Raw data based image processing algorithm for fast detection of surface breaking cracks
NASA Astrophysics Data System (ADS)
Sruthi Krishna K., P.; Puthiyaveetil, Nithin; Kidangan, Renil; Unnikrishnakurup, Sreedhar; Zeigler, Mathias; Myrach, Philipp; Balasubramaniam, Krishnan; Biju, P.
2017-02-01
The aim of this work is to illustrate the contribution of signal processing techniques in the field of Non-Destructive Evaluation. A component's life evaluation is inevitably related to the presence of flaws in it. The detection and characterization of cracks prior to damage is a technologically and economically significant task and is of very importance when it comes to safety-relevant measures. The Laser Thermography is the most effective and advanced thermography method for Non-Destructive Evaluation. High capability for the detection of surface cracks and for the characterization of the geometry of artificial surface flaws in metallic samples of laser thermography is particularly encouraging. This is one of the non-contacting, fast and real time detection method. The presence of a vertical surface breaking crack will disturb the thermal footprint. The data processing method plays vital role in fast detection of the surface and sub-surface cracks. Currently in laser thermographic inspection lacks a compromising data processing algorithm which is necessary for the fast crack detection and also the analysis of data is done as part of post processing. In this work we introduced a raw data based image processing algorithm which results precise, better and fast crack detection. The algorithm we developed gives better results in both experimental and modeling data. By applying this algorithm we carried out a detailed investigation variation of thermal contrast with crack parameters like depth and width. The algorithm we developed is applied for various surface temperature data from the 2D scanning model and also validated credibility of algorithm with experimental data.
Fast surface-based travel depth estimation algorithm for macromolecule surface shape description.
Giard, Joachim; Alface, Patrice Rondao; Gala, Jean-Luc; Macq, Benoît
2011-01-01
Travel Depth, introduced by Coleman and Sharp in 2006, is a physical interpretation of molecular depth, a term frequently used to describe the shape of a molecular active site or binding site. Travel Depth can be seen as the physical distance a solvent molecule would have to travel from a point of the surface, i.e., the Solvent-Excluded Surface (SES), to its convex hull. Existing algorithms providing an estimation of the Travel Depth are based on a regular sampling of the molecule volume and the use of the Dijkstra's shortest path algorithm. Since Travel Depth is only defined on the molecular surface, this volume-based approach is characterized by a large computational complexity due to the processing of unnecessary samples lying inside or outside the molecule. In this paper, we propose a surface-based approach that restricts the processing to data defined on the SES. This algorithm significantly reduces the complexity of Travel Depth estimation and makes possible the analysis of large macromolecule surface shape description with high resolution. Experimental results show that compared to existing methods, the proposed algorithm achieves accurate estimations with considerably reduced processing times.
Spherical demons: fast surface registration.
Yeo, B T Thomas; Sabuncu, Mert; Vercauteren, Tom; Ayache, Nicholas; Fischl, Bruce; Golland, Polina
2008-01-01
We present the fast Spherical Demons algorithm for registering two spherical images. By exploiting spherical vector spline interpolation theory, we show that a large class of regularizers for the modified demons objective function can be efficiently implemented on the sphere using convolution. Based on the one parameter subgroups of diffeomorphisms, the resulting registration is diffeomorphic and fast - registration of two cortical mesh models with more than 100k nodes takes less than 5 minutes, comparable to the fastest surface registration algorithms. Moreover, the accuracy of our method compares favorably to the popular FreeSurfer registration algorithm. We validate the technique in two different settings: (1) parcellation in a set of in-vivo cortical surfaces and (2) Brodmann area localization in ex-vivo cortical surfaces.
Spherical Demons: Fast Surface Registration
Yeo, B.T. Thomas; Sabuncu, Mert; Vercauteren, Tom; Ayache, Nicholas; Fischl, Bruce; Golland, Polina
2009-01-01
We present the fast Spherical Demons algorithm for registering two spherical images. By exploiting spherical vector spline interpolation theory, we show that a large class of regularizers for the modified demons objective function can be efficiently implemented on the sphere using convolution. Based on the one parameter subgroups of diffeomorphisms, the resulting registration is diffeomorphic and fast – registration of two cortical mesh models with more than 100k nodes takes less than 5 minutes, comparable to the fastest surface registration algorithms. Moreover, the accuracy of our method compares favorably to the popular FreeSurfer registration algorithm. We validate the technique in two different settings: (1) parcellation in a set of in-vivo cortical surfaces and (2) Brodmann area localization in ex-vivo cortical surfaces. PMID:18979813
Metadyn View: Fast web-based viewer of free energy surfaces calculated by metadynamics
NASA Astrophysics Data System (ADS)
Hošek, Petr; Spiwok, Vojtěch
2016-01-01
Metadynamics is a highly successful enhanced sampling technique for simulation of molecular processes and prediction of their free energy surfaces. An in-depth analysis of data obtained by this method is as important as the simulation itself. Although there are several tools to compute free energy surfaces from metadynamics data, they usually lack user friendliness and a build-in visualization part. Here we introduce Metadyn View as a fast and user friendly viewer of bias potential/free energy surfaces calculated by metadynamics in Plumed package. It is based on modern web technologies including HTML5, JavaScript and Cascade Style Sheets (CSS). It can be used by visiting the web site and uploading a HILLS file. It calculates the bias potential/free energy surface on the client-side, so it can run online or offline without necessity to install additional web engines. Moreover, it includes tools for measurement of free energies and free energy differences and data/image export.
Fast Disinfecting Antimicrobial Surfaces
Madkour, Ahmad E.; Dabkowski, Jeffery M.; Nüsslein, Klaus; Tew, Gregory N.
2013-01-01
Silicon wafers and glass surfaces were functionalized with facially amphiphilic antimicrobial copolymers using the “grafting from” technique. Surface initiated atom transfer radical polymerization (ATRP) was used to grow poly(butylmethacrylate)-co-poly(Boc-aminoethyl methacrylate) from the surfaces. Upon Boc-deprotection, these surfaces became highly antimicrobial and killed S. aureus and E. coli 100% in less than 5 min. The molecular weight and grafting density of the polymer were controlled by varying the polymerization time and initiator surface density. Antimicrobial studies showed that the killing efficiency of these surfaces was independent of polymer layer thickness or grafting density within the range of surfaces studied. PMID:19177651
Fast disinfecting antimicrobial surfaces.
Madkour, Ahmad E; Dabkowski, Jeffery M; Nusslein, Klaus; Tew, Gregory N
2009-01-20
Silicon wafers and glass surfaces were functionalized with facially amphiphilic antimicrobial copolymers using the "grafting from" technique. Surface-initiated atom transfer radical polymerization (ATRP) was used to grow poly(butylmethacrylate)-co-poly(Boc-aminoethyl methacrylate) from the surfaces. Upon Boc-deprotection, these surfaces became highly antimicrobial and killed S. aureus and E. coli 100% in less than 5 min. The molecular weight and grafting density of the polymer were controlled by varying the polymerization time and initiator surface density. Antimicrobial studies showed that the killing efficiency of these surfaces was independent of polymer layer thickness or grafting density within the range of surfaces studied.
Fast simulation of x-ray projections of spline-based surfaces using an append buffer.
Maier, Andreas; Hofmann, Hannes G; Schwemmer, Chris; Hornegger, Joachim; Keil, Andreas; Fahrig, Rebecca
2012-10-07
Many scientists in the field of x-ray imaging rely on the simulation of x-ray images. As the phantom models become more and more realistic, their projection requires high computational effort. Since x-ray images are based on transmission, many standard graphics acceleration algorithms cannot be applied to this task. However, if adapted properly, the simulation speed can be increased dramatically using state-of-the-art graphics hardware. A custom graphics pipeline that simulates transmission projections for tomographic reconstruction was implemented based on moving spline surface models. All steps from tessellation of the splines, projection onto the detector and drawing are implemented in OpenCL. We introduced a special append buffer for increased performance in order to store the intersections with the scene for every ray. Intersections are then sorted and resolved to materials. Lastly, an absorption model is evaluated to yield an absorption value for each projection pixel. Projection of a moving spline structure is fast and accurate. Projections of size 640 × 480 can be generated within 254 ms. Reconstructions using the projections show errors below 1 HU with a sharp reconstruction kernel. Traditional GPU-based acceleration schemes are not suitable for our reconstruction task. Even in the absence of noise, they result in errors up to 9 HU on average, although projection images appear to be correct under visual examination. Projections generated with our new method are suitable for the validation of novel CT reconstruction algorithms. For complex simulations, such as the evaluation of motion-compensated reconstruction algorithms, this kind of x-ray simulation will reduce the computation time dramatically.
Fast Simulation of X-ray Projections of Spline-based Surfaces using an Append Buffer
Maier, Andreas; Hofmann, Hannes G.; Schwemmer, Chris; Hornegger, Joachim; Keil, Andreas; Fahrig, Rebecca
2012-01-01
Many scientists in the field of x-ray imaging rely on the simulation of x-ray images. As the phantom models become more and more realistic, their projection requires high computational effort. Since x-ray images are based on transmission, many standard graphics acceleration algorithms cannot be applied to this task. However, if adapted properly, simulation speed can be increased dramatically using state-of-the-art graphics hardware. A custom graphics pipeline that simulates transmission projections for tomographic reconstruction was implemented based on moving spline surface models. All steps from tessellation of the splines, projection onto the detector, and drawing are implemented in OpenCL. We introduced a special append buffer for increased performance in order to store the intersections with the scene for every ray. Intersections are then sorted and resolved to materials. Lastly, an absorption model is evaluated to yield an absorption value for each projection pixel. Projection of a moving spline structure is fast and accurate. Projections of size 640×480 can be generated within 254 ms. Reconstructions using the projections show errors below 1 HU with a sharp reconstruction kernel. Traditional GPU-based acceleration schemes are not suitable for our reconstruction task. Even in the absence of noise, they result in errors up to 9 HU on average, although projection images appear to be correct under visual examination. Projections generated with our new method are suitable for the validation of novel CT reconstruction algorithms. For complex simulations, such as the evaluation of motion-compensated reconstruction algorithms, this kind of x-ray simulation will reduce the computation time dramatically. Source code is available at http://conrad.stanford.edu/ PMID:22975431
Fast simulation of x-ray projections of spline-based surfaces using an append buffer
NASA Astrophysics Data System (ADS)
Maier, Andreas; Hofmann, Hannes G.; Schwemmer, Chris; Hornegger, Joachim; Keil, Andreas; Fahrig, Rebecca
2012-10-01
Many scientists in the field of x-ray imaging rely on the simulation of x-ray images. As the phantom models become more and more realistic, their projection requires high computational effort. Since x-ray images are based on transmission, many standard graphics acceleration algorithms cannot be applied to this task. However, if adapted properly, the simulation speed can be increased dramatically using state-of-the-art graphics hardware. A custom graphics pipeline that simulates transmission projections for tomographic reconstruction was implemented based on moving spline surface models. All steps from tessellation of the splines, projection onto the detector and drawing are implemented in OpenCL. We introduced a special append buffer for increased performance in order to store the intersections with the scene for every ray. Intersections are then sorted and resolved to materials. Lastly, an absorption model is evaluated to yield an absorption value for each projection pixel. Projection of a moving spline structure is fast and accurate. Projections of size 640 × 480 can be generated within 254 ms. Reconstructions using the projections show errors below 1 HU with a sharp reconstruction kernel. Traditional GPU-based acceleration schemes are not suitable for our reconstruction task. Even in the absence of noise, they result in errors up to 9 HU on average, although projection images appear to be correct under visual examination. Projections generated with our new method are suitable for the validation of novel CT reconstruction algorithms. For complex simulations, such as the evaluation of motion-compensated reconstruction algorithms, this kind of x-ray simulation will reduce the computation time dramatically.
Fast surface and volume rendering based on shear-warp factorization for a surgical simulator.
Kim, Keun Ho; Kwon, Min Jeong; Kwon, Sung Min; Ra, Jong Beom; Park, HyunWook
2002-01-01
Fast simultaneous visualization of 3D medical images and medical instruments is necessary for a surgical simulator. Because unconstrained motion of a medical instrument is more frequent than that of the patient, the visualization of medical instruments is performed in real time using surface rendering. However, volume rendering is usually used for realistic visualization of the 3D medical image. We have developed an algorithm to combine a volume-rendered image and a surface-rendered image using a Z-buffer for depth cueing, which is applied to a surgical simulator. Surface rendering is used for visualization of a medical instrument, whereas 3D medical images such as CT and MRI are usually visualized by volume rendering, because segmentation of the medical image is difficult. In this study, when the volume-rendered image is combined with the surface-rendered image, the amount of computation is reduced by early ray termination and instrument-region masking in the sheared image space. Using these methods, a fast combination of volume-rendered and surface-rendered images is performed with high image quality. The method is appropriate for real-time visualization of 3D medical images and medical instrument motion in the images, and can be applied to image-guided therapy and surgical simulators.
NASA Astrophysics Data System (ADS)
Tian, Jiasheng; Tong, Jian; Shi, Jian; Gui, Liangqi
2017-02-01
In this paper a new approximate fast method of calculating the bistatic-scattering coefficients of a multilayer structure with random rough interfaces was presented based on the Kirchhoff Approximation (KA) and the electromagnetic theory of stratified media. First, the electromagnetic scattering from a Gauss rough metal or dielectric surface was calculated by KA method and method of moment (MOM), and the effectiveness of KA method was confirmed and verified. Second, a new approximate fast method was presented to calculate electromagnetic scattering from a multilayer-random-rough surface based on electromagnetic reflection from multilayer parallel surfaces and KA. The calculated results by the new method were in good agreements with those by MOM, especially near the specular point. Finally, a comparison of the new method and MOM was carried out in consuming computing time, memory resources, and complexity. The comparison indicated that the new approximate method was faster by about 30-150 times than MOM. The new approximate fast method could avoid a large matrix inversion and greatly reduce the computation time and memory resources and thus improve the computational efficiency. It was an effective approximation fast analyzing method of electromagnetic scattering from multilayer rough surfaces.
NASA Astrophysics Data System (ADS)
Cai, Hongbin; Xu, Junlong; Xiao, Jianguo; Zhang, Yunfei; Shi, Guoquan
2017-06-01
Progressive addition lens (PAL) is currently the state-of-the-art in multifocal correction visual for freeform lens. The PAL is used to correct presbyopia by the distributing optical powers of the three zones, which are far zone, near zone and intermediate zone. As the dioptre of progressive zone varies continuously, the lenses realize simultaneously far view and near view by a pair of glasses. Because the PAL is a freeform surface with a variable radius of curvature, complex shape, processing difficulties, low efficiency, big fluctuation of interpolation error and so on. In this paper, the design surface is discretized by the constant angle method and compensates the path of the diamond tool nose radius with AKIMA interpolation method, which can identify the machine tool of the tool locus, and exploitable fast tool servo technology controls the diamond tools movement and path. MATLAB simulation results show that this method is generally more approximate to the ideal trajectory, which is not only to ensure that surface profile accuracy, but also meet the requirements of the processing efficiency and better control the surface profile.
Fast time-of-flight camera based surface registration for radiotherapy patient positioning
Placht, Simon; Stancanello, Joseph; Schaller, Christian; Balda, Michael; Angelopoulou, Elli
2012-01-15
Purpose: This work introduces a rigid registration framework for patient positioning in radiotherapy, based on real-time surface acquisition by a time-of-flight (ToF) camera. Dynamic properties of the system are also investigated for future gating/tracking strategies. Methods: A novel preregistration algorithm, based on translation and rotation-invariant features representing surface structures, was developed. Using these features, corresponding three-dimensional points were computed in order to determine initial registration parameters. These parameters became a robust input to an accelerated version of the iterative closest point (ICP) algorithm for the fine-tuning of the registration result. Distance calibration and Kalman filtering were used to compensate for ToF-camera dependent noise. Additionally, the advantage of using the feature based preregistration over an ''ICP only'' strategy was evaluated, as well as the robustness of the rigid-transformation-based method to deformation. Results: The proposed surface registration method was validated using phantom data. A mean target registration error (TRE) for translations and rotations of 1.62 {+-} 1.08 mm and 0.07 deg. {+-} 0.05 deg., respectively, was achieved. There was a temporal delay of about 65 ms in the registration output, which can be seen as negligible considering the dynamics of biological systems. Feature based preregistration allowed for accurate and robust registrations even at very large initial displacements. Deformations affected the accuracy of the results, necessitating particular care in cases of deformed surfaces. Conclusions: The proposed solution is able to solve surface registration problems with an accuracy suitable for radiotherapy cases where external surfaces offer primary or complementary information to patient positioning. The system shows promising dynamic properties for its use in gating/tracking applications. The overall system is competitive with commonly-used surface
Manybeam velocimeter for fast surfaces
Goosman, D.; Avara, G.; Steinmetz, L.; Lai, C.; Perry, S.
1996-09-01
For the past 5 years, we have conceived, built and successfully used a new 10 beam laser velocimeter for monitoring velocity vs time histories of fast moving surfaces, and will have a 20 beam capability soon. We conceived a method to multiplex 5 to 10 beams through a single Fabry-Perot interferometer, without losing any light that our equivalently-performing single beam system could use, and with negligible cross- talk. This saves the cost of 16 interferometers, simplifies operation and takes less space than without multiplexing. We devised special efficient light collecting probes, streak cameras that change sweep speed during the course of the record, and a new double cavity interferometer which is better, cheaper and more flexible than our previous versions. With the 10 recorders, we conceived and employ a method of using both a fast and a slow streak camera on each of 5 beams without reducing the light that is available to either camera separately. Five new galvanometrically-driven triggerable CCD streak cameras will be installed soon.
NASA Astrophysics Data System (ADS)
Liang, Xian-hua; Sun, Wei-dong
2011-06-01
Inventory checking is one of the most significant parts for grain reserves, and plays a very important role on the macro-control of food and food security. Simple, fast and accurate method to obtain internal structure information and further to estimate the volume of the grain storage is needed. Here in our developed system, a special designed multi-site laser scanning system is used to acquire the range data clouds of the internal structure of the grain storage. However, due to the seriously uneven distribution of the range data, this data should firstly be preprocessed by an adaptive re-sampling method to reduce the data redundancy as well as noise. Then the range data is segmented and useful features, such as plane and cylinder information, are extracted. With these features a coarse registration between all of these single-site range data is done, and then an Iterative Closest Point (ICP) algorithm is carried out to achieve fine registration. Taking advantage of the structure of the grain storage being well defined and the types of them are limited, a fast automatic registration method based on the priori model is proposed to register the multi-sites range data more efficiently. Then after the integration of the multi-sites range data, the grain surface is finally reconstructed by a delaunay based algorithm and the grain volume is estimated by a numerical integration method. This proposed new method has been applied to two common types of grain storage, and experimental results shown this method is more effective and accurate, and it can also avoids the cumulative effect of errors when registering the overlapped area pair-wisely.
Fast evaluation of surface sensitivity on ghost
NASA Astrophysics Data System (ADS)
Boehme, Beate
2015-09-01
Real optical systems are often suffering from false light caused by ghosts. In particular single reflections are critical in applications like reflected light illumination microscopy or confocal systems. The degradations of performance can be bright spots in the image or contrast, signal to noise or dynamic range reduction. Thus in these systems the suppression of first order reflections is important. State of the art optical design software supports ray trace based ghost image analysis. The automatic generation of reflex light paths is provided, but for systems with a large number of surfaces the analysis of all ghost light paths is time-consuming. Conventional Monte Carlo based non sequential ray trace sums up the reflections of all surfaces simultaneously. To achieve high accuracy a huge number of rays is necessary, what results in long computational time, especially if the distinction of surface influences needs multiple calculations. In this paper a fast method is proposed for the ranking of ghosts. It was developed for single reflections in centered optical systems. For each surface the ghost light path is calculated with paraxial and real ray trace. The ghost diameter and the corresponding illumination NA are calculated. Usually the distance of the reflex focus to the image is used as criterion to access the importance of a ghost. Here we use the power of the ghost ray bundle. It is compared with the signal strength and listed for all surfaces generating a ghost. So in one step a surface contribution of reflex powers as well as an estimation of total flux of reflected light is obtained. Due to the fact, that only a few rays have to be calculated, the method is rather fast. The accuracy can be estimated by comparison of paraxial and marginal ray trace. In the proposed method, some assumptions and approximations are made. They are assessed in respect to some practical examples, and by comparison with full brute force non-sequential ray trace. The usefulness of
NASA Astrophysics Data System (ADS)
Chernykh, A. V.; Chernykh, S. V.; Baryshnikov, F. M.; Didenko, S. I.; Burtebayev, N.; Britvich, G. I.; Kostin, M. Yu.; Chubenko, A. P.; Nassurlla, Marzhan; Nassurlla, Maulen; Kerimkulov, Zh.; Zholdybayev, T.; Glybin, Yu. N.; Sadykov, T. Kh.
2016-12-01
Fast neutron detectors with an active area of 80 mm2 based on surface-barrier VPE GaAs structures were fabricated and tested. Polyethylene with density of 0.90 g/cm3 was used as a converter layer. The recoil-proton surface-barrier sensor was fabricated on high purity VPE GaAs epilayers with a thickness of 50 μm. The neutron detection efficiency measured with a 241Am-Be source was 1.30 · 10-3 puls./neutr. for the PE converter thickness of 670 μm. The signal-to-gamma-background ratio was at the level of 50. Simulation of the detector characteristics with Geant4 toolkit has showed good correlation with the experimental data and allowed to estimate the maximal theoretical detection efficiency of the detector which is determined by the PE converter and equals to 1.37 · 10-3 puls./neutr. The difference between the measured and simulated values of the detection efficiency is due to the fact that the events with energies below 0.5 MeV were not taken into account during the measurements.
Hashimoto, Ken-ya; Kashiwa, Keiskue; Wu, Nan; Omori, Tatsuya; Yamaguchi, Masatsune; Takano, Osamu; Meguro, Sakae; Akahane, Koichi
2011-01-01
This paper describes the development of a phasesensitive laser probe with fast mechanical scan for RF surface and bulk acoustic wave (SAW/BAW) devices. The Sagnac interferometer composed of micro-optic elements was introduced for the selective detection of RF vertical motion associated with RF SAW/BAW propagation and vibration. A high-pass characteristic of the interferometer makes the measurement very insensitive to low-frequency vibration. This feature allows us to apply the fast mechanical scan to the interferometric measurement without badly sacrificing its SNR and spatial resolution. The system was applied to the visualization of a field pattern on the vibrating surface of an RF BAW resonator operating in the 2 GHz range. The field pattern was obtained in 17 min as a 2-D image (500 × 750 pixel with 0.4 μm resolution and SNR of 40 dB). The system was also applied to the characterization of an RF SAW resonator operating in the 1 GHz range, and the applicability of the system was demonstrated.
Larguinho, Miguel; Capelo, José L; Baptista, Pedro V
2013-02-15
We report a method centred on gold nanoparticle-based surface-assisted laser desorption/ionisation for analysis of deoxynucleotides and alkylated nucleobases. Gold nanoparticles allow for enhanced analysis capability by eliminating undesired signature peaks; thus more elegant mass spectra can be attained that allow identification by nucleotide mass fingerprint. The resulting fingerprinting patterns on the spectra are compared and associated with the presence of different nucleotides in the sample. This method can be easily extended to modified nucleotides implicated in genome lesions due to exposure to environment chemicals, such as DNA adducts (e.g. guanine adducts). The use of gold nanoparticles for surface-assisted laser desorption/ionisation can be an useful tool to resolve common issues of background noise when analysing nucleic acids samples.
Fast liquid transfer between two surfaces
NASA Astrophysics Data System (ADS)
Chen, Huanchen; Tang, Tian; Amirfazli, Alidad
2014-11-01
Liquid transfer process between two surfaces typically ends by breaking of a stretched liquid bridge. The amount of liquid remaining on each of the surfaces relative to total volume is usually of interest in applications (e.g. offset or electronic printing, wet adhesion systems, etc.). Literature shows that depending on stretching velocity, U, surface wettability and liquid properties, the behaviour of the liquid bridge can be categorized into: quasi-static where the surface force dominates and dynamic where contributions from viscous and inertia forces are not negligible. Through a systematic experimental study, we demonstrate for the first time that the division of liquid between surfaces in the quasi-static regime is a constant which depends on the receding contact angles. In the dynamic regime (fast transfer), liquid division takes a complicated form. An analytical-empirical model is developed and verified by experimental results that can predict splitting of the liquid between two surfaces as a function of U, surface wettability and liquid viscosity. The model also successfully predicts an even split between surfaces at extremely high velocities as it was observed by us and others.
Decoherence in fast atom diffraction from surfaces
NASA Astrophysics Data System (ADS)
Bundaleski, N.; Soulisse, P.; Momeni, A.; Khemliche, H.; Roncin, P.
2011-06-01
Diffraction of fast atoms from crystal surfaces at grazing incidence (GIFAD) has now been observed on all types of materials, from wide band gap insulators to metals, including semiconductors. Since mainly the (slow) motion normal to the surface is important diffraction patterns are comparable to those obtained in thermal energies atomic diffraction (TEAS), however, the specific scattering geometry of GIFAD has a strong influence on decoherence phenomena. The contribution of atomic vibrations is much less pronounced than in TEAS but other sources of decoherence such as electronic excitations, clearly observed on metals, can participate due to the comparatively large projectile velocity parallel to the surface. We present here simple models that describe these decoherence effects. The results are in good agreement with the experimental results.
Yang, Yi-Wei; Wu, Jane-Yii; Liu, Chih-Tung; Liao, Guo-Chun; Huang, Hsuan-Yu; Hsu, Ray-Quen; Chiang, Ming-Hung; Wu, Jong-Shinn
2014-01-01
In this article, we report the development of the fast incorporation of primary amine functional groups into a polylactide (PLA) surface using the post-discharge jet region of an atmospheric-pressure nitrogen-based dielectric barrier discharge (DBD). Plasma treatments were carried out in two sequential steps: (1) nitrogen with 0.1% oxygen addition, and (2) nitrogen with 5% ammonia addition. The analyses show that the concentration of N/C ratio, surface energy, contact angle, and surface roughness of the treated PLA surface can reach 19.1%, 70.5 mJ/m(2), 38° and 73.22 nm, respectively. In addition, the proposed two-step plasma treatment procedure can produce a PLA surface exhibiting almost the same C2C12 cell attachment and proliferation performance as that of the conventional gelatin coating method. Most importantly, the processing/preparation time is reduced from 13-15 h (gelatin coating method) to 5-15 min (two-step plasma treatment), which is very useful in practical applications. Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.
Fast Surface Dynamics of Metallic Glass Enable Superlatticelike Nanostructure Growth.
Chen, L; Cao, C R; Shi, J A; Lu, Z; Sun, Y T; Luo, P; Gu, L; Bai, H Y; Pan, M X; Wang, W H
2017-01-06
Contrary to the formation of complicated polycrystals induced by general crystallization, a modulated superlatticelike nanostructure, which grows layer by layer from the surface to the interior of a Pd_{40}Ni_{10}Cu_{30}P_{20} metallic glass, is observed via isothermal annealing below the glass transition temperature. The generation of the modulated nanostructure can be solely controlled by the annealing temperature, and it can be understood based on the fast dynamic and liquidlike behavior of the glass surface. The observations have implications for understanding the glassy surface dynamics and pave a way for the controllable fabrication of a unique and sophisticated nanostructure on a glass surface to realize the properties' modification.
Fast Surface Dynamics of Metallic Glass Enable Superlatticelike Nanostructure Growth
NASA Astrophysics Data System (ADS)
Chen, L.; Cao, C. R.; Shi, J. A.; Lu, Z.; Sun, Y. T.; Luo, P.; Gu, L.; Bai, H. Y.; Pan, M. X.; Wang, W. H.
2017-01-01
Contrary to the formation of complicated polycrystals induced by general crystallization, a modulated superlatticelike nanostructure, which grows layer by layer from the surface to the interior of a Pd40Ni10Cu30P20 metallic glass, is observed via isothermal annealing below the glass transition temperature. The generation of the modulated nanostructure can be solely controlled by the annealing temperature, and it can be understood based on the fast dynamic and liquidlike behavior of the glass surface. The observations have implications for understanding the glassy surface dynamics and pave a way for the controllable fabrication of a unique and sophisticated nanostructure on a glass surface to realize the properties' modification.
Effects of surface wettability on fast liquid transfer
NASA Astrophysics Data System (ADS)
Chen, H.; Tang, T.; Amirfazli, A.
2015-11-01
A systematic experimental study was performed to understand the role of surface contact angles in affecting the process of fast liquid transfer. Surfaces with different wettabilities were used, and the transfer ratio (α, the amount of liquid transferred to the acceptor surface over the total amount of liquid) was measured for each pair of surfaces. A numerical model based on the volume of fluid method was developed to help understand the experimental results. The surface wettability was shown to significantly affect the boundaries between three regimes based on stretching speeds: quasi-static (surface force dominated), transition (surface/viscous/inertia forces all important) and dynamic (viscous/inertia forces dominated). Specifically, the values of the boundary speeds were found to increase with |α0 - 0.5|, where α0 is the transfer ratio in the quasi-static regime, and α0 is governed by the surface receding contact angles. Based on our results, an empirical equation to describe the transfer ratio as function of stretching speed was proposed. This equation can also be used as a prediction tool for the value of α for a fast transfer system.
Inversion of surface parameters using fast learning neural networks
NASA Technical Reports Server (NTRS)
Dawson, M. S.; Olvera, J.; Fung, A. K.; Manry, M. T.
1992-01-01
A neural network approach to the inversion of surface scattering parameters is presented. Simulated data sets based on a surface scattering model are used so that the data may be viewed as taken from a completely known randomly rough surface. The fast learning (FL) neural network and a multilayer perceptron (MLP) trained with backpropagation learning (BP network) are tested on the simulated backscattering data. The RMS error of training the FL network is found to be less than one half the error of the BP network while requiring one to two orders of magnitude less CPU time. When applied to inversion of parameters from a statistically rough surface, the FL method is successful at recovering the surface permittivity, the surface correlation length, and the RMS surface height in less time and with less error than the BP network. Further applications of the FL neural network to the inversion of parameters from backscatter measurements of an inhomogeneous layer above a half space are shown.
Inversion of surface parameters using fast learning neural networks
NASA Technical Reports Server (NTRS)
Dawson, M. S.; Olvera, J.; Fung, A. K.; Manry, M. T.
1992-01-01
A neural network approach to the inversion of surface scattering parameters is presented. Simulated data sets based on a surface scattering model are used so that the data may be viewed as taken from a completely known randomly rough surface. The fast learning (FL) neural network and a multilayer perceptron (MLP) trained with backpropagation learning (BP network) are tested on the simulated backscattering data. The RMS error of training the FL network is found to be less than one half the error of the BP network while requiring one to two orders of magnitude less CPU time. When applied to inversion of parameters from a statistically rough surface, the FL method is successful at recovering the surface permittivity, the surface correlation length, and the RMS surface height in less time and with less error than the BP network. Further applications of the FL neural network to the inversion of parameters from backscatter measurements of an inhomogeneous layer above a half space are shown.
In situ fast ellipsometric analysis of repetitive surface phenomena
NASA Astrophysics Data System (ADS)
Costa, J.; Campmany, J.; Canillas, A.; Andújar, J. L.; Bertran, E.
1997-08-01
We present an ellipsometric technique and ellipsometric analysis of repetitive phenomena, based on the experimental arrangement of conventional phase modulated ellipsometers (PME) conceived to study fast surface phenomena in repetitive processes such as periodic and triggered experiments. Phase modulated ellipsometry is a highly sensitive surface characterization technique that is widely used in the real-time study of several processes such as thin film deposition and etching. However, fast transient phenomena cannot be analyzed with this technique because precision requirements limit the data acquisition rate to about 25 Hz. The presented new ellipsometric method allows the study of fast transient phenomena in repetitive processes with a time resolution that is mainly limited by the data acquisition system. As an example, we apply this new method to the study of surface changes during plasma enhanced chemical vapor deposition of amorphous silicon in a modulated radio frequency discharge of SiH4. This study has revealed the evolution of the optical parameters of the film on the millisecond scale during the plasma on and off periods. The presented ellipsometric method extends the capabilities of PME arrangements and permits the analysis of fast surface phenomena that conventional PME cannot achieve.
NASA Astrophysics Data System (ADS)
Hu, Hongda; Shu, Hong; Hu, Zhiyong; Xu, Jianhui
2016-04-01
Kriging interpolation provides the best linear unbiased estimation for unobserved locations, but its heavy computation limits the manageable problem size in practice. To address this issue, an efficient interpolation procedure incorporating the fast Fourier transform (FFT) was developed. Extending this efficient approach, we propose an FFT-based parallel algorithm to accelerate regression Kriging interpolation on an NVIDIA® compute unified device architecture (CUDA)-enabled graphic processing unit (GPU). A high-performance cuFFT library in the CUDA toolkit was introduced to execute computation-intensive FFTs on the GPU, and three time-consuming processes were redesigned as kernel functions and executed on the CUDA cores. A MODIS land surface temperature 8-day image tile at a resolution of 1 km was resampled to create experimental datasets at eight different output resolutions. These datasets were used as the interpolation grids with different sizes in a comparative experiment. Experimental results show that speedup of the FFT-based regression Kriging interpolation accelerated by GPU can exceed 1000 when processing datasets with large grid sizes, as compared to the traditional Kriging interpolation running on the CPU. These results demonstrate that the combination of FFT methods and GPU-based parallel computing techniques greatly improves the computational performance without loss of precision.
Fast and Efficient Approach in Surface Wave Analysis
NASA Astrophysics Data System (ADS)
Kanli, A. I.
2010-12-01
Fast and Efficient Approach in Surface Wave Analysis Ali Ismet KANLI Istanbul University, Engineering Faculty, Department of Geophysical Engineering, 34320, Avcilar Campus, Istanbul-Turkey, E-mail: kanli@istanbul.edu.tr Abstract: A two-step surface wave analysis method is proposed including both the MASW (Multi-channel Analysis of Surface Waves) and Micro-tremor based techniques. This is an integrated approach and the MASW survey data are gathered to obtain the shear wave velocity-depth information up to at least 30 meters by using a special type active seismic source called as SR-II or Kangaroo. In the second step, the microtremor data which are based on surface waves from seismic noise at each site are used to determine the shear-wave velocity-depth profiles. In the second step of the process, the multichannel analysis of surface waves data are given as constraints in the microtremor inversion process. This proposed algorithm allows us to calculate shear wave velocity-depth information with all geotechnical parameters from near surface to bedrock depths very fast and efficiently.
NASA Astrophysics Data System (ADS)
Tatrai, David; Nikov, Daniella; Zsolt Jász, Ervin; Bozóki, Zoltán; Szabó, Gábor; Weidinger, Tamás; András Gyöngyösi, Zénó; Kiss, Melinda; Józsa, János; Simó Diego, Gemma; Cuxart Rodamilans, Joan; Wrenger, Burkhart; Bottyán, Zsolt
2014-05-01
A micrometeorological field measurement campaign dedicated to study the surface energy budget and the structure of the boundary layer focusing on the transient layer forming periods during night-time was organized in the period of 10th of November to 3rd of December 2013 in the nearby of Szeged, Hungary. A temporary micrometeorological measurement station was set up at the coordinates N:46.239943; E:20.089758, approximately 1700 m far from a national meteorology station (N:46.255711; E:20.09052). In the experimental micrometeorological site different types of instruments were installed to measure numerous parameters: standard meteorological measurements (p, T, wet, wind speed and direction at three different levels, relative humidity at two levels and absolute humidity at one level) radiation budget components surface temperature and leaf wetness soil temperature, moisture and heat flux into the deeper soil layer eddy-covariance measurements (t, H, LE CO2) at 3 m level using Campbell open-path IRGA (EC150) system. At the national meteorology station (http://adatok.geo.u-szeged.hu/?lang=eng) besides their standard measurement equipment and measurement routine a SODAR was installed and continuously operated. These ground based measurements were combined with and supported by UAV, quadcopter and tethered balloon based vertical profile measurements of p, T, rh. For this measurement campaign as a modification of a previously developed airborne ready dual channel hygrometer, a fast photoacoustic spectroscopy based hygrometer was developed for absolute humidity measurements. The estimated response time of the system is faster than 15 Hz, which was achieved by the replacement of the data acquisition system and by recording the raw photoacoustic signal sampled at rate of 48 kHz for post-processing. During the campaign this new system was compared to a TDL system commercially available at Li-COR Inc. Besides the testing of the newly developed fast photoacoustic hygrometer
Fast approximate surface evolution in arbitrary dimension
Malcolm, James; Rathi, Yogesh; Yezzi, Anthony; Tannenbaum, Allen
2013-01-01
The level set method is a popular technique used in medical image segmentation; however, the numerics involved make its use cumbersome. This paper proposes an approximate level set scheme that removes much of the computational burden while maintaining accuracy. Abandoning a floating point representation for the signed distance function, we use integral values to represent the signed distance function. For the cases of 2D and 3D, we detail rules governing the evolution and maintenance of these three regions. Arbitrary energies can be implemented in the framework. This scheme has several desirable properties: computations are only performed along the zero level set; the approximate distance function requires only a few simple integer comparisons for maintenance; smoothness regularization involves only a few integer calculations and may be handled apart from the energy itself; the zero level set is represented exactly removing the need for interpolation off the interface; and evolutions proceed on the order of milliseconds per iteration on conventional uniprocessor workstations. To highlight its accuracy, flexibility and speed, we demonstrate the technique on intensity-based segmentations under various statistical metrics. Results for 3D imagery show the technique is fast even for image volumes. PMID:24392194
Quantum interference of fast atoms scattered off crystal surfaces
NASA Astrophysics Data System (ADS)
Gravielle, M. S.
2015-01-01
The striking observation of interference structures produced by grazing impact of fast atoms on crystal surfaces reported a few years ago [1,2] has given rise to the development of a powerful surface analysis technique. This article gives a brief account of the main features of the process, using the Surface Eikonal (SE) approximation as a theoretical tool to analyze the different mechanisms responsible for the quantum interference. The SE approach is a semiclassical method based on the use of the eikonal wave function, which takes into account the coherent superposition of transition amplitudes for different axially channeled trajectories. It has proved to provide a quite good description of experimental diffraction patterns for different collision systems.
Fast Surface Diffusion and Crystallization of Amorphous Griseofulvin.
Huang, Chengbin; Ruan, Shigang; Cai, Ting; Yu, Lian
2017-09-27
Among molecular glasses, griseofulvin (GSF) is one of the fastest crystallizing. To understand this property, we have measured the surface diffusion in GSF using the method of surface grating decay. Surface diffusion in amorphous GSF is extremely fast, outpacing bulk diffusion by a factor of 10(8) at the glass transition temperature Tg (361 K). Among all molecular glasses studied (13 in all), GSF has the second fastest surface diffusion (to o-terphenyl) when compared at Tg. The GSF result fits the overall trend for molecular glasses without intermolecular hydrogen bonds, where surface diffusion systematically slows down with increasing molecular size. This result is particularly noteworthy because GSF has many hydrogen-bond acceptors but no donors, indicating that, so long as they do not participate in hydrogen bonding, the polar functional groups have a similar effect on surface diffusion as the nonpolar hydrocarbon groups. In contrast, the formation of intermolecular hydrogen bonds strongly inhibits surface diffusion. The surface crystal growth rate of amorphous GSF is nearly proportional to its surface diffusion coefficient, as noted for other systems, supporting the view that surface crystal growth is controlled by surface diffusion. In addition, the fast surface diffusion of GSF glasses explains the fast crystal growth along fracture surfaces and suggests a basis to understand fast crystal growth in the bulk through continuous creation of microcracks.
Method for Accurate Surface Temperature Measurements During Fast Induction Heating
NASA Astrophysics Data System (ADS)
Larregain, Benjamin; Vanderesse, Nicolas; Bridier, Florent; Bocher, Philippe; Arkinson, Patrick
2013-07-01
A robust method is proposed for the measurement of surface temperature fields during induction heating. It is based on the original coupling of temperature-indicating lacquers and a high-speed camera system. Image analysis tools have been implemented to automatically extract the temporal evolution of isotherms. This method was applied to the fast induction treatment of a 4340 steel spur gear, allowing the full history of surface isotherms to be accurately documented for a sequential heating, i.e., a medium frequency preheating followed by a high frequency final heating. Three isotherms, i.e., 704, 816, and 927°C, were acquired every 0.3 ms with a spatial resolution of 0.04 mm per pixel. The information provided by the method is described and discussed. Finally, the transformation temperature Ac1 is linked to the temperature on specific locations of the gear tooth.
Spherical Demons: Fast Diffeomorphic Landmark-Free Surface Registration
Yeo, B.T. Thomas; Sabuncu, Mert R.; Vercauteren, Tom; Ayache, Nicholas; Fischl, Bruce; Golland, Polina
2010-01-01
We present the Spherical Demons algorithm for registering two spherical images. By exploiting spherical vector spline interpolation theory, we show that a large class of regularizors for the modified Demons objective function can be efficiently approximated on the sphere using iterative smoothing. Based on one parameter subgroups of diffeomorphisms, the resulting registration is diffeomorphic and fast. The Spherical Demons algorithm can also be modified to register a given spherical image to a probabilistic atlas. We demonstrate two variants of the algorithm corresponding to warping the atlas or warping the subject. Registration of a cortical surface mesh to an atlas mesh, both with more than 160k nodes requires less than 5 minutes when warping the atlas and less than 3 minutes when warping the subject on a Xeon 3.2GHz single processor machine. This is comparable to the fastest non-diffeomorphic landmark-free surface registration algorithms. Furthermore, the accuracy of our method compares favorably to the popular FreeSurfer registration algorithm. We validate the technique in two different applications that use registration to transfer segmentation labels onto a new image: (1) parcellation of in-vivo cortical surfaces and (2) Brodmann area localization in ex-vivo cortical surfaces. PMID:19709963
Spherical demons: fast diffeomorphic landmark-free surface registration.
Yeo, B T Thomas; Sabuncu, Mert R; Vercauteren, Tom; Ayache, Nicholas; Fischl, Bruce; Golland, Polina
2010-03-01
We present the Spherical Demons algorithm for registering two spherical images. By exploiting spherical vector spline interpolation theory, we show that a large class of regularizors for the modified Demons objective function can be efficiently approximated on the sphere using iterative smoothing. Based on one parameter subgroups of diffeomorphisms, the resulting registration is diffeomorphic and fast. The Spherical Demons algorithm can also be modified to register a given spherical image to a probabilistic atlas. We demonstrate two variants of the algorithm corresponding to warping the atlas or warping the subject. Registration of a cortical surface mesh to an atlas mesh, both with more than 160 k nodes requires less than 5 min when warping the atlas and less than 3 min when warping the subject on a Xeon 3.2 GHz single processor machine. This is comparable to the fastest nondiffeomorphic landmark-free surface registration algorithms. Furthermore, the accuracy of our method compares favorably to the popular FreeSurfer registration algorithm. We validate the technique in two different applications that use registration to transfer segmentation labels onto a new image 1) parcellation of in vivo cortical surfaces and 2) Brodmann area localization in ex vivo cortical surfaces.
Ultra-fast boriding of metal surfaces for improved properties
Timur, Servet; Kartal, Guldem; Eryilmaz, Osman L.; Erdemir, Ali
2015-02-10
A method of ultra-fast boriding of a metal surface. The method includes the step of providing a metal component, providing a molten electrolyte having boron components therein, providing an electrochemical boriding system including an induction furnace, operating the induction furnace to establish a high temperature for the molten electrolyte, and boriding the metal surface to achieve a boride layer on the metal surface.
A fast pairwise evaluation of molecular surface area.
Vasilyev, Vladislav; Purisima, Enrico O
2002-05-01
A fast and general analytical approach was developed for the calculation of the approximate van der Waals and solvent-accessible surface areas. The method is based on three basic ideas: the use of the Lorentz transformation formula, a rigid-geometry approximation, and a single fitting parameter that can be refitted on the fly during a simulation. The Lorentz transformation equation is used for the summation of the areas of an atom buried by its neighboring contacting atoms, and implies that a sum of the buried pairwise areas cannot be larger than the surface area of the isolated spherical atom itself. In a rigid-geometry approximation we numerically calculate and keep constant the surface of each atom buried by the atoms involved in 1-2 and 1-3 interactions. Only the contributions from the nonbonded atoms (1-4 and higher interactions) are considered in terms of the pairwise approximation. The accuracy and speed of the method is competitive with other pairwise algorithms. A major strength of the method is the ease of parametrization.
Red surface emitters: powerful and fast
NASA Astrophysics Data System (ADS)
Schweizer, Heinz; Ballmann, Tabitha; Butendeich, Rainer; Rossbach, Robert; Raabe, Bernd; Jetter, Michael; Scholz, Ferdinand
2003-12-01
Vertical cavity surface emitting lasers (VCSEL) in the GaInP/AlGaInP material system have experienced a rapid development in their short history. In general lasers from that material system are suitable for a huge number of applications beginning with TV lasers and high power lasers for edge emitters, continuing with optical data storage, medical applications as well as data communication in cars, air planes, offices and between computers as application field for VCSELs. Especially automotive applications show the highest requirements on a laser with respect to operation temperature and power. In this talk we draw out the problems of the material system AlGaInP and its implications for laser applications. We discuss the epitaxial and technological solutions to overcome at least a part of these inherent problems. We will discuss the possible power that we can expect from VCSELs emitting in the range between 650 nm to 670 nm. We got from our lasers 5 mW, CW @ RT, 670nm and 2.5mW, CW@RT, 650 nm. We emphasize the role of doping, Bragg mirror grading, suitable detuning of cavity mode and gain, and optimisation of the contact layer and control of the oxide aperture in the VCSEL structure to get improved operation characteristics at higher temperatures. From the analysis of high frequency measurements, we could evaluate modulation bandwidths between 4 GHz and 10 GHz. The application of polyimide as a dielectric isolation material shows the potential to obtain modulation bandwidths beyond 10 GHz. For the intrinsic modulation bandwidth we get a value of 25 GHz, which is near the value edge emitters show. A more detailed discussion on photon lifetimes and carrier transport times will be given in the talk. Red light emitting VCSELS driven with short current pulses showed laser emission up to + 160°C case temperature. Thus, a CW operation up to +120°C can be expected after further improvement of power generation (decrease of series resistance) and heat spreading (optimized
Li, Bowei; Zhang, Wei; Chen, Lingxin; Lin, Bingcheng
2013-08-01
In this study, a fast, low-cost, and facile spray method was proposed. This method deposits highly sensitive surface-enhanced Raman scattering (SERS) silver nanoparticles (AgNPs) on the paper-microfluidic scheme. The procedures for substrate preparation were studied including different strategies to synthesize AgNPs and the optimization of spray cycles. In addition, the morphologies of the different kinds of paper substrates were characterized by SEM and investigated by their SERS signals. The established method was found to be favorable for obtaining good sensitivity and reproducible results. The RSDs of Raman intensity of randomly analyzing 20 spots on the same paper or different filter papers depositing AgNPs are both below 15%. The SERS enhancement factor is approximately 2 × 10(7) . The whole fabrication is very rapid, robust, and does not require specific instruments. Furthermore, the total cost for 1000 pieces of chip is less than $20. These advantages demonstrated the potential for growing SERS applications in the area of environmental monitoring, food safety, and bioanalysis in the future. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pedrosa, Joao; Queiros, Sandro; Bernard, Olivier; Engvall, Jan; Edvardsen, Thor; Nagel, Eike; Dhooge, Jan
2017-08-02
Cardiac volume/function assessment remains a critical step in daily cardiology and 3D ultrasound plays an increasingly important role. Fully automatic left ventricular segmentation is, however, a challenging task due to the artifacts and low contrast-to-noise ratio of ultrasound imaging. In the present work, a fast and fully automatic framework for full cycle endocardial left ventricle segmentation is proposed. This approach couples the advantages of the B-spline explicit active surfaces framework, a purely image information approach, to those of statistical shape models to give prior information about the expected shape for an accurate segmentation. The segmentation is propagated throughout the heart cycle using a localized anatomical affine optical flow. It is shown that this approach not only outperforms other state-of-the-art methods in terms of distance metrics with mean average distances of 1.81±0.59 mm and 1.98±0.66 mm at end-diastole and end-systole respectively but is computationally efficient (in average 11 seconds per 4D image) and fully automatic.
Radu, Andreea Ioana; Ryabchykov, Oleg; Bocklitz, Thomas Wilhelm; Huebner, Uwe; Weber, Karina; Cialla-May, Dana; Popp, Jürgen
2016-07-21
Carotenoids are molecules that play important roles in both plant development and in the well-being of mammalian organisms. Therefore, various studies have been performed to characterize carotenoids' properties, distribution in nature and their health benefits upon ingestion. Nevertheless, there is a gap regarding a fast detection of them at the plant phase. Within this contribution we report the results obtained regarding the application of surface enhanced Raman spectroscopy (SERS) toward the differentiation of two carotenoid molecules (namely, lycopene and β-carotene) in tomato samples. To this end, an e-beam lithography (EBL) SERS-active substrate and a 488 nm excitation source were employed, and a relevant simulated matrix was prepared (by mixing the two carotenoids in defined percentages) and measured. Next, carotenoids were extracted from tomato plants and measured as well. Finally, a combination of principal component analysis and partial least squares regression (PCA-PLSR) was applied to process the data, and the obtained results were compared with HPLC measurements of the same extracts. A good agreement was obtained between the HPLC and the SERS results for most of the tomato samples.
Fast Liquid Transfer between Surfaces: Breakup of Stretched Liquid Bridges.
Chen, H; Tang, T; Amirfazli, A
2015-10-27
In this work, a systematic experimental study was performed to understand the fast liquid transfer process between two surfaces. According to the value of the Reynolds number (Re), the fast transfer is divided into two different scenarios, one with negligible inertia effects (Re ≪ 1) and the other with significant inertia effects (Re > 1). For Re ≪ 1, the influences of the capillary number (Ca) and the dimensionless minimum separation (H(min)* = H(min)/V(1/3), where H(min) is the minimum separation between two surfaces and V is the volume of liquid) on the transfer ratio (α, the volume of liquid transferred to the acceptor surface over the total liquid volume) are discussed. On the basis of the roles of each physical parameter, an empirical equation is presented to predict the transfer ratio, α = f(Ca). This equation involves two coefficients which are affected only by the surface contact angles and H(min)* but not by the liquid viscosity or surface tension. When Re > 1, it is shown for the first time that the transfer ratio does not converge to 0.5 with the increase in the stretching speed.
NASA Astrophysics Data System (ADS)
Qi, Zhipeng; Hu, Guohua; Yun, Binfeng; Zhang, Xiong; Cui, Yiping
2016-08-01
In this paper, we present a 1 × 2 thermo-optic (TO) switch based on the integration of the dielectric-loaded surface plasmon polariton (SPP) waveguides with the silicon nanowires. Liquid-curable fluorinated resin (LFR) made of perfluorinated polymer was adopted as the ridge, which has a TO coefficient twice more than that of polymethyl methacrylate, leading to a significant decrease in the power consumption. It was shown that the response time of the dielectric-loaded SPP waveguide could be improved through optimizing the dimensions of the LFR polymer ridge without loss of relative high figure of merit and large confinement factor. Performance characteristics of such a 1 × 2 TO switch operating at a telecom wavelength of 1550 nm was investigated theoretically from the analysis of both heat and optical fields. The results reveal that a switching power as low as 7 mW and an extremely short switching time (with rise time of 3 μs and fall time of 6.7 μs) could be achieved with the proposed dielectric-loaded SPP-based 1 × 2 TO switch. In addition, the crosstalk could be enhanced to at least 40 dB with the applied power of 7 mW at the wavelength of 1550 nm, and it could be retained to be above 20 dB in the wavelength spectrum of 1500-1600 nm during the on/off state.
Fast Forwarding for Content-Based Networking
2001-11-01
Fast Forwarding for Content-Based Networking Antonio Carzaniga Jing Deng Alexander L. Wolf Software Engineering Research Laboratory Department of...Computer Science Technical Report CU-CS-922-01 November 2001 c 2001 Antonio Carzaniga , Jing Deng, and Alexander L. Wolf Abstract This paper presents a...Proceedings of the 23th International Conference on Software Engineering, pages 443–452, Toronto, Canada, May 2001. [3] A. Carzaniga , D. S. Rosenblum
FastICA peel-off for ECG interference removal from surface EMG.
Chen, Maoqi; Zhang, Xu; Chen, Xiang; Zhu, Mingxing; Li, Guanglin; Zhou, Ping
2016-06-13
Multi-channel recording of surface electromyographyic (EMG) signals is very likely to be contaminated by electrocardiographic (ECG) interference, specifically when the surface electrode is placed on muscles close to the heart. A novel fast independent component analysis (FastICA) based peel-off method is presented to remove ECG interference contaminating multi-channel surface EMG signals. Although demonstrating spatial variability in waveform shape, the ECG interference in different channels shares the same firing instants. Utilizing the firing information estimated from FastICA, ECG interference can be separated from surface EMG by a "peel off" processing. The performance of the method was quantified with synthetic signals by combining a series of experimentally recorded "clean" surface EMG and "pure" ECG interference. It was demonstrated that the new method can remove ECG interference efficiently with little distortion to surface EMG amplitude and frequency. The proposed method was also validated using experimental surface EMG signals contaminated by ECG interference. The proposed FastICA peel-off method can be used as a new and practical solution to eliminating ECG interference from multichannel EMG recordings.
NASA Astrophysics Data System (ADS)
Fainberg, J.; Schaefer, W.
2015-06-01
A new algorithm for heat exchange between thermally coupled diffusely radiating interfaces is presented, which can be applied for closed and half open transparent radiating cavities. Interfaces between opaque and transparent materials are automatically detected and subdivided into elementary radiation surfaces named tiles. Contrary to the classical view factor method, the fixed unit sphere area subdivision oriented along the normal tile direction is projected onto the surrounding radiation mesh and not vice versa. Then, the total incident radiating flux of the receiver is approximated as a direct sum of radiation intensities of representative “senders” with the same weight factor. A hierarchical scheme for the space angle subdivision is selected in order to minimize the total memory and the computational demands during thermal calculations. Direct visibility is tested by means of a voxel-based ray tracing method accelerated by means of the anisotropic Chebyshev distance method, which reuses the computational grid as a Chebyshev one. The ray tracing algorithm is fully parallelized using MPI and takes advantage of the balanced distribution of all available tiles among all CPU's. This approach allows tracing of each particular ray without any communication. The algorithm has been implemented in a commercial casting process simulation software. The accuracy and computational performance of the new radiation model for heat treatment, investment and ingot casting applications is illustrated using industrial examples.
Module for dielectric surfaces modification by fast neutral particles beams
NASA Astrophysics Data System (ADS)
Barchenko, V. T.; Lisenkov, A. A.; Babinov, N. A.
2014-11-01
In this paper, we describe the module for dielectric and wide-gap semiconductor surfaces modification by fast neutral beam. The module can be used for cleaning, etching or assisting of films deposition. The surface proceeding by neutral beam can prevent an accumulation of surface charge without using current compensation by inserting electrons to the beam or RF power supply. The module beside cathode and anode contains an electrode with floating potential. Insertion of the additional electrode causes electron retention in an electrostatic trap resulting the reducing of the module operating pressure. Moreover, the electrode with floating potential allows increasing the current efficient of the module. An important feature of the module is that neutralization of the ions extracted from the plasma occurs in the cathode potential well. Thereby ions that have not neutralized cannot leave nearcathode region and there are no fast ions in the output beam. Module does not contain sources of the magnetic fields or elements heated by external sources. Module operates with free cooling. Thus, the module does not need water cooling and can be freely moved in the vacuum chamber.
Facile and fast fabrication of superhydrophobic surface on magnesium alloy
NASA Astrophysics Data System (ADS)
Wang, Zhongwei; Li, Qing; She, Zuxin; Chen, Funan; Li, Longqin; Zhang, Xiaoxu; Zhang, Peng
2013-04-01
Superhydrophobic surface has many special functions and is widely investigated by researchers. Magnesium alloy is one of the lightest metal materials among the practice metals. It plays an important role in automobile, airplane and digital product for reducing devices weight. But due to the low standard potential, magnesium alloy has a high chemical activity and easily be corroded. That seriously impedes the application of magnesium alloy. In the process of fabrication a superhydrophobic surface on magnesium alloy, there are two ineluctable problems that must be solved: (1) high chemical activity and (2) the chemical activity is inhomogeneous on surface. In this study, we solved those problems by using the two characters to gain a rough surface on magnesium alloy and obtained a superhydrophobic surface after following modification process. The results show that the as-prepared superhydrophobic surface has obvious anti-corrosion effect in typically corrosive solution and naturally humid air. The delay-icing and self-cleaning effects are also investigated. The presented method is low-cost, fast and has great potential value in large-scale industry production.
NASA Astrophysics Data System (ADS)
Liuzzi, G.; Masiello, G.; Serio, C.; Blasi, M. G.; Venafra, S.
2015-09-01
This paper describes the theoretical aspects of a fast scheme for the physical retrieval of surface temperature and emissivity from SEVIRI data, their implementation and some sample results obtained. The scheme is based on a Kalman Filter approach, which effectively exploits the temporal continuity in the observations of the geostationary Meteosat Second Generation (MSG) platform, on which SEVIRI (Spinning Enhanced Visible and InfraRed Imager) operates. Such scheme embodies in its core a physical retrieval algorithm, which employs an hyper fast radiative transfer code highly customized for this retrieval task. Radiative transfer and its customizations are described in detail. Fastness, accuracy and stability of the code are fully documented for a variety of surface features, showing a peculiar application to the massive Greek forest fires in August 2007.
Fast and Slow Wetting Dynamics on nanostructured surfaces
NASA Astrophysics Data System (ADS)
Nandyala, Dhiraj; Rahmani, Amir; Cubaud, Thomas; Colosqui, Carlos
2015-11-01
This talk will present force-displacement and spontaneous drop spreading measurements on diverse nanostructured surfaces (e.g., mesoporous titania thin films, nanoscale pillared structures, on silica or glass substrates). Experimental measurements are performed for water-air and water-oil systems. The dynamics of wetting observed in these experiments can present remarkable crossovers from fast to slow or arrested dynamics. The emergence of a slow wetting regime is attributed to a multiplicity of metastable equilibrium states induced by nanoscale surface features. The crossover point can be dramatically advanced or delayed by adjusting specific physical parameters (e.g., viscosity of the wetting phases) and geometric properties of the surface nanostructure (e.g., nanopore/pillar radius and separation). Controlling the crossover point to arrested dynamics can effectively modify the degree of contact angle hysteresis and magnitude of liquid adhesion forces observed on surfaces of different materials. This work is supported by a SEED Award from The Office of Brookhaven National Laboratory Affairs at Stony Brook University.
Fast ion surface energy loss and straggling in the surface wake fields.
Nandi, T; Haris, K; Hala; Singh, Gurjeet; Kumar, Pankaj; Kumar, Rajesh; Saini, S K; Khan, S A; Jhingan, Akhil; Verma, P; Tauheed, A; Mehta, D; Berry, H G
2013-04-19
We have measured the stopping powers and straggling of fast, highly ionized atoms passing through thin bilayer targets made up of metals and insulators. We were surprised to find that the energy losses as well as the straggling depend on the ordering of the target and have small but significantly different values on bilayer reversal. We ascribe this newly found difference in energy loss to the surface energy loss field effect due to the differing surface wake fields as the beam exits the target in the two cases. This finding is validated with experiments using several different projectiles, velocities, and bilayer targets. Both partners of the diatomic molecular ions also display similar results. A comparison of the energy loss results with those of previous theoretical predictions for the surface wake potential for fast ions in solids supports the existence of a self-wake.
Fast Beam-Based BPM Calibration
Bertsche, K.; Loos, H.; Nuhn, H.-D.; Peters, F.; /SLAC
2012-10-15
The Alignment Diagnostic System (ADS) of the LCLS undulator system indicates that the 33 undulator quadrupoles have extremely high position stability over many weeks. However, beam trajectory straightness and lasing efficiency degrade more quickly than this. A lengthy Beam Based Alignment (BBA) procedure must be executed every two to four weeks to re-optimize the X-ray beam parameters. The undulator system includes RF cavity Beam Position Monitors (RFBPMs), several of which are utilized by an automatic feedback system to align the incoming electron-beam trajectory to the undulator axis. The beam trajectory straightness degradation has been traced to electronic drifts of the gain and offset of the BPMs used in the beam feedback system. To quickly recover the trajectory straightness, we have developed a fast beam-based procedure to recalibrate the BPMs. This procedure takes advantage of the high-precision monitoring capability of the ADS, which allows highly repeatable positioning of undulator quadrupoles. This report describes the ADS, the position stability of the LCLS undulator quadrupoles, and some results of the new recovery procedure.
Surface symmetry of monolayer titanium oxide on Mo(1 1 2) studied via fast atom diffraction
NASA Astrophysics Data System (ADS)
Seifert, J.; Winter, H.
2013-11-01
In studies on titanium oxide thin films we demonstrate the potential of Fast Atom Diffraction (FAD) and triangulation methods to derive the surface unit cell with enhanced surface sensitivity. Helium atoms with energies of 1-2 keV are scattered from the surface along low indexed surface directions under grazing angles of incidence. From the observed diffraction patterns, the lateral periodicity of the surface structures is derived. For low TiOx coverages a well-ordered c(2 × 4) superstructure and for higher coverage a p(8 × 2) film is observed. Based on FAD and triangulation methods for azimuthal rotation of the target the arrangement of topmost atoms in smaller sub-unit cells is revealed.
Fast diffraction computation algorithms based on FFT
NASA Astrophysics Data System (ADS)
Logofatu, Petre Catalin; Nascov, Victor; Apostol, Dan
2010-11-01
The discovery of the Fast Fourier transform (FFT) algorithm by Cooley and Tukey meant for diffraction computation what the invention of computers meant for computation in general. The computation time reduction is more significant for large input data, but generally FFT reduces the computation time with several orders of magnitude. This was the beginning of an entire revolution in optical signal processing and resulted in an abundance of fast algorithms for diffraction computation in a variety of situations. The property that allowed the creation of these fast algorithms is that, as it turns out, most diffraction formulae contain at their core one or more Fourier transforms which may be rapidly calculated using the FFT. The key in discovering a new fast algorithm is to reformulate the diffraction formulae so that to identify and isolate the Fourier transforms it contains. In this way, the fast scaled transformation, the fast Fresnel transformation and the fast Rayleigh-Sommerfeld transform were designed. Remarkable improvements were the generalization of the DFT to scaled DFT which allowed freedom to choose the dimensions of the output window for the Fraunhofer-Fourier and Fresnel diffraction, the mathematical concept of linearized convolution which thwarts the circular character of the discrete Fourier transform and allows the use of the FFT, and last but not least the linearized discrete scaled convolution, a new concept of which we claim priority.
Fast placement of evenly spaced streamlines on curvilinear grid surfaces
NASA Astrophysics Data System (ADS)
Mao, Xiaoyang; Higashida, Hidenori; Imamiya, Atsumi
2000-02-01
The success of using streamline technique for visualizing a vector field usually depends largely on the choosing of adequate seed points. This paper propose a new technique for automatically placing seed points to create evenly spaced streamlines on 3D parametric surfaces found in curvilinear grids. The new technique extends Jobard and Lefer's distance-based single pass approach for placing streamlines in the 2D computational space of the surface. Experimental result show that the new technique produces streamline images of competitive quality at much lower computational expense image-guided progressive refinement approach. A method for compensating the visual streamline density distortion caused by projection is also presented.
Surface Plasmon Based Spectrometer
NASA Astrophysics Data System (ADS)
Wig, Andrew; Passian, Ali; Boudreaux, Philip; Ferrell, Tom
2008-03-01
A spectrometer that uses surface plasmon excitation in thin metal films to separate light into its component wavelengths is described. The use of surface plasmons as a dispersive medium sets this spectrometer apart from prism, grating, and interference based variants and allows for the miniaturization of this device. Theoretical and experimental results are presented for two different operation models. In the first case surface plasmon tunneling in the near field is used to provide transmission spectra of different broad band-pass, glass filters across the visible wavelength range with high stray-light rejection at low resolution as well as absorption spectra of chlorophyll extracted from a spinach leaf. The second model looks at the far field components of surface plasmon scattering.
A flexible fast 3D profilometry based on modulation measurement
NASA Astrophysics Data System (ADS)
Dou, Yunfu; Su, Xianyu; Chen, Yanfei; Wang, Ying
2011-03-01
This paper proposes a flexible fast profilometry based on modulation measurement. Two orthogonal gratings through a beam splitter are vertically projected on an object surface, and the measured object is placed between the imaging planes of the two gratings. Then the image of the object surface modulated by the orthogonal gratings can be obtained by a CCD camera in the same direction as the grating projection. This image is processed by the operations consisting of performing the Fourier transform, spatial frequency filtering and inverse Fourier transform. Using the modulation distributions of two grating patterns, we can reconstruct the 3D shape of the object. In the measurement process, we only need to capture one fringe pattern, so it is faster than the MMP and remains the advantages of it. In the article, the principle of this method, the setup of the measurement system, some simulations and primary experiment results are given. The simulative and experimental result proves it can restore the 3D shape of the complex object fast and comparatively accurate. Because only one fringe pattern is needed in the testing, our method has a promising extensive application prospect in real-time acquiring and dynamic measurement of 3D data of complex objects.
Fast imaging with surface-related multiples by sparse inversion
NASA Astrophysics Data System (ADS)
Tu, Ning; Herrmann, Felix J.
2015-04-01
In marine exploration seismology, surface-related multiples are usually treated as noise mainly because subsequent processing steps, such as migration velocity analysis and imaging, require multiple-free data. Failure to remove these wavefield components from the data may lead to erroneous estimates for migration velocity or result in strong coherent artefacts that interfere with the imaged reflectors. However, multiples can carry complementary information compared to primaries, as they interact with the free surface and are therefore exposed more to the subsurface. Recent work has shown that when processed correctly multiples can improve seismic illumination. Given a sufficiently accurate background velocity model and an estimate for the source signature, we propose a new and computationally efficient linearized inversion procedure based on two-way wave equations, which produces accurate images of the subsurface from the total upgoing wavefield including surface-related multiples. Modelling of the surface-related multiples in the proposed method derives from the well-known surface-related multiple elimination method. We incur a minimal overhead from incorporating the multiples by having the wave-equation solver carry out the multiple predictions via the inclusion of an areal source instead of expensive dense matrix-matrix multiplications. By using subsampling techniques, we obtain high-quality true-amplitude least-squares migrated images at computational costs of roughly a single reverse-time migration (RTM) with all the data. These images are virtually free of coherent artefacts from multiples. Proper inversion of the multiples would be computationally infeasible without using these techniques that significantly bring down the cost. By promoting sparsity in the curvelet domain and using rerandomization, out method gains improved robustness to errors in the background velocity model, and errors incurred in the linearization of the wave equation with respect to the
A Simple and Fast Spline Filtering Algorithm for Surface Metrology.
Zhang, Hao; Ott, Daniel; Song, John; Tong, Mingsi; Chu, Wei
2015-01-01
Spline filters and their corresponding robust filters are commonly used filters recommended in ISO (the International Organization for Standardization) standards for surface evaluation. Generally, these linear and non-linear spline filters, composed of symmetric, positive-definite matrices, are solved in an iterative fashion based on a Cholesky decomposition. They have been demonstrated to be relatively efficient, but complicated and inconvenient to implement. A new spline-filter algorithm is proposed by means of the discrete cosine transform or the discrete Fourier transform. The algorithm is conceptually simple and very convenient to implement.
Fast globally optimal single surface segmentation using regional properties
NASA Astrophysics Data System (ADS)
Dou, Xin; Wu, Xiaodong
2010-03-01
Efficient segmentation of globally optimal surfaces in volumetric images is a central problem in many medical image analysis applications. Intra-class variance has been successfully utilized, for instance, in the Chan-Vese model especially for images without prominent edges. In this paper, we study the optimization problem of detecting a region (volume) bounded by a smooth terrain-like surface, whose intra-class variance is minimized. A novel polynomial time algorithm is developed. Our algorithm is based on the shape probing technique in computational geometry and computes a sequence of O(n) maximum flows in the derived graphs, where n is the size of the input image. Our further investigation shows that those O(n) graphs form a monotone parametric flow network, which enables to solving the optimal region detection problem in the complexity of computing a single maximum flow. The method has been validated on computer-synthetic volumetric images. Its applicability to clinical data sets was demonstrated on 20 3-D airway wall CT images from 6 subjects. The achieved results were highly accurate. The mean unsigned surface positioning error of outer walls of the tubes is 0.258 +/- 0.297mm, given a voxel size of 0.39 x 0.39 x 0.6mm3.
A fast method to measure the 3D surface of the human heart
NASA Astrophysics Data System (ADS)
Cao, Yiping; Su, Xianyu; Xiang, Liqun; Chen, Wenjing; Zhang, Qican
2003-12-01
Three-dimensional (3-D) automatic measurement of an object is widely used in many fields. In Biology and Medicine society, it can be applicable for surgery, orthopedics, viscera disease analysis and diagnosis etc. Here a new fast method to measure the 3D surface of human heart is proposed which can provide doctors a lot of information, such as the size of heart profile, the sizes of the left or right heart ventricle, and the curvature center and radius of heart ventricle, to fully analyze and diagnose pathobiology of human heart. The new fast method is optically and noncontacted and based upon the Phase Measurement Profilometry (PMP), which has higher measuring precision. A human heart specimen experiment has verified our method.
A New Fast Algorithm to Completely Account for Non-Lambertian Surface Reflection of The Earth
NASA Technical Reports Server (NTRS)
Qin, Wen-Han; Herman, Jay R.; Ahmad, Ziauddin; Einaudi, Franco (Technical Monitor)
2000-01-01
Surface bidirectional reflectance distribution function (BRDF) influences not only radiance just about the surface, but that emerging from the top of the atmosphere (TOA). In this study we propose a new, fast and accurate, algorithm CASBIR (correction for anisotropic surface bidirectional reflection) to account for such influences on radiance measured above TOA. This new algorithm is based on a 4-stream theory that separates the radiation field into direct and diffuse components in both upwelling and downwelling directions. This is important because the direct component accounts for a substantial portion of incident radiation under a clear sky, and the BRDF effect is strongest in the reflection of the direct radiation reaching the surface. The model is validated by comparison with a full-scale, vector radiation transfer model for the atmosphere-surface system. The result demonstrates that CASBIR performs very well (with overall relative difference of less than one percent) for all solar and viewing zenith and azimuth angles considered in wavelengths from ultraviolet to near-infrared over three typical, but very different surface types. Application of this algorithm includes both accounting for non-Lambertian surface scattering on the emergent radiation above TOA and a potential approach for surface BRDF retrieval from satellite measured radiance.
Coupled instabilities of surface crease and bulk bending during fast free swelling of hydrogels.
Takahashi, Riku; Ikura, Yumihiko; King, Daniel R; Nonoyama, Takayuki; Nakajima, Tasuku; Kurokawa, Takayuki; Kuroda, Hirotoshi; Tonegawa, Yoshihiro; Gong, Jian Ping
2016-06-21
Most studies on hydrogel swelling instability have been focused on a constrained boundary condition. In this paper, we studied the mechanical instability of a piece of disc-shaped hydrogel during free swelling. The fast swelling of the gel induces two swelling mismatches; a surface-inner layer mismatch and an annulus-disc mismatch, which lead to the formation of a surface crease pattern and a saddle-like bulk bending, respectively. For the first time, a stripe-like surface crease that is at a right angle on the two surfaces of the gel was observed. This stripe pattern is related to the mechanical coupling of surface instability and bulk bending, which is justified by investigating the swelling-induced surface pattern on thin hydrogel sheets fixed onto a saddle-shaped substrate prior to swelling. A theoretical mechanism based on an energy model was developed to show an anisotropic stripe-like surface crease pattern on a saddle-shaped surface. These results might be helpful to develop novel strategies for controlling crease patterns on soft and wet materials by changing their three-dimensional shape.
Method for combining fast surface and exact volume visualization techniques in medicine
NASA Astrophysics Data System (ADS)
Englmeier, Karl-Hans; Haubner, Michael; Foerterer, H. M.; Perzl, W.; Fink, B. K.; Fink, U.
1994-05-01
In order to enable the interaction with and manipulation of 3-D data sets in the realm of medical diagnosis and therapy planning we developed a modified Z-merging algorithm that includes transparency and texture mapping features. For this an extended shape based interpolation model creates isotropic grayscale data volume in case of spatial image sequences. Interesting anatomical regions such as soft tissue, organs, and bones are detected by automatic and interactive segmentation procedures. Following that, a fully automatic surface construction algorithm detects the 3-D object boundaries by fitting geometric primitives to the binary data. The surface representations support the user with a fast overview about the structure of the 3D scene. Texture mapping is implemented as the projection of the gray values of the isotropic voxels onto a polygonal surface. Adaptive refinement, Phong's normal interpolation, and transparency are the most important features of this raytracer. The described technique enables the simultaneous display of multimodal 3D image data.
Tao, Chunxian; Zhang, Dawei; Hong, Ruijin; Wang, Zhongfei
2015-01-01
A stroboscopic surface thermal lensing (SSTL) system for the fast detection of thermal-induced defects in large-scaled optical coating films was constructed. The SSTL signal was generated by a set of double-modulators and captured by a high speed matrix camera, respectively. The spot size of both pump laser and probe laser expanded for larger detection area was finished in a single step. Based on the STL technique, both the mapping of amplitude and the phase of SSTL signal on the whole area of the coatings can be achieved simultaneously.
Reactive scattering of H{sub 2} from metal surfaces under fast-grazing-incidence conditions
Diaz, C.; Martin, F.
2010-07-15
We have studied the interaction of molecular hydrogen with metal surfaces under fast-grazing-incidence conditions, by means of classical dynamics calculations based on density functional theory six-dimensional potential energy surfaces. We have performed calculations on two activated systems, H{sub 2}/NiAl(110) and H{sub 2}/Cu(111), and on two nonactivated systems, H{sub 2}/Pd(111) and H{sub 2}/Pd(110). We show that for rather open surfaces the computed 1-R probabilities (where R represents the reflectivity) as a function of the normal collision energy at grazing incidence (along low-Miller-index directions) mimic reasonably well the dissociative adsorption probabilities obtained at normal incidence and thermal energies from the dissociation threshold up to the saturation limit. Our results indicate that fast grazing incidence experiments could be used as complement to traditional sticking experiments at thermal energies to determine dissociative adsorption saturation limits, which are usually unreachable due to limitations in traditional molecular beam experiments
Extremely Fast Numerical Integration of Ocean Surface Wave Dynamics
2007-09-30
1) is a natural two-space-dimension extension of the KdV equation . The periodic KP solutions include directional spreading in the wave field: y η...of the nonlinear preprocessor in the new approach for obtaining numerical solutions to nonlinear wave equations . I will now do so, but without many...analytical study and extremely fast numerical integration of the extended nonlinear Schroedinger equation for fully three dimensional wave motion
A Fast Variational Method for the Construction of Resolution Adaptive C-Smooth Molecular Surfaces.
Bajaj, Chandrajit L; Xu, Guoliang; Zhang, Qin
2009-05-01
We present a variational approach to smooth molecular (proteins, nucleic acids) surface constructions, starting from atomic coordinates, as available from the protein and nucleic-acid data banks. Molecular dynamics (MD) simulations traditionally used in understanding protein and nucleic-acid folding processes, are based on molecular force fields, and require smooth models of these molecular surfaces. To accelerate MD simulations, a popular methodology is to employ coarse grained molecular models, which represent clusters of atoms with similar physical properties by psuedo- atoms, resulting in coarser resolution molecular surfaces. We consider generation of these mixed-resolution or adaptive molecular surfaces. Our approach starts from deriving a general form second order geometric partial differential equation in the level-set formulation, by minimizing a first order energy functional which additionally includes a regularization term to minimize the occurrence of chemically infeasible molecular surface pockets or tunnel-like artifacts. To achieve even higher computational efficiency, a fast cubic B-spline C(2) interpolation algorithm is also utilized. A narrow band, tri-cubic B-spline level-set method is then used to provide C(2) smooth and resolution adaptive molecular surfaces.
Brain surface reformatted images for fast and easy localization of perirolandic lesions.
Hattingen, Elke; Good, Catriona; Weidauer, Stefan; Herminghaus, Sebastian; Raab, Peter; Marquardt, Gerhard; Raabe, Andreas; Seifert, Volker; Zanella, Friedhelm E
2005-02-01
The goal of this study was to evaluate a novel form of brain surface representation that allows simple, reliable mapping of the surface neuroanatomy for the preoperative evaluation of the spatial relationship between a focal lesion and the precentral gyrus. High-resolution three-dimensional (3D) magnetic resonance (MR) imaging data sets were postprocessed using a curved multiplanar reformatting technique to create brain surface reformatted (BSR) images. These BSR images were reconstructed in less than 5 minutes and demonstrated the entire central sulcus with adjacent surface structures in one view. Two experienced neuroradiologists determined the localization of lesions near the central sulcus in 27 patients on standard MR images in three orthogonal planes and on BSR images. In addition, these observers judged whether the lesions were easy or difficult to localize on standard MR and BSR images, and whether diagnoses based on these methods were certain or doubtful. Anatomical localization based on BSR images was compared with that based on functional MR (fMR) images or intraoperative mapping of motor function. The BSR images yielded a perfect concordance with the fMR images and intraoperative mapping (Cohen kappa 1.0) and optimal diagnostic accuracy in localizing perirolandic lesions (both sensitivity and specificity were 100%). Localization was judged to be easy for 48 of 54 diagnoses based on BSR images compared with 26 of 54 based on standard MR images. Diagnoses were assessed as certain for 52 cases based on BSR images and 34 cases based on standard MR images. Brain surface reformatted imaging improves the diagnostic accuracy of standard anatomical MR imaging for localizing superficial brain lesions in relation to the precentral gyrus. The complementary use of this technique with standard two-dimensional imaging is supported by the fast and simple postprocessing technique and may provide useful information for preoperative surgical planning.
Fast spatial ancestry via flexible allele frequency surfaces
Rañola, John Michael; Novembre, John; Lange, Kenneth
2014-01-01
Motivation: Unique modeling and computational challenges arise in locating the geographic origin of individuals based on their genetic backgrounds. Single-nucleotide polymorphisms (SNPs) vary widely in informativeness, allele frequencies change non-linearly with geography and reliable localization requires evidence to be integrated across a multitude of SNPs. These problems become even more acute for individuals of mixed ancestry. It is hardly surprising that matching genetic models to computational constraints has limited the development of methods for estimating geographic origins. We attack these related problems by borrowing ideas from image processing and optimization theory. Our proposed model divides the region of interest into pixels and operates SNP by SNP. We estimate allele frequencies across the landscape by maximizing a product of binomial likelihoods penalized by nearest neighbor interactions. Penalization smooths allele frequency estimates and promotes estimation at pixels with no data. Maximization is accomplished by a minorize–maximize (MM) algorithm. Once allele frequency surfaces are available, one can apply Bayes’ rule to compute the posterior probability that each pixel is the pixel of origin of a given person. Placement of admixed individuals on the landscape is more complicated and requires estimation of the fractional contribution of each pixel to a person’s genome. This estimation problem also succumbs to a penalized MM algorithm. Results: We applied the model to the Population Reference Sample (POPRES) data. The model gives better localization for both unmixed and admixed individuals than existing methods despite using just a small fraction of the available SNPs. Computing times are comparable with the best competing software. Availability and implementation: Software will be freely available as the OriGen package in R. Contact: ranolaj@uw.edu or klange@ucla.edu Supplementary information: Supplementary data are available at
Using dynamic interferometric synthetic aperature radar (InSAR) to image fast-moving surface waves
Vincent, Paul
2005-06-28
A new differential technique and system for imaging dynamic (fast moving) surface waves using Dynamic Interferometric Synthetic Aperture Radar (InSAR) is introduced. This differential technique and system can sample the fast-moving surface displacement waves from a plurality of moving platform positions in either a repeat-pass single-antenna or a single-pass mode having a single-antenna dual-phase receiver or having dual physically separate antennas, and reconstruct a plurality of phase differentials from a plurality of platform positions to produce a series of desired interferometric images of the fast moving waves.
Spiraling Edge: Fast Surface Reconstruction from Partially Organized Sample Points
Angel, Edward; Crossno, Patricia
1999-07-12
Many applications produce three-dimensional points that must be further processed to generate a surface. Surface reconstruction algorithms that start with a set of unorganized points are extremely time-consuming. Sometimes, however, points are generated such that there is additional information available to the reconstruction algorithm. We present Spiraling Edge, a specialized algorithm for surface reconstruction that is three orders of magnitude faster than algorithms for the general case. In addition to sample point locations, our algorithm starts with normal information and knowledge of each point's neighbors. Our algorithm produces a localized approximation to the surface by creating a star-shaped triangulation between a point and a subset of its nearest neighbors. This surface patch is extended by locally triangulating each of the points along the edge of the patch. As each edge point is triangulated, it is removed from the edge and new edge points along the patch's edge are inserted in its place. The updated edge spirals out over the surface until the edge encounters a surface boundary and stops growing in that direction, or until the edge reduces to a small hole that is filled by the final triangle.
Spiraling Edge: Fast Surface Reconstruction from Partially Organized Sample Points
Angel, E.; Crossno, P.
1999-01-06
Many applications produce three-dimensional points that must be further processed to generate a surface. Surface reconstruction algorithms that start with a set of unorganized points are extremely time-consuming. Often, however, points are generated such that there is additional information available to the reconstruction algorithm. We present a specialized algorithm for surface reconstruction that is three orders of magnitude faster than algorithms for the general case. In addition to sample point locations, our algorithm starts with normal information and knowledge of each point's neighbors. Our algorithm produces a localized approximation to the surface by creating a star-shaped triangulation between a point and a subset of its nearest neighbors. This surface patch is extended by locally triangulating each of the points along the edge of the patch. As each edge point is triangulated, it is removed from the edge and new edge points along the patch's edge are inserted in its place. The updated edge spirals out over the surface until the edge encounters a surface boundary and stops growing in that direction, or until the edge reduces to a small hole that fills itself in.
Zhu, Jiangping; Zhou, Pei; Su, Xianyu; You, Zhisheng
2016-12-12
Balancing the accuracy and speed for 3D surface measurement of object is crucial in many important applications. Binary encoding pattern utilizing the high-speed image switching rate of digital mirror device (DMD)-based projector could be used as the candidate for fast even high-speed 3D measurement, but current most schemes only enable the measurement speed, which limit their application scopes. In this paper, we present a binary encoding method and develop an experimental system aiming to solve such a situation. Our approach encodes one computer-generated standard 8 bit sinusoidal fringe pattern into multiple binary patterns (sequence) with designed temporal-spatial binary encoding tactics. The binary pattern sequence is then high-speed and in-focus projected onto the surface of tested object, and then captured by means of temporal-integration imaging to form one sinusoidal fringe image. Further the combination of phase-shifting technique and temporal phase unwrapping algorithm leads to fast and accurate 3D measurement. The systematic accuracy better than 0.08mm is achievable. The measurement results with mask and palm are given to confirm the feasibility.
Interaction of fast charges with a rough metal surface
NASA Astrophysics Data System (ADS)
Lyon, Keenan; Zhang, Ying-Ying; Mišković, Z. L.; Song, Yuan-Hong; Wang, You-Nian
2015-09-01
We use the Green function formulation of a dielectric response formalism to study the dynamic polarization of a rough metal surface by a single charged particle and by a pair of charged particles that move parallel to the surface. While the surface roughness is treated nonperturbatively, the plasmon excitation of the metal electron gas is described locally. We find that the magnitudes of both the image potential and the stopping power of a single particle are increased by the increasing roughness and decreasing correlation length of the surface. On the other hand, both the long-range wake potential of a single charged particle and the interaction potential between two particles are weakly affected by the surface roughness. However, the strongest effects of the surface roughness are seen in the correlated stopping power of two charged particles, giving rise to oscillations in the dependence of the stopping ratio on their distance, both when the interparticle axis is perpendicular to their direction of motion and when the wake-related oscillations are damped by adiabatic suppression of plasmon excitations at low particle speeds.
A Fast and Reliable Method for Surface Wave Tomography
NASA Astrophysics Data System (ADS)
Barmin, M. P.; Ritzwoller, M. H.; Levshin, A. L.
- We describe a method to invert regional or global scale surface-wave group or phase-velocity measurements to estimate 2-D models of the distribution and strength of isotropic and azimuthally anisotropic velocity variations. Such maps have at least two purposes in monitoring the nuclear Comprehensive Test-Ban Treaty (CTBT): (1) They can be used as data to estimate the shear velocity of the crust and uppermost mantle and topography on internal interfaces which are important in event location, and (2) they can be used to estimate surface-wave travel-time correction surfaces to be used in phase-matched filters designed to extract low signal-to-noise surface-wave packets.The purpose of this paper is to describe one useful path through the large number of options available in an inversion of surface-wave data. Our method appears to provide robust and reliable dispersion maps on both global and regional scales. The technique we describe has a number of features that have motivated its development and commend its use: (1) It is developed in a spherical geometry; (2) the region of inference is defined by an arbitrary simple closed curve so that the method works equally well on local, regional, or global scales; (3) spatial smoothness and model amplitude constraints can be applied simultaneously; (4) the selection of model regularization and the smoothing parameters is highly flexible which allows for the assessment of the effect of variations in these parameters; (5) the method allows for the simultaneous estimation of spatial resolution and amplitude bias of the images; and (6) the method optionally allows for the estimation of azimuthal anisotropy.We present examples of the application of this technique to observed surface-wave group and phase velocities globally and regionally across Eurasia and Antarctica.
Fast Algorithms for Model-Based Diagnosis
NASA Technical Reports Server (NTRS)
Fijany, Amir; Barrett, Anthony; Vatan, Farrokh; Mackey, Ryan
2005-01-01
Two improved new methods for automated diagnosis of complex engineering systems involve the use of novel algorithms that are more efficient than prior algorithms used for the same purpose. Both the recently developed algorithms and the prior algorithms in question are instances of model-based diagnosis, which is based on exploring the logical inconsistency between an observation and a description of a system to be diagnosed. As engineering systems grow more complex and increasingly autonomous in their functions, the need for automated diagnosis increases concomitantly. In model-based diagnosis, the function of each component and the interconnections among all the components of the system to be diagnosed (for example, see figure) are represented as a logical system, called the system description (SD). Hence, the expected behavior of the system is the set of logical consequences of the SD. Faulty components lead to inconsistency between the observed behaviors of the system and the SD. The task of finding the faulty components (diagnosis) reduces to finding the components, the abnormalities of which could explain all the inconsistencies. Of course, the meaningful solution should be a minimal set of faulty components (called a minimal diagnosis), because the trivial solution, in which all components are assumed to be faulty, always explains all inconsistencies. Although the prior algorithms in question implement powerful methods of diagnosis, they are not practical because they essentially require exhaustive searches among all possible combinations of faulty components and therefore entail the amounts of computation that grow exponentially with the number of components of the system.
Fast and accurate line scanner based on white light interferometry
NASA Astrophysics Data System (ADS)
Lambelet, Patrick; Moosburger, Rudolf
2013-04-01
White-light interferometry is a highly accurate technology for 3D measurements. The principle is widely utilized in surface metrology instruments but rarely adopted for in-line inspection systems. The main challenges for rolling out inspection systems based on white-light interferometry to the production floor are its sensitivity to environmental vibrations and relatively long measurement times: a large quantity of data needs to be acquired and processed in order to obtain a single topographic measurement. Heliotis developed a smart-pixel CMOS camera (lock-in camera) which is specially suited for white-light interferometry. The demodulation of the interference signal is treated at the level of the pixel which typically reduces the acquisition data by one orders of magnitude. Along with the high bandwidth of the dedicated lock-in camera, vertical scan-speeds of more than 40mm/s are reachable. The high scan speed allows for the realization of inspection systems that are rugged against external vibrations as present on the production floor. For many industrial applications such as the inspection of wafer-bumps, surface of mechanical parts and solar-panel, large areas need to be measured. In this case either the instrument or the sample are displaced laterally and several measurements are stitched together. The cycle time of such a system is mostly limited by the stepping time for multiple lateral displacements. A line-scanner based on white light interferometry would eliminate most of the stepping time while maintaining robustness and accuracy. A. Olszak proposed a simple geometry to realize such a lateral scanning interferometer. We demonstrate that such inclined interferometers can benefit significantly from the fast in-pixel demodulation capabilities of the lock-in camera. One drawback of an inclined observation perspective is that its application is limited to objects with scattering surfaces. We therefore propose an alternate geometry where the incident light is
Improvement of the method of optical testing of fast aspherical surfaces with null-screens
NASA Astrophysics Data System (ADS)
Campos-García, Manuel; Aguirre Aguirre, Daniel; Armengol-Cruz, Victor de Emanuel
2017-06-01
We extend the principles of the null-screen method for testing fast aspheric surfaces with polynomial expansion. We present the formulae to design the null-screen in such a way that the image on the CCD is a perfect array circular points; the departures of the surface from a perfect shape are observed as deformations of the array in the image. For the testing of fast aspherics with polynomial expansion, we propose some geometrical configurations. In addition, we perform an analysis of the deformations of the image of the null-screen reflected by the testing surface due to the slop defects of the surface. Experimental results for the testing fast aspherics are shown. The main advantages and the limitations of the method will be discussed.
NASA Astrophysics Data System (ADS)
Chi, Sheng; Lee, Shu-Sheng; Huang, Jen, Jen-Yu; Lai, Ti-Yu; Jan, Chia-Ming; Hu, Po-Chi
2016-04-01
As the progress of optical technologies, different commercial 3D surface contour scanners are on the market nowadays. Most of them are used for reconstructing the surface profile of mold or mechanical objects which are larger than 50 mm×50 mm× 50 mm, and the scanning system size is about 300 mm×300 mm×100 mm. There are seldom optical systems commercialized for surface profile fast scanning for small object size less than 10 mm×10 mm×10 mm. Therefore, a miniature optical system has been designed and developed in this research work for this purpose. Since the most used scanning method of such system is line scan technology, we have developed pseudo-phase shifting digital projection technology by adopting projecting fringes and phase reconstruction method. A projector was used to project a digital fringe patterns on the object, and the fringes intensity images of the reference plane and of the sample object were recorded by a CMOS camera. The phase difference between the plane and object can be calculated from the fringes images, and the surface profile of the object was reconstructed by using the phase differences. The traditional phase shifting method was accomplished by using PZT actuator or precisely controlled motor to adjust the light source or grating and this is one of the limitations for high speed scanning. Compared with the traditional optical setup, we utilized a micro projector to project the digital fringe patterns on the sample. This diminished the phase shifting processing time and the controlled phase differences between the shifted phases become more precise. Besides, the optical path design based on a portable device scanning system was used to minimize the size and reduce the number of the system components. A screwdriver section about 7mm×5mm×5mm has been scanned and its surface profile was successfully restored. The experimental results showed that the measurement area of our system can be smaller than 10mm×10mm, the precision reached to
Surface thermohardening by the fast-moving electric arch
NASA Astrophysics Data System (ADS)
Gabdrakhmanov, Az T.; Shafigullin, L. N.; Galimov, E. R.; Ibragimov, A. R.
2017-01-01
This paper describes the technology of modern engineering-plasma hardening steels and prospects of its application. It gives the opportunity to manage the process without using of cooling media, vacuum, special coatings to improve the absorptive capacity of hardened surfaces; the simplicity, the low cost, the maneuverability, a small size of the process equipment; a possibility of the automation and the robotization of technological process.
Fast dual graph-based hotspot detection
NASA Astrophysics Data System (ADS)
Kahng, Andrew B.; Park, Chul-Hong; Xu, Xu
2006-10-01
As advanced technologies in wafer manufacturing push patterning processes toward lower-k I subwavelength printing, lithography for mass production potentially suffers from decreased patterning fidelity. This results in generation of many hotspots, which are actual device patterns with relatively large CD and image errors with respect to on-wafer targets. Hotspots can be formed under a variety of conditions such as the original design being unfriendly to the RET that is applied, unanticipated pattern combinations in rule-based OPC, or inaccuracies in model-based OPC. When these hotspots fall on locations that are critical to the electrical performance of a device, device performance and parametric yield can be significantly degraded. Previous rule-based hotspot detection methods suffer from long runtimes for complicated patterns. Also, the model generation process that captures process variation within simulation-based approaches brings significant overheads in terms of validation, measurement and parameter calibration. In this paper, we first describe a novel detection algorithm for hotspots induced by lithographic uncertainty. Our goal is to rapidly detect all lithographic hotspots without significant accuracy degradation. In other words, we propose a filtering method: as long as there are no "false negatives", i.e., we successfully have a superset of actual hotspots, then our method can dramatically reduce the layout area for golden hotspot analysis. The first step of our hotspot detection algorithm is to build a layout graph which reflects pattern-related CD variation. Given a layout L, the layout graph G = (V, E c union E p) consists of nodes V, corner edges E c and proximity edges E p. A face in the layout graph includes several close features and the edges between them. Edge weight can be calculated from a traditional 2-D model or a lookup table. We then apply a three-level hotspot detection: (1) edge-level detection finds the hotspot caused by two close
GPU-based fast gamma index calculation
NASA Astrophysics Data System (ADS)
Gu, Xuejun; Jia, Xun; Jiang, Steve B.
2011-03-01
The γ-index dose comparison tool has been widely used to compare dose distributions in cancer radiotherapy. The accurate calculation of γ-index requires an exhaustive search of the closest Euclidean distance in the high-resolution dose-distance space. This is a computational intensive task when dealing with 3D dose distributions. In this work, we combine a geometric method (Ju et al 2008 Med. Phys. 35 879-87) with a radial pre-sorting technique (Wendling et al 2007 Med. Phys. 34 1647-54) and implement them on computer graphics processing units (GPUs). The developed GPU-based γ-index computational tool is evaluated on eight pairs of IMRT dose distributions. The γ-index calculations can be finished within a few seconds for all 3D testing cases on one single NVIDIA Tesla C1060 card, achieving 45-75× speedup compared to CPU computations conducted on an Intel Xeon 2.27 GHz processor. We further investigated the effect of various factors on both CPU and GPU computation time. The strategy of pre-sorting voxels based on their dose difference values speeds up the GPU calculation by about 2.7-5.5 times. For n-dimensional dose distributions, γ-index calculation time on CPU is proportional to the summation of γn over all voxels, while that on GPU is affected by γn distributions and is approximately proportional to the γn summation over all voxels. We found that increasing the resolution of dose distributions leads to a quadratic increase of computation time on CPU, while less-than-quadratic increase on GPU. The values of dose difference and distance-to-agreement criteria also have an impact on γ-index calculation time.
He-LiF surface interaction potential from fast atom diffraction
Schueller, A.; Winter, H.; Gravielle, M. S.; Miraglia, J. E.; Pruneda, J. M.
2009-12-15
Diffraction patterns produced by grazing scattering of fast atoms from insulator surfaces are used to examine the atom-surface interaction. The method is applied to He atoms colliding with a LiF(001) surface along axial crystallographic channels. The projectile-surface potential is obtained from an accurate density-functional theory calculation, which includes polarization effects and surface relaxation. For the description of the collision process we employ the surface eikonal approximation, which takes into account quantum interference between different projectile paths. The dependence of projectile spectra on the parallel and perpendicular incident energies is experimentally and theoretically analyzed, demonstrating the range of applicability of the proposed model.
Fast and Accurate Accessible Surface Area Prediction Without a Sequence Profile.
Faraggi, Eshel; Kouza, Maksim; Zhou, Yaoqi; Kloczkowski, Andrzej
2017-01-01
A fast accessible surface area (ASA) predictor is presented. In this new approach no residue mutation profiles generated by multiple sequence alignments are used as inputs. Instead, we use only single sequence information and global features such as single-residue and two-residue compositions of the chain. The resulting predictor is both highly more efficient than sequence alignment based predictors and of comparable accuracy to them. Introduction of the global inputs significantly helps achieve this comparable accuracy. The predictor, termed ASAquick, is found to perform similarly well for so-called easy and hard cases indicating generalizability and possible usability for de-novo protein structure prediction. The source code and a Linux executables for ASAquick are available from Research and Information Systems at http://mamiris.com and from the Battelle Center for Mathematical Medicine at http://mathmed.org .
Fast Electromechanical Switches Based on Carbon Nanotubes
NASA Technical Reports Server (NTRS)
Kaul, Anupama; Wong, Eric; Epp, Larry
2008-01-01
Electrostatically actuated nanoelectromechanical switches based on carbon nanotubes have been fabricated and tested in a continuing effort to develop high-speed switches for a variety of stationary and portable electronic equipment. As explained below, these devices offer advantages over electrostatically actuated microelectromechanical switches, which, heretofore, have represented the state of the art of rapid, highly miniaturized electromechanical switches. Potential applications for these devices include computer memories, cellular telephones, communication networks, scientific instrumentation, and general radiation-hard electronic equipment. A representative device of the present type includes a single-wall carbon nanotube suspended over a trench about 130 nm wide and 20 nm deep in an electrically insulating material. The ends of the carbon nanotube are connected to metal electrodes, denoted the source and drain electrodes. At bottom of the trench is another metal electrode, denoted the pull electrode (see figure). In the off or open switch state, no voltage is applied, and the nanotube remains out of contact with the pull electrode. When a sufficiently large electric potential (switching potential) is applied between the pull electrode and either or both of the source and drain electrodes, the resulting electrostatic attraction bends and stretches the nanotube into contact with the pull electrode, thereby putting the switch into the "on" or "closed" state, in which substantial current (typically as much as hundreds of nanoamperes) is conducted. Devices of this type for use in initial experiments were fabricated on a thermally oxidized Si wafer, onto which Nb was sputter-deposited for use as the pull-electrode layer. Nb was chosen because its refractory nature would enable it to withstand the chemical and thermal conditions to be subsequently imposed for growing carbon nanotubes. A 200- nm-thick layer of SiO2 was formed on top of the Nb layer by plasma
Ultrasensitive and Fast All-Inorganic Perovskite-Based Photodetector via Fast Carrier Diffusion.
Yang, Bin; Zhang, Fengying; Chen, Junsheng; Yang, Songqiu; Xia, Xusheng; Pullerits, Tõnu; Deng, Weiqiao; Han, Keli
2017-09-01
Low trap-state density, high carrier mobility, and efficient charge carrier collection are key parameters for photodetectors with high sensitivity and fast response time. This study demonstrates a simple solution growth method to prepare CsPbBr3 microcrystals (MCs) with low trap-state density. Time-dependent photoluminescence study with one-photon excitation (OPE) and two-photon excitation (TPE) indicates that CsPbBr3 MCs exhibit fast carrier diffusion with carrier mobility over 100 cm(2) V(-1) S(-1) . Furthermore, CsPbBr3 MC-based photodetectors with high charge carriers' collection efficiency are fabricated. Such photodetectors show ultrahigh responsivity (R) up to 6 × 10(4) A W(-1) with OPE and high R up to 6 A W(-1) with TPE. The R for OPE is over one order of magnitude higher (the R for TPE is three orders of magnitude higher) than that of previously reported all-inorganic perovskite-based photodetectors. Moreover, the photodetectors exhibit fast response time of ≈1 ms, which corresponds to a gain ≈10(5) and a gain- bandwidth product of 10(8) Hz for OPE (a gain ≈10(3) and a gain-bandwidth product of 10(6) Hz for TPE). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bürger, Kai; Krüger, Jens; Westermann, Rüdiger
2011-01-01
In this paper, we present a sample-based approach for surface coloring, which is independent of the original surface resolution and representation. To achieve this, we introduce the Orthogonal Fragment Buffer (OFB)—an extension of the Layered Depth Cube—as a high-resolution view-independent surface representation. The OFB is a data structure that stores surface samples at a nearly uniform distribution over the surface, and it is specifically designed to support efficient random read/write access to these samples. The data access operations have a complexity that is logarithmic in the depth complexity of the surface. Thus, compared to data access operations in tree data structures like octrees, data-dependent memory access patterns are greatly reduced. Due to the particular sampling strategy that is employed to generate an OFB, it also maintains sample coherence, and thus, exhibits very good spatial access locality. Therefore, OFB-based surface coloring performs significantly faster than sample-based approaches using tree structures. In addition, since in an OFB, the surface samples are internally stored in uniform 2D grids, OFB-based surface coloring can efficiently be realized on the GPU to enable interactive coloring of high-resolution surfaces. On the OFB, we introduce novel algorithms for color painting using volumetric and surface-aligned brushes, and we present new approaches for particle-based color advection along surfaces in real time. Due to the intermediate surface representation we choose, our method can be used to color polygonal surfaces as well as any other type of surface that can be sampled. PMID:20616392
Sample-based surface coloring.
Bürger, Kai; Krüger, Jens; Westermann, Rüdiger
2010-01-01
In this paper, we present a sample-based approach for surface coloring, which is independent of the original surface resolution and representation. To achieve this, we introduce the Orthogonal Fragment Buffer (OFB)-an extension of the Layered Depth Cube-as a high-resolution view-independent surface representation. The OFB is a data structure that stores surface samples at a nearly uniform distribution over the surface, and it is specifically designed to support efficient random read/write access to these samples. The data access operations have a complexity that is logarithmic in the depth complexity of the surface. Thus, compared to data access operations in tree data structures like octrees, data-dependent memory access patterns are greatly reduced. Due to the particular sampling strategy that is employed to generate an OFB, it also maintains sample coherence, and thus, exhibits very good spatial access locality. Therefore, OFB-based surface coloring performs significantly faster than sample-based approaches using tree structures. In addition, since in an OFB, the surface samples are internally stored in uniform 2D grids, OFB-based surface coloring can efficiently be realized on the GPU to enable interactive coloring of high-resolution surfaces. On the OFB, we introduce novel algorithms for color painting using volumetric and surface-aligned brushes, and we present new approaches for particle-based color advection along surfaces in real time. Due to the intermediate surface representation we choose, our method can be used to color polygonal surfaces as well as any other type of surface that can be sampled.
Electron impact, hyperthermal surface ionization and fast GC-MS in supersonic molecular beams
Amirav, A.; Dagan, S.
1995-03-01
Supersonic Molecular Beams (SMB) are characterized by undirectional motion with controlled hyperthermal kinetic energy (0.1-30 eV), intramolecular vibrational super-cooling, mass focusing as in an ideal high load jet separator, very high flow rate (on the gas chromatography flow rate scale) up to 240 ml/min and sample inlet at atmospheric pressure. These features make SMB an ideal sample introduction method, enable a unique fast GC inlet and result in important implications to molecular ionization processes including electron impact (EI) and hyperthermal. surface ionization (HSI). The authors` research is aimed at exploring and exposing the benefits of SMB for analytical organic mass spectrometry. The experimental apparatus is shown and is described. A 50 cm long megabore capillary column connects the atmospheric pressure open inlet to a supersonic nozzle, and serves as an ultra fast GC short column. The authors demonstrate ultrafast GC-MS achieved with this 50 cm transfer line capillary. One of the main features of this unique GC is the carrier gas relatively high flow rate of up to 240 ml/min which is possible due to the flow rates involved with the supersonic beam interface. This ultrafast GC is extensively described. Alternatively, a conventional GC with a short (4 meter) column serves as a fast GC inlet with intermediate GC resolution and unlimited choice of column length, ID and flow rate. Electron impact ionization in supersonic molecular beams is achieved using a Brink type open ion source operated with {approximately} 10-20 mA emission current. A background ion filtration method is applied, based on differences in the ion energy emerging from the hyperthermal molecular kinetic energy in the seeded SMB. Background ion filtration is achieved in the authors` VG-SXP-600 quadrupole through biasing of its exit lens and the cancellation of its internal ion energy ramping with mass.
Fast RBF OGr for solving PDEs on arbitrary surfaces
NASA Astrophysics Data System (ADS)
Piret, Cécile; Dunn, Jarrett
2016-10-01
The Radial Basis Functions Orthogonal Gradients method (RBF-OGr) was introduced in [1] to discretize differential operators defined on arbitrary manifolds defined only by a point cloud. We take advantage of the meshfree character of RBFs, which give us a high accuracy and the flexibility to represent complex geometries in any spatial dimension. A large limitation of the RBF-OGr method was its large computational complexity, which greatly restricted the size of the point cloud. In this paper, we apply the RBF-Finite Difference (RBF-FD) technique to the RBF-OGr method for building sparse differentiation matrices discretizing continuous differential operators such as the Laplace-Beltrami operator. This method can be applied to solving PDEs on arbitrary surfaces embedded in ℛ3. We illustrate the accuracy of our new method by solving the heat equation on the unit sphere.
Fast and reversible trapping of surface glycine receptors by gephyrin.
Meier, J; Vannier, C; Sergé, A; Triller, A; Choquet, D
2001-03-01
Variations in receptor number at a given synapse are known to contribute to synaptic plasticity, but methods used to establish this idea usually do not allow for the determination of the dynamics of these phenomena. We used single-particle tracking to follow in real time, on the cell surface, movements of the glycine receptor (GlyR) with or without the GlyR stabilizing protein gephyrin. GlyR alternated within seconds between diffusive and confined states. In the absence of gephyrin, GlyR were mostly freely diffusing. Gephyrin induced long confinement periods spatially associated with submembranous clusters of gephyrin. However, even when most receptors were stabilized, they still frequently made transitions through the diffusive state. These data show that receptor number in a cluster results from a dynamic equilibrium between the pools of stabilized and freely mobile receptors. Modification of this equilibrium could be involved in regulation of the number of receptors at synapses.
Surface structure of alanine on Cu(110) via grazing scattering of fast atoms and molecules
NASA Astrophysics Data System (ADS)
Seifert, J.; Busch, M.; Meyer, E.; Winter, H.
2014-02-01
We have studied structures of the chiral amino acid alanine adsorbed on Cu(110) via low-energy electron diffraction (LEED) as well as scattering of fast light atoms and molecules. The adsorption process was controlled in situ by the intensity of specularly reflected 2-keV He atoms. For projectile energies less than 1 keV, we applied the method of fast atom diffraction for studies on the structure of adsorbed alanine molecules on an atomically flat Cu(110) surface with focus on a p(3×2) adsorbate phase. The results are consistent with LEED and explain distortions in LEED patterns via an elongated surface unit cell with incommensurate c(3.16×2) symmetry of parts of the adsorbate. From triangulation using fast atoms via the azimuthal rotation of the target surface, the positions of protruding methyl groups are derived.
Basic concepts underlying fast-neutron-based contraband interrogation technology
Fink, C.L.; Guenther, P.T.; Smith, D.L.
1992-01-01
All accelerator-based fast-neutron contraband interrogation systems have many closely interrelated subsystems, whose performance parameters will be critically interdependent. For optimal overall performance, a systems analysis design approach is required. This paper provides a general overview of the interrelationships and the tradeoffs to be considered for optimization of nonaccelerator subsystems.
Fast simulation method for airframe analysis based on big data
NASA Astrophysics Data System (ADS)
Liu, Dongliang; Zhang, Lixin
2016-10-01
In this paper, we employ the big data method to structural analysis by considering the correlations between loads and loads, loads and results and results and results. By means of fundamental mathematics and physical rules, the principle, feasibility and error control of the method are discussed. We then establish the analysis process and procedures. The method is validated by two examples. The results show that the fast simulation method based on big data is fast and precise when it is applied to structural analysis.
Fast track surface mine installation on the critical path
Willison, L.R.
1986-07-01
A deep mining area, located in the rugged woodland hills of central West Virginia, was transformed into a beehive of activity as a major new mine and preparation plant was constructed on a very tight deadline. By the time the mine was on line, BethEnergy Mines had spent $40 million to develop the two million tpy (ton per year) surface coal mining complex. In early 1984 not a stick of timber had been cut. But within a very short time (coal-wise) there was a mining area; a 600-tph heavy media cyclone preparation plant, with 36,000 and 24,000 tons of raw and clean coal storage respectively; three miles of haul roads and access roads; a 64,000-ton clean coal stocking facility with a 4000-tph reclaim system that feeds a batch-weighing, floodloading, unit-train loadout facility; a 3.5-mile railroad spur and loop; and all incidental infrastructure. This feat entailed moving more than four million cu-yd of earth, building the preparation plant and loadout facility from ground to operating in six moths, and constructing a railroad spur bridging a major highway.
NASA Astrophysics Data System (ADS)
Rohani, A.; Shishegar, A. A.; Safavi-Naeini, S.
2004-03-01
A fast Gaussian beam tracing method for general vectorial astigmatic Gaussian beams based on phase matching has been formulated. Given the parameters of a vectorial Gaussian beam in its principal coordinate system the parameters of the reflected and refracted beams from a general curved surface (with general constitutive parameters) are found. The reflection and transmission of such beams from and through passive photonic structures such as lenses, mirrors and prisms can then be found by considering multiple reflections and transmissions.
CS-based fast ultrasound imaging with improved FISTA algorithm
NASA Astrophysics Data System (ADS)
Lin, Jie; He, Yugao; Shi, Guangming; Han, Tingyu
2015-08-01
In ultrasound imaging system, the wave emission and data acquisition is time consuming, which can be solved by adopting the plane wave as the transmitted signal, and the compressed sensing (CS) theory for data acquisition and image reconstruction. To overcome the very high computation complexity caused by introducing CS into ultrasound imaging, in this paper, we propose an improvement of the fast iterative shrinkage-thresholding algorithm (FISTA) to achieve the fast reconstruction of the ultrasound imaging, in which a modified setting is done with the parameter of step size for each iteration. Further, the GPU strategy is designed for the proposed algorithm, to guarantee the real time implementation of imaging. The simulation results show that the GPU-based image reconstruction algorithm can achieve the fast ultrasound imaging without damaging the quality of image.
FastME 2.0: A Comprehensive, Accurate, and Fast Distance-Based Phylogeny Inference Program.
Lefort, Vincent; Desper, Richard; Gascuel, Olivier
2015-10-01
FastME provides distance algorithms to infer phylogenies. FastME is based on balanced minimum evolution, which is the very principle of Neighbor Joining (NJ). FastME improves over NJ by performing topological moves using fast, sophisticated algorithms. The first version of FastME only included Nearest Neighbor Interchange. The new 2.0 version also includes Subtree Pruning and Regrafting, while remaining as fast as NJ and providing a number of facilities: Distance estimation for DNA and proteins with various models and options, bootstrapping, and parallel computations. FastME is available using several interfaces: Command-line (to be integrated in pipelines), PHYLIP-like, and a Web server (http://www.atgc-montpellier.fr/fastme/). © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Afzal, Adeel; Iqbal, Naseer; Mujahid, Adnan; Schirhagl, Romana
2013-07-17
The necessity of selectively detecting various organic vapors is primitive not only with respect to regular environmental and industrial hazard monitoring, but also in detecting explosives to combat terrorism and for defense applications. Today, the huge arsenal of micro-sensors has revolutionized the traditional methods of analysis by, e.g. replacing expensive laboratory equipment, and has made the remote screening of atmospheric threats possible. Surface acoustic wave (SAW) sensors - based on piezoelectric crystal resonators - are extremely sensitive to even very small perturbations in the external atmosphere, because the energy associated with the acoustic waves is confined to the crystal surface. Combined with suitably designed molecular recognition materials SAW devices could develop into highly selective and fast responsive miniaturized sensors, which are capable of continuously monitoring a specific organic gas, preferably in the sub-ppm regime. For this purpose, different types of recognition layers ranging from nanostructured metal oxides and carbons to pristine or molecularly imprinted polymers and self-assembled monolayers have been applied in the past decade. We present a critical review of the recent developments in nano- and micro-engineered synthetic recognition materials predominantly used for SAW-based organic vapor sensors. Besides highlighting their potential to realize real-time vapor sensing, their limitations and future perspectives are also discussed.
A novel fast full inversion based breast ultrasound elastography technique.
Karimi, Hirad; Fenster, Aaron; Samani, Abbas
2013-04-07
Cancer detection and classification have been the focus of many imaging and therapeutic research studies. Elastography is a non-invasive technique to visualize suspicious soft tissue areas where tissue stiffness is used as image contrast mechanism. In this study, a breast ultrasound elastography system including software and hardware is proposed. Unlike current elastography systems that image the tissue strain and present it as an approximation to relative tissue stiffness, this system is capable of imaging the breast absolute Young's modulus in fast fashion. To improve the quality of elastography images, a novel system consisting of two load cells has been attached to the ultrasound probe. The load cells measure the breast surface forces to be used for calculating the tissue stress distribution throughout the breast. To facilitate fast imaging, this stress calculation is conducted by an accelerated finite element method. Acquired tissue displacements and surface force data are used as input to the proposed Young's modulus reconstruction technique. Numerical and tissue mimicking phantom studies were conducted for validating the proposed system. These studies indicated that fast imaging of breast tissue absolute Young's modulus using the proposed ultrasound elastography system is feasible. The tissue mimicking phantom study indicated that the system is capable of providing reliable absolute Young's modulus values for both normal tissue and tumour as the maximum Young's modulus reconstruction error was less than 6%. This demonstrates that the proposed system has a good potential to be used for clinical breast cancer assessment.
A novel fast full inversion based breast ultrasound elastography technique
NASA Astrophysics Data System (ADS)
Karimi, Hirad; Fenster, Aaron; Samani, Abbas
2013-04-01
Cancer detection and classification have been the focus of many imaging and therapeutic research studies. Elastography is a non-invasive technique to visualize suspicious soft tissue areas where tissue stiffness is used as image contrast mechanism. In this study, a breast ultrasound elastography system including software and hardware is proposed. Unlike current elastography systems that image the tissue strain and present it as an approximation to relative tissue stiffness, this system is capable of imaging the breast absolute Young’s modulus in fast fashion. To improve the quality of elastography images, a novel system consisting of two load cells has been attached to the ultrasound probe. The load cells measure the breast surface forces to be used for calculating the tissue stress distribution throughout the breast. To facilitate fast imaging, this stress calculation is conducted by an accelerated finite element method. Acquired tissue displacements and surface force data are used as input to the proposed Young’s modulus reconstruction technique. Numerical and tissue mimicking phantom studies were conducted for validating the proposed system. These studies indicated that fast imaging of breast tissue absolute Young’s modulus using the proposed ultrasound elastography system is feasible. The tissue mimicking phantom study indicated that the system is capable of providing reliable absolute Young’s modulus values for both normal tissue and tumour as the maximum Young’s modulus reconstruction error was less than 6%. This demonstrates that the proposed system has a good potential to be used for clinical breast cancer assessment.
Tsodikov, Oleg V; Record, M Thomas; Sergeev, Yuri V
2002-04-30
New computer programs, SurfRace and FastSurf, perform fast calculations of the solvent accessible and molecular (solvent excluded) surface areas of macromolecules. Program SurfRace also calculates the areas of cavities inaccessible from the outside. We introduce the definition of average curvature of molecular surface and calculate average molecular surface curvatures for each atom in a structure. All surface area and curvature calculations are analytic and therefore yield exact values of these quantities. High calculation speed of this software is achieved primarily by avoiding computationally expensive mathematical procedures wherever possible and by efficient handling of surface data structures. The programs are written initially in the language C for PCs running Windows 2000/98/NT, but their code is portable to other platforms with only minor changes in input-output procedures. The algorithm is robust and does not ignore either multiplicity or degeneracy of atomic overlaps. Fast, memory-efficient and robust execution make this software attractive for applications both in computationally expensive energy minimization algorithms, such as docking or molecular dynamics simulations, and in stand-alone surface area and curvature calculations.
GEM-based detectors for thermal and fast neutrons
NASA Astrophysics Data System (ADS)
Croci, G.; Claps, G.; Cazzaniga, C.; Foggetta, L.; Muraro, A.; Valente, P.
2015-06-01
Lately the problem of 3He replacement for neutron detection stimulated an intense activity research on alternative technologies based on alternative neutron converters. This paper presents briefly the results obtained with new GEM detectors optimized for fast and thermal neutrons. For thermal neutrons, we realized a side-on GEM detector based on a series of boron-coated alumina sheets placed perpendicularly to the incident neutron beam direction. This prototype has been tested at n@BTF photo-production neutron facilty in order to test its effectiveness under a very high flux gamma background. For fast neutrons, we developed new GEM detectors (called nGEM) for the CNESM diagnostic system of the SPIDER NBI prototype for ITER (RFX-Consortium, Italy) and as beam monitor for fast neutrons lines at spallation sources. The nGEM is a Triple GEM gaseous detector equipped with a polyethylene layer used to convert fast neutrons into recoil protons through the elastic scattering process. This paper describes the results obtained by testing a medium size (30 × 25 cm2 active area) nGEM detector at the ISIS spallation source on the VESUVIO beam line.
Effect of fast mold surface temperature evolution on iPP part morphology gradients
Liparoti, Sara; Sorrentino, Andrea; Guzman, Gustavo; Cakmak, Mukerrem; Titomanlio, Giuseppe
2016-03-09
The control of mold surface temperature is an important factor that affects the sample surface morphology as well as the structural gradients (orientation crystal size, and type) as well as cooling stresses. The frozen layer thickness formed during the filling stage also has a very significant effect on the flow resistance and thus on the resulting pressure drop and flow length in thin wall parts. The possibility to have a hot mold during filling and a quick cooling soon afterward is a significant process enhancement particularly for specialized applications such as micro injection molding and for the reproduction of micro structured surfaces. Up to now, several methods (electromagnetic, infrared, hot vapor fleshing etc,) were tried to achieve fast temperature evolution of the mold. Unfortunately, all these methods require a complex balance between thermal and mechanical problems, equipment cost, energy consumption, safety, molding cycle time and part quality achievable. In this work, a thin electrical resistance was designed and used to generate a fast and confined temperature variation on mold surface (by joule effect). Since the whole temperature evolution can take place in a few seconds, one can couple the advantages of a high surface temperature during filling with the advantages of a low mold temperature, fast cooling and low heating dissipation. Some experiments were performed with a commercial iPP resin. The effects of the surface temperature and of the heating time (under constant electric power) on surface finishing and on the final morphology (thickness and structure of the different layers) are explored and discussed.
Effect of fast mold surface temperature evolution on iPP part morphology gradients
NASA Astrophysics Data System (ADS)
Liparoti, Sara; Sorrentino, Andrea; Guzman, Gustavo; Cakmak, Mukerrem; Titomanlio, Giuseppe
2016-03-01
The control of mold surface temperature is an important factor that affects the sample surface morphology as well as the structural gradients (orientation crystal size, and type) as well as cooling stresses. The frozen layer thickness formed during the filling stage also has a very significant effect on the flow resistance and thus on the resulting pressure drop and flow length in thin wall parts. The possibility to have a hot mold during filling and a quick cooling soon afterward is a significant process enhancement particularly for specialized applications such as micro injection molding and for the reproduction of micro structured surfaces. Up to now, several methods (electromagnetic, infrared, hot vapor fleshing etc,) were tried to achieve fast temperature evolution of the mold. Unfortunately, all these methods require a complex balance between thermal and mechanical problems, equipment cost, energy consumption, safety, molding cycle time and part quality achievable. In this work, a thin electrical resistance was designed and used to generate a fast and confined temperature variation on mold surface (by joule effect). Since the whole temperature evolution can take place in a few seconds, one can couple the advantages of a high surface temperature during filling with the advantages of a low mold temperature, fast cooling and low heating dissipation. Some experiments were performed with a commercial iPP resin. The effects of the surface temperature and of the heating time (under constant electric power) on surface finishing and on the final morphology (thickness and structure of the different layers) are explored and discussed.
NASA Astrophysics Data System (ADS)
Blacksberg, J.; Rossman, G. R.; Maruyama, Y.; Charbon, E.
2011-12-01
In situ exploration of planetary surfaces has to date required multiple techniques that, when used together, yield important information about their formation histories and evolution. We present a time-resolved laser spectroscopic technique that could potentially collect complementary sets of data providing information on mineral structure, composition, and hydration state. Using a picosecond-scale pulsed laser and a fast time-resolved detector we can simultaneously collect spectra from Raman, Laser Induced Breakdown Spectroscopy (LIBS), and fluorescence emissions that are separated in time due to the unique decay times of each process. The use of a laser with high rep rate (40 KHz) and low pulse energy (1 μJ/pulse) allows us to rapidly collect high signal to noise Raman spectra while minimizing sample damage. Increasing the pulse energy by about an order of magnitude creates a microscopic plasma near the surface and enables the collection of LIBS spectra at an unusually high rep rate and low pulse energy. Simultaneously, broader fluorescence peaks can be detected with lifetimes varying from nanosecond to microsecond. We will present Raman, LIBS, and fluorescence spectra obtained on natural mineral samples such as sulfates, clays, pyroxenes and carbonates that are of interest for Mars mineralogy. We demonstrate this technique using a photocathode-based streak camera detector as well as a newly-developed solid state Single Photon Avalanche Diode (SPAD) sensor array based on Complementary Metal-Oxide Semiconductor (CMOS) technology. We will discuss the impact of system design and detector choice on science return of a potential planetary surface mission, with a specific focus on size, weight, power, and complexity. The research described here was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA).
Requirements and considerations of the surface error control for the active reflector of FAST
NASA Astrophysics Data System (ADS)
Wu, MingChang; Wang, QiMing; Gu, XueDong; Zhao, BaoQing
2012-09-01
The Five-hundred-meter Aperture Spherical radio Telescope (FAST) is currently under construction at a Karst depression in the Guizhou province of China. The active reflector of the telescope is composed of 4395 triangular panels laid on a cable-net structure. The aperture of the spherical surface is 500 meters, with open angle of about 110~120 degrees. Acting as the nodes of the reflector, the joint of these panels are adjusted by 2235 down-tie cables drawn by actuators. The RMS error of the parabola reflector is expected to be 5mm. To form the parabola shape of the reflector, for each of the actuators, a minimal working stroke of 950mm is required, with maximal speed of 1.6mm/s at the load of 50kN. Considering the elastic deformation of the down-tie cable and other factors, a positioning error within 0.25mm is required for the actuators. In this paper, the base formula for the motion of a general actuator at a typical observation time is studied analytically. The results are used to estimate the control error of the actuators and the pointing error of the whole reflector. Based on the designed error budgets, a statistical method is employed to estimate the overall surface error of the parabola reflector. The overall surface error is a comprehensive result of the panel design error, panel fabrication error, thermal deformation error, panel wind load induced error, cable-net error, installation error, measurement and control error etc. The results may be used as a reference in the measurement and control of the active reflector when in operation.
Fast pedestrian detection based on multiple instance hierarchical HOG matrices
NASA Astrophysics Data System (ADS)
Cheng, Guang; Meng, Long; Lin, Xinggang
2013-12-01
Many pedestrian detection research works focused on the improvement of detection performance, without considering the detection speed, making the detection algorithms not applicable for real-world requirement for real-time processing. To explore this problem, we first propose a pre-processing method Hierarchical HOG Matrices to replace the traditional integral histogram of gradients, which stores more data in the pre-processing phase to reduce computation time. A matrix-based detection computation structure is also proposed, which organize the massive data computations in the scanning detection process into matrix operations to optimize the overall speed. We then add multiple instance learning into the fast pedestrian detection algorithm to further enhance its accuracy. Experiments demonstrate that the proposed fast and robust pedestrian detection algorithm based on the multiple instance feature achieves an accuracy comparable to the latest algorithms, with the best speed among the algorithms with an accuracy of the same level.
Fast conical surface evaluation via randomized algorithm in the null-screen test
NASA Astrophysics Data System (ADS)
Aguirre-Aguirre, D.; Díaz-Uribe, R.; Villalobos-Mendoza, B.
2017-01-01
This work shows a method to recover the shape of the surface via randomized algorithms when the null-screen test is used, instead of the integration process that is commonly performed. This, because the majority of the errors are added during the reconstruction of the surface (or the integration process). This kind of large surfaces are widely used in the aerospace sector and industry in general, and a big problem exists when these surfaces have to be tested. The null-screen method is a low-cost test, and a complete surface analysis can be done by using this method. In this paper, we show the simulations done for the analysis of fast conic surfaces, where it was proved that the quality and shape of a surface under study can be recovered with a percentage error < 2.
Fast wavelet based algorithms for linear evolution equations
NASA Technical Reports Server (NTRS)
Engquist, Bjorn; Osher, Stanley; Zhong, Sifen
1992-01-01
A class was devised of fast wavelet based algorithms for linear evolution equations whose coefficients are time independent. The method draws on the work of Beylkin, Coifman, and Rokhlin which they applied to general Calderon-Zygmund type integral operators. A modification of their idea is applied to linear hyperbolic and parabolic equations, with spatially varying coefficients. A significant speedup over standard methods is obtained when applied to hyperbolic equations in one space dimension and parabolic equations in multidimensions.
Fast image matching algorithm based on projection characteristics
NASA Astrophysics Data System (ADS)
Zhou, Lijuan; Yue, Xiaobo; Zhou, Lijun
2011-06-01
Based on analyzing the traditional template matching algorithm, this paper identified the key factors restricting the speed of matching and put forward a brand new fast matching algorithm based on projection. Projecting the grayscale image, this algorithm converts the two-dimensional information of the image into one-dimensional one, and then matches and identifies through one-dimensional correlation, meanwhile, because of normalization has been done, when the image brightness or signal amplitude increasing in proportion, it could also perform correct matching. Experimental results show that the projection characteristics based image registration method proposed in this article could greatly improve the matching speed, which ensuring the matching accuracy as well.
Laser-based fast-neutron spectroscopy (Conference Presentation)
NASA Astrophysics Data System (ADS)
Pomerantz, Ishay; Kishon, Itay; Kleinschmidt, Annika; Schanz, Victor A.; Tebartz, Alexandra; Fernández, Juan Carlos; Gautier, Donald C.; Johnson, Randall Philip; Shimada, Tsutomu; Wurden, Glen Anthony; Roth, Markus
2017-05-01
Great progress has been made in recent years in realizing compact, laser-based neutron generators. These devices, however, are inapplicable for conducting energy-resolved fast-neutron radiography because of the electromagnetic noise produced by the interaction of a strong laser field with matter. To overcome this limitation, we developed a novel neutron time-of-flight detector, largely immune to electromagnetic noise. The detector is based on plastic scintillator, only a few mm in size, which is coupled to a silicon photo-multiplier by a long optical fiber. I will present results we obtained at the Trident Laser Facility at Los Alamos National Laboratory during the summer of 2016. Using this detector, we recorded high resolution, low-background fast neutron spectra generated by the interaction of laser accelerated deuterons with Beryllium. The quality of these spectra was sufficient to resolve the unique neutron absorption spectra of different elements and thus it is the first demonstration of laser-based fast neutron spectroscopy. I will discuss how this achievement paves the way to realizing compact neutron radiography systems for research, security, and commercial applications.
Surface stress-based biosensors.
Sang, Shengbo; Zhao, Yuan; Zhang, Wendong; Li, Pengwei; Hu, Jie; Li, Gang
2014-01-15
Surface stress-based biosensors, as one kind of label-free biosensors, have attracted lots of attention in the process of information gathering and measurement for the biological, chemical and medical application with the development of technology and society. This kind of biosensors offers many advantages such as short response time (less than milliseconds) and a typical sensitivity at nanogram, picoliter, femtojoule and attomolar level. Furthermore, it simplifies sample preparation and testing procedures. In this work, progress made towards the use of surface stress-based biosensors for achieving better performance is critically reviewed, including our recent achievement, the optimally circular membrane-based biosensors and biosensor array. The further scientific and technological challenges in this field are also summarized. Critical remark and future steps towards the ultimate surface stress-based biosensors are addressed. Copyright © 2013 Elsevier B.V. All rights reserved.
Fast global image smoothing based on weighted least squares.
Min, Dongbo; Choi, Sunghwan; Lu, Jiangbo; Ham, Bumsub; Sohn, Kwanghoon; Do, Minh N
2014-12-01
This paper presents an efficient technique for performing a spatially inhomogeneous edge-preserving image smoothing, called fast global smoother. Focusing on sparse Laplacian matrices consisting of a data term and a prior term (typically defined using four or eight neighbors for 2D image), our approach efficiently solves such global objective functions. In particular, we approximate the solution of the memory-and computation-intensive large linear system, defined over a d-dimensional spatial domain, by solving a sequence of 1D subsystems. Our separable implementation enables applying a linear-time tridiagonal matrix algorithm to solve d three-point Laplacian matrices iteratively. Our approach combines the best of two paradigms, i.e., efficient edge-preserving filters and optimization-based smoothing. Our method has a comparable runtime to the fast edge-preserving filters, but its global optimization formulation overcomes many limitations of the local filtering approaches. Our method also achieves high-quality results as the state-of-the-art optimization-based techniques, but runs ∼10-30 times faster. Besides, considering the flexibility in defining an objective function, we further propose generalized fast algorithms that perform Lγ norm smoothing (0 < γ < 2) and support an aggregated (robust) data term for handling imprecise data constraints. We demonstrate the effectiveness and efficiency of our techniques in a range of image processing and computer graphics applications.
Electrical studies on silver based fast ion conducting glassy materials
Rao, B. Appa Kumar, E. Ramesh Kumari, K. Rajani Bhikshamaiah, G.
2014-04-24
Among all the available fast ion conductors, silver based glasses exhibit high conductivity. Further, glasses containing silver iodide enhances fast ion conducting behavior at room temperature. Glasses of various compositions of silver based fast ion conductors in the AgI−Ag{sub 2}O−[(1−x)B{sub 2}O{sub 3}−xTeO{sub 2}] (x=0 to1 mol% in steps of 0.2) glassy system have been prepared by melt quenching method. The glassy nature of the compounds has been confirmed by X-ray diffraction. The electrical conductivity (AC) measurements have been carried out in the frequency range of 1 KHz–3MHz by Impedance Analyzer in the temperature range 303–423K. The DC conductivity measurements were also carried out in the temperature range 300–523K. From both AC and DC conductivity studies, it is found that the conductivity increases and activation energy decreases with increasing the concentration of TeO{sub 2} as well as with temperature. The conductivity of the present glass system is found to be of the order of 10{sup −2} S/cm at room temperature. The ionic transport number of these glasses is found to be 0.999 indicating that these glasses can be used as electrolyte in batteries.
This document is a memorandum regarding Vehicle Emission Inspection and Maintenance (I/M) Provision in Fixing America's Surface Transportation (FAST) Act, which provides long-term funding certainty for surface transportation infrastructure planning
COMBINED ANALYSIS OF THORIUM AND FAST NEUTRON DATA AT THE LUNAR SURFACE
O. GASNAULT; W. FELDMAN; ET AL
2001-01-01
The global distribution of the radioactive elements (U, K, Th) at the lunar surface is an important parameter for an understanding of lunar evolution, because they have provided continuous heat over the lifetime of the Moon. Today, only the thorium distribution is available for the whole lunar surface [1]. Another key parameter that characterize the surface of the Moon is the presence of mare basalts. These basalts are concentrated on the nearside and are represented by materials with high-Fe content, sometimes associated with high-Ti. We demonstrated elsewhere that the fast neutron measurement made by Lunar Prospector is representative of the average soil atomic mass [2]. is primarily dominated by Fe and Ti in basaltic terranes, and therefore the map of the fast neutrons provides a good delineation of mare basalts. We focus here on the correlated variations of thorium abundances and fast neutron fluxes averaged over areas of 360 km in diameter, in an attempt to provide a better understanding of the thorium emplacement on the surface of the Moon.
Correlation-coefficient-based fast template matching through partial elimination.
Mahmood, Arif; Khan, Sohaib
2012-04-01
Partial computation elimination techniques are often used for fast template matching. At a particular search location, computations are prematurely terminated as soon as it is found that this location cannot compete with an already known best match location. Due to the nonmonotonic growth pattern of the correlation-based similarity measures, partial computation elimination techniques have been traditionally considered inapplicable to speed up these measures. In this paper, we show that partial elimination techniques may be applied to a correlation coefficient by using a monotonic formulation, and we propose basic-mode and extended-mode partial correlation elimination algorithms for fast template matching. The basic-mode algorithm is more efficient on small template sizes, whereas the extended mode is faster on medium and larger templates. We also propose a strategy to decide which algorithm to use for a given data set. To achieve a high speedup, elimination algorithms require an initial guess of the peak correlation value. We propose two initialization schemes including a coarse-to-fine scheme for larger templates and a two-stage technique for small- and medium-sized templates. Our proposed algorithms are exact, i.e., having exhaustive equivalent accuracy, and are compared with the existing fast techniques using real image data sets on a wide variety of template sizes. While the actual speedups are data dependent, in most cases, our proposed algorithms have been found to be significantly faster than the other algorithms.
Impacts of fast meteoroids and the separation of dust particles from the surface of the Moon
NASA Astrophysics Data System (ADS)
Popel, S. I.; Golub', A. P.; Lisin, E. A.; Izvekova, Yu. N.; Atamaniuk, B.; Dol'nikov, G. G.; Zakharov, A. V.; Zelenyi, L. M.
2016-05-01
The possibility of the separation of dust particles owing to impacts of micrometeoroids on the surface of the Moon has been discussed. It has been shown that this effect is significant and should be taken into account when determining the number of particles rising over the surface of the Moon at the formation of a plasma-dust system. The average number of regolith particles leaving the surface of the Moon owing to the impacts of fast meteoroids has been determined for various altitudes over the Moon. The size distribution function of particles leaving the surface of the Moon because of impacts of meteoroids has been determined. It has been shown that impacts of meteoroids constitute an important source of dust microparticles in the plasma-dust system over the surface of the Moon.
Bala, Rajni; Khanna, Sushil; Pawar, Pravin K.
2013-01-01
Clobazam is a newer 1,5-benzodiazepine used for the treatment of epilepsy. It is better tolerated and less sedating than other benzodiazepines. Absorption of the drug can be impacted by oral fast dissolving dosage form; this may have implications for epilepsy in pediatrics and those having difficulty in swallowing tablets/capsules resulting in improved patient compliance. The purpose of the present investigation was to formulate and optimize clobazam oro-dissolving tablets by direct compression method using response surface methodology (RSM). Oro-dispersible tablets of clobazam were prepared by direct compression method using crospovidone (2-6%) as a superdisintegrant, microcrystalline cellulose (MCC) (20-40%) was used as diluents along with directly compressible mannitol to enhance mouth feel. A 32 full factorial design was applied to investigate the combined effect of two formulation variables: amount of crospovidone and MCC over the independent variables disintegration time, wetting time and percent drug release. Disintegration time showed by all formulations was found to be in the range of 24.3-193 s based on evaluation parameters the formulation containing 6% of crospovidone and 30% of MCC showed promising performance against all other formulations. The results demonstrated that the RSM could efficiently be applied for the formulation of clobazam oro-dispersible tablets; therefore, constitute an advance in the management of epileptic attacks. PMID:24083203
Automated system for fast and accurate analysis of SF6 injected in the surface ocean.
Koo, Chul-Min; Lee, Kitack; Kim, Miok; Kim, Dae-Ok
2005-11-01
This paper describes an automated sampling and analysis system for the shipboard measurement of dissolved sulfur hexafluoride (SF6) in surface marine environments into which SF6 has been deliberately released. This underway system includes a gas chromatograph associated with an electron capture detector, a fast and highly efficient SF6-extraction device, a global positioning system, and a data acquisition system based on Visual Basic 6.0/C 6.0. This work is distinct from previous studies in that it quantifies the efficiency of the SF6-extraction device and its carryover effect and examines the effect of surfactant on the SF6-extraction efficiency. Measurements can be continuously performed on seawater samples taken from a seawater line installed onboard a research vessel. The system runs on an hourly cycle during which one set of four SF6 standards is measured and SF6 derived from the seawater stream is subsequently analyzed for the rest of each 1 h period. This state-of-art system was successfully used to trace a water mass carrying Cochlodinium polykrikoides, which causes harmful algal blooms (HAB) in the coastal waters of southern Korea. The successful application of this analysis system in tracing the HAB-infected water mass suggests that the SF6 detection method described in this paper will improve the quality of the future study of biogeochemical processes in the marine environment.
Fast Waves at the Base of the Cochlea.
Recio-Spinoso, Alberto; Rhode, William S
2015-01-01
Georg von Békésy observed that the onset times of responses to brief-duration stimuli vary as a function of distance from the stapes, with basal regions starting to move earlier than apical ones. He noticed that the speed of signal propagation along the cochlea is slow when compared with the speed of sound in water. Fast traveling waves have been recorded in the cochlea, but their existence is interpreted as the result of an experiment artifact. Accounts of the timing of vibration onsets at the base of the cochlea generally agree with Békésy's results. Some authors, however, have argued that the measured delays are too short for consistency with Békésy's theory. To investigate the speed of the traveling wave at the base of the cochlea, we analyzed basilar membrane (BM) responses to clicks recorded at several locations in the base of the chinchilla cochlea. The initial component of the BM response matches remarkably well the initial component of the stapes response, after a 4-μs delay of the latter. A similar conclusion is reached by analyzing onset times of time-domain gain functions, which correspond to BM click responses normalized by middle-ear input. Our results suggest that BM responses to clicks arise from a combination of fast and slow traveling waves.
Fast Waves at the Base of the Cochlea
Recio-Spinoso, Alberto; Rhode, William S.
2015-01-01
Georg von Békésy observed that the onset times of responses to brief-duration stimuli vary as a function of distance from the stapes, with basal regions starting to move earlier than apical ones. He noticed that the speed of signal propagation along the cochlea is slow when compared with the speed of sound in water. Fast traveling waves have been recorded in the cochlea, but their existence is interpreted as the result of an experiment artifact. Accounts of the timing of vibration onsets at the base of the cochlea generally agree with Békésy’s results. Some authors, however, have argued that the measured delays are too short for consistency with Békésy’s theory. To investigate the speed of the traveling wave at the base of the cochlea, we analyzed basilar membrane (BM) responses to clicks recorded at several locations in the base of the chinchilla cochlea. The initial component of the BM response matches remarkably well the initial component of the stapes response, after a 4-μs delay of the latter. A similar conclusion is reached by analyzing onset times of time-domain gain functions, which correspond to BM click responses normalized by middle-ear input. Our results suggest that BM responses to clicks arise from a combination of fast and slow traveling waves. PMID:26062000
Effect of surface modes on coupling to fast waves in the LHRF
Pinsker, R.I.; Colestock, P.L.
1990-09-16
The effect of surface modes of propagation on coupling to fast waves in the LHRF is studied theoretically and experimentally. The previously reported up-down' poloidal phasing asymmetry for coupling to a uniform plasma is shown to be due to the properties of a mode which carries energy along the plasma-conducting wall interface. Comparison of the theory with coupling experiments performed on the PLT tokamak with a phased array of twelve dielectric-loaded waveguides at 800 MHz shows that the observed dependence of the net reflection coefficient on toroidal phase angle can be explained only if the surface wave is taken into account. 43 refs., 10 figs.
NASA Astrophysics Data System (ADS)
Xuan, Weipeng; He, Mei; Meng, Nan; He, Xingli; Wang, Wenbo; Chen, Jinkai; Shi, Tianjin; Hasan, Tawfique; Xu, Zhen; Xu, Yang; Luo, J. K.
2014-11-01
We report ZnO/glass surface acoustic wave (SAW) humidity sensors with high sensitivity and fast response using graphene oxide sensing layer. The frequency shift of the sensors is exponentially correlated to the humidity change, induced mainly by mass loading effect rather than the complex impedance change of the sensing layer. The SAW sensors show high sensitivity at a broad humidity range from 0.5%RH to 85%RH with < 1 sec rise time. The simple design and excellent stability of our GO-based SAW humidity sensors, complemented with full humidity range measurement, highlights their potential in a wide range of applications.
Xuan, Weipeng; He, Mei; Meng, Nan; He, Xingli; Wang, Wenbo; Chen, Jinkai; Shi, Tianjin; Hasan, Tawfique; Xu, Zhen; Xu, Yang; Luo, J K
2014-11-26
We report ZnO/glass surface acoustic wave (SAW) humidity sensors with high sensitivity and fast response using graphene oxide sensing layer. The frequency shift of the sensors is exponentially correlated to the humidity change, induced mainly by mass loading effect rather than the complex impedance change of the sensing layer. The SAW sensors show high sensitivity at a broad humidity range from 0.5%RH to 85%RH with < 1 sec rise time. The simple design and excellent stability of our GO-based SAW humidity sensors, complemented with full humidity range measurement, highlights their potential in a wide range of applications.
Xuan, Weipeng; He, Mei; Meng, Nan; He, Xingli; Wang, Wenbo; Chen, Jinkai; Shi, Tianjin; Hasan, Tawfique; Xu, Zhen; Xu, Yang; Luo, J. K.
2014-01-01
We report ZnO/glass surface acoustic wave (SAW) humidity sensors with high sensitivity and fast response using graphene oxide sensing layer. The frequency shift of the sensors is exponentially correlated to the humidity change, induced mainly by mass loading effect rather than the complex impedance change of the sensing layer. The SAW sensors show high sensitivity at a broad humidity range from 0.5%RH to 85%RH with < 1 sec rise time. The simple design and excellent stability of our GO-based SAW humidity sensors, complemented with full humidity range measurement, highlights their potential in a wide range of applications. PMID:25425458
NASA Astrophysics Data System (ADS)
Cao, Jinjia; Gong, Xueyu; Xiang, Dong; Huang, Qianhong; Yu, Jun
2016-08-01
The structure of the drift-island surface of passing fast ions (PFIs) is investigated in the presence of the resonant interaction with a magnetic island. Two overlapping regions of the drift-island surface and the magnetic island surface are found, one corresponding to local overlapping region and the other to non-local one. Here, the word "nonlocal" denotes that the resonances in the core plasma can have effects on the PFIs near the plasma boundary, while the "local" represents that the PFIs just near the resonant location are influenced. The nonlocal overlapping constructs a transport path along which the PFIs can become losses. There are three kinds of drift-island surfaces to join in forming the transport paths. A pitch angle region, which is called pitch angle gap, is found near the plasma boundary, where the drift-island surface cannot be formed and few PFIs are lost. The pitch-angle selective features of PFI losses are obtained by analyzing the three kinds of drift-island surfaces. The coupling between the crowd drift island surfaces and the collision can induce the prompt losses of PFIs and rapidly slowing down of PFI energy. The time of the prompt losses and the slowing down rate are calculated. Qualitatively, the theoretical results are in well agreement with the experimental observations in ASDEX Upgrade [M. García-Muñoz et al., Nucl. Fusion 47, L10 (2007)].
Cao, Jinjia; Gong, Xueyu Xiang, Dong; Huang, Qianhong; Yu, Jun
2016-08-15
The structure of the drift-island surface of passing fast ions (PFIs) is investigated in the presence of the resonant interaction with a magnetic island. Two overlapping regions of the drift-island surface and the magnetic island surface are found, one corresponding to local overlapping region and the other to non-local one. Here, the word “nonlocal” denotes that the resonances in the core plasma can have effects on the PFIs near the plasma boundary, while the “local” represents that the PFIs just near the resonant location are influenced. The nonlocal overlapping constructs a transport path along which the PFIs can become losses. There are three kinds of drift-island surfaces to join in forming the transport paths. A pitch angle region, which is called pitch angle gap, is found near the plasma boundary, where the drift-island surface cannot be formed and few PFIs are lost. The pitch-angle selective features of PFI losses are obtained by analyzing the three kinds of drift-island surfaces. The coupling between the crowd drift island surfaces and the collision can induce the prompt losses of PFIs and rapidly slowing down of PFI energy. The time of the prompt losses and the slowing down rate are calculated. Qualitatively, the theoretical results are in well agreement with the experimental observations in ASDEX Upgrade [M. García-Muñoz et al., Nucl. Fusion 47, L10 (2007)].
Scatterometry—fast and robust measurements of nano-textured surfaces
NASA Astrophysics Data System (ADS)
Hannibal Madsen, Morten; Hansen, Poul-Erik
2016-06-01
Scatterometry is a fast, precise and low cost way to determine the mean pitch and dimensional parameters of periodic structures with lateral resolution of a few nanometer. It is robust enough for in-line process control and precise and accurate enough for metrology measurements. Furthermore, scatterometry is a non-destructive technique capable of measuring buried structures, for example a grating covered by a thick oxide layer. As scatterometry is a non-imaging technique, mathematical modeling is needed to retrieve structural parameters that describe a surface. In this review, the three main steps of scatterometry are discussed: the data acquisition, the simulation of diffraction efficiencies and the comparison of data and simulations. First, the intensity of the diffracted light is measured with a scatterometer as a function of incoming angle, diffraction angle and/or wavelength. We discuss the evolution of the scatterometers from the earliest angular scatterometers to the new imaging scatterometers. The basic principle of measuring diffraction efficiencies in scatterometry has remained the same since the beginning, but the instrumental improvements have made scatterometry a state-of-the-art solution for fast and accurate measurements of nano-textured surfaces. The improvements include extending the wavelength range from the visible to the extreme ultra-violet range, development of Fourier optics to measure all diffraction orders simultaneously, and an imaging scatterometer to measure area of interests smaller than the spot size. Secondly, computer simulations of the diffraction efficiencies are discussed with emphasis on the rigorous coupled-wave analysis (RCWA) method. RCWA has, since the mid-1990s, been the preferred method for grating simulations due to the speed of the algorithms. In the beginning the RCWA method suffered from a very slow convergence rate, and we discuss the historical improvements to overcome this challenge, e.g. by the introduction of Li
Digital image correlation based on a fast convolution strategy
NASA Astrophysics Data System (ADS)
Yuan, Yuan; Zhan, Qin; Xiong, Chunyang; Huang, Jianyong
2017-10-01
In recent years, the efficiency of digital image correlation (DIC) methods has attracted increasing attention because of its increasing importance for many engineering applications. Based on the classical affine optical flow (AOF) algorithm and the well-established inverse compositional Gauss-Newton algorithm, which is essentially a natural extension of the AOF algorithm under a nonlinear iterative framework, this paper develops a set of fast convolution-based DIC algorithms for high-efficiency subpixel image registration. Using a well-developed fast convolution technique, the set of algorithms establishes a series of global data tables (GDTs) over the digital images, which allows the reduction of the computational complexity of DIC significantly. Using the pre-calculated GDTs, the subpixel registration calculations can be implemented efficiently in a look-up-table fashion. Both numerical simulation and experimental verification indicate that the set of algorithms significantly enhances the computational efficiency of DIC, especially in the case of a dense data sampling for the digital images. Because the GDTs need to be computed only once, the algorithms are also suitable for efficiently coping with image sequences that record the time-varying dynamics of specimen deformations.
Parameter tuning for the NFFT based fast Ewald summation
NASA Astrophysics Data System (ADS)
Nestler, Franziska
2016-07-01
The computation of the Coulomb potentials and forces in charged particle systems under 3d-periodic boundary conditions is possible in an efficient way by utilizing the Ewald summation formulas and applying the fast Fourier transform (FFT). In this paper we consider the particle-particle NFFT (P^2NFFT) approach, which is based on the fast Fourier transform for nonequispaced data (NFFT) and compare the error behaviors regarding different window functions, which are used in order to approximate the given continuous charge distribution by a mesh based charge density. Typically B-splines are applied in the scope of particle mesh methods, as for instance within the well known particle-particle particle-mesh (P^3M) algorithm. The publicly available P^2NFFT algorithm allows the application of an oversampled FFT as well as the usage of different window functions. We consider for the first time also an approximation by Bessel functions and show how the resulting root mean square errors in the forces can be predicted precisely and efficiently. The results show that, if the parameters are tuned appropriately, the Bessel window function is in many cases even the better choice in terms of computational costs. Moreover, the results indicate that it is often advantageous in terms of efficiency to spend some oversampling within the NFFT while using a window function with a smaller support.
Bllaci, Loreta; Kjellström, Sven; Eliasson, Lena; Friend, James R; Yeo, Leslie Y; Nilsson, Staffan
2013-03-05
A desire for higher speed and performance in molecular profiling analysis at a reduced cost is driving a trend in miniaturization and simplification of procedures. Here we report the use of a surface acoustic wave (SAW) atomizer for fast sample handling in matrix-assisted laser desorption ionization mass spectrometry (MALDI MS) peptide and protein profiling of Islets of Langerhans, for future type 2 diabetes (T2D) studies. Here the SAW atomizer was used for ultrasound (acoustic) extraction of insulin and other peptide hormones released from freshly prepared islets, stimulated directly on a membrane. A high energy propagating SAW atomizes the membrane-bound liquid into approximately 2 μm diameter droplets, rich in cell-released molecules. Besides acting as a sample carrier, the membrane provides a purification step by entrapping cell clusters and other impurities within its fibers. A new SAW-based sample-matrix deposition method for MALDI MS was developed and characterized by a strong insulin signal, and a limit of detection (LOD) lower than 100 amol was achieved. Our results support previous work reporting the SAW atomizer as a fast and inexpensive tool for ultrasound, membrane-based sample extraction. When interfaced with MALDI MS, the SAW atomizer constitutes a valuable tool for rapid cell studies. Other biomedical applications of SAW-MALDI MS are currently being developed, aiming at fast profiling of biofluids. The membrane sampling is a simplistic and noninvasive collection method of limited volume biofluids such as the gingival fluid and the tearfilm.
A fast image encryption algorithm based on chaotic map
NASA Astrophysics Data System (ADS)
Liu, Wenhao; Sun, Kehui; Zhu, Congxu
2016-09-01
Derived from Sine map and iterative chaotic map with infinite collapse (ICMIC), a new two-dimensional Sine ICMIC modulation map (2D-SIMM) is proposed based on a close-loop modulation coupling (CMC) model, and its chaotic performance is analyzed by means of phase diagram, Lyapunov exponent spectrum and complexity. It shows that this map has good ergodicity, hyperchaotic behavior, large maximum Lyapunov exponent and high complexity. Based on this map, a fast image encryption algorithm is proposed. In this algorithm, the confusion and diffusion processes are combined for one stage. Chaotic shift transform (CST) is proposed to efficiently change the image pixel positions, and the row and column substitutions are applied to scramble the pixel values simultaneously. The simulation and analysis results show that this algorithm has high security, low time complexity, and the abilities of resisting statistical analysis, differential, brute-force, known-plaintext and chosen-plaintext attacks.
A fast quad-tree based two dimensional hierarchical clustering.
Rajadurai, Priscilla; Sankaranarayanan, Swamynathan
2012-01-01
Recently, microarray technologies have become a robust technique in the area of genomics. An important step in the analysis of gene expression data is the identification of groups of genes disclosing analogous expression patterns. Cluster analysis partitions a given dataset into groups based on specified features. Euclidean distance is a widely used similarity measure for gene expression data that considers the amount of changes in gene expression. However, the huge number of genes and the intricacy of biological networks have highly increased the challenges of comprehending and interpreting the resulting group of data, increasing processing time. The proposed technique focuses on a QT based fast 2-dimensional hierarchical clustering algorithm to perform clustering. The construction of the closest pair data structure is an each level is an important time factor, which determines the processing time of clustering. The proposed model reduces the processing time and improves analysis of gene expression data.
Fast-responding bio-based shape memory thermoplastic polyurethanes
Petrovic, Zoran S.; Milic, Jelena; Zhang, Fan; ...
2017-05-31
Fast response shape-memory polyurethanes were prepared from bio-based polyols, diphenyl methane diisocyanate and butane diol. The bio-based polyester polyols were synthesized from 9-hydroxynonanoic acid, a product obtained by ozonolysis of fatty acids extracted from soy oil and castor oil. The morphology of polyurethanes was investigated by synchrotron ultra-small angle X-ray scattering, which revealed the inter-domain spacing between the hard and soft phases, the degree of phase separation, and the level of intermixing between the hard and soft phases. We also conducted thorough investigations of the thermal, mechanical, and dielectric properties of the polyurethanes, and found that high crystallization rate ofmore » the soft segment gives these polyurethanes unique properties suitable for shapememory applications, such as adjustable transition temperatures, high degree of elastic elongations, and good mechanical strength. In conclusion, these materials are also potentially biodegradable and biocompatible, therefore suitable for biomedical and environmental applications.« less
Statistical best bases for fast encoding in magnetic resonance imaging
NASA Astrophysics Data System (ADS)
Healy, Dennis M., Jr.; Warner, Douglas W.; Weaver, John B.
1995-04-01
We discuss the advantages and disadvantages of using a Karhunen-Loeve (K-L) expansion of a training set of images to reduce the number of encodes required for a magnetic resonance (MR) image of a new object. One form of this technique has been proposed and another implemented. We evaluate the error likely to be achieved as a function of the number of encodes and two technical problems: reduced SNR in the images and smoothing of the K-L functions in practice. As an alternative, we propose the use of joint best bases derived from the local trigonometric library as an approximation to the K-L basis. These bases approach the rate-distortion characteristic achieved by the K-L basis, but they are easier to use in MRI and can be applied with existing methods for fast acquisition.
Late, Sameer G; Banga, Ajay K
2010-12-01
The objective of this work was to apply response surface approach to investigate main and interaction effects of formulation parameters in optimizing novel fast disintegrating tablet formulation using β cyclodextrin as a diluent. The variables studied were diluent (β cyclodextrin, X (1)), superdisintegrant (Croscarmellose sodium, X (2)), and direct compression aid (Spray dried lactose, X (3)). Tablets were prepared by direct compression method on B2 rotary tablet press using flat plain-face punches and characterized for weight variation, thickness, disintegration time (Y (1)), and hardness (Y (2)). Disintegration time was strongly affected by quadratic terms of β cyclodextrin, croscarmellose sodium, and spray-dried lactose. The positive value of regression coefficient for β cyclodextrin suggested that hardness increased with increased amount of β cyclodextrin. In general, disintegration of tablets has been reported to slow down with increase in hardness. However in the present study, higher concentration of β cyclodextrin was found to improve tablet hardness without increasing the disintegration time. Thus, β cyclodextrin is proposed as a suitable diluent to achieve fast disintegrating tablets with sufficient hardness. Good correlation between the predicted values and experimental data of the optimized formulation validated prognostic ability of response surface methodology in optimizing fast disintegrating tablets using β cyclodextrin as a diluent.
Accurate and fast narcissus calculation based on sequential ray trace.
Liu, Yang; Zhong, Xiaobing; Zhong, Ning; Zheng, Changsheng; Wen, Lizhan
2013-11-20
A narcissus calculating method for cryogenic infrared imaging systems is proposed in this paper. The accuracy is largely improved compared to the traditional paraxial analysis, as ray blocking of the optical opertures is taken into account and real ray data are used during the calculation. The narcissus distribution on the full focal plane can be obtained via analyzing field by field. Meanwhile, it can be implemented simply and fast as sequential ray tracing is utilized and rays only pass through three surfaces during the cold return statistics for every retro-reflecting surface. According to this method, a general narcissus calculation package was realized using the macro language of optical design software Code V. The performance of the new method was tested by calculating an example system using this package and comparing it with traditional methods. The results showed that the new method produced the same result accuracy and information quantity as the nonsequential ray trace, while the whole analysis took only 5 s, which was significantly shortened compared with the nonsequential ray trace, which took about 30 min.
Fast model-based estimation of ancestry in unrelated individuals
Alexander, David H.; Novembre, John; Lange, Kenneth
2009-01-01
Population stratification has long been recognized as a confounding factor in genetic association studies. Estimated ancestries, derived from multi-locus genotype data, can be used to perform a statistical correction for population stratification. One popular technique for estimation of ancestry is the model-based approach embodied by the widely applied program structure. Another approach, implemented in the program EIGENSTRAT, relies on Principal Component Analysis rather than model-based estimation and does not directly deliver admixture fractions. EIGENSTRAT has gained in popularity in part owing to its remarkable speed in comparison to structure. We present a new algorithm and a program, ADMIXTURE, for model-based estimation of ancestry in unrelated individuals. ADMIXTURE adopts the likelihood model embedded in structure. However, ADMIXTURE runs considerably faster, solving problems in minutes that take structure hours. In many of our experiments, we have found that ADMIXTURE is almost as fast as EIGENSTRAT. The runtime improvements of ADMIXTURE rely on a fast block relaxation scheme using sequential quadratic programming for block updates, coupled with a novel quasi-Newton acceleration of convergence. Our algorithm also runs faster and with greater accuracy than the implementation of an Expectation-Maximization (EM) algorithm incorporated in the program FRAPPE. Our simulations show that ADMIXTURE's maximum likelihood estimates of the underlying admixture coefficients and ancestral allele frequencies are as accurate as structure's Bayesian estimates. On real-world data sets, ADMIXTURE's estimates are directly comparable to those from structure and EIGENSTRAT. Taken together, our results show that ADMIXTURE's computational speed opens up the possibility of using a much larger set of markers in model-based ancestry estimation and that its estimates are suitable for use in correcting for population stratification in association studies. PMID:19648217
Fast model-based estimation of ancestry in unrelated individuals.
Alexander, David H; Novembre, John; Lange, Kenneth
2009-09-01
Population stratification has long been recognized as a confounding factor in genetic association studies. Estimated ancestries, derived from multi-locus genotype data, can be used to perform a statistical correction for population stratification. One popular technique for estimation of ancestry is the model-based approach embodied by the widely applied program structure. Another approach, implemented in the program EIGENSTRAT, relies on Principal Component Analysis rather than model-based estimation and does not directly deliver admixture fractions. EIGENSTRAT has gained in popularity in part owing to its remarkable speed in comparison to structure. We present a new algorithm and a program, ADMIXTURE, for model-based estimation of ancestry in unrelated individuals. ADMIXTURE adopts the likelihood model embedded in structure. However, ADMIXTURE runs considerably faster, solving problems in minutes that take structure hours. In many of our experiments, we have found that ADMIXTURE is almost as fast as EIGENSTRAT. The runtime improvements of ADMIXTURE rely on a fast block relaxation scheme using sequential quadratic programming for block updates, coupled with a novel quasi-Newton acceleration of convergence. Our algorithm also runs faster and with greater accuracy than the implementation of an Expectation-Maximization (EM) algorithm incorporated in the program FRAPPE. Our simulations show that ADMIXTURE's maximum likelihood estimates of the underlying admixture coefficients and ancestral allele frequencies are as accurate as structure's Bayesian estimates. On real-world data sets, ADMIXTURE's estimates are directly comparable to those from structure and EIGENSTRAT. Taken together, our results show that ADMIXTURE's computational speed opens up the possibility of using a much larger set of markers in model-based ancestry estimation and that its estimates are suitable for use in correcting for population stratification in association studies.
Fast and accurate face recognition based on image compression
NASA Astrophysics Data System (ADS)
Zheng, Yufeng; Blasch, Erik
2017-05-01
Image compression is desired for many image-related applications especially for network-based applications with bandwidth and storage constraints. The face recognition community typical reports concentrate on the maximal compression rate that would not decrease the recognition accuracy. In general, the wavelet-based face recognition methods such as EBGM (elastic bunch graph matching) and FPB (face pattern byte) are of high performance but run slowly due to their high computation demands. The PCA (Principal Component Analysis) and LDA (Linear Discriminant Analysis) algorithms run fast but perform poorly in face recognition. In this paper, we propose a novel face recognition method based on standard image compression algorithm, which is termed as compression-based (CPB) face recognition. First, all gallery images are compressed by the selected compression algorithm. Second, a mixed image is formed with the probe and gallery images and then compressed. Third, a composite compression ratio (CCR) is computed with three compression ratios calculated from: probe, gallery and mixed images. Finally, the CCR values are compared and the largest CCR corresponds to the matched face. The time cost of each face matching is about the time of compressing the mixed face image. We tested the proposed CPB method on the "ASUMSS face database" (visible and thermal images) from 105 subjects. The face recognition accuracy with visible images is 94.76% when using JPEG compression. On the same face dataset, the accuracy of FPB algorithm was reported as 91.43%. The JPEG-compressionbased (JPEG-CPB) face recognition is standard and fast, which may be integrated into a real-time imaging device.
Fast Field Calibration of MIMU Based on the Powell Algorithm
Ma, Lin; Chen, Wanwan; Li, Bin; You, Zheng; Chen, Zhigang
2014-01-01
The calibration of micro inertial measurement units is important in ensuring the precision of navigation systems, which are equipped with microelectromechanical system sensors that suffer from various errors. However, traditional calibration methods cannot meet the demand for fast field calibration. This paper presents a fast field calibration method based on the Powell algorithm. As the key points of this calibration, the norm of the accelerometer measurement vector is equal to the gravity magnitude, and the norm of the gyro measurement vector is equal to the rotational velocity inputs. To resolve the error parameters by judging the convergence of the nonlinear equations, the Powell algorithm is applied by establishing a mathematical error model of the novel calibration. All parameters can then be obtained in this manner. A comparison of the proposed method with the traditional calibration method through navigation tests shows the classic performance of the proposed calibration method. The proposed calibration method also saves more time compared with the traditional calibration method. PMID:25177801
A PDE-Based Fast Local Level Set Method
NASA Astrophysics Data System (ADS)
Peng, Danping; Merriman, Barry; Osher, Stanley; Zhao, Hongkai; Kang, Myungjoo
1999-11-01
We develop a fast method to localize the level set method of Osher and Sethian (1988, J. Comput. Phys.79, 12) and address two important issues that are intrinsic to the level set method: (a) how to extend a quantity that is given only on the interface to a neighborhood of the interface; (b) how to reset the level set function to be a signed distance function to the interface efficiently without appreciably moving the interface. This fast local level set method reduces the computational effort by one order of magnitude, works in as much generality as the original one, and is conceptually simple and easy to implement. Our approach differs from previous related works in that we extract all the information needed from the level set function (or functions in multiphase flow) and do not need to find explicitly the location of the interface in the space domain. The complexity of our method to do tasks such as extension and distance reinitialization is O(N), where N is the number of points in space, not O(N log N) as in works by Sethian (1996, Proc. Nat. Acad. Sci. 93, 1591) and Helmsen and co-workers (1996, SPIE Microlithography IX, p. 253). This complexity estimation is also valid for quite general geometrically based front motion for our localized method.
NASA Astrophysics Data System (ADS)
Ishizaki, Ryota; Katoh, Ryuzi
2016-05-01
We prepared fast-response colorimetric humidity-sensing (vapochromic) films based on methylene blue adsorption onto nanoporous semiconductor (TiO2, Al2O3) films. Color changes caused by changes of humidity could be easily identified visually. A characteristic feature of the vapochromic films was their fast response to changes of humidity. We found that the response began to occur within 10 ms. The response was rapid because all the methylene blue molecules attached to the nanoporous semiconductor surface were directly exposed to the environment. We also deduced that the color changes were caused by structural changes of the methylene blue aggregates on the surface.
Fast spectral color image segmentation based on filtering and clustering
NASA Astrophysics Data System (ADS)
Xing, Min; Li, Hongyu; Jia, Jinyuan; Parkkinen, Jussi
2009-10-01
This paper proposes a fast approach to spectral image segmentation. In the algorithm, two popular techniques are extended and applied to spectral color images: the mean-shift filtering and the kernel-based clustering. We claim that segmentation should be completed under illuminant F11 rather than directly using the original spectral reflectance, because such illumination can reduce data variability and expedite the following filtering. The modes obtained in the mean-shift filtering represent the local features of spectral images, and will be applied to segmentation in place of pixels. Since the modes are generally small in number, the eigendecomposition of kernel matrices, the crucial step in the kernelbased clustering, becomes much easier. The combination of these two techniques can efficiently enhance the performance of segmentation. Experiments show that the proposed segmentation method is feasible and very promising for spectral color images.
[Fast Implementation Method of Protein Spots Detection Based on CUDA].
Xiong, Bangshu; Ye, Yijia; Ou, Qiaofeng; Zhang, Haodong
2016-02-01
In order to improve the efficiency of protein spots detection, a fast detection method based on CUDA was proposed. Firstly, the parallel algorithms of the three most time-consuming parts in the protein spots detection algorithm: image preprocessing, coarse protein point detection and overlapping point segmentation were studied. Then, according to single instruction multiple threads executive model of CUDA to adopted data space strategy of separating two-dimensional (2D) images into blocks, various optimizing measures such as shared memory and 2D texture memory are adopted in this study. The results show that the operative efficiency of this method is obviously improved compared to CPU calculation. As the image size increased, this method makes more improvement in efficiency, such as for the image with the size of 2,048 x 2,048, the method of CPU needs 52,641 ms, but the GPU needs only 4,384 ms.
Fast complex memory polynomial-based adaptive digital predistorter
NASA Astrophysics Data System (ADS)
Singh Sappal, Amandeep; Singh Patterh, Manjeet; Sharma, Sanjay
2011-07-01
Today's 3G wireless systems require both high linearity and high power amplifier (PA) efficiency. The high peak-to-average ratios of the digital modulation schemes used in 3G wireless systems require that the RF PA maintain high linearity over a large range while maintaining this high efficiency; these two requirements are often at odds with each other with many of the traditional amplifier architectures. In this article, a fast and easy-to-implement adaptive digital predistorter has been presented for Wideband Code Division Multiplexed signals using complex memory polynomial work function. The proposed algorithm has been implemented to test a Motorola LDMOSFET PA. The proposed technique also takes care of the memory effects of the PA, which have been ignored in many proposed techniques in the literature. The results show that the new complex memory polynomial-based adaptive digital predistorter has better linearisation performance than conventional predistortion techniques.
Fast initialization of hole spin in a quantum dot-metal surface hybrid system
NASA Astrophysics Data System (ADS)
Peng, Yiwei; Yu, Zhongyuan; Liu, Yumin; Wu, Tiesheng; Zhang, Wen; Ye, Han
2015-08-01
In this work, we theoretically investigate the preparation of hole spin in a hybrid system consisting of a quantum dot (QD) and metal-dielectric interface. A cavity quantum electrodynamics (CQED) method is used to analyze the influence of surface plasmon polaritons (SPPs) on the emission of QD. Due to coupling between spin and interface (with a different value along different direction), a fast initialization beyond the GHz range can be achieved with high fidelity at reasonable external parameters, under both continuous wave and pulse excitation. Moreover, the distance between QD and metal is proved to be the most important element.
Fast orthogonal search method to estimate upper arm Hill-based muscle model parameters.
Mountjoy, Katherine C; Hashtrudi-Zaad, Keyvan; Morin, Evelyn L
2008-01-01
We propose a methodology to estimate subject-specific physiological parameters of Hill-based models of upper arm muscles. The methodology uses Hill-type candidate functions in the Fast Orthogonal Search (FOS) method to predict force at the wrist during elbow flexion and extension. To this end, surface EMG data from three muscles of the upper arm were recorded from 5 subjects as they performed isometric contractions at different elbow joint angles. Estimated muscle activation level and joint angle were utilized as inputs to the FOS model to obtain subject-specific estimates of optimal joint angle the Gaussian shape parameter for the force-length relationship for each muscle.
Refractive index fiber sensor based on Brillouin fast light
NASA Astrophysics Data System (ADS)
Chen, Jiali; Gan, Jiulin; Zhang, Zhishen; Yang, Tong; Deng, Huaqiu; Yang, Zhongmin
2014-01-01
A new type of refractive index fiber sensor was invented by combining the evanescent-field scattering sensing mechanism with the Brillouin fast light scheme. Superluminal light was realized using Brillouin lasing oscillation in a fiber ring cavity. The refractive index of the solution around the microfiber within the cavity is related to the group velocity of the fast light. This fast light refractive index sensor offers an alternative for high-accuracy sensing applications.
Fast and Secure Chaos-Based Cryptosystem for Images
NASA Astrophysics Data System (ADS)
Farajallah, Mousa; El Assad, Safwan; Deforges, Olivier
Nonlinear dynamic cryptosystems or chaos-based cryptosystems have been attracting a large amount of research since 1990. The critical aspect of cryptography is to face the growth of communication and to achieve the design of fast and secure cryptosystems. In this paper, we introduce three versions of a chaos-based cryptosystem based on a similar structure of the Zhang and Fridrich cryptosystems. Each version is composed of two layers: a confusion layer and a diffusion layer. The confusion layer is achieved by using a modified 2-D cat map to overcome the fixed-point problem and some other weaknesses, and also to increase the dynamic key space. The 32-bit logistic map is used as a diffusion layer for the first version, which is more robust than using it in 8-bit. In the other versions, the logistic map is replaced by a modified Finite Skew Tent Map (FSTM) for three reasons: to increase the nonlinearity properties of the diffusion layer, to overcome the fixed-point problem, and to increase the dynamic key space. Finally, all versions of the proposed cryptosystem are more resistant against known attacks and faster than Zhang cryptosystems. Moreover, the dynamic key space is much larger than the one used in Zhang cryptosystems. Performance and security analysis prove that the proposed cryptosystems are suitable for securing real-time applications.
NASA Astrophysics Data System (ADS)
Vermare, L.; Clairet, F.; Heuraux, S.; Leclert, G.
2005-11-01
Investigations on magnetohydrodynamics (MHD) modes using X-mode frequency modulated continuous wave reflectometry have been realized on Tore Supra. Two heterodyne reflectometers operating between 50-75 GHz and 75-110 GHz probe the low field side of the plasma, and the detection of the magnetic islands is performed through the perturbations recorded onto the phase and amplitude of the reflected signal. Fast sweep technique associated with a high repetition rate provides a high radial resolution with a high temporal resolution (up to 20 kHz). The radial localization of rational surfaces is achieved along with the measured density profile. Detection of the time of flight discontinuities in combination with equilibrium code calculations of the current profile allows for the accurate determination of core plasma MHD modes at the q = 1 and q = 2 rational surfaces. Continuous sweeping gives detailed analysis of the radial and poloidal structure of the magnetic island.
Spectral Emission of fast non-Maxwellian Atoms at metallic Surfaces in low density Plasmas
NASA Astrophysics Data System (ADS)
Dickheuer, Sven; Marchuk, Oleksandr; Brandt, Christian; Pospieszczyk, Albrecht
2016-09-01
We have observed Doppler shifted components of the Balmer-lines emitted by fast non-Maxwellian atoms using different targets in a linear magnetized plasma in the PSI-2 device. In a pure hydrogen plasma the Doppler shifted components of the Balmer emission lines cannot be detected above the signal-to-noise-ratio. However, in a mixed H/Ar plasma with composition of 1:1 the Doppler red- and blue-shifted components can be clearly observed. The Balmer-lines are analyzed by optical emission spectroscopy at observations angles of 35° and 90°. For target materials we use Ag, Pd, Fe and C. An acceleration potential can be applied to the target to change the kinetic energy of the incoming ions between 40 and 200 eV enabling the observation of the Doppler shifted components. The emission mechanism is discussed in details and is probably due to excitation transfer from metastable argon atoms to the fast hydrogen atoms. The Doppler shifted signal can be used to determine the properties of the surfaces, e.g., the energy and angular distribution of reflected atoms. Also the spectral reflectance of the target surface can be obtained and tested against the reference data and measurements with light calibration sources.
NASA Astrophysics Data System (ADS)
Hommen, G.; de Baar, M.; Citrin, J.; de Blank, H. J.; Voorhoeve, R. J.; de Bock, M. F. M.; Steinbuch, M.; contributors, JET-EFDA
2013-02-01
The flux surfaces' layout and the magnetic winding number q are important quantities for the performance and stability of tokamak plasmas. Normally, these quantities are iteratively derived by solving the plasma equilibrium for the poloidal and toroidal flux. In this work, a fast, non-iterative and magnetics-free numerical method is proposed to estimate the shape of the flux surfaces by an inward propagation of the plasma boundary shape, as can be determined for example by optical boundary reconstruction described in Hommen (2010 Rev. Sci. Instrum. 81 113504), toward the magnetic axis, as can be determined independently with the motional Stark effect (MSE) diagnostic. Flux surfaces are estimated for various plasma regimes in the ITER, JET and MAST tokamaks and are compared with results of CRONOS reconstructions and simulations, showing agreement to within 1% of the minor radius for almost all treated plasmas. The availability of the flux surface shapes combined with the pitch angles measured using MSE allow the reconstruction of the plasma q-profile, by evaluating the contour-integral over the flux surfaces of the magnetic field pitch angle. This method provides a direct and exact measure of the q-profile for arbitrary flux surface shapes, which does not rely on magnetic measurements. Results based on estimated flux surface shapes show agreement with CRONOS q-profiles of better than 10%. The impact of the shape of the flux surfaces on the q-profile, particularly the profiles of elongation and Shafranov shift, and offsets in plasma boundary and the magnetic axis are assessed. OFIT+ was conceived for real-time plasma profile control experiments and advanced tokamak operation, and provides quickly and reliably the mapping of actuators and sensors to the minor radius as well as the plasma q-profile, independent of magnetic measurements.
Efficient Video Stitching Based on Fast Structure Deformation.
Li, Jing; Xu, Wei; Zhang, Jianguo; Zhang, Maojun; Wang, Zhengming; Li, Xuelong
2015-12-01
In computer vision, video stitching is a very challenging problem. In this paper, we proposed an efficient and effective wide-view video stitching method based on fast structure deformation that is capable of simultaneously achieving quality stitching and computational efficiency. For a group of synchronized frames, firstly, an effective double-seam selection scheme is designed to search two distinct but structurally corresponding seams in the two original images. The seam location of the previous frame is further considered to preserve the interframe consistency. Secondly, along the double seams, 1-D feature detection and matching is performed to capture the structural relationship between the two adjacent views. Thirdly, after feature matching, we propose an efficient algorithm to linearly propagate the deformation vectors to eliminate structure misalignment. At last, image intensity misalignment is corrected by rapid gradient fusion based on the successive over relaxation iteration (SORI) solver. A principled solution to the initialization of the SORI significantly reduced the number of iterations required. We have compared favorably our method with seven state-of-the-art image and video stitching algorithms as well as traditional ones. Experimental results show that our method outperforms the existing ones compared in terms of overall stitching quality and computational efficiency.
A pipette-based calibration system for fast-scan cyclic voltammetry with fast response times.
Ramsson, Eric S
2016-01-01
Fast-scan cyclic voltammetry (FSCV) is an electrochemical technique that utilizes the oxidation and/or reduction of an analyte of interest to infer rapid changes in concentrations. In order to calibrate the resulting oxidative or reductive current, known concentrations of an analyte must be introduced under controlled settings. Here, I describe a simple and cost-effective method, using a Petri dish and pipettes, for the calibration of carbon fiber microelectrodes (CFMs) using FSCV.
A fast method for particle picking in cryo-electron micrographs based on fast R-CNN
NASA Astrophysics Data System (ADS)
Xiao, Yifan; Yang, Guangwen
2017-06-01
We propose a fast method to automatically pick protein particles in cryo-EM micrographs, which is now completed manually in practice. Our method is based on Fast R-CNN, with sliding window as the regions proposal solution. To reduce the false positive detections, we set a single class for the major contaminant ice, and pick out all the ice particles in the whole datasets. Tests on the recently-published cryo-EM data of three proteins have demonstrated that our approach can automatically accomplish the human-level particle picking task, and we successfully reduce the test time from 1.5 minutes of previous deep learning method to 2 seconds without any recall or precision losses. Our program is available under the MIT License at https://github.com/xiao1fan/FastParticlePicker.
Integrated Ray Tracing (IRT) simulation of SCOTS measurement of GMT fast steering mirror surface
NASA Astrophysics Data System (ADS)
Choi, Ji Nyeong; Ryu, Dongok; Kim, Sug-Whan; Graves, Logan; Su, Peng; Huang, Run; Kim, Dae Wook
2015-09-01
The Software Configurable Optical Testing System (SCOTS) is one of the newest testing methods for large mirror surfaces. The Integrated Ray Tracing (IRT) technique can be applicable to the SCOTS simulation by performing non-sequential ray tracing from the screen to the camera detector in the real scale. Therefore, the radiometry of distorted pattern images are numerically estimated by the IRT simulation module. In this study, we construct an IRT SCOTS simulation model for the Fast Steering Mirror Prototype (FSMP) surface of the Giant Magellan Telescope (GMT). GMT FSMP is an off-axis ellipsoidal concave mirror that is 1064 mm in diameter and has PV 3.1 mm in aspheric departure. The surface error requirement is less than 20 nm rms. The screen is modeled as an array of 1366 by 768 screen pixels of 0.227 mm in pitch size. The screen is considered as a Lambertian scattering surface. The screen and the camera are positioned around 4390 mm away from the mirror and separated by around 132 mm from each other. The light source are scanning lines and sinusoidal patterns generated by 616,050 rays per one screen pixel. Of the initially generated rays, 0.22 % are received by the camera's detector and contribute to form distorted pattern images. These images are converted to the slope and height maps of the mirror surface. The final result for the height difference between input surface and reconstructed surface was 14.14 nm rms. Additionally, the simulated mirror pattern image was compared with the real SCOTS test for the GMT FSMP. This study shows applicability of using the IRT model to SCOTS simulation with nanometer level numerical accuracy.
Biased Randomized Algorithm for Fast Model-Based Diagnosis
NASA Technical Reports Server (NTRS)
Williams, Colin; Vartan, Farrokh
2005-01-01
A biased randomized algorithm has been developed to enable the rapid computational solution of a propositional- satisfiability (SAT) problem equivalent to a diagnosis problem. The closest competing methods of automated diagnosis are described in the preceding article "Fast Algorithms for Model-Based Diagnosis" and "Two Methods of Efficient Solution of the Hitting-Set Problem" (NPO-30584), which appears elsewhere in this issue. It is necessary to recapitulate some of the information from the cited articles as a prerequisite to a description of the present method. As used here, "diagnosis" signifies, more precisely, a type of model-based diagnosis in which one explores any logical inconsistencies between the observed and expected behaviors of an engineering system. The function of each component and the interconnections among all the components of the engineering system are represented as a logical system. Hence, the expected behavior of the engineering system is represented as a set of logical consequences. Faulty components lead to inconsistency between the observed and expected behaviors of the system, represented by logical inconsistencies. Diagnosis - the task of finding the faulty components - reduces to finding the components, the abnormalities of which could explain all the logical inconsistencies. One seeks a minimal set of faulty components (denoted a minimal diagnosis), because the trivial solution, in which all components are deemed to be faulty, always explains all inconsistencies. In the methods of the cited articles, the minimal-diagnosis problem is treated as equivalent to a minimal-hitting-set problem, which is translated from a combinatorial to a computational problem by mapping it onto the Boolean-satisfiability and integer-programming problems. The integer-programming approach taken in one of the prior methods is complete (in the sense that it is guaranteed to find a solution if one exists) and slow and yields a lower bound on the size of the
A versatile, fast, and efficient method of visible-light-induced surface grafting polymerization.
Xiong, Xinhong; Liu, Wei; Luan, Yafei; Du, Jun; Wu, Zhaoqiang; Chen, Hong
2014-05-20
To overcome the problem caused by the lability of the Au-S bond, we demonstrate the first use of Mn2(CO)10 for visible-light-induced surface grafting polymerization on Au surfaces in this paper. The visible-light-induced surface grafting of poly(N-isopropylacrylamide) (PNIPAAm) has the features of a "controlled" polymerization, which is characterized by a linear relationship between the thickness of the grafting layer and the monomer concentration. Ellipsometry indicated the formation of PNIPAAm films of up to ∼200 nm in thickness after only 10 min of polymerization at room temperature, demonstrating that this is a very fast process in comparison with traditional grafting polymerization techniques. Moreover, to demonstrate the potential applications of our approach, different substrates grafted by PNIPAAm and the covalent immobilization of a range of polymers on Au surfaces were also demonstrated. Considering the advantages of simplicity, efficiency, and mild reaction conditions as well as the ability of catecholic derivatives to bind to a large variety of substrates, this visible-light-induced grafting method is expected to be useful in designing functional interfaces.
Coupled slow and fast surface dynamics in an electrocatalytic oscillator: Model and simulations
Nascimento, Melke A.; Nagao, Raphael; Eiswirth, Markus; Varela, Hamilton
2014-12-21
The co-existence of disparate time scales is pervasive in many systems. In particular for surface reactions, it has been shown that the long-term evolution of the core oscillator is decisively influenced by slow surface changes, such as progressing deactivation. Here we present an in-depth numerical investigation of the coupled slow and fast surface dynamics in an electrocatalytic oscillator. The model consists of four nonlinear coupled ordinary differential equations, investigated over a wide parameter range. Besides the conventional bifurcation analysis, the system was studied by means of high-resolution period and Lyapunov diagrams. It was observed that the bifurcation diagram changes considerably as the irreversible surface poisoning evolves, and the oscillatory region shrinks. The qualitative dynamics changes accordingly and the chaotic oscillations are dramatically suppressed. Nevertheless, periodic cascades are preserved in a confined region of the resistance vs. voltage diagram. Numerical results are compared to experiments published earlier and the latter reinterpreted. Finally, the comprehensive description of the time-evolution in the period and Lyapunov diagrams suggests further experimental studies correlating the evolution of the system's dynamics with changes of the catalyst structure.
Fast implementation of window-based methods for stereo correspondence
NASA Astrophysics Data System (ADS)
Uddin, Mohammad Shorif; Son, Tran Thai; Mita, Seiichi
2003-11-01
Stereo correspondence is a common tool in computer or robot vision, with numerous applications, such as determination of three-dimensional depth information of objects for virtual reality, autonomous vehicle and robot navigation, using a pair of left and right images from a stereo camera system. Computation time is an important factor in estimating dense disparity for the above applications. For of a pixel in the left image, its correspondence has to be searched in the right image based on epipolar line and maximum disparity search range. The intensity of a pixel alone in the left image does not have sufficient discriminatory power to determine its correspondence uniquely from the right image, thus other pixels in its neighborhood comprising a window is used for accurate estimation. In window-based approaches, this correspondence or disparity is conventionally determined based on matching windows of pixels by using sum of square differences, sum of absolute differences, or normalized correlation techniques. With a view to reduce the computation time, we propose a fast algorithm where it is not necessary to compute the window costs for all candidate pixels in the right image within the search range. To determine the correspondence of a pixel in the left image we just compute the window costs for candidate pixels in the right image whose intensities are different within a certain value to the intensity of the pixel in the left image. We applied our proposal to standard stereo images and found that we can easily reduce the computation time of about 30% with almost no degradation of accuracy.
NASA Astrophysics Data System (ADS)
Wang, Zhongren; Li, Bo; Zhou, Yuebin
2014-11-01
Fast 3D reconstruction of tool wear from 2D images has great importance to 3D measuring and objective evaluating tool wear condition, determining accurate tool change and insuring machined part's quality. Extracting 3D information of tool wear zone based on monocular multi-color structured light can realize fast recovery of surface topography of tool wear, which overcomes the problems of traditional methods such as solution diversity and slow convergence when using SFS method and stereo match when using 3D reconstruction from multiple images. In this paper, a kind of new multi-color structured light illuminator was put forward. An information mapping model was established among illuminator's structure parameters, surface morphology and color images. The mathematical model to reconstruct 3D morphology based on monocular multi-color structured light was presented. Experimental results show that this method is effective and efficient to reconstruct the surface morphology of tool wear zone.
[Fast discrimination of edible vegetable oil based on Raman spectroscopy].
Zhou, Xiu-Jun; Dai, Lian-Kui; Li, Sheng
2012-07-01
A novel method to fast discriminate edible vegetable oils by Raman spectroscopy is presented. The training set is composed of different edible vegetable oils with known classes. Based on their original Raman spectra, baseline correction and normalization were applied to obtain standard spectra. Two characteristic peaks describing the unsaturated degree of vegetable oil were selected as feature vectors; then the centers of all classes were calculated. For an edible vegetable oil with unknown class, the same pretreatment and feature extraction methods were used. The Euclidian distances between the feature vector of the unknown sample and the center of each class were calculated, and the class of the unknown sample was finally determined by the minimum distance. For 43 edible vegetable oil samples from seven different classes, experimental results show that the clustering effect of each class was more obvious and the class distance was much larger with the new feature extraction method compared with PCA. The above classification model can be applied to discriminate unknown edible vegetable oils rapidly and accurately.
DUK - A Fast and Efficient Kmer Based Sequence Matching Tool
Li, Mingkun; Copeland, Alex; Han, James
2011-03-21
A new tool, DUK, is developed to perform matching task. Matching is to find whether a query sequence partially or totally matches given reference sequences or not. Matching is similar to alignment. Indeed many traditional analysis tasks like contaminant removal use alignment tools. But for matching, there is no need to know which bases of a query sequence matches which position of a reference sequence, it only need know whether there exists a match or not. This subtle difference can make matching task much faster than alignment. DUK is accurate, versatile, fast, and has efficient memory usage. It uses Kmer hashing method to index reference sequences and Poisson model to calculate p-value. DUK is carefully implemented in C++ in object oriented design. The resulted classes can also be used to develop other tools quickly. DUK have been widely used in JGI for a wide range of applications such as contaminant removal, organelle genome separation, and assembly refinement. Many real applications and simulated dataset demonstrate its power.
Fast recognition of musical sounds based on timbre.
Agus, Trevor R; Suied, Clara; Thorpe, Simon J; Pressnitzer, Daniel
2012-05-01
Human listeners seem to have an impressive ability to recognize a wide variety of natural sounds. However, there is surprisingly little quantitative evidence to characterize this fundamental ability. Here the speed and accuracy of musical-sound recognition were measured psychophysically with a rich but acoustically balanced stimulus set. The set comprised recordings of notes from musical instruments and sung vowels. In a first experiment, reaction times were collected for three target categories: voice, percussion, and strings. In a go/no-go task, listeners reacted as quickly as possible to members of a target category while withholding responses to distractors (a diverse set of musical instruments). Results showed near-perfect accuracy and fast reaction times, particularly for voices. In a second experiment, voices were recognized among strings and vice-versa. Again, reaction times to voices were faster. In a third experiment, auditory chimeras were created to retain only spectral or temporal features of the voice. Chimeras were recognized accurately, but not as quickly as natural voices. Altogether, the data suggest rapid and accurate neural mechanisms for musical-sound recognition based on selectivity to complex spectro-temporal signatures of sound sources.
Fast Minimum Variance Beamforming Based on Legendre Polynomials.
Bae, MooHo; Park, Sung Bae; Kwon, Sung Jae
2016-09-01
Currently, minimum variance beamforming (MV) is actively investigated as a method that can improve the performance of an ultrasound beamformer, in terms of the lateral and contrast resolution. However, this method has the disadvantage of excessive computational complexity since the inverse spatial covariance matrix must be calculated. Some noteworthy methods among various attempts to solve this problem include beam space adaptive beamforming methods and the fast MV method based on principal component analysis, which are similar in that the original signal in the element space is transformed to another domain using an orthonormal basis matrix and the dimension of the covariance matrix is reduced by approximating the matrix only with important components of the matrix, hence making the inversion of the matrix very simple. Recently, we proposed a new method with further reduced computational demand that uses Legendre polynomials as the basis matrix for such a transformation. In this paper, we verify the efficacy of the proposed method through Field II simulations as well as in vitro and in vivo experiments. The results show that the approximation error of this method is less than or similar to those of the above-mentioned methods and that the lateral response of point targets and the contrast-to-speckle noise in anechoic cysts are also better than or similar to those methods when the dimensionality of the covariance matrices is reduced to the same dimension.
Fast CEUS image segmentation based on self organizing maps
NASA Astrophysics Data System (ADS)
Paire, Julie; Sauvage, Vincent; Albouy-Kissi, Adelaïde; Ladam Marcus, Viviane; Marcus, Claude; Hoeffel, Christine
2014-03-01
Contrast-enhanced ultrasound (CEUS) has recently become an important technology for lesion detection and characterization. CEUS is used to investigate the perfusion kinetics in tissue over time, which relates to tissue vascularization. In this paper, we present an interactive segmentation method based on the neural networks, which enables to segment malignant tissue over CEUS sequences. We use Self-Organizing-Maps (SOM), an unsupervised neural network, to project high dimensional data to low dimensional space, named a map of neurons. The algorithm gathers the observations in clusters, respecting the topology of the observations space. This means that a notion of neighborhood between classes is defined. Adjacent observations in variables space belong to the same class or related classes after classification. Thanks to this neighborhood conservation property and associated with suitable feature extraction, this map provides user friendly segmentation tool. It will assist the expert in tumor segmentation with fast and easy intervention. We implement SOM on a Graphics Processing Unit (GPU) to accelerate treatment. This allows a greater number of iterations and the learning process to converge more precisely. We get a better quality of learning so a better classification. Our approach allows us to identify and delineate lesions accurately. Our results show that this method improves markedly the recognition of liver lesions and opens the way for future precise quantification of contrast enhancement.
NASA Astrophysics Data System (ADS)
Jing, Ya-Bing; Liu, Chang-Wen; Bi, Feng-Rong; Bi, Xiao-Yang; Wang, Xia; Shao, Kang
2017-07-01
Numerous vibration-based techniques are rarely used in diesel engines fault diagnosis in a direct way, due to the surface vibration signals of diesel engines with the complex non-stationary and nonlinear time-varying features. To investigate the fault diagnosis of diesel engines, fractal correlation dimension, wavelet energy and entropy as features reflecting the diesel engine fault fractal and energy characteristics are extracted from the decomposed signals through analyzing vibration acceleration signals derived from the cylinder head in seven different states of valve train. An intelligent fault detector FastICA-SVM is applied for diesel engine fault diagnosis and classification. The results demonstrate that FastICA-SVM achieves higher classification accuracy and makes better generalization performance in small samples recognition. Besides, the fractal correlation dimension and wavelet energy and entropy as the special features of diesel engine vibration signal are considered as input vectors of classifier FastICA-SVM and could produce the excellent classification results. The proposed methodology improves the accuracy of feature extraction and the fault diagnosis of diesel engines.
Nanorod-Based Fast-Response Pressure-Sensitive Paints
NASA Technical Reports Server (NTRS)
Bencic, Timothy; VanderWal, Randall
2007-01-01
A proposed program of research and development would be devoted to exploitation of nanomaterials in pressuresensitive paints (PSPs), which are used on wind-tunnel models for mapping surface pressures associated with flow fields. Heretofore, some success has been achieved in measuring steady-state pressures by use of PSPs, but success in measuring temporally varying pressures has been elusive because of the inherent slowness of the optical responses of these materials. A PSP contains a dye that luminesces in a suitable wavelength range in response to photoexcitation in a shorter wavelength range. The luminescence is quenched by oxygen at a rate proportional to the partial pressure of oxygen and thus proportional to the pressure of air. As a result, the intensity of luminescence varies inversely with the pressure of air. The major problem in developing a PSP that could be easily applied to a wind-tunnel model and could be useful for measuring rapidly varying pressure is to provide very high gas diffusivity for rapid, easy transport of oxygen to and from active dye molecules. Most PSPs include polymer-base binders, which limit the penetration of oxygen to dye molecules, thereby reducing responses to pressure fluctuations. The proposed incorporation of nanomaterials (somewhat more specifically, nanorods) would result in paints having nanostructured surfaces that, relative to conventional PSP surfaces, would afford easier and more nearly complete access of oxygen molecules to dye molecules. One measure of greater access is effective surface area: For a typical PSP as proposed applied to a given solid surface, the nanometer-scale structural features would result in an exposed surface area more than 100 times that of a conventional PSP, and the mass of proposed PSP needed to cover the surface would be less than tenth of the mass of the conventional PSP. One aspect of the proposed development would be to synthesize nanorods of Si/SiO2, in both tangle-mat and regular- array
Fast and Adaptive Surface Reconstruction from Mobile Laser Scanning Data of Urban Areas
NASA Astrophysics Data System (ADS)
Gordon, M.; Hebel, M.; Arens, M.
2015-03-01
The availability of 3D environment models enables many applications such as visualization, planning or simulation. With the use of current mobile laser scanners it is possible to map large areas in relatively short time. One of the emerging problems is to handle the resulting huge amount of data. We present a fast and adaptive approach to represent connected 3D points by surface patches while keeping fine structures untouched. Our approach results in a reasonable reduction of the data and, on the other hand, it preserves details of the captured scene. At all times during data acquisition and processing, the 3D points are organized in an octree with adaptive cell size for fast handling of the data. Cells of the octree are filled with points and split into subcells, if the points do not lie on one plane or are not evenly distributed on the plane. In order to generate a polygon model, each octree cell and its corresponding plane are intersected. As a main result, our approach allows the online generation of an expandable 3D model of controllable granularity. Experiments have been carried out using a sensor vehicle with two laser scanners at an urban test site. The results of the experiments show that the demanded compromise between data reduction and preservation of details can be reached.
Fast three-dimensional measurements for dynamic scenes with shiny surfaces
NASA Astrophysics Data System (ADS)
Feng, Shijie; Chen, Qian; Zuo, Chao; Asundi, Anand
2017-01-01
This paper presents a novel fringe projection technique for fast three-dimensional (3-D) shape measurements of moving highly reflective objects. By combining the standard three-step phase-shifting fringe patterns with a digital speckle image, dynamic 3-D reconstructions of shiny surfaces can be efficiently achieved with only four projected patterns. The phase measurement is performed by three-step phase-shifting algorithm as it uses the theoretical minimum number of fringe patterns for phase-shifting profilometry. To avoid the camera saturation, a dual-camera fringe projection system is built to measure shiny objects from two different directions. The erroneous phase obtained from a saturated pixel is corrected by the phase of its corresponding pixel in the other view which is free from the saturation problem. To achieve high measurement accuracy, the corresponding high light intensity areas in cameras are found by sub-pixel matches of the speckle pattern in either view. Benefited from the trifocal tensor constraint, the corresponding points in the two wrapped phase maps can be directly established, and thus, the difficulties in determining the correct fringe order for the discontinuous or isolated surfaces can be effectively bypassed. Experimental results indicate that the proposed method is able to successfully measure highly reflective surfaces for both stationary and dynamic scenes.
Fast element mapping of titanium wear around implants of different surface structures.
Meyer, Ulrich; Bühner, Martin; Büchter, Andre; Kruse-Lösler, Birgit; Stamm, Thomas; Wiesmann, Hans Peter
2006-04-01
The effect of unintended titanium release around oral implants remains a biological concern. The current study was undertaken to evaluate a new detection system of element mapping in biological probes. A new scanning electron microscopy-energy dispersive spectroscopy detection method was used to map the features of titanium contamination in peri-implant bone around implants with different surface structures. The amount of titanium wear was highest adjacent to titanium-plasma-sprayed surfaces, followed by sandblastered large grid acid-etched and smooth surfaces. A high sensitivity of titanium detection over large areas of bone tissue was observed. A high spatial resolution of titanium wear particles (20 nm) could be reached and correlated to the ultrastructural morphological features of peri-implant tissue. Cells adjacent to titanium wear revealed no signs of morphological alterations on a nanoscale level at early periods of implant/bone interaction. The new technique may serve as a fast and effective tool to evaluate titanium release effects in biological probes.
Friedt, J-M; Droit, C; Ballandras, S; Alzuaga, S; Martin, G; Sandoz, P
2012-05-01
Surface acoustic wave (SAW) resonators can advantageously operate as passive sensors which can be interrogated through a wireless link. Amongst the practical applications of such devices, structural health monitoring through stress measurement and more generally vibration characteristics of mechanical structures benefit from the ability to bury such sensors within the considered structure (wireless and battery-less). However, measurement bandwidth becomes a significant challenge when measuring wideband vibration characteristics of mechanical structures. A fast SAW resonator measurement scheme is demonstrated here. The measurement bandwidth is limited by the physical settling time of the resonator (Q/π periods), requiring only two probe pulses through a monostatic RADAR-like electronic setup to identify the sensor resonance frequency and hence stress on a resonator acting as a strain gauge. A measurement update rate of 4800 Hz using a high quality factor SAW resonator operating in the 434 MHz Industrial, Scientific and Medical band is experimentally demonstrated.
NASA Astrophysics Data System (ADS)
Friedt, J.-M.; Droit, C.; Ballandras, S.; Alzuaga, S.; Martin, G.; Sandoz, P.
2012-05-01
Surface acoustic wave (SAW) resonators can advantageously operate as passive sensors which can be interrogated through a wireless link. Amongst the practical applications of such devices, structural health monitoring through stress measurement and more generally vibration characteristics of mechanical structures benefit from the ability to bury such sensors within the considered structure (wireless and battery-less). However, measurement bandwidth becomes a significant challenge when measuring wideband vibration characteristics of mechanical structures. A fast SAW resonator measurement scheme is demonstrated here. The measurement bandwidth is limited by the physical settling time of the resonator (Q/π periods), requiring only two probe pulses through a monostatic RADAR-like electronic setup to identify the sensor resonance frequency and hence stress on a resonator acting as a strain gauge. A measurement update rate of 4800 Hz using a high quality factor SAW resonator operating in the 434 MHz Industrial, Scientific and Medical band is experimentally demonstrated.
Chang, Hyejin; Jeong, Sinyoung; Ko, Eunbyeol; Jeong, Dae Hong E-mail: debobkr@gmail.com; Kang, Homan; Lee, Yoon-Sik E-mail: debobkr@gmail.com; Lee, Ho-Young E-mail: debobkr@gmail.com
2015-05-15
Surface-enhanced Raman scattering techniques have been widely used for bioanalysis due to its high sensitivity and multiplex capacity. However, the point-scanning method using a micro-Raman system, which is the most common method in the literature, has a disadvantage of extremely long measurement time for on-chip immunoassay adopting a large chip area of approximately 1-mm scale and confocal beam point of ca. 1-μm size. Alternative methods such as sampled spot scan with high confocality and large-area scan method with enlarged field of view and low confocality have been utilized in order to minimize the measurement time practically. In this study, we analyzed the two methods in respect of signal-to-noise ratio and sampling-led signal fluctuations to obtain insights into a fast and reliable readout strategy. On this basis, we proposed a methodology for fast and reliable quantitative measurement of the whole chip area. The proposed method adopted a raster scan covering a full area of 100 μm × 100 μm region as a proof-of-concept experiment while accumulating signals in the CCD detector for single spectrum per frame. One single scan with 10 s over 100 μm × 100 μm area yielded much higher sensitivity compared to sampled spot scanning measurements and no signal fluctuations attributed to sampled spot scan. This readout method is able to serve as one of key technologies that will bring quantitative multiplexed detection and analysis into practice.
Chang, Hyejin; Kang, Homan; Jeong, Sinyoung; Ko, Eunbyeol; Lee, Yoon-Sik; Lee, Ho-Young; Jeong, Dae Hong
2015-05-01
Surface-enhanced Raman scattering techniques have been widely used for bioanalysis due to its high sensitivity and multiplex capacity. However, the point-scanning method using a micro-Raman system, which is the most common method in the literature, has a disadvantage of extremely long measurement time for on-chip immunoassay adopting a large chip area of approximately 1-mm scale and confocal beam point of ca. 1-μm size. Alternative methods such as sampled spot scan with high confocality and large-area scan method with enlarged field of view and low confocality have been utilized in order to minimize the measurement time practically. In this study, we analyzed the two methods in respect of signal-to-noise ratio and sampling-led signal fluctuations to obtain insights into a fast and reliable readout strategy. On this basis, we proposed a methodology for fast and reliable quantitative measurement of the whole chip area. The proposed method adopted a raster scan covering a full area of 100 μm × 100 μm region as a proof-of-concept experiment while accumulating signals in the CCD detector for single spectrum per frame. One single scan with 10 s over 100 μm × 100 μm area yielded much higher sensitivity compared to sampled spot scanning measurements and no signal fluctuations attributed to sampled spot scan. This readout method is able to serve as one of key technologies that will bring quantitative multiplexed detection and analysis into practice.
NASA Astrophysics Data System (ADS)
Chang, Hyejin; Kang, Homan; Jeong, Sinyoung; Ko, Eunbyeol; Lee, Yoon-Sik; Lee, Ho-Young; Jeong, Dae Hong
2015-05-01
Surface-enhanced Raman scattering techniques have been widely used for bioanalysis due to its high sensitivity and multiplex capacity. However, the point-scanning method using a micro-Raman system, which is the most common method in the literature, has a disadvantage of extremely long measurement time for on-chip immunoassay adopting a large chip area of approximately 1-mm scale and confocal beam point of ca. 1-μm size. Alternative methods such as sampled spot scan with high confocality and large-area scan method with enlarged field of view and low confocality have been utilized in order to minimize the measurement time practically. In this study, we analyzed the two methods in respect of signal-to-noise ratio and sampling-led signal fluctuations to obtain insights into a fast and reliable readout strategy. On this basis, we proposed a methodology for fast and reliable quantitative measurement of the whole chip area. The proposed method adopted a raster scan covering a full area of 100 μm × 100 μm region as a proof-of-concept experiment while accumulating signals in the CCD detector for single spectrum per frame. One single scan with 10 s over 100 μm × 100 μm area yielded much higher sensitivity compared to sampled spot scanning measurements and no signal fluctuations attributed to sampled spot scan. This readout method is able to serve as one of key technologies that will bring quantitative multiplexed detection and analysis into practice.
Is the idea of a fast block to polyspermy based on artifact?
Dale, Brian
2014-08-01
This purpose of this review is to look at the experimental evidence, both kinetic and electrophysiological, that led to the hypothesis of a fast electrical block to polyspermy in sea urchin eggs. The idea of a fast partial block, forwarded in the 1950's, that would reduce the receptivity of the egg surface by 1/20th following its interaction with the fertilizing spermatozoon, was based on experiments that treated fertilization as a first order chemical reaction. Here, I outline the criticisms of the Rothschild theory and demonstrate that the hypothesis of a fast partial block to polyspermy is unfounded. Notwithstanding, it was suggested in the 1970's that the membrane depolarization, induced by the fertilizing spermatozoon, prevented the interaction of supernumerary spermatozoa, the fast electrical block to polyspermy. While trans-membrane voltage recording has permitted a better understanding of the sequence of events occurring at fertilization, there is no evidence that depolarization prevents the interaction of supernumerary spermatozoa. Sperm entry is prevented at positive and negative potentials, in the voltage clamp configuration, however this is an artifact caused by the currents injected into the egg employed to hold the voltage constant in a non-physiological range. At permissive voltages, around -20 mV, where the current required to hold the voltage is minimal, only one spermatozoon normally enters the egg. Thus, irrespective of the egg voltage, the fertilizing spermatozoon is, in any case, attached to a privileged interaction site that permits entry and distinguishes it from supernumerary spermatozoa. Competence for monospermy is acquired during oocyte maturation and data on cortical organization in echinoderm eggs points to the actin filament system for regulating sperm entry. Copyright © 2014 Elsevier Inc. All rights reserved.
Review of surface profile measurement techniques based on optical interferometry
NASA Astrophysics Data System (ADS)
Wang, Yunzhi; Xie, Fang; Ma, Sen; Dong, Lianlian
2017-06-01
With the fast development of modern science and technology, two or three-dimensional surface profile measurement techniques with high resolution and large dynamic range are urgently required. Among them, the techniques based on optical interferometry have been widely used for their good properties of non-contact, high resolution, large dynamic measurement range and well-defined traceability route to the definition of meter. A review focused on surface profile measurement techniques of optical interferometry is introduced in this paper with a detailed classification sorted by operating principles. Examples in each category are discussed and analyzed for better understanding.
Fast and automatic watermark resynchronization based on zernike moments
NASA Astrophysics Data System (ADS)
Kang, Xiangui; Liu, Chunhui; Zeng, Wenjun; Huang, Jiwu; Liu, Congbai
2007-02-01
In some applications such as real-time video applications, watermark detection needs to be performed in real time. To address image watermark robustness against geometric transformations such as the combination of rotation, scaling, translation and/or cropping (RST), many prior works choose exhaustive search method or template matching method to find the RST distortion parameters, then reverse the distortion to resynchronize the watermark. These methods typically impose huge computation burden because the search space is typically a multiple dimensional space. Some other prior works choose to embed watermarks in an RST invariant domain to meet the real time requirement. But it might be difficult to construct such an RST invariant domain. Zernike moments are useful tools in pattern recognition and image watermarking due to their orthogonality and rotation invariance property. In this paper, we propose a fast watermark resynchronization method based on Zernike moments, which requires only search over scaling factor to combat RST geometric distortion, thus significantly reducing the computation load. We apply the proposed method to circularly symmetric watermarking. According to Plancherel's Theorem and the rotation invariance property of Zernike moments, the rotation estimation only requires performing DFT on Zernike moments correlation value once. Thus for RST attack, we can estimate both rotation angle and scaling factor by searching for the scaling factor to find the overall maximum DFT magnitude mentioned above. With the estimated rotation angle and scaling factor parameters, the watermark can be resynchronized. In watermark detection, the normalized correlation between the watermark and the DFT magnitude of the test image is used. Our experimental results demonstrate the advantage of our proposed method. The watermarking scheme is robust to global RST distortion as well as JPEG compression. In particular, the watermark is robust to print-rescanning and
Fast generation of Fresnel holograms based on multirate filtering.
Tsang, Peter; Liu, Jung-Ping; Cheung, Wai-Keung; Poon, Ting-Chung
2009-12-01
One of the major problems in computer-generated holography is the high computation cost involved for the calculation of fringe patterns. Recently, the problem has been addressed by imposing a horizontal parallax only constraint whereby the process can be simplified to the computation of one-dimensional sublines, each representing a scan plane of the object scene. Subsequently the sublines can be expanded to a two-dimensional hologram through multiplication with a reference signal. Furthermore, economical hardware is available with which sublines can be generated in a computationally free manner with high throughput of approximately 100 M pixels/second. Apart from decreasing the computation loading, the sublines can be treated as intermediate data that can be compressed by simply downsampling the number of sublines. Despite these favorable features, the method is suitable only for the generation of white light (rainbow) holograms, and the resolution of the reconstructed image is inferior to the classical Fresnel hologram. We propose to generate holograms from one-dimensional sublines so that the above-mentioned problems can be alleviated. However, such an approach also leads to a substantial increase in computation loading. To overcome this problem we encapsulated the conversion of sublines to holograms as a multirate filtering process and implemented the latter by use of a fast Fourier transform. Evaluation reveals that, for holograms of moderate size, our method is capable of operating 40,000 times faster than the calculation of Fresnel holograms based on the precomputed table lookup method. Although there is no relative vertical parallax between object points at different distance planes, a global vertical parallax is preserved for the object scene as a whole and the reconstructed image can be observed easily.
NASA Astrophysics Data System (ADS)
Gómez-Pedrero, José A.; Rodríguez-Ibañez, Diego; Alonso, José; Quirgoa, Juan A.
2015-09-01
With the advent of techniques devised for the mass production of optical components made with surfaces of arbitrary form (also known as free form surfaces) in the last years, a parallel development of measuring systems adapted for these new kind of surfaces constitutes a real necessity for the industry. Profilometry is one of the preferred methods for the assessment of the quality of a surface, and is widely employed in the optical fabrication industry for the quality control of its products. In this work, we present the design, development and assembly of a new profilometer with five axis of movement, specifically suited to the measurement of medium size (up to 150 mm of diameter) "free-form" optical surfaces with sub-micrometer accuracy and low measuring times. The apparatus is formed by three X, Y, Z linear motorized positioners plus and additional angular and a tilt positioner employed to locate accurately the surface to be measured and the probe which can be a mechanical or an optical one, being optical one a confocal sensor based on chromatic aberration. Both optical and mechanical probes guarantee an accuracy lower than the micrometer in the determination of the surface height, thus ensuring an accuracy in the surface curvatures of the order of 0.01 D or better. An original calibration procedure based on the measurement of a precision sphere has been developed in order to correct the perpendicularity error between the axes of the linear positioners. To reduce the measuring time of the profilometer, a custom electronics, based on an Arduino™ controller, have been designed and produced in order to synchronize the five motorized positioners and the optical and mechanical probes so that a medium size surface (around 10 cm of diameter) with a dynamic range in curvatures of around 10 D, can be measured in less than 300 seconds (using three axes) keeping the resolution in height and curvature in the figures mentioned above.
A Randomized Field Trial of the Fast ForWord Language Computer-Based Training Program
ERIC Educational Resources Information Center
Borman, Geoffrey D.; Benson, James G.; Overman, Laura
2009-01-01
This article describes an independent assessment of the Fast ForWord Language computer-based training program developed by Scientific Learning Corporation. Previous laboratory research involving children with language-based learning impairments showed strong effects on their abilities to recognize brief and fast sequences of nonspeech and speech…
Source estimation with surface-related multiples—fast ambiguity-resolved seismic imaging
NASA Astrophysics Data System (ADS)
Tu, Ning; Aravkin, Aleksandr; van Leeuwen, Tristan; Lin, Tim; Herrmann, Felix J.
2016-06-01
We address the problem of obtaining a reliable seismic image without prior knowledge of the source wavelet, especially from data that contain strong surface-related multiples. Conventional reverse-time migration requires prior knowledge of the source wavelet, which is either technically or computationally challenging to accurately determine; inaccurate estimates of the source wavelet can result in seriously degraded reverse-time migrated images, and therefore wrong geological interpretations. To solve this problem, we present a `wavelet-free' imaging procedure that simultaneously inverts for the source wavelet and the seismic image, by tightly integrating source estimation into a fast least-squares imaging framework, namely compressive imaging, given a reasonably accurate background velocity model. However, this joint inversion problem is difficult to solve as it is plagued with local minima and the ambiguity with respect to amplitude scalings because of the multiplicative, and therefore nonlinear, appearance of the source wavelet in the otherwise linear formalism. We have found a way to solve this nonlinear joint-inversion problem using a technique called variable projection, and a way to overcome the scaling ambiguity by including surface-related multiples in our imaging procedure following recent developments in surface-related multiple prediction by sparse inversion. As a result, we obtain without prior knowledge of the source wavelet high-resolution seismic images, comparable in quality to images obtained assuming the true source wavelet is known. By leveraging the computationally efficient compressive-imaging methodology, these results are obtained at affordable computational costs compared with conventional processing work flows that include surface-related multiple removal and reverse-time migration.
NASA Astrophysics Data System (ADS)
Wei, Jian-Gong; Peng, Zhen; Lee, Jin-Fa
2012-10-01
The implementation details of a fast direct solver is described herein for solving dense matrix equations from the application of surface integral equation methods for electromagnetic field scatterings from non-penetrable targets. The proposed algorithm exploits the smoothness of the far field and computes a low rank decomposition of the off-diagonal coupling blocks of the matrices through a set of skeletonization processes. Moreover, an artificial surface (the Huygens' surface) is introduced for each clustering group to efficiently account for the couplings between well-separated groups. Furthermore, a recursive multilevel version of the algorithm is presented. Although asymptotically the algorithm would not alter the bleak outlook of the complexity of the worst case scenario,O(N3) for required CPU time where N denotes the number of unknowns, for electrically large electromagnetic (EM) problems; through numerical examples, we found that the proposed multilevel direct solver can scale as good as O(N1.3) in memory consumption and O(N1.8) in CPU time for moderate-sized EM problems. Note that our conclusions are drawn based on a few sample examples that we have conducted and should not be taken as a true complexity analysis for general electrodynamic applications. However, for the fixed frequency (h-refinement) scenario, where the discretization size decreases, the computational complexities observed agree well with the theoretical predictions. Namely, the algorithm exhibits O(N) and O(N1.5) complexities for memory consumption and CPU time, respectively.
NASA Astrophysics Data System (ADS)
Paul, S.; Hoppmann, M.; Willmes, S.; Heinemann, G.
2016-12-01
Around Antarctica, sea ice is regularly attached to coastal features. These regions of mostly seasonal fast ice interact with the atmosphere, ocean and coastal ecosystem in a variety of ways. The growth and breakup cycles may depend on different factors, such as water- and air temperatures, wind conditions, tides, ocean swell, the passage of icebergs and the presence of nearby polynyas. However, a detailed understanding about the interaction between these factors and the fast-ice cycle is missing. In order to better understand the linkages between general fast-ice evolution and external forcing factors, we present results from an observational case study performed on the seasonal fast-ice cover of Atka Bay, eastern Weddell Sea. The ice conditions in this region are critical for the supply of the German wintering station Neumayer III. Moreover, the fast ice at Atka Bay hosts a unique ecosystem based on the presence of a sub-ice platelet layer and a large emperor penguin colony. While some qualitative characterizations on the seasonal fast-ice cycle in this region exist, no proper quantification was carried out to date. The backbone of this work is a new algorithm, which yields the first continuous time series of open-water fractions from Moderate-Resolution Imaging Spectroradiometer (MODIS) surface temperatures. The open-water fractions are derived from a range of running multi-day median temperature composites, utilizing the thermal footprint of warm open water and thin ice in contrast to cold pack-ice/ice-shelf areas. This unique, and manually validated dataset allows us to monitor changes in fast-ice extent on a near daily basis, for a period of 14 years (2002-2015). In a second step, we combine these results with iceberg observations, data from the meteorological observatory, and auxiliary satellite data in order to identify the main factors governing fast-ice formation and break-up.
Ultra-Fast Glyco-Coating of Non-Biological Surfaces
Williams, Eleanor; Barr, Katie; Korchagina, Elena; Tuzikov, Alexander; Henry, Stephen; Bovin, Nicolai
2016-01-01
The ability to glycosylate surfaces has medical and diagnostic applications, but there is no technology currently recognized as being able to coat any surface without the need for prior chemical modification of the surface. Recently, a family of constructs called function-spacer-lipids (FSL) has been used to glycosylate cells. Because it is known that lipid-based material can adsorb onto surfaces, we explored the potential and performance of cell-labelling FSL constructs to “glycosylate” non-biological surfaces. Using blood group A antigen as an indicator, the performance of a several variations of FSL constructs to modify a large variety of non-biological surfaces was evaluated. It was found the FSL constructs when optimised could in a few seconds glycosylate almost any non-biological surface including metals, glass, plastics, rubbers and other polymers. Although the FSL glycan coating was non-covalent, and therefore temporary, it was sufficiently robust with appropriate selection of spacer and surface that it could capture anti-glycan antibodies, immobilize cells (via antibody), and withstand incubation in serum and extensive buffer washing, making it suitable for diagnostic and research applications. PMID:26784187
FastEtch: A Fast Sketch-based Assembler for Genomes.
Ghosh, Priyanka; Kalyanaraman, Ananth
2017-09-11
De novo genome assembly describes the process of reconstructing an unknown genome from a large collection of short (or long) reads sequenced from the genome. A single run of a Next-Generation Sequencing (NGS) technology can produce billions of short reads, making genome assembly computationally demanding (both in terms of memory and time). One of the major computational steps in modern day short read assemblers involves the construction and use of a string data structure called the de Bruijn graph. In fact, a majority of short read assemblers build the complete de Bruijn graph for the set of input reads, and subsequently traverse and prune low-quality edges, in order to generate genomic "contigs"-the output of assembly. These steps of graph construction and traversal, contribute to well over 90% of the runtime and memory. In this paper, we present a fast algorithm, FastEtch, that uses sketching to build an approximate version of the de Bruijn graph for the purpose of generating an assembly. The algorithm uses Count-Min sketch, which is a probabilistic data structure for streaming data sets. The result is an approximate de Bruijn graph that stores information pertaining only to a selected subset of nodes that are most likely to contribute to the contig generation step. In addition, edges are not stored; instead that fraction which contribute to our contig generation are detected on-the-fly. This approximate approach is intended to significantly improve performance (both execution time and memory footprint) whilst possibly compromising on the output assembly quality. We present two main versions of the assembler-one that generates an assembly, where each contig represents a contiguous genomic region from one strand of the DNA, and another that generates an assembly, where the contigs can straddle either of the two strands of the DNA. For further scalability, we have implemented a multi-threaded parallel code. Experimental results using our algorithm conducted on E
Bubici, Salvatore; Korb, Jean-Pierre; Kučerik, Jiří; Conte, Pellegrino
2016-05-01
Many soil functions depend on the interaction of water with soil. The affinity of water for soils can be altered by applying soil amendments like stone meal, manure, or biochar (a carbonaceous material obtained by pyrolysis of biomasses). In fact, the addition of hydrophobic biochar to soil may increase soil repellency, reduce water-adsorbing capacity, inhibit microbial activity, alter soil filter, buffer, storage, and transformation functions. For this reason, it is of paramount importance to monitor water affinity for biochar surface (also referred to as 'wettability') in order to better address its applications in soil systems. In this study, we propose the use of fast field cycling NMR relaxometry technique with the application of a new mathematical model for data interpretation, as a valid alternative to the traditional contact angle (CA) measurements for biochar wettability evaluation. Either NMR or CA results revealed the same wettability trend for the biochars studied here. The advantage of NMR relaxometry over CA measurements lies in the possibility to obtain at the microscopic level a variety of different information in only one shot. In fact, while CA provides only wettability evaluation, NMR relaxometry also allows achievement of the mechanisms for water molecular dynamics on biochar surface, thereby leading to the possibility to understand better, in future research, the role of biochar in increasing soil quality and plant nutrition. Copyright © 2016 John Wiley & Sons, Ltd.
Fast and slow responses of Southern Ocean sea surface temperature to SAM in coupled climate models
NASA Astrophysics Data System (ADS)
Kostov, Yavor; Marshall, John; Hausmann, Ute; Armour, Kyle C.; Ferreira, David; Holland, Marika M.
2017-03-01
We investigate how sea surface temperatures (SSTs) around Antarctica respond to the Southern Annular Mode (SAM) on multiple timescales. To that end we examine the relationship between SAM and SST within unperturbed preindustrial control simulations of coupled general circulation models (GCMs) included in the Climate Modeling Intercomparison Project phase 5 (CMIP5). We develop a technique to extract the response of the Southern Ocean SST (55°S-70°S) to a hypothetical step increase in the SAM index. We demonstrate that in many GCMs, the expected SST step response function is nonmonotonic in time. Following a shift to a positive SAM anomaly, an initial cooling regime can transition into surface warming around Antarctica. However, there are large differences across the CMIP5 ensemble. In some models the step response function never changes sign and cooling persists, while in other GCMs the SST anomaly crosses over from negative to positive values only 3 years after a step increase in the SAM. This intermodel diversity can be related to differences in the models' climatological thermal ocean stratification in the region of seasonal sea ice around Antarctica. Exploiting this relationship, we use observational data for the time-mean meridional and vertical temperature gradients to constrain the real Southern Ocean response to SAM on fast and slow timescales.
Fast Object Motion Estimation Based on Dynamic Stixels
Morales, Néstor; Morell, Antonio; Toledo, Jonay; Acosta, Leopoldo
2016-01-01
The stixel world is a simplification of the world in which obstacles are represented as vertical instances, called stixels, standing on a surface assumed to be planar. In this paper, previous approaches for stixel tracking are extended using a two-level scheme. In the first level, stixels are tracked by matching them between frames using a bipartite graph in which edges represent a matching cost function. Then, stixels are clustered into sets representing objects in the environment. These objects are matched based on the number of stixels paired inside them. Furthermore, a faster, but less accurate approach is proposed in which only the second level is used. Several configurations of our method are compared to an existing state-of-the-art approach to show how our methodology outperforms it in several areas, including an improvement in the quality of the depth reconstruction. PMID:27483265
A ZnO nanowire-based photo-inverter with pulse-induced fast recovery
NASA Astrophysics Data System (ADS)
Ali Raza, Syed Raza; Lee, Young Tack; Hosseini Shokouh, Seyed Hossein; Ha, Ryong; Choi, Heon-Jin; Im, Seongil
2013-10-01
We demonstrate a fast response photo-inverter comprised of one transparent gated ZnO nanowire field-effect transistor (FET) and one opaque FET respectively as the driver and load. Under ultraviolet (UV) light the transfer curve of the transparent gate FET shifts to the negative side and so does the voltage transfer curve (VTC) of the inverter. After termination of UV exposure the recovery of photo-induced current takes a long time in general. This persistent photoconductivity (PPC) is due to hole trapping on the surface of ZnO NWs. Here, we used a positive voltage short pulse after UV exposure, for the first time resolving the PPC issue in nanowire-based photo-detectors by accumulating electrons at the ZnO/dielectric interface. We found that a pulse duration as small as 200 ns was sufficient to reach a full recovery to the dark state from the UV induced state, realizing a fast UV detector with a voltage output.We demonstrate a fast response photo-inverter comprised of one transparent gated ZnO nanowire field-effect transistor (FET) and one opaque FET respectively as the driver and load. Under ultraviolet (UV) light the transfer curve of the transparent gate FET shifts to the negative side and so does the voltage transfer curve (VTC) of the inverter. After termination of UV exposure the recovery of photo-induced current takes a long time in general. This persistent photoconductivity (PPC) is due to hole trapping on the surface of ZnO NWs. Here, we used a positive voltage short pulse after UV exposure, for the first time resolving the PPC issue in nanowire-based photo-detectors by accumulating electrons at the ZnO/dielectric interface. We found that a pulse duration as small as 200 ns was sufficient to reach a full recovery to the dark state from the UV induced state, realizing a fast UV detector with a voltage output. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr03801g
NASA Astrophysics Data System (ADS)
Qu, Lele; Yin, Yuqing
2016-10-01
Stepped frequency continuous wave ground penetrating radar (SFCW-GPR) systems are becoming increasingly popular in the GPR community due to the wider dynamic range and higher immunity to radio interference. The traditional back-projection (BP) algorithm is preferable for SFCW-GPR imaging in layered mediums scenarios for its convenience and robustness. However, the existing BP imaging algorithms are usually very computationally intensive, which limits their practical applications to SFCW-GPR imaging. To solve the above problem, a fast SFCW-GPR BP imaging algorithm based on nonuniform fast Fourier transform (NUFFT) technique is proposed in this paper. By reformulating the traditional BP imaging algorithm into the evaluations of NUFFT, the computational efficiency of NUFFT is exploited to reduce the computational complexity of the imaging reconstruction. Both simulation and experimental results have verified the effectiveness and improvement of computational efficiency of the proposed imaging method.
Surface water mass composition changes captured by cores of Arctic land-fast sea ice
NASA Astrophysics Data System (ADS)
Smith, I. J.; Eicken, H.; Mahoney, A. R.; Van Hale, R.; Gough, A. J.; Fukamachi, Y.; Jones, J.
2016-04-01
In the Arctic, land-fast sea ice growth can be influenced by fresher water from rivers and residual summer melt. This paper examines a method to reconstruct changes in water masses using oxygen isotope measurements of sea ice cores. To determine changes in sea water isotope composition over the course of the ice growth period, the output of a sea ice thermodynamic model (driven with reanalysis data, observations of snow depth, and freeze-up dates) is used along with sea ice oxygen isotope measurements and an isotopic fractionation model. Direct measurements of sea ice growth rates are used to validate the output of the sea ice growth model. It is shown that for sea ice formed during the 2011/2012 ice growth season at Barrow, Alaska, large changes in isotopic composition of the ocean waters were captured by the sea ice isotopic composition. Salinity anomalies in the ocean were also tracked by moored instruments. These data indicate episodic advection of meteoric water, having both lower salinity and lower oxygen isotopic composition, during the winter sea ice growth season. Such advection of meteoric water during winter is surprising, as no surface meltwater and no local river discharge should be occurring at this time of year in that area. How accurately changes in water masses as indicated by oxygen isotope composition can be reconstructed using oxygen isotope analysis of sea ice cores is addressed, along with methods/strategies that could be used to further optimize the results. The method described will be useful for winter detection of meteoric water presence in Arctic fast ice regions, which is important for climate studies in a rapidly changing Arctic. Land-fast sea ice effective fractionation coefficients were derived, with a range of +1.82‰ to +2.52‰. Those derived effective fractionation coefficients will be useful for future water mass component proportion calculations. In particular, the equations given can be used to inform choices made when
Fiber based fast sparse sampling x-ray luminescence computed tomography
NASA Astrophysics Data System (ADS)
Zhang, Wei; Lun, Michael; Li, Changqing
2017-02-01
Super fine collimated x-ray beam based x-ray luminescence computed tomography (XLCT) has the potential to reconstruct the deeply embedded targets with a spatial resolution of hundreds of micrometers. However, due to the low x-ray photon utilization efficiency and low optical signal sensitivity of the electron multiplying charge coupled device (EMCCD) camera, XLCT usually requires a long measurement time. To overcome this limitation, we propose a fiber based, fast XLCT design, in which optical fiber bundles are applied to collect the emitted optical photons on the phantom surface. Highly sensitive photomultiplier tubes (PMT) with a cooling unit and pre-amplifier are used to measure the photons from the fiber bundles. The PMT outputs are collected by a high-speed data acquisition board. A linear scan is estimated to take about 130 seconds, thus for an XLCT scan with 6 projections, we require 13 minutes for each section, which makes it feasible to have a whole body scan of XLCT. To validate our design, numerical simulations and phantom experiments have been performed. In numerical simulation studies, we have investigated the effect of the number of optical fiber bundle on the XLCT reconstruction. We found that one optical fiber bundle is sufficient to reconstruct the deeply embedded targets if measurements from 6 projections are used. Phantom experiments with multiple targets have been performed to validate the proposed fast XLCT imaging.
Fast polygon-based method for calculating computer-generated holograms in three-dimensional display.
Pan, Yijie; Wang, Yongtian; Liu, Juan; Li, Xin; Jia, Jia
2013-01-01
In the holographic three-dimensional (3D) display, the numerical synthesis of the computer-generated holograms needs tremendous calculation. To solve the problem, a fast polygon-based method based on two-dimensional Fourier analysis of 3D affine transformation is proposed. From one primitive polygon, the proposed method calculates the diffracted optical field of each arbitrary polygon in the 3D model, where the pseudo-inverse matrix, the interpolation, and the compensation of the power spectral density are employed. The proposed method could save the computation time in the hologram synthesis since it does not need the fast Fourier transform for each polygonal surface and the additional diffusion computation. The numerical simulation and the optical experimental results are presented to demonstrate the effectiveness of the method. The results reveal the proposed method could reconstruct the 3D scene with the solid effect and without the depth limitation. The factors that influence the image quality are discussed, and the thresholds are proposed to ensure the reconstruction quality.
Wang, Lu; Zhang, Chunxi; Gao, Shuang; Wang, Tao; Lin, Tie; Li, Xianmu
2016-01-01
The stability of a fiber optic gyroscope (FOG) in measurement while drilling (MWD) could vary with time because of changing temperature, high vibration, and sudden power failure. The dynamic Allan variance (DAVAR) is a sliding version of the Allan variance. It is a practical tool that could represent the non-stationary behavior of the gyroscope signal. Since the normal DAVAR takes too long to deal with long time series, a fast DAVAR algorithm has been developed to accelerate the computation speed. However, both the normal DAVAR algorithm and the fast algorithm become invalid for discontinuous time series. What is worse, the FOG-based MWD underground often keeps working for several days; the gyro data collected aboveground is not only very time-consuming, but also sometimes discontinuous in the timeline. In this article, on the basis of the fast algorithm for DAVAR, we make a further advance in the fast algorithm (improved fast DAVAR) to extend the fast DAVAR to discontinuous time series. The improved fast DAVAR and the normal DAVAR are used to responsively characterize two sets of simulation data. The simulation results show that when the length of the time series is short, the improved fast DAVAR saves 78.93% of calculation time. When the length of the time series is long (6×105 samples), the improved fast DAVAR reduces calculation time by 97.09%. Another set of simulation data with missing data is characterized by the improved fast DAVAR. Its simulation results prove that the improved fast DAVAR could successfully deal with discontinuous data. In the end, a vibration experiment with FOGs-based MWD has been implemented to validate the good performance of the improved fast DAVAR. The results of the experience testify that the improved fast DAVAR not only shortens computation time, but could also analyze discontinuous time series. PMID:27941600
Wang, Lu; Zhang, Chunxi; Gao, Shuang; Wang, Tao; Lin, Tie; Li, Xianmu
2016-12-07
The stability of a fiber optic gyroscope (FOG) in measurement while drilling (MWD) could vary with time because of changing temperature, high vibration, and sudden power failure. The dynamic Allan variance (DAVAR) is a sliding version of the Allan variance. It is a practical tool that could represent the non-stationary behavior of the gyroscope signal. Since the normal DAVAR takes too long to deal with long time series, a fast DAVAR algorithm has been developed to accelerate the computation speed. However, both the normal DAVAR algorithm and the fast algorithm become invalid for discontinuous time series. What is worse, the FOG-based MWD underground often keeps working for several days; the gyro data collected aboveground is not only very time-consuming, but also sometimes discontinuous in the timeline. In this article, on the basis of the fast algorithm for DAVAR, we make a further advance in the fast algorithm (improved fast DAVAR) to extend the fast DAVAR to discontinuous time series. The improved fast DAVAR and the normal DAVAR are used to responsively characterize two sets of simulation data. The simulation results show that when the length of the time series is short, the improved fast DAVAR saves 78.93% of calculation time. When the length of the time series is long ( 6 × 10 5 samples), the improved fast DAVAR reduces calculation time by 97.09%. Another set of simulation data with missing data is characterized by the improved fast DAVAR. Its simulation results prove that the improved fast DAVAR could successfully deal with discontinuous data. In the end, a vibration experiment with FOGs-based MWD has been implemented to validate the good performance of the improved fast DAVAR. The results of the experience testify that the improved fast DAVAR not only shortens computation time, but could also analyze discontinuous time series.
NASA Astrophysics Data System (ADS)
Moazezi, Siamak; Zomorrodian, Hossein; Siahkoohi, Hamid Reza; Azmoudeh-Ardalan, Alireza; Gholami, Ali
2016-09-01
In this paper, we presented a fast unified method to compute the gravity field functionals and their directional derivatives up to arbitrary orders on nonequispaced grid points at irregular surfaces using ultrahigh-degree models. The direct spherical harmonic synthesis (SHS) for computing the gravity field functionals at arbitrary locations through the Legendre functions is a time-consuming task for high-order and -degree models. Besides, to compute the derivatives of SHS in terms of latitude, the derivatives of the Legendre functions are needed. Therefore, we used Fourier coefficients of Wigner d-functions to compute the directional derivatives of SHS up to arbitrary orders. We also showed that these functions and their derivatives up to order 2 are stable up to ultrahigh-degree 2^{14} = 16{,}384 using extended double precision (i.e., 80 bits variables). Although 2D-FFT can accelerate the computation of global SHS (GSHS), it restricts the results on equispaced grid points. Hence, we used the nonequispaced FFT (NFFT) for computing GSHS on irregular grid points on the sphere that it is the fast nonequispaced GSHS (NGSHS). For maximum degree N and computing points of {{O}}(N^2) with arbitrary locations, the direct computation methods have the complexity of {{O}}(N^4). But the presented algorithm with and without precomputed Fourier coefficients of Wigner d-functions has the complexity of {{O}}(N^2 log ^2 N + N^2 s^2) and {{O}}(N^3 + N^2 s^2), respectively, where s is cutoff parameter of convolution in NFFT. Using a convolution technique in frequency domain, the NGSHS on the ellipsoid was computed. For computation the gravity field functionals by the NGSHS at irregular surfaces, we defined the Taylor expansion and the Padé approximation both on the sphere and on the ellipsoid. The results showed that the constructed Padé approximation on the ellipsoid provides better accuracy. Finally, we showed that the introduced unified algorithm achieves the required accuracy
Accurate Anisotropic Fast Marching for Diffusion-Based Geodesic Tractography
Jbabdi, S.; Bellec, P.; Toro, R.; Daunizeau, J.; Pélégrini-Issac, M.; Benali, H.
2008-01-01
Using geodesics for inferring white matter fibre tracts from diffusion-weighted MR data is an attractive method for at least two reasons: (i) the method optimises a global criterion, and hence is less sensitive to local perturbations such as noise or partial volume effects, and (ii) the method is fast, allowing to infer on a large number of connexions in a reasonable computational time. Here, we propose an improved fast marching algorithm to infer on geodesic paths. Specifically, this procedure is designed to achieve accurate front propagation in an anisotropic elliptic medium, such as DTI data. We evaluate the numerical performance of this approach on simulated datasets, as well as its robustness to local perturbation induced by fiber crossing. On real data, we demonstrate the feasibility of extracting geodesics to connect an extended set of brain regions. PMID:18299703
High power, fast, microwave components based on beam generated plasmas
NASA Astrophysics Data System (ADS)
Manheimer, W. M.; Fernsler, R. F.; Gitlin, M. S.
1998-10-01
It is shown that the agile mirror plasma, under development as a device to simply and cheaply give electronic steering to microwave beams, also has application as a fast, electronically controlled, high power reflector, or phase shifter. In a radar system, this can lead to such applications as pulse to pulse polarization agility and electronic control of antenna gain, as well as to innovative approaches to high power millimeter wave circulators. The basic theory of the enhanced glow plasma is also developed.
Fast Dynamic Meshing Method Based on Delaunay Graph and Inverse Distance Weighting Interpolation
NASA Astrophysics Data System (ADS)
Wang, Yibin; Qin, Ning; Zhao, Ning
2016-06-01
A novel mesh deformation technique is developed based on the Delaunay graph mapping method and the inverse distance weighting (IDW) interpolation. The algorithm maintains the advantages of the efficiency of Delaunay-graph-mapping mesh deformation while possess the ability for better controlling the near surface mesh quality. The Delaunay graph is used to divide the mesh domain into a number of sub-domains. On each of the sub-domains, the inverse distance weighting interpolation is applied to build a much smaller sized translation matrix between the original mesh and the deformed mesh, resulting a similar efficiency for the mesh deformation as compared to the fast Delaunay graph mapping method. The paper will show how the near-wall mesh quality is controlled and improved by the new method while the computational time is compared with the original Delaunay graph mapping method.
Fast spot-based multiscale simulations of granular drainage
Rycroft, Chris H.; Wong, Yee Lok; Bazant, Martin Z.
2009-05-22
We develop a multiscale simulation method for dense granular drainage, based on the recently proposed spot model, where the particle packing flows by local collective displacements in response to diffusing"spots'" of interstitial free volume. By comparing with discrete-element method (DEM) simulations of 55,000 spheres in a rectangular silo, we show that the spot simulation is able to approximately capture many features of drainage, such as packing statistics, particle mixing, and flow profiles. The spot simulation runs two to three orders of magnitude faster than DEM, making it an appropriate method for real-time control or optimization. We demonstrateextensions for modeling particle heaping and avalanching at the free surface, and for simulating the boundary layers of slower flow near walls. We show that the spot simulations are robust and flexible, by demonstrating that they can be used in both event-driven and fixed timestep approaches, and showing that the elastic relaxation step used in the model can be applied much less frequently and still create good results.
Ito, Kohji; Yamaguchi, Yukie; Yanase, Kenji; Ichikawa, Yousuke; Yamamoto, Keiichi
2009-12-22
Most myosins have a positively charged loop 2 with a cluster of lysine residues that bind to the negatively charged N-terminal segment of actin. However, the net charge of loop 2 of very fast Chara myosin is zero and there is no lysine cluster in it. In contrast, Chara myosin has a highly positively charged loop 3. To elucidate the role of these unique surface loops of Chara myosin in its high velocity and high actin-activated ATPase activity, we have undertaken mutational analysis using recombinant Chara myosin motor domain. It was found that net positive charge in loop 3 affected V(max) and K(app) of actin activated ATPase activity, while it affected the velocity only slightly. The net positive charge in loop 2 affected K(app) and the velocity, although it did not affect V(max). Our results suggested that Chara myosin has evolved to have highly positively charged loop 3 for its high ATPase activity and have less positively charged loop 2 for its high velocity. Since high positive charge in loop 3 and low positive charge in loop 2 seem to be one of the reasons for Chara myosin's high velocity, we manipulated charge contents in loops 2 and 3 of Dictyostelium myosin (class II). Removing positive charge from loop 2 and adding positive charge to loop 3 of Dictyostelium myosin made its velocity higher than that of the wild type, suggesting that the charge strategy in loops 2 and 3 is widely applicable.
Fast simulated annealing inversion of surface waves on pavement using phase-velocity spectra
Ryden, N.; Park, C.B.
2006-01-01
The conventional inversion of surface waves depends on modal identification of measured dispersion curves, which can be ambiguous. It is possible to avoid mode-number identification and extraction by inverting the complete phase-velocity spectrum obtained from a multichannel record. We use the fast simulated annealing (FSA) global search algorithm to minimize the difference between the measured phase-velocity spectrum and that calculated from a theoretical layer model, including the field setup geometry. Results show that this algorithm can help one avoid getting trapped in local minima while searching for the best-matching layer model. The entire procedure is demonstrated on synthetic and field data for asphalt pavement. The viscoelastic properties of the top asphalt layer are taken into account, and the inverted asphalt stiffness as a function of frequency compares well with laboratory tests on core samples. The thickness and shear-wave velocity of the deeper embedded layers are resolved within 10% deviation from those values measured separately during pavement construction. The proposed method may be equally applicable to normal soil site investigation and in the field of ultrasonic testing of materials. ?? 2006 Society of Exploration Geophysicists.
Meruvia-Pastor, Oscar; Soh, Jung; Xiao, Mei; Schmidt, Eric; Logan, Cairine; Boughner, Julia C; Jones, Nicholas; Osborn, David; Santiago, Johanna; Gittleman, Julian; Hallgrímsson, Benedikt; Sensen, Christoph W
2009-01-01
To investigate external facial morphology and cell proliferation patterns and their relationship with cleft lip malformation in mice, we need to compare samples of mice tissue photographs and surface reconstructions from micro-CT scans obtained from mouse embryos. Tissue samples obtained through digital photography are typically misaligned with respect to each other, which prevents further analysis. We have developed a system for fast interactive alignment of these image stacks for volume reconstruction and data visualization and analysis in 3D. The system is designed to work in multiprocessor environments and can utilize an arbitrary number of processors, cutting down significantly the turnaround time and allowing users to quickly process sets of hundreds of high resolution images using a combination of automated and interactive tools. Additional modules are used to reconstruct the shape of the original subject. Our system is interactive, fully scalable and can be applied to any photographic sliced dataset, regardless of subject and reduces significantly the processing time for stack alignment.
Femtosecond laser pulses for fast 3-D surface profilometry of microelectronic step-structures.
Joo, Woo-Deok; Kim, Seungman; Park, Jiyong; Lee, Keunwoo; Lee, Joohyung; Kim, Seungchul; Kim, Young-Jin; Kim, Seung-Woo
2013-07-01
Fast, precise 3-D measurement of discontinuous step-structures fabricated on microelectronic products is essential for quality assurance of semiconductor chips, flat panel displays, and photovoltaic cells. Optical surface profilers of low-coherence interferometry have long been used for the purpose, but the vertical scanning range and speed are limited by the micro-actuators available today. Besides, the lateral field-of-view extendable for a single measurement is restricted by the low spatial coherence of broadband light sources. Here, we cope with the limitations of the conventional low-coherence interferometer by exploiting unique characteristics of femtosecond laser pulses, i.e., low temporal but high spatial coherence. By scanning the pulse repetition rate with direct reference to the Rb atomic clock, step heights of ~69.6 μm are determined with a repeatability of 10.3 nm. The spatial coherence of femtosecond pulses provides a large field-of-view with superior visibility, allowing for a high volume measurement rate of ~24,000 mm3/s.
A ZnO nanowire-based photo-inverter with pulse-induced fast recovery.
Raza, Syed Raza Ali; Lee, Young Tack; Hosseini Shokouh, Seyed Hossein; Ha, Ryong; Choi, Heon-Jin; Im, Seongil
2013-11-21
We demonstrate a fast response photo-inverter comprised of one transparent gated ZnO nanowire field-effect transistor (FET) and one opaque FET respectively as the driver and load. Under ultraviolet (UV) light the transfer curve of the transparent gate FET shifts to the negative side and so does the voltage transfer curve (VTC) of the inverter. After termination of UV exposure the recovery of photo-induced current takes a long time in general. This persistent photoconductivity (PPC) is due to hole trapping on the surface of ZnO NWs. Here, we used a positive voltage short pulse after UV exposure, for the first time resolving the PPC issue in nanowire-based photo-detectors by accumulating electrons at the ZnO/dielectric interface. We found that a pulse duration as small as 200 ns was sufficient to reach a full recovery to the dark state from the UV induced state, realizing a fast UV detector with a voltage output.
Fast phase unwrapping algorithm based on region partition for structured light vision measurement
NASA Astrophysics Data System (ADS)
Lu, Jun; Su, Hang
2014-04-01
Phase unwrapping is a key problem of phase-shifting profilometry vision measurement for complex object surface shapes. The simple path-following phase unwrapping algorithm is fast but has serious unwrapping error for complex shapes. The Goldstein+flood phase unwrapping algorithm can handle some complex shape object measurement; however, it is time consuming. We propose a fast phase unwrapping algorithm based on region partition according to a quality map of wrapped phase. In this algorithm, wrapped phase image is divided into several regions using partition thresholds, which are determined according to histogram of quality value. Each region is unwrapped by using a simple path-following phase algorithm and several groups with different priorities are generated. These groups are merged according to their priorities from high to low order and a final absolute phase is obtained. The proposed method is applied to wrapped phase images of three objects with and without noise. Experiments show that the proposed method is much faster, more accurate, and robust to noise than the Goldstein+flood algorithm in unwrapping complex phase image.
Pole Photogrammetry with AN Action Camera for Fast and Accurate Surface Mapping
NASA Astrophysics Data System (ADS)
Gonçalves, J. A.; Moutinho, O. F.; Rodrigues, A. C.
2016-06-01
High resolution and high accuracy terrain mapping can provide height change detection for studies of erosion, subsidence or land slip. A UAV flying at a low altitude above the ground, with a compact camera, acquires images with resolution appropriate for these change detections. However, there may be situations where different approaches may be needed, either because higher resolution is required or the operation of a drone is not possible. Pole photogrammetry, where a camera is mounted on a pole, pointing to the ground, is an alternative. This paper describes a very simple system of this kind, created for topographic change detection, based on an action camera. These cameras have high quality and very flexible image capture. Although radial distortion is normally high, it can be treated in an auto-calibration process. The system is composed by a light aluminium pole, 4 meters long, with a 12 megapixel GoPro camera. Average ground sampling distance at the image centre is 2.3 mm. The user moves along a path, taking successive photos, with a time lapse of 0.5 or 1 second, and adjusting the speed in order to have an appropriate overlap, with enough redundancy for 3D coordinate extraction. Marked ground control points are surveyed with GNSS for precise georeferencing of the DSM and orthoimage that are created by structure from motion processing software. An average vertical accuracy of 1 cm could be achieved, which is enough for many applications, for example for soil erosion. The GNSS survey in RTK mode with permanent stations is now very fast (5 seconds per point), which results, together with the image collection, in a very fast field work. If an improved accuracy is needed, since image resolution is 1/4 cm, it can be achieved using a total station for the control point survey, although the field work time increases.
A FAST ITERATIVE METHOD FOR SOLVING THE EIKONAL EQUATION ON TRIANGULATED SURFACES*
Fu, Zhisong; Jeong, Won-Ki; Pan, Yongsheng; Kirby, Robert M.; Whitaker, Ross T.
2012-01-01
This paper presents an efficient, fine-grained parallel algorithm for solving the Eikonal equation on triangular meshes. The Eikonal equation, and the broader class of Hamilton–Jacobi equations to which it belongs, have a wide range of applications from geometric optics and seismology to biological modeling and analysis of geometry and images. The ability to solve such equations accurately and efficiently provides new capabilities for exploring and visualizing parameter spaces and for solving inverse problems that rely on such equations in the forward model. Efficient solvers on state-of-the-art, parallel architectures require new algorithms that are not, in many cases, optimal, but are better suited to synchronous updates of the solution. In previous work [W. K. Jeong and R. T. Whitaker, SIAM J. Sci. Comput., 30 (2008), pp. 2512–2534], the authors proposed the fast iterative method (FIM) to efficiently solve the Eikonal equation on regular grids. In this paper we extend the fast iterative method to solve Eikonal equations efficiently on triangulated domains on the CPU and on parallel architectures, including graphics processors. We propose a new local update scheme that provides solutions of first-order accuracy for both architectures. We also propose a novel triangle-based update scheme and its corresponding data structure for efficient irregular data mapping to parallel single-instruction multiple-data (SIMD) processors. We provide detailed descriptions of the implementations on a single CPU, a multicore CPU with shared memory, and SIMD architectures with comparative results against state-of-the-art Eikonal solvers. PMID:22641200
A FAST ITERATIVE METHOD FOR SOLVING THE EIKONAL EQUATION ON TRIANGULATED SURFACES.
Fu, Zhisong; Jeong, Won-Ki; Pan, Yongsheng; Kirby, Robert M; Whitaker, Ross T
2011-01-01
This paper presents an efficient, fine-grained parallel algorithm for solving the Eikonal equation on triangular meshes. The Eikonal equation, and the broader class of Hamilton-Jacobi equations to which it belongs, have a wide range of applications from geometric optics and seismology to biological modeling and analysis of geometry and images. The ability to solve such equations accurately and efficiently provides new capabilities for exploring and visualizing parameter spaces and for solving inverse problems that rely on such equations in the forward model. Efficient solvers on state-of-the-art, parallel architectures require new algorithms that are not, in many cases, optimal, but are better suited to synchronous updates of the solution. In previous work [W. K. Jeong and R. T. Whitaker, SIAM J. Sci. Comput., 30 (2008), pp. 2512-2534], the authors proposed the fast iterative method (FIM) to efficiently solve the Eikonal equation on regular grids. In this paper we extend the fast iterative method to solve Eikonal equations efficiently on triangulated domains on the CPU and on parallel architectures, including graphics processors. We propose a new local update scheme that provides solutions of first-order accuracy for both architectures. We also propose a novel triangle-based update scheme and its corresponding data structure for efficient irregular data mapping to parallel single-instruction multiple-data (SIMD) processors. We provide detailed descriptions of the implementations on a single CPU, a multicore CPU with shared memory, and SIMD architectures with comparative results against state-of-the-art Eikonal solvers.
Rudolph, Heike; Röhl, Andreas; Walter, Michael H; Luthardt, Ralph G; Quaas, Sebastian
2014-01-01
Fast-setting impression materials may be prone to inaccuracies due to accidental divergence from the recommended mixing protocol. This prospective randomized clinical trial aimed to assess three-dimensional (3D) deviations in the reproduction of subgingival tooth surfaces and to determine the effect of either following or purposely diverging from the recommended mixing procedure for a fast-setting addition-curing silicone (AS) and fast-setting polyether (PE). After three impressions each were taken from 96 participants, sawcut gypsum casts were fabricated with a standardized procedure and then optically digitized. Data were assessed with a computer-aided 3D analysis. For AS impressions, multivariate analysis of variance revealed a significant influence of the individual tooth and the degree to which the recommended mixing protocol was violated. For PE impressions, the ambient air temperature and individual tooth showed significant effects, while divergence from the recommended mixing protocol was not of significance. The fast-setting PE material was not affected by changes in the recommended mixing protocol. For the two fast-setting materials examined, no divergences from the recommended mixing protocol of less than 2 minutes led to failures in the reproduction of the subgingival tooth surfaces.
NASA Astrophysics Data System (ADS)
Ling, Haifeng; Zhang, Chenxi; Chen, Yan; Shao, Yaqing; Li, Wen; Li, Huanqun; Chen, Xudong; Yi, Mingdong; Xie, Linghai; Huang, Wei
2017-06-01
In this work, we investigate the effect of the cooling rate of polymeric modification layers (PMLs) on the mobility improvement of pentacene-based organic field-effect transistors (OFETs). In contrast to slow cooling (SC), the OFETs fabricated through fast cooling (FC) with PMLs containing side chain-phenyl rings, such as polystyrene (PS) and poly (4-vinylphenol) (PVP), show an obvious mobility incensement compared with that of π-group free polymethylmethacrylate (PMMA). Atomic force microscopy (AFM) images and x-ray diffraction (XRD) characterizations have showed that fast-cooled PMLs could effectively enhance the crystallinity of pentacene, which might be related to the optimized homogeneity of surface energy on the surface of polymeric dielectrics. Our work has demonstrated that FC treatment could be a potential strategy for performance modulation of OFETs.
Uncertainty Assessment for Fast Reactors Based on Nuclear Data Adjustment
NASA Astrophysics Data System (ADS)
Ivanova, T.; Ivanov, E.; Ecrabet, F.
2014-04-01
The paper presents IRSN's results of the OECD/NEA WPEC Subgroup 33 benchmark exercise which is focused upon combined use of differential and integral data using adjustment technique. The results are generated by BERING code using different sets of input data: integral parameters and sensitivity coefficients for fast benchmark experiments and applications computed by deterministic ERANOS code and Monte Carlo SCALE sequences, COMMARA-2.0 and JENDL-4.0 cross-section-covariance data and integral correlations provided by JAEA. The paper demonstrates results of the adjustment when using different input data and two adjustment algorithms implemented in BERING.
A portable intra-oral scanner based on sinusoidal pattern of fast phase-shifting
NASA Astrophysics Data System (ADS)
Jan, Chia-Ming; Lin, Ying-Chieh
2016-03-01
This paper presented our current research about the intra-oral scanner made by MIRDC. Utilizing the sinusoidal pattern for fast phase-shifting technique to deal with 3D digitalization of human dental surface profile, the development of pseudo-phase shifting digital projection can easily achieve one type of full-field scanning instead of the common technique of the laser line scanning. Based on traditional Moiré method, we adopt projecting fringes and retrieve phase reconstruction to forward phase unwrapping. The phase difference between the plane and object can be exactly calculated from the desired fringe images, and the surface profile of object was probably reconstructed by using the phase differences information directly. According to our algorithm of space mapping between projections and capturing orientation exchange of our intra-oral scanning configuration, the system we made certainly can be proved to achieve the required accuracy of +/-10μm to deal with intra-oral scanning on the basis of utilizing active triangulation method. The final purpose aimed to the scanning of object surface profile with its size about 10x10x10mm3.
Bajaj, Chandrajit; Chen, Shun-Chuan; Rand, Alexander
2011-01-01
In order to compute polarization energy of biomolecules, we describe a boundary element approach to solving the linearized Poisson-Boltzmann equation. Our approach combines several important features including the derivative boundary formulation of the problem and a smooth approximation of the molecular surface based on the algebraic spline molecular surface. State of the art software for numerical linear algebra and the kernel independent fast multipole method is used for both simplicity and efficiency of our implementation. We perform a variety of computational experiments, testing our method on a number of actual proteins involved in molecular docking and demonstrating the effectiveness of our solver for computing molecular polarization energy. PMID:21660123
Surface activation-based nanobonding and interconnection at room temperature
NASA Astrophysics Data System (ADS)
Howlader, M. M. R.; Yamauchi, A.; Suga, T.
2011-02-01
Flip chip nanobonding and interconnect system (NBIS) equipment with high precision alignment has been developed based on the surface activated bonding method for high-density interconnection and MEMS packaging. The 3σ alignment accuracy in the IR transmission system was approximately ±0.2 µm. The performance of the NBIS has been preliminarily investigated through bonding between relatively rough surfaces of copper through silicon vias (Cu-TSVs) and gold-stud bumps (Au-SBs), and smooth surfaces of silicon wafers. The Cu-TSVs of 55 µm diameter and the Au-SBs of 35 µm diameter with ~6-10 nm surface roughness (RMS) were bonded at room temperature after surface activation using an argon fast atom beam (Ar-FAB) under 0.16 N per bump. Silicon wafers of 50 mm diameter with ~0.2 nm RMS surface roughness were bonded without heating after surface activation. Void-free interfaces both in Cu-TSV/Au-SB and silicon/silicon with bonding strength equivalent to bulk fracture of Au and silicon, respectively, were achieved. A few nm thick amorphous layers were observed across the silicon/silicon interface that was fabricated by the Ar-FAB. This study in the interconnection and bonding facilitates the required three-dimensional integration on the same surface for high-density electronic and biomedical systems.
Research of Fast 3D Imaging Based on Multiple Mode
NASA Astrophysics Data System (ADS)
Chen, Shibing; Yan, Huimin; Ni, Xuxiang; Zhang, Xiuda; Wang, Yu
2016-02-01
Three-dimensional (3D) imaging has received increasingly extensive attention and has been widely used currently. Lots of efforts have been put on three-dimensional imaging method and system study, in order to meet fast and high accurate requirement. In this article, we realize a fast and high quality stereo matching algorithm on field programmable gate array (FPGA) using the combination of time-of-flight (TOF) camera and binocular camera. Images captured from the two cameras own a same spatial resolution, letting us use the depth maps taken by the TOF camera to figure initial disparity. Under the constraint of the depth map as the stereo pairs when comes to stereo matching, expected disparity of each pixel is limited within a narrow search range. In the meanwhile, using field programmable gate array (FPGA, altera cyclone IV series) concurrent computing we can configure multi core image matching system, thus doing stereo matching on embedded system. The simulation results demonstrate that it can speed up the process of stereo matching and increase matching reliability and stability, realize embedded calculation, expand application range.
Vision-based fast navigation of micro aerial vehicles
NASA Astrophysics Data System (ADS)
Loianno, Giuseppe; Kumar, Vijay
2016-05-01
We address the key challenges for autonomous fast flight for Micro Aerial Vehicles (MAVs) in 3-D, cluttered environments. For complete autonomy, the system must identify the vehicle's state at high rates, using either absolute or relative asynchronous on-board sensor measurements, use these state estimates for feedback control, and plan trajectories to the destination. State estimation requires information from different sensors to be fused, exploiting information from different, possible asynchronous sensors at different rates. In this work, we present techniques in the area of planning, control and visual-inertial state estimation for fast navigation of MAVs. We demonstrate how to solve on-board, on a small computational unit, the pose estimation, control and planning problems for MAVs, using a minimal sensor suite for autonomous navigation composed of a single camera and IMU. Additionally, we show that a consumer electronic device such as a smartphone can alternatively be employed for both sensing and computation. Experimental results validate the proposed techniques. Any consumer, provided with a smartphone, can autonomously drive a quadrotor platform at high speed, without GPS, and concurrently build 3-D maps, using a suitably designed app.
Nagaoka, Kenichi; Isobe, Mitsutaka; Toi, Kazuo; Shimizu, Akihiro; Fujisawa, Akihide; Ohshima, Shunsuke; Nakano, Haruhisa; Osakabe, Masaki; Todo, Yasushi; Akiyama, Tsuyoshi; Suzuki, Chihiro; Nishimura, Shin; Yoshimura, Yasuo; Matsuoka, Keisuke; Okamura, Shoichi; Nagashima, Yoshihiko
2008-02-15
The internal behavior of fast ions interacting with magnetohydrodynamic bursts excited by energetic ions has been experimentally investigated in the compact helical system. The resonant convective oscillation of fast ions was identified inside the last closed-flux surface during an energetic-particle mode (EPM) burst. The phase difference between the fast-ion oscillation and the EPM, indicating the coupling strength between them, remains a certain value during the EPM burst and drives an anomalous transport of fast ions.
Engtrakul, Dr. Chaiwat; Hu, Michael Z.; Bischoff, Brian L; ...
2016-01-01
The impact of surface-selective coatings on water permeation through a membrane when exposed to catalytic fast pyrolysis (CFP) vapor products was studied by tailoring the surface properties of the membrane coating from superhydrophilic to superhydrophobic. Our approach utilized high-performance architectured surface-selective (HiPAS) membranes that were inserted after a CFP reactor. At this insertion point, the inner wall surface of a tubular membrane was exposed to a mixture of water and upgraded product vapors, including light gases and deoxygenated hydrocarbons. Under proper membrane operating conditions, a high selectivity for water over 1-ring upgraded biomass pyrolysis hydrocarbons was observed due to amore » surface-enhanced capillary condensation process. Owing to this surface-enhanced effect, HiPAS membranes have the potential to enable high flux separations suggesting that water can be selectively removed from the CFP product vapors.« less
Engtrakul, Dr. Chaiwat; Hu, Michael Z.; Bischoff, Brian L; Jang, Gyoung Gug
2016-01-01
The impact of surface-selective coatings on water permeation through a membrane when exposed to catalytic fast pyrolysis (CFP) vapor products was studied by tailoring the surface properties of the membrane coating from superhydrophilic to superhydrophobic. Our approach utilized high-performance architectured surface-selective (HiPAS) membranes that were inserted after a CFP reactor. At this insertion point, the inner wall surface of a tubular membrane was exposed to a mixture of water and upgraded product vapors, including light gases and deoxygenated hydrocarbons. Under proper membrane operating conditions, a high selectivity for water over 1-ring upgraded biomass pyrolysis hydrocarbons was observed due to a surface-enhanced capillary condensation process. Owing to this surface-enhanced effect, HiPAS membranes have the potential to enable high flux separations suggesting that water can be selectively removed from the CFP product vapors.
Engtrakul, Chaiwat; Hu, Michael Z.; Bischoff, Brian L.; Jang, Gyoung G.
2016-10-20
The impact of surface-selective coatings on water permeation through a membrane when exposed to catalytic fast pyrolysis (CFP) vapor products was studied by tailoring the surface properties of the membrane coating from superhydrophilic to superhydrophobic. Our approach used high-performance architectured surface-selective (HiPAS) membranes that were inserted after a CFP reactor. At this insertion point, the inner wall surface of a tubular membrane was exposed to a mixture of water and upgraded product vapors, including light gases and deoxygenated hydrocarbons. Under proper membrane operating conditions, a high selectivity for water over one-ring upgraded biomass pyrolysis hydrocarbons was observed as a result of a surface-enhanced capillary condensation process. Owing to this surface-enhanced effect, HiPAS membranes have the potential to enable high flux separations, suggesting that water can be selectively removed from the CFP product vapors.
[CUDA-based fast dose calculation in radiotherapy].
Wang, Xianliang; Liu, Cao; Hou, Qing
2011-10-01
Dose calculation plays a key role in treatment planning of radiotherapy. Algorithms for dose calculation require high accuracy and computational efficiency. Finite size pencil beam (FSPB) algorithm is a method commonly adopted in the treatment planning system for radiotherapy. However, improvement on its computational efficiency is still desirable for such purpose as real time treatment planning. In this paper, we present an implementation of the FSPB, by which the most time-consuming parts in the algorithm are parallelized and ported on graphic processing unit (GPU). Compared with the FSPB completely running on central processing unit (CPU), the GPU-implemented FSPB can speed up the dose calculation for 25-35 times on a low price GPU (Geforce GT320) and for 55-100 times on a Tesla C1060, indicating that the GPU-implemented FSPB can provide fast enough dose calculations for real-time treatment planning.
NASA Astrophysics Data System (ADS)
Grombacher, D.; Behroozmand, A. A.; Auken, E.
2016-12-01
Surface nuclear magnetic resonance provides the ability to non-invasively quantify and map subsurface water content. To ensure reliable water content estimates are produced the transmit portion of the experiment (called excitation) must be modeled accurately. This requires that relaxation during pulse (RDP) effects be accounted for as they may lead to biased water content estimates if neglected. The standard approach to account for these effects involves estimating the initial amplitude of the signal by extrapolating the measured decay to the midpoint of the pulse, while neglecting these effects in the excitation modeling. The reasoning behind such an approach is that initial amplitudes estimated by extrapolation to the midpoint of the pulse (in combination with excitation modeling that neglects RDP) can reliably reproduce the correct water content. This technique works well in the regime where the time constants describing the decay of the observed signal (called relaxation times) are greater than the pulse duration. However, recent hardware advancements now allow the routine measurement of much faster relaxation times where this approach may lead to poor water content estimates. Furthermore, a growing desire to use alternative transmit schemes demands a flexible protocol to account for RDP effects in the presence of fast relaxation times for arbitrary transmit schemes. To accomplish this goal a data driven approach involving direct modeling of RDP processes is presented. Relaxation times estimated from the observed decay are directly incorporated into the excitation modeling (while the initial amplitude is estimated at the end of the pulse) in order to produce more robust water content estimates. Synthetic and laboratory data is presented to demonstrate that such an approach is expected to broaden the range of relaxation times where water contents can be reliably estimated and better extends functionality to alternative transmit schemes.
Hodnik, Nejc; Baldizzone, Claudio; Polymeros, George; Geiger, Simon; Grote, Jan-Philipp; Cherevko, Serhiy; Mingers, Andrea; Zeradjanin, Aleksandar; Mayrhofer, Karl J. J.
2016-01-01
The recycling of precious metals, for example, platinum, is an essential aspect of sustainability for the modern industry and energy sectors. However, due to its resistance to corrosion, platinum-leaching techniques rely on high reagent consumption and hazardous processes, for example, boiling aqua regia; a mixture of concentrated nitric and hydrochloric acid. Here we demonstrate that complete dissolution of metallic platinum can be achieved by induced surface potential alteration, an ‘electrode-less' process utilizing alternatively oxidative and reductive gases. This concept for platinum recycling exploits the so-called transient dissolution mechanism, triggered by a repetitive change in platinum surface oxidation state, without using any external electric current or electrodes. The effective performance in non-toxic low-concentrated acid and at room temperature is a strong benefit of this approach, potentially rendering recycling of industrial catalysts, including but not limited to platinum-based systems, more sustainable. PMID:27767178
NASA Astrophysics Data System (ADS)
Hodnik, Nejc; Baldizzone, Claudio; Polymeros, George; Geiger, Simon; Grote, Jan-Philipp; Cherevko, Serhiy; Mingers, Andrea; Zeradjanin, Aleksandar; Mayrhofer, Karl J. J.
2016-10-01
The recycling of precious metals, for example, platinum, is an essential aspect of sustainability for the modern industry and energy sectors. However, due to its resistance to corrosion, platinum-leaching techniques rely on high reagent consumption and hazardous processes, for example, boiling aqua regia; a mixture of concentrated nitric and hydrochloric acid. Here we demonstrate that complete dissolution of metallic platinum can be achieved by induced surface potential alteration, an `electrode-less' process utilizing alternatively oxidative and reductive gases. This concept for platinum recycling exploits the so-called transient dissolution mechanism, triggered by a repetitive change in platinum surface oxidation state, without using any external electric current or electrodes. The effective performance in non-toxic low-concentrated acid and at room temperature is a strong benefit of this approach, potentially rendering recycling of industrial catalysts, including but not limited to platinum-based systems, more sustainable.
Hodnik, Nejc; Baldizzone, Claudio; Polymeros, George; Geiger, Simon; Grote, Jan-Philipp; Cherevko, Serhiy; Mingers, Andrea; Zeradjanin, Aleksandar; Mayrhofer, Karl J J
2016-10-21
The recycling of precious metals, for example, platinum, is an essential aspect of sustainability for the modern industry and energy sectors. However, due to its resistance to corrosion, platinum-leaching techniques rely on high reagent consumption and hazardous processes, for example, boiling aqua regia; a mixture of concentrated nitric and hydrochloric acid. Here we demonstrate that complete dissolution of metallic platinum can be achieved by induced surface potential alteration, an 'electrode-less' process utilizing alternatively oxidative and reductive gases. This concept for platinum recycling exploits the so-called transient dissolution mechanism, triggered by a repetitive change in platinum surface oxidation state, without using any external electric current or electrodes. The effective performance in non-toxic low-concentrated acid and at room temperature is a strong benefit of this approach, potentially rendering recycling of industrial catalysts, including but not limited to platinum-based systems, more sustainable.
Excitation of surface and volume plasmons in a metal nanosphere by fast electrons
Gildenburg, V. B. Kostin, V. A.; Pavlichenko, I. A.
2016-03-15
Collective multipole oscillations (surface and volume plasmons) excited in a metal nanosphere by moving electron and corresponding inelastic scattering spectra are studied based on the hydrodynamic approach. Along with the bulk (dielectric) losses traditionally taken into account, the surface and radiative ones are also considered as the physical mechanisms responsible for the plasmon damping. The second and third mechanisms are found to be essential for the surface plasmons (at small or large cluster radii, respectively) and depend very differently on the multipole mode order. The differential equations are obtained which describe the temporal evolution of every particular mode as that one of a linear oscillator excited by the given external force, and the electron energy loss spectra are calculated. The changes in spectrum shape with the impact parameter and with the electron passage time are analyzed; the first of them is found to be in good enough agreement with the data of scanning transmission electron microscopy experiments. It is shown that, in the general case, a pronounced contribution to the formation of the loss spectrum is given by the both surface and volume plasmons with low and high multipole indices. In particular, at long electron passage time, the integral (averaged over the impact parameter) loss spectrum which is calculated for the free-electron cluster model contains two main peaks: a broad peak from merging of many high-order multipole resonances of the surface plasmons and a narrower peak of nearly the same height from merged volume plasmons excited by the electrons that travel through the central region of the cluster. Comparatively complex dependences of the calculated excitation coefficients and damping constants of various plasmons on the order of the excited multipole result in wide diversity of possible types of the loss spectrum even for the same cluster material and should be taken into account in interpretation of corresponding
From FAST to E-FAST: an overview of the evolution of ultrasound-based traumatic injury assessment.
Montoya, J; Stawicki, S P; Evans, D C; Bahner, D P; Sparks, S; Sharpe, R P; Cipolla, J
2016-04-01
Ultrasound is a ubiquitous and versatile diagnostic tool. In the setting of acute injury, ultrasound enhances the basic trauma evaluation, influences bedside decision-making, and helps determine whether or not an unstable patient requires emergent procedural intervention. Consequently, continued education of surgeons and other acute care practitioners in performing focused emergency ultrasound is of great importance. This article provides a synopsis of focused assessment with sonography for trauma (FAST) and the extended FAST (E-FAST) that incorporates basic thoracic injury assessment. The authors also review key pitfalls, limitations, controversies, and advances related to FAST, E-FAST, and ultrasound education.
NASA Astrophysics Data System (ADS)
Zhang, Lisha
We present fast and robust numerical algorithms for 3-D scattering from perfectly electrical conducting (PEC) and dielectric random rough surfaces in microwave remote sensing. The Coifman wavelets or Coiflets are employed to implement Galerkin's procedure in the method of moments (MoM). Due to the high-precision one-point quadrature, the Coiflets yield fast evaluations of the most off-diagonal entries, reducing the matrix fill effort from O(N2) to O( N). The orthogonality and Riesz basis of the Coiflets generate well conditioned impedance matrix, with rapid convergence for the conjugate gradient solver. The resulting impedance matrix is further sparsified by the matrix-formed standard fast wavelet transform (SFWT). By properly selecting multiresolution levels of the total transformation matrix, the solution precision can be enhanced while matrix sparsity and memory consumption have not been noticeably sacrificed. The unified fast scattering algorithm for dielectric random rough surfaces can asymptotically reduce to the PEC case when the loss tangent grows extremely large. Numerical results demonstrate that the reduced PEC model does not suffer from ill-posed problems. Compared with previous publications and laboratory measurements, good agreement is observed.
(abstract) A Low-Cost Mission to 2060 Chiron Based on the Pluto Fast Flyby
NASA Technical Reports Server (NTRS)
Stern, S. A.; Salvo, C. G.; Wallace, R. A.; Weinstein, S. S.; Weissman, P. R.
1994-01-01
The Pluto Fast Flyby-based mission to Chiron described in this paper is a low cost, scientifically rewarding, focused mission in the outer solar system. The proposed mission will make a flyby of 2060 Chiron, an active 'comet' with over 10(sup 4) times the mass of Halley, and an eccentric, Saturn-crossing orbit which ranges from 8.5 to 19 AU. This mission concept achieves the flyby 4.2 years after launch on a direct trajectory from Earth, is independent of Jupiter launch windows, and fits within Discovery cost guidelines. This mission offers the scientific opportunity to examine a class of object left unsampled by the trail-blazing Mariners, Pioneers, Voyagers, and missions to Halley. Spacecraft reconnaissance of Chiron addresses unique objectives relating to cometary science, other small bodies, the structure of quasi-bound atmospheres on modest-sized bodies, and the origin of primitive bodies and the giant planets. Owing to Chiron's large size (180
(abstract) A Low-Cost Mission to 2060 Chiron Based on the Pluto Fast Flyby
NASA Technical Reports Server (NTRS)
Stern, S. A.; Salvo, C. G.; Wallace, R. A.; Weinstein, S. S.; Weissman, P. R.
1994-01-01
The Pluto Fast Flyby-based mission to Chiron described in this paper is a low cost, scientifically rewarding, focused mission in the outer solar system. The proposed mission will make a flyby of 2060 Chiron, an active 'comet' with over 10(sup 4) times the mass of Halley, and an eccentric, Saturn-crossing orbit which ranges from 8.5 to 19 AU. This mission concept achieves the flyby 4.2 years after launch on a direct trajectory from Earth, is independent of Jupiter launch windows, and fits within Discovery cost guidelines. This mission offers the scientific opportunity to examine a class of object left unsampled by the trail-blazing Mariners, Pioneers, Voyagers, and missions to Halley. Spacecraft reconnaissance of Chiron addresses unique objectives relating to cometary science, other small bodies, the structure of quasi-bound atmospheres on modest-sized bodies, and the origin of primitive bodies and the giant planets. Owing to Chiron's large size (180
Devices based on surface plasmon interference filters
NASA Technical Reports Server (NTRS)
Wang, Yu (Inventor)
2001-01-01
Devices based on surface plasmon filters having at least one metal-dielectric interface to support surface plasmon waves. A multi-layer-coupled surface plasmon notch filter is provided to have more than two symmetric metal-dielectric interfaces coupled with one another to produce a transmission spectral window with desired spectral profile and bandwidth. Such notch filters can form various color filtering devices for color flat panel displays.
An approach toward fast gradient-based image segmentation.
Hell, Benjamin; Kassubeck, Marc; Bauszat, Pablo; Eisemann, Martin; Magnor, Marcus
2015-09-01
In this paper, we present and investigate an approach to fast multilabel color image segmentation using convex optimization techniques. The presented model is in some ways related to the well-known Mumford-Shah model, but deviates in certain important aspects. The optimization problem has been designed with two goals in mind. The objective function should represent fundamental concepts of image segmentation, such as incorporation of weighted curve length and variation of intensity in the segmented regions, while allowing transformation into a convex concave saddle point problem that is computationally inexpensive to solve. This paper introduces such a model, the nontrivial transformation of this model into a convex-concave saddle point problem, and the numerical treatment of the problem. We evaluate our approach by applying our algorithm to various images and show that our results are competitive in terms of quality at unprecedentedly low computation times. Our algorithm allows high-quality segmentation of megapixel images in a few seconds and achieves interactive performance for low resolution images.
Empirical approaches for fast robust inversion of seismic moment tensor from surface waves
NASA Astrophysics Data System (ADS)
Barriot, J.; Reymond, D.; Crusem, R.
2009-12-01
The generalized discrete inverse method of Tarantola-Valette is applied to the inversion of surface waves for obtaining the seismic moment tensor. Different criteria based on residuals and signal to noise ratio are re-injected in the covariance matrix at each step of the inversion process to perform a robust inversion (called also IRLS: Iterative Reweighted Least Square). The great advantages with the use of such techniques, is that aberrant data are automatically removed through the inversion process, without the necessity for careful human inspection and control of data quality.
Fast and precise dense grid size measurement method based on coaxial dual optical imaging system
NASA Astrophysics Data System (ADS)
Guo, Jiping; Peng, Xiang; Yu, Jiping; Hao, Jian; Diao, Yan; Song, Tao; Li, Ameng; Lu, Xiaowei
2015-10-01
Test sieves with dense grid structure are widely used in many fields, accurate gird size calibration is rather critical for success of grading analysis and test sieving. But traditional calibration methods suffer from the disadvantages of low measurement efficiency and shortage of sampling number of grids which could lead to quality judgment risk. Here, a fast and precise test sieve inspection method is presented. Firstly, a coaxial imaging system with low and high optical magnification probe is designed to capture the grid images of the test sieve. Then, a scaling ratio between low and high magnification probes can be obtained by the corresponding grids in captured images. With this, all grid dimensions in low magnification image can be obtained by measuring few corresponding grids in high magnification image with high accuracy. Finally, by scanning the stage of the tri-axis platform of the measuring apparatus, whole surface of the test sieve can be quickly inspected. Experiment results show that the proposed method can measure the test sieves with higher efficiency compare to traditional methods, which can measure 0.15 million grids (gird size 0.1mm) within only 60 seconds, and it can measure grid size range from 20μm to 5mm precisely. In a word, the presented method can calibrate the grid size of test sieve automatically with high efficiency and accuracy. By which, surface evaluation based on statistical method can be effectively implemented, and the quality judgment will be more reasonable.
Gill, Lance; Beste, Ariana; Chen, Banghao; ...
2017-03-22
1H nuclear magnetic resonance (NMR) spectroscopy was used to study hydroxylic surface species on ceria nanocubes, a crystalline, high-surface-area CeO2 that presents mostly (100) facets. Water adsorption and desorption experiments in combination with fast magic angle spinning (MAS, 20–40 kHz) 1H NMR provide high-resolution 1H spectra that allow the observation of ten resonance bands (water or hydroxyl) on or under the (100) surface. Assignments were made using a combination of adsorption and temperature-programmed desorption, quantitative spin counting, deuterium exchange, spin–lattice (T1) and spin–spin (T2) relaxation, and DFT calculations. In air, the (100) surface exists as a fully hydroxylated surface. Watermore » adsorption and dissociation on dry ceria surfaces occur first at oxygen vacancies, but Ce3+ centers are not required since water dissociation is barrier-less on the fully oxidized surface. Surface $-$OH functionality occurs in two resolved bands representing isolated $-$OH (1 ppm) and hydrogen-bonded $-$OH (9 ppm), the latter being dominant. Deuterium exchange of surface hydroxyls with D2O does not occur under mild or forcing conditions. Despite large differences in the T1 of surface hydroxyls and physisorbed water, surface hydroxyl T1 values are independent of the presence or absence of physisorbed water, demonstrating that the protons within these two functional group pools are not in intimate contact. These observations show that, once hydroxylated, the surface $-$OH functionality preferentially forms hydrogen bonds with surface lattice oxygen, i.e., the hydroxylated (100) surface of ceria is hydrophobic. Near this surface it is energetically more favorable for physisorbed water to hydrogen bond to itself rather than to the surface. DFT calculations support this notion. Impurity Na+ remaining in incompletely washed ceria nanocubes increases the surface hydrophilicity. In conclusion, sharp, low-field resonances observed in spectra of
Nanoparticle Based Surface-Enhanced Raman Spectroscopy
Talley, C E; Huser, T R; Hollars, C W; Jusinski, L; Laurence, T; Lane, S M
2005-01-03
Surface-enhanced Raman scattering is a powerful tool for the investigation of biological samples. Following a brief introduction to Raman and surface-enhanced Raman scattering, several examples of biophotonic applications of SERS are discussed. The concept of nanoparticle based sensors using SERS is introduced and the development of these sensors is discussed.
Fast gain and phase recovery of semiconductor optical amplifiers based on submonolayer quantum dots
Herzog, Bastian Owschimikow, Nina; Kaptan, Yücel; Kolarczik, Mirco; Switaiski, Thomas; Woggon, Ulrike; Schulze, Jan-Hindrik; Rosales, Ricardo; Strittmatter, André; Bimberg, Dieter; Pohl, Udo W.
2015-11-16
Submonolayer quantum dots as active medium in opto-electronic devices promise to combine the high density of states of quantum wells with the fast recovery dynamics of self-assembled quantum dots. We investigate the gain and phase recovery dynamics of a semiconductor optical amplifier based on InAs submonolayer quantum dots in the regime of linear operation by one- and two-color heterodyne pump-probe spectroscopy. We find an as fast recovery dynamics as for quantum dot-in-a-well structures, reaching 2 ps at moderate injection currents. The effective quantum well embedding the submonolayer quantum dots acts as a fast and efficient carrier reservoir.
A Fast Method of Deriving the Kirchhoff Formula for Moving Surfaces
NASA Technical Reports Server (NTRS)
Farassat, F.; Posey, Joe W.
2007-01-01
The Kirchhoff formula for a moving surface is very useful in many wave propagation problems, particularly in the prediction of noise from rotating machinery. Several publications in the last two decades have presented derivations of the Kirchhoff formula for moving surfaces in both time and frequency domains. Here we present a method originally developed by Farassat and Myers in time domain that is both simple and direct. It is based on generalized function theory and the useful concept of imbedding the problem in the unbounded three-dimensional space. We derive an inhomogeneous wave equation with the source terms that involve Dirac delta functions with their supports on the moving data surface. This wave equation is then solved using the simple free space Green's function of the wave equation resulting in the Kirchhoff formula. The algebraic manipulations are minimal and simple. We do not need the Green's theorem in four dimensions and there is no ambiguity in the interpretation of any terms in the final formulas. Furthermore, this method also gives the simplest derivation of the classical Kirchhoff formula which has a fairly lengthy derivation in physics and applied mathematics books. The Farassat-Myers method can be used easily in frequency domain.
On fast iterative mapping algorithms for stripe based coarse-grained reconfigurable architectures
NASA Astrophysics Data System (ADS)
Mehta, Gayatri; Patel, Krunalkumar; Pollard, Nancy S.
2015-01-01
Reconfigurable devices have potential for great flexibility/efficiency, but mapping algorithms onto these architectures is a long-standing challenge. This paper addresses this challenge for stripe based coarse-grained reconfigurable architectures (CGRAs) by drawing on insights from graph drawing. We adapt fast, iterative algorithms from hierarchical graph drawing to the problem of mapping to stripe based architectures. We find that global sifting is 98 times as fast as simulated annealing and produces very compact designs with 17% less area on average, at a cost of 5% greater wire length. Interleaving iterations of Sugiyama and global sifting is 40 times as fast as simulated annealing and achieves somewhat more compact designs with 1.8% less area on average, at a cost of only 1% greater wire length. These solutions can enable fast design space exploration, rapid performance testing, and flexible programming of CGRAs "in the field."
Fast Numerically Based Modeling for Ground Penetrating Radar
NASA Astrophysics Data System (ADS)
Sassen, D. S.; Everett, M. E.
2007-05-01
There is a need for computationally fast GPR numerical modeling. This includes circumstances where real time performance is needed, for example discrimination of landmines or UXO's, and in circumstances that require a high number of successive forward problems, for example inversion or imaging. Traditional numerical techniques such as finite difference or finite element are too slow for these applications, but they provide results from general scenarios such as scattering from very complicated shapes with high contrast. Neural networks may fit in the niche between analytical techniques and traditional numerical techniques. Our concept is training a neural network to associate the model inputs of electromagnetic properties of the background and targets, and the size and shape of the targets, with the output generated by a 3-D finite difference model. Successive examples from various electromagnetic properties and targets are displayed to the neural network, until the neural network has adapted itself though optimization. The trained neural network is now used as the forward model by displaying new input parameters and the neural network then generates the appropriate output. The results from the neural network are then compared to results from finite difference models to see how well the neural networks is performing and at what point it breaks down. Areas of poor fit can be addressed through further training. The neural network GPR model can be adapted by displaying additional finite difference results to the neural network, and can also be adapted to a specific field area by actual field data examples. Because of this adaptation ability the neural network GPR model can be optimized for specific environments and applications.
FMFilter: A fast model based variant filtering tool.
Akgün, Mete; Faruk Gerdan, Ö; Görmez, Zeliha; Demirci, Hüseyin
2016-04-01
The availability of whole exome and genome sequencing has completely changed the structure of genetic disease studies. It is now possible to solve the disease causing mechanisms within shorter time and budgets. For this reason, mining out the valuable information from the huge amount of data produced by next generation techniques becomes a challenging task. Current tools analyze sequencing data in various methods. However, there is still need for fast, easy to use and efficacious tools. Considering genetic disease studies, there is a lack of publicly available tools which support compound heterozygous and de novo models. Also, existing tools either require advanced IT expertise or are inefficient for handling large variant files. In this work, we provide FMFilter, an efficient sieving tool for next generation sequencing data produced by genetic disease studies. We develop a software which allows to choose the inheritance model (recessive, dominant, compound heterozygous and de novo), the affected and control individuals. The program provides a user friendly Graphical User Interface which eliminates the requirement of advanced computer techniques. It has various filtering options which enable to eliminate the majority of the false alarms. FMFilter requires negligible memory, therefore it can easily handle very large variant files like multiple whole genomes with ordinary computers. We demonstrate the variant reduction capability and effectiveness of the proposed tool with public and in-house data for different inheritance models. We also compare FMFilter with the existing filtering software. We conclude that FMFilter provides an effective and easy to use environment for analyzing next generation sequencing data from Mendelian diseases. Copyright © 2016 Elsevier Inc. All rights reserved.
SACRD: a data base for fast reactor safety computer codes, operational procedures
Forsberg, V.M.; Arwood, J.W.; Greene, N.M.; Raiford, G.B.
1980-09-01
SACRD (Safety Analysis Computerized Reactor Data) is a data base of nondesign-related information used in computer codes for fast reactor safety analyses. This document reports the procedures used in SACRD to help assure a reasonable level of integrity of the material contained in the data base. It also serves to document much of the computer software used with the data base.
Dybeck, Eric Christopher; Plaisance, Craig Patrick; Neurock, Matthew
2017-02-14
A novel algorithm has been developed to achieve temporal acceleration during kinetic Monte Carlo (KMC) simulations of surface catalytic processes. This algorithm allows for the direct simulation of reaction networks containing kinetic processes occurring on vastly disparate timescales which computationally overburden standard KMC methods. Previously developed methods for temporal acceleration in KMC have been designed for specific systems and often require a priori information from the user such as identifying the fast and slow processes. In the approach presented herein, quasi-equilibrated processes are identified automatically based on previous executions of the forward and reverse reactions. Temporal acceleration is achieved by automatically scaling the intrinsic rate constants of the quasi-equilibrated processes, bringing their rates closer to the timescales of the slow kinetically relevant non-equilibrated processes. All reactions are still simulated directly, although with modified rate constants. Abrupt changes in the underlying dynamics of the reaction network are identified during the simulation and the reaction rate constants are rescaled accordingly. The algorithm has been utilized here to model the Fischer-Tropsch synthesis reaction over ruthenium nanoparticles. This reaction network has multiple timescale-disparate processes which would be intractable to simulate without the aid of temporal acceleration. The accelerated simulations are found to give reaction rates and selectivities indistinguishable from those calculated by an equivalent mean-field kinetic model. The computational savings of the algorithm can span many orders of magnitude in realistic systems and the computational cost is not limited by the magnitude of the timescale disparity in the system processes. Furthermore, the algorithm has been designed in a generic fashion and can easily be applied to other surface catalytic processes of interest.
Comparative Evaluation of Vacuum-based Surface Sampling ...
Journal Article Following a biological contamination incident, collection of surface samples is necessary to determine the extent and level of contamination, and to deem an area safe for reentry upon decontamination. Current sampling strategies targeting Bacillus anthracis spores prescribe vacuum-based methods for rough and/or porous surfaces. In this study, four commonly-used B. anthracis spore sampling devices (vacuum socks, 37 mm 0.8 µm MCE filter cassettes, 37 mm 0.3 µm PTFE filter cassettes, and 3MTM forensic filters) were comparatively evaluated for their ability to recover surface-associated spores. The vacuum sock device was evaluated at two sampling speeds (slow and fast), resulting in five total methods evaluated. Aerosolized spores (~105 cm-2) of a surrogate Bacillus species (Bacillus atrophaeus) were allowed to settle onto three material types (concrete, carpet, and upholstery). Ten replicate samples were collected using each vacuum method, from each of the three material types. In addition, stainless steel (i.e., nonporous) surfaces inoculated simultaneously were sampled with pre-moistened wipes. Recoveries from wipes of steel surfaces were utilized to verify the inoculum, and to normalize vacuum-based recoveries across trials. Recovery (CFU cm-2) and relative recovery (vacuum recovery/wipe recovery) were determined for each method and material type. Relative recoveries were compared by one-way and three-way ANOVA. Data analysis by one-
Fast Algorithms for Earth Mover Distance Based on Optimal Transport and L1 Regularization II
2016-09-01
FAST ALGORITHMS FOR EARTH MOVER DISTANCE BASED ON OPTIMAL TRANSPORT AND L1 REGULARIZATION II WUCHEN LI, STANLEY OSHER, AND WILFRID GANGBO Abstract...We modify a fast algorithm which we designed in [15] for computing the Earth mover’s distance (EMD), whose cost is a Manhattan metric. From the theory...and converges very rapidly. Several numerical examples are presented. 1. Introduction The Earth Mover’s distance (EMD), also named the Monge problem
Uşümez, Serdar; Büyükyilmaz, Tamer; Karaman, Ali Ihya
2003-06-01
The aims of this study were to (1) identify the optimum cure times of 2 different lingual retainer adhesives with a conventional halogen, a fast halogen, and a plasma arc light by measuring Vickers surface hardness, and (2) determine whether different lights produce similar surface hardness values for the same adhesive resin material. The investigated plasma arc curing unit was the PowerPac (American Dental Technologies, Corpus Christi, Tex), and the fast halogen unit was the Optilux 501 (Kerr, Orange, Calif). A conventional curing unit, the Ortholux XT (3M Dental Products, St. Paul, Minn) was used as the control. Two orthodontic lingual retainer adhesives were used: Transbond Lingual Retainer (3M Unitek, Monrovia, Calif) and Light Cure Retainer (Reliance Orthodontic Products, Itasca, Ill). Concise (3M Dental Products) and diluted Concise were used as controls. Transbond Lingual Retainer was polymerized by the PowerPac light in 6 seconds, by the Optilux in 10 seconds, and by the conventional halogen light in 20 seconds. The minimum curing times for Light Cure Retainer adhesive were 15 seconds for PowerPac, 10 seconds for Optilux, and 40 seconds for conventional halogen. Surface hardness values for each resin did not differ significantly with different curing units. However, different adhesives demonstrated significantly different surface hardness values. Final Vickers surface hardness values (averaged across curing units) of Transbond Lingual Retainer, Concise, diluted Concise, and Light Cure Retainer were 62.8, 52.4, 46.0, and 40.4, respectively. Plasma arc or fast halogen units polymerize resin composite adhesive in much shorter times than do conventional curing units, without a significant loss in surface hardness. Therefore, these units are suggested for clinical use to save chairside time.
Protein Based Localized Surface Plasmon Resonance Gas Sensing
NASA Astrophysics Data System (ADS)
Meisam, Omidi; Gh., Amoabediny; Yazdian, F.; Habibi-Rezaei, M.
2015-01-01
We apply the localized surface plasmon resonance (LSPR) of gold nanoparticles (GNPs) covalently coupled with cytochrome c (cyt c) to create a nanobiosensor for detecting hydrogen sulfide (H2S) in the range of 15-100 ppb. Monolayer formation of GNPs on glass surface functionalized with 3-aminopropyltrimethoxysilane (APTMS) is performed for fabricating a chip-based format of the optical transducer. By chemical introduction of short-chain thiol derivatives on cyt c protein shell via its lysine residues, a very fast self-assembled monolayer (SAM) of cyt c is formed on the GNPs. Significant shifts in the LSPR peak (ΔλLSPR) are observed by reacting H2S with cyt c. Results show a linear relationship between ΔλLSPR and H2S concentration. Furthermore, shifts in the LSPR peak are reversible and the peak positions return to their pre-exposure values once the H2S is removed. The experimental results strongly indicate that the protein based LSPR chip can be successfully used as a simple, fast, sensitive and quantitative sensor for H2S detection.
Nonlaser-based 3D surface imaging
Lu, Shin-yee; Johnson, R.K.; Sherwood, R.J.
1994-11-15
3D surface imaging refers to methods that generate a 3D surface representation of objects of a scene under viewing. Laser-based 3D surface imaging systems are commonly used in manufacturing, robotics and biomedical research. Although laser-based systems provide satisfactory solutions for most applications, there are situations where non laser-based approaches are preferred. The issues that make alternative methods sometimes more attractive are: (1) real-time data capturing, (2) eye-safety, (3) portability, and (4) work distance. The focus of this presentation is on generating a 3D surface from multiple 2D projected images using CCD cameras, without a laser light source. Two methods are presented: stereo vision and depth-from-focus. Their applications are described.
A fast and accurate FPGA based QRS detection system.
Shukla, Ashish; Macchiarulo, Luca
2008-01-01
An accurate Field Programmable Gate Array (FPGA) based ECG Analysis system is described in this paper. The design, based on a popular software based QRS detection algorithm, calculates the threshold value for the next peak detection cycle, from the median of eight previously detected peaks. The hardware design has accuracy in excess of 96% in detecting the beats correctly when tested with a subset of five 30 minute data records obtained from the MIT-BIH Arrhythmia database. The design, implemented using a proprietary design tool (System Generator), is an extension of our previous work and uses 76% resources available in a small-sized FPGA device (Xilinx Spartan xc3s500), has a higher detection accuracy as compared to our previous design and takes almost half the analysis time in comparison to software based approach.
Cai, Wensheng; Shao, Xueguang; Maigret, Bernard
2002-01-01
Molecular surfaces are important because surface-shape complementarity is often a necessary condition in protein-ligand interactions and docking studies. We have previously described a fast and efficient method to obtain triangulated surface-meshes by topologically mapping ellipsoids on molecular surfaces. In this paper, we present an extension of our work to spherical harmonic surfaces in order to approximate molecular surfaces of both ligands and receptor-cavities and to easily check the surface-shape complementarity. The method consists of (1) finding lobes and holes on both ligand and cavity surfaces using contour maps of radius functions with spherical harmonic expansions, (2) superposing the surfaces around a given binding site by minimizing the distance between their respective expansion coefficients. This docking procedure capabilities was demonstrated by application to 35 protein-ligand complexes of known crystal structures. The method can also be easily and efficiently used as a filter to detect in a large conformational sampling the possible conformations presenting good complementarity with the receptor site, and being, therefore, good candidates for further more elaborate docking studies. This "virtual screening" was demonstrated on the platelet thrombin receptor.
Stoeckel, Marc-Antoine; Gobbi, Marco; Bonacchi, Sara; Liscio, Fabiola; Ferlauto, Laura; Orgiu, Emanuele; Samorì, Paolo
2017-10-01
Nanostructured materials characterized by high surface-volume ratio hold the promise to constitute the active materials for next-generation sensors. Solution-processed hybrid organohalide perovskites, which have been extensively used in the last few years for optoelectronic applications, are characterized by a self-assembled nanostructured morphology, which makes them an ideal candidate for gas sensing. Hitherto, detailed studies of the dependence of their electrical characteristics on the environmental atmosphere have not been performed, and even the effect of a ubiquitous gas such as O2 has been widely overlooked. Here, the electrical response of organohalide perovskites to oxygen is studied. Surprisingly, a colossal increase (3000-fold) in the resistance of perovskite-based lateral devices is found when measured in a full oxygen atmosphere, which is ascribed to a trap healing mechanism originating from an O2 -mediated iodine vacancies filling. A variation as small as 70 ppm in the oxygen concentration can be detected. The effect is fast (<400 ms) and fully reversible, making organohalide perovskites ideal active materials for oxygen sensing. The effect of oxygen on the electrical characteristics of organohalide perovskites must be taken into deep consideration for the design and optimization of any other perovskite-based (opto-) electronic device working in ambient conditions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Janson, Lucas; Schmerling, Edward; Clark, Ashley; Pavone, Marco
2015-01-01
In this paper we present a novel probabilistic sampling-based motion planning algorithm called the Fast Marching Tree algorithm (FMT*). The algorithm is specifically aimed at solving complex motion planning problems in high-dimensional configuration spaces. This algorithm is proven to be asymptotically optimal and is shown to converge to an optimal solution faster than its state-of-the-art counterparts, chiefly PRM* and RRT*. The FMT* algorithm performs a “lazy” dynamic programming recursion on a predetermined number of probabilistically-drawn samples to grow a tree of paths, which moves steadily outward in cost-to-arrive space. As such, this algorithm combines features of both single-query algorithms (chiefly RRT) and multiple-query algorithms (chiefly PRM), and is reminiscent of the Fast Marching Method for the solution of Eikonal equations. As a departure from previous analysis approaches that are based on the notion of almost sure convergence, the FMT* algorithm is analyzed under the notion of convergence in probability: the extra mathematical flexibility of this approach allows for convergence rate bounds—the first in the field of optimal sampling-based motion planning. Specifically, for a certain selection of tuning parameters and configuration spaces, we obtain a convergence rate bound of order O(n−1/d+ρ), where n is the number of sampled points, d is the dimension of the configuration space, and ρ is an arbitrarily small constant. We go on to demonstrate asymptotic optimality for a number of variations on FMT*, namely when the configuration space is sampled non-uniformly, when the cost is not arc length, and when connections are made based on the number of nearest neighbors instead of a fixed connection radius. Numerical experiments over a range of dimensions and obstacle configurations confirm our the-oretical and heuristic arguments by showing that FMT*, for a given execution time, returns substantially better solutions than either PRM* or RRT
Lelli, Moreno; Gajan, David; Lesage, Anne; Caporini, Marc A; Vitzthum, Veronika; Miéville, Pascal; Héroguel, Florent; Rascón, Fernando; Roussey, Arthur; Thieuleux, Chloé; Boualleg, Malika; Veyre, Laurent; Bodenhausen, Geoffrey; Copéret, Christophe; Emsley, Lyndon
2011-02-23
We demonstrate fast characterization of the distribution of surface bonding modes and interactions in a series of functionalized materials via surface-enhanced nuclear magnetic resonance spectroscopy using dynamic nuclear polarization (DNP). Surface-enhanced silicon-29 DNP NMR spectra were obtained by using incipient wetness impregnation of the sample with a solution containing a polarizing radical (TOTAPOL). We identify and compare the bonding topology of functional groups in materials obtained via a sol-gel process and in materials prepared by post-grafting reactions. Furthermore, the remarkable gain in time provided by surface-enhanced silicon-29 DNP NMR spectroscopy (typically on the order of a factor 400) allows the facile acquisition of two-dimensional correlation spectra.
Zarzycki, Paweł K; Slączka, Magdalena M; Włodarczyk, Elżbieta; Baran, Michał J
2013-01-01
In this work we demonstrated analytical capability of micro-planar (micro-TLC) technique comprising one and two-dimensional (2D) separation modes to generate fingerprints of environmental samples originated from sewage and ecosystems waters. We showed that elaborated separation and detection protocols are complementary to previously invented HPLC method based on temperature-dependent inclusion chromatography and UV-DAD detection. Presented 1D and 2D micro-TLC chromatograms of SPE (solid-phase extraction) extracts were optimized for fast and low-cost screening of water samples collected from lakes and rivers located in the area of Middle Pomerania in northern part of Poland. Moreover, we studied highly organic compounds loaded in the treated and untreated sewage waters obtained from municipal wastewater treatment plant "Jamno" near Koszalin City (Poland). Analyzed environmental samples contained number of substances characterized by polarity range from estetrol to progesterone as well as chlorophyll-related dyes previously isolated and pre-purified by simple SPE protocol involving C18 cartridges. Optimization of micro-TLC separation and quantification protocols of such samples were discussed from the practical point of view using simple separation efficiency criteria including total peaks number, log(product ΔhRF), signal intensity and peak asymmetry. Outcomes of the presented analytical approach, especially using detection involving direct fluorescence (UV366/Vis) and phosphomolybdic acid (PMA) visualization are compared with UV-DAD HPLC-generated data reported previously. Chemometric investigation based on principal components analysis revealed that SPE extracts separated by micro-TLC and detected under fluorescence and PMA visualization modes can be used for robust sample fingerprinting even after long-term storage of the extracts (up to 4 years) at subambient temperature (-20 °C). Such approach allows characterization of wide range of sample components that
Zhang, Wei; Brian, Caleb W; Yu, Lian
2015-04-16
Surface self-diffusion coefficients have been measured for the model molecular glass o-terphenyl (OTP) through surface-grating decay driven by capillarity. The decay mechanism transitions from viscous flow at high temperatures to surface diffusion at low temperatures; for 1000 nm wavelength gratings, the transition occurs at Tg + 11 K. The surface diffusion of OTP is 10(8) times faster than bulk diffusion at Tg and even faster at lower temperatures because of its weaker temperature dependence. At Tg, OTP has approximately the same bulk diffusivity as the previously studied molecular liquid indomethacin, but its surface diffusion is 100 times faster. While the molecular glass-formers exhibit transitions from viscous flow to surface diffusion as the mechanism of capillarity-driven surface flattening, polystyrenes and silicates show no such transition under comparable conditions, suggesting slower surface diffusion on these materials and a general dependence of surface diffusion on intermolecular forces. The velocity of surface crystal growth on molecular glasses is proportional to surface diffusivity, indicating a common kinetic barrier for both processes for temperatures below Tg.
Medvedev, E S; Stuchebrukhov, A A
2006-02-01
The phenomenological model developed in our recent publications [9,10] is used to investigate the kinetics of proton diffusion from a source to a detector on the membrane surface. In most cases the observed kinetics shows a single diffusional maximum with the exponential ascending front and the power-law descending tail. The kinetics depends on the distance between the source and the detector. If the detector is located inside the proton collecting antenna, the kinetics corresponds to the surface diffusion at the times near the maximum and shortly thereafter, and it turns into the bulk diffusion kinetics at longer times, after the equilibrium is established between the membrane surface and the bulk solution. If the detector is located outside the antenna, the kinetics corresponds to the bulk diffusion at all times where the signal is nonvanishing. What is seen at locations near the antenna radius depends on the exchange regime. In the regime of fast exchange between the surface and the bulk as compared to the bulk diffusion, the kinetics shows a single peak whose location is intermediate between the peaks for the surface and bulk diffusion. In the regime of slow exchange there are two maxima corresponding to the surface and bulk diffusion. In buffered solutions the antenna radius decreases with increasing buffer concentration, which changes the kinetics from the surface to bulk diffusion. The theory is applied to interprete recent experiments on a phospholipid membrane [25]. It is found that (i) the fast exchange regime is operating since only a single maximum is observed; (ii) the shift of the maximum toward longer times with increasing buffer concentration is a manifestation of the transition from the surface to bulk diffusion kinetics.
Visual saliency-based fast intracoding algorithm for high efficiency video coding
NASA Astrophysics Data System (ADS)
Zhou, Xin; Shi, Guangming; Zhou, Wei; Duan, Zhemin
2017-01-01
Intraprediction has been significantly improved in high efficiency video coding over H.264/AVC with quad-tree-based coding unit (CU) structure from size 64×64 to 8×8 and more prediction modes. However, these techniques cause a dramatic increase in computational complexity. An intracoding algorithm is proposed that consists of perceptual fast CU size decision algorithm and fast intraprediction mode decision algorithm. First, based on the visual saliency detection, an adaptive and fast CU size decision method is proposed to alleviate intraencoding complexity. Furthermore, a fast intraprediction mode decision algorithm with step halving rough mode decision method and early modes pruning algorithm is presented to selectively check the potential modes and effectively reduce the complexity of computation. Experimental results show that our proposed fast method reduces the computational complexity of the current HM to about 57% in encoding time with only 0.37% increases in BD rate. Meanwhile, the proposed fast algorithm has reasonable peak signal-to-noise ratio losses and nearly the same subjective perceptual quality.
Lee, Sangyeop; Choi, Junghyun; Chen, Lingxin; Park, Byungchoon; Kyong, Jin Burm; Seong, Gi Hun; Choo, Jaebum; Lee, Yeonjung; Shin, Kyung-Hoon; Lee, Eun Kyu; Joo, Sang-Woo; Lee, Kyeong-Hee
2007-05-08
A rapid and highly sensitive trace analysis technique for determining malachite green (MG) in a polydimethylsiloxane (PDMS) microfluidic sensor was investigated using surface-enhanced Raman spectroscopy (SERS). A zigzag-shaped PDMS microfluidic channel was fabricated for efficient mixing between MG analytes and aggregated silver colloids. Under the optimal condition of flow velocity, MG molecules were effectively adsorbed onto silver nanoparticles while flowing along the upper and lower zigzag-shaped PDMS channel. A quantitative analysis of MG was performed based on the measured peak height at 1615 cm(-1) in its SERS spectrum. The limit of detection, using the SERS microfluidic sensor, was found to be below the 1-2 ppb level and this low detection limit is comparable to the result of the LC-Mass detection method. In the present study, we introduce a new conceptual detection technology, using a SERS microfluidic sensor, for the highly sensitive trace analysis of MG in water.
Fast Fragmentation of Networks Using Module-Based Attacks
Requião da Cunha, Bruno; González-Avella, Juan Carlos; Gonçalves, Sebastián
2015-01-01
In the multidisciplinary field of Network Science, optimization of procedures for efficiently breaking complex networks is attracting much attention from a practical point of view. In this contribution, we present a module-based method to efficiently fragment complex networks. The procedure firstly identifies topological communities through which the network can be represented using a well established heuristic algorithm of community finding. Then only the nodes that participate of inter-community links are removed in descending order of their betweenness centrality. We illustrate the method by applying it to a variety of examples in the social, infrastructure, and biological fields. It is shown that the module-based approach always outperforms targeted attacks to vertices based on node degree or betweenness centrality rankings, with gains in efficiency strongly related to the modularity of the network. Remarkably, in the US power grid case, by deleting 3% of the nodes, the proposed method breaks the original network in fragments which are twenty times smaller in size than the fragments left by betweenness-based attack. PMID:26569610
Fast Fragmentation of Networks Using Module-Based Attacks.
Requião da Cunha, Bruno; González-Avella, Juan Carlos; Gonçalves, Sebastián
2015-01-01
In the multidisciplinary field of Network Science, optimization of procedures for efficiently breaking complex networks is attracting much attention from a practical point of view. In this contribution, we present a module-based method to efficiently fragment complex networks. The procedure firstly identifies topological communities through which the network can be represented using a well established heuristic algorithm of community finding. Then only the nodes that participate of inter-community links are removed in descending order of their betweenness centrality. We illustrate the method by applying it to a variety of examples in the social, infrastructure, and biological fields. It is shown that the module-based approach always outperforms targeted attacks to vertices based on node degree or betweenness centrality rankings, with gains in efficiency strongly related to the modularity of the network. Remarkably, in the US power grid case, by deleting 3% of the nodes, the proposed method breaks the original network in fragments which are twenty times smaller in size than the fragments left by betweenness-based attack.
Nguyen, Leonard T; Buse, Joshua D; Baskin, Leland; Sadrzadeh, S M Hossein; Naugler, Christopher
2017-09-23
Serum iron is an important clinical test to help identify cases of iron deficiency or overload. Fluctuations caused by diurnal variation and diet are thought to influence test results, which may affect clinical patient management. We examined the impact of these preanalytical factors on iron concentrations in a large community-based cohort. Serum iron concentration, blood collection time, fasting duration, patient age and sex were obtained for community-based clinical testing from the Laboratory Information Service at Calgary Laboratory Services for the period of January 2011 to December 2015. A total of 276,307 individual test results were obtained. Iron levels were relatively high over a long period from 8:00 to 15:00. Mean concentrations were highest at blood collection times of 11:00 for adult men and 12:00 for adult women and children, however iron levels peaked as late as 15:00 in teenagers. With regard to fasting, iron levels required approximately 5h post-prandial time to return to a baseline, except for children and teenage females where no significant variation was seen until after 11h fasting. After 10h fasting, iron concentrations in all patient groups gradually increased to higher levels compared to earlier fasting times. Serum iron concentrations remain reasonably stable during most daytime hours for testing purposes. In adults, blood collection after 5 to 9h fasting provides a representative estimate of a patient's iron levels. For patients who have fasted overnight, i.e. ≥12h fasting, clinicians should be aware that iron concentrations may be elevated beyond otherwise usual levels. Copyright © 2017. Published by Elsevier Inc.
Whisker Contact Detection of Rodents Based on Slow and Fast Mechanical Inputs
Claverie, Laure N.; Boubenec, Yves; Debrégeas, Georges; Prevost, Alexis M.; Wandersman, Elie
2017-01-01
Rodents use their whiskers to locate nearby objects with an extreme precision. To perform such tasks, they need to detect whisker/object contacts with a high temporal accuracy. This contact detection is conveyed by classes of mechanoreceptors whose neural activity is sensitive to either slow or fast time varying mechanical stresses acting at the base of the whiskers. We developed a biomimetic approach to separate and characterize slow quasi-static and fast vibrational stress signals acting on a whisker base in realistic exploratory phases, using experiments on both real and artificial whiskers. Both slow and fast mechanical inputs are successfully captured using a mechanical model of the whisker. We present and discuss consequences of the whisking process in purely mechanical terms and hypothesize that free whisking in air sets a mechanical threshold for contact detection. The time resolution and robustness of the contact detection strategies based on either slow or fast stress signals are determined. Contact detection based on the vibrational signal is faster and more robust to exploratory conditions than the slow quasi-static component, although both slow/fast components allow localizing the object. PMID:28119582
Fast vision-based catheter 3D reconstruction.
Moradi Dalvand, Mohsen; Nahavandi, Saeid; Howe, Robert D
2016-07-21
Continuum robots offer better maneuverability and inherent compliance and are well-suited for surgical applications as catheters, where gentle interaction with the environment is desired. However, sensing their shape and tip position is a challenge as traditional sensors can not be employed in the way they are in rigid robotic manipulators. In this paper, a high speed vision-based shape sensing algorithm for real-time 3D reconstruction of continuum robots based on the views of two arbitrary positioned cameras is presented. The algorithm is based on the closed-form analytical solution of the reconstruction of quadratic curves in 3D space from two arbitrary perspective projections. High-speed image processing algorithms are developed for the segmentation and feature extraction from the images. The proposed algorithms are experimentally validated for accuracy by measuring the tip position, length and bending and orientation angles for known circular and elliptical catheter shaped tubes. Sensitivity analysis is also carried out to evaluate the robustness of the algorithm. Experimental results demonstrate good accuracy (maximum errors of ±0.6 mm and ±0.5 deg), performance (200 Hz), and robustness (maximum absolute error of 1.74 mm, 3.64 deg for the added noises) of the proposed high speed algorithms.
Fast Dictionary-Based Reconstruction for Diffusion Spectrum Imaging
Bilgic, Berkin; Chatnuntawech, Itthi; Setsompop, Kawin; Cauley, Stephen F.; Yendiki, Anastasia; Wald, Lawrence L.; Adalsteinsson, Elfar
2015-01-01
Diffusion Spectrum Imaging (DSI) reveals detailed local diffusion properties at the expense of substantially long imaging times. It is possible to accelerate acquisition by undersampling in q-space, followed by image reconstruction that exploits prior knowledge on the diffusion probability density functions (pdfs). Previously proposed methods impose this prior in the form of sparsity under wavelet and total variation (TV) transforms, or under adaptive dictionaries that are trained on example datasets to maximize the sparsity of the representation. These compressed sensing (CS) methods require full-brain processing times on the order of hours using Matlab running on a workstation. This work presents two dictionary-based reconstruction techniques that use analytical solutions, and are two orders of magnitude faster than the previously proposed dictionary-based CS approach. The first method generates a dictionary from the training data using Principal Component Analysis (PCA), and performs the reconstruction in the PCA space. The second proposed method applies reconstruction using pseudoinverse with Tikhonov regularization with respect to a dictionary. This dictionary can either be obtained using the K-SVD algorithm, or it can simply be the training dataset of pdfs without any training. All of the proposed methods achieve reconstruction times on the order of seconds per imaging slice, and have reconstruction quality comparable to that of dictionary-based CS algorithm. PMID:23846466
Fast vision-based catheter 3D reconstruction
NASA Astrophysics Data System (ADS)
Moradi Dalvand, Mohsen; Nahavandi, Saeid; Howe, Robert D.
2016-07-01
Continuum robots offer better maneuverability and inherent compliance and are well-suited for surgical applications as catheters, where gentle interaction with the environment is desired. However, sensing their shape and tip position is a challenge as traditional sensors can not be employed in the way they are in rigid robotic manipulators. In this paper, a high speed vision-based shape sensing algorithm for real-time 3D reconstruction of continuum robots based on the views of two arbitrary positioned cameras is presented. The algorithm is based on the closed-form analytical solution of the reconstruction of quadratic curves in 3D space from two arbitrary perspective projections. High-speed image processing algorithms are developed for the segmentation and feature extraction from the images. The proposed algorithms are experimentally validated for accuracy by measuring the tip position, length and bending and orientation angles for known circular and elliptical catheter shaped tubes. Sensitivity analysis is also carried out to evaluate the robustness of the algorithm. Experimental results demonstrate good accuracy (maximum errors of ±0.6 mm and ±0.5 deg), performance (200 Hz), and robustness (maximum absolute error of 1.74 mm, 3.64 deg for the added noises) of the proposed high speed algorithms.
Fast rule-based bioactivity prediction using associative classification mining
2012-01-01
Relating chemical features to bioactivities is critical in molecular design and is used extensively in the lead discovery and optimization process. A variety of techniques from statistics, data mining and machine learning have been applied to this process. In this study, we utilize a collection of methods, called associative classification mining (ACM), which are popular in the data mining community, but so far have not been applied widely in cheminformatics. More specifically, classification based on predictive association rules (CPAR), classification based on multiple association rules (CMAR) and classification based on association rules (CBA) are employed on three datasets using various descriptor sets. Experimental evaluations on anti-tuberculosis (antiTB), mutagenicity and hERG (the human Ether-a-go-go-Related Gene) blocker datasets show that these three methods are computationally scalable and appropriate for high speed mining. Additionally, they provide comparable accuracy and efficiency to the commonly used Bayesian and support vector machines (SVM) methods, and produce highly interpretable models. PMID:23176548
Fast dictionary-based reconstruction for diffusion spectrum imaging.
Bilgic, Berkin; Chatnuntawech, Itthi; Setsompop, Kawin; Cauley, Stephen F; Yendiki, Anastasia; Wald, Lawrence L; Adalsteinsson, Elfar
2013-11-01
Diffusion spectrum imaging reveals detailed local diffusion properties at the expense of substantially long imaging times. It is possible to accelerate acquisition by undersampling in q-space, followed by image reconstruction that exploits prior knowledge on the diffusion probability density functions (pdfs). Previously proposed methods impose this prior in the form of sparsity under wavelet and total variation transforms, or under adaptive dictionaries that are trained on example datasets to maximize the sparsity of the representation. These compressed sensing (CS) methods require full-brain processing times on the order of hours using MATLAB running on a workstation. This work presents two dictionary-based reconstruction techniques that use analytical solutions, and are two orders of magnitude faster than the previously proposed dictionary-based CS approach. The first method generates a dictionary from the training data using principal component analysis (PCA), and performs the reconstruction in the PCA space. The second proposed method applies reconstruction using pseudoinverse with Tikhonov regularization with respect to a dictionary. This dictionary can either be obtained using the K-SVD algorithm, or it can simply be the training dataset of pdfs without any training. All of the proposed methods achieve reconstruction times on the order of seconds per imaging slice, and have reconstruction quality comparable to that of dictionary-based CS algorithm.
Kasherininov, P. G. Tomasov, A. A.
2008-11-15
Fast optical recording media based on semiconductor nanostructures (CdTe, GaAs) for image recording and processing with a speed to 10{sup 6} cycle/s (which exceeds the speed of known recording media based on metal-insulator-semiconductor-(liquid crystal) (MIS-LC) structures by two to three orders of magnitude), a photosensitivity of 10{sup -2}V/cm{sup 2}, and a spatial resolution of 5-10 (line pairs)/mm are developed. Operating principles of nanostructures as fast optical recording media and methods for reading images recorded in such media are described. Fast optical processors for recording images in incoherent light based on CdTe crystal nanostructures are implemented. The possibility of their application to fabricate image correlators is shown.
Ultra-fast cell counters based on microtubular waveguides
Bausch, Cornelius S.; Heyn, Christian; Hansen, Wolfgang; Wolf, Insa M. A.; Diercks, Björn-Philipp; Guse, Andreas H.; Blick, Robert H.
2017-01-01
We present a radio-frequency impedance-based biosensor embedded inside a semiconductor microtube for the in-flow detection of single cells. An impedance-matched tank circuit and a tight wrapping of the electrodes around the sensing region, which creates a close, leakage current-free contact between cells and electrodes, yields a high signal-to-noise ratio. We experimentally show a twofold improved sensitivity of our three-dimensional electrode structure to conventional planar electrodes and support these findings by finite element simulations. Finally, we report on the differentiation of polystyrene beads, primary mouse T lymphocytes and Jurkat T lymphocytes using our device. PMID:28134293
Fast, moment-based estimation methods for delay network tomography
Lawrence, Earl Christophre; Michailidis, George; Nair, Vijayan N
2008-01-01
Consider the delay network tomography problem where the goal is to estimate distributions of delays at the link-level using data on end-to-end delays. These measurements are obtained using probes that are injected at nodes located on the periphery of the network and sent to other nodes also located on the periphery. Much of the previous literature deals with discrete delay distributions by discretizing the data into small bins. This paper considers more general models with a focus on computationally efficient estimation. The moment-based schemes presented here are designed to function well for larger networks and for applications like monitoring that require speedy solutions.
Ultra-fast cell counters based on microtubular waveguides
NASA Astrophysics Data System (ADS)
Bausch, Cornelius S.; Heyn, Christian; Hansen, Wolfgang; Wolf, Insa M. A.; Diercks, Björn-Philipp; Guse, Andreas H.; Blick, Robert H.
2017-01-01
We present a radio-frequency impedance-based biosensor embedded inside a semiconductor microtube for the in-flow detection of single cells. An impedance-matched tank circuit and a tight wrapping of the electrodes around the sensing region, which creates a close, leakage current-free contact between cells and electrodes, yields a high signal-to-noise ratio. We experimentally show a twofold improved sensitivity of our three-dimensional electrode structure to conventional planar electrodes and support these findings by finite element simulations. Finally, we report on the differentiation of polystyrene beads, primary mouse T lymphocytes and Jurkat T lymphocytes using our device.
Multimodal Feature-Based Surface Material Classification.
Strese, Matti; Schuwerk, Clemens; Iepure, Albert; Steinbach, Eckehard
2017-01-01
When a tool is tapped on or dragged over an object surface, vibrations are induced in the tool, which can be captured using acceleration sensors. The tool-surface interaction additionally creates audible sound waves, which can be recorded using microphones. Features extracted from camera images provide additional information about the surfaces. We present an approach for tool-mediated surface classification that combines these signals and demonstrate that the proposed method is robust against variable scan-time parameters. We examine freehand recordings of 69 textured surfaces recorded by different users and propose a classification system that uses perception-related features, such as hardness, roughness, and friction; selected features adapted from speech recognition, such as modified cepstral coefficients applied to our acceleration signals; and surface texture-related image features. We focus on mitigating the effect of variable contact force and exploration velocity conditions on these features as a prerequisite for a robust machine-learning-based approach for surface classification. The proposed system works without explicit scan force and velocity measurements. Experimental results show that our proposed approach allows for successful classification of textured surfaces under variable freehand movement conditions, exerted by different human operators. The proposed subset of six features, selected from the described sound, image, friction force, and acceleration features, leads to a classification accuracy of 74 percent in our experiments when combined with a Naive Bayes classifier.
Improved Coomassie Blue Dye-Based Fast Staining Protocol for Proteins Separated by SDS-PAGE
Májek, Pavel; Riedelová-Reicheltová, Zuzana; Pecánková, Klára; Dyr, Jan E.
2013-01-01
The time required to visualize proteins using Coomassie Blue dye has been significantly reduced with the introduction of fast staining protocols based on staining with a Coomassie Blue dye solution at boiling temperatures. However, fast stainings suffer from high gel backgrounds, reducing the signal-to-noise ratio and limiting the number of detectable spots in the case of 2D SDS-PAGE. The aim of this work was to eliminate the high gel background, and thus improve fast staining protocols based on Coomassie Blue dye. We show that merely replacing water with a 4 mM EDTA washing solution at boiling temperatures, results in a transparent gel background within 50 to 60 minutes of destaining. Moreover, when a combination of imidazole-zinc reverse staining and Coomassie Blue-based fast staining is used the sensitivity is improved significantly; nanogram amounts of proteins can be detected using 1D SDS-PAGE, and about 30% to 60% more spots can be detected with 2D SDS-PAGE in plasma, platelet, and rat brain tissue samples. This work represents an optimized fast staining protocol with improved sensitivity, requiring between 60 to 75 minutes to complete protein visualization. PMID:24278455
Improved coomassie blue dye-based fast staining protocol for proteins separated by SDS-PAGE.
Májek, Pavel; Riedelová-Reicheltová, Zuzana; Pecánková, Klára; Dyr, Jan E
2013-01-01
The time required to visualize proteins using Coomassie Blue dye has been significantly reduced with the introduction of fast staining protocols based on staining with a Coomassie Blue dye solution at boiling temperatures. However, fast stainings suffer from high gel backgrounds, reducing the signal-to-noise ratio and limiting the number of detectable spots in the case of 2D SDS-PAGE. The aim of this work was to eliminate the high gel background, and thus improve fast staining protocols based on Coomassie Blue dye. We show that merely replacing water with a 4 mM EDTA washing solution at boiling temperatures, results in a transparent gel background within 50 to 60 minutes of destaining. Moreover, when a combination of imidazole-zinc reverse staining and Coomassie Blue-based fast staining is used the sensitivity is improved significantly; nanogram amounts of proteins can be detected using 1D SDS-PAGE, and about 30% to 60% more spots can be detected with 2D SDS-PAGE in plasma, platelet, and rat brain tissue samples. This work represents an optimized fast staining protocol with improved sensitivity, requiring between 60 to 75 minutes to complete protein visualization.
GPU-based fast pencil beam algorithm for proton therapy.
Fujimoto, Rintaro; Kurihara, Tsuneya; Nagamine, Yoshihiko
2011-03-07
Performance of a treatment planning system is an essential factor in making sophisticated plans. The dose calculation is a major time-consuming process in planning operations. The standard algorithm for proton dose calculations is the pencil beam algorithm which produces relatively accurate results, but is time consuming. In order to shorten the computational time, we have developed a GPU (graphics processing unit)-based pencil beam algorithm. We have implemented this algorithm and calculated dose distributions in the case of a water phantom. The results were compared to those obtained by a traditional method with respect to the computational time and discrepancy between the two methods. The new algorithm shows 5-20 times faster performance using the NVIDIA GeForce GTX 480 card in comparison with the Intel Core-i7 920 processor. The maximum discrepancy of the dose distribution is within 0.2%. Our results show that GPUs are effective for proton dose calculations.
GPU-based fast pencil beam algorithm for proton therapy
NASA Astrophysics Data System (ADS)
Fujimoto, Rintaro; Kurihara, Tsuneya; Nagamine, Yoshihiko
2011-03-01
Performance of a treatment planning system is an essential factor in making sophisticated plans. The dose calculation is a major time-consuming process in planning operations. The standard algorithm for proton dose calculations is the pencil beam algorithm which produces relatively accurate results, but is time consuming. In order to shorten the computational time, we have developed a GPU (graphics processing unit)-based pencil beam algorithm. We have implemented this algorithm and calculated dose distributions in the case of a water phantom. The results were compared to those obtained by a traditional method with respect to the computational time and discrepancy between the two methods. The new algorithm shows 5-20 times faster performance using the NVIDIA GeForce GTX 480 card in comparison with the Intel Core-i7 920 processor. The maximum discrepancy of the dose distribution is within 0.2%. Our results show that GPUs are effective for proton dose calculations.
Fast Solvers for Transient Hydraulic Tomography based on Laplace transform
NASA Astrophysics Data System (ADS)
Bakhos, T.; Saibaba, A.; Kitanidis, P. K.
2013-12-01
Transient Hydraulic Tomography (THT) is a method to estimate the parameters hydraulic conductivity and specific storage, from measurements of hydraulic heads or pressure obtained in a series of interference tests in aquifer geologic formation such as an aquifer (i.e., pumping at one location and depth while measuring the response at several others). These measurements can be used to reconstruct the spatial variation of hydraulic parameters by solving a nonlinear inverse problem, which we tackle using the geostatistical approach. A central challenge associated with the application of the geostatistical approach to THT, is the computational cost associated with constructing the Jacobian - which represents the sensitivity of the measurements to the unknown parameters. This essentially requires repeated solutions to the 'forward problem' and the 'adjoint problem' for determination of derivatives, which are both time-dependent parabolic partial differential equations. To solve the 'forward problem', we use a Laplace Transform based exponential time integrator combined with a Krylov subspace based method for solving shifted systems. This approach allows us to independently evaluate the transient problem at different time instants at (almost) the cost of solving one steady-state groundwater equation. A similar approach can be used to accelerate the solution of the 'adjoint problem' as well. As we demonstrate, this approach dramatically lowers the computational cost associated with evaluating the Jacobian and as a result, the reconstruction of the parameters. The performance of our algorithm is demonstrated on some challenging synthetic examples; in particular, we apply it to large-scale inverse problems arising from transient hydraulic tomography.
Fast integrator based data acquisition system for the SST-1 Thomson scattering system
NASA Astrophysics Data System (ADS)
Patel, Kiran; Kumar, Ajai
2010-04-01
An operational transconductance amplifier based fast charge-integrating module (FCIM) is designed and developed for an easy acquisition of fast Thomson scattered and background signal. FCIM based data acquisition technique can be used for the measurement of charge pulses of <20 ns duration. The response of the module is tested using a standard pulsed charge-generating module. The measuring charge range of the module depends on the integrating capacitor. Comparison of the performance of FCIM to commercially available module shows that it has better dynamic range with higher sensitivity and less measurement error. The module is quite cost effective and has many new features.
Fast integrator based data acquisition system for the SST-1 Thomson scattering system.
Patel, Kiran; Kumar, Ajai
2010-04-01
An operational transconductance amplifier based fast charge-integrating module (FCIM) is designed and developed for an easy acquisition of fast Thomson scattered and background signal. FCIM based data acquisition technique can be used for the measurement of charge pulses of <20 ns duration. The response of the module is tested using a standard pulsed charge-generating module. The measuring charge range of the module depends on the integrating capacitor. Comparison of the performance of FCIM to commercially available module shows that it has better dynamic range with higher sensitivity and less measurement error. The module is quite cost effective and has many new features.
Fasting time and vitamin B12 levels in a community-based population.
Orton, Dennis J; Naugler, Christopher; Sadrzadeh, S M Hossein
2016-07-01
Vitamin B12, also known as cobalamin (Cbl), is an essential vitamin that manifests with numerous severe but non-specific symptoms in cases of deficiency. Assessing Cbl status often requires fasting, although this requirement is not standard between institutions. This study evaluated the impact of fasting on Cbl levels in a large community-based cohort in an effort to promote standardization of Cbl testing between sites. Laboratory data for Cbl, fasting time, patient age and sex were obtained from laboratory information service from Calgary Laboratory Services (CLS) for the period of April 2011 to June 2015. CLS is the sole supplier of laboratory services in the Southern Alberta region in Canada (population, approximately 1.4 million). To investigate potential sex-specific effects of fasting on Cbl levels, males and females were analyzed separately using linear regression models. A total of 346,957 individual patient results (196,849 females, 146,085 males) were obtained. The mean plasma Cbl level was 386.5 (±195.6) pmol/L and 412.0 (±220.8) pmol/L for males and females, respectively. Linear regression analysis showed fasting had no significant association with Cbl levels in females; however a statistically significant decrease of 0.9pmol/L/hour fasting (p<0.001) was noted in males. The broad population variance in Cbl suggests the slight gender-specific differences noted in this study are insignificant. Despite this, fasting has the potential to contribute to higher rates of Cbl deficiency in men. Together, these data suggest fasting should be excluded as a requirement for evaluating plasma Cbl. Copyright © 2016 Elsevier B.V. All rights reserved.
Power of surface-based DNA computation
Cai, Weiping; Condon, A.E.; Corn, R.M.
1997-12-01
A new model of DNA computation that is based on surface chemistry is studied. Such computations involve the manipulation of DNA strands that are immobilized on a surface, rather than in solution as in the work of Adleman. Surface-based chemistry has been a critical technology in many recent advances in biochemistry and offers several advantages over solution-based chemistry, including simplified handling of samples and elimination of loss of strands, which reduce error in the computation. The main contribution of this paper is in showing that in principle, surface-based DNA chemistry can efficiently support general circuit computation on many inputs in parallel. To do this, an abstract model of computation that allows parallel manipulation of binary inputs is described. It is then shown that this model can be implemented by encoding inputs as DNA strands and repeatedly modifying the strands in parallel on a surface, using the chemical processes of hybridization, exonuclease degradation, polymerase extension, and ligation. Thirdly, it is shown that the model supports efficient circuit simulation in the following sense: exactly those inputs that satisfy a circuit can be isolated and the number of parallel operations needed to do this is proportional to the size of the circuit. Finally, results are presented on the power of the model when another resource of DNA computation is limited, namely strand length. 12 refs.
Gao, Bo-Cai; Liu, Ming
2013-01-01
Surface reflectance spectra retrieved from remotely sensed hyperspectral imaging data using radiative transfer models often contain residual atmospheric absorption and scattering effects. The reflectance spectra may also contain minor artifacts due to errors in radiometric and spectral calibrations. We have developed a fast smoothing technique for post-processing of retrieved surface reflectance spectra. In the present spectral smoothing technique, model-derived reflectance spectra are first fit using moving filters derived with a cubic spline smoothing algorithm. A common gain curve, which contains minor artifacts in the model-derived reflectance spectra, is then derived. This gain curve is finally applied to all of the reflectance spectra in a scene to obtain the spectrally smoothed surface reflectance spectra. Results from analysis of hyperspectral imaging data collected with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data are given. Comparisons between the smoothed spectra and those derived with the empirical line method are also presented. PMID:24129022
Fast atom diffraction from a β-Ga{sub 2}O{sub 3}(100) surface
Busch, M.; Meyer, E.; Winter, H.; Irmscher, K.; Galazka, Z.; Gärtner, K.
2014-08-04
Fast H, He atoms, and H{sub 2} molecules with projectile energies ranging from 200 eV up to 3 keV were scattered under a grazing angle of incidence from a clean and flat β-Ga{sub 2}O{sub 3}(100) surface. The bulk single crystal was grown by the Czochralski method and prepared via annealing under ultra-high vacuum conditions. For scattering along low-index directions, we observed defined diffraction patterns in the angular distributions for scattered projectiles. From the analysis of diffraction patterns, we derive the surface unit cell in good accord with the parameters b and c for the lattice of the bulk crystal and derive information on the termination of the surface.
Surface charge migration and dc surface flashover of surface-modified epoxy-based insulators
NASA Astrophysics Data System (ADS)
Li, Chuanyang; Hu, Jun; Lin, Chuanjie; Zhang, Boya; Zhang, Guixin; He, Jinliang
2017-02-01
Epoxy-based model insulators were manufactured and fluorinated under a F2/N2 mixture (12.5% F2) at 50 °C and 0.1 MPa for 15 min and 60 min. Surface charge accumulation and decay behavior were studied with and without dc voltage application. The effect of direct fluorination on surface charge migration as well as on flashover voltage was verified. The obtained results show that the charge decay of epoxy-based insulators is a slow process, but the decay rate increases when an outer dc electric field is applied. The surface charge distribution is changed when a streamer is triggered on the insulator surface. The existence of heteropolarity surface charges can decrease the dc surface flashover voltage to some extent, while the surface flashover voltage is almost unchanged when charges of the same polarity accumulate on the insulator surface. The short time fluorinated insulator can modify the surface resistivity, and the rate of surface charge dissipation is greatly increased under a dc electric field.
Compressed sodium chloride as a fast-acting antimicrobial surface: results of a pilot study.
Whitlock, B D; Smith, S W
2016-10-01
Antimicrobial surfaces are currently being studied as an aid to reduce transmission of pathogens leading to healthcare-associated infections (HAIs). Among the most harmful and costly pathogens that cause HAIs is meticillin-resistant Staphylococcus aureus (MRSA). Currently available and previously investigated antimicrobial surface technologies that are effective against MRSA (e.g. copper alloy surfaces) take 30min to several hours to achieve significant reduction. This article presents a new antimicrobial surface technology made of compressed sodium chloride that reduces MRSA 20-30 times faster than copper alloy surfaces.
NASA Astrophysics Data System (ADS)
Challouf, M.; Nardetto, N.; Domiciano de Souza, A.; Mourard, D.; Tallon-Bosc, I.; Aroui, H.; Farrington, C.; Ligi, R.; Meilland, A.; Mouelhi, M.
2017-08-01
Context. Rapid rotation is a common feature for massive stars, with important consequences on their physical structure, flux distribution and evolution. Fast-rotating stars are flattened and show gravity darkening (non-uniform surface intensity distribution). Another important and less studied impact of fast-rotation in early-type stars is its influence on the surface brightness colour relation (hereafter SBCR), which could be used to derive the distance of eclipsing binaries. Aims: The purpose of this paper is to determine the flattening of the fast-rotating B-type star δ Per using visible long-baseline interferometry. A second goal is to evaluate the impact of rotation and gravity darkening on the V - K colour and surface brightness of the star. Methods: The B-type star δ Per was observed with the VEGA/CHARA interferometer, which can measure spatial resolutions down to 0.3 mas and spectral resolving power of 5000 in the visible. We first used a toy model to derive the position angle of the rotation axis of the star in the plane of the sky. Then we used a code of stellar rotation, CHARRON, in order to derive the physical parameters of the star. Finally, by considering two cases, a static reference star and our best model of δ Per, we can quantify the impact of fast rotation on the surface brightness colour relation (SBCR). Results: We find a position angle of 23 ± 6 degrees. The polar axis angular diameter of δ Per is θp = 0.544 ± 0.007 mas, and the derived flatness is r = 1.121 ± 0.013. We derive an inclination angle for the star of i = 85+ 5-20 degrees and a projected rotation velocity Vsini = 175+ 8-11 km s-1 (or 57% of the critical velocity). We find also that the rotation and inclination angle of δ Per keeps the V - K colour unchanged while it decreasing its surface-brightness by about 0.05 mag. Conclusions: Correcting the impact of rotation on the SBCR of early-type stars appears feasible using visible interferometry and dedicated models.
Fast Surface Reconstruction and Segmentation with Terrestrial LiDAR Range Data
2009-05-18
SUPPLEMENTARY NOTES 14. ABSTRACT Recent advances in range measurement devices have opened up new opportunities and challenges for fast 3D modeling of...which are composed of partially ordered terrestrial range data. Our algorithms can be applied to a large class of LiDAR data acquisition systems, where...obtained by two different terrestrial acquisition systems. The first dataset contains 94 million points obtained by a vehicle-borne acquisition system
Fast Outlier Detection Using a Grid-Based Algorithm.
Lee, Jihwan; Cho, Nam-Wook
2016-01-01
As one of data mining techniques, outlier detection aims to discover outlying observations that deviate substantially from the reminder of the data. Recently, the Local Outlier Factor (LOF) algorithm has been successfully applied to outlier detection. However, due to the computational complexity of the LOF algorithm, its application to large data with high dimension has been limited. The aim of this paper is to propose grid-based algorithm that reduces the computation time required by the LOF algorithm to determine the k-nearest neighbors. The algorithm divides the data spaces in to a smaller number of regions, called as a "grid", and calculates the LOF value of each grid. To examine the effectiveness of the proposed method, several experiments incorporating different parameters were conducted. The proposed method demonstrated a significant computation time reduction with predictable and acceptable trade-off errors. Then, the proposed methodology was successfully applied to real database transaction logs of Korea Atomic Energy Research Institute. As a result, we show that for a very large dataset, the grid-LOF can be considered as an acceptable approximation for the original LOF. Moreover, it can also be effectively used for real-time outlier detection.
[Fast discrimination of varieties of sugar based on spectroscopy technology].
Lin, Ping; Chen, Yong-Ming; He, Yong
2009-02-01
Visible and near-infrared reflectance spectroscopy (NIRS) was applied in the discrimination of sugar varieties. NIRS is a pollution-free, rapid, quantitative and qualitative analysis method, with the characteristics of high speed, non-destructiveness, high precision and reliable detection data, etc. Four kinds of sugar were gained from the local market and each species was divided into 40 samples. One hundred twenty samples were used as the training set and the remainders (total 40 samples) formed the prediction set. Samples were scanned by a spectroradiometer within a wavelength region of 325-1 075 nm. Three pre-processing methods were applied on the spectra prior to building the PLS regression model. The multivariable analysis using partial least square (PLS) was applied to abstract characteristics of the pattern. Through full cross validation, 11 principal components presenting important information of spectra were confirmed. The correlation coefficient (R), residual variance (Rv) and standard error of calibration (SEC) were 0.999 916, 0. 00 985 and 0.014 538 respectively. Then, these 11 principal components were taken as the input of BP neural network. This model was used to predict the varieties of 40 unknown samples. Through training and prediction, the recognition rate of 100% was achieved by BP neural network. This model has come to be reliable and practicable. Thus, it is concluded that PLS analysis combined with BP neural network is an available alternative for pattern recognition based on the spectroscopy technology.
Fast magneto-optic switch based on nanosecond pulses
NASA Astrophysics Data System (ADS)
Weng, Zi-Hua; Ruan, Jian-Jian; Lin, Shao-Han; Chen, Zhi-Min
2011-09-01
The paper studies an all fiber high-speed magneto-optic switch which includes an optical route, a nanosecond pulse generator, and a magnetic field module in order to reduce the switching time of the optical switch in the all optical network. A compact nanosecond pulse generator can be designed based on the special character of the avalanche transistor. The output current pulse of the nanosecond pulse generator is less than 5 ns, while the pulse amplitude is more than 100 V and the pulse width is about 10 to 20 ns, which is able to drive a high-speed magnetic field. A solenoid is used as the magnetic field module, and a bismuth-substituted rare-earth iron garnet single crystal is chosen as the Faraday rotator. By changing the direction of current in the solenoid quickly, the magnetization of the magneto-optic material is reversed, and the optical beam can be rapidly switched. The experimental results indicate that the switching time of the device is about 100 to 400 ns, which can partially meet the demand of the rapid development of the all optical network.
NASA Astrophysics Data System (ADS)
Debiossac, M.; Zugarramurdi, A.; Khemliche, H.; Roncin, P.; Borisov, A. G.; Momeni, A.; Atkinson, P.; Eddrief, M.; Finocchi, F.; Etgens, V. H.
2014-10-01
A grazing incidence fast atom diffraction (GIFAD or FAD) setup, installed on a molecular beam epitaxy chamber, has been used to characterize the β2(2×4) reconstruction of a GaAs(001) surface at 530∘C under an As4 overpressure. Using a 400-eV 4He beam, high-resolution diffraction patterns with up to eighty well-resolved diffraction orders are observed simultaneously, providing a detailed fingerprint of the surface structure. Experimental diffraction data are in good agreement with results from quantum scattering calculations based on an ab initio projectile-surface interaction potential. Along with exact calculations, we show that a straightforward semiclassical analysis allows the features of the diffraction chart to be linked to the main characteristics of the surface reconstruction topography. Our results demonstrate that GIFAD is a technique suitable for measuring in situ the subtle details of complex surface reconstructions. We have performed measurements at very small incidence angles, where the kinetic energy of the projectile motion perpendicular to the surface can be reduced to less than 1 meV. This allowed the depth of the attractive van der Waals potential well to be estimated as -8.7 meV in very good agreement with results reported in literature.
Fast ice image retrieval based on a multilayer system
NASA Astrophysics Data System (ADS)
Lu, Guoyu; Sorensen, Scott; Kambhamettu, Chandra
2014-02-01
We propose a multilayer system to perform ice image retrieval. Ice images are typically texture-less, which adds difficulty in retrieving the images. To achieve high accuracy, high level local features are usually used in retrieving the images. However, most high level features contain high dimensionality that slows down the retrieval process. To overcome this problem, we divide the retrieval process into 3 steps. Each step filters out a large portion of images. As the features are constructed according to the ice image properties, one image can be quickly localized compared with the use of high-level features. The ice images are captured in Arctic, where the ice state changes dramatically due to the environmental and other influences. We build the first layer of the system on the utilization of color information and edges, as the color and the edges are the most critical characteristics of ice images. We divide the second layer into two sub-layers. The first sublayer is on the use of edge histogram. For the second sublayer, we detect salient points based on pixel values on the edge position and connect every adjacent points with straight lines. A new feature is built on the basis of distance scale of every adjacent salient points and the angles between connected lines. Our new feature is invariant to transformation, rotation and scaling. As the features in the first two layers are holistic features, the time performance is much better than high-level local features. The third layer is to apply Harris detector to find the correspondences between two features on a small set of filtered images. The experiments show that our system achieves good accuracy while maintaining much better time performance.
Fast shape-based nearest-neighbor search for brain MRIs using hierarchical feature matching.
Zhu, Peihong; Awate, Suyash P; Gerber, Samuel; Whitaker, Ross
2011-01-01
This paper presents a fast method for quantifying shape differences/similarities between pairs of magnetic resonance (MR) brain images. Most shape comparisons in the literature require some kind of deformable registration or identification of exact correspondences. The proposed approach relies on an optimal matching of a large collection of features, using a very fast, hierarchical method from the literature, called spatial pyramid matching (SPM). This paper shows that edge-based image features in combination with SPM results in a fast similarity measure that captures relevant anatomical information in brain MRI. We present extensive comparisons against known methods for shape-based, k-nearest-neighbor lookup to evaluate the performance of the proposed method. Finally, we show that the method compares favorably with more computation-intensive methods in the construction of local atlases for use in brain MR image segmentation.
Fast L1-based sparse representation of EEG for motor imagery signal classification.
Younghak Shin; Heung-No Lee; Balasingham, Ilangko
2016-08-01
Improvement of classification performance is one of the key challenges in electroencephalogram (EEG) based motor imagery brain-computer interface (BCI). Recently, sparse representation based classification (SRC) method has been shown to provide satisfactory classification accuracy in motor imagery classification. In this paper, we aim to evaluate the performance of the SRC method in terms of not only its classification accuracy but also of its computation time. For this purpose, we investigate the performance of recently developed fast L1 minimization methods for their use in SRC, such as homotopy and fast iterative soft-thresholding algorithm (FISTA). From experimental analysis, we note that the SRC method with the fast L1 minimization algorithms is shown to provide robust classification performance, compared to support vector machine (SVM), both in time and accuracy.
A surface ice module for wind turbine dynamic response simulation using FAST
Yu, Bingbin; Karr, Dale G.; Song, Huimin; ...
2016-06-03
It is a fact that developing offshore wind energy has become more and more serious worldwide in recent years. Many of the promising offshore wind farm locations are in cold regions that may have ice cover during wintertime. The challenge of possible ice loads on offshore wind turbines raises the demand of modeling capacity of dynamic wind turbine response under the joint action of ice, wind, wave, and current. The simulation software FAST is an open source computer-aided engineering (CAE) package maintained by the National Renewable Energy Laboratory. In this paper, a new module of FAST for assessing the dynamicmore » response of offshore wind turbines subjected to ice forcing is presented. In the ice module, several models are presented which involve both prescribed forcing and coupled response. For conditions in which the ice forcing is essentially decoupled from the structural response, ice forces are established from existing models for brittle and ductile ice failure. For conditions in which the ice failure and the structural response are coupled, such as lock-in conditions, a rate-dependent ice model is described, which is developed in conjunction with a new modularization framework for FAST. In this paper, analytical ice mechanics models are presented that incorporate ice floe forcing, deformation, and failure. For lower speeds, forces slowly build until the ice strength is reached and ice fails resulting in a quasi-static condition. For intermediate speeds, the ice failure can be coupled with the structural response and resulting in coinciding periods of the ice failure and the structural response. A third regime occurs at high speeds of encounter in which brittle fracturing of the ice feature occurs in a random pattern, which results in a random vibration excitation of the structure. An example wind turbine response is simulated under ice loading of each of the presented models. This module adds to FAST the capabilities for analyzing the response of wind
A surface ice module for wind turbine dynamic response simulation using FAST
Yu, Bingbin; Karr, Dale G.; Song, Huimin; Sirnivas, Senu
2016-06-03
It is a fact that developing offshore wind energy has become more and more serious worldwide in recent years. Many of the promising offshore wind farm locations are in cold regions that may have ice cover during wintertime. The challenge of possible ice loads on offshore wind turbines raises the demand of modeling capacity of dynamic wind turbine response under the joint action of ice, wind, wave, and current. The simulation software FAST is an open source computer-aided engineering (CAE) package maintained by the National Renewable Energy Laboratory. In this paper, a new module of FAST for assessing the dynamic response of offshore wind turbines subjected to ice forcing is presented. In the ice module, several models are presented which involve both prescribed forcing and coupled response. For conditions in which the ice forcing is essentially decoupled from the structural response, ice forces are established from existing models for brittle and ductile ice failure. For conditions in which the ice failure and the structural response are coupled, such as lock-in conditions, a rate-dependent ice model is described, which is developed in conjunction with a new modularization framework for FAST. In this paper, analytical ice mechanics models are presented that incorporate ice floe forcing, deformation, and failure. For lower speeds, forces slowly build until the ice strength is reached and ice fails resulting in a quasi-static condition. For intermediate speeds, the ice failure can be coupled with the structural response and resulting in coinciding periods of the ice failure and the structural response. A third regime occurs at high speeds of encounter in which brittle fracturing of the ice feature occurs in a random pattern, which results in a random vibration excitation of the structure. An example wind turbine response is simulated under ice loading of each of the presented models. This module adds to FAST the capabilities for analyzing the response of wind
A surface ice module for wind turbine dynamic response simulation using FAST
Yu, Bingbin; Karr, Dale G.; Song, Huimin; Sirnivas, Senu
2016-06-03
It is a fact that developing offshore wind energy has become more and more serious worldwide in recent years. Many of the promising offshore wind farm locations are in cold regions that may have ice cover during wintertime. The challenge of possible ice loads on offshore wind turbines raises the demand of modeling capacity of dynamic wind turbine response under the joint action of ice, wind, wave, and current. The simulation software FAST is an open source computer-aided engineering (CAE) package maintained by the National Renewable Energy Laboratory. In this paper, a new module of FAST for assessing the dynamic response of offshore wind turbines subjected to ice forcing is presented. In the ice module, several models are presented which involve both prescribed forcing and coupled response. For conditions in which the ice forcing is essentially decoupled from the structural response, ice forces are established from existing models for brittle and ductile ice failure. For conditions in which the ice failure and the structural response are coupled, such as lock-in conditions, a rate-dependent ice model is described, which is developed in conjunction with a new modularization framework for FAST. In this paper, analytical ice mechanics models are presented that incorporate ice floe forcing, deformation, and failure. For lower speeds, forces slowly build until the ice strength is reached and ice fails resulting in a quasi-static condition. For intermediate speeds, the ice failure can be coupled with the structural response and resulting in coinciding periods of the ice failure and the structural response. A third regime occurs at high speeds of encounter in which brittle fracturing of the ice feature occurs in a random pattern, which results in a random vibration excitation of the structure. An example wind turbine response is simulated under ice loading of each of the presented models. This module adds to FAST the capabilities for analyzing the response of wind
Surface modification of polypropylene based particle foams
NASA Astrophysics Data System (ADS)
Schreier, P.; Trassl, C.; Altstädt, V.
2014-05-01
This paper deals with the modification of the surface properties of expanded polypropylene (EPP). EPP is a semi-hard to soft elastic thermoplastic foam. The characteristic surface of EPP shows process-related steam nozzle imprints and gussets. Therefore EPP does not satisfy the quality requirements for visible automotive applications. In order to meet these demands, plastic surfaces are usually enhanced with functional or decorative coatings, e.g. textiles, plastic films or paint. The coating of plastics with low surface energies such as PP often leads to adhesion problems by reason of the missing polar and functional groups. This paper gives an evaluation of activation and pre-treatment methods of EPP, with the aim to identify the most suitable pre-treatment method. For this purpose five typical surface treatment methods - flame treatment, corona, fluorination, atmospheric and low-pressure plasma - were performed on EPP samples. As a comparison criterion the maximum increase in the adhesion force between a polyurethane-based coating and the modified EPP substrate was selected. Moreover the influence of the selected pre-treatment method on the increase in the total surface energy and its polar component was investigated by the drop shape analysis method. The results showed that the contact angle measurement is a suitable method to determine the polar and disperse fractions of the surface tension of EPP. Furthermore, all performed methods increased the adhesion of EPP.
Fast estimation of lacustrine groundwater discharge volumes based on stable water isotopes
NASA Astrophysics Data System (ADS)
Lewandowski, Jörg; Gercken, Jasper; Premke, Katrin; Meinikmann, Karin
2017-04-01
Lake eutrophication is still a severe problem in many parts of the world, commonly due to anthropogenic sources of nutrients such as fertilizer, manure or sewage. Improved quantification of nutrient inputs to lakes is required to address this problem. One possible input path for nutrients is lacustrine groundwater discharge (LGD). However, LGD has often been disregarded in water and nutrient budgets of lakes although some studies reveal an extraordinary importance of LGD for phosphorus inputs. The aim of the present study is to identify lakes that receive large LGD volumes compared to other input paths. Such lakes are more prone to high groundwater-borne nutrient inputs than lakes with small LGD volumes. . The simple and fast approach used in the present study is based on the fact that evaporation of surface water causes an enrichment of heavier isotopes in lake and river water while precipitation and groundwater are lighter and have similar isotopic signatures. The isotopic signature of lake water depends on a) the isotopic signature of its inputs and b) the lakés residence time (the longer the more enriched with heavier isotopes). In the present study we used the citizen science project "Tatort Gewässer" to let people collect lake water samples all over Germany. Based on additional information we identified lakes without or with small (compared to the lake volume) aboveground inflows. Based on the isotopic signatures of these lakes and additional background information such as the mean depth we could identify lakes in which groundwater is an important component of the water balance. The results will be used as a basis of intense research on groundwater-driven lake eutrophication.
Empirical approaches for fast robust inversion of seismic moment tensor from surface waves
NASA Astrophysics Data System (ADS)
Reymond, D.; Crusem, R.; Barriot, J. P.
2010-04-01
We present a method of robust inversion (also called IRLS: Iterative Reweighted Least Squares) which is surprisingly insensitive to outlier data points, as it discards automatically the aberrant points, without the necessity for careful human inspection and control of data quality. Different criteria based on residuals and signal-to-noise ratio are injected into the covariance matrix (acting like a weighting function), to perform the robust inversion using the iterative generalized discrete inverse method of Tarantola-Valette. From a practical point of view, this algorithm is used as the Preliminary Determination of Focal Mechanism (PDFM) method, which is a project for rapid estimation of source parameters of strong earthquakes in the context of tsunami warning. The input data to be inverted are spectra of long period surface waves, and as an output, the computed result is the seismic moment tensor, from which focal geometry of an earthquake, and principal stress axes are obtained. This method can be applied to any other method of non-linear (iterative) inversions confronted to the problem of outlier points polluting the data sets.
Gruslys, Audrunas; Acosta-Cabronero, Julio; Nestor, Peter J; Williams, Guy B; Ansorge, Richard E
2014-11-01
Recently inexpensive graphical processing units (GPUs) have become established as a viable alternative to traditional CPUs for many medical image processing applications. GPUs offer the potential of very significant improvements in performance at low cost and with low power consumption. One way in which GPU programs differ from traditional CPU programs is that increasingly elaborate calculations per voxel may not impact of the overall processing time because memory accesses can dominate execution time. This paper presents a new GPU based elastic image registration program named Ezys. The Ezys image registration algorithm belongs to the wide class of diffeomorphic demons but uses surface preserving image smoothing and regularization filters designed for a GPU that would be computationally expensive on a CPU. We describe the methods used in Ezys and present results from two important neuroscience applications. Firstly inter-subject registration for transfer of anatomical labels and secondly longitudinal intra-subject registration to quantify atrophy in individual subjects. Both experiments showed that Ezys registration compares favorably with other popular elastic image registration programs. We believe Ezys is a useful tool for neuroscience and other applications, and also demonstrates the value of developing of novel image processing filters specifically designed for GPUs.
A Fast and Robust Poisson-Boltzmann Solver Based on Adaptive Cartesian Grids.
Boschitsch, Alexander H; Fenley, Marcia O
2011-05-10
An adaptive Cartesian grid (ACG) concept is presented for the fast and robust numerical solution of the 3D Poisson-Boltzmann Equation (PBE) governing the electrostatic interactions of large-scale biomolecules and highly charged multi-biomolecular assemblies such as ribosomes and viruses. The ACG offers numerous advantages over competing grid topologies such as regular 3D lattices and unstructured grids. For very large biological molecules and multi-biomolecule assemblies, the total number of grid-points is several orders of magnitude less than that required in a conventional lattice grid used in the current PBE solvers thus allowing the end user to obtain accurate and stable nonlinear PBE solutions on a desktop computer. Compared to tetrahedral-based unstructured grids, ACG offers a simpler hierarchical grid structure, which is naturally suited to multigrid, relieves indirect addressing requirements and uses fewer neighboring nodes in the finite difference stencils. Construction of the ACG and determination of the dielectric/ionic maps are straightforward, fast and require minimal user intervention. Charge singularities are eliminated by reformulating the problem to produce the reaction field potential in the molecular interior and the total electrostatic potential in the exterior ionic solvent region. This approach minimizes grid-dependency and alleviates the need for fine grid spacing near atomic charge sites. The technical portion of this paper contains three parts. First, the ACG and its construction for general biomolecular geometries are described. Next, a discrete approximation to the PBE upon this mesh is derived. Finally, the overall solution procedure and multigrid implementation are summarized. Results obtained with the ACG-based PBE solver are presented for: (i) a low dielectric spherical cavity, containing interior point charges, embedded in a high dielectric ionic solvent - analytical solutions are available for this case, thus allowing rigorous
A Fast and Robust Poisson-Boltzmann Solver Based on Adaptive Cartesian Grids
Boschitsch, Alexander H.; Fenley, Marcia O.
2011-01-01
An adaptive Cartesian grid (ACG) concept is presented for the fast and robust numerical solution of the 3D Poisson-Boltzmann Equation (PBE) governing the electrostatic interactions of large-scale biomolecules and highly charged multi-biomolecular assemblies such as ribosomes and viruses. The ACG offers numerous advantages over competing grid topologies such as regular 3D lattices and unstructured grids. For very large biological molecules and multi-biomolecule assemblies, the total number of grid-points is several orders of magnitude less than that required in a conventional lattice grid used in the current PBE solvers thus allowing the end user to obtain accurate and stable nonlinear PBE solutions on a desktop computer. Compared to tetrahedral-based unstructured grids, ACG offers a simpler hierarchical grid structure, which is naturally suited to multigrid, relieves indirect addressing requirements and uses fewer neighboring nodes in the finite difference stencils. Construction of the ACG and determination of the dielectric/ionic maps are straightforward, fast and require minimal user intervention. Charge singularities are eliminated by reformulating the problem to produce the reaction field potential in the molecular interior and the total electrostatic potential in the exterior ionic solvent region. This approach minimizes grid-dependency and alleviates the need for fine grid spacing near atomic charge sites. The technical portion of this paper contains three parts. First, the ACG and its construction for general biomolecular geometries are described. Next, a discrete approximation to the PBE upon this mesh is derived. Finally, the overall solution procedure and multigrid implementation are summarized. Results obtained with the ACG-based PBE solver are presented for: (i) a low dielectric spherical cavity, containing interior point charges, embedded in a high dielectric ionic solvent – analytical solutions are available for this case, thus allowing rigorous
Intra-patient colon surface registration based on teniae; coli
NASA Astrophysics Data System (ADS)
Lamy, Julien; Summers, Ronald M.
2007-03-01
CT colonography, a prevalent tool to diagnose colon cancer in its early stages, is often limited by bad distention, or retained fluids, which will cause segments of the colon to be impossible to process by CAD tools. By scanning patients in both prone and supine positions, collapsed segments and retained fluids will not be in the same place in both images, increasing the length of the colon that can be processed correctly. In order to fully use these two scans, they must be registered, so that a lesion identified on one of them can be mapped to the other, thus increasing sensitivity and specificity of CAD tools. The surface of the colon is however large (more than half a million vertices on our images), and has no canonical shape, which makes atlases and other widely used registration algorithms non optimal. We present in this paper a fast method to register the colon surface between prone and supine scans using landmarks present on the colon, the teniae coli. Our method is composed of three steps. First, we register the body, based on manually placed landmarks. Then we register the three teniae; coli, and, from this registration, we compute a deformation field for each vertex of the colon surface. We tested our method on 5 cases, by measuring the RMS error after body registration, quantifying the intrisic movement of the colon, and after colon surface registration. The RMS error was reduced from 1.8 cm to 0.49 cm, a reduction of 71%.
Surface Proton Hopping and Fast-Kinetics Pathway of Water Oxidation on Co_{3}O_{4} (001) Surface
Pham, Hieu H.; Cheng, Mu-Jeng; Frei, Heinz; Wang, Lin-Wang
2016-07-18
A mechanism of water splitting on cobalt oxide surface is proposed, with atomistic thermodynamic and kinetic details. The density-functional theory studies suggest that the oxidation process could proceed with several nonelectrochemical (spontaneous) intermediate steps, following the initial electrochemical hydroxyl-to-oxo conversion. More specifically, the single oxo sites Co^{IV}=O can hop (via surface proton/electron hopping) to form oxo pair Co^{IV}(=O)-O-Co^{IV}=O, which will undergo nucleophilic attack by a water molecule and form the hydroperoxide CoIII -OOH. Encounter with another oxo would generate a superoxo Co^{III}-OO, followed by the O_{2} release. Finally the addition and deprotonation of a fresh water molecule will restart the catalytic cycle by forming the hydroxyl Co^{III}-OH at this active site. Our theoretical investigations indicate that all nonelectrochemical reactions are kinetically fast and thermodynamically downhill. This hypothesis is supported by recent in situ spectroscopic observations of surface superoxo that is stabilized by hydrogen bonding to adjacent hydroxyl group as an intermediate on fast-kinetics Co catalytic site.
A rate-constrained fast full-search algorithm based on block sum pyramid.
Song, Byung Cheol; Chun, Kang-Wook; Ra, Jong Beom
2005-03-01
This paper presents a fast full-search algorithm (FSA) for rate-constrained motion estimation. The proposed algorithm, which is based on the block sum pyramid frame structure, successively eliminates unnecessary search positions according to rate-constrained criterion. This algorithm provides the identical estimation performance to a conventional FSA having rate constraint, while achieving considerable reduction in computation.
Fast neutron mutants database and web displays at SoyBase
USDA-ARS?s Scientific Manuscript database
SoyBase, the USDA-ARS soybean genetics and genomics database, has been expanded to include data for the fast neutron mutants produced by Bolon, Vance, et al. In addition to the expected text and sequence homology searches and visualization of the indels in the context of the genome sequence viewer, ...
Fink, C.L.; Guenther, P.T.; Smith, D.L.
1992-12-01
All accelerator-based fast-neutron contraband interrogation systems have many closely interrelated subsystems, whose performance parameters will be critically interdependent. For optimal overall performance, a systems analysis design approach is required. This paper provides a general overview of the interrelationships and the tradeoffs to be considered for optimization of nonaccelerator subsystems.
Child and Parent Voices on a Community-Based Prevention Program (FAST)
ERIC Educational Resources Information Center
Fearnow-Kenney, Melodie; Hill, Patricia; Gore, Nicole
2016-01-01
Families and Schools Together (FAST) is a collaborative program involving schools, families, and community-based partners in efforts to prevent substance use, juvenile delinquency, school failure, child abuse and neglect, mental health problems, and violence. Although evaluated extensively, there remains a dearth of qualitative data on child and…
Common and Specific Factors Approaches to Home-Based Treatment: I-FAST and MST
ERIC Educational Resources Information Center
Lee, Mo Yee; Greene, Gilbert J.; Fraser, J. Scott; Edwards, Shivani G.; Grove, David; Solovey, Andrew D.; Scott, Pamela
2013-01-01
Objectives: This study examined the treatment outcomes of integrated families and systems treatment (I-FAST), a moderated common factors approach, in reference to multisystemic therapy (MST), an established specific factor approach, for treating at risk children and adolescents and their families in an intensive community-based setting. Method:…
NASA Astrophysics Data System (ADS)
Wang, Yuanyu; Yuen, Peter
2017-05-01
A robust image dehazing algorithm based on the first-order scattering of the image degradation model is proposed. In this work, there are three contributions toward image dehazing: (i) a robust method for assessing the global irradiance from the most hazy-opaque regions of the imagery is proposed; (ii) more detailed depth information of the scene can be recovered through the enhancement of the transmission map using scene partitions and entropy-based alternating fast-weighted guided filters; and (iii) crucial model parameters are extracted from in-scene information. This paper briefly outlines the principle of the proposed technique and compares the dehazed results with four other dehazing algorithms using a variety of different types of imageries. The dehazed images have been assessed through a quality figure-of-merit, and experiments have shown that the proposed algorithm effectively removes haze and has achieved a much better quality of dehazed images than all other state-of-the-art dehazing methods employed in this work.
Time-driven Activity-based Cost of Fast-Track Total Hip and Knee Arthroplasty.
Andreasen, Signe E; Holm, Henriette B; Jørgensen, Mira; Gromov, Kirill; Kjærsgaard-Andersen, Per; Husted, Henrik
2017-06-01
Fast-track total hip and knee arthroplasty (THA and TKA) has been shown to reduce the perioperative convalescence resulting in less postoperative morbidity, earlier fulfillment of functional milestones, and shorter hospital stay. As organizational optimization is also part of the fast-track methodology, the result could be a more cost-effective pathway altogether. As THA and TKA are potentially costly procedures and the numbers are increasing in an economical limited environment, the aim of this study is to present baseline detailed economical calculations of fast-track THA and TKA and compare this between 2 departments with different logistical set-ups. Prospective data collection was analyzed using the time-driven activity-based costing method (TDABC) on time consumed by different staff members involved in patient treatment in the perioperative period of fast-track THA and TKA in 2 Danish orthopedic departments with standardized fast-track settings, but different logistical set-ups. Length of stay was median 2 days in both departments. TDABC revealed minor differences in the perioperative settings between departments, but the total cost excluding the prosthesis was similar at USD 2511 and USD 2551, respectively. Fast-track THA and TKA results in similar cost despite differences in the organizational set-up. Compared to cost associated with longer more conventional published pathways, fast-track is cheaper, which on top of the favorable published clinical outcome adds to cost efficiency and the potential for economic savings. Detailed baseline TDABC calculations are provided for comparison and further optimization of cost-benefit effectiveness. Copyright © 2016 Elsevier Inc. All rights reserved.
Invariant Fast Diffusion on the Surfaces of Ultrastable and Aged Molecular Glasses.
Zhang, Yue; Fakhraai, Zahra
2017-02-10
Surface diffusion of molecular glasses is found to be orders of magnitude faster than bulk diffusion, with a stronger dependence on the molecular size and intermolecular interactions. In this study, we investigate the effect of variations in bulk dynamics on the surface diffusion of molecular glasses. Using the tobacco mosaic virus as a probe particle, we measure the surface diffusion on glasses of the same composition but with orders of magnitude of variations in bulk relaxation dynamics, produced by physical vapor deposition, physical aging, and liquid quenching. The bulk fictive temperatures of these glasses span over 35 K, indicating 13 to 20 orders of magnitude changes in bulk relaxation times. However, the surface diffusion coefficients on these glasses are measured to be identical at two temperatures below the bulk glass transition temperature T_{g}. These results suggest that surface diffusion has no dependence on the bulk relaxation dynamics when measured below T_{g}.
Invariant Fast Diffusion on the Surfaces of Ultrastable and Aged Molecular Glasses
NASA Astrophysics Data System (ADS)
Zhang, Yue; Fakhraai, Zahra
2017-02-01
Surface diffusion of molecular glasses is found to be orders of magnitude faster than bulk diffusion, with a stronger dependence on the molecular size and intermolecular interactions. In this study, we investigate the effect of variations in bulk dynamics on the surface diffusion of molecular glasses. Using the tobacco mosaic virus as a probe particle, we measure the surface diffusion on glasses of the same composition but with orders of magnitude of variations in bulk relaxation dynamics, produced by physical vapor deposition, physical aging, and liquid quenching. The bulk fictive temperatures of these glasses span over 35 K, indicating 13 to 20 orders of magnitude changes in bulk relaxation times. However, the surface diffusion coefficients on these glasses are measured to be identical at two temperatures below the bulk glass transition temperature Tg . These results suggest that surface diffusion has no dependence on the bulk relaxation dynamics when measured below Tg.
Ultra Fast X-ray Streak Camera for TIM Based Platforms
Marley, E; Shepherd, R; Fulkerson, E S; James, L; Emig, J; Norman, D
2012-05-02
Ultra fast x-ray streak cameras are a staple for time resolved x-ray measurements. There is a need for a ten inch manipulator (TIM) based streak camera that can be fielded in a newer large scale laser facility. The LLNL ultra fast streak camera's drive electronics have been upgraded and redesigned to fit inside a TIM tube. The camera also has a new user interface that allows for remote control and data acquisition. The system has been outfitted with a new sensor package that gives the user more operational awareness and control.
Tunable temporal gap based on simultaneous fast and slow light in electro-optic photonic crystals.
Li, Guangzhen; Chen, Yuping; Jiang, Haowei; Liu, Yi'an; Liu, Xiao; Chen, Xianfeng
2015-07-13
We demonstrated a tunable temporal gap based on simultaneous fast and slow light in electro-optic photonic crystals. The light experiences an anomalous dispersion near the transmission center and a normal dispersion away from the center, where it can be accelerated and slowed down, respectively. We also obtained the switch between fast and slow light by adjusting the external electric filed. The observed largest temporal gap is 541 ps, which is crucial in practical event operation inside the gap. The results offer a new solution for temporal cloak.
Fast switchable grating based on orthogonal photo alignments of ferroelectric liquid crystals
NASA Astrophysics Data System (ADS)
Srivastava, A. K.; Hu, Wei; Chigrinov, V. G.; Kiselev, A. D.; Lu, Yan-Qing
2012-07-01
We demonstrate a fast switchable grating based on ferroelectric liquid crystals and orthogonal planar alignment by means of photo alignments. Both 1D and 2D gratings have been constructed. The proposed diffracting element provides fast response time of around 20 μs, contrast of 7000:1 and high diffraction efficiency, at the electric field of 6 V/μm. The saturated electro-optical (EO) states up to very high frequency (≈5 kHz) are the real advantage of the proposed switchable grating, which opens several opportunities to improve the quality of existing devices and to find new applications.
Piekarz, H.; Hays, S.; Huang, Y.; Shiltsev, V.; /Fermilab
2008-06-01
Fast-cycling synchrotrons are key instruments for accelerator based nuclear and high-energy physics programs. We explore a possibility to construct fast-cycling synchrotrons by using super-ferric, {approx}2 Tesla B-field dipole magnets powered with a superconducting transmission line. We outline both the low temperature (LTS) and the high temperature (HTS) superconductor design options and consider dynamic power losses for an accelerator with operation cycle of 0.5 Hz. We also briefly outline possible power supply system for such accelerator, and discuss the quench protection system for the magnet string powered by a transmission line conductor.
Fast polarization-state tracking scheme based on radius-directed linear Kalman filter.
Yang, Yanfu; Cao, Guoliang; Zhong, Kangping; Zhou, Xian; Yao, Yong; Lau, Alan Pak Tao; Lu, Chao
2015-07-27
We propose and experimentally demonstrate a fast polarization tracking scheme based on radius-directed linear Kalman filter. It has the advantages of fast convergence and is inherently insensitive to phase noise and frequency offset effects. The scheme is experimentally compared to conventional polarization tracking methods on the polarization rotation angular frequency. The results show that better tracking capability with more than one order of magnitude improvement is obtained in the cases of polarization multiplexed QPSK and 16QAM signals. The influences of the filter tuning parameters on tracking performance are also investigated in detail.
Photonic-chip-based tunable slow and fast light via stimulated Brillouin scattering.
Pant, Ravi; Byrnes, Adam; Poulton, Christopher G; Li, Enbang; Choi, Duk-Yong; Madden, Steve; Luther-Davies, Barry; Eggleton, Benjamin J
2012-03-01
We report the first (to our knowledge) demonstration of photonic chip based tunable slow and fast light via stimulated Brillouin scattering. Slow, fast, and negative group velocities were observed in a 7 cm long chalcogenide (As(2)S(3)) rib waveguide with a group index change ranging from ~-44 to +130, which results in a maximum delay of ~23 ns at a relatively low gain of ~23 dB. Demonstration of large tunable delays in a chip scale device opens up applications such as frequency sensing and true-time delay for a phased array antenna, where integration and delays ~10 ns are highly desirable.
Wang, A-Q; Guo, L-X; Chai, C
2011-02-01
A fast numerical method has been proposed in this paper for calculating the electromagnetic scattering from a perfectly electric conducting object above a two-layered dielectric rough surface. The focus in this study is large incidence. The parallel fast multipole method is combined with the method of moments for fast implementation of the scattering from this composite model. The biconjugate gradient method is adopted to solve the unsymmetrical matrix equation and parallelized. The simulating time and parallel speedup ratio with different processors are provided. Several numerical results are shown and analyzed to discuss the influences of the parameters of the rough surface, the object, and the intermediate medium on the bistatic scattering.
Fast in-situ tool inspection based on inverse fringe projection and compact sensor heads
NASA Astrophysics Data System (ADS)
Matthias, Steffen; Kästner, Markus; Reithmeier, Eduard
2016-11-01
Inspection of machine elements is an important task in production processes in order to ensure the quality of produced parts and to gather feedback for the continuous improvement process. A new measuring system is presented, which is capable of performing the inspection of critical tool geometries, such as gearing elements, inside the forming machine. To meet the constraints on sensor head size and inspection time imposed by the limited space inside the machine and the cycle time of the process, the measuring device employs a combination of endoscopy techniques with the fringe projection principle. Compact gradient index lenses enable a compact design of the sensor head, which is connected to a CMOS camera and a flexible micro-mirror based projector via flexible fiber bundles. Using common fringe projection patterns, the system achieves measuring times of less than five seconds. To further reduce the time required for inspection, the generation of inverse fringe projection patterns has been implemented for the system. Inverse fringe projection speeds up the inspection process by employing object-adapted patterns, which enable the detection of geometry deviations in a single image. Two different approaches to generate object adapted patterns are presented. The first approach uses a reference measurement of a manufactured tool master to generate the inverse pattern. The second approach is based on a virtual master geometry in the form of a CAD file and a ray-tracing model of the measuring system. Virtual modeling of the measuring device and inspection setup allows for geometric tolerancing for free-form surfaces by the tool designer in the CAD-file. A new approach is presented, which uses virtual tolerance specifications and additional simulation steps to enable fast checking of metric tolerances. Following the description of the pattern generation process, the image processing steps required for inspection are demonstrated on captures of gearing geometries.
Combined fast selective reduction using Mn-based catalysts and nonthermal plasma for NOx removal.
Chen, Jun Xiang; Pan, Kuan Lun; Yu, Sheng Jen; Yen, Shaw Yi; Chang, Moo Been
2017-07-26
In this study, the concept of fast SCR for NO reduction with NH3 as reducing agent is realized via the combination of nonthermal plasma (NTP) with Mn-based catalyst. Experimental results indicate that 10% wt. Mn-Ce-Ni/TiO2 possesses better physical and chemical properties of surface, resulting in higher NO removal efficiency if compared with 10% wt. Mn-Ce/TiO2 and 10% wt. Mn-Ce-Cu/TiO2. Mn-Ce-Ni/TiO2 of 10% wt. achieves 100% NOx conversion at 150 °C, while 10% wt. Mn-Ce/TiO2 and 10% wt. Mn-Ce-Cu/TiO2 need to be operated at a temperature above 200 °C for 100% NOx conversion. However, NO conversion achieved with 10% wt. Mn-Ce-Ni/TiO2 is significantly reduced as H2O(g) and SO2 are introduced into the SCR system simultaneously. Further, two-stage system (SCR with DBD) is compared with the catalyst-alone for NOx conversion and N2 selectivity. The results indicate that 100% NOx conversion can be achieved with two-stage system at 100 °C, while N2 selectivity reaches 80%. Importantly, NOx conversion achieved with two-stage system could maintain >95% in the presence of C2H4, CO, SO2, and H2O(g), indicating that two-stage system has better tolerance for complicated gas composition. Overall, this study demonstrates that combining NTP with Mn-based catalyst is effective in reducing NOx emission at a low temperature (≤200 °C) and has good potential for industrial application.
A surface-based cloud observing system
NASA Technical Reports Server (NTRS)
Albrecht, B. A.; Ackerman, T. P.; Thomson, D. W.; Mace, G.; Miller, M. A.; Peters, R. M.
1991-01-01
The paper describes a surface-based system, called the Cloud Observing System (COS), that was developed for measurements of the dynamical and thermodynamical properties of clouds and of their interaction with the large-scale environment, by combining several remote sensors and in situ systems. The atmospheric parameters that will be measured by COS include precipitation, the velocity and direction of wind, the cloud liquid water, the low-level winds and turbulence structure, integrated liquid and vapor quantities, the temperature and water profiles, the cloud radiance and the cloud base temperature, irradiances at the surface, the low-level temperature profile, the cloud-base height, and the cloud fraction; video cameras will provide visual records of clouds.
Detection of fast neutrons using detectors based on semi-insulating GaAs
NASA Astrophysics Data System (ADS)
Zat'ko, B.; Sedlačková, K.; Dubecký, F.; Boháček, P.; Sekáčová, M.; Nečas, V.
2011-12-01
Detectors with AuZn square Schottky contact of the area of 2.5 × 2.5 mm2 were fabricated. On the back side, the whole area AuGeNi eutectic ohmic contact was evaporated. The thickness of the base material (semi-insulating GaAs) was 220 μm. The connection of 4 detectors in parallel was tested to get the detection area of 25 mm2. The 239Pu-Be fast neutron source with energies between 0.5 and 12 MeV was used in experimental measurements. We have investigated the optimal thickness of HDPE (high-density polyethylene) conversion layer for fast neutron detection. The spectra of the neutrons were measured by detectors covered by HDPE converter of different thicknesses. The fast neutron detection efficiency proved experimentally was compared with results from simulations performed by MCNPX (Monte Carlo N-Particle eXtended) code.
Fast online Monte Carlo-based IMRT planning for the MRI linear accelerator.
Bol, G H; Hissoiny, S; Lagendijk, J J W; Raaymakers, B W
2012-03-07
The MRI accelerator, a combination of a 6 MV linear accelerator with a 1.5 T MRI, facilitates continuous patient anatomy updates regarding translations, rotations and deformations of targets and organs at risk. Accounting for these demands high speed, online intensity-modulated radiotherapy (IMRT) re-optimization. In this paper, a fast IMRT optimization system is described which combines a GPU-based Monte Carlo dose calculation engine for online beamlet generation and a fast inverse dose optimization algorithm. Tightly conformal IMRT plans are generated for four phantom cases and two clinical cases (cervix and kidney) in the presence of the magnetic fields of 0 and 1.5 T. We show that for the presented cases the beamlet generation and optimization routines are fast enough for online IMRT planning. Furthermore, there is no influence of the magnetic field on plan quality and complexity, and equal optimization constraints at 0 and 1.5 T lead to almost identical dose distributions.
Fast online Monte Carlo-based IMRT planning for the MRI linear accelerator
NASA Astrophysics Data System (ADS)
Bol, G. H.; Hissoiny, S.; Lagendijk, J. J. W.; Raaymakers, B. W.
2012-03-01
The MRI accelerator, a combination of a 6 MV linear accelerator with a 1.5 T MRI, facilitates continuous patient anatomy updates regarding translations, rotations and deformations of targets and organs at risk. Accounting for these demands high speed, online intensity-modulated radiotherapy (IMRT) re-optimization. In this paper, a fast IMRT optimization system is described which combines a GPU-based Monte Carlo dose calculation engine for online beamlet generation and a fast inverse dose optimization algorithm. Tightly conformal IMRT plans are generated for four phantom cases and two clinical cases (cervix and kidney) in the presence of the magnetic fields of 0 and 1.5 T. We show that for the presented cases the beamlet generation and optimization routines are fast enough for online IMRT planning. Furthermore, there is no influence of the magnetic field on plan quality and complexity, and equal optimization constraints at 0 and 1.5 T lead to almost identical dose distributions.
Ho, T.-S.; Rabitz, H.; Aoiz, F. J.; Banares, L.; Vazquez, S. A.; Harding, L. B.; Chemistry; Princeton Univ.; Univ. Complutense
2003-08-08
A new implementation is presented for the potential energy surface (PES) of the 1{sup 2}A' state of the N({sup 2}D)+H{sub 2} system based on a set of 2715 ab initio points resulting from the multireference configuration interaction (MRCI) calculations. The implementation is carried out using the reproducing Kernel Hilbert Space interpolation method. Range parameters, via bond-order-like coordinates, are properly chosen to render a sufficiently short-range three-body interaction and a regularization procedure is invoked to yield a globally smooth PES. A fast algorithm, with the help of low-order spline reproducing kernels, is implemented for the computation of the PES and, particularly, its gradients, whose fast evaluation is essential for large scale quasi-classical trajectory calculations. It is found that the new PES can be evaluated more than ten times faster than that of an existing (old) PES based on a smaller number (1141) of data points resulting from the same MRCI calculations and a similar interpolation procedure. Although there is a general good correspondence between the two surfaces, the new PES is in much better agreement with the ab initio calculations, especially in key stationary point regions including the C{sub 2v} minimum, the C{sub 2v} transition state, and the N-H-H linear barrier. Moreover, the new PES is free of spurious small scale features. Analytic gradients are made available in the new PES code to further facilitate quasiclassical trajectory calculations, which have been performed and compared with the results based on the old surface.
Resonant Coherent Excitation of Fast Hydrogen Atoms in Front of a LiF(001) Surface
Auth, C.; Mertens, A.; Winter, H.; Borisov, A.G.; Garcia de Abajo, F.J.
1997-12-01
We have scattered protons and hydrogen atoms with energies of some keV from a LiF(001) surface under a grazing angle of incidence. From the intensity of Lyman-{alpha} radiation (transition from n=2 to n=1, {lambda}=121.6 nm ) as a function of projectile energy for different azimuthal orientations of the crystal surface, we find clear evidence for a resonant coherent excitation of n=2 states of hydrogen atoms in the oscillating electric field in front of the insulator surface. {copyright} {ital 1997} {ital The American Physical Society}
NASA Astrophysics Data System (ADS)
Schraknepper, H.; De Souza, R. A.
2016-02-01
Two different physical processes, (i) fast grain-boundary diffusion (FGBD) of oxygen and (ii) hindered oxygen diffusion in a surface space-charge layer, yield oxygen isotope diffusion profiles in a similar form. Two features are observed, with the short, sharp profile close to the surface being followed by a longer, shallower profile. In this study, we develop a procedure for deciding which of the two descriptions applies to experimentally measured profiles. Specifically, we solve Fick's second law, using finite-element simulations, to obtain oxygen isotope diffusion profiles for the two cases. Each set of profiles is then analysed in terms of the competing description. In this manner, we derive falsifiable conditions that allow physical processes to be assigned unambiguously to the two features of such isotope profiles. Applying these conditions to experimental profiles for SrTiO3 single crystals published in the literature, we find that FGBD is an invalid model for describing the diffusion processes.
Dzhelyova, Milena; Rossion, Bruno
2014-12-24
Face perception depends on two main sources of information--shape and surface cues. Behavioral studies suggest that both of them contribute roughly equally to discrimination of individual faces, with only a small advantage provided by their combination. However, it is difficult to quantify the respective contribution of each source of information to the visual representation of individual faces with explicit behavioral measures. To address this issue, facial morphs were created that varied in shape only, surface only, or both. Electrocephalogram (EEG) were recorded from 10 participants during visual stimulation at a fast periodic rate, in which the same face was presented four times consecutively and the fifth face (the oddball) varied along one of the morphed dimensions. Individual face discrimination was indexed by the periodic EEG response at the oddball rate (e.g., 5.88 Hz/5 = 1.18 Hz). While shape information was discriminated mainly at right occipitotemporal electrode sites, surface information was coded more bilaterally and provided a larger response overall. Most importantly, shape and surface changes alone were associated with much weaker responses than when both sources of information were combined in the stimulus, revealing a supra-additive effect. These observations suggest that the two kinds of information combine nonlinearly to provide a full individual face representation, face identity being more than the sum of the contribution of shape and surface cues. © 2014 ARVO.
Case-based reasoning(CBR) model for ultra-fast cooling in plate mill
NASA Astrophysics Data System (ADS)
Hu, Xiao; Wang, Zhaodong; Wang, Guodong
2014-11-01
New generation thermo-mechanical control process(TMCP) based on ultra-fast cooling is being widely adopted in plate mill to product high-performance steel material at low cost. Ultra-fast cooling system is complex because of optimizing the temperature control error generated by heat transfer mathematical model and process parameters. In order to simplify the system and improve the temperature control precision in ultra-fast cooling process, several existing models of case-based reasoning(CBR) model are reviewed. Combining with ultra-fast cooling process, a developed R5 CBR model is proposed, which mainly improves the case representation, similarity relation and retrieval module. Certainty factor is defined in semantics memory unit of plate case which provides not only internal data reliability but also product performance reliability. Similarity relation is improved by defined power index similarity membership function. Retrieval process is simplified and retrieval efficiency is improved apparently by windmill retrieval algorithm. The proposed CBR model is used for predicting the case of cooling strategy and its capability is superior to traditional process model. In order to perform comprehensive investigations on ultra-fast cooling process, different steel plates are considered for the experiment. The validation experiment and industrial production of proposed CBR model are carried out, which demonstrated that finish cooling temperature(FCT) error is controlled within ±25°C and quality rate of product is more than 97%. The proposed CBR model can simplify ultra-fast cooling system and give quality performance for steel product.
Vonhören, Benjamin; Langer, Marcel; Abt, Doris; Barner-Kowollik, Christopher; Ravoo, Bart Jan
2015-12-22
Micropatterns of hydrophilic polymer brushes were prepared by micromolding in capillaries (MIMIC). The polymers are covalently bound to the surfaces by a rapid hetero Diels-Alder reaction, constituting the first example of polymers grafted to surfaces in a defined pattern by MIMIC. The polymers [poly(acrylic acid), poly(hydroxyethyl acrylate), and poly(tetraethylene glycol acrylate) ranging in molecular weight from 1500 to 6000 g mol(-1)] were prepared with narrow dispersities via the reversible addition-fragmentation chain transfer (RAFT) process using a highly electron deficient RAFT agent that can react with surface-anchored dienes such as cyclopentadiene. We demonstrate that the anchoring method is facile to perform and highly suitable for preparing patterned surfaces that are passivated against biological impact in well-defined areas.
Aslan, Kadir; Leonenko, Zoya; Lakowicz, Joseph R; Geddes, Chris D
2005-03-03
Two methods have been considered for the deposition of silver nanorods onto conventional glass substrates. In the first method, silver nanorods were deposited onto 3-(aminopropyl)triethoxysilane-coated glass substrates simply by immersing the substrates into the silver nanorod solution. In the second method, spherical silver seeds that were chemically attached to the surface were subsequently converted and grown into silver nanorods in the presence of a cationic surfactant and silver ions. The size of the silver nanorods was controlled by sequential immersion of silver seed-coated glass substrates into a growth solution and by the duration of immersion, ranging from tens of nanometers to a few micrometers. Atomic force microscopy and optical density measurements were used to characterize the silver nanorods deposited onto the surface of the glass substrates. The application of these new surfaces is for metal-enhanced fluorescence (MEF), whereby the close proximity of silver nanostructures can alter the radiative decay rate of fluorophores, producing enhanced signal intensities and an increased fluorophore photostability. In this paper, it is indeed shown that irregularly shaped silver nanorod-coated surfaces are much better MEF surfaces as compared to traditional silver island or colloid films. Subsequently, these new silver nanorod preparation procedures are likely to find a common place in MEF, as they are a quicker and much cheaper alternative as compared to surfaces fabricated by traditional nanolithographic techniques.
Fast robust non-sequential optical ray-tracing with implicit algebraic surfaces
NASA Astrophysics Data System (ADS)
Greynolds, Alan W.
2015-09-01
The fastest, most robust, general technique for non-sequentially ray-tracing a large class of imaging and non-imaging optical systems is by geometric modeling with algebraic (i.e. polynomial) implicit surfaces. The basic theory of these surfaces with special attention to optimizing their precise intersection with a ray (even at grazing incidence) is outlined for an admittedly limited software implementation. On a couple of "tame" examples, a 64-bit Windows 7 version is significantly faster than the fastest commercial design software (all multi-threaded). Non-sequential ray-surface interactions approaching 30M/sec are achieved on a 12-core 2.67 GHz Mac Pro desktop computer. For a more exotic example of a 6th degree Wood's horn beam dump (light trap), a 32-bit Windows single thread version traces rays nearly 4 times faster than the commercial ASAP software's implicit algebraic surface and over 13 times faster than its equivalent NURBS surface. However, implicit surfaces are foreign to most CAD systems and thus unfortunately, don't easily fit into a modern workflow.
Fast computer simulation of reconstructed image from rainbow hologram based on GPU
NASA Astrophysics Data System (ADS)
Shuming, Jiao; Yoshikawa, Hiroshi
2015-10-01
A fast computer simulation solution for rainbow hologram reconstruction based on GPU is proposed. In the commonly used segment Fourier transform method for rainbow hologram reconstruction, the computation of 2D Fourier transform on each hologram segment is very time consuming. GPU-based parallel computing can be applied to improve the computing speed. Compared with CPU computing, simulation results indicate that our proposed GPU computing can effectively reduce the computation time by as much as eight times.
An OSEE Based Portable Surface Contamination Monitor
NASA Technical Reports Server (NTRS)
Perey, Daniel F.
1997-01-01
Many industrial and aerospace processes involving the joining of materials, require sufficient surface cleanliness to insure proper bonding. Processes as diverse as painting, welding, or the soldering of electronic circuits will be compromised if prior inspection and removal of surface contaminants is inadequate. As process requirements become more stringent and the number of different materials and identified contaminants increases, various instruments and techniques have been developed for improved inspection. One such technique based on the principle of Optically Stimulated Electron Emission (OSEE) has been explored for a number of years as a tool for surface contamination monitoring. Some of the benefits of OSEE are: it's non-contacting; requires little operator training; and has very high contamination sensitivity. This paper describes the development of a portable OSEE based surface contamination monitor. The instrument is suitable for both hand-held and robotic inspections with either manual or automated control of instrument operation. In addition, instrument output data is visually displayed to the operator and may be output to an external computer for archiving or analysis.
Monitoring Surface Deformation using Polarimetric Ground Based Interferometric Radar
NASA Astrophysics Data System (ADS)
Legarsky, J. J.; Gomez, F.; Rosenblad, B.; Loehr, E.; Cherukumilli, S.; Deng, H.; Held, B.; Jenkins, W.
2012-12-01
Surface deformation monitoring using ground based interferometric radar (GBIR) measurements may be desirable for a number of applications in the earth sciences. The University of Missouri (MU) research team has ongoing efforts to use the MU GBIR for monitoring surface deformation at a number of sites. Measurements have been collected at sites requiring access by various transportation means such as using off-road vehicle, hiking, and helicopter. Once on site, initial setup takes about 10 minutes. After setup, an image may be acquired by azimuth scan about every 20 seconds. The highly portable system lends itself to rapid deployment in remote environments and repeat survey sites. The MU GBIR's high portability and fast imaging capabilities allow rapid surveying and long-term surveying potential of surface deformation. Imagery may be formed in near real time for initial quick looks. After data collection, imagery data may be further enhanced by radiometric calibration, polarimetric calibration, and time-series analysis. Imaging may be acquired at the electromagnetic spectral bands of C-band and Ku-band. Prior demonstration of millimeter and better sensitivity to deformation over the course of a day of data collects has been performed using the MU GBIR. In addition, the MU GBIR can be removed and re-positioned at the same point with geodetic-grade precision for repeat surveys. Study results and additional development progress will be presented. This project is sponsored by a grant from the National Science Foundation.
Del Cueto, M; Muzas, A S; Somers, M F; Kroes, G J; Díaz, C; Martín, F
2017-06-28
Atomic diffraction by surfaces under fast grazing incidence conditions has been used for almost a decade to characterize surface properties with more accuracy than with more traditional atomic diffraction methods. From six-dimensional solutions of the time-dependent Schrödinger equation, we show that diffraction of H2 molecules under fast grazing incidence conditions could be even more informative for the characterization of ionic surfaces, due to the large anisotropic electrostatic interaction between the quadrupole moment of the molecule and the electric field created by the ionic crystal. Using the LiF(001) surface as a benchmark, we show that fast grazing incidence diffraction of H2 strongly depends on the initial rotational state of the molecule, while rotationally inelastic processes are irrelevant. We demonstrate that, as a result of the anisotropy of the impinging projectile, initial rotational excitation leads to an increase in intensity of high-order diffraction peaks at incidence directions that satisfy precise symmetry constraints, thus providing a more detailed information on the surface characteristics than that obtained from low-order atomic diffraction peaks under fast grazing incidence conditions. As quadrupole-ion surface potentials are expected to accurately represent the interaction between H2 and any surface with a marked ionic character, our analysis should be of general applicability to any of such surfaces. Finally, we show that a density functional theory description of the molecule-ion surface potential catches the main features observed experimentally.
Ultra fast UV-photo detector based on single-walled carbon nanotube/PEDOT-PSS composites.
Najeeb, Choolakadavil Khalid; Lee, Jae-Hyoek; Chang, Jingbo; Kang, Won-Seok; Kim, Jae-Ho
2009-12-01
Single-walled carbon nanotube (SWNT)/Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS), composites (SWNT/PEDOT-PSS) have been prepared using SWNTs surface modified with a natural gum, 'gum arabic' by simple mixing process. Thin films of SWNTs, PEDOT-PSS and the composites were prepared by vacuum filtration technique and were exposed to ultraviolet (UV) radiations for photoconductivity measurements. The surface resistivity of pristine SWNTs film increased from initial value of 50 omega to 92 omega and that of the polymer film decreased from 6.7 Komega to 3.1 Komega while the resistivity of the composite film decreased from 267 omega to 232 omega upon UV illumination. When the lamp was switched off, the initial resistivities of PEDOT: PSS and SWNTs films were recovered very slowly. Interestingly, on the other hand the composite films demonstrated a very fast relaxation within a few minutes. An on-off cycle ruled out the possibility of local heating effect and revealed that the switching property was originated from the fast transport of charge and heat in the composite films. This property of composite film might open up optoelectronic applications involving photoconductivity, such as photo sensors, organic light emitting diodes (OLED) and organic solar cells. Here in, we demonstrate the application of the SWNT/PEDOT-PSS composite film based device as a UV sensor.
Scintillator-based diagnostic for fast ion loss measurements on DIII-D
Fisher, R. K.; Van Zeeland, M. A.; Pace, D. C.; Heidbrink, W. W.; Muscatello, C. M.; Zhu, Y. B.; Garcia-Munoz, M.
2010-10-15
A new scintillator-based fast ion loss detector has been installed on DIII-D with the time response (>100 kHz) needed to study energetic ion losses induced by Alfven eigenmodes and other MHD instabilities. Based on the design used on ASDEX Upgrade, the diagnostic measures the pitch angle and gyroradius of ion losses based on the position of the ions striking the two-dimensional scintillator. For fast time response measurements, a beam splitter and fiberoptics couple a portion of the scintillator light to a photomultiplier. Reverse orbit following techniques trace the lost ions to their possible origin within the plasma. Initial DIII-D results showing prompt losses and energetic ion loss due to MHD instabilities are discussed.
NASA Astrophysics Data System (ADS)
Fuchs, Alexander; Pengel, Steffen; Bergmeier, Jan; Kahrs, Lüder A.; Ortmaier, Tobias
2015-07-01
Laser surgery is an established clinical procedure in dental applications, soft tissue ablation, and ophthalmology. The presented experimental set-up for closed-loop control of laser bone ablation addresses a feedback system and enables safe ablation towards anatomical structures that usually would have high risk of damage. This study is based on combined working volumes of optical coherence tomography (OCT) and Er:YAG cutting laser. High level of automation in fast image data processing and tissue treatment enables reproducible results and shortens the time in the operating room. For registration of the two coordinate systems a cross-like incision is ablated with the Er:YAG laser and segmented with OCT in three distances. The resulting Er:YAG coordinate system is reconstructed. A parameter list defines multiple sets of laser parameters including discrete and specific ablation rates as ablation model. The control algorithm uses this model to plan corrective laser paths for each set of laser parameters and dynamically adapts the distance of the laser focus. With this iterative control cycle consisting of image processing, path planning, ablation, and moistening of tissue the target geometry and desired depth are approximated until no further corrective laser paths can be set. The achieved depth stays within the tolerances of the parameter set with the smallest ablation rate. Specimen trials with fresh porcine bone have been conducted to prove the functionality of the developed concept. Flat bottom surfaces and sharp edges of the outline without visual signs of thermal damage verify the feasibility of automated, OCT controlled laser bone ablation with minimal process time.
Chen, Maoqi
2016-01-01
Decomposition of electromyograms (EMG) is a key approach to investigating motor unit plasticity. Various signal processing techniques have been developed for high density surface EMG decomposition, among which the convolution kernel compensation (CKC) has achieved high decomposition yield with extensive validation. Very recently, a progressive FastICA peel-off (PFP) framework has also been developed for high density surface EMG decomposition. In this study, the CKC and PFP methods were independently applied to decompose the same sets of high density surface EMG signals. Across 91 trials of 64-channel surface EMG signals recorded from the first dorsal interosseous (FDI) muscle of 9 neurologically intact subjects, there were a total of 1477 motor units identified from the two methods, including 969 common motor units. On average, 10.6 ± 4.3 common motor units were identified from each trial, which showed a very high matching rate of 97.85 ± 1.85% in their discharge instants. The high degree of agreement of common motor units from the CKC and the PFP processing provides supportive evidence of the decomposition accuracy for both methods. The different motor units obtained from each method also suggest that combination of the two methods may have the potential to further increase the decomposition yield. PMID:27642525
Chen, Maoqi; Holobar, Ales; Zhang, Xu; Zhou, Ping
2016-01-01
Decomposition of electromyograms (EMG) is a key approach to investigating motor unit plasticity. Various signal processing techniques have been developed for high density surface EMG decomposition, among which the convolution kernel compensation (CKC) has achieved high decomposition yield with extensive validation. Very recently, a progressive FastICA peel-off (PFP) framework has also been developed for high density surface EMG decomposition. In this study, the CKC and PFP methods were independently applied to decompose the same sets of high density surface EMG signals. Across 91 trials of 64-channel surface EMG signals recorded from the first dorsal interosseous (FDI) muscle of 9 neurologically intact subjects, there were a total of 1477 motor units identified from the two methods, including 969 common motor units. On average, 10.6 ± 4.3 common motor units were identified from each trial, which showed a very high matching rate of 97.85 ± 1.85% in their discharge instants. The high degree of agreement of common motor units from the CKC and the PFP processing provides supportive evidence of the decomposition accuracy for both methods. The different motor units obtained from each method also suggest that combination of the two methods may have the potential to further increase the decomposition yield.
Ma, Tingfeng; Wang, Ji; Du, Jianke; Yang, Jiashi
2015-05-01
We analyze coupled thickness-shear and extensional vibrations of a piezoelectric resonator of AT-cut quartz. Different from most of the AT-cut quartz resonators studied in the literature which are based on the slow shear mode excited by a thickness electric field, the resonator in this paper operates with the fast shear mode driven by a lateral electric field produced by a pair of electrodes on the top surface of the resonator. Mindlin's first-order theory of piezoelectric plates is used. Dispersion relations of the relevant waves in unelectroded and electroded plates are presented and compared. The motional capacitance, resonant frequencies and mode shapes near resonances are obtained from an electrically forced vibration analysis. Trapped modes without vibration near the resonator edges are identified. The effects of various structural parameters on energy trapping are examined and the mechanisms are discussed. The results can provide important bases for the parameters design of new resonators operating with the fast shear mode with new excitation schemes. Copyright © 2015 Elsevier B.V. All rights reserved.
Principal Component Based Diffeomorphic Surface Mapping
Younes, Laurent; Miller, Michael I.
2013-01-01
We present a new diffeomorphic surface mapping algorithm under the framework of large deformation diffeomorphic metric mapping (LDDMM). Unlike existing LDDMM approaches, this new algorithm reduces the complexity of the estimation of diffeomorphic transformations by incorporating a shape prior in which a nonlinear diffeomorphic shape space is represented by a linear space of initial momenta of diffeomorphic geodesic flows from a fixed template. In addition, for the first time, the diffeomorphic mapping is formulated within a decision-theoretic scheme based on Bayesian modeling in which an empirical shape prior is characterized by a low dimensional Gaussian distribution on initial momentum. This is achieved using principal component analysis (PCA) to construct the eigenspace of the initial momentum. A likelihood function is formulated as the conditional probability of observing surfaces given any particular value of the initial momentum, which is modeled as a random field of vector-valued measures characterizing the geometry of surfaces. We define the diffeomorphic mapping as a problem that maximizes a posterior distribution of the initial momentum given observable surfaces over the eigenspace of the initial momentum. We demonstrate the stability of the initial momentum eigenspace when altering training samples using a bootstrapping method. We then validate the mapping accuracy and show robustness to outliers whose shape variation is not incorporated into the shape prior. PMID:21937344
Principal component based diffeomorphic surface mapping.
Qiu, Anqi; Younes, Laurent; Miller, Michael I
2012-02-01
We present a new diffeomorphic surface mapping algorithm under the framework of large deformation diffeomorphic metric mapping (LDDMM). Unlike existing LDDMM approaches, this new algorithm reduces the complexity of the estimation of diffeomorphic transformations by incorporating a shape prior in which a nonlinear diffeomorphic shape space is represented by a linear space of initial momenta of diffeomorphic geodesic flows from a fixed template. In addition, for the first time, the diffeomorphic mapping is formulated within a decision-theoretic scheme based on Bayesian modeling in which an empirical shape prior is characterized by a low dimensional Gaussian distribution on initial momentum. This is achieved using principal component analysis (PCA) to construct the eigenspace of the initial momentum. A likelihood function is formulated as the conditional probability of observing surfaces given any particular value of the initial momentum, which is modeled as a random field of vector-valued measures characterizing the geometry of surfaces. We define the diffeomorphic mapping as a problem that maximizes a posterior distribution of the initial momentum given observable surfaces over the eigenspace of the initial momentum. We demonstrate the stability of the initial momentum eigenspace when altering training samples using a bootstrapping method. We then validate the mapping accuracy and show robustness to outliers whose shape variation is not incorporated into the shape prior.
A Universal Fast Algorithm for Sensitivity-Based Structural Damage Detection
Yang, Q. W.; Liu, J. K.; Li, C. H.; Liang, C. F.
2013-01-01
Structural damage detection using measured response data has emerged as a new research area in civil, mechanical, and aerospace engineering communities in recent years. In this paper, a universal fast algorithm is presented for sensitivity-based structural damage detection, which can quickly improve the calculation accuracy of the existing sensitivity-based technique without any high-order sensitivity analysis or multi-iterations. The key formula of the universal fast algorithm is derived from the stiffness and flexibility matrix spectral decomposition theory. With the introduction of the key formula, the proposed method is able to quickly achieve more accurate results than that obtained by the original sensitivity-based methods, regardless of whether the damage is small or large. Three examples are used to demonstrate the feasibility and superiority of the proposed method. It has been shown that the universal fast algorithm is simple to implement and quickly gains higher accuracy over the existing sensitivity-based damage detection methods. PMID:24453815
Fast Spectral Collocation Method for Surface Integral Equations of Potential Problems in a Spheroid
Xu, Zhenli; Cai, Wei
2009-01-01
This paper proposes a new technique to speed up the computation of the matrix of spectral collocation discretizations of surface single and double layer operators over a spheroid. The layer densities are approximated by a spectral expansion of spherical harmonics and the spectral collocation method is then used to solve surface integral equations of potential problems in a spheroid. With the proposed technique, the computation cost of collocation matrix entries is reduced from 𝒪(M2N4) to 𝒪(MN4), where N2 is the number of spherical harmonics (i.e., size of the matrix) and M is the number of one-dimensional integration quadrature points. Numerical results demonstrate the spectral accuracy of the method. PMID:20414359
Aslan, Kadir; Previte, Michael J R; Zhang, Yongxia; Geddes, Chris D
2008-02-29
The application of Microwave-Accelerated Surface Plasmon-Coupled Luminescence (MA-SPCL) to fast and sensitive DNA hybridization assays in buffer and whole blood is presented. In this regard, a model DNA hybridization assay whereby a fluorophore-labeled target ssDNA specific to human immunodeficiency, Hepatitis C (Hep C), is probed by an anchor probe immobilized on thin gold films, is driven to completion within 1 min with microwave heating, as compared to an identical assay completed in approximately 4 h at room temperature. Finite-Difference Time-Domain calculations show that gold disks are preferentially heated around the edges creating a temperature gradient along the disks, which in turn results in the larger influx of complementary DNA towards anchor probe-modified surface. Thermal images of the assay platform during microwave heating also provide additional information on the microwave heating pattern in the microwave cavity. Finally, the effects of low power microwave heating on the ability of DNA to re-hybridize with the complimentary target on the surface gold films, which allows the multiple re-use of the gold films, is demonstrated. The MA-SPCL technique offers an alternative approach to current DNA based detection technologies, especially when speed and sensitivity are required, such as in the identification of DNA or even RNA-based diseases using whole blood samples that affect human health.
Ma, R; Castellanos, D C; Bachman, J
2016-07-01
China is in the midst of the nutrition transition with increasing rates of obesity and dietary changes. One contributor is the increase in fast food chains within the country. The purpose of this study was to develop a theory-based instrument that explores influencing factors of fast food consumption in adolescents residing in Beijing, China. Cross-sectional study. Value expectancy and theory of planned behaviour were utilised to explore influencing factors of fast food consumption in the target population. There were 201 Chinese adolescents between the ages of 12 and 18. Cronbach's alpha correlation coefficients were used to examine internal reliability of the theory-based questionnaire. Bivariate correlations and a MANOVA were utilised to determine the relationship between theory-based constructs, body mass index (BMI)-for-age and fast food intake frequency as well as to determine differences in theory-based scores among fast food consumption frequency groupings. The theory-based questionnaire showed good reliability. Furthermore, there was a significant difference in the theory-based subcategory scores between fast food frequency groups. A significant positive correlation was observed between times per week fast food was consumed and each theory-based subscale score. Using BMI-for-age of 176 participants, 81% were normal weight and 19% were considered overweight or obese. Results showed consumption of fast food to be on average 1.50 ± 1.33 per week. The relationship between BMI-for-age and times per week fast food was consumed was not significant. As the nutrition transition continues and fast food chains expand, it is important to explore factors effecting fast food consumption in China. Interventions targeting influencing factors can be developed to encourage healthy dietary choice in the midst of this transition. Copyright © 2016. Published by Elsevier Ltd.
Assessing cognitive processes with diffusion model analyses: a tutorial based on fast-dm-30
Voss, Andreas; Voss, Jochen; Lerche, Veronika
2015-01-01
Diffusion models can be used to infer cognitive processes involved in fast binary decision tasks. The model assumes that information is accumulated continuously until one of two thresholds is hit. In the analysis, response time distributions from numerous trials of the decision task are used to estimate a set of parameters mapping distinct cognitive processes. In recent years, diffusion model analyses have become more and more popular in different fields of psychology. This increased popularity is based on the recent development of several software solutions for the parameter estimation. Although these programs make the application of the model relatively easy, there is a shortage of knowledge about different steps of a state-of-the-art diffusion model study. In this paper, we give a concise tutorial on diffusion modeling, and we present fast-dm-30, a thoroughly revised and extended version of the fast-dm software (Voss and Voss, 2007) for diffusion model data analysis. The most important improvement of the fast-dm version is the possibility to choose between different optimization criteria (i.e., Maximum Likelihood, Chi-Square, and Kolmogorov-Smirnov), which differ in applicability for different data sets. PMID:25870575
Secured Fast Handoff in 802.11-Based Wireless Mesh Networks for Pervasive Internet Access
NASA Astrophysics Data System (ADS)
Yao, Gang; Cao, Jiannong; Yan, Ye; Ji, Yusheng
Authentication issue has been mostly ignored to ensure fast handoff in 802.11 Wireless Mesh Network (WMN). With the proliferation of WMNs in recent years for practical deployment, secured fast handoff has drawn much attention to enforce authenticated access while reduce the extra delay caused by enabling authentication operations. In this paper, we present an overview on the state-of-the-art advance in this field and tackle the problem from a practical perspective based on experiments and analysis on our real-world testbed HAWK. We propose a novel fast handoff scheme Network-assisted Radio Signature to eliminate probing delay by taking advantage of the characteristic of the actual dynamic topology about mesh routers in WMN. Moreover, we apply an optimistic authentication mechanism Dual Re-authentication to counteract the authentication delay while providing the secured wireless access. In this manner, we have reduced the end-to-end handoff delay of WMN back again to a level below 50ms to achieve secured handoff and support time-sensitive applications. We describe detailed mechanisms, simulation, implementation and experimental results. To our best knowledge, we are the first to achieve such an optimal performance of secured fast handoff.
NASA Astrophysics Data System (ADS)
Fu, S.
2015-12-01
There are many energetic electrons in the radiation belt of Earth. When the geomagnetic activity becomes stronger, the energy flux of energetic electrons will increase to more than ten times in the outer radiation belt, therefore it is very important to study how the energetic electrons generate and the lifetime of energetic electrons for space weather research. The acceleration of electrons in radiation belt is mainly depending on wave-particle interaction: the whistler mode chorus is the main driver for local acceleration mechanism, which could accelerate and loss energetic electrons; the geomagnetic pulsation ULF wave will cause energetic electron inward radial diffusion which will charge the electrons; recently observation results show us that the fast magnetosonic waves may also accelerate energetic electrons. For the reason that we try to study the wave-particle interaction between fast Magnetosonic and energetic electrons based on numerical simulation, in which the most important past is at the storm time the combination of highly warped Earth magnetic field and fast magnetosonic wave field will be applied for the electromagnetic environment of moving test particles. The energy, pitch angle and cross diffusion coefficients will be calculated respectively in this simulation to study how the electrons receive energy from fast magnetosonic wave. The diffusion coefficients within different dipole Earth magnetic field and non-dipole storm magnetic field are compared, while dynamics of electrons at selected initial energys are shown in our study.
Arikan and Alamouti matrices based on fast block-wise inverse Jacket transform
NASA Astrophysics Data System (ADS)
Lee, Moon Ho; Khan, Md Hashem Ali; Kim, Kyeong Jin
2013-12-01
Recently, Lee and Hou (IEEE Signal Process Lett 13: 461-464, 2006) proposed one-dimensional and two-dimensional fast algorithms for block-wise inverse Jacket transforms (BIJTs). Their BIJTs are not real inverse Jacket transforms from mathematical point of view because their inverses do not satisfy the usual condition, i.e., the multiplication of a matrix with its inverse matrix is not equal to the identity matrix. Therefore, we mathematically propose a fast block-wise inverse Jacket transform of orders N = 2 k , 3 k , 5 k , and 6 k , where k is a positive integer. Based on the Kronecker product of the successive lower order Jacket matrices and the basis matrix, the fast algorithms for realizing these transforms are obtained. Due to the simple inverse and fast algorithms of Arikan polar binary and Alamouti multiple-input multiple-output (MIMO) non-binary matrices, which are obtained from BIJTs, they can be applied in areas such as 3GPP physical layer for ultra mobile broadband permutation matrices design, first-order q-ary Reed-Muller code design, diagonal channel design, diagonal subchannel decompose for interference alignment, and 4G MIMO long-term evolution Alamouti precoding design.
CerioFAST{trademark}: An acute toxicity test based on Ceriodaphnia dubia feeding behavior
Bitton, G.; Rhodes, K.; Koopman, B.
1996-02-01
The authors have developed a rapid acute toxicity test (CerioFAST{trademark}) based on suppression of feeding activity of Ceriodaphnia dubia in the presence of toxicants. The bioassay consists of a 1-h exposure period to a given toxicant. Yeast cells, stained with a fluorescent dye, are added 20 min before the end of the exposure period. Response to a toxic sample is indicated by the absence of fluorescence in the gut of the daphnids. CerioFAST was compared to the standard 48-h C. dubia acute bioassay, using heavy metals and organic compounds.CerioFAST EC50s of Cd, Cu, Pb, Ag, Zn, and carbofuran were in the 0.01--0.1-mg/L range, whereas EC50s of hexachloroethane, pentachlorophenol, trichlorophenol, and lindane were in the 1--10-mg/L range. CerioFAST EC50s of the heavy metals and organics were well correlated with Ec50s obtained with the 48-h C. dubia bioassay.
NASA Astrophysics Data System (ADS)
Gu, Shu-Ying; Jin, Sheng-Peng; Gao, Xie-Feng; Mu, Jian
2016-05-01
Polylactide-based polyurethane shape memory nanocomposites (Fe3O4/PLAUs) with fast magnetic responsiveness are presented. For the purpose of fast response and homogeneous dispersion of magnetic nanoparticles, oleic acid was used to improve the dispersibility of Fe3O4 nanoparticles in a polymer matrix. A homogeneous distribution of Fe3O4 nanoparticles in the polymer matrix was obtained for nanocomposites with low Fe3O4 loading content. A small agglomeration was observed for nanocomposites with 6 wt% and 9 wt% loading content, leading to a small decline in the mechanical properties. PLAU and its nanocomposites have glass transition around 52 °C, which can be used as the triggering temperature. PLAU and its nanocomposites have shape fixity ratios above 99%, shape recovery ratios above 82% for the first cycle and shape recovery ratios above 91% for the second cycle. PLAU and its nanocomposites also exhibit a fast water bath or magnetic responsiveness. The magnetic recovery time decreases with an increase in the loading content of Fe3O4 nanoparticles due to an improvement in heating performance for increased weight percentage of fillers. The nanocomposites have fast responses in an alternating magnetic field and have potential application in biomedical areas such as intravascular stent.
Impacts of fast meteoroids and a plasma-dust cloud over the lunar surface
NASA Astrophysics Data System (ADS)
Popel, S. I.; Golub', A. P.; Zelenyi, L. M.; Horányi, M.
2017-05-01
The possibility of the formation of a plasma-dust cloud in the exosphere of the Moon owing to impacts of meteoroids on the lunar surface is discussed. Attention is focused on dust particles at large altitudes of 10-100 km at which measurements were performed within the NASA LADEE mission. It has been shown that a melted material ejected from the lunar surface owing to the impacts of meteoroids plays an important role in the formation of the plasma-dust cloud. Drops of the melted material acquire velocities in the range between the first and second cosmic velocities for the Moon and can undergo finite motion around it. Rising over the lunar surface, liquid drops are solidified and acquire electric charges, in particular, owing to their interaction with electrons and ions of the solar wind, as well as with solar radiation. It has been shown that the number density of dust particles in the plasma-dust cloud present in the exosphere of the Moon is ≲10-8 cm-3, which is in agreement with the LADEE measurements.
Fast Traffic Sign Recognition with a Rotation Invariant Binary Pattern Based Feature
Yin, Shouyi; Ouyang, Peng; Liu, Leibo; Guo, Yike; Wei, Shaojun
2015-01-01
Robust and fast traffic sign recognition is very important but difficult for safe driving assistance systems. This study addresses fast and robust traffic sign recognition to enhance driving safety. The proposed method includes three stages. First, a typical Hough transformation is adopted to implement coarse-grained location of the candidate regions of traffic signs. Second, a RIBP (Rotation Invariant Binary Pattern) based feature in the affine and Gaussian space is proposed to reduce the time of traffic sign detection and achieve robust traffic sign detection in terms of scale, rotation, and illumination. Third, the techniques of ANN (Artificial Neutral Network) based feature dimension reduction and classification are designed to reduce the traffic sign recognition time. Compared with the current work, the experimental results in the public datasets show that this work achieves robustness in traffic sign recognition with comparable recognition accuracy and faster processing speed, including training speed and recognition speed. PMID:25608217
Fast traffic sign recognition with a rotation invariant binary pattern based feature.
Yin, Shouyi; Ouyang, Peng; Liu, Leibo; Guo, Yike; Wei, Shaojun
2015-01-19
Robust and fast traffic sign recognition is very important but difficult for safe driving assistance systems. This study addresses fast and robust traffic sign recognition to enhance driving safety. The proposed method includes three stages. First, a typical Hough transformation is adopted to implement coarse-grained location of the candidate regions of traffic signs. Second, a RIBP (Rotation Invariant Binary Pattern) based feature in the affine and Gaussian space is proposed to reduce the time of traffic sign detection and achieve robust traffic sign detection in terms of scale, rotation, and illumination. Third, the techniques of ANN (Artificial Neutral Network) based feature dimension reduction and classification are designed to reduce the traffic sign recognition time. Compared with the current work, the experimental results in the public datasets show that this work achieves robustness in traffic sign recognition with comparable recognition accuracy and faster processing speed, including training speed and recognition speed.
Fast implementation of sparse iterative covariance-based estimation for source localization.
Zhang, Qilin; Abeida, Habti; Xue, Ming; Rowe, William; Li, Jian
2012-02-01
Fast implementations of the sparse iterative covariance-based estimation (SPICE) algorithm are presented for source localization with a uniform linear array (ULA). SPICE is a robust, user parameter-free, high-resolution, iterative, and globally convergent estimation algorithm for array processing. SPICE offers superior resolution and lower sidelobe levels for source localization compared to the conventional delay-and-sum beamforming method; however, a traditional SPICE implementation has a higher computational complexity (which is exacerbated in higher dimensional data). It is shown that the computational complexity of the SPICE algorithm can be mitigated by exploiting the Toeplitz structure of the array output covariance matrix using Gohberg-Semencul factorization. The SPICE algorithm is also extended to the acoustic vector-sensor ULA scenario with a specific nonuniform white noise assumption, and the fast implementation is developed based on the block Toeplitz properties of the array output covariance matrix. Finally, numerical simulations illustrate the computational gains of the proposed methods.
Flywheel-Based Fast Charging Station – FFCS for Electric Vehicles and Public Transportation
NASA Astrophysics Data System (ADS)
Gabbar, Hossam A.; Othman, Ahmed M.
2017-08-01
This paper demonstrates novel Flywheel-based Fast Charging Station (FFCS) for high performance and profitable charging infrastructures for public electric buses. The design criteria will be provided for fast charging stations. The station would support the private and open charging framework. Flywheel Energy storage system is utilized to offer advanced energy storage for charging stations to achieve clean public transportation, including electric buses with reducing GHG, including CO2 emission reduction. The integrated modelling and management system in the station is performed by a decision-based control platform that coordinates the power streams between the quick chargers, the flywheel storage framework, photovoltaic cells and the network association. There is a tidy exchange up between the capacity rate of flywheel framework and the power rating of the network association.”
FPS-RAM: Fast Prefix Search RAM-Based Hardware for Forwarding Engine
NASA Astrophysics Data System (ADS)
Zaitsu, Kazuya; Yamamoto, Koji; Kuroda, Yasuto; Inoue, Kazunari; Ata, Shingo; Oka, Ikuo
Ternary content addressable memory (TCAM) is becoming very popular for designing high-throughput forwarding engines on routers. However, TCAM has potential problems in terms of hardware and power costs, which limits its ability to deploy large amounts of capacity in IP routers. In this paper, we propose new hardware architecture for fast forwarding engines, called fast prefix search RAM-based hardware (FPS-RAM). We designed FPS-RAM hardware with the intent of maintaining the same search performance and physical user interface as TCAM because our objective is to replace the TCAM in the market. Our RAM-based hardware architecture is completely different from that of TCAM and has dramatically reduced the costs and power consumption to 62% and 52%, respectively. We implemented FPS-RAM on an FPGA to examine its lookup operation.
Performance study of the fast timing Cherenkov detector based on a microchannel plate PMT
NASA Astrophysics Data System (ADS)
Finogeev, D. A.; Grigoriev, V. A.; Kaplin, V. A.; Karavichev, O. V.; Karavicheva, T. L.; Konevskikh, A. S.; Kurepin, A. B.; Kurepin, A. N.; Loginov, V. A.; Mayevskaya, A. I.; Melikyan, Yu A.; Morozov, I. V.; Serebryakov, D. V.; Shabanov, A. I.; Slupecki, M.; Tikhonov, A. A.; Trzaska, W. H.
2017-01-01
Prototype of the fast timing Cherenkov detector, applicable in high-energy collider experiments, has been developed basing on the modified Planacon XP85012 MCP-PMT and fused silica radiators. We present the reasons and description of the MCP-PMT modification, timing and amplitude characteristics of the prototype including the summary of the detector’s response on particle hits at oblique angles and MCP-PMT performance at high illumination rates.
Fast Nonlinear Optical Switch Based on Resonant Vanadium Pentoxide (V2O5) Metasurfaces
2016-05-19
Fast Nonlinear Optical Switch Based on Resonant Vanadium Pentoxide (V2O5) Metasurfaces Samad Jafar-Zanjani,1, a) Jierong Cheng,1, b) Vladimir...Dated: 19 May 2016) A novel low-profile nonlinear metasurface , consisting of a single-layer of vanadium pentoxide (V2O5), is proposed and numerically...investigated by a nonlinear full-wave finite-difference time-domain (FDTD) method. The metasurface acts as an ultrafast optical switch, being
NASA Astrophysics Data System (ADS)
Dong, J. W.; Wang, B.; Gao, C.; Wang, L. J.
2016-09-01
An accurate and fast fiber transfer delay measurement method is demonstrated. As a key technique, a simple ambiguity resolving process based on phase discrimination and frequency measurement is used to overcome the contradiction between measurement accuracy and system complexity. The system achieves a high measurement accuracy of 0.2 ps with a 0.1 ps measurement resolution and a large dynamic range up to 50 km as well as no dead zone.
Fast mode decision for multiview video coding based on depth maps
NASA Astrophysics Data System (ADS)
Cernigliaro, Gianluca; Jaureguizar, Fernando; Ortega, Antonio; Cabrera, Julián; García, Narciso
2009-01-01
A new fast mode decision (FMD) algorithm for multi-view video coding (MVC) is presented. One of the multiple views is encoded based on traditional methods, which provides a mode decision (MD) map, while encoding of the other views is based on the analysis of the homogeneity of the depth map. This approach reduces the burden of the rate-distortion (RD) motion analysis based on the availability of a depth map, which is assumed to be provided by the acquisition process. Although there is a slight decrease of performance in rate-distortion terms, there is a significant reduction in computational cost.
NASA Astrophysics Data System (ADS)
Shi, Caiyun; Xie, Guoxi; Zhang, Yongqin; Zhang, Xiaoyong; Chen, Min; Su, Shi; Dong, Ying; Liu, Xin; Ji, Jim
2017-04-01
This study aims to develop an accelerated susceptibility-based positive contrast MR imaging method for visualizing MR compatible metallic devices. A modified fast spin echo sequence is used to accelerate data acquisition. Each readout gradient in the modified fast spin echo is slightly shifted by a short distance T shift. Phase changes accumulated within T shift are then used to calculate the susceptibility map by using a kernel deconvolution algorithm with a regularized ℓ1 minimization. To evaluate the proposed fast spin echo method, three phantom experiments were conducted and compared to a spin echo based technique and the gold standard CT for visualizing biopsy needles and brachytherapy seeds. Compared to the spin echo based technique, the data sampling speed of the proposed method was faster by 2-4 times while still being able to accurately visualize and identify the location of the biopsy needle and brachytherapy seeds. These results were confirmed by CT images of the same devices. Results also demonstrated that the proposed fast spin echo method can achieve good visualization of the brachytherapy seeds in positive contrast and in different orientations. It is also capable of correctly differentiating brachytherapy seeds from other similar structures on conventional magnitude images.
Franch-Lage, Felicidad; Amigo, José Manuel; Skibsted, Erik; Maspoch, Santiago; Coello, Jordi
2011-06-15
The inclusion of hyperspectral imaging systems in the manufacturing and development of pharmaceutical products is allowing a successful improvement in the quality control of solid dosage forms. The correct distribution not only of active pharmaceutical ingredient (API) but also of the rest of excipients is essential to assure the correct behavior of the tablet when ingested. This is especially relevant in tablets with low content of potent APIs, in which the prescribed intake dosage frequently corresponds to half-a-tablet. Therefore, the aim of this work is to study the surface distribution of the compounds in tablets with low API content. The proposed procedure includes the scanning of the tablet surface using near infrared hyperspectral spectroscopy in association with multivariate curve resolution (MCR) techniques to obtain selective pictures for each individual compound and to allow the fast assessment of their distribution in the measured surface. As an example, a set of commercial Lorazepam tablets (approximately 1% mass fraction of API, and four excipients) were analyzed. The results obtained show the capacity of the proposed methodology as an expedite approach to evaluate the uniformity of the contents between and within tablets. A method to estimate the homogeneity distribution of API in the two halves of the tablet is also proposed. Copyright © 2011 Elsevier B.V. All rights reserved.
Zhang, Xiao-Jie; Liu, Zhi-Pan
2015-10-13
To identify the low energy pathway for solid-to-solid phase transition has been a great challenge in physics and material science. This work develops a new theoretical method, namely, variable-cell double-ended surface walking (VC-DESW) to locate the transition state (TS) and deduce the pathway in solid phase transition. Inherited from the DESW method ( J. Chem. Theory Comput. 2013 , 9 , 5745 ) for molecular systems, the VC-DESW method implements an efficient mechanism to couple the lattice and atom degrees of freedom. The method features with fast pseudopathway building and accurate TS location for solid phase transition systems without requiring expensive Hessian computation and iterative pathway optimization. A generalized coordinate, consisting of the lattice vectors and the scaled atomic coordinates, is designed for describing the crystal potential energy surface (PES), which is able to capture the anisotropic behavior in phase transition. By comparing with the existing method for solid phase transition in different systems, we show that the VC-DESW method can be much more efficient for finding the TS in crystal phase transition. With the combination of the recently developed unbiased stochastic surface walking pathway sampling method, the VC-DESW is further utilized to resolve the lowest energy pathway of SiO2 α-quartz to quartz-II phase transition from many likely reaction pathways. These new methods provide a powerful platform for understanding and predicting the solid phase transition mechanism and kinetics.
Saif, A F M Saifuddin; Prabuwono, Anton Satria; Mahayuddin, Zainal Rasyid
2015-01-01
Fast and computationally less complex feature extraction for moving object detection using aerial images from unmanned aerial vehicles (UAVs) remains as an elusive goal in the field of computer vision research. The types of features used in current studies concerning moving object detection are typically chosen based on improving detection rate rather than on providing fast and computationally less complex feature extraction methods. Because moving object detection using aerial images from UAVs involves motion as seen from a certain altitude, effective and fast feature extraction is a vital issue for optimum detection performance. This research proposes a two-layer bucket approach based on a new feature extraction algorithm referred to as the moment-based feature extraction algorithm (MFEA). Because a moment represents the coherent intensity of pixels and motion estimation is a motion pixel intensity measurement, this research used this relation to develop the proposed algorithm. The experimental results reveal the successful performance of the proposed MFEA algorithm and the proposed methodology.
Fast and highly specific DNA-based multiplex detection on a solid support.
Barišić, Ivan; Kamleithner, Verena; Schönthaler, Silvia; Wiesinger-Mayr, Herbert
2015-01-01
Highly specific and fast multiplex detection methods are essential to conduct reasonable DNA-based diagnostics and are especially important to characterise infectious diseases. More than 1000 genetic targets such as antibiotic resistance genes, virulence factors and phylogenetic markers have to be identified as fast as possible to facilitate the correct treatment of a patient. In the present work, we developed a novel ligation-based DNA probe concept that was combined with the microarray technology and used it for the detection of bacterial pathogens. The novel linear chain (LNC) probes identified all tested species correctly within 1 h based on their 16S rRNA gene in a 25-multiplex reaction. Genomic DNA was used directly as template in the ligation reaction identifying as little as 10(7) cells without any pre-amplification. The high specificity was further demonstrated characterising a single nucleotide polymorphism leading to no false positive fluorescence signals of the untargeted single nucleotide polymorphism (SNP) variants. In comparison to conventional microarray probes, the sensitivity of the novel LNC3 probes was higher by a factor of 10 or more. In summary, we present a fast, simple, highly specific and sensitive multiplex detection method adaptable for a wide range of applications.
2006-09-30
αηηx + βη = 0 (1) where co = gh , α = 3co / 2h and . The KdV equation has the generalized Fourier solution (for periodic and/or quasi... numerical integration of the partial differential equations of surface water waves is the long-term goal of this work. The approach is a...applications of the method. APPROACH We first consider the shallow water equation known as the Korteweg-deVries ( KdV ) equation ): ηt + coηx
Fast and accurate grid representations for atom-based docking with partner flexibility.
de Vries, Sjoerd J; Zacharias, Martin
2017-06-30
Macromolecular docking methods can broadly be divided into geometric and atom-based methods. Geometric methods use fast algorithms that operate on simplified, grid-like molecular representations, while atom-based methods are more realistic and flexible, but far less efficient. Here, a hybrid approach of grid-based and atom-based docking is presented, combining precalculated grid potentials with neighbor lists for fast and accurate calculation of atom-based intermolecular energies and forces. The grid representation is compatible with simultaneous multibody docking and can tolerate considerable protein flexibility. When implemented in our docking method ATTRACT, grid-based docking was found to be ∼35x faster. With the OPLSX forcefield instead of the ATTRACT coarse-grained forcefield, the average speed improvement was >100x. Grid-based representations may allow atom-based docking methods to explore large conformational spaces with many degrees of freedom, such as multiple macromolecules including flexibility. This increases the domain of biological problems to which docking methods can be applied. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Statistical Seasonal Sea Surface based Prediction Model
NASA Astrophysics Data System (ADS)
Suarez, Roberto; Rodriguez-Fonseca, Belen; Diouf, Ibrahima
2014-05-01
The interannual variability of the sea surface temperature (SST) plays a key role in the strongly seasonal rainfall regime on the West African region. The predictability of the seasonal cycle of rainfall is a field widely discussed by the scientific community, with results that fail to be satisfactory due to the difficulty of dynamical models to reproduce the behavior of the Inter Tropical Convergence Zone (ITCZ). To tackle this problem, a statistical model based on oceanic predictors has been developed at the Universidad Complutense of Madrid (UCM) with the aim to complement and enhance the predictability of the West African Monsoon (WAM) as an alternative to the coupled models. The model, called S4CAST (SST-based Statistical Seasonal Forecast) is based on discriminant analysis techniques, specifically the Maximum Covariance Analysis (MCA) and Canonical Correlation Analysis (CCA). Beyond the application of the model to the prediciton of rainfall in West Africa, its use extends to a range of different oceanic, atmospheric and helth related parameters influenced by the temperature of the sea surface as a defining factor of variability.
MetaSensing's FastGBSAR: ground based radar for deformation monitoring
NASA Astrophysics Data System (ADS)
Rödelsperger, Sabine; Meta, Adriano
2014-10-01
The continuous monitoring of ground deformation and structural movement has become an important task in engineering. MetaSensing introduces a novel sensor system, the Fast Ground Based Synthetic Aperture Radar (FastGBSAR), based on innovative technologies that have already been successfully applied to airborne SAR applications. The FastGBSAR allows the remote sensing of deformations of a slope or infrastructure from up to a distance of 4 km. The FastGBSAR can be setup in two different configurations: in Real Aperture Radar (RAR) mode it is capable of accurately measuring displacements along a linear range profile, ideal for monitoring vibrations of structures like bridges and towers (displacement accuracy up to 0.01 mm). Modal parameters can be determined within half an hour. Alternatively, in Synthetic Aperture Radar (SAR) configuration it produces two-dimensional displacement images with an acquisition time of less than 5 seconds, ideal for monitoring areal structures like dams, landslides and open pit mines (displacement accuracy up to 0.1 mm). The MetaSensing FastGBSAR is the first ground based SAR instrument on the market able to produce two-dimensional deformation maps with this high acquisition rate. By that, deformation time series with a high temporal and spatial resolution can be generated, giving detailed information useful to determine the deformation mechanisms involved and eventually to predict an incoming failure. The system is fully portable and can be quickly installed on bedrock or a basement. The data acquisition and processing can be fully automated leading to a low effort in instrument operation and maintenance. Due to the short acquisition time of FastGBSAR, the coherence between two acquisitions is very high and the phase unwrapping is simplified enormously. This yields a high density of resolution cells with good quality and high reliability of the acquired deformations. The deformation maps can directly be used as input into an Early
SHU, QUAN-SHENG
2008-06-08
Applications in high energy physics accelerators and other fields require the use of thousands of superconducting RF (SRF) cavities that are made of high purity Nb material and the purity of niobium is critical for these cavities to reach the highest accelerating fields. Tantalum is the most prolific of metal inclusions, which can cause thermal breakdown and prevent the cavities from reaching their theoretical performance limits of 45-50 MV/m, and DOE Labs are searching for a technology that could detect small impurities in superconducting Nb sheets reaching the highest possible accelerating fields. The proposed innovative SQUID-based Nondestructive system can scan Niobium sheets used in the manufacturing of SRF cavities with both high speed and high resolution. A highly sensitive SQUID system with a gradiometer probe, non-magnetic dewar, data acquisition system, and a scanning system will be developed for fast detection of impurities in planar Nb sheets. In phase I, we will modify our existing SQUID-based eddy current system to detect 100 micron size Ta defects and a great effort will focus on achieving fast scanning of a large number of niobium sheets in a shorter time and with reasonable resolution. An older system operated by moving the sample 1 mm, stopping and waiting for 1-2 seconds, then activating a measurement by the SQUID after the short settle time is modified. A preliminary designed and implemented a SQUID scanning system that is fast and is capable of scanning a 30 cm x 30 cm Nb sheet in 15 minutes by continuously moving the table at speeds up to 10 mm/s while activating the SQUID at 1mm interval is modified and reached the Phase I goal of 100mm resolution. We have successfully demonstrated the feasibility that a fast speed SQUID scanner without sacrificing the resolution of detection can be done, and a data acquisition and analysis system is also preliminary developed. The SQUID based scanner will help reach the highest accelerating field in SRF
Fast exploration of an optimal path on the multidimensional free energy surface.
Chen, Changjun
2017-01-01
In a reaction, determination of an optimal path with a high reaction rate (or a low free energy barrier) is important for the study of the reaction mechanism. This is a complicated problem that involves lots of degrees of freedom. For simple models, one can build an initial path in the collective variable space by the interpolation method first and then update the whole path constantly in the optimization. However, such interpolation method could be risky in the high dimensional space for large molecules. On the path, steric clashes between neighboring atoms could cause extremely high energy barriers and thus fail the optimization. Moreover, performing simulations for all the snapshots on the path is also time-consuming. In this paper, we build and optimize the path by a growing method on the free energy surface. The method grows a path from the reactant and extends its length in the collective variable space step by step. The growing direction is determined by both the free energy gradient at the end of the path and the direction vector pointing at the product. With fewer snapshots on the path, this strategy can let the path avoid the high energy states in the growing process and save the precious simulation time at each iteration step. Applications show that the presented method is efficient enough to produce optimal paths on either the two-dimensional or the twelve-dimensional free energy surfaces of different small molecules.
Fast exploration of an optimal path on the multidimensional free energy surface
Chen, Changjun
2017-01-01
In a reaction, determination of an optimal path with a high reaction rate (or a low free energy barrier) is important for the study of the reaction mechanism. This is a complicated problem that involves lots of degrees of freedom. For simple models, one can build an initial path in the collective variable space by the interpolation method first and then update the whole path constantly in the optimization. However, such interpolation method could be risky in the high dimensional space for large molecules. On the path, steric clashes between neighboring atoms could cause extremely high energy barriers and thus fail the optimization. Moreover, performing simulations for all the snapshots on the path is also time-consuming. In this paper, we build and optimize the path by a growing method on the free energy surface. The method grows a path from the reactant and extends its length in the collective variable space step by step. The growing direction is determined by both the free energy gradient at the end of the path and the direction vector pointing at the product. With fewer snapshots on the path, this strategy can let the path avoid the high energy states in the growing process and save the precious simulation time at each iteration step. Applications show that the presented method is efficient enough to produce optimal paths on either the two-dimensional or the twelve-dimensional free energy surfaces of different small molecules. PMID:28542475
Gossage, Zachary T; Simpson, Burton H; Schorr, Noah B; Rodríguez-López, Joaquín
2016-10-18
The testing of nanoelectrode tips for scanning electrochemical microscopy (SECM) is a slow and cumbersome task that often results in untimely electrode breakage due to crashing against a substrate. Here, we evaluated approach curves of nano- and microelectrodes to soft surfaces using SECM for a rapid and more convenient characterization and positioning protocol. Soft surfaces consisted of either a submerged argon bubble or a thin polydimethylsiloxane (PDMS) layer. While approach curves to Ar bubbles in the presence of a surfactant were promising for the characterization of microelectrode tips, their performance with nanoelectrodes was deficient. In contrast, approach curves to PDMS films allowed the rapid positioning of nanoelectrodes as small as 30 nm radius at speeds up to 5 μm/s without the risk of breakage. The nanoelectrodes were able to approach the polymer films multiple times without affecting their electrochemical performance. Furthermore, using a half-coated substrate with PDMS, nanoelectrodes could be retracted and positioned very close to the bare, hard substrate for characterization with traditional approach curves. We estimate time savings on tip characterization/positioning on the order of 10- to 100-fold. This simple procedure is easily implemented without the requirement of additional devices supplementing existing commercial SECM instruments.
Fast and automated DNA assays on a compact disc (CD)-based microfluidic platform
NASA Astrophysics Data System (ADS)
Jia, Guangyao
Nucleic acid-based molecular diagnostics offers enormous potential for the rapid and accurate diagnosis of infectious diseases. However, most of the existing commercial tests are time-consuming and technically complicated, and are thus incompatible with the need for rapid identification of infectious agents. We have successfully developed a CD-based microfluidic platform for fast and automated DNA array hybridization and a low cost, disposable plastic microfluidic platform for polymerase chain reaction (PCR). These platforms have proved to be a promising approach to meet the requirements in terms of detection speed and operational convenience in diagnosis of infectious diseases. In the CD-based microfluidic platform for DNA hybridization, convection is introduced to the system to enhance mass transport so as to accelerate the hybridization rate since DNA hybridization is a diffusion limited reaction. Centrifugal force is utilized for sample propulsion and surface force is used for liquid gating. Standard microscope glass slides are used as the substrates for capture probes owing to their compatibility with commercially available instrumentation (e.g. laser scanners) for detection. Microfabricated polydimethylsiloxane (PDMS) structures are used to accomplish the fluidic functions required by the protocols for DNA hybridization. The assembly of the PDMS structure and the glass slide forms a flow-through hybridization unit that can be accommodated onto the CD platform for reagent manipulation. The above scheme has been validated with oligonucleotides as the targets using commercially available enzyme-labeled fluorescence (ELF 97) for detection of the hybridization events, and tested with amplicons of genomic staphylococcus DNA labeled with Cy dye. In both experiments, significantly higher fluorescence intensities were observed in the flow-through hybridization unit compared to the passive assays. The CD fluidic scheme was also adapted to the immobilization of
Surface Functionalization of Graphene-based Materials
NASA Astrophysics Data System (ADS)
Mathkar, Akshay
Graphene-based materials have generated tremendous interest in the past decade. Manipulating their characteristics using wet-chemistry methods holds distinctive value, as it provides a means towards scaling up, while not being limited by yield. The majority of this thesis focuses on the surface functionalization of graphene oxide (GO), which has drawn tremendous attention as a tunable precursor due to its readily chemically manipulable surface and richly functionalized basal plane. Firstly, a room-temperature based method is presented to reduce GO stepwise, with each organic moiety being removed sequentially. Characterization confirms the carbonyl group to be reduced first, while the tertiary alcohol is reduced last, as the optical gap decrease from 3.5 eV down to 1 eV. This provides greater control over GO, which is an inhomogeneous system, and is the first study to elucidate the order of removal of each functional group. In addition to organically manipulating GO, this thesis also reports a chemical methodology to inorganically functionalize GO and tune its wetting characteristics. A chemical method to covalently attach fluorine atoms in the form of tertiary alkyl fluorides is reported, and confirmed by MAS 13C NMR, as two forms of fluorinated graphene oxide (FGO) with varying C/F and C/O ratios are synthesized. Introducing C-F bonds decreases the overall surface free energy, which drastically reduces GO's wetting behavior, especially in its highly fluorinated form. Ease of solution processing leads to development of sprayable inks that are deposited on a range of porous and nonporous surfaces to impart amphiphobicity. This is the first report that tunes the wetting characteristics of GO. Lastly as a part of a collaboration with ConocoPhillips, another class of carbon nanomaterials - carbon nanotubes (CNTs), have been inorganically functionalized to repel 30 wt% MEA, a critical solvent in CO 2 recovery. In addition to improving the solution processability of CNTs
Huang, Xue-yong; Guo, Xia-li; Luo, Huo-lin; Fang, Xiao-wei; Zhu, Teng-gao; Zhang, Xing-lei; Chen, Huan-wen; Luo, Li-ping
2015-01-01
Mass spectral fingerprints of 24 raw propolis samples, including 23 from China and one from the United States, were directly obtained using surface desorption atmospheric pressure chemical ionization mass spectrometry (SDAPCI-MS) without sample pretreatment. Under the optimized experimental conditions, the most abundant signals were detected in the mass ranges of 70 to 500 m/z and 200 to 350 m/z, respectively. Principal component analyses (PCA) for the two mass ranges showed similarities in that the colors had a significant correlation with the first two PCs; in contrast there was no correlation with the climatic zones from which the samples originated. Analytes such as chrysin, pinocembrin, and quercetin were detected and identified using multiple stage mass spectrometry within 3 min. Therefore, SDAPCI-MS can be used for rapid and reliable high-throughput analysis of propolis. PMID:26339245
Design of a Low Power, Fast-Spectrum, Liquid-Metal Cooled Surface Reactor System
Marcille, T. F.; Poston, D. I.; Kapernick, R. J.; Dixon, D. D.; Fischer, G. A.; Doherty, S. P.
2006-01-20
In the current 2005 US budget environment, competition for fiscal resources make funding for comprehensive space reactor development programs difficult to justify and accommodate. Simultaneously, the need to develop these systems to provide planetary and deep space-enabling power systems is increasing. Given that environment, designs intended to satisfy reasonable near-term surface missions, using affordable technology-ready materials and processes warrant serious consideration. An initial lunar application design incorporating a stainless structure, 880 K pumped NaK coolant system and a stainless/UO2 fuel system can be designed, fabricated and tested for a fraction of the cost of recent high-profile reactor programs (JIMO, SP-100). Along with the cost reductions associated with the use of qualified materials and processes, this design offers a low-risk, high-reliability implementation associated with mission specific low temperature, low burnup, five year operating lifetime requirements.
The evolution of spatial ordering of oil drops fast spreading on a water surface
NASA Astrophysics Data System (ADS)
Yamamoto, Daigo; Nakajima, Chika; Shioi, Akihisa; Krafft, Marie Pierre; Yoshikawa, Kenichi
2015-05-01
The design of dynamically self-assembled systems is of high interest in science and technology. Here, we report a unique cascade in the self-ordering of droplets accompanied by a dewetting transition. The dynamic self-emergent droplets are observed when a thin liquid layer of an immiscible fluorocarbon oil (perfluorooctyl bromide, PFOB) is placed on a water surface. Due to the gradual evaporation of PFOB, a circular PFOB-free domain appears as a result of a local dewetting transition. A circular pearling structure is generated at the rim with the growth of the dewetting hole. As the next stage, linear arrays of droplets are generated in a radial manner from the centre of the hole. These one-dimensional arrangements then evolve into two-dimensional hexagonal arrays of microdroplets through collective rhythmical shrinking/expanding motions. The emergence of such dynamic patterns is discussed in terms of the nonlinear kinetics of the dewetting transition under thermodynamically dissipative conditions.
NASA Astrophysics Data System (ADS)
Garrett, Joseph L.; Munday, Jeremy N.
2016-06-01
Kelvin probe force microscopy (KPFM) adapts an atomic force microscope to measure electric potential on surfaces at nanometer length scales. Here we demonstrate that Heterodyne-KPFM enables scan rates of several frames per minute in air, and concurrently maintains spatial resolution and voltage sensitivity comparable to frequency-modulation KPFM, the current spatial resolution standard. Two common classes of topography-coupled artifacts are shown to be avoidable with H-KPFM. A second implementation of H-KPFM is also introduced, in which the voltage signal is amplified by the first cantilever resonance for enhanced sensitivity. The enhanced temporal resolution of H-KPFM can enable the imaging of many dynamic processes, such as such as electrochromic switching, phase transitions, and device degredation (battery, solar, etc), which take place over seconds to minutes and involve changes in electric potential at nanometer lengths.
Standing Surface Acoustic Wave Based Cell Coculture
2015-01-01
Precise reconstruction of heterotypic cell–cell interactions in vitro requires the coculture of different cell types in a highly controlled manner. In this article, we report a standing surface acoustic wave (SSAW)-based cell coculture platform. In our approach, different types of cells are patterned sequentially in the SSAW field to form an organized cell coculture. To validate our platform, we demonstrate a coculture of epithelial cancer cells and endothelial cells. Real-time monitoring of cell migration dynamics reveals increased cancer cell mobility when cancer cells are cocultured with endothelial cells. Our SSAW-based cell coculture platform has the advantages of contactless cell manipulation, high biocompatibility, high controllability, simplicity, and minimal interference of the cellular microenvironment. The SSAW technique demonstrated here can be a valuable analytical tool for various biological studies involving heterotypic cell–cell interactions. PMID:25232648
Standing surface acoustic wave based cell coculture.
Li, Sixing; Guo, Feng; Chen, Yuchao; Ding, Xiaoyun; Li, Peng; Wang, Lin; Cameron, Craig E; Huang, Tony Jun
2014-10-07
Precise reconstruction of heterotypic cell-cell interactions in vitro requires the coculture of different cell types in a highly controlled manner. In this article, we report a standing surface acoustic wave (SSAW)-based cell coculture platform. In our approach, different types of cells are patterned sequentially in the SSAW field to form an organized cell coculture. To validate our platform, we demonstrate a coculture of epithelial cancer cells and endothelial cells. Real-time monitoring of cell migration dynamics reveals increased cancer cell mobility when cancer cells are cocultured with endothelial cells. Our SSAW-based cell coculture platform has the advantages of contactless cell manipulation, high biocompatibility, high controllability, simplicity, and minimal interference of the cellular microenvironment. The SSAW technique demonstrated here can be a valuable analytical tool for various biological studies involving heterotypic cell-cell interactions.
Hand gesture recognition based on surface electromyography.
Samadani, Ali-Akbar; Kulic, Dana
2014-01-01
Human hands are the most dexterous of human limbs and hand gestures play an important role in non-verbal communication. Underlying electromyograms associated with hand gestures provide a wealth of information based on which varying hand gestures can be recognized. This paper develops an inter-individual hand gesture recognition model based on Hidden Markov models that receives surface electromyography (sEMG) signals as inputs and predicts a corresponding hand gesture. The developed recognition model is tested with a dataset of 10 various hand gestures performed by 25 subjects in a leave-one-subject-out cross validation and an inter-individual recognition rate of 79% was achieved. The promising recognition rate demonstrates the efficacy of the proposed approach for discriminating between gesture-specific sEMG signals and could inform the design of sEMG-controlled prostheses and assistive devices.
Test of a prototype neutron spectrometer based on diamond detectors in a fast reactor
Osipenko, M.; Ripani, M.; Ricco, G.; Caiffi, B.; Pompili, F.; Pillon, M.; Angelone, M.; Verona-Rinati, G.; Cardarelli, R.; Argiro, S.
2015-07-01
A prototype of neutron spectrometer based on diamond detectors has been developed. This prototype consists of a {sup 6}Li neutron converter sandwiched between two CVD diamond crystals. The radiation hardness of the diamond crystals makes it suitable for applications in low power research reactors, while a low sensitivity to gamma rays and low leakage current of the detector permit to reach good energy resolution. A fast coincidence between two crystals is used to reject background. The detector was read out using two different electronic chains connected to it by a few meters of cable. The first chain was based on conventional charge-sensitive amplifiers, the other used a custom fast charge amplifier developed for this purpose. The prototype has been tested at various neutron sources and showed its practicability. In particular, the detector was calibrated in a TRIGA thermal reactor (LENA laboratory, University of Pavia) with neutron fluxes of 10{sup 8} n/cm{sup 2}s and at the 3 MeV D-D monochromatic neutron source named FNG (ENEA, Rome) with neutron fluxes of 10{sup 6} n/cm{sup 2}s. The neutron spectrum measurement was performed at the TAPIRO fast research reactor (ENEA, Casaccia) with fluxes of 10{sup 9} n/cm{sup 2}s. The obtained spectra were compared to Monte Carlo simulations, modeling detector response with MCNP and Geant4. (authors)
A fast preamplifier concept for SiPM-based time-of-flight PET detectors
NASA Astrophysics Data System (ADS)
Huizenga, J.; Seifert, S.; Schreuder, F.; van Dam, H. T.; Dendooven, P.; Löhner, H.; Vinke, R.; Schaart, D. R.
2012-12-01
Silicon photomultipliers (SiPMs) offer high gain and fast response to light, making them interesting for fast timing applications such as time-of-flight (TOF) PET. To fully exploit the potential of these photosensors, dedicated preamplifiers that do not deteriorate the rise time and signal-to-noise ratio are crucial. Challenges include the high sensor capacitance, typically >300 pF for a 3 mm×3 mm SiPM sensor, as well as oscillation issues. Here we present a preamplifier concept based on low noise, high speed transistors, designed for optimum timing performance. The input stage consists of a transimpedance common-base amplifier with a very low input impedance even at high frequencies, which assures a good linearity and avoids that the high detector capacitance affects the amplifier bandwidth. The amplifier has a fast timing output as well as a 'slow' energy output optimized for determining the total charge content of the pulse. The rise time of the amplifier is about 300 ps. The measured coincidence resolving time (CRT) for 511 keV photon pairs using the amplifiers in combination with 3 mm×3 mm SiPMs (Hamamatsu MPPC-S10362-33-050C) coupled to 3 mm×3 mm×5 mm LaBr3:Ce and LYSO:Ce crystals equals 95 ps FWHM and 138 ps FWHM, respectively.
Fast entropy-based CABAC rate estimation for mode decision in HEVC.
Chen, Wei-Gang; Wang, Xun
2016-01-01
High efficiency video coding (HEVC) seeks the best code tree configuration, the best prediction unit division and the prediction mode, by evaluating the rate-distortion functional in a recursive way and using a "try all and select the best" strategy. Further, HEVC only supports context adaptive binary arithmetic coding (CABAC), which has the disadvantage of being highly sequential and having strong data dependencies, as the entropy coder. So, the development of a fast rate estimation algorithm for CABAC-based coding has a great practical significance for mode decision in HEVC. There are three elementary steps in CABAC encoding process: binarization, context modeling, and binary arithmetic coding. Typical approaches to fast CABAC rate estimation simplify or eliminate the last two steps, but leave the binarization step unchanged. To maximize the reduction of computational complexity, we propose a fast entropy-based CABAC rate estimator in this paper. It eliminates not only the modeling and the coding steps, but also the binarization step. Experimental results demonstrate that the proposed estimator is able to reduce the computational complexity of the mode decision in HEVC by 9-23 % with negligible PSNR loss and BD-rate increment, and therefore exhibits applicability to practical HEVC encoder implementation.
A fast and powerful release mechanism based on pulse heating of shape memory wires
NASA Astrophysics Data System (ADS)
Malka, Yoav; Shilo, Doron
2017-09-01
This article presents a novel actuator and a new concept for a release mechanism that are especially useful in applications that require fast motion of large masses over long distances. The actuator is based on ultra-fast pulse heating of NiTi wires, which provide a unique combination of large work per volume, short response time and enhanced energy efficiency. The release mechanism utilizes the fast and powerful actuator to form conditions in which the latch (safety pin) moves faster than the deployed device. As a result, the contact between these two masses is disconnected and the resulting friction forces are decreased to approximately zero. The actuator and release mechanism address the two major drawbacks of conventional shape memory alloy (SMA) actuators: slow actuation time and low energy efficiency. Using a dedicated setup, the experimental results validate the disconnection between the masses and map the effects of several variables on the performance of the actuator and release mechanism. In particular, we map the energetic efficiency and find the optimal operating conditions for a successful release using a minimal amount of input energy. At the optimal conditions, the actuator response time and the consumed input energy are smaller by an order of magnitude with respect to performances of previous SMA-based release mechanisms with comparable requirements.
Improved FFT-based numerical inversion of Laplace transforms via fast Hartley transform algorithm
NASA Technical Reports Server (NTRS)
Hwang, Chyi; Lu, Ming-Jeng; Shieh, Leang S.
1991-01-01
The disadvantages of numerical inversion of the Laplace transform via the conventional fast Fourier transform (FFT) are identified and an improved method is presented to remedy them. The improved method is based on introducing a new integration step length Delta(omega) = pi/mT for trapezoidal-rule approximation of the Bromwich integral, in which a new parameter, m, is introduced for controlling the accuracy of the numerical integration. Naturally, this method leads to multiple sets of complex FFT computations. A new inversion formula is derived such that N equally spaced samples of the inverse Laplace transform function can be obtained by (m/2) + 1 sets of N-point complex FFT computations or by m sets of real fast Hartley transform (FHT) computations.
Response of a Si-diode-based device to fast neutrons.
Spurný, Frantisek
2005-02-01
Semiconductor devices based on a Si-detector are frequently used for charged particle's detection; one application being in the investigation of cosmic radiation fields. From the spectra of energy deposition events in such devices, the total energy deposited by the radiation in silicon can be derived. This contribution presents the results of studies concerning the response of this type of detector to fast neutrons. First, the spectrum of energy deposition was established in fast neutron radiation fields with average energies from 0.5 to 50 MeV. It was found that these spectra vary significantly with the neutron energy. The comparison with the spectra registered in photon beams permitted an estimation of the part of energy deposited that could be attributed to neutrons. It was found that this part increases rapidly with neutron energy. The possibilities to use this type of detector for neutron detection and dosimetry for radiation protection are analysed and discussed.
NASA Astrophysics Data System (ADS)
Niino, Kazuki; Nishimura, Naoshi
2012-01-01
Solution of periodic boundary value problems is of interest in various branches of science and engineering such as optics, electromagnetics and mechanics. In our previous studies we have developed a periodic fast multipole method (FMM) as a fast solver of wave problems in periodic domains. It has been found, however, that the convergence of the iterative solvers for linear equations slows down when the solutions show anomalies related to the periodicity of the problems. In this paper, we propose preconditioning schemes based on Calderon's formulae to accelerate convergence of iterative solvers in the periodic FMM for Helmholtz' equations. The proposed preconditioners can be implemented more easily than conventional ones. We present several numerical examples to test the performance of the proposed preconditioners. We show that the effectiveness of these preconditioners is definite even near anomalies.
Knowledge-based software system for fast yield loss detection in a semiconductor fab
NASA Astrophysics Data System (ADS)
Martin Santamaria, Victorino; Recio, Miguel; Merino, Miguel A.; Moreno, Julian; Fernandez, Almudena; Gonzalez, Gerardo; Sanchez, Guillermo; Barrios, Luis J.; del Castillo, Maria D.; Lemus, Lissette; Gonzalez, Angel L.
1997-09-01
The comparative analysis of process machines in terms of yield related metrics (such as probe and E-Test data, process and particle data,. ..) is a source of a great deal of information for yield improvement. With this aim we published on SPIE's Microelectronic Manufacturing an Advanced Software System to detect machine-related yield limitors using a comparative analysis. This paper presents the natural expansion of that Software System by converting it into a more knowledge-based tool for fast yield loss detection on a semiconductor fab. The new System performs, in an automatic mode, the comparison among machines for every single step selected in the fabrication routing. The detection of statistically significative differences among machines at every step is performed using algorithms that incorporate the overall analysts experience on our fab. The output of the System allows a fast detection and reaction to yield issues, mainly to those that are still on the initial or baseline stages.
A fast multispectral light synthesiser based on LEDs and a diffraction grating
Belušič, Gregor; Ilić, Marko; Meglič, Andrej; Pirih, Primož
2016-01-01
Optical experiments often require fast-switching light sources with adjustable bandwidths and intensities. We constructed a wavelength combiner based on a reflective planar diffraction grating and light emitting diodes with emission peaks from 350 to 630 nm that were positioned at the angles corresponding to the first diffraction order of the reversed beam. The combined output beam was launched into a fibre. The spacing between 22 equally wide spectral bands was about 15 nm. The time resolution of the pulse-width modulation drivers was 1 ms. The source was validated with a fast intracellular measurement of the spectral sensitivity of blowfly photoreceptors. In hyperspectral imaging of Xenopus skin circulation, the wavelength resolution was adequate to resolve haemoglobin absorption spectra. The device contains no moving parts, has low stray light and is intrinsically capable of multi-band output. Possible applications include visual physiology, biomedical optics, microscopy and spectroscopy. PMID:27558155
Development of fast neutron radiography system based on portable neutron generator
NASA Astrophysics Data System (ADS)
Yi, Chia Jia; Nilsuwankosit, Sunchai
2016-01-01
Due to the high installation cost, the safety concern and the immobility of the research reactors, the neutron radiography system based on portable neutron generator is proposed. Since the neutrons generated from a portable neutron generator are mostly the fast neutrons, the system is emphasized on using the fast neutrons for the purpose of conducting the radiography. In order to suppress the influence of X-ray produced by the neutron generator, a combination of a shielding material sandwiched between two identical imaging plates is used. A binary XOR operation is then applied for combining the information from the imaging plates. The raw images obtained confirm that the X-ray really has a large effect and that XOR operation can help enhance the effect of the neutrons.
Development of fast neutron radiography system based on portable neutron generator
Yi, Chia Jia Nilsuwankosit, Sunchai
2016-01-22
Due to the high installation cost, the safety concern and the immobility of the research reactors, the neutron radiography system based on portable neutron generator is proposed. Since the neutrons generated from a portable neutron generator are mostly the fast neutrons, the system is emphasized on using the fast neutrons for the purpose of conducting the radiography. In order to suppress the influence of X-ray produced by the neutron generator, a combination of a shielding material sandwiched between two identical imaging plates is used. A binary XOR operation is then applied for combining the information from the imaging plates. The raw images obtained confirm that the X-ray really has a large effect and that XOR operation can help enhance the effect of the neutrons.
A fast quaternion-based orientation optimizer via virtual rotation for human motion tracking.
Lee, Jung Keun; Park, Edward J
2009-05-01
For real-time ambulatory human motion tracking with low-cost inertial/magnetic sensors, a computationally efficient and robust algorithm for estimating orientation is critical. This paper presents a quaternion-based orientation optimizer for tracking human body motion, using triaxis rate gyro, accelerometer, and magnetometer signals. The proposed optimizer uses a Gauss-Newton (G-N) method for finding the best-fit quaternion. In order to decrease the computing time, the optimizer is formulated using a virtual rotation concept that allows very fast quaternion updates compared to the conventional G-N method. In addition, to guard against the effects of fast body motions and temporary ferromagnetic disturbances, a situational measurement vector selection procedure is adopted in conjunction with the G-N optimizer. The accuracy of orientation estimates is validated experimentally, using arm motion trials.
Dynamical programming based turbulence velocimetry for fast visible imaging of tokamak plasma
NASA Astrophysics Data System (ADS)
Banerjee, Santanu; Zushi, H.; Nishino, N.; Mishra, K.; Onchi, T.; Kuzmin, A.; Nagashima, Y.; Hanada, K.; Nakamura, K.; Idei, H.; Hasegawa, M.; Fujisawa, A.
2015-03-01
An orthogonal dynamic programming (ODP) based particle image velocimetry (PIV) technique is developed to measure the time resolved flow field of the fluctuating structures at the plasma edge and scrape off layer (SOL) of tokamaks. This non-intrusive technique can provide two dimensional velocity fields at high spatial and temporal resolution from a fast framing image sequence and hence can provide better insights into plasma flow as compared to conventional probe measurements. Applicability of the technique is tested with simulated image pairs. Finally, it is applied to tangential fast visible images of QUEST plasma to estimate the SOL flow in inboard poloidal null-natural divertor configuration. This technique is also applied to investigate the intricate features of the core of the run-away dominated phase following the injection of a large amount of neutrals in the target Ohmic plasma. Development of the ODP-PIV code and its applicability on actual plasma images is reported.
A fast multispectral light synthesiser based on LEDs and a diffraction grating
NASA Astrophysics Data System (ADS)
Belušič, Gregor; Ilić, Marko; Meglič, Andrej; Pirih, Primož
2016-08-01
Optical experiments often require fast-switching light sources with adjustable bandwidths and intensities. We constructed a wavelength combiner based on a reflective planar diffraction grating and light emitting diodes with emission peaks from 350 to 630 nm that were positioned at the angles corresponding to the first diffraction order of the reversed beam. The combined output beam was launched into a fibre. The spacing between 22 equally wide spectral bands was about 15 nm. The time resolution of the pulse-width modulation drivers was 1 ms. The source was validated with a fast intracellular measurement of the spectral sensitivity of blowfly photoreceptors. In hyperspectral imaging of Xenopus skin circulation, the wavelength resolution was adequate to resolve haemoglobin absorption spectra. The device contains no moving parts, has low stray light and is intrinsically capable of multi-band output. Possible applications include visual physiology, biomedical optics, microscopy and spectroscopy.
Ahn, Hyun S; Bard, Allen J
2016-01-13
Nickel-iron mixed metal oxyhydroxides have attracted significant attention as an oxygen evolution reaction (OER) catalyst for solar fuel renewable energy applications. Here, we performed surface-selective and time-dependent redox titrations to directly measure the surface OER kinetics of Ni(IV) and Fe(IV) in NiOOH, FeOOH, and Ni(1-x)Fe(x)OOH (0 < x < 0.27) electrodes. Most importantly, two types of surface sites exhibiting "fast" and "slow" kinetics were found, where the fraction of "fast" sites in Ni(1-x)Fe(x)OOH matched the iron atom content in the film. This finding provides experimental support to the theory-proposed model of active sites in Ni(1-x)Fe(x)OOH. The OER rate constant of the "fast" site was 1.70 s(-1) per atom.
Aslan, Kadir; Malyn, Stuart N; Geddes, Chris D
2007-05-31
The applicability of a new technique, Microwave-Accelerated Surface Plasmon-Coupled Luminescence (MA-SPCL) for fast and sensitive bioassays in buffer, serum and whole blood using quantum dots as luminescence reporters is demonstrated. In this regard, a model bioassay based on the well-known interactions of biotin and streptavidin is used. Using MA-SPCL, the bioassay was kinetically completed within 1 min with the use of low power microwave heating as compared to the identical bioassay which took in excess of 30 min to reach >95% completion at room temperature, a 30-fold increase in assay kinetics. The luminescence emission from the quantum dots was coupled to surface plasmons of the gold film, enabling the detection of the luminescence emission in a highly directional fashion as compared to the normal isotropic emission, for enhanced sensitivity and detection. The combined effect of microwaves for faster assay kinetics, with surface plasmon-coupled luminescence for sensitive luminescence measurements, has also made possible the demonstration of the use of the MA-SPCL technique for assays run in complex media, such as human serum and whole blood, where the same assay could not be performed at room temperature due to the coagulation of blood. In the MA-SPCL assay run in serum and whole blood, the luminescence intensity from 33 nM quantum dots was 75% and 20% that of the luminescence intensity from the assay run in buffer, with a signal to noise ratio of 12.5 and 3, respectively.
The speed of feature-based attention: attentional advantage is slow, but selection is fast.
Huang, Liqiang
2010-12-01
When paying attention to a feature (e.g., red), no attentional advantage is gained in perceiving items with this feature in very brief displays. Therefore, feature-based attention seems to be slow. In previous feature-based attention studies, attention has often been measured as the difference in performance in a secondary task. In our recent work on Boolean map theory (Huang & Pashler, 2007), we distinguished between 2 concepts that are often conflated with the term attention, namely the selection of information from stimulus and the following processing optimization (i.e., attentional advantage) of the selected stimulus. Attention, as examined in previous feature-based attention studies, only fits the definition of processing optimization, but does not fit the definition of selection of information. Therefore, it is open to question whether feature-based attention, when defined as selection, is fast or slow. In this study, I systematically measured the speed of feature-based attention in relation to both definitions. Attention was found to be slow (~100 ms) in terms of processing optimization (i.e., attentional advantage) but fast in terms of the selection of information (<50 ms). These results support the view that feature-based attention works by creating a spatial representation (i.e., a Boolean map; Huang & Pashler, 2007) for the stimulus of a feature and a processing optimization of the visual information residing in the region of this spatial representation.
Variable disparity-motion estimation based fast three-view video coding
NASA Astrophysics Data System (ADS)
Bae, Kyung-Hoon; Kim, Seung-Cheol; Hwang, Yong Seok; Kim, Eun-Soo
2009-02-01
In this paper, variable disparity-motion estimation (VDME) based 3-view video coding is proposed. In the encoding, key-frame coding (KFC) based motion estimation and variable disparity estimation (VDE) for effectively fast three-view video encoding are processed. These proposed algorithms enhance the performance of 3-D video encoding/decoding system in terms of accuracy of disparity estimation and computational overhead. From some experiments, stereo sequences of 'Pot Plant' and 'IVO', it is shown that the proposed algorithm's PSNRs is 37.66 and 40.55 dB, and the processing time is 0.139 and 0.124 sec/frame, respectively.
Improving abdomen tumor low-dose CT images using a fast dictionary learning based processing
NASA Astrophysics Data System (ADS)
Chen, Yang; Yin, Xindao; Shi, Luyao; Shu, Huazhong; Luo, Limin; Coatrieux, Jean-Louis; Toumoulin, Christine
2013-08-01
In abdomen computed tomography (CT), repeated radiation exposures are often inevitable for cancer patients who receive surgery or radiotherapy guided by CT images. Low-dose scans should thus be considered in order to avoid the harm of accumulative x-ray radiation. This work is aimed at improving abdomen tumor CT images from low-dose scans by using a fast dictionary learning (DL) based processing. Stemming from sparse representation theory, the proposed patch-based DL approach allows effective suppression of both mottled noise and streak artifacts. The experiments carried out on clinical data show that the proposed method brings encouraging improvements in abdomen low-dose CT images with tumors.
NASA Astrophysics Data System (ADS)
Shen, Fabin; Wang, Anbo
2006-02-01
The numerical calculation of the Rayleigh-Sommerfeld diffraction integral is investigated. The implementation of a fast-Fourier-transform (FFT) based direct integration (FFT-DI) method is presented, and Simpson's rule is used to improve the calculation accuracy. The sampling interval, the size of the computation window, and their influence on numerical accuracy and on computational complexity are discussed for the FFT-DI and the FFT-based angular spectrum (FFT-AS) methods. The performance of the FFT-DI method is verified by numerical simulation and compared with that of the FFT-AS method.
A fast learning-based super-resolution method for copper strip defect image
NASA Astrophysics Data System (ADS)
Zhang, Zhuo; Fan, Xinnan; Zhang, Xuewu
2017-07-01
In this paper, a fast pre-classified-based super-resolution model has been proposed to overcome the problems of degraded imaging in weak-target real-time detection system, specialized to copper defect detection. To accurately characterize the defected image, textural features based on the statistical function of gray-gradient are presented. Furthermore, to improve the effectiveness and practicality of the online detection, a concept of pre-classified learning is introduced and an edge smoothness rule is designed. Some experiments are carried out on defect images in different environments and the experimental results show the efficiency and effectiveness of the algorithm.
NASA Astrophysics Data System (ADS)
Nakamura, Kazuhiro; Shimazaki, Ryo; Yamamoto, Masatoshi; Takagi, Kazuyoshi; Takagi, Naofumi
This paper presents a memory-efficient VLSI architecture for output probability computations (OPCs) of continuous hidden Markov models (HMMs) and likelihood score computations (LSCs). These computations are the most time consuming part of HMM-based isolated word recognition systems. We demonstrate multiple fast store-based block parallel processing (MultipleFastStoreBPP) for OPCs and LSCs and present a VLSI architecture that supports it. Compared with conventional fast store-based block parallel processing (FastStoreBPP) and stream-based block parallel processing (StreamBPP) architectures, the proposed architecture requires fewer registers and less processing time. The processing elements (PEs) used in the FastStoreBPP and StreamBPP architectures are identical to those used in the MultipleFastStoreBPP architecture. From a VLSI architectural viewpoint, a comparison shows that the proposed architecture is an improvement over the others, through efficient use of PEs and registers for storing input feature vectors.
Radiation of fast positrons interacting with periodic microstructure on the surface of a crystal
NASA Astrophysics Data System (ADS)
Epp, V.; Janz, J. G.; Kaplin, V. V.
2016-12-01
Radiation of positrons passing through a set of equidistant crystal plates is calculated. Each plate is of thickness of half of the particle trajectory period at planar channeling in a thick crystal. Positively charged particle entering the first plate at an angle smaller than the critical channeling angle is captured into channeling mode and changes the direction of its transversal velocity to reversed. Between the half-wave plates the particle moves along a straight line. The proposed setup can be realized as a set of equidistant ridges on the surface of a single crystal. Passing through such set of half-wave crystal plates the particle moves on quasi-undulator trajectories. Properties of the particle radiation emitted during their passage through such "multicrystal undulator" are calculated. The radiation spectrum in each particular direction is discrete, and the frequency of the first harmonic and the number of harmonics in the spectrum depend on the distance between the plates, on energy of the particles and on the averaged potential energy of atomic planes of the crystal. The radiation is bound to a narrow cone in the direction of the average particle velocity and polarized essentially in a plane orthogonal to the atomic planes in the crystal.
Efficient Surface Enhanced Raman Scattering substrates from femtosecond laser based fabrication
NASA Astrophysics Data System (ADS)
Parmar, Vinod; Kanaujia, Pawan K.; Bommali, Ravi Kumar; Vijaya Prakash, G.
2017-10-01
A fast and simple femtosecond laser based methodology for efficient Surface Enhanced Raman Scattering (SERS) substrate fabrication has been proposed. Both nano scaffold silicon (black silicon) and gold nanoparticles (Au-NP) are fabricated by femtosecond laser based technique for mass production. Nano rough silicon scaffold enables large electromagnetic fields for the localized surface plasmons from decorated metallic nanoparticles. Thus giant enhancement (approximately in the order of 104) of Raman signal arises from the mixed effects of electron-photon-phonon coupling, even at nanomolar concentrations of test organic species (Rhodamine 6G). Proposed process demonstrates the low-cost and label-less application ability from these large-area SERS substrates.
NASA Astrophysics Data System (ADS)
Morgenstern, Karina
2005-03-01
The Feature Article [1] describes how structural changes in metallic nanostructures can be followed with fast scanning tunneling microscopy (STM). The title page shows the same spot of a Ag(111) surface at room temperature, imaged with STM approximately one hour apart. Intrinsic changes to prepared nano-structures are marked as Brownian motion of vacancy islands (rectangle), coalescence of two vacancy islands (hexagon), and decay of an adatom island (circle).Karina Morgenstern is now professor at the University of Hannover. Her research is placed within the field of nanoscience and is in particular devoted to thermally activated processes of metallic nanostructures, electronically activated reactions of molecules on metallic surfaces, and water-metal interactions.The present issue of physica status solidi (b) also contains the article Apperance of copper d9 defect centres in wide-gap CdSe nanoparticles: A high-fequency EPR study by N. R. J. Poolton et al. as Editor's Choice [2] as well as several papers on electrical and nonlinear optical properties from the European Conference on Organised Films (ECOF 2004) chaired by José Antonio de Saja, Valladolid.
NASA Astrophysics Data System (ADS)
Rösch, Raphael; Schuster, Rolf
2015-01-01
The noise level of tunneling spectroscopic data can be significantly reduced by averaging the tunneling current over a large number of short bias voltage ramps, instead of recording over a single slow ramp. This effect is demonstrated for tunneling spectra of Au(111) by averaging over 200 consecutive bias voltage ramps, each 500 μs long. We attribute the improvement of the data quality to the frequency dependence of the current noise spectral density. Due to mechanical vibrations and tip instabilities the noise density is usually much higher for low frequencies ca. < 1 kHz than for the high frequencies relevant for measuring with fast bias ramps. The high data quality allowed for the routine detection of the Au(111) surface state and the investigation of the influence of steps in humid air, i.e., with a water-covered tunneling gap. For a CN covered Au surface in the presence of water we unexpectedly found additional electronic density of states at positive energies, around 0.6 eV, i.e., for unoccupied states. STS spectra of a (√{ 3} ×√{ 3}) R 30 ° Cu-UPD layer, formed by adsorbed sulfate and Cu species, indicate tunneling via the sulfate electronic density of states.
NASA Astrophysics Data System (ADS)
Goosman, David R.; Avara, George R.; Perry, Stephen J.
2001-04-01
We have in the past used several types of optical probe lenses for delivering and collecting laser light to an experiment for laser velocimetry. When the test surface was in focus, however, the collected light would fill mostly the laser fiber rather than the collection fiber(s). We have designed, developed and used for 8 years nested-lens probe assemblies that solve this problem. Our first version used a commercial AR-coated glass achromat, which we cored to remove the inner fourth of its area. The core was then reinserted with its optical center offset from that of annulus by an amount slightly less than the separation between the laser and collector fibers. The laser and collector fibers are placed in contact with each other behind the lens and have NA values of 0.11 and 0.22, respectively. Because most of the collected light now focused on the collection fiber, this system was far superior to the single lens systems, but was laborious. For the last five years we used injection-molded acrylic aspheric nested lenses, which are inexpensive in quantity and require little labor to install into a probe. Only an azimuthal rotation and positioning of the fiber plane are needed to incorporate the plastic lens into a probe. Special ray-trace codes were written and used to design the lens, and many iterations by the molder were required to develop the injection processing parameters to produce a good lens, since it was thick for its diameter. These probes have real light collection efficiencies of 75% of theoretical, work well over a wide range of distances, with collection depths of field matching theory. The lenses can take 100 watts of pulsed power many times without damage, since the lens is designed so that reflections from the lens surface do not focus within the lens. The collection fiber size is designed to work with our manybeam velocimeter facility reported in a previous Congress, where the collection NA times collection fiber size exceeds the acceptance of the
Validation of the CrIS fast physical NH3 retrieval with ground-based FTIR
NASA Astrophysics Data System (ADS)
Dammers, Enrico; Shephard, Mark W.; Palm, Mathias; Cady-Pereira, Karen; Capps, Shannon; Lutsch, Erik; Strong, Kim; Hannigan, James W.; Ortega, Ivan; Toon, Geoffrey C.; Stremme, Wolfgang; Grutter, Michel; Jones, Nicholas; Smale, Dan; Siemons, Jacob; Hrpcek, Kevin; Tremblay, Denis; Schaap, Martijn; Notholt, Justus; Erisman, Jan Willem
2017-07-01
Presented here is the validation of the CrIS (Cross-track Infrared Sounder) fast physical NH3 retrieval (CFPR) column and profile measurements using ground-based Fourier transform infrared (FTIR) observations. We use the total columns and profiles from seven FTIR sites in the Network for the Detection of Atmospheric Composition Change (NDACC) to validate the satellite data products. The overall FTIR and CrIS total columns have a positive correlation of r = 0.77 (N = 218) with very little bias (a slope of 1.02). Binning the comparisons by total column amounts, for concentrations larger than 1.0 × 1016 molecules cm-2, i.e. ranging from moderate to polluted conditions, the relative difference is on average ˜ 0-5 % with a standard deviation of 25-50 %, which is comparable to the estimated retrieval uncertainties in both CrIS and the FTIR. For the smallest total column range (< 1.0 × 1016 molecules cm-2) where there are a large number of observations at or near the CrIS noise level (detection limit) the absolute differences between CrIS and the FTIR total columns show a slight positive column bias. The CrIS and FTIR profile comparison differences are mostly within the range of the single-level retrieved profile values from estimated retrieval uncertainties, showing average differences in the range of ˜ 20 to 40 %. The CrIS retrievals typically show good vertical sensitivity down into the boundary layer which typically peaks at ˜ 850 hPa (˜ 1.5 km). At this level the median absolute difference is 0.87 (std = ±0.08) ppb, corresponding to a median relative difference of 39 % (std = ±2 %). Most of the absolute and relative profile comparison differences are in the range of the estimated retrieval uncertainties. At the surface, where CrIS typically has lower sensitivity, it tends to overestimate in low-concentration conditions and underestimate in higher atmospheric concentration conditions.
Fast Fourier transform based direct integration algorithm for the linear canonical transform
NASA Astrophysics Data System (ADS)
Wang, Dayong; Liu, Changgeng; Wang, Yunxin; Zhao, Jie
2011-03-01
The linear canonical transform(LCT) is a parameterized linear integral transform, which is the general case of many well-known transforms such as the Fourier transform(FT), the fractional Fourier transform(FRT) and the Fresnel transform(FST). These integral transforms are of great importance in wave propagation problems because they are the solutions of the wave equation under a variety of circumstances. In optics, the LCT can be used to model paraxial free space propagation and other quadratic phase systems such as lens and graded-index media. A number of algorithms have been presented to fast compute the LCT. When they are used to compute the LCT, the sampling period in the transform domain is dependent on that in the signal domain. This drawback limits their applicability in some cases such as color digital holography. In this paper, a Fast-Fourier-Transform-based Direct Integration algorithm(FFT-DI) for the LCT is presented. The FFT-DI is a fast computational method of the Direct Integration(DI) for the LCT. It removes the dependency of the sampling period in the transform domain on that in the signal domain. Simulations and experimental results are presented to validate this idea.
Fast Fourier transform based direct integration algorithm for the linear canonical transform
NASA Astrophysics Data System (ADS)
Wang, Dayong; Liu, Changgeng; Wang, Yunxin; Zhao, Jie
2010-07-01
The linear canonical transform(LCT) is a parameterized linear integral transform, which is the general case of many well-known transforms such as the Fourier transform(FT), the fractional Fourier transform(FRT) and the Fresnel transform(FST). These integral transforms are of great importance in wave propagation problems because they are the solutions of the wave equation under a variety of circumstances. In optics, the LCT can be used to model paraxial free space propagation and other quadratic phase systems such as lens and graded-index media. A number of algorithms have been presented to fast compute the LCT. When they are used to compute the LCT, the sampling period in the transform domain is dependent on that in the signal domain. This drawback limits their applicability in some cases such as color digital holography. In this paper, a Fast-Fourier-Transform-based Direct Integration algorithm(FFT-DI) for the LCT is presented. The FFT-DI is a fast computational method of the Direct Integration(DI) for the LCT. It removes the dependency of the sampling period in the transform domain on that in the signal domain. Simulations and experimental results are presented to validate this idea.
A CFD-based wind solver for a fast response transport and dispersion model
Gowardhan, Akshay A; Brown, Michael J; Pardyjak, Eric R; Senocak, Inanc
2010-01-01
In many cities, ambient air quality is deteriorating leading to concerns about the health of city inhabitants. In urban areas with narrow streets surrounded by clusters of tall buildings, called street canyons, air pollution from traffic emissions and other sources is difficult to disperse and may accumulate resulting in high pollutant concentrations. For various situations, including the evacuation of populated areas in the event of an accidental or deliberate release of chemical, biological and radiological agents, it is important that models should be developed that produce urban flow fields quickly. For these reasons it has become important to predict the flow field in urban street canyons. Various computational techniques have been used to calculate these flow fields, but these techniques are often computationally intensive. Most fast response models currently in use are at a disadvantage in these cases as they are unable to correlate highly heterogeneous urban structures with the diagnostic parameterizations on which they are based. In this paper, a fast and reasonably accurate computational fluid dynamics (CFD) technique that solves the Navier-Stokes equations for complex urban areas has been developed called QUIC-CFD (Q-CFD). This technique represents an intermediate balance between fast (on the order of minutes for a several block problem) and reasonably accurate solutions. The paper details the solution procedure and validates this model for various simple and complex urban geometries.
Fast ellipsometric measurements based on a single crystal photo-elastic modulator.
Petkovšek, R; Petelin, Jaka; Možina, J; Bammer, F
2010-09-27
For quality control in high volume manufacturing of thin layers and for tracking of physical and chemical processes, ellipsometry is a common measurement technology. For such kinds of applications we present a novel approach of fast ellipsometric measurements. Instead of a conventional setup that uses a standard photo-elastic modulator, we use a 92 kHz Single Crystal Photo-Elastic Modulator (SCPEM), which is a LiTaO3 crystal with a size of 28 × 9 × 4 mm. This small, simple, and cost-effective solution also offers the advantage of direct control of the retardation via the current amplitude, which is important for repeatability of the measurements. Instead of a Lock-In Amplifier, an automated digital processing based on a fast analog to digital converter controlled by a highly flexible Field Programmable Gate Array is used. This and the extremely compact and efficient polarization modulation allow fast ellipsometric testing where the upper limit of measurement rates is mainly limited by the desired accuracy and repeatability of the measurements. The standard deviation that is related to the repeatability +/-0.002° for dielectric layers can be easily reached.
Accelerated materials design of fast oxygen ionic conductors based on first principles calculations
NASA Astrophysics Data System (ADS)
He, Xingfeng; Mo, Yifei
Over the past decades, significant research efforts have been dedicated to seeking fast oxygen ion conductor materials, which have important technological applications in electrochemical devices such as solid oxide fuel cells, oxygen separation membranes, and sensors. Recently, Na0.5Bi0.5TiO3 (NBT) was reported as a new family of fast oxygen ionic conductor. We will present our first principles computation study aims to understand the O diffusion mechanisms in the NBT material and to design this material with enhanced oxygen ionic conductivity. Using the NBT materials as an example, we demonstrate the computation capability to evaluate the phase stability, chemical stability, and ionic diffusion of the ionic conductor materials. We reveal the effects of local atomistic configurations and dopants on oxygen diffusion and identify the intrinsic limiting factors in increasing the ionic conductivity of the NBT materials. Novel doping strategies were predicted and demonstrated by the first principles calculations. In particular, the K doped NBT compound achieved good phase stability and an order of magnitude increase in oxygen ionic conductivity of up to 0.1 S cm-1 at 900 K compared to the experimental Mg doped compositions. Our results provide new avenues for the future design of the NBT materials and demonstrate the accelerated design of new ionic conductor materials based on first principles techniques. This computation methodology and workflow can be applied to the materials design of any (e.g. Li +, Na +) fast ion-conducting materials.
Pujol-Vila, F; Vigués, N; Díaz-González, M; Muñoz-Berbel, X; Mas, J
2015-05-15
Global urban and industrial growth, with the associated environmental contamination, is promoting the development of rapid and inexpensive general toxicity methods. Current microbial methodologies for general toxicity determination rely on either bioluminescent bacteria and specific medium solution (i.e. Microtox(®)) or low sensitivity and diffusion limited protocols (i.e. amperometric microbial respirometry). In this work, fast and sensitive optical toxicity bioassay based on dual wavelength analysis of bacterial ferricyanide reduction kinetics is presented, using Escherichia coli as a bacterial model. Ferricyanide reduction kinetic analysis (variation of ferricyanide absorption with time), much more sensitive than single absorbance measurements, allowed for direct and fast toxicity determination without pre-incubation steps (assay time=10 min) and minimizing biomass interference. Dual wavelength analysis at 405 (ferricyanide and biomass) and 550 nm (biomass), allowed for ferricyanide monitoring without interference of biomass scattering. On the other hand, refractive index (RI) matching with saccharose reduced bacterial light scattering around 50%, expanding the analytical linear range in the determination of absorbent molecules. With this method, different toxicants such as metals and organic compounds were analyzed with good sensitivities. Half maximal effective concentrations (EC50) obtained after 10 min bioassay, 2.9, 1.0, 0.7 and 18.3 mg L(-1) for copper, zinc, acetic acid and 2-phenylethanol respectively, were in agreement with previously reported values for longer bioassays (around 60 min). This method represents a promising alternative for fast and sensitive water toxicity monitoring, opening the possibility of quick in situ analysis.
Sando, Yusuke; Barada, Daisuke; Jackin, Boaz Jessie; Yatagai, Toyohiko
2013-12-01
The relation between a three-dimensional (3D) object and its diffracted wavefront in the 3D Fourier space is discussed at first and then a rigorous diffraction formula onto cylindrical surfaces is derived. The azimuthal direction and the spatial frequency direction corresponding to height can be expressed with a one-dimensional (1D) convolution integral and a 1D inverse Fourier transform in the 3D Fourier space, respectively, and fast Fourier transforms are available for fast calculation. A numerical simulation of a diffracted wavefront on cylindrical surfaces is presented. An alternative optical experiment equivalent of the optical reconstruction from cylindrical holograms is also demonstrated.
Fast calculation with point-based method to make CGHs of the polygon model
NASA Astrophysics Data System (ADS)
Ogihara, Yuki; Ichikawa, Tsubasa; Sakamoto, Yuji
2014-02-01
Holography is one of the three-dimensional technology. Light waves from an object are recorded and reconstructed by using a hologram. Computer generated holograms (CGHs), which are made by simulating light propagation using a computer, are able to represent virtual object. However, an enormous amount of computation time is required to make CGHs. There are two primary methods of calculating CGHs: the polygon-based method and the point-based method. In the polygon-based method with Fourier transforms, CGHs are calculated using a fast Fourier transform (FFT). The calculation of complex objects composed of multiple polygons requires as many FFTs, so unfortunately the calculation time become enormous. In contrast, in the point-based method, it is easy to express complex objects, an enormous calculation time is still required. Graphics processing units (GPUs) have been used to speed up the calculations of point-based method. Because a GPU is specialized for parallel computation and CGH calculation can be calculated independently for each pixel. However, expressing a planar object by the point-based method requires a signi cant increase in the density of points and consequently in the number of point light sources. In this paper, we propose a fast calculation algorithm to express planar objects by the point-based method with a GPU. The proposed method accelerate calculation by obtaining the distance between a pixel and the point light source from the adjacent point light source by a difference method. Under certain speci ed conditions, the difference between adjacent object points becomes constant, so the distance is obtained by only an additions. Experimental results showed that the proposed method is more effective than the polygon-based method with FFT when the number of polygons composing an objects are high.
Fast Reactor Based on the Self-Sustained Regime of Nuclear Burning Wave
NASA Astrophysics Data System (ADS)
Fomin, S. P.; Mel'nik, Yu. P.; Pilipenko, V. V.; Shul'ga, N. F.
An approach for description of the space-time evolution of self-organizing nuclear burning wave regime in a critical fast neutron reactor has been developed in the effective multigroup approximation. It is based on solving the non-stationary neutron diffusion equation together with the fuel burn-up equations and the equations of nuclear kinetics for delayed neutron precursor nuclei. The calculations have been carried out in the plane one-dimensional model for a two-zone homogeneous reactor with the metal U-Pu fuel, the Na coolant and constructional material Fe.
Lee, Ho; Lee, Jeongjin; Shin, Yeong Gil; Lee, Rena; Xing, Lei
2010-06-21
This paper presents a fast and accurate marker-based automatic registration technique for aligning uncalibrated projections taken from a transmission electron microscope (TEM) with different tilt angles and orientations. Most of the existing TEM image alignment methods estimate the similarity between images using the projection model with least-squares metric and guess alignment parameters by computationally expensive nonlinear optimization schemes. Approaches based on the least-squares metric which is sensitive to outliers may cause misalignment since automatic tracking methods, though reliable, can produce a few incorrect trajectories due to a large number of marker points. To decrease the influence of outliers, we propose a robust similarity measure using the projection model with a Gaussian weighting function. This function is very effective in suppressing outliers that are far from correct trajectories and thus provides a more robust metric. In addition, we suggest a fast search strategy based on the non-gradient Powell's multidimensional optimization scheme to speed up optimization as only meaningful parameters are considered during iterative projection model estimation. Experimental results show that our method brings more accurate alignment with less computational cost compared to conventional automatic alignment methods.
NASA Astrophysics Data System (ADS)
Zhang, Shunli; Zhang, Dinghua; Gong, Hao; Ghasemalizadeh, Omid; Wang, Ge; Cao, Guohua
2014-11-01
Iterative algorithms, such as the algebraic reconstruction technique (ART), are popular for image reconstruction. For iterative reconstruction, the area integral model (AIM) is more accurate for better reconstruction quality than the line integral model (LIM). However, the computation of the system matrix for AIM is more complex and time-consuming than that for LIM. Here, we propose a fast and accurate method to compute the system matrix for AIM. First, we calculate the intersection of each boundary line of a narrow fan-beam with pixels in a recursive and efficient manner. Then, by grouping the beam-pixel intersection area into six types according to the slopes of the two boundary lines, we analytically compute the intersection area of the narrow fan-beam with the pixels in a simple algebraic fashion. Overall, experimental results show that our method is about three times faster than the Siddon algorithm and about two times faster than the distance-driven model (DDM) in computation of the system matrix. The reconstruction speed of our AIM-based ART is also faster than the LIM-based ART that uses the Siddon algorithm and DDM-based ART, for one iteration. The fast reconstruction speed of our method was accomplished without compromising the image quality.
Zou, Han; Lu, Xiaoxuan; Jiang, Hao; Xie, Lihua
2015-01-01
Nowadays, developing indoor positioning systems (IPSs) has become an attractive research topic due to the increasing demands on location-based service (LBS) in indoor environments. WiFi technology has been studied and explored to provide indoor positioning service for years in view of the wide deployment and availability of existing WiFi infrastructures in indoor environments. A large body of WiFi-based IPSs adopt fingerprinting approaches for localization. However, these IPSs suffer from two major problems: the intensive costs of manpower and time for offline site survey and the inflexibility to environmental dynamics. In this paper, we propose an indoor localization algorithm based on an online sequential extreme learning machine (OS-ELM) to address the above problems accordingly. The fast learning speed of OS-ELM can reduce the time and manpower costs for the offline site survey. Meanwhile, its online sequential learning ability enables the proposed localization algorithm to adapt in a timely manner to environmental dynamics. Experiments under specific environmental changes, such as variations of occupancy distribution and events of opening or closing of doors, are conducted to evaluate the performance of OS-ELM. The simulation and experimental results show that the proposed localization algorithm can provide higher localization accuracy than traditional approaches, due to its fast adaptation to various environmental dynamics. PMID:25599427
Zou, Han; Lu, Xiaoxuan; Jiang, Hao; Xie, Lihua
2015-01-15
Nowadays, developing indoor positioning systems (IPSs) has become an attractive research topic due to the increasing demands on location-based service (LBS) in indoor environments. WiFi technology has been studied and explored to provide indoor positioning service for years in view of the wide deployment and availability of existing WiFi infrastructures in indoor environments. A large body of WiFi-based IPSs adopt fingerprinting approaches for localization. However, these IPSs suffer from two major problems: the intensive costs of manpower and time for offline site survey and the inflexibility to environmental dynamics. In this paper, we propose an indoor localization algorithm based on an online sequential extreme learning machine (OS-ELM) to address the above problems accordingly. The fast learning speed of OS-ELM can reduce the time and manpower costs for the offline site survey. Meanwhile, its online sequential learning ability enables the proposed localization algorithm to adapt in a timely manner to environmental dynamics. Experiments under specific environmental changes, such as variations of occupancy distribution and events of opening or closing of doors, are conducted to evaluate the performance of OS-ELM. The simulation and experimental results show that the proposed localization algorithm can provide higher localization accuracy than traditional approaches, due to its fast adaptation to various environmental dynamics.
Surface-Based Protein Binding Pocket Similarity
Spitzer, Russell; Cleves, Ann E.; Jain, Ajay N.
2011-01-01
Protein similarity comparisons may be made on a local or global basis and may consider sequence information or differing levels of structural information. We present a local 3D method that compares protein binding site surfaces in full atomic detail. The approach is based on the morphological similarity method which has been widely applied for global comparison of small molecules. We apply the method to all-by-all comparisons two sets of human protein kinases, a very diverse set of ATP-bound proteins from multiple species, and three heterogeneous benchmark protein binding site data sets. Cases of disagreement between sequence-based similarity and binding site similarity yield informative examples. Where sequence similarity is very low, high pocket similarity can reliably identify important binding motifs. Where sequence similarity is very high, significant differences in pocket similarity are related to ligand binding specificity and similarity. Local protein binding pocket similarity provides qualitatively complementary information to other approaches, and it can yield quantitative information in support of functional annotation. PMID:21769944
NASA Astrophysics Data System (ADS)
Chen, Weimin; Zhou, Xiaoyan; Zhang, Xiaotao; Bian, Jie; Shi, Shukai; Nguyen, Thiphuong; Chen, Minzhi; Wan, Jinglin
2017-06-01
The hydrophilicity of woody products leads to deformation and cracks, which greatly limits its applications. Low-pressure dielectric barrier discharge (DBD) plasma using hexamethyldisiloxane was applied in poplar wood surface to enhance the hydrophobicity. The chemical properties, micro-morphology, and contact angles of poplar wood surface before and after plasma treatment were investigated by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), x-ray photoelectron spectroscopy (XPS), scanning electron microscope and energy dispersive analysis of X-ray (SEM-EDX), atomic force microscopy (AFM), and optical contact angle measurement (OCA). Moreover, tinfoil film was used as the base to reveal the enhancement mechanism. The results showed that hexamethyldisiloxane monomer is first broken into several fragments with active sites and hydrophobic chemical groups. Meanwhile, plasma treatment results in the formation of free radicals and active sites in the poplar wood surface. Then, the fragments are reacted with free radicals and incorporated into the active sites to form a network structure based on the linkages of Si-O-Si and Sisbnd Osbnd C. Plasma treatment also leads to the formation of acicular nano-structure in poplar wood surface. These facts synergistically enhance the hydrophobicity of poplar wood surface, demonstrating the dramatically increase in the equilibrium contact angle by 330%.
Das, Shreepriya; Vikalo, Haris
2012-07-01
Next-generation DNA sequencing platforms are becoming increasingly cost-effective and capable of providing enormous number of reads in a relatively short time. However, their accuracy and read lengths are still lagging behind those of conventional Sanger sequencing method. Performance of next-generation sequencing platforms is fundamentally limited by various imperfections in the sequencing-by-synthesis and signal acquisition processes. This drives the search for accurate, scalable and computationally tractable base calling algorithms capable of accounting for such imperfections. Relying on a statistical model of the sequencing-by-synthesis process and signal acquisition procedure, we develop a computationally efficient base calling method for Illumina's sequencing technology (specifically, Genome Analyzer II platform). Parameters of the model are estimated via a fast unsupervised online learning scheme, which uses the generalized expectation-maximization algorithm and requires only 3 s of running time per tile (on an Intel i7 machine @3.07GHz, single core)-a three orders of magnitude speed-up over existing parametric model-based methods. To minimize the latency between the end of the sequencing run and the generation of the base calling reports, we develop a fast online scalable decoding algorithm, which requires only 9 s/tile and achieves significantly lower error rates than the Illumina's base calling software. Moreover, it is demonstrated that the proposed online parameter estimation scheme efficiently computes tile-dependent parameters, which can thereafter be provided to the base calling algorithm, resulting in significant improvements over previously developed base calling methods for the considered platform in terms of performance, time/complexity and latency. A C code implementation of our algorithm can be downloaded from http://www.cerc.utexas.edu/OnlineCall/.
Das, Shreepriya; Vikalo, Haris
2012-01-01
Motivation: Next-generation DNA sequencing platforms are becoming increasingly cost-effective and capable of providing enormous number of reads in a relatively short time. However, their accuracy and read lengths are still lagging behind those of conventional Sanger sequencing method. Performance of next-generation sequencing platforms is fundamentally limited by various imperfections in the sequencing-by-synthesis and signal acquisition processes. This drives the search for accurate, scalable and computationally tractable base calling algorithms capable of accounting for such imperfections. Results: Relying on a statistical model of the sequencing-by-synthesis process and signal acquisition procedure, we develop a computationally efficient base calling method for Illumina's sequencing technology (specifically, Genome Analyzer II platform). Parameters of the model are estimated via a fast unsupervised online learning scheme, which uses the generalized expectation–maximization algorithm and requires only 3 s of running time per tile (on an Intel i7 machine @3.07GHz, single core)—a three orders of magnitude speed-up over existing parametric model-based methods. To minimize the latency between the end of the sequencing run and the generation of the base calling reports, we develop a fast online scalable decoding algorithm, which requires only 9 s/tile and achieves significantly lower error rates than the Illumina's base calling software. Moreover, it is demonstrated that the proposed online parameter estimation scheme efficiently computes tile-dependent parameters, which can thereafter be provided to the base calling algorithm, resulting in significant improvements over previously developed base calling methods for the considered platform in terms of performance, time/complexity and latency. Availability: A C code implementation of our algorithm can be downloaded from http://www.cerc.utexas.edu/OnlineCall/ Contact: hvikalo@ece.utexas.edu Supplementary information
Chen, Zhe; Zhang, Fumin; Qu, Xinghua; Liang, Baoqiu
2015-01-01
In this paper, we propose a new approach for the measurement and reconstruction of large workpieces with freeform surfaces. The system consists of a handheld laser scanning sensor and a position sensor. The laser scanning sensor is used to acquire the surface and geometry information, and the position sensor is utilized to unify the scanning sensors into a global coordinate system. The measurement process includes data collection, multi-sensor data fusion and surface reconstruction. With the multi-sensor data fusion, errors accumulated during the image alignment and registration process are minimized, and the measuring precision is significantly improved. After the dense accurate acquisition of the three-dimensional (3-D) coordinates, the surface is reconstructed using a commercial software piece, based on the Non-Uniform Rational B-Splines (NURBS) surface. The system has been evaluated, both qualitatively and quantitatively, using reference measurements provided by a commercial laser scanning sensor. The method has been applied for the reconstruction of a large gear rim and the accuracy is up to 0.0963 mm. The results prove that this new combined method is promising for measuring and reconstructing the large-scale objects with complex surface geometry. Compared with reported methods of large-scale shape measurement, it owns high freedom in motion, high precision and high measurement speed in a wide measurement range. PMID:26091396
XCO2 Retrieval Errors from a PCA-based Approach to Fast Radiative Transfer
NASA Astrophysics Data System (ADS)
Somkuti, Peter; Boesch, Hartmut; Natraj, Vijay; Kopparla, Pushkar
2017-04-01
Multiple-scattering radiative transfer (RT) calculations are an integral part of forward models used to infer greenhouse gas concentrations in the shortwave-infrared spectral range from satellite missions such as GOSAT or OCO-2. Such calculations are, however, computationally expensive and, combined with the recent growth in data volume, necessitate the use of acceleration methods in order to make retrievals feasible on an operational level. The principle component analysis (PCA)-based approach to fast radiative transfer introduced by Natraj et al. 2005 is a spectral binning method, in which the many line-by-line monochromatic calculations are replaced by a small set of representative ones. From the PCA performed on the optical layer properties for a scene-dependent atmosphere, the results of the representative calculations are mapped onto all spectral points in the given band. Since this RT scheme is an approximation, the computed top-of-atmosphere radiances exhibit errors compared to the "full" line-by-line calculation. These errors ultimately propagate into the final retrieved greenhouse gas concentrations, and their magnitude depends on scene-dependent parameters such as aerosol loadings or viewing geometry. An advantage of this method is the ability to choose the degree of accuracy by increasing or decreasing the number of empirical orthogonal functions used for the reconstruction of the radiances. We have performed a large set of global simulations based on real GOSAT scenes and assess the retrieval errors induced by the fast RT approximation through linear error analysis. We find that across a wide range of geophysical parameters, the errors are for the most part smaller than ± 0.2 ppm and ± 0.06 ppm (out of roughly 400 ppm) for ocean and land scenes respectively. A fast RT scheme that produces low errors is important, since regional biases in XCO2 even in the low sub-ppm range can cause significant changes in carbon fluxes obtained from inversions
Lee, Jaehoon; Hulse, Nathan C.; Wood, Grant M.; Oniki, Thomas A.; Huff, Stanley M.
2016-01-01
In this study we developed a Fast Healthcare Interoperability Resources (FHIR) profile to support exchanging a full pedigree based family health history (FHH) information across multiple systems and applications used by clinicians, patients, and researchers. We used previously developed clinical element models (CEMs) that are capable of representing the FHH information, and derived essential data elements including attributes, constraints, and value sets. We analyzed gaps between the FHH CEM elements and existing FHIR resources. Based on the analysis, we developed a profile that consists of 1) FHIR resources for essential FHH data elements, 2) extensions for additional elements that were not covered by the resources, and 3) a structured definition to integrate patient and family member information in a FHIR message. We implemented the profile using an open-source based FHIR framework and validated it using patient-entered FHH data that was captured through a locally developed FHH tool. PMID:28269871
Lee, Jaehoon; Hulse, Nathan C; Wood, Grant M; Oniki, Thomas A; Huff, Stanley M
2016-01-01
In this study we developed a Fast Healthcare Interoperability Resources (FHIR) profile to support exchanging a full pedigree based family health history (FHH) information across multiple systems and applications used by clinicians, patients, and researchers. We used previously developed clinical element models (CEMs) that are capable of representing the FHH information, and derived essential data elements including attributes, constraints, and value sets. We analyzed gaps between the FHH CEM elements and existing FHIR resources. Based on the analysis, we developed a profile that consists of 1) FHIR resources for essential FHH data elements, 2) extensions for additional elements that were not covered by the resources, and 3) a structured definition to integrate patient and family member information in a FHIR message. We implemented the profile using an open-source based FHIR framework and validated it using patient-entered FHH data that was captured through a locally developed FHH tool.
NASA Astrophysics Data System (ADS)
Ito, Kazuaki; Nagata, Ryo; Iwasaki, Makoto; Matsui, Nobuyuki
This paper presents a novel Genetic Algorithm (GA)-based autonomous compensator design and position command shaping considering the stand vibration suppression for the fast-response and high-precision positioning of mechatronic systems. The positioning system is mainly composed of a robust 2-degrees-of-freedom (2DOF) controller based on the coprime factorization description. The feedback compensator based on H∞ design framework in the 2DOF controller ensures the robustness against the variations of resonant vibration mode. The feedforward compensator and position command, on the other hand, can be autonomously designed by the optimization capability of GA, in order to achieve the desired positioning performance and to suppress the machine stand vibration. The effectiveness of the proposed optimal design has been verified by experiments using a table drive system with ball screw.
Iwao, Yasuhiro; Shiga, Keiko; Shiroshita, Ayumi; Yoshikawa, Tomoyasu; Sakiie, Maho; Ueno, Tomoyo; Ueno, Shuichi; Ijiri, Takashi W; Sato, Ken-ichi
2014-11-01
Monospermic fertilization in the frog, Xenopus laevis, is ensured by a fast-rising, positive fertilization potential to prevent polyspermy on the fertilized egg, followed by a slow block with the formation of a fertilization envelope over the egg surface. In this paper, we found that not only the enzymatic activity of sperm matrix metalloproteinase-2 (MMP-2) was necessary for a sperm to bind and/or pass through the extracellular coat of vitelline envelope, but also the hemopexin (HPX) domain of MMP-2 on the sperm surface was involved in binding and membrane fusion between the sperm and eggs. A peptide with a partial amino acid sequence of the HPX domain caused egg activation accompanied by an increase in [Ca(2+)]i in a voltage-dependent manner, similar to that in fertilization. The membrane microdomain (MD) of unfertilized eggs bound the HPX peptide, and this was inhibited by ganglioside GM1 distributed in the MD. The treatment of sperm with GM1 or anti-MMP-2 HPX antibody allows the sperm to fertilize an egg clamped at 0 mV, which untreated sperm cannot achieve. We propose a model accounting for the mechanism of voltage-dependent fertilization based on an interaction between the positively charged HPX domain in the sperm membrane and negatively-charged GM1 in the egg plasma membrane. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Oh, Se Yeon; Shin, Hyun Du; Kim, Sung Jean; Hong, Jongki
2008-03-07
A novel analytical method using fast gas chromatography combined with surface acoustic wave sensor (GC/SAW) has been developed for the detection of volatile aroma compounds emanated from lilac blossom (Syringa species: Syringa vulgaris variginata and Syringa dilatata). GC/SAW could detect and quantify various fragrance emitted from lilac blossom, enabling to provide fragrance pattern analysis results. The fragrance pattern analysis could easily characterize the delicate differences in aromas caused by the substantial difference of chemical composition according to different color and shape of petals. Moreover, the method validation of GC/SAW was performed for the purpose of volatile floral actual aroma analysis, achieving a high reproducibility and excellent sensitivity. From the validation results, GC/SAW could serve as an alternative analytical technique for the analysis of volatile floral actual aroma of lilac. In addition, headspace solid-phase microextraction (HS-SPME) GC-MS was employed to further confirm the identification of fragrances emitted from lilac blossom and compared to GC/SAW.
NASA Astrophysics Data System (ADS)
Xu, Yongda; Li, Xin; Jiang, Lan; Meng, Ge; Ran, Peng; Lu, Yongfeng
2017-05-01
This study proposed a fast, simple, eco-friendly method for obtaining highly sensitive and uniform surface-enhanced Raman scattering (SERS) of silver (Ag) nanotextured substrates decorated with silver nanoparticles in open air. By splitting conventional femtosecond pulses (subpulse delay Δt = 0 ps) into pulse trains (subpulse delay Δt = 3 ps), the mean diameter of Ag nanoparticles was reduced by almost half and the amount of Ag nanoparticles with a diameter ranging from 20 to 60 nm was increased by more than 11 times. The substrate fabricated by femtosecond pulse trains has four main merits as follows: (1) High sensitivity: the maximum SERS enhancement factor is 1.26 × 109; (2) High efficiency: the fabrication rate can be up to 1600 μm2/s, which is 20-40 times faster than femtosecond photochemical reduction; (3) Good reproducibility: the relative standard deviation of the Raman signal intensity is 10.7%, which is one-third of that for conventional femtosecond laser; (4) Eco-friendly fabrication: neither chemical reagents nor vacuum conditions are needed during the fabrication process.
NASA Astrophysics Data System (ADS)
Pechereau, François; Bonaventura, Zdeněk; Bourdon, Anne
2016-08-01
This paper presents simulations of an atmospheric pressure air discharge in a point-to-plane geometry with a dielectric layer parallel to the cathode plane. Experimentally, a discharge reignition in the air gap below the dielectrics has been observed. With a 2D fluid model, it is shown that due to the fast rise of the high voltage applied and the sharp point used, a first positive spherical discharge forms around the point. Then this discharge propagates axially and impacts the dielectrics. As the first discharge starts spreading on the upper dielectric surface, in the second air gap with a low preionization density of {{10}4}~\\text{c}{{\\text{m}}-3} , the 2D fluid model predicts a rapid reignition of a positive discharge. As in experiments, the discharge reignition is much slower, a discussion on physical processes to be considered in the model to increase the reignition delay is presented. The limit case with no initial seed charges in the second air gap has been studied. First, we have calculated the time to release an electron from the cathode surface by thermionic and field emission processes for a work function φ \\in ≤ft[3,4\\right] eV and an amplification factor β \\in ≤ft[100,220\\right] . Then a 3D Monte Carlo model has been used to follow the dynamics of formation of an avalanche starting from a single electron emitted at the cathode. Due to the high electric field in the second air gap, we have shown that in a few nanoseconds, a Gaussian cloud of seed charges is formed at a small distance from the cathode plane. This Gaussian cloud has been used as the initial condition of the 2D fluid model in the second air gap. In this case, the propagation of a double headed discharge in the second air gap has been observed and the reignition delay is in rather good agreement with experiments.
Tu, Xueying; Muhammad, Pir; Liu, Jia; Ma, Yanyan; Wang, Shuangshou; Yin, Danyang; Liu, Zhen
2016-12-20
Glycoproteins play significant roles in many biological processes. Assays of glycoproteins have significant biological importance and clinical values, for which immunoassay has been the workhorse tool. However, immunoassay suffers from some disadvantages, such as poor availability of high-specificity antibodies and limited stability of biological reagents. Herein, we present an antibody-free and enzyme-free approach, called molecularly imprinted polymer (MIP)-based plasmonic immunosandwich assay (PISA), for fast and ultrasensitive detection of trace glycoproteins in complex samples. A gold-based boronate affinity MIP array was used to specifically extract the target glycoprotein from complex samples. After washing away unwanted species, the captured glycoprotein was labeled with boronate affinity silver-based Raman nanotags. Thus, sandwich-like complexes were formed on the array. Upon being shined with a laser beam, the gold-based array generated a surface plasmon wave, which significantly enhanced the surface-enhanced Raman scattering (SERS) signal of the silver-based Raman nanotags. The MIP ensured the specificity of the assay, while the plasmonic detection provided ultrahigh sensitivity. Erythropoietin (EPO), a glycoprotein hormone that controls erythropoiesis or red blood cell production, was employed as a test glycoprotein in this study. Specific detection of EPO in solution down to 2.9 × 10(-14) M was achieved. Using a novel strategy to accommodate the method of standard addition to a logarithmic dose-response relationship, EPO in human urine was quantitatively determined by this approach. The analysis time required only 30 min in total. This approach holds promising application prospects in many areas, such as biochemical research, clinical diagnosis, and antidoping analysis.
Fast online and index-based algorithms for approximate search of RNA sequence-structure patterns
2013-01-01
Background It is well known that the search for homologous RNAs is more effective if both sequence and structure information is incorporated into the search. However, current tools for searching with RNA sequence-structure patterns cannot fully handle mutations occurring on both these levels or are simply not fast enough for searching large sequence databases because of the high computational costs of the underlying sequence-structure alignment problem. Results We present new fast index-based and online algorithms for approximate matching of RNA sequence-structure patterns supporting a full set of edit operations on single bases and base pairs. Our methods efficiently compute semi-global alignments of structural RNA patterns and substrings of the target sequence whose costs satisfy a user-defined sequence-structure edit distance threshold. For this purpose, we introduce a new computing scheme to optimally reuse the entries of the required dynamic programming matrices for all substrings and combine it with a technique for avoiding the alignment computation of non-matching substrings. Our new index-based methods exploit suffix arrays preprocessed from the target database and achieve running times that are sublinear in the size of the searched sequences. To support the description of RNA molecules that fold into complex secondary structures with multiple ordered sequence-structure patterns, we use fast algorithms for the local or global chaining of approximate sequence-structure pattern matches. The chaining step removes spurious matches from the set of intermediate results, in particular of patterns with little specificity. In benchmark experiments on the Rfam database, our improved online algorithm is faster than the best previous method by up to factor 45. Our best new index-based algorithm achieves a speedup of factor 560. Conclusions The presented methods achieve considerable speedups compared to the best previous method. This, together with the expected
Fast online and index-based algorithms for approximate search of RNA sequence-structure patterns.
Meyer, Fernando; Kurtz, Stefan; Beckstette, Michael
2013-07-17
It is well known that the search for homologous RNAs is more effective if both sequence and structure information is incorporated into the search. However, current tools for searching with RNA sequence-structure patterns cannot fully handle mutations occurring on both these levels or are simply not fast enough for searching large sequence databases because of the high computational costs of the underlying sequence-structure alignment problem. We present new fast index-based and online algorithms for approximate matching of RNA sequence-structure patterns supporting a full set of edit operations on single bases and base pairs. Our methods efficiently compute semi-global alignments of structural RNA patterns and substrings of the target sequence whose costs satisfy a user-defined sequence-structure edit distance threshold. For this purpose, we introduce a new computing scheme to optimally reuse the entries of the required dynamic programming matrices for all substrings and combine it with a technique for avoiding the alignment computation of non-matching substrings. Our new index-based methods exploit suffix arrays preprocessed from the target database and achieve running times that are sublinear in the size of the searched sequences. To support the description of RNA molecules that fold into complex secondary structures with multiple ordered sequence-structure patterns, we use fast algorithms for the local or global chaining of approximate sequence-structure pattern matches. The chaining step removes spurious matches from the set of intermediate results, in particular of patterns with little specificity. In benchmark experiments on the Rfam database, our improved online algorithm is faster than the best previous method by up to factor 45. Our best new index-based algorithm achieves a speedup of factor 560. The presented methods achieve considerable speedups compared to the best previous method. This, together with the expected sublinear running time of the presented
Fast automatic 3D liver segmentation based on a three-level AdaBoost-guided active shape model
He, Baochun; Huang, Cheng; Zhou, Shoujun; Hu, Qingmao; Jia, Fucang; Sharp, Gregory; Fang, Chihua; Fan, Yingfang
2016-05-15
Purpose: A robust, automatic, and rapid method for liver delineation is urgently needed for the diagnosis and treatment of liver disorders. Until now, the high variability in liver shape, local image artifacts, and the presence of tumors have complicated the development of automatic 3D liver segmentation. In this study, an automatic three-level AdaBoost-guided active shape model (ASM) is proposed for the segmentation of the liver based on enhanced computed tomography images in a robust and fast manner, with an emphasis on the detection of tumors. Methods: The AdaBoost voxel classifier and AdaBoost profile classifier were used to automatically guide three-level active shape modeling. In the first level of model initialization, fast automatic liver segmentation by an AdaBoost voxel classifier method is proposed. A shape model is then initialized by registration with the resulting rough segmentation. In the second level of active shape model fitting, a prior model based on the two-class AdaBoost profile classifier is proposed to identify the optimal surface. In the third level, a deformable simplex mesh with profile probability and curvature constraint as the external force is used to refine the shape fitting result. In total, three registration methods—3D similarity registration, probability atlas B-spline, and their proposed deformable closest point registration—are used to establish shape correspondence. Results: The proposed method was evaluated using three public challenge datasets: 3Dircadb1, SLIVER07, and Visceral Anatomy3. The results showed that our approach performs with promising efficiency, with an average of 35 s, and accuracy, with an average Dice similarity coefficient (DSC) of 0.94 ± 0.02, 0.96 ± 0.01, and 0.94 ± 0.02 for the 3Dircadb1, SLIVER07, and Anatomy3 training datasets, respectively. The DSC of the SLIVER07 testing and Anatomy3 unseen testing datasets were 0.964 and 0.933, respectively. Conclusions: The proposed automatic approach
Fast automatic 3D liver segmentation based on a three-level AdaBoost-guided active shape model.
He, Baochun; Huang, Cheng; Sharp, Gregory; Zhou, Shoujun; Hu, Qingmao; Fang, Chihua; Fan, Yingfang; Jia, Fucang
2016-05-01
A robust, automatic, and rapid method for liver delineation is urgently needed for the diagnosis and treatment of liver disorders. Until now, the high variability in liver shape, local image artifacts, and the presence of tumors have complicated the development of automatic 3D liver segmentation. In this study, an automatic three-level AdaBoost-guided active shape model (ASM) is proposed for the segmentation of the liver based on enhanced computed tomography images in a robust and fast manner, with an emphasis on the detection of tumors. The AdaBoost voxel classifier and AdaBoost profile classifier were used to automatically guide three-level active shape modeling. In the first level of model initialization, fast automatic liver segmentation by an AdaBoost voxel classifier method is proposed. A shape model is then initialized by registration with the resulting rough segmentation. In the second level of active shape model fitting, a prior model based on the two-class AdaBoost profile classifier is proposed to identify the optimal surface. In the third level, a deformable simplex mesh with profile probability and curvature constraint as the external force is used to refine the shape fitting result. In total, three registration methods-3D similarity registration, probability atlas B-spline, and their proposed deformable closest point registration-are used to establish shape correspondence. The proposed method was evaluated using three public challenge datasets: 3Dircadb1, SLIVER07, and Visceral Anatomy3. The results showed that our approach performs with promising efficiency, with an average of 35 s, and accuracy, with an average Dice similarity coefficient (DSC) of 0.94 ± 0.02, 0.96 ± 0.01, and 0.94 ± 0.02 for the 3Dircadb1, SLIVER07, and Anatomy3 training datasets, respectively. The DSC of the SLIVER07 testing and Anatomy3 unseen testing datasets were 0.964 and 0.933, respectively. The proposed automatic approach achieves robust, accurate, and fast liver
Distributed Function Mining for Gene Expression Programming Based on Fast Reduction
Deng, Song; Yue, Dong; Yang, Le-chan; Fu, Xiong; Feng, Ya-zhou
2016-01-01
For high-dimensional and massive data sets, traditional centralized gene expression programming (GEP) or improved algorithms lead to increased run-time and decreased prediction accuracy. To solve this problem, this paper proposes a new improved algorithm called distributed function mining for gene expression programming based on fast reduction (DFMGEP-FR). In DFMGEP-FR, fast attribution reduction in binary search algorithms (FAR-BSA) is proposed to quickly find the optimal attribution set, and the function consistency replacement algorithm is given to solve integration of the local function model. Thorough comparative experiments for DFMGEP-FR, centralized GEP and the parallel gene expression programming algorithm based on simulated annealing (parallel GEPSA) are included in this paper. For the waveform, mushroom, connect-4 and musk datasets, the comparative results show that the average time-consumption of DFMGEP-FR drops by 89.09%%, 88.85%, 85.79% and 93.06%, respectively, in contrast to centralized GEP and by 12.5%, 8.42%, 9.62% and 13.75%, respectively, compared with parallel GEPSA. Six well-studied UCI test data sets demonstrate the efficiency and capability of our proposed DFMGEP-FR algorithm for distributed function mining. PMID:26751200
Yao, Shuchang; Eriksson, Tobias A; Fu, Songnian; Johannisson, Pontus; Karlsson, Magnus; Andrekson, Peter A; Ming, Tang; Liu, Deming
2015-06-15
We investigate and experimentally demonstrate a fast and robust chromatic dispersion (CD) estimation method based on temporal auto-correlation after digital spectrum superposition. The estimation process is fast, because neither tentative CD scanning based on CD compensation nor specific cost function calculations are used. Meanwhile, the proposed CD estimation method is robust against polarization mode dispersion (PMD), amplified spontaneous emission (ASE) noise and fiber nonlinearity. Furthermore, the proposed CD estimation method can be used for various modulation formats and digital pulse shaping technique. Only 4096 samples are necessary for CD estimation of single carrier either 112 Gbps DP-QPSK or 224 Gbps DP-16QAM signal with various pulse shapes. 8192 samples are sufficient for the root-raised-cosine pulse with roll-off factor of 0.1. As low as 50 ps/nm standard deviation together with a worst estimation error of about 160 ps/nm is experimentally obtained for 7×112 Gbps DP-QPSK WDM signal after the transmission through 480 km to 9120 km single mode fiber (SMF) loop using different launch powers.
Distributed measurement of dynamic strain based on multi-slope assisted fast BOTDA.
Ba, Dexin; Wang, Benzhang; Zhou, Dengwang; Yin, Mingjing; Dong, Yongkang; Li, Hui; Lu, Zhiwei; Fan, Zhigang
2016-05-02
We propose and demonstrate a dynamic Brillouin optical fiber sensing based on the multi-slope assisted fast Brillouin optical time-domain analysis (F-BOTDA), which enables the measurement of a large strain with real-time data processing. The multi-slope assisted F-BOTDA is realized based on the double-slope demodulation and frequency-agile modulation, which significantly increases the measurement range compared with the single- or double- slope assisted F-BOTDA, while maintaining the advantage of fast data processing and being suitable for real-time on-line monitoring. A maximum strain variation up to 5000με is measured in a 32-m fiber with a spatial resolution of ~1m and a sampling rate of 1kHz. The frequency of the strain is 12.8Hz, which is limited by the rotation rate of the motor used to load the force on the fiber. Furthermore, the influence of the frequency difference between two adjacent probe tones on the measurement error is studied theoretically and experimentally for optimization. For a Brillouin gain spectrum with a 78-MHz width, the optimum frequency difference is ~40MHz. The measurement error of Brillouin frequency shift is less than 3MHz over the whole measurement range (241MHz).
Villena, Jorge Fernandez; Polimeridis, Athanasios G; Eryaman, Yigitcan; Adalsteinsson, Elfar; Wald, Lawrence L; White, Jacob K; Daniel, Luca
2016-11-01
A fast frequency domain full-wave electromagnetic simulation method is introduced for the analysis of MRI coils loaded with the realistic human body models. The approach is based on integral equation methods decomposed into two domains: 1) the RF coil array and shield, and 2) the human body region where the load is placed. The analysis of multiple coil designs is accelerated by introducing the precomputed magnetic resonance Green functions (MRGFs), which describe how the particular body model used responds to the incident fields from external sources. These MRGFs, which are precomputed once for a given body model, can be combined with any integral equation solver and reused for the analysis of many coil designs. This approach provides a fast, yet comprehensive, analysis of coil designs, including the port S-parameters and the electromagnetic field distribution within the inhomogeneous body. The method solves the full-wave electromagnetic problem for a head array in few minutes, achieving a speed up of over 150 folds with root mean square errors in the electromagnetic field maps smaller than 0.4% when compared to the unaccelerated integral equation-based solver. This enables the characterization of a large number of RF coil designs in a reasonable time, which is a first step toward an automatic optimization of multiple parameters in the design of transmit arrays, as illustrated in this paper, but also receive arrays.
A water-based fast integrated mobility spectrometer (WFIMS) with enhanced dynamic size range
Pinterich, Tamara; Spielman, Steven R.; Hering, Susanne; ...
2017-06-08
We developed a water-based fast integrated mobility spectrometer (WFIMS) with enhanced dynamic size range. The WFIMS builds on two established technologies: the fast integrated mobility spectrometer and laminar flow water-based condensation methodology. Inside WFIMS, particles of differing electrical mobility are separated in a drift tube and subsequently enlarged through water condensation. Particle size and concentration are measured via digital imaging at a frame rate of 10 Hz. When we measure particles of different mobilities simultaneously, the WFIMS resolves particle diameters ranging from 8 to 580 nm within 1 s or less. The performance of WFIMS was characterized with differential mobilitymore » analyzer (DMA) classified (NH4)2SO2 particles with diameters ranging from 8 to 265 nm. The mean particle diameters measured by WFIMS were found to be in excellent agreement with DMA centroid diameters. Furthermore, detection efficiency of WFIMS was characterized using a condensation particle counter as a reference and is nearly 100% for particles with diameter greater than 8 nm. In general, measured and simulated WFIMS mobility resolutions are in good agreement. But, some deviations are observed at low particle mobilities, likely due to the non-idealities of the WFIMS electric field.« less
Predictive-based cross line for fast motion estimation in MPEG-4 videos
NASA Astrophysics Data System (ADS)
Fang, Hui; Jiang, Jianmin
2004-05-01
Block-based motion estimation is widely used in the field of video compression due to its feature of high processing speed and competitive compression efficiency. In the chain of compression operations, however, motion estimation still remains to be the most time-consuming process. As a result, any improvement in fast motion estimation will enable practical applications of MPEG techniques more efficient and more sustainable in terms of both processing speed and computing cost. To meet the requirements of real-time compression of videos and image sequences, such as video conferencing, remote video surveillance and video phones etc., we propose a new search algorithm and achieve fast motion estimation for MPEG compression standards based on existing algorithm developments. To evaluate the proposed algorithm, we adopted MPEG-4 and the prediction line search algorithm as the benchmarks to design the experiments. Their performances are measured by: (i) reconstructed video quality; (ii) processing time. The results reveal that the proposed algorithm provides a competitive alternative to the existing prediction line search algorithm. In comparison with MPEG-4, the proposed algorithm illustrates significant advantages in terms of processing speed and video quality.
Distributed Function Mining for Gene Expression Programming Based on Fast Reduction.
Deng, Song; Yue, Dong; Yang, Le-chan; Fu, Xiong; Feng, Ya-zhou
2016-01-01
For high-dimensional and massive data sets, traditional centralized gene expression programming (GEP) or improved algorithms lead to increased run-time and decreased prediction accuracy. To solve this problem, this paper proposes a new improved algorithm called distributed function mining for gene expression programming based on fast reduction (DFMGEP-FR). In DFMGEP-FR, fast attribution reduction in binary search algorithms (FAR-BSA) is proposed to quickly find the optimal attribution set, and the function consistency replacement algorithm is given to solve integration of the local function model. Thorough comparative experiments for DFMGEP-FR, centralized GEP and the parallel gene expression programming algorithm based on simulated annealing (parallel GEPSA) are included in this paper. For the waveform, mushroom, connect-4 and musk datasets, the comparative results show that the average time-consumption of DFMGEP-FR drops by 89.09%%, 88.85%, 85.79% and 93.06%, respectively, in contrast to centralized GEP and by 12.5%, 8.42%, 9.62% and 13.75%, respectively, compared with parallel GEPSA. Six well-studied UCI test data sets demonstrate the efficiency and capability of our proposed DFMGEP-FR algorithm for distributed function mining.
Wang, Jung-Hao; Wang, Chih-Hung; Lee, Gwo-Bin
2012-06-01
Recently, micro-electro-mechanical-systems (MEMS) technology and micromachining techniques have enabled miniaturization of biomedical devices and systems. Not only do these techniques facilitate the development of miniaturized instrumentation for biomedical analysis, but they also open a new era for integration of microdevices for performing accurate and sensitive diagnostic assays. A so-called "micro-total-analysis-system", which integrates sample pretreatment, transport, reaction, and detection on a small chip in an automatic format, can be realized by combining functional microfluidic components manufactured by specific MEMS technologies. Among the promising applications using microfluidic technologies, nucleic acid-based detection has shown considerable potential recently. For instance, micro-polymerase chain reaction chips for rapid DNA amplification have attracted considerable interest. In addition, microfluidic devices for rapid sample pretreatment prior to nucleic acid-based detection have also achieved significant progress in the recent years. In this review paper, microfluidic systems for sample preparation, nucleic acid amplification and detection for fast diagnosis will be reviewed. These microfluidic devices and systems have several advantages over their large-scale counterparts, including lower sample/reagent consumption, lower power consumption, compact size, faster analysis, and lower per unit cost. The development of these microfluidic devices and systems may provide a revolutionary platform technology for fast sample pretreatment and accurate, sensitive diagnosis.
NASA Astrophysics Data System (ADS)
Vostrukhin, A.; Kozyrev, A.; Litvak, M.; Malakhov, A.; Mitrofanov, I.; Mokrousov, M.; Sanin, A.; Tretyakov, V.
2009-04-01
The Dynamic Albedo of Neutrons (DAN) instrument is contributed by Russian Space Agency to NASA for Mars Science Laboratory mission which was originally scheduled for 2009 and now is shifted to 2011. The design of DAN instrument is partially inherited from HEND instrument for NASA's Mars Odyssey, which now successfully operates providing global mapping of martian neutron albedo, searching the distribution of martian water and observing the martian seasonal cycles. DAN is specially designed as an active neutron instrument for surface operations onboard mobile platforms. It is able to focus science investigations on local surface area around rover with horizontal resolution about 1 meter and vertical penetration about 0.5 m. The primary goal of DAN is the exploration of the hydrogen content of the bulk Martian subsurface material. This data will be used to estimate the content of chemically bound water in the hydrated minerals. The concept of DAN operations is based on combination of neutron activation analysis and neutron well logging tequnique, which are commonly used in the Earth geological applications. DAN consists blocks of Detectors and Electronics (DE) and Pulse Neutron Generator (PNG). The last one is used to irradiate the martian subsurface by pulses of 14MeV neutrons with changeable frequency up to 10 Hz. The first one detects post-pulse afterglow of neutrons, as they were thermalized down to epithermal and thermal energies within the martian subsurface. The result of detections are so called die away curves of neutrons afterglow, which show flux and time profile of thermalized neutrons and bring to us the observational signature of layering structure of martian regolith in part of depth distribution of Hydrogen (most effective element for thermalization of neutrons). In this study we focus on the development, verification and validation of DAN fast data processing and commanding. It is necessary to perform deconvolution from counting statistic in DAN
Normal adhesive contact on rough surfaces: efficient algorithm for FFT-based BEM resolution
NASA Astrophysics Data System (ADS)
Rey, Valentine; Anciaux, Guillaume; Molinari, Jean-François
2017-07-01
We introduce a numerical methodology to compute the solution of an adhesive normal contact problem on rough surfaces with the Boundary Element Method. Based on the Fast Fourier Transform and the Westergaard's fundamental solution, the proposed algorithm enables to solve efficiently the constrained minimization problem: the numerical solution strictly verifies contact orthogonality and the algorithm takes advantage of the constraints to speed up the minimization. Comparisons with the analytical solution of the Hertz case prove the quality of the numerical computation. The method is also used to compute normal adhesive contact between rough surfaces made of multiple asperities.
Normal adhesive contact on rough surfaces: efficient algorithm for FFT-based BEM resolution
NASA Astrophysics Data System (ADS)
Rey, Valentine; Anciaux, Guillaume; Molinari, Jean-François
2017-03-01
We introduce a numerical methodology to compute the solution of an adhesive normal contact problem on rough surfaces with the Boundary Element Method. Based on the Fast Fourier Transform and the Westergaard's fundamental solution, the proposed algorithm enables to solve efficiently the constrained minimization problem: the numerical solution strictly verifies contact orthogonality and the algorithm takes advantage of the constraints to speed up the minimization. Comparisons with the analytical solution of the Hertz case prove the quality of the numerical computation. The method is also used to compute normal adhesive contact between rough surfaces made of multiple asperities.
Chloride-based fast homoepitaxial growth of 4H-SiC films in a vertical hot-wall CVD
NASA Astrophysics Data System (ADS)
Guoguo, Yan; Feng, Zhang; Yingxi, Niu; Fei, Yang; Xingfang, Liu; Lei, Wang; Wanshun, Zhao; Guosheng, Sun; Yiping, Zeng
2016-06-01
Chloride-based fast homoepitaxial growth of 4H-SiC epilayers was performed on 4° off-axis 4H-SiC substrates in a home-made vertical hot-wall chemical vapor deposition (CVD) system using H2-SiH4-C2H4-HCl. The effect of the SiH4/H2 ratio and reactor pressure on the growth rate of 4H-SiC epilayers has been studied successively. The growth rate increase in proportion to the SiH4/H2 ratio and the influence mechanism of chlorine has been investigated. With the reactor pressure increasing from 40 to 100 Torr, the growth rate increased to 52 μm/hand then decreased to 47 μm/h, which is due to the joint effect of H2 and HCl etching as well as the formation of Si clusters at higher reactor pressure. The surface root mean square (RMS) roughness keeps around 1 nm with the growth rate increasing to 49 μm/h. The scanning electron microscope (SEM), Raman spectroscopy and X-ray diffraction (XRD) demonstrate that 96.7 μm thick 4H-SiC layers of good uniformity in thickness and doping with high crystal quality can be achieved. These results prove that chloride-based fast epitaxy is an advanced growth technique for 4H-SiC homoepitaxy. Project supported by the National High Technology R&D Program of China (No. 2014AA041402), the National Natural Science Foundation of China (Nos. 61474113, 61274007, 61574140), the Beijing Natural Science Foundation of China (Nos. 4132076, 4132074), the Program of State Grid Smart Grid Research Institute (No. SGRI-WD-71-14-004), and the Youth Innovation Promotion Association of CAS.
TH-E-BRE-08: GPU-Monte Carlo Based Fast IMRT Plan Optimization
Li, Y; Tian, Z; Shi, F; Jiang, S; Jia, X
2014-06-15
Purpose: Intensity-modulated radiation treatment (IMRT) plan optimization needs pre-calculated beamlet dose distribution. Pencil-beam or superposition/convolution type algorithms are typically used because of high computation speed. However, inaccurate beamlet dose distributions, particularly in cases with high levels of inhomogeneity, may mislead optimization, hindering the resulting plan quality. It is desire to use Monte Carlo (MC) methods for beamlet dose calculations. Yet, the long computational time from repeated dose calculations for a number of beamlets prevents this application. It is our objective to integrate a GPU-based MC dose engine in lung IMRT optimization using a novel two-steps workflow. Methods: A GPU-based MC code gDPM is used. Each particle is tagged with an index of a beamlet where the source particle is from. Deposit dose are stored separately for beamlets based on the index. Due to limited GPU memory size, a pyramid space is allocated for each beamlet, and dose outside the space is neglected. A two-steps optimization workflow is proposed for fast MC-based optimization. At first step, rough beamlet dose calculations is conducted with only a small number of particles per beamlet. Plan optimization is followed to get an approximated fluence map. In the second step, more accurate beamlet doses are calculated, where sampled number of particles for a beamlet is proportional to the intensity determined previously. A second-round optimization is conducted, yielding the final Result. Results: For a lung case with 5317 beamlets, 10{sup 5} particles per beamlet in the first round, and 10{sup 8} particles per beam in the second round are enough to get a good plan quality. The total simulation time is 96.4 sec. Conclusion: A fast GPU-based MC dose calculation method along with a novel two-step optimization workflow are developed. The high efficiency allows the use of MC for IMRT optimizations.
Options for a lunar base surface architecture
NASA Technical Reports Server (NTRS)
Roberts, Barney B.
1992-01-01
The Planet Surface Systems Office at the NASA Johnson Space Center has participated in an analysis of the Space Exploration Initiative architectures described in the Synthesis Group report. This effort involves a Systems Engineering and Integration effort to define point designs for evolving lunar and Mars bases that support substantial science, exploration, and resource production objectives. The analysis addresses systems-level designs; element requirements and conceptual designs; assessments of precursor and technology needs; and overall programmatics and schedules. This paper focuses on the results of the study of the Space Resource Utilization Architecture. This architecture develops the capability to extract useful materials from the indigenous resources of the Moon and Mars. On the Moon, a substantial infrastructure is emplaced which can support a crew of up to twelve. Two major process lines are developed: one produces oxygen, ceramics, and metals; the other produces hydrogen, helium, and other volatiles. The Moon is also used for a simulation of a Mars mission. Significant science capabilities are established in conjunction with resource development. Exploration includes remote global surveys and piloted sorties of local and regional areas. Science accommodations include planetary science, astronomy, and biomedical research. Greenhouses are established to provide a substantial amount of food needs.
Options for a lunar base surface architecture
NASA Astrophysics Data System (ADS)
Roberts, Barney B.
1992-02-01
The Planet Surface Systems Office at the NASA Johnson Space Center has participated in an analysis of the Space Exploration Initiative architectures described in the Synthesis Group report. This effort involves a Systems Engineering and Integration effort to define point designs for evolving lunar and Mars bases that support substantial science, exploration, and resource production objectives. The analysis addresses systems-level designs; element requirements and conceptual designs; assessments of precursor and technology needs; and overall programmatics and schedules. This paper focuses on the results of the study of the Space Resource Utilization Architecture. This architecture develops the capability to extract useful materials from the indigenous resources of the Moon and Mars. On the Moon, a substantial infrastructure is emplaced which can support a crew of up to twelve. Two major process lines are developed: one produces oxygen, ceramics, and metals; the other produces hydrogen, helium, and other volatiles. The Moon is also used for a simulation of a Mars mission. Significant science capabilities are established in conjunction with resource development. Exploration includes remote global surveys and piloted sorties of local and regional areas. Science accommodations include planetary science, astronomy, and biomedical research. Greenhouses are established to provide a substantial amount of food needs.
Adhesion of microchannel-based complementary surfaces.
Singh, Arun K; Bai, Ying; Nadermann, Nichole; Jagota, Anand; Hui, Chung-Yuen
2012-03-06
We show that highly enhanced and selective adhesion can be achieved between surfaces patterned with complementary microchannel structures. An elastic material, poly(dimethylsiloxane) (PDMS), was used to fabricate such surfaces by molding into a silicon master with microchannel profiles patterned by photolithography. We carried out adhesion tests on both complementary and mismatched microchannel/micropillar surfaces. Adhesion, as measured by the energy release rate required to propagate an interfacial crack, can be enhanced by up to 40 times by complementary interfaces, compared to a flat control, and slightly enhanced for some special noncomplementary samples, despite the nearly negligible adhesion for other mismatched surfaces. For each complementary surface, we observe defects in the form of visible striations, where pillars fail to insert fully into the channels. The adhesion between complementary microchannel surfaces is enhanced by a combination of a crack-trapping mechanism and friction between a pillar and channel and is attenuated by the presence of defects.
Huang, Qingwu; Zeng, Dawen; Li, Huayao; Xie, Changsheng
2012-09-21
Novel zinc oxide quantum dots (ZnO QDs) decorated graphene nanocomposites were fabricated by a facile solution-processed method. ZnO QDs with a size ca. 5 nm are nucleated and grown on the surface of the graphene template, and its distribution density can be easily controlled by the reaction time and precursor concentration. The ZnO QDs/graphene nanocomposite materials enhance formaldehyde sensing properties by 4 times compared to pure graphene at room temperature. Moreover, the sensors based on the nanocomposites have fast response (ca. 30 seconds) and recovery (ca. 40 seconds) behavior, excellent room temperature selectivity and stability. The gas sensing enhancement is attributed to the synergistic effect of graphene and ZnO QDs. The electron transfer between the ZnO QDs and the graphene is due to oxidation process of the analyzed gas on the ZnO QDs' surface. This proposed gas sensing mechanism is experimentally proved by DRIFT spectra results. The ZnO QDs/graphene nanocomposites sensors have potential applications for monitoring air pollution, especially for harmful and toxic VOCs (volatile organic compounds).
NASA Astrophysics Data System (ADS)
Huang, Qingwu; Zeng, Dawen; Li, Huayao; Xie, Changsheng
2012-08-01
Novel zinc oxide quantum dots (ZnO QDs) decorated graphene nanocomposites were fabricated by a facile solution-processed method. ZnO QDs with a size ca. 5 nm are nucleated and grown on the surface of the graphene template, and its distribution density can be easily controlled by the reaction time and precursor concentration. The ZnO QDs/graphene nanocomposite materials enhance formaldehyde sensing properties by 4 times compared to pure graphene at room temperature. Moreover, the sensors based on the nanocomposites have fast response (ca. 30 seconds) and recovery (ca. 40 seconds) behavior, excellent room temperature selectivity and stability. The gas sensing enhancement is attributed to the synergistic effect of graphene and ZnO QDs. The electron transfer between the ZnO QDs and the graphene is due to oxidation process of the analyzed gas on the ZnO QDs' surface. This proposed gas sensing mechanism is experimentally proved by DRIFT spectra results. The ZnO QDs/graphene nanocomposites sensors have potential applications for monitoring air pollution, especially for harmful and toxic VOCs (volatile organic compounds).
Treviño, Roberto P.; Yin, Zenong; Hernandez, Arthur; Hale, Daniel E.; Garcia, Oralia A.; Mobley, Connie
2005-01-01
Objective To evaluate the impact of a school-based diabetes mellitus prevention program on low-income fourth-grade Mexican American children. Design A randomized controlled trial with 13 intervention and 14 control schools. Setting Elementary schools in inner-city neighborhoods in San Antonio, Tex. Participants Eighty percent of participants were Mexican American and 94% were from economically disadvantaged households. Baseline and follow-up measures were collected from 1419 (713 intervention and 706 control) and 1221 (619 intervention and 602 control) fourth-grade children, respectively. Intervention The Bienestar Health Program consists of a health class and physical education curriculum, a family program, a school cafeteria program, and an after-school health club. The objectives are to decrease dietary saturated fat intake, increase dietary fiber intake, and increase physical activity. Main Outcome Measures The primary end point was fasting capillary glucose level, and the secondary end points were percentage of body fat, physical fitness level, dietary fiber intake, and dietary saturated fat intake. Fasting capillary glucose level, bioelectric impedance, modified Harvard step test, three 24-hour dietary recalls, weight, and height were collected at baseline and 8 months later. Results Children in the intervention arm attended an average of 32 Bienestar sessions. Mean fasting capillary glucose levels decreased in intervention schools and increased in control schools after adjusting for covariates (−2.24 mg/dL [0.12 mmol/L]; 95% confidence interval, −6.53 to 2.05 [−0.36 to 0.11 mmol/L]; P = .03). Fitness scores (P = .04) and dietary fiber intake (P = .009) significantly increased in intervention children and decreased in control children. Percentage of body fat (P = .56) and dietary saturated fat intake (P = .52) did not differ significantly between intervention and control children. Conclusion This intervention showed some positive results, but additional
Simple and fast rail wear measurement method based on structured light
NASA Astrophysics Data System (ADS)
Liu, Zhen; Sun, Junhua; Wang, Heng; Zhang, Guangjun
2011-11-01
In this paper, a fast and accurate rail wear measurement method based on simple equipments is presented. The inner rail profile is measured by a line structured light vision sensor. Using the centers of the big and small circle from the rail waist profile as control points, the measured rail profile is registered to the reference profile. The rail wear, including the vertical and horizontal rail wear, is computed by comparing the registered measured profile with the reference profile. The method has three key contributions: (1) the rail waist light stripe center points in the images are located fast and accurately by first tracking the region containing the rail waist light stripe using the Kalman filter and then computing the sub-pixel precision image coordinates by Hessian matrix at pixels. (2) The rail waist profile is segmented automatically into arcs of big and small circles by thresholding the normal angle curve of the measured rail waist profile. The centers of the two circles are used as control points for registering the measured rail profile to the reference profile. (3) The fast location of rail wear points in the images is realized by projecting the rail wear constraint points to the image, which simplifies the problem of computing rail wear from 2d image processing to 1d searching along the line segment connecting two rail wear constraint points. Experiments show that the proposed method can achieve 500 fps measurement frequency. At a train speed of 350 km/h, the interval between two consecutive measurements is about 190 mm. The system is tested on a real running train, and the measurement results are compared with those rail wear measured manually by special gage. The RMS errors of vertical and horizontal rail wears are 0.34 and 0.30 mm, respectively.
Fast vaccine design and development based on correlates of protection (COPs)
van Els, Cécile; Mjaaland, Siri; Næss, Lisbeth; Sarkadi, Julia; Gonczol, Eva; Smith Korsholm, Karen; Hansen, Jon; de Jonge, Jørgen; Kersten, Gideon; Warner, Jennifer; Semper, Amanda; Kruiswijk, Corine; Oftung, Fredrik
2014-01-01
New and reemerging infectious diseases call for innovative and efficient control strategies of which fast vaccine design and development represent an important element. In emergency situations, when time is limited, identification and use of correlates of protection (COPs) may play a key role as a strategic tool for accelerated vaccine design, testing, and licensure. We propose that general rules for COP-based vaccine design can be extracted from the existing knowledge of protective immune responses against a large spectrum of relevant viral and bacterial pathogens. Herein, we focus on the applicability of this approach by reviewing the established and up-coming COPs for influenza in the context of traditional and a wide array of new vaccine concepts. The lessons learnt from this field may be applied more generally to COP-based accelerated vaccine design for emerging infections. PMID:25424803
A fast and low-power microelectromechanical system-based non-volatile memory device
Lee, Sang Wook; Park, Seung Joo; Campbell, Eleanor E. B.; Park, Yung Woo
2011-01-01
Several new generation memory devices have been developed to overcome the low performance of conventional silicon-based flash memory. In this study, we demonstrate a novel non-volatile memory design based on the electromechanical motion of a cantilever to provide fast charging and discharging of a floating-gate electrode. The operation is demonstrated by using an electromechanical metal cantilever to charge a floating gate that controls the charge transport through a carbon nanotube field-effect transistor. The set and reset currents are unchanged after more than 11 h constant operation. Over 500 repeated programming and erasing cycles were demonstrated under atmospheric conditions at room temperature without degradation. Multinary bit programming can be achieved by varying the voltage on the cantilever. The operation speed of the device is faster than a conventional flash memory and the power consumption is lower than other memory devices. PMID:21364559
Theory of ion transport with fast acid-base equilibrations in bioelectrochemical systems
NASA Astrophysics Data System (ADS)
Dykstra, J. E.; Biesheuvel, P. M.; Bruning, H.; Ter Heijne, A.
2014-07-01
Bioelectrochemical systems recover valuable components and energy in the form of hydrogen or electricity from aqueous organic streams. We derive a one-dimensional steady-state model for ion transport in a bioelectrochemical system, with the ions subject to diffusional and electrical forces. Since most of the ionic species can undergo acid-base reactions, ion transport is combined in our model with infinitely fast ion acid-base equilibrations. The model describes the current-induced ammonia evaporation and recovery at the cathode side of a bioelectrochemical system that runs on an organic stream containing ammonium ions. We identify that the rate of ammonia evaporation depends not only on the current but also on the flow rate of gas in the cathode chamber, the diffusion of ammonia from the cathode back into the anode chamber, through the ion exchange membrane placed in between, and the membrane charge density.
Sensor fault diagnosis for fast steering mirror system based on Kalman filter
NASA Astrophysics Data System (ADS)
Wang, Hongju; Bao, Qiliang; Yang, Haifeng; Tao, Sunjie
2015-10-01
In this paper, to improve the reliability of a two-axis fast steering mirror system with minimum hardware consumption, a fault diagnosis method based on Kalman filter was developed. The dynamics model of the two-axis FSM was established firstly, and then the state-space form of the FSM was adopted. A bank of Kalman filters for fault detection was designed based on the state-space form. The effects of the sensor faults on the innovation sequence were investigated, and a decision approach called weighted sum-squared residual (WSSR) was adopted to isolate the sensor faults. Sensor faults could be detected and isolated when the decision statistics changed. Experimental studies on a prototype system show that the faulty sensor can be isolated timely and accurately. Meanwhile, the mathematical model of FSM system was used to design fault diagnosis scheme in the proposed method, thus the consumption of the hardware and space is decreased.
NASA Astrophysics Data System (ADS)
Musatenko, Yurij S.; Kurashov, Vitalij N.
1998-10-01
The paper presents improved version of our new method for compression of correlated image sets Optimal Image Coding using Karhunen-Loeve transform (OICKL). It is known that Karhunen-Loeve (KL) transform is most optimal representation for such a purpose. The approach is based on fact that every KL basis function gives maximum possible average contribution in every image and this contribution decreases most quickly among all possible bases. So, we lossy compress every KL basis function by Embedded Zerotree Wavelet (EZW) coding with essentially different loss that depends on the functions' contribution in the images. The paper presents new fast low memory consuming algorithm of KL basis construction for compression of correlated image ensembles that enable our OICKL system to work on common hardware. We also present procedure for determining of optimal losses of KL basic functions caused by compression. It uses modified EZW coder which produce whole PSNR (bitrate) curve during the only compression pass.
Theory of ion transport with fast acid-base equilibrations in bioelectrochemical systems.
Dykstra, J E; Biesheuvel, P M; Bruning, H; Ter Heijne, A
2014-07-01
Bioelectrochemical systems recover valuable components and energy in the form of hydrogen or electricity from aqueous organic streams. We derive a one-dimensional steady-state model for ion transport in a bioelectrochemical system, with the ions subject to diffusional and electrical forces. Since most of the ionic species can undergo acid-base reactions, ion transport is combined in our model with infinitely fast ion acid-base equilibrations. The model describes the current-induced ammonia evaporation and recovery at the cathode side of a bioelectrochemical system that runs on an organic stream containing ammonium ions. We identify that the rate of ammonia evaporation depends not only on the current but also on the flow rate of gas in the cathode chamber, the diffusion of ammonia from the cathode back into the anode chamber, through the ion exchange membrane placed in between, and the membrane charge density.
Fast fabrication of curved microlens array using DMD-based lithography
NASA Astrophysics Data System (ADS)
Zhang, Zhimin; Gao, Yiqing; Luo, Ningning; Zhong, Kejun
2016-01-01
Curved microlens array is the core element of the biologically inspired artificial compound eye. Many existing fabrication processes remain expensive and complicated, which limits a broad range of application of the artificial compound eye. In this paper, we report a fast fabrication method for curved microlens array by using DMD-based maskless lithography. When a three-dimensional (3D) target curved profile is projected into a two-dimensional (2D) mask, arbitrary curved microlens array can be flexibly and efficiently obtained by utilizing DMD-based lithography. In order to verify the feasibility of this method, a curved PDMS microlens array with 90 micro lenslets has been fabricated. The physical and optical characteristics of the fabricated microlens array suggest that this method is potentially suitable for applications in artificial compound eye.
Region-based image denoising through wavelet and fast discrete curvelet transform
NASA Astrophysics Data System (ADS)
Gu, Yanfeng; Guo, Yan; Liu, Xing; Zhang, Ye
2008-10-01
Image denoising always is one of important research topics in the image processing field. In this paper, fast discrete curvelet transform (FDCT) and undecimated wavelet transform (UDWT) are proposed for image denoising. A noisy image is first denoised by FDCT and UDWT separately. The whole image space is then divided into edge region and non-edge regions. After that, wavelet transform is performed on the images denoised by FDCT and UDWT respectively. Finally, the resultant image is fused through using both of edge region wavelet cofficients of the image denoised by FDCT and non-edge region wavelet cofficients of the image denoised by UDWT. The proposed method is validated through numerical experiments conducted on standard test images. The experimental results show that the proposed algorithm outperforms wavelet-based and curvelet-based image denoising methods and preserve linear features well.
Fast QRS Detection with an Optimized Knowledge-Based Method: Evaluation on 11 Standard ECG Databases
Elgendi, Mohamed
2013-01-01
The current state-of-the-art in automatic QRS detection methods show high robustness and almost negligible error rates. In return, the methods are usually based on machine-learning approaches that require sufficient computational resources. However, simple-fast methods can also achieve high detection rates. There is a need to develop numerically efficient algorithms to accommodate the new trend towards battery-driven ECG devices and to analyze long-term recorded signals in a time-efficient manner. A typical QRS detection method has been reduced to a basic approach consisting of two moving averages that are calibrated by a knowledge base using only two parameters. In contrast to high-accuracy methods, the proposed method can be easily implemented in a digital filter design. PMID:24066054
Optimal placement of fast cut back units based on the theory of cellular automata and agent
NASA Astrophysics Data System (ADS)
Yan, Jun; Yan, Feng
2017-06-01
The thermal power generation units with the function of fast cut back could serve power for auxiliary system and keep island operation after a major blackout, so they are excellent substitute for the traditional black-start power sources. Different placement schemes for FCB units have different influence on the subsequent restoration process. Considering the locality of the emergency dispatching rules, the unpredictability of specific dispatching instructions and unexpected situations like failure of transmission line energization, a novel deduction model for network reconfiguration based on the theory of cellular automata and agent is established. Several indexes are then defined for evaluating the placement schemes for FCB units. The attribute weights determination method based on subjective and objective integration and grey relational analysis are combinatorically used to determine the optimal placement scheme for FCB unit. The effectiveness of the proposed method is validated by the test results on the New England 10-unit 39-bus power system.
Fast intensity-modulated arc therapy based on 2-step beam segmentation
Bratengeier, Klaus; Gainey, Mark; Sauer, Otto A.; Richter, Anne; Flentje, Michael
2011-01-15
Purpose: Single or few arc intensity-modulated arc therapy (IMAT) is intended to be a time saving irradiation method, potentially replacing classical intensity-modulated radiotherapy (IMRT). The aim of this work was to evaluate the quality of different IMAT methods with the potential of fast delivery, which also has the possibility of adapting to the daily shape of the target volume. Methods: A planning study was performed. Novel double and triple IMAT techniques based on the geometrical analysis of the target organ at risk geometry (2-step IMAT) were evaluated. They were compared to step and shoot IMRT reference plans generated using direct machine parameter optimization (DMPO). Volumetric arc (VMAT) plans from commercial preclinical software (SMARTARC) were used as an additional benchmark to classify the quality of the novel techniques. Four cases with concave planning target volumes (PTV) with one dominating organ at risk (OAR), viz., the PTV/OAR combination of the ESTRO Quasimodo phantom, breast/lung, spine metastasis/spinal cord, and prostate/rectum, were used for the study. The composite objective value (COV) and other parameters representing the plan quality were studied. Results: The novel 2-step IMAT techniques with geometry based segment definition were as good as or better than DMPO and were superior to the SMARTARC VMAT techniques. For the spine metastasis, the quality measured by the COV differed only by 3%, whereas the COV of the 2-step IMAT for the other three cases decreased by a factor of 1.4-2.4 with respect to the reference plans. Conclusions: Rotational techniques based on geometrical analysis of the optimization problem (2-step IMAT) provide similar or better plan quality than DMPO or the research version of SMARTARC VMAT variants. The results justify pursuing the goal of fast IMAT adaptation based on 2-step IMAT techniques.
Surface characterization based upon significant topographic features
NASA Astrophysics Data System (ADS)
Blanc, J.; Grime, D.; Blateyron, F.
2011-08-01
Watershed segmentation and Wolf pruning, as defined in ISO 25178-2, allow the detection of significant features on surfaces and their characterization in terms of dimension, area, volume, curvature, shape or morphology. These new tools provide a robust way to specify functional surfaces.
Development of a fast radiation detector based on barium fluoride scintillation crystal
Han, Hetong; Zhang, Zichuan; Weng, Xiufeng; Liu, Junhong; Zhang, Kan; Li, Gang; Guan, Xingyin
2013-07-15
Barium fluoride (BaF{sub 2}) is an inorganic scintillation material used for the detection of X/gamma radiation due to its relatively high density, equivalent atomic number, radiation hardness, and high luminescence. BaF{sub 2} has a potential capacity to be used in gamma ray timing experiments due to the prompt decay emission components. It is known that the light output from BaF{sub 2} has three decay components: two prompt of those at approximately 195 nm and 220 nm with a decay constant around 600-800 ps and a more intense, slow com