Science.gov

Sample records for fast reactor burnup

  1. Model biases in high-burnup fast reactor simulations

    SciTech Connect

    Touran, N.; Cheatham, J.; Petroski, R.

    2012-07-01

    A new code system called the Advanced Reactor Modeling Interface (ARMI) has been developed that loosely couples multiscale, multiphysics nuclear reactor simulations to provide rapid, user-friendly, high-fidelity full systems analysis. Incorporating neutronic, thermal-hydraulic, safety/transient, fuel performance, core mechanical, and economic analyses, ARMI provides 'one-click' assessments of many multi-disciplined performance metrics and constraints that historically require iterations between many diverse experts. The capabilities of ARMI are implemented in this study to quantify neutronic biases of various modeling approximations typically made in fast reactor analysis at an equilibrium condition, after many repetitive shuffles. Sensitivities at equilibrium that result in very high discharge burnup are considered ( and >20% FIMA), as motivated by the development of the Traveling Wave Reactor. Model approximations discussed include homogenization, neutronic and depletion mesh resolution, thermal-hydraulic coupling, explicit control rod insertion, burnup-dependent cross sections, fission product model, burn chain truncation, and dynamic fuel performance. The sensitivities of these approximations on equilibrium discharge burnup, k{sub eff}, power density, delayed neutron fraction, and coolant temperature coefficient are discussed. (authors)

  2. Burnup concept for a long-life fast reactor core using MCNPX.

    SciTech Connect

    Holschuh, Thomas Vernon,; Lewis, Tom Goslee,; Parma, Edward J.,

    2013-02-01

    This report describes a reactor design with a burnup concept for a long-life fast reactor core that was evaluated using Monte Carlo N-Particle eXtended (MCNPX). The current trend in advanced reactor design is the concept of a small modular reactor (SMR). However, very few of the SMR designs attempt to substantially increase the lifetime of a reactor core, especially without zone loading, fuel reshuffling, or other artificial mechanisms in the core that %E2%80%9Cflatten%E2%80%9D the power profile, including non-uniform cooling, non-uniform moderation, or strategic poison placement. Historically, the limitations of computing capabilities have prevented acceptable margins in the temporal component of the spatial excess reactivity in a reactor design, due primarily to the error in burnup calculations. This research was performed as an initial scoping analysis into the concept of a long-life fast reactor. It can be shown that a long-life fast reactor concept can be modeled using MCNPX to predict burnup and neutronics behavior. The inherent characteristic of this conceptual design is to minimize the change in reactivity over the lifetime of the reactor. This allows the reactor to operate substantially longer at full power than traditional Light Water Reactors (LWRs) or other SMR designs. For the purpose of this study, a single core design was investigated: a relatively small reactor core, yielding a medium amount of power (~200 to 400 MWth). The results of this scoping analysis were successful in providing a preliminary reactor design involving metal U-235/U-238 fuel with HT-9 fuel cladding and sodium coolant at a 20% volume fraction.

  3. Void effect analysis of Pb-208 of fast reactors with modified CANDLE burn-up scheme

    NASA Astrophysics Data System (ADS)

    Widiawati, Nina; Su'ud, Zaki

    2015-09-01

    Void effect analysis of Pb-208 as coolant of fast reactors with modified candle burn-up scheme has been conducted. Lead cooled fast reactor (LFR) is one of the fourth-generation reactor designs. The reactor is designed with a thermal power output of 500 MWt. Modified CANDLE burn-up scheme allows the reactor to have long life operation by supplying only natural uranium as fuel cycle input. This scheme introducing discrete region, the fuel is initially put in region 1, after one cycle of 10 years of burn up it is shifted to region 2 and region 1 is filled by fresh natural uranium fuel. The reactor is designed for 100 years with 10 regions arranged axially. The results of neutronic calculation showed that the void coefficients ranged from -0.6695443 % at BOC to -0.5273626 % at EOC for 500 MWt reactor. The void coefficients of Pb-208 more negative than Pb-nat. The results showed that the reactors with Pb-208 coolant have better level of safety than Pb-nat.

  4. Void effect analysis of Pb-208 of fast reactors with modified CANDLE burn-up scheme

    SciTech Connect

    Widiawati, Nina Su’ud, Zaki

    2015-09-30

    Void effect analysis of Pb-208 as coolant of fast reactors with modified candle burn-up scheme has been conducted. Lead cooled fast reactor (LFR) is one of the fourth-generation reactor designs. The reactor is designed with a thermal power output of 500 MWt. Modified CANDLE burn-up scheme allows the reactor to have long life operation by supplying only natural uranium as fuel cycle input. This scheme introducing discrete region, the fuel is initially put in region 1, after one cycle of 10 years of burn up it is shifted to region 2 and region 1 is filled by fresh natural uranium fuel. The reactor is designed for 100 years with 10 regions arranged axially. The results of neutronic calculation showed that the void coefficients ranged from −0.6695443 % at BOC to −0.5273626 % at EOC for 500 MWt reactor. The void coefficients of Pb-208 more negative than Pb-nat. The results showed that the reactors with Pb-208 coolant have better level of safety than Pb-nat.

  5. Effect of Fuel Fraction on Small Modified CANDLE Burn-up Based Gas Cooled Fast Reactors

    SciTech Connect

    Ariani, Menik; Su'ud, Zaki; Waris, Abdul; Asiah, Nur; Shafii, M. Ali; Khairurrijal

    2010-12-23

    A conceptual design study of Gas Cooled Fast Reactors with Modified CANDLE Burn-up has been performed. The objective of this research is to get optimal design parameters of such type reactors. The parameters of nuclear design including the critical condition, conversion ratio, and burn-up level were compared. These parameters are calculated by variation in the fuel fraction 47.5% up to 70%. Two dimensional full core multi groups diffusion calculations was performed by CITATION code. Group constant preparations are performed by using SRAC code system with JENDL-3.2 nuclear data library. In this design the reactor cores with cylindrical cell two dimensional R-Z core models are subdivided into several parts with the same volume in the axial directions. The placement of fuel in core arranged so that the result of plutonium from natural uranium can be utilized optimally for 10 years reactor operation. Modified CANDLE burn-up was established successfully in a core radial width 1.4 m. Total thermal power output for reference core is 550 MW. Study on the effect of fuel to coolant ratio shows that effective multiplication factor (k{sub eff}) is in almost linear relations with the change of the fuel volume to coolant ratio.

  6. Effect of Fuel Fraction on Small Modified CANDLE Burn-up Based Gas Cooled Fast Reactors

    NASA Astrophysics Data System (ADS)

    Ariani, Menik; Su'ud, Zaki; Waris, Abdul; Khairurrijal, Asiah, Nur; Shafii, M. Ali

    2010-12-01

    A conceptual design study of Gas Cooled Fast Reactors with Modified CANDLE Burn-up has been performed. The objective of this research is to get optimal design parameters of such type reactors. The parameters of nuclear design including the critical condition, conversion ratio, and burn-up level were compared. These parameters are calculated by variation in the fuel fraction 47.5% up to 70%. Two dimensional full core multi groups diffusion calculations was performed by CITATION code. Group constant preparations are performed by using SRAC code system with JENDL-3.2 nuclear data library. In this design the reactor cores with cylindrical cell two dimensional R-Z core models are subdivided into several parts with the same volume in the axial directions. The placement of fuel in core arranged so that the result of plutonium from natural uranium can be utilized optimally for 10 years reactor operation. Modified CANDLE burn-up was established successfully in a core radial width 1.4 m. Total thermal power output for reference core is 550 MW. Study on the effect of fuel to coolant ratio shows that effective multiplication factor (keff) is in almost linear relations with the change of the fuel volume to coolant ratio.

  7. Irradiation experiment on fast reactor metal fuels containing minor actinides up to 7 at.% burnup

    SciTech Connect

    Ohta, H.; Yokoo, T.; Ogata, T.; Inoue, T.; Ougier, M.; Glatz, J.P.; Fontaine, B.; Breton, L.

    2007-07-01

    Fast reactor metal fuels containing minor actinides (MAs: Np, Am, Cm) and rare earths (REs) have been irradiated in the fast reactor PHENIX. In this experiment, four types of fuel alloys, U-19Pu-10Zr, U-19Pu-10Zr-2MA-2RE, U-19Pu-10Zr-5MA-5RE and U-19Pu-10Zr-5MA (wt.%), are loaded into part of standard metal fuel stacks. The postirradiation examinations will be conducted at {approx}2.4, {approx}7 and {approx}11 at.% burnup. As for the low-burnup fuel pins, nondestructive postirradiation tests have already been performed and the fuel integrity was confirmed. Furthermore, the irradiation experiment for the intermediate burnup goal of {approx}7 at.% was completed in July 2006. For the irradiation period of 356.63 equivalent full-power days, the neutron flux level remained in the range of 3.5-3.6 x 10{sup 15} n/cm{sup 2}/s at the axial peak position. On the other hand, the maximum linear power of fuel alloys decreased gradually from 305-315 W/cm (beginning of irradiation) to 250-260 W/cm (end of irradiation). The discharged peak burnup was estimated to be 6.59-7.23 at.%. The irradiation behavior of MA-containing metal fuels up to 7 at.% burnup was predicted using the ALFUS code, which was developed for U-Pu-Zr ternary fuel performance analysis. As a result, it was evaluated that the fuel temperature is distributed between {approx}410 deg. C and {approx}645 deg. C at the end of the irradiation experiment. From the stress-strain analysis based on the preliminarily employed cladding irradiation properties and the FCMI stress distribution history, it was predicted that a cladding strain of not more than 0.9% would appear. (authors)

  8. Conceptual Design study of Small Long-life Gas Cooled Fast Reactor With Modified CANDLE Burn-up Scheme

    NASA Astrophysics Data System (ADS)

    Nur Asiah, A.; Su'ud, Zaki; Ferhat, A.; Sekimoto, H.

    2010-06-01

    In this paper, conceptual design study of Small Long-life Gas Cooled Fast Reactors with Natural Uranium as Fuel Cycle Input has been performed. In this study Gas Cooled Fast Reactor is slightly modified by employing modified CANDLE burn-up scheme so that it can use Natural Uranium as fuel cycle input. Due to their hard spectrum, GCFR in this study showed very good performance in converting U-238 to plutonium in order to maintain the operation condition requirement of long-life reactors. Due to the limitation of thermal hydraulic aspects, the average power density of the proposed design is selected about 70 W/cc. With such condition we got an optimal design of 325 MWt reactors which can be operated 10 years without refueling and fuel shuffling and just need natural uranium as fuel cycle input. The average discharge burn-up is about 290 GWd/ton HM.

  9. Study on core radius minimization for long life Pb-Bi cooled CANDLE burnup scheme based fast reactor

    SciTech Connect

    Afifah, Maryam Su’ud, Zaki; Miura, Ryosuke; Takaki, Naoyuki; Sekimoto, H.

    2015-09-30

    Fast Breeder Reactor had been interested to be developed over the world because it inexhaustible source energy, one of those is CANDLE reactor which is have strategy in burn-up scheme, need not control roads for control burn-up, have a constant core characteristics during energy production and don’t need fuel shuffling. The calculation was made by basic reactor analysis which use Sodium coolant geometry core parameter as a reference core to study on minimum core reactor radius of CANDLE for long life Pb-Bi cooled, also want to perform pure coolant effect comparison between LBE and sodium in a same geometry design. The result show that the minimum core radius of Lead Bismuth cooled CANDLE is 100 cm and 500 MWth thermal output. Lead-Bismuth coolant for CANDLE reactor enable to reduce much reactor size and have a better void coefficient than Sodium cooled as the most coolant for FBR, then we will have a good point in safety analysis.

  10. Study on core radius minimization for long life Pb-Bi cooled CANDLE burnup scheme based fast reactor

    NASA Astrophysics Data System (ADS)

    Afifah, Maryam; Miura, Ryosuke; Su'ud, Zaki; Takaki, Naoyuki; Sekimoto, H.

    2015-09-01

    Fast Breeder Reactor had been interested to be developed over the world because it inexhaustible source energy, one of those is CANDLE reactor which is have strategy in burn-up scheme, need not control roads for control burn-up, have a constant core characteristics during energy production and don't need fuel shuffling. The calculation was made by basic reactor analysis which use Sodium coolant geometry core parameter as a reference core to study on minimum core reactor radius of CANDLE for long life Pb-Bi cooled, also want to perform pure coolant effect comparison between LBE and sodium in a same geometry design. The result show that the minimum core radius of Lead Bismuth cooled CANDLE is 100 cm and 500 MWth thermal output. Lead-Bismuth coolant for CANDLE reactor enable to reduce much reactor size and have a better void coefficient than Sodium cooled as the most coolant for FBR, then we will have a good point in safety analysis.

  11. Preliminary safety analysis of Pb-Bi cooled 800 MWt modified CANDLE burn-up scheme based fast reactors

    SciTech Connect

    Su'ud, Zaki; Sekimoto, H.

    2014-09-30

    Pb-Bi Cooled fast reactors with modified CANDLE burn-up scheme with 10 regions and 10 years cycle length has been investigated from neutronic aspects. In this study the safety aspect of such reactors have been investigated and discussed. Several condition of unprotected loss of flow (ULOF) and unprotected rod run-out transient over power (UTOP) have been simulated and the results show that the reactors excellent safety performance. At 80 seconds after unprotected loss of flow condition, the core flow rate drop to about 25% of its initial flow and slowly move toward its natural circulation level. The maximum fuel temperature can be managed below 1000°C and the maximum cladding temperature can be managed below 700°C. The dominant reactivity feedback is radial core expansion and Doppler effect, followed by coolant density effect and fuel axial expansion effect.

  12. Preliminary safety analysis of Pb-Bi cooled 800 MWt modified CANDLE burn-up scheme based fast reactors

    NASA Astrophysics Data System (ADS)

    Su'ud, Zaki; Sekimoto, H.

    2014-09-01

    Pb-Bi Cooled fast reactors with modified CANDLE burn-up scheme with 10 regions and 10 years cycle length has been investigated from neutronic aspects. In this study the safety aspect of such reactors have been investigated and discussed. Several condition of unprotected loss of flow (ULOF) and unprotected rod run-out transient over power (UTOP) have been simulated and the results show that the reactors excellent safety performance. At 80 seconds after unprotected loss of flow condition, the core flow rate drop to about 25% of its initial flow and slowly move toward its natural circulation level. The maximum fuel temperature can be managed below 1000°C and the maximum cladding temperature can be managed below 700°C. The dominant reactivity feedback is radial core expansion and Doppler effect, followed by coolant density effect and fuel axial expansion effect.

  13. Behavior of low-burnup metallic fuels for the integral fast reactor at elevated temperatures in ex-reactor tests

    SciTech Connect

    Tsai, Hanchung; Liu, Yung Y.; Wang, Da-Yung; Kramer, J.M.

    1991-07-01

    A series of ex-reactor heating tests on low burnup U-26wt.%Pu-10wt.%Zr metallic fuel for the PRISM reactor was conducted to evaluate fuel/cladding metallurgical interaction and its effect on cladding integrity at elevated temperatures. The reaction between the fuel and cladding caused liquid-phase formation and dissolution of the inner surface of the cladding. The rate of cladding penetration was below the existing design correlation, which provides a conservative margin to cladding failure. In a test which enveloped a wide range of postulated reactor transient events, a substantial temporal cladding integrity margin was demonstrated for an intact, whole fuel pin. The cause of the eventual pin breach was reaction-induced cladding thinning combined with fission-gas pressure loading. The behavior of the breached pin was benign. 7 refs., 7 figs., 1 tab.

  14. Microstructural Characterization of High Burn-up Mixed Oxide Fast Reactor Fuel

    SciTech Connect

    Melissa C. Teague; Brian P. Gorman; Steven L. Hayes; Douglas L. Porter; Jeffrey King

    2013-10-01

    High burn-up mixed oxide fuel with local burn-ups of 3.4–23.7% FIMA (fissions per initial metal atom) were destructively examined as part of a research project to understand the performance of oxide fuel at extreme burn-ups. Optical metallography of fuel cross-sections measured the fuel-to-cladding gap, clad thickness, and central void evolution in the samples. The fuel-to-cladding gap closed significantly in samples with burn-ups below 7–9% FIMA. Samples with burn-ups in excess of 7–9% FIMA had a reopening of the fuel-to-cladding gap and evidence of joint oxide-gain (JOG) formation. Signs of axial fuel migration to the top of the fuel column were observed in the fuel pin with a peak burn-up of 23.7% FIMA. Additionally, high burn-up structure (HBS) was observed in the two highest burn-up samples (23.7% and 21.3% FIMA). The HBS layers were found to be 3–5 times thicker than the layers found in typical LWR fuel. The results of the study indicate that formation of JOG and or HBS prevents any significant fuel-cladding mechanical interaction from occurring, thereby extending the potential life of the fuel elements.

  15. Measurement and calculation of high-actinide burnup in the prototype fast reactor

    SciTech Connect

    Broadhead, B.L.; Raman, S.; Dickens, J.K. )

    1991-01-01

    An agreement was signed in May 1979 as a part of a long-term cooperative program between the United Kingdom and the US under the liquid-metal fast breeder reactor agreement of 1976. This agreement included an experiment to carry out irradiations of physics specimens of fissile and fertile actinides to improve our knowledge of basic nuclear physics phenomena. Three fuel pins were prepared by the US to contain the actinide physics samples; two of these pins were irradiated at the Dounreay prototype fast reactor (PFR) for a total irradiation of 63 full-power days. The third pin has only recently been removed from the PFT, following an irradiation of > 500 full-power days. Each pin houses 35 capsules containing milligram quantities of actinide oxides of {sup 231}Pa, {sup 230}Th, {sup 232}Th, {sup 233}U, {sup 234}U, {sup 235}U, {sup 236}U, {sup 238}U, {sup 237}Np, {sup 238}Pu, {sup 239}Pu, {sup 240}Pu, {sup 241}Pu, {sup 242}Pu, {sup 244}Pu, {sup 241}Am, {sup 243}Am, {sup 243}Cm, {sup 244}Cm, {sup 246}Cm, and {sup 248}Cm. Following the return of the first fuel pin (FP-1) to the United States in May 1984, the actinide samples were prepared for studies of fission product yields, isotopics, and material concentrations. The measurements were repeated for the second fuel pin (FP-2) to remedy several problems encountered in the processing of the FP-1 pin. A brief description of the measured and calculated {sup 137}Cs yields for both FP-1 and FP-2 are included in this paper.

  16. Fully Coupled Modeling of Burnup-Dependent (U1- y , Pu y )O2- x Mixed Oxide Fast Reactor Fuel Performance

    NASA Astrophysics Data System (ADS)

    Liu, Rong; Zhou, Wenzhong; Zhou, Wei

    2016-03-01

    During the fast reactor nuclear fuel fission reaction, fission gases accumulate and form pores with the increase of fuel burnup, which decreases the fuel thermal conductivity, leading to overheating of the fuel element. The diffusion of plutonium and oxygen with high temperature gradient is also one of the important fuel performance concerns as it will affect the fuel material properties, power distribution, and overall performance of the fuel pin. In order to investigate these important issues, the (U1- y Pu y )O2- x fuel pellet is studied by fully coupling thermal transport, deformation, oxygen diffusion, fission gas release and swelling, and plutonium redistribution to evaluate the effects on each other with burnup-dependent models, accounting for the evolution of fuel porosity. The approach was developed using self-defined multiphysics models based on the framework of COMSOL Multiphysics to manage the nonlinearities associated with fast reactor mixed oxide fuel performance analysis. The modeling results showed a consistent fuel performance comparable with the previous results. Burnup degrades the fuel thermal conductivity, resulting in a significant fuel temperature increase. The fission gas release increased rapidly first and then steadily with the burnup increase. The fuel porosity increased dramatically at the beginning of the burnup and then kept constant as the fission gas released to the fuel free volume, causing the fuel temperature to increase. Another important finding is that the deviation from stoichiometry of oxygen affects greatly not only the fuel properties, for example, thermal conductivity, but also the fuel performance, for example, temperature distribution, porosity evolution, grain size growth, fission gas release, deformation, and plutonium redistribution. Special attention needs to be paid to the deviation from stoichiometry of oxygen in fuel fabrication. Plutonium content will also affect the fuel material properties and performance

  17. An extended version of the SERPENT-2 code to investigate fuel burn-up and core material evolution of the Molten Salt Fast Reactor

    NASA Astrophysics Data System (ADS)

    Aufiero, M.; Cammi, A.; Fiorina, C.; Leppänen, J.; Luzzi, L.; Ricotti, M. E.

    2013-10-01

    In this work, the Monte Carlo burn-up code SERPENT-2 has been extended and employed to study the material isotopic evolution of the Molten Salt Fast Reactor (MSFR). This promising GEN-IV nuclear reactor concept features peculiar characteristics such as the on-line fuel reprocessing, which prevents the use of commonly available burn-up codes. Besides, the presence of circulating nuclear fuel and radioactive streams from the core to the reprocessing plant requires a precise knowledge of the fuel isotopic composition during the plant operation. The developed extension of SERPENT-2 directly takes into account the effects of on-line fuel reprocessing on burn-up calculations and features a reactivity control algorithm. It is here assessed against a dedicated version of the deterministic ERANOS-based EQL3D procedure (PSI-Switzerland) and adopted to analyze the MSFR fuel salt isotopic evolution. Particular attention is devoted to study the effects of reprocessing time constants and efficiencies on the conversion ratio and the molar concentration of elements relevant for solubility issues (e.g., trivalent actinides and lanthanides). Quantities of interest for fuel handling and safety issues are investigated, including decay heat and activities of hazardous isotopes (neutron and high energy gamma emitters) in the core and in the reprocessing stream. The radiotoxicity generation is also analyzed for the MSFR nominal conditions. The production of helium and the depletion in tungsten content due to nuclear reactions are calculated for the nickel-based alloy selected as reactor structural material of the MSFR. These preliminary evaluations can be helpful in studying the radiation damage of both the primary salt container and the axial reflectors.

  18. Fast Reactors

    NASA Astrophysics Data System (ADS)

    Esposito, S.; Pisanti, O.

    The following sections are included: * Elementary Considerations * The Integral Equation to the Neutron Distribution * The Critical Size for a Fast Reactor * Supercritical Reactors * Problems and Exercises

  19. Analysis on burnup step effect for evaluating reactor criticality and fuel breeding ratio

    SciTech Connect

    Saputra, Geby; Purnama, Aditya Rizki; Permana, Sidik; Suzuki, Mitsutoshi

    2014-09-30

    Criticality condition of the reactors is one of the important factors for evaluating reactor operation and nuclear fuel breeding ratio is another factor to show nuclear fuel sustainability. This study analyzes the effect of burnup steps and cycle operation step for evaluating the criticality condition of the reactor as well as the performance of nuclear fuel breeding or breeding ratio (BR). Burnup step is performed based on a day step analysis which is varied from 10 days up to 800 days and for cycle operation from 1 cycle up to 8 cycles reactor operations. In addition, calculation efficiency based on the variation of computer processors to run the analysis in term of time (time efficiency in the calculation) have been also investigated. Optimization method for reactor design analysis which is used a large fast breeder reactor type as a reference case was performed by adopting an established reactor design code of JOINT-FR. The results show a criticality condition becomes higher for smaller burnup step (day) and for breeding ratio becomes less for smaller burnup step (day). Some nuclides contribute to make better criticality when smaller burnup step due to individul nuclide half-live. Calculation time for different burnup step shows a correlation with the time consuming requirement for more details step calculation, although the consuming time is not directly equivalent with the how many time the burnup time step is divided.

  20. Burnup simulations of an inert matrix fuel using a two region, multigroup reactor physics model

    SciTech Connect

    Schneider, E.; Deinert, M.; Bingham Cady, K.

    2006-07-01

    Determining the time dependent concentration of isotopes in a nuclear reactor core is of fundamental importance to analysis of nuclear fuel cycles and the impact of spent fuels on long term storage facilities. We present a fast, conceptually simple tool for performing burnup calculations applicable to obtaining isotopic balances as a function of fuel burnup. The code (VBUDS: visualization, burnup, depletion and spectra) uses a two region, multigroup collision probability model to determine the energy dependent neutron flux and tracks the buildup and burnout of 24 actinides, as well as fission products. The model has been tested against benchmarked results for LWRs burning UOX and MOX, as well as MONTEBURNS simulations of zirconium oxide based IMF, all with strong fidelity. As an illustrative example, VBUDS burnup calculation results for an IMF fuel are presented in this paper. (authors)

  1. PRESSURIZED WATER REACTOR CORE WITH PLUTONIUM BURNUP

    DOEpatents

    Puechl, K.H.

    1963-09-24

    A pressurized water reactor is described having a core containing Pu/sup 240/ in which the effective microscopic neutronabsorption cross section of Pu/sup 240/ in unconverted condition decreases as the time of operation of the reactor increases, in order to compensate for loss of reactivity resulting from fission product buildup during reactor operation. This means serves to improve the efficiency of the reactor operation by reducing power losses resulting from control rods and burnable poisons. (AEC)

  2. A fast and flexible reactor physics model for simulating neutron spectra and depletion in fast reactors

    NASA Astrophysics Data System (ADS)

    Recktenwald, Geoff; Deinert, Mark

    2010-03-01

    Determining the time dependent concentration of isotopes within a nuclear reactor core is central to the analysis of nuclear fuel cycles. We present a fast, flexible tool for determining the time dependent neutron spectrum within fast reactors. The code (VBUDS: visualization, burnup, depletion and spectra) uses a two region, multigroup collision probability model to simulate the energy dependent neutron flux and tracks the buildup and burnout of 24 actinides, as well as fission products. While originally developed for LWR simulations, the model is shown to produce fast reactor spectra that show high degree of fidelity to available fast reactor benchmarks.

  3. Assessment of the use of extended burnup fuel in light water power reactors

    SciTech Connect

    Baker, D.A.; Bailey, W.J.; Beyer, C.E.; Bold, F.C.; Tawil, J.J.

    1988-02-01

    This study has been conducted by Pacific Northwest Laboratory for the US Nuclear Regulatory Commission to review the environmental and economic impacts associated with the use of extended burnup nuclear fuel in light water power reactors. It has been proposed that current batch average burnup levels of 33 GWd/t uranium be increased to above 50 GWd/t. The environmental effects of extending fuel burnup during normal operations and during accident events and the economic effects of cost changes on the fuel cycle are discussed in this report. The physical effects of extended burnup on the fuel and the fuel assembly are also presented as a basis for the environmental and economic assessments. Environmentally, this burnup increase would have no significant impact over that of normal burnup. Economically, the increased burnup would have favorable effects, consisting primarily of a reduction: (1) total fuel requirements; (2) reactor downtime for fuel replacement; (3) the number of fuel shipments to and from reactor sites; and (4) repository storage requirements. 61 refs., 4 figs., 27 tabs.

  4. Fast Breeder Reactor studies

    SciTech Connect

    Till, C.E.; Chang, Y.I.; Kittel, J.H.; Fauske, H.K.; Lineberry, M.J.; Stevenson, M.G.; Amundson, P.I.; Dance, K.D.

    1980-07-01

    This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts.

  5. The Integral Fast Reactor

    SciTech Connect

    Chang, Y.I.

    1988-01-01

    The Integral Fast Reactor (IFR) is an innovative liquid metal reactor concept being developed at Argonne National Laboratory. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system. This paper describes the key features and potential advantages of the IFR concept, with emphasis on its safety characteristics. 3 refs., 4 figs., 1 tab.

  6. The Integral Fast Reactor

    SciTech Connect

    Till, C.E.; Chang, Y.I. ); Lineberry, M.J. )

    1990-01-01

    Argonne National Laboratory, since 1984, has been developing the Integral Fast Reactor (IFR). This paper will describe the way in which this new reactor concept came about; the technical, public acceptance, and environmental issues that are addressed by the IFR; the technical progress that has been made; and our expectations for this program in the near term. 5 refs., 3 figs.

  7. Fuel burnup analysis for Thai research reactor by using MCNPX computer code

    NASA Astrophysics Data System (ADS)

    Sangkaew, S.; Angwongtrakool, T.; Srimok, B.

    2017-06-01

    This paper presents the fuel burnup analysis of the Thai research reactor (TRR-1/M1), TRIGA Mark-III, operated by Thailand Institute of Nuclear Technology (TINT) in Bangkok, Thailand. The modelling software used in this analysis is MCNPX (MCNP eXtended) version 2.6.0, a Fortran90 Monte Carlo radiation transport computer code. The analysis results will cover the core excess reactivity, neutron fluxes at the irradiation positions and neutron detector tubes, power distribution, fuel burnup, and fission products based on fuel cycle of first reactor core arrangement.

  8. Impact investigation of reactor fuel operating parameters on reactivity for use in burnup credit applications

    NASA Astrophysics Data System (ADS)

    Sloma, Tanya Noel

    When representing the behavior of commercial spent nuclear fuel (SNF), credit is sought for the reduced reactivity associated with the net depletion of fissile isotopes and the creation of neutron-absorbing isotopes, a process that begins when a commercial nuclear reactor is first operated at power. Burnup credit accounts for the reduced reactivity potential of a fuel assembly and varies with the fuel burnup, cooling time, and the initial enrichment of fissile material in the fuel. With regard to long-term SNF disposal and transportation, tremendous benefits, such as increased capacity, flexibility of design and system operations, and reduced overall costs, provide an incentive to seek burnup credit for criticality safety evaluations. The Nuclear Regulatory Commission issued Interim Staff Guidance 8, Revision 2 in 2002, endorsing burnup credit of actinide composition changes only; credit due to actinides encompasses approximately 30% of exiting pressurized water reactor SNF inventory and could potentially be increased to 90% if fission product credit were accepted. However, one significant issue for utilizing full burnup credit, compensating for actinide and fission product composition changes, is establishing a set of depletion parameters that produce an adequately conservative representation of the fuel's isotopic inventory. Depletion parameters can have a significant effect on the isotopic inventory of the fuel, and thus the residual reactivity. This research seeks to quantify the reactivity impact on a system from dominant depletion parameters (i.e., fuel temperature, moderator density, burnable poison rod, burnable poison rod history, and soluble boron concentration). Bounding depletion parameters were developed by statistical evaluation of a database containing reactor operating histories. The database was generated from summary reports of commercial reactor criticality data. Through depletion calculations, utilizing the SCALE 6 code package, several light

  9. Sodium fast reactor evaluation: Core materials

    NASA Astrophysics Data System (ADS)

    Cheon, Jin Sik; Lee, Chan Bock; Lee, Byoung Oon; Raison, J. P.; Mizuno, T.; Delage, F.; Carmack, J.

    2009-07-01

    In the framework of the Generation IV Sodium Fast Reactor (SFR) Program the Advanced Fuel Project has conducted an evaluation of the available fuel systems supporting future sodium cooled fast reactors. In this paper the status of available and developmental materials for SFR core cladding and duct applications is reviewed. To satisfy the Generation IV SFR fuel requirements, an advanced cladding needs to be developed. The candidate cladding materials are austenitic steels, ferritic/martensitic (F/M) steels, and oxide dispersion strengthened (ODS) steels. A large amount of irradiation testing is required, and the compatibility of cladding with TRU-loaded fuel at high temperatures and high burnup must be investigated. The more promising F/M steels (compared to HT9) might be able to meet the dose requirements of over 200 dpa for ducts in the GEN-IV SFR systems.

  10. Integral Fast Reactor concept

    SciTech Connect

    Till, C.E.; Chang, Y.I.

    1986-01-01

    The Integral Fast Reactor (IFR) is an innovative LMR concept, being developed at Argonne National Laboratory, that fully exploits the inherent properties of liquid metal cooling and metallic fuel to achieve breakthroughs in economics and inherent safety. This paper describes key features and potential advantages of the IFR concept, technology development status, fuel cycle economics potential, and future development path.

  11. S∧4 Reactor: Operating Lifetime and Estimates of Temperature and Burnup Reactivity Coefficients

    NASA Astrophysics Data System (ADS)

    King, Jeffrey C.; El-Genk, Mohamed S.

    2006-01-01

    The S∧4 reactor has a sectored, Mo-14%Re solid core for avoidance of single point failures in reactor cooling and Closed Brayton Cycle (CBC) energy conversion. The reactor is loaded with UN fuel, cooled with a He-Xe gas mixture at ~1200 K and operates at steady thermal power of 550 kW. Following a launch abort accident, the axial and radial BeO reflectors easily disassemble upon impact so that the bare reactor is subcriticial when submerged in wet sand or seawater and the core voids are filled with seawater. Spectral Shift Absorber (SSA) additives have been shown to increase the UN fuel enrichment and significantly reduce the total mass of the reactor. This paper investigates the effects of SSA additions on the temperature and burnup reactivity coefficients and the operational lifetime of the S∧4 reactor. SSAs slightly decrease the temperature reactivity feedback coefficient, but significantly increase the operating lifetime by decreasing the burnup reactivity coefficient. With no SSAs, fuel enrichment is only 58.5 wt% and the estimated operating lifetime is the shortest (7.6 years) with the highest temperature and burnup reactivity feedback coefficients (-0.2709 ¢/K and -1.3470 $/atom%). With europium-151 and gadolinium-155 additions, the enrichment (91.5 and 94 wt%) and operating lifetime (9.9 and 9.8 years) of the S∧4 reactor are the highest while the temperature and burnup reactivity coefficients (-0.2382 and -0.2447 ¢/K -0.9073 and 0.8502 $/atom%) are the lowest.

  12. Extended Burnup Demonstration Reactor Fuels Program. Annual progress report, April 1983-March 1984. [BWR

    SciTech Connect

    Exarhos, C.A.

    1985-06-20

    The US Department of Energy, Consumers Power Company, Exxon Nuclear Company, and General Public Utilities Nuclear Corporation have participated since 1979 in a cooperative Extended Burnup Demonstration Program. Under the program, standard ENC-fabricated reload fuel in the Big Rock Point and Oyster Creek reactor cores has been irradiated to discharge burnups at or beyond 35,000 MWD/MTU, one to two cycles beyond its originally projected exposure life. The program provides for examination of the fuel at poolside before and after each extended burnup cycle as well as for limited destructive hot cell examination. The 1984 progress report covers work performed under the EBD program between April 1983 and March 1984. Major milestones reached during the period include completion of a hot cell examination on four high burnup rods from Big Rock Point and of a poolside on the Oyster Creek EBD fuel at discharge. The hot cell examination of four rods at burnups to 37.2 GWD/MTU confirmed poolside measurements on the same fuel, showing the urania and gadolinia-bearing fuel rods to be in excellent condition. No major cladding degradation, pellet restructuring, or pellet-clad interaction was found in any of the samples examined. The Oyster Creek fuel, examined at an assembly average exposure of 34.5 GWD/MTU, showed good performance with regard to both diametral creepdown and clad oxide accumulation.

  13. The burnup dependence of light water reactor spent fuel oxidation

    SciTech Connect

    Hanson, B.D.

    1998-07-01

    Over the temperature range of interest for dry storage or for placement of spent fuel in a permanent repository under the conditions now being considered, UO{sub 2} is thermodynamically unstable with respect to oxidation to higher oxides. The multiple valence states of uranium allow for the accommodation of interstitial oxygen atoms in the fuel matrix. A variety of stoichiometric and nonstoichiometric phases is therefore possible as the fuel oxidizers from UO{sub 2} to higher oxides. The oxidation of UO{sub 2} has been studied extensively for over 40 years. It has been shown that spent fuel and unirradiated UO{sub 2} oxidize via different mechanisms and at different rates. The oxidation of LWR spent fuel from UO{sub 2} to UO{sub 2.4} was studied previously and is reasonably well understood. The study presented here was initiated to determine the mechanism and rate of oxidation from UO{sub 2.4} to higher oxides. During the early stages of this work, a large variability in the oxidation behavior of samples oxidized under nearly identical conditions was found. Based on previous work on the effect of dopants on UO{sub 2} oxidation and this initial variability, it was hypothesized that the substitution of fission product and actinide impurities for uranium atoms in the spent fuel matrix was the cause of the variable oxidation behavior. Since the impurity concentration is roughly proportional to the burnup of a specimen, the oxidation behavior of spent fuel was expected to be a function of both temperature and burnup. This report (1) summarizes the previous oxidation work for both unirradiated UO{sub 2} and spent fuel (Section 2.2) and presents the theoretical basis for the burnup (i.e., impurity concentration) dependence of the rate of oxidation (Sections 2.3, 2.4, and 2.5), (2) describes the experimental approach (Section 3) and results (Section 4) for the current oxidation tests on spent fuel, and (3) establishes a simple model to determine the activation energies

  14. Fast quench reactor method

    SciTech Connect

    Detering, B.A.; Donaldson, A.D.; Fincke, J.R.; Kong, P.C.; Berry, R.A.

    1999-08-10

    A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a means of rapidly expanding a reactant stream, such as a restrictive convergent-divergent nozzle at its outlet end. Metal halide reactants are injected into the reactor chamber. Reducing gas is added at different stages in the process to form a desired end product and prevent back reactions. The resulting heated gaseous stream is then rapidly cooled by expansion of the gaseous stream. 8 figs.

  15. Fast quench reactor method

    DOEpatents

    Detering, B.A.; Donaldson, A.D.; Fincke, J.R.; Kong, P.C.; Berry, R.A.

    1999-08-10

    A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a means of rapidly expanding a reactant stream, such as a restrictive convergent-divergent nozzle at its outlet end. Metal halide reactants are injected into the reactor chamber. Reducing gas is added at different stages in the process to form a desired end product and prevent back reactions. The resulting heated gaseous stream is then rapidly cooled by expansion of the gaseous stream. 8 figs.

  16. Fast quench reactor method

    DOEpatents

    Detering, Brent A.; Donaldson, Alan D.; Fincke, James R.; Kong, Peter C.; Berry, Ray A.

    1999-01-01

    A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a means of rapidly expanding a reactant stream, such as a restrictive convergent-divergent nozzle at its outlet end. Metal halide reactants are injected into the reactor chamber. Reducing gas is added at different stages in the process to form a desired end product and prevent back reactions. The resulting heated gaseous stream is then rapidly cooled by expansion of the gaseous stream.

  17. Preliminary Study of Burnup Characteristics for a Simplified Small Pebble Bed Reactor

    SciTech Connect

    Irwanto, Dwi; Kato, Yukikata; Obara, Toru; Yamanaka, Ichiro

    2010-06-22

    Simplification of the pebble bed reactor by removing the unloading device from the system was peformed. For this reactor design, a suitable fuel-loading scheme is the Peu a Peu (little by little) fueling scheme. In the Peu a Peu modus, there is no unloading device; as such, the fuels are never discharged and remain at the bottom of the core during reactor operation. This means that the burnup cycle and reactivity is controlled by the addition of fuel. The objectives of the the present study were to find a means of carrying out the exact calculations needed to analyze the Peu a Peu fuel-loading scheme and to optimize the fuel composition, and fuel-loading scheme to achieve better burnup characteristics. The Monte Carlo method is used to perform calculations with high accuracy. Before the calculation of the whole core, the analysis for the infinite geometry was performed. The power generated per mass consumed for each combination of the uranium enrichment and packing fraction was analyzed from the parametric survey. By using the optimal value obtained, a whole-core calculation for the small 20 MWth reactor was performed and the criticality and burnup of this design was analyzed.

  18. Fuel systems for compact fast space reactors

    SciTech Connect

    Cox, C.M.; Dutt, D.S.; Karnesky, R.A.

    1983-12-01

    About 200 refractory metal clad ceramic fuel pins have been irradiated in thermal reactors under the 1200 K to 1550 K cladding temperature conditions of primary relevance to space reactors. This paper reviews performance with respect to fissile atom density, operating temperatures, fuel swelling, fission gas release, fuel-cladding compatibility, and consequences of failure. It was concluded that UO/sub 2/ and UN fuels show approximately equal performance potential and that UC fuel has lesser potential. W/Re alloys have performed quite well as cladding materials, and Ta, Nb, and Mo/Re alloys, in conjunction with W diffusion barriers, show good promise. Significant issues to be addressed in the future include high burnup swelling of UN, effects of UO/sub 2/-Li coolant reaction in the event of fuel pin failure, and development of an irradiation performance data base with prototypically configured fuel pins irradiated in a fast neutron flux.

  19. Review of Halden Reactor Project high burnup fuel data that can be used in safety analyses

    SciTech Connect

    Wiesenack, W.

    1996-03-01

    The fuels and materials testing programmes carried out at the OECD Halden Reactor Project are aimed at providing data in support of a mechanistic understanding of phenomena, especially as related to high burnup fuel. The investigations are focused on identifying long term property changes, and irradiation techniques and instrumentation have been developed over the years which enable to assess fuel behaviour and properties in-pile. The fuel-cladding gap has an influence on both thermal and mechanical behaviour. Improved gap conductance due to gap closure at high exposure is observed even in the case of a strong contamination with released fission gas. On the other hand, pellet-cladding mechanical interaction, which is measured with cladding elongation detectors and diameter gauges, is re-established after a phase with less interaction and is increasing. These developments are exemplified with data showing changes of fuel temperature, hydraulic diameter and cladding elongation with burnup. Fuel swelling and cladding primary and secondary creep have been successfully measured in-pile. They provide data for, e.g., the possible cladding lift-off to be accounted for at high burnup. Fuel conductivity degradation is observed as a gradual temperature increase with burnup. This affects stored heat, fission gas release and temperature dependent fuel behaviour in general. The Halden Project`s data base on fission gas release shows that the phenomenon is associated with an accumulation of gas atoms at the grain boundaries to a critical concentration before appreciable release occurs. This is accompanied by an increase of the surface-to-volume ratio measured in-pile in gas flow experiments. A typical observation at high burnup is also that a burst release of fission gas may occur during a power decrease. Gas flow and pressure equilibration experiments have shown that axial communication is severely restricted at high burnup.

  20. Extended-burnup LWR (light-water reactor) fuel: The amount, characteristics, and potential effects on interim storage

    SciTech Connect

    Bailey, W.J.

    1989-03-01

    The results of a study on extended-burnup, light-water reactor (LWR) spent fuel are described in this report. The study was performed by Pacific Northwest Laboratory for the US Department of Energy (DOE). The purpose of the study was to collect and evaluate information on the status of in-reactor performance and integrity of extended-burnup LWR fuel and initiate the investigation of the effects of extending fuel burnup on the subsequent handling, interim storage, and other operations (e.g., rod consolidation and shipping) associated with the back end of the fuel cycle. The results of this study will aid DOE and the nuclear industry in assessing the effects on waste management of extending the useful in-reactor life of nuclear fuel. The experience base with extended-burnup fuel is now substantial and projections for future use of extended-burnup fuel in domestic LWRs are positive. The basic performance and integrity of the fuel in the reactor has not been compromised by extending the burnup, and the potential limitations for further extending the burnup are not severe. 104 refs., 15 tabs.

  1. Antineutrinos for Reactor Safeguards: Effect of Fuel Loading and Burnup on the Signal

    NASA Astrophysics Data System (ADS)

    Erickson, Anna; Bernstein, Adam; Bowden, Nathaniel

    2014-02-01

    Various types of nuclear reactor related information, including relative power level and fuel evolution parameters, can be inferred remotely using antineutrino detectors. We show that it is possible to verify assembly-level burnup using information derived from an antineutrino detector if the nominal reactor fuel loading is known. Alternatively, if the core power is measured using an independent method, for example, a thermal hydraulic element, and the nominal core behavior is known, the antineutrino detector has a capability to determine previously unknown MOX loading in the core.

  2. FAST NEUTRONIC REACTOR

    DOEpatents

    Snell, A.H.

    1957-12-01

    This patent relates to a reactor and process for carrying out a controlled fast neutron chain reaction. A cubical reactive mass, weighing at least 920 metric tons, of uranium metal containing predominantly U/sup 238/ and having a U/sup 235/ content of at least 7.63% is assembled and the maximum neutron reproduction ratio is limited to not substantially over 1.01 by insertion and removal of a varying amount of boron, the reactive mass being substantially freed of moderator.

  3. Fast neutron nuclear reactor

    SciTech Connect

    Cabrillat, M. Th.; Lions, N.

    1985-01-08

    The invention relates to a fast neutron nuclear reactor of the integrated type comprising a cylindrical inner vessel. The inner vessel comprises two concentric ferrules and the connection between the hot collector defined within this vessel and the inlet port of the exchangers is brought about by a hot structure forming a heat baffle and supported by the inner ferrule and by a cold structure surrounding the hot structure, supported by the outer ferrule and sealingly connected to the exchanger. Application to the generation of electric power in nuclear power stations.

  4. Fuel burnup analysis for IRIS reactor using MCNPX and WIMS-D5 codes

    NASA Astrophysics Data System (ADS)

    Amin, E. A.; Bashter, I. I.; Hassan, Nabil M.; Mustafa, S. S.

    2017-02-01

    International Reactor Innovative and Secure (IRIS) reactor is a compact power reactor designed with especial features. It contains Integral Fuel Burnable Absorber (IFBA). The core is heterogeneous both axially and radially. This work provides the full core burn up analysis for IRIS reactor using MCNPX and WIMDS-D5 codes. Criticality calculations, radial and axial power distributions and nuclear peaking factor at the different stages of burnup were studied. Effective multiplication factor values for the core were estimated by coupling MCNPX code with WIMS-D5 code and compared with SAS2H/KENO-V code values at different stages of burnup. The two calculation codes show good agreement and correlation. The values of radial and axial powers for the full core were also compared with published results given by SAS2H/KENO-V code (at the beginning and end of reactor operation). The behavior of both radial and axial power distribution is quiet similar to the other data published by SAS2H/KENO-V code. The peaking factor values estimated in the present work are close to its values calculated by SAS2H/KENO-V code.

  5. Weapons-Grade MOX Fuel Burnup Characteristics in Advanced Test Reactor Irradiation

    SciTech Connect

    G. S. Chang

    2006-07-01

    Mixed oxide (MOX) test capsules prepared with weapons-derived plutonium have been irradiated to a burnup of 50 GWd/t. The MOX fuel was fabricated at Los Alamos National Laboratory (LANL) by a master-mix process and has been irradiated in the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL). Previous withdrawals of the same fuel have occurred at 9, 21, 30, 40, and 50 GWd/t. Oak Ridge National Laboratory (ORNL) manages this test series for the Department of Energy’s Fissile Materials Disposition Program (FMDP). A UNIX BASH (Bourne Again SHell) script CMO has been written and validated at the Idaho National Laboratory (INL) to couple the Monte Carlo transport code MCNP with the depletion and buildup code ORIGEN-2 (CMO). The new Monte Carlo burnup analysis methodology in this paper consists of MCNP coupling through CMO with ORIGEN-2(MCWO). MCWO is a fully automated tool that links the Monte Carlo transport code MCNP with the radioactive decay and burnup code ORIGEN-2. The fuel burnup analyses presented in this study were performed using MCWO. MCWO analysis yields time-dependent and neutron-spectrum-dependent minor actinide and Pu concentrations for the ATR small I-irradiation test position. The purpose of this report is to validate both the Weapons-Grade Mixed Oxide (WG-MOX) test assembly model and the new fuel burnup analysis methodology by comparing the computed results against the neutron monitor measurements and the irradiated WG-MOX post irradiation examination (PIE) data.

  6. Implications of Fast Reactor Transuranic Conversion Ratio

    SciTech Connect

    Steven J. Piet; Edward A. Hoffman; Samuel E. Bays

    2010-11-01

    Theoretically, the transuranic conversion ratio (CR), i.e. the transuranic production divided by transuranic destruction, in a fast reactor can range from near zero to about 1.9, which is the average neutron yield from Pu239 minus 1. In practice, the possible range will be somewhat less. We have studied the implications of transuranic conversion ratio of 0.0 to 1.7 using the fresh and discharge fuel compositions calculated elsewhere. The corresponding fissile breeding ratio ranges from 0.2 to 1.6. The cases below CR=1 (“burners”) do not have blankets; the cases above CR=1 (“breeders”) have breeding blankets. The burnup was allowed to float while holding the maximum fluence to the cladding constant. We graph the fuel burnup and composition change. As a function of transuranic conversion ratio, we calculate and graph the heat, gamma, and neutron emission of fresh fuel; whether the material is “attractive” for direct weapon use using published criteria; the uranium utilization and rate of consumption of natural uranium; and the long-term radiotoxicity after fuel discharge. For context, other cases and analyses are included, primarily once-through light water reactor (LWR) uranium oxide fuel at 51 MWth-day/kg-iHM burnup (UOX-51). For CR<1, the heat, gamma, and neutron emission increase as material is recycled. The uranium utilization is at or below 1%, just as it is in thermal reactors as both types of reactors require continuing fissile support. For CR>1, heat, gamma, and neutron emission decrease with recycling. The uranium utilization exceeds 1%, especially as all the transuranic elements are recycled. exceeds 1%, especially as all the transuranic elements are recycled. At the system equilibrium, heat and gamma vary by somewhat over an order of magnitude as a function of CR. Isotopes that dominate heat and gamma emission are scattered throughout the actinide chain, so the modest impact of CR is unsurprising. Neutron emitters are preferentially found

  7. Analysis of Burnup and Economic Potential of Alternative Fuel Materials in Thermal Reactors

    SciTech Connect

    Oggianu, Stella Maris; No, Hee Cheon; Kazimi, Mujid S.

    2003-09-15

    A strategy is proposed for the assessment of nuclear fuel material economic potential use in future light water reactors (LWRs). In this methodology, both the required enrichment and the fuel performance limits are considered. In order to select the best fuel candidate, the optimal burnup that produces the lowest annual fuel cost within the burnup potential for a given fuel material and smear density ratio is determined.Several nuclear materials are presented as examples of the application of the methodology proposed in this paper. The alternative fuels considered include uranium dioxide (UO{sub 2}), uranium carbide (UC), uranium nitride (UN), metallic uranium (U-Zr alloy), combined thorium and uranium oxides (ThO{sub 2}/UO{sub 2}), and combined thorium and uranium metals (U/Th). For these examples, a typical LWR lattice geometry in a zirconium-based cladding was assumed. The uncertainties in the results presented are large due to the scarcity of experimental data regarding the behavior of the considered materials at high burnups. Also, chemical compatibility issues are to be considered separately.The same methodology can be applied in the future to evaluate the economic potential of other nuclear fuel materials including different cladding designs, dispersions of ceramics into ceramics, dispersions of ceramics into metals, and also for geometries other than the traditional circular fuel pin.

  8. Analysis of Experimental Data for High Burnup PWR Spent Fuel Isotopic Validation - Vandellos II Reactor

    SciTech Connect

    Ilas, Germina; Gauld, Ian C

    2011-01-01

    This report is one of the several recent NUREG/CR reports documenting benchmark-quality radiochemical assay data and the use of the data to validate computer code predictions of isotopic composition for spent nuclear fuel, to establish the uncertainty and bias associated with code predictions. The experimental data analyzed in the current report were acquired from a high-burnup fuel program coordinated by Spanish organizations. The measurements included extensive actinide and fission product data of importance to spent fuel safety applications, including burnup credit, decay heat, and radiation source terms. Six unique spent fuel samples from three uranium oxide fuel rods were analyzed. The fuel rods had a 4.5 wt % {sup 235}U initial enrichment and were irradiated in the Vandellos II pressurized water reactor operated in Spain. The burnups of the fuel samples range from 42 to 78 GWd/MTU. The measurements were used to validate the two-dimensional depletion sequence TRITON in the SCALE computer code system.

  9. Methodology for the Weapons-Grade MOX Fuel Burnup Analysis in the Advanced Test Reactor

    SciTech Connect

    G. S. Chang

    2005-08-01

    A UNIX BASH (Bourne Again SHell) script CMO has been written and validated at the Idaho National Laboratory (INL) to couple the Monte Carlo transport code MCNP with the depletion and buildup code ORIGEN-2 (CMO). The new Monte Carlo burnup analysis methodology in this paper consists of MCNP coupling through CMO with ORIGEN-2, and is therefore called the MCWO. MCWO is a fully automated tool that links the Monte Carlo transport code MCNP with the radioactive decay and burnup code ORIGEN-2. MCWO is capable of handling a large number of fuel burnup and material loading specifications, Advanced Test Reactor (ATR) lobe powers, and irradiation time intervals. MCWO processes user input that specifies the system geometry, initial material compositions, feed/removal specifications, and other code-specific parameters. Calculated results from MCNP, ORIGEN-2, and data process module calculations are output in succession as MCWO executes. The principal function of MCWO is to transfer one-group cross-section and flux values from MCNP to ORIGEN-2, and then transfer the resulting material compositions (after irradiation and/or decay) from ORIGEN-2 back to MCNP in a repeated, cyclic fashion. The basic requirements of MCWO are a working MCNP input file and some additional input parameters; all interaction with ORIGEN-2 as well as other calculations are performed by CMO. This paper presents the MCWO-calculated results for the Reduced Enrichment Research and Test Reactor (RERTR) experiments RERTR-1 and RERTR-2 as well as the Weapons-Grade Mixed Oxide (WG-MOX) fuel testing in ATR. Calculations performed for the WG-MOX test irradiation, which is managed by the Oak Ridge National Laboratory (ORNL), supports the DOE Fissile Materials Disposition Program (FMDP). The MCWO-calculated results are compared with measured data.

  10. CORAL: a stepping stone for establishing the Indian fast reactor fuel reprocessing technology

    SciTech Connect

    Venkataraman, M.; Natarajan, R.; Raj, Baldev

    2007-07-01

    The reprocessing of spent fuel from Fast Breeder Test Reactor (FBTR) has been successfully demonstrated in the pilot plant, CORAL (COmpact Reprocessing facility for Advanced fuels in Lead shielded cell). Since commissioning in 2003, spent mixed carbide fuel from FBTR of different burnups and varying cooling period, have been reprocessed in this facility. Reprocessing of the spent fuel with a maximum burnup of 100 GWd/t has been successfully carried out so far. The feed backs from these campaigns with progressively increasing specific activities, have been useful in establishing a viable process flowsheet for reprocessing the Prototype Fast Breeder Reactor (PFBR) spent fuel. Also, the design of various equipments and processes for the future plants, which are either under design for construction, namely, the Demonstration Fast Reactor Fuel Reprocessing Plant (DFRP) and the Fast reactor fuel Reprocessing Plant (FRP) could be finalized. (authors)

  11. Impact of Reactor Operating Parameters on Cask Reactivity in BWR Burnup Credit

    SciTech Connect

    Ilas, Germina; Betzler, Benjamin R; Ade, Brian J

    2017-01-01

    This paper discusses the effect of reactor operating parameters used in fuel depletion calculations on spent fuel cask reactivity, with relevance for boiling-water reactor (BWR) burnup credit (BUC) applications. Assessments that used generic BWR fuel assembly and spent fuel cask configurations are presented. The considered operating parameters, which were independently varied in the depletion simulations for the assembly, included fuel temperature, bypass water density, specific power, and operating history. Different operating history scenarios were considered for the assembly depletion to determine the effect of relative power distribution during the irradiation cycles, as well as the downtime between cycles. Depletion, decay, and criticality simulations were performed using computer codes and associated nuclear data within the SCALE code system. Results quantifying the dependence of cask reactivity on the assembly depletion parameters are presented herein.

  12. Fast reactors and nuclear nonproliferation

    SciTech Connect

    Avrorin, E.N.; Rachkov, V.I.; Chebeskov, A.N.

    2013-07-01

    Problems are discussed with regard to nuclear fuel cycle resistance in fast reactors to nuclear proliferation risk due to the potential for use in military programs of the knowledge, technologies and materials gained from peaceful nuclear power applications. Advantages are addressed for fast reactors in the creation of a more reliable mode of nonproliferation in the closed nuclear fuel cycle in comparison with the existing fully open and partially closed fuel cycles of thermal reactors. Advantages and shortcomings are also discussed from the point of view of nonproliferation from the start with fast reactors using plutonium of thermal reactor spent fuel and enriched uranium fuel to the gradual transition using their own plutonium as fuel. (authors)

  13. Fast quench reactor and method

    DOEpatents

    Detering, B.A.; Donaldson, A.D.; Fincke, J.R.; Kong, P.C.

    1998-05-12

    A fast quench reactor includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a restrictive convergent-divergent nozzle at its outlet end. Reactants are injected into the reactor chamber. The resulting heated gaseous stream is then rapidly cooled by passage through the nozzle. This ``freezes`` the desired end product(s) in the heated equilibrium reaction stage. 7 figs.

  14. A fuel for sub-critical fast reactor

    SciTech Connect

    Moiseenko, V. E.; Chernitskiy, S. V.; Agren, O.; Noack, K.

    2012-06-19

    Along with the problem of the nuclear waste transmutation, the problem of minimization of waste production is of current interest. It is not possible to eliminate production of waste at a nuclear power plant, but, as is shown in this report, it is in principle possible to arrange a fuel composition with no net production of transuranic elements. The idea is to find the transuranic elements composition to which the depleted uranium is continuously supplied during frequent reprocessing, and amount of each other transuranic fuel component remains unchanged in time. For each transuranic component, the balance is achieved by equating burnup and production rates. The production is due to neutron capture by the neighboring lighter isotope and subsequent beta-decay. The burnup includes fission, neutron capture and decays. For the calculations a simplified burnup model which accounts for 9 isotopes of uranium, neptunium, plutonium and americium is used. The calculated fuel composition consists mainly of uranium with minority of plutonium isotopes. Such a fuel, after usage in a sub-critical fast reactor, should be reprocessed. The fission product content increases during burnup, representing a net production of waste, while the transuranic elements and {sup 238}U should be recycled into a new fuel. For such a fuel cycle, the net consumption is only for 238U, and the net waste production is just fission products.

  15. A fuel for sub-critical fast reactor

    NASA Astrophysics Data System (ADS)

    Moiseenko, V. E.; Chernitskiy, S. V.; Ågren, O.; Noack, K.

    2012-06-01

    Along with the problem of the nuclear waste transmutation, the problem of minimization of waste production is of current interest. It is not possible to eliminate production of waste at a nuclear power plant, but, as is shown in this report, it is in principle possible to arrange a fuel composition with no net production of transuranic elements. The idea is to find the transuranic elements composition to which the depleted uranium is continuously supplied during frequent reprocessing, and amount of each other transuranic fuel component remains unchanged in time. For each transuranic component, the balance is achieved by equating burnup and production rates. The production is due to neutron capture by the neighboring lighter isotope and subsequent beta-decay. The burnup includes fission, neutron capture and decays. For the calculations a simplified burnup model which accounts for 9 isotopes of uranium, neptunium, plutonium and americium is used. The calculated fuel composition consists mainly of uranium with minority of plutonium isotopes. Such a fuel, after usage in a sub-critical fast reactor, should be reprocessed. The fission product content increases during burnup, representing a net production of waste, while the transuranic elements and 238U should be recycled into a new fuel. For such a fuel cycle, the net consumption is only for 238U, and the net waste production is just fission products.

  16. 77 FR 26050 - Burnup Credit in the Criticality Safety Analyses of Pressurized Water Reactor Spent Fuel in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-02

    ... criticality safety analyses of pressurized water reactor spent nuclear fuel (SNF) in transportation packages... Doc No: 2012-10618] NUCLEAR REGULATORY COMMISSION [NRC-2012-0100] Burnup Credit in the Criticality... the Criticality Safety Analyses of PWR Spent Fuel in Transportation and Storage Casks.'' This...

  17. Fast quench reactor and method

    DOEpatents

    Detering, Brent A.; Donaldson, Alan D.; Fincke, James R.; Kong, Peter C.

    2002-01-01

    A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a restrictive convergent-divergent nozzle at its outlet end. Reactants are injected into the reactor chamber. The resulting heated gaseous stream is then rapidly cooled by passage through the nozzle. This "freezes" the desired end product(s) in the heated equilibrium reaction stage.

  18. Fast quench reactor and method

    DOEpatents

    Detering, Brent A.; Donaldson, Alan D.; Fincke, James R.; Kong, Peter C.

    1998-01-01

    A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a restrictive convergent-divergent nozzle at its outlet end. Reactants are injected into the reactor chamber. The resulting heated gaseous stream is then rapidly cooled by passage through the nozzle. This "freezes" the desired end product(s) in the heated equilibrium reaction stage.

  19. Fast quench reactor and method

    DOEpatents

    Detering, Brent A.; Donaldson, Alan D.; Fincke, James R.; Kong, Peter C.

    2002-09-24

    A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a restrictive convergent-divergent nozzle at its outlet end. Reactants are injected into the reactor chamber. The resulting heated gaseous stream is then rapidly cooled by passage through the nozzle. This "freezes" the desired end product(s) in the heated equilibrium reaction stage.

  20. Method of locating a leaking fuel element in a fast breeder power reactor

    DOEpatents

    Honekamp, John R.; Fryer, Richard M.

    1978-01-01

    Leaking fuel elements in a fast reactor are identified by measuring the ratio of .sup.134 Xe to .sup.133 Xe in the reactor cover gas following detection of a fuel element leak, this ratio being indicative of the power and burnup of the failed fuel element. This procedure can be used to identify leaking fuel elements in a power breeder reactor while continuing operation of the reactor since the ratio measured is that of the gases stored in the plenum of the failed fuel element. Thus, use of a cleanup system for the cover gas makes it possible to identify sequentially a multiplicity of leaking fuel elements without shutting the reactor down.

  1. Progress in the development of metallic fuel in fast reactors

    SciTech Connect

    Seidel, B.R.; Walters, L.C.

    1988-01-01

    Renewed interest has developed in metallic fuel for fast reactors as a result of Argonne National Laboratory's integral fast reactor (IFR) concept. This concept involves a novel approach to fuel-cycle closure that is based on metal reprocessing and injection-casting fabrication. This paper delves into recent developments associated with the performance of metallic fuels. In February of 1985, three full assemblies of advanced metallic fuel were placed in the core of the Experimental Breeder Reactor II (EBR-II). The 61-pin assemblies each contained an identical complement of metallic fuel of three compositions: U-10 Zr, U-8 Pu-10 Zr, and U-19 Pu-10 Zr. The pins were clad with the austenitic D9, had linear power rating of 15 kW/ft, and achieved peak cladding temperatures of 600{degree}C. The burnup achieved to date on these pins is 14 at.% burnup without any failures, and the irradiation continues. These lead assemblies have demonstrated that metallic fuels have the potential of being competitive with any existing fuel type in terms of steady-state performance.

  2. Stationary Liquid Fuel Fast Reactor

    SciTech Connect

    Yang, Won Sik; Grandy, Andrew; Boroski, Andrew; Krajtl, Lubomir; Johnson, Terry

    2015-09-30

    For effective burning of hazardous transuranic (TRU) elements of used nuclear fuel, a transformational advanced reactor concept named SLFFR (Stationary Liquid Fuel Fast Reactor) was proposed based on stationary molten metallic fuel. The fuel enters the reactor vessel in a solid form, and then it is heated to molten temperature in a small melting heater. The fuel is contained within a closed, thick container with penetrating coolant channels, and thus it is not mixed with coolant nor flow through the primary heat transfer circuit. The makeup fuel is semi- continuously added to the system, and thus a very small excess reactivity is required. Gaseous fission products are also removed continuously, and a fraction of the fuel is periodically drawn off from the fuel container to a processing facility where non-gaseous mixed fission products and other impurities are removed and then the cleaned fuel is recycled into the fuel container. A reference core design and a preliminary plant system design of a 1000 MWt TRU- burning SLFFR concept were developed using TRU-Ce-Co fuel, Ta-10W fuel container, and sodium coolant. Conservative design approaches were adopted to stay within the current material performance database. Detailed neutronics and thermal-fluidic analyses were performed to develop a reference core design. Region-dependent 33-group cross sections were generated based on the ENDF/B-VII.0 data using the MC2-3 code. Core and fuel cycle analyses were performed in theta-r-z geometries using the DIF3D and REBUS-3 codes. Reactivity coefficients and kinetics parameters were calculated using the VARI3D perturbation theory code. Thermo-fluidic analyses were performed using the ANSYS FLUENT computational fluid dynamics (CFD) code. Figure 0.1 shows a schematic radial layout of the reference 1000 MWt SLFFR core, and Table 0.1 summarizes the main design parameters of SLFFR-1000 loop plant. The fuel container is a 2.5 cm thick cylinder with an inner radius of 87.5 cm. The fuel

  3. Design of unique pins for irradiation of higher actinides in a fast reactor

    SciTech Connect

    Basmajian, J.A.; Birney, K.R.; Weber, E.T.; Adair, H.L.; Quinby, T.C.; Raman, S.; Butler, J.K.; Bateman, B.C.; Swanson, K.M.

    1982-03-01

    The actinides produced by transmutation reactions in nuclear reactor fuels are a significant factor in nuclear fuel burnup, transportation and reprocessing. Irradiation testing is a primary source of data of this type. A segmented pin design was developed which provides for incorporation of multiple specimens of actinide oxides for irradiation in the UK's Prototype Fast Reactor (PFR) at Dounreay Scotland. Results from irradiation of these pins will extend the basic neutronic and material irradiation behavior data for key actinide isotopes.

  4. Heterogeneous Transmutation Sodium Fast Reactor

    SciTech Connect

    S. E. Bays

    2007-09-01

    The threshold-fission (fertile) nature of Am-241 is used to destroy this minor actinide by capitalizing upon neutron capture instead of fission within a sodium fast reactor. This neutron-capture and its subsequent decay chain leads to the breeding of even neutron number plutonium isotopes. A slightly moderated target design is proposed for breeding plutonium in an axial blanket located above the active “fast reactor” driver fuel region. A parametric study on the core height and fuel pin diameter-to-pitch ratio is used to explore the reactor and fuel cycle aspects of this design. This study resulted in both non-flattened and flattened core geometries. Both of these designs demonstrated a high capacity for removing americium from the fuel cycle. A reactivity coefficient analysis revealed that this heterogeneous design will have comparable safety aspects to a homogeneous reactor of comparable size. A mass balance analysis revealed that the heterogeneous design may reduce the number of fast reactors needed to close the current once-through light water reactor fuel cycle.

  5. Determination of initial fuel state and number of reactor shutdowns in archived low-burnup uranium targets

    DOE PAGES

    Byerly, Benjamin; Tandon, Lav; Hayes-Sterbenz, Anna; ...

    2015-10-26

    This article presents a method for destructive analysis of irradiated uranium (U) targets, with a focus on collection and measurement of long-lived (t1/2 > ~10 years) and stable fission product isotopes of ruthenium and cesium. Long-lived and stable isotopes of these elements can provide information on reactor conditions (e.g. flux, irradiation time, cooling time) in old samples (> 5–10 years) whose short-lived fission products have decayed away. The separation and analytical procedures were tested on archived U reactor targets at Los Alamos National Laboratory as part of an effort to evaluate reactor models at low-burnup.

  6. Determination of initial fuel state and number of reactor shutdowns in archived low-burnup uranium targets

    SciTech Connect

    Byerly, Benjamin; Tandon, Lav; Hayes-Sterbenz, Anna; Martinez, Patrick; Keller, Russ; Stanley, Floyd; Spencer, Khalil; Thomas, Mariam; Xu, Ning; Schappert, Michael; Fulwyler, James

    2015-10-26

    This article presents a method for destructive analysis of irradiated uranium (U) targets, with a focus on collection and measurement of long-lived (t1/2 > ~10 years) and stable fission product isotopes of ruthenium and cesium. Long-lived and stable isotopes of these elements can provide information on reactor conditions (e.g. flux, irradiation time, cooling time) in old samples (> 5–10 years) whose short-lived fission products have decayed away. The separation and analytical procedures were tested on archived U reactor targets at Los Alamos National Laboratory as part of an effort to evaluate reactor models at low-burnup.

  7. Fuel Burnup and Fuel Pool Shielding Analysis for Bushehr Nuclear Reactor VVER-1000

    NASA Astrophysics Data System (ADS)

    Hadad, Kamal; Ayobian, Navid

    Bushehr Nuclear power plant (BNPP) is currently under construction. The VVER-1000 reactor will be loaded with 126 tons of about 4% enriched fuel having 3-years life cycle. The spent fuel (SF) will be transferred into the spent fuel pool (SPF), where it stays for 8 years before being transferred to Russia. The SPF plays a crucial role during 8 years when the SP resides in there. This paper investigates the shielding of this structure as it is designed to shield the SF radiation. In this study, the SF isotope inventory, for different cycles and with different burnups, was calculated using WIMS/4D transport code. Using MCNP4C nuclear code, the intensity of γ rays was obtained in different layers of SFP shields. These layers include the water above fuel assemblies (FA) in pool, concrete wall of the pool and water laid above transferring fuels. Results show that γ rays leakage from the shield in the mentioned layers are in agreement with the plant's PSAR data. Finally we analyzed an accident were the water height above the FA in the pool drops to 47 cm. In this case it was observed that exposure dose above pool, 10 and 30 days from the accident, are still high and in the levels of 1000 and 758 R/hr.

  8. Integral fast reactor safety features

    SciTech Connect

    Cahalan, J.E.; Kramer, J.M.; Marchaterre, J.F.; Mueller, C.J.; Pedersen, D.R.; Sevy, R.H.; Wade, D.C.; Wei, T.Y.C.

    1988-01-01

    The Integral Fast Reactor (IFR) is an advanced liquid-metal-cooled reactor concept being developed at Argonne National Laboratory. The two major goals of the IFR development effort are improved economics and enhanced safety. In addition to liquid metal cooling, the principal design features that distinguish the IFR are: (1) a pool-type primary system, (2) an advanced ternary alloy metallic fuel, and (3) an integral fuel cycle with on-site fuel reprocessing and fabrication. This paper focuses on the technical aspects of the improved safety margins available in the IFR concept. This increased level of safety is made possible by (1) the liquid metal (sodium) coolant and pool-type primary system layout, which together facilitate passive decay heat removal, and (2) a sodium-bonded metallic fuel pin design with thermal and neutronic properties that provide passive core responses which control and mitigate the consequences of reactor accidents.

  9. Feasibility assessment of burnup credit in the criticality analysis of shipping casks with boiling water reactor spent fuel

    SciTech Connect

    Broadhead, B.L.

    1991-08-01

    Considerable interest in the allowance of reactivity credit for the exposure history of power reactor fuel currently exists. This burnup credit'' issue has the potential to greatly reduce risk and cost when applied to the design and certification of spent fuel casks used for transportation and storage. Recently, analyses have demonstrated the technical feasibility and estimated the risk and economic incentives for allowing burnup credit in pressurized water reactor (PWR) spent fuel shipping cask applications. This report summarizes the extension of the previous PWR technical feasibility assessment to boiling water reactor (BWR) fuel. This feasibility analysis aims to apply simple methods that adequately characterize the time-dependent isotopic compositions of typical BWR fuel. An initial analysis objective was to identify a simple and reliable method for characterizing BWR spent fuel. Two different aspects of fuel characterization were considered:l first, the generation of burn- up dependent material interaction probabilities; second, the prediction of material inventories over time (depletion). After characterizing the spent fuel at various stages of exposure and decay, three dimensional (3-D) models for an infinite array of assemblies and, in several cases, infinite arrays of assemblies in a typical shipping cask basket were analyzed. Results for assemblies without a basket provide reactivity control requirements as a function of burnup and decay, while results including the basket allow assessment of typical basket configurations to provide sufficient reactivity control for spent BWR fuel. Resulting basket worths and reactivity trends over time are then evaluated to determine whether burnup credit is needed and feasible in BWR applications.

  10. Heterogeneous Recycling in Fast Reactors

    SciTech Connect

    Forget, Benoit; Pope, Michael; Piet, Steven J.; Driscoll, Michael

    2012-07-30

    Current sodium fast reactor (SFR) designs have avoided the use of depleted uranium blankets over concerns of creating weapons grade plutonium. While reducing proliferation risks, this restrains the reactor design space considerably. This project will analyze various blanket and transmutation target configurations that could broaden the design space while still addressing the non-proliferation issues. The blanket designs will be assessed based on the transmutation efficiency of key minor actinide (MA) isotopes and also on mitigation of associated proliferation risks. This study will also evaluate SFR core performance under different scenarios in which depleted uranium blankets are modified to include minor actinides with or without moderators (e.g. BeO, MgO, B4C, and hydrides). This will be done in an effort to increase the sustainability of the reactor and increase its power density while still offering a proliferation resistant design with the capability of burning MA waste produced from light water reactors (LWRs). Researchers will also analyze the use of recycled (as opposed to depleted) uranium in the blankets. The various designs will compare MA transmutation efficiency, plutonium breeding characteristics, proliferation risk, shutdown margins and reactivity coefficients with a current reference sodium fast reactor design employing homogeneous recycling. The team will also evaluate the out-of-core accumulation and/or burn-down rates of MAs and plutonium isotopes on a cycle-by-cycle basis. This cycle-by-cycle information will be produced in a format readily usable by the fuel cycle systems analysis code, VISION, for assessment of the sustainability of the deployment scenarios.

  11. Recent view to the results of pulse tests in the IGR reactor with high burn-up fuel

    SciTech Connect

    Asmolov, V.; Yegorova, L.

    1996-03-01

    Testing of 43 fuel elements (13 fuel elements with high burn-up fuel, 10 fuel elements with preirradiated cladding and fresh fuel, and 20 non-irradiated fuel elements) was carried out in the IGR pulse reactor with a half width of the reactor power pulse of about 0.7 sec. Tests were conducted in capsules with no coolant flow and with standard initial conditions in the capsule of 20{degrees}C and 0.2 MPa. Two types of coolant were used: water and air. One purpose of the test program was to determine the thresholds and mechanisms of fuel rod failure under RIA conditions for VVER fuel rods over their entire exposure range, from zero to high burn-up. These failure thresholds are often used in safety analyses. The tests and analyses were designed to reveal the influence on fuel rod failure of (1) the mechanical properties of the cladding, (2) the pellet-to-cladding gap, (3) fuel burn-up, (4) fuel-to-coolant heat transfer, and other parameters. The resulting data base can also be used for validation of computer codes used for analyzing fuel rod behavior. Three types of test specimens were used in the tests, and diagrams of these specimens are shown in Fig. 1. {open_quotes}Type-C{close_quotes} specimens were re-fabricated from commercial fuel rods of the VVER-1000 type that had been subjected to many power cycles of operation in the Novovoronezh Nuclear Power Plant (NV NPP). {open_quotes}Type-D{close_quotes} specimens were fabricated from the same commercial fuel rods used above, but the high burn-up oxide fuel was removed from the cladding and was replaced with fresh oxide fuel pellets. {open_quotes}Type-D{close_quotes} specimens thus provided a means of separating the effects of the cladding and the oxide fuel pellets and were used to examine cladding effects only.

  12. Advances by the Integral Fast Reactor Program

    SciTech Connect

    Lineberry, M.J.; Pedersen, D.R.; Walters, L.C.; Cahalan, J.E.

    1991-01-01

    The advances by the Integral Fast Reactor Program at Argonne National Laboratory are the subject of this paper. The Integral Fast Reactor (IFR) is an advanced liquid-metal-cooled reactor concept being developed at Argonne National Laboratory. The advances stressed in the paper include fuel irradiation performance, improved passive safety, and the development of a prototype fuel cycle facility. 14 refs.

  13. Fast breeder reactor protection system

    DOEpatents

    van Erp, J.B.

    1973-10-01

    Reactor protection is provided for a liquid-metal-fast breeder reactor core by measuring the coolant outflow temperature from each of the subassemblies of the core. The outputs of the temperature sensors from a subassembly region of the core containing a plurality of subassemblies are combined in a logic circuit which develops a scram alarm if a predetermined number of the sensors indicate an over temperature condition. The coolant outflow from a single subassembly can be mixed with the coolant outflow from adjacent subassemblies prior to the temperature sensing to increase the sensitivity of the protection system to a single subassembly failure. Coherence between the sensors can be required to discriminate against noise signals. (Official Gazette)

  14. Fast pulse nonthermal plasma reactor

    DOEpatents

    Rosocha, Louis A.

    2005-06-14

    A fast pulsed nonthermal plasma reactor includes a discharge cell and a charging assembly electrically connected thereto. The charging assembly provides plural high voltage pulses to the discharge cell. Each pulse has a rise time between one and ten nanoseconds and a duration of three to twenty nanoseconds. The pulses create nonthermal plasma discharge within the discharge cell. Accordingly, the nonthermal plasma discharge can be used to remove pollutants from gases or break the gases into smaller molecules so that they can be more efficiently combusted.

  15. Research Program of a Super Fast Reactor

    SciTech Connect

    Oka, Yoshiaki; Ishiwatari, Yuki; Liu, Jie; Terai, Takayuki; Nagasaki, Shinya; Muroya, Yusa; Abe, Hiroaki; Akiba, Masato; Akimoto, Hajime; Okumura, Keisuke; Akasaka, Naoaki; GOTO, Shoji

    2006-07-01

    Research program of a supercritical-pressure light water cooled fast reactor (Super Fast Reactor) is funded by MEXT (Ministry of Education, Culture, Sports, Science and Technology) in December 2005 as one of the research programs of Japanese NERI (Nuclear Energy Research Initiative). It consists of three programs. (1) development of Super Fast Reactor concept; (2) thermal-hydraulic experiments; (3) material developments. The purpose of the concept development is to pursue the advantage of high power density of fast reactor over thermal reactors to achieve economic competitiveness of fast reactor for its deployment without waiting for exhausting uranium resources. Design goal is not breeding, but maximizing reactor power by using plutonium from spent LWR fuel. MOX will be the fuel of the Super Fast Reactor. Thermal-hydraulic experiments will be conducted with HCFC22 (Hydro chlorofluorocarbons) heat transfer loop of Kyushu University and supercritical water loop at JAEA. Heat transfer data including effect of grid spacers will be taken. The critical flow and condensation of supercritical fluid will be studied. The materials research includes the development and testing of austenitic stainless steel cladding from the experience of PNC1520 for LMFBR. Material for thermal insulation will be tested. SCWR (Supercritical-Water Cooled Reactor) of GIF (Generation-4 International Forum) includes both thermal and fast reactors. The research of the Super Fast Reactor will enhance SCWR research and the data base. The research period will be until March 2010. (authors)

  16. Development of alternate extractant systems for fast reactor fuel cycle

    SciTech Connect

    Vasudeva Rao, P.R.; Suresh, A.; Venkatesan, K.A.; Srinivasan, T.G.; Raj, Baldev

    2007-07-01

    Due to the limitations of TBP in processing of high burn-up, Pu-rich fast reactor fuels, there is a need to develop alternate extractants for fast reactor fuel processing. In this context, our Centre has been examining the suitability of alternate tri-alkyl phosphates. Third phase formation in the extraction of Th(IV) by TBP, tri-n-amyl phosphate (TAP) and tri-2-methyl-butyl phosphate (T2MBP) from nitric acid media has been investigated under various conditions to derive conclusions on their application for extraction of Pu at macro levels. The chemical and radiolytic degradation of tri-n-amyl-phosphate (TAP) diluted in normal paraffin hydrocarbon (NPH) in the presence of nitric acid has been investigated by the measurement of plutonium retention in organic phase. The potential application of room temperature ionic liquids (RTILs) for reprocessing of spent nuclear fuel has been explored. Extraction of uranium (VI) and palladium (II) from nitric acid medium by commercially available RTIL and tri-n-butyl phosphate solution in RTIL have been studied and the feasibility of electrodeposition of uranium as uranium oxide (UO{sub 2}) and palladium (II) as metallic palladium from the loaded organic phase have been demonstrated. This paper describes results of the above studies and discusses the suitability of the systems for fast reactor fuel reprocessing. (authors)

  17. Irradiation-Induced Thermal Effects in Alloyed Metal Fuel of Fast Reactors

    NASA Astrophysics Data System (ADS)

    Kryukov, F. N.; Nikitin, O. N.; Kuzmin, S. V.; Belyaeva, A. V.; Gilmutdinov, I. F.; Grin, P. I.; Zhemkov, I. Yu

    2017-01-01

    The paper presents the results of studying alloyed metal fuel after irradiation in a fast reactor. Determined is the mechanism of fuel irradiation swelling, mechanical interaction between fuel and cladding, and distribution of fission products. Experience gained in fuel properties and behavior under irradiation as well as in irradiation-induced thermal effects occurred in alloyed metal fuel provides for a fuel pin design to have a burnup not less than 20% h. a.

  18. The effects of spectral shift absorbers on the design and safety of fast spectrum space reactors

    NASA Astrophysics Data System (ADS)

    King, Jeffrey Charles

    Spectral Shift Absorbers (SSAs) are incorporated into space reactors to maintain them sufficiently subcritical when submerged in seawater or wet sand and subsequently flooded, following a launch abort accident. The effect of four SSAs (samarium-149, europium-151, gadolinium-155, and gadolinium-157) on the submersion criticality, operation, and temperature reactivity feedback of the thermal spectrum reactors developed in the Systems for Nuclear Auxilary Power (SNAP) program is extensively documented. Recent work on SSAs in fast spectrum space reactors, preferred for compactness and higher powers, has focused on rhenium as the primary SSA. In addition to identifying additional SSAs, the present work investigates the effects of SSAs on the overall size and mass, temperature reactivity feedback, and operational lifetime of fast spectrum space reactors. The fast spectrum S4 reactor has a sectored Mo-14%Re solid-core, loadedwith UN fuel, cooled by He-30%Xe, and designed to avoid single point failures at a steady thermal power of 550 kWth. The addition of SSAs to the reactor core increases the fuel enrichment and decreases the size and mass of the reactor and the radiation shadow shield. SSA additions of boron-10, europium-151, gadolinium-155 and iridium result in the smallest and lightest S4 reactors. The effects of SSA additions on the operational lifetime and the temperature and burnup reactivity coefficients of the S^4 reactor are studied. An increasein fuel enrichment with SSAs markedly increases the operational lifetime by decreasing the burnup reactivity coefficient with only a slight decrease in the temperature reactivity feedback coefficient. With no SSAs, the UN fuel enrichment is lowest (58.5 wt%), the temperature and burnup reactivity coefficients are the highest (-0.2709 ¢/K and -1.3470 /atom%), and the estimated operating lifetime is the shortest (7.6 years). The temperature and burnup reactivity coefficients decrease to -0.2649 ¢/K and -1.0230 /atom%, and

  19. Advanced Safeguards Approaches for New Fast Reactors

    SciTech Connect

    Durst, Philip C.; Therios, Ike; Bean, Robert; Dougan, A.; Boyer, Brian; Wallace, Rick L.; Ehinger, Michael H.; Kovacic, Don N.; Tolk, K.

    2007-12-15

    This third report in the series reviews possible safeguards approaches for new fast reactors in general, and the ABR in particular. Fast-neutron spectrum reactors have been used since the early 1960s on an experimental and developmental level, generally with fertile blanket fuels to “breed” nuclear fuel such as plutonium. Whether the reactor is designed to breed plutonium, or transmute and “burn” actinides depends mainly on the design of the reactor neutron reflector and the whether the blanket fuel is “fertile” or suitable for transmutation. However, the safeguards issues are very similar, since they pertain mainly to the receipt, shipment and storage of fresh and spent plutonium and actinide-bearing “TRU”-fuel. For these reasons, the design of existing fast reactors and details concerning how they have been safeguarded were studied in developing advanced safeguards approaches for the new fast reactors. In this regard, the design of the Experimental Breeder Reactor-II “EBR-II” at the Idaho National Laboratory (INL) was of interest, because it was designed as a collocated fast reactor with a pyrometallurgical reprocessing and fuel fabrication line – a design option being considered for the ABR. Similarly, the design of the Fast Flux Facility (FFTF) on the Hanford Site was studied, because it was a successful prototype fast reactor that ran for two decades to evaluate fuels and the design for commercial-scale fast reactors.

  20. Twenty-third water reactor safety information meeting: Volume 1, plenary session, high burnup fuel behavior, thermal hydraulic research. Proceedings

    SciTech Connect

    Monteleone, S.

    1996-03-01

    This three-volume report contains papers presented at the Twenty- Third Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, October 23-25, 1995. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Italy, Japan, Norway, Russia, Sweden, and Switzerland. This document, Volume 1, present topics on High Burnup Fuel Behavior, Thermal Hydraulic Research, and Plenary Session topics. Individual papers have been cataloged separately.

  1. A feasibility and optimization study to determine cooling time and burnup of advanced test reactor fuels using a nondestructive technique

    SciTech Connect

    Navarro, Jorge

    2013-12-01

    The goal of this study presented is to determine the best available non-destructive technique necessary to collect validation data as well as to determine burn-up and cooling time of the fuel elements onsite at the Advanced Test Reactor (ATR) canal. This study makes a recommendation of the viability of implementing a permanent fuel scanning system at the ATR canal and leads3 to the full design of a permanent fuel scan system. The study consisted at first in determining if it was possible and which equipment was necessary to collect useful spectra from ATR fuel elements at the canal adjacent to the reactor. Once it was establish that useful spectra can be obtained at the ATR canal the next step was to determine which detector and which configuration was better suited to predict burnup and cooling time of fuel elements non-destructively. Three different detectors of High Purity Germanium (HPGe), Lanthanum Bromide (LaBr3), and High Pressure Xenon (HPXe) in two system configurations of above and below the water pool were used during the study. The data collected and analyzed was used to create burnup and cooling time calibration prediction curves for ATR fuel. The next stage of the study was to determine which of the three detectors tested was better suited for the permanent system. From spectra taken and the calibration curves obtained, it was determined that although the HPGe detector yielded better results, a detector that could better withstand the harsh environment of the ATR canal was needed. The in-situ nature of the measurements required a rugged fuel scanning system, low in maintenance and easy to control system. Based on the ATR canal feasibility measurements and calibration results it was determined that the LaBr3 detector was the best alternative for canal in-situ measurements; however in order to enhance the quality of the spectra collected using this scintillator a deconvolution method was developed. Following the development of the deconvolution method

  2. Nuclear Energy Research Initiative. Development of a Stabilized Light Water Reactor Fuel Matrix for Extended Burnup

    SciTech Connect

    BD Hanson; J Abrefah; SC Marschman; SG Prussin

    2000-09-08

    The main objective of this project is to develop an advanced fuel matrix capable of achieving extended burnup while improving safety margins and reliability for present operations. In the course of this project, the authors improve understanding of the mechanism for high burnup structure (HBS) formation and attempt to design a fuel to minimize its formation. The use of soluble dopants in the UO{sub 2} matrix to stabilize the matrix and minimize fuel-side corrosion of the cladding is the main focus.

  3. Accident source terms for pressurized water reactors with high-burnup cores calculated using MELCOR 1.8.5.

    SciTech Connect

    Gauntt, Randall O.; Powers, Dana Auburn; Ashbaugh, Scott G.; Leonard, Mark Thomas; Longmire, Pamela

    2010-04-01

    In this study, risk-significant pressurized-water reactor severe accident sequences are examined using MELCOR 1.8.5 to explore the range of fission product releases to the reactor containment building. Advances in the understanding of fission product release and transport behavior and severe accident progression are used to render best estimate analyses of selected accident sequences. Particular emphasis is placed on estimating the effects of high fuel burnup in contrast with low burnup on fission product releases to the containment. Supporting this emphasis, recent data available on fission product release from high-burnup (HBU) fuel from the French VERCOR project are used in this study. The results of these analyses are treated as samples from a population of accident sequences in order to employ approximate order statistics characterization of the results. These trends and tendencies are then compared to the NUREG-1465 alternative source term prescription used today for regulatory applications. In general, greater differences are observed between the state-of-the-art calculations for either HBU or low-burnup (LBU) fuel and the NUREG-1465 containment release fractions than exist between HBU and LBU release fractions. Current analyses suggest that retention of fission products within the vessel and the reactor coolant system (RCS) are greater than contemplated in the NUREG-1465 prescription, and that, overall, release fractions to the containment are therefore lower across the board in the present analyses than suggested in NUREG-1465. The decreased volatility of Cs2MoO4 compared to CsI or CsOH increases the predicted RCS retention of cesium, and as a result, cesium and iodine do not follow identical behaviors with respect to distribution among vessel, RCS, and containment. With respect to the regulatory alternative source term, greater differences are observed between the NUREG-1465 prescription and both HBU and LBU predictions than exist between HBU and LBU

  4. A compact breed and burn fast reactor using spent nuclear fuel blanket

    SciTech Connect

    Hartanto, D.; Kim, Y.

    2012-07-01

    A long-life breed-and-burn (B and B) type fast reactor has been investigated from the neutronics points of view. The B and B reactor has the capability to breed the fissile fuels and use the bred fuel in situ in the same reactor. In this work, feasibility of a compact sodium-cooled B and B fast reactor using spent nuclear fuel as blanket material has been studied. In order to derive a compact B and B fast reactor, a tight fuel lattice and relatively large fuel pin are used to achieve high fuel volume fraction. The core is initially loaded with an LEU (Low Enriched Uranium) fuel and a metallic fuel is used in the core. The Monte Carlo depletion has been performed for the core to see the long-term behavior of the B and B reactor. Several important parameters such as reactivity coefficients, delayed neutron fraction, prompt neutron generation lifetime, fission power, and fast neutron fluence, are analyzed through Monte Carlo reactor analysis. Evolution of the core fuel composition is also analyzed as a function of burnup. Although the long-life small B and B fast reactor is found to be feasible from the neutronics point of view, it is characterized to have several challenging technical issues including a very high fast neutron fluence of the structural materials. (authors)

  5. Fuel clad chemical interactions in fast reactor MOX fuels

    NASA Astrophysics Data System (ADS)

    Viswanathan, R.

    2014-01-01

    Clad corrosion being one of the factors limiting the life of a mixed-oxide fast reactor fuel element pin at high burn-up, some aspects known about the key elements (oxygen, cesium, tellurium, iodine) in the clad-attack are discussed and many Fuel-Clad-Chemical-Interaction (FCCI) models available in the literature are also discussed. Based on its relatively superior predictive ability, the HEDL (Hanford Engineering Development Laboratory) relation is recommended: d/μm = ({0.507 ṡ [B/(at.% fission)] ṡ (T/K-705) ṡ [(O/M)i-1.935]} + 20.5) for (O/M)i ⩽ 1.98. A new model is proposed for (O/M)i ⩾ 1.98: d/μm = [B/(at.% fission)] ṡ (T/K-800)0.5 ṡ [(O/M)i-1.94] ṡ [P/(W cm-1)]0.5. Here, d is the maximum depth of clad attack, B is the burn-up, T is the clad inner surface temperature, (O/M)i is the initial oxygen-to-(uranium + plutonium) ratio, and P is the linear power rating. For fuels with [n(Pu)/n(M = U + Pu)] > 0.25, multiplication factors f are recommended to consider the potential increase in the depth of clad-attack.

  6. Closing nuclear fuel cycle with fast reactors: problems and prospects

    SciTech Connect

    Shadrin, A.; Dvoeglazov, K.; Ivanov, V.

    2013-07-01

    The closed nuclear fuel cycle (CNFC) with fast reactors (FR) is the most promising way of nuclear energetics development because it prevents spent nuclear fuel (SNF) accumulation and minimizes radwaste volume due to minor actinides (MA) transmutation. CNFC with FR requires the elaboration of safety, environmentally acceptable and economically effective methods of treatment of SNF with high burn-up and low cooling time. The up-to-date industrially implemented SNF reprocessing technologies based on hydrometallurgical methods are not suitable for the reprocessing of SNF with high burn-up and low cooling time. The alternative dry methods (such as electrorefining in molten salts or fluoride technologies) applicable for such SNF reprocessing have not found implementation at industrial scale. So the cost of SNF reprocessing by means of dry technologies can hardly be estimated. Another problem of dry technologies is the recovery of fissionable materials pure enough for dense fuel fabrication. A combination of technical solutions performed with hydrometallurgical and dry technologies (pyro-technology) is proposed and it appears to be a promising way for the elaboration of economically, ecologically and socially accepted technology of FR SNF management. This paper deals with discussion of main principle of dry and aqueous operations combination that probably would provide safety and economic efficiency of the FR SNF reprocessing. (authors)

  7. Decay heat power of spent nuclear fuel of power reactors with high burnup at long-term storage

    NASA Astrophysics Data System (ADS)

    Ternovykh, Mikhail; Tikhomirov, Georgy; Saldikov, Ivan; Gerasimov, Alexander

    2017-09-01

    Decay heat power of actinides and fission products from spent nuclear fuel of power VVER-1000 type reactors at long-term storage is calculated. Two modes of storage are considered: mode in which single portion of actinides or fission products is loaded in storage facility, and mode in which actinides or fission products from spent fuel of one VVER reactor are added every year in storage facility during 30 years and then accumulated nuclides are stored without addition new nuclides. Two values of fuel burnup 40 and 70 MW·d/kg are considered for the mode of storage of single fuel unloading. For the mode of accumulation of spent fuel with subsequent storage, one value of burnup of 70 MW·d/kg is considered. Very long time of storage 105 years accepted in calculations allows to simulate final geological disposal of radioactive wastes. Heat power of fission products decreases quickly after 50-100 years of storage. The power of actinides decreases very slow. In passing from 40 to 70 MW·d/kg, power of actinides increases due to accumulation of higher fraction of 244Cm. These data are important in the back end of fuel cycle when improved cooling system of the storage facility will be required along with stronger radiation protection during storage, transportation and processing.

  8. Optimization of a variable flow allocation scheme in heterogeneous liquid-metal fast breeder reactors

    SciTech Connect

    Tzanos, C.P.

    1981-12-01

    Maximum cladding temperatures in heterogeneous liquid-metal fast breeder reactors (LMFBRs) can be reduced if the flow allocation between core and blanket assemblies is continuously varied during burnup. An analytical model has been developed that optimizes the time variation of the flow such that the reduction in maximum cladding temperatures is maximized. In addition, the concept of continuously varying the flow allocation between core and blanket assemblies has been evaluated for different fuel management schemes in a low sodium void reactivity 3000-MW heterogeneous LMFBR. This evaluation shows that the reduction in maximum cladding midwall temperatures is small ( about 10/sup 0/C) if the reactor is partially refueled at the end of each burnup cycle (cycle length of one year), and this reduction is increased to 20/sup 0/C if a straight burn fuel scheme is used with a core and internal blanket fuel residence time of two years.

  9. Performance of low smeared density sodium-cooled fast reactor metal fuel

    SciTech Connect

    Porter, D. L.; H. J. M. Chichester; Medvedev, P. G.; Hayes, S. L.; Teague, M. C.

    2015-06-17

    An experiment was performed in the Experimental Breeder Rector-II (EBR-II) in the 1990s to show that metallic fast reactor fuel could be used in reactors with a single, once-through core. To prove the long duration, high burnup, high neutron exposure capability an experiment where the fuel pin was designed with a very large fission gas plenum and very low fuel smeared density (SD). The experiment, X496, operated to only 8.3 at. % burnup because the EBR-II reactor was scheduled for shut-down at that time. Many of the examinations of the fuel pins only funded recently with the resurgence of reactor designs using very high-burnup fuel. The results showed that, despite the low smeared density of 59% the fuel swelled radially to contact the cladding, fission gas release appeared to be slightly higher than demonstrated in conventional 75%SD fuel tests and axial growth was about the same as 75% SD fuel. There were axial positions in some of the fuel pins which showed evidence of fuel restructuring and an absence of fission products with low metaling points and gaseous precursors (Cs and Rb). Lastly, a model to investigate whether these areas may have overheated due to a loss of bond sodium indicates that it is a possible explanation for the fuel restructuring and something to be considered for fuel performance modeling of low SD fuel.

  10. Performance of low smeared density sodium-cooled fast reactor metal fuel

    NASA Astrophysics Data System (ADS)

    Porter, D. L.; Chichester, H. J. M.; Medvedev, P. G.; Hayes, S. L.; Teague, M. C.

    2015-10-01

    An experiment was performed in the Experimental Breeder Rector-II (EBR-II) in the 1990s to show that metallic fast reactor fuel could be used in reactors with a single, once-through core. To prove the long duration, high burnup, high neutron exposure capability an experiment where the fuel pin was designed with a very large fission gas plenum and very low fuel smeared density (SD). The experiment, X496, operated to only 8.3 at.% burnup because the EBR-II reactor was scheduled for shut-down at that time. Many of the examinations of the fuel pins only funded recently with the resurgence of reactor designs using very high-burnup fuel. The results showed that, despite the low smeared density of 59% the fuel swelled radially to contact the cladding, fission gas release appeared to be slightly higher than demonstrated in conventional 75%SD fuel tests and axial growth was about the same as 75% SD fuel. There were axial positions in some of the fuel pins which showed evidence of fuel restructuring and an absence of fission products with low melting points and gaseous precursors (Cs and Rb). A model to investigate whether these areas may have overheated due to a loss of bond sodium indicates that it is a possible explanation for the fuel restructuring and something to be considered for fuel performance modeling of low SD fuel.

  11. Fission energy: The integral fast reactor

    SciTech Connect

    Chang, Yoon I.

    1989-01-01

    The Integral Fast Reactor (IFR) is an innovative reactor concept being developed at Argonne National Laboratory as a such next- generation reactor concept. The IFR concept has a number of specific technical advantages that collectively address the potential difficulties facing the expansion of nuclear power deployment. In particular, the IFR concept can meet all three fundamental requirements needed in a next-generation reactor as discussed below. This document discusses these requirements.

  12. Regulatory Technology Development Plan - Sodium Fast Reactor. Mechanistic Source Term - Metal Fuel Radionuclide Release

    SciTech Connect

    Grabaskas, David; Bucknor, Matthew; Jerden, James

    2016-02-01

    The development of an accurate and defensible mechanistic source term will be vital for the future licensing efforts of metal fuel, pool-type sodium fast reactors. To assist in the creation of a comprehensive mechanistic source term, the current effort sought to estimate the release fraction of radionuclides from metal fuel pins to the primary sodium coolant during fuel pin failures at a variety of temperature conditions. These release estimates were based on the findings of an extensive literature search, which reviewed past experimentation and reactor fuel damage accidents. Data sources for each radionuclide of interest were reviewed to establish release fractions, along with possible release dependencies, and the corresponding uncertainty levels. Although the current knowledge base is substantial, and radionuclide release fractions were established for the elements deemed important for the determination of offsite consequences following a reactor accident, gaps were found pertaining to several radionuclides. First, there is uncertainty regarding the transport behavior of several radionuclides (iodine, barium, strontium, tellurium, and europium) during metal fuel irradiation to high burnup levels. The migration of these radionuclides within the fuel matrix and bond sodium region can greatly affect their release during pin failure incidents. Post-irradiation examination of existing high burnup metal fuel can likely resolve this knowledge gap. Second, data regarding the radionuclide release from molten high burnup metal fuel in sodium is sparse, which makes the assessment of radionuclide release from fuel melting accidents at high fuel burnup levels difficult. This gap could be addressed through fuel melting experimentation with samples from the existing high burnup metal fuel inventory.

  13. Fast Reactor Based on the Self-Sustained Regime of Nuclear Burning Wave

    NASA Astrophysics Data System (ADS)

    Fomin, S. P.; Mel'nik, Yu. P.; Pilipenko, V. V.; Shul'ga, N. F.

    An approach for description of the space-time evolution of self-organizing nuclear burning wave regime in a critical fast neutron reactor has been developed in the effective multigroup approximation. It is based on solving the non-stationary neutron diffusion equation together with the fuel burn-up equations and the equations of nuclear kinetics for delayed neutron precursor nuclei. The calculations have been carried out in the plane one-dimensional model for a two-zone homogeneous reactor with the metal U-Pu fuel, the Na coolant and constructional material Fe.

  14. Fast Reactor Fuel Type and Reactor Safety Performance

    SciTech Connect

    R. Wigeland; J. Cahalan

    2009-09-01

    Fast Reactor Fuel Type and Reactor Safety Performance R. Wigeland , Idaho National Laboratory J. Cahalan, Argonne National Laboratory The sodium-cooled fast neutron reactor is currently being evaluated for the efficient transmutation of the highly-hazardous, long-lived, transuranic elements that are present in spent nuclear fuel. One of the fundamental choices that will be made is the selection of the fuel type for the fast reactor, whether oxide, metal, carbide, nitride, etc. It is likely that a decision on the fuel type will need to be made before many of the related technologies and facilities can be selected, from fuel fabrication to spent fuel reprocessing. A decision on fuel type should consider all impacts on the fast reactor system, including safety. Past work has demonstrated that the choice of fuel type may have a significant impact on the severity of consequences arising from accidents, especially for severe accidents of low probability. In this paper, the response of sodium-cooled fast reactors is discussed for both oxide and metal fuel types, highlighting the similarities and differences in reactor response and accident consequences. Any fast reactor facility must be designed to be able to successfully prevent, mitigate, or accommodate all consequences of potential events, including accidents. This is typically accomplished by using multiple barriers to the release of radiation, including the cladding on the fuel, the intact primary cooling system, and most visibly the reactor containment building. More recently, this has also included the use of ‘inherent safety’ concepts to reduce or eliminate the potential for serious damage in some cases. Past experience with oxide and metal fuel has demonstrated that both fuel types are suitable for use as fuel in a sodium-cooled fast reactor. However, safety analyses for these two fuel types have also shown that there can be substantial differences in accident consequences due to the neutronic and

  15. Conceptual design study on very small long-life gas cooled fast reactor using metallic natural Uranium-Zr as fuel cycle input

    SciTech Connect

    Monado, Fiber; Ariani, Menik; Su'ud, Zaki; Waris, Abdul; Basar, Khairul; Permana, Sidik; Aziz, Ferhat; Sekimoto, Hiroshi

    2014-02-12

    A conceptual design study of very small 350 MWth Gas-cooled Fast Reactors with Helium coolant has been performed. In this study Modified CANDLE burn-up scheme was implemented to create small and long life fast reactors with natural Uranium as fuel cycle input. Such system can utilize natural Uranium resources efficiently without the necessity of enrichment plant or reprocessing plant. The core with metallic fuel based was subdivided into 10 regions with the same volume. The fresh Natural Uranium is initially put in region-1, after one cycle of 10 years of burn-up it is shifted to region-2 and the each region-1 is filled by fresh Natural Uranium fuel. This concept is basically applied to all axial regions. The reactor discharge burn-up is 31.8% HM. From the neutronic point of view, this design is in compliance with good performance.

  16. Conceptual design study on very small long-life gas cooled fast reactor using metallic natural Uranium-Zr as fuel cycle input

    NASA Astrophysics Data System (ADS)

    Monado, Fiber; Ariani, Menik; Su'ud, Zaki; Waris, Abdul; Basar, Khairul; Aziz, Ferhat; Permana, Sidik; Sekimoto, Hiroshi

    2014-02-01

    A conceptual design study of very small 350 MWth Gas-cooled Fast Reactors with Helium coolant has been performed. In this study Modified CANDLE burn-up scheme was implemented to create small and long life fast reactors with natural Uranium as fuel cycle input. Such system can utilize natural Uranium resources efficiently without the necessity of enrichment plant or reprocessing plant. The core with metallic fuel based was subdivided into 10 regions with the same volume. The fresh Natural Uranium is initially put in region-1, after one cycle of 10 years of burn-up it is shifted to region-2 and the each region-1 is filled by fresh Natural Uranium fuel. This concept is basically applied to all axial regions. The reactor discharge burn-up is 31.8% HM. From the neutronic point of view, this design is in compliance with good performance.

  17. Design of small gas cooled fast reactor with two region of natural Uranium fuel fraction

    NASA Astrophysics Data System (ADS)

    Ariani, Menik; Su'ud, Zaki; Waris, Abdul; Khairurrijal, Monado, Fiber; Sekimoto, Hiroshi; Nakayama, Sinsuke

    2012-06-01

    A design study of small Gas Cooled Fast Reactor with two region fuel has been performed. In this study, design GCFR with Helium coolant which can be continuously operated by supplying mixed Natural Uranium without fuel enrichment plant or fuel reprocessing plant. The active reactor cores are divided into two region fuel i.e. 60% fuel fraction of Natural Uranium as inner core and 65% fuel fraction of Natural Uranium as outer core. Each fuel core regions are subdivided into ten parts (region-1 until region-10) with the same volume in the axial direction. The fresh Natural Uranium initially put in region-1, after one cycle of 10 years of burn-up it is shifted to region-2 and the each region-1 filled by fresh Natural Uranium. This concept is basically applied to all regions in both cores area, i.e. shifted the core of ith region into i+1 region after the end of 10 years burn-up cycle. For the next cycles, we will add only Natural Uranium on each region-1. The burn-up calculation is performed using collision probability method PIJ (cell burn-up calculation) in SRAC code which then given eight energy group macroscopic cross section data to be used in two dimensional R-Z geometry multi groups diffusion calculation in CITATION code. This reactor can results power thermal 600 MWth with average power density i.e. 80 watt/cc. After reactor start-up the operation, furthermore reactor only needs Natural Uranium supply for continue operation along 100 years. This calculation result then compared with one region fuel design i.e. 60% and 65% fuel fraction. This core design with two region fuel fraction can be an option for fuel optimization.

  18. Fast-acting nuclear reactor control device

    DOEpatents

    Kotlyar, Oleg M.; West, Phillip B.

    1993-01-01

    A fast-acting nuclear reactor control device for moving and positioning a fety control rod to desired positions within the core of the reactor between a run position in which the safety control rod is outside the reactor core, and a shutdown position in which the rod is fully inserted in the reactor core. The device employs a hydraulic pump/motor, an electric gear motor, and solenoid valve to drive the safety control rod into the reactor core through the entire stroke of the safety control rod. An overrunning clutch allows the safety control rod to freely travel toward a safe position in the event of a partial drive system failure.

  19. Performance of low smeared density sodium-cooled fast reactor metal fuel

    DOE PAGES

    Porter, D. L.; H. J. M. Chichester; Medvedev, P. G.; ...

    2015-06-17

    An experiment was performed in the Experimental Breeder Rector-II (EBR-II) in the 1990s to show that metallic fast reactor fuel could be used in reactors with a single, once-through core. To prove the long duration, high burnup, high neutron exposure capability an experiment where the fuel pin was designed with a very large fission gas plenum and very low fuel smeared density (SD). The experiment, X496, operated to only 8.3 at. % burnup because the EBR-II reactor was scheduled for shut-down at that time. Many of the examinations of the fuel pins only funded recently with the resurgence of reactormore » designs using very high-burnup fuel. The results showed that, despite the low smeared density of 59% the fuel swelled radially to contact the cladding, fission gas release appeared to be slightly higher than demonstrated in conventional 75%SD fuel tests and axial growth was about the same as 75% SD fuel. There were axial positions in some of the fuel pins which showed evidence of fuel restructuring and an absence of fission products with low metaling points and gaseous precursors (Cs and Rb). Lastly, a model to investigate whether these areas may have overheated due to a loss of bond sodium indicates that it is a possible explanation for the fuel restructuring and something to be considered for fuel performance modeling of low SD fuel.« less

  20. Design and construction of a prototype advanced on-line fuel burn-up monitoring system for the modular pebble bed reactor

    SciTech Connect

    Su, Bingjing; Hawari, Ayman, I.

    2004-03-30

    Modular Pebble Bed Reactor (MPBR) is a high temperature gas-cooled nuclear power reactor currently under study as a next generation reactor system. In addition to its inherently safe design, a unique feature of this reactor is its multi-pass fuel circulation in which the fuel pebbles are randomly loaded and continuously cycled through the core until they reach their prescribed End-of-Life burn-up limit. Unlike the situation with a conventional light water reactor, depending solely on computational methods to perform in-core fuel management for MPBR will be highly inaccurate. An on-line measurement system is needed to accurately assess whether a given pebble has reached its End-of-Life burn-up limit and thereby provide an on-line, automated go/no-go decision on fuel disposition on a pebble-by-pebble basis. This project investigated approaches to analyzing fuel pebbles in real time using gamma spectroscopy and possibly using passive neutron counting of spontaneous fission neutrons to provide the speed, accuracy, and burn-up range required for burnup determination of MPBR. It involved all phases necessary to develop and construct a burn-up monitor, including a review of the design requirements of the system, identification of detection methodologies, modeling and development of potential designs, and finally, the construction and testing of an operational detector system. Based upon the research work performed in this project, the following conclusions are made. In terms of using gamma spectrometry, two possible approaches were identified for burnup assay. The first approach is based on the measurement of the absolute activity of Cs-137. However, due to spectral interference and the need for absolute calibration of the spectrometer, the uncertainty in burnup determination using this approach was found to range from {approx} {+-}40% at beginning of life to {approx} {+-}10% at the discharge burnup. An alternative approach is to use a relative burnup indicator. In this

  1. COUPLED FAST-THERMAL POWER BREEDER REACTOR

    DOEpatents

    Avery, R.

    1961-07-18

    A nuclear reactor having a region operating predominantly on fast neutrons and another region operating predominantly on slow neutrons is described. The fast region is a plutonium core and the slow region is a natural uranium blanket around the core. Both of these regions are free of moderator. A moderating reflector surrounds the uranium blanket. The moderating material and thickness of the reflector are selected so that fissions in the uranium blanket make a substantial contribution to the reactivity of the reactor.

  2. Experimental studies of U-Pu-Zr fast reactor fuel pins in the Experimental Breeder Reactor 2

    SciTech Connect

    Pahl, R.G.; Porter, D.L.; Lahm, C.E. ); Hofman, G.L. )

    1990-07-01

    Argonne National Laboratory's Integral Fast Reactor (IFR) concept has been under demonstration in the Experimental Breeder Reactor II (EBR-II) since February 1985. Irradiation tests of U-Zr and U-Pu-Zr fuel pins to {gt}15 at. pct burnup have demonstrated their viability as driver fuel prototypes in innovative design liquid metal reactors. A number of technically challenging irradiation effects have been observed and are now under study. Microstructural changes in the fuel are dominated early in exposure by grain boundary cavitation and fission gas bubble growth, producing large amounts of swelling. Irradiation creep and swelling of the austenitic (D9) and martensitic (HT-9) candidate cladding alloys have been measured and correlate well with property modeling efforts. Chemical interaction between the fuel and cladding alloys has been characterized to assess the magnitude of cladding wastage during steady-state irradiation. Significant interdiffusion of the uranium and zirconium occurs producing metallurgically distinct zones in the fuel.

  3. On the Criticality Safety of Transuranic Sodium Fast Reactor Fuel Transport Casks

    SciTech Connect

    Samuel Bays; Ayodeji Alajo

    2010-05-01

    This work addresses the neutronic performance and criticality safety issues of transport casks for fuel pertaining to low conversion ratio sodium cooled fast reactors, conventionally known as Advanced Burner Reactors. The criticality of a one, three, seven and 19-assembly cask capacity is presented. Both dry “helium” and flooded “water” filled casks are considered. No credit for fuel burnup or fission products was assumed. As many as possible of the conservatisms used in licensing light water reactor universal transport casks were incorporated into this SFR cask criticality design and analysis. It was found that at 7-assemblies or more, adding moderator to the SFR cask increases criticality margin. Also, removal of MAs from the fuel increases criticality margin of dry casks and takes a slight amount of margin away for wet casks. Assuming credit for borated fuel tube liners, this design analysis suggests that as many as 19 assemblies can be loaded in a cask if limited purely by criticality safety. If no credit for boron is assumed, the cask could possibly hold seven assemblies if low conversion ratio fast reactor grade fuel and not breeder reactor grade fuel is assumed. The analysis showed that there is a need for new cask designs for fast reactors spent fuel transportation. There is a potential of modifying existing transportation cask design as the starting point for fast reactor spent fuel transportation.

  4. Fuel, Structural Material and Coolant for an Advanced Fast Micro-Reactor

    NASA Astrophysics Data System (ADS)

    Do Nascimento, J. A.; Duimarães, L. N. F.; Ono, S.

    The use of nuclear reactors in space, seabed or other Earth hostile environment in the future is a vision that some Brazilian nuclear researchers share. Currently, the USA, a leader in space exploration, has as long-term objectives the establishment of a permanent Moon base and to launch a manned mission to Mars. A nuclear micro-reactor is the power source chosen to provide energy for life support, electricity for systems, in these missions. A strategy to develop an advanced micro-reactor technologies may consider the current fast reactor technologies as back-up and the development of advanced fuel, structural and coolant materials. The next generation reactors (GEN-IV) for terrestrial applications will operate with high output temperature to allow advanced conversion cycle, such as Brayton, and hydrogen production, among others. The development of an advanced fast micro-reactor may create a synergy between the GEN-IV and space reactor technologies. Considering a set of basic requirements and materials properties this paper discusses the choice of advanced fuel, structural and coolant materials for a fast micro-reactor. The chosen candidate materials are: nitride, oxide as back-up, for fuel, lead, tin and gallium for coolant, ferritic MA-ODS and Mo alloys for core structures. The next step will be the neutronic and burnup evaluation of core concepts with this set of materials.

  5. Accident source terms for boiling water reactors with high burnup cores.

    SciTech Connect

    Gauntt, Randall O.; Powers, Dana Auburn; Leonard, Mark Thomas

    2007-11-01

    The primary objective of this report is to provide the technical basis for development of recommendations for updates to the NUREG-1465 Source Term for BWRs that will extend its applicability to accidents involving high burnup (HBU) cores. However, a secondary objective is to re-examine the fundamental characteristics of the prescription for fission product release to containment described by NUREG-1465. This secondary objective is motivated by an interest to understand the extent to which research into the release and behaviors of radionuclides under accident conditions has altered best-estimate calculations of the integral response of BWRs to severe core damage sequences and the resulting radiological source terms to containment. This report, therefore, documents specific results of fission product source term analyses that will form the basis for the HBU supplement to NUREG-1465. However, commentary is also provided on observed differences between the composite results of the source term calculations performed here and those reflected NUREG-1465 itself.

  6. Solvent extraction studies with high-burnup Fast Flux Test Facility fuel in the Solvent Extraction Test Facility

    SciTech Connect

    Benker, D.E.; Bigelow, J.E.; Bond, W.D.; Chattin, F.R.; King, L.J.; Kitts, F.G.; Ross, R.G.; Stacy, R.G.

    1986-10-01

    A batch of high-burnup fuel from the Fast Flux Test Facility (FFTF) was processed in the Solvent Extraction Test Facility (SETF) during Campaign 9. The fuel had a burnup of {similar_to}0 MWd/kg and a cooling time of {similar_to} year. Two runs were made with this fuel; in the first, the solvent contained 30% tri-n-butyl phosphate (TBP) and partitioning of the uranium and plutonium was effected by reducing the plutonium with hydroxylamine nitrate (HAN); in the second, the solvent contained 10% TBP and a low operating temperature was used in an attempt to partition without reducing the plutonium valence. The plutonium reoxidation problem, which was present in previous runs that used HAN, may have been solved by lowering the temperature and acidity in the partition contactor. An automatic control system was used to maintain high loadings of heavy metals in the coextraction-coscrub contactor in order to increase its efficiency while maintaining low losses of uranium and plutonium to the aqueous raffinate. An in-line photometer system was used to measure the plutonium concentration in an intermediate extraction stage; and based on this data, a computer algorithm determined the appropriate adjustments in the addition rate of the extractant. The control system was successfully demonstrated in a preliminary run with purified uranium. However, a variety of equipment and start up problems prevented an extended demonstration from being accomplished during the runs with the FFTF fuel.

  7. Burnup Predictions for Metal Fuel Tests in the Fast Flux Test Facility

    SciTech Connect

    Wootan, David W.; Nelson, Joseph V.

    2012-06-01

    The Fast Flux Test Facility (FFTF) is the most recent Liquid Metal Reactor (LMR) to be designed, constructed, and operated by the U.S. Department of Energy (DOE). The FFTF operated successfully from initial startup in 1980 through the end of the last operating cycle in March, 1992. A variety of fuel tests were irradiated in FFTF to provide performance data over a range of conditions. The MFF-3 and MFF-5 tests were U10Zr metal fuel tests with HT9 cladding. The MFF-3 and MFF-5 tests were both aggressive irradiation tests of U10Zr metal fuel pins with HT9 cladding that were prototypic of full scale LMR designs. MFF-3 was irradiated for 726 Effective Full Power Days (EFPD), starting from Cycle 10C1 (from November 1988 through March 1992), and MFF-5 was irradiated for 503 EFPD starting from Cycle 11B1 (from January 1990 through March 1992). A group of fuel pins from these two tests are undergoing post irradiation examination at the Idaho National Laboratory (INL) for the Fuel Cycle Research and Development Program (FCRD). The generation of a data package of key information on the irradiation environment and current pin detailed compositions for these tests is described. This information will be used in interpreting the results of these examinations.

  8. The Integral Fast Reactor (IFR) concept

    SciTech Connect

    Till, C.E.; Chang, Y.I.

    1989-01-01

    In addition to maintaining the viability of its present commercial nuclear technology, a principal challenge in the US in the 1990s and beyond will be to regain and maintain a position among the world leadership in advanced reactor research and development. In this paper we'll discuss factors which we believe should today provide the rationale and focus for advanced reactor R and D, and we will then review the status of the major US effort, the Integral Fast Reactor (IFR) program.

  9. Safety design of prototype fast breeder reactor

    SciTech Connect

    Bhoje, S.B.; Chetal, S.C.; Singh, Om Pal

    2004-07-01

    The basic design and safety design of Prototype Fast Breeder Reactor (PFBR) is presented. Design aspects covered include safety classification, seismic categorization, design basis conditions, design safety limits, core physics, core monitoring, shutdown system, decay heat removal system, protection against sodium leaks and tube leaks in steam generator, plant layout, radiation protection, event analysis, beyond design basis accidents, integrity of primary containment, reactor containment building and design pressure resulting from core disruptive accident. The measures provided in the design represent a robust case of the safety of the reactor. (authors)

  10. Integral Fast Reactor concept inherent safety features

    SciTech Connect

    Marchaterre, J.F.; Sevy, R.H.; Cahalan, J.E.

    1986-01-01

    The Integral Fast Reactor (IFR) is an innovative liquid-metal-cooled reactor concept being developed at Argonne National Laboratory. The two major goals of the IFR development effort are improved economics and enhanced safety. The design features that together fulfill these goals are: (1) a liquid metal (sodium) coolant, (2) a pool-type reactor primary system configuration, (3) an advanced ternary alloy metallic fuel, and (4) an integral fuel cycle. This paper reviews the design features that contribute to the safety margins inherent to the IFR concept. Special emphasis is placed on the ability of the IFR design to accommodate anticipated transients without scram (ATWS).

  11. Integral fast reactor concept inherent safety features

    SciTech Connect

    Marchaterre, J.F.; Sevy, R.H.; Cahalan, J.E.

    1987-01-01

    The Integral Fast Reactor (IFR) is an innovative liquid-metal-cooled reactor concept being developed at Argonne National Laboratory. The two major goals of the IFT development effort are improved economics and enhanced safety. The design features that together fulfill these goals are: 1) a liquid metal (sodium) coolant, 2) a pool-type reactor primary system configuration, 3) an advanced ternary alloy metallic fuel, and 4) an integral fuel cycle. This paper reviews the design features that contribute to the safety margins inherent to the IFR concept. Special emphasis is placed on the ability of the IFR design to accommodate anticipated transients without scram (ATWS).

  12. Flexible Conversion Ratio Fast Reactor Systems Evaluation

    SciTech Connect

    Neil Todreas; Pavel Hejzlar

    2008-06-30

    Conceptual designs of lead-cooled and liquid salt-cooled fast flexible conversion ratio reactors were developed. Both concepts have cores reated at 2400 MWt placed in a large-pool-type vessel with dual-free level, which also contains four intermediate heat exchanges coupling a primary coolant to a compact and efficient supercritical CO2 Brayton cycle power conversion system. Decay heat is removed passively using an enhanced Reactor Vessel Auxiliary Cooling System and a Passive Secondary Auxiliary Cooling System. The most important findings were that (1) it is feasible to design the lead-cooled and salt-cooled reactor with the flexible conversion ratio (CR) in the range of CR=0 and CR=1 n a manner that achieves inherent reactor shutdown in unprotected accidents, (2) the salt-cooled reactor requires Lithium thermal Expansion Modules to overcme the inherent salt coolant's large positive coolant temperature reactivity coefficient, (3) the preferable salt for fast spectrum high power density cores is NaCl-Kcl-MgCl2 as opposed to fluoride salts due to its better themal-hydraulic and neutronic characteristics, and (4) both reactor, but attain power density 3 times smaller than that of the sodium-cooled reactor.

  13. Slow clean-up for fast reactor

    NASA Astrophysics Data System (ADS)

    Banks, Michael

    2008-05-01

    The year 2300 is so distant that one may be forgiven for thinking of it only in terms of science fiction. But this is the year that workers at the Dounreay power station in Northern Scotland - the UK's only centre for research into "fast" nuclear reactors - term as the "end point" by which time the site will be completely clear of radioactive material. More than 180 facilities - including the iconic dome that housed the Dounreay Fast Reactor (DFR) - were built at at the site since it opened in 1959, with almost 50 having been used to handle radioactive material.

  14. Universal Fast Breeder Reactor Subassembly Counter manual

    SciTech Connect

    Menlove, H.O.; Eccleston, G.W.; Swansen, J.E.; Goris, P.; Abedin-Zadeh, R.; Ramalho, A.

    1984-08-01

    A neutron coincidence counter has been designed for the measurement of fast breeder reactor fuel assemblies. This assay system can accommodate the full range of geometries and masses found in fast breeder subassemblies under IAEA safeguards. The system's high-performance capability accommodates high plutonium loadings of up to 16 kg. This manual describes the system and its operation and gives performance and calibration parameters for typical applications.

  15. MOLTEN PLUTONIUM FUELED FAST BREEDER REACTOR

    DOEpatents

    Kiehn, R.M.; King, L.D.P.; Peterson, R.E.; Swickard, E.O. Jr.

    1962-06-26

    A description is given of a nuclear fast reactor fueled with molten plutonium containing about 20 kg of plutonium in a tantalum container, cooled by circulating liquid sodium at about 600 to 650 deg C, having a large negative temperature coefficient of reactivity, and control rods and movable reflector for criticality control. (AEC)

  16. The materials of fast breeder reactors

    NASA Astrophysics Data System (ADS)

    Olander, Donald R.

    1980-02-01

    The most difficult problems affecting commercialization of the liquid-metal fast breeder reactor (LMFBR) concern the behavior of its materials of construction in the thermal and irradiation environment in which the device must operate. The responses which these conditions provoke in the fuel, cladding, and core structures depend upon complex interactions of many physical and chemical processes.

  17. Nonlinear, inelastic fast reactor subassembly interaction analyses

    SciTech Connect

    Sutherland, W.H.; Bard, F.E.

    1983-01-01

    Liquid Metal Fast Breeder Reactor (LMFBR) core structural design is complicated by the trade-offs associated with keeping the subassemblies closely packed for the neutronic considerations and accommodating the volumetric changes associated with irradiation swelling. The environmental variation across the reactor core results in temperature and neutron flux gradients across the subassemblies which in turn cause the subassemblies to bow as well as dilate and grow volumetrically. These deformations in a tightly packed reactor core cause the subassemblies to interact and can potentially result in excessive withdrawal loads during the refueling operations. ABADAN, a general purpose, nonlinear, inelastic, multi-dimensional finite element structural analysis computer code, was developed for the express purpose of solving large nonlinear problems as typified by the above interaction problems. For the subassembly interaction problem ABADAN has been applied to the solution of an interacting radial row of Fast Flux Test Facility (FFTF) fuel assemblies.

  18. Irradiation behavior of metallic fast reactor fuels

    SciTech Connect

    Pahl, R.G.; Porter, D.L.; Crawford, D.C.; Walters, L.C.

    1991-01-01

    Metallic fuels were the first fuels chosen for liquid metal cooled fast reactors (LMR's). In the late 1960's world-wide interest turned toward ceramic LMR fuels before the full potential of metallic fuel was realized. However, during the 1970's the performance limitations of metallic fuel were resolved in order to achieve a high plant factor at the Argonne National Laboratory's Experimental Breeder Reactor II. The 1980's spawned renewed interest in metallic fuel when the Integral Fast Reactor (IFR) concept emerged at Argonne National Laboratory. A fuel performance demonstration program was put into place to obtain the data needed for the eventual licensing of metallic fuel. This paper will summarize the results of the irradiation program carried out since 1985.

  19. Fast Spectrum Molten Salt Reactor Options

    SciTech Connect

    Gehin, Jess C; Holcomb, David Eugene; Flanagan, George F; Patton, Bruce W; Howard, Rob L; Harrison, Thomas J

    2011-07-01

    During 2010, fast-spectrum molten-salt reactors (FS-MSRs) were selected as a transformational reactor concept for light-water reactor (LWR)-derived heavy actinide disposition by the Department of Energy-Nuclear Energy Advanced Reactor Concepts (ARC) program and were the subject of a preliminary scoping investigation. Much of the reactor description information presented in this report derives from the preliminary studies performed for the ARC project. This report, however, has a somewhat broader scope-providing a conceptual overview of the characteristics and design options for FS-MSRs. It does not present in-depth evaluation of any FS-MSR particular characteristic, but instead provides an overview of all of the major reactor system technologies and characteristics, including the technology developments since the end of major molten salt reactor (MSR) development efforts in the 1970s. This report first presents a historical overview of the FS-MSR technology and describes the innovative characteristics of an FS-MSR. Next, it provides an overview of possible reactor configurations. The following design features/options and performance considerations are described including: (1) reactor salt options-both chloride and fluoride salts; (2) the impact of changing the carrier salt and actinide concentration on conversion ratio; (3) the conversion ratio; (4) an overview of the fuel salt chemical processing; (5) potential power cycles and hydrogen production options; and (6) overview of the performance characteristics of FS-MSRs, including general comparative metrics with LWRs. The conceptual-level evaluation includes resource sustainability, proliferation resistance, economics, and safety. The report concludes with a description of the work necessary to begin more detailed evaluation of FS-MSRs as a realistic reactor and fuel cycle option.

  20. Solvent extraction studies with intermediate-burnup Fast Flux Test Facility fuel in the Solvent Extraction Test Facility

    SciTech Connect

    Benker, D. E.; Bigelow, J. E.; Bond, W. D.; Chattin, F. R.; King, L. J.; Kitts, F. G.; Ross, R. G.; Stacy, R. G.

    1986-04-01

    In Campaign 8, two batches of irradiated fuel from the Fast Flux Test Facility (FFTF) were processed, using 30% TBP-NPH, in the Solvent Extraction Test Facility (SETF). The burnups were about 36 and 55 MWd/kg with 1.3- and 1-year cooling times, respectively. The latter fuel had the highest burnup and shortest cooling time of any fuel ever handled in the SETF. No major problems were noted during the operation of the mixer-settlers, and low uranium and plutonium losses (<0.02%) were achieved. Zirconium and ruthenium decontamination factors (DFs) were improved by increasing the number of scrub stages and increasing the peak solvent loading in the coextraction-coscrub bank. The use of an in-line photometer to measure the uranium and plutonium concentrations in a process stream permitted high solvent loadings of heavy metals to be achieved in the extraction bank while maintaining low losses to the aqueous raffinate. The investigation of two flowsheet options for making separate uranium and plutonium products (organic backscrub and selective uranium extraction) that was started in Campaign 7 was continued. High-quality products were again obtained (uranium and plutonium DFs of {similar_to}0{sup 4}). Plutonium reoxidation was still extensive even though hydrazine was added to the aqueous strip for the organic backscrub flowsheet. Two different plutonium oxalate precipitation procedures [Pu(III) and Pu(IV)] were used in the preparation of the plutonium oxide products; this was done so that the fuel fabrication characteristics of the oxide from the two procedures could be compared. A total of {similar_to}50 g of plutonium was recovered and shipped to the fuel refabrication program.

  1. Physics model of a gas-cooled fast reactor: Review and assessment

    SciTech Connect

    Choi, H.

    2012-07-01

    The current physics design and analysis model was reviewed and assessed for its application to a long-life gas-cooled fast reactor (GFR) design. The physics design uses MICROX, BURP, and DIF3D for the cross section generation, depletion calculation, and criticality and flux calculation, respectively. For the application to the long-life GFR, the depletion model was adjusted such that more lumped fission products are included in the burn-up chain to preserve the reaction rate and fuel mass. The performance of the physics design tools including the adjustment of the depletion model was assessed against Monte Carlo depletion calculations. The comparison has shown that the excess reactivity and cycle length of the long-life GFR are reasonably predicted. Some discrepancies were found at the beginning of cycle, which can be attributed to the differences between the nuclear data used in each model. Further studies will be carried out to update the cross section library of the MICROX code for agreement with the latest sets and to expand the fuel burn-up chain for the high burn-up and recycling fuel cycle analysis. (authors)

  2. Thermal- and fast-spectrum molten salt reactors for actinide burning and fuel production

    SciTech Connect

    Forsberg, Charles W.

    2007-07-01

    In a molten salt reactor (MSR), the fuel is dissolved in a fluoride salt coolant. The technology was partly developed in the 1950's and 1960's. With changing goals for advanced reactors and new technologies, there is currently a renewed interest in MSRs. The new technologies include (1) Brayton power cycles (rather than steam cycles) that eliminate many of the historical challenges in building MSRs and (2) the conceptual development of several fast-spectrum MSRs that have large negative temperature and void coefficients, a unique safety characteristic not found in solid-fuel fast reactors. Earlier MSRs were thermal-neutron-spectrum reactors. Compared with solid-fueled reactors, MSR systems have lower fissile inventories, no radiation damage constraint on attainable fuel burnup, no spent nuclear fuel, no requirement to fabricate and handle solid fuel, and a single isotopic composition of fuel in the reactor. These and other characteristics may enable MSRs to have potentially unique capabilities and competitive economics for actinide burning and extending fuel resources. The status, unique characteristics, and recent worldwide advances in MSRs are described. (author)

  3. Thermal- and Fast-Spectrum Molten Salt Reactors for Actinide Burning and Fuel Production

    SciTech Connect

    Forsberg, Charles W

    2007-01-01

    In a molten salt reactor (MSR), the fuel is dissolved in a fluoride salt coolant. The technology was partly developed in the 1950s and 1960s. With changing goals for advanced reactors and new technologies, there is currently a renewed interest in MSRs. The new technologies include (1) Brayton power cycles (rather than steam cycles) that eliminate many of the historical challenges in building MSRs and (2) the conceptual development of several fast-spectrum MSRs that have large negative temperature and void coefficients, a unique safety characteristic not found in solid-fuel fast reactors. Earlier MSRs were thermal-neutron-spectrum reactors. Compared with solid-fueled reactors, MSR systems have lower fissile inventories, no radiation damage constraint on attainable fuel burnup, no spent nuclear fuel, no requirement to fabricate and handle solid fuel, and a single isotopic composition of fuel in the reactor. These and other characteristics may enable MSRs to have potentially unique capabilities and competitive economics for actinide burning and extending fuel resources. The status, unique characteristics, and recent worldwide advances in MSRs are described.

  4. The effect of the composition of plutonium loaded on the reactivity change and the isotopic composition of fuel produced in a fast reactor

    SciTech Connect

    Blandinskiy, V. Yu.

    2014-12-15

    This paper presents the results of a numerical investigation into burnup and breeding of nuclides in metallic fuel consisting of a mixture of plutonium and depleted uranium in a fast reactor with sodium coolant. The feasibility of using plutonium contained in spent nuclear fuel from domestic thermal reactors and weapons-grade plutonium is discussed. It is shown that the largest production of secondary fuel and the least change in the reactivity over the reactor lifetime can be achieved when employing plutonium contained in spent nuclear fuel from a reactor of the RBMK-1000 type.

  5. The effect of the composition of plutonium loaded on the reactivity change and the isotopic composition of fuel produced in a fast reactor

    NASA Astrophysics Data System (ADS)

    Blandinskiy, V. Yu.

    2014-12-01

    This paper presents the results of a numerical investigation into burnup and breeding of nuclides in metallic fuel consisting of a mixture of plutonium and depleted uranium in a fast reactor with sodium coolant. The feasibility of using plutonium contained in spent nuclear fuel from domestic thermal reactors and weapons-grade plutonium is discussed. It is shown that the largest production of secondary fuel and the least change in the reactivity over the reactor lifetime can be achieved when employing plutonium contained in spent nuclear fuel from a reactor of the RBMK-1000 type.

  6. Assessment of Startup Fuel Options for a Test or Demonstration Fast Reactor

    SciTech Connect

    Carmack, Jon; Hayes, Steven; Walters, L. C.

    2015-09-01

    This document explores startup fuel options for a proposed test/demonstration fast reactor. The fuel options considered are the metallic fuels U-Zr and U-Pu-Zr and the ceramic fuels UO2 and UO2-PuO2 (MOX). Attributes of the candidate fuel choices considered were feedstock availability, fabrication feasibility, rough order of magnitude cost and schedule, and the existing irradiation performance database. The reactor-grade plutonium bearing fuels (U-Pu-Zr and MOX) were eliminated from consideration as the initial startup fuels because the availability and isotopics of domestic plutonium feedstock is uncertain. There are international sources of reactor grade plutonium feedstock but isotopics and availability are also uncertain. Weapons grade plutonium is the only possible source of Pu feedstock in sufficient quantities needed to fuel a startup core. Currently, the available U.S. source of (excess) weapons-grade plutonium is designated for irradiation in commercial light water reactors (LWR) to a level that would preclude diversion. Weapons-grade plutonium also contains a significant concentration of gallium. Gallium presents a potential issue for both the fabrication of MOX fuel as well as possible performance issues for metallic fuel. Also, the construction of a fuel fabrication line for plutonium fuels, with or without a line to remove gallium, is expected to be considerably more expensive than for uranium fuels. In the case of U-Pu-Zr, a relatively small number of fuel pins have been irradiated to high burnup, and in no case has a full assembly been irradiated to high burnup without disassembly and re-constitution. For MOX fuel, the irradiation database from the Fast Flux Test Facility (FFTF) is extensive. If a significant source of either weapons-grade or reactor-grade Pu became available (i.e., from an international source), a startup core based on Pu could be reconsidered.

  7. Gas-cooled fast reactor fuel fabrication

    NASA Astrophysics Data System (ADS)

    Fielding, Randall; Meyer, Mitch; Jue, Jan-Fong; Gan, Jian

    2007-09-01

    The gas-cooled fast reactor is a high temperature helium-cooled Generation IV reactor concept. Operating parameters for this type of reactor are well beyond those of current fuels so a novel fuel must be developed. One fuel concept calls for UC particles dispersed throughout an SiC matrix. This study examines a hybrid reaction bonding process as a possible fabrication route for this fuel. Processing parameters are also optimized. The process combines carbon and SiC powders and a carbon yielding polymer. In order to obtain dense reaction bonded SiC samples the porosity to carbon ratio in the preform must be large enough to accommodate SiC formation from the carbon present in the sample, however too much porosity reduces mechanical integrity which leads to poor infiltration properties. The porosity must also be of a suitable size to allow silicon transport throughout the sample but keep residual silicon to a minimum.

  8. Gas-Fast Reactor Fuel Fabrication

    SciTech Connect

    Randall Fielding; Mitchell Meyer; Ramprashad Prabhakaran; Jim Miller; Sean McDeavitt

    2005-11-01

    The gas-cooled fast reactor is a high temperature helium cooled Generation IV reactor concept. Operating parameters for this type of reactor are well beyond those of current fuels so a novel fuel must be developed. One fuel concept calls for UC particles dispersed throughout a SiC matrix. This study examines a hybrid reaction bonding process as a possible fabrication route for this fuel. Processing parameters are also optimized. The process combines carbon and SiC powders and a carbon yielding polymer. In order to obtain dense reaction bonded SiC samples the porosity to carbon ratio in the preform must be large enough to accommodate SiC formation from the carbon present in the sample, however too much porosity reduces mechanical integrity which leads to poor infiltration properties . The porosity must also be of a suitable size to allow silicon transport throughout the sample but keep residual silicon to a minimum.

  9. Risk Management for Sodium Fast Reactors.

    SciTech Connect

    Denman, Matthew R.; Groth, Katrina; Cardoni, Jeffrey N.; Wheeler, Timothy A.

    2015-01-01

    Accident management is an important component to maintaining risk at acceptable levels for all complex systems, such as nuclear power plants. With the introduction of self - correcting, or inherently safe, reactor designs the focus has shifted from management by operators to allowing the syste m's design to manage the accident. While inherently and passively safe designs are laudable, extreme boundary conditions can interfere with the design attributes which facilitate inherent safety , thus resulting in unanticipated and undesirable end states. This report examines an inherently safe and small sodium fast reactor experiencing a beyond design basis seismic event with the intend of exploring two issues : (1) can human intervention either improve or worsen the potential end states and (2) can a Bayes ian Network be constructed to infer the state of the reactor to inform (1). ACKNOWLEDGEMENTS The author s would like to acknowledge the U.S. Department of E nergy's Office of Nuclear Energy for funding this research through Work Package SR - 14SN100303 under the Advanced Reactor Concepts program. The authors also acknowledge the PRA teams at A rgonne N ational L aborator y , O ak R idge N ational L aborator y , and I daho N ational L aborator y for their continue d contributions to the advanced reactor PRA mission area.

  10. Power flattening on modified CANDLE small long life gas-cooled fast reactor

    SciTech Connect

    Monado, Fiber; Su'ud, Zaki; Waris, Abdul; Basar, Khairul; Ariani, Menik; Sekimoto, Hiroshi

    2014-09-30

    Gas-cooled Fast Reactor (GFR) is one of the candidates of next generation Nuclear Power Plants (NPPs) that expected to be operated commercially after 2030. In this research conceptual design study of long life 350 MWt GFR with natural uranium metallic fuel as fuel cycle input has been performed. Modified CANDLE burn-up strategy with first and second regions located near the last region (type B) has been applied. This reactor can be operated for 10 years without refuelling and fuel shuffling. Power peaking reduction is conducted by arranging the core radial direction into three regions with respectively uses fuel volume fraction 62.5%, 64% and 67.5%. The average power density in the modified core is about 82 Watt/cc and the power peaking factor decreased from 4.03 to 3.43.

  11. Power flattening on modified CANDLE small long life gas-cooled fast reactor

    NASA Astrophysics Data System (ADS)

    Monado, Fiber; Su'ud, Zaki; Waris, Abdul; Basar, Khairul; Ariani, Menik; Sekimoto, Hiroshi

    2014-09-01

    Gas-cooled Fast Reactor (GFR) is one of the candidates of next generation Nuclear Power Plants (NPPs) that expected to be operated commercially after 2030. In this research conceptual design study of long life 350 MWt GFR with natural uranium metallic fuel as fuel cycle input has been performed. Modified CANDLE burn-up strategy with first and second regions located near the last region (type B) has been applied. This reactor can be operated for 10 years without refuelling and fuel shuffling. Power peaking reduction is conducted by arranging the core radial direction into three regions with respectively uses fuel volume fraction 62.5%, 64% and 67.5%. The average power density in the modified core is about 82 Watt/cc and the power peaking factor decreased from 4.03 to 3.43.

  12. Solvent extraction studies with low-burnup Fast Flux Test Facility fuel in the Solvent Extraction Test Facility

    SciTech Connect

    Benker, D.E.; Bigelow, J.E.; Bond, W.D.; Chattin, F.R.; King, L.J.; Kitts, F.G.; Ross, R.G.; Stacy, R.G.

    1985-01-01

    A batch of irradiated Fast Flux Test Facility (FFTF) fuel was processed for the first time in the Solvent Extraction Test Facility (SETF) at the Oak Ridge National Laboratory (ORNL) during Campaign 7. The average burnup of the fuel was only 0.2 atom %, but the cooling time was short enough ({similar_to}2 years) so that {sup 95}Zr was detected in the feed. This short cooling permitted our first measurement of {sup 95}Zr decontamination factors (DFs) without having to use tracers. No operational problems were noted in the operation of the extraction-scrubbing contactor, and low uranium and plutonium losses (< 0.01%) were measured. Fission product DFs were improved noticeably by increasing the number of scrub stages from six to eight. Two flowsheet options for making pure uranium and plutonium products (total partitioning) were tested. Each flowsheet used hydroxylamine nitrate for reducing plutonium. Good products were obtained (uranium DFs of > 10{sup 3} and plutonium DFs of > 10{sup 4}), but each flowsheet was troubled with plutonium reoxidation. Adding hydrazine and lowering the plutonium concentration lessened the problem but did not eliminate it. About 370 g of plutonium was recovered from these tests, purified by anion exchange, converted to PuO{sub 2}, and transferred to the fuel refabrication program. 7 references.

  13. Fast Reactor Alternative Studies: Effects of Transuranic Groupings on Metal and Oxide Sodium Fast Reactor Designs

    SciTech Connect

    R. Ferrer; M. Asgari; S. Bays; B. Forget

    2007-09-01

    A 1000 MWth commercial-scale Sodium Fast Reactor (SFR) design with a conversion ratio (CR) of 0.50 was selected in this study to perform perturbations on the external feed coming from Light Water Reactor Spent Nuclear Fuel (LWR SNF) and separation groupings in the reprocessing scheme. A secondary SFR design with a higher conversion ratio (CR=0.75) was also analyzed as a possible alternative, although no perturbations were applied to this model.

  14. Preliminary Design Study of Medium Sized Gas Cooled Fast Reactor with Natural Uranium as Fuel Cycle Input

    NASA Astrophysics Data System (ADS)

    Meriyanti, Su'ud, Zaki; Rijal, K.; Zuhair, Ferhat, A.; Sekimoto, H.

    2010-06-01

    In this study a fesibility design study of medium sized (1000 MWt) gas cooled fast reactors which can utilize natural uranium as fuel cycle input has been conducted. Gas Cooled Fast Reactor (GFR) is among six types of Generation IV Nuclear Power Plants. GFR with its hard neuron spectrum is superior for closed fuel cycle, and its ability to be operated in high temperature (850° C) makes various options of utilizations become possible. To obtain the capability of consuming natural uranium as fuel cycle input, modified CANDLE burn-up scheme[1-6] is adopted this GFR system by dividing the core into 10 parts of equal volume axially. Due to the limitation of thermal hydraulic aspects, the average power density of the proposed design is selected about 70 W/cc. As an optimization results, a design of 1000 MWt reactors which can be operated 10 years without refueling and fuel shuffling and just need natural uranium as fuel cycle input is discussed. The average discharge burn-up is about 280 GWd/ton HM. Enough margin for criticallity was obtained for this reactor.

  15. Fast critical experiment data for space reactors

    SciTech Connect

    Collins, P.J.; McFarlane, H.F.; Olsen, D.N.; Atkinson, C.A.; Ross, J.R.

    1987-01-01

    Data from a number of previous critical experiments exist that are relevant to the design concepts being considered for SP-100 and MMW space reactors. Although substantial improvements in experiment techniques have since made some of the measured quantities somewhat suspect, the basic criticality data are still useful in most cases. However, the old experiments require recalculation with modern computational methods and nuclear cross section data before they can be applied to today's designs. Recently, we have calculated about 20 fast benchmark critical experiments with the latest ENDF/B data and modern transport codes. These calculations were undertaken as a part of the planning process for a new series of benchmark experiments aimed at supporting preliminary designs of SP-100 and MMW space reactors.

  16. Integral Fast Reactor fuel pin processor

    SciTech Connect

    Levinskas, D.

    1993-03-01

    This report discusses the pin processor which receives metal alloy pins cast from recycled Integral Fast Reactor (IFR) fuel and prepares them for assembly into new IFR fuel elements. Either full length as-cast or precut pins are fed to the machine from a magazine, cut if necessary, and measured for length, weight, diameter and deviation from straightness. Accepted pins are loaded into cladding jackets located in a magazine, while rejects and cutting scraps are separated into trays. The magazines, trays, and the individual modules that perform the different machine functions are assembled and removed using remote manipulators and master-slaves.

  17. Integral Fast Reactor fuel pin processor

    SciTech Connect

    Levinskas, D.

    1993-01-01

    This report discusses the pin processor which receives metal alloy pins cast from recycled Integral Fast Reactor (IFR) fuel and prepares them for assembly into new IFR fuel elements. Either full length as-cast or precut pins are fed to the machine from a magazine, cut if necessary, and measured for length, weight, diameter and deviation from straightness. Accepted pins are loaded into cladding jackets located in a magazine, while rejects and cutting scraps are separated into trays. The magazines, trays, and the individual modules that perform the different machine functions are assembled and removed using remote manipulators and master-slaves.

  18. Actinide management with commercial fast reactors

    SciTech Connect

    Ohki, Shigeo

    2015-12-31

    The capability of plutonium-breeding and minor-actinide (MA) transmutation in the Japanese commercial sodium-cooled fast reactor offers one of practical solutions for obtaining sustainable energy resources as well as reducing radioactive toxicity and inventory. The reference core design meets the requirement of flexible breeding ratio from 1.03 to 1.2. The MA transmutation amount has been evaluated as 50-100 kg/GW{sub e}y if the MA content in fresh fuel is 3-5 wt%, where about 30-40% of initial MA can be transmuted in the discharged fuel.

  19. Actinide management with commercial fast reactors

    NASA Astrophysics Data System (ADS)

    Ohki, Shigeo

    2015-12-01

    The capability of plutonium-breeding and minor-actinide (MA) transmutation in the Japanese commercial sodium-cooled fast reactor offers one of practical solutions for obtaining sustainable energy resources as well as reducing radioactive toxicity and inventory. The reference core design meets the requirement of flexible breeding ratio from 1.03 to 1.2. The MA transmutation amount has been evaluated as 50-100 kg/GWey if the MA content in fresh fuel is 3-5 wt%, where about 30-40% of initial MA can be transmuted in the discharged fuel.

  20. The study of capability natural uranium as fuel cycle input for long life gas cooled fast reactors with helium as coolant

    NASA Astrophysics Data System (ADS)

    Ariani, Menik; Satya, Octavianus Cakra; Monado, Fiber; Su'ud, Zaki; Sekimoto, Hiroshi

    2016-03-01

    The objective of the present research is to assess the feasibility design of small long-life Gas Cooled Fast Reactor with helium as coolant. GCFR included in the Generation-IV reactor systems are being developed to provide sustainable energy resources that meet future energy demand in a reliable, safe, and proliferation-resistant manner. This reactor can be operated without enrichment and reprocessing forever, once it starts. To obtain the capability of consuming natural uranium as fuel cycle input modified CANDLE burn-up scheme was adopted in this system with different core design. This study has compared the core with three designs of core reactors with the same thermal power 600 MWth. The fuel composition each design was arranged by divided core into several parts of equal volume axially i.e. 6, 8 and 10 parts related to material burn-up history. The fresh natural uranium is initially put in region 1, after one cycle of 10 years of burn-up it is shifted to region 2 and the region 1 is filled by fresh natural uranium fuel. This concept is basically applied to all regions, i.e. shifted the core of the region (i) into region (i+1) region after the end of 10 years burn-up cycle. The calculation results shows that for the burn-up strategy on "Region-8" and "Region-10" core designs, after the reactors start-up the operation furthermore they only needs natural uranium supply to the next life operation until one period of refueling (10 years).

  1. The study of capability natural uranium as fuel cycle input for long life gas cooled fast reactors with helium as coolant

    SciTech Connect

    Ariani, Menik Satya, Octavianus Cakra; Monado, Fiber; Su’ud, Zaki; Sekimoto, Hiroshi

    2016-03-11

    The objective of the present research is to assess the feasibility design of small long-life Gas Cooled Fast Reactor with helium as coolant. GCFR included in the Generation-IV reactor systems are being developed to provide sustainable energy resources that meet future energy demand in a reliable, safe, and proliferation-resistant manner. This reactor can be operated without enrichment and reprocessing forever, once it starts. To obtain the capability of consuming natural uranium as fuel cycle input modified CANDLE burn-up scheme was adopted in this system with different core design. This study has compared the core with three designs of core reactors with the same thermal power 600 MWth. The fuel composition each design was arranged by divided core into several parts of equal volume axially i.e. 6, 8 and 10 parts related to material burn-up history. The fresh natural uranium is initially put in region 1, after one cycle of 10 years of burn-up it is shifted to region 2 and the region 1 is filled by fresh natural uranium fuel. This concept is basically applied to all regions, i.e. shifted the core of the region (i) into region (i+1) region after the end of 10 years burn-up cycle. The calculation results shows that for the burn-up strategy on “Region-8” and “Region-10” core designs, after the reactors start-up the operation furthermore they only needs natural uranium supply to the next life operation until one period of refueling (10 years).

  2. Benchmark Evaluation of Dounreay Prototype Fast Reactor Minor Actinide Depletion Measurements

    SciTech Connect

    Hess, J. D.; Gauld, I. C.; Gulliford, J.; Hill, I.; Okajima, S.

    2017-01-01

    Historic measurements of actinide samples in the Dounreay Prototype Fast Reactor (PFR) are of interest for modern nuclear data and simulation validation. Samples of various higher-actinide isotopes were irradiated for 492 effective full-power days and radiochemically assayed at Oak Ridge National Laboratory (ORNL) and Japan Atomic Energy Research Institute (JAERI). Limited data were available regarding the PFR irradiation; a six-group neutron spectra was available with some power history data to support a burnup depletion analysis validation study. Under the guidance of the Organisation for Economic Co-Operation and Development Nuclear Energy Agency (OECD NEA), the International Reactor Physics Experiment Evaluation Project (IRPhEP) and Spent Fuel Isotopic Composition (SFCOMPO) Project are collaborating to recover all measurement data pertaining to these measurements, including collaboration with the United Kingdom to obtain pertinent reactor physics design and operational history data. These activities will produce internationally peer-reviewed benchmark data to support validation of minor actinide cross section data and modern neutronic simulation of fast reactors with accompanying fuel cycle activities such as transportation, recycling, storage, and criticality safety.

  3. Transmutation, Burn-Up and Fuel Fabrication Trade-Offs in Reduced-Moderation Water Reactor Thorium Fuel Cycles - 13502

    SciTech Connect

    Lindley, Benjamin A.; Parks, Geoffrey T.; Franceschini, Fausto

    2013-07-01

    Multiple recycle of long-lived actinides has the potential to greatly reduce the required storage time for spent nuclear fuel or high level nuclear waste. This is generally thought to require fast reactors as most transuranic (TRU) isotopes have low fission probabilities in thermal reactors. Reduced-moderation LWRs are a potential alternative to fast reactors with reduced time to deployment as they are based on commercially mature LWR technology. Thorium (Th) fuel is neutronically advantageous for TRU multiple recycle in LWRs due to a large improvement in the void coefficient. If Th fuel is used in reduced-moderation LWRs, it appears neutronically feasible to achieve full actinide recycle while burning an external supply of TRU, with related potential improvements in waste management and fuel utilization. In this paper, the fuel cycle of TRU-bearing Th fuel is analysed for reduced-moderation PWRs and BWRs (RMPWRs and RBWRs). RMPWRs have the advantage of relatively rapid implementation and intrinsically low conversion ratios. However, it is challenging to simultaneously satisfy operational and fuel cycle constraints. An RBWR may potentially take longer to implement than an RMPWR due to more extensive changes from current BWR technology. However, the harder neutron spectrum can lead to favourable fuel cycle performance. A two-stage fuel cycle, where the first pass is Th-Pu MOX, is a technically reasonable implementation of either concept. The first stage of the fuel cycle can therefore be implemented at relatively low cost as a Pu disposal option, with a further policy option of full recycle in the medium term. (authors)

  4. A resting bottom sodium cooled fast reactor

    SciTech Connect

    Costes, D.

    2012-07-01

    This follows ICAPP 2011 paper 11059 'Fast Reactor with a Cold Bottom Vessel', on sodium cooled reactor vessels in thermal gradient, resting on soil. Sodium is frozen on vessel bottom plate, temperature increasing to the top. The vault cover rests on the safety vessel, the core diagrid welded to a toric collector forms a slab, supported by skirts resting on the bottom plate. Intermediate exchangers and pumps, fixed on the cover, plunge on the collector. At the vessel top, a skirt hanging from the cover plunges into sodium, leaving a thin circular slit partially filled by sodium covered by argon, providing leak-tightness and allowing vessel dilatation, as well as a radial relative holding due to sodium inertia. No 'air conditioning' at 400 deg. C is needed as for hanging vessels, and this allows a large economy. The sodium volume below the slab contains isolating refractory elements, stopping a hypothetical corium flow. The small gas volume around the vessel limits any LOCA. The liner cooling system of the concrete safety vessel may contribute to reactor cooling. The cold resting bottom vessel, proposed by the author for many years, could avoid the complete visual inspection required for hanging vessels. However, a double vessel, containing support skirts, would allow introduction of inspecting devices. Stress limiting thermal gradient is obtained by filling secondary sodium in the intermediate space. (authors)

  5. PLUTONIUM METALLIC FUELS FOR FAST REACTORS

    SciTech Connect

    STAN, MARIUS; HECKER, SIEGFRIED S.

    2007-02-07

    Early interest in metallic plutonium fuels for fast reactors led to much research on plutonium alloy systems including binary solid solutions with the addition of aluminum, gallium, or zirconium and low-melting eutectic alloys with iron and nickel or cobalt. There was also interest in ternaries of these elements with plutonium and cerium. The solid solution and eutectic alloys have most unusual properties, including negative thermal expansion in some solid-solution alloys and the highest viscosity known for liquid metals in the Pu-Fe system. Although metallic fuels have many potential advantages over ceramic fuels, the early attempts were unsuccessful because these fuels suffered from high swelling rates during burn up and high smearing densities. The liquid metal fuels experienced excessive corrosion. Subsequent work on higher-melting U-PuZr metallic fuels was much more promising. In light of the recent rebirth of interest in fast reactors, we review some of the key properties of the early fuels and discuss the challenges presented by the ternary alloys.

  6. Advances in Metallic Fuels for High Burnup and Actinide Transmutation

    SciTech Connect

    Hayes, S. L.; Harp, J. M.; Chichester, H. J. M.; Fielding, R. S.; Mariani, R. D.; Carmack, W. J.

    2016-10-01

    Research and development activities on metallic fuels in the US are focused on their potential use for actinide transmutation in future sodium fast reactors. As part of this application, there is a desire to demonstrate a multifold increase in burnup potential. A number of metallic fuel design innovations are under investigation with a view toward significantly increasing the burnup potential of metallic fuels, since higher discharge burnups equate to lower potential actinide losses during recycle. Promising innovations under investigation include: 1) lowering the fuel smeared density in order to accommodate the additional swelling expected as burnups increase, 2) utilizing an annular fuel geometry for better geometrical stability at low smeared densities, as well as the potential to eliminate the need for a sodium bond, and 3) minor alloy additions to immobilize lanthanide fission products inside the metallic fuel matrix and prevent their transport to the cladding resulting in fuel-cladding chemical interaction. This paper presents results from these efforts to advance metallic fuel technology in support of high burnup and actinide transmutation objectives. Highlights include examples of fabrication of low smeared density annular metallic fuels, experiments to identify alloy additions effective in immobilizing lanthanide fission products, and early postirradiation examinations of annular metallic fuels having low smeared densities and palladium additions for fission product immobilization.

  7. Assessment of the performance potential of the martensitic alloy HT-9 for liquid-metal fast-breeder-reactor applications

    SciTech Connect

    Straalsund, J.L.; Gelles, D.S.

    1983-05-01

    Martensitic stainless steels appear to provide attractive alternatives to austenitic stainless steels for liquid metal fast breeder reactors (LMFBR). The United States National Cladding/Duct (NCD) Materials Development Program has selected Sandvik alloy HT-9 (12CrMoW) as one of six prime candidate alloys for advanced in-core structural materials having very high peak burnup capabilities. The NCD program, since 1974, has been accumulating engineering data for HT-9. Properties include swelling, irradiation creep and microstructure as a function of fluence, postirradiation mechanical properties, thermal creep, sodium compatibility and hardware fabrication technology. Tests results are presented.

  8. The feasibility study of small long-life gas cooled fast reactor with mixed natural Uranium/Thorium as fuel cycle input

    SciTech Connect

    Ariani, Menik; Su'ud, Zaki; Waris, Abdul; Khairurrijal,; Monado, Fiber; Sekimoto, Hiroshi

    2012-06-06

    A conceptual design study of Gas Cooled Fast Reactors with Modified CANDLE burn-up scheme has been performed. In this study, design GCFR with Helium coolant which can be continuously operated by supplying mixed Natural Uranium/Thorium without fuel enrichment plant or fuel reprocessing plant. The active reactor cores are divided into two region, Thorium fuel region and Uranium fuel region. Each fuel core regions are subdivided into ten parts (region-1 until region-10) with the same volume in the axial direction. The fresh Natural Uranium and Thorium is initially put in region-1, after one cycle of 10 years of burn-up it is shifted to region-2 and the each region-1 is filled by fresh natural Uranium/Thorium fuel. This concept is basically applied to all regions in both cores area, i.e. shifted the core of i{sup th} region into i+1 region after the end of 10 years burn-up cycle. For the next cycles, we will add only Natural Uranium and Thorium on each region-1. The calculation results show the reactivity reached by mixed Natural Uranium/Thorium with volume ratio is 4.7:1. This reactor can results power thermal 550 MWth. After reactor start-up the operation, furthermore reactor only needs Natural Uranium/Thorium supply for continue operation along 100 years.

  9. The feasibility study of small long-life gas cooled fast reactor with mixed natural Uranium/Thorium as fuel cycle input

    NASA Astrophysics Data System (ADS)

    Ariani, Menik; Su'ud, Zaki; Waris, Abdul; Khairurrijal, Monado, Fiber; Sekimoto, Hiroshi

    2012-06-01

    A conceptual design study of Gas Cooled Fast Reactors with Modified CANDLE burn-up scheme has been performed. In this study, design GCFR with Helium coolant which can be continuously operated by supplying mixed Natural Uranium/Thorium without fuel enrichment plant or fuel reprocessing plant. The active reactor cores are divided into two region, Thorium fuel region and Uranium fuel region. Each fuel core regions are subdivided into ten parts (region-1 until region-10) with the same volume in the axial direction. The fresh Natural Uranium and Thorium is initially put in region-1, after one cycle of 10 years of burn-up it is shifted to region-2 and the each region-1 is filled by fresh natural Uranium/Thorium fuel. This concept is basically applied to all regions in both cores area, i.e. shifted the core of ith region into i+1 region after the end of 10 years burn-up cycle. For the next cycles, we will add only Natural Uranium and Thorium on each region-1. The calculation results show the reactivity reached by mixed Natural Uranium/Thorium with volume ratio is 4.7:1. This reactor can results power thermal 550 MWth. After reactor start-up the operation, furthermore reactor only needs Natural Uranium/Thorium supply for continue operation along 100 years.

  10. LFR "Lead-Cooled Fast Reactor"

    SciTech Connect

    Cinotti, L; Fazio, C; Knebel, J; Monti, S; Abderrahim, H A; Smith, C; Suh, K

    2006-05-11

    The main purpose of this paper is to present the current status of development of the Lead-cooled Fast Reactor (LFR) in Generation IV (GEN IV), including the European contribution, to identify needed R&D and to present the corresponding GEN IV International Forum (GIF) R&D plan [1] to support the future development and deployment of lead-cooled fast reactors. The approach of the GIF plan is to consider the research priorities of each member country in proposing an integrated, coordinated R&D program to achieve common objectives, while avoiding duplication of effort. The integrated plan recognizes two principal technology tracks: (1) a small, transportable system of 10-100 MWe size that features a very long refuelling interval, and (2) a larger-sized system rated at about 600 MWe, intended for central station power generation. This paper provides some details of the important European contributions to the development of the LFR. Sixteen European organizations have, in fact, taken the initiative to present to the European Commission the proposal for a Specific Targeted Research and Training Project (STREP) devoted to the development of a European Lead-cooled System, known as the ELSY project; two additional organizations from the US and Korea have joined the project. Consequently, ELSY will constitute the reference system for the large lead-cooled reactor of GEN IV. The ELSY project aims to demonstrate the feasibility of designing a competitive and safe fast power reactor based on simple technical engineered features that achieves all of the GEN IV goals and gives assurance of investment protection. As far as new technology development is concerned, only a limited amount of R&D will be conducted in the initial phase of the ELSY project since the first priority is to define the design guidelines before launching a larger and expensive specific R&D program. In addition, the ELSY project is expected to benefit greatly from ongoing lead and lead-alloy technology

  11. Direct Energy Conversion for Fast Reactors

    SciTech Connect

    Brown, N.; Cooper, J.; Vogt, D.; Chapline, G.; Turchi, P.; Barbee Jr., T.; Farmer, J.

    2000-07-01

    Strategic Computing Initiative (ASCI), should improve the speed and decrease the cost of developing new TEGs. The system concept to be evaluated is shown in Figure 1. Liquid metal is used to transport heat away from the nuclear heat source and to the TEG. Air or liquid (water or a liquid metal) is used to transport heat away from the cold side of the TEG. Typical reactor coolants include sodium or eutectic mixtures of lead-bismuth. These are coolants that have been used to cool fast neutron reactors. Heat from the liquid metal coolant is rejected through the thermal electric materials, thereby producing electrical power directly. The temperature gradient could extend from as high as 1300 K to 300 K, although fast reactor structural materials (including those used to clad the fuel) currently used limit the high temperature to about 825K.

  12. Impact of nuclear data on sodium-cooled fast reactor calculations

    NASA Astrophysics Data System (ADS)

    Aures, Alexander; Bostelmann, Friederike; Zwermann, Winfried; Velkov, Kiril

    2016-03-01

    Neutron transport and depletion calculations are performed in combination with various nuclear data libraries in order to assess the impact of nuclear data on safety-relevant parameters of sodium-cooled fast reactors. These calculations are supplemented by systematic uncertainty analyses with respect to nuclear data. Analysed quantities are the multiplication factor and nuclide densities as a function of burn-up and the Doppler and Na-void reactivity coefficients at begin of cycle. While ENDF/B-VII.0 / -VII.1 yield rather consistent results, larger discrepancies are observed between the JEFF libraries. While the newest evaluation, JEFF-3.2, agrees with the ENDF/B-VII libraries, the JEFF-3.1.2 library yields significant larger multiplication factors.

  13. Run - Beyond - Cladding - Breach (RBCB) test results for the Integral Fast Reactor (IFR) metallic fuels program

    SciTech Connect

    Batte, G.L. ); Hoffman, G.L. )

    1990-01-01

    In 1984 Argonne National Laboratory (ANL) began an aggressive program of research and development based on the concept of a closed system for fast-reactor power generation and on-site fuel reprocessing, exclusively designed around the use of metallic fuel. This is the Integral Fast Reactor (IFR). Although the Experimental Breeder Reactor-II (EBR-II) has used metallic fuel since its creation 25 yeas ago, in 1985 ANL began a study of the characteristics and behavior of an advanced-design metallic fuel based on uranium-zirconium (U-Zr) and uranium-plutonium-zirconium (U-Pu-Zr) alloys. During the past five years several areas were addressed concerning the performance of this fuel system. In all instances of testing the metallic fuel has demonstrated its ability to perform reliably to high burnups under varying design conditions. This paper will present one area of testing which concerns the fuel system's performance under breach conditions. It is the purpose of this paper to document the observed post-breach behavior of this advanced-design metallic fuel. 2 figs., 1 tab.

  14. The Industrial Sodium Cooled Fast Reactor

    SciTech Connect

    Samuel E. Bays; Haihua Zhao; Hongbin Zhang

    2009-04-01

    This paper investigates the use of enrichment and moderator zoning methods for optimizing the r-z power distribution within sodium cooled fast reactors. These methods allow overall greater fuel utilization in the core resulting in more fuel being irradiated near the maximum allowed thermal power. The peak-to-average power density was held to 1.18. This core design, in conjunction with a multiple-reheat Brayton power conversion system, has merit for producing an industrial level of electrical output (2400MWth, 1000MWe) from a relatively compact core size. The total core radius, including reflectors and shields, was held to 1.78m. Preliminary safety analysis suggests that positive reactivity insertion resulting from a leak between the sodium primary loop and helium power conversion system can be mitigated using simple gas-liquid centripetal separation strategies in the plant’s primary loop.

  15. Advanced sodium fast reactor accident source terms :

    SciTech Connect

    Powers, Dana Auburn; Clement, Bernard; Denning, Richard; Ohno, Shuji; Zeyen, Roland

    2010-09-01

    An expert opinion elicitation has been used to evaluate phenomena that could affect releases of radionuclides during accidents at sodium-cooled fast reactors. The intent was to identify research needed to develop a mechanistic model of radionuclide release for licensing and risk assessment purposes. Experts from the USA, France, the European Union, and Japan identified phenomena that could affect the release of radionuclides under hypothesized accident conditions. They qualitatively evaluated the importance of these phenomena and the need for additional experimental research. The experts identified seven phenomena that are of high importance and have a high need for additional experimental research: High temperature release of radionuclides from fuel during an energetic event Energetic interactions between molten reactor fuel and sodium coolant and associated transfer of radionuclides from the fuel to the coolant Entrainment of fuel and sodium bond material during the depressurization of a fuel rod with breached cladding Rates of radionuclide leaching from fuel by liquid sodium Surface enrichment of sodium pools by dissolved and suspended radionuclides Thermal decomposition of sodium iodide in the containment atmosphere Reactions of iodine species in the containment to form volatile organic iodides. Other issues of high importance were identified that might merit further research as development of the mechanistic model of radionuclide release progressed.

  16. Estimation of average burnup of damaged fuels loaded in Fukushima Dai-ichi reactors by using the {sup 134}Cs/{sup 137}Cs ratio method

    SciTech Connect

    Endo, T.; Sato, S.; Yamamoto, A.

    2012-07-01

    Average burnup of damaged fuels loaded in Fukushima Dai-ichi reactors is estimated, using the {sup 134}Cs/{sup 137}Cs ratio method for measured radioactivities of {sup 134}Cs and {sup 137}Cs in contaminated soils within the range of 100 km from the Fukushima Dai-ichi nuclear power plants. As a result, the measured {sup 134}Cs/{sup 137}Cs ratio from the contaminated soil is 0.996{+-}0.07 as of March 11, 2011. Based on the {sup 134}Cs/{sup 137}Cs ratio method, the estimated burnup of damaged fuels is approximately 17.2{+-}1.5 [GWd/tHM]. It is noted that the numerical results of various calculation codes (SRAC2006/PIJ, SCALE6.0/TRITON, and MVP-BURN) are almost the same evaluation values of {sup 134}Cs/ {sup 137}Cs ratio with same evaluated nuclear data library (ENDF-B/VII.0). The void fraction effect in depletion calculation has a major impact on {sup 134}Cs/{sup 137}Cs ratio compared with the differences between JENDL-4.0 and ENDF-B/VII.0. (authors)

  17. A 100 MWe advanced sodium-cooled fast reactor core concept

    SciTech Connect

    Kim, T. K.; Grandy, C.; Hill, R. N.

    2012-07-01

    An Advanced sodium-cooled Fast Reactor core concept (AFR-100) was developed targeting a small electrical grid to be transportable to the plant site and operable for a long time without frequent refueling. The reactor power rating was strategically decided to be 100 MWe, and the core barrel diameter was limited to 3.0 m for transportability. The design parameters were determined by relaxing the peak fast fluence limit and bulk coolant outlet temperature to beyond irradiation experience assuming that advanced cladding and structural materials developed under US-DOE programs would be available when the AFR-100 is deployed. With a de-rated power density and U-Zr binary metallic fuel, the AFR-100 can maintain criticality for 30 years without refueling. The average discharge burnup of 101 MWd/kg is comparable to conventional design values, but the peak discharge fast fluence of {approx}6x10{sup 23} neutrons/cm{sup 2} is beyond the current irradiation experiences with HT-9 cladding. The evaluated reactivity coefficients provide sufficient negative feedbacks and the reactivity control systems provide sufficient shutdown margins. The integral reactivity parameters obtained from quasi-static reactivity balance analysis indicate that the AFR-100 meets the sufficient conditions for acceptable asymptotic core outlet temperature following postulated unprotected accidents. Additionally, the AFR-100 has sufficient thermal margins by grouping the fuel assemblies into eight orifice zones. (authors)

  18. Enhancement of Irradiation Capability of the Experimental Fast Reactor Joyo

    NASA Astrophysics Data System (ADS)

    Maeda, Shigetaka; Serine, Takashi; Aoyama, Takafumi; Suzuki, Soju

    2009-08-01

    The experimental fast reactor Joyo is the first sodium-cooled fast reactor in Japan. One of its primary missions is to perform irradiation tests of fuel and structural materials to support the development of fast reactors. The MK-III high performance core upgrade to enhance the irradiation testing capabilities was completed in 2003. In order to expand Joyo's capabilities for innovative irradiation testing applications, neutron spectrum tailoring, lower irradiation temperature, movable sample devices and fast neutron beam holes are being considered. This program responds to existing irradiation needs and aims to further expand capabilities for a variety of irradiation tests.

  19. Fast-mixed spectrum reactor. Progress report for 1980

    SciTech Connect

    Fischer, G.J.; Galperin, A.; Shenoy, S.; Atefi, B.

    1980-10-01

    Reactor physics, fuel cycle, thermal-hydraulics and fuel cycle cost studies have been performed for this concept and are reported. The most serious drawback of previous FMSR designs, namely the level of irradiation damage to the stainless steel of the cladding and duct materials, has been greatly reduced by the new design. The peak fuel burnup level is also reduced. Work continued on earlier FMSR designs, and in particular, the centrally-moderated FMSR. Emphasis was placed on defining the first core and then the total sequence of core histories over the 30-year life of the reactor. It was found possible to define a two-year fuel cycle with limited reactivity swing over the cycle. Fuel cycle cost studies were begun. The results indicate a modest fuel cycle cost advantage for the FMSR, but the basic cost assumptions must be improved for metal fuel. Improved thermal-hydraulic analysis capabilities have greatly improved the understanding of heat transfer behavior.

  20. A fast spectrum dual path flow cermet reactor

    SciTech Connect

    Anghaie, S.; Feller, G.J. ); Peery, S.D.; Parsley, R.C. )

    1993-01-15

    A cermet fueled, dual path fast reactor for space nuclear propulsion applications is conceptually designed. The reactor utilizes an outer annulus core and an inner cylindrical core with radial and axial reflector. The dual path flow minimizes the impact of power peaking near the radial reflector. Basic neutronics and core design aspects of the reactor are discussed. The dual path reactor is integrated into a 25000 lbf thrust nuclear rocket.

  1. Proceedings of the twenty-fourth water reactor safety information meeting. Volume 1: Plenary session; High burnup fuel; Containment and structural aging

    SciTech Connect

    Monteleone, S.

    1997-01-01

    This three-volume report contains papers presented at the Twenty-Fourth Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, maryland, October 21--23, 1996. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from Czech Republic, Finland, France, Japan, Norway, Russia and United Kingdom. This first volume is divided into 3 sections: plenary session; high burnup fuel; and containment and structural aging. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  2. Composite nuclear fuel fabrication methodology for gas fast reactors

    NASA Astrophysics Data System (ADS)

    Vasudevamurthy, Gokul

    An advanced fuel form for use in Gas Fast Reactors (GFR) was investigated. Criteria for the fuel includes operation at high temperature (˜1400°C) and high burnup (˜150 MWD/MTHM) with effective retention of fission products even during transient temperatures exceeding 1600°C. The GFR fuel is expected to contain up to 20% transuranics for a closed fuel cycle. Earlier evaluations of reference fuels for the GFR have included ceramic-ceramic (cercer) dispersion type composite fuels of mixed carbide or nitride microspheres coated with SiC in a SiC matrix. Studies have indicated that ZrC is a potential replacement for SiC on account of its higher melting point, increased fission product corrosion resistance and better chemical stability. The present work investigated natural uranium carbide microspheres in a ZrC matrix instead of SiC. Known issues of minor actinide volatility during traditional fabrication procedures necessitated the investigation of still high temperature but more rapid fabrication techniques to minimize these anticipated losses. In this regard, fabrication of ZrC matrix by combustion synthesis from zirconium and graphite powders was studied. Criteria were established to obtain sufficient matrix density with UC microsphere volume fractions up to 30%. Tests involving production of microspheres by spark erosion method (similar to electrodischarge machining) showed the inability of the method to produce UC microspheres in the desired range of 300 to 1200 mum. A rotating electrode device was developed using a minimum current of 80A and rotating at speeds up to 1500 rpm to fabricate microspheres between 355 and 1200 mum. Using the ZrC process knowledge, UC electrodes were fabricated and studied for use in the rotating electrode device to produce UC microspheres. Fabrication of the cercer composite form was studied using microsphere volume fractions of 10%, 20%, and 30%. The macrostructure of the composite and individual components at various stages were

  3. PWR AXIAL BURNUP PROFILE ANALYSIS

    SciTech Connect

    J.M. Acaglione

    2003-09-17

    The purpose of this activity is to develop a representative ''limiting'' axial burnup profile for pressurized water reactors (PWRs), which would encompass the isotopic axial variations caused by different assembly irradiation histories, and produce conservative isotopics with respect to criticality. The effect that the low burnup regions near the ends of spent fuel have on system reactivity is termed the ''end-effect''. This calculation will quantify the end-effects associated with Pressurized Water Reactor (PWR) fuel assemblies emplaced in a hypothetical 21 PWR waste package. The scope of this calculation covers an initial enrichment range of 3.0 through 5.0 wt% U-235 and a burnup range of 10 through 50 GWd/MTU. This activity supports the validation of the process for ensuring conservative generation of spent fuel isotopics with respect to criticality safety applications, and the use of burnup credit for commercial spent nuclear fuel. The intended use of these results will be in the development of PWR waste package loading curves, and applications involving burnup credit. Limitations of this evaluation are that the limiting profiles are only confirmed for use with the B&W 15 x 15 fuel assembly design. However, this assembly design is considered bounding of all other typical commercial PWR fuel assembly designs. This calculation is subject to the Quality Assurance Requirements and Description (QARD) because this activity supports investigations of items or barriers on the Q-list (YMP 2001).

  4. Sodium fast reactor safety and licensing research plan. Volume II.

    SciTech Connect

    Ludewig, H.; Powers, D. A.; Hewson, John C.; LaChance, Jeffrey L.; Wright, A.; Phillips, J.; Zeyen, R.; Clement, B.; Garner, Frank; Walters, Leon; Wright, Steve; Ott, Larry J.; Suo-Anttila, Ahti Jorma; Denning, Richard; Ohshima, Hiroyuki; Ohno, S.; Miyhara, S.; Yacout, Abdellatif; Farmer, M.; Wade, D.; Grandy, C.; Schmidt, R.; Cahalen, J.; Olivier, Tara Jean; Budnitz, R.; Tobita, Yoshiharu; Serre, Frederic; Natesan, Ken; Carbajo, Juan J.; Jeong, Hae-Yong; Wigeland, Roald; Corradini, Michael; Thomas, Justin; Wei, Tom; Sofu, Tanju; Flanagan, George F.; Bari, R.; Porter D.; Lambert, J.; Hayes, S.; Sackett, J.; Denman, Matthew R.

    2012-05-01

    Expert panels comprised of subject matter experts identified at the U.S. National Laboratories (SNL, ANL, INL, ORNL, LBL, and BNL), universities (University of Wisconsin and Ohio State University), international agencies (IRSN, CEA, JAEA, KAERI, and JRC-IE) and private consultation companies (Radiation Effects Consulting) were assembled to perform a gap analysis for sodium fast reactor licensing. Expert-opinion elicitation was performed to qualitatively assess the current state of sodium fast reactor technologies. Five independent gap analyses were performed resulting in the following topical reports: (1) Accident Initiators and Sequences (i.e., Initiators/Sequences Technology Gap Analysis), (2) Sodium Technology Phenomena (i.e., Advanced Burner Reactor Sodium Technology Gap Analysis), (3) Fuels and Materials (i.e., Sodium Fast Reactor Fuels and Materials: Research Needs), (4) Source Term Characterization (i.e., Advanced Sodium Fast Reactor Accident Source Terms: Research Needs), and (5) Computer Codes and Models (i.e., Sodium Fast Reactor Gaps Analysis of Computer Codes and Models for Accident Analysis and Reactor Safety). Volume II of the Sodium Research Plan consolidates the five gap analysis reports produced by each expert panel, wherein the importance of the identified phenomena and necessities of further experimental research and code development were addressed. The findings from these five reports comprised the basis for the analysis in Sodium Fast Reactor Research Plan Volume I.

  5. Recommendations for Addressing Axial Burnup in the PWR Burnup Credit Analyses

    SciTech Connect

    Wagner, J.C.

    2002-10-23

    This report presents studies performed to support the development of a technically justifiable approach for addressing the axial-burnup distribution in pressurized-water reactor (PWR) burnup-credit criticality safety analyses. The effect of the axial-burnup distribution on reactivity and proposed approaches for addressing the axial-burnup distribution are briefly reviewed. A publicly available database of profiles is examined in detail to identify profiles that maximize the neutron multiplication factor, k{sub eff}, assess its adequacy for PWR burnup credit analyses, and investigate the existence of trends with fuel type and/or reactor operations. A statistical evaluation of the k{sub eff} values associated with the profiles in the axial-burnup-profile database was performed, and the most reactive (bounding) profiles were identified as statistical outliers. The impact of these bounding profiles on k{sub eff} is quantified for a high-density burnup credit cask. Analyses are also presented to quantify the potential reactivity consequence of loading assemblies with axial-burnup profiles that are not bounded by the database. The report concludes with a discussion on the issues for consideration and recommendations for addressing axial burnup in criticality safety analyses using burnup credit for dry cask storage and transportation.

  6. Technology Options for a Fast Spectrum Test Reactor

    SciTech Connect

    D. M. Wachs; R. W. King; I. Y. Glagolenko; Y. Shatilla

    2006-06-01

    Idaho National Laboratory in collaboration with Argonne National Laboratory has evaluated technology options for a new fast spectrum reactor to meet the fast-spectrum irradiation requirements for the USDOE Generation IV (Gen IV) and Advanced Fuel Cycle Initiative (AFCI) programs. The US currently has no capability for irradiation testing of large volumes of fuels or materials in a fast-spectrum reactor required to support the development of Gen IV fast reactor systems or to demonstrate actinide burning, a key element of the AFCI program. The technologies evaluated and the process used to select options for a fast irradiation test reactor (FITR) for further evaluation to support these programmatic objectives are outlined in this paper.

  7. Immobilization of Fast Reactor First Cycle Raffinate

    SciTech Connect

    Langley, K. F.; Partridge, B. A.; Wise, M.

    2003-02-26

    This paper describes the results of work to bring forward the timing for the immobilization of first cycle raffinate from reprocessing fuel from the Dounreay Prototype Fast Reactor (PFR). First cycle raffinate is the liquor which contains > 99% of the fission products separated from spent fuel during reprocessing. Approximately 203 m3 of raffinate from the reprocessing of PFR fuel is held in four tanks at the UKAEA's site at Dounreay, Scotland. Two methods of immobilization of this high level waste (HLW) have been considered: vitrification and cementation. Vitrification is the standard industry practice for the immobilization of first cycle raffinate, and many papers have been presented on this technique elsewhere. However, cementation is potentially feasible for immobilizing first cycle raffinate because the heat output is an order of magnitude lower than typical HLW from commercial reprocessing operations such as that at the Sellafield site in Cumbria, England. In fact, it falls within the upper end of the UK definition of intermediate level waste (ILW). Although the decision on which immobilization technique will be employed has yet to be made, initial development work has been undertaken to identify a suitable cementation formulation using inactive simulant of the raffinate. An approach has been made to the waste disposal company Nirex to consider the disposability of the cemented product material. The paper concentrates on the process development work that is being undertaken on cementation to inform the decision making process for selection of the immobilization method.

  8. Homogeneous fast-flux isotope-production reactor

    DOEpatents

    Cawley, W.E.; Omberg, R.P.

    1982-08-19

    A method is described for producing tritium in a liquid metal fast breeder reactor. Lithium target material is dissolved in the liquid metal coolant in order to facilitate the production and removal of tritium.

  9. Coupled hydro-neutronic calculations for fast burst reactor accidents

    SciTech Connect

    Paternoster, R.; Kimpland, R.; Jaegers, P.; McGhee, J.

    1994-01-01

    Methods are described for determining the fully coupled neutronic/hydrodynamic response of fast burst reactors (FBR) under disruptive accident conditions. Two code systems, PAD (1 -D Lagrangian) and NIKE-PAGOSA (3-D Eulerian) were used to accomplish this. This is in contrast to the typical methodology that computes these responses by either single point kinetics or in a decoupled manner. This methodology is enabled by the use of modem supercomputers (CM-200). Two examples of this capability are presented: an unreflected metal fast burst assembly, and a reflected fast burst assembly typical of the Skua or SPR-III class of fast burst reactor.

  10. Fast Thorium Molten Salt Reactors Started with Plutonium

    SciTech Connect

    Merle-Lucotte, E.; Heuer, D.; Le Brun, C.; Brissot, R.; Liatard, E.; Meplan, O.; Nuttin, A.

    2006-07-01

    One of the pending questions concerning Molten Salt Reactors based on the {sup 232}Th/{sup 233}U fuel cycle is the supply of the fissile matter, and as a consequence the deployment possibilities of a fleet of Molten Salt Reactors, since {sup 233}U does not exist on earth and is not yet produced in the current operating reactors. A solution may consist in producing {sup 233}U in special devices containing Thorium, in Pressurized Water or Fast Neutrons Reactors. Two alternatives to produce {sup 233}U are examined here: directly in standard Molten Salt Reactors started with Plutonium as fissile matter and then operated in the Th/{sup 233}U cycle; or in dedicated Molten Salt Reactors started and fed with Plutonium as fissile matter and Thorium as fertile matter. The idea is to design a critical reactor able to burn the Plutonium and the minor actinides presently produced in PWRs, and consequently to convert this Plutonium into {sup 233}U. A particular reactor configuration is used, called 'unique channel' configuration in which there is no moderator in the core, leading to a quasi fast neutron spectrum, allowing Plutonium to be used as fissile matter. The conversion capacities of such Molten Salt Reactors are excellent. For Molten Salt Reactors only started with Plutonium, the assets of the Thorium fuel cycle turn out to be quickly recovered and the reactor's characteristics turn out to be equivalent to Molten Salt Reactors operated with {sup 233}U only. Using a combination of Molten Salt Reactors started or operated with Plutonium and of Molten Salt Reactors started with {sup 233}U, the deployment capabilities of these reactors fully satisfy the condition of sustainability. (authors)

  11. Methods for quantifying uncertainty in fast reactor analyses.

    SciTech Connect

    Fanning, T. H.; Fischer, P. F.

    2008-04-07

    Liquid-metal-cooled fast reactors in the form of sodium-cooled fast reactors have been successfully built and tested in the U.S. and throughout the world. However, no fast reactor has operated in the U.S. for nearly fourteen years. More importantly, the U.S. has not constructed a fast reactor in nearly 30 years. In addition to reestablishing the necessary industrial infrastructure, the development, testing, and licensing of a new, advanced fast reactor concept will likely require a significant base technology program that will rely more heavily on modeling and simulation than has been done in the past. The ability to quantify uncertainty in modeling and simulations will be an important part of any experimental program and can provide added confidence that established design limits and safety margins are appropriate. In addition, there is an increasing demand from the nuclear industry for best-estimate analysis methods to provide confidence bounds along with their results. The ability to quantify uncertainty will be an important component of modeling that is used to support design, testing, and experimental programs. Three avenues of UQ investigation are proposed. Two relatively new approaches are described which can be directly coupled to simulation codes currently being developed under the Advanced Simulation and Modeling program within the Reactor Campaign. A third approach, based on robust Monte Carlo methods, can be used in conjunction with existing reactor analysis codes as a means of verification and validation of the more detailed approaches.

  12. Development of New Cladding Materials Applied for Advanced LWR Aiming at Ultra-high Burn-up and Fast Neutron Spectrum

    SciTech Connect

    Kiuchi, K.; Ogawa, H.; Ioka, I.; Kuroda, Y.; Anegawa, T.

    2002-07-01

    The ultra-high burnup more than 100 GWd/t and fast neutron spectrum tailoring are considered to be the most promising technologies applied to the advanced MOX LWRs for minimizing the electrical cost and waste management. The development of new cladding materials with the excellent irradiation properties has been conducted to realize these needs. Comparing with UO{sub 2}, to increase the internal pressure by FP gas release is accelerated with the co-production of Xe and He in MOX fuels. New stainless steels with the excellent irradiation properties, creep strength and compatibilities to high temperature water were selected to attain the reliability. The irradiation assisted stress corrosion cracking through the past experience in LWR plants is possible to inhibit by new steel making process. The problems of tritium release and PCMI is possible to inhibit by ductile niobium alloy lining. (authors)

  13. Simulator platform for fast reactor operation and safety technology demonstration

    SciTech Connect

    Vilim, R. B.; Park, Y. S.; Grandy, C.; Belch, H.; Dworzanski, P.; Misterka, J.

    2012-07-30

    A simulator platform for visualization and demonstration of innovative concepts in fast reactor technology is described. The objective is to make more accessible the workings of fast reactor technology innovations and to do so in a human factors environment that uses state-of-the art visualization technologies. In this work the computer codes in use at Argonne National Laboratory (ANL) for the design of fast reactor systems are being integrated to run on this platform. This includes linking reactor systems codes with mechanical structures codes and using advanced graphics to depict the thermo-hydraulic-structure interactions that give rise to an inherently safe response to upsets. It also includes visualization of mechanical systems operation including advanced concepts that make use of robotics for operations, in-service inspection, and maintenance.

  14. Calculated analysis of experiments in fast neutron reactors

    SciTech Connect

    Davydov, V. K. Kalugina, K. M.; Gomin, E. A.

    2012-12-15

    In this paper, the results of computational simulation of experiments with the MK-I core of the JOYO fast neutron sodium-cooled reactor are presented. The MCU-KS code based on the Monte Carlo method was used for calculations. The research was aimed at additional verification of the MCU-KS code for systems with a fast neutron spectrum.

  15. A next-generation reactor concept: The Integral Fast Reactor (IFR)

    SciTech Connect

    Chang, Y.I.

    1992-01-01

    The Integral Fast Reactor (IFR) is an advanced liquid metal reactor concept being developed at Argonne National Laboratory as reactor technology for the 21st century. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system, in particular passive safety and waste management. The IFR concept consists of four technical features: (1) liquid sodium cooling, (2) pool-type reactor configuration, (3) metallic fuel, and (4) fuel cycle closure based on pyroprocessing.

  16. A next-generation reactor concept: The Integral Fast Reactor (IFR)

    SciTech Connect

    Chang, Y.I.

    1992-07-01

    The Integral Fast Reactor (IFR) is an advanced liquid metal reactor concept being developed at Argonne National Laboratory as reactor technology for the 21st century. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system, in particular passive safety and waste management. The IFR concept consists of four technical features: (1) liquid sodium cooling, (2) pool-type reactor configuration, (3) metallic fuel, and (4) fuel cycle closure based on pyroprocessing.

  17. Integral Fast Reactor: A future source of nuclear energy

    SciTech Connect

    Southon, R.

    1993-09-01

    Argonne National Laboratory is developing a reactor concept that would be an important part of the worlds energy future. This report discusses the Integral Fast Reactor (IFR) concept which provides significant improvements over current generation reactors in reactor safety, plant complexity, nuclear proliferation, and waste generation. Two major facilities, a reactor and a fuel cycle facility, make up the IFR concept. The reactor uses fast neutrons and metal fuel in a sodium coolant at atmospheric pressure that relies on laws of physics to keep it safe. The fuel cycle facility is a hot cell using remote handling techniques for fabricating reactor fuel. The fuel feed stock includes spent fuel from the reactor, and potentially, spent light water reactor fuel and plutonium from weapons. This paper discusses the unique features of the IFR concept and the differences the quality assurance program has from current commercial practices. The IFR concept provides an opportunity to design a quality assurance program that makes use of the best contemporary ideas on management and quality.

  18. Development of fast breeder reactor fuel reprocessing technology at the Power Reactor and Nuclear Fuel Development Corporation

    SciTech Connect

    Kawata, T.; Takeda, H.; Togashi, A.; Hayashi, S. . Tokai Works); Stradley, J.G. )

    1991-01-01

    For the past two decades, a broad range of research development (R D) programs to establish fast breeder reactor (FBR) system and its associated fuel cycle technology have been pursued by the Power Reactor and Nuclear Fuel Development Corporation (PNC). Developmental activities for FBR fuel reprocessing technology have been primarily conducted at PNC Tokai Works where many important R D facilities for nuclear fuel cycle are located. These include cold and uranium tests for process equipment development in the Engineering Demonstration Facilities (EDF)-I and II, and laboratory-scale hot tests in the Chemical Processing Facility (CPF) where fuel dissolution and solvent extraction characteristics are being investigated with irradiated FBR fuel pins whose burn-up ranges up to 100,000 MWd/t. An extensive effort has also been made at EDF-III to develop advanced remote technology which enables to increase plant availability and to decrease radiation exposures to the workers in future reprocessing plants. The PNC and the United States Department of Energy (USDOE) entered into the joint collaboration in which the US shares the R Ds to support FBR fuel reprocessing program at the PNC. Several important R Ds on advanced process equipment such as a rotary dissolver and a centrifugal contactor system are in progress in a joint effort with the Oak Ridge National Laboratory (ORNL) Consolidated Fuel Reprocessing Program (CFRP). In order to facilitate hot testing on advanced processes and equipment, the design of a new engineering-scale hot test facility is now in progress aiming at the start of hot operation in late 90's. 31 refs., 2 tabs.

  19. Determination of plutonium content in high burnup pressurized water reactor fuel samples and its use for isotope correlations for isotopic composition of plutonium.

    PubMed

    Joe, Kihsoo; Jeon, Young-Shin; Han, Sun-Ho; Lee, Chang-Heon; Ha, Yeong-Keong; Song, Kyuseok

    2012-06-01

    The content of plutonium isotopes in high burnup pressurized water reactor fuel samples was examined using both alpha spectrometry and mass spectrometry after anion exchange separation. The measured values were compared with results calculated by the ORIGEN-2 code. On average, the ratios (m/c) of the measured values (m) over the calculated values (c) were 1.22±0.16 for (238)Pu, 1.02±0.14 for (239)Pu, 1.08±0.06 for (240)Pu, 1.06±0.16 for (241)Pu, and 1.13±0.08 for (242)Pu. Using the Pu data obtained in this work, correlations were derived between the alpha activity ratios of (238)Pu/((239)Pu+(240)Pu), the alpha specific activities of Pu, and the atom % abundances of the Pu isotopes. Using these correlations, the atom % abundances of the plutonium isotopes in the target samples were calculated. These calculated results agreed within a range from 2 to 8% of the experimentally derived values according to the isotopes of plutonium.

  20. Isotope production in fast reactor blankets

    SciTech Connect

    Zvonarev, A.V.; Koloskov, B.V.; Kochetkov, L.A.

    1993-12-31

    At the BR-10 research reactor radioactive isotopes are produced that are required for the production of radiopharmaceuticals and phosphor 32 used for the synthesis of biochemical labelled compounds. A procedure has been developed of uranium target irradiation followed by radiochemical processing aimed at isotope isolation of molybdenum 99, xenon 133 and iodine 131,132,and 133 isotopes mixture. Irradiation is carried out in a special channel of the radial blanket. The production of cobalt 60 at the BN-600 reactor and facilities are also described.

  1. ISOTOPIC MODEL FOR COMMERCIAL SNF BURNUP CREDIT

    SciTech Connect

    A.H. Wells

    2004-11-17

    The purpose of this report is to demonstrate a process for selecting bounding depletion parameters, show that they are conservative for pressurized water reactor (PWR) and boiling water reactor (BWR) spent nuclear fuel (SNF), and establish the range of burnup for which the parameters are conservative. The general range of applicability is for commercial light water reactor (LWR) SNF with initial enrichments between 2.0 and 5.0 weight percent {sup 235}U and burnups between 10 and 50 gigawatt-day per metric ton of uranium (GWd/MTU).

  2. Overview of the fast reactors fuels program. [LMFBR

    SciTech Connect

    Evans, E.A.; Cox, C.M.; Hayward, B.R.; Rice, L.H.; Yoshikawa, H.H.

    1980-04-01

    Each nation involved in LMFBR development has its unique energy strategies which consider energy growth projections, uranium resources, capital costs, and plant operational requirements. Common to all of these strategies is a history of fast reactor experience which dates back to the days of the Manhatten Project and includes the CLEMENTINE Reactor, which generated a few watts, LAMPRE, EBR-I, EBR-II, FERMI, SEFOR, FFTF, BR-1, -2, -5, -10, BOR-60, BN-350, BN-600, JOYO, RAPSODIE, Phenix, KNK-II, DFR, and PFR. Fast reactors under design or construction include PEC, CRBR, SuperPhenix, SNR-300, MONJU, and Madras (India). The parallel fuels and materials evolution has fully supported this reactor development. It has involved cermets, molten plutonium alloy, plutonium oxide, uranium metal or alloy, uranium oxide, and mixed uranium-plutonium oxides and carbides.

  3. A fast shutdown system for SRS (Savannah River Site) reactors

    SciTech Connect

    Baumann, N.P.

    1990-01-01

    Power has been sharply reduced at Savannah River Site (SRS) reactors in large part to ensure that no bulk boiling occurs during hypothesized loss of coolant accidents. A fast shutdown system is essential to regain much of this lost power. Computations and experiments indicate that a He-3 injection system will serve this function. Instrumented tests of a full system are planned for early 1991 for one of the SRS reactors. 4 refs., 7 figs., 1 tab.

  4. BISON and MARMOT Development for Modeling Fast Reactor Fuel Performance

    SciTech Connect

    Gamble, Kyle Allan Lawrence; Williamson, Richard L.; Schwen, Daniel; Zhang, Yongfeng; Novascone, Stephen Rhead; Medvedev, Pavel G.

    2015-09-01

    BISON and MARMOT are two codes under development at the Idaho National Laboratory for engineering scale and lower length scale fuel performance modeling. It is desired to add capabilities for fast reactor applications to these codes. The fast reactor fuel types under consideration are metal (U-Pu-Zr) and oxide (MOX). The cladding types of interest include 316SS, D9, and HT9. The purpose of this report is to outline the proposed plans for code development and provide an overview of the models added to the BISON and MARMOT codes for fast reactor fuel behavior. A brief overview of preliminary discussions on the formation of a bilateral agreement between the Idaho National Laboratory and the National Nuclear Laboratory in the United Kingdom is presented.

  5. Mechanical properties of irradiated fast breeder reactor cladding and ducts

    SciTech Connect

    Johnson, G.D.; Hunter, C.W.

    1983-02-01

    Austenitic stainless steels are being used for various core components in Liquid Metal Fast Breeder Reactors. Twenty percent cold worked Type 316 stainless steel is being used for both fuel pin cladding and ducts in the Fast Flux Test Facility. Safe and reliable operation of breeder reactors requires a characterization of the effects of fast neutron irradiation and environment on the mechanical properties of the cladding and duct material. Nearly 1400 tests have been conducted on unirradiated and irradiated cladding and duct samples under conditions relevant to reactor operational and transient events. Six different types of tests conducted on cladding and duct samples are described and the effects of irradiation on the properties are discussed.

  6. Interim status report on lead-cooled fast reactor (LFR) research and development.

    SciTech Connect

    Tzanos, C. P.; Sienicki, J. J.; Moisseytsev, A.; Smith, C. F.; de Caro, M.; Halsey, W. G.; Li, N.; Hosemann, P.; Zhang, J.; Bolind, A.; LLNL; LANL; Univ. of Illinois

    2008-03-31

    This report discusses the status of Lead-Cooled Fast Reactor (LFR) research and development carried out during the first half of FY 2008 under the U.S. Department of Energy Generation IV Nuclear Energy Systems Initiative. Lead-Cooled Fast Reactor research and development has recently been transferred from Generation IV to the Reactor Campaign of the Global Nuclear Energy Partnership (GNEP). Another status report shall be issued at the end of FY 2008 covering all of the LFR activities carried out in FY 2008 for both Generation IV and GNEP. The focus of research and development in FY 2008 is an initial investigation of a concept for a LFR Advanced Recycling Reactor (ARR) Technology Pilot Plant (TPP)/demonstration test reactor (demo) incorporating features and operating conditions of the European Lead-cooled SYstem (ELSY) {approx} 600 MWe lead (Pb)-cooled LFR preconceptual design for the transmutation of waste and central station power generation, and which would enable irradiation testing of advanced fuels and structural materials. Initial scoping core concept development analyses have been carried out for a 100 MWt core composed of sixteen open-lattice 20 by 20 fuel assemblies largely similar to those of the ELSY preconceptual fuel assembly design incorporating fuel pins with mixed oxide (MOX) fuel, central control rods in each fuel assembly, and cooled with Pb coolant. For a cycle length of three years, the core is calculated to have a conversion ratio of 0.79, an average discharge burnup of 108 MWd/kg of heavy metal, and a burnup reactivity swing of about 13 dollars. With a control rod in each fuel assembly, the reactivity worth of an individual rod would need to be significantly greater than one dollar which is undesirable for postulated rod withdrawal reactivity insertion events. A peak neutron fast flux of 2.0 x 10{sup 15} (n/cm{sup 2}-s) is calculated. For comparison, the 400 MWt Fast Flux Test Facility (FFTF) achieved a peak neutron fast flux of 7.2 x 10{sup

  7. A comparison of radioactive waste from first generation fusion reactors and fast fission reactors with actinide recycling

    SciTech Connect

    Koch, M.; Kazimi, M.S.

    1991-04-01

    Limitations of the fission fuel resources will presumably mandate the replacement of thermal fission reactors by fast fission reactors that operate on a self-sufficient closed fuel cycle. This replacement might take place within the next one hundred years, so the direct competitors of fusion reactors will be fission reactors of the latter rather than the former type. Also, fast fission reactors, in contrast to thermal fission reactors, have the potential for transmuting long-lived actinides into short-lived fission products. The associated reduction of the long-term activation of radioactive waste due to actinides makes the comparison of radioactive waste from fast fission reactors to that from fusion reactors more rewarding than the comparison of radioactive waste from thermal fission reactors to that from fusion reactors. Radioactive waste from an experimental and a commercial fast fission reactor and an experimental and a commercial fusion reactor has been characterized. The fast fission reactors chosen for this study were the Experimental Breeder Reactor 2 and the Integral Fast Reactor. The fusion reactors chosen for this study were the International Thermonuclear Experimental Reactor and a Reduced Activation Ferrite Helium Tokamak. The comparison of radioactive waste parameters shows that radioactive waste from the experimental fast fission reactor may be less hazardous than that from the experimental fusion reactor. Inclusion of the actinides would reverse this conclusion only in the long-term. Radioactive waste from the commercial fusion reactor may always be less hazardous than that from the commercial fast fission reactor, irrespective of the inclusion or exclusion of the actinides. The fusion waste would even be far less hazardous, if advanced structural materials, like silicon carbide or vanadium alloy, were employed.

  8. Design Considerations for Economically Competitive Sodium Cooled Fast Reactors

    SciTech Connect

    Hongbin Zhang; Haihua Zhao

    2009-05-01

    The technological viability of sodium cooled fast reactors (SFR) has been established by various experimental and prototype (demonstration) reactors such as EBR-II, FFTF, Phénix, JOYO, BN-600 etc. However, the economic competitiveness of SFR has not been proven yet. The perceived high cost premium of SFRs over LWRs has been the primary impediment to the commercial expansion of SFR technologies. In this paper, cost reduction options are discussed for advanced SFR designs. These include a hybrid loop-pool design to optimize the primary system, multiple reheat and intercooling helium Brayton cycle for the power conversion system and the potential for suppression of intermediate heat transport system. The design options for the fully passive decay heat removal systems are also thoroughly examined. These include direct reactor auxiliary cooling system (DRACS), reactor vessel auxiliary cooling system (RVACS) and the newly proposed pool reactor auxiliary cooling system (PRACS) in the context of the hybrid loop-pool design.

  9. Utility industry evaluation of the Sodium Advanced Fast Reactor

    SciTech Connect

    Burstein, S. ); DelGeorge, L.O.; Tramm, T.R. ); Gibbons, J.P. ); High, M.D. ); Neils, G.H. ); Pilmer, D.F. ); Tomonto, J.R.

    1990-02-01

    A team of utility industry representatives evaluated the Sodium Advanced Fast Reactor plant design, a current liquid metal reactor design created by an industrial team led by Rockwell International under Department of Energy sponsorship. The utility industry team concluded that the plant design offers several attractive characteristics, especially in the safety arena, as well as preserving the traditional attraction of liquid metal reactors, very high fuel utilization. Specific comments and recommendations are provided as a contribution towards improving an already attractive plant design. 18 refs.

  10. The Integral Fast Reactor: A practical approach to waste management

    SciTech Connect

    Laidler, J.J.

    1993-12-31

    This report discusses development of the method for pyroprocessing of spent fuel from the Integral Fast Reactor (or Advanced Liquid Metal Reactor). The technology demonstration phase, in which recycle will be demonstrated with irradiated fuel from the EBR-II reactor has been reached. Methods for recovering actinides from spent LWR fuel are at an earlier stage of development but appear to be technically feasible at this time, and a large-scale demonstration of this process has begun. The utilization of fully compatible processes for recycling valuable spent fuel materials promises to provide substantial economic incentives for future applications of the pyroprocessing technology.

  11. Advanced reactor development: The LMR integral fast reactor program at Argonne

    SciTech Connect

    Till, C.E.

    1990-01-01

    Reactor technology for the 21st Century must develop with characteristics that can now be seen to be important for the future, quite different from the things when the fundamental materials and design choices for present reactors were made in the 1950s. Argonne National Laboratory, since 1984, has been developing the Integral Fast Reactor (IFR). This paper will describe the way in which this new reactor concept came about; the technical, public acceptance, and environmental issues that are addressed by the IFR; the technical progress that has been made; and our expectations for this program in the near term. 3 figs.

  12. Evolution of the liquid metal reactor: The Integral Fast Reactor (IFR) concept

    SciTech Connect

    Till, C.E.; Chang, Y.I.

    1989-01-01

    The Integral Fast Reactor (IFR) concept has been under development at Argonne National Laboratory since 1984. A key feature of the IFR concept is the metallic fuel. Metallic fuel was the original choice in early liquid metal reactor development. Solid technical accomplishments have been accumulating year after year in all aspects of the IFR development program. But as we make technical progress, the ultimate potential offered by the IFR concept as a next generation advanced reactor becomes clearer and clearer. The IFR concept can meet all three fundamental requirements needed in a next generation reactor. This document discusses these requirements: breeding, safety, and waste management. 5 refs., 4 figs.

  13. Review of Transient Testing of Fast Reactor Fuels in the Transient REActor Test Facility (TREAT)

    SciTech Connect

    Jensen, C.; Wachs, D.; Carmack, J.; Woolstenhulme, N.

    2017-01-01

    The restart of the Transient REActor Test (TREAT) facility provides a unique opportunity to engage the fast reactor fuels community to reinitiate in-pile experimental safety studies. Historically, the TREAT facility played a critical role in characterizing the behavior of both metal and oxide fast reactor fuels under off-normal conditions, irradiating hundreds of fuel pins to support fast reactor fuel development programs. The resulting test data has provided validation for a multitude of fuel performance and severe accident analysis computer codes. This paper will provide a review of the historical database of TREAT experiments including experiment design, instrumentation, test objectives, and salient findings. Additionally, the paper will provide an introduction to the current and future experiment plans of the U.S. transient testing program at TREAT.

  14. Fuel development for gas-cooled fast reactors

    NASA Astrophysics Data System (ADS)

    Meyer, M. K.; Fielding, R.; Gan, J.

    2007-09-01

    The Generation IV Gas-cooled Fast Reactor (GFR) concept is proposed to combine the advantages of high-temperature gas-cooled reactors (such as efficient direct conversion with a gas turbine and the potential for application of high-temperature process heat), with the sustainability advantages that are possible with a fast-spectrum reactor. The latter include the ability to fission all transuranics and the potential for breeding. The GFR is part of a consistent set of gas-cooled reactors that includes a medium-term Pebble Bed Modular Reactor (PBMR)-like concept, or concepts based on the Gas Turbine Modular Helium Reactor (GT-MHR), and specialized concepts such as the Very High-Temperature Reactor (VHTR), as well as actinide burning concepts [A Technology Roadmap for Generation IV Nuclear Energy Systems, US DOE Nuclear Energy Research Advisory Committee and the Generation IV International Forum, December 2002]. To achieve the necessary high power density and the ability to retain fission gas at high temperature, the primary fuel concept proposed for testing in the United States is dispersion coated fuel particles in a ceramic matrix. Alternative fuel concepts considered in the US and internationally include coated particle beds, ceramic clad fuel pins, and novel ceramic 'honeycomb' structures. Both mixed carbide and mixed nitride-based solid solutions are considered as fuel phases.

  15. Fuel Development For Gas-Cooled Fast Reactors

    SciTech Connect

    M. K. Meyer

    2006-06-01

    The Generation IV Gas-cooled Fast Reactor (GFR) concept is proposed to combine the advantages of high-temperature gas-cooled reactors (such as efficient direct conversion with a gas turbine and the potential for application of high-temperature process heat), with the sustainability advantages that are possible with a fast-spectrum reactor. The latter include the ability to fission all transuranics and the potential for breeding. The GFR is part of a consistent set of gas-cooled reactors that includes a medium-term Pebble Bed Modular Reactor (PBMR)-like concept, or concepts based on the Gas Turbine Modular Helium Reactor (GT-MHR), and specialized concepts such as the Very High Temperature Reactor (VHTR), as well as actinide burning concepts [ ]. To achieve the necessary high power density and the ability to retain fission gas at high temperature, the primary fuel concept proposed for testing in the United States is a dispersion coated fuel particles in a ceramic matrix. Alternative fuel concepts considered in the U.S. and internationally include coated particle beds, ceramic clad fuel pins, and novel ceramic ‘honeycomb’ structures. Both mixed carbide and mixed nitride-based solid solutions are considered as fuel phases.

  16. Instrumentation, Monitoring and NDE for New Fast Reactors

    SciTech Connect

    Bond, Leonard J.; Doctor, Steven; Bunch, Kyle; Good, Morris; Waltar, Alan E.

    2007-07-01

    The Global Nuclear Energy Partnership (GNEP) will require the development of actinide transmutation, which can most effectively be accomplished in a fast-spectrum reactor. To achieve higher standards of safety and reliability, operate with longer intervals between outages, and achieve high operating capacity factors, new instrumentation and on-line monitoring capabilities will be required-- during both fabrication and operation. This paper reports parts of a knowledge capture and technology state-of-the-art assessment for fast-reactor instrumentation and controls, monitoring and diagnostics. (authors)

  17. Fission-detector determination of D-D triton burnup fraction in beam-heated TFTR (Tokamak Fusion Test Reactor) plasmas

    SciTech Connect

    Jassby, D.L.; Hendel, H.W.; Barnes, C.W.; Bosch, S.; Cecil, F.E.; McCune, D.C.; Nieschmidt, E.B.; Strachan, J.D.

    1987-06-01

    After the end of a neutral-beam injection pulse into a low-density TFTR plasma, once the beam-injected deuterons have thermalized, the neutron emission is dominated by the 14-MeV neutron production from D-D triton burnup. Ordinary fission detectors can measure the 14-MeV emission rate, which can be extrapolated back in time to estimate the equilibrium triton burnup fraction. The fractional burnup determined by this method is in the range of 0.3 to 1.5% for TFTR discharges to date, and is consistent with classical confinement and slowing down. 10 refs., 3 figs.

  18. Full-length U-xPu-10Zr (x=0, 8, 19 wt%) Fast Reactor Fuel Test in FFTF

    SciTech Connect

    D. L. Porter; H.C. Tsai

    2012-08-01

    The Integral Fast Reactor-1 (IFR-1) experiment performed in the Fast Flux Test Facility (FFTF) was the only U-Pu-10Zr (Pu-0, 8 and 19 wt%) metallic fast reactor test with commercial-length (91.4 cm active fuel column length) conducted to date. With few remaining test reactors there is little opportunity for performing another test with a long active fuel column. The assembly was irradiated to the goal burnup of 10 at.%. The beginning of life (BOL) peak cladding temperature of the hottest pin was 608?C, cooling to 522?C at end of life (EOL). Selected fuel pins were examined non destructively using neutron radiography, precision axial gamma scanning, and both laser and spiral contact cladding profilometry. Destructive exams included plenum gas pressure, volume, and gas composition determinations on a number of pins followed by optical metallography, electron probe microanalysis (EPMA), and alpha and beta gamma autoradiography on a single U-19Pu-10Zr pin. The post-irradiation examinations (PIEs) showed very few differences compared to the short-pin (34.3 cm fuel column) testing performed on fuels of similar composition in Experimental Breeder Reactor-II (EBR-II). The fuel column grew axially slightly less than observed in the short pins, but with the same pattern of decreasing growth with increasing Pu content. There was a difference in the fuel-cladding chemical interaction (FCCI) in that the maximum cladding penetration by interdiffusion with fuel/fission products did not occur at the top of the fuel column where the cladding temperature is highest, as observed in EBR-II tests. Instead, the more exaggerated fission-rate profile of the FFTF pins resulted in a peak FCCI at ~0.7 X/L axial location along the fuel column. This resulted from a lower production of rare earth fission products higher in the fuel column as well as a much smaller delta-T between fuel center and cladding, and therefore less FCCI, despite the higher cladding temperature. This behavior could

  19. Full-length U-xPu-10Zr (x = 0, 8, 19 wt.%) fast reactor fuel test in FFTF

    NASA Astrophysics Data System (ADS)

    Porter, D. L.; Tsai, Hanchung

    2012-08-01

    The Integral Fast Reactor-1 (IFR-1) experiment performed in the Fast Flux Test Facility (FFTF) was the only U-Pu-10Zr (Pu-0, 8 and 19 wt.%) metallic fast reactor test with commercial-length (91.4-cm active fuel-column length) conducted to date. With few remaining test reactors, there is little opportunity for performing another test with a long active fuel column. The assembly was irradiated to the goal burnup of 10 at.%. The beginning-of-life (BOL) peak cladding temperature of the hottest pin was 608 °C, cooling to 522 °C at end-of-life (EOL). Selected fuel pins were examined non-destructively using neutron radiography, precision axial gamma scanning, and both laser and spiral contact cladding profilometry. Destructive exams included plenum gas pressure, volume, and gas composition determinations on a number of pins followed by optical metallography, electron probe microanalysis (EPMA), and alpha and beta-gamma autoradiography on a single U-19Pu-10Zr pin. The post-irradiation examinations (PIEs) showed very few differences compared to the short-pin (34.3-cm fuel column) testing performed on fuels of similar composition in Experimental Breeder Reactor-II (EBR-II). The fuel column grew axially slightly less than observed in the short pins, but with the same pattern of decreasing growth with increasing Pu content. There was a difference in the fuel-cladding chemical interaction (FCCI) in that the maximum cladding penetration by interdiffusion with fuel/fission products did not occur at the top of the fuel column where the cladding temperature is highest, as observed in EBR-II tests. Instead, the more exaggerated fission-rate profile of the FFTF pins resulted in a peak FCCI at ˜0.7 X/L axial location along the fuel column. This resulted from a higher production of rare-earth fission products at this location and a higher ΔT between fuel center and cladding than at core center, together providing more rare earths at the cladding and more FCCI. This behavior could

  20. Detailed calculations of minor actinide transmutation in a fast reactor

    SciTech Connect

    Takeda, Toshikazu

    2015-12-31

    The transmutation of minor actinides in a fast reactor is investigated by a new method to investigate the transmutation behavior of individual minor actinides. It is found that Np-237 and Am-241 mainly contributes to the transmutation rate though the transmutation behaviors are very different.

  1. Integral Fast Reactor Program. Annual progress report, FY 1993

    SciTech Connect

    Chang, Y.I.; Walters, L.C.; Laidler, J.J.; Pedersen, D.R.; Wade, D.C.; Lineberry, M.J.

    1994-10-01

    This report summarizes highlights of the technical progress made in the Integral Fast Reactor (IFR) Program in FY 1993. Technical accomplishments are presented in the following areas of the IFR technology development activities: (1) metal fuel performance, (2) pyroprocess development, (3) safety experiments and analyses, (4) core design development, (5) fuel cycle demonstration, and (6) LMR technology R and D.

  2. Metallic Fast Reactor Fuel Fabrication for Global Nuclear Energy Partnership

    SciTech Connect

    Douglas E. Burkes; Randall S. Fielding; Douglas L. Porter

    2009-07-01

    Fast reactors are once again being considered for nuclear power generation, in addition to transmutation of long-lived fission products resident in spent nuclear fuels. This re-consideration follows with intense developmental programs for both fuel and reactor design. One of the two leading candidates for next generation fast reactor fuel is metal alloys, resulting primarily from the successes achieved in the 1960s to early 1990s with both the experimental breeding reactor-II and the fast flux test facility. The goal of the current program is to develop and qualify a nuclear fuel system that performs all of the functions of a conventional, fast-spectrum nuclear fuel while destroying recycled actinides, thereby closing the nuclear fuel cycle. In order to meet this goal, the program must develop efficient and safe fuel fabrication processes designed for remote operation. This paper provides an overview of advanced casting processes investigated in the past, and the development of a gaseous diffusion calculation that demonstrates how straightforward process parameter modification can mitigate the loss of volatile minor actinides in the metal alloy melt.

  3. Integral Fast Reactor Program annual progress report, FY 1991

    SciTech Connect

    Not Available

    1992-06-01

    This report summarizes highlights of the technical progress made in the Integral Fast Reactor (IFR) Program in FY 1991. Technical accomplishments are presented in the following areas of the IFR technology development activities: (1) metal fuel performance, (2) pyroprocess development, (3) safety experiments and analyses, (4) core design development, (5) fuel cycle demonstration, and (6) LMR technology R&D.

  4. Integral Fast Reactor Program annual progress report, FY 1991

    SciTech Connect

    Not Available

    1992-06-01

    This report summarizes highlights of the technical progress made in the Integral Fast Reactor (IFR) Program in FY 1991. Technical accomplishments are presented in the following areas of the IFR technology development activities: (1) metal fuel performance, (2) pyroprocess development, (3) safety experiments and analyses, (4) core design development, (5) fuel cycle demonstration, and (6) LMR technology R D.

  5. Packed rod neutron shield for fast nuclear reactors

    DOEpatents

    Eck, John E.; Kasberg, Alvin H.

    1978-01-01

    A fast neutron nuclear reactor including a core and a plurality of vertically oriented neutron shield assemblies surrounding the core. Each assembly includes closely packed cylindrical rods within a polygonal metallic duct. The shield assemblies are less susceptible to thermal stresses and are less massive than solid shield assemblies, and are cooled by liquid coolant flow through interstices among the rods and duct.

  6. Integral Fast Reactor Program annual progress report, FY 1994

    SciTech Connect

    Chang, Y.I.; Walters, L.C.; Laidler, J.J.; Pedersen, D.R.; Wade, D.C.; Lineberry, J.J.

    1994-12-01

    This report summarizes highlights of the technical progress made in the Integral Fast Reactor (IFR) Program in FY 1994. Technical accomplishments are presented in the following areas of the IFR technology development activities: metal fuel performance; pyroprocess development; safety experiments and analyses; core design development; fuel cycle demonstration; and LMR technology R&D.

  7. Integral Fast Reactor Program. Annual progress report, FY 1992

    SciTech Connect

    Chang, Y.I.; Walters, L.C.; Laidler, J.J.; Pedersen, D.R.; Wade, D.C.; Lineberry, M.J.

    1993-06-01

    This report summarizes highlights of the technical progress made in the Integral Fast Reactor (IFR) Program in FY 1992. Technical accomplishments are presented in the following areas of the IFR technology development activities: (1) metal fuel performance, (2) pyroprocess development, (3) safety experiments and analyses, (4) core design development, (5) fuel cycle demonstration, and (6) LMR technology R&D.

  8. Fast Reactor Subassembly Design Modifications for Increasing Electricity Generation Efficiency

    SciTech Connect

    R. Wigeland; K. Hamman

    2009-09-01

    Suggested for Track 7: Advances in Reactor Core Design and In-Core Management _____________________________________________________________________________________ Fast Reactor Subassembly Design Modifications for Increasing Electricity Generation Efficiency R. Wigeland and K. Hamman Idaho National Laboratory Given the ability of fast reactors to effectively transmute the transuranic elements as are present in spent nuclear fuel, fast reactors are being considered as one element of future nuclear power systems to enable continued use and growth of nuclear power by limiting high-level waste generation. However, a key issue for fast reactors is higher electricity cost relative to other forms of nuclear energy generation. The economics of the fast reactor are affected by the amount of electric power that can be produced from a reactor, i.e., the thermal efficiency for electricity generation. The present study is examining the potential for fast reactor subassembly design changes to improve the thermal efficiency by increasing the average coolant outlet temperature without increasing peak temperatures within the subassembly, i.e., to make better use of current technology. Sodium-cooled fast reactors operate at temperatures far below the coolant boiling point, so that the maximum coolant outlet temperature is limited by the acceptable peak temperatures for the reactor fuel and cladding. Fast reactor fuel subassemblies have historically been constructed using a large number of small diameter fuel pins contained within a tube of hexagonal cross-section, or hexcan. Due to this design, there is a larger coolant flow area next to the hexcan wall as compared to flow area in the interior of the subassembly. This results in a higher flow rate near the hexcan wall, overcooling the fuel pins next to the wall, and a non-uniform coolant temperature distribution. It has been recognized for many years that this difference in sodium coolant temperature was detrimental to achieving

  9. Fast reactor neutrons for the treatment of superficial carcinomas

    SciTech Connect

    Wagner, F.M.; Koester, L. ); Auberger, T.; Reuschel, W.; Mayr, M.; Kneschaurek, P.; Breit, A. ); Schraube, H. )

    1992-01-01

    In this paper the fast neutron facility at the Munich Research Reactor (Forschungsreaktor Munchen (FRM)) is briefly described, and data about the beam quality are given. After a listing of the biological experiments performed before and in parallel to the clinical irradiations, the treatment scheme, selection of cases and results of the reactor neutron therapy are reported. More than 80% of patients-all with poor prognosis-show complete remission of the tumor or stoppage of growth for at least several months. Possibilities for a support by boron neutron capture therapy are outlined. Preliminary data of an upgraded thermal-to-fast neutron converter for the planned 20-MW reactor FRM-II are given.

  10. Update on the PWR axial burnup profile database

    SciTech Connect

    Cacciapouti, R.F.; Volkinburg, S.V.

    1995-12-01

    A pressurized water reactor database was developed to evaluate the axial burnup profiles of various reactor types. The data showed that the various types exhibit similar behavior, especially at the top and bottom of the assembly. From the existing data, bounding axial burnup profiles can be developed to envelope the various pressurized water reactor assembly deigns. The database encompasses most of the PWR fuel designs and contains sufficient data to provide reliable statistics.

  11. Development of Advanced Ods Ferritic Steels for Fast Reactor Fuel Cladding

    NASA Astrophysics Data System (ADS)

    Ukai, S.; Oono, N.; Ohtsuka, S.; Kaito, T.

    Recent progress of the 9CrODS steel development is presented focusing on their microstructure control to improve sufficient high-temperature strength as well as cladding manufacturing capability. The martensitic 9CrODS steel is primarily candidate cladding materials for the Generation IV fast reactor fuel. They are the attractive composite-like materials consisting of the hard residual ferrite and soft tempered martensite, which are able to be easily controlled by α-γ phase transformation. The residual ferrite containing extremely nanosized oxide particles leads to significantly improved creep rupture strength in 9CrODS cladding. The creep strength stability at extended time of 60,000 h at 700 ºC is ascribed to the stable nanosized oxide particles. It was also reviewed that 9CrODS steel has well irradiation stability and fuel pin irradiation test was conducted up to 12 at% burnup and 51 dpa at the cladding temperature of 700ºC.

  12. Enhancement of the inherent self-protection of the fast sodium reactor cores with oxide fuel

    SciTech Connect

    Eliseev, V.A.; Malisheva, I.V.; Matveev, V.I.; Egorov, A.V.; Maslov, P.A.

    2013-07-01

    With the development and research into the generation IV fast sodium reactors, great attention is paid to the enhancement of the core inherent self-protection characteristics. One of the problems dealt here is connected with the reduction of the reactivity margin so that the control rods running should not result in the core overheating and melting. In this paper we consider the possibilities of improving the core of BN-1200 with oxide fuel by a known method of introducing an axial fertile layer into the core. But unlike earlier studies this paper looks at the possibility of using such a layer not only for improving breeding, but also for reducing sodium void reactivity effect (SVRE). This proposed improvement of the BN-1200 core does not solve the problem of strong interference in control and protection system (CPS) rods of BN-1200, but they reduce significantly the reactivity margin for burn-up compensation. This helps compensate all the reactivity balances in the improved core configurations without violating constraints on SVRE value.

  13. Status of advanced fuel candidates for Sodium Fast Reactor within the Generation IV International Forum

    NASA Astrophysics Data System (ADS)

    Delage, F.; Carmack, J.; Lee, C. B.; Mizuno, T.; Pelletier, M.; Somers, J.

    2013-10-01

    The main challenge for fuels for future Sodium Fast Reactor systems is the development and qualification of a nuclear fuel sub-assembly which meets the Generation IV International Forum goals. The Advanced Fuel project investigates high burn-up minor actinide bearing fuels as well as claddings and wrappers to withstand high neutron doses and temperatures. The R&D outcome of national and collaborative programs has been collected and shared between the AF project members in order to review the capability of sub-assembly material and fuel candidates, to identify the issues and select the viable options. Based on historical experience and knowledge, both oxide and metal fuels emerge as primary options to meet the performance and the reliability goals of Generation IV SFR systems. There is a significant positive experience on carbide fuels but major issues remain to be overcome: strong in-pile swelling, atmosphere required for fabrication as well as Pu and Am losses. The irradiation performance database for nitride fuels is limited with longer term R&D activities still required. The promising core material candidates are Ferritic/Martensitic (F/M) and Oxide Dispersed Strengthened (ODS) steels.

  14. Fuel Design and Core Layout for a Gas-Cooled Fast Reactor

    SciTech Connect

    Rooijen, W.F.G. van; Kloosterman, J.L.; Hagen, T.H.J.J. van der; Dam, H. van

    2005-09-15

    The gas-cooled fast reactor (GCFR) is regarded as the primary candidate for a future sustainable nuclear power system. In this paper a general core layout is presented for a 2400-MW(thermal) GCFR. Two fuel elements are discussed: a TRISO-based coated particle and the innovative hollow sphere concept. Sustainability calls for recycling of all minor actinides (MAs) in the core and a breeding gain close to unity. A fuel cycle is designed allowing operation over a long period, requiring refueling with {sup 238}U only. The evolution of nuclides in the GCFR core is calculated using the SCALE system (one-dimensional and three-dimensional). Calculations were done over multiple irradiation cycles including reprocessing. The result is that it is possible to design a fuel and GCFR core with a breeding gain around unity, with recycling of all MAs from cycle to cycle. The burnup reactivity swing is small, improving safety. After several fuel batches an equilibrium core is reached. MA loading in the core remains limited, and the fuel temperature coefficient is always negative.

  15. Fast Breeder Reactors in Sweden: Vision and Reality.

    PubMed

    Fjaestad, Maja

    2015-01-01

    The fast breeder is a type of nuclear reactor that aroused much attention in the 1950s and '60s. Its ability to produce more nuclear fuel than it consumes offered promises of cheap and reliable energy. Sweden had advanced plans for a nuclear breeder program, but canceled them in the middle of the 1970s with the rise of nuclear skepticism. The article investigates the nuclear breeder as a technological vision. The nuclear breeder reactor is an example of a technological future that did not meet its industrial expectations. But that does not change the fact that the breeder was an influential technology. Decisions about the contemporary reactors were taken with the idea that in a foreseeable future they would be replaced with the efficient breeder. The article argues that general themes in the history of the breeder reactor can deepen our understanding of the mechanisms behind technological change.

  16. Safety characteristics of the integral fast reactor concept

    SciTech Connect

    Marchaterre, J.F.; Cahalan, J.E.; Sevy, R.H.; Wright, A.E.

    1985-01-01

    The Integral Fast Reactor (IFR) concept is an innovative approach to liquid metal reactor design which is being studied by Argonne National Laboratory. Two of the key features of the IFR design are a metal fuel core design, based on the fuel technology developed at EBR-II, and an integral fuel cycle with a colocated fuel cycle facility based on the compact and simplified process steps made possible by the use of metal fuel. The paper presents the safety characteristics of the IFR concept which derive from the use of metal fuel. Liquid metal reactors, because of the low pressure coolant operating far below its boiling point, the natural circulation capability, and high system heat capacities, possess a high degree of inherent safety. The use of metallic fuel allows the reactor designer to further enhance the system capability for passive accommodation of postulated accidents.

  17. Safety characteristics of the integral fast reactor concept

    SciTech Connect

    Marchaterre, J.F.; Cahalan, J.E.; Sevy, R.H.; Wright, A.E.

    1985-01-01

    The Integral Fast Reactor (IFR) concept is an innovative approach to liquid metal reactor design which is being studied by Argonne National Laboratory. Two of the key features of the IFR design are a metal fuel core design, based on the fuel technology developed at EBR-II, and an integral fuel cycle with a co-located fuel cycle facility based on the compact and simplified process steps made possible by the use of the metal fuel. This paper presents the safety characteristics of the IFR concept which derive from the use of metal fuel. Liquid metal reactors, because of the low pressure coolant operating far below its boiling point, the natural circulation capability, and high system heat capacities possess a high degree of inherent safety. The use of metallic fuel allows the reactor designer to further enhance the system capability for passive accommodation of postulated accidents.

  18. Design of a weapons-grade plutonium assembly for optimal burnup in a standard pressurized water reactor

    NASA Astrophysics Data System (ADS)

    Alonso-Vargas, Gustavo

    We created a new MOX fuel assembly design that can be used in standard Westinghouse pressurized water reactors (PWR) to maximize the plutonium throughput while introducing the lowest perturbation possible to the control and safety systems of the reactor. Our assembly design, which is called MIX-33, appears to be a good option for the disposition of weapons-grade plutonium (WG-Pu), increasing the plutonium disposition rate by 8% compared to a previous Westinghouse design. It is based in two novel ideas: the use of both uranium and plutonium fuel pins in the same assembly, and the increase of the moderation ratio of the assembly. We replaced 8 fuel pins by water holes to increase the moderation ratio. We can transition smoothly from a full LEU core to a full MIX-33 core meeting the operational and safety regulations of a standard PWR. Given a MOX supply interruption scenario we can transition smoothly to full LEU meeting the safety regulations and using standard LEU assemblies with uniform enriched pin-wise distribution. If the MOX supply is interrupted for only one cycle, we are able to transition back to full MIX-33 core. However, in this case we probably need to de-rate the power by a few percent for a few weeks at the beginning of the cycle (BOC) to accommodate high peaking. For comparison we created another assembly design without extra water holes, which we called "MIX-25". It behaves in all the conditions analyzed in a similar way to the MIX-33 but it does present minor control problems. These can be solved by making small modifications to the control and safety systems, namely by enriching the boron-10 content of some boron absorbers. Thus, the addition of water holes replacing fuel pins helps to improve the MIX-33 performance and eliminate the difficulties seen in the MIX-25 design. We also performed a benchmarking analysis to test the code CASMO-3 to analyze WG-Pu assemblies, using the code MCNP-4A to compare. We found good agreement between CASMO-3 and

  19. The IAEA international conference on fast reactors and related fuel cycles: highlights and main outcomes

    SciTech Connect

    Monti, S.; Toti, A.

    2013-07-01

    The 'International Conference on Fast Reactors and Related Fuel Cycles', which is regularly held every four years, represents the main international event dealing with fast reactors technology and related fuel cycles options. Main topics of the conference were new fast reactor concepts, design and simulation capabilities, safety of fast reactors, fast reactor fuels and innovative fuel cycles, analysis of past experience, fast reactor knowledge management. Particular emphasis was put on safety aspects, considering the current need of developing and harmonizing safety standards for fast reactors at the international level, taking also into account the lessons learned from the accident occurred at the Fukushima- Daiichi nuclear power plant in March 2011. Main advances in the several key areas of technological development were presented through 208 oral presentations during 41 technical sessions which shows the importance taken by fast reactors in the future of nuclear energy.

  20. Instrumentation, Monitoring and NDE for New Fast Reactors

    SciTech Connect

    Bond, Leonard J.; Doctor, Steven R.; Bunch, Kyle J.; Good, Morris S.; Waltar, Alan E.

    2007-07-28

    The Global Nuclear Energy Partnership (GNEP) has been proposed as a viable system in which to close the fuel cycle in a manner consistent with markedly expanding the global role of nuclear power while significantly reducing proliferation risks. A key part of this system relies on the development of actinide transmutation, which can only be effectively accomplished in a fast-spectrum reactor. The fundamental physics for fast reactors is well established. However, to achieve higher standards of safety and reliability, operate with longer intervals between outages, and achieve high operating capacity factors, new instrumentation and on-line monitoring capabilities will be required--during both fabrication and operation. Since the Fast Flux Test Facility (FFTF) and Experimental Breeder Reactor – II (EBR-II) reactors were operational in the USA, there have been major advances in instrumentation, not the least being the move to digital systems. Some specific capabilities have been developed outside the USA, but new or at least re-established capabilities will be required. In many cases the only available information is in reports and papers. New and improved sensors and instrumentation will be required. Advanced instrumentation has been developed for high-temperature/high-flux conditions in some cases, but most of the original researchers and manufacturers are retired or no longer in business.

  1. Time dependent non-extinction probability for fast burst reactors

    NASA Astrophysics Data System (ADS)

    Gregson, Michael W.

    Sandia National Laboratories has successfully operated fast burst reactors over the past four decades. Fast burst reactors refer to a type of reactor that is able to achieve intense neutron pulses in very short periods of time using fissile material. Typically these systems are comprised of enriched metallic uranium fuel. During operation of a fast burst reactor, a phenomena known as a pre-initiation has been known to take place. A pre-initiation occurs when the neutron population exceeds some fiducial prior to achieving the final reactivity state in a pulse operation. Reactivity is determined from the physical configuration of the reactor and governs the average neutron population behavior. The purpose of this study is to examine the probability of initiation (or the pre-initiation probability) for a fast burst type of system, with emphasis on the Sandia Pulse Reactor-III (SPR-III) for physics parameters. The magnitude of the pre-initiation problem for SPR-III was examined to establish the magnitude of the phenomena. This work focuses on developing and numerically solving an equation that describes the nonextinction probability in a prompt critical assembly when the population is so low that it deviates from the average behavior. A zero dimensional (0-D) model is derived to describe the neutron non-extinction probability in a system where the reactivity is changing as a function of time. Analytical solutions to the model are provided where solutions could be found. Numerical solutions were obtained for a variety of cases applicable to fast burst reactor operation. Use of 0-D Monte Carlo techniques is also presented as a means to examine the low population stochastic behavior and for comparison to the deterministic solution. The 1-D time dependent equation for slab geometry was evaluated to highlight the importance of neutron leakage. The non-extinction probability equation was solved using a modified form of the standard fixed point iteration method. Other

  2. Progress in reliability of fast reactor operation and new trends to increased inherent safety

    SciTech Connect

    Merk, Bruno; Stanculescu, Alexander; Chellapandi, Perumal; Hill, Robert

    2015-06-01

    The reasons for the renewed interest in fast reactors and an overview of the progress in sodium cooled fast reactor operation in the last ten years are given. The excellent operational performance of sodium cooled fast reactors in this period is highlighted as a sound basis for the development of new fast reactors. The operational performance of the BN-600 is compared and evaluated against the performance of German light water reactors to assess the reliability. The relevance of feedback effects for safe reactor design is described, and a new method for the enhancement of feedback effects in fast reactors is proposed. Experimental reactors demonstrating the inherent safety of advanced sodium cooled fast reactor designs are described and the potential safety improvements resulting from the use of fine distributed moderating material are discussed.

  3. Reactivity and isotopic composition of spent PWR (pressurized-water-reactor) fuel as a function of initial enrichment, burnup, and cooling time

    SciTech Connect

    Cerne, S.P.; Hermann, O.W.; Westfall, R.M.

    1987-10-01

    This study presents the reactivity loss of spent PWR fuel due to burnup in terms of the infinite lattice multiplications factor, k/sub infinity/. Calculations were performed using the SAS2 and CSAS1 control modules of the SCALE system. The k/sub infinity/ values calculated for all combinations of six enrichments, seven burnups, and five cooling times. The results are presented as a primary function of enrichment in both tabular and graphic form. An equation has been developed to estimate the tabulated values of k/sub infinity/'s by specifying enrichment, cooling time, and burnup. Atom densities for fresh fuel, and spent fuel at cooling times of 2, 10, and 20 years are included. 13 refs., 8 figs., 8 tabs.

  4. Safeguards operations in the integral fast reactor fuel cycle

    SciTech Connect

    Goff, K.M.; Benedict, R.W.; Brumbach, S.B.; Dickerman, C.E.; Tompot, R.W.

    1994-08-01

    Argonne National Laboratory is currently demonstrating the fuel cycle for the Integral Fast Reactor (IFR), an advanced reactor concept that takes advantage of the properties of metallic fuel and liquid metal cooling to offer significant improvements in reactor safety, operation, fuel-cycle economics, environmental protection, and safeguards. The IFR fuel cycle employs a pyrometallurgical process using molten salts and liquid metals to recover actinides from spent fuel. The safeguards aspects of the fuel cycle demonstration must be approved by the United States Department of Energy, but a further goal of the program is to develop a safeguards system that could gain acceptance from the Nuclear Regulatory Commission and International Atomic Energy Agency. This fuel cycle is described with emphasis on aspects that differ from aqueous reprocessing and on its improved safeguardability due to decreased attractiveness and diversion potential of all process streams, including the fuel product.

  5. Sensitivity Analysis of Reprocessing Cooling Times on Light Water Reactor and Sodium Fast Reactor Fuel Cycles

    SciTech Connect

    R. M. Ferrer; S. Bays; M. Pope

    2008-04-01

    The purpose of this study is to quantify the effects of variations of the Light Water Reactor (LWR) Spent Nuclear Fuel (SNF) and fast reactor reprocessing cooling time on a Sodium Fast Reactor (SFR) assuming a single-tier fuel cycle scenario. The results from this study show the effects of different cooling times on the SFR’s transuranic (TRU) conversion ratio (CR) and transuranic fuel enrichment. Also, the decay heat, gamma heat and neutron emission of the SFR’s fresh fuel charge were evaluated. A 1000 MWth commercial-scale SFR design was selected as the baseline in this study. Both metal and oxide CR=0.50 SFR designs are investigated.

  6. How Small Can Fast-Spectrum Space Reactors Get?

    SciTech Connect

    Hatton, Steven A.; El-Genk, Mohamed S.

    2006-01-20

    Fast neutron spectrum space reactors are an appropriate choice for high thermal powers, but for low powers, they may not satisfy the excess reactivity requirement while remaining sub-critical when immersed in wet sand and flooded with seawater following a launch abort accident. This paper identifies the smallest size fast spectrum, Sectored, Compact Reactor loaded with Single UN fuel pins (SCoRe-S7), which satisfy the requirements of cold clean excess reactivity > $4.00 and remains at least $1.00 subcritical at shutdown and in submersion conditions. Results indicate that increasing the diameter of the SCoRe-S core reduces its active height and the UN fuel enrichment, but increases the Spectrum-Shift Absorber (SSA) of 157GdN additive to the fuel. All SCoRe-S cores also have a 0.1 mm thick 157Gd2O3 SSA coating on the outer surface of the reactor vessel to reduce the effect of the wet sand reflector, while the SSA fuel additive reduces the effect on the criticality of the flooded reactor caused by thermal neutron fission. The active core height decreases from 42.4 cm for the smallest SCoRe-S7 to as much as to 37.4 cm for the largest core of SCoRe-S11. For a 1.8 MWth reactor thermal power the UN fuel specific power decreases from 17.0 in the SCoRe-S7 to 11.5 Wth/kg in the -S11. The corresponding reactor total mass, including the BeO reflector, increases from 440 kg to 512 kg.

  7. How Small Can Fast-Spectrum Space Reactors Get?

    NASA Astrophysics Data System (ADS)

    Hatton, Steven A.; El-Genk, Mohamed S.

    2006-01-01

    Fast neutron spectrum space reactors are an appropriate choice for high thermal powers, but for low powers, they may not satisfy the excess reactivity requirement while remaining sub-critical when immersed in wet sand and flooded with seawater following a launch abort accident. This paper identifies the smallest size fast spectrum, Sectored, Compact Reactor loaded with Single UN fuel pins (SCoRe-S7), which satisfy the requirements of cold clean excess reactivity > $4.00 and remains at least $1.00 subcritical at shutdown and in submersion conditions. Results indicate that increasing the diameter of the SCoRe-S core reduces its active height and the UN fuel enrichment, but increases the Spectrum-Shift Absorber (SSA) of 157GdN additive to the fuel. All SCoRe-S cores also have a 0.1 mm thick 157Gd2O3 SSA coating on the outer surface of the reactor vessel to reduce the effect of the wet sand reflector, while the SSA fuel additive reduces the effect on the criticality of the flooded reactor caused by thermal neutron fission. The active core height decreases from 42.4 cm for the smallest SCoRe-S7 to as much as to 37.4 cm for the largest core of SCoRe-S11. For a 1.8 MWth reactor thermal power the UN fuel specific power decreases from 17.0 in the SCoRe-S7 to 11.5 Wth/kg in the -S11. The corresponding reactor total mass, including the BeO reflector, increases from 440 kg to 512 kg.

  8. Steam generator for liquid metal fast breeder reactor

    DOEpatents

    Gillett, James E.; Garner, Daniel C.; Wineman, Arthur L.; Robey, Robert M.

    1985-01-01

    Improvements in the design of internal components of J-shaped steam generators for liquid metal fast breeder reactors. Complex design improvements have been made to the internals of J-shaped steam generators which improvements are intended to reduce tube vibration, tube jamming, flow problems in the upper portion of the steam generator, manufacturing complexities in tube spacer attachments, thermal stripping potentials and difficulties in the weld fabrication of certain components.

  9. Computational Neutronics Methods and Transmutation Performance Analyses for Fast Reactors

    SciTech Connect

    R. Ferrer; M. Asgari; S. Bays; B. Forget

    2007-03-01

    The once-through fuel cycle strategy in the United States for the past six decades has resulted in an accumulation of Light Water Reactor (LWR) Spent Nuclear Fuel (SNF). This SNF contains considerable amounts of transuranic (TRU) elements that limit the volumetric capacity of the current planned repository strategy. A possible way of maximizing the volumetric utilization of the repository is to separate the TRU from the LWR SNF through a process such as UREX+1a, and convert it into fuel for a fast-spectrum Advanced Burner Reactor (ABR). The key advantage in this scenario is the assumption that recycling of TRU in the ABR (through pyroprocessing or some other approach), along with a low capture-to-fission probability in the fast reactor’s high-energy neutron spectrum, can effectively decrease the decay heat and toxicity of the waste being sent to the repository. The decay heat and toxicity reduction can thus minimize the need for multiple repositories. This report summarizes the work performed by the fuel cycle analysis group at the Idaho National Laboratory (INL) to establish the specific technical capability for performing fast reactor fuel cycle analysis and its application to a high-priority ABR concept. The high-priority ABR conceptual design selected is a metallic-fueled, 1000 MWth SuperPRISM (S-PRISM)-based ABR with a conversion ratio of 0.5. Results from the analysis showed excellent agreement with reference values. The independent model was subsequently used to study the effects of excluding curium from the transuranic (TRU) external feed coming from the LWR SNF and recycling the curium produced by the fast reactor itself through pyroprocessing. Current studies to be published this year focus on analyzing the effects of different separation strategies as well as heterogeneous TRU target systems.

  10. Analyses of hypothetical FCI's in a fast reactor

    SciTech Connect

    Padilla, A. Jr.; Martin, F.J.; Niccoli, L.G.

    1981-01-01

    Parametric analyses using the SIMMER code were performed to evaluate the potential for a severe recriticality from a pressure-driven recompaction caused by an energetic FCI during the transition phase of a hypothetical accident in a fast reactor. For realistic and reasonable estimates for the assumed accident conditions, a severe recriticality was not predicted. The conditions under which a severe recriticality would be obtained or averted were identified. 10 figures, 2 tables.

  11. Spectral Shift Absorbers for Fast Spectrum Space Nuclear Reactors

    SciTech Connect

    King, Jeffrey C.; El-Genk, Mohamed S.

    2005-02-06

    The space nuclear reactors being considered to support the Jupiter Icy Moons Orbiter (JIMO-1) mission-1 sometime in the next decade are compact and fast spectrum with void fractions ranging from 20-40%. In order to secure launch approval, it has to be demonstrated that these reactors will remain sufficiently subcritical when submerged in water or wet sand and subsequently flooded with water, following a launch abort accident. The resulting shift in the neutron spectrum towards thermal increases reactivity, potentially making the reactors supercritical. Incorporating 'Spectral Shift Absorbers' (or SSAs), elements such as boron, europium, gadolinium or rhenium, which have significantly higher absorption cross-sections for thermal versus fast neutrons, can offset the reactivity increase. It has always been the assumption that the worst-case submersion accident is with a fully flooded reactor; however, this work shows that, depending on the type and amount of SSA in the reactor, a submerged but unflooded reactor core could be more reactive, raising a safety concern. This condition, referred to as 'reactivity inversion', is investigated for the following SSA elements: boron, boron-10, samarium-149, europium, europium-151, gadolinium, gadolinium-155, gadolinium-157 and rhenium, by varying the ratio of SSA to fissile atoms in the reactor. The effect of placing a coating of SSA material on the outside of the reactor vessel is also investigated. Gadolinium-157 is the most effective SSA material investigated as a core additive, yielding the greatest increase in the safety worth of a submerged space reactor with a comparatively small decrease in excess reactivity. Samarium-149 yields a similar increase in safety worth, but with a much larger decrease in excess reactivity. Natural europium and gadolinium are also promising: however, the decrease in the excess reactivity is greater with europium than with gadolinium. Boron and boron-10 are not particularly attractive as core

  12. Spectral Shift Absorbers for Fast Spectrum Space Nuclear Reactors

    NASA Astrophysics Data System (ADS)

    King, Jeffrey C.; El-Genk, Mohamed S.

    2005-02-01

    The space nuclear reactors being considered to support the Jupiter Icy Moons Orbiter (JIMO-1) mission-1 sometime in the next decade are compact and fast spectrum with void fractions ranging from 20-40%. In order to secure launch approval, it has to be demonstrated that these reactors will remain sufficiently subcritical when submerged in water or wet sand and subsequently flooded with water, following a launch abort accident. The resulting shift in the neutron spectrum towards thermal increases reactivity, potentially making the reactors supercritical. Incorporating ``Spectral Shift Absorbers'' (or SSAs), elements such as boron, europium, gadolinium or rhenium, which have significantly higher absorption cross-sections for thermal versus fast neutrons, can offset the reactivity increase. It has always been the assumption that the worst-case submersion accident is with a fully flooded reactor; however, this work shows that, depending on the type and amount of SSA in the reactor, a submerged but unflooded reactor core could be more reactive, raising a safety concern. This condition, referred to as ``reactivity inversion'', is investigated for the following SSA elements: boron, boron-10, samarium-149, europium, europium-151, gadolinium, gadolinium-155, gadolinium-157 and rhenium, by varying the ratio of SSA to fissile atoms in the reactor. The effect of placing a coating of SSA material on the outside of the reactor vessel is also investigated. Gadolinium-157 is the most effective SSA material investigated as a core additive, yielding the greatest increase in the safety worth of a submerged space reactor with a comparatively small decrease in excess reactivity. Samarium-149 yields a similar increase in safety worth, but with a much larger decrease in excess reactivity. Natural europium and gadolinium are also promising: however, the decrease in the excess reactivity is greater with europium than with gadolinium. Boron and boron-10 are not particularly attractive as

  13. A summary of sodium-cooled fast reactor development

    SciTech Connect

    Aoto, Kazumi; Dufour, Philippe; Hongyi, Yang; Glatz, Jean Paul; Kim, Yeong-il; Ashurko, Yury; Hill, Robert; Uto, Nariaki

    2014-11-01

    Much of the basic technology for the Sodium-cooled fast Reactor (SFR) has been established through long term development experience with former fast reactor programs, and is being confirmed by the Phénix end-of-life tests in France, the restart of Monju in Japan, the lifetime extension of BN-600 in Russia, and the startup of the China Experimental Fast Reactor in China. Planned startup in 2014 for new SFRs: BN-800 in Russia and PFBR in India, will further enhance the confirmation of the SFR basic technology. Nowadays, the SFR development has advanced to aiming at establishment of the Generation-IV system which is dedicated to sustainable energy generation and actinide management, and several advanced SFR concepts are under development such as PRISM, JSFR, ASTRID, PGSFR, BN-1200, and CFR-600. Generation-IV International Forum is an international collaboration framework where various R&D activities are progressing on design of system and component, safety and operation, advanced fuel, and actinide cycle for the Generation-IV SFR development, and will play a beneficial role of promoting them thorough providing an opportunity to share the past experience and the latest data of design and R&D among countries developing SFR.

  14. Reactivity Control Schemes for Fast Spectrum Space Nuclear Reactors

    SciTech Connect

    Craft, Aaron E.; King, Jeffrey C.

    2008-01-21

    Several different reactivity control schemes are considered for future space nuclear reactor power systems. Each of these control schemes uses a combination of boron carbide absorbers and/or beryllium oxide reflectors to achieve sufficient reactivity swing to keep the reactor subcritical during launch and to provide sufficient excess reactivity to operate the reactor over its expected 7-15 year lifetime. The size and shape of the control system directly impacts the size and mass of the space reactor's reflector and shadow shield, leading to a tradeoff between reactivity swing and total system mass. This paper presents a trade study of drum, shutter, and petal control schemes based on reactivity swing and mass effects for a representative fast-spectrum, gas-cooled reactor. For each control scheme, the dimensions and composition of the core are constant, and the reflector is sized to provide $5 of cold-clean excess reactivity with each configuration in its most reactive state. The advantages and disadvantages of each configuration are discussed, along with optimization techniques and novel geometric approaches for each scheme.

  15. EXTENDING SODIUM FAST REACTOR DRIVER FUEL USE TO HIGHER TEMPERATURES

    SciTech Connect

    Douglas L. Porter

    2011-02-01

    Calculations of potential sodium-cooled fast reactor fuel temperatures were performed to estimate the effects of increasing the outlet temperature of a given fast reactor design by increasing pin power, decreasing assembly flow, or increasing inlet temperature. Based upon experience in the U.S., both metal and mixed oxide (MOX) fuel types are discussed in terms of potential performance effects created by the increased operating temperatures. Assembly outlet temperatures of 600, 650 and 700 °C were used as goal temperatures. Fuel/cladding chemical interaction (FCCI) and fuel melting, as well as challenges to the mechanical integrity of the cladding material, were identified as the limiting phenomena. For example, starting with a recent 1000 MWth fast reactor design, raising the outlet temperature to 650 °C through pin power increase increased the MOX centerline temperature to more than 3300 °C and the metal fuel peak cladding temperature to more than 700 °C. These exceeded limitations to fuel performance; fuel melting was limiting for MOX and FCCI for metal fuel. Both could be alleviated by design ‘fixes’, such as using a barrier inside the cladding to minimize FCCI in the metal fuel, or using annular fuel in the case of MOX. Both would also require an advanced cladding material with improved stress rupture properties. While some of these are costly, the benefits of having a high-temperature reactor which can support hydrogen production, or other missions requiring high process heat may make the extra costs justified.

  16. Recycle of LWR (Light Water Reactor) actinides to an IFR (Integral Fast Reactor)

    SciTech Connect

    Pierce, R.D.; Ackerman, J.P.; Johnson, G.K.; Mulcahey, T.P.; Poa, D.S.

    1991-01-01

    A large quantity of actinide elements is present in irradiated Light Water Reactor (LWR) fuel that is stored throughout the world. Because of the high fission-to-capture ratio for the transuranium (TRU) elements with the high-energy neutrons in the metal-fueled Integral Fast Reactor (IFR), that reactor can consume these elements effectively. The stored fuel represents a valuable resource for an expanding application of fast power reactors. In addition, removal of the TRU elements from the spent LWR fuel has the potential for increasing the capacity of a high-level waste facility by reducing the heat loads and increasing the margin of safety in meeting licensing requirements. Argonne National Laboratory (ANL) is developing a pyrochemical process, which is compatible with the IFR fuel cycle, for the recovery of TRU elements from LWR fuel. The proposed product is a metallic actinide ingot, which can be introduced into the electrorefining step of the IFR process. The major objective of the LWR fuel recovery process is high TRU element recovery, with decontamination a secondary issue, because fission product removal is accomplished in the IFR process. The extensive pyrochemical processing studies of the 1960s and 1970s provide a basis for the design of possible processes. Two processes were selected for laboratory-scale investigation. One is based on the Salt Transport Process studied at ANL for mixed-oxide fast reactor fuel, and the other is based on the blanket processing studies done for ANL's second Experimental Breeder Reactor (EBR-2). This paper discusses the two processes and is a status report on the experimental studies. 5 refs., 2 figs., 2 tabs.

  17. The search for advanced remote technology in fast reactor reprocessing

    SciTech Connect

    Burch, W.D.; Herndon, J.N.; Stradley, J.G. )

    1990-01-01

    Research and development in fast reactor reprocessing has been under way [approximately] 20 yr in several countries. During the past decade, France and the United Kingdom have developed active programs in breeder reprocessing. Actual fuels from their demonstration reactors have been reprocessed in small-scale facilities. Early US work in breeder reprocessing was carried out at the Experimental Breeder Reactor II (EBR-II) facilities with the early metal fuels, and interest has renewed recently in metal fuels. A major, comprehensive program, focused on oxide fuels, has been carried out in the Consolidated Fuel Reprocessing Program (CFRP) at the Oak Ridge National Laboratory (ORNL) since 1974. The Federal Republic of Germany (FRG) and Japan have also carried out development programs in breeder reprocessing, and Japan appears committed to major demonstration of breeder reactors and their fuel cycles. While much of the effort in these programs addressed process chemistry and process hardware, a significant element of many of these programs, particularly the CFRP, has been on advancements in facility concepts and remote maintenance features. This paper focuses on the search for improved facility concepts and better maintenance systems in the CFRP, and, in turn, on how developments at ORNL have influenced the technology elsewhere.

  18. Comparative assessment of nuclear fuel cycles. Light-water reactor once-through, classical fast breeder reactor, and symbiotic fast breeder reactor cycles

    SciTech Connect

    Hardie, R.W.; Barrett, R.J.; Freiwald, J.G.

    1980-06-01

    The object of the Alternative Nuclear Fuel Cycle Study is to perform comparative assessments of nuclear power systems. There are two important features of this study. First, this evaluation attempts to encompass the complete, integrated fuel cycle from mining of uranium ore to disposal of waste rather than isolated components. Second, it compares several aspects of each cycle - energy use, economics, technological status, proliferation, public safety, and commercial potential - instead of concentrating on one or two assessment areas. This report presents assessment results for three fuel cycles. These are the light-water reactor once-through cycle, the fast breeder reactor on the classical plutonium cycle, and the fast breeder reactor on a symbiotic cycle using plutonium and /sup 233/U as fissile fuels. The report also contains a description of the methodology used in this assessment. Subsequent reports will present results for additional fuel cycles.

  19. Irradiation performance of PFBR MOX fuel after 112 GWd/t burn-up

    NASA Astrophysics Data System (ADS)

    Venkiteswaran, C. N.; Jayaraj, V. V.; Ojha, B. K.; Anandaraj, V.; Padalakshmi, M.; Vinodkumar, S.; Karthik, V.; Vijaykumar, Ran; Vijayaraghavan, A.; Divakar, R.; Johny, T.; Joseph, Jojo; Thirunavakkarasu, S.; Saravanan, T.; Philip, John; Rao, B. P. C.; Kasiviswanathan, K. V.; Jayakumar, T.

    2014-06-01

    The 500 MWe Prototype Fast Breeder Reactor (PFBR) which is in advanced stage of construction at Kalpakkam, India, will use mixed oxide (MOX) fuel with a target burnup of 100 GWd/t. The fuel pellet is of annular design to enable operation at a peak linear power of 450 W/cm with the requirement of minimum duration of pre-conditioning. The performance of the MOX fuel and the D9 clad and wrapper material was assessed through Post Irradiation Examinations (PIE) after test irradiation of 37 fuel pin subassembly in Fast Breeder Test Reactor (FBTR) to a burn-up of 112 GWd/t. Fission product distribution, swelling and fuel-clad gap evolution, central hole diameter variation, restructuring, fission gas release and clad wastage due to fuel-clad chemical interaction were evaluated through non-destructive and destructive examinations. The examinations have indicated that the MOX fuel can safely attain the desired target burn-up in PFBR.

  20. Fast Pyrolysis of Agricultural Wastes in a Fluidized Bed Reactor

    NASA Astrophysics Data System (ADS)

    Wang, X. H.; Chen, H. P.; Yang, H. P.; Dai, X. M.; Zhang, S. H.

    Solid biomass can be converted into liquid fuel through fast pyrolysis, which is convenient to be stored and transported with potential to be used as a fossil oil substitute. In China, agricultural wastes are the main biomass materials, whose pyrolysis process has not been researched adequately compared to forestry wastes. As the representative agricultural wastes in China, peanut shell and maize stalk were involved in this paper and pine wood sawdust was considered for comparing the different pyrolysis behaviors of agricultural wastes and forestry wastes. Fast pyrolysis experiments were carried out in a bench-scale fluidized-bed reactor. The bio-oil yieldsof peanut shell and maize stalk were obviously lower than that ofpine sawdust. Compared with pine sawdust, the char yields of peanut shell and maize stalk were higher but the heating value of uncondensable gaswas lower. This means that the bio-oil cost will be higher for agricultural wastes if taking the conventional pyrolysis technique. And the characteristic and component analysis resultsof bio-oil revealed that the quality of bio-oil from agricultural wastes, especially maize stalk, was worse than that from pine wood. Therefore, it is important to take some methods to improve the quality of bio-oilfrom agricultural wastes, which should promote the exploitation of Chinese biomass resources through fast pyrolysis in afluidized bed reactor.

  1. METHOD AND APPARATUS FOR IMPROVING PERFORMANCE OF A FAST REACTOR

    DOEpatents

    Koch, L.J.

    1959-01-20

    A specific arrangement of the fertile material and fissionable material in the active portion of a fast reactor to achieve improvement in performance and to effectively lower the operating temperatures in the center of the reactor is described. According to this invention a group of fuel elements containing fissionable material are assembled to form a hollow fuel core. Elements containing a fertile material, such as depleted uranium, are inserted into the interior of the fuel core to form a central blanket. Additional elemenis of fertile material are arranged about the fuel core to form outer blankets which in tunn are surrounded by a reflector. This arrangement of fuel core and blankets results in substantial flattening of the flux pattern.

  2. Five Requirements for Nuclear Energy and CANDLE Fast Reactor

    NASA Astrophysics Data System (ADS)

    Sekimoto, Hiroshi

    2010-06-01

    The Center for Research into Innovative Nuclear Energy Systems (CRINES) was established in order to succeed the COE-INES mission after finishing this program in Tokyo Tech. CRINES considers nuclear energy should satisfy 5 requirements; sustainability as basic energy, solving 3 problems inherent to accidents, radioactive waste and nuclear bomb, and economical acceptance. Characteristics of CANDLE fast reactor are discussed for these requirements. It satisfies 4 requirements; sustainability and solving 3 inherent problems. For the remaining requirement for economy, a high potential to satisfy this requirement is also shown.

  3. Conceptual design of laser fusion reactor KOYO-fast

    NASA Astrophysics Data System (ADS)

    Tomabechi, K.; Kozaki, Y.; Norimatsu, T.; Reactor Design Committee, Members Of

    2006-06-01

    A conceptual design of the laser fusion reactor KOYO-F based on the fast ignition scheme is reported including the target design, the laser system and the design for chamber. A Yb-YAG ceramic laser operated at 200K is the primary candidate for the compression laser and an OPCPA system is the one for the ignition laser. The chamber is basically a wet wall type but the fire position is vertically off-set to simplify the protection scheme of the ceiling. The target consists of foam insulated, cryogenic DT shells with a LiPb, reentrant guide-cone.

  4. Five Requirements for Nuclear Energy and CANDLE Fast Reactor

    SciTech Connect

    Sekimoto, Hiroshi

    2010-06-22

    The Center for Research into Innovative Nuclear Energy Systems (CRINES) was established in order to succeed the COE-INES mission after finishing this program in Tokyo Tech. CRINES considers nuclear energy should satisfy 5 requirements; sustainability as basic energy, solving 3 problems inherent to accidents, radioactive waste and nuclear bomb, and economical acceptance. Characteristics of CANDLE fast reactor are discussed for these requirements. It satisfies 4 requirements; sustainability and solving 3 inherent problems. For the remaining requirement for economy, a high potential to satisfy this requirement is also shown.

  5. Fast reactor core concepts to improve transmutation efficiency

    NASA Astrophysics Data System (ADS)

    Fujimura, Koji; Kawashima, Katsuyuki; Itooka, Satoshi

    2015-12-01

    Fast Reactor (FR) core concepts to improve transmutation efficiency were conducted. A heterogeneous MA loaded core was designed based on the 1000MWe-ABR breakeven core. The heterogeneous MA loaded core with Zr-H loaded moderated targets had a better transmutation performance than the MA homogeneous loaded core. The annular pellet rod design was proposed as one of the possible design options for the MA target. It was shown that using annular pellet MA rods mitigates the self-shielding effect in the moderated target so as to enhance the transmutation rate.

  6. Introduction to Reactor Statics Modules, RS-1. Nuclear Engineering Computer Modules.

    ERIC Educational Resources Information Center

    Edlund, Milton C.

    The nine Reactor Statics Modules are designed to introduce students to the use of numerical methods and digital computers for calculation of neutron flux distributions in space and energy which are needed to calculate criticality, power distribution, and fuel burn-up for both slow neutron and fast neutron fission reactors. The diffusion…

  7. Reactor Statics Module, RS-9: Multigroup Diffusion Program Using an Exponential Acceleration Technique.

    ERIC Educational Resources Information Center

    Macek, Victor C.

    The nine Reactor Statics Modules are designed to introduce students to the use of numerical methods and digital computers for calculation of neutron flux distributions in space and energy which are needed to calculate criticality, power distribution, and fuel burnup for both slow neutron and fast neutron fission reactors. The last module, RS-9,…

  8. Fuel Fraction Analysis of 500 MWth Gas Cooled Fast Reactor with Nitride (UN-PuN) Fuel without Refueling

    NASA Astrophysics Data System (ADS)

    Dewi Syarifah, Ratna; Su'ud, Zaki; Basar, Khairul; Irwanto, Dwi

    2017-01-01

    Nuclear Power Plant (NPP) is one of candidates which can support electricity demand in the world. The Generation IV NPP has fourth main objective, i.e. sustainability, economics competitiveness, safety and reliability, and proliferation and physical protection. One of Gen-IV reactor type is Gas Cooled Fast Reactor (GFR). In this study, the analysis of fuel fraction in small GFR with nitride fuel has been done. The calculation was performed by SRAC code, both Pij and CITATION calculation. SRAC2002 system is a code system applicable to analyze the neutronics of variety reactor type. And for the data library used JENDL-3.2. The step of SRAC calculation is fuel pin calculated by Pij calculation until the data homogenized, after it homogenized we calculate core reactor. The variation of fuel fraction is 40% up to 65%. The optimum design of 500MWth GFR without refueling with 10 years burn up time reach when radius F1:F2:F3 = 50cm:30cm:30cm and height F1:F2:F3 = 50cm:40cm:30cm, variation percentage Plutonium in F1:F2:F3 = 7%:10%:13%. The optimum fuel fraction is 41% with addition 2% Plutonium weapon grade mix in the fuel. The excess reactivity value in this case 1.848% and the k-eff value is 1.01883. The high burn up reached when the fuel fraction is low. In this study 41% fuel fraction produce faster fissile fuel, so it has highest burn-up level than the other fuel fraction.

  9. The development and application of an improved reactor analysis model for fast reactors

    NASA Astrophysics Data System (ADS)

    Hou, Jia

    Accuracy in neutron cross sections calculation and consistency in reactor physics are fundamental requirements in advanced nuclear reactor design and analysis. The work presented in this dissertation focuses on the development and advanced application of a reactor analysis model with updated cross section libraries that is suitable for online cross section generation for fast reactors. Research has been performed in two areas of interest in reactor physics. The first target of the research is to develop effcient modeling capacity of the 1- D lattice code MICROX-2 for its neutron spectrum calculation based on Collision Probability Method (CPM). Expanded master cross section libraries have been generated based on updated nuclear data and optimized fine-group energy structure to accommodate both thermal and fast reactor spectra as well as to comply with the need for advanced fuel cycle analysis. After verifying the new libraries, the solution methods have been reviewed and updated, including the update of interpolation scheme for resonance self-shielding factors and improvement of spatial self-shielding models for various fuel assembly geometries. The assessment of the updated lattice calculation models has shown that the prediction accuracy of lattice properties represented by the eigenvalue and reaction rate ratios is improved, especially for fast neutron spectrum lattices of which the importance of neutrons in the unresolved energy range is high. The second target of the research is to improve the accuracy of few-group nuclear cross section generation for the reactor core calculation. A 2-D pin-by-pin lattice model has been developed based on embedded CPM within the framework of the Nodal Expansion Method (NEM), which is capable of modeling the heterogeneity of the fuel assembly. Then, an online cross section generation methodology along with discontinuity factors has been developed based on Iterative Diffusion- Diffusion Methodology (IDDM), which can minimize the

  10. Summary of advanced LMR (Liquid Metal Reactor) evaluations: PRISM (Power Reactor Inherently Safe Module) and SAFR (Sodium Advanced Fast Reactor)

    SciTech Connect

    Van Tuyle, G.J.; Slovik, G.C.; Chan, B.C.; Kennett, R.J.; Cheng, H.S.; Kroeger, P.G. )

    1989-10-01

    In support of the US Nuclear Regulatory Commission (NRC), Brookhaven National Laboratory (BNL) has performed independent analyses of two advanced Liquid Metal Reactor (LMR) concepts. The designs, sponsored by the US Department of Energy (DOE), the Power Reactor Inherently Safe Module (PRISM) (Berglund, 1987) and the Sodium Advanced Fast Reactor (SAFR) (Baumeister, 1987), were developed primarily by General Electric (GE) and Rockwell International (RI), respectively. Technical support was provided to DOE, RI, and GE, by the Argonne National Laboratory (ANL), particularly with respect to the characteristics of the metal fuels. There are several examples in both PRISM and SAFR where inherent or passive systems provide for a safe response to off-normal conditions. This is in contrast to the engineered safety systems utilized on current US Light Water Reactor (LWR) designs. One important design inherency in the LMRs is the inherent shutdown'', which refers to the tendency of the reactor to transition to a much lower power level whenever temperatures rise significantly. This type of behavior was demonstrated in a series of unscrammed tests at EBR-II (NED, 1986). The second key design feature is the passive air cooling of the vessel to remove decay heat. These systems, designated RVACS in PRISM and RACS in SAFR, always operate and are believed to be able to prevent core damage in the event that no other means of heat removal is available. 27 refs., 78 figs., 3 tabs.

  11. The search for advanced remote technology in fast reactor reprocessing

    SciTech Connect

    Burch, W.D.; Herndon, J.N.; Stradley, J.G.

    1990-01-01

    Research and development in fast reactor reprocessing has been under way about 20 years in several countries throughout the world. During the past decade in France and the United Kingdom, active development programs have been carried out in breeder reprocessing. Actual fuels from their demonstration reactors have been reprocessed in small-scale facilities. Early US work in breeder reprocessing was carried out at the EBR-II facilities with the early metal fuels, and interest has renewed recently in metal fuels. A major, comprehensive program, focused on oxide fuels, has been carried out in the Consolidated Fuel Reprocessing Program (CFRP) at the Oak Ridge National Laboratory (ORNL) since 1974. Germany and Japan have also carried out development programs in breeder reprocessing, and Japan appears committed to major demonstration of breeder reactors and their fuel cycles. While much of the effort in all of these programs addressed process chemistry and process hardware, a significant element of many of these programs, particularly the CFRP, has been on advancements in facility concepts and remote maintenance features. This paper will focus principally on the search for improved facility concepts and better maintenance systems in the CFRP and, in turn, on how developments at ORNL have influenced the technology elsewhere.

  12. Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems

    SciTech Connect

    D. E. Shropshire

    2009-01-01

    The Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems, prepared to support the U.S. Advanced Fuel Cycle Initiative (AFCI) systems analysis, provides a technology-oriented baseline system cost comparison between the open fuel cycle and closed fuel cycle systems. The intent is to understand their overall cost trends, cost sensitivities, and trade-offs. This analysis also improves the AFCI Program’s understanding of the cost drivers that will determine nuclear power’s cost competitiveness vis-a-vis other baseload generation systems. The common reactor-related costs consist of capital, operating, and decontamination and decommissioning costs. Fuel cycle costs include front-end (pre-irradiation) and back-end (post-iradiation) costs, as well as costs specifically associated with fuel recycling. This analysis reveals that there are large cost uncertainties associated with all the fuel cycle strategies, and that overall systems (reactor plus fuel cycle) using a closed fuel cycle are about 10% more expensive in terms of electricity generation cost than open cycle systems. The study concludes that further U.S. and joint international-based design studies are needed to reduce the cost uncertainties with respect to fast reactor, fuel separation and fabrication, and waste disposition. The results of this work can help provide insight to the cost-related factors and conditions needed to keep nuclear energy (including closed fuel cycles) economically competitive in the U.S. and worldwide. These results may be updated over time based on new cost information, revised assumptions, and feedback received from additional reviews.

  13. Improved safety fast reactor with “reservoir” for delayed neutrons generating

    NASA Astrophysics Data System (ADS)

    Kulikov, G. G.; Apse, V. A.; Shmelev, A. N.; Kulikov, E. G.

    2017-01-01

    The paper considers the possibility to improve safety of fast reactors by using weak neutron absorber with large atomic weight as a material for external neutron reflector and for internal cavity in the reactor core (the neutron “reservoir”) where generation of some additional “delayed” neutron takes place. The effects produced by the external neutron reflector and the internal neutron “reservoir” on kinetic behavior of fast reactors are inter-compared. It is demonstrated that neutron kinetics of fast reactors with such external and internal zones becomes the quieter as compared with neutron kinetics of thermal reactors.

  14. Shape optimization of a sodium cooled fast reactor

    NASA Astrophysics Data System (ADS)

    Schmitt, Damien; Allaire, Grégoire; Pantz, Olivier; Pozin, Nicolas

    2014-06-01

    Traditional designs of sodium cooled fast reactors have a positive sodium expansion feedback. During a loss of flow transient without scram, sodium heating and boiling thus insert a positive reactivity and prevents the power from decreasing. Recent studies led at CEA, AREVA and EDF show that cores with complex geometries can feature a very low or even a negative sodium void worth.(1, 2) Usual optimization methods for core conception are based on a parametric description of a given core design(3).(4) New core concepts and shapes can then only be found by hand. Shape optimization methods have proven very efficient in the conception of optimal structures under thermal or mechanical constraints.(5, 6) First studies show that these methods could be applied to sodium cooled core conception.(7) In this paper, a shape optimization method is applied to the conception of a sodium cooled fast reactor core with low sodium void worth. An objective function to be minimized is defined. It includes the reactivity change induced by a 1% sodium density decrease. The optimization variable is a displacement field changing the core geometry from one shape to another. Additionally, a parametric optimization of the plutonium content distribution of the core is made, so as to ensure that the core is kept critical, and that the power shape is flat enough. The final shape obtained must then be adjusted to a get realistic core layout. Its caracteristics can be checked with reference neutronic codes such as ERANOS. Thanks to this method, new shapes of reactor cores could be inferred, and lead to new design ideas.

  15. Determination of fast neutron flux distribution in irradiation sites of the Malaysian Nuclear Agency research reactor.

    PubMed

    Yavar, A R; Sarmani, S B; Wood, A K; Fadzil, S M; Radir, M H; Khoo, K S

    2011-05-01

    Determination of thermal to fast neutron flux ratio (f(fast)) and fast neutron flux (ϕ(fast)) is required for fast neutron reactions, fast neutron activation analysis, and for correcting interference reactions. The f(fast) and subsequently ϕ(fast) were determined using the absolute method. The f(fast) ranged from 48 to 155, and the ϕ(fast) was found in the range 1.03×10(10)-4.89×10(10) n cm(-2) s(-1). These values indicate an acceptable conformity and applicable for installation of the fast neutron facility at the MNA research reactor.

  16. Determining initial enrichment, burnup, and cooling time of pressurized-water-reactor spent fuel assemblies by analyzing passive gamma spectra measured at the Clab interim-fuel storage facility in Sweden

    NASA Astrophysics Data System (ADS)

    Favalli, A.; Vo, D.; Grogan, B.; Jansson, P.; Liljenfeldt, H.; Mozin, V.; Schwalbach, P.; Sjöland, A.; Tobin, S. J.; Trellue, H.; Vaccaro, S.

    2016-06-01

    The purpose of the Next Generation Safeguards Initiative (NGSI)-Spent Fuel (SF) project is to strengthen the technical toolkit of safeguards inspectors and/or other interested parties. The NGSI-SF team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins; (3) estimate the plutonium mass [which is also a function of the variables in (1)]; (4) estimate the decay heat; and (5) determine the reactivity of spent fuel assemblies. Since August 2013, a set of measurement campaigns has been conducted at the Central Interim Storage Facility for Spent Nuclear Fuel (Clab), in collaboration with Swedish Nuclear Fuel and Waste Management Company (SKB). One purpose of the measurement campaigns was to acquire passive gamma spectra with high-purity germanium and lanthanum bromide scintillation detectors from Pressurized Water Reactor and Boiling Water Reactor spent fuel assemblies. The absolute 137Cs count rate and the 154Eu/137Cs, 134Cs/137Cs, 106Ru/137Cs, and 144Ce/137Cs isotopic ratios were extracted; these values were used to construct corresponding model functions (which describe each measured quantity's behavior over various combinations of burnup, cooling time, and initial enrichment) and then were used to determine those same quantities in each measured spent fuel assembly. The results obtained in comparison with the operator declared values, as well as the methodology developed, are discussed in detail in the paper.

  17. Determining initial enrichment, burnup, and cooling time of pressurized-water reactor spent fuel assemblies by analyzing passive gamma spectra measured at the Clab interim-fuel storage facility in Sweden

    DOE PAGES

    Favalli, Andrea; Vo, D.; Grogan, Brandon R.; ...

    2016-02-26

    The purpose of the Next Generation Safeguards Initiative (NGSI)–Spent Fuel (SF) project is to strengthen the technical toolkit of safeguards inspectors and/or other interested parties. The NGSI–SF team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins; (3) estimate the plutonium mass [which is also a function of the variables in (1)]; (4) estimate the decay heat; and (5) determine the reactivity of spent fuelmore » assemblies. Since August 2013, a set of measurement campaigns has been conducted at the Central Interim Storage Facility for Spent Nuclear Fuel (Clab), in collaboration with Swedish Nuclear Fuel and Waste Management Company (SKB). One purpose of the measurement campaigns was to acquire passive gamma spectra with high-purity germanium and lanthanum bromide scintillation detectors from Pressurized Water Reactor and Boiling Water Reactor spent fuel assemblies. The absolute 137Cs count rate and the 154Eu/137Cs, 134Cs/137Cs, 106Ru/137Cs, and 144Ce/137Cs isotopic ratios were extracted; these values were used to construct corresponding model functions (which describe each measured quantity’s behavior over various combinations of burnup, cooling time, and initial enrichment) and then were used to determine those same quantities in each measured spent fuel assembly. Furthermore, the results obtained in comparison with the operator declared values, as well as the methodology developed, are discussed in detail in the paper.« less

  18. Determining initial enrichment, burnup, and cooling time of pressurized-water reactor spent fuel assemblies by analyzing passive gamma spectra measured at the Clab interim-fuel storage facility in Sweden

    SciTech Connect

    Favalli, Andrea; Vo, D.; Grogan, Brandon R.; Jansson, Peter; Liljenfeldt, Henrik; Mozin, Vladimir; Schwalbach, P.; Sjoland, A.; Tobin, Stephen J.; Trellue, Holly; Vaccaro, S.

    2016-02-26

    The purpose of the Next Generation Safeguards Initiative (NGSI)–Spent Fuel (SF) project is to strengthen the technical toolkit of safeguards inspectors and/or other interested parties. The NGSI–SF team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins; (3) estimate the plutonium mass [which is also a function of the variables in (1)]; (4) estimate the decay heat; and (5) determine the reactivity of spent fuel assemblies. Since August 2013, a set of measurement campaigns has been conducted at the Central Interim Storage Facility for Spent Nuclear Fuel (Clab), in collaboration with Swedish Nuclear Fuel and Waste Management Company (SKB). One purpose of the measurement campaigns was to acquire passive gamma spectra with high-purity germanium and lanthanum bromide scintillation detectors from Pressurized Water Reactor and Boiling Water Reactor spent fuel assemblies. The absolute 137Cs count rate and the 154Eu/137Cs, 134Cs/137Cs, 106Ru/137Cs, and 144Ce/137Cs isotopic ratios were extracted; these values were used to construct corresponding model functions (which describe each measured quantity’s behavior over various combinations of burnup, cooling time, and initial enrichment) and then were used to determine those same quantities in each measured spent fuel assembly. Furthermore, the results obtained in comparison with the operator declared values, as well as the methodology developed, are discussed in detail in the paper.

  19. Reactor Physics Characterization of Transmutation Targeting Options in a Sodium Fast Reactor

    SciTech Connect

    Samuel E. Bays

    2007-04-01

    In sodium fast reactor designs, the fuel related inherent negative reactivity feedback is accomplished mainly through parasitic capture in U-238. However for an efficient minor actinide burning system, it is desirable to reduce or eliminate U-238 entirely to suppress further transuranic actinide generation. Consequently, reactivity feedback is accomplished by enhancing axial neutron streaming during a loss of coolant void situation. This is done by flattening “pancake” the active core geometry. Flattening the reactor also increases axial leakage which removes neutrons that could otherwise be used to destroy minor actinides. Therefore, it is important to tailor the neutron spectrum in the core for optimized feedback and minor actinide destruction simultaneously by using minor actinide and fission product targets.

  20. Isotopic Bias and Uncertainty for Burnup Credit Applications

    SciTech Connect

    J.M. Scaglione

    2002-08-19

    The application of burnup credit requires calculating the isotopic inventory of the irradiated fuel. The depletion calculation simulates the burnup of the fuel under reactor operating conditions. The result of the depletion analysis is the predicted isotopic composition, which is ultimately input to a criticality analysis to determine the system multiplication factor (k{sub eff}). This paper demonstrates an approach for calculating the isotopic bias and uncertainty in k{sub eff} for commercial spent nuclear fuel burnup credit. This paper covers 74 different radiochemical assayed spent fuel samples from 22 different fuel assemblies that were irradiated in eight different pressurized water reactors (PWRs). The samples evaluated span an enrichment range of 2.556 wt% U-235 through 4.67 wt% U-235, and burnups from 6.92 GWd/MTU through 55.7 GWd/MTU.

  1. Review of Axial Burnup Distribution Considerations for Burnup Credit Calculations

    SciTech Connect

    Wagner, J.C.; DeHart, M.D.

    2000-03-01

    This report attempts to summarize and consolidate the existing knowledge on axial burnup distribution issues that are important to burnup credit criticality safety calculations. Recently released Nuclear Regulatory Commission (NRC) staff guidance permits limited burnup credit, and thus, has prompted resolution of the axial burnup distribution issue. The reactivity difference between the neutron multiplication factor (keff) calculated with explicit representation of the axial burnup distribution and keff calculated assuming a uniform axial burnup is referred to as the ``end effect.'' This end effect is shown to be dependent on many factors, including the axial-burnup profile, total accumulated burnup, cooling time, initial enrichment, assembly design, and the isotopics considered (i.e., actinide-only or actinides plus fission products). Axial modeling studies, efforts related to the development of axial-profile databases, and the determination of bounding axial profiles are also discussed. Finally, areas that could benefit from further efforts are identified.

  2. Importance functions in calculation of fuel burnup in a VVER

    SciTech Connect

    Semyonov, V. N.

    2011-12-15

    Equations that describe fuel burnup in a VVER are given. Equations for the neutron flux density and the content of fission products are presented in the canonical Cauchy form. Such form of representation of equations lends itself well for their use in solving problems related to optimization of the process of fuel burnup in a nuclear reactor. Also given are equations for the importance functions of neutrons and fission products that correspond to the basic system of equation for phase variables.

  3. Chemical states of fission products in irradiated (U 0.3Pu 0.7)C 1+ x fuel at high burn-ups

    NASA Astrophysics Data System (ADS)

    Agarwal, Renu; Venugopal, V.

    2006-12-01

    The chemical states of fission products have been theoretically determined for the irradiated carbide fuel of Fast Breeder Test Reactor (FBTR) at Kalpakkam, India, at different burn-ups. The SOLGASMIX-PV computer code was used to determine the equilibrium chemical composition of the fuel. The system was assumed to be composed of a gaseous phase at one atmosphere pressure, and various solid phases. The distribution of elements in these phases and their chemical states at different temperatures were calculated as a function of burn-up. The FBTR fuel, (U 0.3Pu 0.7)C 1+ x, was loaded with C/M values in the range, 1.03-1.06. The present calculations indicated that even for the lowest starting C/M of 1.03 in the FBTR fuel, the liquid metal phase of (U, Pu), should not appear at a burn-up as high as 150 GWd/t.

  4. Optimization of fast breeder reactors employing innovative liquid metal coolants

    SciTech Connect

    Pilarski, Stevan

    2007-07-01

    In this paper we propose a comparative assessment of fast breeder reactor core concepts employing Pb, Pb- Mg and Pb-{sup 7}Li as primary coolants and oxide and nitride fuels. Starting from a common reference core to make the comparison relevant, each coolant candidate is associated to an optimized design that takes into account its specific physical properties. For each core, we perform a neutronic analysis and an assessment of its safety potential. In comparison with the case of Pb, the use of Pb-Mg and Pb-{sup 7}Li increases the void reactivity effect. On the other hand, the breeding gain also increases, and the Doppler effect is enhanced, leading to a favorable behaviour concerning safety. (author)

  5. Designing a SCADA system simulator for fast breeder reactor

    NASA Astrophysics Data System (ADS)

    Nugraha, E.; Abdullah, A. G.; Hakim, D. L.

    2016-04-01

    SCADA (Supervisory Control and Data Acquisition) system simulator is a Human Machine Interface-based software that is able to visualize the process of a plant. This study describes the results of the process of designing a SCADA system simulator that aims to facilitate the operator in monitoring, controlling, handling the alarm, accessing historical data and historical trend in Nuclear Power Plant (NPP) type Fast Breeder Reactor (FBR). This research used simulation to simulate NPP type FBR Kalpakkam in India. This simulator was developed using Wonderware Intouch software 10 and is equipped with main menu, plant overview, area graphics, control display, set point display, alarm system, real-time trending, historical trending and security system. This simulator can properly simulate the principle of energy flow and energy conversion process on NPP type FBR. This SCADA system simulator can be used as training media for NPP type FBR prospective operators.

  6. Limitations of eddy current testing in a fast reactor environment

    NASA Astrophysics Data System (ADS)

    Wu, Tao; Bowler, John R.

    2016-02-01

    The feasibility of using eddy current probes for detecting flaws in fast nuclear reactor structures has been investigated with the aim of detecting defects immersed in electrically conductive coolant including under liquid sodium during standby. For the inspections to be viable, there is a need to use an encapsulated sensor system that can be move into position with the aid of visualization tools. The initial objective being to locate the surface to be investigated using, for example, a combination of electromagnetic sensors and sonar. Here we focus on one feature of the task in which eddy current probe impedance variations due to interaction with the external surface of a tube are evaluated in order to monitor the probe location and orientation during inspection.

  7. Sodium fast reactor fuels and materials : research needs.

    SciTech Connect

    Denman, Matthew R.; Porter, Douglas; Wright, Art; Lambert, John; Hayes, Steven; Natesan, Ken; Ott, Larry J.; Garner, Frank; Walters, Leon; Yacout, Abdellatif

    2011-09-01

    An expert panel was assembled to identify gaps in fuels and materials research prior to licensing sodium cooled fast reactor (SFR) design. The expert panel considered both metal and oxide fuels, various cladding and duct materials, structural materials, fuel performance codes, fabrication capability and records, and transient behavior of fuel types. A methodology was developed to rate the relative importance of phenomena and properties both as to importance to a regulatory body and the maturity of the technology base. The technology base for fuels and cladding was divided into three regimes: information of high maturity under conservative operating conditions, information of low maturity under more aggressive operating conditions, and future design expectations where meager data exist.

  8. Gas-Cooled Fast Reactor (GFR) FY04 Annual Report

    SciTech Connect

    K. D. Weaver; T. C. Totemeier; D. E. Clark; E. E. Feldman; E. A. Hoffman; R. B. Vilim; T. Y. C. Wei; J. Gan; M. K. Meyer; W. F. Gale; M. J. Driscoll; M. Golay; G. Apostolakis; K. Czerwinski

    2004-09-01

    The gas-cooled fast reactor (GFR) was chosen as one of the Generation IV nuclear reactor systems to be developed based on its excellent potential for sustainability through reduction of the volume and radio toxicity of both its own fuel and other spent nuclear fuel, and for extending/utilizing uranium resources orders of magnitude beyond what the current open fuel cycle can realize. In addition, energy conversion at high thermal efficiency is possible with the current designs being considered, thus increasing the economic benefit of the GFR. However, research and development challenges include the ability to use passive decay heat removal systems during accident conditions, survivability of fuels and in-core materials under extreme temperatures and radiation, and economical and efficient fuel cycle processes. Nevertheless, the GFR was chosen as one of only six Generation IV systems to be pursued based on its ability to meet the Generation IV goals in sustainability, economics, safety and reliability, proliferation resistance and physical protection.

  9. Lessons learned from applying VIM to fast reactor critical experiments

    SciTech Connect

    Schaefer, R.W.; McKnight, R.D.; Collins, P.J.

    1995-05-17

    VIM is a continuous energy Monte Carlo code first developed around 1970 for the analysis of plate-type, fast-neutron, zero-power critical assemblies. In most respects, VIM is functionally equivalent to the MCNP code but it has two features that make uniquely suited to the analysis of fast reactor critical experiments: (1) the plate lattice geometry option, which allows efficient description of and neutron tracking in the assembly geometry, and (2) a statistical treatment of neutron cross section data in the unresolved resonance range. Since its inception, VIM`s capabilities have expanded to include numerous features, such as thermal neutron cross sections, photon cross sections, and combinatorial and other geometry options, that have allowed its use in a wide range of neutral-particle transport problems. The earliest validation work at Argonne National Laboratory (ANL) focused on the validation of VIM itself. This work showed that, in order for VIM to be a ``rigorous`` tool, extreme detail in the pointwise Monte Carlo libraries was needed, and the required detail was added. The emphasis soon shifted to validating models, methods, data and codes against VIM. Most of this work was done in the context of analyzing critical experiments in zero power reactor (ZPR) assemblies. The purpose of this paper is to present some of the lessons learned from using VIM in ZPR analysis work. This involves such areas as uncovering problems in deterministic methods and models, pitfalls in using Monte Carlo codes, and improving predictions. The numerical illustrations included here were taken from the extensive documentation cited as references.

  10. Experimental Study on Flow Optimization in Upper Plenum of Reactor Vessel for a Compact Sodium-Cooled Fast Reactor

    SciTech Connect

    Kimura, Nobuyuki; Hayashi, Kenji; Kamide, Hideki; Itoh, Masami; Sekine, Tadashi

    2005-11-15

    An innovative sodium-cooled fast reactor has been investigated in a feasibility study of fast breeder reactor cycle systems in Japan. A compact reactor vessel and a column-type upper inner structure with a radial slit for an arm of a fuel-handling machine (FHM) are adopted. Dipped plates are set in the reactor vessel below the free surface to prevent gas entrainment. We performed a one-tenth-scaled model water experiment for the upper plenum of the reactor vessel. Gas entrainment was not observed in the experiment under the same velocity condition as the reactor. Three vortex cavitations were observed near the hot-leg inlet. A vertical rib on the reactor vessel wall was set to restrict the rotating flow near the hot leg. The vortex cavitation between the reactor vessel wall and the hot leg was suppressed by the rib under the same cavitation factor condition as in the reactor. The cylindrical plug was installed through the hole in the dipped plates for the FHM to reduce the flow toward the free surface. It was effective when the plug was submerged into the middle height in the upper plenum. This combination of two components had a possibility to optimize the flow in the compact reactor vessel.

  11. High conduction neutron absorber to simulate fast reactor environment in an existing test reactor

    SciTech Connect

    Donna Post Guillen; Larry R. Greenwood; James R. Parry

    2014-06-22

    A new metal matrix composite material has been developed to serve as a thermal neutron absorber for testing fast reactor fuels and materials in an existing pressurized water reactor. The performance of this material was evaluated by placing neutron fluence monitors within shrouded and unshrouded holders and irradiating for up to four cycles. The monitor wires were analyzed by gamma and X-ray spectrometry to determine the activities of the activation products. Adjusted neutron fluences were calculated and grouped into three bins—thermal, epithermal, and fast—to evaluate the spectral shift created by the new material. A comparison of shrouded and unshrouded fluence monitors shows a thermal fluence decrease of ~11 % for the shielded monitors. Radioisotope activity and mass for each of the major activation products is given to provide insight into the evolution of thermal absorption cross-section during irradiation. The thermal neutron absorption capability of the composite material appears to diminish at total neutron fluence levels of ~8 × 1025 n/m2. Calculated values for dpa in excess of 2.0 were obtained for two common structural materials (iron and nickel) of interest for future fast flux experiments.

  12. Gas-Cooled Fast Reactor (GFR) FY05 Annual Report

    SciTech Connect

    K. D. Weaver; T. Marshall; T. Totemeier; J. Gan; E.E. Feldman; E.A Hoffman; R.F. Kulak; I.U. Therios; C. P. Tzanos; T.Y.C. Wei; L-Y. Cheng; H. Ludewig; J. Jo; R. Nanstad; W. Corwin; V. G. Krishnardula; W. F. Gale; J. W. Fergus; P. Sabharwall; T. Allen

    2005-09-01

    The gas-cooled fast reactor (GFR) was chosen as one of the Generation IV nuclear reactor systems to be developed based on its excellent potential for sustainability through reduction of the volume and radio toxicity of both its own fuel and other spent nuclear fuel, and for extending/utilizing uranium resources orders of magnitude beyond what the current open fuel cycle can realize. In addition, energy conversion at high thermal efficiency is possible with the current designs being considered, thus increasing the economic benefit of the GFR. However, research and development challenges include the ability to use passive decay heat removal systems during accident conditions, survivability of fuels and in-core materials under extreme temperatures and radiation, and economical and efficient fuel cycle processes. Nevertheless, the GFR was chosen as one of only six Generation IV systems to be pursued based on its ability to meet the Generation IV goals in sustainability, economics, safety and reliability, proliferation resistance and physical protection. Current research and development on the Gas-Cooled Fast Reactor (GFR) has focused on the design of safety systems that will remove the decay heat during accident conditions, ion irradiations of candidate ceramic materials, joining studies of oxide dispersion strengthened alloys; and within the Advanced Fuel Cycle Initiative (AFCI) the fabrication of carbide fuels and ceramic fuel matrix materials, development of non-halide precursor low density and high density ceramic coatings, and neutron irradiation of candidate ceramic fuel matrix and metallic materials. The vast majority of this work has focused on the reference design for the GFR: a helium-cooled, direct power conversion system that will operate with on outlet temperature of 850 C at 7 MPa. In addition to the work being performed in the United States, seven international partners under the Generation IV International Forum (GIF) have identified their interest in

  13. Seismic responses of a pool-type fast reactor with different core support designs

    SciTech Connect

    Wu, Ting-shu; Seidensticker, R.W. )

    1989-01-01

    In designing the core support system for a pool-type fast reactor, there are many issues which must be considered in order to achieve an optimum and balanced design. These issues include safety, reliability, as well as costs. Several design options are possible to support the reactor core. Different core support options yield different frequency ranges and responses. Seismic responses of a large pool-type fast reactor incorporated with different core support designs have been investigated. 4 refs., 3 figs.

  14. Effect of Control Blade History, and Axial Coolant Density and Burnup Profiles on BWR Burnup Credit

    SciTech Connect

    Marshall, William BJ J

    2016-01-01

    A technical basis for peak reactivity boiling water reactor (BWR) burnup credit (BUC) methods was recently generated, and the technical basis for extended BWR BUC is now being developed. In this paper, a number of effects related to extended BWR BUC are analyzed, including three major operational effects in BWRs: the coolant density axial distribution, the use of control blades during operation, and the axial burnup profile. Specifically, uniform axial moderator density profiles are analyzed and compared to previous results and an additional temporal fidelity study combing moderator density profiles for three different fuel assemblies is presented. Realistic control blade histories and cask criticality results are compared to previously generated constructed control blade histories. Finally, a preliminary study of the axial burnup profile is provided.

  15. Impact of Fission Products Impurity on the Plutonium Content of Metal- and Oxide- Fuels in Sodium Cooled Fast Reactors

    SciTech Connect

    Hikaru Hiruta; Gilles Youinou

    2013-09-01

    This short report presents the neutronic analysis to evaluate the impact of fission product impurity on the Pu content of Sodium-cooled Fast Reactor (SFR) metal- and oxide- fuel fabrication. The similar work has been previously done for PWR MOX fuel [1]. The analysis will be performed based on the assumption that the separation of the fission products (FP) during the reprocessing of UOX spent nuclear fuel assemblies is not perfect and that, consequently, a certain amount of FP goes into the Pu stream used to fabricate SFR fuels. Only non-gaseous FPs have been considered (see the list of 176 isotopes considered in the calculations in Appendix 1 of Reference 1). Throughout of this report, we define the mixture of Pu and FPs as PuFP. The main objective of this analysis is to quantify the increase of the Pu content of SFR fuels necessary to maintain the same average burnup at discharge independently of the amount of FP in the Pu stream, i.e. independently of the PuFP composition. The FP losses are considered element-independent, i.e., for example, 1% of FP losses mean that 1% of all non-gaseous FP leak into the Pu stream.

  16. Supercritical CO2 direct cycle Gas Fast Reactor (SC-GFR) concept.

    SciTech Connect

    Wright, Steven Alan; Parma, Edward J., Jr.; Suo-Anttila, Ahti Jorma; Al Rashdan, Ahmad; Tsvetkov, Pavel Valeryevich; Vernon, Milton E.; Fleming, Darryn D.; Rochau, Gary Eugene

    2011-05-01

    This report describes the supercritical carbon dioxide (S-CO{sub 2}) direct cycle gas fast reactor (SC-GFR) concept. The SC-GFR reactor concept was developed to determine the feasibility of a right size reactor (RSR) type concept using S-CO{sub 2} as the working fluid in a direct cycle fast reactor. Scoping analyses were performed for a 200 to 400 MWth reactor and an S-CO{sub 2} Brayton cycle. Although a significant amount of work is still required, this type of reactor concept maintains some potentially significant advantages over ideal gas-cooled systems and liquid metal-cooled systems. The analyses presented in this report show that a relatively small long-life reactor core could be developed that maintains decay heat removal by natural circulation. The concept is based largely on the Advanced Gas Reactor (AGR) commercial power plants operated in the United Kingdom and other GFR concepts.

  17. Detailed Burnup Calculations for Testing Nuclear Data

    SciTech Connect

    Leszczynski, F.

    2005-05-24

    A general method (MCQ) has been developed by introducing a microscopic burnup scheme that uses the Monte Carlo calculated fluxes and microscopic reaction rates of a complex system and a depletion code for burnup calculations as a basis for solving nuclide material balance equations for each spatial region in which the system is divided. Continuous energy-dependent cross-section libraries and full 3D geometry of the system can be input for the calculations. The resulting predictions for the system at successive burnup time steps are thus based on a calculation route where both geometry and cross sections are accurately represented, without geometry simplifications and with continuous energy data, providing an independent approach for benchmarking other methods and nuclear data of actinides, fission products, and other burnable absorbers. The main advantage of this method over the classical deterministic methods currently used is that the MCQ System is a direct 3D method without the limitations and errors introduced on the homogenization of geometry and condensation of energy of deterministic methods. The Monte Carlo and burnup codes adopted until now are the widely used MCNP and ORIGEN codes, but other codes can be used also. For using this method, there is need of a well-known set of nuclear data for isotopes involved in burnup chains, including burnable poisons, fission products, and actinides. For fixing the data to be included in this set, a study of the present status of nuclear data is performed, as part of the development of the MCQ method. This study begins with a review of the available cross-section data of isotopes involved in burnup chains for power and research nuclear reactors. The main data needs for burnup calculations are neutron cross sections, decay constants, branching ratios, fission energy, and yields. The present work includes results of selected experimental benchmarks and conclusions about the sensitivity of different sets of cross

  18. Detailed Burnup Calculations for Testing Nuclear Data

    NASA Astrophysics Data System (ADS)

    Leszczynski, F.

    2005-05-01

    A general method (MCQ) has been developed by introducing a microscopic burnup scheme that uses the Monte Carlo calculated fluxes and microscopic reaction rates of a complex system and a depletion code for burnup calculations as a basis for solving nuclide material balance equations for each spatial region in which the system is divided. Continuous energy-dependent cross-section libraries and full 3D geometry of the system can be input for the calculations. The resulting predictions for the system at successive burnup time steps are thus based on a calculation route where both geometry and cross sections are accurately represented, without geometry simplifications and with continuous energy data, providing an independent approach for benchmarking other methods and nuclear data of actinides, fission products, and other burnable absorbers. The main advantage of this method over the classical deterministic methods currently used is that the MCQ System is a direct 3D method without the limitations and errors introduced on the homogenization of geometry and condensation of energy of deterministic methods. The Monte Carlo and burnup codes adopted until now are the widely used MCNP and ORIGEN codes, but other codes can be used also. For using this method, there is need of a well-known set of nuclear data for isotopes involved in burnup chains, including burnable poisons, fission products, and actinides. For fixing the data to be included in this set, a study of the present status of nuclear data is performed, as part of the development of the MCQ method. This study begins with a review of the available cross-section data of isotopes involved in burnup chains for power and research nuclear reactors. The main data needs for burnup calculations are neutron cross sections, decay constants, branching ratios, fission energy, and yields. The present work includes results of selected experimental benchmarks and conclusions about the sensitivity of different sets of cross

  19. Design of a Low Power, Fast-Spectrum, Liquid-Metal Cooled Surface Reactor System

    SciTech Connect

    Marcille, T. F.; Poston, D. I.; Kapernick, R. J.; Dixon, D. D.; Fischer, G. A.; Doherty, S. P.

    2006-01-20

    In the current 2005 US budget environment, competition for fiscal resources make funding for comprehensive space reactor development programs difficult to justify and accommodate. Simultaneously, the need to develop these systems to provide planetary and deep space-enabling power systems is increasing. Given that environment, designs intended to satisfy reasonable near-term surface missions, using affordable technology-ready materials and processes warrant serious consideration. An initial lunar application design incorporating a stainless structure, 880 K pumped NaK coolant system and a stainless/UO2 fuel system can be designed, fabricated and tested for a fraction of the cost of recent high-profile reactor programs (JIMO, SP-100). Along with the cost reductions associated with the use of qualified materials and processes, this design offers a low-risk, high-reliability implementation associated with mission specific low temperature, low burnup, five year operating lifetime requirements.

  20. Low-power lead-cooled fast reactor loaded with MOX-fuel

    NASA Astrophysics Data System (ADS)

    Sitdikov, E. R.; Terekhova, A. M.

    2017-01-01

    Fast reactor for the purpose of implementation of research, education of undergraduate and doctoral students in handling innovative fast reactors and training specialists for atomic research centers and nuclear power plants (BRUTs) was considered. Hard neutron spectrum achieved in the fast reactor with compact core and lead coolant. Possibility of prompt neutron runaway of the reactor is excluded due to the low reactivity margin which is less than the effective fraction of delayed neutrons. The possibility of using MOX fuel in the BRUTs reactor was examined. The effect of Keff growth connected with replacement of natural lead coolant to 208Pb coolant was evaluated. The calculations and reactor core model were performed using the Serpent Monte Carlo code.

  1. Role of fast reactor and its cycle to reduce nuclear waste burden

    SciTech Connect

    Arie, Kazuo; Oomori, Takashi; Okita, Takeshi; Kawashima, Masatoshi; Kotake, Shoji; Fuji-ie, Yoichi

    2013-07-01

    The role of the metal fuel fast reactor with recycling of actinides and the five long-lived fission products based on the concept of the Self-Consistent Nuclear Energy System has been examined by evaluating the reduction of nuclear wastes during the transition period to this reactor system. The evaluation was done in comparison to an LWR once-through case and a conventional actinide recycling oxide fast reactor. As a result, it is quantitatively clarified that a metal fuel fast reactor with actinide and the five long-lived fission products (I{sup 129}, Tc{sup 99}, Zr{sup 93}, Cs{sup 135} and Sn{sup 126}) recycling could play a significant role in reducing the nuclear waste burden including the current LWR wastes. This can be achieved by using a fast neutron spectrum reactor enhanced with metal fuel that brings high capability as a 'waste burner'. (authors)

  2. Optimum Discharge Burnup and Cycle Length for PWRs

    SciTech Connect

    Secker, Jeffrey R.; Johansen, Baard J.; Stucker, David L.; Ozer, Odelli; Ivanov, Kostadin; Yilmaz, Serkan; Young, E.H

    2005-08-15

    This paper discusses the results of a pressurized water reactor fuel management study determining the optimum discharge burnup and cycle length. A comprehensive study was performed considering 12-, 18-, and 24-month fuel cycles over a wide range of discharge burnups. A neutronic study was performed followed by an economic evaluation. The first phase of the study limited the fuel enrichments used in the study to <5 wt% {sup 235}U consistent with constraints today. The second phase extended the range of discharge burnups for 18-month cycles by using fuel enriched in excess of 5 wt%. The neutronic study used state-of-the-art reactor physics methods to accurately determine enrichment requirements. Energy requirements were consistent with today's high capacity factors (>98%) and short (15-day) refueling outages. The economic evaluation method considers various component costs including uranium, conversion, enrichment, fabrication and spent-fuel storage costs as well as the effect of discounting of the revenue stream. The resulting fuel cycle costs as a function of cycle length and discharge burnup are presented and discussed. Fuel costs decline with increasing discharge burnup for all cycle lengths up to the maximum discharge burnup considered. The choice of optimum cycle length depends on assumptions for outage costs.

  3. Method of detecting leakage of reactor core components of liquid metal cooled fast reactors

    DOEpatents

    Holt, Fred E.; Cash, Robert J.; Schenter, Robert E.

    1977-01-01

    A method of detecting the failure of a sealed non-fueled core component of a liquid-metal cooled fast reactor having an inert cover gas. A gas mixture is incorporated in the component which includes Xenon-124; under neutron irradiation, Xenon-124 is converted to radioactive Xenon-125. The cover gas is scanned by a radiation detector. The occurrence of 188 Kev gamma radiation and/or other identifying gamma radiation-energy level indicates the presence of Xenon-125 and therefore leakage of a component. Similarly, Xe-126, which transmutes to Xe-127 and Kr-84, which produces Kr-85.sup.m can be used for detection of leakage. Different components are charged with mixtures including different ratios of isotopes other than Xenon-124. On detection of the identifying radiation, the cover gas is subjected to mass spectroscopic analysis to locate the leaking component.

  4. Sodium fast reactor gaps analysis of computer codes and models for accident analysis and reactor safety.

    SciTech Connect

    Carbajo, Juan; Jeong, Hae-Yong; Wigeland, Roald; Corradini, Michael; Schmidt, Rodney Cannon; Thomas, Justin; Wei, Tom; Sofu, Tanju; Ludewig, Hans; Tobita, Yoshiharu; Ohshima, Hiroyuki; Serre, Frederic

    2011-06-01

    This report summarizes the results of an expert-opinion elicitation activity designed to qualitatively assess the status and capabilities of currently available computer codes and models for accident analysis and reactor safety calculations of advanced sodium fast reactors, and identify important gaps. The twelve-member panel consisted of representatives from five U.S. National Laboratories (SNL, ANL, INL, ORNL, and BNL), the University of Wisconsin, the KAERI, the JAEA, and the CEA. The major portion of this elicitation activity occurred during a two-day meeting held on Aug. 10-11, 2010 at Argonne National Laboratory. There were two primary objectives of this work: (1) Identify computer codes currently available for SFR accident analysis and reactor safety calculations; and (2) Assess the status and capability of current US computer codes to adequately model the required accident scenarios and associated phenomena, and identify important gaps. During the review, panel members identified over 60 computer codes that are currently available in the international community to perform different aspects of SFR safety analysis for various event scenarios and accident categories. A brief description of each of these codes together with references (when available) is provided. An adaptation of the Predictive Capability Maturity Model (PCMM) for computational modeling and simulation is described for use in this work. The panel's assessment of the available US codes is presented in the form of nine tables, organized into groups of three for each of three risk categories considered: anticipated operational occurrences (AOOs), design basis accidents (DBA), and beyond design basis accidents (BDBA). A set of summary conclusions are drawn from the results obtained. At the highest level, the panel judged that current US code capabilities are adequate for licensing given reasonable margins, but expressed concern that US code development activities had stagnated and that the

  5. A FAST BREEDER REACTOR SPENT FUEL MEASUREMENTS PROGRAM FOR BN-350 REACTOR

    SciTech Connect

    P. STAPLES; J. HALBIG; ET AL

    1999-04-01

    A project to verify the fissile content of fast breeder reactor spent nuclear fuel is underway in the Republic of Kasakhstan. There are a variety of assembly types with different irradiation histories and profiles in the reactor that require a variety of measurement and analysis procedures. These procedures will be discussed and compared as will the general process that has been designed to resolve any potential measurement discrepancies. The underwater counter is part of a system that is designed to assist the International Atomic Energy Agency (IAEA) in maintaining continuity of knowledge from the time of measurement until the measured item is placed in a welded container with a unique identification. In addition to satisfying IAEA requirements for the spent nuclear fuel, this measurement program is able to satisfy some of the measurement requirements for the Kasakhstan Atomic Energy Agency concerning the repackaging of the spent nuclear fuel into a standard canister. The project is currently operational in a mode requiring the IAEA's continuous presence.

  6. Delayed neutron signal characterization in a fast reactor

    SciTech Connect

    Gross, K.C.; Strain, R.V.

    1980-01-01

    Experimental and analytical techniques have been developed for delayed neutron (DN) signal analysis and characterization that can provide diagnostic information to augment data from cover-gas analyses in the detection and identification of breached elements in an LMFBR. Eleven flow reduction tests have been run in EBR-II to provide base data support for predicting DN signal characteristics during exposed fuel operation. Results from the tests demonstrate the feasibility and practicability of response-analysis techniques for determining the transit time, T/sub tr/, for DN emitters traveling from the core to the detector, and the isotopic holdup time, T/sub h/, of DN precursors in the fuel element. T/sub tr/ has been found to vary with the relative grid location of the DN source, and T/sub h/ is affected by the form of fuel exposed to the coolant as well as the condition of the breach site. These parameters are incorporated into a mathematical formulism that enables one to compute for any exposed-fuel test an equivalent recoil area. This concept provides a basis for comparison of different run-beyond-cladding-breach tests in fast reactors.

  7. Selection of materials for sodium fast reactor steam generators

    SciTech Connect

    Dubiez-Le Goff, S.; Garnier, S.; Gelineau, O.; Dalle, F.; Blat-Yrieix, M.; Augem, J. M.

    2012-07-01

    Sodium Fast Reactor (SFR) is considered in France as the most mature technology of the different Generation IV systems. In the short-term the designing work is focused on the identification of the potential tracks to demonstrate licensing capability, availability, in-service inspection capability and economical performance. In that frame materials selection for the major components, as the steam generator, is a particularly key point managed within a French Research and Development program launched by AREVA, CEA and EDF. The choice of the material for the steam generator is indeed complex because various aspects shall be considered like mechanical and thermal properties at high temperature, interaction with sodium on one side and water and steam on the other side, resistance to wastage, procurement, fabrication, weldability and ability for inspection and in-situ intervention. The following relevant options are evaluated: the modified 9Cr1Mo ferritic-martensitic grade and the Alloy 800 austenitic grade. The objective of this paper is to assess for both candidates their abilities to reach the current SFR needs regarding material design data, from AFCEN RCC-MRx Code in particular, compatibility with environments and manufacturability. (authors)

  8. Alloys for a liquid metal fast breeder reactor

    DOEpatents

    Rowcliffe, Arthur F.; Bleiberg, Melvin L.; Diamond, Sidney; Bajaj, Ram

    1979-01-01

    An essentially gamma-prime precipitation-hardened iron-chromium-nickel alloy has been designed with emphasis on minimum nickel and chromium contents to reduce the swelling tendencies of these alloys when used in liquid metal fast breeder reactors. The precipitation-hardening components have been designed for phase stability and such residual elements as silicon and boron, also have been selected to minimize swelling. Using the properties of these alloys in one design would result in an increased breeding ratio over 20% cold worked stainless steel, a reference material, of 1.239 to 1.310 and a reduced doubling time from 15.8 to 11.4 years. The gross stoichiometry of the alloying composition comprises from about 0.04% to about 0.06% carbon, from about 0.05% to about 1.0% silicon, up to about 0.1% zirconium, up to about 0.5% vanadium, from about 24% to about 31% nickel, from 8% to about 11% chromium, from about 1.7% to about 3.5% titanium, from about 1.0% to about 1.8% aluminum, from about 0.9% to about 3.7% molybdenum, from about 0.04% to about 0.8% boron, and the balance iron with incidental impurities.

  9. Gas-Cooled Fast Reactor (GFR) Decay Heat Removal Concepts

    SciTech Connect

    K. D. Weaver; L-Y. Cheng; H. Ludewig; J. Jo

    2005-09-01

    Current research and development on the Gas-Cooled Fast Reactor (GFR) has focused on the design of safety systems that will remove the decay heat during accident conditions, ion irradiations of candidate ceramic materials, joining studies of oxide dispersion strengthened alloys; and within the Advanced Fuel Cycle Initiative (AFCI) the fabrication of carbide fuels and ceramic fuel matrix materials, development of non-halide precursor low density and high density ceramic coatings, and neutron irradiation of candidate ceramic fuel matrix and metallic materials. The vast majority of this work has focused on the reference design for the GFR: a helium-cooled, direct power conversion system that will operate with an outlet temperature of 850ºC at 7 MPa. In addition to the work being performed in the United States, seven international partners under the Generation IV International Forum (GIF) have identified their interest in participating in research related to the development of the GFR. These are Euratom (European Commission), France, Japan, South Africa, South Korea, Switzerland, and the United Kingdom. Of these, Euratom (including the United Kingdom), France, and Japan have active research activities with respect to the GFR. The research includes GFR design and safety, and fuels/in-core materials/fuel cycle projects. This report is a compilation of work performed on decay heat removal systems for a 2400 MWt GFR during this fiscal year (FY05).

  10. Sodium fast reactor safety and licensing research plan. Volume I.

    SciTech Connect

    Sofu, Tanju; LaChance, Jeffrey L.; Bari, R.; Wigeland, Roald; Denman, Matthew R.; Flanagan, George F.

    2012-05-01

    This report proposes potential research priorities for the Department of Energy (DOE) with the intent of improving the licensability of the Sodium Fast Reactor (SFR). In support of this project, five panels were tasked with identifying potential safety-related gaps in available information, data, and models needed to support the licensing of a SFR. The areas examined were sodium technology, accident sequences and initiators, source term characterization, codes and methods, and fuels and materials. It is the intent of this report to utilize a structured and transparent process that incorporates feedback from all interested stakeholders to suggest future funding priorities for the SFR research and development. While numerous gaps were identified, two cross-cutting gaps related to knowledge preservation were agreed upon by all panels and should be addressed in the near future. The first gap is a need to re-evaluate the current procedures for removing the Applied Technology designation from old documents. The second cross-cutting gap is the need for a robust Knowledge Management and Preservation system in all SFR research areas. Closure of these and the other identified gaps will require both a reprioritization of funding within DOE as well as a re-evaluation of existing bureaucratic procedures within the DOE associated with Applied Technology and Knowledge Management.

  11. High burnup effects in WWER fuel rods

    SciTech Connect

    Smirnov, V.; Smirnov, A.

    1996-03-01

    Since 1987 at the Research Institute of Atomic Reactors, the examinations of the WWER spent fuel assemblies has been carried out. These investigations are aimed to gain information on WWER spent fuel conditions in order to validate the fuel assemblies use during the 3 and 4 year fuel cycle in the WWER-440 and WWER-1000 units. At present time, the aim is to reach an average fuel burnup of 55 MWd/kgU. According to this aim, a new investigation program on the WWER spent fuel elements is started. The main objectives of this program are to study the high burnup effects and their influence on the WWER fuel properties. This paper presented the main statistical values of the WWER-440 and WWER-1000 reactors` fuel assemblies and their fragment parameters. Average burnup of fuel in the investigated fuel assemblies was in the range of 13 to 49.7 MWd/kgU. In this case, the numer of fuel cycles was from 1 to 4 during operation of the fuel assemblies.

  12. Fast-reactor-data testing of ENDF/B-V at ORNL

    SciTech Connect

    Wright, R.Q.; Ford, W.E. III; Lucius, J.L.; Webster, C.C.; Marable, J.H.

    1982-01-01

    The Cross Section Evaluation Working Group (CSEWG) is coordinating a program to assess the adequacy of ENDF/B-V cross sections for both fast- and thermal-reactor design applications. A secondary goal is to evaluate cross-section processing codes, cross-section libraries, and radiation-transport codes. Fast reactor data testing (FRDT) goals are accomplished, in part, by comparison of calculated results with documented performance parameters of CSEWG fast reactor benchmarks and with results obtained by other data testers. The purpose of this paper is to describe the results of FRDT at Oak Ridge National Laboratory (ORNL).

  13. Findings of an international study on burnup credit

    SciTech Connect

    Brady, M.C.; Takano, M.; Okuno, H.; DeHart, M.D.; Nouri, A.; Sartori, E.

    1996-08-01

    Findings from a four year study by an international benchmarking group in the comparison of computational methods for evaluating burnup credit in criticality safety analyses are presented in this paper. Approximately 20 participants from 11 countries have provided results for most problems. Four detailed benchmark problems for Pressurized Water Reactor (PWR) fuel have been completed and are summarized in this paper. Preliminary results from current work addressing burnup credit for Boiling Water Reactor (BWR) fuel will also be discussed as well as planned activities for additional benchmarks including Mixed-Oxide (MOX) fuels, subcritical benchmarks, international databases, and other activities.

  14. Coupled neutronics and thermal-hydraulics numerical simulations of a Molten Fast Salt Reactor (MFSR)

    NASA Astrophysics Data System (ADS)

    Laureau, A.; Rubiolo, P. R.; Heuer, D.; Merle-Lucotte, E.; Brovchenko, M.

    2014-06-01

    Coupled neutronics and thermalhydraulic numerical analyses of a molten salt fast reactor are presented. These preliminary numerical simulations are carried-out using the Monte Carlo code MCNP and the Computation Fluid Dynamic code OpenFOAM. The main objectives of this analysis performed at steady-reactor conditions are to confirm the acceptability of the current neutronic and thermalhydraulic designs of the reactor, to study the effects of the reactor operating conditions on some of the key MSFR design parameters such as the temperature peaking factor. The effects of the precursor's motion on the reactor safety parameters such as the effective fraction of delayed neutrons have been evaluated.

  15. Fast Transient And Spatially Non-Homogenous Accident Analysis Of Two-Dimensional Cylindrical Nuclear Reactor

    SciTech Connect

    Yulianti, Yanti; Su'ud, Zaki; Waris, Abdul; Khotimah, S. N.; Shafii, M. Ali

    2010-12-23

    The research about fast transient and spatially non-homogenous nuclear reactor accident analysis of two-dimensional nuclear reactor has been done. This research is about prediction of reactor behavior is during accident. In the present study, space-time diffusion equation is solved by using direct methods which consider spatial factor in detail during nuclear reactor accident simulation. Set of equations that obtained from full implicit finite-difference discretization method is solved by using iterative methods ADI (Alternating Direct Implicit). The indication of accident is decreasing macroscopic absorption cross-section that results large external reactivity. The power reactor has a peak value before reactor has new balance condition. Changing of temperature reactor produce a negative Doppler feedback reactivity. The reactivity will reduce excess positive reactivity. Temperature reactor during accident is still in below fuel melting point which is in secure condition.

  16. A Simple Global View of Fuel Burnup

    NASA Astrophysics Data System (ADS)

    Sekimoto, Hiroshi

    2017-01-01

    Reactor physics and fuel burnup are discussed in order to obtain a simple global view of the effects of nuclear reactor characteristics to fuel cycle system performance. It may provide some idea of free thinking and overall vision, though it is still a small part of nuclear energy system. At the beginning of this lecture, governing equations for nuclear reactors are presented. Since the set of these equations is so big and complicated, it is simplified by imposing some extreme conditions and the nuclear equilibrium equation is derived. Some features of future nuclear equilibrium state are obtained by solving this equation. The contribution of a nucleus charged into reactor core to the system performance indexes such as criticality is worth for understanding the importance of each nuclide. It is called nuclide importance and can be evaluated by using the equations adjoint to the nuclear equilibrium equation. Examples of some importances and their application to criticalily search problem are presented.

  17. Preparation of higher-actinide burnup and cross section samples. [LMFBR

    SciTech Connect

    Adair, H.L.; Kobisk, E.H.; Quinby, T.C.; Thomas, D.K.; Dailey, J.M.

    1981-01-01

    A joint research program involving the United States and the United Kingdom was instigated about four years ago for the purpose of studying burnup of higher actinides using in-core irradiation in the fast reactor at Dounreay, Scotland. Simultaneously, determination of cross sections of a wide variety of higher actinide isotopes was proposed. Coincidental neutron flux and energy spectral measurements were to be made using vanadium encapsulated dosimetry materials in the immediate region of the burnup and cross section samples. The higher actinide samples chosen for the burnup study were /sup 241/Am and /sup 244/Cm in the forms of Am/sub 2/O/sub 3/, Cm/sub 2/O/sub 3/, and Am/sub 6/ Cm(RE)/sub 7/O/sub 21/, where (RE) represents a mixture of lanthanide sesquioxides. It is the purpose of this paper to describe technology development and its application in the preparation of the fuel specimens and the cross section specimens that are being used in this cooperative program.

  18. Integral fast reactor safety tests M2 and M3 in TREAT

    SciTech Connect

    Robinson, W.R.; Lo, R.K.; Wright, A.E.; Bauer, T.H.; Stanford, G.S.; Morman, J.A.

    1985-11-01

    Transient Reactor Test Facility (TREAT) tests M2 and M3 were performed to obtain information on two key fuel behavior characteristics of transient overpower conditions in metal-fueled fast reactors: the margin to cladding breach and the axial self-extrusion of fuel within intact cladding. Cladding breach depends on penetration of a fuel/cladding eutectic into the cladding as well as on internal pin pressure. Driving forces for fuel extrusion are fission gas, liquid sodium, and volatile fission products trapped within the fuel. Significant fuel extrusion prior to cladding breach would be an important factor in the case for benign termination of unprotected overpower events in a fast reactor. These preliminary tests in the Integral Fast Reactor (IFR) program were done on uranium-5% fissium Experimental Breeder Reactor II Mark-II driver fuel pins having an active fuel column length of 34 cm.

  19. Evaluation Method for Core Thermohydraulics during Natural Circulation in Fast Reactors

    NASA Astrophysics Data System (ADS)

    Kamide, Hideki; Nagasawa, Kazuyoshi; Kimura, Nobuyuki; Miyakoshi, Hiroyuki

    Decay heat removal using natural circulation is one of significant functions for a reactor. As the decay heat removal system, a direct reactor auxiliary cooling system has been selected in current designs of fast reactors. In this system, cold sodium is provided in an upper plenum of reactor vessel and it covers the reactor core outlet. The cold sodium can penetrate into the gap region between the subassemblies. This gap flow is referred as inter-wrapper flow (IWF). A numerical estimation method for such phenomena was developed, which modeled each subassembly as a rectangular duct with gap region and also the upper plenum. This numerical simulation method was verified by a sodium test and also a water test. We applied this method to the natural circulation in a 600 MWe class fast reactor. The temperature in the core strongly depended on IWF, flow redistribution in the core, and inter-subassembly heat transfer.

  20. THERMAL PERFORMANCE OF A FAST NEUTRON TEST CONCEPT FOR THE ADVANCED TEST REACTOR

    SciTech Connect

    Donna Post Guillen

    2008-06-01

    Since 1967, the Advanced Test Reactor (ATR) located at Idaho National Laboratory (INL) has provided state-of-the-art experimental irradiation testing capability. A unique design is investigated herein for the purpose of providing a fast neutron flux test capability in the ATR. This new test capability could be brought on line in approximately 5 or 6 years, much sooner than a new test reactor could be built, to provide an interim fast-flux test capability in the timeframe before a fast-flux research reactor could be built. The proposed cost for this system is approximately $63M, much less than the cost of a new fast-flux test reactor. A concept has been developed to filter out a large portion of the thermal flux component by using a thermally conductive neutron absorber block. The objective of this study is to determine the feasibility of this experiment cooling concept.

  1. The Case Against the Fast Breeder Reactor: An Anti-Nuclear Establishment View.

    ERIC Educational Resources Information Center

    Lovins, Amory B.

    1973-01-01

    Environmentalists lobby points out that hazards which may result from mistakes in proposed fast breeder reactor for additional energy can be detrimental for mankind. Such projects must be carefully planned and cautiously executed. (PS)

  2. GCFR: The European Union Gas Cooled Fast Reactor Project

    SciTech Connect

    Mitchell, Colin; Peers, Karen; Poette, Christian; Coddington, Paul; Somers, Joe; Van-Goethem, George

    2006-07-01

    In March 2005, the European Commission (EC) initiated a new 4-year Project on Gas Cooled Fast Reactors (GCFR) within its 6. Framework Programme. The EC and more than 10 participating companies, R and D organizations and universities finance the project in equal parts. The project contributes to the Generation IV ambitious goals requiring innovative solutions in terms environmental impact (robust fuel with no significant radioactive release), sustainability (core which is self sustaining and has the flexibility for waste reduction), proliferation resistant fuel cycle and economics (high coolant temperatures leading to increased thermodynamic efficiency). A matrix has been prepared for the Generation IV GFR studies to facilitate sharing the work between the members, which identifies seven combinations of design options. These option studies will lead to a pre-selection of a reference concept and alternatives and the preliminary GFR viability report. The GCFR project, which forms part of the EURATOM contribution to the Generation IV International Forum (GIF) has responsibility for the direct cycle and indirect cycle 600 MW options. In detail, the GCFR project will examine; the GFR (600 MW options) and ETDR, core and system design; GFR and ETDR safety analysis, including the analysis of selected transients; the qualification and benchmarking of the transient analysis codes through a series of benchmark exercises; and a review of candidate fuels and core materials, including their fabrication and irradiation. Education and communication to foster understanding of the growing needs for nuclear power in general and for the technology of the GCFR in particular is specific goal of the EU project. (authors)

  3. Radioactive waste from decommissioning of fast reactors (through the example of BN-800)

    NASA Astrophysics Data System (ADS)

    Rybin, A. A.; Momot, O. A.

    2017-01-01

    Estimation of volume of radioactive waste from operating and decommissioning of fast reactors is introduced. Preliminary estimation has shown that the volume of RW from decommissioning of BN-800 is amounted to 63,000 cu. m. Comparison of the amount of liquid radioactive waste derived from operation of different reactor types is performed. Approximate costs of all wastes disposal for complete decommissioning of BN-800 reactor are estimated amounting up to approx. 145 million.

  4. The Fast-Flow Discharge Reactor as an Undergraduate Instructional Tool.

    ERIC Educational Resources Information Center

    Provencher, G. M.

    1981-01-01

    A fast-flow discharge reactor has been used in an analytical chemistry demonstration of gas phase titration, in inorganic preparative chemistry, and in physical chemistry as a "practice" vacuum line, kinetic reactor, and spectroscopic source as well as an undergraduate research tool. (SK)

  5. Safety and core design of large liquid-metal cooled fast breeder reactors

    NASA Astrophysics Data System (ADS)

    Qvist, Staffan Alexander

    In light of the scientific evidence for changes in the climate caused by greenhouse-gas emissions from human activities, the world is in ever more desperate need of new, inexhaustible, safe and clean primary energy sources. A viable solution to this problem is the widespread adoption of nuclear breeder reactor technology. Innovative breeder reactor concepts using liquid-metal coolants such as sodium or lead will be able to utilize the waste produced by the current light water reactor fuel cycle to power the entire world for several centuries to come. Breed & burn (B&B) type fast reactor cores can unlock the energy potential of readily available fertile material such as depleted uranium without the need for chemical reprocessing. Using B&B technology, nuclear waste generation, uranium mining needs and proliferation concerns can be greatly reduced, and after a transitional period, enrichment facilities may no longer be needed. In this dissertation, new passively operating safety systems for fast reactors cores are presented. New analysis and optimization methods for B&B core design have been developed, along with a comprehensive computer code that couples neutronics, thermal-hydraulics and structural mechanics and enables a completely automated and optimized fast reactor core design process. In addition, an experiment that expands the knowledge-base of corrosion issues of lead-based coolants in nuclear reactors was designed and built. The motivation behind the work presented in this thesis is to help facilitate the widespread adoption of safe and efficient fast reactor technology.

  6. The Fast-Flow Discharge Reactor as an Undergraduate Instructional Tool.

    ERIC Educational Resources Information Center

    Provencher, G. M.

    1981-01-01

    A fast-flow discharge reactor has been used in an analytical chemistry demonstration of gas phase titration, in inorganic preparative chemistry, and in physical chemistry as a "practice" vacuum line, kinetic reactor, and spectroscopic source as well as an undergraduate research tool. (SK)

  7. SACRD: a data base for fast reactor safety computer codes, operational procedures

    SciTech Connect

    Forsberg, V.M.; Arwood, J.W.; Greene, N.M.; Raiford, G.B.

    1980-09-01

    SACRD (Safety Analysis Computerized Reactor Data) is a data base of nondesign-related information used in computer codes for fast reactor safety analyses. This document reports the procedures used in SACRD to help assure a reasonable level of integrity of the material contained in the data base. It also serves to document much of the computer software used with the data base.

  8. Irradiation Testing Vehicles for Fast Reactors from Open Test Assemblies to Closed Loops

    SciTech Connect

    Sienicki, James J.; Grandy, Christopher

    2016-12-15

    A review of irradiation testing vehicle approaches and designs that have been incorporated into past Sodium-Cooled Fast Reactors (SFRs) or envisioned for incorporation has been carried out. The objective is to understand the essential features of the approaches and designs so that they can inform test vehicle designs for a future U.S. Fast Test Reactor. Fast test reactor designs examined include EBR-II, FFTF, JOYO, BOR-60, PHÉNIX, JHR, and MBIR. Previous designers exhibited great ingenuity in overcoming design and operational challenges especially when the original reactor plant’s mission changed to an irradiation testing mission as in the EBRII reactor plant. The various irradiation testing vehicles can be categorized as: Uninstrumented open assemblies that fit into core locations; Instrumented open test assemblies that fit into special core locations; Self-contained closed loops; and External closed loops. A special emphasis is devoted to closed loops as they are regarded as a very desirable feature of a future U.S. Fast Test Reactor. Closed loops are an important technology for irradiation of fuels and materials in separate controlled environments. The impact of closed loops on the design of fast reactors is also discussed in this report.

  9. Experiment Safety Assurance Package for the 40- to 50-GWd/MT Burnup Phase of Mixed Oxide Fuel Irradiation in Small I-Hole Positions in the Advanced Test Reactor

    SciTech Connect

    Khericha, S.T.

    2002-06-30

    This experiment safety assurance package (ESAP) is a revision of the last MOX ESAP issued in February 2001(Khericha 2001). The purpose of this revision is to identify the changes in the loading pattern and to provide a basis to continue irradiation up to {approx}42 GWd/MT burnup (+ 2.5%) as predicted by MCNP (Monte Carlo N-Particle) transport code before the preliminary postirradiation examination (PIE) results for 40 GWd/MT burnup are available. Note that the safety analysis performed for the last ESAP is still applicable and no additional analysis is required (Khericha 2001). In July 2001, it was decided to reconfigure the test assembly using the loading pattern for Phase IV, Part 3, at the end of Phase IV, Part 1, as the loading pattern for Phase IV, Parts 2 and 3. Three capsule assemblies will be irradiated until the highest burnup capsule assembly accumulates: {approx}50 GWd/MT burnup, based on the MCNP code predictions. The last ESAP suggests that at the end of Phase IV, Part 1, we remove the two highest burnup capsule assemblies ({at} {approx}40 GWd/MT burnup) and send them to ORNL for PIE. Then, irradiate the test assembly using the loading pattern for Phase IV, Part 2, until the highest burnup capsule reaches {approx}40 GWd/MT burnup per MCNP-predicted values.

  10. Experiment Safety Assurance Package for the 40- to 50-GWd/MT Burnup Phase of Mixed Oxide Fuel Irradiation in Small I-Hole Positions in the Advanced Test Reactor

    SciTech Connect

    Khericha, Soli T

    2002-06-01

    This experiment safety assurance package (ESAP) is a revision of the last MOX ESAP issued in February 2001(Khericha 2001). The purpose of this revision is to identify the changes in the loading pattern and to provide a basis to continue irradiation up to ~42 GWd/MT burnup (+ 2.5% as predicted by MCNP (Monte Carlo N-Particle) transport code before the preliminary postirradiation examination (PIE) results for 40 GWd/MT burnup are available. Note that the safety analysis performed for the last ESAP is still applicable and no additional analysis is required (Khericha 2001). In July 2001, it was decided to reconfigure the test assembly using the loading pattern for Phase IV, Part 3, at the end of Phase IV, Part 1, as the loading pattern for Phase IV, Parts 2 and 3. Three capsule assemblies will be irradiated until the highest burnup capsule assembly accumulates: ~50 GWd/MT burnup, based on the MCNP code predictions. The last ESAP suggests that at the end of Phase IV, Part 1, we remove the two highest burnup capsule assemblies (@ ~40 GWd/MT burnup) and send them to ORNL for PIE. Then, irradiate the test assembly using the loading pattern for Phase IV, Part 2, until the highest burnup capsule reaches ~40 GWd/MT burnup per MCNP-predicted values.

  11. Development of Observation Techniques in Reactor Vessel of Experimental Fast Reactor Joyo

    NASA Astrophysics Data System (ADS)

    Takamatsu, Misao; Imaizumi, Kazuyuki; Nagai, Akinori; Sekine, Takashi; Maeda, Yukimoto

    In-Vessel Observations (IVO) techniques for Sodium cooled Fast Reactors (SFRs) are important in confirming its safety and integrity. And several IVO equipments for an SFR are developed. However, in order to secure the reliability of IVO techniques, it was necessary to demonstrate the performance under the actual reactor environment with high temperature, high radiation dose and remained sodium. During the investigation of an incident that occurred with Joyo, IVO using a standard Video Camera (VC) and a Radiation-Resistant Fiberscope (RRF) took place at (1) the top of the Sub-Assemblies (S/As) and the In-Vessel Storage rack (IVS), (2) the bottom face of the Upper Core Structure (UCS). A simple 6 m overhead view of each S/A, through the fuel handling or inspection holes etc, was photographed using a VC for making observations of the top of S/As and IVS. About 650 photographs were required to create a composite photograph of the top of the entire S/As and IVS, and a resolution was estimated to be approximately 1mm. In order to observe the bottom face of the UCS, a Remote Handling Device (RHD) equipped with RRFs (approximately 13 m long) was specifically developed for Joyo with a tip that could be inserted into the 70 mm gap between the top of the S/As and the bottom of the UCS. A total of about 35,000 photographs were needed for the full investigation. Regarding the resolution, the sodium flow regulating grid of 0.8mm in thickness could be discriminated. The performance of IVO equipments under the actual reactor environment was successfully confirmed. And the results provided useful information on incident investigations. In addition, fundamental findings and the experience gained during this study, which included the design of equipment, operating procedures, resolution, lighting adjustments, photograph composition and the durability of the RRF under radiation exposure, provided valuable insights into further improvements and verifications for IVO techniques to

  12. Fuel/cladding compatibility in high-burnup U-19 Pu-10 Zr/HT-9 clad fuel at elevated temperatures

    SciTech Connect

    Cohen, A.B.; Tsai, H.; Sanecki, J.E.; Neimark, L.A. )

    1992-01-01

    The U-Pu-Zr metallic fuel in the integral fast reactor may interact chemically with the steel cladding at elevated temperatures, leading to a thinning of the cladding and eventual pin failure. Also, as a result of the fuel/cladding chemical interaction (FCCI), iron may diffuse into the fuel and form a lower melting phase with uranium and plutonium. If the temperature is raised above the solidus temperature of this phase, the fuel can undergo liquefaction, i.e., the formation of a mixture of liquid and solid phases, that may promote further cladding interaction. Fuel/cladding chemical interaction, therefore, is a complex phenomenon on both sides of the fuel/cladding interface that depends on fuel and cladding compositions, linear power rating, burnup, and cladding temperature. The purpose of this study was to determine the temperature at which the fuel/cladding interaction region forms solid-plus-liquid phases above the normal in-reactor operating temperatures of high-burnup (11 at.%) Mark V-type fuel for the Experimental Breeder Reactor II (EBR-II). The Mark V fuel is being developed as a future driver fuel for the reactor. The effect of this solid-plus-liquid mixture on the kinetics and mechanism of FCCI was also investigated. This paper updates results previously reported for lower-burnup Mark V-type fuel elements.

  13. Extended burnup fuel - a beneficial environmental step for the nuclear fuel cycle

    SciTech Connect

    Tulenko, J.S. )

    1992-01-01

    The beneficial environmental effects generated by extending the burnup of light water reactors (LWR) fuel covers the entire fuel cycle from cradle (mining) to grave (fuel disposal). The purpose of this paper is to outline the beneficial efforts of extending burnup and show how a proposed financial incentive waste charge would encourage the development and utilization of extended burnup. Environmental consciousness demands that economic incentives be implemented to encourage utilities to extend burnup of their LWR fuel. This paper builds on earlier work and focuses and extends their results. The cornerstone of the positive environmental effects of extended burnup results from the increased plutonium energy generation as burnup is increased and residence time is increased.

  14. Thermionic fast spectrum reactor-converter on the basis of multi-cell TFE

    NASA Astrophysics Data System (ADS)

    Ponomarev-Stepnoi, N. N.; Kompaniets, G. V.; Poliakov, D. N.; Stepennov, B. S.; Andreev, P. V.; Zhabotinsky, E. E.; Nikolaev, Yu. V.; Lapochkin, N. V.

    2001-02-01

    Today Russian experts have technological experience in development of in-core thermionic converters for reactors of space nuclear power plants. Such a converter contains nuclear fuel inside and really represents a fuel element of a reactor. Two types of reactors can be considered on the basis of these thermionic fuel elements: with thermal or intermediate neutron spectrum, and with fast neutron spectrum. The first type is characterized by the presence of moderator in core that ensures most economical usage of nuclear fuel. The estimation shows that moderated system is the most effective in the power range of about 5 ... 100 kWe. The power systems of higher level are characterized by larger dimensions due to the presence of moderator. The second type of reactor is considered for higher power levels. This power range is about hundreds kWe. Dimensions of the fast reactor and core configuration are determined by the necessity to ensure the required net output power, on the one hand, and the necessity to ensure critical state on the other hand. In the case of using in-core thermionic fuel elements of the specified design, minimal reactor output power is determined by reactor criticality condition, and maximum reactor power output is determined by specifications and launcher capabilities. In the present paper the effective multiplication factor of a fast spectrum reactor on the basis of a multi-cell TFE developed by ``Lutch'' is considered a function of the total number of TFEs in the reactor. The MCU Monte-Carlo code, developed in Russia (Alekseev, et al., 1991), was used for computations. TFE computational models are placed in the nodes of a uniform triangular lattice and surrounded with pressure vessel and a side reflector. Ordinary fuel pins without thermionic converters were used instead of some TFEs to optimize criticality parameters, dimensions and output power of the reactor. General weight parameters of the reactor are presented in the paper. .

  15. Preliminary Study of Lead-Oxide Cooled Fast Reactor with Natural Uranium as an Input Fuel with Reactor Shuffling Strategy

    NASA Astrophysics Data System (ADS)

    Mahmudah, Rida SN; Su'ud, Zaki

    2017-01-01

    A preliminary study of lead-oxide cooled fast reactor with natural uranium as an input fuel using reactor shuffling strategy has been conducted. In this study, reactor core is divided into four zone with the same volume, each zone use different uranium enrichment. The enrichment number is estimated so that in the end of reactor’s operation, we only need to add natural uranium as the fresh input fuel. This study used UN-PuN as the fuel and lead oxide as the coolant. Several parameter studies have been conducted to determine the most suitable input condition. It is confirmed in this study that with fuel : cladding : coolant ratio of 53 : 10 : 37, and uranium enrichment in the first to the fourth zone of 0%, 6.25%, 7.5% and 8%, respectively, the reactor can operate as long as 20 years of operation with terminal k-eff of 1.0004.

  16. Experimental studies of U-Pu-Zr fast reactor fuel pins in EBR-II (Experimental Breeder Reactor)

    SciTech Connect

    Pahl, R.G.; Porter, D.L.; Lahm, C.E.; Hofman, G.L.

    1988-01-01

    The Integral Fast Reactor (IFR) is a generic reactor concept under development by Argonne National Laboratory. Much of the technology for the IFR is being demonstrated at the Experimental Breeder Reactor II (EBR-II) on the Department of Energy site near Idaho Falls, Idaho. The IFR concept relies on four technical features to achieve breakthroughs in nuclear power economics and safety: (1) a pool-type reactor configuration, (2) liquid sodium cooling, (3) metallic fuel, and (4) an integral fuel cycle with on-site reprocessing. The purpose of this paper will be to summarize our latest results of irradiation testing uranium-plutonium-zirconium (U-Pu-Zr) fuel in the EBR-II. 10 refs., 13 figs., 2 tabs.

  17. Fuel modeling at high burn-up: recent development of the GERMINAL code

    NASA Astrophysics Data System (ADS)

    Melis, J.-C.; Piron, J.-P.; Roche, L.

    1993-09-01

    In the frame of research and development on fast breeder reactors fuels, CEA/DEC is developing the computer code GERMINAL to study fuel pin thermal and mechanical behaviour during steady-state and accidental conditions. The development of the GERMINAL 1 code is foreseen in two steps: (1) The GERMINAL 1-1 version which is presently delivered fully documented with a physical qualification guaranteed up to 8 at%. (2) The GERMINAL 1-2 version which, in addition to what is presently treated in GERMINAL 1-1, includes the treatment of high burn-up effects on the the fission gas release and the fuel-clad interface (called JOG). The validation of GERMINAL 1-2 is presently in progress and will include specific experiments (JOG tests) performed in the CABRI reactor.

  18. Progress and status of the Integral Fast Reactor (IFR) development program

    SciTech Connect

    Chang, Yoon I.

    1992-04-01

    In the Integral Fast Reactor (IFR) development program, the entire reactor system -- reactor, fuel cycle, and waste process is being developed and optimized at the same time as a single integral entity. The ALMR reactor plant design is being developed by an industrial team headed by General Electric and is presented in a companion paper. Detailed discussions on the present status of the IFR technology development activities in the areas of fuels, pyroprocessing, safety, core design, and fuel cycle demonstration are presented in the other two companion papers that follows this.

  19. Progress and status of the Integral Fast Reactor (IFR) development program

    SciTech Connect

    Chang, Yoon I.

    1992-01-01

    In the Integral Fast Reactor (IFR) development program, the entire reactor system -- reactor, fuel cycle, and waste process is being developed and optimized at the same time as a single integral entity. The ALMR reactor plant design is being developed by an industrial team headed by General Electric and is presented in a companion paper. Detailed discussions on the present status of the IFR technology development activities in the areas of fuels, pyroprocessing, safety, core design, and fuel cycle demonstration are presented in the other two companion papers that follows this.

  20. The prototype fast reactor at Dounreay, Scotland. Process and engineering development for sodium removal

    SciTech Connect

    Mann, A.; Herrick, R.; Gunn, J.; Husband, W.; Smith, M.; Fletcher, B.

    2007-07-01

    Dounreay was home to commercial fast reactor development in the UK. Following the construction and operation of the Dounreay Fast Reactor, a sodium-cooled Prototype Fast Reactor (PFR), was constructed. PFR started operating in 1974, closed in 1994 and is presently being decommissioned. To date the bulk of the sodium has been removed and treated. Due to the design of the existing extraction system however, a sodium pool will remain in the heel of the reactor. To remove this sodium, a pump/camera system was developed, tested and deployed. The Water Vapour Nitrogen (WVN) process has been selected to allow removal of the final sodium residues from the reactor. Due to the design of the reactor and potential for structural damage should Normal WVN (which produces hydrated sodium hydroxide) be used, Low Concentration WVN (LC WVN) has been developed. Pilot scale testing has shown that it is possible treat the reactor within 18 months at a WVN concentration of up to 4% v/v and temperature of 120 deg. C. At present the equipment that will be used to apply LC WVN to the reactor is being developed at the detail design stage. and is expected to be deployed within the next few years. (authors)

  1. The Ongoing Impact of the U.S. Fast Reactor Integral Experiments Program

    SciTech Connect

    John D. Bess; Michael A. Pope; Harold F. McFarlane

    2012-11-01

    The creation of a large database of integral fast reactor physics experiments advanced nuclear science and technology in ways that were unachievable by less capital intensive and operationally challenging approaches. They enabled the compilation of integral physics benchmark data, validated (or not) analytical methods, and provided assurance of future rector designs The integral experiments performed at Argonne National Laboratory (ANL) represent decades of research performed to support fast reactor design and our understanding of neutronics behavior and reactor physics measurements. Experiments began in 1955 with the Zero Power Reactor No. 3 (ZPR-3) and terminated with the Zero Power Physics Reactor (ZPPR, originally the Zero Power Plutonium Reactor) in 1990 at the former ANL-West site in Idaho, which is now part of the Idaho National Laboratory (INL). Two additional critical assemblies, ZPR-6 and ZPR-9, operated at the ANL-East site in Illinois. A total of 128 fast reactor assemblies were constructed with these facilities [1]. The infrastructure and measurement capabilities are too expensive to be replicated in the modern era, making the integral database invaluable as the world pushes ahead with development of liquid metal cooled reactors.

  2. Development of a neutronics calculation method for designing commercial type Japanese sodium-cooled fast reactor

    SciTech Connect

    Takeda, T.; Shimazu, Y.; Hibi, K.; Fujimura, K.

    2012-07-01

    Under the R and D project to improve the modeling accuracy for the design of fast breeder reactors the authors are developing a neutronics calculation method for designing a large commercial type sodium- cooled fast reactor. The calculation method is established by taking into account the special features of the reactor such as the use of annular fuel pellet, inner duct tube in large fuel assemblies, large core. The Verification and Validation, and Uncertainty Qualification (V and V and UQ) of the calculation method is being performed by using measured data from the prototype FBR Monju. The results of this project will be used in the design and analysis of the commercial type demonstration FBR, known as the Japanese Sodium fast Reactor (JSFR). (authors)

  3. The combined hybrid system: A symbiotic thermal reactor/fast reactor system for power generation and radioactive waste toxicity reduction

    SciTech Connect

    Hollaway, W.R.

    1991-08-01

    If there is to be a next generation of nuclear power in the United States, then the four fundamental obstacles confronting nuclear power technology must be overcome: safety, cost, waste management, and proliferation resistance. The Combined Hybrid System (CHS) is proposed as a possible solution to the problems preventing a vigorous resurgence of nuclear power. The CHS combines Thermal Reactors (for operability, safety, and cost) and Integral Fast Reactors (for waste treatment and actinide burning) in a symbiotic large scale system. The CHS addresses the safety and cost issues through the use of advanced reactor designs, the waste management issue through the use of actinide burning, and the proliferation resistance issue through the use of an integral fuel cycle with co-located components. There are nine major components in the Combined Hybrid System linked by nineteen nuclear material mass flow streams. A computer code, CHASM, is used to analyze the mass flow rates CHS, and the reactor support ratio (the ratio of thermal/fast reactors), IFR of the system. The primary advantages of the CHS are its essentially actinide-free high-level radioactive waste, plus improved reactor safety, uranium utilization, and widening of the option base. The primary disadvantages of the CHS are the large capacity of IFRs required (approximately one MW{sub e} IFR capacity for every three MW{sub e} Thermal Reactor) and the novel radioactive waste streams produced by the CHS. The capability of the IFR to burn pure transuranic fuel, a primary assumption of this study, has yet to be proven. The Combined Hybrid System represents an attractive option for future nuclear power development; that disposal of the essentially actinide-free radioactive waste produced by the CHS provides an excellent alternative to the disposal of intact actinide-bearing Light Water Reactor spent fuel (reducing the toxicity based lifetime of the waste from roughly 360,000 years to about 510 years).

  4. Twenty-second water reactor safety information meeting. Volume 2: Severe accident research, thermal hydraulic research for advanced passive LWRs, high-burnup fuel behavior

    SciTech Connect

    Monteleone, S.

    1995-04-01

    This three-volume report contains papers presented at the Twenty-Second Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 24-26, 1994. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from Finland, France, Italy, Japan, Russia, and United Kingdom. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting.

  5. Validation Work to Support the Idaho National Engineering and Environmental Laboratory Calculational Burnup Methodology Using Shippingport Light Water Breeder Reactor (LWBR) Spent Fuel Assay Data

    SciTech Connect

    J. W. Sterbentz

    1999-08-01

    Six uranium isotopes and fourteen fission product isotopes were calculated on a mass basis at end-of-life (EOL) conditions for three fuel rods from different Light Water Breeder Reactor (LWBR) measurements. The three fuel rods evaluated here were taken from an LWBR seed module, a standard blanket module, and a reflector (Type IV) module. The calculated results were derived using a depletion methodology previously employed to evaluate many of the radionuclide inventories for spent nuclear fuels at the Idaho National Engineering and Environmental Laboratory. The primary goal of the calculational task was to further support the validation of this particular calculational methodology and its application to diverse reactor types and fuels. Result comparisons between the calculated and measured mass concentrations in the three rods indicate good agreement for the three major uranium isotopes (U-233, U-234, U-235) with differences of less than 20%. For the seed and standard blanket rod, the U-233 and U-234 differences were within 5% of the measured values (these two isotopes alone represent greater than 97% of the EOL total uranium mass). For the major krypton and xenon fission product isotopes, differences of less than 20% and less than 30% were observed, respectively. In general, good agreement was obtained for nearly all the measured isotopes. For these isotopes exhibiting significant differences, possible explanations are discussed in terms of measurement uncertainty, complex transmutations, etc.

  6. A revaluation of helium/dpa ratios for fast reactor and thermal reactor data in fission-fusion correlations

    SciTech Connect

    Garner, F.A.; Greenwood, L.R.; Oliver, B.M.

    1996-10-01

    For many years it has been accepted that significant differences exist in the helium/dpa ratios produced in fast reactors and various proposed fusion energy devices. In general, the differences arise from the much larger rate of (n,{alpha}) threshold reactions occurring in fusion devices, reactions which occur for energies {ge} 6 MeV. It now appears, however, that for nickel-containing alloys in fast reactors the difference may not have been as large as was originally anticipated. In stainless steels that have a very long incubation period for swelling, for instance, the average helium concentration over the duration of the transient regime have been demonstrated in an earlier paper to be much larger in the FFTF out-of-core regions than first calculated. The helium/dpa ratios in some experiments conducted near the core edge or just outside of the FFTF core actually increase strongly throughout the irradiation, as {sup 59}Ni slowly forms by transmutation of {sup 58}Ni. This highly exothermic {sup 59}Ni(n,{alpha}) reaction occurs in all fast reactors, but is stronger in the softer spectra of oxide-fueled cores such as FFTF and weaker in the harder spectra of metal-fueled cores such as EBR-II. The formation of {sup 59}Ni also increases strongly in out-of-core unfueled regions where the reactor spectra softens with distance from the core.

  7. ATR WG-MOX Fuel Pellet Burnup Measurement by Monte Carlo - Mass Spectrometric Method

    SciTech Connect

    Chang, Gray Sen I

    2002-10-01

    This paper presents a new method for calculating the burnup of nuclear reactor fuel, the MCWO-MS method, and describes its application to an experiment currently in progress to assess the suitability for use in light-water reactors of Mixed-OXide (MOX) fuel that contains plutonium derived from excess nuclear weapons material. To demonstrate that the available experience base with Reactor-Grade Mixed uranium-plutonium OXide (RGMOX) can be applied to Weapons-Grade (WG)-MOX in light water reactors, and to support potential licensing of MOX fuel made from weapons-grade plutonium and depleted uranium for use in United States reactors, an experiment containing WG-MOX fuel is being irradiated in the Advanced Test Reactor (ATR) at the Idaho National Engineering and Environmental Laboratory. Fuel burnup is an important parameter needed for fuel performance evaluation. For the irradiated MOX fuel’s Post-Irradiation Examination, the 148Nd method is used to measure the burnup. The fission product 148Nd is an ideal burnup indicator, when appropriate correction factors are applied. In the ATR test environment, the spectrum-dependent and burnup-dependent correction factors (see Section 5 for detailed discussion) can be substantial in high fuel burnup. The validated Monte Carlo depletion tool (MCWO) used in this study can provide a burnup-dependent correction factor for the reactor parameters, such as capture-to-fission ratios, isotopic concentrations and compositions, fission power, and spectrum in a straightforward fashion. Furthermore, the correlation curve generated by MCWO can be coupled with the 239Pu/Pu ratio measured by a Mass Spectrometer (in the new MCWO-MS method) to obtain a best-estimate MOX fuel burnup. A Monte Carlo - MCWO method can eliminate the generation of few-group cross sections. The MCWO depletion tool can analyze the detailed spatial and spectral self-shielding effects in UO2, WG-MOX, and reactor-grade mixed oxide (RG-MOX) fuel pins. The MCWO-MS tool only

  8. Method for determining fast-alpha-particle confinement in tokamak plasmas using resonant nuclear reactors

    SciTech Connect

    Cecil, F.E.; Zweben, S.J.; Medley, S.S.

    1986-03-01

    The resonant nuclear reactions D(..cap alpha..,..gamma..)/sup 6/Li, /sup 6/Li(..cap alpha..,..gamma..)/sup 10/B, and /sup 7/Li(..cap alpha..,..gamma..)/sup 11/B are examined as diagnostics of fast-alpha-particle confinement in tokamak plasmas. Gamma rays from these resonant reactions with energies from 2.1 MeV to 9.2 MeV may be used to infer the alpha-particle population between energies of 0.4 MeV and 2.6 MeV. The ratio of these alpha-burnup reactions to the reactions T(D,..gamma..)/sup 5/He and /sup 3/He(D,..gamma..)/sup 5/Li provides a technique for the measurement of alpha confinement.

  9. A Comparison of Fast-Spectrum and Moderated Space Fission Reactors

    SciTech Connect

    Poston, David I.

    2005-02-06

    The reactor neutron spectrum is one of the fundamental design choices for any fission reactor, but the implications of using a moderated spectrum are vastly different for space reactors as opposed to terrestrial reactors. In addition, the pros and cons of neutron spectra are significantly different among many of the envisioned space power applications. This paper begins with a discussion of the neutronic differences between fast-spectrum and moderated space reactors. This is followed by a discussion of the pros and cons of fast-spectrum and moderated space reactors separated into three areas--technical risk, performance, and safety/safeguards. A mix of quantitative and qualitative arguments is presented, and some conclusions generally can be made regarding neutron spectrum and space power application. In most cases, a fast-spectrum system appears to be the better alternative (mostly because of simplicity and higher potential operating temperatures); however, in some cases, such as a low-power (<100-kWt) surface reactor, a moderated spectrum could provide a better approach. In all cases, the determination of which spectrum is preferred is a strong function of the metrics provided by the 'customer' - i.e., if a certain level of performance is required, it could provide a different solution than if a certain level of safeguards is required (which in some cases could produce a null solution). The views expressed in this document are those of the author and do not necessarily reflect agreement by the Government.

  10. Fast Reactor Spent Fuel Processing: Experience and Criticality Safety

    SciTech Connect

    Chad Pope

    2007-05-01

    This paper discusses operational and criticality safety experience associated with the Idaho National Laboratory Fuel Conditioning Facility which uses a pyrometallurgical process to treat spent fast reactor metallic fuel. The process is conducted in an inert atmosphere hot cell. The process starts with chopping metallic fuel elements into a basket. The basket is lowered into molten salt (LiCl-KCl) along with a steel mandrel. Active metal fission products, transuranic metals and sodium metal in the spent fuel undergo chemical oxidation and form chlorides. Voltage is applied between the basket, which serves as an anode, and the mandrel, which serves as a cathode, causing metallic uranium in the spent fuel to undergo electro-chemical oxidation thereby forming uranium chloride. Simultaneously at the cathode, uranium chloride undergoes electro-chemical reduction and deposits uranium metal onto the mandrel. The uranium metal and accompanying entrained salt are placed in a distillation furnace where the uranium melts forming an ingot and the entrained salt boils and subsequently condenses in a separate crucible. The uranium ingots are placed in long term storage. During the ten year operating history, over one hundred criticality safety evaluations were prepared. All criticality safety related limits and controls for the entire process are contained in a single document which required over thirty revisions to accommodate the process changes. Operational implementation of the limits and controls includes use of a near real-time computerized tracking system. The tracking system uses an Oracle database coupled with numerous software applications. The computerized tracking system includes direct fuel handler interaction with every movement of material. Improvements to this system during the ten year history include introduction of web based operator interaction, tracking of moderator materials and the development of a plethora database queries to assist in day to day

  11. Yttrium and rare earth stabilized fast reactor metal fuel

    DOEpatents

    Guon, Jerold; Grantham, LeRoy F.; Specht, Eugene R.

    1992-01-01

    To increase the operating temperature of a reactor, the melting point and mechanical properties of the fuel must be increased. For an actinide-rich fuel, yttrium, lanthanum and/or rare earth elements can be added, as stabilizers, to uranium and plutonium and/or a mixture of other actinides to raise the melting point of the fuel and improve its mechanical properties. Since only about 1% of the actinide fuel may be yttrium, lanthanum, or a rare earth element, the neutron penalty is low, the reactor core size can be reduced, the fuel can be burned efficiently, reprocessing requirements are reduced, and the nuclear waste disposal volumes reduced. A further advantage occurs when yttrium, lanthanum, and/or other rare earth elements are exposed to radiation in a reactor, they produce only short half life radioisotopes, which reduce nuclear waste disposal problems through much shorter assured-isolation requirements.

  12. Effect of Control Blade History, and Axial Coolant Density and Burnup Profiles on BWR Burnup Credit

    SciTech Connect

    Ade, Brian J; Marshall, William BJ J; Martinez-Gonzalez, Jesus S

    2015-05-01

    Oak Ridge National Laboratory (ORNL) and the US Nuclear Regulatory Commission (NRC) have initiated a multiyear project to investigate the application of burnup credit (BUC) for boiling water reactor (BWR) fuel in storage and transportation systems (often referred to as casks) and spent fuel pools (SFPs). This work is divided into two main phases. The first phase investigated the applicability of peak reactivity methods currently used in SFPs to transportation and storage casks and the validation of reactivity calculations and spent fuel compositions within these methods. The second phase focuses on extending BUC beyond peak reactivity. This paper documents the analysis of the effects of control blade insertion history, and moderator density and burnup axial profiles for extended BWR BUC.

  13. An Innovative Hybrid Loop-Pool Design for Sodium Cooled Fast Reactor

    SciTech Connect

    Haihua Zhao; Hongbin Zhang

    2007-11-01

    The existing sodium cooled fast reactors (SFR) have two types of designs – loop type and pool type. In the loop type design, such as JOYO (Japan) [1] and MONJU (Japan), the primary coolant is circulated through intermediate heat exchangers (IHX) external to the reactor tank. The major advantages of loop design include compactness and easy maintenance. The disadvantage is higher possibility of sodium leakage. In the pool type design such as EBR-II (USA), BN-600M(Russia), Superphénix (France) and European Fast Reactor [2], the reactor core, primary pumps, IHXs and direct reactor auxiliary cooling system (DRACS) heat exchangers (DHX) all are immersed in a pool of sodium coolant within the reactor vessel, making a loss of primary coolant extremely unlikely. However, the pool type design makes primary system large. In the latest ANL’s Advanced Burner Test Reactor (ABTR) design [3], the primary system is configured in a pool-type arrangement. The hot sodium at core outlet temperature in hot pool is separated from the cold sodium at core inlet temperature in cold pool by a single integrated structure called Redan. Redan provides the exchange of the hot sodium from hot pool to cold pool through IHXs. The IHXs were chosen as the traditional tube-shell design. This type of IHXs is large in size and hence large reactor vessel is needed.

  14. MONTE-CARLO BURNUP CALCULATION UNCERTAINTY QUANTIFICATION AND PROPAGATION DETERMINATION

    SciTech Connect

    Sternat, M.; Nichols, T.

    2011-06-09

    Reactor burnup or depletion codes are used thoroughly in the fields of nuclear forensics and nuclear safeguards. Two common codes include MONTEBURNS and MCNPX/CINDER. These are Monte-Carlo depletion routines utilizing MCNP for neutron transport calculations and either ORIGEN or CINDER for burnup calculations. Uncertainties exist in the MCNP steps, but this information is not passed to the depletion calculations or saved. To quantify this transport uncertainty and determine how it propagates between burnup steps, a statistical analysis of multiple repeated depletion runs is performed. The reactor model chosen is the Oak Ridge Research Reactor (ORR) in a single assembly, infinite lattice configuration. This model was burned for a 150 day cycle broken down into three steps. The output isotopics as well as effective multiplication factor (k-effective) were tabulated and histograms were created at each burnup step using the Scott Method to determine the bin width. The distributions for each code are a statistical benchmark and comparisons made. It was expected that the gram quantities and k-effective histograms would produce normally distributed results since they were produced from a Monte-Carlo routine, but some of the results appear to not. Statistical analyses are performed using the {chi}{sup 2} test against a normal distribution for the k-effective results and several isotopes including {sup 134}Cs, {sup 137}Cs, {sup 235}U, {sup 238}U, {sup 237}Np, {sup 238}Pu, {sup 239}Pu, and {sup 240}Pu.

  15. Heat insulating system for a fast reactor shield slab

    DOEpatents

    Kotora, Jr., James; Groh, Edward F.; Kann, William J.; Burelbach, James P.

    1986-01-01

    Improved thermal insulation for a nuclear reactor deck comprising many helical coil springs disposed in generally parallel, side-by-side laterally overlapping or interfitted relationship to one another so as to define a three-dimensional composite having both metal and voids between the metal, and enclosure means for holding the composite to the underside of the deck.

  16. Heat insulating system for a fast reactor shield slab

    DOEpatents

    Kotora Jr., James; Groh, Edward F.; Kann, William J.; Burelbach, James P.

    1986-04-01

    Improved thermal insulation for a nuclear reactor deck comprising many helical coil springs disposed in generally parallel, side-by-side laterally overlapping or interfitted relationship to one another so as to define a three-dimensional composite having both metal and voids between the metal, and enclosure means for holding the composite to the underside of the deck.

  17. Heat insulating system for a fast reactor shield slab

    DOEpatents

    Kotora, J. Jr.; Groh, E.F.; Kann, W.J.; Burelbach, J.P.

    1984-04-10

    Improved thermal insulation for a nuclear reactor deck comprises many helical coil springs disposed in generally parallel, side-by-side laterally overlapping or interfitted relationship to one another so as to define a three-dimensional composite having both metal and voids between the metal, and enclosure means for holding the composite to the underside of the deck.

  18. Yttrium and rare earth stabilized fast reactor metal fuel

    SciTech Connect

    Guon, J.; Grantham, L.F.; Specht, E.R.

    1992-05-12

    This patent describes an improved metal alloy reactor fuel consisting essentially of uranium, plutonium, and at least one element from the group consisting of yttrium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium.

  19. The scheme for evaluation of isotopic composition of fast reactor core in closed nuclear fuel cycle

    NASA Astrophysics Data System (ADS)

    Saldikov, I. S.; Ternovykh, M. Yu; Fomichenko, P. A.; Gerasimov, A. S.

    2017-01-01

    The PRORYV (i.e. «Breakthrough» in Russian) project is currently under development. Within the framework of this project, fast reactors BN-1200 and BREST-OD-300 should be built to, inter alia, demonstrate possibility of the closed nuclear fuel cycle technologies with plutonium as a main source of power. Russia has a large inventory of plutonium which was accumulated in the result of reprocessing of spent fuel of thermal power reactors and conversion of nuclear weapons. This kind of plutonium will be used for development of initial fuel assemblies for fast reactors. To solve the closed nuclear fuel modeling tasks REPRORYV code was developed. It simulates the mass flow for nuclides in the closed fuel cycle. This paper presents the results of modeling of a closed nuclear fuel cycle, nuclide flows considering the influence of the uncertainty on the outcome of neutron-physical characteristics of the reactor.

  20. Plans for the development of the IFR (Integral Fast Reactor) fuel cycle

    SciTech Connect

    Johnson, T.R.

    1986-01-01

    The Integral Fast Reactor (IFR) is a concept for a self-contained facility in which several sodium-cooled fast reactors of moderate size are located at the same site along with complete fuel-recycle and waste-treatment facilities. After the initial core loading with enriched uranium or plutonium, only natural or depleted uranium is shipped to the plant, and only wastes in final disposal forms are shipped out. The reactors have driver and blanket fuels of uranium-plutonium-zirconium alloys in stainless steel cladding. The use of metal alloy fuels is central to the IFR concept, contributing to the inherent safety of the reactor, the ease of reprocessing, and the relatively low capital and operating costs. Discharged fuels are recovered in a pyrochemical process that consists of two basic steps: an electrolytic process to separate fission products from actinides, and halide slagging to separate plutonium from uranium.

  1. CALIOP: a multichannel design code for gas-cooled fast reactors. Code description and user's guide

    SciTech Connect

    Thompson, W.I.

    1980-10-01

    CALIOP is a design code for fluid-cooled reactors composed of parallel fuel tubes in hexagonal or cylindrical ducts. It may be used with gaseous or liquid coolants. It has been used chiefly for design of a helium-cooled fast breeder reactor and has built-in cross section information to permit calculations of fuel loading, breeding ratio, and doubling time. Optional cross-section input allows the code to be used with moderated cores and with other fuels.

  2. A new code for predicting the thermo-mechanical and irradiation behavior of metallic fuels in sodium fast reactors

    NASA Astrophysics Data System (ADS)

    Karahan, Aydın; Buongiorno, Jacopo

    2010-01-01

    An engineering code to predict the irradiation behavior of U-Zr and U-Pu-Zr metallic alloy fuel pins and UO2-PuO2 mixed oxide fuel pins in sodium-cooled fast reactors was developed. The code was named Fuel Engineering and Structural analysis Tool (FEAST). FEAST has several modules working in coupled form with an explicit numerical algorithm. These modules describe fission gas release and fuel swelling, fuel chemistry and restructuring, temperature distribution, fuel-clad chemical interaction, and fuel and clad mechanical analysis including transient creep-fracture for the clad. Given the fuel pin geometry, composition and irradiation history, FEAST can analyze fuel and clad thermo-mechanical behavior at both steady-state and design-basis (non-disruptive) transient scenarios. FEAST was written in FORTRAN-90 and has a simple input file similar to that of the LWR fuel code FRAPCON. The metal-fuel version is called FEAST-METAL, and is described in this paper. The oxide-fuel version, FEAST-OXIDE is described in a companion paper. With respect to the old Argonne National Laboratory code LIFE-METAL and other same-generation codes, FEAST-METAL emphasizes more mechanistic, less empirical models, whenever available. Specifically, fission gas release and swelling are modeled with the GRSIS algorithm, which is based on detailed tracking of fission gas bubbles within the metal fuel. Migration of the fuel constituents is modeled by means of thermo-transport theory. Fuel-clad chemical interaction models based on precipitation kinetics were developed for steady-state operation and transients. Finally, a transient intergranular creep-fracture model for the clad, which tracks the nucleation and growth of the cavities at the grain boundaries, was developed for and implemented in the code. Reducing the empiricism in the constitutive models should make it more acceptable to extrapolate FEAST-METAL to new fuel compositions and higher burnup, as envisioned in advanced sodium reactors

  3. Evaluation of isotopic composition of fast reactor core in closed nuclear fuel cycle

    NASA Astrophysics Data System (ADS)

    Tikhomirov, Georgy; Ternovykh, Mikhail; Saldikov, Ivan; Fomichenko, Peter; Gerasimov, Alexander

    2017-09-01

    The strategy of the development of nuclear power in Russia provides for use of fast power reactors in closed nuclear fuel cycle. The PRORYV (i.e. «Breakthrough» in Russian) project is currently under development. Within the framework of this project, fast reactors BN-1200 and BREST-OD-300 should be built to, inter alia, demonstrate possibility of the closed nuclear fuel cycle technologies with plutonium as a main source of energy. Russia has a large inventory of plutonium which was accumulated in the result of reprocessing of spent fuel of thermal power reactors and conversion of nuclear weapons. This kind of plutonium will be used for development of initial fuel assemblies for fast reactors. The closed nuclear fuel cycle concept of the PRORYV assumes self-supplied mode of operation with fuel regeneration by neutron capture reaction in non-enriched uranium, which is used as a raw material. Operating modes of reactors and its characteristics should be chosen so as to provide the self-sufficient mode by using of fissile isotopes while refueling by depleted uranium and to support this state during the entire period of reactor operation. Thus, the actual issue is modeling fuel handling processes. To solve these problems, the code REPRORYV (Recycle for PRORYV) has been developed. It simulates nuclide streams in non-reactor stages of the closed fuel cycle. At the same time various verified codes can be used to evaluate in-core characteristics of a reactor. By using this approach various options for nuclide streams and assess the impact of different plutonium content in the fuel, fuel processing conditions, losses during fuel processing, as well as the impact of initial uncertainties on neutron-physical characteristics of reactor are considered in this study.

  4. Systems design of direct-cycle supercritical-water-cooled fast reactors

    SciTech Connect

    Oka, Yoshiaki; Koshizuka, Seiichi; Jevremovic, Tatjana; Okano, Yashushi

    1995-01-01

    The system design of a direct-cycle supercritical-water-cooled fast reactor is presented. The supercritical water does not exhibit a change of phase. the recirculation system, steam separator, and dryer of a boiling water reactor (BWR) are unnecessary. Roughly speaking, the reactor pressure vessel and control rods are similar to those of a pressurized water reactor, the containment and emergency core cooling system are similar to a BWR, and the balance of plant is similar to a supercritical-pressure fossil-fired power plant (FPP). the electric power of the fast converter is 1,508 MW(electric). The number of coolant loops is only two because of the high coolant enthalpy. Containment volume is much reduced. The thermal efficiency is improved 24% over a BWR. The coolant void reactivity is negative by placing thin zirconium-hydride layers between seeds and blankets. The power costs would be much reduced compared with those of a light water reactor (LWR) and a liquid-metal fast breeder reactor. The concept is based on the huge amount of experience with the water coolant technology of LWRs and FPPs. The oxidation of stainless steel cladding is avoided by adopting a much lower coolant temperature than that of the FPP.

  5. Under-sodium viewing technology for improvement of fast-reactor safeguards

    SciTech Connect

    Beddingfield, David H; Gerhart, Jeremy J; Kawakubo, Yoko

    2009-01-01

    The current safeguards approach for fast reactors relies exclusively on maintenance of continuity of knowledge to track the movement of fuel assemblies through these facilities. The remote handling of fuel assemblies, the visual opacity of the liquid metal coolant. and the chemical reactivity of sodium all combine and result in significant limitations on the available options to verify fuel assembly identification numbers or the integrity of these assemblies. These limitations also serve to frustrate attempts to restore the continuity-of-knowledge in instances where the information is under a variety of scenarios. The technology of ultrasonic under-sodium viewing offers new options to the safeguards community for recovering continuity-of-knowledge and applying more traditional item accountancy to fast reactor facilities. We have performed a literature review to investigate the development of under-sodium viewing technologies. In this paper we will summarize our findings and report the state of development of this technology and we will present possible applications to the fast reactor system to improve the existing safeguards approach at these reactors and in future fast reactors.

  6. Behavior of 241Am in fast reactor systems - a safeguards perspective

    SciTech Connect

    Beddingfield, David H; Lafleur, Adrienne M

    2009-01-01

    Advanced fuel-cycle developments around the world currently under development are exploring the possibility of disposing of {sup 241}Am from spent fuel recycle processes by burning this material in fast reactors. For safeguards practitioners, this approach could potentially complicate both fresh- and spent-fuel safeguards measurements. The increased ({alpha},n) production in oxide fuels from the {sup 241}Am increases the uncertainty in coincidence assay of Pu in MOX assemblies and will require additional information to make use of totals-based neutron assay of these assemblies. We have studied the behavior of {sup 241}Am-bearing MOX fuel in the fast reactor system and the effect on neutron and gamma-ray source-terms for safeguards measurements. In this paper, we will present the results of simulations of the behavior of {sup 241}Am in a fast breeder reactor system. Because of the increased use of MOX fuel in thermal reactors and advances in fuel-cycle designs aimed at americium disposal in fast reactors, we have undertaken a brief study of the behavior of americium in these systems to better understand the safeguards impacts of these new approaches. In this paper we will examine the behavior of {sup 241}Am in a variety of nuclear systems to provide insight into the safeguards implications of proposed Am disposition schemes.

  7. Neutronic/Thermalhydraulic Coupling Technigues for Sodium Cooled Fast Reactor Simulations

    SciTech Connect

    Jean Ragusa; Andrew Siegel; Jean-Michel Ruggieri

    2010-09-28

    The objective of this project was to test new coupling algorithms and enable efficient and scalable multi-physics simulations of advanced nuclear reactors, with considerations regarding the implementation of such algorithms in massively parallel environments. Numerical tests were carried out to verify the proposed approach and the examples included some reactor transients. The project was directly related to the Sodium Fast Reactor program element of the Generation IV Nuclear Energy Systems Initiative and the Advanced Fuel cycle Initiative, and, supported the requirement of high-fidelity simulation as a mean of achieving the goals of the presidential Global Nuclear Energy Partnership (GNEP) vision.

  8. Use of Multi-Purpose Modular Fast Reactors SVBR-75/100 in Market Conditions

    SciTech Connect

    Zrodnikov, A.V.; Toshinsky, G.I.; Komlev, O.G.; Dragunov, Yu.G.; Stepanov, V.S.; Klimov, N.N.; Kopytov, I.I.; Krushelnitsky, V.N.

    2006-07-01

    This report presents an innovative nuclear power technology (NPT), based on the use of modular type fast-neutron reactors (FR) (SVBR-75/100) having heavy liquid-metal coolant (HLMC) i.e. eutectic lead-bismuth alloy, which was mastered in Russia for the nuclear submarine (NS) reactors. Reactor SVBR-75/100 possesses inherent self-protection and passive safety properties that allows elimination of many safety systems necessary for traditional type reactors. Use of this NPT makes it possible to eliminate conflicting requirements among safety needs and economic factors, which is particularly found in traditional reactors, to increase considerably the investment attractiveness of nuclear power (NP) based on the use of fast-neutron reactors for the near future, when the cost of natural uranium is low and to assure NP development in the market conditions. On the basis of the factory-fabricated 'standard' reactor modules, it is possible to construct the nuclear power plants (NPP) with different power and purposes. (authors)

  9. The performance of ENDF/B-V. 2 nuclear data for fast reactor calculations

    SciTech Connect

    Atkinson, C.A.; Collins, P.J.

    1987-01-01

    Calculations with ENDF/B-V.2 data have been made for twenty-five fast-spectrum integral assemblies covering a wide range of sizes and compositions. Analysis was done by transport codes with refined cross section processing methods and detailed reactor modelling. The predictions of fission rate distributions and control rod worths were emphasized for the more prototypic benchmark cores. The results show considerable improvements in agreement with experiment compared with analysis using ENDF/B-IV data, but it is apparent that significant errors remain for fast reactor design calculations.

  10. High Temperature Ultrasonic Transducers for In-Service Inspection of Liquid Metal Fast Reactors

    SciTech Connect

    Griffin, Jeffrey W.; Posakony, Gerald J.; Harris, Robert V.; Baldwin, David L.; Jones, Anthony M.; Bond, Leonard J.

    2011-12-31

    In-service inspection of liquid metal (sodium) fast reactors requires the use of ultrasonic transducers capable of operating at high temperatures (>200°C), high gamma radiation fields, and the chemically reactive liquid sodium environment. In the early- to mid-1970s, the U.S. Atomic Energy Commission supported development of high-temperature, submersible single-element transducers, used for scanning and under-sodium imaging in the Fast Flux Test Facility and the Clinch River Breeder Reactor. Current work is building on this technology to develop the next generation of high-temperature linear ultrasonic transducer arrays for under-sodium viewing and in-service inspections.

  11. Fuel damage during off-normal transients in metal-fueled fast reactors

    SciTech Connect

    Kramer, J.M.; Bauer, T.H.

    1990-01-01

    Fuel damage during off-normal transients is a key issue in the safety of fast reactors because the fuel pin cladding provides the primary barrier to the release of radioactive materials. Part of the Safety Task of the Integral Fast Reactor Program is to provide assessments of the damage and margins to failure for metallic fuels over the wide range of transients that must be considered in safety analyses. This paper reviews the current status of the analytical and experimental programs that are providing the bases for these assessments. 13 refs., 2 figs.

  12. Fast-quench reactor for hydrogen and elemental carbon production from natural gas and other hydrocarbons

    DOEpatents

    Detering, Brent A.; Kong, Peter C.

    2006-08-29

    A fast-quench reactor for production of diatomic hydrogen and unsaturated carbons is provided. During the fast quench in the downstream diverging section of the nozzle, such as in a free expansion chamber, the unsaturated hydrocarbons are further decomposed by reheating the reactor gases. More diatomic hydrogen is produced, along with elemental carbon. Other gas may be added at different stages in the process to form a desired end product and prevent back reactions. The product is a substantially clean-burning hydrogen fuel that leaves no greenhouse gas emissions, and elemental carbon that may be used in powder form as a commodity for several processes.

  13. Optimization of Fast Critical Experiments to Reduce Nuclear Data Uncertainties in Support of a Fast Burner Reactor Design Concept

    NASA Astrophysics Data System (ADS)

    Stover, Tracy E., Jr.

    An optimization technique has been developed to select optimized experimental design specifications to produce data specifically designed to be assimilated to optimize a given reactor concept. Data from the optimized experiment is assimilated to generate posteriori uncertainties on the reactor concept's core attributes from which the design responses are computed. The reactor concept is then optimized with the new data to realize cost savings by reducing margin. The optimization problem iterates until an optimal experiment is found to maximize the savings. A new generation of innovative nuclear reactor designs, in particular fast neutron spectrum recycle reactors, are being considered for the application of closing the nuclear fuel cycle in the future. Safe and economical design of these reactors will require uncertainty reduction in basic nuclear data which are input to the reactor design. These data uncertainty propagate to design responses which in turn require the reactor designer to incorporate additional safety margin into the design, which often increases the cost of the reactor. Therefore basic nuclear data needs to be improved and this is accomplished through experimentation. Considering the high cost of nuclear experiments, it is desired to have an optimized experiment which will provide the data needed for uncertainty reduction such that a reactor design concept can meet its target accuracies or to allow savings to be realized by reducing the margin required due to uncertainty propagated from basic nuclear data. However, this optimization is coupled to the reactor design itself because with improved data the reactor concept can be re-optimized itself. It is thus desired to find the experiment that gives the best optimized reactor design. Methods are first established to model both the reactor concept and the experiment and to efficiently propagate the basic nuclear data uncertainty through these models to outputs. The representativity of the experiment

  14. Example Work Domain Analysis for a Reference Sodium Fast Reactor

    SciTech Connect

    Hugo, Jacques; Oxstrand, Johanna

    2015-01-01

    The nuclear industry is currently designing and building a new generation of reactors that will include different structural, functional, and environmental aspects, all of which are likely to have a significant impact on the way these plants are operated. In order to meet economic and safety objectives, these new reactors will all use advanced technologies to some extent, including new materials and advanced digital instrumentation and control systems. New technologies will affect not only operational strategies, but will also require a new approach to how functions are allocated to humans or machines to ensure optimal performance. Uncertainty about the effect of large scale changes in plant design will remain until sound technical bases are developed for new operational concepts and strategies. Up-to-date models and guidance are required for the development of operational concepts for complex socio-technical systems. This report describes how the classical Work Domain Analysis method was adapted to develop operational concept frameworks for new plants. This adaptation of the method is better able to deal with the uncertainty and incomplete information typical of first-of-a-kind designs. Practical examples are provided of the systematic application of the method in the operational analysis of sodium-cooled reactors. Insights from this application and its utility are reviewed and arguments for the formal adoption of Work Domain Analysis as a value-added part of the Systems Engineering process are presented.

  15. Fast reactor power plant design having heat pipe heat exchanger

    DOEpatents

    Huebotter, Paul R.; McLennan, George A.

    1985-01-01

    The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.

  16. Fast reactor power plant design having heat pipe heat exchanger

    DOEpatents

    Huebotter, P.R.; McLennan, G.A.

    1984-08-30

    The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.

  17. Fuel Cycle System Analysis Implications of Sodium-Cooled Metal-Fueled Fast Reactor Transuranic Conversion Ratio

    SciTech Connect

    Steven J. Piet; Edward A. Hoffman; Samuel E. Bays; Gretchen E. Matthern; Jacob J. Jacobson; Ryan Clement; David W. Gerts

    2013-03-01

    If advanced fuel cycles are to include a large number of fast reactors (FRs), what should be the transuranic (TRU) conversion ratio (CR)? The nuclear energy era started with the assumption that they should be breeder reactors (CR > 1), but the full range of possible CRs eventually received attention. For example, during the recent U.S. Global Nuclear Energy Partnership program, the proposal was burner reactors (CR < 1). Yet, more recently, Massachusetts Institute of Technology's "Future of the Nuclear Fuel Cycle" proposed CR [approximately] 1. Meanwhile, the French company EDF remains focused on breeders. At least one of the reasons for the differences of approach is different fuel cycle objectives. To clarify matters, this paper analyzes the impact of TRU CR on many parameters relevant to fuel cycle systems and therefore spans a broad range of topic areas. The analyses are based on a FR physics parameter scan of TRU CR from 0 to [approximately]1.8 in a sodium-cooled metal-fueled FR (SMFR), in which the fuel from uranium-oxide-fueled light water reactors (LWRs) is recycled directly to FRs and FRs displace LWRs in the fleet. In this instance, the FRs are sodium cooled and metal fueled. Generally, it is assumed that all TRU elements are recycled, which maximizes uranium ore utilization for a given TRU CR and waste radiotoxicity reduction and is consistent with the assumption of used metal fuel separated by electrochemical means. In these analyses, the fuel burnup was constrained by imposing a neutron fluence limit to fuel cladding to the same constant value. This paper first presents static, time-independent measures of performance for the LWR [right arrow] FR fuel cycle, including mass, heat, gamma emission, radiotoxicity, and the two figures of merit for materials for weapon attractiveness developed by C. Bathke et al. No new fuel cycle will achieve a static equilibrium in the foreseeable future. Therefore, additional analyses are shown with dynamic, time

  18. Fast wave current drive: Experimental status and reactor prospects

    SciTech Connect

    Ehst, D.A.

    1988-03-01

    The fast wave is one of the two possible wave polarizations which propagate according to the basic theory of cold plasmas. It is distinguished from the other (slow wave) branch by having an electric field vector which is mainly orthogonal to the confining magnetic field of the plasma. The plasma and fast wave qualitatively assume different behavior depending on the frequency range of the launched wave. The high frequency fast wave (HFFW), with a frequency (..omega..2..pi.. )approximately) GHz) much higher than the ion cyclotron frequency (..cap omega../sub i/), suffers electron Landau damping and drives current by supplying parallel momentum to superthermal electrons in a fashion similar to lower hybrid (slow wave) current drive. In the simple theory the HFFW should be superior to the slow wave and can propagate to very high density and temperature without impediment. Experiments, however, have not conclusively shown that HFFW current drive can be achieved at densities above the slow wave current drive limit, possibly due to conversion of the launched fast waves into slow waves by density fluctuations. Alternatively, the low frequency fast wave (LFFW), with frequencies ()approxreverse arrowlt) 100 MHz) only a few times the ion cyclotron frequency, is damped by electron Landau damping and, in a hot plasma ()approxreverse arrowgt) 10 keV), by electron transit time magnetic pumping; current drive is achieved by pushing superthermal electrons, and efficiency is prediocted to be slightly better than for lower hybrid current drive. Most significantly, the slow wave does not propagate in high density plasma when ..omega.. )approximately) ..cap omega../sub i/, so parasitic coupling to the slow wave can be avoided, and no density and temperture limitations are foreseen. Experiments with fast wve current drive invariably find current drive efficiency as good as obtained in lower hybrid experiments at comparable, low temperatures. 45 refs., 4 figs., 1 tab

  19. Fast reactor: an experimental study of thermohydraulic processes in different operating regimes

    NASA Astrophysics Data System (ADS)

    Opanasenko, A. N.; Sorokin, A. P.; Zaryugin, D. G.; Trufanov, A. A.

    2017-05-01

    Results of integrated water model studies of temperature fields and a flow pattern of a nonisothermal primary coolant in the elements of the fast neutron reactor (hereinafter, fast reactor) primary circuit with primary sodium in different regimes, such as forced circulation (FC), transition to the reactor cooldown and emergency cooldown with natural coolant convection, are presented. It is shown that, under the influence of lift forces on the nonisothermal coolant flow in the upper chamber at the periphery of its bottom region over the side shields, a stable cold coolant isothermal zone is formed, whose dimensions increase with increase of total water flowrate. An essential and stable coolant temperature stratification is detected in the peripheral area of the upper (hot) chamber over the side shields, in the pressure and cold side chambers, in the elevator baffle, in the cooling system of the reactor vessel, and in the outlet of intermediate and autonomous heat exchangers in different operating regimes. Large gradients and temperature fluctuations are registered at the interface of stratified and recycling formations. In all of the studied cooldown versions, the coolant outlet temperature at the core fuel assembly is decreased and the coolant temperature in the peripheral zone of the upper chamber is increased compared to the FC. High performance of a passive emergency cooldown system of a fast reactor (BN-1200) with submersible autonomous heat exchangers (AHE) is confirmed. Thus, in a normal operation regime, even in case of malfunction of three submersible AHEs, the temperature of the equipment inside the reactor remains within acceptable limits and decay heat removal from the reactor does not exceed safe operation limits. The obtained results can be used both for computer code verification and for approximate estimate of the reactor plant parameters on the similarity criteria basis.

  20. Problems in modeling TF ripple loss of fast alphas from a tokamak reactor

    SciTech Connect

    Hively, L.M.

    1987-01-01

    The present status of modeling TF ripple loss of fast alphas from tokamaks is summarized. The modeling issues are discussed, and several new aspects of this problem are described, including gyromotion, radial electric field, and sawtoothing. Existing models predict that TF ripple loss of fast alphas will have a low-to-moderate impact on the design of a tokamak engineering test reactor (ETR). 52 refs., 3 figs., 2 tabs.

  1. Overall plant concept for a tank-type fast reactor

    SciTech Connect

    Yamaki, Hideo; Davies, S.M.; Goodman, L.

    1984-01-01

    Japanese nuclear industries are expressing interest in the merits of the tank-type FBR as a large plant (demonstration) after JOYO (experimental, in operation) and MONJU (prototype, under construction). In response to this growing interest in a tank-type FBR demonstration plant, Hitachi has initiated a conceptual study of a 1000 MWe tank plant concept in collaboration with GE and Bechtel. Key objectives of this study have been: to select reliable and competitive tank plant concepts, with emphases on a seismic-resistant and compact tank reactor system;to select reliable shutdown heat removal system;and to identify R and D items needed for early 1990s construction. Design goals were defined as follows: capital costs must be less than twice, and as close as practical to 1.5 those of equivalent LWR plants;earthquake resistant structures to meet stringent Japanese seismic conditions must be as simple and reliable as practical;safety must be maintained at LWR-equivalent risks;and R and D needs must be limited to minimum cost for the limited time allowed. This paper summarizes the overall plant concepts with some selected topics, whereas detailed descriptions of the reactor assembly and the layout design are found in separate papers.

  2. Fuel supply of nuclear power industry with the introduction of fast reactors

    NASA Astrophysics Data System (ADS)

    Muraviev, E. V.

    2014-12-01

    The results of studies conducted for the validation of the updated development strategy for nuclear power industry in Russia in the 21st century are presented. Scenarios with different options for the reprocessing of spent fuel of thermal reactors and large-scale growth of nuclear power industry based on fast reactors of inherent safety with a breeding ratio of ˜1 in a closed nuclear fuel cycle are considered. The possibility of enhanced fuel breeding in fast reactors is also taken into account in the analysis. The potential to establish a large-scale nuclear power industry that covers 100% of the increase in electric power requirements in Russia is demonstrated. This power industry may be built by the end of the century through the introduction of fast reactors (replacing thermal ones) with a gross uranium consumption of up to ˜1 million t and the termination of uranium mining even if the reprocessing of spent fuel of thermal reactors is stopped or suffers a long-term delay.

  3. Neutronic Assessment of Transmutation Target Compositions in Heterogeneous Sodium Fast Reactor Geometries

    SciTech Connect

    Samuel E. Bays; Rodolfo M. Ferrer; Michael A. Pope; Benoit Forget; Mehdi Asgari

    2008-02-01

    The sodium fast reactor is under consideration for consuming the transuranic waste in the spent nuclear fuel generated by light water reactors. This work is concerned with specialized target assemblies for an oxide-fueled sodium fast reactor that are designed exclusively for burning the americium and higher mass actinide component of light water reactor spent nuclear fuel (SNF). The associated gamma and neutron radioactivity, as well as thermal heat, associated with decay of these actinides may significantly complicate fuel handling and fabrication of recycled fast reactor fuel. The objective of using targets is to isolate in a smaller number of assemblies these concentrations of higher actinides, thus reducing the volume of fuel having more rigorous handling requirements or a more complicated fabrication process. This is in contrast to homogeneous recycle where all recycled actinides are distributed among all fuel assemblies. Several heterogeneous core geometries were evaluated to determine the fewest target assemblies required to burn these actinides without violating a set of established fuel performance criteria. The DIF3D/REBUS code from Argonne National Laboratory was used to perform the core physics and accompanying fuel cycle calculations in support of this work. Using the REBUS code, each core design was evaluated at the equilibrium cycle condition.

  4. Helium Leak Detection of Vessels in Fuel Transfer Cell (FTC) of Prototype Fast Breeder Reactor (PFBR)

    NASA Astrophysics Data System (ADS)

    Dutta, N. G.

    2012-11-01

    Bharatiya Nabhikiya Vidyut Nigam (BHAVINI) is engaged in construction of 500MW Prototype Fast Breeder Reactor (PFBR) at Kalpak am, Chennai. In this very important and prestigious national programme Special Product Division (SPD) of M/s Kay Bouvet Engg.pvt. ltd. (M/s KBEPL) Satara is contributing in a major way by supplying many important sub-assemblies like- Under Water trolley (UWT), Airlocks (PAL, EAL) Container and Storage Rack (CSR) Vessels in Fuel Transfer Cell (FTC) etc for PFBR. SPD of KBEPL caters to the requirements of Government departments like - Department of Atomic Energy (DAE), BARC, Defense, and Government undertakings like NPCIL, BHAVINI, BHEL etc. and other precision Heavy Engg. Industries. SPD is equipped with large size Horizontal Boring Machines, Vertical Boring Machines, Planno milling, Vertical Turret Lathe (VTL) & Radial drilling Machine, different types of welding machines etc. PFBR is 500 MWE sodium cooled pool type reactor in which energy is produced by fissions of mixed oxides of Uranium and Plutonium pellets by fast neutrons and it also breeds uranium by conversion of thorium, put along with fuel rod in the reactor. In the long run, the breeder reactor produces more fuel then it consumes. India has taken the lead to go ahead with Fast Breeder Reactor Programme to produce electricity primarily because India has large reserve of Thorium. To use Thorium as further fuel in future, thorium has to be converted in Uranium by PFBR Technology.

  5. Review of Technical Studies in the United States in Support of Burnup Credit Regulatory Guidance

    SciTech Connect

    Wagner, John C; Parks, Cecil V; Mueller, Don; Gauld, Ian C

    2010-01-01

    Taking credit for the reduction in reactivity associated with fuel depletion can enable more cost-effective, higher-density storage, transport, disposal, and reprocessing of spent nuclear fuel (SNF) while maintaining sufficient subcritical margin to establish an adequate safety basis. Consequently, there continues to be considerable interest in the United States (U.S.), as well as internationally, in the increased use of burnup credit in SNF operations, particularly related to storage, transport, and disposal of commercial SNF. This interest has motivated numerous technical studies related to the application of burnup credit, both domestically and internationally, as well as the design of SNF storage, transport and disposal systems that rely on burnup credit for maintaining subcriticality. Responding to industry requests and needs, the U.S. Nuclear Regulatory Commission (NRC) initiated a burnup credit research program in 1999, with support from the Oak Ridge National Laboratory (ORNL), to develop regulatory guidance and the supporting technical bases for allowing and expanding the use of burnup credit in pressurized-water reactor SNF storage and transport applications. Although this NRC research program has not been continuous since its inception, considerable progress has been achieved in many key areas in terms of increased understanding of relevant phenomena and issues, availability of relevant information and data, and subsequently updated regulatory guidance for expanded use of burnup credit. This paper reviews technical studies performed by ORNL for the U.S. NRC burnup credit research program. Examples of topics include reactivity effects associated with reactor operating characteristics, fuel assembly characteristics, burnable absorbers, control rods, spatial burnup distributions, cooling time, and assembly misloading; methods and data for validation of isotopic composition predictions; methods and data for validation of criticality calculations; and

  6. Metal hydrides reactors with improved dynamic characteristics for a fast cycling hydrogen compressor

    NASA Astrophysics Data System (ADS)

    Popeneciu, G.; Coldea, I.; Lupu, D.; Misan, I.; Ardelean, O.

    2009-08-01

    This paper presents an investigation of coupled heat and mass transfer process in metal hydrides hydrogen storage reactors. Hydrogen storage and compression performance of our designed and developed reactors are studied by varying the operating parameters and analyzing the effects of metal hydride bed parameters. The metal alloy selected to characterize the cycling behaviour of reactors is LaNi5, material synthesized and characterized by us in the range 20-80°C. Four types of metal hydride reactors were tested with the aim to provide a fast hydrogen absorption-desorption cycle, able to be thermally cycled at rapid rates. Some new technical solutions have been studied to make a step forward in reducing the duration of the reactors cycle, which combines the effective increase of the thermal conductivity and good permeability to hydrogen gas. Dynamic characteristic of developed fast metal hydride reactors is improved using our novel mixture metal hydride-CA conductive additive due to the increased effective thermal conductivity of the alloy bed. The advanced hydride bed design with high heat transfer capabilities can be thermally cycled at a rapid rate, under 120 seconds, in order to process high hydrogen flow rates.

  7. Experiment Safety Assurance Package for the 40- to 52-GWd/MT Burnup Phase of Mixed Oxide Fuel Irradiation in Small I-hole Positions in the Advanced Test Reactor

    SciTech Connect

    S. T. Khericha; R. C. Pedersen

    2003-09-01

    This experiment safety assurance package (ESAP) is a revision of the last mixed uranium and plutonium oxide (MOX) ESAP issued in June 2002). The purpose of this revision is to provide a basis to continue irradiation up to 52 GWd/MT burnup [as predicted by MCNP (Monte Carlo N-Particle) transport code The last ESAP provided basis for irradiation, at a linear heat generation rate (LHGR) no greater than 9 kW/ft, of the highest burnup capsule assembly to 50 GWd/MT. This ESAP extends the basis for irradiation, at a LHGR no greater than 5 kW/ft, of the highest burnup capsule assembly from 50 to 52 GWd/MT.

  8. Building on knowledge base of sodium cooled fast spectrum reactors to develop materials technology for fusion reactors

    NASA Astrophysics Data System (ADS)

    Raj, Baldev; Rao, K. Bhanu Sankara

    2009-04-01

    The alloys 316L(N) and Mod. 9Cr-1Mo steel are the major structural materials for fabrication of structural components in sodium cooled fast reactors (SFRs). Various factors influencing the mechanical behaviour of these alloys and different modes of deformation and failure in SFR systems, their analysis and the simulated tests performed on components for assessment of structural integrity and the applicability of RCC-MR code for the design and validation of components are highlighted. The procedures followed for optimal design of die and punch for the near net shape forming of petals of main vessel of 500 MWe prototype fast breeder reactor (PFBR); the safe temperature and strain rate domains established using dynamic materials model for forming of 316L(N) and 9Cr-1Mo steels components by various industrial processes are illustrated. Weldability problems associated with 316L(N) and Mo. 9Cr-1Mo are briefly discussed. The utilization of artificial neural network models for prediction of creep rupture life and delta-ferrite in austenitic stainless steel welds is described. The usage of non-destructive examination techniques in characterization of deformation, fracture and various microstructural features in SFR materials is briefly discussed. Most of the experience gained on SFR systems could be utilized in developing science and technology for fusion reactors. Summary of the current status of knowledge on various aspects of fission and fusion systems with emphasis on cross fertilization of research is presented.

  9. Corrosion-resistant fuel cladding allow for liquid metal fast breeder reactors

    DOEpatents

    Brehm, Jr., William F.; Colburn, Richard P.

    1982-01-01

    An aluminide coating for a fuel cladding tube for LMFBRs (liquid metal fast breeder reactors) such as those using liquid sodium as a heat transfer agent. The coating comprises a mixture of nickel-aluminum intermetallic phases and presents good corrosion resistance to liquid sodium at temperatures up to 700.degree. C. while additionally presenting a barrier to outward diffusion of .sup.54 Mn.

  10. Gas-cooled fast reactor program. Progress report, January 1, 1980-June 30, 1981

    SciTech Connect

    Kasten, P.R.

    1981-09-01

    Since the national Gas-Cooled Fast Breeder Reactor Program has been terminated, this document is the last progress report until reinstatement. It is divided into three sections: Core Flow Test Loop, GCFR shielding and physics, and GCFR pressure vessel and closure studies. (DLC)

  11. Catalytic fast pyrolysis of white oak wood in-situ using a bubbling fluidized bed reactor

    USDA-ARS?s Scientific Manuscript database

    Catalytic fast pyrolysis was performed on white oak wood using two zeolite-type catalysts as bed material in a bubbling fluidized bed reactor. The two catalysts chosen, based on a previous screening study, were Ca2+ exchanged Y54 (Ca-Y54) and a proprietary ß-zeolite type catalyst (catalyst M) both ...

  12. Space radiation studies at the White Sands Missile Range Fast Burst Reactor

    NASA Technical Reports Server (NTRS)

    Delapaz, A.

    1972-01-01

    The operation of the White Sands Missile Range Fast Burst Reactor is discussed. Space radiation studies in radiobiology, dosimetry, and transient radiation effects on electronic systems and components are described. Proposed modifications to increase the capability of the facility are discussed.

  13. Metallic fast reactor fuel fabrication for the global nuclear energy partnership

    NASA Astrophysics Data System (ADS)

    Burkes, Douglas E.; Fielding, Randall S.; Porter, Douglas L.

    2009-07-01

    Fast reactors are once again being considered for nuclear power generation, in addition to transmutation of long-lived fission products resident in spent nuclear fuels. This re-consideration follows with intense developmental programs for both fuel and reactor design. One of the two leading candidates for next generation fast reactor fuel is metal alloys, resulting primarily from the successes achieved in the 1960s to early 1990s with both the experimental breeding reactor-II and the fast flux test facility. The goal of the current program is to develop and qualify a nuclear fuel system that performs all of the functions of a conventional, fast-spectrum nuclear fuel while destroying recycled actinides, thereby closing the nuclear fuel cycle. In order to meet this goal, the program must develop efficient and safe fuel fabrication processes designed for remote operation. This paper provides an overview of advanced casting processes investigated in the past, and the development of a gaseous diffusion calculation that demonstrates how straightforward process parameter modification can mitigate the loss of volatile minor actinides in the metal alloy melt.

  14. Fabrication Technological Development of the Oxide Dispersion Strengthened Alloy MA957 for Fast Reactor Applications

    SciTech Connect

    Hamilton, Margaret L.; Gelles, David S.; Lobsinger, Ralph J.; Johnson, Gerald D.; Brown, W. F.; Paxton, Michael M.; Puigh, Raymond J.; Eiholzer, Cheryl R.; Martinez, C.; Blotter, M. A.

    2000-02-28

    A significant amount of effort has been devoted to determining the properties and understanding the behavior of the alloy MA957 to define its potential usefulness as a cladding material in the fast breeder reactor program. The numerous characterization and fabrication studies that were conducted are documented in this report.

  15. A Numerical Model for Coupling of Neutron Diffusion and Thermomechanics in Fast Burst Reactors

    SciTech Connect

    Samet Y. Kadioglu; Dana A. Knoll; Cassiano De Oliveira

    2008-11-01

    We develop a numerical model for coupling of neutron diffusion adn termomechanics in order to stimulate transient behavior of a fast burst reactor. The problem involves solving a set of non-linear different equations which approximate neutron diffusion, temperature change, and material behavior. With this equation set we will model the transition from a supercritical to subcritical state and possible mechanical vibration.

  16. Nuclear Engineering Computer Modules, Thermal-Hydraulics, TH-2: Liquid Metal Fast Breeder Reactors.

    ERIC Educational Resources Information Center

    Reihman, Thomas C.

    This learning module is concerned with the temperature field, the heat transfer rates, and the coolant pressure drop in typical liquid metal fast breeder reactor (LMFBR) fuel assemblies. As in all of the modules of this series, emphasis is placed on developing the theory and demonstrating the use with a simplified model. The heart of the module is…

  17. Making vanadium-based radiation-resistant alloys for fast-neutron reactor pin sheaths

    NASA Astrophysics Data System (ADS)

    Votinov, S. N.; Kolotushkin, V. P.; Nikulin, S. A.; Turilina, V. Yu.

    2009-05-01

    The working conditions are considered for pin sheath materials for future fast-neutron reactors, as well as the scope for using various classes of material for the sheaths. Alloys of vanadium with titanium and chromium are found to have advantages for these conditions.

  18. Neutronic calculation of fast reactors by the EUCLID/V1 integrated code

    NASA Astrophysics Data System (ADS)

    Koltashev, D. A.; Stakhanova, A. A.

    2017-01-01

    This article considers neutronic calculation of a fast-neutron lead-cooled reactor BREST-OD-300 by the EUCLID/V1 integrated code. The main goal of development and application of integrated codes is a nuclear power plant safety justification. EUCLID/V1 is integrated code designed for coupled neutronics, thermomechanical and thermohydraulic fast reactor calculations under normal and abnormal operating conditions. EUCLID/V1 code is being developed in the Nuclear Safety Institute of the Russian Academy of Sciences. The integrated code has a modular structure and consists of three main modules: thermohydraulic module HYDRA-IBRAE/LM/V1, thermomechanical module BERKUT and neutronic module DN3D. In addition, the integrated code includes databases with fuel, coolant and structural materials properties. Neutronic module DN3D provides full-scale simulation of neutronic processes in fast reactors. Heat sources distribution, control rods movement, reactivity level changes and other processes can be simulated. Neutron transport equation in multigroup diffusion approximation is solved. This paper contains some calculations implemented as a part of EUCLID/V1 code validation. A fast-neutron lead-cooled reactor BREST-OD-300 transient simulation (fuel assembly floating, decompression of passive feedback system channel) and cross-validation with MCU-FR code results are presented in this paper. The calculations demonstrate EUCLID/V1 code application for BREST-OD-300 simulating and safety justification.

  19. Progress and status of the Integral Fast Reactor (IFR) fuel cycle development

    SciTech Connect

    Till, C.E.; Chang, Y.I.

    1993-03-01

    The Integral Fast Reactor (IFR) fuel cycle holds promise for substantial improvements in economics, diversion-resistance, and waste management. This paper discusses technical features of the IFR fuel cycle, its technical progress, the development status, and the future plans and directions.

  20. Progress and status of the Integral Fast Reactor (IFR) fuel cycle development

    SciTech Connect

    Till, C.E.; Chang, Y.I.

    1993-01-01

    The Integral Fast Reactor (IFR) fuel cycle holds promise for substantial improvements in economics, diversion-resistance, and waste management. This paper discusses technical features of the IFR fuel cycle, its technical progress, the development status, and the future plans and directions.

  1. Progress and status of the Integral Fast Reactor (IFR) fuel cycle development

    SciTech Connect

    Till, C.E.; Chang, Y.I.

    1991-01-01

    The Integral Fast Reactor (IFR) fuel cycle holds promise for substantial improvements in economics, diversion-resistance, and waste management. This paper discusses technical features of the IFR fuel cycle, its technical progress, the development status, and the future plans and directions. 10 refs.

  2. Computational fluid dynamics modelling of biomass fast pyrolysis in fluidised bed reactors, focusing different kinetic schemes.

    PubMed

    Ranganathan, Panneerselvam; Gu, Sai

    2016-08-01

    The present work concerns with CFD modelling of biomass fast pyrolysis in a fluidised bed reactor. Initially, a study was conducted to understand the hydrodynamics of the fluidised bed reactor by investigating the particle density and size, and gas velocity effect. With the basic understanding of hydrodynamics, the study was further extended to investigate the different kinetic schemes for biomass fast pyrolysis process. The Eulerian-Eulerian approach was used to model the complex multiphase flows in the reactor. The yield of the products from the simulation was compared with the experimental data. A good comparison was obtained between the literature results and CFD simulation. It is also found that CFD prediction with the advanced kinetic scheme is better when compared to other schemes. With the confidence obtained from the CFD models, a parametric study was carried out to study the effect of biomass particle type and size and temperature on the yield of the products.

  3. GIF sodium fast reactor project R and D on safety and operation

    SciTech Connect

    Vasile, A.; Sofu, T.; Jeong, H. Y.; Sakai, T.

    2012-07-01

    The 'Safety and Operation' project is started in 2009 within the framework of Generation-IV International Forum (GIF) Sodium Fast Reactor (SFR) research and development program. In the safety area, the project involves R and D activities on phenomenological model development and experimental programs, conceptual studies in support of the design of safety provisions, preliminary assessment of safety systems, framework and methods for analysis of safety architecture. In the operation area, the project involves R and D activities on fast reactors safety tests and analysis of reactor operations, feedback from decommissioning, in-service inspection technique development, under-sodium viewing and sodium chemistry. This paper presents a summary of such activities and the main achievements. (authors)

  4. Prediction of the thermophysical properties of molten salt fast reactor fuel from first-principles

    NASA Astrophysics Data System (ADS)

    Gheribi, A. E.; Corradini, D.; Dewan, L.; Chartrand, P.; Simon, C.; Madden, P. A.; Salanne, M.

    2014-05-01

    Molten fluorides are known to show favourable thermophysical properties which make them good candidate coolants for nuclear fission reactors. Here we investigate the special case of mixtures of lithium fluoride and thorium fluoride, which act both as coolant and as fuel in the molten salt fast reactor concept. By using ab initio parameterised polarisable force fields, we show that it is possible to calculate the whole set of properties (density, thermal expansion, heat capacity, viscosity and thermal conductivity) which are necessary for assessing the heat transfer performance of the melt over the whole range of compositions and temperatures. We then deduce from our calculations several figures of merit which are important in helping the optimisation of the design of molten salt fast reactors.

  5. Modeling the behavior of metallic fast reactor fuels during extended transients

    SciTech Connect

    Kramer, J.M.; Liu, Y.Y.; Billone, M.C.; Tsai, H.C.

    1992-01-01

    Passive safety features in the metal-fueled Integral Fast Reactor (IFR) make it possible to avoid core damage for extended time periods even when automatic scram systems fail to operate or heat removal systems are severely degraded. The time scale for these transients are intermediate between those that have traditionally been analyzed in fast reactor safety assessments and those of normal operation. Consequently, it has been necessary to validate models and computer codes (FPIN2 and LIFE-METAL) for application to this time regime. Results from out-of-reactor Whole Pin Furnace tests are being used for this purpose. Pretest predictions for tests FM-1 through FM-6 have been performed and calculations have been compared with the experimental measurements.

  6. Modeling the behavior of metallic fast reactor fuels during extended transients

    SciTech Connect

    Kramer, J.M.; Liu, Y.Y.; Billone, M.C.; Tsai, H.C.

    1992-11-01

    Passive safety features in the metal-fueled Integral Fast Reactor (IFR) make it possible to avoid core damage for extended time periods even when automatic scram systems fail to operate or heat removal systems are severely degraded. The time scale for these transients are intermediate between those that have traditionally been analyzed in fast reactor safety assessments and those of normal operation. Consequently, it has been necessary to validate models and computer codes (FPIN2 and LIFE-METAL) for application to this time regime. Results from out-of-reactor Whole Pin Furnace tests are being used for this purpose. Pretest predictions for tests FM-1 through FM-6 have been performed and calculations have been compared with the experimental measurements.

  7. Accident Analysis Simulation in Modular 300MWt Gas Cooled Fast Reactor

    NASA Astrophysics Data System (ADS)

    Zaki, Su'ud

    2017-01-01

    Safety analysis of 300MWt helium gas cooled long-life fast reactors has been performed. The analysis of unprotected loss of flow(ULOF) and unprotected rod run-out transient overpower (UTOP) are discussed. Some simulations for 300 MWt He gas cooled fast reactors has been performed and the results show that the reactor can anticipate complete pumping failure inherently by reducing power through reactivity feedback and remove the rest of heat through natural circulations. GCFR relatively has hard spectrum so it has relatively small Doppler coefficient. In the UTOP accident case the analysis has been performed against external reactivity up to 0.002dk/k. In addition the steam generator design has also consider excess power during severe UTOP case..

  8. CABRI Reactor: The fast neutron Hodoscope Calibration curves calculation with MORET

    NASA Astrophysics Data System (ADS)

    Bernard, Franck; Chevalier, Vincent; Venanzi, Damiano

    2014-06-01

    This poster presents the Hodoscope calibration curves calculation with 3D Monte Carlo code MORET. The fast neutron hodoscope is a facility of the CABRI research reactor at Cadarache (FRANCE). This hodoscope is designed to measure the fuel motion during a RIA in a pressurized water reactor. The fuel motion is measured by counting fast fission neutrons emerging from the test fuel placed in an experimental loop functioning like a Pressurized Water Reactor (T=300°C and P=155 bar), at the center of the CABRI core. The detection system of the hodoscope measures a signal which is a function of the fuel motion. The calibration curves allow then to convert the signal in a fuel mass. In order to calculate these curves, we have developed a method based on a Monte Carlo calculation code.

  9. A Pebble-Bed Breed-and-Burn Reactor

    SciTech Connect

    Greenspan, Ehud

    2016-03-31

    The primary objective of this project is to use three-dimensional fuel shuffling in order to reduce the minimum peak radiation damage of ~550 dpa present Breed-and-Burn (B&B) fast nuclear reactor cores designs (they feature 2-D fuel shuffling) call for to as close as possible to the presently accepted value of 200 dpa thereby enabling earlier commercialization of B&B reactors which could make substantial contribution to energy sustainability and economic stability without need for fuel recycling. Another objective is increasing the average discharge burnup for the same peak discharge burnup thereby (1) increasing the fuel utilization of 2-D shuffled B&B reactors and (2) reducing the reprocessing capacity required to support a given capacity of FRs that are to recycle fuel.

  10. Characterization of Neutron Field in the Experimental Fast Reactor Joyo

    NASA Astrophysics Data System (ADS)

    Sekine, Takashi; Maeda, Shigetaka; Aoyama, Takafumi

    2003-06-01

    In order to assure the reliability and accuracy of neutron flux and related characteristics such as dpa, helium production and fuel power in the irradiation test of JOYO, reactor dosimetry and neutronic calculation have been developed. The detailed calculation was conducted using transport and Monte Carlo codes with the core subassembly composition obtained by three dimensional diffusion theory. Helium Accumulation Fluence Monitor (HAFM) were also used to measure the neutron fluence. The calculation method was verified by the comparison of measured fuel power based on the PIE data and adjusted neutron flux using measured reaction rates. As a result, it was confirmed that the calculation with experimental correction can characterize the JOYO neutron field precisely and meet the specified accuracy set for each irradiation test.

  11. Proliferation resistance for fast reactors and related fuel cycles: issues and impacts

    SciTech Connect

    Pilat, Joseph F

    2010-01-01

    The prospects for a dramatic growth in nuclear power may depend to a significant degree on the effectiveness of, and the resources devoted to, plans to develop and implement technologies and approaches that strengthen proliferation resistance and nuclear materials accountability. The challenges for fast reactors and related fuel cycles are especially critical. They are being explored in the Generation IV Tnternational Forum (GIF) and the Tnternational Atomic Energy Agency's (IAEA's) International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) initiative, as well as by many states that are looking to these systems for the efficient lise of uranium resources and long-term energy security. How do any proliferation risks they may pose compare to other reactors, both existing and under development, and their fuel cycles? Can they be designed with intrinsic (technological) features to make these systems more proliferation resistant? What roles can extrinsic (institutional) features play in proliferation resistance? What are the anticipated safeguards requirements, and will new technologies and approaches need to be developed? How can safeguards be facilitated by the design process? These and other questions require a rethinking of proliferation resistance and the prospects for new technologies and other intrinsic and extrinsic features being developed that are responsive to specific issues for fast reactors and related fuel cycles and to the broader threat environment in which these systems will have to operate. There are no technologies that can wholly eliminate the risk of proliferation by a determined state, but technology and design can playa role in reducing state threats and perhaps in eliminating non-state threats. There will be a significant role for extrinsic factors, especially the various measures - from safeguards and physical protection to export controls - embodied in the international nuclear nonproliferation regime. This paper will offer

  12. Advanced Fast Reactor - 100 (AFR-100) Report for the Technical Review Panel

    SciTech Connect

    Grandy, Christopher; Sienicki, James J.; Moisseytsev, Anton; Krajtl, Lubomir; Farmer, Mitchell T.; Kim, Taek K.; Middleton, B.

    2014-06-04

    This report is written to provide an overview of the Advanced Fast Reactor-100 in the requested format for a DOE technical review panel. This report was prepared with information that is responsive to the DOE Request for Information, DE-SOL-0003674 Advanced Reactor Concepts, dated February 27, 2012 from DOE’s Office of Nuclear Energy, Office of Nuclear Reactor Technologies. The document consists of two main sections. The first section is a summary of the AFR-100 design including the innovations that are incorporated into the design. The second section contains a series of tables that respond to the various questions requested of the reactor design team from the subject DOE RFI.

  13. Freeze-casting as a Novel Manufacturing Process for Fast Reactor Fuels. Final Report

    SciTech Connect

    Wegst, Ulrike G.K.; Allen, Todd; Sridharan, Kumar

    2014-04-07

    Advanced burner reactors are designed to reduce the amount of long-lived radioactive isotopes that need to be disposed of as waste. The input feedstock for creating advanced fuel forms comes from either recycle of used light water reactor fuel or recycle of fuel from a fast burner reactor. Fuel for burner reactors requires novel fuel types based on new materials and designs that can achieve higher performance requirements (higher burn up, higher power, and greater margins to fuel melting) then yet achieved. One promising strategy to improved fuel performance is the manufacture of metal or ceramic scaffolds which are designed to allow for a well-defined placement of the fuel into the host, and this in a manner that permits greater control than that possible in the production of typical CERMET fuels.

  14. A Spherical Torus Nuclear Fusion Reactor Space Propulsion Vehicle Concept for Fast Interplanetary Travel

    NASA Technical Reports Server (NTRS)

    Williams, Craig H.; Borowski, Stanley K.; Dudzinski, Leonard A.; Juhasz, Albert J.

    1998-01-01

    A conceptual vehicle design enabling fast outer solar system travel was produced predicated on a small aspect ratio spherical torus nuclear fusion reactor. Initial requirements were for a human mission to Saturn with a greater than 5% payload mass fraction and a one way trip time of less than one year. Analysis revealed that the vehicle could deliver a 108 mt crew habitat payload to Saturn rendezvous in 235 days, with an initial mass in low Earth orbit of 2,941 mt. Engineering conceptual design, analysis, and assessment was performed on all ma or systems including payload, central truss, nuclear reactor (including divertor and fuel injector), power conversion (including turbine, compressor, alternator, radiator, recuperator, and conditioning), magnetic nozzle, neutral beam injector, tankage, start/re-start reactor and battery, refrigeration, communications, reaction control, and in-space operations. Detailed assessment was done on reactor operations, including plasma characteristics, power balance, power utilization, and component design.

  15. A Subcritical, Gas-Cooled Fast Transmutation Reactor with a Fusion Neutron Source

    SciTech Connect

    Stacey, W.M.; Beavers, V.L.; Casino, W.A.; Cheatham, J.R.; Friis, Z.W.; Green, R.D.; Hamilton, W.R.; Haufler, K.W.; Hutchinson, J.D.; Lackey, W.J.; Lorio, R.A.; Maddox, J.W.; Mandrekas, J.; Manzoor, A.A.; Noelke, C.A.; Oliveira, C. de; Park, M.; Tedder, D.W.; Terry, M.R.; Hoffman, E.A.

    2005-05-15

    A design is presented for a subcritical, He-cooled fast reactor, driven by a tokamak D-T fusion neutron source, for the transmutation of spent nuclear fuel (SNF). The reactor is fueled with coated transuranic (TRU) particles and is intended for the deep-burn (>90%) transmutation of the TRUs in SNF without reprocessing of the coated fuel particles. The reactor design is based on the materials, fuel, and separations technologies under near-term development in the U.S. Department of Energy (DOE) Nuclear Energy Program and on the plasma physics and fusion technologies under near-term development in the DOE Fusion Energy Sciences Program, with the objective of intermediate-term ({approx}2040) deployment. The physical and performance characteristics and research and development requirements of such a reactor are described.

  16. A spherical torus nuclear fusion reactor space propulsion vehicle concept for fast interplanetary travel

    NASA Astrophysics Data System (ADS)

    Williams, Craig H.; Borowski, Stanley K.; Dudzinski, Leonard A.; Juhasz, Albert J.

    1999-01-01

    A conceptual vehicle design enabling fast outer solar system travel was produced predicated on a small aspect ratio spherical torus nuclear fusion reactor. Initial requirements were for a human mission to Saturn with a>5% payload mass fraction and a one way trip time of less than one year. Analysis revealed that the vehicle could deliver a 108 mt crew habitat payload to Saturn rendezvous in 235 days, with an initial mass in low Earth orbit of 2,941 mt. Engineering conceptual design, analysis, and assessment was performed on all major systems including payload, central truss, nuclear reactor (including diverter and fuel injector), power conversion (including turbine, compressor, alternator, radiator, recuperator, and conditioning), magnetic nozzle, neutral beam injector, tankage, start/re-start reactor and battery, refrigeration, communications, reaction control, and in-space operations. Detailed assessment was done on reactor operations, including plasma characteristics, power balance, and component design.

  17. Conceptual design of module fast reactor of ultimate safety cooled by lead-bismuth alloy

    SciTech Connect

    Myasnikov, V.O.; Stekolnikov, V.V.; Stepanov, V.S.; Gorshkov, V.T.; Kulikov, M.L.; Shulyndin, V.A.; Gromov, B.F.; Kalashnikov, A.G.; Pashkin, Yu.G.

    1993-12-31

    During past time all basic problems arisen during working-out of NPP with lead-bismuth coolant were solved: physics and thermal physics of the cores, heat transfer and hydrodynamics, corrosion resistance of the structural materials and coolant technology, radiation and nuclear safety, investigations of emergency situations, development of fuel elements and absorbing elements of the reactor, equipment of the primary circuit and other circuits. A powerful experimental base equpped by unique rigs is made. A series of ship and test NPP has been constructed whereat repair of the plants and reactor refuelling are developed. Highly-skilled groups of investigators, designers and operation personnel capable of performing the development of the reactor plant with MFR within short terms have been formed. In this case MFR with lead-bismuth coolant may become the initial step in development of large-scale nuclear power engineering with fast reactors cooled by liquid lead.

  18. Fast neutron fluence of yonggwang nuclear unit 1 reactor pressure vessel

    SciTech Connect

    Yoo, C.; Km, B.; Chang, K.; Leeand, S.; Park, J.

    2006-07-01

    The Code of Federal Regulations, Title 10, Part 50, Appendix H, requires that the neutron dosimetry be present to monitor the reactor vessel throughout plant life. The Ex-Vessel Neutron Dosimetry System has been installed for Yonggwang Nuclear Unit 1 after complete withdrawal of all six in-vessel surveillance capsules. This system has been installed in the reactor cavity annulus in order to measure the fast neutron spectrum coming out through the reactor pressure vessel. Cycle specific neutron transport calculations were performed to obtain the energy dependent neutron flux throughout the reactor geometry including dosimetry positions. Comparisons between calculations and measurements were performed for the reaction rates of each dosimetry sensors and results show good agreements. (authors)

  19. The development of the fast-running simulation pressurized water reactor plant analyzer code (NUPAC-1)

    SciTech Connect

    Sasaki, K.; Terashita, N.; Ogino, T. . Central Research Lab.)

    1989-06-01

    This article discusses a pressurized water reactor plant analyzer code (NUPAC-1) has been developed to apply to an operator support system or an advanced training simulator. The simulation code must produce reasonably accurate results as well as fun in a fast mode for realizing functions such as anomaly detection, estimation of unobservable plant internal states, and prediction of plant state trends. The NUPAC-1 code adopts fast computing methods, i.e., the table fitting method of the state variables, time-step control, and calculation control of heat transfer coefficients, in order to attain accuracy and fast-running capability.

  20. Advanced In-Service Inspection Approaches Applied to the Phenix Fast Breeder Reactor

    SciTech Connect

    Guidez, J.; Martin, L.; Dupraz, R.

    2006-07-01

    The safety upgrading of the Phenix plant undertaken between 1994 and 1997 involved a vast inspection programme of the reactor, the external storage drum and the secondary sodium circuits in order to meet the requirements of the defence-in-depth safety approach. The three lines of defence were analysed for every safety related component: demonstration of the quality of design and construction, appropriate in-service inspection and controlling the consequences of an accident. The in-service reactor block inspection programme consisted in controlling the core support structures and the high-temperature elements. Despite the fact that limited consideration had been given to inspection constraints during the design stage of the reactor in the 1960's, as compared to more recent reactor projects such as the European Fast Reactor (EFR), all the core support line elements were able to be inspected. The three following main operations are described: Ultrasonic inspection of the upper hangers of the main vessel, using small transducers able to withstand temperatures of 130 deg. C, Inspection of the conical shell supporting the core dia-grid. A specific ultrasonic method and a special implementation technique were used to control the under sodium structure welds, located up to several meters away from the scan surface. Remote inspection of the hot pool structures, particularly the core cover plug after partial sodium drainage of the reactor vessel. Other inspections are also summarized: control of secondary sodium circuit piping, intermediate heat exchangers, primary sodium pumps, steam generator units and external storage drum. The pool type reactor concept, developed in France since the 1960's, presents several favourable safety and operational features. The feedback from the Phenix plant also shows real potential for in-service inspection. The design of future generation IV sodium fast reactors will benefit from the experience acquired from the Phenix plant. (authors)

  1. Improving proliferation resistance of high breeding gain generation 4 reactors using blankets composed of light water reactor waste

    SciTech Connect

    Hellesen, C.; Grape, S.; Haakanson, A.; Jacobson Svaerd, S.; Jansson, P.

    2013-07-01

    Fertile blankets can be used in fast reactors to enhance the breeding gain as well as the passive safety characteristics. However, such blankets typically result in the production of weapons grade plutonium. For this reason they are often excluded from Generation IV reactor designs. In this paper we demonstrate that using blankets manufactured directly from spent light water (LWR) reactor fuel it is possible to produce a plutonium product with non-proliferation characteristics on a par with spent LWR fuel of 30-50 MWd/kg burnup. The beneficial breeding and safety characteristics are retained. (authors)

  2. Bio-oil production from palm fronds by fast pyrolysis process in fluidized bed reactor

    NASA Astrophysics Data System (ADS)

    Rinaldi, Nino; Simanungkalit, Sabar P.; Kiky Corneliasari, S.

    2017-01-01

    Fast pyrolysis process of palm fronds has been conducted in the fluidized bed reactor to yield bio-oil product (pyrolysis oil). The process employed sea sand as the heat transfer medium. The objective of this study is to design of the fluidized bed rector, to conduct fast pyrolysis process to product bio-oil from palm fronds, and to characterize the feed and bio-oil product. The fast pyrolysis process was conducted continuously with the feeding rate around 500 g/hr. It was found that the biomass conversion is about 35.5% to yield bio-oil, however this conversion is still minor. It is suggested due to the heating system inside the reactor was not enough to decompose the palm fronds as a feedstock. Moreover, the acids compounds ware mostly observed on the bio-oil product.

  3. Uncertainty Assessment for Fast Reactors Based on Nuclear Data Adjustment

    NASA Astrophysics Data System (ADS)

    Ivanova, T.; Ivanov, E.; Ecrabet, F.

    2014-04-01

    The paper presents IRSN's results of the OECD/NEA WPEC Subgroup 33 benchmark exercise which is focused upon combined use of differential and integral data using adjustment technique. The results are generated by BERING code using different sets of input data: integral parameters and sensitivity coefficients for fast benchmark experiments and applications computed by deterministic ERANOS code and Monte Carlo SCALE sequences, COMMARA-2.0 and JENDL-4.0 cross-section-covariance data and integral correlations provided by JAEA. The paper demonstrates results of the adjustment when using different input data and two adjustment algorithms implemented in BERING.

  4. Evaluation of the Initial Isothermal Physics Measurements at the Fast Flux Test Facility, a Prototypic Liquid Metal Fast Breeder Reactor

    SciTech Connect

    John D. Bess

    2010-03-01

    The Fast Flux Test Facility (FFTF) was a 400-MWt, sodium-cooled, low-pressure, high-temperature, fast-neutron flux, nuclear fission reactor plant designed for the irradiation testing of nuclear reactor fuels and materials for the development of liquid metal fast breeder reactors (LMFBRs). The FFTF was fueled with plutonium-uranium mixed oxide (MOX) and reflected by Inconel-600. Westinghouse Hanford Company operated the FFTF as part of the Hanford Engineering Development Laboratory (HEDL) for the U.S. Department of Energy on the Hanford Site near Richland, Washington. Although the FFTF was a testing facility not specifically designed to breed fuel or produce electricity, it did provide valuable information for LMFBR projects and base technology programs in the areas of plant system and component design, component fabrication, prototype testing, and site construction. The major objectives of the FFTF were to provide a strong, disciplined engineering base for the LMFBR program, provide fast flux testing for other U.S. programs, and contribute to the development of a viable self-sustaining competitive U.S. LMFBR industry. During its ten years of operation, the FFTF acted as a national research facility to test advanced nuclear fuels, materials, components, systems, nuclear power plant operating and maintenance procedures, and active and passive reactor safety technologies; it also produced a large number of isotopes for medical and industrial users, generated tritium for the U.S. fusion research program, and participated in cooperative, international research work. Prior to the implementation of the reactor characterization program, a series of isothermal physics measurements were performed; this acceptance testing program consisted of a series of control rod worths, critical rod positions, subcriticality measurements, maximum reactivity addition rates, shutdown margins, excess reactivity, and isothermal temperature coefficient reactivity. The results of these

  5. Simulation and Design of an Automatic Controller for a Fast Breeder Nuclear Reactor Power Plant.

    DTIC Science & Technology

    BREEDER REACTORS, *REACTOR CONTROL, *REACTOR REACTIVITY, COMPUTER PROGRAMMING, NEUTRON TRANSPORT THEORY, REACTOR FUELS, REACTOR FUEL CLADDING , HEAT TRANSFER, COMPUTER PROGRAMS, LOGIC CIRCUITS, THESES.

  6. Actinide recycle potential in the IFR (Integral Fast Reactor)

    SciTech Connect

    Chang, Y.I.

    1989-01-01

    Rising concern about the greenhouse effect reinforces the need to reexamine the question of a next-generation reactor concept that can contribute significantly toward substitution for fossil-based energy generation. Even with only the nuclear capacity on-line today, world-wide reasonably assured uranium resources would last for only about 50 years. If nuclear is to make a significant contribution, breeding is a fundamental requirement. Uranium resources can then be extended by two orders of magnitude, making nuclear essentially a renewable energy source. The key technical elements of the IFR concept are metallic fuel and fuel cycle technology based on pyroprocessing. Pyroprocessing is radically different from the conventional PUREX reprocessing developed for the LWR oxide fuel. Chemical feasibility of pyroprocessing has been demonstrated. The next major step in the IFR development program will be the full-scale pyroprocessing demonstration to be carried out in conjunction with EBR-II. IFR fuel cycle closure based on pyroprocessing can also have a dramatic impact on the waste management options, and in particular on the actinide recycling. 6 figs.

  7. U. S. fast reactor materials and structures program

    SciTech Connect

    Harms, W.O.; Purdy, C.M.

    1984-01-01

    The U.S. DOE has sponsored a vigorous breeder reactor materials and structures program for 15 years. Important contributions have resulted from this effort in the areas of design (inelastic rules, verified methods, seismic criteria, mechanical properties data); resolution of licensing issues (technical witnessing, confirmatory testing); construction (fabrication/welding procedures, nondestructive testing techniques); and operation (sodium purification, instrumentation and chemical analysis, radioactivity control, and in-service inspection. The national LMFBR program currently is being restructured. The Materials and Structures Program will focus its efforts in the following areas: (1) removal of anticipated licensing impediments through confirmation of the adequacy of structural design methods and criteria for components containing welds and geometric discontinuities, the generation of mechanical properties for stainless steel castings and weldments, and the evaluation of irradiation effects; (2) qualification of modified 9 Cr-1 Mo steel and tribological coatings for design flexibility; (3) development of improved inelastic design guidelines and procedures; (4) reform of design codes and standards and engineering practices, leading to simpler, less conservative rules and to simplified design analysis methods; and (5) incorporation of information from foreign program.

  8. Strategies for Application of Isotopic Uncertainties in Burnup Credit

    SciTech Connect

    Gauld, I.C.

    2002-12-23

    Uncertainties in the predicted isotopic concentrations in spent nuclear fuel represent one of the largest sources of overall uncertainty in criticality calculations that use burnup credit. The methods used to propagate the uncertainties in the calculated nuclide concentrations to the uncertainty in the predicted neutron multiplication factor (k{sub eff}) of the system can have a significant effect on the uncertainty in the safety margin in criticality calculations and ultimately affect the potential capacity of spent fuel transport and storage casks employing burnup credit. Methods that can provide a more accurate and realistic estimate of the uncertainty may enable increased spent fuel cask capacity and fewer casks needing to be transported, thereby reducing regulatory burden on licensee while maintaining safety for transporting spent fuel. This report surveys several different best-estimate strategies for considering the effects of nuclide uncertainties in burnup-credit analyses. The potential benefits of these strategies are illustrated for a prototypical burnup-credit cask design. The subcritical margin estimated using best-estimate methods is discussed in comparison to the margin estimated using conventional bounding methods of uncertainty propagation. To quantify the comparison, each of the strategies for estimating uncertainty has been performed using a common database of spent fuel isotopic assay measurements for pressurized-light-water reactor fuels and predicted nuclide concentrations obtained using the current version of the SCALE code system. The experimental database applied in this study has been significantly expanded to include new high-enrichment and high-burnup spent fuel assay data recently published for a wide range of important burnup-credit actinides and fission products. Expanded rare earth fission-product measurements performed at the Khlopin Radium Institute in Russia that contain the only known publicly-available measurement for {sup 103

  9. Temperature and burnup correlated fuel-cladding chemical interaction in U-10ZR metallic fuel

    NASA Astrophysics Data System (ADS)

    Carmack, William J.

    Metallic fuels are proposed for use in advanced sodium cooled fast reactors and provide a number of advantages over other fuel types considering their fabricability, performance, recyclability, and safety. Resistance to cladding "breach" and subsequent release of fission products and fuel constituents to the nuclear power plant primary coolant system is a key performance parameter for a nuclear fuel system. In metallic fuel, FCCI weakens the cladding, especially at high power-high temperature operation, contributing to fuel pin breach. Empirical relationships for FCCI have been developed from a large body of data collected from in-pile (EBR-II) and out-of-pile experiments [1]. However, these relationships are unreliable in predicting FCCI outside the range of EBR-II experimental data. This dissertation examines new FCCI data extracted from the MFF-series of prototypic length metallic fuel irradiations performed in the Fast Flux Test Facility (FFTF). The fuel in these assemblies operated a temperature and burnup conditions similar to that in EBR-II but with axial fuel height three times longer than EBR-II experiments. Comparing FCCI formation data from FFTF and EBR-II provides new insight into FCCI formation kinetics. A model is developed combining both production and diffusion of lanthanides to the fuel-cladding interface and subsequent reaction with the cladding. The model allows these phenomena to be influenced by fuel burnup (lanthanide concentrations) and operating temperature. Parameters in the model are adjusted to reproduce measured FCCI layer thicknesses from EBR-II and FFTF. The model predicts that, under appropriate conditions, rate of FCCI formation can be controlled by either fission product transport or by the reaction rate of the interaction species at the fuel-cladding interface. This dissertation will help forward the design of metallic fuel systems for advanced sodium cooled fast reactors by allowing the prediction of FCCI layer formation in full

  10. Progress reports for Gen IV sodium fast reactor activities FY 2007.

    SciTech Connect

    Cahalan, J. E.; Tentner, A. M.; Nuclear Engineering Division

    2007-10-04

    An important goal of the US DOE Sodium Fast Reactor (SFR) program is to develop the technology necessary to increase safety margins in future fast reactor systems. Although no decision has been made yet about who will build the next demonstration fast reactor, it seems likely that the construction team will include a combination of international companies, and the safety design philosophy for the reactor will reflect a consensus of the participating countries. A significant amount of experience in the design and safety analysis of Sodium Fast Reactors (SFR) using oxide fuel has been developed in both Japan and France during last few decades. In the US, the traditional approach to reactor safety is based on the principle of defense-in-depth, which is usually expressed in physical terms as multiple barriers to release of radioactive material (e.g. cladding, reactor vessel, containment building), but it is understood that the 'barriers' may consist of active systems or even procedures. As implemented in a reactor design, defense-in-depth is classed in levels of safety. Level 1 includes measures to specify and build a reliable design with significant safety margins that will perform according to the intentions of the designers. Level 2 consists of additional design measures, usually active systems, to protect against unlikely accidental events that may occur during the life of the plant. Level 3 design measures are intended to protect the public in the event of an extremely unlikely accident not foreseen to occur during the plant's life. All of the design measures that make up the first three levels of safety are within the design basis of the plant. Beyond Level 3, and beyond the normal design basis, there are accidents that are not expected to occur in a whole generation of plants, and it is in this class that severe accidents, i.e. accidents involving core melting, are included. Beyond design basis measures to address severe accidents are usually identified as being

  11. Integral experiment information for fast reactors: Sensitivity and uncertainty analysis of reactor performance parameters

    SciTech Connect

    Collins, P.J.

    1982-01-01

    This chapter offers a detailed analysis of uncertainties in experimental parameters for the ZPR benchmark cores. Discusses the critical facilities and measurements; the need for well documented data; the relevance of data for reactor design; uses of integral data; benchmark data; mockup cores; accuracy of experimental data; critical mass; reaction rate ratios; covariance matrices; selection of reliable integral data; cavity measurements; and the SCHERZO 556 core. Points out that substantial revisions of data in the CSEWG benchmark book have resulted from a reevaluation of analytical corrections using modern methods and codes. Concludes that the integral data presently being utilized represent a very limited base, which will be enlarged considerably before application to a wider range of power reactor parameters.

  12. EBSD and TEM Characterization of High Burn-up Mixed Oxide Fuel

    SciTech Connect

    Teague, Melissa C.; Gorman, Brian P.; Miller, Brandon D.; King, Jeffrey

    2014-01-01

    Understanding and studying the irradiation behavior of high burn-up oxide fuel is critical to licensing of future fast breeder reactors. Advancements in experimental techniques and equipment are allowing for new insights into previously irradiated samples. In this work dual column focused ion beam (FIB)/scanning electron microscope (SEM) was utilized to prepared transmission electron microscope samples from mixed oxide fuel with a burn-up of 6.7% FIMA. Utilizing the FIB/SEM for preparation resulted in samples with a dose rate of <0.5 mRem/h compared to approximately 1.1 R/h for a traditionally prepared TEM sample. The TEM analysis showed that the sample taken from the cooler rim region of the fuel pellet had approximately 2.5x higher dislocation density than that of the sample taken from the mid-radius due to the lower irradiation temperature of the rim. The dual column FIB/SEM was additionally used to prepared and serially slice approximately 25 um cubes. High quality electron back scatter diffraction (EBSD) were collected from the face at each step, showing, for the first time, the ability to obtain EBSD data from high activity irradiated fuel.

  13. The Integral Fast Reactor concept: Today's hope for tomorrow's electrical energy needs

    SciTech Connect

    Dwight, C.C.; Phipps, R.D.

    1989-01-01

    Acid rain and the greenhouse effect are getting more attention as their impacts on the environment become evident around the world. Substantial evidence indicates that fossil fuel combustion for electrical energy production activities is a key cause of those problems. A change in electrical energy production policy is essential to a stable, healthy environment. That change is inevitable, it's just a matter of when and at what cost. Vision now, instead of reaction later, both in technological development and public perception, will help to limit the costs of change. The Integral Fast Reactor (IFR) is a visionary concept developed by Argonne National Laboratory that involves electrical energy production through fissioning of heavy metals by fast neutrons in a reactor cooled by liquid sodium. Physical characteristics of the coolant and fuel give the reactor impressive characteristics of inherent and passive safety. Spent fuel is pyrochemically reprocessed and returned to the reactor in the IFR's closed fuel cycle. Advantages in waste management are realized, and the reactor has the potential for breeding, i.e., producing as much or more fuel than it uses. This paper describes the IFR concept and shows how it is today's hope for tomorrow's electrical energy needs. 14 refs., 1 fig., 1 tab.

  14. SSTAR: The U.S. Lead-Cooled Fast Reactor (LFR)

    SciTech Connect

    Smith, C F; Halsey, W G; Brown, N W; Sienicki, J J; Moisseytsev, A; Wade, D C

    2007-09-25

    It is widely recognized that the developing world is the next area for major energy demand growth, including demand for new and advanced nuclear energy systems. With limited existing industrial and grid infrastructures, there will be an important need for future nuclear energy systems that can provide small or moderate increments of electric power (10-700 MWe) on small or immature grids in developing nations. Most recently, the Global Nuclear Energy Partnership (GNEP) has identified, as one of its key objectives, the development and demonstration of concepts for small and medium sized reactors (SMRs) that can be globally deployed while assuring a high level of proliferation resistance. Lead-cooled systems offer several key advantages in meeting these goals. The small lead-cooled fast reactor concept known as the Small Secure Transportable Autonomous Reactor (SSTAR) reactor has been under ongoing development under the U.S. Generation IV Nuclear Energy Systems Initiative. It a system designed to provide energy security to developing nations while incorporating features to achieve nonproliferation aims, anticipating GNEP objectives. This paper presents the motivation for development of internationally deployable nuclear energy systems as well as a summary of one such system, SSTAR, which is the U.S. Generation IV Lead-cooled Fast Reactor system.

  15. Inherent Prevention and Mitigation of Severe Accident Consequences in Sodium-Cooled Fast Reactors

    SciTech Connect

    Roald A. Wigeland; James E. Cahalan

    2011-04-01

    Safety challenges for sodium-cooled fast reactors include maintaining core temperatures within design limits and assuring the geometry and integrity of the reactor core. Due to the high power density in the reactor core, heat removal requirements encourage the use of high-heat-transfer coolants such as liquid sodium. The variation of power across the core requires ducted assemblies to control fuel and coolant temperatures, which are also used to constrain core geometry. In a fast reactor, the fuel is not in the most neutronically reactive configuration during normal operation. Accidents leading to fuel melting, fuel pin failure, and fuel relocation can result in positive reactivity, increasing power, and possibly resulting in severe accident consequences including recriticalities that could threaten reactor and containment integrity. Inherent safety concepts, including favorable reactivity feedback, natural circulation cooling, and design choices resulting in favorable dispersive characteristics for failed fuel, can be used to increase the level of safety to the point where it is highly unlikely, or perhaps even not credible, for such severe accident consequences to occur.

  16. Ferritic steels for sodium-cooled fast reactors: Design principles and challenges

    NASA Astrophysics Data System (ADS)

    Raj, Baldev; Vijayalakshmi, M.

    2010-09-01

    An overview of the current status of development of ferritic steels for emerging fast reactor technologies is presented in this paper. The creep-resistant 9-12Cr ferritic/martensitic steels are classically known for steam generator applications. The excellent void swelling resistance of ferritic steels enabled the identification of their potential for core component applications of fast reactors. Since then, an extensive knowledge base has been generated by identifying the empirical correlations between chemistry of the steels, heat treatment, structure, and properties, in addition to their in-reactor behavior. A few concerns have also been identified which pertain to high-temperature irradiation creep, embrittlement, Type IV cracking in creep-loaded weldments, and hard zone formation in dissimilar joints. The origin of these problems and the methodologies to overcome the limitations are highlighted. Finally, the suitability of the ferritic steels is re-evaluated in the emerging scenario of the fast reactor technology, with a target of achieving better breeding ratio and improved thermal efficiency.

  17. Development of Fast Reactor Structural Integrity Monitoring Technology Using Optical Fiber Sensors

    NASA Astrophysics Data System (ADS)

    Matsuba, Ken-Ichi; Ito, Chikara; Kawahara, Hirotaka; Aoyama, Takafumi

    Significant thermal stresses are loaded onto the structures of sodium-cooled fast reactor (SFR) due to high temperature and large temperature gradients associated with employing sodium coolant with its high thermal conductivity and low heat capacity. Therefore, it is important to monitor the temperature variation, related stress and displacement, and vibration in the cooling system piping and components in order to assure structural integrity while the reactor plant is in-service. SFR structural integrity monitoring can be enhanced by an optical fiber sensor, which is capable of continuous or dispersed distribution measurements of various properties such as radiation dose, temperature, strain, displacement and acceleration. In the experimental fast reactor Joyo, displacement and vibration measurements of the primary cooling system have been carried out using Fiber Bragg Grating (FBG) sensors to evaluate the durability and measurement accuracy of FBG sensors in a high gamma-ray environment. The data were successfully obtained with no significant signal loss up to an accumulated gamma-ray dose of approximately 4×104 Gy corresponding to 120 EFPDs (effective full power days) operation. Measured displacement of the piping support was nearly equal to the calculated thermal displacement. Measured vibration power spectra of the piping support were similar to those measured with a reference acceleration sensor. The measured results indicate that the FBG sensor is suitable for monitoring the displacement and vibration aspects of fast reactor cooling system integrity in a high gamma-ray environment.

  18. Material unaccounted for at the Southwest Experimental Fast Oxide Reactor: The SEFOR MUF

    SciTech Connect

    Higinbotham, W.A.

    1994-11-07

    The U.S. Atomic Energy Commission contracted with the General Electric Company to design, construct, and operate the Southwest Experimental Fast Oxide Reactor (SEFOR) to measure the Doppler effect for fast neutron breeder reactors. It contracted with Nuclear Fuel Services to fabricate the fuel rods for the reactor. When the reactor went critical in May, 1969, it appeared that some of the mixed uranium-plutonium oxide (MOX) fuel rods did not contain the specified quantity of plutonium. The SEFOR operators soon found several fuel rods which appeared to be low in plutonium. The safeguards group at Brookhaven was asked to look into the problem and, if possible, determine how much plutonium was missing from the unirradiated rods and from the larger number which had been slightly irradiated in the reactor. It was decided that the plutonium content of the unirradiated and irradiated rods could be measured relative to a reference rod using a high resolution gamma-ray detector and also by neutron measurements using an auto-correlation circuit recently developed at the Naval Research Laboratory (NRL). During the next two years, Brookhaven personnel and C.V. Strain of NRL made several trips to the SEFOR reactor. About 250 of the 775 rods were measured by two or more methods, using a sodium-iodide detector, a high-resolution germanium detector, a neutron detector, or the reactor (to measure reactivity). The research team concluded that 4.6 {+-} 0.46 kg of plutonium was missing out of the 433 kg that the rods should have contained. This report describes the SEFOR experiment and the procedures used to determine the material unaccounted for, or MUF.

  19. The role of actinide burning and the Integral Fast Reactor in the future of nuclear power

    SciTech Connect

    Hollaway, W.R.; Lidsky, L.M.; Miller, M.M.

    1990-12-01

    A preliminary assessment is made of the potential role of actinide burning and the Integral Fast Reactor (IFR) in the future of nuclear power. The development of a usable actinide burning strategy could be an important factor in the acceptance and implementation of a next generation of nuclear power. First, the need for nuclear generating capacity is established through the analysis of energy and electricity demand forecasting models which cover the spectrum of bias from anti-nuclear to pro-nuclear. The analyses take into account the issues of global warming and the potential for technological advances in energy efficiency. We conclude, as do many others, that there will almost certainly be a need for substantial nuclear power capacity in the 2000--2030 time frame. We point out also that any reprocessing scheme will open up proliferation-related questions which can only be assessed in very specific contexts. The focus of this report is on the fuel cycle impacts of actinide burning. Scenarios are developed for the deployment of future nuclear generating capacity which exploit the advantages of actinide partitioning and actinide burning. Three alternative reactor designs are utilized in these future scenarios: The Light Water Reactor (LWR); the Modular Gas-Cooled Reactor (MGR); and the Integral Fast Reactor (FR). Each of these alternative reactor designs is described in some detail, with specific emphasis on their spent fuel streams and the back-end of the nuclear fuel cycle. Four separation and partitioning processes are utilized in building the future nuclear power scenarios: Thermal reactor spent fuel preprocessing to reduce the ceramic oxide spent fuel to metallic form, the conventional PUREX process, the TRUEX process, and pyrometallurgical reprocessing.

  20. Water storage of liquid-metal fast-breeder-reactor fuel

    SciTech Connect

    Meacham, S.A.

    1982-01-01

    The purpose of this paper is to present a general overview of a concept proposed for receiving and storing liquid metal fast breeder reactor (LMFBR) spent fuel. This work was done as part of the Consolidated Fuel Reprocessing Program (CFRP) at the Oak Ridge National Laboratory (ORNL). The CFRP has as its major objective the development of technology for reprocessing advanced nuclear reactor fuels. The program plans that research and development will be carried through to a sufficient scale, using irradiated spent fuel under plant operating conditions, to establish a basis for confident projection of reprocessing capability to support a breeder industry.

  1. Under-Sodium Viewing: A Review of Ultrasonic Imaging Technology for Liquid Metal Fast Reactors

    SciTech Connect

    Griffin, Jeffrey W.; Peters, Timothy J.; Posakony, Gerald J.; Chien, Hual-Te; Bond, Leonard J.; Denslow, Kayte M.; Sheen, Shuh-Haw; Raptis, Paul

    2009-03-27

    This current report is a summary of information obtained in the "Information Capture" task of the U.S. DOE-funded "Under Sodium Viewing (USV) Project." The goal of the multi-year USV project is to design, build, and demonstrate a state-of-the-art prototype ultrasonic viewing system tailored for periodic reactor core in-service monitoring and maintenance inspections. The study seeks to optimize system parameters, improve performance, and re-establish this key technology area which will be required to support any new U.S. liquid-metal cooled fast reactors.

  2. Fission-product data analysis from actinide samples exposed in the Dounreay Prototype Fast Reactor

    SciTech Connect

    Murphy, B.D.; Dickens, J.K.; Walker, R.L.; Newton, T.D.

    1994-12-31

    Since 1979 a cooperative agreement has been in effect between the United States and the United Kingdom to investigate the irradiation of various actinide species placed in the core of the Dounreay Prototype Fast Reactor (PFR). The irradiated species were isotopes of thorium, protactinium, uranium, neptunium, plutonium, americium, and curium. A set of actinide samples (mg quantities) was exposed to about 490 effective full power days (EFPD) of reactor operations. The fission-product results are reported here. The actinide results will be report elsewhere.

  3. Effect of accidental steam entry on gas-cooled fast reactor integral neutronics parameters

    SciTech Connect

    Bhattacharyya, S.K.; Morman, J.A.; Bucher, R.G.; Smith, D.M.; Robinson, W.R.; Bennett, E.F.

    1980-10-01

    A possible accident scenario in a gas-cooled fast reactor (GCFR) is the leakage of secondary steam into the core. A full-scale experimental study of the physics effects of such an accidental condition has been performed on the zero power reactor (ZPR)-9 critical facility at Argonne National Laboratory. The results of integral neutronics measurements performed on the simulated steam-flooded GCFR core are reported, and comparisons with corresponding results for the reference GCFR core presented. Results of calculations of these parameters with ENDF/B-IV nuclear data and standard design methods are also presented. 26 refs.

  4. A Heterogeneous Sodium Fast Reactor Designed to Transmute Minor Actinide Actinide Waste Isotopes into Plutonium Fuel

    SciTech Connect

    Samuel E. Bays

    2011-02-01

    An axial heterogeneous sodium fast reactor design is developed for converting minor actinide waste isotopes into plutonium fuel. The reactor design incorporates zirconium hydride moderating rods in an axial blanket above the active core. The blanket design traps the active core’s axial leakage for the purpose of transmuting Am-241 into Pu-238. This Pu-238 is then co-recycled with the spent driver fuel to make new driver fuel. Because Pu-238 is significantly more fissile than Am-241 in a fast neutron spectrum, the fissile worth of the initial minor actinide material is upgraded by its preconditioning via transmutation in the axial targets. Because, the Am-241 neutron capture worth is significantly stronger in a moderated epithermal spectrum than the fast spectrum, the axial targets serve as a neutron trap which recovers the axial leakage lost by the active core. The sodium fast reactor proposed by this work is designed as an overall transuranic burner. Therefore, a low transuranic conversion ratio is achieved by a degree of core flattening which increases axial leakage. Unlike a traditional “pancake” design, neutron leakage is recovered by the axial target/blanket system. This heterogeneous core design is constrained to have sodium void and Doppler reactivity worth similar to that of an equivalent homogeneous design. Because minor actinides are irradiated only once in the axial target region; elemental partitioning is not required. This fact enables the use of metal targets with electrochemical reprocessing. Therefore, the irradiation environment of both drivers and targets was constrained to ensure applicability of the established experience database for metal alloy sodium fast reactor fuels.

  5. The Fork+ burnup measurement system: Design and first measurement campaign

    SciTech Connect

    Olson, C.E.; Bronowski, D.R.; McMurtry, W.; Ewing, R.; Jordan, R.; Rivard, D.

    1998-12-31

    Previous work with the original Fork detector showed that burnup as determined by reactor records could be accurately allocated to spent nuclear fuel assemblies. The original Fork detector, designed by Los Alamos National Laboratory, used an ion chamber to measure gross gamma count and a fission chamber to measure neutrons from an activation source, {sup 244}Cm. In its review of the draft Topical Report on Burnup Credit, the US Nuclear Regulatory Commission indicated it felt uncomfortable with a measurement system that depended on reactor records for calibration. The Fork+ system was developed at Sandia National Laboratories under the sponsorship of the Electric Power Research Institute with the aim of providing this independent measurement capability. The initial Fork+ prototype was used in a measurement campaign at the Maine Yankee reactor. The campaign confirmed the applicability of the sensor approach in the Fork+ system and the efficiency of the hand-portable Fork+ prototype in making fuel assembly measurements. It also indicated potential design modifications that will be necessary before the Fork+ can be used effectively on high-burnup spent fuel.

  6. Development and application of modeling tools for sodium fast reactor inspection

    SciTech Connect

    Le Bourdais, Florian; Marchand, Benoît; Baronian, Vahan

    2014-02-18

    To support the development of in-service inspection methods for the Advanced Sodium Test Reactor for Industrial Demonstration (ASTRID) project led by the French Atomic Energy Commission (CEA), several tools that allow situations specific to Sodium cooled Fast Reactors (SFR) to be modeled have been implemented in the CIVA software and exploited. This paper details specific applications and results obtained. For instance, a new specular reflection model allows the calculation of complex echoes from scattering structures inside the reactor vessel. EMAT transducer simulation models have been implemented to develop new transducers for sodium visualization and imaging. Guided wave analysis tools have been developed to permit defect detection in the vessel shell. Application examples and comparisons with experimental data are presented.

  7. Review of ORNL-TSF shielding experiments for the gas-cooled Fast Breeder Reactor Program

    SciTech Connect

    Abbott, L.S.; Ingersoll, D.T.; Muckenthaler, F.J.; Slater, C.O.

    1982-01-01

    During the period between 1975 and 1980 a series of experiments was performed at the ORNL Tower Shielding Facility in support of the shield design for a 300-MW(e) Gas Cooled Fast Breeder Demonstration Plant. This report reviews the experiments and calculations, which included studies of: (1) neutron streaming in the helium coolant passageways in the GCFR core; (2) the effectiveness of the shield designed to protect the reactor grid plate from radiation damage; (3) the adequacy of the radial shield in protecting the PCRV (prestressed concrete reactor vessel) from radiation damage; (4) neutron streaming between abutting sections of the radial shield; and (5) the effectiveness of the exit shield in reducing the neutron fluxes in the upper plenum region of the reactor.

  8. High glucose selectivity in pressurized water hydrolysis of cellulose using ultra-fast reactors.

    PubMed

    Cantero, Danilo A; Dolores Bermejo, M; José Cocero, M

    2013-05-01

    A new reactor was developed for the selective hydrolysis of cellulose. In this study, the glucose selectivity obtained from cellulose was improved by using ultra-fast reactions in which a selective medium was combined with an effective residence time control. A selective production of glucose, fructose and cellobiose (50%) or total mono-oligo saccharides (>96%) was obtained from the cellulose in a reaction time of 0.03 s. Total cellulose conversion was achieved with a 5-hydroxymethylfural concentration lower than 5 ppm in a novel micro-reactor. Reducing the residence time from minutes to milliseconds opens the possibility of moving from the conventional m(3) to cm(3) reactor volumes.

  9. Conjugate heat transfer analysis of multiple enclosures in prototype fast breeder reactor

    SciTech Connect

    Velusamy, K.; Balaubramanian, V.; Vaidyanathan, G.; Chetal, S.C.

    1995-09-01

    Prototype Fast Breeder Reactor (PFBR) is a 500 MWe sodium cooled reactor under design. The main vessel of the reactor serves as the primary boundary. It is surrounded by a safety vessel which in turn is surrounded by biological shield. The gaps between them are filled with nitrogen. Knowledge of temperature distribution prevailing under various operating conditions is essential for the assessment of structural integrity. Due to the presence of cover gas over sodium free level within the main vessel, there are sharp gradients in temperatures. Also cover gas height reduces during station blackout conditions due to sodium level rise in main vessel caused by temperature rise. This paper describes the model used to analyse the natural convection in nitrogen, conduction in structures and radiation interaction among them. Results obtained from parametric studies for PFBR are also presented.

  10. Minor Actinide Recycle in Sodium Cooled Fast Reactors Using Heterogeneous Targets

    SciTech Connect

    Samuel Bays; Pavel Medvedev; Michael Pope; Rodolfo Ferrer; Benoit Forget; Mehdi Asgari

    2009-04-01

    This paper investigates the plausible design of transmutation target assemblies for minor actinides (MA) in Sodium Fast Reactors (SFR). A heterogeneous recycling strategy is investigated, whereby after each reactor pass, un-burned MAs from the targets are blended with MAs produced by the driver fuel and additional MAs from Spent Nuclear Fuel (SNF). A design iteration methodology was adopted for customizing the core design, target assembly design and matrix composition design. The overall design was constrained against allowable peak or maximum in-core performances. While respecting these criteria, the overall design was adjusted to reduce the total number of assemblies fabricated per refueling cycle. It was found that an inert metal-hydride MA-Zr-Hx target matrix gave the highest transmutation efficiency, thus allowing for the least number of targets to be fabricated per reactor cycle.

  11. Diversion analysis and safeguards measures for liquid metal fast breeder reactors

    SciTech Connect

    Persiani, P.J.

    1981-10-01

    The general objective of the study is to perform a diversion analysis and an assessment of the available safeguards methods and systems for verifying inventory and flow of nuclear material in accessible and inaccessible areas of liquid-metal fast breeder reactor, LMFBR, systems. The study focuses primarily on the assembly-handling operations, assembly storage facilities, and reactor operations facilities relating to existing and/or near-term planned experimental, demonstration and prototypal reactor plants. The safeguards systems and methods presented are considered to be feasible for development and for implementation within the resource limitation of the IAEA and are considered to be consistent with the objectives, requirements, and constraints of the IAEA as outlined in the IAEA documents INFCIRC/153 and INFCIRC/66-Rev-2.

  12. Development and application of modeling tools for sodium fast reactor inspection

    NASA Astrophysics Data System (ADS)

    Le Bourdais, Florian; Marchand, Benoît; Baronian, Vahan

    2014-02-01

    To support the development of in-service inspection methods for the Advanced Sodium Test Reactor for Industrial Demonstration (ASTRID) project led by the French Atomic Energy Commission (CEA), several tools that allow situations specific to Sodium cooled Fast Reactors (SFR) to be modeled have been implemented in the CIVA software and exploited. This paper details specific applications and results obtained. For instance, a new specular reflection model allows the calculation of complex echoes from scattering structures inside the reactor vessel. EMAT transducer simulation models have been implemented to develop new transducers for sodium visualization and imaging. Guided wave analysis tools have been developed to permit defect detection in the vessel shell. Application examples and comparisons with experimental data are presented.

  13. Fast-spectrum space-power-reactor concepts using boron control devices

    NASA Technical Reports Server (NTRS)

    Mayo, W.

    1973-01-01

    Several fast-spectrum space power reactor concepts that use boron carbide control devices were examined to determine the neutronic feasibility of the designs. The designs considered were (1) a 199-fuel-pin, 12-poison-reflector-control-drum reactor; (2) a 232-fuel-pin reactor with 12 reflector drums and three in-core control rods; (3) a 337-fuel-pin design with 12 incore control rods; and a 181-fuel-pin design with six drums closely coupled to the core to increase reactivity per drum. Adequate reactivity control and excess reactivity could be obtained for each concept, and the goals of 50,000 hours at 2.17 thermal megawatts with a lithium-7 coolant outlet temperature of 1222 K could be met without exceeding the 1-percent-clad-creep criterion. Heating rates in the boron carbide were calculated, but a heat transfer analysis was not done.

  14. Cladding failure margins for metallic fuel in the integral fast reactor

    SciTech Connect

    Bauer, T.H.; Fenske, G.R.; Kramer, J.M.

    1987-01-01

    The reference fuel for Integral Fast Reactor (IFR) is a ternary U-Pu-Zr alloy with a low swelling austenitic or ferritic stainless steel cladding. It is known that low melting point eutectics may form in such metallic fuel-cladding systems which could contribute to cladding failure under accident conditions. This paper will present recent measurements of cladding eutectic penetration rates for the ternary IFR alloy and will compare these results with earlier eutectic penetration data for other fuel and cladding materials. A method for calculating failure of metallic fuel pins is developed by combining cladding deformation equations with a large strain analysis where the hoop stress is calculated using the instantaneous wall thickness as determined from correlations of the eutectic penetration-rate data. This method is applied to analyze the results of in-reactor and out-of-reactor fuel pin failure tests on uranium-fissium alloy EBR-II Mark-II driver fuel.

  15. Fast reactor safety: proceedings of the international topical meeting. Volume 1

    SciTech Connect

    Not Available

    1985-07-01

    The emphasis of this meeting was on the safety-related aspects of fast reactor design, analysis, licensing, construction, and operation. Relative to past meetings, there was less emphasis on the scientific and technological basis for accident assessment. Because of its broad scope, the meeting attracted 217 attendees from a wide cross section of the design, safety analysis, and safety technology communities. Eight countries and two international organizations were represented. A total of 126 papers were presented, with contributions from the United States, France, Japan, the United Kingdom, Germany, and Italy. Sessions covered in Volume 1 include: impact of safety and licensing considerations on fast reactor design; safety aspects of innovative designs; intra-subassembly behavior; operational safety; design accommodation of seismic and other external events; natural circulation; safety design concepts; safety implications derived from operational plant data; decay heat removal; and assessment of HCDA consequences.

  16. Field test and evaluation of the passive neutron coincidence collar for prototype fast reactor fuel subassemblies

    SciTech Connect

    Menlove, H.O.; Keddar, A.

    1982-08-01

    The passive neutron Coincidence Collar, which was developed for the verification of plutonium content in fast reactor fuel subassemblies, has been field tested using Prototype Fast Reactor fuel. For passive applications, the system measures the /sup 240/Pu-effective mass from the spontaneous fission rate, and in addition, a self-interrogation technique is used to determine the fissile content in the subassembly. Both the passive and active modes were evaluated at the Windscale Works in the United Kingdom. The results of the tests gave a standard deviation 0.75% for the passive count and 3 to 7% for the active measurement for a 1000-s counting time. The unit will be used in the future for the verification of plutonium in fresh fuel assemblies.

  17. Theory, design, and operation of liquid metal fast breeder reactors, including operational health physics

    SciTech Connect

    Adams, S.R.

    1985-10-01

    A comprehensive evaluation was conducted of the radiation protection practices and programs at prototype LMFBRs with long operational experience. Installations evaluated were the Fast Flux Test Facility (FFTF), Richland, Washington; Experimental Breeder Reactor II (EBR-II), Idaho Falls, Idaho; Prototype Fast Reactor (PFR) Dounreay, Scotland; Phenix, Marcoule, France; and Kompakte Natriumgekuhlte Kernreak Toranlange (KNK II), Karlsruhe, Federal Republic of Germany. The evaluation included external and internal exposure control, respiratory protection procedures, radiation surveillance practices, radioactive waste management, and engineering controls for confining radiation contamination. The theory, design, and operating experience at LMFBRs is described. Aspects of LMFBR health physics different from the LWR experience in the United States are identified. Suggestions are made for modifications to the NRC Standard Review Plan based on the differences.

  18. Design Study of Small Pb-Bi Cooled Modified Candle Reactors

    NASA Astrophysics Data System (ADS)

    Su'ud, Zaki; Sekimoto, H.

    2010-06-01

    In this study application of modified CANDLE burnup scheme based long life Pb-Bi Cooled Fast Reactors for small long life reactors with natural Uranium as Fuel Cycle Input has been performed. The reactor cores are subdivided into several parts with the same volume in the axial directions. The natural uranium is initially put in region 1, after one cycle of 10 years of burn-up it is shifted to region 2, and 10 years after that it is shifted to region 3. This concept is applied to all regions, i.e. shifted the core of I'th region into I+1 region after the end of 10 years burn-up cycle. The first region 1 is filled by fresh natural uranium fuel. Compared to the previous works, in a smaller reactor core the criticality need to be considered more carefully especially at the beginning of life. As an optimized design, a core of 85 cm radius and 150 cm height with 300 MWt power are selected. This core can be operated 10 years without refueling or fuel shuffling. The average discharge burn-up is 350 GWd/ton HM.

  19. Calculated power distribution of a thermionic, beryllium oxide reflected, fast-spectrum reactor

    NASA Technical Reports Server (NTRS)

    Mayo, W.; Lantz, E.

    1973-01-01

    A procedure is developed and used to calculate the detailed power distribution in the fuel elements next to a beryllium oxide reflector of a fast-spectrum, thermionic reactor. The results of the calculations show that, although the average power density in these outer fuel elements is not far from the core average, the power density at the very edge of the fuel closest to the beryllium oxide is about 1.8 times the core avearge.

  20. Measurements of thermal-hydraulic parameters in liquid-metal-cooled fast-breeder reactors

    SciTech Connect

    Sackett, J.I.

    1983-01-01

    This paper discusses instrumentation for liquid-metal-cooled fast breeder reactors (LMFBR's). Included is instrumentation to measure sodium flow, pressure, temperature, acoustic noise, sodium purity, and leakage. The paper identifies the overall instrumentation requirements for LMFBR's and those aspects of instrumentation which are unique or of special concern to LMFBR systems. It also gives an overview of the status of instrument design and performance.

  1. Nuclear Data Uncertainty Propagation to Reactivity Coefficients of a Sodium Fast Reactor

    NASA Astrophysics Data System (ADS)

    Herrero, J. J.; Ochoa, R.; Martínez, J. S.; Díez, C. J.; García-Herranz, N.; Cabellos, O.

    2014-04-01

    The assessment of the uncertainty levels on the design and safety parameters for the innovative European Sodium Fast Reactor (ESFR) is mandatory. Some of these relevant safety quantities are the Doppler and void reactivity coefficients, whose uncertainties are quantified. Besides, the nuclear reaction data where an improvement will certainly benefit the design accuracy are identified. This work has been performed with the SCALE 6.1 codes suite and its multigroups cross sections library based on ENDF/B-VII.0 evaluation.

  2. Test of a prototype neutron spectrometer based on diamond detectors in a fast reactor

    SciTech Connect

    Osipenko, M.; Ripani, M.; Ricco, G.; Caiffi, B.; Pompili, F.; Pillon, M.; Angelone, M.; Verona-Rinati, G.; Cardarelli, R.; Argiro, S.

    2015-07-01

    A prototype of neutron spectrometer based on diamond detectors has been developed. This prototype consists of a {sup 6}Li neutron converter sandwiched between two CVD diamond crystals. The radiation hardness of the diamond crystals makes it suitable for applications in low power research reactors, while a low sensitivity to gamma rays and low leakage current of the detector permit to reach good energy resolution. A fast coincidence between two crystals is used to reject background. The detector was read out using two different electronic chains connected to it by a few meters of cable. The first chain was based on conventional charge-sensitive amplifiers, the other used a custom fast charge amplifier developed for this purpose. The prototype has been tested at various neutron sources and showed its practicability. In particular, the detector was calibrated in a TRIGA thermal reactor (LENA laboratory, University of Pavia) with neutron fluxes of 10{sup 8} n/cm{sup 2}s and at the 3 MeV D-D monochromatic neutron source named FNG (ENEA, Rome) with neutron fluxes of 10{sup 6} n/cm{sup 2}s. The neutron spectrum measurement was performed at the TAPIRO fast research reactor (ENEA, Casaccia) with fluxes of 10{sup 9} n/cm{sup 2}s. The obtained spectra were compared to Monte Carlo simulations, modeling detector response with MCNP and Geant4. (authors)

  3. Test case specifications for coupled neutronics-thermal hydraulics calculation of Gas-cooled Fast Reactor

    NASA Astrophysics Data System (ADS)

    Osuský, F.; Bahdanovich, R.; Farkas, G.; Haščík, J.; Tikhomirov, G. V.

    2017-01-01

    The paper is focused on development of the coupled neutronics-thermal hydraulics model for the Gas-cooled Fast Reactor. It is necessary to carefully investigate coupled calculations of new concepts to avoid recriticality scenarios, as it is not possible to ensure sub-critical state for a fast reactor core under core disruptive accident conditions. Above mentioned calculations are also very suitable for development of new passive or inherent safety systems that can mitigate the occurrence of the recriticality scenarios. In the paper, the most promising fuel material compositions together with a geometry model are described for the Gas-cooled fast reactor. Seven fuel pin and fuel assembly geometry is proposed as a test case for coupled calculation with three different enrichments of fissile material in the form of Pu-UC. The reflective boundary condition is used in radial directions of the test case and vacuum boundary condition is used in axial directions. During these condition, the nuclear system is in super-critical state and to achieve a stable state (which is numerical representation of operational conditions) it is necessary to decrease the reactivity of the system. The iteration scheme is proposed, where SCALE code system is used for collapsing of a macroscopic cross-section into few group representation as input for coupled code NESTLE.

  4. Radiogenic lead as coolant, reflector and moderator in advanced fast reactors

    NASA Astrophysics Data System (ADS)

    Kulikov, E. G.

    2017-01-01

    Main purpose of the study is assessing reasonability for recovery, production and application of radiogenic lead as a coolant, neutron moderator and neutron reflector in advanced fast reactors. When performing the study, thermal, physical and neutron-physical properties of natural and radiogenic lead were analyzed. The following results were obtained: 1. Radiogenic lead with high content of isotope 208Pb can be extracted from thorium or mixed thorium-uranium ores because 208Pb is a final product of 232Th natural decay chain. 2. The use of radiogenic lead with high 208Pb content in advanced fast reactors and accelerator-driven systems (ADS) makes it possible to improve significantly their neutron-physical and thermal-hydraulic parameters. 3. The use of radiogenic lead with high 208Pb content in advanced fast reactors as a coolant opens the possibilities for more intense fuel breeding and for application of well-known oxide fuel instead of the promising but not tested enough nitride fuel under the same safety parameters. 4. The use of radiogenic lead with high 208Pb content in ADS as a coolant can upgrade substantially the level of neutron flux in the ADS blanket, which enables effective transmutation of radioactive wastes with low cross-sections of radiative neutron capture.

  5. Numerical Modelling of a Fast Pyrolysis Process in a Bubbling Fluidized Bed Reactor

    NASA Astrophysics Data System (ADS)

    Jalalifar, S.; Ghiji, M.; Abbassi, R.; Garaniya, V.; Hawboldt, K.

    2017-07-01

    In this study, the Eulerian-Granular approach is applied to simulate a fast pyrolysis bubbling fluidized bed reactor. Fast pyrolysis converts biomass to bio-products through thermochemical conversion in absence of oxygen. The aim of this study is to employ a numerical framework for simulation of the fast pyrolysis process and extend this to more complex reactor geometries. The framework first needs to be validated and this was accomplished by modelling a lab-scale pyrolysis fluidized bed reactor in 2-D and comparing with published data. A multi-phase CFD model has been employed to obtain clearer insights into the physical phenomena associated with flow dynamics and heat transfer, and by extension the impact on reaction rates. Biomass thermally decomposes to solid, condensable and non-condensable and therefore a multi-fluid model is used. A simplified reaction model is sued where the many components are grouped into a solid reacting phase, condensable/non-condensable phase, and non-reacting solid phase (the heat carrier). The biomass decomposition is simplified to four reaction mechanisms based on the thermal decomposition of cellulose. A time-splitting method is used for coupling of multi-fluid model and reaction rates. A good agreement is witnessed in the products yield between the CFD simulation and the experiment.

  6. Comparison of PWR - Burnup calculations with SCALE 5.0/TRITON other burnup codes and experimental results

    SciTech Connect

    Oberle, P.; Broeders, C. H. M.; Dagan, R.

    2006-07-01

    The increasing tendency towards fuel lifetime extension in thermal nuclear reactors motivated validation work for available evaluation tools for nuclear fuel burnup calculations. In this study two deterministic codes with different transport solvers and one Monte Carlo method are investigated. The code system KAPROS/KARBUS uses the classical deterministic First Collision Probability method utilizing a cylinderized Wigner-Seitz cell. In the SCALES.0/TRITON/NEWT code the Extended Step Characteristic method is applied. In a first step the two deterministic codes are compared with experimental results from the KWO-Isotope Correlation Experiment up to 30 MWD/kg HM burnup, published in 1981. Two pin cell calculations are analyzed by comparison of calculated and experimental results for important heavy isotope vectors. The results are very satisfactory. Subsequently, further validation at higher burnup (< 80 MWD/kg HM) is provided by comparison of the two deterministic codes and the Monte Carlo based burnup code MONTEBURNS for PWR UO{sub 2} fuel assembly calculations. Possible reasons for differences in the results are analyzed and discussed. Especially the influence of cross section data and processing is presented. (authors)

  7. Determination of IRT-2M fuel burnup by gamma spectrometry.

    PubMed

    Koleška, Michal; Viererbl, Ladislav; Marek, Milan; Ernest, Jaroslav; Šunka, Michal; Vinš, Miroslav

    2016-01-01

    A spectrometric system was developed for evaluating spent fuel in the LVR-15 research reactor, which employs highly enriched (36%) IRT-2M-type fuel. Such system allows the measurement of detailed fission product profiles. Within these measurements, nuclides such as (137)Cs, (134)Cs, (144)Ce, (106)Ru and (154)Eu may be detected in fuel assemblies with different cooling times varying between 1.67 and 7.53 years. Burnup calculations using the MCNPX Monte Carlo code data showed good agreement with measurements, though some discrepancies were observed in certain regions. These discrepancies are attributed to the evaluation of irradiation history, reactor regulation pattern and buildup schemes.

  8. Investigation of the Effect of Fixed Absorbers on the Reactivity of PWR Spent Nuclear Fuel for Burnup Credit

    SciTech Connect

    Wagner, John C.; Sanders, Charlotta E.

    2002-08-15

    The effect of fixed absorbers on the reactivity of pressurized water reactor (PWR) spent nuclear fuel (SNF) in support of burnup-credit criticality safety analyses is examined. A fuel assembly burned in conjunction with fixed absorbers may have a higher reactivity for a given burnup than an assembly that has not used fixed absorbers. As a result, guidance on burnup credit, issued by the U.S. Nuclear Regulatory Commission's Spent Fuel Project Office, recommends restricting the use of burnup credit to assemblies that have not used burnable absorbers. This recommendation eliminates a large portion of the currently discharged SNF from loading in burnup credit casks and thus severely limits the practical usefulness of burnup credit. Therefore, data are needed to support the extension of burnup credit to additional SNF. This research investigates the effect of various fixed absorbers, including integral burnable absorbers, burnable poison rods, control rods, and axial power shaping rods, on the reactivity of PWR SNF. Trends in reactivity with relevant parameters (e.g., initial fuel enrichment, burnup and absorber type, exposure, and design) are established, and anticipated reactivity effects are quantified. Where appropriate, recommendations are offered for addressing the reactivity effects of the fixed absorbers in burnup-credit safety analyses.

  9. Design study of lead bismuth cooled fast reactors and capability of natural circulation

    NASA Astrophysics Data System (ADS)

    Oktamuliani, Sri; Su'ud, Zaki

    2015-09-01

    A preliminary study designs SPINNOR (Small Power Reactor, Indonesia, No On-Site Refueling) liquid metal Pb-Bi cooled fast reactors, fuel (U, Pu)N, 150 MWth have been performed. Neutronic calculation uses SRAC which is designed cylindrical core 2D (R-Z) 90 × 135 cm, on the core fuel composed of heterogeneous with percentage difference of PuN 10, 12, 13% and the result of calculation is effective neutron multiplication 1.0488. Power density distribution of the output SRAC is generated for thermal hydraulic calculation using Delphi based on Pascal language that have been developed. The research designed a reactor that is capable of natural circulation at inlet temperature 300 °C with variation of total mass flow rate. Total mass flow rate affect pressure drop and temperature outlet of the reactor core. The greater the total mass flow rate, the smaller the outlet temperature, but increase the pressure drop so that the chimney needed more higher to achieve natural circulation or condition of the system does not require a pump. Optimization of the total mass flow rate produces optimal reactor design on the total mass flow rate of 5000 kg/s with outlet temperature 524,843 °C but require a chimney of 6,69 meters.

  10. Design study of lead bismuth cooled fast reactors and capability of natural circulation

    SciTech Connect

    Oktamuliani, Sri Su’ud, Zaki

    2015-09-30

    A preliminary study designs SPINNOR (Small Power Reactor, Indonesia, No On-Site Refueling) liquid metal Pb-Bi cooled fast reactors, fuel (U, Pu)N, 150 MWth have been performed. Neutronic calculation uses SRAC which is designed cylindrical core 2D (R-Z) 90 × 135 cm, on the core fuel composed of heterogeneous with percentage difference of PuN 10, 12, 13% and the result of calculation is effective neutron multiplication 1.0488. Power density distribution of the output SRAC is generated for thermal hydraulic calculation using Delphi based on Pascal language that have been developed. The research designed a reactor that is capable of natural circulation at inlet temperature 300 °C with variation of total mass flow rate. Total mass flow rate affect pressure drop and temperature outlet of the reactor core. The greater the total mass flow rate, the smaller the outlet temperature, but increase the pressure drop so that the chimney needed more higher to achieve natural circulation or condition of the system does not require a pump. Optimization of the total mass flow rate produces optimal reactor design on the total mass flow rate of 5000 kg/s with outlet temperature 524,843 °C but require a chimney of 6,69 meters.

  11. SVBR-100 module-type fast reactor of the IV generation for regional power industry

    NASA Astrophysics Data System (ADS)

    Zrodnikov, A. V.; Toshinsky, G. I.; Komlev, O. G.; Stepanov, V. S.; Klimov, N. N.

    2011-08-01

    In the report the following is presented: basic conceptual provisions of the innovative nuclear power technology (NPT) based on modular fast reactors (FR) SVBR-100, summarized results of calculations of the reactor, analysis of the opportunities of multi-purpose application of such reactor facilities (RF) including export potentials with due account of nonproliferation requirements. The most important features of the proposed NPT analyzed in the report are as follows: (1) integral (monoblock) arrangement of the primary circuit equipment with entire elimination of the primary circuit pipelines and valves that considerably reduces the construction and assembly works period and coupling with high boiling point of lead-bismuth coolant (LBC) deterministically eliminates accidents of the LOCA type, (2) option for 100 MWe power and dimensions of the reactor provide: on the one hand, an opportunity to transport the reactor monoblock in factory-readiness by railway as well as other kinds of transport, on the other hand, core breeding ratio (CBR) exceeds 1 while MOX-fuel is used. The preferable area of application of RF SVBR-100 is regional and small power requiring power-units of electric power in a range of (100-600) MW, which could be used for cogeneration-based district heating while locating them nearby cities as well as for generation of electric power in a mode of load tracking in the regions with low network systems.

  12. Mass tracking and material accounting in the Integral Fast Reactor (IFR)

    SciTech Connect

    Orechwa, Y.; Adams, C.H.; White, A.M.

    1991-01-01

    The Integral Fast Reactor (IFR) is a generic advanced liquid metal cooled reactor concept being developed at Argonne National Laboratory (ANL). There are a number of technical features of the IFR which contribute to its potential as a next-generation reactor. These are associated with large safety margins with regard to off-normal events involving the heat transport system, and the use of metallic fuel which makes possible the utilization of innovative fuel cycle processes. The latter feature permits fuel cycle closure the compact, low-cost reprocessing facilities, collocated with the reactor plant. These primary features are being demonstrated in the facilities at ANL-West, utilizing Experimental Breeder Reactor 2 and the associated Fuel Cycle Facility (FCF) as an IFR prototype. The demonstration of this IFR prototype includes the design and implementation of the Mass-Tracking System (MTG). In this system, data from the operations of the FCF, including weights and batch-process parameters, are collected and maintained by the MTG running on distributed workstations. The components of the MTG System include: (1) an Oracle database manager with a Fortran interface, (2) a set of MTG Tasks'' which collect, manipulate and report data, (3) a set of MTG Terminal Sessions'' which provide some interactive control of the Tasks, and (4) a set of servers which manage the Tasks and which provide the communications link between the MTG System and Operator Control Stations, which control process equipment and monitoring devices within the FCF.

  13. Review of In-Service Inspection and Repair Technique Developments for French Liquid Metal Fast Reactors

    SciTech Connect

    Baque, F.

    2005-04-15

    In-service monitoring of nuclear plants is indispensable for both the Operator and the Regulator. The notion of in-service monitoring ranges from the continuous monitoring of the reactor in operation to the thorough in-service reactor inspection during programmed shutdowns. However, the highly specific environment found in French liquid metal fast reactor plants - Phenix and Superphenix - makes monitoring and inspection complicated because of the use of a sodium coolant that is hot, opaque, and difficult to drain.The Commissariat a l'Energie Atomique, in collaboration with its traditional French partners, Electricite de France utilities and FRAMATOME/Novatome Engineering, decided to conduct a 6-yr research and development program (1994-2000) to explore this problem vis-a-vis Superphenix, as well as the possibilities of intervening within the reactor block or on components in a sodium environment. Furthermore, the safety reevaluation of Phenix, conducted between 1994 and 2003, represented an excellent 'test bench' during which the limits of inspection processes - applied to an integrated reactor concept - were surpassed using techniques such as fuel subassembly head scanning, ultrasonic examination of the core support, and visual inspection of the cover-gas plenum following a partial sodium draining. Repair techniques were investigated for cleaning of sodium wet structure surfaces, cutting of damaged parts, and welding in sodium aerosol atmosphere. Both conventional and laser processes were tested.

  14. Preliminary safety calculations to improve the design of Molten Salt Fast Reactor

    SciTech Connect

    Brovchenko, M.; Heuer, D.; Merle-Lucotte, E.; Allibert, M.; Capellan, N.; Ghetta, V.; Laureau, A.

    2012-07-01

    Molten salt reactors are liquid fuel reactors so that they are flexible in operation but very different in the safety approach from solid fuel reactors. This study bears on the specific concept named Molten Salt Fast Reactor (MSFR). Since this new nuclear technology is in development, safety is an essential point to be considered all along the R and D studies. This paper presents the first step of the safety approach: the systematic description of the MSFR, limited here to the main systems surrounding the core. This systematic description is the basis on which we will be able to devise accidental scenarios. Thanks to the negative reactivity feedback coefficient, most accidental scenarios lead to reactor shut down. Because of the decay heat generated in the fuel salt, it must be cooled. After the description of the tools developed to calculate the residual heat, the different contributions are discussed in this study. The decay heat of fission products in the MSFR is evaluated to be low (3% of nominal power), mainly due to the reprocessing that transfers the fission products to the gas reprocessing unit. As a result, the contribution of the actinides is significant (0.5% of nominal power). The unprotected loss of heat sink transients are studied in this paper. It appears that slow transients are favorable (> 1 min) to minimize the temperature increase of the fuel salt. This work will be the basis of further safety studies as well as an essential parameter for the design of the draining system. (authors)

  15. Transient bowing of core assemblies in advanced liquid metal fast reactors

    SciTech Connect

    Kamal, S.A.; Orechwa, Y.

    1986-01-01

    Two alternative core restraint concepts are considered for a conceptual design of a 900 MWth liquid metal fast reactor core with a heterogeneous layout. The two concepts, known as limited free bowing and free flowering, are evaluated based on core bowing criteria that emphasize the enhancement of inherent reactor safety. The core reactivity change during a postulated loss of flow transient is calculated in terms of the lateral displacements and displacement-reactivity-worths of the individual assemblies. The NUBOW-3D computer code is utilized to determine the assembly deformations and interassembly forces that arise when the assemblies are subjected to temperature gradients and irradiation induced creep and swelling during the reactor operation. The assembly ducts are made of the ferritic steel HT-9 and remain in the reactor core for four-years at full power condition. Whereas both restraint systems meet the bowing criteria, a properly designed limited free bowing system appears to be more advantageous than a free flowering system from the point of view of enhancing the reactor inherent safety.

  16. Analysis on Reactor Criticality Condition and Fuel Conversion Capability Based on Different Loaded Plutonium Composition in FBR Core

    NASA Astrophysics Data System (ADS)

    Permana, Sidik; Saputra, Geby; Suzuki, Mitsutoshi; Saito, Masaki

    2017-01-01

    Reactor criticality condition and fuel conversion capability are depending on the fuel arrangement schemes, reactor core geometry and fuel burnup process as well as the effect of different fuel cycle and fuel composition. Criticality condition of reactor core and breeding ratio capability have been investigated in this present study based on fast breeder reactor (FBR) type for different loaded fuel compositions of plutonium in the fuel core regions. Loaded fuel of Plutonium compositions are based on spent nuclear fuel (SNF) of light water reactor (LWR) for different fuel burnup process and cooling time conditions of the reactors. Obtained results show that different initial fuels of plutonium gives a significant chance in criticality conditions and fuel conversion capability. Loaded plutonium based on higher burnup process gives a reduction value of criticality condition or less excess reactivity. It also obtains more fuel breeding ratio capability or more breeding gain. Some loaded plutonium based on longer cooling time of LWR gives less excess reactivity and in the same time, it gives higher breeding ratio capability of the reactors. More composition of even mass plutonium isotopes gives more absorption neutron which affects to decresing criticality or less excess reactivity in the core. Similar condition that more absorption neutron by fertile material or even mass plutonium will produce more fissile material or odd mass plutonium isotopes to increase the breeding gain of the reactor.

  17. Development of Improved Models and Designs for Coated-Particle Gas Reactor Fuels -- Final Report under the International Nuclear Energy Research Initiative (I-NERI)

    SciTech Connect

    Petti, David; Martin, Philippe; Phelip, Mayeul; Ballinger, Ronald

    2004-12-01

    The objective of this INERI project was to develop improved fuel behavior models for gas reactor coated-particle fuels and to explore improved coated-particle fuel designs that could be used reliably at very high burnups and potentially in gas-cooled fast reactors. Project participants included the Idaho National Engineering Laboratory (INEEL), Centre Étude Atomique (CEA), and the Massachusetts Institute of Technology (MIT). To accomplish the project objectives, work was organized into five tasks.

  18. Experimental investigation of a new method for advanced fast reactor shutdown cooling

    NASA Astrophysics Data System (ADS)

    Pakholkov, V. V.; Kandaurov, A. A.; Potseluev, A. I.; Rogozhkin, S. A.; Sergeev, D. A.; Troitskaya, Yu. I.; Shepelev, S. F.

    2017-07-01

    We consider a new method for fast reactor shutdown cooling using a decay heat removal system (DHRS) with a check valve. In this method, a coolant from the decay heat exchanger (DHX) immersed into the reactor upper plenum is supplied to the high-pressure plenum and, then, inside the fuel subassemblies (SAs). A check valve installed at the DHX outlet opens by the force of gravity after primary pumps (PP-1) are shut down. Experimental studies of the new and alternative methods of shutdown cooling were performed at the TISEY test facility at OKBM. The velocity fields in the upper plenum of the reactor model were obtained using the optical particle image velocimetry developed at the Institute of Applied Physics (Russian Academy of Sciences). The study considers the process of development of natural circulation in the reactor and the DHRS models and the corresponding evolution of the temperature and velocity fields. A considerable influence of the valve position in the displacer of the primary pump on the natural circulation of water in the reactor through the DHX was discovered (in some modes, circulation reversal through the DHX was obtained). Alternative DHRS designs without a shell at the DHX outlet with open and closed check valve are also studied. For an open check valve, in spite of the absence of a shell, part of the flow is supplied through the DHX pipeline and then inside the SA simulators. When simulating power modes of the reactor operation, temperature stratification of the liquid was observed, which increased in the cooling mode via the DHRS. These data qualitatively agree with the results of tests at BN-600 and BN-800 reactors.

  19. Temperature and Burnup Correlated FCCI in U-10Zr Metallic Fuel

    SciTech Connect

    William J. Carmack

    2012-05-01

    Metallic fuels are proposed for use in advanced sodium cooled fast reactors. The experience basis for metallic fuels is extensive and includes development and qualification of fuels for the Experimental Breeder Reactor I, the Experimental Breeder Reactor II, FERMI-I, and the Fast Flux Test Facility (FFTF) reactors. Metallic fuels provide a number of advantages over other fuel types in terms of fabricability, performance, recyclability, and safety. Key to the performance of all nuclear fuel systems is the resistance to “breach” and subsequent release of fission products and fuel constituents to the primary coolant system of the nuclear power plant. In metallic fuel, the experience is that significant fuel-cladding chemical (FCCI) interaction occurs and becomes prevalent at high power-high temperature operation and ultimately leads to fuel pin breach and failure. Empirical relationships for metallic fuel pin failure have been developed from a large body of in-pile and out of pile research, development, and experimentation. It has been found that significant in-pile acceleration of the FCCI rate is experienced over similar condition out-of-pile experiments. The study of FCCI in metallic fuels has led to the quantification of in-pile failure rates to establish an empirical time and temperature dependent failure limit for fuel elements. Up until now the understanding of FCCI layer formation has been limited to data generated in EBR-II experiments. This dissertation provides new FCCI data extracted from the MFF-series of metallic fuel irradiations performed in the FFTF. These fuel assemblies contain valuable information on the formation of FCCI in metallic fuels at a variety of temperature and burnup conditions and in fuel with axial fuel height three times longer than EBR-II experiments. The longer fuel column in the FFTF and the fuel pins examined have significantly different flux, power, temperature, and FCCI profiles than that found in similar tests conducted in

  20. High-intensity power-resolved radiation imaging of an operational nuclear reactor

    PubMed Central

    Beaumont, Jonathan S.; Mellor, Matthew P.; Villa, Mario; Joyce, Malcolm J.

    2015-01-01

    Knowledge of the neutron distribution in a nuclear reactor is necessary to ensure the safe and efficient burnup of reactor fuel. Currently these measurements are performed by in-core systems in what are extremely hostile environments and in most reactor accident scenarios it is likely that these systems would be damaged. Here we present a compact and portable radiation imaging system with the ability to image high-intensity fast-neutron and gamma-ray fields simultaneously. This system has been deployed to image radiation fields emitted during the operation of a TRIGA test reactor allowing a spatial visualization of the internal reactor conditions to be obtained. The imaged flux in each case is found to scale linearly with reactor power indicating that this method may be used for power-resolved reactor monitoring and for the assay of ongoing nuclear criticalities in damaged nuclear reactors. PMID:26450669

  1. High-intensity power-resolved radiation imaging of an operational nuclear reactor

    NASA Astrophysics Data System (ADS)

    Beaumont, Jonathan S.; Mellor, Matthew P.; Villa, Mario; Joyce, Malcolm J.

    2015-10-01

    Knowledge of the neutron distribution in a nuclear reactor is necessary to ensure the safe and efficient burnup of reactor fuel. Currently these measurements are performed by in-core systems in what are extremely hostile environments and in most reactor accident scenarios it is likely that these systems would be damaged. Here we present a compact and portable radiation imaging system with the ability to image high-intensity fast-neutron and gamma-ray fields simultaneously. This system has been deployed to image radiation fields emitted during the operation of a TRIGA test reactor allowing a spatial visualization of the internal reactor conditions to be obtained. The imaged flux in each case is found to scale linearly with reactor power indicating that this method may be used for power-resolved reactor monitoring and for the assay of ongoing nuclear criticalities in damaged nuclear reactors.

  2. High-intensity power-resolved radiation imaging of an operational nuclear reactor.

    PubMed

    Beaumont, Jonathan S; Mellor, Matthew P; Villa, Mario; Joyce, Malcolm J

    2015-10-09

    Knowledge of the neutron distribution in a nuclear reactor is necessary to ensure the safe and efficient burnup of reactor fuel. Currently these measurements are performed by in-core systems in what are extremely hostile environments and in most reactor accident scenarios it is likely that these systems would be damaged. Here we present a compact and portable radiation imaging system with the ability to image high-intensity fast-neutron and gamma-ray fields simultaneously. This system has been deployed to image radiation fields emitted during the operation of a TRIGA test reactor allowing a spatial visualization of the internal reactor conditions to be obtained. The imaged flux in each case is found to scale linearly with reactor power indicating that this method may be used for power-resolved reactor monitoring and for the assay of ongoing nuclear criticalities in damaged nuclear reactors.

  3. An autonomous long-term fast reactor system and the principal design limitations of the concept

    NASA Astrophysics Data System (ADS)

    Tsvetkova, Galina Valeryevna

    The objectives of this dissertation were to find a principal domain of promising and technologically feasible reactor physics characteristics for a multi-purpose, modular-sized, lead-cooled, fast neutron spectrum reactor fueled with an advanced uranium-transuranic-nitride fuel and to determine the principal limitations for the design of an autonomous long-term multi-purpose fast reactor (ALM-FR) within the principal reactor physics characteristic domain. The objectives were accomplished by producing a conceptual design for an ALM-FR and by analysis of the potential ALM-FR performance characteristics. The ALM-FR design developed in this dissertation is based on the concept of a secure transportable autonomous reactor for hydrogen production (STAR-H2) and represents further refinement of the STAR-H2 concept towards an economical, proliferation-resistant, sustainable, multi-purpose nuclear energy system. The development of the ALM-FR design has been performed considering this reactor within the frame of the concept of a self-consistent nuclear energy system (SCNES) that satisfies virtually all of the requirements for future nuclear energy systems: efficient energy production, safety, self-feeding, non-proliferation, and radionuclide burning. The analysis takes into consideration a wide range of reactor design aspects including selection of technologically feasible fuels and structural materials, core configuration optimization, dynamics and safety of long-term operation on one fuel loading, and nuclear material non-proliferation. Plutonium and higher actinides are considered as essential components of an advanced fuel that maintains long-term operation. Flexibility of the ALM-FR with respect to fuel compositions is demonstrated acknowledging the principal limitations of the long-term burning of plutonium and higher actinides. To ensure consistency and accuracy, the modeling has been performed using state-of-the-art computer codes developed at Argonne National

  4. Plant control of a fast breeder reactor cooled by supercritical light water

    SciTech Connect

    Nakatsuka, T.; Oka, Y.; Koshizuka, S.

    1997-12-01

    Supercritical water does not exhibit a change of phase. The plant system of the supercritical water cooled reactor is the once-through, direct-cycle where the steam-water separator and coolant recirculation systems are eliminated. It is different from those of BWR and PWR. The reactor is sensitive to the perturbations of the feedwater flow rate, since the whole core coolant driven by the feedwater pumps flows to the turbines. The axial coolant density change is larger than that of a BWR. Pressure control by the feedwater like the supercritical fossil-fired power plant (FPP) is not appropriate because the change of feedwater flow rate largely affects the core power through the coolant density feedback. It is necessary to analyze the controllability of the plant against coolant flow and pressure perturbations for assessing the technical feasibility of the reactor. The plant behaviors of a fast breeder reactor cooled by supercritical water (SCFBR) are analyzed for three principal perturbations: the change of the control rod position, the feedwater flow rate and the turbine control valve opening. Based on the step responses to the perturbations, the plant control system is designed: the pressure is controlled by the turbine control valves, the main steam temperature is controlled by the feedwater flow rate and the core power is controlled by the control rods. Parameters of the control system are selected by the test calculations to satisfy both fast convergence and stability criteria. The plant behaviors with the designed plant control system are stable against the perturbations. The reactor cooled by supercritical light water is controllable with the plant control system designed here. 7 refs., 11 figs., 6 tabs.

  5. ODS Ferritic/martensitic alloys for Sodium Fast Reactor fuel pin cladding

    NASA Astrophysics Data System (ADS)

    Dubuisson, Philippe; Carlan, Yann de; Garat, Véronique; Blat, Martine

    2012-09-01

    The development of ODS materials for the cladding for Sodium Fast Reactors is a key issue to achieve the objectives required for the GEN IV reactors. CEA, AREVA and EDF have launched in 2007 an important program to determine the optimal fabrication parameters, and to measure and understand the microstructure and properties before, under and after irradiation of such cladding materials. The aim of this paper is to present the French program and the major results obtained recently at CEA on Fe-9/14/18Cr1WTiY2O3 ferritic/martensitic ODS materials. The first step of the program was to consolidate Fe-9/14/18Cr ODS materials as plates and bars to study the microstructure and the mechanical properties of the new alloys. The second step consists in producing tubes at a geometry representative of the cladding of new Sodium Fast Reactors. The optimization of the fabrication route at the laboratory scale is conducted and different tubes were produced. Their microstructure depends on the martensitic (Fe-9Cr) or ferritic (Fe-14Cr) structure. To join the plug to the tube, the reference process is the welding resistance. A specific approach is developed to model the process and support the development of the welds performed within the "SOPRANO" facility. The development at CEA of Fe-9/14/18Cr new ODS materials for the cladding for GENIV Sodium Fast Reactors is in progress. The first microstructural and mechanical characterizations are very encouraging and the full assessment and qualification of this new alloys and products will pass through the irradiation of specimens, tubes, fuel pins and subassemblies up to high doses.

  6. An assessment of liquid-metal centrifugal pumps at three fast reactors

    SciTech Connect

    Smith, M.S.; Wood, D.H.; Drischler, J.D. )

    1993-10-01

    The results of an analysis using data reports submitted to the Centralized Reliability Data Organization (CREDO) to predict the onset of the wearout life period for large sodium centrifugal pumps is described. For CREDO data collection and analysis purposes, a mechanical pump'' includes the pumping unit, its driver, and the coupling between the two. Statistical data were compiled from event reports received from three fast reactors: the Experimental Breeder Reactor II (EBR-II) and the Fast Flux Test Facility (FFTF) in the US and the JOYO Experimental Fast Reactor operated by the Power Reactor and Nuclear Fuel Development Corporation of Japan. Cumulative event rates were calculated for the investigated pumps at each facility and for the entire population. For all pumps, the event rate was computed as 34.4 event/million operating hours with 5 and 95% one-sided confidence limits of 26.3 and 44.4 event/million operating hours, respectively. The cumulative event rates for EBR-II, FFTF, and JOYO were computed as 30.0, 32.4, and 40.6 event/million pump operating hours, respectively. Results from EBR-II indicate that there is a definite time-dependent relationship between event rates and pump age; the common event mode at EBR-II is pump binding or seizing due to the buildup of sodium deposits in the vicinity of the lower labyrinth seal. There is no indication from FFTF that the six centrifugal pumps have reached the end of their useful life; these pumps have been event free for their last 40,000 operating hours. Following a 50,000-h even-free operating period at JOYO, bearings in the secondary pumps required additional unscheduled maintenance. However, there is no indication that these pumps have entered into the wearout life period; more data are required to draw any such conclusion.

  7. Development of Technical Basis for Burnup Credit Regulatory Guidance in the United States

    SciTech Connect

    Parks, Cecil V; Wagner, John C; Mueller, Don; Gauld, Ian C

    2011-01-01

    In the United States (U.S.) there has been and continues to be considerable interest in the increased use of burnup credit as part of the safety basis for SNF systems and this interest has motivated numerous technical studies related to the application of burnup credit for maintaining subcriticality. Responding to industry requests and needs, the U.S. Nuclear Regulatory Commission initiated a burnup credit research program, with support from the Oak Ridge National Laboratory, to develop regulatory guidance and the supporting technical basis for allowing and expanding the use of burnup credit in pressurized-water reactor SNF storage and transport applications. The objective of this paper is to summarize the work and significant accomplishments, with references to the technical reports and publications for complete details.

  8. The benefits of an advanced fast reactor fuel cycle for plutonium management

    SciTech Connect

    Hannum, W.H.; McFarlane, H.F.; Wade, D.C.; Hill, R.N.

    1996-12-31

    The United States has no program to investigate advanced nuclear fuel cycles for the large-scale consumption of plutonium from military and civilian sources. The official U.S. position has been to focus on means to bury spent nuclear fuel from civilian reactors and to achieve the spent fuel standard for excess separated plutonium, which is considered by policy makers to be an urgent international priority. Recently, the National Research Council published a long awaited report on its study of potential separation and transmutation technologies (STATS), which concluded that in the nuclear energy phase-out scenario that they evaluated, transmutation of plutonium and long-lived radioisotopes would not be worth the cost. However, at the American Nuclear Society Annual Meeting in June, 1996, the STATS panelists endorsed further study of partitioning to achieve superior waste forms for burial, and suggested that any further consideration of transmutation should be in the context of energy production, not of waste management. 2048 The U.S. Department of Energy (DOE) has an active program for the short-term disposition of excess fissile material and a `focus area` for safe, secure stabilization, storage and disposition of plutonium, but has no current programs for fast reactor development. Nevertheless, sufficient data exist to identify the potential advantages of an advanced fast reactor metallic fuel cycle for the long-term management of plutonium. Advantages are discussed.

  9. Diverse methods of analyzing neutron detector signal for power monitoring in commercial fast reactors

    SciTech Connect

    Sivaramakrishna, M.; Nagaraj, C. P.; Madhusoodanan, K.

    2011-07-01

    In a fast reactor, the measurement of instantaneous power, accurately at any point of time is of prime importance. To control the reactor power within its design limit for safe operation, measurement of power and safety functions operated by different systems based on power is required. This is done with neutron detectors from which signal come as current pulses in random following Poisson distribution. Due to heavy overlap, individual pulse counting is extremely difficult beyond certain frequency. So to count pulses in the detector output in a given length of time, which will be measure of power in the reactor, indirect method of signal processing is applied here. After applying signal processing methods on the detector output, linear relation is established between maximum amplitude of absolute of FFT (Fast Fourier Transform) of the signal and no of pulses in a given length of time of the signal i.e. rate of arrival of pulses to the detector. This linear relation is verified in different ways i.e. with simulated fixed rate of arrival of the pulses, random rate of arrival of the pulses and with neutron detector simulator output. The paper explains various stages of development and testing. (authors)

  10. A CFD M&S PROCESS FOR FAST REACTOR FUEL ASSEMBLIES

    SciTech Connect

    Kurt D. Hamman; Ray A. Berry

    2008-09-01

    A CFD modeling and simulation process for large-scale problems using an arbitrary fast reactor fuel assembly design was evaluated. Three dimensional flow distributions of sodium for several fast reactor fuel assembly pin spacing configurations were simulated on high performance computers using commercial CFD software. This research focused on 19-pin fuel assembly “benchmark” geometry, similar in design to the Advanced Burner Test Reactor, where each pin is separated by helical wire-wrap spacers. Several two-equation turbulence models including the k-e and SST (Menter) k-? were evaluated. Considerable effort was taken to resolve the momentum boundary layer, so as to eliminate the need for wall functions and reduce computational uncertainty. High performance computers were required to generate the hybrid meshes needed to predict secondary flows created by the wire-wrap spacers; computational meshes ranging from 65 to 85 million elements were common. A general validation methodology was followed, including mesh refinement and comparison of numerical results with empirical correlations. Predictions for velocity, temperature, and pressure distribution are shown. The uncertainty of numerical models, importance of high fidelity experimental data, and the challenges associated with simulating and validating large production-type problems are presented.

  11. The cyclone: A multifunctional reactor for the fast pyrolysis of biomass

    SciTech Connect

    Lede, J.

    2000-04-01

    This paper reports the experimental results of the fast pyrolysis of wood sawdust performed in two different cyclone reactors. The mass balances are close to 100% and the char fractions always smaller than 3%. The flexibility of the cyclone reactor is such that, according to the operating conditions, it can be used either for the fast gasification or for the gas liquefaction of biomass. Side experiments reveal that a fraction of the gaseous products can be used as the carrier gas (recycling process) without noticeable changes of the gas composition and with vast gasification yields close to 100%. It is shown that the vapor-phase cracking reactions mainly occur inside a very thin and hot boundary layer close to the heated surface of the cyclone. The results of the modeling of these phenomena are used to derive kinetic constants that provide to be in very good agreement with those of the literature. The conclusion is that the cyclone appears as a very efficient multifunctional reactor making it possible to perform in less than a second heating and pyrolysis of the reactants as well as the quenching and separation of the products.

  12. ATR PDQ and MCWO Fuel Burnup Analysis Codes Evaluation

    SciTech Connect

    G.S. Chang; P. A. Roth; M. A. Lillo

    2009-11-01

    The Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) is being studied to determine the feasibility of converting it from the highly enriched Uranium (HEU) fuel that is currently uses to low enriched Uranium (LEU) fuel. In order to achieve this goal, it would be best to qualify some different computational methods than those that have been used at ATR for the past 40 years. This paper discusses two methods of calculating the burnup of ATR fuel elements. The existing method, that uses the PDQ code, is compared to a modern method that uses A General Monte Carlo N-Particle Transport Code (MCNP) combined with the Origen2.2 code. This modern method, MCNP with ORIGEN2.2 (MCWO), is found to give excellent agreement with the existing method (PDQ). Both of MCWO and PDQ are also in a very good agreement to the 235U burnup data generated by an analytical method.

  13. Decay heat of sodium fast reactor: Comparison of experimental measurements on the PHENIX reactor with calculations performed with the French DARWIN package

    SciTech Connect

    Benoit, J. C.; Bourdot, P.; Eschbach, R.; Boucher, L.; Pascal, V.; Fontaine, B.; Martin, L.; Serot, O.

    2012-07-01

    A Decay Heat (DH) experiment on the whole core of the French Sodium-Cooled Fast Reactor PHENIX has been conducted in May 2008. The measurements began an hour and a half after the shutdown of the reactor and lasted twelve days. It is one of the experiments used for the experimental validation of the depletion code DARWIN thereby confirming the excellent performance of the aforementioned code. Discrepancies between measured and calculated decay heat do not exceed 8%. (authors)

  14. Emergency Decay Heat Removal in a GEN-IV Gas-Cooled Fast Reactor

    SciTech Connect

    Cheng, Lap Y.; Ludewig, Hans; Jo, Jae

    2006-07-01

    A series of transient analyses using the system code RELAP5-3d has been performed to confirm the efficacy of a proposed hybrid active/passive combination approach to the decay heat removal for an advanced 2400 MWt GEN-IV gas-cooled fast reactor. The accident sequence of interest is a station blackout simultaneous with a small break (10 sq.inch/0.645 m{sup 2}) in the reactor vessel. The analyses cover the three phases of decay heat removal in a depressurization accident: (1) forced flow cooling by the power conversion unit (PCU) coast down, (2) active forced flow cooling by a battery powered blower, and (3) passive cooling by natural circulation. The blower is part of an emergency cooling system (ECS) that by design is to sustain passive decay heat removal via natural circulation cooling 24 hours after shutdown. The RELAP5 model includes the helium-cooled reactor, the ECS (primary and secondary side), the PCU with all the rotating machinery (turbine and compressors) and the heat transfer components (recuperator, pre-cooler and inter-cooler), and the guard containment that surrounds the reactor and the PCU. The transient analysis has demonstrated the effectiveness of passive decay heat removal by natural circulation cooling when the guard containment pressure is maintained at or above 800 kPa. (authors)

  15. Comparative analysis of thorium and uranium fuel for transuranic recycle in a sodium cooled Fast Reactor

    SciTech Connect

    C. Fiorina; N. E. Stauff; F. Franceschini; M. T. Wenner; A. Stanculescu; T. K. Kim; A. Cammi; M. E. Ricotti; R. N. Hill; T. A. Taiwo; M. Salvatores

    2013-12-01

    The present paper compares the reactor physics and transmutation performance of sodium-cooled Fast Reactors (FRs) for TRansUranic (TRU) burning with thorium (Th) or uranium (U) as fertile materials. The 1000 MWt Toshiba-Westinghouse Advanced Recycling Reactor (ARR) conceptual core has been used as benchmark for the comparison. Both burner and breakeven configurations sustained or started with a TRU supply, and assuming full actinide homogeneous recycle strategy, have been developed. State-of-the-art core physics tools have been employed to establish fuel inventory and reactor physics performances for equilibrium and transition cycles. Results show that Th fosters large improvements in the reactivity coefficients associated with coolant expansion and voiding, which enhances safety margins and, for a burner design, can be traded for maximizing the TRU burning rate. A trade-off of Th compared to U is the significantly larger fuel inventory required to achieve a breakeven design, which entails additional blankets at the detriment of core compactness as well as fuel manufacturing and separation requirements. The gamma field generated by the progeny of U-232 in the U bred from Th challenges fuel handling and manufacturing, but in case of full recycle, the high contents of Am and Cm in the transmutation fuel impose remote fuel operations regardless of the presence of U-232.

  16. Development of reactivity feedback effect measurement techniques under sub-critical condition in fast reactors

    SciTech Connect

    Kitano, A.; Nishi, H.; Suzuki, T.; Okajima, S.; Kanemoto, S.

    2012-07-01

    The first-of-a-kind reactor has been licensed by a safety examination of the plant design based on the measured data in precedent mock-up experiments. The validity of the safety design can be confirmed without a mock-up experiment, if the reactor feed-back characteristics can be measured before operation, with the constructed reactor itself. The 'Synthesis Method', a systematic and sophisticated method of sub-criticality measurement, is proposed in this work to ensure the safety margin before operation. The 'Synthesis Method' is based on the modified source multiplication method (MSM) combined with the noise analysis method to measure the reference sub-criticality level for MSM. A numerical simulation for the control-rod reactivity worth and the isothermal feed-back reactivity was conducted for typical fast reactors of 100 MWe-size, 300 MWe-size, 750 MWe-size, and 1500 MWe-size to investigate the applicability of Synthesis Method. The number of neutron detectors and their positions necessary for the measurement were investigated for both methods of MSM and the noise analysis by a series of parametric survey calculations. As a result, it was suggested that a neutron detector located above the core center and three or more neutron detectors located above the radial blanket region enable the measurement of sub-criticality within 10% uncertainty from -$0.5 to -$2 and within 15% uncertainty for the deeper sub-criticality. (authors)

  17. Simulated first operating campaign for the Integral Fast Reactor fuel cycle demonstration

    SciTech Connect

    Goff, K.M.; Mariani, R.D.; Benedict, R.W.; Park, K.H.; Ackerman, J.P.

    1993-09-01

    This report discusses the Integral Fast Reactor (IFR) which is an innovative liquid-metal-cooled reactor concept that is being developed by Argonne National Laboratory. It takes advantage of the properties of metallic fuel and liquid-metal cooling to offer significant improvements in reactor safety, operation, fuel cycle-economics, environmental protection, and safeguards. Over the next few years, the IFR fuel cycle will be demonstrated at Argonne-West in Idaho. Spent fuel from the Experimental Breeder Reactor II (EBR-II) win be processed in its associated Fuel Cycle Facility (FCF) using a pyrochemical method that employs molten salts and liquid metals in an electrorefining operation. As part of the preparation for the fuel cycle demonstration, a computer code, PYRO, was developed at Argonne to model the electrorefining operation using thermodynamic and empirical data. This code has been used extensively to evaluate various operating strategies for the fuel cycle demonstration. The modeled results from the first operating campaign are presented. This campaign is capable of processing more than enough material to refuel completely the EBR-II core.

  18. Finite Element Solution of the Nonlinear Coupled Neutronic-Energy Equations for a Fast Reactor Fuel Cell

    DTIC Science & Technology

    1976-12-01

    3reeder Reactor ( LMFBR ) it considered. The &nalysis is formulated to model the dynamic response of the reactor fuel subassembly during the initial...transport equations for each region (fuel, clad , and OD , 1473 amn0 OF I Nov i*S V m119I (P ! JA KT ŕ)1 i"’ b 1.4 -CU~MIV CLAtSIIICATO O’F TMIS 069...Metal Fast Breeder Reactor ( LMFBR ) Is Consldered. The analysis is formulated to model the dynamic response of the reactor fuel subassembly during the

  19. GRS Method for Uncertainties Evaluation of Parameters in a Prospective Fast Reactor

    NASA Astrophysics Data System (ADS)

    Peregudov, A.; Andrianova, O.; Raskach, K.; Tsibulya, A.

    2014-04-01

    A number of recent studies have been devoted to the uncertainty estimation of reactor calculation parameters by the GRS (Generation Random Sampled) method. This method is based on direct sampling input data resulting in formation of random sets of input parameters which are used for multiple calculations. Once these calculations are performed, statistical processing of the calculation results is carried out to determine the mean value and the variance of each calculation parameter of interest. In our study this method is used to estimate the uncertainty of calculation parameters (keff, power density, dose rate) of a prospective sodium-cooled fast reactor. Neutron transport calculations were performed by the nodal diffusion code TRIGEX and Monte Carlo code MMK.

  20. Initiation of persistent fission chains in the fast burst reactor Caliban

    SciTech Connect

    Authier, N.; Richard, B.; Grivot, P.; Casoli, P.; Humbert, P.

    2012-07-01

    We provide in this article, experimental data of initiation of persistent fission chains obtained at different supercritical states, using the Fast Burst Reactor CALIBAN. In many past papers, theory has been compared mostly to initiation experiments at various super-prompt critical states, whereas very few experimental data has been published in delayed supercritical states. To fill the lack of data, we have conducted three campaigns on the reactor at reactivities far below 0.7$ which was one of the rare lowest state ever published on a similar assembly [2][1]. We give a justification of the use of the gamma function to fit experimental results of the temporal distributions of waiting times and compare experiments with numerical simulations obtained with a zero-D punctual Monte Carlo code. (authors)

  1. A risk characterization of safety research areas for Integral Fast Reactor program planning

    SciTech Connect

    Mueller, C.J.; Cahalan, J.E.; Hill, D.J.; Kramer, J.M.; Marchaterre, J.F.; Pedersen, D.R.; Sevy, R.H.; Tilbrook, R.W.; Wei, T.Y.; Wright, A.E.

    1988-01-01

    This paper characterizes the areas of Integral Fast Reactor (IFR) safety research in terms of their importance in addressing the risk of core disruption sequences for innovative designs. Such sequences have traditionally been determined to constitute the primary risk to public health and safety. All core disruption sequences are folded into four fault categories: classic unprotected (unscrammed) events; loss of decay heat; local fault propagation; and failure of critical reactor structures. Event trees are used to describe these sequences and the areas in the IFR Safety and related Base Technology research programs are discussed with respect to their relevance in addressing the key issues in preventing or delimiting core disruptive sequences. Thus a measure of potential for risk reduction is obtained for guidance in establishing research priorites.

  2. Benchmark specifications and data requirements for initial modeling of the China experimental fast reactor.

    SciTech Connect

    Fanning, T. H.; Nuclear Engineering Division

    2010-06-04

    A specification is proposed for an initial transient benchmark analysis of the China Experimental Fast Reactor design based on the analysis capabilities of the SAS4A/SASSYS-1 code. For the initial benchmark, a single-channel protected transient overpower accident is defined. Reactivity feedback coefficients will not be required and simplified material properties are recommended. This report also describes the data required for developing the modeling input. This data includes assembly geometry, reactor power distributions, kinetics and decay heat data, and material properties. Comparisons of benchmark results will take place at a future SAS4A/SASSYS-1 training meeting planned to occur at Argonne National Laboratory. Future benchmark specifications will be planned to expand upon this initial model to include more complex reactivity feedback models, material properties, additional assembly geometry, and primary and intermediate coolant systems.

  3. Thorium Fuel Utilization Analysis on Small Long Life Reactor for Different Coolant Types

    NASA Astrophysics Data System (ADS)

    Permana, Sidik

    2017-07-01

    A small power reactor and long operation which can be deployed for less population and remote area has been proposed by the IAEA as a small and medium reactor (SMR) program. Beside uranium utilization, it can be used also thorium fuel resources for SMR as a part of optimalization of nuclear fuel as a “partner” fuel with uranium fuel. A small long-life reactor based on thorium fuel cycle for several reactor coolant types and several power output has been evaluated in the present study for 10 years period of reactor operation. Several key parameters are used to evaluate its effect to the reactor performances such as reactor criticality, excess reactivity, reactor burnup achievement and power density profile. Water-cooled types give higher criticality than liquid metal coolants. Liquid metal coolant for fast reactor system gives less criticality especially at beginning of cycle (BOC), which shows liquid metal coolant system obtains almost stable criticality condition. Liquid metal coolants are relatively less excess reactivity to maintain longer reactor operation than water coolants. In addition, liquid metal coolant gives higher achievable burnup than water coolant types as well as higher power density for liquid metal coolants.

  4. Self powered neutron detectors as in-core detectors for Sodium-cooled Fast Reactors

    NASA Astrophysics Data System (ADS)

    Verma, V.; Barbot, L.; Filliatre, P.; Hellesen, C.; Jammes, C.; Svärd, S. Jacobsson

    2017-07-01

    Neutron flux monitoring system forms an integral part of the design of a Generation IV sodium cooled fast reactor. Diverse possibilities of detector system installation must be studied for various locations in the reactor vessel in order to detect any perturbations in the core. Results from a previous paper indicated that it is possible to detect changes in neutron source distribution initiated by an inadvertent withdrawal of outer control rod with in-vessel fission chambers located azimuthally around the core. It is, however, not possible to follow inner control rod withdrawal and precisely know the location of the perturbation in the core. Hence the use of complimentary in-core detectors coupled with the peripheral fission chambers is proposed to enable robust core monitoring across the radial direction. In this paper, we assess the feasibility of using self-powered neutron detectors (SPNDs) as in-core detectors in fast reactors for detecting local changes in the power distribution when the reactor is operated at nominal power. We study the neutron and gamma contributions to the total output current of the detector modelled with Platinum as the emitter material. It is shown that this SPND placed in an SFR-like environment would give a sufficiently measurable prompt neutron induced current of the order of 600 nA/m. The corresponding induced current in the connecting cable is two orders of magnitude lower and can be neglected. This means that the SPND can follow in-core power fluctuations. This validates the operability of an SPND in an SFR-like environment.

  5. Cold Trap Dismantling and Sodium Removal at a Fast Breeder Reactor - 12327

    SciTech Connect

    Graf, A.; Petrick, H.; Stutz, U.; Hosking, P.

    2012-07-01

    The first German prototype Fast Breeder Nuclear Reactor (KNK) is currently being dismantled after being the only operating Fast Breeder-type reactor in Germany. As this reactor type used sodium as a coolant in its primary and secondary circuit, seven cold traps containing various amounts of partially activated sodium needed to be disposed of as part of the dismantling. The resulting combined difficulties of radioactive contamination and high chemical reactivity were handled by treating the cold traps differently depending on their size and the amount of sodium contained inside. Six small cold traps were processed onsite by cutting them up into small parts using a band saw under a protective atmosphere. The sodium was then converted to sodium hydroxide by using water. The remaining large cold trap could not be handled in the same way due to its dimensions (2.9 m x 1.1 m) and the declared amount of sodium inside (1,700 kg). It was therefore manually dismantled inside a large box filled with a protective atmosphere, while the resulting pieces were packaged for later burning in a special facility. The experiences gained by KNK during this process may be advantageous for future dismantling projects in similar sodium-cooled reactors worldwide. The dismantling of a prototype fast breeder reactor provides the challenge not only to dismantle radioactive materials but also to handle sodium-contaminated or sodium-containing components. The treatment of sodium requires additional equipment and installations to ensure a safe handling. Since it is not permitted to bring sodium into a repository, all sodium has to be neutralized either through a controlled reaction with water or by incinerating. The resulting components can be disposed of as normal radioactive waste with no further conditions. The handling of sodium needs skilled and experienced workers to minimize the inherent risks. And the example of the disposal of the large KNK cold trap shows the interaction with others and

  6. Optimization Study of Ultra-Long Cycle Fast Reactor Core Concept

    SciTech Connect

    Kim, T. K.; Tak, Taewoo; Lee, Deokjung; Hong, Ser Gi

    2014-11-01

    An optimization of an Ultra-long Cycle Fast Reactor (UCFR) design with a power rating of 1000 MW(electric), UCFR-1000, has been performed. Firstly, geometric optimization has been performed in the aspects of core size and core shape in terms of thermal–hydraulic (TH) feedback. Secondly, fuel composition optimization has been performed by adopting pressurized water reactor (PWR) spent fuel (SF) as a blanket material as well as natural uranium (NU). Thirdly, thorium has been loaded in the inner core for the optimization of radial power distribution. Lastly, a small-size UCFR with a power rate of 100 MWe has been developed with optimization of maximum neutron flux and fast neutron fluence limit for a short term deployable nuclear reactor. The equivalent diameter and the height of the optimized UCFR-1000 core are 5.9 and 2.4 m, respectively, while the equivalent diameter and the height of the optimized UCFR-100 core are 4.3 and 1.0 m, respectively. The size of the optimized UCFR-1000 has been enlarged in the radial direction and shortened in the axial direction from those of the initial UCFR design (Tak et al., 2013a) and this modification makes the burning speed of active core movement slower. It has been confirmed for both designs that a full-power operation of 60 years without refueling is feasible with respect to isotopics and criticality by a breed-and-burn strategy. The core performance characteristics of both designs have been evaluated in terms of axial/radial power shapes, neutron flux and nuclide distributions, breeding ratio, reactivity feedback coefficients, control rod worth, etc. By the design optimization study in this paper, the reductions of maximum neutron flux, fast neutron fluence, and axial/radial power peaking have been achieved, which are favorable for the safety of the UCFR.

  7. A simple gamma spectrometry method for evaluating the burnup of MTR-type HEU fuel elements

    NASA Astrophysics Data System (ADS)

    Makmal, T.; Aviv, O.; Gilad, E.

    2016-10-01

    A simple method for the evaluation of the burnup of a materials testing reactor (MTR) fuel element by gamma spectrometry is presented. The method was applied to a highly enriched uranium MTR nuclear fuel element that was irradiated in a 5 MW pool-type research reactor for a total period of 34 years. The experimental approach is based on in-situ measurements of the MTR fuel element in the reactor pool by a portable high-purity germanium detector located in a gamma cell. To corroborate the method, analytical calculations (based on the irradiation history of the fuel element) and computer simulations using a dedicated fuel cycle burnup code ORIGEN2 were performed. The burnup of the MTR fuel element was found to be 52.4±8.8%, which is in good agreement with the analytical calculations and the computer simulations. The method presented here is suitable for research reactors with either a regular or an irregular irradiation regime and for reactors with limited infrastructure and/or resources. In addition, its simplicity and the enhanced safety it confers may render this method suitable for IAEA inspectors in fuel element burnup assessments during on-site inspections.

  8. Microstructure analysis for chemical interaction between cesium and SUS 316 steel in fast breeder reactor application

    SciTech Connect

    Sasaki, K.; Fukumoto, K. I.; Oshima, T.; Tanigaki, T.; Masayoshi, U.

    2012-07-01

    In this study the corrosion products on a surface after cesium corrosion examination at 650 deg. C for 100 hrs were characterized by TEM observation around the corroded area on the surface in order to understand the corrosion mechanism of cesium fission product for cladding materials in fast reactor. The experimental results suggest the main corrosion mechanism occurred in the process of the separation of cesium chromate and metal (Fe, Ni). The main reaction of corrosion process was considered to be equation, 2Cs + 7/2 O{sub 2} + 2Cr {yields} Cs{sub 2}Cr{sub 2}O{sub 7}(L). (authors)

  9. Qualification of Simulation Software for Safety Assessment of Sodium Cooled Fast Reactors. Requirements and Recommendations

    SciTech Connect

    Brown, Nicholas R.; Pointer, William David; Sieger, Matt; Flanagan, George F.; Moe, Wayne; HolbrookINL, Mark

    2016-04-01

    The goal of this review is to enable application of codes or software packages for safety assessment of advanced sodium-cooled fast reactor (SFR) designs. To address near-term programmatic needs, the authors have focused on two objectives. First, the authors have focused on identification of requirements for software QA that must be satisfied to enable the application of software to future safety analyses. Second, the authors have collected best practices applied by other code development teams to minimize cost and time of initial code qualification activities and to recommend a path to the stated goal.

  10. Mass Transfer of Corrosion Products in the Nonisothermal Sodium Loop of a Fast Reactor

    NASA Astrophysics Data System (ADS)

    Varseev, E. V.; Alekseev, V. V.

    2014-11-01

    The mass transfer of the products of corrosion of the steel surface of the sodium loop of a fast nuclear power reactor was investigated for the purpose of optimization of its parameters. The problem of deposition of the corrosion products on the surface of the heat-exchange unit of the indicated loop was considered. Experimental data on the rate of accumulation of deposits in the channel of this unit and results of the dispersion analysis of the suspensions contained in the sodium coolant are presented.

  11. Control rod heterogeneity effects in liquid-metal fast breeder reactors: Method developments and experimental validation

    SciTech Connect

    Carta, M.; Granget, G.; Palmiotti, G.; Salvatores, M.; Soule, R.

    1988-11-01

    The control rod worth assessment in a large liquid-metal fast breeder reactor is strongly dependent on the actual arrangement of the absorber pins inside the control rod subassemblies. The so-called heterogeneity effects (i.e., the effects on the rod reactivity of the actual rod internal geometry versus homogenization of the absorber atoms over all the subassembly volume) have been evaluated, using explicit and variational methods to derive appropriate cross sections. An experimental program performed at the MASURCA facility has been used to validate these methods.

  12. Pattern recognition techniques applied to acoustic detection of liquid-metal fast breeder reactor cooling defects

    SciTech Connect

    Brunet, M.; Dubuisson, B.

    1983-08-01

    In the event of a partial or total blockage of a liquid-metal fast breeder reactor core subassembly, a boiling zone may be created. Acoustic signals from such a zone could provide a means of early detection of accident conditions. A three-step method, based on pattern recognition techniques, is described and used to analyze data from three experiments that simulate core cooling fault conditions. This method is shown to be capable of detecting the abnormal situation in each of the experiments analyzed.

  13. COBRA-WC model and predictions for a fast-reactor natural-circulation transient. [LMFBR

    SciTech Connect

    George, T.L.; Basehore, K.L.; Prather, W.A.

    1980-01-01

    The COBRA-WC (Whole Core) code has been used to predict the core-wide coolant and rod temperature distribution in a liquid metal fast reactor during the early part (first 220 seconds) of a natural circulation transient. Approximately one-sixth of the core was modeled including bypass flows and the pressure losses above and below the core region. Detailed temperature and flow distributions were obtained for the two test fuel assemblies. The COBRA-WC model, the approach, and predictions of core-wide transient coolant and rod temperatures during a natural circulation transient are presented in this paper.

  14. Computational study: Reduction of iron corrosion in lead coolant of fast nuclear reactor

    SciTech Connect

    Arkundato, Artoto; Su'ud, Zaki; Abdullah, Mikrajuddin; Widayani

    2012-06-20

    In this paper we report molecular dynamics simulation results of iron (cladding) corrosion in interaction with lead coolant of fast nuclear reactor. The goal of this work is to study effect of oxygen injection to the coolant to reduce iron corrosion. By evaluating diffusion coefficients, radial distribution functions, mean-square displacement curves and observation of crystal structure of iron before and after oxygen injection, we concluded that a significant reduction of corrosion can be achieved by issuing about 2% of oxygen atoms into lead coolant.

  15. U.S. Plans for the Next Fast Reactor Transmutation Fuels Irradiation Test

    SciTech Connect

    B. A. Hilton

    2007-09-01

    The U.S. Advanced Fuel Cycle Initiative (AFCI) seeks to develop and demonstrate the technologies needed to transmute the long-lived transuranic actinide isotopes contained in spent nuclear fuel into shorter-lived fission products, thereby dramatically decreasing the volume of material requiring disposal and the long-term radio-toxicity and heat load of high-level waste sent to a geologic repository. One important component of the technology development is actinide-bearing transmutation fuel forms containing plutonium, neptunium, americium (and possibly curium) isotopes. Metallic alloy and oxide fuel forms are being developed as the near term options for fast reactor implementation.

  16. Burnup determination and age dating of spent nuclear fuel using noble gas isotopic analysis

    SciTech Connect

    Charlton, W.S.; Perry, R.T.; Parish, T.A.; Hemberger, P.H.

    1999-07-01

    During the chopping and dissolving phases of reprocessing, gases (such as tritium, krypton, xenon, iodine, carbon dioxide, nitrogen oxide, and steam) are released. These gases are traditionally transferred to a gas-treatment system for treatment, release, and/or recycle. Because of their chemically inert nature, the xenon and krypton noble gases are generally released directly into the loser atmosphere through the facility's stack. These gases (being fission products) contain information about the fuel being reprocessed and may prove a valuable monitor of reprocessing activities. Two properties of the fuel that may prove valuable from a safeguards standpoint are the fuel burnup and the fuel age (or time since discharge from the reactor). Both can be used to aid in confirming declared activities, and the burnup is generally indicative of the usability of the fuel for fabricating nuclear explosives. A study has been ongoing at Los Alamos National Laboratory to develop a methodology to determine spent-fuel parameters from measured xenon and/or krypton isotopic ratios on-stack at reprocessing facilities. This study has resulted in the generation of the NOVA data analysis code, which links to a comprehensive database of reactor physics parameters (calculated using the Monteburns 3.01 code system). NOVA has been satisfactorily tested for burnup determination of weapons-grade fuel from a US production reactor. Less effort has been spent quantifying NOVA's ability to predict burnup and fuel age for power reactor fuel. The authors describe the results predicted by NOVA for xenon and krypton isotopic ratios measured after the dissolution of spent-fuel samples from the Borssele reactor. The Borssele reactor is a 450-MW(electric) pressurized water reactor (PWR) consisting of 15 x 15 KWU assemblies. The spent-fuel samples analyzed were single fuel rods removed from one assembly and dissolved at the La Hague reprocessing facility. The assembly average burnup was estimated at 32

  17. FAST: A Fuel And Sheath Modeling Tool for CANDU Reactor Fuel

    NASA Astrophysics Data System (ADS)

    Prudil, Andrew Albert

    Understanding the behaviour of nuclear fuel during irradiation is a complicated multiphysics problem involving neutronics, chemistry, radiation physics, material-science, solid mechanics, heat transfer and thermal-hydraulics. Due to the complexity and interdependence of the physics and models involved, fuel modeling is typically clone with numerical models. Advancements in both computer hardware and software have made possible new more complex and sophisticated fuel modeling codes. The Fuel And Sheath modelling Tool (FAST) is a fuel performance code that has been developed for modeling nuclear fuel behaviour under normal and transient conditions. The FAST code includes models for heat generation and transport, thermal expansion, elastic strain, densification, fission product swelling, pellet relocation, contact, grain growth, fission gas release, gas and coolant pressure and sheath creep. These models are coupled and solved numerically using the Comsol Multiphysics finite-element platform. The model utilizes a radialaxial geometry of a fuel pellet (including dishing and chamfering) and accompanying fuel sheath allowing the model to predict circumferential ridging. This model has evolved from previous treatments developed at the Royal Military College. The model has now been significantly advanced to include: a more detailed pellet geometry, localized pellet-to-sheath gap size and contact pressure, ability to model cracked pellets, localized fuel burnup for material property models, improved U02 densification behaviour, fully 2-dimensional model for the sheath, additional creep models, additional material models, an FEM Booth-diffusion model for fission gas release (including ability to model temperature and power changes), a capability for end-of-life predictions, the ability to utilize text files as model inputs, and provides a first time integration of normal operating conditions (NOC) and transient fuel models into a single code (which has never been achieved

  18. Design Study of Modular Nuclear Power Plant with Small Long Life Gas Cooled Fast Reactors Utilizing MOX Fuel

    NASA Astrophysics Data System (ADS)

    Ilham, Muhammad; Su'ud, Zaki

    2017-01-01

    Growing energy needed due to increasing of the world’s population encourages development of technology and science of nuclear power plant in its safety and security. In this research, it will be explained about design study of modular fast reactor with helium gas cooling (GCFR) small long life reactor, which can be operated over 20 years. It had been conducted about neutronic design GCFR with Mixed Oxide (UO2-PuO2) fuel in range of 100-200 MWth NPPs of power and 50-60% of fuel fraction variation with cylindrical pin cell and cylindrical balance of reactor core geometry. Calculation method used SRAC-CITATION code. The obtained results are the effective multiplication factor and density value of core reactor power (with geometry optimalization) to obtain optimum design core reactor power, whereas the obtained of optimum core reactor power is 200 MWth with 55% of fuel fraction and 9-13% of percentages.

  19. Spent fuel pool storage calculations using the ISOCRIT burnup credit tool

    SciTech Connect

    Kucukboyaci, Vefa; Marshall, William BJ J

    2012-01-01

    In order to conservatively apply burnup credit in spent fuel pool criticality safety analyses, Westinghouse has developed a software tool, ISOCRIT, for generating depletion isotopics. This tool is used to create isotopics data based on specific reactor input parameters, such as design basis assembly type; bounding power/burnup profiles; reactor specific moderator temperature profiles; pellet percent theoretical density; burnable absorbers, axial blanket regions, and bounding ppm boron concentration. ISOCRIT generates burnup dependent isotopics using PARAGON; Westinghouse's state-of-the-art and licensed lattice physics code. Generation of isotopics and passing the data to the subsequent 3D KENO calculations are performed in an automated fashion, thus reducing the chance for human error. Furthermore, ISOCRIT provides the means for responding to any customer request regarding re-analysis due to changed parameters (e.g., power uprate, exit temperature changes, etc.) with a quick turnaround.

  20. Toward a Mechanistic Source Term in Advanced Reactors: Characterization of Radionuclide Transport and Retention in a Sodium Cooled Fast Reactor

    SciTech Connect

    Brunett, Acacia J.; Bucknor, Matthew; Grabaskas, David

    2016-04-17

    A vital component of the U.S. reactor licensing process is an integrated safety analysis in which a source term representing the release of radionuclides during normal operation and accident sequences is analyzed. Historically, source term analyses have utilized bounding, deterministic assumptions regarding radionuclide release. However, advancements in technical capabilities and the knowledge state have enabled the development of more realistic and best-estimate retention and release models such that a mechanistic source term assessment can be expected to be a required component of future licensing of advanced reactors. Recently, as part of a Regulatory Technology Development Plan effort for sodium cooled fast reactors (SFRs), Argonne National Laboratory has investigated the current state of knowledge of potential source terms in an SFR via an extensive review of previous domestic experiments, accidents, and operation. As part of this work, the significant sources and transport processes of radionuclides in an SFR have been identified and characterized. This effort examines all stages of release and source term evolution, beginning with release from the fuel pin and ending with retention in containment. Radionuclide sources considered in this effort include releases originating both in-vessel (e.g. in-core fuel, primary sodium, cover gas cleanup system, etc.) and ex-vessel (e.g. spent fuel storage, handling, and movement). Releases resulting from a primary sodium fire are also considered as a potential source. For each release group, dominant transport phenomena are identified and qualitatively discussed. The key product of this effort was the development of concise, inclusive diagrams that illustrate the release and retention mechanisms at a high level, where unique schematics have been developed for in-vessel, ex-vessel and sodium fire releases. This review effort has also found that despite the substantial range of phenomena affecting radionuclide release, the