of the device in the quantum regime by integrating it on a chip with a single-photon source and using it to route nonclassical itinerant microwave fields at the single-photon level.

  9. A fast, self-recovering superconducting strip particle detector made with granular tungsten

    NASA Astrophysics Data System (ADS)

    Gabutti, A.; Gray, K. E.; Pugh, G. M.; Tiberio, R.

    1992-02-01

    The ability of detectors to automatically recover (self-recovery) in a short period of time after sensing a particle is a very valuable advantage for their use as microvertex detectors at high energy particle colliders. Using a superconducting strip detector made of granular tungsten, we have observed such behavior with pulse amplitudes of few 100 μV and recovery times fo 10-50 ns. A 1.8 μm wide thin film was used to detect the superconducting-to-normal transitions induced by the absorption of 55Fe, 6 keV X-rays. For high bias currents the detector did not self-recover and a constant efficiency estimated to ˜65% was found, but with good indications that such a rate would persist in the self-recovery mode at lower bias currents. The threshold between self-recovering and propagating hotspots is discussed within the thermal propagation model, developed previously for normal regions which bridge the width of the strip. These results also confirm the potential applications of superconducting strips for high resolution X-rays detectors.

  10. Status of the SNS Power Ramp Up

    SciTech Connect

    Plum, Michael A

    2010-01-01

    The Spallation Neutron Source accelerator complex consists of a 2.5 MeV H front-end injector system, a 186 MeV normal-conducting linear accelerator, a 1 GeV superconducting linear accelerator, an accumulator ring, and associated beam transport lines. Since formal operations began in 2006, the beam power has been steadily increasing toward the design goal of 1.4 MW. In September 2009 the power surpassed 1 MW for the first time, and operation at the 1 MW level is now routine. The status of the beam power ramp-up program and present operational limitations will be described.

  11. Crescentic ramp turbine stage

    NASA Technical Reports Server (NTRS)

    Lee, Ching-Pang (Inventor); Tam, Anna (Inventor); Kirtley, Kevin Richard (Inventor); Lamson, Scott Henry (Inventor)

    2007-01-01

    A turbine stage includes a row of airfoils joined to corresponding platforms to define flow passages therebetween. Each airfoil includes opposite pressure and suction sides and extends in chord between opposite leading and trailing edges. Each platform includes a crescentic ramp increasing in height from the leading and trailing edges toward the midchord of the airfoil along the pressure side thereof.

  12. Investigating Ramps and Sliders.

    ERIC Educational Resources Information Center

    Malone, Mark R.

    1986-01-01

    Offers a series of hands-on activities for introducing students to concepts of energy transfer and conversion. Describes how simple devices as marbles, ramps, and sliders can be used to gauge the transfer of energy and assist in the development of investigative skills. (ML)

  13. Fast, low-power manipulation of spin ensembles in superconducting microresonators

    SciTech Connect

    Sigillito, A. J. Malissa, H.; Tyryshkin, A. M.; Houck, A. A.; Lyon, S. A.; Riemann, H.; Abrosimov, N. V.; Becker, P.; Pohl, H.-J.; Thewalt, M. L. W.; Itoh, K. M.; Morton, J. J. L.; Schuster, D. I.

    2014-06-02

    We demonstrate the use of high-Q superconducting coplanar waveguide (CPW) microresonators to perform rapid manipulations on a randomly distributed spin ensemble using very low microwave power (400 nW). This power is compatible with dilution refrigerators, making microwave manipulation of spin ensembles feasible for quantum computing applications. We also describe the use of adiabatic microwave pulses to overcome microwave magnetic field (B{sub 1}) inhomogeneities inherent to CPW resonators. This allows for uniform control over a randomly distributed spin ensemble. Sensitivity data are reported showing a single shot (no signal averaging) sensitivity to 10{sup 7} spins or 3×10{sup 4}spins/√(Hz) with averaging.

  14. A balanced, superconducting multiplier circuit for fast-switching and multiplexed qubit readout: Design and modeling

    NASA Astrophysics Data System (ADS)

    Rosenthal, Eric I.; Chapman, Benjamin J.; Moores, Brad A.; Kerckhoff, Joseph; Lehnert, K. W.

    Superconducting qubits hold great promise for the development of new quantum-information technology. Coherence times of individual transmon qubits in microwave cavities are consistently improving. While qubits are becoming well developed tools, scaling qubit readout for many-qubit architectures remains prohibitively complex and expensive. Here, we present a concept for a multipurpose device that enables time or code domain multiplexing of qubit readout. It is a two-port, microwave device that can be switched rapidly between three modes of operation: transmission, reflection and inversion. The design is based on a Wheatstone bridge-like structure of tunable inductors, which we realize with arrays of SQUIDs. A single bias line modulates the flux through the SQUIDs, and hence the imbalance of the bridge, putting the device in one of its three modes of operation. This talk will discuss the theory, design and layout behind the device and its potential use for multiplexing of qubit networks. The device is designed to operate over a broad bandwidth (4-8 GHz), and to have low dissipation, appropriate for integration with superconducting qubit networks.

  15. Fast generation of W states of superconducting qubits with multiple Schrödinger dynamics.

    PubMed

    Kang, Yi-Hao; Chen, Ye-Hong; Wu, Qi-Cheng; Huang, Bi-Hua; Song, Jie; Xia, Yan

    2016-11-09

    In this paper, we present a protocol to generate a W state of three superconducting qubits (SQs) by using multiple Schrödinger dynamics. The three SQs are respective embedded in three different coplanar waveguide resonators (CPWRs), which are coupled to a superconducting coupler (SCC) qubit at the center of the setups. With the multiple Schrödinger dynamics, we build a shortcuts to adiabaticity (STA), which greatly accelerates the evolution of the system. The Rabi frequencies of the laser pulses being designed can be expressed by the superpositions of Gaussian functions via the curves fitting, so that they can be realized easily in experiments. What is more, numerical simulation result shows that the protocol is robust against control parameters variations and decoherence mechanisms, such as the dissipations from the CPWRs and the energy relaxation. In addition, the influences of the dephasing are also resisted on account of the accelerating for the dynamics. Thus, the performance of the protocol is much better than that with the conventional adiabatic passage techniques when the dephasing is taken into account. We hope the protocol could be implemented easily in experiments with current technology.

  16. Fast generation of W states of superconducting qubits with multiple Schrödinger dynamics

    PubMed Central

    Kang, Yi-Hao; Chen, Ye-Hong; Wu, Qi-Cheng; Huang, Bi-Hua; Song, Jie; Xia, Yan

    2016-01-01

    In this paper, we present a protocol to generate a W state of three superconducting qubits (SQs) by using multiple Schrödinger dynamics. The three SQs are respective embedded in three different coplanar waveguide resonators (CPWRs), which are coupled to a superconducting coupler (SCC) qubit at the center of the setups. With the multiple Schrödinger dynamics, we build a shortcuts to adiabaticity (STA), which greatly accelerates the evolution of the system. The Rabi frequencies of the laser pulses being designed can be expressed by the superpositions of Gaussian functions via the curves fitting, so that they can be realized easily in experiments. What is more, numerical simulation result shows that the protocol is robust against control parameters variations and decoherence mechanisms, such as the dissipations from the CPWRs and the energy relaxation. In addition, the influences of the dephasing are also resisted on account of the accelerating for the dynamics. Thus, the performance of the protocol is much better than that with the conventional adiabatic passage techniques when the dephasing is taken into account. We hope the protocol could be implemented easily in experiments with current technology. PMID:27827422

  17. Lower hybrid assisted plasma current ramp-up in ITER

    NASA Astrophysics Data System (ADS)

    Kim, S. H.; Artaud, J. F.; Basiuk, V.; Bécoulet, A.; Dokuka, V.; Hoang, G. T.; Imbeaux, F.; Khayrutdinov, R. R.; Lister, J. B.; Lukash, V. E.

    2009-06-01

    Lower hybrid (LH) assisted plasma current ramp-up in ITER is demonstrated using a free-boundary full tokamak discharge simulator which combines the DINA-CH and CRONOS codes. LH applied from the initial phase of the plasma current ramp-up increases the safety margins in operating the superconducting poloidal field coils both by reducing resistive ohmic flux consumption and by providing non-inductively driven plasma current. Loss of vertical control associated with high plasma internal inductance is avoided by tailoring the plasma current density profiles. Effects of early LH application on the plasma shape evolution are identified by the free-boundary plasma simulation.

  18. A fast calorimeter simulation for SSC (Superconducting Super Collider) detector design

    SciTech Connect

    Newman-Holmes, C.; Freeman, J.

    1987-12-01

    We have developed a fast and easily varied simulation of a ''generic'' 4..pi.. calorimeter. The program enables one to study the gross features of detector response for various physics processes. The simulation program is described and some examples of its use are presented. 3 refs., 6 figs.

  19. Optimization of the National Superconducting Cyclotron Laboratory Digital Data Acquisition System for use with fast scintillator detectors

    NASA Astrophysics Data System (ADS)

    Prokop, C. J.; Liddick, S. N.; Larson, N. R.; Suchyta, S.; Tompkins, J. R.

    2015-08-01

    The Digital Data Acquisition System (DDAS) at the National Superconducting Cyclotron Laboratory (NSCL) has expanded to instrument arrays composed of fast-scintillator detectors. The expansion has motivated the development of software designed to optimize the time- and energy-resolving capabilities of the system, which is a collection of 16-channel FPGA-programmable modules running 12- and 14-bit ADCs with sampling frequencies of 100 and 250 MSPS, respectively. Using the techniques described herein, the time resolution of the DDAS electronics has been substantially improved. For signal amplitudes occupying < 10 % the full range of the ADC, the time resolution of the DDAS electronics, measured online, has been reduced to < 100 ps and < 40 ps for 100 MSPS and 250 MSPS modules, respectively. A time resolution of ≈ 350 ps, at 511 keV, between two 38 mm×38 mm lanthanum bromide (LaBr3) detectors, equipped with Hamamatsu R6231 photomultiplier tubes (PMTs), has also been realized. Similar optimization techniques applied to the DDAS energy-extraction algorithms have yielded energy resolutions below 2% at 1.33 MeV for both the 100 and 250 MSPS digitizers using the same LaBr3 detectors. The techniques described in this work are broadly applicable to other digital acquisition systems that are capable of recording the digitized raw detector signals.

  20. Calibration of Fast Fiber-Optic Beam Loss Monitors for the Advanced Photon Source Storage Ring Superconducting Undulators

    SciTech Connect

    Dooling, J.; Harkay, K.; Ivanyushenkov, Y.; Sajaev, V.; Xiao, A.; Vella, Andrea K.

    2015-01-01

    We report on the calibration and use of fast fiber-optic (FO) beam loss monitors (BLMs) in the Advanced Photon Source storage ring (SR). A superconducting undulator prototype (SCU0) has been operating in SR Sector 6 (“ID6”) since the beginning of CY2013, and another undulator SCU1 (a 1.1-m length undulator that is three times the length of SCU0) is scheduled for installation in Sector 1 (“ID1”) in 2015. The SCU0 main coil often quenches during beam dumps. MARS simulations have shown that relatively small beam loss (<1 nC) can lead to temperature excursions sufficient to cause quenchingwhen the SCU0windings are near critical current. To characterize local beam losses, high-purity fused-silica FO cables were installed in ID6 on the SCU0 chamber transitions and in ID1 where SCU1 will be installed. These BLMs aid in the search for operating modes that protect the SCU structures from beam-loss-induced quenching. In this paper, we describe the BLM calibration process that included deliberate beam dumps at locations of BLMs. We also compare beam dump events where SCU0 did and did not quench.

  1. Repair and Maintenance Programs (RAMP)

    SciTech Connect

    Hostetler, D.

    1999-07-01

    The purpose of the paper is to explain in a general way how the development of Komatsu RAMPs can help accomplish the worthy ideal set forth in that theme for all parties involved--the OEM (Original Equipment Manufacturer), the equipment dealer, and the mining company. The goal of the RAMP is to utilize the resources of the OEM, the dealer, and the mining company to minimize the costs, maximize the efficiency, increase the productivity, and improve the profits of all parties. The paper describes how a RAMP works.

  2. A fast-time-response extreme ultraviolet spectrometer for measurement of impurity line emissions in the Experimental Advanced Superconducting Tokamak

    SciTech Connect

    Zhang, Ling; Xu, Zong; Wu, Zhenwei; Zhang, Pengfei; Wu, Chengrui; Gao, Wei; Shen, Junsong; Chen, Yingjie; Liu, Xiang; Wang, Yumin; Gong, Xianzu; Hu, Liqun; Chen, Junlin; Zhang, Xiaodong; Wan, Baonian; Li, Jiangang; Morita, Shigeru; Ohishi, Tetsutarou; Goto, Motoshi; Dong, Chunfeng; and others

    2015-12-15

    A flat-field extreme ultraviolet (EUV) spectrometer working in the 20-500 Å wavelength range with fast time response has been newly developed to measure line emissions from highly ionized tungsten in the Experimental Advanced Superconducting Tokamak (EAST) with a tungsten divertor, while the monitoring of light and medium impurities is also an aim in the present development. A flat-field focal plane for spectral image detection is made by a laminar-type varied-line-spacing concave holographic grating with an angle of incidence of 87°. A back-illuminated charge-coupled device (CCD) with a total size of 26.6 × 6.6 mm{sup 2} and pixel numbers of 1024 × 255 (26 × 26 μm{sup 2}/pixel) is used for recording the focal image of spectral lines. An excellent spectral resolution of Δλ{sub 0} = 3-4 pixels, where Δλ{sub 0} is defined as full width at the foot position of a spectral line, is obtained at the 80-400 Å wavelength range after careful adjustment of the grating and CCD positions. The high signal readout rate of the CCD can improve the temporal resolution of time-resolved spectra when the CCD is operated in the full vertical binning mode. It is usually operated at 5 ms per frame. If the vertical size of the CCD is reduced with a narrow slit, the time response becomes faster. The high-time response in the spectral measurement therefore makes possible a variety of spectroscopic studies, e.g., impurity behavior in long pulse discharges with edge-localized mode bursts. An absolute intensity calibration of the EUV spectrometer is also carried out with a technique using the EUV bremsstrahlung continuum at 20-150 Å for quantitative data analysis. Thus, the high-time resolution tungsten spectra have been successfully observed with good spectral resolution using the present EUV spectrometer system. Typical tungsten spectra in the EUV wavelength range observed from EAST discharges are presented with absolute intensity and spectral identification.

  3. A fast-time-response extreme ultraviolet spectrometer for measurement of impurity line emissions in the Experimental Advanced Superconducting Tokamak.

    PubMed

    Zhang, Ling; Morita, Shigeru; Xu, Zong; Wu, Zhenwei; Zhang, Pengfei; Wu, Chengrui; Gao, Wei; Ohishi, Tetsutarou; Goto, Motoshi; Shen, Junsong; Chen, Yingjie; Liu, Xiang; Wang, Yumin; Dong, Chunfeng; Zhang, Hongmin; Huang, Xianli; Gong, Xianzu; Hu, Liqun; Chen, Junlin; Zhang, Xiaodong; Wan, Baonian; Li, Jiangang

    2015-12-01

    A flat-field extreme ultraviolet (EUV) spectrometer working in the 20-500 Å wavelength range with fast time response has been newly developed to measure line emissions from highly ionized tungsten in the Experimental Advanced Superconducting Tokamak (EAST) with a tungsten divertor, while the monitoring of light and medium impurities is also an aim in the present development. A flat-field focal plane for spectral image detection is made by a laminar-type varied-line-spacing concave holographic grating with an angle of incidence of 87°. A back-illuminated charge-coupled device (CCD) with a total size of 26.6 × 6.6 mm(2) and pixel numbers of 1024 × 255 (26 × 26 μm(2)/pixel) is used for recording the focal image of spectral lines. An excellent spectral resolution of Δλ0 = 3-4 pixels, where Δλ0 is defined as full width at the foot position of a spectral line, is obtained at the 80-400 Å wavelength range after careful adjustment of the grating and CCD positions. The high signal readout rate of the CCD can improve the temporal resolution of time-resolved spectra when the CCD is operated in the full vertical binning mode. It is usually operated at 5 ms per frame. If the vertical size of the CCD is reduced with a narrow slit, the time response becomes faster. The high-time response in the spectral measurement therefore makes possible a variety of spectroscopic studies, e.g., impurity behavior in long pulse discharges with edge-localized mode bursts. An absolute intensity calibration of the EUV spectrometer is also carried out with a technique using the EUV bremsstrahlung continuum at 20-150 Å for quantitative data analysis. Thus, the high-time resolution tungsten spectra have been successfully observed with good spectral resolution using the present EUV spectrometer system. Typical tungsten spectra in the EUV wavelength range observed from EAST discharges are presented with absolute intensity and spectral identification.

  4. On the Effect of Ramp Rate in Damage Accumulation of the CPV Die-Attach: Preprint

    SciTech Connect

    Bosco, N. S.; Silverman, T. J.; Kurtz, S. R.

    2012-06-01

    It is commonly understood that thermal cycling at high temperature ramp rates may activate unrepresentative failure mechanisms. Increasing the temperature ramp rate of thermal cycling, however, could dramatically reduce the test time required to achieve an equivalent amount of thermal fatigue damage, thereby reducing overall test time. Therefore, the effect of temperature ramp rate on physical damage in the CPV die-attach is investigated. Finite Element Model (FEM) simulations of thermal fatigue and thermal cycling experiments are made to determine if the amount of damage calculated results in a corresponding amount of physical damage measured to the die-attach for a variety of fast temperature ramp rates. Preliminary experimental results are in good agreement with simulations and reinforce the potential of increasing temperature ramp rates. Characterization of the microstructure and resulting fatigue crack in the die-attach suggest a similar failure mechanism across all ramp rates tested.

  5. FAST TRACK COMMUNICATION: Magnetic excitations of Fe1 + ySexTe1 - x in magnetic and superconductive phases

    NASA Astrophysics Data System (ADS)

    Babkevich, P.; Bendele, M.; Boothroyd, A. T.; Conder, K.; Gvasaliya, S. N.; Khasanov, R.; Pomjakushina, E.; Roessli, B.

    2010-04-01

    We have used inelastic neutron scattering and muon-spin rotation to compare the low energy magnetic excitations in single crystals of superconducting Fe1.01Se0.50Te0.50 and non-superconducting Fe1.10Se0.25Te0.75. We confirm the existence of a spin resonance in the superconducting phase of Fe1.01Se0.50Te0.50, at an energy of 7 meV and a wavevector of (1/2, 1/2, 0). The non-superconducting sample exhibits two incommensurate magnetic excitations at (1/2, 1/2, 0) ± (0.18, - 0.18, 0) which rise steeply in energy, but no resonance is observed at low energies. A strongly dispersive low energy magnetic excitation is also observed in Fe1.10Se0.25Te0.75 close to the commensurate antiferromagnetic ordering wavevector (1/2 - δ, 0, 1/2), where δ≈0.03. The magnetic correlations in both samples are found to be quasi-two-dimensional in character and persist well above the magnetic (Fe1.10Se0.25Te0.75) and superconducting (Fe1.01Se0.50Te0.50) transition temperatures.

  6. Analytical results of asymmetric exclusion processes with ramps

    NASA Astrophysics Data System (ADS)

    Huang, Ding-Wei

    2005-07-01

    We present the analytical results in a simple traffic model describing a single-lane highway with ramps. Both on-ramps and off-ramps are considered. Complete classification of distinct phases is achieved. Exact phase diagrams are derived. In the case of a single ramp (either on-ramp or off-ramp), the bottleneck effect is absent. The traffic conditions of congestion before the ramp and free-flowing after the ramp cannot be realized. In the case of two consecutive ramps, the bottleneck emerges when the on-ramp is placed before the off-ramp and the flow in between the ramps saturates.

  7. Efficient Bell state analyzer for time-bin qubits with fast-recovery WSi superconducting single photon detectors.

    PubMed

    Valivarthi, R; Lucio-Martinez, I; Rubenok, A; Chan, P; Marsili, F; Verma, V B; Shaw, M D; Stern, J A; Slater, J A; Oblak, D; Nam, S W; Tittel, W

    2014-10-06

    We experimentally demonstrate a high-efficiency Bell state measurement for time-bin qubits that employs two superconducting nanowire single-photon detectors with short dead-times, allowing projections onto two Bell states, |ψ⁻〉 and |ψ⁺〉. Compared to previous implementations for time-bin qubits, this yields an increase in the efficiency of Bell state analysis by a factor of thirty.

  8. Rural Alaska Mentoring Project (RAMP)

    ERIC Educational Resources Information Center

    Cash, Terry

    2011-01-01

    For over two years the National Dropout Prevention Center (NDPC) at Clemson University has been supporting the Lower Kuskokwim School District (LKSD) in NW Alaska with their efforts to reduce high school dropout in 23 remote Yup'ik Eskimo villages. The Rural Alaska Mentoring Project (RAMP) provides school-based E-mentoring services to 164…

  9. Model for RHIC ramp controls

    SciTech Connect

    Kewisch, J.; Mane, V.; Clifford, T.; Hartmann, H.; Kahn, T.; Oerter, B.; Peggs, S.

    1994-08-01

    This paper introduces the hardware and software concepts for the implementation of the ramp controls. The hardware part of the ramp controls consists of a number of multi-purpose Wave Form Generators (WFGS) which control the settings of accelerator hardware directly or indirectly by controlling their WFG. A Real Time Data Link (RTDL) data transfer system connects the WFGs in a three layer architecture. To the usual two layers which generate an independent timing signal and dependent set points, respectively, an intermediate layer is added which produces accelerator parameters such as the magnet strength. The task of the bottom layer is therefore reduced to the function of implementing those parameters. This architecture de-couples two independent functions which axe normally folded together. The function of the hardware becomes modular and easily maintainable. The ramp control software is layered in the same way. Between the top layer (the ramp procedure application program) and the bottom layer (the hardware interface) an additional layer of ``manager`` programs allow operation of accelerator subsystems.

  10. Bell 47 #822 on ramp

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Bell 47 #822 on ramp. The helicopter arrived at the NASA Flight Research Center on November 4, 1973 from the NASA Johnson Space Center in Texas. It operated for more than 11 years, before being sent to the Napa City Fire Department on June 21, 1985.

  11. Alternating-gradient canted cosine theta superconducting magnets for future compact proton gantries

    NASA Astrophysics Data System (ADS)

    Wan, Weishi; Brouwer, Lucas; Caspi, Shlomo; Prestemon, Soren; Gerbershagen, Alexander; Schippers, Jacobus Maarten; Robin, David

    2015-10-01

    We present a design of superconducting magnets, optimized for application in a gantry for proton therapy. We have introduced a new magnet design concept, called an alternating-gradient canted cosine theta (AG-CCT) concept, which is compatible with an achromatic layout. This layout allows a large momentum acceptance. The 15 cm radius of the bore aperture enables the application of pencil beam scanning in front of the SC-magnet. The optical and dynamic performance of a gantry based on these magnets has been analyzed using the fields derived (via Biot-Savart law) from the actual windings of the AG-CCT combined with the full equations of motion. The results show that with appropriate higher order correction, a large 3D volume can be rapidly scanned with little beam shape distortion. A very big advantage is that all this can be done while keeping the AG-CCT fields fixed. This reduces the need for fast field ramping of the superconducting magnets between the successive beam energies used for the scanning in depth and it is important for medical application since this reduces the technical risk (e.g., a quench) associated with fast field changes in superconducting magnets. For proton gantries the corresponding superconducting magnet system holds promise of dramatic reduction in weight. For heavier ion gantries there may furthermore be a significant reduction in size.

  12. FAST TRACK COMMUNICATION: Single crystals of superconducting SmFeAsO1-xFy grown at high pressure

    NASA Astrophysics Data System (ADS)

    Zhigadlo, N. D.; Katrych, S.; Bukowski, Z.; Weyeneth, S.; Puzniak, R.; Karpinski, J.

    2008-08-01

    Single crystals of SmFeAsO1-xFy of a size up to 120 × 100 µm2 have been grown from NaCl/KCl flux at a pressure of 30 kbar and temperature of 1350-1450 °C using the cubic anvil high-pressure technique. The superconducting transition temperature of the obtained single crystals varies between 45 and 53 K. Obtained crystals are characterized by a full diamagnetic response in low magnetic fields and by a high critical current density in high magnetic fields. Structural refinement has been performed on the single crystal. Differential thermal analysis investigations at 1 bar Ar pressure show decomposition of SmFeAsO1-xFy at 1302 °C.

  13. Ramp-rate sensitivity of SSC dipole magnet prototypes

    SciTech Connect

    Devred, A.; Ogitsu, T.

    1994-07-01

    One of the major achievements of the magnet R&D program for the Superconducting Super Collider (SSC) is the fabrication and test of a series of 20 5-cm aperture, 15-m long dipole magnet prototypes. The ramp rate sensitivity of these magnets appears to fall in at least two categories that can be correlated to the manufacturer and production batch of the strands used for the inner-coil cables. The first category, referred to as type-A, is characterized by a strong quench current degradation at high ramp rates, usually accompanied by large distortions of the multipole fields and large energy losses. The second category, referred to as type-B, is characterized by a sudden drop of quench current at low ramp rates, followed by a much milder degradation at larger rates. The multipole fields of the type-B magnets show little ramp-rate sensitivity, and the energy losses are smaller than for the type-A magnets. The behavior of the Type-A magnets can be explained in terms of inter-strand eddy currents arising from low and non-uniform resistances at the crossovers between the strands of the two-layer Rutherford-type cable. Anomalies in the transport-current repartition among the cable strands are suggested as a possible cause for the type-B behavior. The origins of these anomalies have not yet been clearly identified. The SSC project was canceled by decision of the United States Congress on October 21, 1994.

  14. Ramp-induced transitions in traffic dynamics

    NASA Astrophysics Data System (ADS)

    Huang, Ding-Wei

    2006-01-01

    We present the analytical results of ramp effects in asymmetric simple exclusion processes. Both on-ramp and off-ramp are included in between the two open boundaries. The ramps can be taken as the nontrivial boundaries to trigger the phase transitions. Exact phase diagrams are obtained analytically in the full parameter space. We find that the order of the two ramps is crucial. When the on-ramp is placed after the off-ramp along the traffic direction, there are only four distinct phases: free-free-free, free-free-jam, free-jam-jam, and jam-jam-jam. The other four phases from naive expectation cannot be realized, i.e., jam-free-free, jam-jam-free, jam-free-jam, and free-jam-free are all absent. The free flow will not follow the congestion. When the on-ramp is placed before the off-ramp, we observe an interesting phase: jam-max.-free. The bottleneck emerges as the flow in between the two ramps saturates to its maximum. We further show that the roadway configuration is equivalent to a nonstandard intersection. Applications to a traffic rotary are discussed.

  15. JF-102A on ramp

    NASA Technical Reports Server (NTRS)

    1956-01-01

    Convair JF-102A (54-1374) on the ramp at NACA High-Speed Flight Station , Edwards, California in 1956. The most prominent new feature distinguishing the JF-102A from the YF-102 was a longer fuselage with a pinched or 'coke-bottle' waist. Note wing-fences on both wings. The JF-102A Characteristics are: Wing Span, ft. 38.1 Fuselage length, ft. 63.4 Vertical Tail height, ft. 21.2 Power Plant: Pratt & Whitney J57-P-23 turbojet

  16. Launch of a Vehicle from a Ramp

    ERIC Educational Resources Information Center

    Cross, Rod

    2011-01-01

    A vehicle proceeding up an inclined ramp will become airborne if the ramp comes to a sudden end and if the vehicle fails to stop before it reaches the end of the ramp. A vehicle may also become airborne if it passes over the top of a hill at sufficient speed. In both cases, the vehicle becomes airborne if the point of support underneath the…

  17. Airport ramp safety and crew performance issues

    NASA Technical Reports Server (NTRS)

    Chamberlin, Roy; Drew, Charles; Patten, Marcia; Matchette, Robert

    1995-01-01

    This study examined 182 ramp operations incident reports from the Aviation Safety Reporting System (ASRS) database, to determine which factors influence ramp operation incidents. It was found that incidents occurred more often during aircraft arrival operations than during departure operations; incidents occurred most often at the gate stop area, less so at the gate entry/exit areas, and least on the ramp fringe areas; and reporters cited fewer incidents when more ground crew were present. The authors offer suggestions for both airline management and flight crews to reduce the rate of ramp incidents.

  18. DESIGN OF A GAMMA-RAY SOURCE BASED ON INVERSE COMPTON SCATTERING AT THE FAST SUPERCONDUCTING LINAC

    SciTech Connect

    Mihalcea, D.; Jacobson, B.; Murokh, A.; Piot, P.; Ruan, J.

    2016-10-10

    A watt-level average-power gamma-ray source is currently under development at the Fermilab Accelerator Science & Technology (FAST) facility. The source is based on the Inverse Compton Scattering of a high-brightness 300-MeV beam against a high-power laser beam circulating in an optical cavity. The back scattered gamma rays are expected to have photon energies up to 1.5 MeV. This paper discusses the optimization of the source, its performances, and the main challenges ahead.

  19. B-47A on ramp

    NASA Technical Reports Server (NTRS)

    1953-01-01

    Boeing B-47A (NACA 150) shown on the ramp near NACA High-Speed Flight Research Station at South Base of Edwards Air Force Base, California, in 1953. The B-47A Stratojet's wing is mounted high on the fuselage with a sweep back of 36 degrees and a span of 116 feet, with wing vortex generators installed. A two engine pod under each wing, and an additional engine pod at each wing tip using General Electric J-47-GE-23 turbojets. The airplane is fitted with a nose boom for measuring airspeed, altitude, angle-of-attack and angle-of-sideslip, and an optigraph for measuring the movements of target lights on the wing and tail.

  20. Detecting and characterising ramp events in wind power time series

    NASA Astrophysics Data System (ADS)

    Gallego, Cristóbal; Cuerva, Álvaro; Costa, Alexandre

    2014-12-01

    In order to implement accurate models for wind power ramp forecasting, ramps need to be previously characterised. This issue has been typically addressed by performing binary ramp/non-ramp classifications based on ad-hoc assessed thresholds. However, recent works question this approach. This paper presents the ramp function, an innovative wavelet- based tool which detects and characterises ramp events in wind power time series. The underlying idea is to assess a continuous index related to the ramp intensity at each time step, which is obtained by considering large power output gradients evaluated under different time scales (up to typical ramp durations). The ramp function overcomes some of the drawbacks shown by the aforementioned binary classification and permits forecasters to easily reveal specific features of the ramp behaviour observed at a wind farm. As an example, the daily profile of the ramp-up and ramp-down intensities are obtained for the case of a wind farm located in Spain.

  1. 9 CFR 91.23 - Loading ramps and doors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... height of not less than 6 feet 6 inches. The incline of the ramps shall not exceed 1:2 (261/2°) between the ramps and the horizontal plane. The ramps shall be fitted with footlocks of approximately...

  2. 9 CFR 91.23 - Loading ramps and doors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... height of not less than 6 feet 6 inches. The incline of the ramps shall not exceed 1:2 (261/2°) between the ramps and the horizontal plane. The ramps shall be fitted with footlocks of approximately...

  3. 9 CFR 91.23 - Loading ramps and doors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... height of not less than 6 feet 6 inches. The incline of the ramps shall not exceed 1:2 (261/2°) between the ramps and the horizontal plane. The ramps shall be fitted with footlocks of approximately...

  4. 9 CFR 91.23 - Loading ramps and doors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... height of not less than 6 feet 6 inches. The incline of the ramps shall not exceed 1:2 (261/2°) between the ramps and the horizontal plane. The ramps shall be fitted with footlocks of approximately...

  5. 9 CFR 91.23 - Loading ramps and doors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... height of not less than 6 feet 6 inches. The incline of the ramps shall not exceed 1:2 (261/2°) between the ramps and the horizontal plane. The ramps shall be fitted with footlocks of approximately...

  6. IMPROVEMENTS OF THE RHIC RAMP EFFICIENCY.

    SciTech Connect

    TRBOJEVIC,D.; PTITSYN,V.; FISCHER,W.; AHRENS,L.; BLASKIEWICZ,M.; HAYES,T.; PILAT,F.; ROSER,T.; ET AL

    2002-06-02

    The last nms in both gold-gold and polarized proton-proton required necessary corrections in the ramp as the intensities in the two rings were rising towards design values. Corrections were made with respect to the beam-beam effects, transverse and longitudinal instabilities, transition crossing (for the gold-gold ramps), transverse tune resonances, local and global coupliug problems, aperture restrictions, chromatic effects. Along the ramps we had to use the beam separation, ''Landau'' cavities, chromatic and tune control, orbit correction, special gamma-t quadrupole system for the transition crossing in the gold run, correction octupole circuits, beam position monitor system decoupling etc.

  7. Superconducting thermometer for cryogenics

    NASA Technical Reports Server (NTRS)

    White, F. A.

    1977-01-01

    Digital electronic device uses superconducting filaments as sensors. Simple solid-state circuitry combined with filaments comprise highly-reliable temperature monitor. Device has ability to track very fast thermal transients and "on/off" output is adaptable to remote sensing and telemetry.

  8. Ramp technique for dc partial discharge testing

    NASA Astrophysics Data System (ADS)

    Bever, R. S.

    1985-02-01

    The partial discharge (PD) data presently obtained by means of a stepwise ramp technique, for the cases of high voltage (HV) components and such resin-packaged HV devices as the Space Telescope's Faint Object Camera, is acquired separately on part-way ramps to rated voltage and on the intermediate voltage plateaus. For test specimens intended for dc service, this ramp method yields more data on insulation integrity than quiescent dc measurements, especially in the case of specimens of high resistivity which causes the discharge frequency to be deceptively low at constant dc voltage. During upward ramping the voltage distribution is capacitive, and the PD behavior resembles that of an ac test. Many more pulses are obtained in the voids without the heat otherwise generated by the application of 60-Hz ac. PD histograms are presented for various materials, with and without intentional defects.

  9. Superconductive wire

    DOEpatents

    Korzekwa, David A.; Bingert, John F.; Peterson, Dean E.; Sheinberg, Haskell

    1995-01-01

    A superconductive article is made by inserting a rigid mandrel into an internal cavity of a first metallic tube, said tube having an interior surface and an exterior surface, said interior surface defining the interior cavity, forming a layer of a superconductive material or superconductive precursor upon the exterior surface of said first metallic tube, machining the layer of superconductive material or superconductive precursor to a predetermined diameter to form an intermediate article configured for insertion into a second metallic tube having an interior diameter corresponding to the predetermined diameter, inserting the machined intermediate article into a second metallic tube having an internal diameter corresponding to the predetermined diameter of the intermediate article to form a composite intermediate article, reducing or ironing the composite intermediate article to a predetermined cross-sectional diameter, and sintering the reduced or ironed composite intermediate article at temperatures and for time sufficient for the superconductive material or superconductive precursor to exhibit superconductivity.

  10. Superconductive wire

    DOEpatents

    Korzekwa, D.A.; Bingert, J.F.; Peterson, D.E.; Sheinberg, H.

    1995-07-18

    A superconductive article is made by inserting a rigid mandrel into an internal cavity of a first metallic tube, said tube having an interior surface and an exterior surface, said interior surface defining the interior cavity, forming a layer of a superconductive material or superconductive precursor upon the exterior surface of said first metallic tube, machining the layer of superconductive material or superconductive precursor to a predetermined diameter to form an intermediate article configured for insertion into a second metallic tube having an interior diameter corresponding to the predetermined diameter, inserting the machined intermediate article into a second metallic tube having an internal diameter corresponding to the predetermined diameter of the intermediate article to form a composite intermediate article, reducing or ironing the composite intermediate article to a predetermined cross-sectional diameter, and sintering the reduced or ironed composite intermediate article at temperatures and for time sufficient for the superconductive material or superconductive precursor to exhibit superconductivity. 2 figs.

  11. Superconducting transistor

    DOEpatents

    Gray, Kenneth E.

    1979-01-01

    A superconducting transistor is formed by disposing three thin films of superconducting material in a planar parallel arrangement and insulating the films from each other by layers of insulating oxides to form two tunnel junctions. One junction is biased above twice the superconducting energy gap and the other is biased at less than twice the superconducting energy gap. Injection of quasiparticles into the center film by one junction provides a current gain in the second junction.

  12. Flux avalanche in a superconducting film with non-uniform critical current density

    NASA Astrophysics Data System (ADS)

    Lu, Yurong; Jing, Ze; Yong, Huadong; Zhou, Youhe

    2016-10-01

    The flux avalanche in type-II superconducting thin film is numerically simulated in this paper. We mainly consider the effect of non-uniform critical current density on the thermomagnetic stability. The nonlinear electromagnetic constitutive relation of the superconductor is adopted. Then, Maxwell's equations and heat diffusion equation are numerically solved by the fast Fourier transform technique. We find that the non-uniform critical current density can remarkably affect the behaviour of the flux avalanche. The external magnetic field ramp rate and the environmental temperature have been taken into account. The results are compared with a film with uniform critical current density. The flux avalanche first appears at the interface where the critical current density is discontinuous. Under the same environmental temperature or magnetic field, the flux avalanche occurs more easily for the film with the non-uniform critical current density. The avalanche structure is a finger-like pattern rather than a dendritic structure at low environmental temperatures.

  13. YF-12C on ramp

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The so-called YF-12C on the NASA Flight Research Center ramp. Following the loss of a YF-12A in a non-fatal accident in June 1971, NASA acquired the second production SR-71A (61-7951) from the Air Force. Because the SR-71 program was shrouded in the highest secrecy, the Air Force restricted NASA to using the aircraft solely for propulsion testing with YF-12A inlets and engines. It was designated the YF-12C, and given a bogus tail number (06937). The two YF-12As in the program had actual tail numbers 06935 and 06936. The first NASA flight of the YF-12C took place on 24 May 1972. The Flight Research Center's involvement with the YF-12A, an interceptor version of the Lockheed A-12, began in 1967. Ames Research Center was interested in using wind tunnel data that had been generated at Ames under extreme secrecy. Also, the Office of Advanced Research and Technology (OART) saw the YF-12A as a means to advance high-speed technology, which would help in designing the Supersonic Transport (SST). The Air Force needed technical assistance to get the latest reconnaissance version of the A-12 family, the SR-71A, fully operational. Eventually, the Air Force offered NASA the use of two YF-12A aircraft, 60-6935 and 606936. A joint NASA-USAF program was mapped out in June 1969. NASA and Air Force technicians spent three months readying 935 for flight. On 11 December 1969, the flight program got underway with a successful maiden flight piloted by Col. Joe Rogers and Maj. Gary Heidelbaugh of the SR-71/F-12 Test Force. During the program, the Air Force concentrated on military applications, and NASA pursued a loads research program. NASA studies included inflight heating, skin-friction cooling, 'coldwall' research (a heat transfer experiment), flowfield studies, shaker vane research, and tests in support of the Space Shuttle landing program. Ultimately, 935 became the workhorse of the program, with 146 flights between 11 December 1969 and 7 November 1979. The second YF-12A, 936, made

  14. Quantum strongly secure ramp secret sharing

    NASA Astrophysics Data System (ADS)

    Zhang, Paul; Matsumoto, Ryutaroh

    2015-02-01

    Quantum secret sharing is a scheme for encoding a quantum state (the secret) into multiple shares and distributing them among several participants. If a sufficient number of shares are put together, then the secret can be fully reconstructed. If an insufficient number of shares are put together however, no information about the secret can be revealed. In quantum ramp secret sharing, partial information about the secret is allowed to leak to a set of participants, called an unqualified set, that cannot fully reconstruct the secret. By allowing this, the size of a share can be drastically reduced. This paper introduces a quantum analog of classical strong security in ramp secret sharing schemes. While the ramp secret sharing scheme still leaks partial information about the secret to unqualified sets of participants, the strong security condition ensures that qudits with critical information can no longer be leaked.

  15. Optimizing the current ramp-up phase for the hybrid ITER scenario

    NASA Astrophysics Data System (ADS)

    Hogeweij, G. M. D.; Artaud, J.-F.; Casper, T. A.; Citrin, J.; Imbeaux, F.; Köchl, F.; Litaudon, X.; Voitsekhovitch, I.; the ITM-TF ITER Scenario Modelling Group

    2013-01-01

    The current ramp-up phase for the ITER hybrid scenario is analysed with the CRONOS integrated modelling suite. The simulations presented in this paper show that the heating systems available at ITER allow, within the operational limits, the attainment of a hybrid q profile at the end of the current ramp-up. A reference ramp-up scenario is reached by a combination of NBI, ECCD (UPL) and LHCD. A heating scheme with only NBI and ECCD can also reach the target q profile; however, LHCD can play a crucial role in reducing the flux consumption during the ramp-up phase. The optimum heating scheme depends on the chosen transport model, and on assumptions of parameters like ne peaking, edge Te,i and Zeff. The sensitivity of the current diffusion on parameters that are not easily controlled, shows that development of real-time control is important to reach the target q profile. A first step in that direction has been indicated in this paper. Minimizing resistive flux consumption and optimizing the q profile turn out to be conflicting requirements. A trade-off between these two requirements has to be made. In this paper it is shown that fast current ramp with L-mode current overshoot is at the one extreme, i.e. the optimum q profile at the cost of increased resistive flux consumption, whereas early H-mode transition is at the other extreme.

  16. Superconducting Cable

    DOEpatents

    Hughey, Raburn L.; Sinha, Uday K.; Reece, David S.; Muller, Albert C.

    2005-07-22

    In order to provide a flexible oxide superconducting cable which is reduced in AC loss, tape-shaped superconducting wires covered with a stabilizing metal are wound on a flexible former. The superconducting wires are preferably laid on the former at a bending strain of not more than 0.2%. In laying on the former, a number of tape-shaped superconducting wires are laid on a core member in a side-by-side manner, to form a first layer. A prescribed number of tape-shaped superconducting wires are laid on top of the first layer in a side-by-side manner, to form a second layer. The former may be made of a metal, plastic, reinforced plastic, polymer, or a composite and provides flexibility to the superconducting wires and the cable formed therewith.

  17. Superconducting Cable

    DOEpatents

    Hughey, Raburn L.; Sinha, Uday K.; Reece, David S.; Muller, Albert C.

    2005-03-08

    In order to provide a flexible oxide superconducting cable which is reduced in AC loss, tape-shaped superconducting wires covered with a stabilizing metal are wound on a flexible former. The superconducting wires are preferably laid on the former at a bending strain of not more than 0.2%. In laying on the former, a number of tape-shaped superconducting wires are laid on a core member in a side-by-side manner, to form a first layer. A prescribed number of tape-shaped superconducting wires are laid on top of the first layer in a side-by-side manner, to form a second layer. The former may be made of a metal, plastic, reinforced plastic, polymer, or a composite and provides flexibility to the superconducting wires and the cable formed therewith.

  18. Mars pathfinder Rover egress deployable ramp assembly

    NASA Technical Reports Server (NTRS)

    Spence, Brian R.; Sword, Lee F.

    1996-01-01

    The Mars Pathfinder Program is a NASA Discovery Mission, led by the Jet Propulsion Laboratory, to launch and place a small planetary Rover for exploration on the Martian surface. To enable safe and successful egress of the Rover vehicle from the spacecraft, a pair of flight-qualified, deployable ramp assemblies have been developed. This paper focuses on the unique, lightweight deployable ramp assemblies. A brief mission overview and key design requirements are discussed. Design and development activities leading to qualification and flight systems are presented.

  19. Perseus B Parked on Ramp

    NASA Technical Reports Server (NTRS)

    1999-01-01

    A long, slender wing and a pusher propeller at the rear characterize the Perseus B remotely piloted aircraft, seen here on the ramp at NASA's Dryden Flight Research Center, Edwards, California. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which

  20. Perseus B Parked on Ramp

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The long, slender wing of the Perseus B remotely piloted research aircraft can be clearly seen in this photo, taken on the ramp of NASA's Dryden Flight Research Center in September 1999. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which later

  1. Perseus B Parked on Ramp

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The long, slender wing of the Perseus B high-altitude, remotely piloted research aircraft is clearly visible in this photo of the vehicle, taken on the ramp of NASA's Dryden Flight Research Center in September 1999. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft

  2. Perseus B Parked on Ramp

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The long, slender wing of the Perseus B high-altitude, remotely piloted research aircraft is clearly visible in this photo of the vehicle, taken on the ramp of NASA's Dryden Flight Research Center in September 1999. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft

  3. Perseus B Parked on Ramp

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The long, slender wing of the Perseus B remotely piloted research aircraft can be clearly seen in this photo, taken on the ramp of NASA's Dryden Flight Research Center in September 1999. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which later

  4. Perseus B Parked on Ramp

    NASA Technical Reports Server (NTRS)

    1999-01-01

    A long, slender wing and a pusher propeller at the rear characterize the Perseus B remotely piloted aircraft, seen here on the ramp at NASA's Dryden Flight Research Center, Edwards, California. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which

  5. Analysis of Voltage Signals from Superconducting Accelerator Magnets

    SciTech Connect

    Lizarazo, J.; Caspi, S.; Ferracin, P.; Joseph, J.; Lietzke, A. F.; Sabbi, G. L.; Wang, X.

    2009-10-30

    We present two techniques used in the analysis of voltage tap data collected during recent tests of superconducting magnets developed by the Superconducting Magnet Program at Lawrence Berkeley National Laboratory. The first technique was used on a quadrupole to provide information about quench origins that could not be obtained using the time-of-flight method. The second technique illustrates the use of data from transient flux imbalances occurring during magnet ramping to diagnose changes in the current-temperature margin of a superconducting cable. In both cases, the results of this analysis contributed to make improvements on subsequent magnets.

  6. Identifying Wind and Solar Ramping Events: Preprint

    SciTech Connect

    Florita, A.; Hodge, B. M.; Orwig, K.

    2013-01-01

    Wind and solar power are playing an increasing role in the electrical grid, but their inherent power variability can augment uncertainties in power system operations. One solution to help mitigate the impacts and provide more flexibility is enhanced wind and solar power forecasting; however, its relative utility is also uncertain. Within the variability of solar and wind power, repercussions from large ramping events are of primary concern. At the same time, there is no clear definition of what constitutes a ramping event, with various criteria used in different operational areas. Here the Swinging Door Algorithm, originally used for data compression in trend logging, is applied to identify variable generation ramping events from historic operational data. The identification of ramps in a simple and automated fashion is a critical task that feeds into a larger work of 1) defining novel metrics for wind and solar power forecasting that attempt to capture the true impact of forecast errors on system operations and economics, and 2) informing various power system models in a data-driven manner for superior exploratory simulation research. Both allow inference on sensitivities and meaningful correlations, as well as the ability to quantify the value of probabilistic approaches for future use in practice.

  7. VISUAL ACCESSIBILITY OF RAMPS AND STEPS

    PubMed Central

    Legge, Gordon E.; Yu, Deyue; Kallie, Christopher S.; Bochsler, Tiana M.; Gage, Rachel

    2010-01-01

    The visual accessibility of a space refers to the effectiveness with which vision can be used to travel safely through the space. For people with low vision, the detection of steps and ramps is an important component of visual accessibility. We used ramps and steps as visual targets to examine the interacting effects of lighting, object geometry, contrast, viewing distance and spatial resolution. Wooden staging was used to construct a sidewalk with transitions to ramps or steps. 48 normally sighted subjects viewed the sidewalk monocularly through acuity-reducing goggles, and made recognition judgments about the presence of the ramps or steps. The effects of variation in lighting were milder than expected. Performance declined for the largest viewing distance, but exhibited a surprising reversal for nearer viewing. Of relevance to pedestrian safety, the step up was more visible than the step down. We developed a probabilistic cue model to explain the pattern of target confusions. Cues determined by discontinuities in the edge contours of the sidewalk at the transition to the targets were vulnerable to changes in viewing conditions. Cues associated with the height in the picture plane of the targets were more robust. PMID:20884503

  8. Superconducting Materials

    NASA Technical Reports Server (NTRS)

    1995-01-01

    After working with Lewis Research Center and Jet Propulsion Laboratory, Superconducting Technologies, Inc. (STI) adapted NASA requirements and refined its own standard production recipe. STI uses high temperature superconducting (HTS) materials in its basic products: high quality thin films, circuits and components. Applications include microwave circuits for radar to reduce interference.

  9. A simple computer-controlled analogue ramp generator for producing multiple ramp-and-hold stimuli.

    PubMed

    Matheson, T; Ditz, F

    1991-08-01

    This report describes an inexpensive ramp generator which produces multiple ramp-and-hold stimuli ("staircase-type" wave forms). The output voltage is analogue and is, therefore, free of stepping artifacts characteristic of digital function generators. When coupled with a standard power amplifier and mechanical vibrator, this system is particularly suitable for stimulation of mechanoreceptive sense organs. Connection to the serial port of an IBM personal computer, or the user port of a BBC computer allows complex ramp-and-hold sequences to be developed and repeated. The number, duration and sign of ramps, and the duration of intervening hold periods can be set using the computer. This system has been used successfully to characterise phasic and tonic neurones in the locust metathoracic femoral chordotonal organ (a leg position and movement detector).

  10. Superconducting structure

    DOEpatents

    Kwon, Chuhee; Jia, Quanxi; Foltyn, Stephen R.

    2003-04-01

    A superconductive structure including a dielectric oxide substrate, a thin buffer layer of a superconducting material thereon; and, a layer of a rare earth-barium-copper oxide superconducting film thereon the thin layer of yttrium-barium-copper oxide, the rare earth selected from the group consisting of samarium, gadolinium, ytterbium, erbium, neodymium, dysprosium, holmium, lutetium, a combination of more than one element from the rare earth group and a combination of one or more elements from the rare earth group with yttrium, the buffer layer of superconducting material characterized as having chemical and structural compatibility with the dielectric oxide substrate and the rare earth-barium-copper oxide superconducting film is provided.

  11. Superconducting Structure

    DOEpatents

    Kwon, Chuhee; Jia, Quanxi; Foltyn, Stephen R.

    2005-09-13

    A superconductive structure including a dielectric oxide substrate, a thin buffer layer of a superconducting material thereon; and, a layer of a rare earth-barium-copper oxide superconducting film thereon the thin layer of yttrium-barium-copper oxide, the rare earth selected from the group consisting of samarium, gadolinium, ytterbium, erbium, neodymium, dysprosium, holmium, lutetium, a combination of more than one element from the rare earth group and a combination of one or more elements from the rare earth group with yttrium, the buffer layer of superconducting material characterized as having chemical and structural compatibility with the dielectric oxide substrate and the rare earth-barium-copper oxide superconducting film is provided.

  12. Rapid Current Ramp-Up by Cyclotron-Driving Electrons beyond Runaway Velocity

    SciTech Connect

    Uchida, M.; Yoshinaga, T.; Tanaka, H.; Maekawa, T.

    2010-02-12

    The toroidal current has been rapidly ramped-up after the formation of an initial closed flux surface in an electron cyclotron heated discharge in the low aspect ratio torus experiment device. A current carrying fast electron tail is developed well beyond the runaway velocity against the reverse voltage from self-induction, suggesting a forward driving force on the tail by the cyclotron absorption of high N{sub ||} electron Bernstein waves.

  13. Forward modeling of shock-ramped tantalum

    NASA Astrophysics Data System (ADS)

    Brown, Justin L.; Carpenter, John H.; Seagle, Christopher T.

    2017-01-01

    Dynamic materials experiments on the Z-machine are beginning to reach a regime where traditional analysis techniques break down. Time dependent phenomena such as strength and phase transition kinetics often make the data obtained in these experiments difficult to interpret. We present an inverse analysis methodology to infer the equation of state (EOS) from velocimetry data in these types of experiments, building on recent advances in the propagation of uncertain EOS information through a hydrocode simulation. An example is given for a shock-ramp experiment in which tantalum was shock compressed to 40 GPa followed by a ramp to 80 GPa. The results are found to be consistent with isothermal compression and Hugoniot data in this regime.

  14. Ramp compression of iron to 273 GPa

    DOE PAGES

    Wang, Jue; Smith, Raymond F.; Eggert, Jon H.; ...

    2013-07-11

    Multiple thickness Fe foils were ramp compressed over several nanoseconds to pressure conditions relevant to the Earth’s core. Using wave-profile analysis, the sound speed and the stress-density response were determined to a peak longitudinal stress of 273 GPa. The measured stress-density states lie between shock compression and 300-K static data, and are consistent with relatively low temperatures being achieved in these experiments. Phase transitions generally display time-dependent material response and generate a growing shock. We demonstrate for the first time that a low-pressure phase transformation (α-Fe to ε-Fe) can be overdriven by an initial steady shock to avoid both themore » time-dependent response and the growing shock that has previously limited ramp-wave-loading experiments. Additionally, the initial steady shock pre-compresses the Fe and allows different thermodynamic compression paths to be explored.« less

  15. Ramp compression of iron to 273 GPa

    SciTech Connect

    Wang, Jue; Smith, Raymond F.; Eggert, Jon H.; Braun, Dave G.; Boehly, Thomas R.; Patterson, J. Reed; Celliers, Peter M.; Jeanloz, Raymond; Collins, Gilbert W.; Duffy, Thomas S.

    2013-07-11

    Multiple thickness Fe foils were ramp compressed over several nanoseconds to pressure conditions relevant to the Earth’s core. Using wave-profile analysis, the sound speed and the stress-density response were determined to a peak longitudinal stress of 273 GPa. The measured stress-density states lie between shock compression and 300-K static data, and are consistent with relatively low temperatures being achieved in these experiments. Phase transitions generally display time-dependent material response and generate a growing shock. We demonstrate for the first time that a low-pressure phase transformation (α-Fe to ε-Fe) can be overdriven by an initial steady shock to avoid both the time-dependent response and the growing shock that has previously limited ramp-wave-loading experiments. Additionally, the initial steady shock pre-compresses the Fe and allows different thermodynamic compression paths to be explored.

  16. Assigning on-ramp flows to maximize capacity of highway with two on-ramps and one off-ramp in between

    NASA Astrophysics Data System (ADS)

    Chen, Jing; Lin, Lan; Jiang, Rui

    2017-01-01

    In this paper, we study the capacity of a highway with two on-ramps and one off-ramp in between by using a cellular automaton traffic flow model. We investigate how to maximize the system capacity by assigning proper traffic flow to the two on-ramps. The system phase diagram is presented and eight different regions are observed under different conditions. It is shown that in region I, in which both on-ramps are in free flow and the main road upstream of the upstream on-ramp is in congestion, assigning proper proportion of the demand to two on-ramps could maximize the system capacity. Two critical values of the off-ramp flow ratio poff have been observed. When poff

    ramp. When poff >p off , c 2, no demand should be assigned to the upstream on-ramp. An analytical investigation has been performed to calculate the critical values. The analytical results are in good agreement with the simulation ones.

  17. A survey on wind power ramp forecasting.

    SciTech Connect

    Ferreira, C.; Gama, J.; Matias, L.; Botterud, A.; Wang, J.

    2011-02-23

    The increasing use of wind power as a source of electricity poses new challenges with regard to both power production and load balance in the electricity grid. This new source of energy is volatile and highly variable. The only way to integrate such power into the grid is to develop reliable and accurate wind power forecasting systems. Electricity generated from wind power can be highly variable at several different timescales: sub-hourly, hourly, daily, and seasonally. Wind energy, like other electricity sources, must be scheduled. Although wind power forecasting methods are used, the ability to predict wind plant output remains relatively low for short-term operation. Because instantaneous electrical generation and consumption must remain in balance to maintain grid stability, wind power's variability can present substantial challenges when large amounts of wind power are incorporated into a grid system. A critical issue is ramp events, which are sudden and large changes (increases or decreases) in wind power. This report presents an overview of current ramp definitions and state-of-the-art approaches in ramp event forecasting.

  18. Rapid Assessment of Marine Pollution (RAMP).

    PubMed

    Bowen, Robert E; Depledge, Michael H

    2006-01-01

    RAMP embraces the integrated use of methods for the rapid measurement, assessment and access to information on the nature, sources and influences of coastal environmental change. It embraces approaches held in the literature, research and programs of RAMP (Rapid Assessment of Marine Pollution) and the emerging work described as RASE (Rapid Assessment of Socio-Economic Indicators). To protect coastal ecosystems and the health of communities effectively, management infrastructure requires the tools and resources necessary to detect damage to coastal ecosystems and their components, identify causative agents, impose remedial action, and demonstrate that measures have been effective. Pragmatic monitoring and prediction capabilities must also be built to provide further confidence that human impacts are being minimized and that threats to human health have been contained. For most of the world, however, the ability to build such capability is a technical challenge and often cost prohibitive. These constraints point to the need to develop and expand the integrated use of simple, robust, cost-effective environmental assessment procedures. This paper suggests that a system built around the Rapid Assessment of Marine Pollution (RAMP) and the Rapid Assessment of Socio-Economic Indicators (RASE) can, should and in some cases already has been effective in meeting such informational and management needs.

  19. Public transit bus ramp slopes measured in situ.

    PubMed

    Bertocci, Gina; Frost, Karen; Smalley, Craig

    2014-05-02

    Abstract Purpose: The slopes of fixed-route bus ramps deployed for wheeled mobility device (WhMD) users during boarding and alighting were assessed. Measured slopes were compared to the proposed Americans with Disabilities Act (ADA) maximum allowable ramp slope. Methods: A ramp-embedded inclinometer measured ramp slope during WhMD user boarding and alighting on a fixed-route transit bus. The extent of bus kneeling was determined for each ramp deployment. In-vehicle video surveillance cameras captured ramp deployment level (street versus sidewalk) and WhMD type. Results: Ramp slopes ranged from -4° to 15.5° with means of 4.3° during boarding (n = 406) and 4.2° during alighting (n = 405). Ramp slope was significantly greater when deployed to street level. During boarding, the proposed ADA maximum allowable ramp slope (9.5°) was exceeded in 66.7% of instances when the ramp was deployed to street level, and in 1.9% of instances when the ramp was deployed to sidewalk level. During alighting, the proposed ADA maximum allowable slope was exceeded in 56.8% of instances when the ramp was deployed to street level and in 1.4% of instances when the ramp was deployed to sidewalk level. Conclusions: Deployment level, built environment and extent of bus kneeling can affect slope of ramps ascended/descended by WhMD users when accessing transit buses. Implications for Rehabilitation Since public transportation services are critical for integration of wheeled mobility device (WhMD) users into the community and society, it is important that they, as well as their therapists, are aware of conditions that may be encountered when accessing transit buses. Knowledge of real world ramp slope conditions that may be encountered when accessing transit buses will allow therapists to better access capabilities of WhMD users in a controlled clinical setting. Real world ramp slope conditions can be recreated in a clinical setting to allow WhMD users to develop and practice necessary

  20. Modeling ramp compression experiments using large-scale molecular dynamics simulation.

    SciTech Connect

    Mattsson, Thomas Kjell Rene; Desjarlais, Michael Paul; Grest, Gary Stephen; Templeton, Jeremy Alan; Thompson, Aidan Patrick; Jones, Reese E.; Zimmerman, Jonathan A.; Baskes, Michael I.; Winey, J. Michael; Gupta, Yogendra Mohan; Lane, J. Matthew D.; Ditmire, Todd; Quevedo, Hernan J.

    2011-10-01

    Molecular dynamics simulation (MD) is an invaluable tool for studying problems sensitive to atomscale physics such as structural transitions, discontinuous interfaces, non-equilibrium dynamics, and elastic-plastic deformation. In order to apply this method to modeling of ramp-compression experiments, several challenges must be overcome: accuracy of interatomic potentials, length- and time-scales, and extraction of continuum quantities. We have completed a 3 year LDRD project with the goal of developing molecular dynamics simulation capabilities for modeling the response of materials to ramp compression. The techniques we have developed fall in to three categories (i) molecular dynamics methods (ii) interatomic potentials (iii) calculation of continuum variables. Highlights include the development of an accurate interatomic potential describing shock-melting of Beryllium, a scaling technique for modeling slow ramp compression experiments using fast ramp MD simulations, and a technique for extracting plastic strain from MD simulations. All of these methods have been implemented in Sandia's LAMMPS MD code, ensuring their widespread availability to dynamic materials research at Sandia and elsewhere.

  1. Superconducting Memristors

    NASA Astrophysics Data System (ADS)

    Peotta, Sebastiano; Di Ventra, Massimiliano

    2014-09-01

    In his original work, Josephson predicted that a phase-dependent conductance should be present in superconducting tunnel junctions, an effect difficult to detect, mainly because it is hard to single it out from the usual nondissipative Josephson current. We propose a solution for this problem that consists of using different superconducting materials to realize the two junctions of a superconducting interferometer. According to the Ambegaokar-Baratoff relation the two junctions have different conductances if the critical currents are equal, thus the Josephson current can be suppressed by fixing the magnetic flux in the loop at half of a flux quantum without canceling the phase-dependent conductance. Our proposal can be used to study the phase-dependent conductance, an effect present in principle in all superconducting weak links. From the standpoint of nonlinear circuit theory, such a device is in fact an ideal memristor with possible applications to memories and neuromorphic computing in the framework of ultrafast and low-energy-consumption superconducting digital circuits.

  2. Ramping turn-to-turn loss and magnetization loss of a No-Insulation (RE)Ba2Cu3Ox high temperature superconductor pancake coil

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Song, H.; Yuan, W.; Jin, Z.; Hong, Z.

    2017-03-01

    This paper is to study ramping turn-to-turn loss and magnetization loss of a no-insulation (NI) high temperature superconductor (HTS) pancake coil wound with (RE)Ba2Cu3Ox (REBCO) conductors. For insulated (INS) HTS coils, a magnetization loss occurs on superconducting layers during a ramping operation. For the NI HTS coil, additional loss is generated by the "bypassing" current on the turn-to-turn metallic contacts, which is called "turn-to-turn loss" in this study. Therefore, the NI coil's ramping loss is much different from that of the INS coil, but few studies have been reported on this aspect. To analyze the ramping losses of NI coils, a numerical method is developed by coupling an equivalent circuit network model and a H-formulation finite element method model. The former model is to calculate NI coil's current distribution and turn-to-turn loss, and the latter model is to calculate the magnetization loss. A test NI pancake coil is wound with REBCO tapes and the reliability of this model is validated by experiments. Then the characteristics of the NI coil's ramping losses are studied using this coupling model. Results show that the turn-to-turn loss is much higher than the magnetization loss. The NI coil's total ramping loss is much higher than that of its insulated counterpart, which has to be considered carefully in the design and operation of NI applications. This paper also discusses the possibility to reduce NI coil's ramping loss by decreasing the ramping rate of power supply or increasing the coil's turn-to-turn resistivity.

  3. Superconducting magnets

    SciTech Connect

    Willen, E.; Dahl, P.; Herrera, J.

    1985-01-01

    This report provides a self-consistent description of a magnetic field in the aperture of a superconducting magnet and details how this field can be calculated in a magnet with cos theta current distribution in the coils. A description of an apparatus that can be used to measure the field uniformity in the aperture has been given. Finally, a detailed description of the magnet being developed for use in the Superconducting Super Collider is given. When this machine is built, it will be by far the largest application of superconductivity to date and promises to make possible the experimental discoveries needed to understand the basic laws of nature governing the world in which we live.

  4. PREFACE: Superconducting materials Superconducting materials

    NASA Astrophysics Data System (ADS)

    Charfi Kaddour, Samia; Singleton, John; Haddad, Sonia

    2011-11-01

    The discovery of superconductivity in 1911 was a great milestone in condensed matter physics. This discovery has resulted in an enormous amount of research activity. Collaboration among chemists and physicists, as well as experimentalists and theoreticians has given rise to very rich physics with significant potential applications ranging from electric power transmission to quantum information. Several superconducting materials have been synthesized. Crucial progress was made in 1987 with the discovery of high temperature superconductivity in copper-based compounds (cuprates) which have revealed new fascinating properties. Innovative theoretical tools have been developed to understand the striking features of cuprates which have remained for three decades the 'blue-eyed boy' for researchers in superconductor physics. The history of superconducting materials has been notably marked by the discovery of other compounds, particularly organic superconductors which despite their low critical temperature continue to attract great interest regarding their exotic properties. Last but not least, the recent observation of superconductivity in iron-based materials (pnictides) has renewed hope in reaching room temperature superconductivity. However, despite intense worldwide studies, several features related to this phenomenon remain unveiled. One of the fundamental key questions is the mechanism by which superconductivity takes place. Superconductors continue to hide their 'secret garden'. The new trends in the physics of superconductivity have been one of the two basic topics of the International Conference on Conducting Materials (ICoCoM2010) held in Sousse,Tunisia on 3-7 November 2010 and organized by the Tunisian Physical Society. The conference was a nice opportunity to bring together participants from multidisciplinary domains in the physics of superconductivity. This special section contains papers submitted by participants who gave an oral contribution at ICoCoM2010

  5. Validation of a Ramp Running Protocol for Determination of the True VO2max in Mice

    PubMed Central

    Ayachi, Mohamed; Niel, Romain; Momken, Iman; Billat, Véronique L.; Mille-Hamard, Laurence

    2016-01-01

    In the field of comparative physiology, it remains to be established whether the concept of VO2max is valid in the mouse and, if so, how this value can be accurately determined. In humans, VO2max is generally considered to correspond to the plateau observed when VO2 no longer rises with an increase in workload. In contrast, the concept of VO2peak tends to be used in murine studies. The objectives of the present study were to determine whether (i) a continuous ramp protocol yielded a higher VO2peak than a stepwise, incremental protocol, and (ii) the VO2peak measured in the ramp protocol corresponded to VO2max. The three protocols (based on intensity-controlled treadmill running until exhaustion with eight female FVB/N mice) were performed in random order: (a) an incremental protocol that begins at 10 m.min−1 speed and increases by 3 m.min−1 every 3 min. (b) a ramp protocol with slow acceleration (3 m.min−2), and (c) a ramp protocol with fast acceleration (12 m.min−2). Each protocol was performed with two slopes (0 and 25°). Hence, each mouse performed six exercise tests. We found that the value of VO2peak was protocol-dependent (p < 0.05) and was highest (59.0 ml.kg 0.75.min−1) for the 3 m.min−2 0° ramp protocol. In the latter, the presence of a VO2max plateau was associated with the fulfillment of two secondary criteria (a blood lactate concentration >8 mmol.l−1 and a respiratory exchange ratio >1). The total duration of the 3 m.min−2 0° ramp protocol was shorter than that of the incremental protocol. Taken as a whole, our results suggest that VO2max in the mouse is best determined by applying a ramp exercise protocol with slow acceleration and no treadmill slope. PMID:27621709

  6. Validation of a Ramp Running Protocol for Determination of the True VO2max in Mice.

    PubMed

    Ayachi, Mohamed; Niel, Romain; Momken, Iman; Billat, Véronique L; Mille-Hamard, Laurence

    2016-01-01

    In the field of comparative physiology, it remains to be established whether the concept of VO2max is valid in the mouse and, if so, how this value can be accurately determined. In humans, VO2max is generally considered to correspond to the plateau observed when VO2 no longer rises with an increase in workload. In contrast, the concept of VO2peak tends to be used in murine studies. The objectives of the present study were to determine whether (i) a continuous ramp protocol yielded a higher VO2peak than a stepwise, incremental protocol, and (ii) the VO2peak measured in the ramp protocol corresponded to VO2max. The three protocols (based on intensity-controlled treadmill running until exhaustion with eight female FVB/N mice) were performed in random order: (a) an incremental protocol that begins at 10 m.min(-1) speed and increases by 3 m.min(-1) every 3 min. (b) a ramp protocol with slow acceleration (3 m.min(-2)), and (c) a ramp protocol with fast acceleration (12 m.min(-2)). Each protocol was performed with two slopes (0 and 25°). Hence, each mouse performed six exercise tests. We found that the value of VO2peak was protocol-dependent (p < 0.05) and was highest (59.0 ml.kg (0.75).min(-1)) for the 3 m.min(-2) 0° ramp protocol. In the latter, the presence of a VO2max plateau was associated with the fulfillment of two secondary criteria (a blood lactate concentration >8 mmol.l(-1) and a respiratory exchange ratio >1). The total duration of the 3 m.min(-2) 0° ramp protocol was shorter than that of the incremental protocol. Taken as a whole, our results suggest that VO2max in the mouse is best determined by applying a ramp exercise protocol with slow acceleration and no treadmill slope.

  7. Quantum Ramp Secret Sharing Scheme and Quantum Operations

    NASA Astrophysics Data System (ADS)

    Xiao, Heling; Wang, Huifeng; Wang, Bin

    2016-09-01

    In order to improve the efficiency of quantum secret sharing, quantum ramp secret sharing schemes were proposed (Ogawa et al., Phys. Rev. A 72, 032318 [2005]), which had a trade-off between security and coding efficiency. In quantum ramp secret sharing, partial information about the secret is allowed to leak to a set of participants, called an intermediate set, which cannot fully reconstruct the secret. This paper revisits the size of a share in the quantum ramp secret scheme based on a relation between the quantum operations and the coherent information. We also propose an optimal quantum ramp secret sharing scheme.

  8. Rainfall Manipulation Plot Study (RaMPS)

    DOE Data Explorer

    Blair, John [Kansas State University; Fay, Phillip [USDA-ARS; Knapp, Alan [Colorado State University; Collins, Scott [University of New Mexico; Smith, Melinda [Yale University

    Rainfall Manipulation Plots facility (RaMPs) is a unique experimental infrastructure that allows us to manipulate precipitation events and temperature, and assess population community, and ecosystem responses in native grassland. This facility allows us to manipulate the amount and timing of individual precipitation events in replicated field plots at the Konza Prairie Long-Term Ecological Research (LTER) site. Questions we are addressing include: • What is the relative importance of more extreme precipitation patterns (increased climatic variability) vs. increased temperatures (increased climatic mean) with regard to their impact on grassland ecosystem structure and function? Both projected climate change factors are predicted to decrease soil water availability, but the mechanisms by which this resource depletion occurs differ. • Will altered precipitation patterns, increased temperatures and their interaction increase opportunities for invasion by exotic species? • Will long-term (6-10 yr) trajectories of community and ecosystem change in response to more extreme precipitation patterns continue at the same rate as initial responses from years 1-6? Or will non-linear change occur as potential ecological thresholds are crossed? And will increased temperatures accelerate these responses? Data sets are available as ASCII files, in Excel spreadsheets, and in SAS format. (Taken from http://www.konza.ksu.edu/ramps/backgrnd.html

  9. Chaotic Pattern Dynamics in Spatially Ramped Turbulence

    NASA Astrophysics Data System (ADS)

    Wiener, R. J.; Ashbaker, E.; Olsen, T.; Bodenschatz, E.

    2003-11-01

    In previous experiments(Richard J. Wiener et al), Phys. Rev. E 55, 5489 (1997)., Taylor vortex flow in an hourglass geometry has demonstrated a period-doubling cascade to chaotic pattern dynamics. A spatial ramp exists in the Reynolds number. For low reduced Reynolds numbesr \\varepsilon, supercritical vortex flow occurs between regions of subcritical structureless flow with soft boundaries that allow for pattern dynamics. At \\varepsilon ≈ 0.5, the pattern exhibits phase slips that occur irregularly in time. At \\varepsilon ≈ 1.0 the entire system is supercritical, and the pattern is stabilized against phase slips. At \\varepsilon > 15, shear flow creates a spatial ramp in turbulence. Remarkably, the phase slip instability reoccurs. Vortex pairs are created chaotically, possibly due to the spatial variation of the turbulence. The variance and Fourier spectra of time series of light scattered off Kalliroscope tracer were measured. These indicate that a region of turbulence exists, within which phase slips occur, bounded by regions of laminar flow which may provide soft boundaries that allow for the phase dynamics. Despite the presence of turbulence, the dynamics might be describable by a phase equation.

  10. Cretaceous tide-dominated carbonate ramp: Comparison of reservoir hetergeneity in tide-versus wave-dominated carbonate ramp systems

    SciTech Connect

    Kerans, C.

    1995-08-01

    Cretaceous (upper Albian) carbonate ramp strata, Pecos River Canyon, Texas, provide a uniquely continuous exposure of a tide-dominated ramp reservoir analog. The continuous 100-km shelf-to-basin outcrop begins in inner ramp mud-rich facies that record both high-frequency (20-100 ky) and intermediate frequency (>200 ky) cyclicity. The ramp-crest is up to 40 km across depositional dip. Intermediate-scale cycles in the ramp crest include basal oyster and toucasid wackestones, chondrodontid-rudist packstones, rudist-skeletal grainstones, and caprinid biostromes. Ramp-crest grainstones are 4-23 m in thickness and extend more than 20 km in a shelf to basin direction. Rudist biostromes are 3-7 m in thickness and are up to several kilometers in dip continuity except in deeper outer ramp settings where 100-200 m wide mounds are more common. The ramp crest is dominated by grain-rich facies with moderate to high permeability. Toucasid wackestones and oyster marls are 1-5 m in thickness and extend tens of kilometers in a dip direction, representing potential fluid flow barriers. Wave-dominated ramp systems of the Permian of West Texas provide a contrast to the Cretaceous tide-dominated setting. Low-permeability high-frequency cycle base mudstones and high-permeability cycle-top grainstones are preserved in both inner ramp and ramp crest settings. Fluid-flow modeling of these Permian wave-dominated reservoir strata illustrates that the intercalation of thin high- and low-permeability layers result in crossflow trapping and thief zones controlling the position and amount of remaining oil saturation. The depositional homogeneity of the Cretaceous tide-dominated ramp indicates that diagenetic heterogeneities and gravitational effects are potentially dominant controls on reservoir performance for these strata.

  11. A measurement of the fast-neutron sensitivity of a Geiger - Müller detector in the pulsed neutron beam from a superconducting cyclotron

    NASA Astrophysics Data System (ADS)

    Maughan, R. L.; Yudelev, M.; Kota, C.

    1996-08-01

    The value of a commercially available miniature energy compensated Geiger - Müller (GM) detector has been determined using the modified lead attenuation method of Hough. The measurements were made in a d(48.5) - Be neutron beam produced by the superconducting cyclotron based neutron therapy facility at Harper Hospital. The unique problems associated with making measurements in a 2 ms duration pulsed beam with a 20% duty cycle are discussed. The beam monitoring system, which allows the beam pulse shape at low beam intensities to be measured, is described. By gating the GM output with a discriminator pulse derived from the beam pulse shape, the gamma-ray count rates and dead-time corrections within the 2 ms pulse and between pulses can be measured separately. The value of determined for this GM detector is consistent with the values measured by other workers with identical and similar detectors in neutron beams with comparable, but not identical, neutron spectra.

  12. Superconducting Microelectronics.

    ERIC Educational Resources Information Center

    Henry, Richard W.

    1984-01-01

    Discusses superconducting microelectronics based on the Josephson effect and its advantages over conventional integrated circuits in speed and sensitivity. Considers present uses in standards laboratories (voltage) and in measuring weak magnetic fields. Also considers future applications in superfast computer circuitry using Superconducting…

  13. Numerical study of friction-induced instability and acoustic radiation - Effect of ramp loading on the squeal propensity for a simplified brake model

    NASA Astrophysics Data System (ADS)

    Soobbarayen, K.; Sinou, J.-J.; Besset, S.

    2014-10-01

    This paper presents a numerical study of the influence of loading conditions on the vibrational and acoustic responses of a disc brake system subjected to squeal. A simplified model composed of a circular disc and a pad is proposed. Nonlinear effects of contact and friction over the frictional interface are modelled with a cubic law and a classical Coulomb's law with a constant friction coefficient. The stability analysis of this system shows the presence of two instabilities with one and two unstable modes that lead to friction-induced nonlinear vibrations and squeal noise. Nonlinear time analysis by temporal integration is conducted for two cases of loadings and initial conditions: a static load near the associated sliding equilibrium and a slow and a fast ramp loading. The analysis of the time responses shows that a sufficiently fast ramp loading can destabilize a stable configuration and generate nonlinear vibrations. Moreover, the fast ramp loading applied for the two unstable cases generates higher amplitudes of velocity than for the static load cases. The frequency analysis shows that the fast ramp loading generates a more complex spectrum than for the static load with the appearance of new resonance peaks. The acoustic responses for these cases are estimated by applying the multi-frequency acoustic calculation method based on the Fourier series decomposition of the velocity and the Boundary Element Method. Squeal noise emissions for the fast ramp loading present lower or higher levels than for the static load due to the different amplitudes of velocities. Moreover, the directivity is more complex for the fast ramp loading due to the appearance of new harmonic components in the velocity spectrum. Finally, the sound pressure convergence study shows that only the first harmonic components are sufficient to well describe the acoustic response.

  14. 14. VIEW OF THE MODERN CONCRETE RAMP THAT CONNECTED THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. VIEW OF THE MODERN CONCRETE RAMP THAT CONNECTED THE UPPER AND LOWER MINE ROADS. TRUCKS USED THIS RAMP AND THE ROADS TO HAUL SLAG TO THE MINE DUMP. - Tower Hill No. 2 Mine, Approximately 0.47 mile Southwest of intersection of Stone Church Road & Township Route 561, Hibbs, Fayette County, PA

  15. 9 CFR 313.1 - Livestock pens, driveways and ramps.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Livestock pens, driveways and ramps. 313.1 Section 313.1 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF... INSPECTION AND CERTIFICATION HUMANE SLAUGHTER OF LIVESTOCK § 313.1 Livestock pens, driveways and ramps....

  16. 9 CFR 313.1 - Livestock pens, driveways and ramps.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Livestock pens, driveways and ramps. 313.1 Section 313.1 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF... INSPECTION AND CERTIFICATION HUMANE SLAUGHTER OF LIVESTOCK § 313.1 Livestock pens, driveways and ramps....

  17. 9 CFR 313.1 - Livestock pens, driveways and ramps.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Livestock pens, driveways and ramps. 313.1 Section 313.1 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF... INSPECTION AND CERTIFICATION HUMANE SLAUGHTER OF LIVESTOCK § 313.1 Livestock pens, driveways and ramps....

  18. 40 CFR 1033.520 - Alternative ramped modal cycles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Alternative ramped modal cycles. 1033.520 Section 1033.520 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM LOCOMOTIVES Test Procedures § 1033.520 Alternative ramped...

  19. 40 CFR 1033.520 - Alternative ramped modal cycles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Alternative ramped modal cycles. 1033.520 Section 1033.520 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM LOCOMOTIVES Test Procedures § 1033.520 Alternative ramped...

  20. 40 CFR 1033.520 - Alternative ramped modal cycles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Alternative ramped modal cycles. 1033.520 Section 1033.520 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM LOCOMOTIVES Test Procedures § 1033.520 Alternative ramped...

  1. 40 CFR 1033.520 - Alternative ramped modal cycles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Alternative ramped modal cycles. 1033.520 Section 1033.520 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM LOCOMOTIVES Test Procedures § 1033.520 Alternative ramped...

  2. 40 CFR 1033.520 - Alternative ramped modal cycles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Alternative ramped modal cycles. 1033.520 Section 1033.520 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM LOCOMOTIVES Test Procedures § 1033.520 Alternative ramped...

  3. DETAIL VIEW OF THREE CONCENTRATION TABLES, LOADING RAMP, AND CLASSIFIER, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF THREE CONCENTRATION TABLES, LOADING RAMP, AND CLASSIFIER, LOOKING EST. THE RAKE THAT WAS ORIGINALLY INSIDE THE CLASSIFIER IS AT CENTER RIGHT ON TOP OF THE LOADING RAMP. - Gold Hill Mill, Warm Spring Canyon Road, Death Valley Junction, Inyo County, CA

  4. SUPERCONDUCTING PHOTOINJECTOR

    SciTech Connect

    BEN-ZVI,I.; BURRILL, A.; CALAGA, R.; CHANG, X.; GROVER, R.; GUPTA, R.; HAHN, H.; HAMMONS, L.; KAYRAN, D.; KEWISCH, J.; LAMBIASE, R.; LITVINENKO, V.; MCINTYRE, G.; NAIK, D.; PATE, D.; PHILLIPS, D.; POZDEYEV, E.; RAO, T.; SMEDLEY, J.; THAN, R.; TODD, R.; WEISS, D.; WU, Q.; ZALTSMAN, A.; ET AL.

    2007-08-26

    One of the frontiers in FEL science is that of high power. In order to reach power in the megawatt range, one requires a current of the order of one ampere with a reasonably good emittance. The superconducting laser-photocathode RF gun with a high quantum efficiency photocathode is the most natural candidate to provide this performance. The development of a 1/2 cell superconducting photoinjector designed to operate at up to a current of 0.5 amperes and beam energy of 2 MeV and its photocathode system are the subjects covered in this paper. The main issues are the photocathode and its insertion mechanism, the power coupling and High Order Mode damping. This technology is being developed at BNL for DOE nuclear physics applications such as electron cooling at high energy and electron ion colliders..

  5. Color superconductivity

    SciTech Connect

    Wilczek, F.

    1997-09-22

    The asymptotic freedom of QCD suggests that at high density - where one forms a Fermi surface at very high momenta - weak coupling methods apply. These methods suggest that chiral symmetry is restored and that an instability toward color triplet condensation (color superconductivity) sets in. Here I attempt, using variational methods, to estimate these effects more precisely. Highlights include demonstration of a negative pressure in the uniform density chiral broken phase for any non-zero condensation, which we take as evidence for the philosophy of the MIT bag model; and demonstration that the color gap is substantial - several tens of MeV - even at modest densities. Since the superconductivity is in a pseudoscalar channel, parity is spontaneously broken.

  6. Superconducting magnet

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Extensive computer based engineering design effort resulted in optimization of a superconducting magnet design with an average bulk current density of approximately 12KA/cm(2). Twisted, stranded 0.0045 inch diameter NbTi superconductor in a copper matrix was selected. Winding the coil from this bundle facilitated uniform winding of the small diameter wire. Test coils were wound using a first lot of the wire. The actual packing density was measured from these. Interwinding voltage break down tests on the test coils indicated the need for adjustment of the wire insulation on the lot of wire subsequently ordered for construction of the delivered superconducting magnet. Using the actual packing densities from the test coils, a final magnet design, with the required enhancement and field profile, was generated. All mechanical and thermal design parameters were then also fixed. The superconducting magnet was then fabricated and tested. The first test was made with the magnet immersed in liquid helium at 4.2K. The second test was conducted at 2K in vacuum. In the latter test, the magnet was conduction cooled from the mounting flange end.

  7. Superconducting Materials, Magnets and Electric Power Applications

    NASA Astrophysics Data System (ADS)

    Crabtree, George

    2011-03-01

    The surprising discovery of superconductivity a century ago launched a chain of convention-shattering innovations and discoveries in superconducting materials and applications that continues to this day. The range of large-scale applications grows with new materials discoveries - low temperature NbTi and Nb3 Sn for liquid helium cooled superconducting magnets, intermediate temperature MgB2 for inexpensive cryocooled applications including MRI magnets, and high temperature YBCO and BSSCO for high current applications cooled with inexpensive liquid nitrogen. Applications based on YBCO address critical emerging challenges for the electricity grid, including high capacity superconducting cables to distribute power in urban areas; transmission of renewable electricity over long distances from source to load; high capacity DC interconnections among the three US grids; fast, self-healing fault current limiters to increase reliability; low-weight, high capacity generators enabling off-shore wind turbines; and superconducting magnetic energy storage for smoothing the variability of renewable sources. In addition to these grid applications, coated conductors based on YBCO deposited on strong Hastelloy substrates enable a new generation of all superconducting high field magnets capable of producing fields above 30 T, approximately 50% higher than the existing all superconducting limit based on Nb3 Sn . The high fields, low power cost and the quiet electromagnetic and mechanical operation of such magnets could change the character of high field basic research on materials, enable a new generation of high-energy colliding beam experiments and extend the reach of high density superconducting magnetic energy storage.

  8. Ramping Performance Analysis of the Kahuku Wind-Energy Battery Storage System

    SciTech Connect

    Gevorgian, V.; Corbus, D.

    2013-11-01

    High penetrations of wind power on the electrical grid can introduce technical challenges caused by resource variability. Such variability can have undesirable effects on the frequency, voltage, and transient stability of the grid. Energy storage devices can be an effective tool in reducing variability impacts on the power grid in the form of power smoothing and ramp control. Integrating anenergy storage system with a wind power plant can help smooth the variable power produced from wind. This paper explores the fast-response, megawatt-scale, wind-energy battery storage systems that were recently deployed throughout the Hawaiian islands to support wind and solar projects.

  9. A microfluidic separation platform using an array of slanted ramps

    NASA Astrophysics Data System (ADS)

    Risbud, Sumedh; Bernate, Jorge; Drazer, German

    2013-03-01

    The separation of the different components of a sample is a crucial step in many micro- and nano-fluidic applications, including the detection of infections, the capture of circulating tumor cells, the isolation of proteins, RNA and DNA, to mention but a few. Vector chromatography, in which different species migrate in different directions in a planar microfluidic device thus achieving spatial as well as temporal resolution, offers the promise of high selectivity along with high throughput. In this work, we present a microfluidic vector chromatography platform consisting of slanted ramps in a microfluidic channel for the separation of suspended particles. We construct these ramps using inclined UV lithography, such that the inclined portion of the ramps is upstream. We show that particles of different size displace laterally to a different extent when driven by a flow field over a slanted ramp. The flow close to the ramp reorients along the ramp, causing the size-dependent deflection of the particles. The cumulative effect of an array of these ramps would cause particles of different size to migrate in different directions, thus allowing their passive and continuous separation.

  10. Trunk Highway 169: Dynamic ramp metering evaluation. Final report

    SciTech Connect

    1998-03-01

    Peak period travel demand has exceed unmanaged road capacity on most of Twin Cities metropolitan area freeways for more than two decades. During this time, the Minnesota Department of Transportation (MN/DOT) has developed and implemented its freeway traffic management system (FTMS). MN/DOT continues to expand the FTMS, which includes ramp metering as one component. This report documents the impact of dynamic ramp metering on Trunk Highway 169 (TH 16) from Minnetonka Boulevard in Minnetonka to 77th Avenue in Brooklyn Park. The study examines changes in traffic performance with regard to traffic flow, congestion levels, travel times, and accident rates before and after implementation of dynamic ramp metering.

  11. Tu-144LL ramp taxi and takeoff

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A jointly funded activity by the NASA High Speed Research (HSR) program and the Boeing Commercial Airplane Group took place to obtain experimental flight data on the Tu-144 supersonic transport built by Russia. The Tu-144 was modified by the Tupolev Aircraft Design Bureau, Moscow, Russia, in 1995-1996 into the Tu-144LL Flying Laboratory to perform flight experiments as part of the NASA HSR Program. Knowledge gained from the flights will benefit the NASA efforts to develop technology that may enable design of an efficient, environmentally friendly second-generation supersonic transport in this country. This program involved eight experiments -- six aboard the aircraft and two ground test engine experiments. Between November 1996 and February 1998 the Tu-144LL flew 19 research flights. The follow-on Tu-144LL program encompassed about eight flights, focusing on extensions of five experiments from the first project and two new experiments to measure fuel system temperatures and to define in-flight wing deflections. This 31-second clip shows the Russian Tu-144 LL supersonic transport on the ramp in Moscow, then taxiing into position and making its takeoff run, rotating from the runway and climbing away.

  12. Accelerating Science Driven System Design With RAMP

    SciTech Connect

    Wawrzynek, John

    2015-05-01

    Researchers from UC Berkeley, in collaboration with the Lawrence Berkeley National Lab, are engaged in developing an Infrastructure for Synthesis with Integrated Simulation (ISIS). The ISIS Project was a cooperative effort for “application-driven hardware design” that engages application scientists in the early parts of the hardware design process for future generation supercomputing systems. This project served to foster development of computing systems that are better tuned to the application requirements of demanding scientific applications and result in more cost-effective and efficient HPC system designs. In order to overcome long conventional design-cycle times, we leveraged reconfigurable devices to aid in the design of high-efficiency systems, including conventional multi- and many-core systems. The resulting system emulation/prototyping environment, in conjunction with the appropriate intermediate abstractions, provided both a convenient user programming experience and retained flexibility, and thus efficiency, of a reconfigurable platform. We initially targeted the Berkeley RAMP system (Research Accelerator for Multiple Processors) as that hardware emulation environment to facilitate and ultimately accelerate the iterative process of science-driven system design. Our goal was to develop and demonstrate a design methodology for domain-optimized computer system architectures. The tangible outcome is a methodology and tools for rapid prototyping and design-space exploration, leading to highly optimized and efficient HPC systems.

  13. Forward ramp and Twin Peaks - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A lander petal and the forward ramp are featured in this image, taken by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. There are several prominent rocks, including Wedge at left; Shark, Half-Dome, and Pumpkin in the background; and Flat Top and Little Flat Top at center.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  14. Ramp loading in Russian doll poroelasticity

    NASA Astrophysics Data System (ADS)

    Gailani, Gaffar; Cowin, Stephen

    2011-01-01

    Aporoelastic model for porous materials with a nested pore space structure is developed to represent the interstitial fluid flow in bone tissue. The nested porosity model is applied to the problem of determining the exchange of pore fluid between the vascular porosity (PV) and the lacunar-canalicular porosity (PLC) in bone tissue in a ramp loading in the case where the fluid and solid constituents are assumed to be compressible. The compressibility assumption is appropriate for hard tissues while the incompressibility assumption is appropriate for soft tissues. The influence of blood pressure in the PV is included in the analysis. A formula for the fluid that moves between the two porosities is developed. The analysis showed the coupling of the two porosities and their influence on each other and concluded that the PV pore pressure has an influence less than 3% on the PLC pore pressure while the absence of the PV pore pressure will affect the fluid exchange between the PV and PLC by less than 6% (the blood pressure range is 40-60 mmHg). Also the analysis has shown that the draining time of the PLC is inversely proportional to its permeability. The significance of the result is basic to the understanding of interstitial flow in bone tissue that, in turn, is basic to understanding of nutrient transport from the vasculature to the bone cells buried in the bone tissue and to the process of mechanotransduction by these cells.

  15. Facility S 372, replacement dolphins and ramp from upper deck ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Facility S 372, replacement dolphins and ramp from upper deck of ferry boat (YFB 87). - U.S. Naval Base, Pearl Harbor, Ferry Landing Type, Halawa Landing on Ford Island, Pearl City, Honolulu County, HI

  16. North side, eastern section, looking southwest at east ramp and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    North side, eastern section, looking southwest at east ramp and pavilion in CO-172-BR-17. - Fitzsimons General Hospital, Infirmary, Northwest Corner of East Bushnell Avenue & South Page Street, Aurora, Adams County, CO

  17. North side, showing ramp at western section but photograph taken ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    North side, showing ramp at western section but photograph taken to east of CO-172-BR-8 and looking southwesterly. - Fitzsimons General Hospital, Infirmary, Northwest Corner of East Bushnell Avenue & South Page Street, Aurora, Adams County, CO

  18. Facility 596, detail of ramp from below, with replacement sheetpile ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Facility 596, detail of ramp from below, with replacement sheet-pile dolphin on right and southernmost dolphins in background. - U.S. Naval Base, Pearl Harbor, Ferry Landing Type, Halawa Landing on Ford Island, Pearl City, Honolulu County, HI

  19. 124. PLAN OF IMPROVEMENT, HUNTINGTON BEACH MUNICIPAL PIER: RAMP DETAILS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    124. PLAN OF IMPROVEMENT, HUNTINGTON BEACH MUNICIPAL PIER: RAMP DETAILS Sheet 6 of 11 (#3278) - Huntington Beach Municipal Pier, Pacific Coast Highway at Main Street, Huntington Beach, Orange County, CA

  20. 125. PLAN OF IMPROVEMENT, HUNTINGTON BEACH MUNICIPAL PIER: MODIFIED RAMP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    125. PLAN OF IMPROVEMENT, HUNTINGTON BEACH MUNICIPAL PIER: MODIFIED RAMP DETAILS Sheet 6A of 11 (#3279) - Huntington Beach Municipal Pier, Pacific Coast Highway at Main Street, Huntington Beach, Orange County, CA

  1. A Scenario Generation Method for Wind Power Ramp Events Forecasting

    SciTech Connect

    Cui, Ming-Jian; Ke, De-Ping; Sun, Yuan-Zhang; Gan, Di; Zhang, Jie; Hodge, Bri-Mathias

    2015-07-03

    Wind power ramp events (WPREs) have received increasing attention in recent years due to their significant impact on the reliability of power grid operations. In this paper, a novel WPRE forecasting method is proposed which is able to estimate the probability distributions of three important properties of the WPREs. To do so, a neural network (NN) is first proposed to model the wind power generation (WPG) as a stochastic process so that a number of scenarios of the future WPG can be generated (or predicted). Each possible scenario of the future WPG generated in this manner contains the ramping information, and the distributions of the designated WPRE properties can be stochastically derived based on the possible scenarios. Actual data from a wind power plant in the Bonneville Power Administration (BPA) was selected for testing the proposed ramp forecasting method. Results showed that the proposed method effectively forecasted the probability of ramp events.

  2. 3. Cement and Plaster Warehouse, north facade. Loading ramp on ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Cement and Plaster Warehouse, north facade. Loading ramp on the right. Utility building, intrusion, on the far right. - Curtis Wharf, Cement & Plaster Warehouse, O & Second Streets, Anacortes, Skagit County, WA

  3. 56. View below deck of Manhattan side span showing ramps ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    56. View below deck of Manhattan side span showing ramps to East Side Expressway. Jet Lowe, photographer, 1982. - Brooklyn Bridge, Spanning East River between Park Row, Manhattan and Sands Street, Brooklyn, New York County, NY

  4. 1. VIEW TO SOUTH; RAMP AND WEST FRONT MAIL, BAGGAGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW TO SOUTH; RAMP AND WEST FRONT MAIL, BAGGAGE AND EXPRESS BUILDING (MBE) IN RELATION TO TERMINAL BUILDING (Dobson) - Los Angeles Union Passenger Terminal, Mail, Baggage, & Express Building, 800 North Alameda Street, Los Angeles, Los Angeles County, CA

  5. 28. VIEW TO NORTHWEST; SOUTH VEHICULAR RAMP FROM BASE AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. VIEW TO NORTHWEST; SOUTH VEHICULAR RAMP FROM BASE AT ALISO STREET (Asano) - Los Angeles Union Passenger Terminal, Mail, Baggage, & Express Building, 800 North Alameda Street, Los Angeles, Los Angeles County, CA

  6. 4. VIEW TO NORTH; SIDE SIDE OF RAMP IN FRONT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW TO NORTH; SIDE SIDE OF RAMP IN FRONT OF U.S. POST OFFICE TERMINAL ANNEX BUILDING (Dobson) - Los Angeles Union Passenger Terminal, Mail, Baggage, & Express Building, 800 North Alameda Street, Los Angeles, Los Angeles County, CA

  7. 33. VIEW TO NORTHWEST; DETAIL OF VEHICULAR RAMP LIGHTING PYLON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. VIEW TO NORTHWEST; DETAIL OF VEHICULAR RAMP LIGHTING PYLON (Asano) - Los Angeles Union Passenger Terminal, Mail, Baggage, & Express Building, 800 North Alameda Street, Los Angeles, Los Angeles County, CA

  8. 34. VIEW TO EAST; DETAIL OF LAMP ON VEHICULAR RAMP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. VIEW TO EAST; DETAIL OF LAMP ON VEHICULAR RAMP LIGHTING PYLON (Dobson) - Los Angeles Union Passenger Terminal, Mail, Baggage, & Express Building, 800 North Alameda Street, Los Angeles, Los Angeles County, CA

  9. 1. VIEW OF PARK FROM NORTHWEST SHOWING BUS RAMP AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW OF PARK FROM NORTHWEST SHOWING BUS RAMP AND PUBLIC PARKING LOT IN CENTER, HARVARD YARD BUILDINGS IN REAR, HOLYOKE CENTER AT REAR RIGHT. - Flagstaff Park, Massachusetts Avenue & Kirkland Street, Cambridge, Middlesex County, MA

  10. 2. VIEW OF BUS RAMP FROM NORTH LOOKING DOWN INTO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW OF BUS RAMP FROM NORTH LOOKING DOWN INTO TUNNEL ENTRANCE, HARVARD YARD IN REAR LEFT, HOLYOKE CENTER IN MIDDLE, FIRST CHURCH ON RIGHT - Flagstaff Park, Massachusetts Avenue & Kirkland Street, Cambridge, Middlesex County, MA

  11. North rear, east part. Ramp leads to basement utility rooms ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    North rear, east part. Ramp leads to basement utility rooms and specimen preparation rooms. - San Bernardino Valley College, Life Science Building, 701 South Mount Vernon Avenue, San Bernardino, San Bernardino County, CA

  12. East view; Mechanical Building south elevation, covered ramp, and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    East view; Mechanical Building - south elevation, covered ramp, and Street Car Waiting House, left to right - North Philadelphia Station, Mechanical Building, 2900 North Broad Street, on northwest corner of Broad Street & Glenwood Avenue, Philadelphia, Philadelphia County, PA

  13. Viaduct, looking west with downtown Harrisburg in background. Note ramp ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Viaduct, looking west with downtown Harrisburg in background. Note ramp descending from viaduct to Cameron Street at left. - Mulberry Street Viaduct, Spanning Paxton Creek & Cameron Street (State Route 230) at Mulberry Street (State Route 3012), Harrisburg, Dauphin County, PA

  14. Wind Power Ramping Product for Increasing Power System Flexibility

    SciTech Connect

    Cui, Mingjian; Zhang, Jie; Wu, Hongyu; Hodge, Bri-Mathias; Ke, Deping; Sun, Yuanzhang

    2016-05-05

    With increasing penetrations of wind power, system operators are concerned about a potential lack of system flexibility and ramping capacity in real-time dispatch stages. In this paper, a modified dispatch formulation is proposed considering the wind power ramping product (WPRP). A swinging door algorithm (SDA) and dynamic programming are combined and used to detect WPRPs in the next scheduling periods. The detected WPRPs are included in the unit commitment (UC) formulation considering ramping capacity limits, active power limits, and flexible ramping requirements. The modified formulation is solved by mixed integer linear programming. Numerical simulations on a modified PJM 5-bus System show the effectiveness of the model considering WPRP, which not only reduces the production cost but also does not affect the generation schedules of thermal units.

  15. 3. West facade, looking east, with concrete truck ramp leading ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. West facade, looking east, with concrete truck ramp leading to main floor. - Charlestown Navy Yard, Incinerator, Midway along northern boundary of Charlestown Navy Yard, on Little Mystic Channel, near junction of Eighteenth Street & Second Avenue, Boston, Suffolk County, MA

  16. ARROYO SECO PARKWAY SOUTHBOUND LANES AND EXIT RAMP TO ORANGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ARROYO SECO PARKWAY SOUTHBOUND LANES AND EXIT RAMP TO ORANGE GROVE AVENUE. ORANGE GROVE AVENUE BRIDGE IN REAR. LOOKING 278°W - Arroyo Seco Parkway, Orange Grove Avenue Bridge, Milepost 30.59, Los Angeles, Los Angeles County, CA

  17. 27. LOOKING SOUTHEAST AT MARIANO RETRACTABLE RAMP IN FULL UP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. LOOKING SOUTHEAST AT MARIANO RETRACTABLE RAMP IN FULL UP POSITION. CONTROL BOX IN FOREGROUND. USN PHOTO, JANUARY 20, 1942. - Quonset Point Naval Air Station, Roger Williams Way, North Kingstown, Washington County, RI

  18. Truck ramp construction from clean coal technology waste products

    SciTech Connect

    Wolfe, W.E.; Beeghly, J.H.

    1993-12-31

    The construction and performance of a truck ramp made from clean coal technology waste products are described. The specific waste product used in this project was generated at the power plant located on the campus of The Ohio State University in Columbus. The ramp is used by University vehicles depositing hard trash at a central disposal facility on the OSU campus. Laboratory tests which had been conducted on samples made from the power plant waste product clearly showed that, when the material is property compacted, strengths could be obtained that were much higher than those of the natural soils the clean coal waste would replace. In addition, the permeability and swelling characteristics of the waste product should make it an attractive alternative to importing select borrow materials. Based on the results of the laboratory tests, a decision was made to use the power plant waste in the truck ramp rather than the soil that was called for in the original design. Prior to the start of construction, the area on which the ramp was to be located was covered with an impermeable geomembrane. Drain lines were installed on top of the geomembrane so that water that might leach through the ramp could be collected. The waste product from the power plant was placed on the geomembrane in 20 to 30 centimeter lifts by University maintenance personnel without special equipment. A drain line was installed across the toe of the ramp to intercept surface runoff, and a wearing surface of 7 to 15 centimeters of crushed limestone was placed over the compacted ash. The finished ramp structure recycled approximately 180 metric tons of the power plant byproduct. After over a year in service there is no indication of erosion or rutting in the ramp surface. Tests performed on the leachate and runoff water have shown the high pH characteristic of these materials, but concentrations of metals fall below the established limits.

  19. Vibratory high pressure coal feeder having a helical ramp

    DOEpatents

    Farber, Gerald

    1978-01-01

    Apparatus and method for feeding powdered coal from a helical ramp into a high pressure, heated, reactor tube containing hydrogen for hydrogenating the coal and/or for producing useful products from coal. To this end, the helical ramp is vibrated to feed the coal cleanly at an accurately controlled rate in a simple reliable and trouble-free manner that eliminates complicated and expensive screw feeders, and/or complicated and expensive seals, bearings and fully rotating parts.

  20. Space applications of superconductivity

    NASA Technical Reports Server (NTRS)

    Sullivan, D. B.; Vorreiter, J. W.

    1979-01-01

    Some potential applications of superconductivity in space are summarized, e.g., the use of high field magnets for cosmic ray analysis or energy storage and generation, space applications of digital superconducting devices, such as the Josephson switch and, in the future, a superconducting computer. Other superconducting instrumentation which could be used in space includes: low frequency superconducting sensors, microwave and infrared detectors, instruments for gravitational studies, and high-Q cavities for use as stabilizing elements in clocks and oscillators.

  1. PDR with a foot-mounted IMU and ramp detection.

    PubMed

    Jiménez, Antonio R; Seco, Fernando; Zampella, Francisco; Prieto, José C; Guevara, Jorge

    2011-01-01

    The localization of persons in indoor environments is nowadays an open problem. There are partial solutions based on the deployment of a network of sensors (Local Positioning Systems or LPS). Other solutions only require the installation of an inertial sensor on the person's body (Pedestrian Dead-Reckoning or PDR). PDR solutions integrate the signals coming from an Inertial Measurement Unit (IMU), which usually contains 3 accelerometers and 3 gyroscopes. The main problem of PDR is the accumulation of positioning errors due to the drift caused by the noise in the sensors. This paper presents a PDR solution that incorporates a drift correction method based on detecting the access ramps usually found in buildings. The ramp correction method is implemented over a PDR framework that uses an Inertial Navigation algorithm (INS) and an IMU attached to the person's foot. Unlike other approaches that use external sensors to correct the drift error, we only use one IMU on the foot. To detect a ramp, the slope of the terrain on which the user is walking, and the change in height sensed when moving forward, are estimated from the IMU. After detection, the ramp is checked for association with one of the existing in a database. For each associated ramp, a position correction is fed into the Kalman Filter in order to refine the INS-PDR solution. Drift-free localization is achieved with positioning errors below 2 meters for 1,000-meter-long routes in a building with a few ramps.

  2. Dynamic control for nanostructures through slowly ramping parameters.

    PubMed

    Yoo, Jaeyun; Blick, Robert; Ahn, Kang-Hun

    2016-06-01

    We propose a nanostructure control method which uses slowly ramping parameters. We demonstrate the dynamics of this method in both a nonlinear classical system and a quantum system. When a quantum mechanical two-level atom (quantum dot) is irradiated by an electric field with a slowly increasing frequency, there exists a sudden transition from ground (excited) to excited (ground) state. This occurs when the ramping rate is smaller than the square of the Rabi frequency. The transition arises when its "instant frequency"-the time derivative of the driving field phase-matches the resonance frequency, satisfying the Fermi golden rule. We also find that the parameter ramping is an efficient control manner for classical nanomechanical shuttles. For ramping of driving amplitudes, the shuttle's mechanical oscillation is amplified and even survives when the ramping is stopped outside the original oscillation region. This strange oscillation is due to the entrance into a multistable dynamic region in phase space. For ramping of driving frequencies, an onset of oscillation arises when the instant frequency enters the oscillation region. Thus, regardless of being classical or quantum, the instant frequency is physically relevant. We discuss in which conditions the dynamic control is efficient.

  3. Dynamic control for nanostructures through slowly ramping parameters

    NASA Astrophysics Data System (ADS)

    Yoo, Jaeyun; Blick, Robert; Ahn, Kang-Hun

    2016-06-01

    We propose a nanostructure control method which uses slowly ramping parameters. We demonstrate the dynamics of this method in both a nonlinear classical system and a quantum system. When a quantum mechanical two-level atom (quantum dot) is irradiated by an electric field with a slowly increasing frequency, there exists a sudden transition from ground (excited) to excited (ground) state. This occurs when the ramping rate is smaller than the square of the Rabi frequency. The transition arises when its "instant frequency"—the time derivative of the driving field phase—matches the resonance frequency, satisfying the Fermi golden rule. We also find that the parameter ramping is an efficient control manner for classical nanomechanical shuttles. For ramping of driving amplitudes, the shuttle's mechanical oscillation is amplified and even survives when the ramping is stopped outside the original oscillation region. This strange oscillation is due to the entrance into a multistable dynamic region in phase space. For ramping of driving frequencies, an onset of oscillation arises when the instant frequency enters the oscillation region. Thus, regardless of being classical or quantum, the instant frequency is physically relevant. We discuss in which conditions the dynamic control is efficient.

  4. YO-3A parked on ramp

    NASA Technical Reports Server (NTRS)

    1997-01-01

    NASA's YO-3A parked on the Dryden ramp. The YO-3A aircraft was originally a Schweizer SGS-2-23 sailplane. During the late 1960s Lockheed modified over a dozen of these sailplanes to create ultra-quiet observation aircraft for use over South Vietnam during the conflict there. This particular YO-3A flew combat missions and was later sold to an airframe and powerplant mechanics school. NASA's Ames Research Center at Mountain Veiw, California, acquired the aircraft from the school in 1978. It restored the YO-3A to flight status and fitted it with wing- and tail-mounted microphones as an accoustic research aircraft. Ames operated it at Edwards Air Force Base for noise measurements of helicopters and tilt rotor aircraft. One set of tests in December 1995 obtained free-flight noise data on the XV-15 tilt rotor. NASA also used the YO-3A for sonic boom measurements of a NASA SR-71 assigned to the Dryden Flight Research Center. NASA transferred the YO-3A to Dryden in December 1997, and as of April 2001 it was in flyable storage there. The designation YO-3A indicates that this aircraft was a pre-production (Y) observation (O) aircraft. Even though the YO-3A saw operational use, the Y designation was never removed. Its 210-horsepower Continental V-6 was modified to reduce noise. The engine was connected to a propeller through a belt-driven reduction system. This reduced the propeller's rotation speed. The propeller blades themselves were made of birch plywood and were wider than standard propellers. The result of these modifications was an aircraft so quiet that its noise was drowned out by the background sounds.

  5. High field superconducting magnets

    NASA Technical Reports Server (NTRS)

    Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

    2011-01-01

    A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

  6. Design features of portable wheelchair ramps and their implications for curb and vehicle access.

    PubMed

    Storr, Tim; Spicer, Julie; Frost, Peggy; Attfield, Steve; Ward, Christopher D; Pinnington, Lorraine L

    2004-05-01

    This study evaluated a range of portable wheelchair ramps to highlight the effect of different product features on ease of use when wheelchair users climb curbs or access vehicles. Twelve portable ramps were evaluated. Although all the ramps were designed to load powered wheelchairs into motor vehicles, they were manufactured in different designs. The ramps were based on a "singlewide" platform or "channel" design. Some ramps had fixed dimensions, whereas others could be reduced in size because they were telescopic or designed to allow folding. Overall, the ramps could be divided into four subgroups on the basis of their key features. These were horizontally and longitudinally folding ramps, telescopic ramps, and ramps with fixed dimensions. The telescopic ramps could be subdivided into "U"-shaped gutter ramps and reverse profile ramps. Product appraisals and trials involving wheelchair users and caregivers of wheelchair users were done to evaluate each of these ramp designs. Although wheelchair ramps are available in a wide range of designs and configurations, we found that no single ramp design successfully met the needs of all wheelchair users or their caregivers. The evaluation highlighted a number of specific problems and potential hazards. Some ramps were found to move during a maneuver, showed poor stability when used with some vehicles, or were too narrow to allow wheelchair castors to pass through the channel without jamming. Some features, such as handles and locking mechanisms, influenced the ease with which the caregivers could use the ramps. Wheelchair users preferred the wide platform ramps because they were able to drive up these with ease and little preparation. The caregivers preferred folding or telescopic channel ramps because these were easier to handle and store.

  7. Superconducting magnet

    DOEpatents

    Satti, John A.

    1980-01-01

    A superconducting magnet designed to produce magnetic flux densities of the order of 4 to 5 Webers per square meter is constructed by first forming a cable of a plurality of matrixed superconductor wires with each wire of the plurality insulated from each other one. The cable is shaped into a rectangular cross-section and is wound with tape in an open spiral to create cooling channels. Coils are wound in a calculated pattern in saddle shapes to produce desired fields, such as dipoles, quadrupoles, and the like. Wedges are inserted between adjacent cables as needed to maintain substantially radial placement of the long dimensions of cross sections of the cables. After winding, individual strands in each of the cables are brought out to terminals and are interconnected to place all of the strands in series and to maximize the propagation of a quench by alternating conduction from an inner layer to an outer layer and from top half to bottom half as often as possible. Individual layers are separated from others by spiraled aluminum spacers to facilitate cooling. The wound coil is wrapped with an epoxy tape that is cured by heat and then machined to an interference fit with an outer aluminum pipe which is then affixed securely to the assembled coil by heating it to make a shrink fit. In an alternate embodiment, one wire of the cable is made of copper or the like to be heated externally to propagate a quench.

  8. Improving short-term forecasting during ramp events by means of Regime-Switching Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Gallego, C.; Costa, A.; Cuerva, A.

    2010-09-01

    Since nowadays wind energy can't be neither scheduled nor large-scale storaged, wind power forecasting has been useful to minimize the impact of wind fluctuations. In particular, short-term forecasting (characterised by prediction horizons from minutes to a few days) is currently required by energy producers (in a daily electricity market context) and the TSO's (in order to keep the stability/balance of an electrical system). Within the short-term background, time-series based models (i.e., statistical models) have shown a better performance than NWP models for horizons up to few hours. These models try to learn and replicate the dynamic shown by the time series of a certain variable. When considering the power output of wind farms, ramp events are usually observed, being characterized by a large positive gradient in the time series (ramp-up) or negative (ramp-down) during relatively short time periods (few hours). Ramp events may be motivated by many different causes, involving generally several spatial scales, since the large scale (fronts, low pressure systems) up to the local scale (wind turbine shut-down due to high wind speed, yaw misalignment due to fast changes of wind direction). Hence, the output power may show unexpected dynamics during ramp events depending on the underlying processes; consequently, traditional statistical models considering only one dynamic for the hole power time series may be inappropriate. This work proposes a Regime Switching (RS) model based on Artificial Neural Nets (ANN). The RS-ANN model gathers as many ANN's as different dynamics considered (called regimes); a certain ANN is selected so as to predict the output power, depending on the current regime. The current regime is on-line updated based on a gradient criteria, regarding the past two values of the output power. 3 Regimes are established, concerning ramp events: ramp-up, ramp-down and no-ramp regime. In order to assess the skillness of the proposed RS-ANN model, a single

  9. YF-12A #935 on ramp

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A front, overhead view of the number two YF-12A (60-6935) on the ramp at the NASA Flight Research Center (now NASA Dryden), Edwards, California. Notice how the chines end abruptly, just aft of the nose radome. The aircraft was originally designed as an interceptor. The large radome housed a radar for the Hughes ASG-18 missile fire control system. The Flight Research Center's involvement with the YF-12A, an interceptor version of the Lockheed A-12, began in 1967. Ames Research Center was interested in using wind tunnel data that had been generated at Ames under extreme secrecy. Also, the Office of Advanced Research and Technology (OART) saw the YF-12A as a means to advance high-speed technology, which would help in designing the Supersonic Transport (SST). The Air Force needed technical assistance to get the latest reconnaissance version of the A-12 family, the SR-71A, fully operational. Eventually, the Air Force offered NASA the use of two YF-12A aircraft, 60-6935 and 60-6936. A joint NASA-USAF program was mapped out in June 1969. NASA and Air Force technicians spent three months readying 935 for flight. On 11 December 1969, the flight program got underway with a successful maiden flight piloted by Col. Joe Rogers and Maj. Gary Heidelbaugh of the SR-71/F-12 Test Force. During the program, the Air Force concentrated on military applications, and NASA pursued a loads research program. NASA studies included inflight heating, skin-friction cooling, 'coldwall' research (a heat transfer experiment), flowfield studies, shaker vane research, and tests in support of the Space Shuttle landing program. Ultimately, 935 became the workhorse of the program, with 146 flights between 11 December 1969 and 7 November 1979. The second YF-12A, 936, made 62 flights. It was lost in a non-fatal crash on 24 June 1971. It was replaced by the so-called YF-12C (SR-71A 61-7951, modified with YF-12A inlets and engines and a bogus tail number 06937). The Lockheed A-12 family, known as the

  10. Guidelines for the Calculation of the Accumulator Magnet Bus Ramps for Fermilab Experiment E835

    SciTech Connect

    McGinnis, Dave; Stancari, Giulio; Werkema, Steve; /Fermilab

    1999-04-15

    This report lists the steps that are required to calculate deceleration ramps for all relevant Accumulator devices. The ramps used for the 1996-97 fixed target run (experiment E835) are saved in files associated with ACNET console application PA1627 (PAUX RAMP DEVELOP). These ramps cannot be re-used because the Accumulator {gamma}{sub t} upgrade has significantly changed the lattice since the last time the ramps were used. Consequently, new deceleration ramps must be calculated and commissioned before the next fixed target run. The deceleration ramp for a particular device is a table that gives the sequence of set values sent to the device as the ramp is executed. The 1997 ramps consist of ramp tables for 100 devices. Appendix 1 gives a list of the devices ramped. Most of these devices will still require ramps for the next fixed target run. Future decelerations will also require ramps for the quadrupole magnet shunts that were installed as part of the {gamma}{sub t} upgrade. Additionally, ramps must be constructed for the two skew-sextupole magnets that will be installed during the summer of 1999.

  11. Fabrication of interface-modified ramp-edge junction on YBCO ground plane with multilayer structure

    NASA Astrophysics Data System (ADS)

    Wakana, H.; Adachi, S.; Kamitani, A.; Sugiyama, H.; Sugano, T.; Horibe, M.; Ishimaru, Y.; Tarutani, Y.; Tanabe, K.

    2003-10-01

    We examined the fabrication conditions to obtain high-quality ramp-edge Josephson junctions on a liquid-phase-epitaxy YBa 2Cu 3O y (LPE-YBCO) ground plane, in particular, focusing on the fabrication of a suitable insulating layer on the ground plane and the post-annealing conditions to load oxygen to the ground plane. A (LaAlO 3) 0.3-(SrAl 0.5Ta 0.5O 3) 0.7 (LSAT) insulating film on the ground planes exhibited a conductance ranging from 10 -4 to 10 -8 S after deposition of an upper superconducting film, suggesting existence of some leak paths through the LSAT insulating layer. By introducing approximately 30 nm thick SrTiO 3 (STO) buffer layers on both side of the LSAT insulating layer. We reproducibly obtained a conductance lower than 10 -8 S. The dielectric constant of the STO/LSAT/STO layer was 32, which was slightly larger than that of the single LSAT layer. It was found that a very slow cooling rate of 1.0 °C/h in oxygen was needed to fully oxidize the ground plane through the STO/LSAT/STO insulating layers, while the oxidation time could be effectively reduced by introducing via holes in the insulating layer at an interval of 200 μm. Ramp-edge junctions on LPE-YBCO ground planes with STO/LSAT/STO insulating layers exhibited a 1 σ-spread in Ic of 8% for 100-junction series-arrays and a sheet inductance of 0.7 pH/□ at 4.2 K.

  12. Shock formation and the ideal shape of ramp compression waves

    SciTech Connect

    Swift, D C; Kraus, R G; Loomis, E; Hicks, D G; McNaney, J M; Johnson, R P

    2008-05-29

    We derive expressions for shock formation based on the local curvature of the flow characteristics during dynamic compression. Given a specific ramp adiabat, calculated for instance from the equation of state for a substance, the ideal nonlinear shape for an applied ramp loading history can be determined. We discuss the region affected by lateral release, which can be presented in compact form for the ideal loading history. Example calculations are given for representative metals and plastic ablators. Continuum dynamics (hydrocode) simulations were in good agreement with the algebraic forms. Example applications are presented for several classes of laser-loading experiment, identifying conditions where shocks are desired but not formed, and where long duration ramps are desired.

  13. Speed limit and ramp meter control for traffic flow networks

    NASA Astrophysics Data System (ADS)

    Goatin, Paola; Göttlich, Simone; Kolb, Oliver

    2016-07-01

    The control of traffic flow can be related to different applications. In this work, a method to manage variable speed limits combined with coordinated ramp metering within the framework of the Lighthill-Whitham-Richards (LWR) network model is introduced. Following a 'first-discretize-then-optimize' approach, the first order optimality system is derived and the switch of speeds at certain fixed points in time is explained, together with the boundary control for the ramp metering. Sequential quadratic programming methods are used to solve the control problem numerically. For application purposes, experimental setups are presented wherein variable speed limits are used as a traffic guidance system to avoid traffic jams on highway interchanges and on-ramps.

  14. Ramp compression of magnesium oxide to 234 GPa

    DOE PAGES

    Wang, Jue; Smith, R. F.; Coppari, F.; ...

    2014-05-07

    Single-crystal magnesium oxide (MgO) samples were ramp compressed to above 200 GPa pressure at the Omega laser facility. Multi-stepped MgO targets were prepared using lithography and wet etching techniques. Free surface velocities of ramp-compressed MgO were measured with a VISAR. The sound velocity and stress-density response were determined using an iterative Lagrangian analysis. The measured equation of state is consistent with expectations from previous shock and static data as well as with a recent X-ray diffraction measurement under ramp loading. The peak elastic stresses observed in our samples had amplitudes of 3-5.5 GPa, decreasing with propagation distance.

  15. PDR with a Foot-Mounted IMU and Ramp Detection

    PubMed Central

    Jiménez, Antonio R.; Seco, Fernando; Zampella, Francisco; Prieto, José C.; Guevara, Jorge

    2011-01-01

    The localization of persons in indoor environments is nowadays an open problem. There are partial solutions based on the deployment of a network of sensors (Local Positioning Systems or LPS). Other solutions only require the installation of an inertial sensor on the person’s body (Pedestrian Dead-Reckoning or PDR). PDR solutions integrate the signals coming from an Inertial Measurement Unit (IMU), which usually contains 3 accelerometers and 3 gyroscopes. The main problem of PDR is the accumulation of positioning errors due to the drift caused by the noise in the sensors. This paper presents a PDR solution that incorporates a drift correction method based on detecting the access ramps usually found in buildings. The ramp correction method is implemented over a PDR framework that uses an Inertial Navigation algorithm (INS) and an IMU attached to the person’s foot. Unlike other approaches that use external sensors to correct the drift error, we only use one IMU on the foot. To detect a ramp, the slope of the terrain on which the user is walking, and the change in height sensed when moving forward, are estimated from the IMU. After detection, the ramp is checked for association with one of the existing in a database. For each associated ramp, a position correction is fed into the Kalman Filter in order to refine the INS-PDR solution. Drift-free localization is achieved with positioning errors below 2 meters for 1,000-meter-long routes in a building with a few ramps. PMID:22163701

  16. Simple Superconducting "Permanent" Electromagnet

    NASA Technical Reports Server (NTRS)

    Israelson, Ulf E.; Strayer, Donald M.

    1992-01-01

    Proposed short tube of high-temperature-superconducting material like YBa2Cu3O7 acts as strong electromagnet that flows as long as magnetic field remains below critical value and temperature of cylinder maintained sufficiently below superconducting-transition temperature. Design exploits maximally anisotropy of high-temperature-superconducting material.

  17. Ramp-edge structured tunneling devices using ferromagnet electrodes

    DOEpatents

    Kwon, Chuhee; Jia, Quanxi

    2002-09-03

    The fabrication of ferromagnet-insulator-ferromagnet magnetic tunneling junction devices using a ramp-edge geometry based on, e.g., (La.sub.0.7 Sr.sub.0.3) MnO.sub.3, ferromagnetic electrodes and a SrTiO.sub.3 insulator is disclosed. The maximum junction magnetoresistance (JMR) as large as 23% was observed below 300 Oe at low temperatures (T<100 K). These ramp-edge junctions exhibited JMR of 6% at 200 K with a field less than 100 Oe.

  18. Analysis of failed ramps during the RHIC FY09 run

    SciTech Connect

    Minty, M.

    2014-08-15

    The Relativistic Heavy Ion Collider (RHIC) is a versatile accelerator that supports operation with polarized protons of up to 250 GeV and ions with up to 100 GeV/nucleon. During any running period, various operating scenarios with different particle species, beam energies or accelerator optics are commissioned. In this report the beam commissioning periods for establishing full energy beams (ramp development periods) from the FY09 run are summarized and, for the purpose of motivating further developments, we analyze the reasons for all failed ramps.

  19. Superconducting gates with fluxon logics

    NASA Astrophysics Data System (ADS)

    Nacak, H.; Kusmartsev, F. V.

    2010-10-01

    We have developed several logic gates (OR, XOR, AND and NAND) made of superconducting Josephson junctions. The gates based of the flux cloning phenomenon and high speed of fluxons moving in Josephson junctions of different shapes. In a contrast with previous design the gates operates extremely fast since fluxons are moving with the speed close to the speed of light. We have demonstrated their operations and indicated several ways to made a more complicated logic elements which have at the same time a compact form.

  20. Electron cyclotron heating and current drive studies during current ramp-up in Tore-Supra

    NASA Astrophysics Data System (ADS)

    Rimini, F. G.; Basiuk, V.; Bourdelle, C.; Bucalossi, J.; Fenzi-Bonizec, C.; Giruzzi, G.; Hoang, G. T.; Lennholm, M.; Sabot, R.; Ségui, J. L.; Thomas, P. R.

    2005-06-01

    In a recent series of experiments, electron cyclotron current drive (ECCD) has been successfully used, at a level of 0.75 MW, for current profile tailoring during the current ramp-up in Tore-Supra. The electron cyclotron resonance heating power deposition was varied from on-axis to off-axis and the direction of the driven current from co to counter. In these conditions, the current profile is significantly modified with respect to those typically obtained in pure ohmic scenarios. Central reversed magnetic shear conditions have been achieved with on-axis counter-ECCD, accompanied by high electron temperature gradients, exhibiting internal transport barrier features. This improved electron transport is maintained for some time on the current flat-top when combining ECCD with ion cyclotron resonance heating in a (H)D minority scheme. Integrated interpretative analysis with the CRONOS code confirms that deeply reversed magnetic shear is indeed attained by on-axis counter-ECCD in low density conditions and in combination with a relatively fast controlled current ramp. The high electron temperature gradient is found to be located inside the negative magnetic shear region.

  1. Integrated electrical and SEM-based defect characterization for rapid yield ramp

    NASA Astrophysics Data System (ADS)

    Orbon, Jacob; Levin, Lior; Bokobza, Ofer; Shimshi, Rinat; Dutta, Manjari; Zhang, Brian; Ciplickas, Dennis; Pham, Teri; Jensen, Jim

    2004-04-01

    Challenges of the new nanometer processes have complicated the yield enhancement process. The systematic yield loss component is increasing, due to the complexity and density of the new processes and the designs that are developed for them. High product yields can now only be achieved when process failure rates are on the order of a few parts per billion structures. Traditional yield ramping techniques cannot ramp yields to these levels and new methods are required. This paper presents a new systematic approach to yield loss pareto generation. The approach uses a sophisticated Design-of-Experiments (DOE) approach to characterize systematic and random yield loss mechanisms in the Back End Of the Line (BEOL). Sophisticated Characterization Vehicle (CV)TM test chips, fast electrical test and Automatic Defect Localization (ADL) are critical components of the method. Advanced statistical analysis and visualization of the detected and localized electrical defects provides a comprehensive view of the yield loss mechanisms. In situations where the defects are not visible in a SEM of the structure surface, automated FIB and imaging is used to characterize the defect. The combined approach provides the required resolution to appropriately characterize parts per billion failure rates.

  2. SR-71 Ship #1 on Ramp

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This photo shows a head-on shot of NASA's SR-71A aircraft on the ramp at NASA's Dryden Flight Research Center, Edwards, California. NASA operated two SR-71s, an SR-71A and an SR- 71B pilot trainer aircraft, both based at Dryden, at that particular point in time. The SR-71 was designed and built by the Lockheed Skunk Works, now the Lockheed Martin Skunk Works. Studies have shown that less than 20 percent of the total thrust used to fly at Mach 3 is produced by the basic engine itself. The balance of the total thrust is produced by the unique design of the engine inlet and 'moveable spike' system at the front of the engine nacelles, and by the ejector nozzles at the exhaust which burn air compressed in the engine bypass system. Data from the SR-71 high speed research program will be used to aid designers of future supersonic/hypersonic aircraft and propulsion systems, including a high speed civil transport. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to

  3. SR-71 - Taxi on Ramp with Engines

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This photo shows a head-on shot of NASA's SR-71A aircraft taxiing on the ramp at NASA's Dryden Flight Research Center, Edwards, California, heat waves from its engines blurring the hangars in the background. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used for the Linear Aerospike Rocket Engine, or LASRE Experiment. Another earlier project consisted of a series of flights using the SR-71 as a science camera platform for NASA's Jet Propulsion Laboratory in Pasadena

  4. Three SR-71s on Ramp

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The original trio of SR-71 'Blackbirds' loaned to NASA by the U.S. Air Force for high-speed, high-altitude research line the ramp at the Dryden Flight Research Center, Edwards, California. The three former reconnaissance aircraft, two SR-71 'A' models and one 'B' model, can fly more than 2200 mph and at altitudes of over 80,000 feet. This operating environment makes the aircraft excellent platforms to carry out research and experiments in aerodynamics, propulsion, structures, thermal protection materials, atmospheric studies, and sonic boom characterization. One of the 'A' models was later returned the Air Force for active duty. It subsequently returned to Dryden. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system

  5. SR-71 Ship #1 on Ramp

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This look-down, front view of NASA's SR-71A aircraft shows the Blackbird on the ramp at the Dryden Flight Research Center, Edwards, California. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used for the Linear Aerospike Rocket Engine, or LASRE Experiment. Another earlier project consisted of a series of flights using the SR-71 as a science camera platform for NASA's Jet Propulsion Laboratory in Pasadena, California. An upward-looking ultraviolet video camera placed in

  6. SR-71 Ship #1 on Ramp

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This look-down view of NASA's SR-71A aircraft shows the Blackbird on the ramp at the Dryden Flight Research Center, Edwards, California, with Rogers Dry Lake in the background. NASA operated two SR-71s, an SR-71A and an SR- 71B pilot trainer aircraft at that point in time, both based at Dryden. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used for the Linear Aerospike Rocket Engine, or LASRE Experiment. Another earlier project consisted of a series of flights using the

  7. Superconductivity in Medicine

    NASA Astrophysics Data System (ADS)

    Alonso, Jose R.; Antaya, Timothy A.

    2012-01-01

    Superconductivity is playing an increasingly important role in advanced medical technologies. Compact superconducting cyclotrons are emerging as powerful tools for external beam therapy with protons and carbon ions, and offer advantages of cost and size reduction in isotope production as well. Superconducting magnets in isocentric gantries reduce their size and weight to practical proportions. In diagnostic imaging, superconducting magnets have been crucial for the successful clinical implementation of magnetic resonance imaging. This article introduces each of those areas and describes the role which superconductivity is playing in them.

  8. Protective link for superconducting coil

    DOEpatents

    Umans, Stephen D.

    2009-12-08

    A superconducting coil system includes a superconducting coil and a protective link of superconducting material coupled to the superconducting coil. A rotating machine includes first and second coils and a protective link of superconducting material. The second coil is operable to rotate with respect to the first coil. One of the first and second coils is a superconducting coil. The protective link is coupled to the superconducting coil.

  9. Superconductivity in transition metals.

    PubMed

    Slocombe, Daniel R; Kuznetsov, Vladimir L; Grochala, Wojciech; Williams, Robert J P; Edwards, Peter P

    2015-03-13

    A qualitative account of the occurrence and magnitude of superconductivity in the transition metals is presented, with a primary emphasis on elements of the first row. Correlations of the important parameters of the Bardeen-Cooper-Schrieffer theory of superconductivity are highlighted with respect to the number of d-shell electrons per atom of the transition elements. The relation between the systematics of superconductivity in the transition metals and the periodic table high-lights the importance of short-range or chemical bonding on the remarkable natural phenomenon of superconductivity in the chemical elements. A relationship between superconductivity and lattice instability appears naturally as a balance and competition between localized covalent bonding and so-called broken covalency, which favours d-electron delocalization and superconductivity. In this manner, the systematics of superconductivity and various other physical properties of the transition elements are related and unified.

  10. Records Surveys and Schedules: A RAMP Study with Guidelines.

    ERIC Educational Resources Information Center

    Charman, Derek

    Prepared for Unesco's Records and Archives Management Programme (RAMP), this study is intended to introduce workers in archival services to the life cycle concept of records, and to the advantages of establishing a legally authorized and comprehensive program for the orderly disposal of modern institutional records. It is noted that, although the…

  11. Student Surveyors Test Skills on Mississippi Boat Ramp

    ERIC Educational Resources Information Center

    Staley, Glen Lamb

    1978-01-01

    Students enrolled in the construction surveying class at Southern Illinois University's School of Technical Careers gained practical experience and helped the community by giving engineering assistance to the checking of existing design features and to surveying and laying out a project to construct a boat ramp on the Mississippi River. An…

  12. 9 CFR 313.1 - Livestock pens, driveways and ramps.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... animal may be injured shall be repaired. (b) Floors of livestock pens, ramps, and driveways shall be constructed and maintained so as to provide good footing for livestock. Slip resistant or waffled floor... the opinion of the inspector, to protect them from the adverse climatic conditions of the locale...

  13. 18. View of W elevation of ramp looking NE showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. View of W elevation of ramp looking NE showing entrances and openings to storage spaces below. - Hacienda Azurarera Santa Elena, Sugar Mill Ruins, 1.44 miles North of PR Route 2 Bridge Over Rio De La Plata, Toa Baja, Toa Baja Municipio, PR

  14. The Archival Appraisal of Photographs: A RAMP Study with Guidelines.

    ERIC Educational Resources Information Center

    Leary, William H.

    Prepared for Unesco's Records and Archives Management Programme (RAMP), this study is designed to provide archivists, manuscript and museum curators, and other interested information professionals in both industrialized and developing countries with an understanding of the archival character of photographs, and a set of guidelines for the…

  15. 5. VIEW TO NORTH; RAMP AND WEST FRONT MBE BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW TO NORTH; RAMP AND WEST FRONT MBE BUILDING IN RELATION TO U.S. POST OFFICE TERMINAL ANNEX BUILDING (Dobson) - Los Angeles Union Passenger Terminal, Mail, Baggage, & Express Building, 800 North Alameda Street, Los Angeles, Los Angeles County, CA

  16. 24. CUSHMAN #1 CONCRETE SPILLWAY RAMPS PLAN AND DETAILS. January ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. CUSHMAN #1 CONCRETE SPILLWAY RAMPS PLAN AND DETAILS. January 1981. Revised in June 1981. Reference No. BA-081 - Cushman No. 1 Hydroelectric Power Plant, Spillway, North Fork of Skokomish River, 5 miles West of Hood Canal, Hoodsport, Mason County, WA

  17. Unsteady transitions of separation patterns in single expansion ramp nozzle

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Xu, J.; Yu, K.; Mo, J.

    2015-11-01

    The single expansion ramp nozzle is one of the optimal configurations for a planar rocket-based combined cycle engine because of its good integration and self-adaptability at off-design operation. The single expansion ramp nozzle is seriously overexpanded when the vehicle is at low speed, resulting in complex flow separation phenomena. Several separation patterns have been found in the single expansion ramp nozzle. Numerical simulations have shown that the transition between these separation patterns occurs in the nozzle startup and shutdown processes. However, only a few relevant experimental studies have been reported. This study reproduces the nozzle startup and shutdown processes using wind tunnel experiments. Two restricted shock separation patterns are observed in the experiment, namely, a separation bubble either forms on the ramp or the flap. The detailed flow fields in the transition processes are captured using a high-speed camera. The shock wave structures in the two separation patterns, influences of the nozzle pressure ratio (NPR) on the separation patterns and changes of the shock waves in the transition processes are discussed in detail. Shock wave instabilities accompany the separation transition, which usually takes less than 5 ms. The nozzle pressure ratios corresponding to the separation pattern transition are different in the startup and shutdown processes, which leads to a hysteresis effect.

  18. Archives and Records Management for Decision Makers: A RAMP Study.

    ERIC Educational Resources Information Center

    Mazikana, Peter C.

    Intended to highlight those aspects of the archival field that government officials should be aware of, this report on the Records and Archives Management Programme (RAMP) outlines the major principles of records management and archives administration, identifies the information needs of the decision makers, and assesses the ways in which records…

  19. A Framework to Support Generator Ramping Uncertainty Analysis and Visualization

    SciTech Connect

    2015-12-01

    Power system operation requires maintaining a continuous balance between system demand and generation within certain constraints. Traditionally, the balancing processes are based on deterministic models, which do not consider possible random deviations of system generation and load from their predicted values. With the increasing penetration of the renewable generation, unexpected balancing problems can happen due to the deviations. This can result in serious risks to system reliability and efficiency. When the available balancing reserve is not enough to cover the predicted net load range with uncertainty, deficiency of balancing needs occurs. In this case, it is necessary to commit or de-commit additional conventional generators to achieve the desired confidence level for the balancing needs. The framework is built for solving this problem. The ramping tool engine is used to predict additional balancing requirements caused by the variability and uncertainty of the renewable energy, under the constraints of the generation ramping capability and interchange schedule. The webbrowser- based GUI is used to visualize the data in web-environment, which provides flexibility to allow user to see the ramping outputs in any platform. The GOSS structure provides strong support to allow easy communication between ramping engine, and system inputs, as well as the GUI.

  20. Ramp Technology and Intelligent Processing in Small Manufacturing

    NASA Technical Reports Server (NTRS)

    Rentz, Richard E.

    1992-01-01

    To address the issues of excessive inventories and increasing procurement lead times, the Navy is actively pursuing flexible computer integrated manufacturing (FCIM) technologies, integrated by communication networks to respond rapidly to its requirements for parts. The Rapid Acquisition of Manufactured Parts (RAMP) program, initiated in 1986, is an integral part of this effort. The RAMP program's goal is to reduce the current average production lead times experienced by the Navy's inventory control points by a factor of 90 percent. The manufacturing engineering component of the RAMP architecture utilizes an intelligent processing technology built around a knowledge-based shell provided by ICAD, Inc. Rules and data bases in the software simulate an expert manufacturing planner's knowledge of shop processes and equipment. This expert system can use Product Data Exchange using STEP (PDES) data to determine what features the required part has, what material is required to manufacture it, what machines and tools are needed, and how the part should be held (fixtured) for machining, among other factors. The program's rule base then indicates, for example, how to make each feature, in what order to make it, and to which machines on the shop floor the part should be routed for processing. This information becomes part of the shop work order. The process planning function under RAMP greatly reduces the time and effort required to complete a process plan. Since the PDES file that drives the intelligent processing is 100 percent complete and accurate to start with, the potential for costly errors is greatly diminished.

  1. Ramp-up of CHI Initiated Plasmas on NSTX

    SciTech Connect

    Mueller, D; Bell, R E; LeBlanc, B; Roquemore, A L; Raman, R; Jarboe, T R; Nelson, B A; Soukhanovskii, V

    2009-10-29

    Experiments on the National Spherical Torus (NSTX) have now demonstrated flux savings using transient coaxial helicity injection (CHI). In these discharges, the discharges initiated by CHI are ramped up with an inductive transformer and exhibit higher plasma current than discharges without the benefit of CHI initiation.

  2. ARROYO SECO PARKWAY SOUTHBOUND LANES AND EXIT RAMP TO ORANGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ARROYO SECO PARKWAY SOUTHBOUND LANES AND EXIT RAMP TO ORANGE GROVE AVENUE. ORANGE GROVE AVENUE BRIDGE IN REAR. NOTE IRRIGATION AND DRAINAGE FEATURES AT RIGHT. LOOKING 248°WSW - Arroyo Seco Parkway, Orange Grove Avenue Bridge, Milepost 30.59, Los Angeles, Los Angeles County, CA

  3. 20. INTERIOR VIEW TO THE EAST OF THE ACCESS RAMP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. INTERIOR VIEW TO THE EAST OF THE ACCESS RAMP TO THE HOT DISASSEMBLY AREA FROM THE COLD ASSEMBLY AREA. - Nevada Test Site, Reactor Maintenance Assembly & Dissassembly Facility, Area 25, Jackass Flats, Junction of Roads F & G, Mercury, Nye County, NV

  4. Experiencing Production Ramp-Up Education for Engineers

    ERIC Educational Resources Information Center

    Bassetto, S.; Fiegenwald, V.; Cholez, C.; Mangione, F.

    2011-01-01

    This paper presents a game of industrialisation, based on a paper airplane, that mimics real world production ramp-up and blends classical engineering courses together. It is based on a low cost product so that it can be mass produced. The game targets graduate students and practitioners in engineering fields. For students, it offers an experiment…

  5. Facility No. S362, view across the ramp U.S. Naval ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Facility No. S362, view across the ramp - U.S. Naval Base, Pearl Harbor, Seaplane Ramps - World War II Type, Southwest and west shore of Ford Island, near Wasp Boulevard, Pearl City, Honolulu County, HI

  6. Return time statistic of wind power ramp events

    NASA Astrophysics Data System (ADS)

    Calif, Rudy; Schmitt, François G.

    2015-04-01

    Detection and forecasting of wind power ramp events is a critical issue for the management of power generated by wind turbine and a cluster of wind turbines. The wind power ramp events occur suddenly with larges changes (increases or decreases) of wind power output. In this work, the statistic and the dynamic of wind power ramp events are examined. For that, we analyze several datasets of wind power output with different sampling rate and duration. The data considered are delivered by five wind farms and two single turbines, located at different geographic locations. From these datasets, the return time series τr of wind power ramp events, i.e., the time between two successive ramps above a given threshold Δ p. The return time statistic is investigated plotting the complementary cumulative distribution C(τ_r) in log-log representation. Using a robust method developed by Clauset et al., combining maximum-likelihood fitting methods with goodness-of-fit tests based on the Kolmogorov Smirnov statistic, we show a scaling behavior of the return time statistic, of the form: C(τ_r)˜ kτ_r-α where k is a positive constant and the exponent α called the tail exponent of the distribution. In this study, the value of α ranges from 1.68 to 2.20. This result is a potential information for the estimation risk of wind power generation based on the return time series. Clauset A, Shalizi CR, Newman MEJ. Power-Law distributions in empirical data. SIAM Review 2009;51(4):661-703.

  7. Numerical study of micro-ramp vortex generator for supersonic ramp flow control at Mach 2.5

    NASA Astrophysics Data System (ADS)

    Yan, Y.; Chen, L.; Li, Q.; Liu, C.

    2017-01-01

    An implicit large eddy simulation, implemented using a fifth-order, bandwidth-optimized weighted essentially non-oscillatory scheme, was used to study the flow past a compression ramp at Mach 2.5 and {Re}_{θ } = 5760 with and without a micro-ramp vortex generator (MVG) upstream. The MVG serves as a passive flow control device. The results suggested that MVGs may distinctly reduce the separation zone at the ramp corner and lower the boundary layer shape factor. New findings regarding the MVG-ramp interacting flow included the surface pressure distribution, three-dimensional structures of the re-compression shock waves, surface separation topology, and a new secondary vortex system. The formation of the momentum deficit was studied in depth. A new mechanism was observed wherein a series of vortex rings originated from the MVG-generated high shear at the boundary of the momentum deficit zone. Vortex rings strongly interact with the shock-separated flow and play an important role in the separation zone reduction.

  8. 30 CFR 57.9303 - Construction of ramps and dumping facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Construction of ramps and dumping facilities... MINES Loading, Hauling, and Dumping Safety Devices, Provisions, and Procedures for Roadways, Railroads, and Loading and Dumping Sites § 57.9303 Construction of ramps and dumping facilities. Ramps...

  9. 30 CFR 56.9303 - Construction of ramps and dumping facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Construction of ramps and dumping facilities... Loading, Hauling, and Dumping Safety Devices, Provisions, and Procedures for Roadways, Railroads, and Loading and Dumping Sites § 56.9303 Construction of ramps and dumping facilities. Ramps and...

  10. Superconductive radiofrequency window assembly

    DOEpatents

    Phillips, H.L.; Elliott, T.S.

    1998-05-19

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The SRF window assembly has a superconducting metal-ceramic design. The SRF window assembly comprises a superconducting frame, a ceramic plate having a superconducting metallized area, and a superconducting eyelet for sealing plate into frame. The plate is brazed to eyelet which is then electron beam welded to frame. A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the SRF window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator. 11 figs.

  11. Superconducting radiofrequency window assembly

    DOEpatents

    Phillips, H.L.; Elliott, T.S.

    1997-03-11

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly has a superconducting metal-ceramic design. The srf window assembly comprises a superconducting frame, a ceramic plate having a superconducting metallized area, and a superconducting eyelet for sealing plate into frame. The plate is brazed to eyelet which is then electron beam welded to frame. A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator. 11 figs.

  12. High Temperature Superconducting Materials Database

    National Institute of Standards and Technology Data Gateway

    SRD 149 NIST High Temperature Superconducting Materials Database (Web, free access)   The NIST High Temperature Superconducting Materials Database (WebHTS) provides evaluated thermal, mechanical, and superconducting property data for oxides and other nonconventional superconductors.

  13. Superconducting energy recovery linacs

    NASA Astrophysics Data System (ADS)

    Ben-Zvi, Ilan

    2016-10-01

    High-average-power and high-brightness electron beams from a combination of laser photocathode electron guns and a superconducting energy recovery linac (ERL) is an emerging accelerator science with applications in ERL light sources, high repetition rate free electron lasers , electron cooling, electron ion colliders and more. This paper reviews the accelerator physics issues of superconducting ERLs, discusses major subsystems and provides a few examples of superconducting ERLs.

  14. Fast, precise, and widely tunable frequency control of an optical parametric oscillator referenced to a frequency comb

    NASA Astrophysics Data System (ADS)

    Prehn, Alexander; Glöckner, Rosa; Rempe, Gerhard; Zeppenfeld, Martin

    2017-03-01

    Optical frequency combs (OFCs) provide a convenient reference for the frequency stabilization of continuous-wave lasers. We demonstrate a frequency control method relying on tracking over a wide range and stabilizing the beat note between the laser and the OFC. The approach combines fast frequency ramps on a millisecond timescale in the entire mode-hop free tuning range of the laser and precise stabilization to single frequencies. We apply it to a commercially available optical parametric oscillator (OPO) and demonstrate tuning over more than 60 GHz with a ramping speed up to 3 GHz/ms. Frequency ramps spanning 15 GHz are performed in less than 10 ms, with the OPO instantly relocked to the OFC after the ramp at any desired frequency. The developed control hardware and software are able to stabilize the OPO to sub-MHz precision and to perform sequences of fast frequency ramps automatically.

  15. Superconductive imaging surface magnetometer

    DOEpatents

    Overton, Jr., William C.; van Hulsteyn, David B.; Flynn, Edward R.

    1991-01-01

    An improved pick-up coil system for use with Superconducting Quantum Interference Device gradiometers and magnetometers involving the use of superconducting plates near conventional pick-up coil arrangements to provide imaging of nearby dipole sources and to deflect environmental magnetic noise away from the pick-up coils. This allows the practice of gradiometry and magnetometry in magnetically unshielded environments. One embodiment uses a hemispherically shaped superconducting plate with interior pick-up coils, allowing brain wave measurements to be made on human patients. another embodiment using flat superconducting plates could be used in non-destructive evaluation of materials.

  16. Superconducting optical modulator

    NASA Astrophysics Data System (ADS)

    Bunt, Patricia S.; Ference, Thomas G.; Puzey, Kenneth A.; Tanner, David B.; Tache, Nacira; Varhue, Walter J.

    2000-12-01

    An optical modulator based on the physical properties of high temperature superconductors has been fabricated and tested. The modulator was constructed form a film of Yttrium Barium Copper Oxide (YBCO) grown on undoped silicon with a buffer layer of Yttria Stabilized Zirconia. Standard lithographic procedures were used to pattern the superconducting film into a micro bridge. Optical modulation was achieved by passing IR light through the composite structure normal to the micro bridge and switching the superconducting film in the bridge region between the superconducting and non-superconducting states. In the superconducting state, IR light reflects from the superconducting film surface. When a critical current is passed through the micro bridge, it causes the film in this region to switch to the non-superconducting state allowing IR light to pass through it. Superconducting materials have the potential to switch between these two states at speeds up to 1 picosecond using electrical current. Presently, fiber optic transmission capacity is limited by the rate at which optical data can be modulated. The superconducting modulator, when combined with other components, may have the potential to increase the transmission capacity of fiber optic lines.

  17. Computation of turbulent, separated, unswept compression ramp interactions

    NASA Technical Reports Server (NTRS)

    Marshall, T. A.; Dolling, D. S.

    1992-01-01

    Examination of the literature shows that the comparison between experiment and computation for highly separated unswept compression ramp flows is generally poor, irrespective of the turbulence model used. In general, the upstream influence is not correct, the wall pressure rise through separation is too steep, and the pressures under the separated shear layer are too high. In the current study, the objective is to determine if these discrepancies might be attributed more to other factors such as flowfield unsteadiness or three-dimensionality, rather than to inadequate turbulence modeling. To examine this possibility, multichannel wall pressure fluctuations were measured under the unsteady separation shock wave in a 28-deg unswept compression ramp flow at Mach 5. The results show that the large scale, low frequency separation shock unsteadiness controls the distribution of time-averaged surface properties and that neglect of the unsteadiness is probably the primary cause of the discrepancy between experiment and computation.

  18. Gas turbine power plant with supersonic shock compression ramps

    DOEpatents

    Lawlor, Shawn P.; Novaresi, Mark A.; Cornelius, Charles C.

    2008-10-14

    A gas turbine engine. The engine is based on the use of a gas turbine driven rotor having a compression ramp traveling at a local supersonic inlet velocity (based on the combination of inlet gas velocity and tangential speed of the ramp) which compresses inlet gas against a stationary sidewall. The supersonic compressor efficiently achieves high compression ratios while utilizing a compact, stabilized gasdynamic flow path. Operated at supersonic speeds, the inlet stabilizes an oblique/normal shock system in the gasdynamic flow path formed between the rim of the rotor, the strakes, and a stationary external housing. Part load efficiency is enhanced by use of a lean pre-mix system, a pre-swirl compressor, and a bypass stream to bleed a portion of the gas after passing through the pre-swirl compressor to the combustion gas outlet. Use of a stationary low NOx combustor provides excellent emissions results.

  19. Measuring Redshifts of Emission-line Galaxies Using Ramp Filters

    NASA Astrophysics Data System (ADS)

    Lesser, Ryan William; Bohman, John; McNeff, Mathew; Holden, Marcus; Moody, Joseph; Joner, Michael D.; Barnes, Jonathan

    2016-01-01

    Photometric redshifts are routinely obtained for galaxies without emission using broadband photometry. It is possible in theory to derive reasonably accurate (< 200 km/sec) photometric redshift values for emission-line objects using "ramp" filters with a linearly increasing/decreasing transmission through the bandpass. To test this idea we have obtained a set of filters tuned for isolating H-alpha at a redshift range of 0-10,000 km/sec. These filters consist of two that vary close to linearly in transmission, have opposite slope, and cover the wavelength range from 655nm - 685nm, plus a Stromgren y and 697nm filter to measure the continuum. Redshifts are derived from the ratio of the ramp filters indices after the continuum has been subtracted out. We are finishing the process of obtaining photometric data on a set of about 100 galaxies with known redshift to calibrate the technique and will report on our results.

  20. Radar echo processing with partitioned de-ramp

    SciTech Connect

    Dubbert, Dale F.; Tise, Bertice L.

    2013-03-19

    The spurious-free dynamic range of a wideband radar system is increased by apportioning de-ramp processing across analog and digital processing domains. A chirp rate offset is applied between the received waveform and the reference waveform that is used for downconversion to the intermediate frequency (IF) range. The chirp rate offset results in a residual chirp in the IF signal prior to digitization. After digitization, the residual IF chirp is removed with digital signal processing.

  1. Investigation of ramp injectors for supersonic mixing enhancement

    NASA Technical Reports Server (NTRS)

    Haimovitch, Y.; Gartenberg, E.; Roberts, A. S., Jr.

    1994-01-01

    A comparative study of wall mounted swept ramp injectors fitted with injector nozzles of different shape has been conducted in a constant area duct to explore mixing enhancement techniques for scramjet combustors. Six different injector nozzle inserts, all having equal exit and throat areas, were tested to explore the interaction between the preconditioned fuel jet and the vortical flowfield produced by the ramp: circular nozzle (baseline), nozzle with three downstream facing steps, nozzle with four vortex generators, elliptical nozzle, tapered-slot nozzle, and trapezoidal nozzle. The main flow was air at Mach 2, and the fuel was simulated by air injected at Mach 1.63 or by helium injected at Mach 1.7. Pressure and temperature surveys, combined with Mie and Rayleigh scattering visualization, were used to investigate the flow field. The experiments were compared with three dimensional Navier-Stokes computations. The results indicate that the mixing process is dominated by the streamwise vorticity generated by the ramp, the injectors' inner geometry having a minor effect. It was also found that the injectant/air mixing in the far-field is nearly independent of the injector geometry, molecular weight of the injectant, and the initial convective Mach number.

  2. Kinematics investigations of cylinders rolling down a ramp using tracker

    NASA Astrophysics Data System (ADS)

    Prima, Eka Cahya; Mawaddah, Menurseto; Winarno, Nanang; Sriwulan, Wiwin

    2016-02-01

    Nowadays, students' exploration as well as students' interaction in the application stage of learning cycle can be improved by directly model real-world objects based on Newton's Law using Open Source Physics (OSP) computer-modeling tools. In a case of studying an object rolling down a ramp, a traditional experiment method commonly uses a ticker tape sliding through a ticker timer. However, some kinematics parameters such as the instantaneous acceleration and the instantaneous speed of object cannot be investigated directly. By using the Tracker video analysis method, all kinematics parameters of cylinders rolling down a ramp can be investigated by direct visual inspection. The result shows that (1) there are no relations of cylinders' mass as well as cylinders' radius towards their kinetics parameters. (2) Excluding acceleration data, the speed and position as function of time follow the theory. (3) The acceleration data are in the random order, but their trend-lines closely fit the theory with 0.15% error. (4) The decrease of acceleration implicitly occurs due to the air friction acting on the cylinder during rolling down. (5) The cylinder's inertial moment constant has been obtained experimentally with 3.00% error. (6) The ramp angle linearly influences the cylinders' acceleration with 2.36% error. This research implied that the program can be further applied to physics educational purposes.

  3. Review of Wind Energy Forecasting Methods for Modeling Ramping Events

    SciTech Connect

    Wharton, S; Lundquist, J K; Marjanovic, N; Williams, J L; Rhodes, M; Chow, T K; Maxwell, R

    2011-03-28

    Tall onshore wind turbines, with hub heights between 80 m and 100 m, can extract large amounts of energy from the atmosphere since they generally encounter higher wind speeds, but they face challenges given the complexity of boundary layer flows. This complexity of the lowest layers of the atmosphere, where wind turbines reside, has made conventional modeling efforts less than ideal. To meet the nation's goal of increasing wind power into the U.S. electrical grid, the accuracy of wind power forecasts must be improved. In this report, the Lawrence Livermore National Laboratory, in collaboration with the University of Colorado at Boulder, University of California at Berkeley, and Colorado School of Mines, evaluates innovative approaches to forecasting sudden changes in wind speed or 'ramping events' at an onshore, multimegawatt wind farm. The forecast simulations are compared to observations of wind speed and direction from tall meteorological towers and a remote-sensing Sound Detection and Ranging (SODAR) instrument. Ramping events, i.e., sudden increases or decreases in wind speed and hence, power generated by a turbine, are especially problematic for wind farm operators. Sudden changes in wind speed or direction can lead to large power generation differences across a wind farm and are very difficult to predict with current forecasting tools. Here, we quantify the ability of three models, mesoscale WRF, WRF-LES, and PF.WRF, which vary in sophistication and required user expertise, to predict three ramping events at a North American wind farm.

  4. Middle Ordovician carbonate ramp deposits of central Appalachians

    SciTech Connect

    Demicco, R.V.

    1986-05-01

    Middle Ordovician carbonates exposed in Maryland and Pennsylvania can be divided into six facies, each a few tens to hundreds of meters thick: (1) cyclic, meter-scale, alternating thin-bedded to massive limestones and mud-cracked, stromatolitic laminites; (2) thick-bedded to massive skeletal wackestones containing diverse fauna; (3) cross-stratified skeletal-oncoid grainstones; (4) graded, thin-bedded limestones with diverse fauna and internal planar lamination or hummocky cross-stratification; (5) nodular, thin-bedded limestones; and (6) shaly, thin-bedded to laminated limestones containing rare breccia beds. These facies are interpreted as deposits of: (1) tidal flats; (2) open, bioturbated muddy shelf; (3) lime-sand shoals; (4) below normal wave-base shelf; (5) deep ramp; and (6) basin. Palinspastic reconstructions of facies distribution in Maryland and Pennsylvania suggest that these facies developed during flooding of a carbonate ramp that deepened northeastward into a foreland basin. This northern depocenter of the Middle Ordovician Appalachian foreland basin is notably different that its southern counterpart in Virginia and Tennessee. Large skeletal bioherms did not develop on the northern carbonate ramp, where only one onlap package exists. Thus, although the record of the foundering of the passive Cambrian-Ordovician carbonate shelf is grossly similar in the southern and central Appalachians, there are several significant differences. The overlying Martinsburg Formation contains deep-water facies and taconic-style thrust sheets in the central Appalachians, which suggests that the two depocenters may have had different tectonic settings.

  5. Superconductivity in aromatic hydrocarbons

    NASA Astrophysics Data System (ADS)

    Kubozono, Yoshihiro; Goto, Hidenori; Jabuchi, Taihei; Yokoya, Takayoshi; Kambe, Takashi; Sakai, Yusuke; Izumi, Masanari; Zheng, Lu; Hamao, Shino; Nguyen, Huyen L. T.; Sakata, Masafumi; Kagayama, Tomoko; Shimizu, Katsuya

    2015-07-01

    'Aromatic hydrocarbon' implies an organic molecule that satisfies the (4n + 2) π-electron rule and consists of benzene rings. Doping solid aromatic hydrocarbons with metals provides the superconductivity. The first discovery of such superconductivity was made for K-doped picene (Kxpicene, five benzene rings). Its superconducting transition temperatures (Tc's) were 7 and 18 K. Recently, we found a new superconducting Kxpicene phase with a Tc as high as 14 K, so we now know that Kxpicene possesses multiple superconducting phases. Besides Kxpicene, we discovered new superconductors such as Rbxpicene and Caxpicene. A most serious problem is that the shielding fraction is ⩽15% for Kxpicene and Rbxpicene, and it is often ∼1% for other superconductors. Such low shielding fractions have made it difficult to determine the crystal structures of superconducting phases. Nevertheless, many research groups have expended a great deal of effort to make high quality hydrocarbon superconductors in the five years since the discovery of hydrocarbon superconductivity. At the present stage, superconductivity is observed in certain metal-doped aromatic hydrocarbons (picene, phenanthrene and dibenzopentacene), but the shielding fraction remains stubbornly low. The highest priority research area is to prepare aromatic superconductors with a high superconducting volume-fraction. Despite these difficulties, aromatic superconductivity is still a core research target and presents interesting and potentially breakthrough challenges, such as the positive pressure dependence of Tc that is clearly observed in some phases of aromatic hydrocarbon superconductors, suggesting behavior not explained by the standard BCS picture of superconductivity. In this article, we describe the present status of this research field, and discuss its future prospects.

  6. Performance of Superconducting Current Feeder System for SST-1

    NASA Astrophysics Data System (ADS)

    Garg, A.; Nimavat, H.; Shah, P.; Patel, K.; Sonara, D.; Srikanth, G. L. N.; Bairagi, N.; Christian, D.; Patel, R.; Mahesuria, G.; Panchal, R.; Panchal, P.; Sharma, R.; Purwar, G.; Singh, G. K.; Tanna, V. L.; Pradhan, S.

    2017-02-01

    Superconducting (SC) Current Feeder System (CFS) for SST-1 (Steady state superconducting Tokamak was installed and commissioned in 2012. Since then, it has been operating successfully in successive plasma campaigns. The aim of this system is to transfer electric current from power supply at ambient temperature to SC magnets which are at 4.5 K. It consists of 10 kA vapour cooled current leads, Nb-Ti/Cu bus-bars, liquid nitrogen cooled radiation shield and liquid/vapour helium circuits. This system had been operated reliably in different scenario such as initial cool- down, electric current (ramp-up, ramp down and long-time steady state condition), cold with no current and in quench etc. In addition to this, it has fulfilled the long term operation with SST-1 with current flat top of 4.7 kA for more than 20,000 seconds. This paper highlights operational performance along with results in different aspects.

  7. D-558-2 on ramp

    NASA Technical Reports Server (NTRS)

    1949-01-01

    , Calif., outfitted the LR-8 engine's cylinders with nozzle extensions to prevent the exhaust gas from affecting the rudders at supersonic speeds. This addition also increased the engine's thrust by 6.5 percent at Mach 1.7 and 70,000 feet. Even before Marion Carl had flown the Skyrocket, HSFRS Chief Walter C. Williams had petitioned NACA headquarters unsuccessfully to fly the aircraft to Mach 2 to garner the research data at that speed. Finally, after Crossfield had secured the agreement of the Navy's Bureau of Aeronautics, NACA director Hugh L. Dryden relaxed the organization's usual practice of leaving record setting to others and consented to attempting a flight to Mach 2. In addition to adding the nozzle extensions, the NACA flight team at the HSFRS chilled the fuel (alcohol) so more could be poured into the tank and waxed the fuselage to reduce drag. With these preparations and employing a flight plan devised by project engineer Herman O. Ankenbruck to fly to approximately 72,000 feet and push over into a slight dive, Crossfield made aviation history on November 20, 1953, when he flew to Mach 2.005 (1,291 miles per hour). He became the first pilot to reach Mach 2 in this, the only flight in which the Skyrocket flew that fast. Following this flight, Crossfield and NACA pilots Joseph A. Walker and John B. McKay flew the airplane for such purposes as to gather data on pressure distribution, structural loads, and structural heating, with the last flight in the program occurring on December 20, 1956, when McKay obtained dynamic stability data and sound-pressure levels at transonic speeds and above. Meanwhile, NACA 145 had completed 21 contractor flights by Douglas pilots Eugene F. May and Bill Bridgeman in November 1950. In this jet-and-rocket-propelled craft, Scott Crossfield and Walter Jones began the NACA's investigation of pitch-up lasting from September 1951 well into the summer of 1953. They flew the Skyrocket with a variety of wing-fence, wing-slat, and leading

  8. Development of ramp-flat structures during Aegean extension

    NASA Astrophysics Data System (ADS)

    Brun, Jean-Pierre; Sokoutis, Dimitrios

    2014-05-01

    Low-angle extensional shear is frequently observed in the Aegean metamorphic rocks. This deformation is commonly interpreted as being related to detachment at crustal scale, yet it often corresponds to ramp-flat extensional systems that, at many places, control the deposition of Neogene sedimentary basins. From a mechanical point of view, the development of a ramp-flat structure requires the presence of weak layers that can be activated as décollement between stronger rocks units. In the Aegean, the décollement generally develops within the upper brittle crust (i.e. with temperatures lower than about 400°C) that consists in recently exhumed metamorphic rocks. The process by which, these layers become weak enough to form efficient décollements in extension is somewhat intriguing and not well understood. In this contribution we examine the particular case of ramp-flat structures of the Southern Rhodope Core Complex that controlled the deposition of late Miocene to Pleistocene sediments in continental and marine basins. Field evidence is used to argue that the décollement corresponds to marble layers that separate orthogneisses at 2-3 km depth within an upper brittle crust whose thickness is around 5 km. Field observation and stable isotope measurements suggest that the ramp-flat structure observed on the island of Thassos occurred in a marble unit rich in fluids at a temperature of around 200°C. Using laboratory experiments, we explore the geometry of extensional structures (fault systems, rollovers, piggy-back basins…) that can develop at crustal-scale as a function of: i) décollement depth and dip, ii) number of décollements, and iii) strength contrast, between the décollement and overlying strong units. The results are compared with the situation observed in the Southern Rhodope Core Complex. We are convinced that the principles of ramp-flat extension discussed here have a strong potential of application in many other orogenic domains affected by large

  9. Superconducting properties of protactinium.

    PubMed

    Smith, J L; Spirlet, J C; Müller, W

    1979-07-13

    The superconducting transition temperature and upper critical magnetic field of protactinium were measured by alternating-current susceptibility techniques. Since the superconducting behavior of protactinium is affected by its 5f electron character, it is clear now that protactinium is a true actinide element.

  10. Superconductivity of magnesium diboride

    DOE PAGES

    Bud’ko, Sergey L.; Canfield, Paul C.

    2015-07-15

    Over the past 14 years MgB2 has gone from a startling discovery to a promising, applied superconductor. In our article we present a brief overview of the synthesis and the basic superconducting properties of this remarkable compound. Specifically, the effect of pressure, substitutions and neutron irradiation on superconducting properties are discussed.

  11. Superconductivity of magnesium diboride

    SciTech Connect

    Bud’ko, Sergey L.; Canfield, Paul C.

    2015-07-15

    Over the past 14 years MgB2 has gone from a startling discovery to a promising, applied superconductor. In our article we present a brief overview of the synthesis and the basic superconducting properties of this remarkable compound. Specifically, the effect of pressure, substitutions and neutron irradiation on superconducting properties are discussed.

  12. Superconducting gyroscope research

    NASA Technical Reports Server (NTRS)

    Hendricks, J. B.; Karr, G. R.

    1985-01-01

    Four basic areas of research and development of superconducting gyroscopes are studied. Chapter 1 studies the analysis of a SQUID readout for a superconducting gyroscope. Chapter 2 studies the dependence of spin-up torque on channel and gas properties. Chapter 3 studies the theory of super fluid plug operation. And chapter 4 studies the gyro rotor and housing manufacture.

  13. Separation between cytosolic calcium and secretion in chromaffin cells superfused with calcium ramps.

    PubMed Central

    Michelena, P; García-Pérez, L E; Artalejo, A R; García, A G

    1993-01-01

    This paper describes experiments in which cytosolic Ca2+ concentrations ([Ca2+]i) and catecholamine release were measured in two populations of chromaffin cells stimulated with a solution enriched in K+ (100 mM). Once depolarized, external Ca2+ or Ba2+ ions were offered to cells either as a single 2.5 mM step or as a ramp that linearly increased the concentration from 0 to 2.5 mM over a 10-min period. A clear separation between the changes of the [Ca2+]i and the time course of secretion was observed. Specifically, secretion and [Ca2+]i rose in parallel when a Ca2+ step was used to reach a peak in a few seconds; however, while secretion declined to the basal level, [Ca2+]i remained elevated at a plateau of 400 nM. With a Ca2+ ramp, only a transient small peak of secretion was observed, yet the [Ca2+]i remained elevated throughout the 10-min stimulation period. The separation between secretion and [Ca2+]i was observed even when voltage-dependent Ca2+ channels were expected to remain open (mild depolarization in the presence of 1 microM Bay K 8644). By using Ba2+ steps or ramps, sustained noninactivating secretory responses were obtained. The results suggest that the rate and extent of secretion are not a simple function of the [Ca2+]i at a given time; they are compatible with the following conclusions: (i) A steep extracellular-to-cytosolic Ca2+ gradient is required to produce a sharp increase in the [Ca2+]i at exocytotic sites capable of evoking a fast but transient secretory response. (ii) As a result of Cai(2+)-dependent inactivation of Ca2+ channels, those high [Ca2+]i are possible only at early times after cell depolarization. (iii) The Cai(2+)-dependent supply of storage granules to the secretory machinery cooperates with the supply of Ca2+ through Ca2+ channels to regulate the rate and extent of secretion. PMID:8475070

  14. Superconductivity in carbon nanomaterials

    NASA Astrophysics Data System (ADS)

    Dlugon, Katarzyna

    The purpose of this thesis is to explain the phenomenon of superconductivity in carbon nanomaterials such as graphene, fullerenes and carbon nanotubes. In the introductory chapter, there is a description of superconductivity and how it occurs at critical temperature (Tc) that is characteristic and different to every superconducting material. The discovery of superconductivity in mercury in 1911 by Dutch physicist Heike Kamerlingh Onnes is also mentioned. Different types of superconductors, type I and type II, low and high temperatures superconductors, as well as the BCS theory that was developed in 1957 by Bardeen, Cooper, and Schrieffer, are also described in detail. The BCS theory explains how Cooper's pairs are formed and how they are responsible for the superconducting properties of many materials. The following chapters explain superconductivity in doped fullerenes, graphene and carbon nanotubes, respectively. There is a thorough explanation followed by many examples of different types of carbon nanomaterials in which small changes in chemical structure cause significant changes in superconducting properties. The goal of this research was not only to take into consideration well known carbon based superconductors but also to search for the newest available materials such as the fullerene nanowhiskers discovered quite recently. There is also a presentation of fairly new ideas about inducing superconductivity in a monolayer of graphene which is more challenging than inducing superconductivity in graphite by simply intercalating metal atoms between its graphene sheets. An effort has been taken to look for any available information about carbon nanomaterials that have the potential to superconduct at room temperature, mainly because discovery of such materials would be a real revolution in the modern world, although no such materials have been discovered yet.

  15. Fast sweeping reflectometry upgrade on Tore Supra

    SciTech Connect

    Clairet, F.; Bottereau, C.; Molina, D.; Ducobu, L.; Leroux, F.; Barbuti, A.; Heuraux, S.

    2010-10-15

    In order to study the temporal dynamics of turbulence, the sweep time of our reflectometry has been shortened from 20 to 2 {mu}s with 1 {mu}s dead time. Detailed technical aspects of the upgrade are given, namely, about the stability of the ramp generation, the detection setup, and the fast acquisition module. A review of studies (velocity measurement of the turbulence, modifications of the wavenumber spectrum, radial mapping of correlation time, etc.) offered by such improvements is presented.

  16. Metal optics and superconductivity

    SciTech Connect

    Golovashkin, A.L.

    1989-01-01

    The articles contained in this collection are dedicated to the study of the electron structure of transition metals and superconducting alloys and compounds based on them. The study of the electron structure of materials is one of the central problems of solid-state physics and defines the solution of a number of problems. One of them is the problem of high-temperature superconductivity which has attracted exceptional attention from physicists in connection with the discovery of new classes of ceramic oxides which are superconducting at liquid-nitrogen temperature. The electron structure is one of the three whales on which all of superconductivity rests. It is frequently our ignorance of the electronic properties of a metal, alloy or compound in its normal state which makes it impossible to predict superconductivity in the material, preventing use from calculating the parameters of the superconducting state. There are now a number of effective methods for investigation of the electron structure of the metals and allows. This collection discusses metal optics, tunneling and magnetic measurements in superconductors. These methods are quite informative and allow us to obtain many important electron characteristics and temperature relations. Various characteristics of the superconducting compounds Nb{sub 3}Ge, Nb{sub 3}Al, nb{sub 3}Sn and Nb{sub 3}Ga with A15 structure and NbN with B1 structure, having rather high critical temperatures, are experimentally studied.

  17. Superconductivity in Opal-based superconducting nanocomposites

    NASA Astrophysics Data System (ADS)

    Lee, M. K.; Charnaya, E. V.; Chang, L. J.; Kumzerov, Yu. A.; Lin, M. F.

    2015-03-01

    In this study, we investigate superconducting nanocomposites (SCNCs) to elucidate superconductivity in nanostructured type I superconductor. In, Sn and Hg are loaded into opal matrices by high pressure up to 10kbar, in which introducing superconducting metals into templates preserves their own 3D nanostructures. The opal matrices is adopted because it is a well-developed nanoconfinement and widely used in the studies of photonic crystal due to its periodically-superlatticed nanoporous structure. The SCNCs are then measured by Quantum Design MPMS 3 under different external magnetic fields reveal the field dependences of Tc and irreversibility temperature (Tirr). Next, AC susceptibility measurements of SCNCs determine grain coupling, vortex dynamics and field dependence of activation barrier (Ua) as well as Tc. Additionally, the phase diagrams of these SCNCs are analyzed to study superconductivity for a system with similar nanogeometry. Exotic phase diagrams in the opal SCNC studies reveal an enhanced upper critical field (Hc2 (0)) and curvature crossover of upper critical field line. Additionally, according to the field dependence of Ua(H), curvature crossover of the upper critical field line can occur, owing to vortex phase transition.

  18. Recognition of Ramps and Steps by People with Low Vision

    PubMed Central

    Bochsler, Tiana M.; Legge, Gordon E.; Gage, Rachel; Kallie, Christopher S.

    2013-01-01

    Purpose. Detection and recognition of ramps and steps are important for the safe mobility of people with low vision. Our primary goal was to assess the impact of viewing conditions and environmental factors on the recognition of these targets by people with low vision. A secondary goal was to determine if results from our previous studies of normally sighted subjects, wearing acuity-reducing goggles, would generalize to low vision. Methods. Sixteen subjects with heterogeneous forms of low vision participated—acuities from approximately 20/200 to 20/2000. They viewed a sidewalk interrupted by one of five targets: a single step up or down, a ramp up or down, or a flat continuation of the sidewalk. Subjects reported which of the five targets was shown, and percent correct was computed. The effects of viewing distance, target–background contrast, lighting arrangement, and subject locomotion were investigated. Performance was compared with a group of normally sighted subjects who viewed the targets through acuity-reducing goggles. Results. Recognition performance was significantly better at shorter distances and after locomotion (compared with purely stationary viewing). The effects of lighting arrangement and target–background contrast were weaker than hypothesized. Visibility of the targets varied, with the step up being more visible than the step down. Conclusions. The empirical results provide insight into factors affecting the visibility of ramps and steps for people with low vision. The effects of distance, target type, and locomotion were qualitatively similar for low vision and normal vision with artificial acuity reduction. However, the effects of lighting arrangement and background contrast were only significant for subjects with normal vision. PMID:23221068

  19. Structures behind superconductivity

    SciTech Connect

    Rotman, D.

    1988-07-01

    The previously reported preparation and structures of superconducting materials are reviewed. The two systems, Y-Ba-Cu-O and La-Cu-O, previously reported with high transition temperatures are discussed in some detail. The new systems introduced in 1987 that were not based on a rare earth but including Bi-Sr-Cu-O are also reviewed. Superconductive materials including thallium rather than bismuth that have been reported but not thoroughly studied are discussed briefly. It is pointed out that many superconducting materials have been prepared, but good documentation of the structures and properties of these materials need much more study.

  20. Tunneling in superconducting structures

    NASA Astrophysics Data System (ADS)

    Shukrinov, Yu. M.

    2010-12-01

    Here we review our results on the breakpoint features in the coupled system of IJJ obtained in the framework of the capacitively coupled Josephson junction model with diffusion current. A correspondence between the features in the current voltage characteristics (CVC) and the character of the charge oscillations in superconducting layers is demonstrated. Investigation of the correlations of superconducting currents in neighboring Josephson junctions and the charge correlations in neighboring superconducting layers reproduces the features in the CVC and gives a powerful method for the analysis of the CVC of coupled Josephson junctions. A new method for determination of the dissipation parameter is suggested.

  1. Superconducting active impedance converter

    DOEpatents

    Ginley, David S.; Hietala, Vincent M.; Martens, Jon S.

    1993-01-01

    A transimpedance amplifier for use with high temperature superconducting, other superconducting, and conventional semiconductor allows for appropriate signal amplification and impedance matching to processing electronics. The amplifier incorporates the superconducting flux flow transistor into a differential amplifier configuration which allows for operation over a wide temperature range, and is characterized by high gain, relatively low noise, and response times less than 200 picoseconds over at least a 10-80 K. temperature range. The invention is particularly useful when a signal derived from either far-IR focal plane detectors or from Josephson junctions is to be processed by higher signal/higher impedance electronics, such as conventional semiconductor technology.

  2. Superconducting active impedance converter

    DOEpatents

    Ginley, D.S.; Hietala, V.M.; Martens, J.S.

    1993-11-16

    A transimpedance amplifier for use with high temperature superconducting, other superconducting, and conventional semiconductors allows for appropriate signal amplification and impedance matching to processing electronics. The amplifier incorporates the superconducting flux flow transistor into a differential amplifier configuration which allows for operation over a wide temperature range, and is characterized by high gain, relatively low noise, and response times less than 200 picoseconds over at least a 10-80 K. temperature range. The invention is particularly useful when a signal derived from either far-IR focal plane detectors or from Josephson junctions is to be processed by higher signal/higher impedance electronics, such as conventional semiconductor technology. 12 figures.

  3. When driving on the left side is safe: Safety of the diverging diamond interchange ramp terminals.

    PubMed

    Claros, Boris; Edara, Praveen; Sun, Carlos

    2017-03-01

    How safe are the ramp terminals of a diverging diamond interchange (DDI)? This paper answered this question using data from DDI sites in Missouri. First, crash prediction models for ramp terminals for different crash severities were developed. These models were then utilized in the Empirical Bayes (EB) evaluation of DDI ramp terminals. Due to inconsistencies in crash reporting for freeways in Missouri, individual crash reports were reviewed to properly identify ramp terminal crashes. A total of 13,000 crash reports were reviewed for model development and EB evaluation. The study found that the DDI ramp terminals were safer than the conventional diamond signalized terminals. The DDI ramp terminals experienced 55% fewer fatal and injury crashes, 31.4% fewer property damage only crashes, and 37.5% fewer total crashes.

  4. Experiencing production ramp-up education for engineers

    NASA Astrophysics Data System (ADS)

    Bassetto, S.; Fiegenwald, V.; Cholez, C.; Mangione, F.

    2011-08-01

    This paper presents a game of industrialisation, based on a paper airplane, that mimics real world production ramp-up and blends classical engineering courses together. It is based on a low cost product so that it can be mass produced. The game targets graduate students and practitioners in engineering fields. For students, it offers an experiment in which methods learned in separate courses can be applied. For practitioners, it affords an opportunity to engage in reflexive practices related to industrialisation. Both students and practitioners are able to experience integrated management, required by industrialisation, in a controlled environment: the laboratory.

  5. Online Analysis of Wind and Solar Part I: Ramping Tool

    SciTech Connect

    Etingov, Pavel V.; Ma, Jian; Makarov, Yuri V.; Subbarao, Krishnappa

    2012-01-31

    To facilitate wider penetration of renewable resources without compromising system reliability concerns arising from the lack of predictability of intermittent renewable resources, a tool for use by California Independent System Operator (CAISO) power grid operators was developed by Pacific Northwest National Laboratory (PNNL) in conjunction with CAISO with funding from California Energy Commission. This tool predicts and displays additional capacity and ramping requirements caused by uncertainties in forecasts of loads and renewable generation. The tool is currently operational in the CAISO operations center. This is one of two final reports on the project.

  6. Status of the SNS Ring Power Ramp UP

    SciTech Connect

    Plum, Michael A; Aleksandrov, Alexander V; Allen, Christopher K; Cousineau, Sarah M; Danilov, Viatcheslav; Galambos, John D; Holmes, Jeffrey A; Jeon, Dong-O; Pelaia II, Tom; Shishlo, Andrei P; Zhang, Yan

    2008-01-01

    Beam was first circulated in the Spallation Neutron Source (SNS) ring in January 2006. Since that time we have been working to raise the beam power to the design value of 1.4 MW. In general the power ramp up has been proceeding very well, but several issues have been uncovered. Examples include poor transmission of the waste beams in the injection dump beam line, and cross-plane coupling in the ring to target beam transport line. In this paper we will discuss these issues and present an overall status of the ring and the transport beam lines.

  7. X-1E Loaded in B-29 Mothership on Ramp

    NASA Technical Reports Server (NTRS)

    1955-01-01

    The Bell Aircraft Corporation X-1E airplane being loaded under the mothership, Boeing B-29. The X-planes had originally been lowered into a loading pit and the launch aircraft towed over the pit, where the rocket plane was hoisted by belly straps into the bomb bay. By the early 1950s a hydraulic lift had been installed on the ramp at the NACA High-Speed Flight Station to elevate the launch aircraft and then lower it over the rocket plane for mating.

  8. Getting to the On-ramp of the Information Superhighway

    DTIC Science & Technology

    1996-01-01

    manager may elect to automatically forward all incoming e- mail from selected senders to his deputy. It is not necessary to have an AMH installed if users...establish a process to quickly identify the important and rou- tine messages. Most e- mail systems have an inbox which sorts unread e- mail and...messages FYI: for all �unofficial� For Your In- 27 Getting to the On-Ramp formation, or optional messages E- mail should also be � sender friendly.� Some

  9. XB-70A during startup and ramp taxi

    NASA Technical Reports Server (NTRS)

    1968-01-01

    The XB-70 was the world's largest experimental aircraft. Capable of flight at speeds of three times the speed of sound (2,000 miles per hour) at altitudes of 70,000 feet, the XB-70 was used to collect in-flight information for use in the design of future supersonic aircraft, military and civilian. This 35-second video shows the startup of the XB-70A airplane engines, the beginning of its taxi to the runway, and a turn on the ramp that shows the unique configuration of this aircraft.

  10. A Management Case Study: The Implementation of the Rapid Acquisition of Manufactured Parts (RAMP) Program

    DTIC Science & Technology

    1993-06-01

    manufacturing needs based on the dollars available to support this new technology. In December 1987, the staif at NAVSUP awarded the current RAMP contract to...describes the implementation of the Navy’s Rapid Acquisition of Manufactured Parts (RAMP) program. The RAMP program was implemented in 1989 by the Naval...time and cost for manufactured spare parts. This management case study concentrates on the examination of how new technology is implemented into current

  11. Magnetic ramp scale at supercritical perpendicular collisionless shocks: Full particle electromagnetic simulations

    SciTech Connect

    Yang, Zhongwei; Lu, Quanming; Gao, Xinliang; Huang, Can; Yang, Huigen; Hu, Hongqiao; Han, Desheng; Liu, Ying

    2013-09-15

    Supercritical perpendicular collisionless shocks are known to exhibit foot, ramp, and overshoot structures. The shock ramp structure is in a smaller scale in contrast to other microstructures (foot and overshoot) within the shock front. One-dimensional full particle simulations of strictly perpendicular shocks over wide ranges of ion beta β{sub i}, Alfvén Mach number M{sub A}, and ion-to-electron mass ratio m{sub i}/m{sub e} are presented to investigate the impact of plasma parameters on the shock ramp scale. Main results are (1) the ramp scale can be as small as several electron inertial length. (2) The simulations suggest that in a regime below the critical ion beta value, the shock front undergoes a periodic self-reformation and the shock ramp scale is time-varying. At higher ion beta values, the shock front self-reformation is smeared. At still higher ion beta value, the motion of reflected ions is quite diffuse so that they can lead to a quasi-steady shock ramp. Throughout the above three conditions, the shock ramp thickness increases with β{sub i}. (3) The increase (decrease) in Mach number and the decrease (increase) in the beta value have almost equivalent impact on the state (i.e., stationary or nonstationary) of the shock ramp. Both of front and ramp thicknesses are increased with M{sub A}.

  12. Hybrid superconducting magnetic suspensions

    SciTech Connect

    Tixador, P.; Hiebel, P.; Brunet, Y.

    1996-07-01

    Superconductors, especially high T{sub c} ones, are the most attractive materials to design stable and fully passive magnetic suspensions which have to control five degrees of freedom. The hybrid superconducting magnetic suspensions present high performances and a simple cooling mode. They consist of a permanent magnet bearing, stabilized by a suitable magnet-superconductor structure. Several designs are given and compared in terms of forces and stiffnesses. The design of the magnet bearing plays an important part. The superconducting magnetic bearing participates less in levitation but must provide a high stabilizing stiffness. This is achieved by the magnet configuration, a good material in term of critical current density and field cooling. A hybrid superconducting suspension for a flywheel is presented. This system consists of a magnet thrust bearing stabilized by superconductors interacting with an alternating polarity magnet structure. First tests and results are reported. Superconducting materials are magnetically melt-textured YBaCuO.

  13. Superconducting thermoelectric generator

    DOEpatents

    Metzger, John D.; El-Genk, Mohamed S.

    1998-01-01

    An apparatus and method for producing electricity from heat. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device.

  14. Superconducting thermoelectric generator

    SciTech Connect

    Metzger, J.D.; El-Genk, M.S.

    1998-05-05

    An apparatus and method for producing electricity from heat is disclosed. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device. 4 figs.

  15. Superconducting thermoelectric generator

    SciTech Connect

    Metzger, J.D.; El-Genk, M.S.

    1996-01-01

    An apparatus and method for producing electricity from heat. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device.

  16. Supertubes and Superconducting Membranes

    SciTech Connect

    Cordero, Ruben; Miguel-Pilar, Zelin

    2007-02-09

    We show the equivalence between configurations that arise from string theory of type IIA, called supertubes, and superconducting membranes at the bosonic level. We find equilibrium and oscillating configurations for a tubular membrane carrying a current along its axis.

  17. High Temperature Superconducting Compounds.

    DTIC Science & Technology

    1999-04-02

    addition to superconducting films, non-superconducting mixed-valence manganite perovskites, which exhibit so-called colossal magnetoresistance were grown...The manganites are unique in that their charge carriers are believed to be almost 100% spin polarized. These materials were combined with the...brought about by the injection of spin polarized carriers from the manganite into the curate. This work may make possible new classes of devices based on

  18. Pressurized heavy water reactor fuel behaviour in power ramp conditions

    NASA Astrophysics Data System (ADS)

    Ionescu, S.; Uţă, O.; Pârvan, M.; Ohâi, D.

    2009-03-01

    In order to check and improve the quality of the Romanian CANDU fuel, an assembly of six CANDU fuel rods has been subjected to a power ramping test in the 14 MW TRIGA reactor at INR. After testing, the fuel rods have been examined in the hot cells using post-irradiation examination (PIE) techniques such as: visual inspection and photography, eddy current testing, profilometry, gamma scanning, fission gas release and analysis, metallography, ceramography, burn-up determination by mass spectrometry, mechanical testing. This paper describes the PIE results from one out of the six fuel rods. The PIE results concerning the integrity, dimensional changes, oxidation, hydriding and mechanical properties of the sheath, the fission-products activity distribution in the fuel column, the pressure, volume and composition of the fission gas, the burn-up, the isotopic composition and structural changes of the fuel enabled the characterization of the behaviour of the Romanian CANDU fuel in power ramping conditions performed in the TRIGA materials testing reactor.

  19. Predictability of wind ramps in the Columbia River Gorge

    NASA Astrophysics Data System (ADS)

    Smith, C.

    2013-12-01

    Wind generation capacity in the Bonneville Power Administration (BPA) system, which stands at 4,500 MW currently, can at time account for 70% of total electricity demand. With 2,500 additional MW of wind generation capacity expected by 2015, increasingly accurate forecasts are required to avoid water quality issues associated with hydropower dam overspill. Wind ramps, or large increases or decreases in wind generation over a short period of time, are particularly difficult to accurately forecast in the Columbia River Gorge area. Industry standard computational resources, combined with turbulence grey-zone issues associated with planetary boundary (PBL) schemes, suggest a leveling off of numerical weather prediction (NWP) model skill score with respect to increasing grid resolution until eddy resolving scales are resolved. However, we show that dispersion errors, which associated with wind ramps, continue to decrease for locations and seasons in which meso-scale and topographically forced diurnal motions account for a significant portion of the power spectral density of hub-height wind speeds.

  20. Pure rotation of a prism on a ramp

    PubMed Central

    Zhao, Zhen; Liu, Caishan; Ma, Daolin

    2014-01-01

    In this work, we study a prism with a cross section in polygon rolling on a ramp inclined at a small angle. The prism under gravity rolls purely around each individual edge, intermittently interrupted by a sequence of face collisions between the side face of the prism and the ramp. By limiting the prism in a planar motion, we propose a mathematical model to deal with the events of the impacts. With a pair of laser-Doppler vibrometers, experiments are also conducted to measure the motions of various prisms made of different materials and with different edge number. Not only are good agreements achieved between our numerical and experimental results, but also an intriguing physical phenomenon is discovered: the purely rolling motion is nearly independent of the prism's materials, yet it is closely related to the prism's geometry. Imagine that an ideal circular section can be approximately equivalent to a polygon with a large enough edge number N, the finding presented in this paper may help discover the physical mechanism of rolling friction. PMID:25197242

  1. Ramp exercise protocols for clinical and cardiopulmonary exercise testing.

    PubMed

    Myers, J; Bellin, D

    2000-07-01

    Historically, the protocol used for exercise testing has been based on tradition, convenience or both. In the 1990s, a considerable amount of research has focused on the effect of the exercise protocol on test performance, including exercise tolerance, diagnostic accuracy, gas exchange patterns and the accuracy with which oxygen uptake (VO2) is predicted from the work rate. Studies have suggested that protocols which contain large and/or unequal increments in work cause a disruption in the normal linear relation between VO2 and work rate, leading to an overprediction of metabolic equivalents. Other studies have demonstrated that such protocols can mask the salutary effects of an intervention, and some have suggested that the protocol design can influence the diagnostic performance of the test. Guidelines published by major organisations have therefore suggested that the protocol be individualised based on the patient being tested and the purpose of the test. The ramp approach to exercise testing has recently been advocated because it facilitates recommendations made in these guidelines. This article reviews these issues and discusses the evolution of ramp testing which has occurred in the 1990s.

  2. Feedback simulation of ramped power transients using transfer functions

    SciTech Connect

    Grimm, K.N.; Meneghetti, D.

    1986-01-01

    The dynamic simulation of reactor transients is important in determining the feedback and temperature responses of various subassembly components. One method of determining component feedbacks (or associated temperature increments) is by using the feedback reactivity transfer functions of the system. For any variation of power with time the component feedback reactivity responses are then obtained by the convolutions of the feedback reactivity transfer functions and the fractional change in system power. (The nodal feedback reactivity transfer functions for the system were obtained, using the EROS computer code, from nodal feedback responses for a step change in power.) This paper discusses the application of these transfer functions in calculating nodal feedback reactivities in the experimental breeder reactor-II (EBR-II) reactor assuming a fractional power shape that can be defined by a series of ramp inputs. For a comparison, these transfer-function calculated nodal reactivities are compared with nodal reactivities calculated using the EROS kinetics code assuming an input reactivity which gives the described ramp power shape.

  3. Making Superconducting Welds between Superconducting Wires

    NASA Technical Reports Server (NTRS)

    Penanen, Konstantin I.; Eom, Byeong Ho

    2008-01-01

    A technique for making superconducting joints between wires made of dissimilar superconducting metals has been devised. The technique is especially suitable for fabrication of superconducting circuits needed to support persistent electric currents in electromagnets in diverse cryogenic applications. Examples of such electromagnets include those in nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) systems and in superconducting quantum interference devices (SQUIDs). Sometimes, it is desirable to fabricate different parts of a persistent-current-supporting superconducting loop from different metals. For example, a sensory coil in a SQUID might be made of Pb, a Pb/Sn alloy, or a Cu wire plated with Pb/Sn, while the connections to the sensory coil might be made via Nb or Nb/Ti wires. Conventional wire-bonding techniques, including resistance spot welding and pressed contact, are not workable because of large differences between the hardnesses and melting temperatures of the different metals. The present technique is not subject to this limitation. The present technique involves the use (1) of a cheap, miniature, easy-to-operate, capacitor-discharging welding apparatus that has an Nb or Nb/Ti tip and operates with a continuous local flow of gaseous helium and (2) preparation of a joint in a special spark-discharge welding geometry. In a typical application, a piece of Nb foil about 25 m thick is rolled to form a tube, into which is inserted a wire that one seeks to weld to the tube (see figure). The tube can be slightly crimped for mechanical stability. Then a spark weld is made by use of the aforementioned apparatus with energy and time settings chosen to melt a small section of the niobium foil. The energy setting corresponds to the setting of a voltage to which the capacitor is charged. In an experiment, the technique was used to weld an Nb foil to a copper wire coated with a Pb/Sn soft solder, which is superconducting. The joint was evaluated as

  4. Superconducting transmission line particle detector

    DOEpatents

    Gray, K.E.

    1988-07-28

    A microvertex particle detector for use in a high energy physic collider including a plurality of parallel superconducting thin film strips separated from a superconducting ground plane by an insulating layer to form a plurality of superconducting waveguides. The microvertex particle detector indicates passage of a charged subatomic particle by measuring a voltage pulse measured across a superconducting waveguide caused by the transition of the superconducting thin film strip from a superconducting to a non- superconducting state in response to the passage of a charged particle. A plurality of superconducting thin film strips in two orthogonal planes plus the slow electromagnetic wave propagating in a superconducting transmission line are used to resolve N/sup 2/ ambiguity of charged particle events. 6 figs.

  5. Superconducting transmission line particle detector

    DOEpatents

    Gray, Kenneth E.

    1989-01-01

    A microvertex particle detector for use in a high energy physic collider including a plurality of parallel superconducting thin film strips separated from a superconducting ground plane by an insulating layer to form a plurality of superconducting waveguides. The microvertex particle detector indicates passage of a charged subatomic particle by measuring a voltage pulse measured across a superconducting waveguide caused by the transition of the superconducting thin film strip from a superconducting to a non-superconducting state in response to the passage of a charged particle. A plurality of superconducting thin film strips in two orthogonal planes plus the slow electromagnetic wave propogating in a superconducting transmission line are used to resolve N.sup.2 ambiguity of charged particle events.

  6. Superconductive radiofrequency window assembly

    DOEpatents

    Phillips, Harry Lawrence; Elliott, Thomas S.

    1998-01-01

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly (20) has a superconducting metal-ceramic design. The srf window assembly (20) comprises a superconducting frame (30), a ceramic plate (40) having a superconducting metallized area, and a superconducting eyelet (50) for sealing plate (40) into frame (30). The plate (40) is brazed to eyelet (50) which is then electron beam welded to frame (30). A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator.

  7. Superconducting radiofrequency window assembly

    DOEpatents

    Phillips, Harry L.; Elliott, Thomas S.

    1997-01-01

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly (20) has a superconducting metal-ceramic design. The srf window assembly (20) comprises a superconducting frame (30), a ceramic plate (40) having a superconducting metallized area, and a superconducting eyelet (50) for sealing plate (40) into frame (30). The plate (40) is brazed to eyelet (50) which is then electron beam welded to frame (30). A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator.

  8. High temperature interfacial superconductivity

    SciTech Connect

    Bozovic, Ivan; Logvenov, Gennady; Gozar, Adrian Mihai

    2012-06-19

    High-temperature superconductivity confined to nanometer-scale interfaces has been a long standing goal because of potential applications in electronic devices. The spontaneous formation of a superconducting interface in bilayers consisting of an insulator (La.sub.2CuO.sub.4) and a metal (La.sub.1-xSr.sub.xCuO.sub.4), neither of which is superconducting per se, is described. Depending upon the layering sequence of the bilayers, T.sub.c may be either .about.15 K or .about.30 K. This highly robust phenomenon is confined to within 2-3 nm around the interface. After exposing the bilayer to ozone, T.sub.c exceeds 50 K and this enhanced superconductivity is also shown to originate from a 1 to 2 unit cell thick interfacial layer. The results demonstrate that engineering artificial heterostructures provides a novel, unconventional way to fabricate stable, quasi two-dimensional high T.sub.c phases and to significantly enhance superconducting properties in other superconductors. The superconducting interface may be implemented, for example, in SIS tunnel junctions or a SuFET.

  9. How Fast Is Fast?

    ERIC Educational Resources Information Center

    Korn, Abe

    1994-01-01

    Presents an activity that enables students to answer for themselves the question of how fast a body must travel before the nonrelativistic expression must be replaced with the correct relativistic expression by deciding on the accuracy required in describing the kinetic energy of a body. (ZWH)

  10. The superconducting spin valve and triplet superconductivity

    NASA Astrophysics Data System (ADS)

    Garifullin, I. A.; Leksin, P. V.; Garif`yanov, N. N.; Kamashev, A. A.; Fominov, Ya. V.; Schumann, J.; Krupskaya, Y.; Kataev, V.; Schmidt, O. G.; Büchner, B.

    2015-01-01

    A review of our recent results on the spin valve effect is presented. We have used a theoretically proposed spin switch design F1/F2/S comprising a ferromagnetic bilayer (F1/F2) as a ferromagnetic component, and an ordinary superconductor (S) as the second interface component. Based on it we have prepared and studied in detail a set of multilayers CoOx/Fe1/Cu/Fe2/S (S=In or Pb). In these heterostructures we have realized for the first time a full spin switch effect for the superconducting current, have observed its sign-changing oscillating behavior as a function of the Fe2-layer thickness and finally have obtained direct evidence for the long-range triplet superconductivity arising due to noncollinearity of the magnetizations of the Fe1 and Fe2 layers.

  11. Superconducting mirror for laser gyroscope

    SciTech Connect

    Wang, X.

    1991-05-14

    This paper describes an apparatus for reflecting a light beam. It comprises: a mirror assembly comprising a substrate and a superconductive mirror formed on such substrate, wherein: the substrate is optically transparent to the light beam and has a thickness of from about 0.5 to about 1.0 millimeter, and the superconductive mirror has a thickness of from about 0.5 to about 1.0 microns; means for cooling the superconductive mirror; means for measuring the temperature of the superconductive mirror; means for determining the reflectivity of the superconductive mirror; and means for varying the reflectivity of the superconductive mirror.

  12. Self-triggering superconducting fault current limiter

    DOEpatents

    Yuan, Xing; Tekletsadik, Kasegn

    2008-10-21

    A modular and scaleable Matrix Fault Current Limiter (MFCL) that functions as a "variable impedance" device in an electric power network, using components made of superconducting and non-superconducting electrically conductive materials. The matrix fault current limiter comprises a fault current limiter module that includes a superconductor which is electrically coupled in parallel with a trigger coil, wherein the trigger coil is magnetically coupled to the superconductor. The current surge doing a fault within the electrical power network will cause the superconductor to transition to its resistive state and also generate a uniform magnetic field in the trigger coil and simultaneously limit the voltage developed across the superconductor. This results in fast and uniform quenching of the superconductors, significantly reduces the burnout risk associated with non-uniformity often existing within the volume of superconductor materials. The fault current limiter modules may be electrically coupled together to form various "n" (rows).times."m" (columns) matrix configurations.

  13. Superconducting nanostructured materials.

    SciTech Connect

    Metlushko, V.

    1998-07-13

    Within the last year it has been realized that the remarkable properties of superconducting thin films containing a periodic array of defects (such as sub-micron sized holes) offer a new route for developing a novel superconducting materials based on precise control of microstructure by modern photolithography. A superconductor is a material which, when cooled below a certain temperature, loses all resistance to electricity. This means that superconducting materials can carry large electrical currents without any energy loss--but there are limits to how much current can flow before superconductivity is destroyed. The current at which superconductivity breaks down is called the critical current. The value of the critical current is determined by the balance of Lorentz forces and pinning forces acting on the flux lines in the superconductor. Lorentz forces proportional to the current flow tend to drive the flux lines into motion, which dissipates energy and destroys zero resistance. Pinning forces created by isolated defects in the microstructure oppose flux line motion and increase the critical current. Many kinds of artificial pinning centers have been proposed and developed to increase critical current performance, ranging from dispersal of small non-superconducting second phases to creation of defects by proton, neutron or heavy ion irradiation. In all of these methods, the pinning centers are randomly distributed over the superconducting material, causing them to operate well below their maximum efficiency. We are overcome this drawback by creating pinning centers in aperiodic lattice (see Fig 1) so that each pin site interacts strongly with only one or a few flux lines.

  14. Reattachment heating upstream of short compression ramps in hypersonic flow

    NASA Astrophysics Data System (ADS)

    Estruch-Samper, David

    2016-05-01

    Hypersonic shock-wave/boundary-layer interactions with separation induce unsteady thermal loads of particularly high intensity in flow reattachment regions. Building on earlier semi-empirical correlations, the maximum heat transfer rates upstream of short compression ramp obstacles of angles 15° ⩽ θ ⩽ 135° are here discretised based on time-dependent experimental measurements to develop insight into their transient nature (Me = 8.2-12.3, Re_h= 0.17× 105-0.47× 105). Interactions with an incoming laminar boundary layer experience transition at separation, with heat transfer oscillating between laminar and turbulent levels exceeding slightly those in fully turbulent interactions. Peak heat transfer rates are strongly influenced by the stagnation of the flow upon reattachment close ahead of obstacles and increase with ramp angle all the way up to θ =135°, whereby rates well over two orders of magnitude above the undisturbed laminar levels are intermittently measured (q'_max>10^2q_{u,L}). Bearing in mind the varying degrees of strength in the competing effect between the inviscid and viscous terms—namely the square of the hypersonic similarity parameter (Mθ )^2 for strong interactions and the viscous interaction parameter bar{χ } (primarily a function of Re and M)—the two physical factors that appear to most globally encompass the effects of peak heating for blunt ramps (θ ⩾ 45°) are deflection angle and stagnation heat transfer, so that this may be fundamentally expressed as q'_max∝ {q_{o,2D}} θ ^2 with further parameters in turn influencing the interaction to a lesser extent. The dominant effect of deflection angle is restricted to short obstacle heights, where the rapid expansion at the top edge of the obstacle influences the relaxation region just downstream of reattachment and leads to an upstream displacement of the separation front. The extreme heating rates result from the strengthening of the reattaching shear layer with the increase in

  15. Application of multi-objective nonlinear optimization technique for coordinated ramp-metering

    SciTech Connect

    Haj Salem, Habib; Farhi, Nadir; Lebacque, Jean Patrick E-mail: nadir.frahi@ifsttar.fr

    2015-03-10

    This paper aims at developing a multi-objective nonlinear optimization algorithm applied to coordinated motorway ramp metering. The multi-objective function includes two components: traffic and safety. Off-line simulation studies were performed on A4 France Motorway including 4 on-ramps.

  16. Thermal ramp tritium release in COBRA-1A2 C03 beryllium pebbles

    SciTech Connect

    Baldwin, D.L.

    1998-03-01

    Tritium release kinetics, using the method of thermal ramp heating at three linear ramp rates, were measured on the COBRA-1A2 C03 1-mm beryllium pebbles. This report includes a brief discussion of the test, and the test data in graph format.

  17. Facility No. S362, view up the ramp. Note the mooring ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Facility No. S362, view up the ramp. Note the mooring cleat on the top edge of the curb at the right - U.S. Naval Base, Pearl Harbor, Seaplane Ramps - World War II Type, Southwest and west shore of Ford Island, near Wasp Boulevard, Pearl City, Honolulu County, HI

  18. Effects of compression and expansion ramp fuel injector configuration on scramjet combustion and heat transfer

    NASA Technical Reports Server (NTRS)

    Stouffer, Scott D.; Baker, N. R.; Capriotti, D. P.; Northam, G. B.

    1993-01-01

    A scramjet combustor with four wall-ramp injectors containing Mach-1.7 fuel jets in the base of the ramps was investigated experimentally. During the test program, two swept ramp injector designs were evaluated. One swept-ramp model had 10-deg compression-ramps and the other had 10-deg expansion cavities between flush wall ramps. The scramjet combustor model was instrumented with pressure taps and heat-flux gages. The pressure measurements indicated that both injector configurations were effective in promoting mixing and combustion. Autoignition occurred for the compression-ramp injectors, and the fuel began to burn immediately downstream of the injectors. In tests of the expansion ramps, a pilot was required to ignite the fuel, and the fuel did not burn for a distance of at least two gaps downstream of the injectors. Once initiated, combustion was rapid in this configuration. Heat transfer measurements showed that the heat flux differed greatly both across the width of the combustor and along the length of the combustor.

  19. 29 CFR 1918.25 - Bridge plates and ramps (See also § 1918.86).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Bridge plates and ramps (See also § 1918.86). 1918.25 Section 1918.25 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH... Means of Access § 1918.25 Bridge plates and ramps (See also § 1918.86). (a) Bridge and car...

  20. The Effects of Truncated Dome Detectable Warnings on Travelers Negotiating Curb Ramps in Wheelchairs

    ERIC Educational Resources Information Center

    Lee, Helen

    2011-01-01

    Truncated domes on curb ramps benefit travelers with visual impairments. However, concerns associated with the safety and negotiability of such detectable warnings for other travelers have resulted in much controversy. The findings of the study presented here indicate that detectable warnings did not adversely affect the negotiability of ramps by…

  1. Structure function analysis of two-scale Scalar Ramps. Part I: Theory and Modeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Structure functions are used to study the dissipation and inertial range scales of turbulent energy, to parameterize remote turbulence measurements, and to characterize ramp features in the turbulent field. The ramp features are associated with turbulent coherent structures, which dominate energy an...

  2. Cryogenic Systems and Superconductive Power

    DTIC Science & Technology

    subsystem suitable for providing reliable long-lived cryogenic refrigeration for a superconductive ship propulsion system; and, Provide a sound...technical basis for subsequent applications of superconductive power in the area of ship propulsion .

  3. Experimental Results on Shock-Wave Interaction on Compression Ramps

    NASA Astrophysics Data System (ADS)

    Passaro, A.; Fantoni, G.; Biagioni, L.; Cardone, G.

    2005-02-01

    A set of new experimental tests was carried out with intrusive and non-intrusive measurements related to Shock-Wave Boundary-Layer Interaction (SWBLI) on a 15 deg compression ramp model in a Mach 6 flow with total enthalpy of 1.8-2.5 MJ/kg. The facility was the modified High Enthalpy Arc-heated Tunnel at Alta, Pisa, Italy, with improved performance and diagnostics, in order to provide good control on the actual properties of the tunnel flow. The model shape and test conditions were the same of the previous test campaign carried out during the FESTIP programme. The new results confirmed a good agreement between intrusive and non-intrusive measurements and were also compared with success with numerical predictions, eventually explaining the discrepancy on wall heat flux that was found on the previous test campaign.

  4. Superconductivity in diamond.

    PubMed

    Ekimov, E A; Sidorov, V A; Bauer, E D; Mel'nik, N N; Curro, N J; Thompson, J D; Stishov, S M

    2004-04-01

    Diamond is an electrical insulator well known for its exceptional hardness. It also conducts heat even more effectively than copper, and can withstand very high electric fields. With these physical properties, diamond is attractive for electronic applications, particularly when charge carriers are introduced (by chemical doping) into the system. Boron has one less electron than carbon and, because of its small atomic radius, boron is relatively easily incorporated into diamond; as boron acts as a charge acceptor, the resulting diamond is effectively hole-doped. Here we report the discovery of superconductivity in boron-doped diamond synthesized at high pressure (nearly 100,000 atmospheres) and temperature (2,500-2,800 K). Electrical resistivity, magnetic susceptibility, specific heat and field-dependent resistance measurements show that boron-doped diamond is a bulk, type-II superconductor below the superconducting transition temperature T(c) approximately 4 K; superconductivity survives in a magnetic field up to Hc2(0) > or = 3.5 T. The discovery of superconductivity in diamond-structured carbon suggests that Si and Ge, which also form in the diamond structure, may similarly exhibit superconductivity under the appropriate conditions.

  5. Generation of ramp waves using variable areal density flyers

    NASA Astrophysics Data System (ADS)

    Winter, R. E.; Cotton, M.; Harris, E. J.; Chapman, D. J.; Eakins, D.

    2016-07-01

    Ramp loading using graded density impactors as flyers in gas-gun-driven plate impact experiments can yield new and useful information about the equation of state and the strength properties of the loaded material. Selective Laser Melting, an additive manufacturing technique, was used to manufacture a graded density flyer, termed the "bed-of-nails" (BON). A 2.5-mm-thick × 99.4-mm-diameter solid disc of stainless steel formed a base for an array of tapered spikes of length 5.5 mm and spaced 1 mm apart. The two experiments to test the concept were performed at impact velocities of 900 and 1100 m/s using the 100-mm gas gun at the Institute of Shock Physics at Imperial College London. In each experiment, a BON flyer was impacted onto a copper buffer plate which helped to smooth out perturbations in the wave profile. The ramp delivered to the copper buffer was in turn transmitted to three tantalum targets of thicknesses 3, 5 and 7 mm, which were mounted in contact with the back face of the copper. Heterodyne velocimetry (Het-V) was used to measure the velocity-time history, at the back faces of the tantalum discs. The wave profiles display a smooth increase in velocity over a period of ˜ 2.5 μs, with no indication of a shock jump. The measured profiles have been analysed to generate a stress vs. volume curve for tantalum. The results have been compared with the predictions of the Sandia National Laboratories hydrocode, CTH.

  6. Flow Separation Control Over a Ramp Using Sweeping Jet Actuators

    NASA Technical Reports Server (NTRS)

    Koklu, Mehti; Owens, Lewis R.

    2014-01-01

    Flow separation control on an adverse-pressure-gradient ramp model was investigated using various flow-control methods in the NASA Langley 15-Inch Wind Tunnel. The primary flow-control method studied used a sweeping jet actuator system to compare with more classic flow-control techniques such as micro-vortex generators, steady blowing, and steady- and unsteady-vortex generating jets. Surface pressure measurements and a new oilflow visualization technique were used to characterize the effects of these flow-control actuators. The sweeping jet actuators were run in three different modes to produce steady-straight, steady-angled, and unsteady-oscillating jets. It was observed that all of these flow-control methods are effective in controlling the separated flows on the ramp model. The steady-straight jet energizes the boundary layer by momentum addition and was found to be the least effective method for a fixed momentum coefficient. The steady-angled jets achieved better performance than the steady-straight jets because they generate streamwise vortices that energize the boundary layer by mixing high-momentum fluid with near wall low-momentum fluid. The unsteady-oscillating jets achieved the best performance by increasing the pressure recovery and reducing the downstream flow separation. Surface flow visualizations indicated that two out-of-phase counter-rotating vortices are generated per sweeping jet actuator, while one vortex is generated per vortex-generating jets. The extra vortex resulted in increased coverage, more pressure recovery, and reduced flow separation.

  7. Extracting strength from high pressure ramp-release experiments

    SciTech Connect

    Brown, J. L.; Alexander, C. S.; Asay, J. R.; Vogler, T. J.; Ding, J. L.

    2013-12-14

    Unloading from a plastically deformed state has long been recognized as a sensitive measure of a material's deviatoric response. In the case of a ramp compression and unload, time resolved particle velocity measurements of a sample/window interface may be used to gain insight into the sample material's strength. Unfortunately, measurements of this type are often highly perturbed by wave interactions associated with impedance mismatches. Additionally, wave attenuation, the finite pressure range over which the material elastically unloads, and rate effects further complicate the analysis. Here, we present a methodology that overcomes these shortcomings to accurately calculate a mean shear stress near peak compression for experiments of this type. A new interpretation of the self-consistent strength analysis is presented and then validated through the analysis of synthetic data sets on tantalum to 250 GPa. The synthetic analyses suggest that the calculated shear stresses are within 3% of the simulated values obtained using both rate-dependent and rate-independent constitutive models. Window effects are addressed by a new technique referred to as the transfer function approach, where numerical simulations are used to define a mapping to transform the experimental measurements to in situ velocities. The transfer function represents a robust methodology to account for complex wave interactions and a dramatic improvement over the incremental impedance matching methods traditionally used. The technique is validated using experiments performed on both lithium fluoride and tantalum ramp compressed to peak stresses of 10 and 15 GPa, respectively. In each case, various windows of different shock impedance are used to ensure consistency within the transfer function analysis. The data are found to be independent of the window used and in good agreement with previous results.

  8. Extracting strength from high pressure ramp-release experiments

    NASA Astrophysics Data System (ADS)

    Brown, J. L.; Alexander, C. S.; Asay, J. R.; Vogler, T. J.; Ding, J. L.

    2013-12-01

    Unloading from a plastically deformed state has long been recognized as a sensitive measure of a material's deviatoric response. In the case of a ramp compression and unload, time resolved particle velocity measurements of a sample/window interface may be used to gain insight into the sample material's strength. Unfortunately, measurements of this type are often highly perturbed by wave interactions associated with impedance mismatches. Additionally, wave attenuation, the finite pressure range over which the material elastically unloads, and rate effects further complicate the analysis. Here, we present a methodology that overcomes these shortcomings to accurately calculate a mean shear stress near peak compression for experiments of this type. A new interpretation of the self-consistent strength analysis is presented and then validated through the analysis of synthetic data sets on tantalum to 250 GPa. The synthetic analyses suggest that the calculated shear stresses are within 3% of the simulated values obtained using both rate-dependent and rate-independent constitutive models. Window effects are addressed by a new technique referred to as the transfer function approach, where numerical simulations are used to define a mapping to transform the experimental measurements to in situ velocities. The transfer function represents a robust methodology to account for complex wave interactions and a dramatic improvement over the incremental impedance matching methods traditionally used. The technique is validated using experiments performed on both lithium fluoride and tantalum ramp compressed to peak stresses of 10 and 15 GPa, respectively. In each case, various windows of different shock impedance are used to ensure consistency within the transfer function analysis. The data are found to be independent of the window used and in good agreement with previous results.

  9. Current ramp-up with lower hybrid current drive in EAST

    NASA Astrophysics Data System (ADS)

    Ding, B. J.; Li, M. H.; Fisch, N. J.; Qin, H.; Li, J. G.; Wilson, J. R.; Kong, E. H.; Zhang, L.; Wei, W.; Li, Y. C.; Wang, M.; Xu, H. D.; Gong, X. Z.; Shen, B.; Liu, F. K.; Shan, J. F.

    2012-12-01

    More economical fusion reactors might be enabled through the cyclic operation of lower hybrid current drive. The first stage of cyclic operation would be to ramp up the plasma current with lower hybrid waves alone in low-density plasma. Such a current ramp-up was carried out successfully on the EAST tokamak. The plasma current was ramped up with a time-averaged rate of 18 kA/s with lower hybrid (LH) power. The average conversion efficiency Pel/PLH was about 3%. Over a transient phase, faster ramp-up was obtained. These experiments feature a separate measurement of the L/R time at the time of current ramp up.

  10. Superconductivity applications for infrared and microwave devices; Proceedings of the Meeting, Orlando, FL, Apr. 19, 20, 1990

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B. (Editor); Heinen, Vernon O. (Editor)

    1990-01-01

    Various papers on superconductivity applications for IR and microwave devices are presented. The individual topics addressed include: pulsed laser deposition of Tl-Ca-Ba-Cu-O films, patterning of high-Tc superconducting thin films on Si substrates, IR spectra and the energy gap in thin film YBa2Cu3O(7-delta), high-temperature superconducting thin film microwave circuits, novel filter implementation utilizing HTS materials, high-temperature superconductor antenna investigations, high-Tc superconducting IR detectors, high-Tc superconducting IR detectors from Y-Ba-Cu-O thin films, Y-Ba-Cu0-O thin films as high-speed IR detectors, fabrication of a high-Tc superconducting bolometer, transition-edge microbolometer, photoresponse of YBa2Cu3O(7-delta) granular and epitaxial superconducting thin films, fast IR response of YBCO thin films, kinetic inductance effects in high-Tc microstrip circuits at microwave frequencies.

  11. Interface high-temperature superconductivity

    NASA Astrophysics Data System (ADS)

    Wang, Lili; Ma, Xucun; Xue, Qi-Kun

    2016-12-01

    Cuprate high-temperature superconductors consist of two quasi-two-dimensional (2D) substructures: CuO2 superconducting layers and charge reservoir layers. The superconductivity is realized by charge transfer from the charge reservoir layers into the superconducting layers without chemical dopants and defects being introduced into the latter, similar to modulation-doping in the semiconductor superlattices of AlGaAs/GaAs. Inspired by this scheme, we have been searching for high-temperature superconductivity in ultra-thin films of superconductors epitaxially grown on semiconductor/oxide substrates since 2008. We have observed interface-enhanced superconductivity in both conventional and unconventional superconducting films, including single atomic layer films of Pb and In on Si substrates and single unit cell (UC) films of FeSe on SrTiO3 (STO) substrates. The discovery of high-temperature superconductivity with a superconducting gap of ∼20 meV in 1UC-FeSe/STO has stimulated tremendous interest in the superconductivity community, for it opens a new avenue for both raising superconducting transition temperature and understanding the pairing mechanism of unconventional high-temperature superconductivity. Here, we review mainly the experimental progress on interface-enhanced superconductivity in the three systems mentioned above with emphasis on 1UC-FeSe/STO, studied by scanning tunneling microscopy/spectroscopy, angle-resolved photoemission spectroscopy and transport experiments. We discuss the roles of interfaces and a possible pairing mechanism inferred from these studies.

  12. Superconducting tensor gravity gradiometer

    NASA Technical Reports Server (NTRS)

    Paik, H. J.

    1981-01-01

    The employment of superconductivity and other material properties at cryogenic temperatures to fabricate sensitive, low-drift, gravity gradiometer is described. The device yields a reduction of noise of four orders of magnitude over room temperature gradiometers, and direct summation and subtraction of signals from accelerometers in varying orientations are possible with superconducting circuitry. Additional circuits permit determination of the linear and angular acceleration vectors independent of the measurement of the gravity gradient tensor. A dewar flask capable of maintaining helium in a liquid state for a year's duration is under development by NASA, and a superconducting tensor gravity gradiometer for the NASA Geodynamics Program is intended for a LEO polar trajectory to measure the harmonic expansion coefficients of the earth's gravity field up to order 300.

  13. Nonlinear terahertz superconducting plasmonics

    NASA Astrophysics Data System (ADS)

    Wu, Jingbo; Zhang, Caihong; Liang, Lanju; Jin, Biaobing; Kawayama, Iwao; Murakami, Hironaru; Kang, Lin; Xu, Weiwei; Wang, Huabing; Chen, Jian; Tonouchi, Masayoshi; Wu, Peiheng

    2014-10-01

    Nonlinear terahertz (THz) transmission through subwavelength hole array in superconducting niobium nitride (NbN) film is experimentally investigated using intense THz pulses. The good agreement between the measurement and numerical simulations indicates that the field strength dependent transmission mainly arises from the nonlinear properties of the superconducting film. Under weak THz pulses, the transmission peak can be tuned over a frequency range of 145 GHz which is attributed to the high kinetic inductance of 50 nm-thick NbN film. Utilizing the THz pump-THz probe spectroscopy, we study the dynamic process of transmission spectra and demonstrate that the transition time of such superconducting plasmonic device is within 5 ps.

  14. A Superconducting transformer system for high current cable testing

    SciTech Connect

    Godeke, A.; Dietderich, D. R.; Joseph, J. M.; Lizarazo, J.; Prestemon, S. O.; Miller, G.; Weijers, H. W.

    2010-02-15

    This article describes the development of a direct-current (dc) superconducting transformer system for the high current test of superconducting cables. The transformer consists of a core-free 10 464 turn primary solenoid which is enclosed by a 6.5 turn secondary. The transformer is designed to deliver a 50 kA dc secondary current at a dc primary current of about 50 A. The secondary current is measured inductively using two toroidal-wound Rogowski coils. The Rogowski coil signal is digitally integrated, resulting in a voltage signal that is proportional to the secondary current. This voltage signal is used to control the secondary current using a feedback loop which automatically compensates for resistive losses in the splices to the superconducting cable samples that are connected to the secondary. The system has been commissioned up to 28 kA secondary current. The reproducibility in the secondary current measurement is better than 0.05% for the relevant current range up to 25 kA. The drift in the secondary current, which results from drift in the digital integrator, is estimated to be below 0.5 A/min. The system's performance is further demonstrated through a voltage-current measurement on a superconducting cable sample at 11 T background magnetic field. The superconducting transformer system enables fast, high resolution, economic, and safe tests of the critical current of superconducting cable samples.

  15. A superconducting transformer system for high current cable testing.

    PubMed

    Godeke, A; Dietderich, D R; Joseph, J M; Lizarazo, J; Prestemon, S O; Miller, G; Weijers, H W

    2010-03-01

    This article describes the development of a direct-current (dc) superconducting transformer system for the high current test of superconducting cables. The transformer consists of a core-free 10,464 turn primary solenoid which is enclosed by a 6.5 turn secondary. The transformer is designed to deliver a 50 kA dc secondary current at a dc primary current of about 50 A. The secondary current is measured inductively using two toroidal-wound Rogowski coils. The Rogowski coil signal is digitally integrated, resulting in a voltage signal that is proportional to the secondary current. This voltage signal is used to control the secondary current using a feedback loop which automatically compensates for resistive losses in the splices to the superconducting cable samples that are connected to the secondary. The system has been commissioned up to 28 kA secondary current. The reproducibility in the secondary current measurement is better than 0.05% for the relevant current range up to 25 kA. The drift in the secondary current, which results from drift in the digital integrator, is estimated to be below 0.5 A/min. The system's performance is further demonstrated through a voltage-current measurement on a superconducting cable sample at 11 T background magnetic field. The superconducting transformer system enables fast, high resolution, economic, and safe tests of the critical current of superconducting cable samples.

  16. Superconducting magnetic quadrupole

    SciTech Connect

    Kim, J.W.; Shepard, K.W.; Nolen, J.A.

    1995-08-01

    A design was developed for a 350 T/m, 2.6-cm clear aperture superconducting quadrupole focussing element for use in a very low q/m superconducting linac as discussed below. The quadrupole incorporates holmium pole tips, and a rectangular-section winding using standard commercially-available Nb-Ti wire. The magnet was modeled numerically using both 2D and 3D codes, as a basis for numerical ray tracing using the quadrupole as a linac element. Components for a prototype singlet are being procured during FY 1995.

  17. Technology of RF superconductivity

    SciTech Connect

    1995-08-01

    This work has several parts, two of which are collaborative development projects with the majority of the work being performed at Argonne. The first is the development of a superconducting RFQ structure in collaboration with AccSys Technology Inc. of Pleasanton, California, funded as a Phase II SBIR grant. Another is a collaborative project with the Nuclear Science Centre, New Delhi, India (who are funding the work) to develop new superconducting ion accelerating structures. Other initiatives are developing various aspects of the technology required to utilize ATLAS as a secondary beam linac for radioactive beams.

  18. Superconducting Metastable Compounds.

    PubMed

    Luo, H L; Merriam, M F; Hamilton, D C

    1964-08-07

    A number of metastable phases, germanides and tellurides of gold and silver, have been prepared, analyzed by x-ray diffraction, and investigated for superconductivity. The new superconductors and their transition temperatures are AgTe(3) (2.6 degrees K), Ag(4)Ge (0.85 degrees K), Au(3)Te(5) (1.62 degrees K), and Au(1-x)Ge(x) (0.99 degrees K-1.63 degrees K) where (0.27 superconduct above 0.32 degrees K.

  19. Ceramic superconducting components

    NASA Technical Reports Server (NTRS)

    Haertling, G. H.

    1991-01-01

    An approach to the application of high-Tc ceramic superconductors to practical circuit elements was developed and demonstrated. This method, known as the rigid conductor process (RCP), involves the mounting of a preformed, sintered, and tested superconductor material onto an appropriate, rigid substrate with an epoxy adhesive which also serves to encapsulate the element from the ambient environment. Circuit elements such as straight conductors, coils and connectors were fabricated from YBa2Cu3O(7-x) superconducting material. Performance results are included for a low-noise low-thermal-conductivity superconducting grounding link for NASA.

  20. Investigation of runaway electrons in the current ramp-up by a fully non-inductive lower hybrid current drive on the EAST tokamak

    NASA Astrophysics Data System (ADS)

    Lu, H. W.; Zha, X. J.; Zhong, F. C.; Hu, L. Q.; Zhou, R. J.; EAST Team

    2013-05-01

    The possibility of using a lower hybrid wave (LHW) to ramp up the plasma current (Ip) from a low level to a high enough level required for fusion burn in the EAST (experimental advanced superconducting tokamak) tokamak is examined experimentally. The focus in this paper is on investigating how the relevant plasma parameters evolve during the current ramp-up (CRU) phase driving by a lower hybrid current drive (LHCD) with poloidal field (PF) coil cut-off, especially the behaviors of runaway electrons generated during the CRU phase. It is found that the intensity of runaway electron emission increases first, and then decreases gradually as the discharge goes on under conditions of PF coil cut-off before LHW was launched into plasma, PF coil cut-off at the same time as LHW was launched into plasma, as well as PF coil cut-off after LHW was launched into plasma. The relevant plasma parameters, including Hα line emission (Ha), impurity line emission (UV), soft x-ray emission and electron density n_{\\rm{e}} , increase to a high level. The loop voltage decreases from positive to negative, and then becomes zero because of the cut-off of PF coils. Also, the magnetohydrodynamic activity takes place during the CRU driving by LHCD.

  1. Smart monitoring system based on adaptive current control for superconducting cable test

    NASA Astrophysics Data System (ADS)

    Arpaia, Pasquale; Ballarino, Amalia; Daponte, Vincenzo; Montenero, Giuseppe; Svelto, Cesare

    2014-12-01

    A smart monitoring system for superconducting cable test is proposed with an adaptive current control of a superconducting transformer secondary. The design, based on Fuzzy Gain Scheduling, allows the controller parameters to adapt continuously, and finely, to the working variations arising from transformer nonlinear dynamics. The control system is integrated in a fully digital control loop, with all the related benefits, i.e., high noise rejection, ease of implementation/modification, and so on. In particular, an accurate model of the system, controlled by a Fuzzy Gain Scheduler of the superconducting transformer, was achieved by an experimental campaign through the working domain at several current ramp rates. The model performance was characterized by simulation, under all the main operating conditions, in order to guide the controller design. Finally, the proposed monitoring system was experimentally validated at European Organization for Nuclear Research (CERN) in comparison to the state-of-the-art control system [P. Arpaia, L. Bottura, G. Montenero, and S. Le Naour, "Performance improvement of a measurement station for superconducting cable test," Rev. Sci. Instrum. 83, 095111 (2012)] of the Facility for the Research on Superconducting Cables, achieving a significant performance improvement: a reduction in the system overshoot by 50%, with a related attenuation of the corresponding dynamic residual error (both absolute and RMS) up to 52%.

  2. Smart monitoring system based on adaptive current control for superconducting cable test

    SciTech Connect

    Arpaia, Pasquale; Ballarino, Amalia; Montenero, Giuseppe; Daponte, Vincenzo; Svelto, Cesare

    2014-12-15

    A smart monitoring system for superconducting cable test is proposed with an adaptive current control of a superconducting transformer secondary. The design, based on Fuzzy Gain Scheduling, allows the controller parameters to adapt continuously, and finely, to the working variations arising from transformer nonlinear dynamics. The control system is integrated in a fully digital control loop, with all the related benefits, i.e., high noise rejection, ease of implementation/modification, and so on. In particular, an accurate model of the system, controlled by a Fuzzy Gain Scheduler of the superconducting transformer, was achieved by an experimental campaign through the working domain at several current ramp rates. The model performance was characterized by simulation, under all the main operating conditions, in order to guide the controller design. Finally, the proposed monitoring system was experimentally validated at European Organization for Nuclear Research (CERN) in comparison to the state-of-the-art control system [P. Arpaia, L. Bottura, G. Montenero, and S. Le Naour, “Performance improvement of a measurement station for superconducting cable test,” Rev. Sci. Instrum.83, 095111 (2012)] of the Facility for the Research on Superconducting Cables, achieving a significant performance improvement: a reduction in the system overshoot by 50%, with a related attenuation of the corresponding dynamic residual error (both absolute and RMS) up to 52%.

  3. Study on traffic characteristics for a typical expressway on-ramp bottleneck considering various merging behaviors

    NASA Astrophysics Data System (ADS)

    Sun, Jie; Li, Zhipeng; Sun, Jian

    2015-12-01

    Recurring bottlenecks at freeway/expressway are considered as the main cause of traffic congestion in urban traffic system while on-ramp bottlenecks are the most significant sites that may result in congestion. In this paper, the traffic bottleneck characteristics for a simple and typical expressway on-ramp are investigated by the means of simulation modeling under the open boundary condition. In simulations, the running behaviors of each vehicle are described by a car-following model with a calibrated optimal velocity function, and lane changing actions at the merging section are modeled by a novel set of rules. We numerically derive the traffic volume of on-ramp bottleneck under different upstream arrival rates of mainline and ramp flows. It is found that the vehicles from the ramp strongly affect the pass of mainline vehicles and the merging ratio changes with the increasing of ramp vehicle, when the arrival rate of mainline flow is greater than a critical value. In addition, we clarify the dependence of the merging ratio of on-ramp bottleneck on the probability of lane changing and the length of the merging section, and some corresponding intelligent control strategies are proposed in actual traffic application.

  4. Applications of Superconductivity

    ERIC Educational Resources Information Center

    Goodkind, John M.

    1971-01-01

    Presents a general review of current practical applications of the properties of superconducters. The devices are classified into groups according to the property that is of primary importance. The article is inteded as a first introduction for students and professionals. (Author/DS)

  5. Levitation Kits Demonstrate Superconductivity.

    ERIC Educational Resources Information Center

    Worthy, Ward

    1987-01-01

    Describes the "Project 1-2-3" levitation kit used to demonstrate superconductivity. Summarizes the materials included in the kit. Discusses the effect demonstrated and gives details on how to obtain kits. Gives an overview of the documentation that is included. (CW)

  6. SUPERCONDUCTING VANADIUM BASE ALLOY

    DOEpatents

    Cleary, H.J.

    1958-10-21

    A new vanadium-base alloy which possesses remarkable superconducting properties is presented. The alloy consists of approximately one atomic percent of palladium, the balance being vanadium. The alloy is stated to be useful in a cryotron in digital computer circuits.

  7. Hybrid superconducting neutron detectors

    SciTech Connect

    Merlo, V.; Lucci, M.; Ottaviani, I.; Salvato, M.; Cirillo, M.; Scherillo, A.; Celentano, G.; Pietropaolo, A.

    2015-03-16

    A neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction, {sup 10}B + n → α + {sup 7}Li, with α and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current I{sub c}, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the superconducting state, thus resetting the detector. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed.

  8. Hybrid superconducting neutron detectors

    NASA Astrophysics Data System (ADS)

    Merlo, V.; Salvato, M.; Cirillo, M.; Lucci, M.; Ottaviani, I.; Scherillo, A.; Celentano, G.; Pietropaolo, A.

    2015-03-01

    A neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction, 10B + n → α + 7Li, with α and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current Ic, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the superconducting state, thus resetting the detector. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed.

  9. Superconducting thermal neutron detectors

    NASA Astrophysics Data System (ADS)

    Merlo, V.; Pietropaolo, A.; Celentano, G.; Cirillo, M.; Lucci, M.; Ottaviani, I.; Salvato, M.; Scherillo, A.; Schooneveld, E. M.; Vannozzi, A.

    2016-09-01

    A neutron detection concept is presented that is based on superconductive niobium nitride (NbN) strips coated by a boron (B) layer. The working principle is well described by a hot spot mechanism: upon the occurrence of the nuclear reactions n + 10B → α + 7Li + 2.8 MeV, the energy released by the secondary particles into the strip induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T below 11K and current-biased below the critical current IC, are driven into the normal state upon thermal neutron irradiation. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed and compared to those of a borated Nb superconducting strip.

  10. Superconducting thermoelectric generator

    DOEpatents

    Metzger, J.D.; El-Genk, M.S.

    1994-01-01

    Thermoelectricity is produced by applying a temperature differential to dissimilar electrically conducting or semiconducting materials, thereby producing a voltage that is proportional to the temperature difference. Thermoelectric generators use this effect to directly convert heat into electricity; however, presently-known generators have low efficiencies due to the production of high currents which in turn cause large resistive heating losses. Some thermoelectric generators operate at efficiencies between 4% and 7% in the 800{degrees} to 1200{degrees}C range. According to its major aspects and bradly stated, the present invention is an apparatus and method for producing electricity from heat. In particular, the invention is a thermoelectric generator that juxtaposes a superconducting material and a semiconducting material - so that the superconducting and the semiconducting materials touch - to convert heat energy into electrical energy without resistive losses in the temperature range below the critical temperature of the superconducting material. Preferably, an array of superconducting material is encased in one of several possible configurations within a second material having a high thermal conductivity, preferably a semiconductor, to form a thermoelectric generator.

  11. AC/RF Superconductivity

    SciTech Connect

    Ciovati, Gianluigi

    2015-02-01

    This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.

  12. New research in Superconductivity

    NASA Astrophysics Data System (ADS)

    Khorrami, Mona

    2013-03-01

    Superconductors are materials that have no resistance to electricity's flow; they are one of the last great frontiers of scientific discovery. The theories that explain superconductor behavior seem to be constantly under review. In 1911 superconductivity was first observed in mercury by Dutch physicist Heike Kamerlingh Onnes When he cooled it to the temperature of liquid helium, 4 degrees Kelvin (-452F, -269C), its resistance suddenly disappeared. It was necessary for Onnes to come within 4 degrees of the coldest temperature that is theoretically attainable to witness the phenomenon of superconductivity. In 1933 German researchers Walther Meissner and Robert Ochsenfeld discovered that a superconducting material will repel a magnetic field. A magnet moving by a conductor induces currents in the conductor, but, in a superconductor the induced currents exactly mirror the field that would have otherwise penetrated the superconducting material - causing the magnet to be repulsed. This phenomenon is known as strong diamagnetism and is today often referred to as the ``Meissner effect'' (an eponym). Later on the theory developed by American physicists John Bardeen, Leon Cooper, and John Schrieffer together with extensions and refinements of the theory, which followed in the years after 1957, succeeded in explaining in considerable detail the properties of superconductors.

  13. Magnetoquenched superconducting valve

    NASA Astrophysics Data System (ADS)

    Clinton, T. W.; Johnson, Mark

    1998-06-01

    A superconducting switch has been developed in a simple bilayer cross strip geometry using the magnetic fringe field of a ferromagnetic film to control the critical current in an underlying superconducting bridge. The magnetization of the ferromagnet is rotated in the plane of the film to vary the magnitude of the fringe field locally applied to the superconductor from negligible to substantial values. In the latter case, the magnetization is oriented such that the magnetic poles are along the edges of the cross strip directly above the superconductor. The large fringe field near the poles suppresses superconductivity over a length of order microns, giving rise to superconducting weak link behavior. A large modulation of the critical current is observed. The effect is demonstrated in the low Tc superconductors Pb (Tc=7.3 K) and Sn (Tc=3.9 K). Fabrication of the device involves minimal processing. Applications as a high speed switch, amplifier, nonvolatile storage cell, and controllable weak link are possible.

  14. MAGNETIC FIELD MEASUREMENTS FOR FAST-CHANGING MAGNETIC FIELDS.

    SciTech Connect

    JAIN, A.; ESCALLIER, J.; GANETIS, G.; LOUIE, W.; MARONE, A.; THOMAS. R.; WANDERER, P.

    2004-10-03

    Several recent applications for fast ramped magnets have been found that require rapid measurement of the field quality during the ramp. (In one instance, accelerator dipoles will be ramped at 1 T/sec, with measurements needed to the accuracy typically required for accelerators.) We have built and tested a new type of magnetic field measuring system to meet this need. The system consists of 16 stationary pickup windings mounted on a cylinder. The signals induced in the windings in a changing magnetic field are sampled and analyzed to obtain the field harmonics. To minimize costs, printed circuit boards were used for the pickup windings and a combination of amplifiers and ADPs used for the voltage readout system. New software was developed for the analysis. Magnetic field measurements of a model dipole developed for the SIS200 accelerator at GSI are presented. The measurements are needed to insure that eddy currents induced by the fast ramps do not impact the field quality needed for successful accelerator operation.

  15. Comparator circuits with local ramp buffering for a column-parallel single slope ADC

    DOEpatents

    Milkov, Mihail M.

    2016-04-26

    A comparator circuit suitable for use in a column-parallel single-slope analog-to-digital converter comprises a comparator, an input voltage sampling switch, a sampling capacitor arranged to store a voltage which varies with an input voltage when the sampling switch is closed, and a local ramp buffer arranged to buffer a global voltage ramp applied at an input. The comparator circuit is arranged such that its output toggles when the buffered global voltage ramp exceeds the stored voltage. Both DC- and AC-coupled comparator embodiments are disclosed.

  16. Performance evaluation and parametric analysis on cantilevered ramp injector in supersonic flows

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Li, Shi-bin; Yan, Li; Wang, Zhen-guo

    2013-03-01

    The cantilevered ramp injector is one of the most promising candidates for the mixing enhancement between the fuel and the supersonic air, and its parametric analysis has drawn an increasing attention of researchers. The flow field characteristics and the drag force of the cantilevered ramp injector in the supersonic flow with the freestream Mach number 2.0 have been investigated numerically, and the predicted injectant mole fraction and static pressure profiles have been compared with the available experimental data in the open literature. At the same time, the grid independency analysis has been performed by using the coarse, the moderate and the refined grid scales, and the influence of the turbulence model on the flow field of the cantilevered ramp injector has been carried on as well. Further, the effects of the swept angle, the ramp angle and the length of the step on the performance of the cantilevered ramp injector have been discussed subsequently. The obtained results show that the grid scale has only a slight impact on the flow field of the cantilevered ramp injector except in the region near the fuel injector, and the predicted results show reasonable agreement with the experimental data. Additionally, the turbulence model makes a slight difference to the numerical results, and the results obtained by the RNG k-ɛ and SST k-ω turbulence models are almost the same. The swept angle and the ramp angle have the same impact on the performance of the cantilevered ramp injector, and the kidney-shaped plume is formed with shorter distance with the increase of the swept and ramp angles. At the same time, the shape of the injectant mole fraction contour at X/H=6 goes through a transition from a peach-shaped plume to a kidney-shaped plume, and the cantilevered ramp injector with larger swept and ramp angles has the higher mixing efficiency and the larger drag force. The length of the step has only a slight impact on the drag force performance of the cantilevered

  17. RAMP: A fault tolerant distributed microcomputer structure for aircraft navigation and control

    NASA Technical Reports Server (NTRS)

    Dunn, W. R.

    1980-01-01

    RAMP consists of distributed sets of parallel computers partioned on the basis of software and packaging constraints. To minimize hardware and software complexity, the processors operate asynchronously. It was shown that through the design of asymptotically stable control laws, data errors due to the asynchronism were minimized. It was further shown that by designing control laws with this property and making minor hardware modifications to the RAMP modules, the system became inherently tolerant to intermittent faults. A laboratory version of RAMP was constructed and is described in the paper along with the experimental results.

  18. Aphotic zone carbonate production on a Miocene ramp, Central Apennines, Italy

    NASA Astrophysics Data System (ADS)

    Corda, Laura; Brandano, Marco

    2003-09-01

    The lower Miocene Latium-Abruzzi platform was a low-angle ramp that developed under tropical-to-subtropical conditions, but was dominated by bryomol and rhodalgal sediment associations. The Aquitanian to Serravallian sequence described here paraconformably overlies the Cretaceous limestones. It consists of a lowstand systems tract, a transgressive systems tract and a highstand systems tract. Based on facies analysis and on the light dependence of biotic associations, the ramp is divided into three parts: an inner ramp, a middle ramp and an outer ramp. The inner ramp facies are represented by a few metres of coral framestone, rhodolith floatstone-rudstone and balanid macroids floatstone without wave-related structures. The middle ramp consists of structureless bioclastic grainstone to packstone, floatstone and rudstone with rhodoliths and larger foraminifera. The outer ramp facies—proximal sector—are composed of crudely stratified bryozoan-dominated packstone to floatstone which extend over the whole platform. The outer ramp facies—intermediate sector—are represented by wackestone, packstone and rarely grainstone with foraminifera and echinoid fragments. The final depositional profile of the ramp was strongly influenced by the main organisms producing sediment. During the lowstand, the resulting profile is a ramp type. During the transgressive phase, the rapid spreading of the outer ramp facies belt, as a consequence of the enhanced productivity of the light-independent biota, is believed to be promoted by a change from oligotrophic to eutrophic conditions. Climate and/or tectonics are presumed to have played an important role in continental runoff and then in the nutrients delivery. During the highstand phase, the system returns to rates of production uniform throughout the platform. The high rates of carbonate production occurring in the aphotic zone are quite unusual in tropical settings and represent a provocative trend in apparent contrast with the

  19. Static internal performance of convergent single-expansion-ramp nozzles with various combinations of internal geometric parameters

    NASA Technical Reports Server (NTRS)

    Bare, E. Ann; Capone, Francis J.

    1989-01-01

    An investigation was conducted in the Static Test Facility of the Langley 16-Foot Transonic Tunnel to determine the effects of five geometric design parameters on the internal performance of convergent single expansion ramp nozzles. The effects of ramp chordal angle, initial ramp angle, flap angle, flap length, and ramp length were determined. All nozzles tested has a nominally constant throat area and aspect ratio. Static pressure distributions along the centerlines of the ramp and flap were also obtained for each configuration. Nozzle pressure ratio was varied up to 10.0 for all configurations.

  20. Micro-Ramps for External Compression Low-Boom Inlets

    NASA Technical Reports Server (NTRS)

    Rybalko, Michael; Loth, Eric; Chima, Rodrick V.; Hirt, Stefanie M.; DeBonis, James R.

    2010-01-01

    The application of vortex generators for flow control in an external compression, axisymmetric, low-boom concept inlet was investigated using RANS simulations with three-dimensional (3-D), structured, chimera (overset) grids and the WIND-US code. The low-boom inlet design is based on previous scale model 1- by 1-ft wind tunnel tests and features a zero-angle cowl and relaxed isentropic compression centerbody spike, resulting in defocused oblique shocks and a weak terminating normal shock. Validation of the methodology was first performed for micro-ramps in supersonic flow on a flat plate with and without oblique shocks. For the inlet configuration, simulations with several types of vortex generators were conducted for positions both upstream and downstream of the terminating normal shock. The performance parameters included incompressible axisymmetric shape factor, separation area, inlet pressure recovery, and massflow ratio. The design of experiments (DOE) methodology was used to select device size and location, analyze the resulting data, and determine the optimal choice of device geometry. The optimum upstream configuration was found to substantially reduce the post-shock separation area but did not significantly impact recovery at the aerodynamic interface plane (AIP). Downstream device placement allowed for fuller boundary layer velocity profiles and reduced distortion. This resulted in an improved pressure recovery and massflow ratio at the AIP compared to the baseline solid-wall configuration.

  1. Improving Wind-Ramp Forecasts in the Stable Boundary Layer

    NASA Astrophysics Data System (ADS)

    Jahn, David E.; Takle, Eugene S.; Gallus, William A.

    2017-02-01

    The viability of wind-energy generation is dependent on highly accurate numerical wind forecasts, which are impeded by inaccuracies in model representation of boundary-layer processes. This study revisits the basic theory of the Mellor, Yamada, Nakanishi, and Niino (MYNN) planetary boundary-layer parametrization scheme, focusing on the onset of wind-ramp events related to nocturnal low-level jets. Modifications to the MYNN scheme include: (1) calculation of new closure parameters that determine the relative effects of turbulent energy production, dissipation, and redistribution; (2) enhanced mixing in the stable boundary layer when the mean wind speed exceeds a specified threshold; (3) explicit accounting of turbulent potential energy in the energy budget. A mesoscale model is used to generate short-term (24 h) wind forecasts for a set of 15 cases from both the U.S.A. and Germany. Results show that the new set of closure parameters provides a marked forecast improvement only when used in conjunction with the new mixing length formulation and only for cases that are originally under- or over-forecast (10 of the 15 cases). For these cases, the mean absolute error (MAE) of wind forecasts at turbine-hub height is reduced on average by 17%. A reduction in MAE values on average by 26% is realized for these same cases when accounting for the turbulent potential energy together with the new mixing length. This last method results in an average reduction by at least 13% in MAE values across all 15 cases.

  2. Tier 3- DarkStar engine run on ramp

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Lockheed Martin/Boeing Tier III- (minus) unpiloted aerial vehicle undergoing an engine run on the ramp at, following its arrival at the Dryden Flight Research Center, Edwards, California. The Tier III Minus project used Dryden ground facilities during the flight test program. The vehicle was developed by Lockheed Martin Skunk Works and Boeing Defense and Space Group to satisfy a goal of the Defense Airborne Reconnaissance Office to supply responsive and sustained data from anywhere within enemy territory, day or night, in all types of weather. Dubbed DarkStar, the vehicle, with a wing span of 69 feet, was designed to fly above 45,000 feet at subsonic speeds on missions lasting more than eight hours. The first DarkStar prototype (article #695) made its first flight on March 29, 1996. At the begininning of its second flight, on April 22, 1996, it crashed on takeoff, and was destroyed. More than two years passed before the second Darkstar prototype (article #696) took to the air on June 29, 1998. The vehicle made a total of five flights, the last on January 9, 1999. The program was cancelled on January 28, 1999.

  3. SOUTH RAMP 3.01.X AREA GROUND SUPPORT ANALYSIS

    SciTech Connect

    S. Bonabian

    1999-07-12

    The purpose of this analysis is to evaluate the stability and determine ground support requirements for the 3.01.X areas in the Exploratory Studies Facility (ESF) South Ramp. The 3.01.X area refers to the ESF tunnel portions that were constructed under Section 3.01.X of the ESF General Construction Specification (Reference 8.4). Four 3.01.X areas in the ESF Main Loop are covered in this analysis that extend from Station 60+15.28 to 60+49.22, 62+04.82 to 62+32.77, 75+21.02 to 75+28.38, and 76+63.08 to 77+41.23. The scope of the analysis is (1) to document the as-built configuration including existing voids and installed ground support, (2) to evaluate the existing ground conditions, (3) to determine applicable design loads, (4) to evaluate the stability and determine a ground support system, and (5) to analyze the recommended system.

  4. Terasaki Ramps in the Endoplasmic Reticulum: Structure, Function and Formation

    NASA Astrophysics Data System (ADS)

    Huber, Greg; Guven, Jemal; Valencia, Dulce-Maria

    2015-03-01

    The endoplasmic reticulum (ER) has long been considered an exceedingly important and complex cellular organelle in eukaryotes (like you). It is a membrane structure, part folded lamellae, part tubular network, that both envelopes the nucleus and threads its way outward, all the way to the cell's periphery. Despite the elegant mechanics of bilayer membranes offered by the work of Helfrich and Canham, as far as the ER is concerned, theory has mostly sat on the sidelines. However, refined imaging of the ER has recently revealed beautiful and subtle geometrical forms - simple geometries, from the mathematical point of view - which some have called a ``parking garage for ribosomes.'' I'll review the discovery and physics of Terasaki ramps and discuss their relation to cell-biological questions, such as ER and nuclear-membrane re-organization during mitosis. Rather than being a footnote in a textbook on differential geometry, these structures suggest answers to a number of the ER's structure-function problems.

  5. BaBar superconducting coil: design, construction and test

    SciTech Connect

    Bell, R A; Berndt, M; Burgess, W; Craddock, W; Dormicchi, O; Fabbricatore, P; Farinon, S; Keller, L; Moreschi, P; Musenich, R; O'Connor, T G; Penco, R; Priano, C; Shen, S; Valente, P

    2001-01-26

    The BABAR Detector, located in the PEP-II B-Factory at the Stanford Linear Accelerator Center, includes a large 1.5 Tesla superconducting solenoid, 2.8 m bore and length 3.7 m. The two layer solenoid is wound with an aluminum stabilized conductor which is graded axially to produce a {+-} 3% field uniformity in the tracking region. This paper summarizes the 3 year design, fabrication and testing program of the superconducting solenoid. The work was carried out by an international collaboration between INFN, LLNL and SLAC. The coil was constructed by Ansaldo Energia. Critical current measurements of the superconducting strand, cable and conductor, cool-down, operation with the thermo-siphon cooling, fast and slow discharges, and magnetic forces are discussed in detail.

  6. Overview of real-time kernels at the Superconducting Super Collider Laboratory

    SciTech Connect

    Low, K.; Acharya, S.; Allen, M.; Faught, E.; Haenni, D.; Kalbfleisch, C.

    1991-05-01

    The Superconducting Super Collider Laboratory (SSCL) will have many subsystems that will require real-time microprocessor control. Examples of such sub-systems requiring real-time controls are power supply ramp generators and quench protection monitors for the superconducting magnets. We plan on using a commercial multitasking real-time kernel in these systems. These kernels must perform in a consistent, reliable and efficient manner. Actual performance measurements have been conducted on four different kernels, all running on the same hardware platform. The measurements fall into two categories. Throughput measurements covering the non-real-time'' aspects of the kernel include process creation/termination times, interprocess communication facilities involving messages, semaphores and shared memory and memory allocation/deallocation. Measurements concentrating on real-time response are context switch times, interrupt latencies and interrupt task response. 6 refs., 2 tabs.

  7. North side, middle section, top of the ramp in CO17214 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    North side, middle section, top of the ramp in CO-172-14 is at the right in this photograph. - Fitzsimons General Hospital, Infirmary, Northwest Corner of East Bushnell Avenue & South Page Street, Aurora, Adams County, CO

  8. Assessing the Effectiveness of Ramp-Up During Sonar Operations Using Exposure Models.

    PubMed

    von Benda-Beckmann, Alexander M; Wensveen, Paul J; Kvadsheim, Petter H; Lam, Frans-Peter A; Miller, Patrick J O; Tyack, Peter L; Ainslie, Michael A

    2016-01-01

    Ramp-up procedures are used to mitigate the impact of sound on marine mammals. Sound exposure models combined with observations of marine mammals responding to sound can be used to assess the effectiveness of ramp-up procedures. We found that ramp-up procedures before full-level sonar operations can reduce the risk of hearing threshold shifts with marine mammals, but their effectiveness depends strongly on the responsiveness of the animals. In this paper, we investigated the effect of sonar parameters (source level, pulse-repetition time, ship speed) on sound exposure by using a simple analytical model and highlight the mechanisms that limit the effectiveness of ramp-up procedures.

  9. Near- and far-field measurements of phase-ramped frequency selective surfaces at infrared wavelengths

    SciTech Connect

    Tucker, Eric; Boreman, Glenn; D'Archangel, Jeffrey; Raschke, Markus B.

    2014-07-28

    Near- and far-field measurements of phase-ramped loop and patch structures are presented and compared to simulations. The far-field deflection measurements show that the phase-ramped structures can deflect a beam away from specular reflection, consistent with simulations. Scattering scanning near-field optical microscopy of the elements comprising the phase ramped structures reveals part of the underlying near-field phase contribution that dictates the far-field deflection, which correlates with the far-field phase behavior that was expected. These measurements provide insight into the resonances, coupling, and spatial phase variation among phase-ramped frequency selective surface (FSS) elements, which are important for the performance of FSS reflectarrays.

  10. Investigation of supersonic turbulent boundary-layer separation on a compression ramp by an integral method

    NASA Technical Reports Server (NTRS)

    Patel, D. K.; Czarnecki, K. R.

    1977-01-01

    An investigation was made to determine the feasibility of using a boundary layer integral method to study the separation of a turbulent boundary layer on a two dimensional ramp at supersonic speeds. The numerical calculations were made for a free stream Mach number of 3, a Reynolds number of 10 million, and over a ramp angle range from 0 deg to 30 deg. For ramp angles where no flow separation was indicated, theoretical calculations were in reasonable agreement with experimental data except for a somewhat belated rise in pressure. For larger ramp angles, where separation was present, the investigation produced results that were not in agreement with experiment or with results calculated by time dependent Navier-Stokes methods. This apparently was true because no provision had been made for a proper shock boundary layer interaction where strong normal pressure gradients are induced within the boundary layer under the shock independent of surface curvature effects.

  11. Tamping Ramping: Algorithmic, Implementational, and Computational Explanations of Phasic Dopamine Signals in the Accumbens

    PubMed Central

    Lloyd, Kevin; Dayan, Peter

    2015-01-01

    Substantial evidence suggests that the phasic activity of dopamine neurons represents reinforcement learning’s temporal difference prediction error. However, recent reports of ramp-like increases in dopamine concentration in the striatum when animals are about to act, or are about to reach rewards, appear to pose a challenge to established thinking. This is because the implied activity is persistently predictable by preceding stimuli, and so cannot arise as this sort of prediction error. Here, we explore three possible accounts of such ramping signals: (a) the resolution of uncertainty about the timing of action; (b) the direct influence of dopamine over mechanisms associated with making choices; and (c) a new model of discounted vigour. Collectively, these suggest that dopamine ramps may be explained, with only minor disturbance, by standard theoretical ideas, though urgent questions remain regarding their proximal cause. We suggest experimental approaches to disentangling which of the proposed mechanisms are responsible for dopamine ramps. PMID:26699940

  12. Optimized Swinging Door Algorithm for Wind Power Ramp Event Detection: Preprint

    SciTech Connect

    Cui, Mingjian; Zhang, Jie; Florita, Anthony R.; Hodge, Bri-Mathias; Ke, Deping; Sun, Yuanzhang

    2015-08-06

    Significant wind power ramp events (WPREs) are those that influence the integration of wind power, and they are a concern to the continued reliable operation of the power grid. As wind power penetration has increased in recent years, so has the importance of wind power ramps. In this paper, an optimized swinging door algorithm (SDA) is developed to improve ramp detection performance. Wind power time series data are segmented by the original SDA, and then all significant ramps are detected and merged through a dynamic programming algorithm. An application of the optimized SDA is provided to ascertain the optimal parameter of the original SDA. Measured wind power data from the Electric Reliability Council of Texas (ERCOT) are used to evaluate the proposed optimized SDA.

  13. Static internal performance of a single expansion ramp nozzle with multiaxis thrust vectoring capability

    NASA Technical Reports Server (NTRS)

    Capone, Francis J.; Schirmer, Alberto W.

    1993-01-01

    An investigation was conducted at static conditions in order to determine the internal performance characteristics of a multiaxis thrust vectoring single expansion ramp nozzle. Yaw vectoring was achieved by deflecting yaw flaps in the nozzle sidewall into the nozzle exhaust flow. In order to eliminate any physical interference between the variable angle yaw flap deflected into the exhaust flow and the nozzle upper ramp and lower flap which were deflected for pitch vectoring, the downstream corners of both the nozzle ramp and lower flap were cut off to allow for up to 30 deg of yaw vectoring. The effects of nozzle upper ramp and lower flap cutout, yaw flap hinge line location and hinge inclination angle, sidewall containment, geometric pitch vector angle, and geometric yaw vector angle were studied. This investigation was conducted in the static-test facility of the Langley 16-Foot Transonic Tunnel at nozzle pressure ratios up to 8.0.

  14. Micro-Ramp Flow Control for Oblique Shock Interactions: Comparisons of Computational and Experimental Data

    NASA Technical Reports Server (NTRS)

    Hirt, Stefanie M.; Reich, David B.; O'Connor, Michael B.

    2010-01-01

    Computational fluid dynamics was used to study the effectiveness of micro-ramp vortex generators to control oblique shock boundary layer interactions. Simulations were based on experiments previously conducted in the 15 x 15 cm supersonic wind tunnel at NASA Glenn Research Center. Four micro-ramp geometries were tested at Mach 2.0 varying the height, chord length, and spanwise spacing between micro-ramps. The overall flow field was examined. Additionally, key parameters such as boundary-layer displacement thickness, momentum thickness and incompressible shape factor were also examined. The computational results predicted the effects of the micro-ramps well, including the trends for the impact that the devices had on the shock boundary layer interaction. However, computing the shock boundary layer interaction itself proved to be problematic since the calculations predicted more pronounced adverse effects on the boundary layer due to the shock than were seen in the experiment.

  15. Analyzing the Impact of Solar Power on Multi-Hourly Thermal Generator Ramping

    SciTech Connect

    Rosenkranz, Joshua-Benedict; Brancucci Martinez-Anido, Carlo; Hodge, Bri-Mathias

    2016-04-08

    Solar power generation, unlike conventional forms of electricity generation, has higher variability and uncertainty in its output because solar plant output is strongly impacted by weather. As the penetration rate of solar capacity increases, grid operators are increasingly concerned about accommodating the increased variability and uncertainty that solar power provides. This paper illustrates the impacts of increasing solar power penetration on the ramping of conventional electricity generators by simulating the operation of the Independent System Operator -- New England power system. A production cost model was used to simulate the power system under five different scenarios, one without solar power and four with increasing solar power penetrations up to 18%, in terms of annual energy. The impact of solar power is analyzed on six different temporal intervals, including hourly and multi-hourly (2- to 6-hour) ramping. The results show how the integration of solar power increases the 1- to 6-hour ramping events of the net load (electric load minus solar power). The study also analyzes the impact of solar power on the distribution of multi-hourly ramping events of fossil-fueled generators and shows increasing 1- to 6-hour ramping events for all different generators. Generators with higher ramp rates such as gas and oil turbine and internal combustion engine generators increased their ramping events by 200% to 280%. For other generator types--including gas combined-cycle generators, coal steam turbine generators, and gas and oil steam turbine generators--more and higher ramping events occurred as well for higher solar power penetration levels.

  16. 29 CFR 1918.25 - Bridge plates and ramps (See also § 1918.86).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Bridge plates and ramps (See also § 1918.86). 1918.25... Means of Access § 1918.25 Bridge plates and ramps (See also § 1918.86). (a) Bridge and car plates (dockboards). Bridge and car plates used afloat shall be well maintained and shall: (1) Be strong enough...

  17. 29 CFR 1918.25 - Bridge plates and ramps (See also § 1918.86).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Bridge plates and ramps (See also § 1918.86). 1918.25... Means of Access § 1918.25 Bridge plates and ramps (See also § 1918.86). (a) Bridge and car plates (dockboards). Bridge and car plates used afloat shall be well maintained and shall: (1) Be strong enough...

  18. 29 CFR 1918.25 - Bridge plates and ramps (See also § 1918.86).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Bridge plates and ramps (See also § 1918.86). 1918.25... Means of Access § 1918.25 Bridge plates and ramps (See also § 1918.86). (a) Bridge and car plates (dockboards). Bridge and car plates used afloat shall be well maintained and shall: (1) Be strong enough...

  19. 29 CFR 1918.25 - Bridge plates and ramps (See also § 1918.86).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Bridge plates and ramps (See also § 1918.86). 1918.25... Means of Access § 1918.25 Bridge plates and ramps (See also § 1918.86). (a) Bridge and car plates (dockboards). Bridge and car plates used afloat shall be well maintained and shall: (1) Be strong enough...

  20. Application of Micro-ramp Flow Control Devices to an Oblique Shock Interaction

    NASA Technical Reports Server (NTRS)

    Hirt, Stefanie; Anderson, Bernhard

    2007-01-01

    Tests are planned in the 15cm x 15cm supersonic wind tunnel at NASA Glenn to demonstrate the applicability of micro-ramp flow control to the management of shock wave boundary layer interactions. These tests will be used as a database for computational fluid dynamics (CFD) validation and Design of Experiments (DoE) design information. Micro-ramps show potential for mechanically simple and fail-safe boundary layer control.

  1. Mesoscale Simulations of a Wind Ramping Event for Wind Energy Prediction

    SciTech Connect

    Rhodes, M; Lundquist, J K

    2011-09-21

    Ramping events, or rapid changes of wind speed and wind direction over a short period of time, present challenges to power grid operators in regions with significant penetrations of wind energy in the power grid portfolio. Improved predictions of wind power availability require adequate predictions of the timing of ramping events. For the ramping event investigated here, the Weather Research and Forecasting (WRF) model was run at three horizontal resolutions in 'mesoscale' mode: 8100m, 2700m, and 900m. Two Planetary Boundary Layer (PBL) schemes, the Yonsei University (YSU) and Mellor-Yamada-Janjic (MYJ) schemes, were run at each resolution as well. Simulations were not 'tuned' with nuanced choices of vertical resolution or tuning parameters so that these simulations may be considered 'out-of-the-box' tests of a numerical weather prediction code. Simulations are compared with sodar observations during a wind ramping event at a 'West Coast North America' wind farm. Despite differences in the boundary-layer schemes, no significant differences were observed in the abilities of the schemes to capture the timing of the ramping event. As collaborators have identified, the boundary conditions of these simulations probably dominate the physics of the simulations. They suggest that future investigations into characterization of ramping events employ ensembles of simulations, and that the ensembles include variations of boundary conditions. Furthermore, the failure of these simulations to capture not only the timing of the ramping event but the shape of the wind profile during the ramping event (regardless of its timing) indicates that the set-up and execution of such simulations for wind power forecasting requires skill and tuning of the simulations for a specific site.

  2. Comparison of energy output during ramp and staircase shortening in frog muscle fibres.

    PubMed Central

    Linari, M; Woledge, R C

    1995-01-01

    1. We compared the rates of work and heat production during ramp shortening with those during staircase shortening (sequence of step releases of the same amplitude, separated by regular time intervals). Ramp or staircase shortening was applied to isolated muscle fibres (sarcomere length, 2.2 microns; temperature, approximately 1 degree C) at the plateau of an isometric tetanus. The total amount of shortening was no greater than 6% of the fibre length. 2. During ramp shortening the power output showed a maximum at about 0.8 fibre lengths per second (Lo s-1), which corresponds to 1/3 the maximum shortening velocity (Vo). For the same average shortening velocity during staircase shortening (step size, approximately 0.5% Lo) the power output was 40-60% lower. The rate of heat production for the same average shortening velocity was approximately 45% higher during staircase shortening than during ramp shortening. 3. The relation between rate of total energy output and shortening velocity was well described by a second order regression line in the range of velocities used (0.1-2.3 Lo s-1). For any shortening velocity the rate of total energy output (power plus heat rate) was not statistically different for staircase (step size, approximately 0.5% Lo) and ramp shortening. 4. The mechanical efficiency (the ratio of the power over the total energy rate) during ramp shortening had a maximum value of 0.36 at 1/5 Vo; during staircase shortening, for any given shortening velocity, the mechanical efficiency was reduced compared with ramp shortening: with a staircase step of about 0.5% Lo at 1/5 Vo the efficiency was approximately 0.2. 5. The results indicate that a cross-bridge is able to convert different quantities of energy into work depending on the different shortening protocol used. The fraction of energy dissipated as heat is larger during staircase shortening than during ramp shortening. PMID:8544132

  3. Superconductivity in graphite intercalation compounds

    DOE PAGES

    Smith, Robert P.; Weller, Thomas E.; Howard, Christopher A.; ...

    2015-02-26

    This study examines the field of superconductivity in the class of materials known as graphite intercalation compounds which has a history dating back to the 1960s. This paper recontextualizes the field in light of the discovery of superconductivity in CaC₆ and YbC₆ in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how this relates to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic statesmore » and phonon modes are most important for superconductivity and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition.« less

  4. Superconductivity in graphite intercalation compounds

    SciTech Connect

    Smith, Robert P.; Weller, Thomas E.; Howard, Christopher A.; Dean, Mark P. M.; Rahnejat, Kaveh C.; Saxena, Siddharth S.; Ellerby, Mark

    2015-02-26

    This study examines the field of superconductivity in the class of materials known as graphite intercalation compounds which has a history dating back to the 1960s. This paper recontextualizes the field in light of the discovery of superconductivity in CaC₆ and YbC₆ in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how this relates to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic states and phonon modes are most important for superconductivity and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition.

  5. Tunable superconductivity in decorated graphene

    NASA Astrophysics Data System (ADS)

    Han, Zheng; Allain, Adrien; Marty, Laetitia; Bendiab, Nedjma; Toulemonde, Pierre; Strobel, Pierre; Coraux, Johann; Bouchiat, Vincent

    2013-03-01

    Graphene offers an exposed bidimensional gas of high mobility charge carriers with gate tunable density. Its chemical inertness offers an outstanding platform to explore exotic 2D superconductivity. Superconductivity can be induced in graphene by means of proximity effect (by depositing a set of superconducting metal clusters such as lead or tin nanoparticles). The influence of decoration material, density or particles and disorder of graphene will be discussed. In the case of disordered graphene, Tin decoration leads to a gate-tunable superconducting-to-insulator quantum phase transition. Superconductivity in graphene is also expected to occur under strong charge doping (induced either by gating or under chemical decoration, in analogy with graphite intercalated compounds). I will also show preliminary results showing the influence of Calcium intercalation of few layer graphene and progress toward the demonstration of intrinsic superconductivity in such systems. Work supported by EU GRANT FP7-NMP GRENADA.

  6. Superconducting miniaturized planar antennas

    NASA Astrophysics Data System (ADS)

    Pischke, A.; Chaloupka, H.; Klein, N.; Splitt, G.

    This contribution reports on experimental as well as theoretical investigations of superconducting 2.4 GHz microstrip antenna. Due to both a new stepped-impedance patch shape and a high permittivity substrate (LaAlO3) the size was reduced to an area of only 6x6 mm. The measured radiation efficiency of antennas fabricated from YBa2Cu3O(7-delta) is at 77 K in the order of 45 and 65 percent for a substrate height of 0.5 mm and 1 mm respectively. In contrast, a copper antenna yields an efficiency of 3 and 6 percent only. Deviations from a linear transmission behavior of the superconducting antenna can be observed at a current density of 500,000 A/sq cm. An increase in frequency bandwidth from 4 MHz to over 9 MHz results from replacing the single-patch structure by a double-patch structure (stacked patches).

  7. Superconducting multipole corrector magnet

    SciTech Connect

    Kashikhin, Vladimir; /Fermilab

    2004-10-01

    A novel concept of superconducting multipole corrector magnet is discussed. This magnet assembled from 12 identical racetrack type coils and can generate any combination of dipole, quadrupole and sextupole magnetic fields. The coil groups are powered from separate power supplies. In the case of normal dipole, quadrupole and sextupole fields the total field is symmetrical relatively the magnet median plane and there are only five powered separately coil groups. This type multipole corrector magnet was proposed for BTeV, Fermilab project and has following advantages: universal configuration, simple manufacturing and high mechanical stability. The results of magnetic design including the field quality and magnetic forces in comparison with known shell type superconducting correctors are presented.

  8. High temperature interface superconductivity

    NASA Astrophysics Data System (ADS)

    Gozar, A.; Bozovic, I.

    2016-02-01

    High-Tc superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-Tc Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both 'passive' hetero-structures as well as surface-induced effects by external gating are discussed. We conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.

  9. High temperature interface superconductivity

    DOE PAGES

    Gozar, A.; Bozovic, I.

    2016-01-20

    High-Tc superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-Tc Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both ‘passive’ hetero-structures as well as surface-induced effects by external gating are discussed. Here, wemore » conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.« less

  10. High temperature interface superconductivity

    SciTech Connect

    Gozar, A.; Bozovic, I.

    2016-01-20

    High-Tc superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-Tc Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both ‘passive’ hetero-structures as well as surface-induced effects by external gating are discussed. Here, we conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.

  11. Superconducting magnet wire

    DOEpatents

    Schuller, Ivan K.; Ketterson, John B.; Banerjee, Indrajit

    1986-01-01

    A superconducting tape or wire with an improved critical field is formed of alternating layers of a niobium-containing superconductor such as Nb, NbTi, Nb.sub.3 Sn or Nb.sub.3 Ge with a thickness in the range of about 0.5-1.5 times its coherence length, supported and separated by layers of copper with each copper layer having a thickness in the range of about 170-600 .ANG..

  12. Superconducting terahertz metamaterials

    SciTech Connect

    Chen, Hou-tong; Singh, Ranjan; O' Hara, John F; Azad, Abul K; Trugman, Stuart A; Jia, Quanxi; Taylor, Antoinette J

    2010-01-01

    During the past ten years subwavelength metallic structures have enabled metamaterials exhibiting exotic physical properties that are not possible or difficult to realize using naturally occurring materials, This bottom-up metamaterial approach is particularly attractive in the terahertz (THz) frequency range, where the THz gap is inherently associated with the lack of materials with appropriate reponse. In fact THz metamaterial devices have accomplished unprecedented performance towards practical applications. In these devices, the key is to incorporate natural materials, e,g, semiconductors, as the metamaterial substrates or integration parts of metamaterial structures. The active or dynamic tunability of metamaterials is through the application of external stimuli such as temperature, photoexcitation, or electric field. to modify the capacitive gaps in split-ring resonators (SRRs), It becomes clear that we would not be able to do much on the metallic SRRs, i.e. the metal conductivity and therefore the inductance largely remain constant not affected by external stimuli. Recently, there has been increasing interest in superconducting metamaterials towards loss reduction. Significant Joule losses have often prevented resonant metal metamaterials from achieving proposed applications. particularly in the optical frequency range. At low temperatures, superconducting materials possess superior conductivity than metals at frequencies up to THz. and therefore it is expected that superconducting melamaterials will have a lower loss than metal metamatetials, More interestingly, superconductors exhibit tunable complex conductivity over a wide range of values through change of temperature and application of photoexcitation, electrical currents and magnetic fields. Therefore, we would expect correspondingly tunable metamaterials. which originate from the superconducting materials composing the metamaterial, in contrast to tuning the metamaterial embedded environment.

  13. Fringe Field Superconducting Switch

    DTIC Science & Technology

    1997-10-31

    superconducting smp ,ine 10, and a ferromagnet ferromagnet 14 preferably has at least two easy axes of magnetization, shown here by the double- headed arrows...magnetic field of control current **p6fCooductor- S4 ’’/ eonteol^cun 7* insulator ■O Jöpptyzcöwem supercuiKhttstog-^2 ^ FIG.^ 4 //■ r.»~r

  14. MEASUREMENT OF THE TRANSVERSE BEAM DYNAMICS IN A TESLA-TYPE SUPERCONDUCTING CAVITY

    SciTech Connect

    Halavanau, A.; Eddy, N.; Edstrom, D.; Lunin, A.; Piot, P.; Ruan, J.; Solyak, N.

    2016-09-26

    Superconducting linacs are capable of producing intense, ultra-stable, high-quality electron beams that have widespread applications in Science and Industry. Many project are based on the 1.3-GHz TESLA-type superconducting cavity. In this paper we provide an update on a recent experiment aimed at measuring the transfer matrix of a TESLA cavity at the Fermilab Accelerator Science and Technology (FAST) facility. The results are discussed and compared with analytical and numerical simulations.

  15. A 200 SUPERCONDUCTING RACETRACK MICROTRON,

    DTIC Science & Technology

    A race-track microtron is proposed consisting of two 180 degree magnets spaced 2.5 meters apart with a superconducting linac section between. The...MeV per turn. The electrons are injected into the microtron at about 12 MeV from a second superconducting accelerator section. The spacing between...superconducting linac sections, a beam current of 100 microamps at unity duty cycle is feasible. It is also possible to build the microtron using

  16. Silicon superconducting quantum interference device

    SciTech Connect

    Duvauchelle, J. E.; Francheteau, A.; Marcenat, C.; Lefloch, F.; Chiodi, F.; Débarre, D.; Hasselbach, K.; Kirtley, J. R.

    2015-08-17

    We have studied a Superconducting Quantum Interference Device (SQUID) made from a single layer thin film of superconducting silicon. The superconducting layer is obtained by heavily doping a silicon wafer with boron atoms using the gas immersion laser doping technique. The SQUID is composed of two nano-bridges (Dayem bridges) in a loop and shows magnetic flux modulation at low temperature and low magnetic field. The overall behavior shows very good agreement with numerical simulations based on the Ginzburg-Landau equations.

  17. Superconducting Analog to Digital Converters

    DTIC Science & Technology

    1991-09-01

    superconductivity, Josephson junctions, and superconducting quantum interference devices ( SQUIDs ) are briefly described. Various techniques to perform analog-to...deployment in the 1990s may require a dynamic range in excess of 90 dB (15- bit precision) [3]. However, at the present time, A/D conversion with 16-bit...Interference Devices ( SQUIDs ). JOSEPHSON EFFECTS AND JUNCTIONS Consider a very thin, non-superconducting region separating two superconductors. In 1962

  18. Comparative depositional geometries and facies within windward rimmed platform and carbonate ramp sequences

    SciTech Connect

    Boss, S.K.; Rasmussen, K.A.; Neumann, A.C. )

    1992-01-01

    Northern Great Bahama Bank (NGBB) combines geomorphic aspects of rimmed platforms and carbonate ramps in a windward (high-energy) environment. Analysis of Holocene sediment cores, seismic reflection mapping of the Holocene-Pleistocene unconformity and transgressive Holocene deposits and petrographic study of excavated Holocene submarine-cemented horizons provides an integrated view of evolving depositional geometries within both rimmed platform and ramp settings. Cores display gross textural and compositional homogeneity; all sediments are medium to coarse sands comprised of composite peloids, Halimeda sp., benthic foraminifera and molluscs. Three-dimensional seismic mapping reveals that this basal unconformity exhibits variation in topographic relief related to both constructional and erosional processes; rimmed portions of the platform are associated with topographic plateaus'' with fringing eolianite ridges or (rarely) reefs. These plateaus'' are separated by a somewhat deeper (ca. 5m deep) trough'' exhibiting little relief, but sloping seaward to form a ramp. Multiple intrasequence cemented horizons are a common feature of the thinner deposits of the NGBB ramp where tidal exchange is vigorous and sediment deposition is episodic or in dynamic balance with sediment export. Thus, rimmed carbonate platform facies are thick marine sands with relatively little submarine cementation while open, unsheltered ramp facies are characterized by thin sediment sequences containing numerous, discontinuous submarine-cemented horizons. In the absence of other obvious facies or geomorphic indicators (e.g. preserved reefal rims), the preservation of similar depositional features in ancient limestones may serve as a useful discriminant of rimmed platform versus carbonate ramp settings.

  19. Cellular automata model simulating traffic car accidents in the on-ramp system

    NASA Astrophysics Data System (ADS)

    Echab, H.; Lakouari, N.; Ez-Zahraouy, H.; Benyoussef, A.

    2015-01-01

    In this paper, using Nagel-Schreckenberg model we study the on-ramp system under the expanded open boundary condition. The phase diagram of the two-lane on-ramp system is computed. It is found that the expanded left boundary insertion strategy enhances the flow in the on-ramp lane. Furthermore, we have studied the probability of the occurrence of car accidents. We distinguish two types of car accidents: the accident at the on-ramp site (Prc) and the rear-end accident in the main road (Pac). It is shown that car accidents at the on-ramp site are more likely to occur when traffic is free on road A. However, the rear-end accidents begin to occur above a critical injecting rate αc1. The influence of the on-ramp length (LB) and position (xC0) on the car accidents probabilities is studied. We found that large LB or xC0 causes an important decrease of the probability Prc. However, only large xC0 provokes an increase of the probability Pac. The effect of the stochastic randomization is also computed.

  20. Risk assessment in ramps for heavy vehicles--A French study.

    PubMed

    Cerezo, Veronique; Conche, Florence

    2016-06-01

    This paper presents the results of a study dealing with the risk for heavy vehicles in ramps. Two approaches are used. On one hand, statistics are applied on several accidents databases to detect if ramps are more risky for heavy vehicles and to define a critical value for longitudinal slope. χ(2) test confirmed the risk in ramps and statistical analysis proved that a longitudinal slope superior to 3.2% represents a higher risk for heavy vehicles. On another hand, numerical simulations allow defining the speed profile in ramps for two types of heavy vehicles (tractor semi-trailer and 2-axles rigid body) and different loads. The simulations showed that heavy vehicles must drive more than 1000 m on ramps to reach their minimum speed. Moreover, when the slope is superior to 3.2%, tractor semi-trailer presents a strong decrease of their speed until 50 km/h. This situation represents a high risk of collision with other road users which drive at 80-90 km/h. Thus, both methods led to the determination of a risky configuration for heavy vehicles: ramps with a length superior to 1000 m and a slope superior to 3.2%. An application of this research work concerns design methods and guidelines. Indeed, this study provides threshold values than can be used by engineers to make mandatory specific planning like a lane for slow vehicles.

  1. Ramp Forecasting Performance from Improved Short-Term Wind Power Forecasting: Preprint

    SciTech Connect

    Zhang, J.; Florita, A.; Hodge, B. M.; Freedman, J.

    2014-05-01

    The variable and uncertain nature of wind generation presents a new concern to power system operators. One of the biggest concerns associated with integrating a large amount of wind power into the grid is the ability to handle large ramps in wind power output. Large ramps can significantly influence system economics and reliability, on which power system operators place primary emphasis. The Wind Forecasting Improvement Project (WFIP) was performed to improve wind power forecasts and determine the value of these improvements to grid operators. This paper evaluates the performance of improved short-term wind power ramp forecasting. The study is performed for the Electric Reliability Council of Texas (ERCOT) by comparing the experimental WFIP forecast to the current short-term wind power forecast (STWPF). Four types of significant wind power ramps are employed in the study; these are based on the power change magnitude, direction, and duration. The swinging door algorithm is adopted to extract ramp events from actual and forecasted wind power time series. The results show that the experimental short-term wind power forecasts improve the accuracy of the wind power ramp forecasting, especially during the summer.

  2. Flow control of micro-ramps on supersonic forward-facing step flow

    NASA Astrophysics Data System (ADS)

    Qing-Hu, Zhang; Tao, Zhu; Shihe, Yi; Anping, Wu

    2016-05-01

    The effects of the micro-ramps on supersonic turbulent flow over a forward-facing step (FFS) was experimentally investigated in a supersonic low-noise wind tunnel at Mach number 3 using nano-tracer planar laser scattering (NPLS) and particle image velocimetry (PIV) techniques. High spatiotemporal resolution images and velocity fields of supersonic flow over the testing model were captured. The fine structures and their spatial evolutionary characteristics without and with the micro-ramps were revealed and compared. The large-scale structures generated by the micro-ramps can survive the downstream FFS flowfield. The micro-ramps control on the flow separation and the separation shock unsteadiness was investigated by PIV results. With the micro-ramps, the reduction in the range of the reversal flow zone in streamwise direction is 50% and the turbulence intensity is also reduced. Moreover, the reduction in the average separated region and in separation shock unsteadiness are 47% and 26%, respectively. The results indicate that the micro-ramps are effective in reducing the flow separation and the separation shock unsteadiness. Project supported by the National Natural Science Foundation of China (Grant Nos. 11172326 and 11502280).

  3. Chiral magnetic superconductivity

    NASA Astrophysics Data System (ADS)

    Kharzeev, Dmitri E.

    2017-03-01

    Materials with charged chiral quasiparticles in external parallel electric and magnetic fields can support an electric current that grows linearly in time, corresponding to diverging DC conductivity. From experimental viewpoint, this "Chiral Magnetic Superconductivity" (CMS) is thus analogous to conventional superconductivity. However the underlying physics is entirely different - the CMS does not require a condensate of Cooper pairs breaking the gauge degeneracy, and is thus not accompanied by Meissner effect. Instead, it owes its existence to the (temperature-independent) quantum chiral anomaly and the conservation of chirality. As a result, this phenomenon can be expected to survive to much higher temperatures. Even though the chirality of quasiparticles is not strictly conserved in real materials, the chiral magnetic superconductivity should still exhibit itself in AC measurements at frequencies larger than the chirality-flipping rate, and in microstructures of Dirac and Weyl semimetals with thickness below the mean chirality-flipping length that is about 1 - 100 μm. In nuclear physics, the CMS should contribute to the charge-dependent elliptic flow in heavy ion collisions.

  4. Navy superconductivity efforts

    NASA Technical Reports Server (NTRS)

    Gubser, D. U.

    1990-01-01

    Both the new high temperature superconductors (HTS) and the low temperature superconductors (LTS) are important components of Navy's total plan to integrate superconductivity into field operational systems. Fundamental research is an important component of the total Navy program and focuses on the HTS materials. Power applications (ship propulsion, etc.) use LTS materials while space applications (MMW electronics, etc.) use HTS materials. The Space Experiment being conducted at NRL will involve space flight testing of HTS devices built by industry and will demonstrate the ability to engineer and space qualify these devices for systems use. Another important component of the Navy's effort is the development of Superconducting Quantum Interference Device (SQUID) magnetometers. This program will use LTS materials initially, but plans to implement HTS materials as soon as possible. Hybrid HTS/LTS systems are probable in many applications. A review of the status of the Navy's HTS materials research is given as well as an update on the Navy's development efforts in superconductivity, with particular emphasis on the related SDIO sponsored program on HTS applications.

  5. US Navy superconductivity program

    NASA Technical Reports Server (NTRS)

    Gubser, Donald U.

    1991-01-01

    Both the new high temperature superconductors (HTS) and the low temperature superconductors (LTS) are important components of the Navy's total plan to integrate superconductivity into field operational systems. Fundamental research is an important component of the total Navy program and focuses on the HTS materials. Power applications (ship propulsion) use LTS materials while space applications (millimeter wave electronics) use HTS materials. The Space Experiment to be conducted at NRL will involve space flight testing of HTS devices built by industry and will demonstrate the ability to engineer and space qualify these devices for systems use. Another important component of the Navy's effort is the development of Superconducting Quantum Interference Device (SQUID) magnetometers. This program will use LTS materials initially, but plans to implement HTS materials as soon as possible. Hybrid HTS/LTS systems are probable in many applications. A review of the status of the Navy's HTS materials research is given as well as an update on the Navy's development efforts in superconductivity.

  6. Navy superconductivity efforts

    NASA Astrophysics Data System (ADS)

    Gubser, D. U.

    1990-04-01

    Both the new high temperature superconductors (HTS) and the low temperature superconductors (LTS) are important components of Navy's total plan to integrate superconductivity into field operational systems. Fundamental research is an important component of the total Navy program and focuses on the HTS materials. Power applications (ship propulsion, etc.) use LTS materials while space applications (MMW electronics, etc.) use HTS materials. The Space Experiment being conducted at NRL will involve space flight testing of HTS devices built by industry and will demonstrate the ability to engineer and space qualify these devices for systems use. Another important component of the Navy's effort is the development of Superconducting Quantum Interference Device (SQUID) magnetometers. This program will use LTS materials initially, but plans to implement HTS materials as soon as possible. Hybrid HTS/LTS systems are probable in many applications. A review of the status of the Navy's HTS materials research is given as well as an update on the Navy's development efforts in superconductivity, with particular emphasis on the related SDIO sponsored program on HTS applications.

  7. Tunable superconducting microstrip resonators

    NASA Astrophysics Data System (ADS)

    Adamyan, A. A.; Kubatkin, S. E.; Danilov, A. V.

    2016-04-01

    We report on a simple yet versatile design for a tunable superconducting microstrip resonator. Niobium nitride is employed as the superconducting material and aluminum oxide, produced by atomic layer deposition, as the dielectric layer. We show that the high quality of the dielectric material allows to reach the internal quality factors in the order of Qi˜104 in the single photon regime. Qi rapidly increases with the number of photons in the resonator N and exceeds 105 for N ˜10 -50 . A straightforward modification of the basic microstrip design allows to pass a current bias through the strip and to control its kinetic inductance. We achieve a frequency tuning δf =62 MHz around f0=2.4 GHz for a fundamental mode and δf =164 MHz for a third harmonic. This translates into a tuning parameter Qiδf /f0=150 . The presented design can be incorporated into essentially any superconducting circuitry operating at temperatures below 2.5 K.

  8. Magnetically leviated superconducting bearing

    DOEpatents

    Weinberger, Bernard R.; Lynds, Jr., Lahmer

    1993-01-01

    A magnetically levitated superconducting bearing includes a magnet (2) mounted on a shaft (12) that is rotatable around an axis of rotation and a Type II superconductor (6) supported on a stator (14) in proximity to the magnet (2). The superconductor (6) is positioned so that when it is cooled to its superconducting state in the presence of a magnetic field, it interacts with the magnet (2) to produce an attractive force that levitates the magnet (2) and supports a load on the shaft (12). The interaction between the superconductor (6) and magnet(2) also produces surface screening currents (8) that generate a repulsive force perpendicular to the load. The bearing also has means for maintaining the superconductor at a temperature below its critical temperature (16, 18). The bearing could also be constructed so the magnet (2) is supported on the stator (14) and the superconductor (6) is mounted on the shaft (12). The bearing can be operated by cooling the superconductor (6) to its superconducting state in the presence of a magnetic field.

  9. Structural Analysis of the Redesigned Ice/Frost Ramp Bracket

    NASA Technical Reports Server (NTRS)

    Phillips, D. R.; Dawicke, D. S.; Gentz, S. J.; Roberts, P. W.; Raju, I. S.

    2007-01-01

    This paper describes the interim structural analysis of a redesigned Ice/Frost Ramp bracket for the Space Shuttle External Tank (ET). The proposed redesigned bracket consists of mounts for attachment to the ET wall, supports for the electronic/instrument cables and propellant repressurization lines that run along the ET, an upper plate, a lower plate, and complex bolted connections. The eight nominal bolted connections are considered critical in the summarized structural analysis. Each bolted connection contains a bolt, a nut, four washers, and a non-metallic spacer and block that are designed for thermal insulation. A three-dimensional (3D) finite element model of the bracket is developed using solid 10-node tetrahedral elements. The loading provided by the ET Project is used in the analysis. Because of the complexities associated with accurately modeling the bolted connections in the bracket, the analysis is performed using a global/local analysis procedure. The finite element analysis of the bracket identifies one of the eight bolted connections as having high stress concentrations. A local area of the bracket surrounding this bolted connection is extracted from the global model and used as a local model. Within the local model, the various components of the bolted connection are refined, and contact is introduced along the appropriate interfaces determined by the analysts. The deformations from the global model are applied as boundary conditions to the local model. The results from the global/local analysis show that while the stresses in the bolts are well within yield, the spacers fail due to compression. The primary objective of the interim structural analysis is to show concept viability for static thermal testing. The proposed design concept would undergo continued design optimization to address the identified analytical assumptions and concept shortcomings, assuming successful thermal testing.

  10. Temperature-Ramped 129Xe Spin-Exchange Optical Pumping

    PubMed Central

    2015-01-01

    We describe temperature-ramped spin-exchange optical pumping (TR-SEOP) in an automated high-throughput batch-mode 129Xe hyperpolarizer utilizing three key temperature regimes: (i) “hot”—where the 129Xe hyperpolarization rate is maximal, (ii) “warm”—where the 129Xe hyperpolarization approaches unity, and (iii) “cool”—where hyperpolarized 129Xe gas is transferred into a Tedlar bag with low Rb content (<5 ng per ∼1 L dose) suitable for human imaging applications. Unlike with the conventional approach of batch-mode SEOP, here all three temperature regimes may be operated under continuous high-power (170 W) laser irradiation, and hyperpolarized 129Xe gas is delivered without the need for a cryocollection step. The variable-temperature approach increased the SEOP rate by more than 2-fold compared to the constant-temperature polarization rate (e.g., giving effective values for the exponential buildup constant γSEOP of 62.5 ± 3.7 × 10–3 min–1 vs 29.9 ± 1.2 × 10–3 min–1) while achieving nearly the same maximum %PXe value (88.0 ± 0.8% vs 90.1% ± 0.8%, for a 500 Torr (67 kPa) Xe cell loading—corresponding to nuclear magnetic resonance/magnetic resonance imaging (NMR/MRI) enhancements of ∼3.1 × 105 and ∼2.32 × 108 at the relevant fields for clinical imaging and HP 129Xe production of 3 T and 4 mT, respectively); moreover, the intercycle “dead” time was also significantly decreased. The higher-throughput TR-SEOP approach can be implemented without sacrificing the level of 129Xe hyperpolarization or the experimental stability for automation—making this approach beneficial for improving the overall 129Xe production rate in clinical settings. PMID:25008290

  11. Temperature-ramped (129)Xe spin-exchange optical pumping.

    PubMed

    Nikolaou, Panayiotis; Coffey, Aaron M; Barlow, Michael J; Rosen, Matthew S; Goodson, Boyd M; Chekmenev, Eduard Y

    2014-08-19

    We describe temperature-ramped spin-exchange optical pumping (TR-SEOP) in an automated high-throughput batch-mode (129)Xe hyperpolarizer utilizing three key temperature regimes: (i) "hot"-where the (129)Xe hyperpolarization rate is maximal, (ii) "warm"-where the (129)Xe hyperpolarization approaches unity, and (iii) "cool"-where hyperpolarized (129)Xe gas is transferred into a Tedlar bag with low Rb content (<5 ng per ∼1 L dose) suitable for human imaging applications. Unlike with the conventional approach of batch-mode SEOP, here all three temperature regimes may be operated under continuous high-power (170 W) laser irradiation, and hyperpolarized (129)Xe gas is delivered without the need for a cryocollection step. The variable-temperature approach increased the SEOP rate by more than 2-fold compared to the constant-temperature polarization rate (e.g., giving effective values for the exponential buildup constant γSEOP of 62.5 ± 3.7 × 10(-3) min(-1) vs 29.9 ± 1.2 × 10(-3) min(-1)) while achieving nearly the same maximum %PXe value (88.0 ± 0.8% vs 90.1% ± 0.8%, for a 500 Torr (67 kPa) Xe cell loading-corresponding to nuclear magnetic resonance/magnetic resonance imaging (NMR/MRI) enhancements of ∼3.1 × 10(5) and ∼2.32 × 10(8) at the relevant fields for clinical imaging and HP (129)Xe production of 3 T and 4 mT, respectively); moreover, the intercycle "dead" time was also significantly decreased. The higher-throughput TR-SEOP approach can be implemented without sacrificing the level of (129)Xe hyperpolarization or the experimental stability for automation-making this approach beneficial for improving the overall (129)Xe production rate in clinical settings.

  12. Realization of an on-chip superconducting microwave switch

    NASA Astrophysics Data System (ADS)

    Pechal, Marek; Gasparinetti, Simone; Mondal, Mintu; Oppliger, Markus; Wallraff, Andreas

    As state-of-the-art superconducting quantum devices get increasingly complex, they require a growing number of control and detection channels. On-chip routing and multiplexing of signals presents a way to realize these without requiring an unrealistically large number of microwave lines. The ability to route signals on a chip will also be a useful tool for fast in-situ characterization of superconducting devices. Here, we describe and experimentally demonstrate a superconducting on-chip microwave switch which can be integrated with current superconducting quantum circuits. The device is based on interference effects and is in principle lossless, making it well-suited for operation in dilution cryostats and for routing of signals at the single quantum level with near-unity efficiency. The first proof-of-principle device has a bandwidth of 150 MHz , a 1 dB compression point of - 80 dBm and turn-on/off times on the order of 5 ns . On/off power ratios reach values of approximately 30 dB . We expect that our device will find use in (de)multiplexing of control and readout in superconducting circuits and routing of microwave fields in quantum optical experiments and quantum communication applications.

  13. A Planar Two-Dimensional Superconducting Bolometer Array for the Green Bank Telescope

    NASA Technical Reports Server (NTRS)

    Benford, Dominic; Staguhn, Johannes G.; Chervenak, James A.; Chen, Tina C.; Moseley, S. Harvey; Wollack, Edward J.; Devlin, Mark J.; Dicker, Simon R.; Supanich, Mark

    2004-01-01

    In order to provide high sensitivity rapid imaging at 3.3mm (90GHz) for the Green Bank Telescope - the world's largest steerable aperture - a camera is being built by the University of Pennsylvania, NASA/GSFC, and NRAO. The heart of this camera is an 8x8 close-packed, Nyquist-sampled detector array. We have designed and are fabricating a functional superconducting bolometer array system using a monolithic planar architecture. Read out by SQUID multiplexers, the superconducting transition edge sensors will provide fast, linear, sensitive response for high performance imaging. This will provide the first ever superconducting bolometer array on a facility instrument.

  14. A planar two-dimensional superconducting bolometer array for the Green Bank Telescope

    NASA Astrophysics Data System (ADS)

    Benford, Dominic J.; Dicker, Simon R.; Wollack, Edward J.; Supanich, Mark P.; Staguhn, Johannes G.; Moseley, S. H., Jr.; Irwin, Kent D.; Devlin, Mark J.; Chervenak, James A.; Chen, Tina C.

    2004-10-01

    In order to provide high sensitivity rapid imaging at 3.3 mm (90 GHz) for the Green Bank Telescope - the world's largest steerable aperture - a camera is being built by the University of Pennsylvania, NASA/GSFC, and NRAO. The heart of this camera is an 8x8 close-packed, Nyquist-sampled detector array. We have designed and are fabricating a functional superconducting bolometer array system using a monolithic planar architecture. Read out by SQUID multiplexers, the superconducting transition edge sensors will provide fast, linear, sensitive response for high performance imaging. This will provide the first ever superconducting bolometer array on a facility instrument.

  15. Superconducting linacs: some recent developments

    SciTech Connect

    Bollinger, L.M.

    1985-01-01

    The paper is a review of superconducting linacs that are of interest for heavy-ion acceleration. Most of the paper is concerned with energy boosters for projectiles from tandem electrostatic accelerators, the only application for which superconducting linacs are now used for heavy-ion acceleration. There is also a brief discussion of the concept of a superconducting injector linac being developed as a replacement of the tandem in a multi-stage acceleration system. Throughout, the emphasis is on the technology of the superconducting linac, including some attention to the relationships between resonator design parameters and accelerator performance characteristics. 21 refs., 14 figs., 3 tabs.

  16. Korea's developmental program for superconductivity

    NASA Technical Reports Server (NTRS)

    Hong, Gye-Won; Won, Dong-Yeon; Kuk, Il-Hyun; Park, Jong-Chul

    1995-01-01

    Superconductivity research in Korea was firstly carried out in the late 70's by a research group in Seoul National University (SNU), who fabricated a small scale superconducting magnetic energy storage system under the financial support from Korea Electric Power Company (KEPCO). But a few researchers were involved in superconductivity research until the oxide high Tc superconductor was discovered by Bednorz and Mueller. After the discovery of YBaCuO superconductor operating above the boiling point of liquid nitrogen (77 K)(exp 2), Korean Ministry of Science and Technology (MOST) sponsored a special fund for the high Tc superconductivity research to universities and national research institutes by recognizing its importance. Scientists engaged in this project organized 'High Temperature Superconductivity Research Association (HITSRA)' for effective conducting of research. Its major functions are to coordinate research activities on high Tc superconductivity and organize the workshop for active exchange of information. During last seven years the major superconductivity research has been carried out through the coordination of HITSRA. The major parts of the Korea's superconductivity research program were related to high temperature superconductor and only a few groups were carrying out research on conventional superconductor technology, and Korea Atomic Energy Research Institute (KAERI) and Korea Electrotechnology Research Institute (KERI) have led this research. In this talk, the current status and future plans of superconductivity research in Korea will be reviewed based on the results presented in interim meeting of HITSRA, April 1-2, 1994. Taejeon, as well as the research activity of KAERI.

  17. Superconductivity-related insulating behavior.

    PubMed

    Sambandamurthy, G; Engel, L W; Johansson, A; Shahar, D

    2004-03-12

    We present the results of an experimental study of superconducting, disordered, thin films of amorphous indium oxide. These films can be driven from the superconducting phase to a reentrant insulating state by the application of a perpendicular magnetic field (B). We find that the high-B insulator exhibits activated transport with a characteristic temperature, TI. TI has a maximum value (TpI) that is close to the superconducting transition temperature (Tc) at B=0, suggesting a possible relation between the conduction mechanisms in the superconducting and insulating phases. Tp(I) and Tc display opposite dependences on the disorder strength.

  18. Topological Superconductivity in Dirac Semimetals.

    PubMed

    Kobayashi, Shingo; Sato, Masatoshi

    2015-10-30

    Dirac semimetals host bulk band-touching Dirac points and a surface Fermi loop. We develop a theory of superconducting Dirac semimetals. Establishing a relation between the Dirac points and the surface Fermi loop, we clarify how the nontrivial topology of Dirac semimetals affects their superconducting state. We note that the unique orbital texture of Dirac points and a structural phase transition of the crystal favor symmetry-protected topological superconductivity with a quartet of surface Majorana fermions. We suggest the possible application of our theory to recently discovered superconducting states in Cd_{3}As_{2}.

  19. Simulations towards the achievement of non-inductive current ramp-up and sustainment in the National Spherical Torus Experiment Upgrade

    SciTech Connect

    Poli, F. M.; Andre, R. G.; Bertelli, N.; Gerhardt, S. P.; Mueller, D.; Taylor, G.

    2015-10-30

    One of the goals of the National Spherical Torus Experiment Upgrade (NSTX-U) (Menard et al 2012 Nucl. Fusion 52 083015) is the demonstration of fully non-inductive start-up, current ramp-up and sustainment. This work discusses predictive simulations where the available heating and current drive systems are combined to maximize the non-inductive current and minimize the solenoidal contribution. Radio-frequency waves at harmonics higher than the ion cyclotron resonance (high-harmonic fast waves (HHFW)) and neutral beam injection are used to ramp the plasma current non-inductively starting from an initial Ohmic plasma. An interesting synergy is observed in the simulations between the HHFW and electron cyclotron (EC) wave heating. Furthermore, time-dependent simulations indicate that, depending on the phasing of the HHFW antenna, EC wave heating can significantly increase the effectiveness of the radio-frequency power, by heating the electrons and increasing the current drive efficiency, thus relaxing the requirements on the level of HHFW power that needs to be absorbed in the core plasma to drive the same amount of fast-wave current.

  20. Simulations towards the achievement of non-inductive current ramp-up and sustainment in the National Spherical Torus Experiment Upgrade

    DOE PAGES

    Poli, F. M.; Andre, R. G.; Bertelli, N.; ...

    2015-10-30

    One of the goals of the National Spherical Torus Experiment Upgrade (NSTX-U) (Menard et al 2012 Nucl. Fusion 52 083015) is the demonstration of fully non-inductive start-up, current ramp-up and sustainment. This work discusses predictive simulations where the available heating and current drive systems are combined to maximize the non-inductive current and minimize the solenoidal contribution. Radio-frequency waves at harmonics higher than the ion cyclotron resonance (high-harmonic fast waves (HHFW)) and neutral beam injection are used to ramp the plasma current non-inductively starting from an initial Ohmic plasma. An interesting synergy is observed in the simulations between the HHFW andmore » electron cyclotron (EC) wave heating. Furthermore, time-dependent simulations indicate that, depending on the phasing of the HHFW antenna, EC wave heating can significantly increase the effectiveness of the radio-frequency power, by heating the electrons and increasing the current drive efficiency, thus relaxing the requirements on the level of HHFW power that needs to be absorbed in the core plasma to drive the same amount of fast-wave current.« less

  1. Modeling of neutral beam injection heating and current drive during the ramp-up phase in KSTAR

    NASA Astrophysics Data System (ADS)

    Terzolo, L.

    2014-06-01

    For flexible control of the plasma pressure and the current profiles, which are essential for a high performance plasma with long pulse operation, KSTAR is going to implement several heating and current systems, which include Neutral Beam Injection (NBI), Ion Cyclotron Resonant Heting (ICRH)/Fast Wave Current Drive (FWCD), Lower Hybrid Current Drive (LHCD), and Eclectron Cyclotron Heating (ECH)/Electron Cyclotron Current Drive (ECCD). Here, the NBI system is typically used for the central heating and current drive. For the time being, only one NBI device (composed of 3 sources) is available in KSTAR. The first two sources were successfully commissioned in 2010 and 2013. The last source will be installed in 2014. In this work, we present a simulation study of the heating and current drive of the first NBI system (3 sources) during the ramp-up phase. We consider two different NBI configurations (low and high beam energy). The simulation is performed with NUBEAM, a well-recognized Monte-Carlo code. Several different types of KSTAR target equilibria (scan from lower to higher plasma density) are used for the calculation of the current drive, the heating and the different NB losses (shinethrough, charge exchange and bad orbit). The study shows the dependency of those quantities on the plasma density, the position of the NB source and the beam energy. It also shows that because of the shinethrough loss is too high, each NB source cannot be used when the plasma density is under a certain threshold. This study can be used to determine the starting time of the different NB sources during the KSTAR ramp-up phase.

  2. Fast Reactors

    NASA Astrophysics Data System (ADS)

    Esposito, S.; Pisanti, O.

    The following sections are included: * Elementary Considerations * The Integral Equation to the Neutron Distribution * The Critical Size for a Fast Reactor * Supercritical Reactors * Problems and Exercises

  3. Loading and Unloading Finishing Pigs: Effects of Bedding Types, Ramp Angle, and Bedding Moisture

    PubMed Central

    Garcia, Arlene; McGlone, John J.

    2014-01-01

    Simple Summary Current guidelines suggest the use of ramps below 20 degrees to load and unload pigs; however, they do not suggest the use of any specific bedding. Bedding types (nothing, feed, sand, wood shavings, and hay) were tested with finishing pigs (70–120 kg) to determine which was most effective in reducing slips, falls, and vocalizations at three ramp angles, two moisture levels, over two seasons. Slips, falls, and vocalizations were summed to establish a scoring system for the types of beddings. Heart rate and the total time it took to load and unload pigs, increased as the slope increased. Bedding, bedding moisture, season, and ramp slope interacted to impact the total time it took for finishing pigs to load and unload the ramp. Selection of the best bedding depends on ramp slope, season, and wetness of bedding. Abstract The use of non-slip surfaces during loading and unloading of finishing pigs plays an important role in animal welfare and economics of the pork industry. Currently, the guidelines available only suggest the use of ramps with a slope below 20 degrees to load and unload pigs. However, the total time it takes to load and unload animals and slips, falls, and vocalizations are a welfare concern. Three ramp angles (0, 10 or 20 degrees), five bedding materials (nothing, sand, feed, wood shavings or wheat straw hay), two moistures (dry or wet bedding, >50% moisture) over two seasons (>23.9 °C summer, <23.9 °C winter) were assessed for slips/falls/vocalizations (n = 2400 pig observations) and analyzed with a scoring system. The use of bedding during summer or winter played a role in the total time it took to load and unload the ramp (p < 0.05). Bedding, bedding moisture, season, and slope significantly interacted to impact the total time to load and unload finishing pigs (p < 0.05). Heart rate and the total time it took to load and unload the ramp increased as the slope of the ramp increased (p < 0.05). Heart rates were higher during the

  4. Concerning superconducting inertial guidance gyroscopes inside superconducting magnetic shields

    SciTech Connect

    Satterthwaite, J.C.; Gawlinski, E.T.

    1997-12-01

    Superconductors can in theory be used to detect rotation by Josephson interference or by detection of the London field, a magnetic induction that fills the interior of any rotating bulk superconductor. One might hope to use these properties of superconductors to build a practical inertial guidance gyroscope. A problem arises from the necessity of surrounding the device with superconducting magnetic shielding: the London field generated by a co-rotating shield eliminates the response of the superconducting device within the shield. The present article demonstrates this point more rigorously than has been done before, discussing solutions of Ampere`s law for rotating and nonrotating superconductors and paying careful attention to boundary conditions. Beginning with a supercurrent density derivable from either the Ginzburg-Landau or the London theory of superconductivity, the article shows: (1) that a superconducting device cannot distinguish between rotation and an applied magnetic field; (2) that a superconducting device surrounded by a co-rotating superconducting shield cannot detect rotation. The term `superconducting gyroscope` in this article refers only to a device whose working principle is the response of the superconductor itself to rotation, not to any device in which superconducting electronic components are used to detect some other effect. {copyright} {ital 1997 American Institute of Physics.}

  5. Optimization of superconducting tiling pattern for superconducting bearings

    DOEpatents

    Hull, J.R.

    1996-09-17

    An apparatus and method for reducing magnetic field inhomogeneities which produce rotational loss mechanisms in high temperature superconducting magnetic bearings are disclosed. Magnetic field inhomogeneities are reduced by dividing high temperature superconducting structures into smaller structures, and arranging the smaller structures into tiers which stagger the magnetic field maximum locations of the smaller structures. 20 figs.

  6. Optimization of superconducting tiling pattern for superconducting bearings

    DOEpatents

    Hull, John R.

    1996-01-01

    An apparatus and method for reducing magnetic field inhomogeneities which produce rotational loss mechanisms in high temperature superconducting magnetic bearings. Magnetic field inhomogeneities are reduced by dividing high temperature superconducting structures into smaller structures, and arranging the smaller structures into tiers which stagger the magnetic field maximum locations of the smaller structures.

  7. Anatomy of a cyclically packaged Mesoproterozoic carbonate ramp in northern Canada

    NASA Astrophysics Data System (ADS)

    Sherman, A. G.; Narbonne, G. M.; James, N. P.

    2001-03-01

    Carbonates in the upper member of the Mesoproterozoic Victor Bay Formation are dominated by lime mud and packaged in cycles of 20-50 m. These thicknesses exceed those of classic shallowing-upward cycles by almost a factor of 10. Stratigraphic and sedimentological evidence suggests high-amplitude, high-frequency glacio-eustatic cyclicity, and thus a cool global climate ca. 1.2 Ga. The Victor Bay ramp is one of several late Proterozoic carbonate platforms where the proportions of lime mud, carbonate grains, and microbialites are more typical of younger Phanerozoic successions which followed the global waning of stromatolites. Facies distribution in the study area is compatible with deposition on a low-energy, microtidal, distally steepened ramp. Outer-ramp facies are hemipelagic lime mudstone, shale, carbonaceous rhythmite, and debrites. Mid-ramp facies are molar-tooth limestone tempestite with microspar-intraclast lags. In a marine environment where stromatolitic and oolitic facies were otherwise rare, large stromatolitic reefs developed at the mid-ramp, coeval with inner-ramp facies of microspar grainstone, intertidal dolomitic microbial laminite, and supratidal evaporitic red shale. Deep-subtidal, outer-ramp cycles occur in the southwestern part of the study area. Black dolomitic shale at the base is overlain by ribbon, nodular, and carbonaceous carbonate facies, all of which exhibit signs of synsedimentary disruption. Cycles in the northeast are shallow-subtidal and peritidal in character. Shallow-subtidal cycles consist of basal deep-water facies, and an upper layer of subtidal molar-tooth limestone tempestite interbedded with microspar calcarenite facies. Peritidal cycles are identical to shallow-subtidal cycles except that they contain a cap of dolomitic tidal-flat microbial laminite, and rarely of red shale sabkha facies or of sandy polymictic conglomerate. A transect along the wall of a valley extending 8.5 km perpendicular to depositional strike reveals

  8. Sequence development of a latest Devonian-Tournaisian distally-steepened mixed carbonate-siliciclastic ramp, Canning Basin, Australia

    NASA Astrophysics Data System (ADS)

    Seyedmehdi, Zahra; George, Annette D.; Tucker, Maurice E.

    2016-03-01

    The sequence development and evolution of latest Devonian-earliest Carboniferous Fairfield Group in the Canning Basin have been established through integration of detailed sedimentological analysis of core, petrophysical data, existing biostratigraphic data and new seismic interpretations. The Fairfield Group on the Lennard Shelf was deposited on a mixed carbonate-siliciclastic distally-steepened ramp with a broad inner ramp, narrow mid ramp and steepened outer ramp. The majority of facies associations (FA1-FA8) were formed in intertidal-shallow subtidal conditions in proximal to distal inner ramp including siliciclastic tidal flats (FA1), carbonate intertidal flats (FA2), tidal flats and channels (FA3), lagoons (FA4-FA5), and shallow subtidal (FA6), backshoal (FA7) and fore-shoal areas (FA8). Bioclastic muddy sandstone (FA9) and bioclastic mudstone (FA10) are the dominant mid-ramp facies. Recognition of turbiditic facies of middle to lower slope of the outer ramp (FA11-FA13) led to the identification of a distally-steepened ramp. Antecedent topography exerted a significant control on platform morphology and the development of the widespread inner-ramp facies on the Lennard Shelf. A sequence-stratigraphic analysis reveals that the Fairfield Group ramp deposits consists of four third-order sequences (S1-S4) that were largely deposited during sea-level highstands (HST) characterized by progradational trends and dominant shallow subtidal inner-ramp facies associations. Transgressive systems tracts (TST) are well developed in S1 and S3 and have a retrogradational facies pattern with dominant deep subtidal mid-outer ramp facies associations. Lowstand systems tracts, characterized by lowstand wedges and turbiditic facies, are identified in the lower parts of S2 and S3. Coarse and fine-grained siliciclastic facies are mixed with carbonate facies as a result of coeval deposition on the inner and mid ramp, and reciprocal deposition on the outer ramp. A temporal variation in

  9. PIK-20 and LRV Vehicles Parked on Ramp

    NASA Technical Reports Server (NTRS)

    1981-01-01

    This photo shows NASA's PIK-20 motor-glider sailplane on the ramp at the Dryden Flight Research Center, Edwards, California. Next to the PIK-20 is the Low Reynolds Number Vehicle (LRV) remotely-piloted research vehicle. The PIK-20E was a sailplane flown at NASA's Ames-Dryden Flight Research Facility (now Dryden Flight Research Center, Edwards, California) beginning in 1981. The vehicle, bearing NASA tail number 803, was used as a research vehicle on projects calling for high lift-over-drag and low-speed performance. Later NASA used the PIK-20E to study the flow of fluids over the aircraft's surface at various speeds and angles of attack as part of a study of airflow efficiency over lifting surfaces. The single-seat aircraft was used to begin developing procedures for collecting sailplane glide performance data in a program carried out by Ames-Dryden. It was also used to study high-lift aerodynamics and laminar flow on high-lift airfoils. Built by Eiri-Avion in Finland, the PIK-20E is a sailplane with a two-cylinder 43-horsepower, retractable engine. It is made of carbon fiber with sandwich construction. In this unique configuration, it takes off and climbs to altitude on its own. After reaching the desired altitude, the engine is shut down and folded back into the fuselage and the aircraft is then operated as a conventional sailplane. Construction of the PIK-20E series was rather unusual. The factory used high-temperature epoxies cured in an autoclave, making the structure resistant to deformation with age. Unlike today's normal practice of laying glass over gelcoat in a mold, the PIK-20E was built without gelcoat. The finish is the result of smooth glass lay-up, a small amount of filler, and an acrylic enamel paint. The sailplane was 21.4 feet long and had a wingspan of 49.2 feet. It featured a wooden, fixed-pitch propeller, a roomy cockpit, wingtip wheels, and a steerable tailwheel.

  10. XS-1 on ramp with B-29 mothership

    NASA Technical Reports Server (NTRS)

    1949-01-01

    XS-1 on the ramp with the B-29 mothership in 1949. This is the second XS-1 built; it later was converted into the X-1E. Unlike the XS-1-1, which was flown by the Air Force, the XS-1-2 was flown mostly by Bell and NACA pilots. It gathered much more research data than the more famous XS-1-1, known as 'Glamorous Glennis.' The first of the rocket-powered research aircraft, the X-1 (originally designated the XS-1), was a bullet-shaped airplane that was built by the Bell Aircraft Company for the US Air Force and the NACA. The mission of the X-1 was to investigate the transonic speed range (speeds from just below to just above the speed of sound) and, if possible, to break the 'sound barrier.' The first of the three X-1s was glide-tested at Pinecastle Army Air Field, FL, in early 1946. The first powered flight of the X-1 was made on Dec. 9, 1946, at Edwards Air Force Base with Chalmers Goodlin, a Bell test pilot, at the controls. On Oct. 14, 1947, with USAF Captain Charles 'Chuck' Yeager as pilot, the aircraft flew faster than the speed of sound for the first time. Captain Yeager ignited the four-chambered XLR-11 rocket engines after the B-29 air-launched it from under the bomb bay of a B-29 at 21,000 feet. The 6,000-pound thrust ethyl alcohol/liquid oxygen burning rockets, built by Reaction Motors, Inc., pushed the aircraft up to a speed of 700 miles per hour in level flight. Captain Yeager was also the pilot when the X-1 reached its maximum speed, 957 miles per hour. Another USAF pilot. Lt. Col. Frank Everest, Jr., was credited with taking the X-1 to its maximum altitude of 71,902 feet. Eighteen pilots in all flew the X-1s. The number three plane was destroyed in a fire before ever making any powered flights. A single-place monoplane, the X-1 was 30 feet, 11 inches long; 10 feet, 10 inches high; and had a wingspan of 29 feet. It weighed 6,784 pounds and carried 6,250 pounds of fuel. It had a flush cockpit with a side entrance and no ejection seat.

  11. Power superconducting power transmission cable

    DOEpatents

    Ashworth, Stephen P.

    2003-06-10

    The present invention is for a compact superconducting power transmission cable operating at distribution level voltages. The superconducting cable is a conductor with a number of tapes assembled into a subconductor. These conductors are then mounted co-planarly in an elongated dielectric to produce a 3-phase cable. The arrangement increases the magnetic field parallel to the tapes thereby reducing ac losses.

  12. Power superconducting power transmission cable

    DOEpatents

    Ashworth, Stephen P.

    2003-01-01

    The present invention is for a compact superconducting power transmission cable operating at distribution level voltages. The superconducting cable is a conductor with a number of tapes assembled into a subconductor. These conductors are then mounted co-planarly in an elongated dielectric to produce a 3-phase cable. The arrangement increases the magnetic field parallel to the tapes thereby reducing ac losses.

  13. High critical current superconducting tapes

    DOEpatents

    Holesinger, Terry G.; Jia, Quanxi; Foltyn, Stephen R.

    2003-09-23

    Improvements in critical current capacity for superconducting film structures are disclosed and include the use of a superconducting RE-BCO layer including a mixture of rare earth metals, e.g., yttrium and europium, where the ratio of yttrium to europium in the RE-BCO layer ranges from about 3 to 1 to from about 1.5 to 1.

  14. A superconducting magnetic gear

    NASA Astrophysics Data System (ADS)

    Campbell, A. M.

    2016-05-01

    A comparison is made between a magnetic gear using permanent magnets and superconductors. The objective is to see if there are any fundamental reasons why superconducting magnets should not provide higher power densities than permanent magnets. The gear is based on the variable permeability design of Attilah and Howe (2001 IEEE Trans. Magn. 37 2844-46) in which a ring of permanent magnets surrounding a ring of permeable pole pieces with a different spacing gives an internal field component at the beat frequency. Superconductors can provide much larger fields and forces but will saturate the pole pieces. However the gear mechanism still operates, but in a different way. The magnetisation of the pole pieces is now constant but rotates with angle at the beat frequency. The result is a cylindrical Halbach array which produces an internal field with the same symmetry as in the linear regime, but has an analytic solution. In this paper a typical gear system is analysed with finite elements using FlexPDE. It is shown that the gear can work well into the saturation regime and that the Halbach array gives a good approximation to the results. Replacing the permanent magnets with superconducting tapes can give large increases in torque density, and for something like a wind turbine a combined gear and generator is possible. However there are major practical problems. Perhaps the most fundamental is the large high frequency field which is inevitably present and which will cause AC losses. Also large magnetic fields are required, with all the practical problems of high field superconducting magnets in rotating machines. Nevertheless there are ways of mitigating these difficulties and it seems worthwhile to explore the possibilities of this technology further.

  15. Superconductivity in a chiral nanotube

    NASA Astrophysics Data System (ADS)

    Qin, F.; Shi, W.; Ideue, T.; Yoshida, M.; Zak, A.; Tenne, R.; Kikitsu, T.; Inoue, D.; Hashizume, D.; Iwasa, Y.

    2017-02-01

    Chirality of materials are known to affect optical, magnetic and electric properties, causing a variety of nontrivial phenomena such as circular dichiroism for chiral molecules, magnetic Skyrmions in chiral magnets and nonreciprocal carrier transport in chiral conductors. On the other hand, effect of chirality on superconducting transport has not been known. Here we report the nonreciprocity of superconductivity--unambiguous evidence of superconductivity reflecting chiral structure in which the forward and backward supercurrent flows are not equivalent because of inversion symmetry breaking. Such superconductivity is realized via ionic gating in individual chiral nanotubes of tungsten disulfide. The nonreciprocal signal is significantly enhanced in the superconducting state, being associated with unprecedented quantum Little-Parks oscillations originating from the interference of supercurrent along the circumference of the nanotube. The present results indicate that the nonreciprocity is a viable approach toward the superconductors with chiral or noncentrosymmetric structures.

  16. Superconductivity in a chiral nanotube.

    PubMed

    Qin, F; Shi, W; Ideue, T; Yoshida, M; Zak, A; Tenne, R; Kikitsu, T; Inoue, D; Hashizume, D; Iwasa, Y

    2017-02-16

    Chirality of materials are known to affect optical, magnetic and electric properties, causing a variety of nontrivial phenomena such as circular dichiroism for chiral molecules, magnetic Skyrmions in chiral magnets and nonreciprocal carrier transport in chiral conductors. On the other hand, effect of chirality on superconducting transport has not been known. Here we report the nonreciprocity of superconductivity-unambiguous evidence of superconductivity reflecting chiral structure in which the forward and backward supercurrent flows are not equivalent because of inversion symmetry breaking. Such superconductivity is realized via ionic gating in individual chiral nanotubes of tungsten disulfide. The nonreciprocal signal is significantly enhanced in the superconducting state, being associated with unprecedented quantum Little-Parks oscillations originating from the interference of supercurrent along the circumference of the nanotube. The present results indicate that the nonreciprocity is a viable approach toward the superconductors with chiral or noncentrosymmetric structures.

  17. High-temperature conventional superconductivity

    NASA Astrophysics Data System (ADS)

    Eremets, M. I.; Drozdov, A. P.

    2017-02-01

    Conventional superconductors are described well by the Bardeen – Cooper – Schrieffer (BCS) theory (1957) and its related theories, all of which importantly put no explicit limit on transition temperature Tc. While this allows, in principle, room-temperature superconductivity, no such phenomenon has been observed. Since the discovery of superconductivity in 1911, the measured critical temperature of BCS superconductors has not until recently exceeded 39 K. In 2014, hydrogen sulfide under high pressure was experimentally found to exhibit superconductivity at Tc = 200 K, a record high value which greatly exceeds that of the previous class of high-temperature superconductors, the cuprates. The superconductivity mechanism in cuprates has not yet been explained. Over a period of 25 years, the critical temperature of cuprates has not been increased above 164 K. The paper reviews research on record-high Tc superconductivity in hydrogen sulphide and other hydrides. Prospects for increasing Tc to room temperature are also discussed.

  18. High-temperature conventional superconductivity

    NASA Astrophysics Data System (ADS)

    Eremets, M. I.; Drozdov, A. P.

    2016-11-01

    Conventional superconductors are described well by the Bardeen - Cooper - Schrieffer (BCS) theory (1957) and its related theories, all of which importantly put no explicit limit on transition temperature T_c. While this allows, in principle, room-temperature superconductivity, no such phenomenon has been observed. Since the discovery of superconductivity in 1911, the measured critical temperature of BCS superconductors has not until recently exceeded 39 K. In 2014, hydrogen sulfide under high pressure was experimentally found to exhibit superconductivity at T_c=200 K, a record high value which greatly exceeds that of the previous class of high-temperature superconductors, the cuprates. The superconductivity mechanism in cuprates has not yet been explained. Over a period of 25 years, the critical temperature of cuprates has not been increased above 164 K. The paper reviews research on record-high T_c superconductivity in hydrogen sulphide and other hydrides. Prospects for increasing T_c to room temperature are also discussed.

  19. TOPICAL REVIEW: Superconducting bearings

    NASA Astrophysics Data System (ADS)

    Hull, John R.

    2000-02-01

    The physics and technology of superconducting bearings is reviewed. Particular attention is given to the use of high-temperature superconductors (HTSs) in rotating bearings. The basic phenomenology of levitational forces is presented, followed by a brief discussion of the theoretical models that can be used for conceptual understanding and calculations. The merits of various HTS bearing designs are presented, and the behaviour of HTS bearings in typical situations is discussed. The article concludes with a brief survey of various proposed applications for HTS bearings.

  20. Superconducting magnet cooling system

    DOEpatents

    Vander Arend, Peter C.; Fowler, William B.

    1977-01-01

    A device is provided for cooling a conductor to the superconducting state. The conductor is positioned within an inner conduit through which is flowing a supercooled liquid coolant in physical contact with the conductor. The inner conduit is positioned within an outer conduit so that an annular open space is formed therebetween. Through the annular space is flowing coolant in the boiling liquid state. Heat generated by the conductor is transferred by convection within the supercooled liquid coolant to the inner wall of the inner conduit and then is removed by the boiling liquid coolant, making the heat removal from the conductor relatively independent of conductor length.

  1. Superconducting dipole electromagnet

    DOEpatents

    Purcell, John R.

    1977-07-26

    A dipole electromagnet of especial use for bending beams in particle accelerators is wound to have high uniformity of magnetic field across a cross section and to decrease evenly to zero as the ends of the electromagnet are approached by disposing the superconducting filaments of the coil in the crescent-shaped nonoverlapping portions of two intersecting circles. Uniform decrease at the ends is achieved by causing the circles to overlap increasingly in the direction of the ends of the coil until the overlap is complete and the coil is terminated.

  2. Superconductivity in plutonium compounds

    NASA Astrophysics Data System (ADS)

    Sarrao, J. L.; Bauer, E. D.; Mitchell, J. N.; Tobash, P. H.; Thompson, J. D.

    2015-07-01

    Although the family of plutonium-based superconductors is relatively small, consisting of four compounds all of which crystallize in the tetragonal HoCoGa5 structure, these materials serve as an important bridge between the known Ce- and U-based heavy fermion superconductors and the high-temperature cuprate superconductors. Further, the partial localization of 5f electrons that characterizes the novel electronic properties of elemental plutonium appears to be central to the relatively high superconducting transition temperatures that are observed in PuCoGa5, PuRhGa5, PuCoIn5, and PuRhIn5.

  3. Complexing receptor pharmacology: modulation of family B G protein-coupled receptor function by RAMPs.

    PubMed

    Sexton, Patrick M; Morfis, Maria; Tilakaratne, Nanda; Hay, Debbie L; Udawela, Madhara; Christopoulos, George; Christopoulos, Arthur

    2006-07-01

    The most well-characterized subgroup of family B G protein-coupledreceptors (GPCRs) comprises receptors for peptide hormones, such as secretin, calcitonin (CT), glucagon, and vasoactive intestinal peptide (VIP). Recent data suggest that many of these receptors can interact with a novel family of GPCR accessory proteins termed receptor activity modifying proteins (RAMPs). RAMP interaction with receptors can lead to a variety of actions that include chaperoning of the receptor protein to the cell surface as is the case for the calcitonin receptor-like receptor (CLR) and the generation of novel receptor phenotypes. RAMP heterodimerization with the CLR and related CT receptor is required for the formation of specific CT gene-related peptide, adrenomedullin (AM) or amylin receptors. More recent work has revealed that the specific RAMP present in a heterodimer may modulate other functions such as receptor internalization and recycling and also the strength of activation of downstream signaling pathways. In this article we review our current state of knowledge of the consequence of RAMP interaction with family B GPCRs.

  4. Probabilistic Swinging Door Algorithm as Applied to Photovoltaic Power Ramping Event Detection

    SciTech Connect

    Florita, Anthony; Zhang, Jie; Brancucci Martinez-Anido, Carlo; Hodge, Bri-Mathias; Cui, Mingjian

    2015-10-02

    Photovoltaic (PV) power generation experiences power ramping events due to cloud interference. Depending on the extent of PV aggregation and local grid features, such power variability can be constructive or destructive to measures of uncertainty regarding renewable power generation; however, it directly influences contingency planning, production costs, and the overall reliable operation of power systems. For enhanced power system flexibility, and to help mitigate the negative impacts of power ramping, it is desirable to analyze events in a probabilistic fashion so degrees of beliefs concerning system states and forecastability are better captured and uncertainty is explicitly quantified. A probabilistic swinging door algorithm is developed and presented in this paper. It is then applied to a solar data set of PV power generation. The probabilistic swinging door algorithm builds on results from the original swinging door algorithm, first used for data compression in trend logging, and it is described by two uncertain parameters: (i) e, the threshold sensitivity to a given ramp, and (ii) s, the residual of the piecewise linear ramps. These two parameters determine the distribution of ramps and capture the uncertainty in PV power generation.

  5. Evaluation of genetic diversity of Clinacanthus nutans (Acanthaceaea) using RAPD, ISSR and RAMP markers.

    PubMed

    Ismail, Noor Zafirah; Arsad, Hasni; Samian, Mohammed Razip; Ab Majid, Abdul Hafiz; Hamdan, Mohammad Razak

    2016-10-01

    Three polymerase chain reaction (PCR) techniques were compared to analyse the genetic diversity of Clinacanthus nutans eight populations in the northern region of Peninsular Malaysia. The PCR techniques were random amplified polymorphic deoxyribonucleic acids (RAPD), inter-simple sequence repeats (ISSR) and random amplified microsatellite polymorphisms (RAMP). Leaf genomic DNA was PCR amplified using 17 RAPD, 8 ISSR and 136 RAMP primers . However, only 10 RAPD primers, 5 ISSR primers and 37 RAMP primers produced reproducible bands. The results were evaluated for polymorphic information content (PIC), marker index (MI) and resolving power (RP). The RAMP marker was the most useful marker compared to RAPD and ISSR markers because it showed the highest average value of PIC (0.25), MI (11.36) and RP (2.86). The genetic diversity showed a high percentage of polymorphism at the species level compared to the population level. Furthermore, analysis of molecular variance revealed that the genetic diversity was higher within populations, as compared to among populations of C. nutans. From the results, the RAMP technique was recommended for the analysis of genetic diversity of C. nutans.

  6. Solar Power Ramp Events Detection Using an Optimized Swinging Door Algorithm

    SciTech Connect

    Cui, Mingjian; Zhang, Jie; Florita, Anthony; Hodge, Bri-Mathias; Ke, Deping; Sun, Yuanzhang

    2015-08-05

    Solar power ramp events (SPREs) significantly influence the integration of solar power on non-clear days and threaten the reliable and economic operation of power systems. Accurately extracting solar power ramps becomes more important with increasing levels of solar power penetrations in power systems. In this paper, we develop an optimized swinging door algorithm (OpSDA) to enhance the state of the art in SPRE detection. First, the swinging door algorithm (SDA) is utilized to segregate measured solar power generation into consecutive segments in a piecewise linear fashion. Then we use a dynamic programming approach to combine adjacent segments into significant ramps when the decision thresholds are met. In addition, the expected SPREs occurring in clear-sky solar power conditions are removed. Measured solar power data from Tucson Electric Power is used to assess the performance of the proposed methodology. OpSDA is compared to two other ramp detection methods: the SDA and the L1-Ramp Detect with Sliding Window (L1-SW) method. The statistical results show the validity and effectiveness of the proposed method. OpSDA can significantly improve the performance of the SDA, and it can perform as well as or better than L1-SW with substantially less computation time.

  7. The Effect of Micro-ramps on Supersonic Flow over a Forward-Facing Step

    NASA Astrophysics Data System (ADS)

    Zhang, Qing-Hu; Yi, Shi-He; Zhu, Yang-Zhu; Chen, Zhi; Wu, Yu

    2013-04-01

    The effect of micro-ramp control on fully developed turbulent flow over a forward-facing step (FFS) is investigated in a supersonic low-noise wind tunnel at Mach number 3 using nano-tracer planar laser scattering (NPLS) and supersonic particle image velocimetry (PIV) techniques. High spatiotemporal resolution images and the average velocity profiles of supersonic flow over the FFS with and without the control of the micro-ramps are captured. The fine structures of both cases, including the coherent structures of fully developed boundary layer and the large-scale hairpin-like vortices originated from the micro-ramps as well as the interaction of shock waves with the large-scale structures, are revealed and compared. Based on the time-correlation images, the temporal and spatial evolutionary characteristics of the coherent structures are investigated. It is beneficial to understand the dynamic mechanisms of the separated flow and the control mechanisms of the micro-ramps. The size of the separation region is determined by the NPLS and PIV. The results indicate that the control of the micro-ramps is capable of delaying the separation and diminishing the extent of recirculation zone.

  8. Solar Power Ramp Events Detection Using an Optimized Swinging Door Algorithm: Preprint

    SciTech Connect

    Cui, Mingjian; Zhang, Jie; Florita, Anthony; Hodge, Bri-Mathias; Ke, Deping; Sun, Yuanzhang

    2015-08-07

    Solar power ramp events (SPREs) are those that significantly influence the integration of solar power on non-clear days and threaten the reliable and economic operation of power systems. Accurately extracting solar power ramps becomes more important with increasing levels of solar power penetrations in power systems. In this paper, we develop an optimized swinging door algorithm (OpSDA) to detection. First, the swinging door algorithm (SDA) is utilized to segregate measured solar power generation into consecutive segments in a piecewise linear fashion. Then we use a dynamic programming approach to combine adjacent segments into significant ramps when the decision thresholds are met. In addition, the expected SPREs occurring in clear-sky solar power conditions are removed. Measured solar power data from Tucson Electric Power is used to assess the performance of the proposed methodology. OpSDA is compared to two other ramp detection methods: the SDA and the L1-Ramp Detect with Sliding Window (L1-SW) method. The statistical results show the validity and effectiveness of the proposed method. OpSDA can significantly improve the performance of the SDA, and it can perform as well as or better than L1-SW with substantially less computation time.

  9. Superconducting Bolometer Array Architectures

    NASA Technical Reports Server (NTRS)

    Benford, Dominic; Chervenak, Jay; Irwin, Kent; Moseley, S. Harvey; Shafer, Rick; Staguhn, Johannes; Wollack, Ed; Oegerle, William (Technical Monitor)

    2002-01-01

    The next generation of far-infrared and submillimeter instruments require large arrays of detectors containing thousands of elements. These arrays will necessarily be multiplexed, and superconducting bolometer arrays are the most promising present prospect for these detectors. We discuss our current research into superconducting bolometer array technologies, which has recently resulted in the first multiplexed detections of submillimeter light and the first multiplexed astronomical observations. Prototype arrays containing 512 pixels are in production using the Pop-Up Detector (PUD) architecture, which can be extended easily to 1000 pixel arrays. Planar arrays of close-packed bolometers are being developed for the GBT (Green Bank Telescope) and for future space missions. For certain applications, such as a slewed far-infrared sky survey, feedhorncoupling of a large sparsely-filled array of bolometers is desirable, and is being developed using photolithographic feedhorn arrays. Individual detectors have achieved a Noise Equivalent Power (NEP) of -10(exp 17) W/square root of Hz at 300mK, but several orders of magnitude improvement are required and can be reached with existing technology. The testing of such ultralow-background detectors will prove difficult, as this requires optical loading of below IfW. Antenna-coupled bolometer designs have advantages for large format array designs at low powers due to their mode selectivity.

  10. Driven superconducting quantum circuits

    NASA Astrophysics Data System (ADS)

    Nakamura, Yasunobu

    2014-03-01

    Driven nonlinear quantum systems show rich phenomena in various fields of physics. Among them, superconducting quantum circuits have very attractive features such as well-controlled quantum states with design flexibility, strong nonlinearity of Josephson junctions, strong coupling to electromagnetic driving fields, little internal dissipation, and tailored coupling to the electromagnetic environment. We have investigated properties and functionalities of driven superconducting quantum circuits. A transmon qubit coupled to a transmission line shows nearly perfect spatial mode matching between the incident and scattered microwave field in the 1D mode. Dressed states under a driving field are studied there and also in a semi-infinite 1D mode terminated by a resonator containing a flux qubit. An effective Λ-type three-level system is realized under an appropriate driving condition. It allows ``impedance-matched'' perfect absorption of incident probe photons and down conversion into another frequency mode. Finally, the weak signal from the qubit is read out using a Josephson parametric amplifier/oscillator which is another nonlinear circuit driven by a strong pump field. This work was partly supported by the Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST), Project for Developing Innovation Systems of MEXT, MEXT KAKENHI ``Quantum Cybernetics,'' and the NICT Commissioned Research.

  11. Superconducting linear actuator

    NASA Technical Reports Server (NTRS)

    Johnson, Bruce; Hockney, Richard

    1993-01-01

    Special actuators are needed to control the orientation of large structures in space-based precision pointing systems. Electromagnetic actuators that presently exist are too large in size and their bandwidth is too low. Hydraulic fluid actuation also presents problems for many space-based applications. Hydraulic oil can escape in space and contaminate the environment around the spacecraft. A research study was performed that selected an electrically-powered linear actuator that can be used to control the orientation of a large pointed structure. This research surveyed available products, analyzed the capabilities of conventional linear actuators, and designed a first-cut candidate superconducting linear actuator. The study first examined theoretical capabilities of electrical actuators and determined their problems with respect to the application and then determined if any presently available actuators or any modifications to available actuator designs would meet the required performance. The best actuator was then selected based on available design, modified design, or new design for this application. The last task was to proceed with a conceptual design. No commercially-available linear actuator or modification capable of meeting the specifications was found. A conventional moving-coil dc linear actuator would meet the specification, but the back-iron for this actuator would weigh approximately 12,000 lbs. A superconducting field coil, however, eliminates the need for back iron, resulting in an actuator weight of approximately 1000 lbs.

  12. Lunar Landing Research Vehicle (LLRV) sitting on ramp

    NASA Technical Reports Server (NTRS)

    1966-01-01

    In this 1966 NASA Flight Reserch Center photograph, the Lunar Landing Research Vehicle (LLRV) number 2 sitting on the ramp. When Apollo planning was underway in 1960, NASA was looking for a simulator to profile the descent to the moon's surface. Three concepts surfaced: an electronic simulator, a tethered device, and the ambitious Dryden contribution, a free-flying vehicle. All three became serious projects, but eventually the NASA Flight Research Center's (FRC) Landing Research Vehicle (LLRV) became the most significant one. Hubert M. Drake is credited with originating the idea, while Donald Bellman and Gene Matranga were senior engineers on the project, with Bellman, the project manager. Simultaneously, and independently, Bell Aerosystems Company, Buffalo, N.Y., a company with experience in vertical takeoff and landing (VTOL) aircraft, had conceived a similar free-flying simulator and proposed their concept to NASA headquarters. NASA Headquarters put FRC and Bell together to collaborate. The challenge was; to allow a pilot to make a vertical landing on earth in a simulated moon environment, one sixth of the earth's gravity and with totally transparent aerodynamic forces in a 'free flight' vehicle with no tether forces acting on it. Built of tubular aluminum like a giant four-legged bedstead, the vehicle was to simulate a lunar landing profile from around 1500 feet to the moon's surface. To do this, the LLRV had a General Electric CF-700-2V turbofan engine mounted vertically in gimbals, with 4200 pounds of thrust. The engine, using JP-4 fuel, got the vehicle up to the test altitude and was then throttled back to support five-sixths of the vehicle's weight, simulating the reduced gravity of the moon. Two hydrogen-peroxide lift rockets with thrust that could be varied from 100 to 500 pounds handled the LLRV's rate of descent and horizontal translations. Sixteen smaller hydrogen-peroxide rockets, mounted in pairs, gave the pilot control in pitch, yaw, and roll. On

  13. Dryden B-52 Launch Aircraft on Dryden Ramp

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA's venerable B-52 mothership sits on the ramp in front of the Dryden Flight Research Center, Edwards, California. Over the course of more than 40 years, the B-52 launched numerous experimental aircraft, ranging from the X-15 to the X-38, and was also used as a flying testbed for a variety of other research projects. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket

  14. X-1E Loaded in B-29 Mothership on Ramp

    NASA Technical Reports Server (NTRS)

    1955-01-01

    The Bell Aircraft Corporation X-1E airplane being loaded under the mothership, Boeing B-29. The X planes had originally been lowered into a loading pit and the launch aircraft towed over the pit, where the rocket plane was hoisted by belly straps into the bomb bay. By the early 1950s a hydraulic lift had been installed on the ramp at the NACA High-Speed Flight Station to elevate the launch aircraft and then lower it over the rocket plane for mating. There were four versions of the Bell X-1 rocket-powered research aircraft that flew at the NACA High-Speed Flight Research Station, Edwards, California. The bullet-shaped X-1 aircraft were built by Bell Aircraft Corporation, Buffalo, N.Y. for the U.S. Army Air Forces (after 1947, U.S. Air Force) and the National Advisory Committee for Aeronautics (NACA). The X-1 Program was originally designated the XS-1 for EXperimental Supersonic. The X-1's mission was to investigate the transonic speed range (speeds from just below to just above the speed of sound) and, if possible, to break the 'sound barrier.' Three different X-1s were built and designated: X-1-1, X-1-2 (later modified to become the X-1E), and X-1-3. The basic X-1 aircraft were flown by a large number of different pilots from 1946 to 1951. The X-1 Program not only proved that humans could go beyond the speed of sound, it reinforced the understanding that technological barriers could be overcome. The X-1s pioneered many structural and aerodynamic advances including extremely thin, yet extremely strong wing sections; supersonic fuselage configurations; control system requirements; powerplant compatibility; and cockpit environments. The X-1 aircraft were the first transonic-capable aircraft to use an all-moving stabilizer. The flights of the X-1s opened up a new era in aviation. The first X-1 was air-launched unpowered from a Boeing B-29 Superfortress on January 25, 1946. Powered flights began in December 1946. On October 14, 1947, the X-1-1, piloted by Air Force

  15. Controlling coherent state superpositions with superconducting circuits

    NASA Astrophysics Data System (ADS)

    Vlastakis, Brian Michael

    Quantum computation requires a large yet controllable Hilbert space. While many implementations use discrete quantum variables such as the energy states of a two-level system to encode quantum information, continuous variables could allow access to a larger computational space while minimizing the amount of re- quired hardware. With a toolset of conditional qubit-photon logic, we encode quantum information into the amplitude and phase of coherent state superpositions in a resonator, also known as Schrddinger cat states. We achieve this using a superconducting transmon qubit with a strong off-resonant coupling to a waveguide cavity. This dispersive interaction is much greater than decoherence rates and higher-order nonlinearites and therefore allows for simultaneous control of over one hundred photons. Furthermore, we combine this experiment with fast, high-fidelity qubit state readout to perform composite qubit-cavity state tomography and detect entanglement between a physical qubit and a cat-state encoded qubit. These results have promising applications for redundant encoding in a cavity state and ultimately quantum error correction with superconducting circuits.

  16. Spin-orbit-coupled superconductivity.

    PubMed

    Lo, Shun-Tsung; Lin, Shih-Wei; Wang, Yi-Ting; Lin, Sheng-Di; Liang, C-T

    2014-06-25

    Superconductivity and spin-orbit (SO) interaction have been two separate emerging fields until very recently that the correlation between them seemed to be observed. However, previous experiments concerning SO coupling are performed far beyond the superconducting state and thus a direct demonstration of how SO coupling affects superconductivity remains elusive. Here we investigate the SO coupling in the critical region of superconducting transition on Al nanofilms, in which the strength of disorder and spin relaxation by SO coupling are changed by varying the film thickness. At temperatures T sufficiently above the superconducting critical temperature T(c), clear signature of SO coupling reveals itself in showing a magneto-resistivity peak. When T < T(c), the resistivity peak can still be observed; however, its line-shape is now affected by the onset of the quasi two-dimensional superconductivity. By studying such magneto-resistivity peaks under different strength of spin relaxation, we highlight the important effects of SO interaction on superconductivity.

  17. Experimental investigation of a supersonic swept ramp injector using laser-induced iodine fluorescence

    NASA Technical Reports Server (NTRS)

    Hartfield, Roy J.; Hollo, Steven D.; Mcdaniel, James C.

    1990-01-01

    Planar measurements of injectant mole fraction and temperature have been conducted in a nonreacting supersonic combustor configured with underexpanded injection in the base of a swept ramp. The temperature measurements were conducted with a Mach 2 test section inlet in streamwise planes perpendicular to the test section wall on which the ramp was mounted. Injection concentration measurements, conducted in cross flow planes with both Mach 2 and Mach 2.9 free stream conditions, dramatically illustrate the domination of the mixing process by streamwise vorticity generated by the ramp. These measurements, conducted using a nonintrusive optical technique (laser-induced iodine fluorescence), provide an accurate and extensive experimental data base for the validation of computation fluid dynamic codes for the calculation of highly three-dimensional supersonic combustor flow fields.

  18. Micro-Ramp Flow Control for Oblique Shock Interactions: Comparisons of Computational and Experimental Data

    NASA Technical Reports Server (NTRS)

    Hirt, Stephanie M.; Reich, David B.; O'Connor, Michael B.

    2012-01-01

    Computational fluid dynamics was used to study the effectiveness of micro-ramp vortex generators to control oblique shock boundary layer interactions. Simulations were based on experiments previously conducted in the 15- by 15-cm supersonic wind tunnel at the NASA Glenn Research Center. Four micro-ramp geometries were tested at Mach 2.0 varying the height, chord length, and spanwise spacing between micro-ramps. The overall flow field was examined. Additionally, key parameters such as boundary-layer displacement thickness, momentum thickness and incompressible shape factor were also examined. The computational results predicted the effects of the microramps well, including the trends for the impact that the devices had on the shock boundary layer interaction. However, computing the shock boundary layer interaction itself proved to be problematic since the calculations predicted more pronounced adverse effects on the boundary layer due to the shock than were seen in the experiment.

  19. Iterative ramp sharpening for structure signature-preserving simplification of images

    SciTech Connect

    Grazzini, Jacopo A; Soille, Pierre

    2010-01-01

    In this paper, we present a simple and heuristic ramp sharpening algorithm that achieves local contrast enhancement of vector-valued images. The proposed algorithm performs a local comparison of intensity values as well as gradient strength and directional information derived from the gradient structure tensor so that the sharpening is applied only for pixels found on the ramps around true edges. This way, the contrast between objects and regions separated by a ramp is enhanced correspondingly, avoiding ringing artefacts. It is found that applying this technique in an iterative manner on blurred imagery produces sharpening preserving both structure and signature of the image. The final approach reaches a good compromise between complexity and effectiveness for image simplification, enhancing in an efficient manner the image details and maintaining the overall image appearance.

  20. Numerical solution of shock and ramp compression for general material properties

    SciTech Connect

    Swift, D C

    2009-01-28

    A general formulation was developed to represent material models for applications in dynamic loading. Numerical methods were devised to calculate response to shock and ramp compression, and ramp decompression, generalizing previous solutions for scalar equations of state. The numerical methods were found to be flexible and robust, and matched analytic results to a high accuracy. The basic ramp and shock solution methods were coupled to solve for composite deformation paths, such as shock-induced impacts, and shock interactions with a planar interface between different materials. These calculations capture much of the physics of typical material dynamics experiments, without requiring spatially-resolving simulations. Example calculations were made of loading histories in metals, illustrating the effects of plastic work on the temperatures induced in quasi-isentropic and shock-release experiments, and the effect of a phase transition.

  1. Fast CRCs

    DTIC Science & Technology

    2009-10-01

    Detecting Codes: General Theory and Their Application in Feedback Communication Systems. Kluwer Academic, 1995. [8] D.E. Knuth , The Art of Computer ... computation . Index Terms—Fast CRC, low-complexity CRC, checksum, error-detection code, Hamming code, period of polynomial, fast software implementation...simulations, and performance analysis of systems and networks. CRC implementation in software is desirable, because many computers do not have hardware

  2. Operational Merits of Maritime Superconductivity

    NASA Astrophysics Data System (ADS)

    Ross, R.; Bosklopper, J. J.; van der Meij, K. H.

    The perspective of superconductivity to transfer currents without loss is very appealing in high power applications. In the maritime sector many machines and systems exist in the roughly 1-100 MW range and the losses are well over 50%, which calls for dramatic efficiency improvements. This paper reports on three studies that aimed at the perspectives of superconductivity in the maritime sector. It is important to realize that the introduction of superconductivity comprises two technology transitions namely firstly electrification i.e. the transition from mechanical drives to electric drives and secondly the transition from normal to superconductive electrical machinery. It is concluded that superconductivity does reduce losses, but its impact on the total energy chain is of little significance compared to the investments and the risk of introducing a very promising but as yet not proven technology in the harsh maritime environment. The main reason of the little impact is that the largest losses are imposed on the system by the fossil fueled generators as prime movers that generate the electricity through mechanical torque. Unless electric power is supplied by an efficient and reliable technology that does not involve mechanical torque with the present losses both normal as well as superconductive electrification of the propulsion will hardly improve energy efficiency or may even reduce it. One exception may be the application of degaussing coils. Still appealing merits of superconductivity do exist, but they are rather related to the behavior of superconductive machines and strong magnetic fields and consequently reduction in volume and mass of machinery or (sometimes radically) better performance. The merits are rather convenience, design flexibility as well as novel applications and capabilities which together yield more adequate systems. These may yield lower operational costs in the long run, but at present the added value of superconductivity rather seems more

  3. Superconducting Solenoid for Superfast THz Spectroscopy

    NASA Astrophysics Data System (ADS)

    Bragin, A. V.; Khrushchev, S. V.; Kubarev, V. V.; Mezencev, N. A.; Tsukanov, V. M.; Sozinov, G. I.; Shkaruba, V. A.

    This project is related to new spectroscopy method in little-developed THz range. The method is founded on using of a free electron laser (NovoFEL) with high spectral power radiation which can be smoothly tuned in desirable range of spectrum. The objects of research of this method are fast processes in physics, chemical and biological reactions. Uniform magnetic field of 6 T value in the research area can considerably increase possibilities of this method. The magnetic field will modulate radiation of free molecules induction on characteristic frequencies of the Zeeman splitting that gives more possibilities of identification of molecules having even weak magnetic momentum. Moreover, the use of magnetic field allows essentially increase sensitivity of this method due to almost complete separation of weak measuring signals from powerful radiation of the laser. A superconducting solenoid was developed for this method. Its design and peculiarities are described in this paper.

  4. Exploring how sand ramps respond to Quaternary environmental change in Southern Africa

    NASA Astrophysics Data System (ADS)

    Rowell, Alex; Thomas, David; Bailey, Richard

    2014-05-01

    The current climate of southern Africa is particularly complex and interesting due to the interaction of several climatic systems. However, reconstructions of how these systems behaved in the past, and how the environment responded, have been hampered by a general paucity of records and poor chronological control. Sand ramps may provide the potential to improve palaeoenvironmental reconstructions of southern Africa (and beyond). Formed against a topographic barrier, sand ramps include a combination of aeolian, fluvial and colluvial deposits in varying proportions. Therefore, they have the potential to record changes in moisture availability, circulation patterns and sediment supply which can be independently dated using luminescence dating. Nevertheless relatively little attention has been paid to these features and thus the environmental controls on their formation are not yet fully understood. In particular, there is debate as to whether they reflect deposition during a 'window of opportunity' in which high-magnitude, low-frequency events are recorded (Bateman et al. 2012) or whether they record more gradual, cyclic climate change (Bertram, 2003) or even if there is a uniform control on their formation. This research aims to investigate how sand ramps respond to environmental change and what they can tell us about the paleoenvironment of southern Africa. This poster displays preliminary results based on initial field investigation. This confirmed sand ramps to be ubiquitous in southern Africa and that they record a complex interaction of aeolian, fluvial and colluvial deposits which appears to differ between sand ramps. Preliminary luminescence dating results and sedimentology are displayed for two sand ramps, one from south west Namibia the other from the Karoo region of South Africa.

  5. Seeing Steps and Ramps with Simulated Low Acuity: Impact of Texture and Locomotion

    PubMed Central

    Bochsler, Tiana M.; Legge, Gordon E.; Kallie, Christopher S.; Gage, Rachel

    2012-01-01

    Purpose Detecting and recognizing steps and ramps is an important component of the visual accessibility of public spaces for people with impaired vision. The present study, which is part of a larger program of research on visual accessibility, investigated the impact of two factors that may facilitate the recognition of steps and ramps during low-acuity viewing. Visual texture on the ground plane is an environmental factor that improves judgments of surface distance and slant. Locomotion (walking) is common during observations of a layout, and may generate visual motion cues that enhance the recognition of steps and ramps. Methods In two experiments, normally sighted subjects viewed the targets monocularly through blur goggles that reduced acuity to either approx. 20/150 Snellen (mild blur) or 20/880 (severe blur). The subjects judged whether a step, ramp or neither was present ahead on a sidewalk. In the texture experiment, subjects viewed steps and ramps on a surface with a coarse black-and-white checkerboard pattern. In the locomotion experiment, subjects walked along the sidewalk toward the target before making judgments. Results Surprisingly, performance was lower with the textured surface than with a uniform surface, perhaps because the texture masked visual cues necessary for target recognition. Subjects performed better in walking trials than in stationary trials, possibly because they were able to take advantage of visual cues that were only present during motion. Conclusions We conclude that under conditions of simulated low acuity, large, high-contrast texture elements can hinder the recognition of steps and ramps while locomotion enhances recognition. PMID:22863792

  6. Superconducting interfaces between insulating oxides.

    PubMed

    Reyren, N; Thiel, S; Caviglia, A D; Kourkoutis, L Fitting; Hammerl, G; Richter, C; Schneider, C W; Kopp, T; Rüetschi, A-S; Jaccard, D; Gabay, M; Muller, D A; Triscone, J-M; Mannhart, J

    2007-08-31

    At interfaces between complex oxides, electronic systems with unusual electronic properties can be generated. We report on superconductivity in the electron gas formed at the interface between two insulating dielectric perovskite oxides, LaAlO3 and SrTiO3. The behavior of the electron gas is that of a two-dimensional superconductor, confined to a thin sheet at the interface. The superconducting transition temperature of congruent with 200 millikelvin provides a strict upper limit to the thickness of the superconducting layer of congruent with 10 nanometers.

  7. Antiferromagnetic hedgehogs with superconducting cores

    SciTech Connect

    Goldbart, P.M.; Sheehy, D.E.

    1998-09-01

    Excitations of the antiferromagnetic state that resemble antiferromagnetic hedgehogs at large distances but are predominantly superconducting inside a core region are discussed within the context of Zhang{close_quote}s SO(5)-symmetry-based approach to the physics of high-temperature superconducting materials. Nonsingular, in contrast with their hedgehog cousins in pure antiferromagnetism, these texture excitations are what hedgehogs become when the antiferromagnetic order parameter is permitted to {open_quotes}escape{close_quotes} into superconducting directions. The structure of such excitations is determined in a simple setting, and a number of their experimental implications are examined. {copyright} {ital 1998} {ital The American Physical Society}

  8. Antiferromagnetic hedgehogs with superconducting cores

    NASA Astrophysics Data System (ADS)

    Goldbart, Paul M.; Sheehy, Daniel E.

    1998-09-01

    Excitations of the antiferromagnetic state that resemble antiferromagnetic hedgehogs at large distances but are predominantly superconducting inside a core region are discussed within the context of Zhang's SO(5)-symmetry-based approach to the physics of high-temperature superconducting materials. Nonsingular, in contrast with their hedgehog cousins in pure antiferromagnetism, these texture excitations are what hedgehogs become when the antiferromagnetic order parameter is permitted to ``escape'' into superconducting directions. The structure of such excitations is determined in a simple setting, and a number of their experimental implications are examined.

  9. Nozzle for superconducting fiber production

    DOEpatents

    Righi, Jamal

    1992-11-17

    A nozzle apparatus for producing flexible fibers of superconducting material receives melted material from a crucible for containing a charge of the superconducting material. The material is melted in the crucible and falls in a stream through a bottom hole in the crucible. The stream falls through a protecting collar which maintains the stream at high temperatures. The stream is then supplied through the downwardly directed nozzle where it is subjected to a high velocity air flow which breaks the melted superconducting material into ligaments which solidify into the flexible fibers. The fibers are collected by blowing them against a porous cloth.

  10. Simulations of Sample-Up-The-Ramp for Space-Based Observations of Faint Sources

    NASA Technical Reports Server (NTRS)

    Benford, Dominic J.

    2008-01-01

    We have conducted simulations of a memory-efficient up-the-ramp sampling algorithm for infrared detector arrays. Our simulations use realistic sky models of galaxy brightness, shapes, and distributions, and include the contributions of zodiacal light and cosmic rays. A simulated readout is based on the HAWAII-2RG arrays, and includes read noise, dark current, pedestal, and other effects. The up-the-ramp algorithm rejects cosmic rays and produces a best estimate of the source flux under the assumption of very low signal-to-noise. We present an analysis of the fidelity of image brightness recovery with this algorithm.

  11. Thermal tolerance limits of diamondback moth in ramping and plunging assays.

    PubMed

    Nguyen, Chi; Bahar, Md Habibullah; Baker, Greg; Andrew, Nigel R

    2014-01-01

    Thermal sensitivity is a crucial determinant of insect abundance and distribution. The way it is measured can have a critical influence on the conclusions made. Diamondback moth (DBM), Plutella xylostella (L.) (Lepidoptera: Plutellidae) is an important insect pest of cruciferous crops around the world and the thermal responses of polyphagous species are critical to understand the influences of a rapidly changing climate on their distribution and abundance. Experiments were carried out to the lethal temperature limits (ULT₀ and LLT₀: temperatures where there is no survival) as well as Upper and Lower Lethal Temperature (ULT₂₅ and LLT₂₅) (temperature where 25% DBM survived) of lab-reared adult DBM population to extreme temperatures attained by either two-way ramping (ramping temperatures from baseline to LT₂₅ and ramping back again) or sudden plunging method. In this study the ULT0 for DBM was recorded as 42.6°C and LLT₀ was recorded as -16.5°C. DBM had an ULT₂₅ of 41.8°C and LLT25 of -15.2°C. The duration of exposure to extreme temperatures had significant impacts on survival of DBM, with extreme temperatures and/or longer durations contributing to higher lethality. Comparing the two-way ramping temperature treatment to that of direct plunging temperature treatment, our study clearly demonstrated that DBM was more tolerant to temperature in the two-way ramping assay than that of the plunging assay for cold temperatures, but at warmer temperatures survival exhibited no differences between ramping and plunging. These results suggest that DBM will not be put under physiological stress from a rapidly changing climate, rather access to host plants in marginal habitats has enabled them to expand their distribution. Two-way temperature ramping enhances survival of DBM at cold temperatures, and this needs to be examined across a range of taxa and life stages to determine if enhanced survival is widespread incorporating a ramping recovery method.

  12. Thermal Tolerance Limits of Diamondback Moth in Ramping and Plunging Assays

    PubMed Central

    Nguyen, Chi; Bahar, Md Habibullah; Baker, Greg; Andrew, Nigel R.

    2014-01-01

    Thermal sensitivity is a crucial determinant of insect abundance and distribution. The way it is measured can have a critical influence on the conclusions made. Diamondback moth (DBM), Plutella xylostella (L.) (Lepidoptera: Plutellidae) is an important insect pest of cruciferous crops around the world and the thermal responses of polyphagous species are critical to understand the influences of a rapidly changing climate on their distribution and abundance. Experiments were carried out to the lethal temperature limits (ULT0 and LLT0: temperatures where there is no survival) as well as Upper and Lower Lethal Temperature (ULT25 and LLT25) (temperature where 25% DBM survived) of lab-reared adult DBM population to extreme temperatures attained by either two-way ramping (ramping temperatures from baseline to LT25 and ramping back again) or sudden plunging method. In this study the ULT0 for DBM was recorded as 42.6°C and LLT0 was recorded as −16.5°C. DBM had an ULT25 of 41.8°C and LLT25 of −15.2°C. The duration of exposure to extreme temperatures had significant impacts on survival of DBM, with extreme temperatures and/or longer durations contributing to higher lethality. Comparing the two-way ramping temperature treatment to that of direct plunging temperature treatment, our study clearly demonstrated that DBM was more tolerant to temperature in the two-way ramping assay than that of the plunging assay for cold temperatures, but at warmer temperatures survival exhibited no differences between ramping and plunging. These results suggest that DBM will not be put under physiological stress from a rapidly changing climate, rather access to host plants in marginal habitats has enabled them to expand their distribution. Two-way temperature ramping enhances survival of DBM at cold temperatures, and this needs to be examined across a range of taxa and life stages to determine if enhanced survival is widespread incorporating a ramping recovery method. PMID:24475303

  13. Superconductivity and the environment: a Roadmap

    NASA Astrophysics Data System (ADS)

    Nishijima, Shigehiro; Eckroad, Steven; Marian, Adela; Choi, Kyeongdal; Kim, Woo Seok; Terai, Motoaki; Deng, Zigang; Zheng, Jun; Wang, Jiasu; Umemoto, Katsuya; Du, Jia; Febvre, Pascal; Keenan, Shane; Mukhanov, Oleg; Cooley, Lance D.; Foley, Cathy P.; Hassenzahl, William V.; Izumi, Mitsuru

    2013-11-01

    gas emissions according to the Kyoto Protocol (Hartikainen et al 2003 Supercond. Sci. Technol. 16 963). New technologies would include superconducting energy storage systems to effectively store power generation from renewable sources as well as high-temperature superconducting systems used in generators, transformers and synchronous motors in power stations and heavy-industry facilities. However, to be effective, these systems must be superior to conventional systems and, in reality, market penetration will occur as existing electrical machinery is written off. At current write-off rates, to achieve a 50% transfer to superconducting systems will take 20 years (Hartikainen et al 2003 Supercond. Sci. Technol. 16 963). The Roadmap next considers dc transmission of green power with a section by Eckroad and Marian who provide an update on the development of superconducting power transmission lines in view of recent sustainability studies. The potential of magnetic energy storage is then presented by Coi and Kim, who argue that a successful transition to wind and solar power generation must be harmonized with the conventional electrical network, which requires a storage technology with a fast response and long backup times. Transport. Superconducting Maglev trains and motors for international shipping have the potential to considerably reduce the emissions that contribute to greenhouse gases while improving their economic viability by reducing losses and improving efficiencies. International shipping, alone, contributes 3% of the greenhouse gas emissions. Three sections of the Roadmap identify how high-speed rail can be a major solution to providing fast, low energy, environmentally-friendly transport enabling reduction in automobile and aircraft travel by offering an alternative that is very competitive. With maritime international environmental regulations tightening, HTS motors with the characteristics of high torque and compactness will become important devices for

  14. Superconducting electromagnetic thruster

    SciTech Connect

    Meng, J.

    1993-02-11

    An electromagnetic thruster for marine vehicles using a jet of water driven by the interaction of a mutually perpendicular intensified magnetic field and an intensified electric field is disclosed. The intensified magnetic field is produced by superconducting coils cooled by a coolant such as liquid helium. An intensified electric field is produced by passing high amperage current across the seawater jet. These interacting fields produce a Lorentz force perpendicular to mutually perpendicular electric and magnetic field vectors which is used to drive the seawater jet. In some embodiments, the force may also be used to draw water into the jet from the boundary layer flow around the vehicle thereby reducing boundary layer turbulence and associated radiated noise.

  15. Super-Hard Superconductivity

    NASA Astrophysics Data System (ADS)

    Adams, Philip; Prozorov, Ruslan

    2005-03-01

    We present the magnetic response of Type-II superconductivity in the extreme pinning limit, where screening currents within an order of magnitude of the Ginzburg-Landau depairing critical current density develop upon the application of a magnetic field. We show that this ``super-hard'' limit is well approximated in highly disordered, cold drawn, Nb wire whose magnetization response is characterized by a cascade of Meissner-like phases, each terminated by a catastrophic collapse of the magnetization. Direct magneto-optic measurements of the flux penetration depth in the virgin magnetization branch are in excellent agreement with the exponential model in which Jc(B)=Jco(-B/Bo), where Jco˜5x10^6 A/cm^2 for Nb. The implications for the fundamental limiting hardness of a superconductor will be discussed.

  16. Superconducting magnetic coil

    DOEpatents

    Aized, Dawood; Schwall, Robert E.

    1996-06-11

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil.

  17. Superconducting magnetic coil

    DOEpatents

    Aized, D.; Schwall, R.E.

    1999-06-22

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil. 15 figs.

  18. Superconducting magnetic coil

    DOEpatents

    Aized, Dawood; Schwall, Robert E.

    1999-06-22

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil.

  19. Superconducting magnetic energy storage

    SciTech Connect

    Hassenzahl, W.

    1988-08-01

    Recent programmatic developments in Superconducting Magnetic Energy Storage (SMES) have prompted renewed and widespread interest in this field. In mid 1987 the Defense Nuclear Agency, acting for the Strategic Defense Initiative Office, issued a request for proposals for the design and construction of SMES Engineering Test Model (ETM). Two teams, one led by Bechtel and the other by Ebasco, are now engaged in the first phase of the development of a 10 to 20 MWhr ETM. This report presents the rationale for energy storage on utility systems, describes the general technology of SMES, and explains the chronological development of the technology. The present ETM program is outlined; details of the two projects for ETM development are described in other papers in these proceedings. The impact of high T/sub c/ materials on SMES is discussed. 69 refs., 3 figs., 3 tabs.

  20. Superconductivity in Cuprate Superlattices

    NASA Astrophysics Data System (ADS)

    Bozovic, Ivan; Eckstein, J. N.

    The following sections are included: * Introduction * YBCO/DBCO superlattices: the commencement * YBCO/PBCO superlattices: conjectures * Bi-2212:2201 superlattices: Q2D superconductivity * YBCO/(Pr,Y,Ca)BCO superlattices: clarification * More Bi-2212 superlattices: afterthoughts * Positive proximity effect in Dy-doped 2212 * Long-range proximity effect in 2201 * HTS in one-unit-cell thick 2212 layer * Inelastic hopping via localized states * Materials and layering * Integrity of ultrathin layers * Thickness dependence of the barrier resistance * Temperature dependence of the barrier resistance * Voltage dependence of current through the barrier * Interpretation: multiple inelastic hopping * Negative proximity effect on 2212 * Interlayer coupling in HTS superlattices: conclusions * The science and technology of HTS superlattices * Vortex dynamics * Critical current scaling law * Thermal activation of vortex motion * Superlattice phonons * Atomic-layer engineering of artificial HTS materials * Technological applications of HTS superlattices * Summary * Intercell coupling in HTS superlattices * Vortex dynamics * Phonon spectra * Atomic-layer engineering of artificial HTS materials * Applications * Acknowledgments * References

  1. Negative refraction and superconductivity

    NASA Astrophysics Data System (ADS)

    Amariti, Antonio; Forcella, Davide; Mariotti, Alberto; Siani, Massimo

    2011-10-01

    We discuss exotic properties of charged hydrodynamical systems, in the broken superconducting phase, probed by electromagnetic waves. Motivated by general arguments from hydrodynamics, we observe that negative refraction, namely the propagation in opposite directions of the phase velocities and of the energy flux, is expected for low enough frequencies. We corroborate this general idea by analyzing a holographic superconductor in the AdS/CFT correspondence, where the response functions can be explicitly computed. We study the dual gravitational theory both in the probe and in the backreacted case. We find that, while in the first case the refractive index is positive at every frequency, in the second case there is negative refraction at low enough frequencies. This is in agreement with hydrodynamic considerations.

  2. Superconducting energy storage

    SciTech Connect

    Giese, R.F.

    1993-10-01

    This report describes the status of energy storage involving superconductors and assesses what impact the recently discovered ceramic superconductors may have on the design of these devices. Our description is intended for R&D managers in government, electric utilities, firms, and national laboratories who wish an overview of what has been done and what remains to be done. It is assumed that the reader is acquainted with superconductivity, but not an expert on the topics discussed here. Indeed, it is the author`s aim to enable the reader to better understand the experts who may ask for the reader`s attention, support, or funding. This report may also inform scientists and engineers who, though expert in related areas, wish to have an introduction to our topic.

  3. Anyon Superconductivity of Sb

    NASA Astrophysics Data System (ADS)

    Maksoed, Wh-; Parengkuan, August

    2016-10-01

    In any permutatives to Pedro P. Kuczhynski from Peru, for anyon superconductivity sought EZ Kuchinskii et al.: ``Anion height dependence of Tc & d.o.s of Fe-based Superconductors'', 2010 as well as ``on the basis of electron microscopy & AFM measurements, these phenomena are quantified with focus on fractal dimension, particle perimeter & size of the side branch(tip width) in bert Stegemann et al.:Crystallization of Sb nanoparticles-Pattern Formation & Fractal Growth'', J.PhysChem B., 2004. For dendritic & dendrimer fractal characters shown further: ``antimony denrites were found to be composed of well-crystallized nanoflakes with size 20-4 nm''- Bou Zhau, et al., MaterialLetters, 59 (2005). The alkyl triisopropyl attached in TIPSb those includes in DNA, haemoglobin membrane/fixed-bed reactor for instance quotes in Dragony Fu, Nature Review Cancer, 12 (Feb 2012). Heartfelt Gratitudes to HE. Mr. Prof. Ir. Handojo.

  4. Superconducting combined function magnets

    SciTech Connect

    Hahn, H.; Fernow, R.C.

    1983-01-01

    Superconducting accelerators and storage rings, presently under construction or in the design phase, are based on separate dipole and quadrupole magnets. It is here suggested that a hybrid lattice configuration consisting of dipoles and combined function gradient magnets would: (1) reduce the number of magnet units and their total cost; and (2) increase the filling factor and thus the energy at a given field. Coil cross sections are presented for the example of the Brookhaven Colliding Beam Accelerator. An asymmetric two-layer cable gradient magnet would have transfer functions of 10.42 G/A and 0.628 G cm/sup -1//A versus 15.77 G/A and 2.03 G cm/sup -1//A of the present separate dipoles and quadrupoles.

  5. Effect of rapid heating, quenching and transformation conditions on the superconducting properties and microstructure of Jelly-Roll processed Nb3Al superconductors

    NASA Astrophysics Data System (ADS)

    Fukuzaki, T.; Takeuchi, T.; Banno, N.; Tagawa, K.; Tatsumi, N.; Ogiwara, H.; Wada, H.

    2002-10-01

    A Jelly-Roll processed Nb3Al superconductor with excellent superconducting properties has been fabricated by the process of rapid heating, quenching and transformation (RHQT). In order to fabricate a long length of wire with homogeneous superconducting properties, the optimization of the RHQT conditions is particularly important because RHQT conditions determine the final microstructure and superconducting properties. In this paper, we have studied the variation of microstructure and superconducting properties with RHQ and transformation annealing conditions, to determine the optimum processing condition. In the study of the RHQ treatment, we found that the RHQ conditions are divided into four regions according to the joule heating current (IRHQ). In the optimum region, the wire is quenched from the temperature in which a bcc solid solution extends to more than 25 at%Al, and the scatter of critical current density (Jc) after transformation annealing is almost negligible. In the study of the deformation and transformation heat treatment, we have found that the deformation of the supersaturated solid solution improves the resultant superconducting properties, and prevents degradation of superconducting properties that occurs when the temperature ramp-up rate is slow.

  6. Experimental evidence of oxygen thermo-migration in PWR UO2 fuels during power ramps using in-situ oxido-reduction indicators

    NASA Astrophysics Data System (ADS)

    Riglet-Martial, Ch.; Sercombe, J.; Lamontagne, J.; Noirot, J.; Roure, I.; Blay, T.; Desgranges, L.

    2016-11-01

    The present study describes the in-situ electrochemical modifications which affect irradiated PWR UO2 fuels in the course of a power ramp, by means of in-situ oxido-reduction indicators such as chromium or neo-formed chemical phases. It is shown that irradiated fuels (of nominal stoichiometry close to 2.000) under temperature gradient such as that occurring during high power transients are submitted to strong oxido-reduction perturbations, owing to radial migration of oxygen from the hot center to the cold periphery of the pellet. The oxygen redistribution, similar to that encountered in Sodium Fast Reactors fuels, induces a massive reduction/precipitation of the fission products Mo, Ru, Tc and Cr (if present) in the high temperature pellet section and the formation of highly oxidized neo-formed grey phases of U4O9 type in its cold section, of lower temperature. The parameters governing the oxidation states of UO2 fuels under power ramps are finally debated from a cross-analysis of our results and other published information. The potential chemical benefits brought by oxido-reductive additives in UO2 fuel such as chromium oxide, in connection with their oxygen buffering properties, are discussed.

  7. Superconductivity in a chiral nanotube

    PubMed Central

    Qin, F.; Shi, W.; Ideue, T.; Yoshida, M.; Zak, A.; Tenne, R.; Kikitsu, T.; Inoue, D.; Hashizume, D.; Iwasa, Y.

    2017-01-01

    Chirality of materials are known to affect optical, magnetic and electric properties, causing a variety of nontrivial phenomena such as circular dichiroism for chiral molecules, magnetic Skyrmions in chiral magnets and nonreciprocal carrier transport in chiral conductors. On the other hand, effect of chirality on superconducting transport has not been known. Here we report the nonreciprocity of superconductivity—unambiguous evidence of superconductivity reflecting chiral structure in which the forward and backward supercurrent flows are not equivalent because of inversion symmetry breaking. Such superconductivity is realized via ionic gating in individual chiral nanotubes of tungsten disulfide. The nonreciprocal signal is significantly enhanced in the superconducting state, being associated with unprecedented quantum Little-Parks oscillations originating from the interference of supercurrent along the circumference of the nanotube. The present results indicate that the nonreciprocity is a viable approach toward the superconductors with chiral or noncentrosymmetric structures. PMID:28205518

  8. Search for Superconductivity in Micrometeorites

    NASA Astrophysics Data System (ADS)

    Guénon, S.; Ramírez, J. G.; Basaran, Ali C.; Wampler, J.; Thiemens, M.; Taylor, S.; Schuller, Ivan K.

    2014-12-01

    We have developed a very sensitive, highly selective, non-destructive technique for screening inhomogeneous materials for the presence of superconductivity. This technique, based on phase sensitive detection of microwave absorption is capable of detecting 10-12 cc of a superconductor embedded in a non-superconducting, non-magnetic matrix. For the first time, we apply this technique to the search for superconductivity in extraterrestrial samples. We tested approximately 65 micrometeorites collected from the water well at the Amundsen-Scott South pole station and compared their spectra with those of eight reference materials. None of these micrometeorites contained superconducting compounds, but we saw the Verwey transition of magnetite in our microwave system. This demonstrates that we are able to detect electro-magnetic phase transitions in extraterrestrial materials at cryogenic temperatures.

  9. Superconductivity from Emerging Magnetic Moments.

    PubMed

    Hoshino, Shintaro; Werner, Philipp

    2015-12-11

    Multiorbital Hubbard models are shown to exhibit a spatially isotropic spin-triplet superconducting phase, where equal-spin electrons in different local orbitals are paired. This superconducting state is stabilized in the spin-freezing crossover regime, where local moments emerge in the metal phase, and the pairing is substantially assisted by spin anisotropy. The phase diagram features a superconducting dome below a non-Fermi-liquid metallic region and next to a magnetically ordered phase. We suggest that this type of fluctuating-moment-induced superconductivity, which is not originating from fluctuations near a quantum critical point, may be realized in spin-triplet superconductors such as strontium ruthenates and uranium compounds.

  10. Cryogenic Systems and Superconductive Power

    DTIC Science & Technology

    The report defines, investigates, and experimentally evaluates the key elements of a representative crogenic turborefrigerator subsystem suitable for providing reliable long-lived cryogenic refrigeration for a superconductive ship propulsion system.

  11. Mixed-mu superconducting bearings

    DOEpatents

    Hull, John R.; Mulcahy, Thomas M.

    1998-01-01

    A mixed-mu superconducting bearing including a ferrite structure disposed for rotation adjacent a stationary superconductor material structure and a stationary permanent magnet structure. The ferrite structure is levitated by said stationary permanent magnet structure.

  12. Mixed-mu superconducting bearings

    DOEpatents

    Hull, J.R.; Mulcahy, T.M.

    1998-03-03

    A mixed-mu superconducting bearing is disclosed including a ferrite structure disposed for rotation adjacent a stationary superconductor material structure and a stationary permanent magnet structure. The ferrite structure is levitated by said stationary permanent magnet structure. 9 figs.

  13. Superconductivity: A celebration of pairs

    NASA Astrophysics Data System (ADS)

    Norman, Michael R.

    2007-12-01

    It is fifty years since John Bardeen, Leon Cooper and Bob Schrieffer presented the microscopic theory of superconductivity. At a wonderful conference in Urbana the 'good old days' were remembered, and the challenges ahead surveyed.

  14. Search for Superconductivity in Micrometeorites

    PubMed Central

    Guénon, S.; Ramírez, J. G.; Basaran, Ali C.; Wampler, J.; Thiemens, M.; Taylor, S.; Schuller, Ivan K.

    2014-01-01

    We have developed a very sensitive, highly selective, non-destructive technique for screening inhomogeneous materials for the presence of superconductivity. This technique, based on phase sensitive detection of microwave absorption is capable of detecting 10−12 cc of a superconductor embedded in a non-superconducting, non-magnetic matrix. For the first time, we apply this technique to the search for superconductivity in extraterrestrial samples. We tested approximately 65 micrometeorites collected from the water well at the Amundsen-Scott South pole station and compared their spectra with those of eight reference materials. None of these micrometeorites contained superconducting compounds, but we saw the Verwey transition of magnetite in our microwave system. This demonstrates that we are able to detect electro-magnetic phase transitions in extraterrestrial materials at cryogenic temperatures. PMID:25476841

  15. Search for superconductivity in micrometeorites.

    PubMed

    Guénon, S; Ramírez, J G; Basaran, Ali C; Wampler, J; Thiemens, M; Taylor, S; Schuller, Ivan K

    2014-12-05

    We have developed a very sensitive, highly selective, non-destructive technique for screening inhomogeneous materials for the presence of superconductivity. This technique, based on phase sensitive detection of microwave absorption is capable of detecting 10(-12) cc of a superconductor embedded in a non-superconducting, non-magnetic matrix. For the first time, we apply this technique to the search for superconductivity in extraterrestrial samples. We tested approximately 65 micrometeorites collected from the water well at the Amundsen-Scott South pole station and compared their spectra with those of eight reference materials. None of these micrometeorites contained superconducting compounds, but we saw the Verwey transition of magnetite in our microwave system. This demonstrates that we are able to detect electro-magnetic phase transitions in extraterrestrial materials at cryogenic temperatures.

  16. Perseus B Parked on Ramp - View from Above

    NASA Technical Reports Server (NTRS)

    1999-01-01

    A long, slender wing and a pusher propeller at the rear characterize the Perseus B remotely piloted aircraft, seen here on the ramp of NASA's Dryden Flight Research Center in September 1999. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which

  17. Perseus B Parked on Ramp - View from Above

    NASA Technical Reports Server (NTRS)

    1999-01-01

    A long, slender wing and a pusher propeller at the rear characterize the Perseus B remotely piloted aircraft, seen here on the ramp of NASA's Dryden Flight Research Center in September 1999. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which

  18. Transition-Metal Oxide Superconductivity

    DTIC Science & Technology

    1988-04-20

    pyramidally coordinated complexes of the 02"- deficient compounds, and (iii) that ordering of the sources that produce the mixed-valence Cu2+ɛ+) ions in...With the strong antiferromagnetic exchange coupling of the Fe2+(3+) pairs in ferrites , no superconducting cells should be anticipated and only normal...I couplings dictate significant antiferromagnetic ordering and little chance of superconductivity. This group includes the common ferrite conduction

  19. Hermetically sealed superconducting magnet motor

    DOEpatents

    DeVault, R.C.; McConnell, B.W.; Phillips, B.A.

    1996-07-02

    A hermetically sealed superconducting magnet motor includes a rotor separated from a stator by either a radial gap, an axial gap, or a combined axial and radial gap. Dual conically shaped stators are used in one embodiment to levitate a disc-shaped rotor made of superconducting material within a conduit for moving cryogenic fluid. As the rotor is caused to rotate when the field stator is energized, the fluid is pumped through the conduit. 6 figs.

  20. Hermetically sealed superconducting magnet motor

    DOEpatents

    DeVault, Robert C.; McConnell, Benjamin W.; Phillips, Benjamin A.

    1996-01-01

    A hermetically sealed superconducting magnet motor includes a rotor separated from a stator by either a radial gap, an axial gap, or a combined axial and radial gap. Dual conically shaped stators are used in one embodiment to levitate a disc-shaped rotor made of superconducting material within a conduit for moving cryogenic fluid. As the rotor is caused to rotate when the field stator is energized, the fluid is pumped through the conduit.

  1. Y-Ba Superconducting Ceramics

    NASA Astrophysics Data System (ADS)

    Shunbao, Tian; Xiaofei, Li; Tinglian, Wen; Zuxiang, Lin; Shichun, Li; Huijun, Yu

    Polycrystalline Y-Ba-Cu-O superconducting materials have been studied. It was found that chemical composition and processing condition may play an important role in the final structure and superconducting properties. The density has been determined and compared with the calculated value according to the structure model reported by Bell Labs. The grain size and the morphology of the materials were observed by SEM.

  2. Development of Concepts in Superconductivity

    NASA Astrophysics Data System (ADS)

    Bardeen, John

    This is an excerpt from a talk that John Bardeen gave on the development of the theory of superconductivity in London, England on September 17, 1962 when he received the Fritz London award for his work developing the BCS theory of superconductivity. The talk was given at the Eighth International Conference on Low Temperature Physics at Queen Mary College in London and was reprinted in Physics Today in January of 1963.

  3. Ramping up for College Readiness in Minnesota High Schools: Implementation of a Schoolwide Program. REL 2016-146

    ERIC Educational Resources Information Center

    Lindsay, Jim; Davis, Elisabeth; Stephan, Jennifer; Bonsu, Pamela; Narlock, Jason

    2016-01-01

    The College Readiness Consortium at the University of Minnesota has developed Ramp-Up to Readiness™ (Ramp-Up), a schoolwide advisory program to increase students' likelihood of college enrollment and completion by enhancing five dimensions of college readiness (academic, admissions, career, financial, and personal-social) among students in middle…

  4. Structure function analysis of two-scale Scalar Ramps. Part II: Coherent structure scaling and surface renewal applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Structure functions are used to study the dissipation and inertial range scales of turbulent energy, to parameterize remote turbulence measurements, and to characterize ramp features in the turbulent field. The ramp features are associated with turbulent coherent structures, which dominate energy a...

  5. A case report of a severe musculoskeletal injury in a wheelchair user caused by an incorrect wheelchair ramp design.

    PubMed

    Edlich, Richard F; Kelley, Angela R; Morton, Karrie; Gellman, Richard E; Berkey, Richard; Greene, Jill Amanda; Hill, Larry; Mears, Roy; Long, William B

    2010-02-01

    The Americans with Disabilities Act (ADA) gives all Americans with disabilities a chance to achieve the same quality of life that individuals without disabilities enjoy. In this case report, we will be discussing the consequences of having inaccessible ramps to persons with disabilities that can result in severe musculoskeletal injuries in a wheelchair user. While going down an inaccessible ramp in the garage of a hospital, a wheelchair tipped over, causing a fracture to the user's right femur. The injured patient was taken to the Emergency Department, where the diagnosis of a fracture of the right femur was made. The fracture then had to be repaired with an intramedullary rod under general anesthesia in the hospital. It was discovered that the ramps in the hospital garage did not comply with the guidelines of the ADA. The wheelchair ramps had a ramp run with a rise > 6 inches (150 mm) and a horizontal projection > 72 inches (1830 mm). This led to the redesign and construction of safe ramps for individuals using wheelchairs as well as for pedestrians using canes, within 1 month after the patient's injury, making it safe for wheelchair users as well as pedestrians using the parking facilities. The ADA specifies guidelines for safe ramps for patients with disabilities. It is important to ensure that hospital ramps comply with these guidelines.

  6. Ligand-induced internalization, recycling, and resensitization of adrenomedullin receptors depend not on CLR or RAMP alone but on the receptor complex as a whole.

    PubMed

    Nag, Kakon; Sultana, Naznin; Kato, Akira; Dranik, Anna; Nakamura, Nobuhiro; Kutsuzawa, Koichi; Hirose, Shigehisa; Akaike, Toshihiro

    2015-02-01

    Adrenomedullins (AM) is a multifaceted distinct subfamily of peptides that belongs to the calcitonin gene-related peptide (CGRP) superfamily. These peptides exert their functional activities via associations of calcitonin receptor-like receptors (CLRs) and receptor activity-modifying proteins (RAMPs) RAMP2 and RAMP3. Recent studies established that RAMPs and CLRs can modify biochemical properties such as trafficking and glycosylation of each other. However there is very little or no understanding regarding how RAMP or CLR influence ligand-induced events of AM-receptor complex. In this study, using pufferfish homologs of CLR (mfCLR1-3) and RAMP (mfRAMP2 and mfRAMP3), we revealed that all combinations of CLR and RAMP quickly underwent ligand-induced internalization; however, their recycling rates were different as follows: mfCLR1-mfRAMP3>mfCLR2-mfRAMP3>mfCLR3-mfRAMP3. Functional receptor assay confirmed that the recycled receptors were resensitized on the plasma membrane. In contrast, a negligible amount of mfCLR1-mfRAMP2 was recycled and reconstituted. Immunocytochemistry results indicated that the lower recovery rate of mfCLR3-mfRAMP3 and mfCLR1-mfRAMP2 was correlated with higher proportion of lysosomal localization of these receptor complexes compared to the other combinations. Collectively our results indicate, for the first time, that the ligand-induced internalization, recycling, and reconstitution properties of RAMP-CLR receptor complexes depend on the receptor-complex as a whole, and not on individual CLR or RAMP alone.

  7. Comparison of the tension responses to ramp shortening and lengthening in intact mammalian muscle fibres: crossbridge and non-crossbridge contributions.

    PubMed

    Roots, H; Offer, G W; Ranatunga, K W

    2007-01-01

    We examined the tension responses to ramp shortening and lengthening over a range of velocities (0.1-5 L(0)/s) and at 20 degrees C and 30 degrees C in tetanized intact fibre bundles from a rat fast (flexor hallucis brevis) muscle; fibre length (L(0)) was 2.2 mm and sarcomere length approximately 2.5 microm. The tension change during ramp releases as well as ramp stretches showed an early transition (often appearing as an inflection) at 1-4 ms; the tension change at this transition and the length change at which it occurred increased with velocity. A second transition, indicated by a more gradual reduction in slope, occurred when the length had changed by 14-28 nm per half-sarcomere; the tension at this transition increased with lengthening velocity towards a plateau and it decreased with shortening velocity towards zero tension. The velocity dependence of the time to the transitions and the length change at the transitions showed some asymmetries between shortening and lengthening. Based on analyses of the velocity dependence of the tension and modelling, we propose that the first transition reflects the tension change associated with the crossbridge power stroke in shortening, or with the reversal of the power stroke in lengthening. Modelling shows that the reduction in slope at the second transition occurs when most of the crossbridges (myosin heads) that were attached at the start of the ramp become detached. After the second transition, the tension reaches a steady level in the model whereas the tension continues to increase during lengthening and continues to decrease during shortening in the experiments; this continuous tension change is seen at a wide range of initial sarcomere lengths and when active force is reduced by the myosin inhibitor, BTS. The continuous tension decline during shortening is not abolished by caffeine, but the rate of decline is reduced when the active force is depressed by BTS. We propose that stiffening of non-crossbridge visco

  8. Process for producing clad superconductive materials

    DOEpatents

    Cass, Richard B.; Ott, Kevin C.; Peterson, Dean E.

    1992-01-01

    A process for fabricating superconducting composite wire by the steps of placing a superconductive precursor admixture capable of undergoing a self propagating combustion in stoichiometric amounts sufficient to form a superconductive product within a metal tube, sealing one end of said tube, igniting said superconductive precursor admixture whereby said superconductive precursor admixture endburns along the length of the admixture, and cross-section reducing said tube at a rate substantially equal to the rate of burning of said superconductive precursor admixture and at a point substantially planar with the burnfront of the superconductive precursor mixture, whereby a clad superconductive product is formed in situ, the product characterized as superconductive without a subsequent sintering stage, is disclosed.

  9. Fast valve

    DOEpatents

    Van Dyke, W.J.

    1992-04-07

    A fast valve is disclosed that can close on the order of 7 milliseconds. It is closed by the force of a compressed air spring with the moving parts of the valve designed to be of very light weight and the valve gate being of wedge shaped with O-ring sealed faces to provide sealing contact without metal to metal contact. The combination of the O-ring seal and an air cushion create a soft final movement of the valve closure to prevent the fast air acting valve from having a harsh closing. 4 figs.

  10. Fast valve

    DOEpatents

    Van Dyke, William J.

    1992-01-01

    A fast valve is disclosed that can close on the order of 7 milliseconds. It is closed by the force of a compressed air spring with the moving parts of the valve designed to be of very light weight and the valve gate being of wedge shaped with O-ring sealed faces to provide sealing contact without metal to metal contact. The combination of the O-ring seal and an air cushion create a soft final movement of the valve closure to prevent the fast air acting valve from having a harsh closing.

  11. Evaluation of Pushback Decision-Support Tool Concept for Charlotte Douglas International Airport Ramp Operations

    NASA Technical Reports Server (NTRS)

    Hayashi, Miwa; Hoang, Ty; Jung, Yoon C.; Malik, Waqar; Lee, Hanbong; Dulchinos, Victoria L.

    2015-01-01

    This paper proposes a new departure pushback decision-support tool (DST) for airport ramp-tower controllers. It is based on NASA's Spot and Runway Departure Advisor (SARDA) collaborative decision-making concept, except with the modification that the gate releases now are controlled by tactical pushback (or gate-hold) advisories instead of strategic pre-assignments of target pushback times to individual departure flights. The proposed ramp DST relies on data exchange with the airport traffic control tower (ATCT) to coordinate pushbacks with the ATCT's flow-management intentions under current operational constraints, such as Traffic Management Initiative constraints. Airlines would benefit in reduced taxi delay and fuel burn. The concept was evaluated in a human-in-the-loop simulation experiment with current ramp-tower controllers at the Charlotte Douglas International Airport as participants. The results showed that the tool helped reduce taxi time by one minute per flight and overall departure flight fuel consumption by 10-12% without reducing runway throughput. Expect Departure Clearance Time (EDCT) conformance also was improved when advisories were provided. These benefits were attained without increasing the ramp-tower controllers' workload. Additionally, the advisories reduced the ATCT controllers' workload.

  12. The effects of ramp gait exercise with PNF on stroke patients’ dynamic balance

    PubMed Central

    Seo, Kyo Chul; Kim, Hyeon Ae

    2015-01-01

    [Purpose] This study examined the effects of ramp gait training using lower extremity patterns of proprioceptive neuromuscular facilitation (PNF) on chronic stroke patients’ dynamic balance ability. [Subjects and Methods] In total, 30 stroke patients participated in this study, and they were assigned randomly and equally to an experimental group and a control group. The experimental group received exercise treatment for 30 min and ramp gait training with PNF for 30 min. The control group received exercise treatment for 30 min and ground gait training for 30 min. The interventions were conducted in 30 min sessions, three times per week for four week. The subjects were assessed with the Berg balance scale test, timed up and go test, and functional reach test before and after the experiment and the results were compared. [Results] After the intervention, the BBS and FRT values had significantly increased and the TUG value had significantly decreased in the experimental group; however, the BBS, FRT, and TUG values showed no significant differences in the control group. In addition, differences between the two groups before the intervention and after the intervention were not significant. [Conclusion] In conclusion, ramp gait training with PNF improved stroke patients’ dynamic balance ability, and a good outcome of ramp gait training with PNF is also expected for other neurological system disease patients. PMID:26180312

  13. Ramp-hold relaxation solutions for the KVFD model applied to soft viscoelastic media

    NASA Astrophysics Data System (ADS)

    Zhang, HongMei; Wang, Yue; Insana, Michael F.

    2016-02-01

    The standard step-hold load-relaxation profile can yield variable estimates of mechanical properties due to the difficulty in achieving a step strain experimentally. A ramp-hold profile overcomes this limitation if appropriate model functions can be derived. Utilizing Boltzmann hereditary integral operators for two indentation geometries, analytical ramp solutions for load-relaxation were developed based on the Kelvin-Voigt fractional derivative (KVFD) model. The results identify three model parameters for characterizing viscoelastic behavior from a single model curve fit to the data: the elastic modulus E 0, fractional-order parameter α, and relaxation time constant τ . The quantitative nature of the analysis was validated through measurements on gelatin emulsion samples exhibiting viscoelastic behavior. KVFD-model-based solutions provide mathematically simple and experimentally flexible descriptions of load-relaxation behavior for a range of viscoelastic properties and experimental conditions; e.g. one closed-form solution can fit the ramp and the hold phases of the relaxation time series. Experiments show that the solution for a spherical indenter and plate compressor each fit well to the corresponding experimental relaxation curves with a coefficient of determination R 2  >  0.98. Parameters obtained from the spherical-tip indentation and plate-compression geometries agree within one standard deviation, confirming that the ramp solution based KVFD model yields consistent measurements for characterizing viscoelastic materials.

  14. Preferential Magnetospheric Power Excitation by Rising Frequency Ramps from 1986 Siple Station Data

    NASA Astrophysics Data System (ADS)

    Li, J.; Spasojevic, M.; Harid, V.; Golkowski, M.; Carpenter, D. L.; Inan, U.

    2013-12-01

    Controlled experiments using ground-based ELF/VLF transmitters are invaluable in studying nonlinear wave growth and triggered emissions resulting from gyroresonant interactions between whistler mode waves and energetic electrons in the magnetosphere. Typical studies have focused on the narrowband and discrete features present in the received signal and triggered emissions, but have not considered the potential total power excited during the interaction in the magnetosphere. Here, we develop a metric for estimating the total magnetospheric power excited in the propagation ducts and apply this metric to data transmitted from Siple Station, Antarctica. The transmitted STACO format in 1986 includes a series of ascending and descending ramp and staircase elements, allowing for a quantitative comparison of total power excited by frequency ramps of different orientations. We find that rising frequency ramps result in preferentially higher power excitation and that higher noise measurements in the duct correspond to significantly higher measures of power excitation by the transmitted signal. These results provide insight into the structure of the background cold plasma and the distribution of the hot plasma and the conditions favorable for nonlinear wave amplification and triggering. Portion of the STACO transmissions format on 8/18/1986 at 12:21:00 UT, illustrating the differences in magnetospheric amplification and generation for ascending and descending ramp segments.

  15. Efficiency promotion for an on-ramp system based on intelligent transportation system information

    NASA Astrophysics Data System (ADS)

    Xie, Dong-Fan; Gao, Zi-You; Zhao, Xiao-Mei

    2010-08-01

    The effect of cars with intelligent transportation systems (ITSs) on traffic flow near an on-ramp is investigated by car-following simulations. By numerical simulations, the dependences of flux on the inflow rate are investigated for various proportions of cars with ITSs. The phase diagrams as well as the spatiotemporal diagrams are presented to show different traffic flow states on the main road and the on-ramp. The results show that the saturated flux on the main road increases and the free flow region is enlarged with the increase of the proportion of cars with ITS. Interestingly, the congested regions of the main road disappear completely when the proportion is larger than a critical value. Further investigation shows that the capacity of the on-ramp system can be promoted by 13% by using the ITS information, and the saturated flux on the on-ramp can be kept at an appropriate value by adjusting the proportion of cars with ITS.

  16. The Archival Appraisal of Moving Images: A RAMP Study with Guidelines.

    ERIC Educational Resources Information Center

    Kula, Sam

    Produced as part of the United Nations Educational, Scientific, and Cultural Organization (UNESCO) Records and Archives Management Programme (RAMP), this publication provides government and non-government archivists and records managers with a comparative study of past and present policies and practices for selecting moving images for…

  17. Selected Guidelines for the Management of Records and Archives: A RAMP Reader.

    ERIC Educational Resources Information Center

    Walne, Peter, Comp.

    The guidelines contained in this book are taken from studies published by UNESCO's Records and Archives Management Program (RAMP) between 1981 and 1987. Each set of guidelines is accompanied by an introduction to provide chronological or methodological context. The guidelines are titled as follows: (1) "The Use of Sampling Techniques in the…

  18. Investigation of shock wave-boundary layer instability on the heated ramp surface

    NASA Astrophysics Data System (ADS)

    Glushneva, A. V.; Saveliev, A. S.; Son, E. E.; Tereshonok, D. V.

    2015-11-01

    By means of particle image velocimetry method shock-wave boundary layer interaction on the pre-heated ramp surface was investigated. The influence of surface heating on separation region unsteadiness was proved. It was found experimentally that increasing of wall to outer flow temperature ratio raises amplitude of separation region oscillation.

  19. Accurate Electron Densities at Nuclei Using Small Ramp-Gaussian Basis Sets.

    PubMed

    McKemmish, Laura K; Gilbert, Andrew T B

    2015-08-11

    Electron densities at nuclei are difficult to calculate accurately with all-Gaussian basis sets because they lack an electron-nuclear cusp. The newly developed mixed ramp-Gaussian basis sets, such as R-31G, possess electron-nuclear cusps due to the presence of ramp functions in the basis. The R-31G basis set is a general-purpose mixed ramp-Gaussian basis set modeled on the 6-31G basis set. The prediction of electron densities at nuclei using R-31G basis sets for Li-F outperforms Dunning, Pople, and Jensen general purpose all-Gaussian basis sets of triple-ζ quality or lower and the cc-pVQZ basis set. It is of similar quality to the specialized pcJ-0 basis set which was developed with partial decontraction of core functions and extra high exponent s-Gaussians to predict electron density at the nucleus. These results show significant advantages in the properties of mixed ramp-Gaussian basis sets compared to all-Gaussian basis sets.

  20. Localization of duplex thrust-ramps by buckling: analog and numerical modelling

    NASA Astrophysics Data System (ADS)

    Liu, Shumin; Dixon, John M.

    1995-06-01

    Duplex structures in natural fold-thrust belts occur over a wide range of geometric scales. Duplex thrust ramps exhibit a regular spacing linearly related to the thickness of strata involved in the duplex. We suggest that buckling instability in layered systems can produce local stress concentrations which localize thrust ramps with regular spacing. This mechanism is demonstrated through analog (centrifuge) and numerical (finite element) modelling. Centrifuge models containing finely-laminated multilayers composed of plasticine and silicone putty (simulating rocks such as limestone and shale) are compressed from one edge; folds propagate from hinterland to foreland. As shortening continues, the lowest competent unit is thrust into a blind duplex structure by breakthrusting. The duplex develops by serial nucleation of faults from hinterland to foreland; the ramp locations are inherited from the initial buckling instability. Finite-element models based on the analog models and their natural prototypes demonstrate that stress concentrations develop in fore-limbs of anticlines within competent stratigraphie units. Models containing thrust discontinuities (at sites of calculated stress concentration) display additional stress concentrations in the forelimbs of unfaulted folds closer to the foreland. The locus of stress concentration thus propagates towards the foreland, consistent with foreland thrust propagation in nature. The location and regular spacing of ramps are inherited from early (possibly even incipient) buckle folds.