Science.gov

Sample records for fast tracking algorithm

  1. A Fast MEANSHIFT Algorithm-Based Target Tracking System

    PubMed Central

    Sun, Jian

    2012-01-01

    Tracking moving targets in complex scenes using an active video camera is a challenging task. Tracking accuracy and efficiency are two key yet generally incompatible aspects of a Target Tracking System (TTS). A compromise scheme will be studied in this paper. A fast mean-shift-based Target Tracking scheme is designed and realized, which is robust to partial occlusion and changes in object appearance. The physical simulation shows that the image signal processing speed is >50 frame/s. PMID:22969397

  2. Fast randomized Hough transformation track initiation algorithm based on multi-scale clustering

    NASA Astrophysics Data System (ADS)

    Wan, Minjie; Gu, Guohua; Chen, Qian; Qian, Weixian; Wang, Pengcheng

    2015-10-01

    A fast randomized Hough transformation track initiation algorithm based on multi-scale clustering is proposed to overcome existing problems in traditional infrared search and track system(IRST) which cannot provide movement information of the initial target and select the threshold value of correlation automatically by a two-dimensional track association algorithm based on bearing-only information . Movements of all the targets are presumed to be uniform rectilinear motion throughout this new algorithm. Concepts of space random sampling, parameter space dynamic linking table and convergent mapping of image to parameter space are developed on the basis of fast randomized Hough transformation. Considering the phenomenon of peak value clustering due to shortcomings of peak detection itself which is built on threshold value method, accuracy can only be ensured on condition that parameter space has an obvious peak value. A multi-scale idea is added to the above-mentioned algorithm. Firstly, a primary association is conducted to select several alternative tracks by a low-threshold .Then, alternative tracks are processed by multi-scale clustering methods , through which accurate numbers and parameters of tracks are figured out automatically by means of transforming scale parameters. The first three frames are processed by this algorithm in order to get the first three targets of the track , and then two slightly different gate radius are worked out , mean value of which is used to be the global threshold value of correlation. Moreover, a new model for curvilinear equation correction is applied to the above-mentioned track initiation algorithm for purpose of solving the problem of shape distortion when a space three-dimensional curve is mapped to a two-dimensional bearing-only space. Using sideways-flying, launch and landing as examples to build models and simulate, the application of the proposed approach in simulation proves its effectiveness , accuracy , and adaptivity

  3. A segmentation algorithm for automated tracking of fast swimming unlabelled cells in three dimensions.

    PubMed

    Pimentel, J A; Carneiro, J; Darszon, A; Corkidi, G

    2012-01-01

    Recent advances in microscopy and cytolabelling methods enable the real time imaging of cells as they move and interact in their real physiological environment. Scenarios in which multiple cells move autonomously in all directions are not uncommon in biology. A remarkable example is the swimming of marine spermatozoa in search of the conspecific oocyte. Imaging cells in these scenarios, particularly when they move fast and are poorly labelled or even unlabelled requires very fast three-dimensional time-lapse (3D+t) imaging. This 3D+t imaging poses challenges not only to the acquisition systems but also to the image analysis algorithms. It is in this context that this work describes an original automated multiparticle segmentation method to analyse motile translucent cells in 3D microscopical volumes. The proposed segmentation technique takes advantage of the way the cell appearance changes with the distance to the focal plane position. The cells translucent properties and their interaction with light produce a specific pattern: when the cell is within or close to the focal plane, its two-dimensional (2D) appearance matches a bright spot surrounded by a dark ring, whereas when it is farther from the focal plane the cell contrast is inverted looking like a dark spot surrounded by a bright ring. The proposed method analyses the acquired video sequence frame-by-frame taking advantage of 2D image segmentation algorithms to identify and select candidate cellular sections. The crux of the method is in the sequential filtering of the candidate sections, first by template matching of the in-focus and out-of-focus templates and second by considering adjacent candidates sections in 3D. These sequential filters effectively narrow down the number of segmented candidate sections making the automatic tracking of cells in three dimensions a straightforward operation. PMID:21999166

  4. A segmentation algorithm for automated tracking of fast swimming unlabelled cells in three dimensions.

    PubMed

    Pimentel, J A; Carneiro, J; Darszon, A; Corkidi, G

    2012-01-01

    Recent advances in microscopy and cytolabelling methods enable the real time imaging of cells as they move and interact in their real physiological environment. Scenarios in which multiple cells move autonomously in all directions are not uncommon in biology. A remarkable example is the swimming of marine spermatozoa in search of the conspecific oocyte. Imaging cells in these scenarios, particularly when they move fast and are poorly labelled or even unlabelled requires very fast three-dimensional time-lapse (3D+t) imaging. This 3D+t imaging poses challenges not only to the acquisition systems but also to the image analysis algorithms. It is in this context that this work describes an original automated multiparticle segmentation method to analyse motile translucent cells in 3D microscopical volumes. The proposed segmentation technique takes advantage of the way the cell appearance changes with the distance to the focal plane position. The cells translucent properties and their interaction with light produce a specific pattern: when the cell is within or close to the focal plane, its two-dimensional (2D) appearance matches a bright spot surrounded by a dark ring, whereas when it is farther from the focal plane the cell contrast is inverted looking like a dark spot surrounded by a bright ring. The proposed method analyses the acquired video sequence frame-by-frame taking advantage of 2D image segmentation algorithms to identify and select candidate cellular sections. The crux of the method is in the sequential filtering of the candidate sections, first by template matching of the in-focus and out-of-focus templates and second by considering adjacent candidates sections in 3D. These sequential filters effectively narrow down the number of segmented candidate sections making the automatic tracking of cells in three dimensions a straightforward operation.

  5. Development of a radiation-hardened SRAM with EDAC algorithm for fast readout CMOS pixel sensors for charged particle tracking

    NASA Astrophysics Data System (ADS)

    Wei, X.; Li, B.; Chen, N.; Wang, J.; Zheng, R.; Gao, W.; Wei, T.; Gao, D.; Hu, Y.

    2014-08-01

    CMOS pixel sensors (CPS) are attractive for use in the innermost particle detectors for charged particle tracking due to their good trade-off between spatial resolution, material budget, radiation hardness, and readout speed. With the requirements of high readout speed and high radiation hardness to total ionizing dose (TID) for particle tracking, fast readout CPS are composed by integrating a data compression block and two SRAM IP cores. However, the radiation hardness of the SRAM IP cores is not as high as that of the other parts in CPS, and thus the radiation hardness of the whole CPS chip is lowered. Especially, when CPS are migrated into 0.18-μm processes, the single event upset (SEU) effects should be also considered besides TID and single event latchup (SEL) effects. This paper presents a radiation-hardened SRAM with enhanced radiation hardness to SEU. An error detection and correction (EDAC) algorithm and a bit-interleaving storage strategy are adopted in the design. The prototype design has been fabricated in a 0.18-μm process. The area of the new SRAM is increased 1.6 times as compared with a non-radiation-hardened SRAM due to the integration of EDAC algorithm and the adoption of radiation hardened layout. The access time is increased from 5 ns to 8 ns due to the integration of EDAC algorithm. The test results indicate that the design satisfy requirements of CPS for charged particle tracking.

  6. Fast internal marker tracking algorithm for onboard MV and kV imaging systems.

    PubMed

    Mao, W; Wiersma, R D; Xing, L

    2008-05-01

    Intrafraction organ motion can limit the advantage of highly conformal dose techniques such as intensity modulated radiation therapy (IMRT) due to target position uncertainty. To ensure high accuracy in beam targeting, real-time knowledge of the target location is highly desired throughout the beam delivery process. This knowledge can be gained through imaging of internally implanted radio-opaque markers with fluoroscopic or electronic portal imaging devices (EPID). In the case of MV based images, marker detection can be problematic due to the significantly lower contrast between different materials in comparison to their kV-based counterparts. This work presents a fully automated algorithm capable of detecting implanted metallic markers in both kV and MV images with high consistency. Using prior CT information, the algorithm predefines the volumetric search space without manual region-of-interest (ROI) selection by the user. Depending on the template selected, both spherical and cylindrical markers can be detected. Multiple markers can be simultaneously tracked without indexing confusion. Phantom studies show detection success rates of 100% for both kV and MV image data. In addition, application of the algorithm to real patient image data results in successful detection of all implanted markers for MV images. Near real-time operational speeds of approximately 10 frames/sec for the detection of five markers in a 1024 x 768 image are accomplished using an ordinary PC workstation.

  7. Fast internal marker tracking algorithm for onboard MV and kV imaging systems

    PubMed Central

    Mao, W.; Wiersma, R. D.; Xing, L.

    2008-01-01

    Intrafraction organ motion can limit the advantage of highly conformal dose techniques such as intensity modulated radiation therapy (IMRT) due to target position uncertainty. To ensure high accuracy in beam targeting, real-time knowledge of the target location is highly desired throughout the beam delivery process. This knowledge can be gained through imaging of internally implanted radio-opaque markers with fluoroscopic or electronic portal imaging devices (EPID). In the case of MV based images, marker detection can be problematic due to the significantly lower contrast between different materials in comparison to their kV-based counterparts. This work presents a fully automated algorithm capable of detecting implanted metallic markers in both kV and MV images with high consistency. Using prior CT information, the algorithm predefines the volumetric search space without manual region-of-interest (ROI) selection by the user. Depending on the template selected, both spherical and cylindrical markers can be detected. Multiple markers can be simultaneously tracked without indexing confusion. Phantom studies show detection success rates of 100% for both kV and MV image data. In addition, application of the algorithm to real patient image data results in successful detection of all implanted markers for MV images. Near real-time operational speeds of ∼10 frames∕sec for the detection of five markers in a 1024×768 image are accomplished using an ordinary PC workstation. PMID:18561670

  8. Fast track evaluation methodology.

    PubMed

    Duke, J R

    1991-06-01

    Evaluating hospital information systems has taken a variety of forms since the initial development and use of automation. The process itself has moved from a hardware-based orientation controlled by data processing professionals to systems solutions and a user-driven process overseen by management. At Harbor Hospital Center in Baltimore, a fast track methodology has been introduced to shorten system evaluation time to meet the rapid changes that constantly affect the healthcare industry.

  9. Fast Track Study

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The NASA Fast Track Study supports the efforts of a Special Study Group (SSG) made up of members of the Advanced Project Management Class number 23 (APM-23) that met at the Wallops Island Management Education Center from April 28 - May 8, 1996. Members of the Class expressed interest to Mr. Vem Weyers in having an input to the NASA Policy Document (NPD) 7120.4, that will replace NASA Management Institute (NMI) 7120.4, and the NASA Program/Project Management Guide. The APM-23 SSG was tasked with assisting in development of NASA policy on managing Fast Track Projects, defined as small projects under $150 million and completed within three years. 'Me approach of the APM-23 SSG was to gather data on successful projects working in a 'Better, Faster, Cheaper' environment, within and outside of NASA and develop the Fast Track Project section of the NASA Program/Project Management Guide. Fourteen interviews and four other data gathering efforts were conducted by the SSG, and 16 were conducted by Strategic Resources, Inc. (SRI), including five interviews at the Jet Propulsion Laboratory (JPL) and one at the Applied Physics Laboratory (APL). The interviews were compiled and analyzed for techniques and approaches commonly used to meet severe cost and schedule constraints.

  10. Large scale tracking algorithms.

    SciTech Connect

    Hansen, Ross L.; Love, Joshua Alan; Melgaard, David Kennett; Karelitz, David B.; Pitts, Todd Alan; Zollweg, Joshua David; Anderson, Dylan Z.; Nandy, Prabal; Whitlow, Gary L.; Bender, Daniel A.; Byrne, Raymond Harry

    2015-01-01

    Low signal-to-noise data processing algorithms for improved detection, tracking, discrimination and situational threat assessment are a key research challenge. As sensor technologies progress, the number of pixels will increase signi cantly. This will result in increased resolution, which could improve object discrimination, but unfortunately, will also result in a significant increase in the number of potential targets to track. Many tracking techniques, like multi-hypothesis trackers, suffer from a combinatorial explosion as the number of potential targets increase. As the resolution increases, the phenomenology applied towards detection algorithms also changes. For low resolution sensors, "blob" tracking is the norm. For higher resolution data, additional information may be employed in the detection and classfication steps. The most challenging scenarios are those where the targets cannot be fully resolved, yet must be tracked and distinguished for neighboring closely spaced objects. Tracking vehicles in an urban environment is an example of such a challenging scenario. This report evaluates several potential tracking algorithms for large-scale tracking in an urban environment.

  11. A fast meteor detection algorithm

    NASA Astrophysics Data System (ADS)

    Gural, P.

    2016-01-01

    A low latency meteor detection algorithm for use with fast steering mirrors had been previously developed to track and telescopically follow meteors in real-time (Gural, 2007). It has been rewritten as a generic clustering and tracking software module for meteor detection that meets both the demanding throughput requirements of a Raspberry Pi while also maintaining a high probability of detection. The software interface is generalized to work with various forms of front-end video pre-processing approaches and provides a rich product set of parameterized line detection metrics. Discussion will include the Maximum Temporal Pixel (MTP) compression technique as a fast thresholding option for feeding the detection module, the detection algorithm trade for maximum processing throughput, details on the clustering and tracking methodology, processing products, performance metrics, and a general interface description.

  12. TrackEye tracking algorithm characterization

    NASA Astrophysics Data System (ADS)

    Valley, Michael T.; Shields, Robert W.; Reed, Jack M.

    2004-10-01

    TrackEye is a film digitization and target tracking system that offers the potential for quantitatively measuring the dynamic state variables (e.g., absolute and relative position, orientation, linear and angular velocity/acceleration, spin rate, trajectory, angle of attack, etc.) for moving objects using captured single or dual view image sequences. At the heart of the system is a set of tracking algorithms that automatically find and quantify the location of user selected image details such as natural test article features or passive fiducials that have been applied to cooperative test articles. This image position data is converted into real world coordinates and rates with user specified information such as the image scale and frame rate. Though tracking methods such as correlation algorithms are typically robust by nature, the accuracy and suitability of each TrackEye tracking algorithm is in general unknown even under good imaging conditions. The challenges of optimal algorithm selection and algorithm performance/measurement uncertainty are even more significant for long range tracking of high-speed targets where temporally varying atmospheric effects degrade the imagery. This paper will present the preliminary results from a controlled test sequence used to characterize the performance of the TrackEye tracking algorithm suite.

  13. Fast tracking using edge histograms

    NASA Astrophysics Data System (ADS)

    Rokita, Przemyslaw

    1997-04-01

    This paper proposes a new algorithm for tracking objects and objects boundaries. This algorithm was developed and applied in a system used for compositing computer generated images and real world video sequences, but can be applied in general in all tracking systems where accuracy and high processing speed are required. The algorithm is based on analysis of histograms obtained by summing along chosen axles pixels of edge segmented images. Edge segmentation is done by spatial convolution using gradient operator. The advantage of such an approach is that it can be performed in real-time using available on the market hardware convolution filters. After edge extraction and histograms computation, respective positions of maximums in edge intensity histograms, in current and previous frame, are compared and matched. Obtained this way information about displacement of histograms maximums, can be directly converted into information about changes of target boundaries positions along chosen axles.

  14. Fast track to 340B.

    PubMed

    Gricius, Robert F; Wong, Douglas

    2016-01-01

    Hospitals that are newly qualified for the 340B Drug Pricing Program may have an opportunity for fast-track approval to participate in the program. Three steps are required to seize this opportunity: Use data analytics to assess current and future percentages of Medicaid utilization and eligibility for federal SSI cash benefits. Determine the feasibility of early cost report filing. Prepare appropriate documentation and undertake the initial enrollment process. PMID:26863836

  15. Fast track to 340B.

    PubMed

    Gricius, Robert F; Wong, Douglas

    2016-01-01

    Hospitals that are newly qualified for the 340B Drug Pricing Program may have an opportunity for fast-track approval to participate in the program. Three steps are required to seize this opportunity: Use data analytics to assess current and future percentages of Medicaid utilization and eligibility for federal SSI cash benefits. Determine the feasibility of early cost report filing. Prepare appropriate documentation and undertake the initial enrollment process.

  16. Eruptions on the fast track: application of Particle Tracking Velocimetry algorithms to visual and thermal high-speed videos of Strombolian explosions

    NASA Astrophysics Data System (ADS)

    Gaudin, Damien; Monica, Moroni; Jacopo, Taddeucci; Luca, Shindler; Piergiorgio, Scarlato

    2013-04-01

    Strombolian eruptions are characterized by mild, frequent explosions that eject gas and ash- to bomb-sized pyroclasts into the atmosphere. Studying these explosions is crucial, both for direct hazard assessment and for understanding eruption dynamics. Conventional thermal and optical imaging already allows characterizing several eruptive processes, but the quantification of key parameters linked to magma properties and conduit processes requires acquiring images at higher frequency. For example, high speed imaging already demonstrated how the size and the pressure of the gas bubble are linked to the decay of the ejection velocity of the particles, and the origin of the bombs, either fresh or recycled material, could be linked to their thermal evolution. However, the manual processing of the images is time consuming. Consequently, it does not allows neither the routine monitoring nor averaged statistics, since only a few relevant particles - usually the fastest - of a few explosions can be taken into account. In order to understand the dynamics of strombolian eruption, and particularly their cyclic behavior, the quantification of the total mass, heat and energy discharge are a crucial point. In this study, we use a Particle Tracking Velocimetry (PTV) algorithm jointly to traditional images processing to automatically extract the above parameters from visible and thermal high-speed videos of individual Strombolian explosions. PTV is an analysis technique where each single particle is detected and tracked during a series of images. Velocity, acceleration, and temperature can then be deduced and time averaged to get an extensive overview of each explosion. The suitability of PTV and its potential limitations in term of detection and representativity is investigated in various explosions of Stromboli (Italy), Yasur (Vanuatu) and Fuego (Guatemala) volcanoes. On most event, multiple sub-explosion are visible. In each sub-explosion, trends are noticeable : (1) the ejection

  17. The Physics of Fast Track

    ERIC Educational Resources Information Center

    Kibble, Bob

    2007-01-01

    Toys can provide motivational contexts for learning and teaching about physics. A cheap car track provides an almost frictionless environment from which a quantitative study of conservation of energy and circular motion can be made.

  18. A fast algorithm for non-Newtonian flow. An enhanced particle-tracking finite element code for solving boundary-valve problems in viscoelastic flow

    NASA Astrophysics Data System (ADS)

    Malkus, David S.

    1989-01-01

    This project concerned the development of a new fast finite element algorithm to solve flow problems of non-Newtonian fluids such as solutions or melts of polymers. Many constitutive theories for such materials involve single integrals over the deformation history of the particle at the stress evaluation point; examples are the Doi-Edwards and Curtiss-Bird molecular theories and the BKZ family derived from continuum arguments. These theories are believed to be among the most accurate in describing non-Newtonian effects important to polymer process design, effects such as stress relaxation, shear thinning, and normal stress effects. This research developed an optimized version of the algorithm which would run a factor of two faster than the pilot algorithm on scalar machines and would be able to take full advantage of vectorization on machines. Significant progress was made in code vectorization; code enhancement and streamlining; adaptive memory quadrature; model problems for the High Weissenberg Number Problem; exactly incompressible projection; development of multimesh extrapolation procedures; and solution of problems of physical interest. A portable version of the code is in the final stages of benchmarking and testing. It interfaces with the widely used FIDAP fluid dynamics package.

  19. A Reliability-Based Track Fusion Algorithm

    PubMed Central

    Xu, Li; Pan, Liqiang; Jin, Shuilin; Liu, Haibo; Yin, Guisheng

    2015-01-01

    The common track fusion algorithms in multi-sensor systems have some defects, such as serious imbalances between accuracy and computational cost, the same treatment of all the sensor information regardless of their quality, high fusion errors at inflection points. To address these defects, a track fusion algorithm based on the reliability (TFR) is presented in multi-sensor and multi-target environments. To improve the information quality, outliers in the local tracks are eliminated at first. Then the reliability of local tracks is calculated, and the local tracks with high reliability are chosen for the state estimation fusion. In contrast to the existing methods, TFR reduces high fusion errors at the inflection points of system tracks, and obtains a high accuracy with less computational cost. Simulation results verify the effectiveness and the superiority of the algorithm in dense sensor environments. PMID:25950174

  20. A reliability-based track fusion algorithm.

    PubMed

    Xu, Li; Pan, Liqiang; Jin, Shuilin; Liu, Haibo; Yin, Guisheng

    2015-01-01

    The common track fusion algorithms in multi-sensor systems have some defects, such as serious imbalances between accuracy and computational cost, the same treatment of all the sensor information regardless of their quality, high fusion errors at inflection points. To address these defects, a track fusion algorithm based on the reliability (TFR) is presented in multi-sensor and multi-target environments. To improve the information quality, outliers in the local tracks are eliminated at first. Then the reliability of local tracks is calculated, and the local tracks with high reliability are chosen for the state estimation fusion. In contrast to the existing methods, TFR reduces high fusion errors at the inflection points of system tracks, and obtains a high accuracy with less computational cost. Simulation results verify the effectiveness and the superiority of the algorithm in dense sensor environments.

  1. Accelerated Leadership Development: Fast Tracking School Leaders

    ERIC Educational Resources Information Center

    Earley, Peter; Jones, Jeff

    2010-01-01

    "Accelerated Leadership Development" captures and communicates the lessons learned from successful fast-track leadership programmes in the private and public sector, and provides a model which schools can follow and customize as they plan their own leadership development strategies. As large numbers of headteachers and other senior staff retire,…

  2. 40 CFR 72.82 - Fast-track modifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Fast-track modifications. 72.82... (CONTINUED) PERMITS REGULATION Permit Revisions § 72.82 Fast-track modifications. The following procedures shall apply to all fast-track modifications. (a) If the Administrator is the permitting authority,...

  3. 40 CFR 72.82 - Fast-track modifications.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Fast-track modifications. 72.82... (CONTINUED) PERMITS REGULATION Permit Revisions § 72.82 Fast-track modifications. The following procedures shall apply to all fast-track modifications. (a) If the Administrator is the permitting authority,...

  4. 40 CFR 72.82 - Fast-track modifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Fast-track modifications. 72.82... (CONTINUED) PERMITS REGULATION Permit Revisions § 72.82 Fast-track modifications. The following procedures shall apply to all fast-track modifications. (a) If the Administrator is the permitting authority,...

  5. 40 CFR 72.82 - Fast-track modifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Fast-track modifications. 72.82... (CONTINUED) PERMITS REGULATION Permit Revisions § 72.82 Fast-track modifications. The following procedures shall apply to all fast-track modifications. (a) If the Administrator is the permitting authority,...

  6. Procrustes algorithm for multisensor track fusion

    NASA Astrophysics Data System (ADS)

    Fernandez, Manuel F.; Aridgides, Tom; Evans, John S., Jr.

    1990-10-01

    The association or "fusion" of multiple-sensor reports allows the generation of a highly accurate description of the environment by enabling efficient compression and processing of otherwise unwieldy quantities of data. Assuming that the observations from each sensor are aligned in feature space and in time, this association procedure may be executed on the basis of how well each sensor's vectors of observations match previously fused tracks. Unfortunately, distance-based algorithms alone do not suffice in those situations where match-assignments are not of an obvious nature (e.g., high target density or high false alarm rate scenarios). Our proposed approach is based on recognizing that, together, the sensors' observations and the fused tracks span a vector subspace whose dimensionality and singularity characteristics can be used to determine the total number of targets appearing across sensors. A properly constrained transformation can then be found which aligns the subspaces spanned individually by the observations and by the fused tracks, yielding the relationship existing between both sets of vectors ("Procrustes Problem"). The global nature of this approach thus enables fusing closely-spaced targets by treating them--in a manner analogous to PDA/JPDA algorithms - as clusters across sensors. Since our particular version of the Procrustes Problem consists basically of a minimization in the Total Least Squares sense, the resulting transformations associate both observations-to-tracks and tracks-to--observations. This means that the number of tracks being updated will increase or decrease depending on the number of targets present, automatically initiating or deleting "fused" tracks as required, without the need of ancillary procedures. In addition, it is implicitly assumed that both the tracker filters' target trajectory models and the sensors' observations are "noisy", yielding an algorithm robust even against maneuvering targets. Finally, owing to the fact

  7. UWB Tracking System Design with TDOA Algorithm

    NASA Technical Reports Server (NTRS)

    Ni, Jianjun; Arndt, Dickey; Ngo, Phong; Phan, Chau; Gross, Julia; Dusl, John; Schwing, Alan

    2006-01-01

    This presentation discusses an ultra-wideband (UWB) tracking system design effort using a tracking algorithm TDOA (Time Difference of Arrival). UWB technology is exploited to implement the tracking system due to its properties, such as high data rate, fine time resolution, and low power spectral density. A system design using commercially available UWB products is proposed. A two-stage weighted least square method is chosen to solve the TDOA non-linear equations. Matlab simulations in both two-dimensional space and three-dimensional space show that the tracking algorithm can achieve fine tracking resolution with low noise TDOA data. The error analysis reveals various ways to improve the tracking resolution. Lab experiments demonstrate the UWBTDOA tracking capability with fine resolution. This research effort is motivated by a prototype development project Mini-AERCam (Autonomous Extra-vehicular Robotic Camera), a free-flying video camera system under development at NASA Johnson Space Center for aid in surveillance around the International Space Station (ISS).

  8. A fast assistant decision-making system on the emergent maneuver of the tracking ship

    NASA Astrophysics Data System (ADS)

    Huang, Qiong; Xue, G. H.; Ni, X. Q.

    2016-02-01

    This paper studies a fast assistant decision-making system on the emergent maneuver of the tracking ship, adopting the design method of the emergent working state of the tracking ship based on the meteorological prediction, the virtual display technology based on the multi-stage mapping, and the 2-dimension area algorithm based on the line-scanning. It solves problems that the tracking ship met during working, such as the long TT&C time, the dense crucial observation arc, the complicated working flow, and the changeful scheme. It established the hard basement for the fast design of the emergency working state when the tracking ship in the awful sea conditions.

  9. Fast diffraction computation algorithms based on FFT

    NASA Astrophysics Data System (ADS)

    Logofatu, Petre Catalin; Nascov, Victor; Apostol, Dan

    2010-11-01

    The discovery of the Fast Fourier transform (FFT) algorithm by Cooley and Tukey meant for diffraction computation what the invention of computers meant for computation in general. The computation time reduction is more significant for large input data, but generally FFT reduces the computation time with several orders of magnitude. This was the beginning of an entire revolution in optical signal processing and resulted in an abundance of fast algorithms for diffraction computation in a variety of situations. The property that allowed the creation of these fast algorithms is that, as it turns out, most diffraction formulae contain at their core one or more Fourier transforms which may be rapidly calculated using the FFT. The key in discovering a new fast algorithm is to reformulate the diffraction formulae so that to identify and isolate the Fourier transforms it contains. In this way, the fast scaled transformation, the fast Fresnel transformation and the fast Rayleigh-Sommerfeld transform were designed. Remarkable improvements were the generalization of the DFT to scaled DFT which allowed freedom to choose the dimensions of the output window for the Fraunhofer-Fourier and Fresnel diffraction, the mathematical concept of linearized convolution which thwarts the circular character of the discrete Fourier transform and allows the use of the FFT, and last but not least the linearized discrete scaled convolution, a new concept of which we claim priority.

  10. Fast Track'' nuclear thermal propulsion concept

    SciTech Connect

    Johnson, R.A.; Zweig, H.R. ); Cooper, M.H.; Wett, J. Jr. )

    1993-01-10

    The objective of the Space Exploration Initiative ( America at the Threshold...,'' 1991) is the exploration of Mars by man in the second decade of the 21st century. The NASA Fast Track'' approach (NASA-LeRC Presentation, 1992) could accelerate the manned exploration of Mars to 2007. NERVA-derived nuclear propulsion represents a viable near-term technology approach to accomplish the accelerated schedule. Key milestones in the progression to the manned Mars mission are (1) demonstration of TRL-6 for the man-rateable system by 1999, (2) a robotic lunar mission by 2000, (3) the first cargo mission to Mars by 2005, and (4) the piloted Mars mission in 2007. The Rocketdyne-Westinghouse concept for nuclear thermal propulsion to achieve these milestones combines the nuclear reactor technology of the Rover/NERVA programs and the state-of-the-art hardware designs from hydrogen-fueled rocket engine successes like the Space Shuttle Main Engine (SSME).

  11. Security market reaction to FDA fast track designations.

    PubMed

    Anderson, Christopher W; Zhang, Ying

    2010-01-01

    Pharmaceutical firms can apply for the Food and Drug Administration to 'fast track' research and de velopment on new drugs, accelerating clinical trials and expediting regulatory review required prior to marketing to consumers. We investigate security market reaction to more than 100 fast track designations from 1998 to 2004. Fast track designation appears to enhance investor recognition of firm value. Specifically, fast track designation coincides with abnormal trading volume and excess daily stock returns for sponsoring firms. Institutional ownership and analyst attention also increase. Market response is more pronounced for firms that are smaller, do not yet market products, and have low institutional ownership. PMID:21294437

  12. Fast Intersection Algorithms for Sorted Sequences

    NASA Astrophysics Data System (ADS)

    Baeza-Yates, Ricardo; Salinger, Alejandro

    This paper presents and analyzes a simple intersection algorithm for sorted sequences that is fast on average. It is related to the multiple searching problem and to merging. We present the worst and average case analysis, showing that in the former, the complexity nicely adapts to the smallest list size. In the latter case, it performs less comparisons than the total number of elements on both inputs, n and m, when n = αm (α> 1), achieving O(m log(n/m)) complexity. The algorithm is motivated by its application to fast query processing in Web search engines, where large intersections, or differences, must be performed fast. In this case we experimentally show that the algorithm is faster than previous solutions.

  13. Fast Fourier Transform algorithm design and tradeoffs

    NASA Technical Reports Server (NTRS)

    Kamin, Ray A., III; Adams, George B., III

    1988-01-01

    The Fast Fourier Transform (FFT) is a mainstay of certain numerical techniques for solving fluid dynamics problems. The Connection Machine CM-2 is the target for an investigation into the design of multidimensional Single Instruction Stream/Multiple Data (SIMD) parallel FFT algorithms for high performance. Critical algorithm design issues are discussed, necessary machine performance measurements are identified and made, and the performance of the developed FFT programs are measured. Fast Fourier Transform programs are compared to the currently best Cray-2 FFT program.

  14. Fast training algorithms for multilayer neural nets.

    PubMed

    Brent, R P

    1991-01-01

    An algorithm that is faster than back-propagation and for which it is not necessary to specify the number of hidden units in advance is described. The relationship with other fast pattern-recognition algorithms, such as algorithms based on k-d trees, is discussed. The algorithm has been implemented and tested on artificial problems, such as the parity problem, and on real problems arising in speech recognition. Experimental results, including training times and recognition accuracy, are given. Generally, the algorithm achieves accuracy as good as or better than nets trained using back-propagation. Accuracy is comparable to that for the nearest-neighbor algorithm, which is slower and requires more storage space.

  15. Fast Track: A Language Arts Program for Middle School Gifted

    ERIC Educational Resources Information Center

    Schneider, Jean

    2008-01-01

    "Fast Track" is a pseudonym for an accelerated, advanced language arts program for verbally gifted and high potential students in grades 6-8. The critical thinking model used for "Fast Track" was gleaned from Coalition of Essential Schools founder Ted Sizer's Habits of Mind: significance, evidence, connections, perspective, and supposition, as…

  16. Fast Track Teaching: Beginning the Experiment in Accelerated Leadership Development

    ERIC Educational Resources Information Center

    Churches, Richard; Hutchinson, Geraldine; Jones, Jeff

    2009-01-01

    This article provides an overview of the development of the Fast Track teaching programme and personalised nature of the training and support that has been delivered. Fast Track teacher promotion rates are compared to national statistics demonstrating significant progression for certain groups, particularly women. (Contains 3 tables and 3 figures.)

  17. Fast tracking based on local histogram of oriented gradient and dual detection

    NASA Astrophysics Data System (ADS)

    Shi, Huan; Kai; Cheng, Fei; Ding, Wenwen; Zhang, Baijian

    2016-05-01

    Visual tracking is important in computer vision. At present, although many algorithms of visual tracking have been proposed, there are still many problems which are needed to be solved, such as occlusion and frame speed. To solve these problems, this paper proposes a novel method which based on compressive tracking. Firstly, we make sure the occlusion happens if the testing result about image features by the classifiers is lower than a threshold value which is certain. Secondly, we mark the occluded image and record the occlusion region. In the next frame, we test both the classifier and the marked image. This algorithm makes sure the tracking is fast, and the result about solving occlusion is much better than other algorithms, especially compressive tracking.

  18. Fast regional readout CMOS Image Sensor for dynamic MLC tracking

    NASA Astrophysics Data System (ADS)

    Zin, H.; Harris, E.; Osmond, J.; Evans, P.

    2014-03-01

    Advanced radiotherapy techniques such as volumetric modulated arc therapy (VMAT) require verification of the complex beam delivery including tracking of multileaf collimators (MLC) and monitoring the dose rate. This work explores the feasibility of a prototype Complementary metal-oxide semiconductor Image Sensor (CIS) for tracking these complex treatments by utilising fast, region of interest (ROI) read out functionality. An automatic edge tracking algorithm was used to locate the MLC leaves edges moving at various speeds (from a moving triangle field shape) and imaged with various sensor frame rates. The CIS demonstrates successful edge detection of the dynamic MLC motion within accuracy of 1.0 mm. This demonstrates the feasibility of the sensor to verify treatment delivery involving dynamic MLC up to ~400 frames per second (equivalent to the linac pulse rate), which is superior to any current techniques such as using electronic portal imaging devices (EPID). CIS provides the basis to an essential real-time verification tool, useful in accessing accurate delivery of complex high energy radiation to the tumour and ultimately to achieve better cure rates for cancer patients.

  19. Python algorithms in particle tracking microrheology

    PubMed Central

    2012-01-01

    Background Particle tracking passive microrheology relates recorded trajectories of microbeads, embedded in soft samples, to the local mechanical properties of the sample. The method requires intensive numerical data processing and tools allowing control of the calculation errors. Results We report the development of a software package collecting functions and scripts written in Python for automated and manual data processing, to extract viscoelastic information about the sample using recorded particle trajectories. The resulting program package analyzes the fundamental diffusion characteristics of particle trajectories and calculates the frequency dependent complex shear modulus using methods published in the literature. In order to increase conversion accuracy, segmentwise, double step, range-adaptive fitting and dynamic sampling algorithms are introduced to interpolate the data in a splinelike manner. Conclusions The presented set of algorithms allows for flexible data processing for particle tracking microrheology. The package presents improved algorithms for mean square displacement estimation, controlling effects of frame loss during recording, and a novel numerical conversion method using segmentwise interpolation, decreasing the conversion error from about 100% to the order of 1%. PMID:23186362

  20. Level-1 pixel based tracking trigger algorithm for LHC upgrade

    NASA Astrophysics Data System (ADS)

    Moon, C.-S.; Savoy-Navarro, A.

    2015-10-01

    The Pixel Detector is the innermost detector of the tracking system of the Compact Muon Solenoid (CMS) experiment at CERN Large Hadron Collider (LHC) . It precisely determines the interaction point (primary vertex) of the events and the possible secondary vertexes due to heavy flavours (b and c quarks); it is part of the overall tracking system that allows reconstructing the tracks of the charged particles in the events and combined with the magnetic field to measure their momentum. The pixel detector allows measuring the tracks in the region closest to the interaction point. The Level-1 (real-time) pixel based tracking trigger is a novel trigger system that is currently being studied for the LHC upgrade. An important goal is developing real-time track reconstruction algorithms able to cope with very high rates and high flux of data in a very harsh environment. The pixel detector has an especially crucial role in precisely identifying the primary vertex of the rare physics events from the large pile-up (PU) of events. The goal of adding the pixel information already at the real-time level of the selection is to help reducing the total level-1 trigger rate while keeping an high selection capability. This is quite an innovative and challenging objective for the experiments upgrade for the High Luminosity LHC (HL-LHC) . The special case here addressed is the CMS experiment. This document describes exercises focusing on the development of a fast pixel track reconstruction where the pixel track matches with a Level-1 electron object using a ROOT-based simulation framework.

  1. A maximum power point tracking algorithm for buoy-rope-drum wave energy converters

    NASA Astrophysics Data System (ADS)

    Wang, J. Q.; Zhang, X. C.; Zhou, Y.; Cui, Z. C.; Zhu, L. S.

    2016-08-01

    The maximum power point tracking control is the key link to improve the energy conversion efficiency of wave energy converters (WEC). This paper presents a novel variable step size Perturb and Observe maximum power point tracking algorithm with a power classification standard for control of a buoy-rope-drum WEC. The algorithm and simulation model of the buoy-rope-drum WEC are presented in details, as well as simulation experiment results. The results show that the algorithm tracks the maximum power point of the WEC fast and accurately.

  2. Anger, Heavy Exertion: Fast Track to A Heart Attack?

    MedlinePlus

    ... html Anger, Heavy Exertion: Fast Track to a Heart Attack? But researchers suggest that artery-clogging plaque has ... physical exertion may be triggers for a first heart attack in some people, new research suggests. In the ...

  3. MATLAB tensor classes for fast algorithm prototyping.

    SciTech Connect

    Bader, Brett William; Kolda, Tamara Gibson

    2004-10-01

    Tensors (also known as mutidimensional arrays or N-way arrays) are used in a variety of applications ranging from chemometrics to psychometrics. We describe four MATLAB classes for tensor manipulations that can be used for fast algorithm prototyping. The tensor class extends the functionality of MATLAB's multidimensional arrays by supporting additional operations such as tensor multiplication. The tensor as matrix class supports the 'matricization' of a tensor, i.e., the conversion of a tensor to a matrix (and vice versa), a commonly used operation in many algorithms. Two additional classes represent tensors stored in decomposed formats: cp tensor and tucker tensor. We descibe all of these classes and then demonstrate their use by showing how to implement several tensor algorithms that have appeared in the literature.

  4. Fast deterministic algorithm for EEE components classification

    NASA Astrophysics Data System (ADS)

    Kazakovtsev, L. A.; Antamoshkin, A. N.; Masich, I. S.

    2015-10-01

    Authors consider the problem of automatic classification of the electronic, electrical and electromechanical (EEE) components based on results of the test control. Electronic components of the same type used in a high- quality unit must be produced as a single production batch from a single batch of the raw materials. Data of the test control are used for splitting a shipped lot of the components into several classes representing the production batches. Methods such as k-means++ clustering or evolutionary algorithms combine local search and random search heuristics. The proposed fast algorithm returns a unique result for each data set. The result is comparatively precise. If the data processing is performed by the customer of the EEE components, this feature of the algorithm allows easy checking of the results by a producer or supplier.

  5. Fast TracKer: A fast hardware track trigger for the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Pandini, Carlo

    2016-07-01

    The trigger system at the ATLAS experiment is designed to lower the event rate occurring from the nominal bunch crossing rate of 40 MHz to about 1 kHz for a LHC luminosity of the order of 1034cm-2s-1. To achieve high background rejection while maintaining good efficiency for interesting physics signals, sophisticated algorithms are needed which require an extensive use of tracking information. The Fast TracKer (FTK) trigger system, part of the ATLAS trigger upgrade program, is a highly parallel hardware device designed to perform track-finding at 100 kHz. Modern, powerful Field Programmable Gate Arrays (FPGAs) form an important part of the system architecture, and the combinatorial problem of pattern recognition is solved by 8000 standard-cell ASICs used to implement an Associative Memory architecture. The availability of the tracking and subsequent vertex information within a short latency ensures robust selections and allows improved trigger performance for the most difficult signatures, such as b-jets and τ leptons.

  6. Fast-Acquisition/Weak-Signal-Tracking GPS Receiver for HEO

    NASA Technical Reports Server (NTRS)

    Wintemitz, Luke; Boegner, Greg; Sirotzky, Steve

    2004-01-01

    A report discusses the technical background and design of the Navigator Global Positioning System (GPS) receiver -- . a radiation-hardened receiver intended for use aboard spacecraft. Navigator is capable of weak signal acquisition and tracking as well as much faster acquisition of strong or weak signals with no a priori knowledge or external aiding. Weak-signal acquisition and tracking enables GPS use in high Earth orbits (HEO), and fast acquisition allows for the receiver to remain without power until needed in any orbit. Signal acquisition and signal tracking are, respectively, the processes of finding and demodulating a signal. Acquisition is the more computationally difficult process. Previous GPS receivers employ the method of sequentially searching the two-dimensional signal parameter space (code phase and Doppler). Navigator exploits properties of the Fourier transform in a massively parallel search for the GPS signal. This method results in far faster acquisition times [in the lab, 12 GPS satellites have been acquired with no a priori knowledge in a Low-Earth-Orbit (LEO) scenario in less than one second]. Modeling has shown that Navigator will be capable of acquiring signals down to 25 dB-Hz, appropriate for HEO missions. Navigator is built using the radiation-hardened ColdFire microprocessor and housing the most computationally intense functions in dedicated field-programmable gate arrays. The high performance of the algorithm and of the receiver as a whole are made possible by optimizing computational efficiency and carefully weighing tradeoffs among the sampling rate, data format, and data-path bit width.

  7. Real time tracking with a silicon telescope prototype using the "artificial retina" algorithm

    NASA Astrophysics Data System (ADS)

    Abba, A.; Bedeschi, F.; Caponio, F.; Cenci, R.; Citterio, M.; Coelli, S.; Fu, J.; Geraci, A.; Grizzuti, M.; Lusardi, N.; Marino, P.; Monti, M.; Morello, M. J.; Neri, N.; Ninci, D.; Petruzzo, M.; Piucci, A.; Punzi, G.; Ristori, L.; Spinella, F.; Stracka, S.; Tonelli, D.; Walsh, J.

    2016-07-01

    We present the first prototype of a silicon tracker using the artificial retina algorithm for fast track finding. The algorithm is inspired by the neurobiological mechanism of recognition of edges in mammals visual cortex. It is based on extensive parallelization and is implemented on commercial FPGAs allowing us to reconstruct real time tracks with offline-like quality and < 1 μs latencies. The practical device consists of a telescope with 8 single-sided silicon strip sensors and custom DAQ boards equipped with Xilinx Kintex 7 FPGAs that perform the readout of the sensors and the track reconstruction in real time.

  8. Automatic face detection and tracking based on Adaboost with camshift algorithm

    NASA Astrophysics Data System (ADS)

    Lin, Hui; Long, JianFeng

    2011-10-01

    With the development of information technology, video surveillance is widely used in security monitoring and identity recognition. For most of pure face tracking algorithms are hard to specify the initial location and scale of face automatically, this paper proposes a fast and robust method to detect and track face by combining adaboost with camshift algorithm. At first, the location and scale of face is specified by adaboost algorithm based on Haar-like features and it will be conveyed to the initial search window automatically. Then, we apply camshift algorithm to track face. The experimental results based on OpenCV software yield good results, even in some special circumstances, such as light changing and face rapid movement. Besides, by drawing out the tracking trajectory of face movement, some abnormal behavior events can be analyzed.

  9. Unbounded Binary Search for a Fast and Accurate Maximum Power Point Tracking

    NASA Astrophysics Data System (ADS)

    Kim, Yong Sin; Winston, Roland

    2011-12-01

    This paper presents a technique for maximum power point tracking (MPPT) of a concentrating photovoltaic system using cell level power optimization. Perturb and observe (P&O) has been a standard for an MPPT, but it introduces a tradeoff between the tacking speed and the accuracy of the maximum power delivered. The P&O algorithm is not suitable for a rapid environmental condition change by partial shading and self-shading due to its tracking time being linear to the length of the voltage range. Some of researches have been worked on fast tracking but they come with internal ad hoc parameters. In this paper, by using the proposed unbounded binary search algorithm for the MPPT, tracking time becomes a logarithmic function of the voltage search range without ad hoc parameters.

  10. Experiments with conjugate gradient algorithms for homotopy curve tracking

    NASA Technical Reports Server (NTRS)

    Irani, Kashmira M.; Ribbens, Calvin J.; Watson, Layne T.; Kamat, Manohar P.; Walker, Homer F.

    1991-01-01

    There are algorithms for finding zeros or fixed points of nonlinear systems of equations that are globally convergent for almost all starting points, i.e., with probability one. The essence of all such algorithms is the construction of an appropriate homotopy map and then tracking some smooth curve in the zero set of this homotopy map. HOMPACK is a mathematical software package implementing globally convergent homotopy algorithms with three different techniques for tracking a homotopy zero curve, and has separate routines for dense and sparse Jacobian matrices. The HOMPACK algorithms for sparse Jacobian matrices use a preconditioned conjugate gradient algorithm for the computation of the kernel of the homotopy Jacobian matrix, a required linear algebra step for homotopy curve tracking. Here, variants of the conjugate gradient algorithm are implemented in the context of homotopy curve tracking and compared with Craig's preconditioned conjugate gradient method used in HOMPACK. The test problems used include actual large scale, sparse structural mechanics problems.

  11. Fast Markerless Tracking for Augmented Reality in Planar Environment

    NASA Astrophysics Data System (ADS)

    Basori, Ahmad Hoirul; Afif, Fadhil Noer; Almazyad, Abdulaziz S.; AbuJabal, Hamza Ali S.; Rehman, Amjad; Alkawaz, Mohammed Hazim

    2015-12-01

    Markerless tracking for augmented reality should not only be accurate but also fast enough to provide a seamless synchronization between real and virtual beings. Current reported methods showed that a vision-based tracking is accurate but requires high computational power. This paper proposes a real-time hybrid-based method for tracking unknown environments in markerless augmented reality. The proposed method provides collaboration of vision-based approach with accelerometers and gyroscopes sensors as camera pose predictor. To align the augmentation relative to camera motion, the tracking method is done by substituting feature-based camera estimation with combination of inertial sensors with complementary filter to provide more dynamic response. The proposed method managed to track unknown environment with faster processing time compared to available feature-based approaches. Moreover, the proposed method can sustain its estimation in a situation where feature-based tracking loses its track. The collaboration of sensor tracking managed to perform the task for about 22.97 FPS, up to five times faster than feature-based tracking method used as comparison. Therefore, the proposed method can be used to track unknown environments without depending on amount of features on scene, while requiring lower computational cost.

  12. Fast motion-including dose error reconstruction for VMAT with and without MLC tracking.

    PubMed

    Ravkilde, Thomas; Keall, Paul J; Grau, Cai; Høyer, Morten; Poulsen, Per R

    2014-12-01

    Multileaf collimator (MLC) tracking is a promising and clinically emerging treatment modality for radiotherapy of mobile tumours. Still, new quality assurance (QA) methods are warranted to safely introduce MLC tracking in the clinic. The purpose of this study was to create and experimentally validate a simple model for fast motion-including dose error reconstruction applicable to intrafractional QA of MLC tracking treatments of moving targets.MLC tracking experiments were performed on a standard linear accelerator with prototype MLC tracking software guided by an electromagnetic transponder system. A three-axis motion stage reproduced eight representative tumour trajectories; four lung and four prostate. Low and high modulation 6 MV single-arc volumetric modulated arc therapy treatment plans were delivered for each trajectory with and without MLC tracking, as well as without motion for reference. Temporally resolved doses were measured during all treatments using a biplanar dosimeter. Offline, the dose delivered to each of 1069 diodes in the dosimeter was reconstructed with 500 ms temporal resolution by a motion-including pencil beam convolution algorithm developed in-house. The accuracy of the algorithm for reconstruction of dose and motion-induced dose errors throughout the tracking and non-tracking beam deliveries was quantified. Doses were reconstructed with a mean dose difference relative to the measurements of-0.5% (5.5% standard deviation) for cumulative dose. More importantly, the root-mean-square deviation between reconstructed and measured motion-induced 3%/3 mm γ failure rates (dose error) was 2.6%. The mean computation time for each calculation of dose and dose error was 295 ms. The motion-including dose reconstruction allows accurate temporal and spatial pinpointing of errors in absorbed dose and is adequately fast to be feasible for online use. An online implementation could allow treatment intervention in case of erroneous dose delivery in both

  13. A Fast Implementation of the ISOCLUS Algorithm

    NASA Technical Reports Server (NTRS)

    Memarsadeghi, Nargess; Mount, David M.; Netanyahu, Nathan S.; LeMoigne, Jacqueline

    2003-01-01

    (kn) time, where k denotes the current number of centers. Traditional techniques for accelerating nearest neighbor searching involve storing the k centers in a data structure. However, because of the iterative nature of the algorithm, this data structure would need to be rebuilt with each new iteration. Our approach is to store the data points in a kd-tree data structure. The assignment of points to nearest neighbors is carried out by a filtering process, which successively eliminates centers that can not possibly be the nearest neighbor for a given region of space. This algorithm is significantly faster, because large groups of data points can be assigned to their nearest center in a single operation. Preliminary results on a number of real Landsat datasets show that our revised ISOCLUS-like scheme runs about twice as fast.

  14. IMAM algorithm for tracking maneuvering targets in clutter

    NASA Astrophysics Data System (ADS)

    Watson, Gregory A.

    1996-05-01

    Target tracking in clutter is difficult because there can be several contact-to-track associations for a given track update. The nearest neighbor approach is traditionally used but probabilistic methods, such as probabilistic data association (PDA), have since proved more capable. Tracks are also lost during maneuvers and the interacting multiple model (IMM) algorithm has been demonstrated to be effective at tracking maneuvering targets by responding to different target modes. By combining the IMM and PDA, the resulting algorithm responds to target maneuvers and is effective in clutter. The interacting multiple bias model (IMBM) algorithm is also an effective technique when tracking maneuvering targets but considers the target acceleration a system bias. The bias is estimated in an IMM algorithm framework and then used to compensate a constant velocity filter estimate. The integrated PDA filter will be incorporated into the IMBM algorithm and applied to tracking maneuvering targets in clutter. A performance comparison of IMM and IMBM techniques for tracking maneuvering targets in clutter will also be presented.

  15. Education For All (EFA) - Fast Track Initiative Progress Report 30046

    ERIC Educational Resources Information Center

    World Bank Education Advisory Service, 2004

    2004-01-01

    Launched in June 2002, the Education For All-Fast Track Initiative (FTI) is a performance-based program focusing on the implementation of sustainable policies in support of universal primary completion (UPC) and the required resource mobilization. During its twenty months of implementation, FTI has delivered on results, which give reason for…

  16. Fast Track: Elementary School. What Works Clearinghouse Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2014

    2014-01-01

    "Fast Track" is a comprehensive intervention designed to reduce conduct problems and promote academic, behavioral, and social improvement. The program's components include the "Promoting Alternative THinking Strategies" curriculum, parent groups, parent-child sharing time, child social skills training, home visiting, child…

  17. Internal model control of a fast steering mirror for electro-optical fine tracking

    NASA Astrophysics Data System (ADS)

    Xia, Yun-xia; Bao, Qi-liang; Wu, Qiong-yan

    2010-11-01

    The objective of this research is to develop advanced control methods to improve the bandwidth and tracking precision of the electro-optical fine tracking system using a fast steering mirror (FSM). FSM is the most important part in this control system. The model of FSM is established at the beginning of this paper. Compared with the electro-optical fine tracking system with ground based platform, the electro-optical fine tracking system with movement based platform must be a wide bandwidth and a robustness system. An advanced control method based on internal model control law is developed for electro-optical fine tracking system. The IMC is an advanced algorithm. Theoretically, it can eliminate disturbance completely and make sure output equals to input even there is model error. Moreover, it separates process to the system dynamic characteristic and the object perturbation. Compared with the PID controller, the controller is simpler and the parameter regulation is more convenient and the system is more robust. In addition, we design an improved structure based on classic IMC. The tracking error of the two-port control system is much better than which of the classic IMC. The simulation results indicate that the electro-optical control system based on the internal model control algorithm is very effective. It shows a better performance at the tracing precision and the disturbance suppresses. Thus a new method is provided for the high-performance electro-optical fine tracking system.

  18. A maximum power point tracking algorithm for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Nelatury, Sudarshan R.; Gray, Robert

    2013-05-01

    The voltage and current characteristic of a photovoltaic (PV) cell is highly nonlinear and operating a PV cell for maximum power transfer has been a challenge for a long time. Several techniques have been proposed to estimate and track the maximum power point (MPP) in order to improve the overall efficiency of a PV panel. A strategic use of the mean value theorem permits obtaining an analytical expression for a point that lies in a close neighborhood of the true MPP. But hitherto, an exact solution in closed form for the MPP is not published. This problem can be formulated analytically as a constrained optimization, which can be solved using the Lagrange method. This method results in a system of simultaneous nonlinear equations. Solving them directly is quite difficult. However, we can employ a recursive algorithm to yield a reasonably good solution. In graphical terms, suppose the voltage current characteristic and the constant power contours are plotted on the same voltage current plane, the point of tangency between the device characteristic and the constant power contours is the sought for MPP. It is subject to change with the incident irradiation and temperature and hence the algorithm that attempts to maintain the MPP should be adaptive in nature and is supposed to have fast convergence and the least misadjustment. There are two parts in its implementation. First, one needs to estimate the MPP. The second task is to have a DC-DC converter to match the given load to the MPP thus obtained. Availability of power electronics circuits made it possible to design efficient converters. In this paper although we do not show the results from a real circuit, we use MATLAB to obtain the MPP and a buck-boost converter to match the load. Under varying conditions of load resistance and irradiance we demonstrate MPP tracking in case of a commercially available solar panel MSX-60. The power electronics circuit is simulated by PSIM software.

  19. An efficient central DOA tracking algorithm for multiple incoherently distributed sources

    NASA Astrophysics Data System (ADS)

    Hassen, Sonia Ben; Samet, Abdelaziz

    2015-12-01

    In this paper, we develop a new tracking method for the direction of arrival (DOA) parameters assuming multiple incoherently distributed (ID) sources. The new approach is based on a simple covariance fitting optimization technique exploiting the central and noncentral moments of the source angular power densities to estimate the central DOAs. The current estimates are treated as measurements provided to the Kalman filter that model the dynamic property of directional changes for the moving sources. Then, the covariance-fitting-based algorithm and the Kalman filtering theory are combined to formulate an adaptive tracking algorithm. Our algorithm is compared to the fast approximated power iteration-total least square-estimation of signal parameters via rotational invariance technique (FAPI-TLS-ESPRIT) algorithm using the TLS-ESPRIT method and the subspace updating via FAPI-algorithm. It will be shown that the proposed algorithm offers an excellent DOA tracking performance and outperforms the FAPI-TLS-ESPRIT method especially at low signal-to-noise ratio (SNR) values. Moreover, the performances of the two methods increase as the SNR values increase. This increase is more prominent with the FAPI-TLS-ESPRIT method. However, their performances degrade when the number of sources increases. It will be also proved that our method depends on the form of the angular distribution function when tracking the central DOAs. Finally, it will be shown that the more the sources are spaced, the more the proposed method can exactly track the DOAs.

  20. Motion object tracking algorithm using multi-cameras

    NASA Astrophysics Data System (ADS)

    Kong, Xiaofang; Chen, Qian; Gu, Guohua

    2015-09-01

    Motion object tracking is one of the most important research directions in computer vision. Challenges in designing a robust tracking method are usually caused by partial or complete occlusions on targets. However, motion object tracking algorithm based on multiple cameras according to the homography relation in three views can deal with this issue effectively since the information combining from multiple cameras in different views can make the target more complete and accurate. In this paper, a robust visual tracking algorithm based on the homography relations of three cameras in different views is presented to cope with the occlusion. First of all, being the main contribution of this paper, the motion object tracking algorithm based on the low-rank matrix representation under the framework of the particle filter is applied to track the same target in the public region respectively in different views. The target model and the occlusion model are established and an alternating optimization algorithm is utilized to solve the proposed optimization formulation while tracking. Then, we confirm the plane in which the target has the largest occlusion weight to be the principal plane and calculate the homography to find out the mapping relations between different views. Finally, the images of the other two views are projected into the main plane. By making use of the homography relation between different views, the information of the occluded target can be obtained completely. The proposed algorithm has been examined throughout several challenging image sequences, and experiments show that it overcomes the failure of the motion tracking especially under the situation of the occlusion. Besides, the proposed algorithm improves the accuracy of the motion tracking comparing with other state-of-the-art algorithms.

  1. Automatic Tracking Algorithm in Coaxial Near-Infrared Laser Ablation Endoscope for Fetus Surgery

    NASA Astrophysics Data System (ADS)

    Hu, Yan; Yamanaka, Noriaki; Masamune, Ken

    2014-07-01

    This article reports a stable vessel object tracking method for the treatment of twin-to-twin transfusion syndrome based on our previous 2 DOF endoscope. During the treatment of laser coagulation, it is necessary to focus on the exact position of the target object, however it moves by the mother's respiratory motion and still remains a challenge to obtain and track the position precisely. In this article, an algorithm which uses features from accelerated segment test (FAST) to extract the features and optical flow as the object tracking method, is proposed to deal with above problem. Further, we experimentally simulate the movement due to the mother's respiration, and the results of position errors and similarity verify the effectiveness of the proposed tracking algorithm for laser ablation endoscopy in-vitro and under water considering two influential factors. At average, the errors are about 10 pixels and the similarity over 0.92 are obtained in the experiments.

  2. Performing track reconstruction at the ALICE TPC using a fast Hough Transform method

    NASA Astrophysics Data System (ADS)

    Kouzinopoulos, Charalampos S.; Hristov, Peter

    2016-09-01

    The Hough Transform algorithm is a popular image analysis method that is widely used to perform global pattern recognition in images through the identification of local patterns in a suitably chosen parameter space. The algorithm can also be used to perform track reconstruction; to estimate the trajectory of individual particles when passed through the active elements of a detector volume. This paper presents a fast reconstruction method for the Time Projection Chamber (TPC) of the ALICE experiment at LHC. The method, that combines a linear Hough Transform algorithm with a fast filling of the Hough Transform parameter space, is developed within AliceO2, the new computing framework of ALICE for RUN3.

  3. DETECTORS AND EXPERIMENTAL METHODS: BESIII track fitting algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Ji-Ke; Mao, Ze-Pu; Bian, Jian-Ming; Cao, Guo-Fu; Cao, Xue-Xiang; Chen, Shen-Jian; Deng, Zi-Yan; Fu, Cheng-Dong; Gao, Yuan-Ning; He, Kang-Lin; He, Miao; Hua, Chun-Fei; Huang, Bin; Huang, Xing-Tao; Ji, Xiao-Bin; Li, Fei; Li, Bai-Bo; Li, Wei-Dong; Liang, Yu-Tie; Liu, Chun-Xiu; Liu, Huai-Min; Liu, Suo; Liu, Ying-Jie; Ma, Qiu-Mei; Ma, Xiang; Mao, Ya-Jun; Mo, Xiao-Hu; Pan, Ming-Hua; Pang, Cai-Ying; Ping, Rong-Gang; Qin, Ya-Hong; Qiu, Jin-Fa; Sun, Sheng-Sen; Sun, Yong-Zhao; Wang, Liang-Liang; Wen, Shuo-Pin; Wu, Ling-Hui; Xie, Yu-Guang; Xu, Min; Yan, Liang; You, Zheng-Yun; Yuan, Chang-Zheng; Yuan, Ye; Zhang, Bing-Yun; Zhang, Chang-Chun; Zhang, Jian-Yong; Zhang, Xue-Yao; Zhang, Yao; Zheng, Yang-Heng; Zhu, Ke-Jun; Zhu, Yong-Sheng; Zhu, Zhi-Li; Zou, Jia-Heng

    2009-10-01

    A track fitting algorithm based on the Kalman filter method has been developed for BESIII of BEPCII. The effects of multiple scattering and energy loss when the charged particles go through the detector, non-uniformity of magnetic field (NUMF) and wire sag, etc., have been carefully handled. This algorithm works well and the performance satisfies the physical requirements tested by the simulation data.

  4. Video tracking algorithm of long-term experiment using stand-alone recording system.

    PubMed

    Chen, Yu-Jen; Li, Yan-Chay; Huang, Ke-Nung; Jen, Sun-Lon; Young, Ming-Shing

    2008-08-01

    Many medical and behavioral applications require the ability to monitor and quantify the behavior of small animals. In general these animals are confined in small cages. Often these situations involve very large numbers of cages. Modern research facilities commonly monitor simultaneously thousands of animals over long periods of time. However, conventional systems require one personal computer per monitoring platform, which is too complex, expensive, and increases power consumption for large laboratory applications. This paper presents a simplified video tracking algorithm for long-term recording using a stand-alone system. The feature of the presented tracking algorithm revealed that computation speed is very fast data storage requirements are small, and hardware requirements are minimal. The stand-alone system automatically performs tracking and saving acquired data to a secure digital card. The proposed system is designed for video collected at a 640 x 480 pixel with 16 bit color resolution. The tracking result is updated every 30 frames/s. Only the locomotive data are stored. Therefore, the data storage requirements could be minimized. In addition, detection via the designed algorithm uses the Cb and Cr values of a colored marker affixed to the target to define the tracked position and allows multiobject tracking against complex backgrounds. Preliminary experiment showed that such tracking information stored by the portable and stand-alone system could provide comprehensive information on the animal's activity.

  5. Video tracking algorithm of long-term experiment using stand-alone recording system

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Jen; Li, Yan-Chay; Huang, Ke-Nung; Jen, Sun-Lon; Young, Ming-Shing

    2008-08-01

    Many medical and behavioral applications require the ability to monitor and quantify the behavior of small animals. In general these animals are confined in small cages. Often these situations involve very large numbers of cages. Modern research facilities commonly monitor simultaneously thousands of animals over long periods of time. However, conventional systems require one personal computer per monitoring platform, which is too complex, expensive, and increases power consumption for large laboratory applications. This paper presents a simplified video tracking algorithm for long-term recording using a stand-alone system. The feature of the presented tracking algorithm revealed that computation speed is very fast data storage requirements are small, and hardware requirements are minimal. The stand-alone system automatically performs tracking and saving acquired data to a secure digital card. The proposed system is designed for video collected at a 640×480 pixel with 16 bit color resolution. The tracking result is updated every 30 frames/s. Only the locomotive data are stored. Therefore, the data storage requirements could be minimized. In addition, detection via the designed algorithm uses the Cb and Cr values of a colored marker affixed to the target to define the tracked position and allows multiobject tracking against complex backgrounds. Preliminary experiment showed that such tracking information stored by the portable and stand-alone system could provide comprehensive information on the animal's activity.

  6. Multiple object tracking using the shortest path faster association algorithm.

    PubMed

    Xi, Zhenghao; Liu, Heping; Liu, Huaping; Yang, Bin

    2014-01-01

    To solve the persistently multiple object tracking in cluttered environments, this paper presents a novel tracking association approach based on the shortest path faster algorithm. First, the multiple object tracking is formulated as an integer programming problem of the flow network. Then we relax the integer programming to a standard linear programming problem. Therefore, the global optimum can be quickly obtained using the shortest path faster algorithm. The proposed method avoids the difficulties of integer programming, and it has a lower worst-case complexity than competing methods but better robustness and tracking accuracy in complex environments. Simulation results show that the proposed algorithm takes less time than other state-of-the-art methods and can operate in real time.

  7. An automatic and fast centerline extraction algorithm for virtual colonoscopy.

    PubMed

    Jiang, Guangxiang; Gu, Lixu

    2005-01-01

    This paper introduces a new refined centerline extraction algorithm, which is based on and significantly improved from distance mapping algorithms. The new approach include three major parts: employing a colon segmentation method; designing and realizing a fast Euclidean Transform algorithm and inducting boundary voxels cutting (BVC) approach. The main contribution is the BVC processing, which greatly speeds up the Dijkstra algorithm and improves the whole performance of the new algorithm. Experimental results demonstrate that the new centerline algorithm was more efficient and accurate comparing with existing algorithms. PMID:17281406

  8. Novel automatic eye detection and tracking algorithm

    NASA Astrophysics Data System (ADS)

    Ghazali, Kamarul Hawari; Jadin, Mohd Shawal; Jie, Ma; Xiao, Rui

    2015-04-01

    The eye is not only one of the most complex but also the most important sensory organ of the human body. Eye detection and eye tracking are basement and hot issue in image processing. A non-invasive eye location and eye tracking is promising for hands-off gaze-based human-computer interface, fatigue detection, instrument control by paraplegic patients and so on. For this purpose, an innovation work frame is proposed to detect and tracking eye in video sequence in this paper. The contributions of this work can be divided into two parts. The first contribution is that eye filters were trained which can detect eye location efficiently and accurately without constraints on the background and skin colour. The second contribution is that a framework of tracker based on sparse representation and LK optic tracker were built which can track eye without constraint on eye status. The experimental results demonstrate the accuracy aspects and the real-time applicability of the proposed approach.

  9. Fast-track drug approval in inflammatory bowel diseases

    PubMed Central

    Katsanos, Konstantinos H.; Koutroumpakis, Efstratios; Giagkou, Eftychia; Malakos, Zikos; Almpani, Eleni; Skamnelos, Alexandros; Christodoulou, Dimitrios K.

    2016-01-01

    Fast-track drug designation of safe regimens represents an emerging method of development and approval of new medications targeting debilitating diseases including inflammatory bowel diseases (IBD). The goal of accelerated drug approval pathways is to shorten the time between application and approval of therapies that treat diseases with significant morbidity and mortality. Recently, fast-track drug approval approaches were supported by data deriving from central reading of images, a method of clinical data interpretation that has significantly benefited patients with gastrointestinal disorders. Biological agents and other emerging therapies in IBD represent “game-changing” or “treat-to-target” drugs and have satisfied quite successfully some of the patients’ unmet needs. The development of biosimilars is an area where the Federal Drug Administration and the European Agency for Evaluation of Medicinal Products seem to have different approval processes. Biosimilars, including those for IBD, promise cost reductions and wide access to biologic therapies by patients, advantages similar to those already offered by generic drugs. Given the rapid development of IBD drugs and patients’ needs, a consensus among the academic community, clinicians, researchers, sponsors, patients and regulatory authorities is required to standardize better the IBD trials and create a productive environment for fast-track approval of any “changing-game” IBD drug.

  10. [FastTrack approach to major colorectal surgery].

    PubMed

    Susa, Antonio; Roveran, Antonietta; Bocchi, Anna; Carrer, Sara; Tartari, Stefano

    2004-01-01

    Intensive rehabilitation programs after major abdominal, thoracic and vascular surgery have been published over the last few years, showing early recovery, fewer complications and a quicker discharge. The aim of the study was to evaluate the feasibility and efficacy of a multimodal intensive rehabilitation program (FastTrack) after major colorectal surgery, according to the experience of Dr. H. Kehlet of Hvidovre University Hospital, Copenhagen. The study design was of the prospective, randomized, controlled type. Forty patients undergoing elective colonic surgery were randomly selected and assigned to two groups well matched for age, weight, ASA and type of resection. The FastTrack group underwent a multimodal rehabilitation program with epidural analgesia, short laparotomy, early feeding and mobilisation. The control group had the usual postoperative treatment with a pain control program. The FastTrack group exhibited a shorter need for assisted ventilation, a lower sedation level and lower opioid consumption over the first 24 hours. We also observed a statistically significant earlier onset of peristalsis (0.5 vs 2.7 days), gastrointestinal function (defecation) (2.8 vs 5.8 days), regular feeding (3.1 vs 7.2 days) and autonomous ambulation (3.3 vs 6.9). The multimodal rehabilitation approach to colon surgery permits an earlier postoperative recovery, better postoperative performance and quicker functional autonomy. These results may have important implications for the management of patients after major colorectal surgery. PMID:15771036

  11. An enhanced fast scanning algorithm for image segmentation

    NASA Astrophysics Data System (ADS)

    Ismael, Ahmed Naser; Yusof, Yuhanis binti

    2015-12-01

    Segmentation is an essential and important process that separates an image into regions that have similar characteristics or features. This will transform the image for a better image analysis and evaluation. An important benefit of segmentation is the identification of region of interest in a particular image. Various algorithms have been proposed for image segmentation and this includes the Fast Scanning algorithm which has been employed on food, sport and medical images. It scans all pixels in the image and cluster each pixel according to the upper and left neighbor pixels. The clustering process in Fast Scanning algorithm is performed by merging pixels with similar neighbor based on an identified threshold. Such an approach will lead to a weak reliability and shape matching of the produced segments. This paper proposes an adaptive threshold function to be used in the clustering process of the Fast Scanning algorithm. This function used the gray'value in the image's pixels and variance Also, the level of the image that is more the threshold are converted into intensity values between 0 and 1, and other values are converted into intensity values zero. The proposed enhanced Fast Scanning algorithm is realized on images of the public and private transportation in Iraq. Evaluation is later made by comparing the produced images of proposed algorithm and the standard Fast Scanning algorithm. The results showed that proposed algorithm is faster in terms the time from standard fast scanning.

  12. Fast non-iterative calibration of an external motion tracking device

    PubMed Central

    Zahneisen, Benjamin; Lovell-Smith, Chris; Herbst, Michael; Zaitsev, Maxim; Speck, Oliver; Armstrong, Brian; Ernst, Thomas

    2013-01-01

    Purpose Prospective motion correction of MR scans commonly uses an external device, such as a camera, to track the pose of the organ of interest. However, in order for external tracking data to be translated into the MR scanner reference frame, the pose of the camera relative to the MR scanner must be known accurately. Here, we describe a fast, accurate, non-iterative technique to determine the position of an external tracking device de novo relative to the MR reference frame. Theory and Methods The method relies on imaging a sparse object that allows simultaneous tracking of arbitrary rigid body transformations in the reference frame of the MRI machine and that of the external tracking device. Results Large motions in the MRI reference frame can be measured using a sparse phantom with an accuracy of 0.2 mm, or approximately 1/10 of the voxel size. By using a dual quaternion algorithm to solve the calibration problem, a good camera calibration can be achieved with fewer than 6 measurements. Further refinements can be achieved by applying the method iteratively and using motion correction feedback. Conclusion Independent tracking of a series of movements in two reference frames allows for an analytical solution to the hand-eye-calibration problem for various motion tracking setups in MRI. PMID:23788117

  13. A Novel Tracking Algorithm via Feature Points Matching

    PubMed Central

    Luo, Nan; Sun, Quansen; Chen, Qiang; Ji, Zexuan; Xia, Deshen

    2015-01-01

    Visual target tracking is a primary task in many computer vision applications and has been widely studied in recent years. Among all the tracking methods, the mean shift algorithm has attracted extraordinary interest and been well developed in the past decade due to its excellent performance. However, it is still challenging for the color histogram based algorithms to deal with the complex target tracking. Therefore, the algorithms based on other distinguishing features are highly required. In this paper, we propose a novel target tracking algorithm based on mean shift theory, in which a new type of image feature is introduced and utilized to find the corresponding region between the neighbor frames. The target histogram is created by clustering the features obtained in the extraction strategy. Then, the mean shift process is adopted to calculate the target location iteratively. Experimental results demonstrate that the proposed algorithm can deal with the challenging tracking situations such as: partial occlusion, illumination change, scale variations, object rotation and complex background clutter. Meanwhile, it outperforms several state-of-the-art methods. PMID:25617769

  14. Divergence detectors for multitarget tracking algorithms

    NASA Astrophysics Data System (ADS)

    Mahler, Ronald

    2013-05-01

    Single-target tracking filters will typically diverge when their internal measurement or motion models deviate too much from the actual models. Niu, Varshney, Alford, Bubalo, Jones, and Scalzo have proposed a metric-- the normalized innovation squared (NIS)--that recursively estimates the degree of nonlinearity in a single-target tracking problem by detecting filter divergence. This paper establishes the following: (1) NIS can be extended to generalized NIS (GNIS), which addresses more general nonlinearities; (2) NIS and GNIS are actually anomaly detectors, rather than filter-divergence detectors; (3) NIS can be heuristically generalized to a multitarget NIS (MNIS) metric; (4) GNIS also can be rigorously extended to multitarget problems via the multitarget GNIS (MGNIS); (5) explicit, computationally tractable formulas for MGNIS can be derived for use with CPHD and PHD filters; and thus (6) these formulas can be employed as anomaly detectors for use with these filters.

  15. Three hypothesis algorithm with occlusion reasoning for multiple people tracking

    NASA Astrophysics Data System (ADS)

    Reta, Carolina; Altamirano, Leopoldo; Gonzalez, Jesus A.; Medina-Carnicer, Rafael

    2015-01-01

    This work proposes a detection-based tracking algorithm able to locate and keep the identity of multiple people, who may be occluded, in uncontrolled stationary environments. Our algorithm builds a tracking graph that models spatio-temporal relationships among attributes of interacting people to predict and resolve partial and total occlusions. When a total occlusion occurs, the algorithm generates various hypotheses about the location of the occluded person considering three cases: (a) the person keeps the same direction and speed, (b) the person follows the direction and speed of the occluder, and (c) the person remains motionless during occlusion. By analyzing the graph, our algorithm can detect trajectories produced by false alarms and estimate the location of missing or occluded people. Our algorithm performs acceptably under complex conditions, such as partial visibility of individuals getting inside or outside the scene, continuous interactions and occlusions among people, wrong or missing information on the detection of persons, as well as variation of the person's appearance due to illumination changes and background-clutter distracters. Our algorithm was evaluated on test sequences in the field of intelligent surveillance achieving an overall precision of 93%. Results show that our tracking algorithm outperforms even trajectory-based state-of-the-art algorithms.

  16. Real-Time Robust Tracking for Motion Blur and Fast Motion via Correlation Filters.

    PubMed

    Xu, Lingyun; Luo, Haibo; Hui, Bin; Chang, Zheng

    2016-01-01

    Visual tracking has extensive applications in intelligent monitoring and guidance systems. Among state-of-the-art tracking algorithms, Correlation Filter methods perform favorably in robustness, accuracy and speed. However, it also has shortcomings when dealing with pervasive target scale variation, motion blur and fast motion. In this paper we proposed a new real-time robust scheme based on Kernelized Correlation Filter (KCF) to significantly improve performance on motion blur and fast motion. By fusing KCF and STC trackers, our algorithm also solve the estimation of scale variation in many scenarios. We theoretically analyze the problem for CFs towards motions and utilize the point sharpness function of the target patch to evaluate the motion state of target. Then we set up an efficient scheme to handle the motion and scale variation without much time consuming. Our algorithm preserves the properties of KCF besides the ability to handle special scenarios. In the end extensive experimental results on benchmark of VOT datasets show our algorithm performs advantageously competed with the top-rank trackers. PMID:27618046

  17. Real-Time Robust Tracking for Motion Blur and Fast Motion via Correlation Filters

    PubMed Central

    Xu, Lingyun; Luo, Haibo; Hui, Bin; Chang, Zheng

    2016-01-01

    Visual tracking has extensive applications in intelligent monitoring and guidance systems. Among state-of-the-art tracking algorithms, Correlation Filter methods perform favorably in robustness, accuracy and speed. However, it also has shortcomings when dealing with pervasive target scale variation, motion blur and fast motion. In this paper we proposed a new real-time robust scheme based on Kernelized Correlation Filter (KCF) to significantly improve performance on motion blur and fast motion. By fusing KCF and STC trackers, our algorithm also solve the estimation of scale variation in many scenarios. We theoretically analyze the problem for CFs towards motions and utilize the point sharpness function of the target patch to evaluate the motion state of target. Then we set up an efficient scheme to handle the motion and scale variation without much time consuming. Our algorithm preserves the properties of KCF besides the ability to handle special scenarios. In the end extensive experimental results on benchmark of VOT datasets show our algorithm performs advantageously competed with the top-rank trackers. PMID:27618046

  18. An eddy tracking algorithm based on dynamical systems theory

    NASA Astrophysics Data System (ADS)

    Conti, Daniel; Orfila, Alejandro; Mason, Evan; Sayol, Juan Manuel; Simarro, Gonzalo; Balle, Salvador

    2016-11-01

    This work introduces a new method for ocean eddy detection that applies concepts from stationary dynamical systems theory. The method is composed of three steps: first, the centers of eddies are obtained from fixed points and their linear stability analysis; second, the size of the eddies is estimated from the vorticity between the eddy center and its neighboring fixed points, and, third, a tracking algorithm connects the different time frames. The tracking algorithm has been designed to avoid mismatching connections between eddies at different frames. Eddies are detected for the period between 1992 and 2012 using geostrophic velocities derived from AVISO altimetry and a new database is provided for the global ocean.

  19. Fast proximity algorithm for MAP ECT reconstruction

    NASA Astrophysics Data System (ADS)

    Li, Si; Krol, Andrzej; Shen, Lixin; Xu, Yuesheng

    2012-03-01

    We arrived at the fixed-point formulation of the total variation maximum a posteriori (MAP) regularized emission computed tomography (ECT) reconstruction problem and we proposed an iterative alternating scheme to numerically calculate the fixed point. We theoretically proved that our algorithm converges to unique solutions. Because the obtained algorithm exhibits slow convergence speed, we further developed the proximity algorithm in the transformed image space, i.e. the preconditioned proximity algorithm. We used the bias-noise curve method to select optimal regularization hyperparameters for both our algorithm and expectation maximization with total variation regularization (EM-TV). We showed in the numerical experiments that our proposed algorithms, with an appropriately selected preconditioner, outperformed conventional EM-TV algorithm in many critical aspects, such as comparatively very low noise and bias for Shepp-Logan phantom. This has major ramification for nuclear medicine because clinical implementation of our preconditioned fixed-point algorithms might result in very significant radiation dose reduction in the medical applications of emission tomography.

  20. Visual tracking method based on cuckoo search algorithm

    NASA Astrophysics Data System (ADS)

    Gao, Ming-Liang; Yin, Li-Ju; Zou, Guo-Feng; Li, Hai-Tao; Liu, Wei

    2015-07-01

    Cuckoo search (CS) is a new meta-heuristic optimization algorithm that is based on the obligate brood parasitic behavior of some cuckoo species in combination with the Lévy flight behavior of some birds and fruit flies. It has been found to be efficient in solving global optimization problems. An application of CS is presented to solve the visual tracking problem. The relationship between optimization and visual tracking is comparatively studied and the parameters' sensitivity and adjustment of CS in the tracking system are experimentally studied. To demonstrate the tracking ability of a CS-based tracker, a comparative study of tracking accuracy and speed of the CS-based tracker with six "state-of-art" trackers, namely, particle filter, meanshift, PSO, ensemble tracker, fragments tracker, and compressive tracker are presented. Comparative results show that the CS-based tracker outperforms the other trackers.

  1. Solar Load Voltage Tracking for Water Pumping: An Algorithm

    NASA Astrophysics Data System (ADS)

    Kappali, M.; Udayakumar, R. Y.

    2014-07-01

    Maximum power is to be harnessed from solar photovoltaic (PV) panel to minimize the effective cost of solar energy. This is accomplished by maximum power point tracking (MPPT). There are different methods to realise MPPT. This paper proposes a simple algorithm to implement MPPT lv method in a closed loop environment for centrifugal pump driven by brushed PMDC motor. Simulation testing of the algorithm is done and the results are found to be encouraging and supportive of the proposed method MPPT lv .

  2. A Midsize Tokamak As Fast Track To Burning Plasmas

    SciTech Connect

    E. Mazzucato

    2010-07-14

    This paper presents a midsize tokamak as a fast track to the investigation of burning plasmas. It is shown that it could reach large values of energy gain (≥10) with only a modest improvement in confinement over the scaling that was used for designing the International Thermonuclear Experimental Reactor (ITER). This could be achieved by operating in a low plasma recycling regime that experiments indicate can lead to improved plasma confinement. The possibility of reaching the necessary conditions of low recycling using a more efficient magnetic divertor than those of present tokamaks is discussed.

  3. Fast-neutron spectroscopy studies using induced-proton tracks in PADC track detectors

    NASA Astrophysics Data System (ADS)

    El-Sersy, A. R.; Eman, S. A.

    2010-06-01

    In this work, a simple and adequate method for fast-neutron spectroscopy is proposed. This method was performed by free-in-air fast-neutron irradiation of CR-39 Nuclear Track Detectors (NTD) using an Am-Be source. Detectors were then chemically etched to remove few layers up to a thickness of 6.25 μm. By using an automatic image analyzer system for studying the registration of the induced-proton tracks in the NTD, the obtained data were analyzed via two tracks shapes. In the first one, the elliptical tracks were eliminated from the calculation and only the circular ones were considered in developing the response function. In the second method all registered tracks were considered and the corresponding response function was obtained. The rate of energy loss of the protons as a function of V[(d E/d X) - V] was calculated using the Monte Carlo simulation. The induced-proton energy was extracted from the corresponding d E/d X in NTD using a computer program based on the Bethe-Bloch function. The energy of the incident particles was up to few hundred MeV/nucleon. The energy of the interacting neutrons was then estimated by means of the extracted induced-proton energies and the scattering angle. It was found that the present resulting energy distribution of the fast-neutron spectrum from the Am-Be source was similar to that given in the literature where an average neutron energy of 4.6MeV was obtained.

  4. A baseline algorithm for face detection and tracking in video

    NASA Astrophysics Data System (ADS)

    Manohar, Vasant; Soundararajan, Padmanabhan; Korzhova, Valentina; Boonstra, Matthew; Goldgof, Dmitry; Kasturi, Rangachar

    2007-10-01

    Establishing benchmark datasets, performance metrics and baseline algorithms have considerable research significance in gauging the progress in any application domain. These primarily allow both users and developers to compare the performance of various algorithms on a common platform. In our earlier works, we focused on developing performance metrics and establishing a substantial dataset with ground truth for object detection and tracking tasks (text and face) in two video domains -- broadcast news and meetings. In this paper, we present the results of a face detection and tracking algorithm on broadcast news videos with the objective of establishing a baseline performance for this task-domain pair. The detection algorithm uses a statistical approach that was originally developed by Viola and Jones and later extended by Lienhart. The algorithm uses a feature set that is Haar-like and a cascade of boosted decision tree classifiers as a statistical model. In this work, we used the Intel Open Source Computer Vision Library (OpenCV) implementation of the Haar face detection algorithm. The optimal values for the tunable parameters of this implementation were found through an experimental design strategy commonly used in statistical analyses of industrial processes. Tracking was accomplished as continuous detection with the detected objects in two frames mapped using a greedy algorithm based on the distances between the centroids of bounding boxes. Results on the evaluation set containing 50 sequences (~ 2.5 mins.) using the developed performance metrics show good performance of the algorithm reflecting the state-of-the-art which makes it an appropriate choice as the baseline algorithm for the problem.

  5. Cumulative Reconstructor: fast wavefront reconstruction algorithm for Extremely Large Telescopes.

    PubMed

    Rosensteiner, Matthias

    2011-10-01

    The Cumulative Reconstructor (CuRe) is a new direct reconstructor for an optical wavefront from Shack-Hartmann wavefront sensor measurements. In this paper, the algorithm is adapted to realistic telescope geometries and the transition from modified Hudgin to Fried geometry is discussed. After a discussion of the noise propagation, we analyze the complexity of the algorithm. Our numerical tests confirm that the algorithm is very fast and accurate and can therefore be used for adaptive optics systems of Extremely Large Telescopes.

  6. Multi-expert tracking algorithm based on improved compressive tracker

    NASA Astrophysics Data System (ADS)

    Feng, Yachun; Zhang, Hong; Yuan, Ding

    2015-12-01

    Object tracking is a challenging task in computer vision. Most state-of-the-art methods maintain an object model and update the object model by using new examples obtained incoming frames in order to deal with the variation in the appearance. It will inevitably introduce the model drift problem into the object model updating frame-by-frame without any censorship mechanism. In this paper, we adopt a multi-expert tracking framework, which is able to correct the effect of bad updates after they happened such as the bad updates caused by the severe occlusion. Hence, the proposed framework exactly has the ability which a robust tracking method should process. The expert ensemble is constructed of a base tracker and its formal snapshot. The tracking result is produced by the current tracker that is selected by means of a simple loss function. We adopt an improved compressive tracker as the base tracker in our work and modify it to fit the multi-expert framework. The proposed multi-expert tracking algorithm significantly improves the robustness of the base tracker, especially in the scenes with frequent occlusions and illumination variations. Experiments on challenging video sequences with comparisons to several state-of-the-art trackers demonstrate the effectiveness of our method and our tracking algorithm can run at real-time.

  7. [A tracking algorithm for live mitochondria in fluorescent microscopy images].

    PubMed

    Xu, Junmei; Li, Yang; Du, Sidan; Zhao, Kanglian

    2012-04-01

    Quantitative analysis of biological image data generally involves the detection of many pixel spots. In live mitochondria video image, for which fluorescent microscopy is often used, the signal-to-noise ratio (SNR) can be extremely low, making the detection and tracking of mitochondria particle difficult. It is especially not easy to get the movement curve when the movement of the mitochondria involves its self-move and the motion caused by the neuron. An tracking algorithm for live mitochondria is proposed in this paper. First the whole image sequence is frame-to-frame registered, in which the edge corners are chosen to be the feature points. Then the mitochondria particles are tracked by frame-to-frame displacement vector. The algorithm proposed has been applied to the dynamic image sequence including neuron and mitochondria, saving time without manually picking up the feature points. It provides an new method and reference for medical image processing and biotechnological research. PMID:22616189

  8. Fast algorithms for transport models. Final report

    SciTech Connect

    Manteuffel, T.A.

    1994-10-01

    This project has developed a multigrid in space algorithm for the solution of the S{sub N} equations with isotropic scattering in slab geometry. The algorithm was developed for the Modified Linear Discontinuous (MLD) discretization in space which is accurate in the thick diffusion limit. It uses a red/black two-cell {mu}-line relaxation. This relaxation solves for all angles on two adjacent spatial cells simultaneously. It takes advantage of the rank-one property of the coupling between angles and can perform this inversion in O(N) operations. A version of the multigrid in space algorithm was programmed on the Thinking Machines Inc. CM-200 located at LANL. It was discovered that on the CM-200 a block Jacobi type iteration was more efficient than the block red/black iteration. Given sufficient processors all two-cell block inversions can be carried out simultaneously with a small number of parallel steps. The bottleneck is the need for sums of N values, where N is the number of discrete angles, each from a different processor. These are carried out by machine intrinsic functions and are well optimized. The overall algorithm has computational complexity O(log(M)), where M is the number of spatial cells. The algorithm is very efficient and represents the state-of-the-art for isotropic problems in slab geometry. For anisotropic scattering in slab geometry, a multilevel in angle algorithm was developed. A parallel version of the multilevel in angle algorithm has also been developed. Upon first glance, the shifted transport sweep has limited parallelism. Once the right-hand-side has been computed, the sweep is completely parallel in angle, becoming N uncoupled initial value ODE`s. The author has developed a cyclic reduction algorithm that renders it parallel with complexity O(log(M)). The multilevel in angle algorithm visits log(N) levels, where shifted transport sweeps are performed. The overall complexity is O(log(N)log(M)).

  9. Infrared image guidance for ground vehicle based on fast wavelet image focusing and tracking

    NASA Astrophysics Data System (ADS)

    Akiyama, Akira; Kobayashi, Nobuaki; Mutoh, Eiichiro; Kumagai, Hideo; Yamada, Hirofumi; Ishii, Hiromitsu

    2009-08-01

    We studied the infrared image guidance for ground vehicle based on the fast wavelet image focusing and tracking. Here we uses the image of the uncooled infrared imager mounted on the two axis gimbal system and the developed new auto focusing algorithm on the Daubechies wavelet transform. The developed new focusing algorithm on the Daubechies wavelet transform processes the result of the high pass filter effect to meet the direct detection of the objects. This new focusing gives us the distance information of the outside world smoothly, and the information of the gimbal system gives us the direction of objects in the outside world to match the sense of the spherical coordinate system. We installed this system on the hand made electric ground vehicle platform powered by 24VDC battery. The electric vehicle equips the rotary encoder units and the inertia rate sensor units to make the correct navigation process. The image tracking also uses the developed newt wavelet focusing within several image processing. The size of the hand made electric ground vehicle platform is about 1m long, 0.75m wide, 1m high, and 50kg weight. We tested the infrared image guidance for ground vehicle based on the new wavelet image focusing and tracking using the electric vehicle indoor and outdoor. The test shows the good results by the developed infrared image guidance for ground vehicle based on the new wavelet image focusing and tracking.

  10. A hybrid fast Hankel transform algorithm for electromagnetic modeling

    USGS Publications Warehouse

    Anderson, W.L.

    1989-01-01

    A hybrid fast Hankel transform algorithm has been developed that uses several complementary features of two existing algorithms: Anderson's digital filtering or fast Hankel transform (FHT) algorithm and Chave's quadrature and continued fraction algorithm. A hybrid FHT subprogram (called HYBFHT) written in standard Fortran-77 provides a simple user interface to call either subalgorithm. The hybrid approach is an attempt to combine the best features of the two subalgorithms to minimize the user's coding requirements and to provide fast execution and good accuracy for a large class of electromagnetic problems involving various related Hankel transform sets with multiple arguments. Special cases of Hankel transforms of double-order and double-argument are discussed, where use of HYBFHT is shown to be advantageous for oscillatory kernal functions. -Author

  11. X-33 Environmental Impact Statement: A Fast Track Approach

    NASA Technical Reports Server (NTRS)

    McCaleb, Rebecca C.; Holland, Donna L.

    1998-01-01

    NASA is required by the National Environmental Policy Act (NEPA) to prepare an appropriate level environmental analysis for its major projects. Development of the X-33 Technology Demonstrator and its associated flight test program required an environmental impact statement (EIS) under the NEPA. The EIS process is consists of four parts: the "Notice of Intent" to prepare an EIS and scoping; the draft EIS which is distributed for review and comment; the final ETS; and the "Record of Decision." Completion of this process normally takes from 2 - 3 years, depending on the complexity of the proposed action. Many of the agency's newest fast track, technology demonstration programs require NEPA documentation, but cannot sustain the lengthy time requirement between program concept development to implementation. Marshall Space Flight Center, in cooperation with Kennedy Space Center, accomplished the NEPA process for the X-33 Program in 13 months from Notice of Intent to Record of Decision. In addition, the environmental team implemented an extensive public involvement process, conducting a total of 23 public meetings for scoping and draft EIS comment along with numerous informal meetings with public officials, civic organizations, and Native American Indians. This paper will discuss the fast track approach used to successfully accomplish the NEPA process for X-33 on time.

  12. A fast track trigger processor for the OPAL experiment at LEP, CERN

    SciTech Connect

    Bramhall, M.; Jaroslawski, S.; Penton, A.; Hammarstrom, R.; Joos, D.; Weber, C.

    1989-02-01

    A fast programmable trigger processor for the OPAL experiment is described. The processor can handle multihit events. The tracks are found in the R-Z and the R-PHI planes by 24 fast track finder circuits operating in parallel using a novel histogramming technique. A semicustom coincidence array circuit is used to match tracks.

  13. Fast Algorithms for Model-Based Diagnosis

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Barrett, Anthony; Vatan, Farrokh; Mackey, Ryan

    2005-01-01

    Two improved new methods for automated diagnosis of complex engineering systems involve the use of novel algorithms that are more efficient than prior algorithms used for the same purpose. Both the recently developed algorithms and the prior algorithms in question are instances of model-based diagnosis, which is based on exploring the logical inconsistency between an observation and a description of a system to be diagnosed. As engineering systems grow more complex and increasingly autonomous in their functions, the need for automated diagnosis increases concomitantly. In model-based diagnosis, the function of each component and the interconnections among all the components of the system to be diagnosed (for example, see figure) are represented as a logical system, called the system description (SD). Hence, the expected behavior of the system is the set of logical consequences of the SD. Faulty components lead to inconsistency between the observed behaviors of the system and the SD. The task of finding the faulty components (diagnosis) reduces to finding the components, the abnormalities of which could explain all the inconsistencies. Of course, the meaningful solution should be a minimal set of faulty components (called a minimal diagnosis), because the trivial solution, in which all components are assumed to be faulty, always explains all inconsistencies. Although the prior algorithms in question implement powerful methods of diagnosis, they are not practical because they essentially require exhaustive searches among all possible combinations of faulty components and therefore entail the amounts of computation that grow exponentially with the number of components of the system.

  14. Fast molecular tracking maps nanoscale dynamics of plasma membrane lipids

    PubMed Central

    Sahl, Steffen J.; Leutenegger, Marcel; Hilbert, Michael; Hell, Stefan W.; Eggeling, Christian

    2010-01-01

    We describe an optical method capable of tracking a single fluorescent molecule with a flexible choice of high spatial accuracy (∼10–20 nm standard deviation or ∼20–40 nm full-width-at-half-maximum) and temporal resolution (< 1 ms). The fluorescence signal during individual passages of fluorescent molecules through a spot of excitation light allows the sequential localization and thus spatio-temporal tracking of the molecule if its fluorescence is collected on at least three separate point detectors arranged in close proximity. We show two-dimensional trajectories of individual, small organic dye labeled lipids diffusing in the plasma membrane of living cells and directly observe transient events of trapping on < 20 nm spatial scales. The trapping is cholesterol-assisted and much more pronounced for a sphingo- than for a phosphoglycero-lipid, with average trapping times of ∼15 ms and < 4 ms, respectively. The results support previous STED nanoscopy measurements and suggest that, at least for nontreated cells, the transient interaction of a single lipid is confined to macromolecular dimensions. Our experimental approach demonstrates that fast molecular movements can be tracked with minimal invasion, which can reveal new important details of cellular nano-organization. PMID:20351247

  15. FastDIRC: a fast Monte Carlo and reconstruction algorithm for DIRC detectors

    NASA Astrophysics Data System (ADS)

    Hardin, J.; Williams, M.

    2016-10-01

    FastDIRC is a novel fast Monte Carlo and reconstruction algorithm for DIRC detectors. A DIRC employs rectangular fused-silica bars both as Cherenkov radiators and as light guides. Cherenkov-photon imaging and time-of-propagation information are utilized by a DIRC to identify charged particles. GEANT4-based DIRC Monte Carlo simulations are extremely CPU intensive. The FastDIRC algorithm permits fully simulating a DIRC detector more than 10 000 times faster than using GEANT4. This facilitates designing a DIRC-reconstruction algorithm that improves the Cherenkov-angle resolution of a DIRC detector by ≈ 30% compared to existing algorithms. FastDIRC also greatly reduces the time required to study competing DIRC-detector designs.

  16. A fast SEQUEST cross correlation algorithm.

    PubMed

    Eng, Jimmy K; Fischer, Bernd; Grossmann, Jonas; Maccoss, Michael J

    2008-10-01

    The SEQUEST program was the first and remains one of the most widely used tools for assigning a peptide sequence within a database to a tandem mass spectrum. The cross correlation score is the primary score function implemented within SEQUEST and it is this score that makes the tool particularly sensitive. Unfortunately, this score is computationally expensive to calculate, and thus, to make the score manageable, SEQUEST uses a less sensitive but fast preliminary score and restricts the cross correlation to just the top 500 peptides returned by the preliminary score. Classically, the cross correlation score has been calculated using Fast Fourier Transforms (FFT) to generate the full correlation function. We describe an alternate method of calculating the cross correlation score that does not require FFTs and can be computed efficiently in a fraction of the time. The fast calculation allows all candidate peptides to be scored by the cross correlation function, potentially mitigating the need for the preliminary score, and enables an E-value significance calculation based on the cross correlation score distribution calculated on all candidate peptide sequences obtained from a sequence database. PMID:18774840

  17. Fast search algorithms for computational protein design.

    PubMed

    Traoré, Seydou; Roberts, Kyle E; Allouche, David; Donald, Bruce R; André, Isabelle; Schiex, Thomas; Barbe, Sophie

    2016-05-01

    One of the main challenges in computational protein design (CPD) is the huge size of the protein sequence and conformational space that has to be computationally explored. Recently, we showed that state-of-the-art combinatorial optimization technologies based on Cost Function Network (CFN) processing allow speeding up provable rigid backbone protein design methods by several orders of magnitudes. Building up on this, we improved and injected CFN technology into the well-established CPD package Osprey to allow all Osprey CPD algorithms to benefit from associated speedups. Because Osprey fundamentally relies on the ability of A* to produce conformations in increasing order of energy, we defined new A* strategies combining CFN lower bounds, with new side-chain positioning-based branching scheme. Beyond the speedups obtained in the new A*-CFN combination, this novel branching scheme enables a much faster enumeration of suboptimal sequences, far beyond what is reachable without it. Together with the immediate and important speedups provided by CFN technology, these developments directly benefit to all the algorithms that previously relied on the DEE/ A* combination inside Osprey* and make it possible to solve larger CPD problems with provable algorithms.

  18. Fast search algorithms for computational protein design.

    PubMed

    Traoré, Seydou; Roberts, Kyle E; Allouche, David; Donald, Bruce R; André, Isabelle; Schiex, Thomas; Barbe, Sophie

    2016-05-01

    One of the main challenges in computational protein design (CPD) is the huge size of the protein sequence and conformational space that has to be computationally explored. Recently, we showed that state-of-the-art combinatorial optimization technologies based on Cost Function Network (CFN) processing allow speeding up provable rigid backbone protein design methods by several orders of magnitudes. Building up on this, we improved and injected CFN technology into the well-established CPD package Osprey to allow all Osprey CPD algorithms to benefit from associated speedups. Because Osprey fundamentally relies on the ability of A* to produce conformations in increasing order of energy, we defined new A* strategies combining CFN lower bounds, with new side-chain positioning-based branching scheme. Beyond the speedups obtained in the new A*-CFN combination, this novel branching scheme enables a much faster enumeration of suboptimal sequences, far beyond what is reachable without it. Together with the immediate and important speedups provided by CFN technology, these developments directly benefit to all the algorithms that previously relied on the DEE/ A* combination inside Osprey* and make it possible to solve larger CPD problems with provable algorithms. PMID:26833706

  19. A dynamic path planning algorithm for UAV tracking

    NASA Astrophysics Data System (ADS)

    Chen, Hongda; Chang, K. C.; Agate, Craig S.

    2009-05-01

    A dynamic path-planning algorithm is proposed for UAV tracking. Based on tangent lines between two dynamic UAV turning and objective circles, analytical optimal path is derived with UAV operational constraints given a target position and the current UAV dynamic state. In this paper, we first illustrate that path planning for UAV tracking a ground target can be formulated as an optimal control problem consisting of a system dynamic, a set of boundary conditions, control constraints and a cost criterion. Then we derive close form solution to initiate dynamic tangent lines between UAV turning limit circle and an objective circle, which is a desired orbit pattern over a target. Basic tracking strategies are illustrated to find the optimal path for UAV tracking. Particle filter method is applied as a target is moving on a defined road network. Obstacle avoidance strategies are also addressed. With the help of computer simulations, we showed that the algorithm provides an efficient and effective tracking performance in various scenarios, including a target moving according to waypoints (time-based and/or speed-based) or a random kinematics model.

  20. Multilevel and motion model-based ultrasonic speckle tracking algorithms.

    PubMed

    Yeung, F; Levinson, S F; Parker, K J

    1998-03-01

    A multilevel motion model-based approach to ultrasonic speckle tracking has been developed that addresses the inherent trade-offs associated with traditional single-level block matching (SLBM) methods. The multilevel block matching (MLBM) algorithm uses variable matching block and search window sizes in a coarse-to-fine scheme, preserving the relative immunity to noise associated with the use of a large matching block while preserving the motion field detail associated with the use of a small matching block. To decrease further the sensitivity of the multilevel approach to noise, speckle decorrelation and false matches, a smooth motion model-based block matching (SMBM) algorithm has been implemented that takes into account the spatial inertia of soft tissue elements. The new algorithms were compared to SLBM through a series of experiments involving manual translation of soft tissue phantoms, motion field computer simulations of rotation, compression and shear deformation, and an experiment involving contraction of human forearm muscles. Measures of tracking accuracy included mean squared tracking error, peak signal-to-noise ratio (PSNR) and blinded observations of optical flow. Measures of tracking efficiency included the number of sum squared difference calculations and the computation time. In the phantom translation experiments, the SMBM algorithm successfully matched the accuracy of SLBM using both large and small matching blocks while significantly reducing the number of computations and computation time when a large matching block was used. For the computer simulations, SMBM yielded better tracking accuracies and spatial resolution when compared with SLBM using a large matching block. For the muscle experiment, SMBM outperformed SLBM both in terms of PSNR and observations of optical flow. We believe that the smooth motion model-based MLBM approach represents a meaningful development in ultrasonic soft tissue motion measurement. PMID:9587997

  1. Fast, Parallel and Secure Cryptography Algorithm Using Lorenz's Attractor

    NASA Astrophysics Data System (ADS)

    Marco, Anderson Gonçalves; Martinez, Alexandre Souto; Bruno, Odemir Martinez

    A novel cryptography method based on the Lorenz's attractor chaotic system is presented. The proposed algorithm is secure and fast, making it practical for general use. We introduce the chaotic operation mode, which provides an interaction among the password, message and a chaotic system. It ensures that the algorithm yields a secure codification, even if the nature of the chaotic system is known. The algorithm has been implemented in two versions: one sequential and slow and the other, parallel and fast. Our algorithm assures the integrity of the ciphertext (we know if it has been altered, which is not assured by traditional algorithms) and consequently its authenticity. Numerical experiments are presented, discussed and show the behavior of the method in terms of security and performance. The fast version of the algorithm has a performance comparable to AES, a popular cryptography program used commercially nowadays, but it is more secure, which makes it immediately suitable for general purpose cryptography applications. An internet page has been set up, which enables the readers to test the algorithm and also to try to break into the cipher.

  2. The dynamic Allan variance II: a fast computational algorithm.

    PubMed

    Galleani, Lorenzo

    2010-01-01

    The stability of an atomic clock can change with time due to several factors, such as temperature, humidity, radiations, aging, and sudden breakdowns. The dynamic Allan variance, or DAVAR, is a representation of the time-varying stability of an atomic clock, and it can be used to monitor the clock behavior. Unfortunately, the computational time of the DAVAR grows very quickly with the length of the analyzed time series. In this article, we present a fast algorithm for the computation of the DAVAR, and we also extend it to the case of missing data. Numerical simulations show that the fast algorithm dramatically reduces the computational time. The fast algorithm is useful when the analyzed time series is long, or when many clocks must be monitored, or when the computational power is low, as happens onboard satellites and space probes.

  3. A planning process for a fast track to IAIMS.

    PubMed Central

    Olsen, A. J.; Baker, W. L.; Sittig, D. F.; Stead, W. W.

    1993-01-01

    The strategic planning process that is part of Vanderbilt University's fast track to IAIMS is evolving based on feedback from the process itself. Led by a committee of VUMC's top management, broad-based sub-committees for administration, education, patient care, and research worked initially on the following strategic issues: identifying key external pressures that constrain and provide opportunities, visioning how VUMC might operate in the future, and establishing a mission and high-level goals for information management. Next steps include identifying the critical mass of function that will prompt daily use of the IAIMS by everyone at VUMC and adding groups to focus on information and technology architectures and developing academic informatics. This manuscript gives detailed, practical information about the evolution of the planning process, committees' responsibilities, working relationships, and lessons learned. PMID:8130533

  4. Fast algorithm for relaxation processes in big-data systems

    NASA Astrophysics Data System (ADS)

    Hwang, S.; Lee, D.-S.; Kahng, B.

    2014-10-01

    Relaxation processes driven by a Laplacian matrix can be found in many real-world big-data systems, for example, in search engines on the World Wide Web and the dynamic load-balancing protocols in mesh networks. To numerically implement such processes, a fast-running algorithm for the calculation of the pseudoinverse of the Laplacian matrix is essential. Here we propose an algorithm which computes quickly and efficiently the pseudoinverse of Markov chain generator matrices satisfying the detailed-balance condition, a general class of matrices including the Laplacian. The algorithm utilizes the renormalization of the Gaussian integral. In addition to its applicability to a wide range of problems, the algorithm outperforms other algorithms in its ability to compute within a manageable computing time arbitrary elements of the pseudoinverse of a matrix of size millions by millions. Therefore our algorithm can be used very widely in analyzing the relaxation processes occurring on large-scale networked systems.

  5. "Eztrack": A single-vehicle deterministic tracking algorithm

    SciTech Connect

    Carrano, C J

    2007-12-20

    A variety of surveillance operations require the ability to track vehicles over a long period of time using sequences of images taken from a camera mounted on an airborne or similar platform. In order to be able to see and track a vehicle for any length of time, either a persistent surveillance imager is needed that can image wide fields of view over a long time-span or a highly maneuverable smaller field-of-view imager is needed that can follow the vehicle of interest. The algorithm described here was designed for the persistence surveillance case. In turns out that most vehicle tracking algorithms described in the literature[1,2,3,4] are designed for higher frame rates (> 5 FPS) and relatively short ground sampling distances (GSD) and resolutions ({approx} few cm to a couple tens of cm). But for our datasets, we are restricted to lower resolutions and GSD's ({ge}0.5 m) and limited frame-rates ({le}2.0 Hz). As a consequence, we designed our own simple approach in IDL which is a deterministic, motion-guided object tracker. The object tracking relies both on object features and path dynamics. The algorithm certainly has room for future improvements, but we have found it to be a useful tool in evaluating effects of frame-rate, resolution/GSD, and spectral content (eg. grayscale vs. color imaging ). A block diagram of the tracking approach is given in Figure 1. We describe each of the blocks of the diagram in the upcoming sections.

  6. A fast and accurate algorithm for diploid individual haplotype reconstruction.

    PubMed

    Wu, Jingli; Liang, Binbin

    2013-08-01

    Haplotypes can provide significant information in many research fields, including molecular biology and medical therapy. However, haplotyping is much more difficult than genotyping by using only biological techniques. With the development of sequencing technologies, it becomes possible to obtain haplotypes by combining sequence fragments. The haplotype reconstruction problem of diploid individual has received considerable attention in recent years. It assembles the two haplotypes for a chromosome given the collection of fragments coming from the two haplotypes. Fragment errors significantly increase the difficulty of the problem, and which has been shown to be NP-hard. In this paper, a fast and accurate algorithm, named FAHR, is proposed for haplotyping a single diploid individual. Algorithm FAHR reconstructs the SNP sites of a pair of haplotypes one after another. The SNP fragments that cover some SNP site are partitioned into two groups according to the alleles of the corresponding SNP site, and the SNP values of the pair of haplotypes are ascertained by using the fragments in the group that contains more SNP fragments. The experimental comparisons were conducted among the FAHR, the Fast Hare and the DGS algorithms by using the haplotypes on chromosome 1 of 60 individuals in CEPH samples, which were released by the International HapMap Project. Experimental results under different parameter settings indicate that the reconstruction rate of the FAHR algorithm is higher than those of the Fast Hare and the DGS algorithms, and the running time of the FAHR algorithm is shorter than those of the Fast Hare and the DGS algorithms. Moreover, the FAHR algorithm has high efficiency even for the reconstruction of long haplotypes and is very practical for realistic applications.

  7. Fast image matching algorithm based on projection characteristics

    NASA Astrophysics Data System (ADS)

    Zhou, Lijuan; Yue, Xiaobo; Zhou, Lijun

    2011-06-01

    Based on analyzing the traditional template matching algorithm, this paper identified the key factors restricting the speed of matching and put forward a brand new fast matching algorithm based on projection. Projecting the grayscale image, this algorithm converts the two-dimensional information of the image into one-dimensional one, and then matches and identifies through one-dimensional correlation, meanwhile, because of normalization has been done, when the image brightness or signal amplitude increasing in proportion, it could also perform correct matching. Experimental results show that the projection characteristics based image registration method proposed in this article could greatly improve the matching speed, which ensuring the matching accuracy as well.

  8. A fast directional algorithm for high-frequency electromagnetic scattering

    SciTech Connect

    Tsuji, Paul; Ying Lexing

    2011-06-20

    This paper is concerned with the fast solution of high-frequency electromagnetic scattering problems using the boundary integral formulation. We extend the O(N log N) directional multilevel algorithm previously proposed for the acoustic scattering case to the vector electromagnetic case. We also detail how to incorporate the curl operator of the magnetic field integral equation into the algorithm. When combined with a standard iterative method, this results in an almost linear complexity solver for the combined field integral equations. In addition, the butterfly algorithm is utilized to compute the far field pattern and radar cross section with O(N log N) complexity.

  9. Analyzing Potential Tracking Algorithms for the Upgrade to the Silicon Tracker of the Compact Muon Solenoid

    NASA Astrophysics Data System (ADS)

    Hardin, John; McDermott, Kevin

    2011-10-01

    The research performed revolves around creating tracking algorithms for the proposed ten-year upgrade to the tracker for CMS, one of two main detectors for the LHC at CERN. The proposed upgrade to the tracker for CMS will use fast hardware to trace particle trajectories so that they can be used immediately in a trigger system. The additional information will be combined with other sub-detectors in CMS, enabling mostly the non-background events to be read-out by the detector. The algorithms would be implemented directly into the Level-1 trigger, the first trigger in a 2 trigger system, to be used in real time. Specifically, by analyzing computer generated stable particles over various ranges of transverse momentum and the tracks they produce, we created and tested various simulated trigger algorithms that might be used in hardware. As one algorithm has proved very effective, the next step is to test this algorithm against simulated events with an environment equivalent to SLHC luminosities.

  10. Fast frequency acquisition via adaptive least squares algorithm

    NASA Technical Reports Server (NTRS)

    Kumar, R.

    1986-01-01

    A new least squares algorithm is proposed and investigated for fast frequency and phase acquisition of sinusoids in the presence of noise. This algorithm is a special case of more general, adaptive parameter-estimation techniques. The advantages of the algorithms are their conceptual simplicity, flexibility and applicability to general situations. For example, the frequency to be acquired can be time varying, and the noise can be nonGaussian, nonstationary and colored. As the proposed algorithm can be made recursive in the number of observations, it is not necessary to have a priori knowledge of the received signal-to-noise ratio or to specify the measurement time. This would be required for batch processing techniques, such as the fast Fourier transform (FFT). The proposed algorithm improves the frequency estimate on a recursive basis as more and more observations are obtained. When the algorithm is applied in real time, it has the extra advantage that the observations need not be stored. The algorithm also yields a real time confidence measure as to the accuracy of the estimator.

  11. A fast quantum mechanics based contour extraction algorithm

    NASA Astrophysics Data System (ADS)

    Lan, Tian; Sun, Yangguang; Ding, Mingyue

    2009-02-01

    A fast algorithm was proposed to decrease the computational cost of the contour extraction approach based on quantum mechanics. The contour extraction approach based on quantum mechanics is a novel method proposed recently by us, which will be presented on the same conference by another paper of us titled "a statistical approach to contour extraction based on quantum mechanics". In our approach, contour extraction was modeled as the locus of a moving particle described by quantum mechanics, which is obtained by the most probable locus of the particle simulated in a large number of iterations. In quantum mechanics, the probability that a particle appears at a point is equivalent to the square amplitude of the wave function. Furthermore, the expression of the wave function can be derived from digital images, making the probability of the locus of a particle available. We employed the Markov Chain Monte Carlo (MCMC) method to estimate the square amplitude of the wave function. Finally, our fast quantum mechanics based contour extraction algorithm (referred as our fast algorithm hereafter) was evaluated by a number of different images including synthetic and medical images. It was demonstrated that our fast algorithm can achieve significant improvements in accuracy and robustness compared with the well-known state-of-the-art contour extraction techniques and dramatic reduction of time complexity compared to the statistical approach to contour extraction based on quantum mechanics.

  12. MATLAB tensor classes for fast algorithm prototyping : source code.

    SciTech Connect

    Bader, Brett William; Kolda, Tamara Gibson

    2004-10-01

    We present the source code for three MATLAB classes for manipulating tensors in order to allow fast algorithm prototyping. A tensor is a multidimensional or Nway array. This is a supplementary report; details on using this code are provided separately in SAND-XXXX.

  13. A fast algorithm for sparse matrix computations related to inversion

    NASA Astrophysics Data System (ADS)

    Li, S.; Wu, W.; Darve, E.

    2013-06-01

    We have developed a fast algorithm for computing certain entries of the inverse of a sparse matrix. Such computations are critical to many applications, such as the calculation of non-equilibrium Green's functions Gr and G< for nano-devices. The FIND (Fast Inverse using Nested Dissection) algorithm is optimal in the big-O sense. However, in practice, FIND suffers from two problems due to the width-2 separators used by its partitioning scheme. One problem is the presence of a large constant factor in the computational cost of FIND. The other problem is that the partitioning scheme used by FIND is incompatible with most existing partitioning methods and libraries for nested dissection, which all use width-1 separators. Our new algorithm resolves these problems by thoroughly decomposing the computation process such that width-1 separators can be used, resulting in a significant speedup over FIND for realistic devices — up to twelve-fold in simulation. The new algorithm also has the added advantage that desired off-diagonal entries can be computed for free. Consequently, our algorithm is faster than the current state-of-the-art recursive methods for meshes of any size. Furthermore, the framework used in the analysis of our algorithm is the first attempt to explicitly apply the widely-used relationship between mesh nodes and matrix computations to the problem of multiple eliminations with reuse of intermediate results. This framework makes our algorithm easier to generalize, and also easier to compare against other methods related to elimination trees. Finally, our accuracy analysis shows that the algorithms that require back-substitution are subject to significant extra round-off errors, which become extremely large even for some well-conditioned matrices or matrices with only moderately large condition numbers. When compared to these back-substitution algorithms, our algorithm is generally a few orders of magnitude more accurate, and our produced round-off errors

  14. Fast parallel algorithm for slicing STL based on pipeline

    NASA Astrophysics Data System (ADS)

    Ma, Xulong; Lin, Feng; Yao, Bo

    2016-05-01

    In Additive Manufacturing field, the current researches of data processing mainly focus on a slicing process of large STL files or complicated CAD models. To improve the efficiency and reduce the slicing time, a parallel algorithm has great advantages. However, traditional algorithms can't make full use of multi-core CPU hardware resources. In the paper, a fast parallel algorithm is presented to speed up data processing. A pipeline mode is adopted to design the parallel algorithm. And the complexity of the pipeline algorithm is analyzed theoretically. To evaluate the performance of the new algorithm, effects of threads number and layers number are investigated by a serial of experiments. The experimental results show that the threads number and layers number are two remarkable factors to the speedup ratio. The tendency of speedup versus threads number reveals a positive relationship which greatly agrees with the Amdahl's law, and the tendency of speedup versus layers number also keeps a positive relationship agreeing with Gustafson's law. The new algorithm uses topological information to compute contours with a parallel method of speedup. Another parallel algorithm based on data parallel is used in experiments to show that pipeline parallel mode is more efficient. A case study at last shows a suspending performance of the new parallel algorithm. Compared with the serial slicing algorithm, the new pipeline parallel algorithm can make full use of the multi-core CPU hardware, accelerate the slicing process, and compared with the data parallel slicing algorithm, the new slicing algorithm in this paper adopts a pipeline parallel model, and a much higher speedup ratio and efficiency is achieved.

  15. Fast local motion estimation algorithm using elementary motion detectors

    NASA Astrophysics Data System (ADS)

    Nakamura, Eiji; Nakamura, Takehito; Sawada, Katsutoshi

    2003-06-01

    This paper presnts a fast local motion estimation algorithm based on so called elementary motion detectors or EMDs. EMDs, modeling insect"s visual signal processing systems, have low computational complexity aspects and can thus be key components to realize such a fast local motion estimation algorithm. The contribution of the presented work is to introduce dual parameter estimators or DPEs by configuring EMDs so that they can estimate local motions in terms of both direction and speed mode parameters simultaneously. The estimated local motion vectors are displayed as arrows superimposed over video image frames. The developed algorithm is implmented in a DirectShow application by using Mircosoft"s DirectX runtime library and is evaluated using various types of video image sequences. It is found to be able to estimate local motion vectors in real time even in moderate PC computing platforms and hece no high profile hardware devices are needed for its real time operation.

  16. Fast-track for fast times: catching and keeping generation Y in the nursing workforce.

    PubMed

    Walker, Kim

    2007-04-01

    There is little doubt we find ourselves in challenging times as never before has there been such generational diversity in the nursing workforce. Currently, nurses from four distinct (and now well recognised and discussed) generational groups jostle for primacy of recognition and reward. Equally significant is the acute realisation that our ageing profession must find ways to sustain itself in the wake of huge attrition as the 'baby boomer' nurses start retiring over the next ten to fifteen years. These realities impel us to become ever more strategic in our thinking about how best to manage the workforce of the future. This paper presents two exciting and original innovations currently in train at one of Australia's leading Catholic health care providers: firstly, a new fast-track bachelor of nursing program for fee-paying domestic students. This is a collaborative venture between St Vincent's and Mater Health, Sydney (SV&MHS) and the University of Tasmania (UTas); as far as we know, it is unprecedented in Australia. As well, the two private facilities of SV&MHS, St Vincent's Private (SVPH) and the Mater Hospitals, have developed and implemented a unique 'accelerated progression pathway' (APP) to enable registered nurses with talent and ambition to fast track their career through a competency and merit based system of performance management and reward. Both these initiatives are aimed squarely at the gen Y demographic and provide potential to significantly augment our capacity to recruit and retain quality people well into the future.

  17. Validation of a track repeating algorithm for intensity modulated proton therapy: clinical cases study.

    PubMed

    Yepes, Pablo P; Eley, John G; Liu, Amy; Mirkovic, Dragan; Randeniya, Sharmalee; Titt, Uwe; Mohan, Radhe

    2016-04-01

    Monte Carlo (MC) methods are acknowledged as the most accurate technique to calculate dose distributions. However, due its lengthy calculation times, they are difficult to utilize in the clinic or for large retrospective studies. Track-repeating algorithms, based on MC-generated particle track data in water, accelerate dose calculations substantially, while essentially preserving the accuracy of MC. In this study, we present the validation of an efficient dose calculation algorithm for intensity modulated proton therapy, the fast dose calculator (FDC), based on a track-repeating technique. We validated the FDC algorithm for 23 patients, which included 7 brain, 6 head-and-neck, 5 lung, 1 spine, 1 pelvis and 3 prostate cases. For validation, we compared FDC-generated dose distributions with those from a full-fledged Monte Carlo based on GEANT4 (G4). We compared dose-volume-histograms, 3D-gamma-indices and analyzed a series of dosimetric indices. More than 99% of the voxels in the voxelized phantoms describing the patients have a gamma-index smaller than unity for the 2%/2 mm criteria. In addition the difference relative to the prescribed dose between the dosimetric indices calculated with FDC and G4 is less than 1%. FDC reduces the calculation times from 5 ms per proton to around 5 μs. PMID:26961764

  18. Validation of a track repeating algorithm for intensity modulated proton therapy: clinical cases study.

    PubMed

    Yepes, Pablo P; Eley, John G; Liu, Amy; Mirkovic, Dragan; Randeniya, Sharmalee; Titt, Uwe; Mohan, Radhe

    2016-04-01

    Monte Carlo (MC) methods are acknowledged as the most accurate technique to calculate dose distributions. However, due its lengthy calculation times, they are difficult to utilize in the clinic or for large retrospective studies. Track-repeating algorithms, based on MC-generated particle track data in water, accelerate dose calculations substantially, while essentially preserving the accuracy of MC. In this study, we present the validation of an efficient dose calculation algorithm for intensity modulated proton therapy, the fast dose calculator (FDC), based on a track-repeating technique. We validated the FDC algorithm for 23 patients, which included 7 brain, 6 head-and-neck, 5 lung, 1 spine, 1 pelvis and 3 prostate cases. For validation, we compared FDC-generated dose distributions with those from a full-fledged Monte Carlo based on GEANT4 (G4). We compared dose-volume-histograms, 3D-gamma-indices and analyzed a series of dosimetric indices. More than 99% of the voxels in the voxelized phantoms describing the patients have a gamma-index smaller than unity for the 2%/2 mm criteria. In addition the difference relative to the prescribed dose between the dosimetric indices calculated with FDC and G4 is less than 1%. FDC reduces the calculation times from 5 ms per proton to around 5 μs.

  19. Validation of a track repeating algorithm for intensity modulated proton therapy: clinical cases study

    NASA Astrophysics Data System (ADS)

    Yepes, Pablo P.; Eley, John G.; Liu, Amy; Mirkovic, Dragan; Randeniya, Sharmalee; Titt, Uwe; Mohan, Radhe

    2016-04-01

    Monte Carlo (MC) methods are acknowledged as the most accurate technique to calculate dose distributions. However, due its lengthy calculation times, they are difficult to utilize in the clinic or for large retrospective studies. Track-repeating algorithms, based on MC-generated particle track data in water, accelerate dose calculations substantially, while essentially preserving the accuracy of MC. In this study, we present the validation of an efficient dose calculation algorithm for intensity modulated proton therapy, the fast dose calculator (FDC), based on a track-repeating technique. We validated the FDC algorithm for 23 patients, which included 7 brain, 6 head-and-neck, 5 lung, 1 spine, 1 pelvis and 3 prostate cases. For validation, we compared FDC-generated dose distributions with those from a full-fledged Monte Carlo based on GEANT4 (G4). We compared dose-volume-histograms, 3D-gamma-indices and analyzed a series of dosimetric indices. More than 99% of the voxels in the voxelized phantoms describing the patients have a gamma-index smaller than unity for the 2%/2 mm criteria. In addition the difference relative to the prescribed dose between the dosimetric indices calculated with FDC and G4 is less than 1%. FDC reduces the calculation times from 5 ms per proton to around 5 μs.

  20. Financing Access and Participation in Primary Education: Is There a "Fast-Track" for Fragile States?

    ERIC Educational Resources Information Center

    Turrent, Victoria

    2011-01-01

    Despite moves to "fast-track" progress towards universal primary education, few fragile states have been able to access Fast Track Initiative (FTI) funding facilities. Weak systems and capacity have made these countries a high-risk proposition for donor investment. The absence of credible education sector plans has meant that the majority of…

  1. National Diffusion Network's Evaluation of the Fast Track Music System 1992-93.

    ERIC Educational Resources Information Center

    Szymczuk, Michael

    This document reports on an evaluation project to determine the effectiveness of the Fast Track method of instrumental music instruction as applied to beginning band instruction. The Fast Track music system is unique because it simultaneously aids both visual and aural learning by using a book and cassette tape approach to instruction. Traditional…

  2. "Fast Track" and "Traditional Path" Coaches: Affordances, Agency and Social Capital

    ERIC Educational Resources Information Center

    Rynne, Steven

    2014-01-01

    A recent development in large-scale coach accreditation (certification) structures has been the "fast tracking" of former elite athletes. Former elite athletes are often exempted from entry-level qualifications and are generally granted access to fast track courses that are shortened versions of the accreditation courses undertaken by…

  3. Particle filter-based track before detect algorithms

    NASA Astrophysics Data System (ADS)

    Boers, Yvo; Driessen, Hans

    2003-12-01

    In this paper we will give a general system setup, that allows the formulation of a wide range of Track Before Detect (TBD) problems. A general basic particle filter algorithm for this system is also provided. TBD is a technique, where tracks are produced directly on the basis of raw (radar) measurements, e.g. power or IQ data, without intermediate processing and decision making. The advantage over classical tracking is that the full information is integrated over time, this leads to a better detection and tracking performance, especially for weak targets. In this paper we look at the filtering and the detection aspect of TBD. We will formulate a detection result, that allows the user to implement any optimal detector in terms of the weights of a running particle filter. We will give a theoretical as well as a numerical (experimental) justification for this. Furthermore, we show that the TBD setup, that is chosen in this paper, allows a straightforward extension to the multi-target case. This easy extension is also due to the fact that the implementation of the solution is by means of a particle filter.

  4. Particle filter-based track before detect algorithms

    NASA Astrophysics Data System (ADS)

    Boers, Yvo; Driessen, Hans

    2004-01-01

    In this paper we will give a general system setup, that allows the formulation of a wide range of Track Before Detect (TBD) problems. A general basic particle filter algorithm for this system is also provided. TBD is a technique, where tracks are produced directly on the basis of raw (radar) measurements, e.g. power or IQ data, without intermediate processing and decision making. The advantage over classical tracking is that the full information is integrated over time, this leads to a better detection and tracking performance, especially for weak targets. In this paper we look at the filtering and the detection aspect of TBD. We will formulate a detection result, that allows the user to implement any optimal detector in terms of the weights of a running particle filter. We will give a theoretical as well as a numerical (experimental) justification for this. Furthermore, we show that the TBD setup, that is chosen in this paper, allows a straightforward extension to the multi-target case. This easy extension is also due to the fact that the implementation of the solution is by means of a particle filter.

  5. A FragTrack algorithm enhancement for total occlusion management in visual object tracking

    NASA Astrophysics Data System (ADS)

    Adamo, F.; Mazzeo, P. L.; Spagnolo, P.; Distante, C.

    2015-05-01

    In recent years, "FragTrack" has become one of the most cited real time algorithms for visual tracking of an object in a video sequence. However, this algorithm fails when the object model is not present in the image or it is completely occluded, and in long term video sequences. In these sequences, the target object appearance is considerably modified during the time and its comparison with the template established at the first frame is hard to compute. In this work we introduce improvements to the original FragTrack: the management of total object occlusions and the update of the object template. Basically, we use a voting map generated by a non-parametric kernel density estimation strategy that allows us to compute a probability distribution for the distances of the histograms between template and object patches. In order to automatically determine whether the target object is present or not in the current frame, an adaptive threshold is introduced. A Bayesian classifier establishes, frame by frame, the presence of template object in the current frame. The template is partially updated at every frame. We tested the algorithm on well-known benchmark sequences, in which the object is always present, and on video sequences showing total occlusion of the target object to demonstrate the effectiveness of the proposed method.

  6. A generic sun-tracking algorithm for on-axis solar collector in mobile platforms

    NASA Astrophysics Data System (ADS)

    Lai, An-Chow; Chong, Kok-Keong; Lim, Boon-Han; Ho, Ming-Cheng; Yap, See-Hao; Heng, Chun-Kit; Lee, Jer-Vui; King, Yeong-Jin

    2015-04-01

    This paper proposes a novel dynamic sun-tracking algorithm which allows accurate tracking of the sun for both non-concentrated and concentrated photovoltaic systems located on mobile platforms to maximize solar energy extraction. The proposed algorithm takes not only the date, time, and geographical information, but also the dynamic changes of coordinates of the mobile platforms into account to calculate the sun position angle relative to ideal azimuth-elevation axes in real time using general sun-tracking formulas derived by Chong and Wong. The algorithm acquires data from open-loop sensors, i.e. global position system (GPS) and digital compass, which are readily available in many off-the-shelf portable gadgets, such as smart phone, to instantly capture the dynamic changes of coordinates of mobile platforms. Our experiments found that a highly accurate GPS is not necessary as the coordinate changes of practical mobile platforms are not fast enough to produce significant differences in the calculation of the incident angle. On the contrary, it is critical to accurately identify the quadrant and angle where the mobile platforms are moving toward in real time, which can be resolved by using digital compass. In our implementation, a noise filtering mechanism is found necessary to remove unexpected spikes in the readings of the digital compass to ensure stability in motor actuations and effectiveness in continuous tracking. Filtering mechanisms being studied include simple moving average and linear regression; the results showed that a compound function of simple moving average and linear regression produces a better outcome. Meanwhile, we found that a sampling interval is useful to avoid excessive motor actuations and power consumption while not sacrificing the accuracy of sun-tracking.

  7. The Empirical Mode Decomposition algorithm via Fast Fourier Transform

    NASA Astrophysics Data System (ADS)

    Myakinin, Oleg O.; Zakharov, Valery P.; Bratchenko, Ivan A.; Kornilin, Dmitry V.; Artemyev, Dmitry N.; Khramov, Alexander G.

    2014-09-01

    In this paper we consider a problem of implementing a fast algorithm for the Empirical Mode Decomposition (EMD). EMD is one of the newest methods for decomposition of non-linear and non-stationary signals. A basis of EMD is formed "on-the-fly", i.e. it depends from a distribution of the signal and not given a priori in contrast on cases Fourier Transform (FT) or Wavelet Transform (WT). The EMD requires interpolating of local extrema sets of signal to find upper and lower envelopes. The data interpolation on an irregular lattice is a very low-performance procedure. A classical description of EMD by Huang suggests doing this through splines, i.e. through solving of a system of equations. Existence of a fast algorithm is the main advantage of the FT. A simple description of an algorithm in terms of Fast Fourier Transform (FFT) is a standard practice to reduce operation's count. We offer a fast implementation of EMD (FEMD) through FFT and some other cost-efficient algorithms. Basic two-stage interpolation algorithm for EMD is composed of a Upscale procedure through FFT and Downscale procedure through a selection procedure for signal's points. First we consider the local maxima (or minima) set without reference to the axis OX, i.e. on a regular lattice. The Upscale through the FFT change the signal's length to the Least Common Multiple (LCM) value of all distances between neighboring extremes on the axis OX. If the LCM value is too large then it is necessary to limit local set of extrema. In this case it is an analog of the spline interpolation. A demo for FEMD in noise reduction task for OCT has been shown.

  8. Improved genetic algorithm for fast path planning of USV

    NASA Astrophysics Data System (ADS)

    Cao, Lu

    2015-12-01

    Due to the complex constraints, more uncertain factors and critical real-time demand of path planning for USV(Unmanned Surface Vehicle), an approach of fast path planning based on voronoi diagram and improved Genetic Algorithm is proposed, which makes use of the principle of hierarchical path planning. First the voronoi diagram is utilized to generate the initial paths and then the optimal path is searched by using the improved Genetic Algorithm, which use multiprocessors parallel computing techniques to improve the traditional genetic algorithm. Simulation results verify that the optimal time is greatly reduced and path planning based on voronoi diagram and the improved Genetic Algorithm is more favorable in the real-time operation.

  9. Early recovery after fast-track Oxford unicompartmental knee arthroplasty

    PubMed Central

    2012-01-01

    Background and purpose After total knee arthroplasty with conventional surgical approach, more than half of the quadriceps extension strength is lost in the first postoperative month. Unicompartmental knee arthroplasty (UKA) operated with minimally invasive surgery (MIS) results in less operative trauma. We investigated changes in leg-extension power (LEP) in the first month after MIS Oxford UKA and its relation to pain, knee motion, functional performance, and knee function. Patients and methods In 35 consecutive Oxford UKA patients, LEP was measured 1 week before and 1 month after surgery together with knee motion, knee swelling, the 30-second chair-stand test, and Oxford knee score. Assessment of knee pain at rest and walking was done using a visual analog scale. Results 30 patients were discharged on the day after surgery, and 5 on the second day after surgery. LEP and functional performance reached the preoperative level after 1 month. Only slight postoperative knee swelling was observed with rapid restoration of knee flexion and function. A high level of pain during the first postoperative night and day fell considerably thereafter. None of the patients needed physiotherapy supervision in the first month after discharge. Interpretation Fast-track MIS Oxford UKA with discharge on the day after surgery is safe and leads to early recovery of knee motion and strength even when no physiotherapy is used. PMID:22313368

  10. A fast track influenza virus vaccine produced in insect cells.

    PubMed

    Cox, Manon M J; Hashimoto, Yoshifumi

    2011-07-01

    The viral surface protein hemagglutinin (HA) has been recognized as a key antigen in the host response to influenza virus in both natural infection and vaccination because neutralizing antibodies directed against HA can mitigate or prevent infection. The baculovirus-insect cell system can be used for the production of recombinant HA molecules and is suitable for influenza vaccine production where annual adjustment of the vaccine is required. This expression system is generally considered safe with minimal potential for growth of human pathogens. Extensive characterization of this novel cell substrate has been performed, none of which has revealed the presence of adventitious agents. Multiple clinical studies have demonstrated that the vaccine is safe, well-tolerated and immunogenic. The baculovirus-insect cell system could, therefore, be used for the expedited production of a safe and efficacious influenza vaccine. As a result, this technology should provide a fast track worldwide solution for newly emerging influenza strains or pandemic preparedness within a few years. PMID:21784229

  11. An improved algorithm for tracking multiple, freely moving particles in a Positron Emission Particle Tracking system

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Fryer, P. J.; Bakalis, S.; Fan, X.; Parker, D. J.; Seville, J. P. K.

    2007-07-01

    Positron Emission Particle Tracking (PEPT) is a powerful technique and capable of following a single tracer accurately and non-invasively in flow and mixing processes. It has been recently extended to observe the rotation of a large particle via tracking three small positron-emitting tracers mounted, with fixed separation distances, on the surface. The Multiple-Positron Emission Particle Tracking technique has been successfully used to study the rotational and translational behaviours of a large particle in a multiphase flow; however, it was not capable of following multiple freely moving particles. This paper presents an improved Multiple-Positron Emission Particle Tracking technique that is able to track more than one particle without constraint in separation distance between the particles. It consists of an improved algorithm for location calculation, particle identification and time reconstruction. The information obtained can be used to understand the interactions and relative motions of particles with different sizes, densities and material textures in multiphase systems, and is particularly useful in pharmaceutical, chemical and metallurgical engineering studies.

  12. Tracking algorithms using log-polar mapped image coordinates

    NASA Technical Reports Server (NTRS)

    Weiman, Carl F. R.; Juday, Richard D.

    1990-01-01

    The use of log-polar image sampling coordinates rather than conventional Cartesian coordinates offers a number of advantages for visual tracking and docking of space vehicles. Pixel count is reduced without decreasing the field of view, with commensurate reduction in peripheral resolution. Smaller memory requirements and reduced processing loads are the benefits in working environments where bulk and energy are at a premium. Rotational and zoom symmetries of log-polar coordinates accommodate range and orientation extremes without computational penalties. Separation of radial and rotational coordinates reduces the complexity of several target centering algorithms, described below.

  13. A fast hidden line algorithm for plotting finite element models

    NASA Technical Reports Server (NTRS)

    Jones, G. K.

    1982-01-01

    Effective plotting of finite element models requires the use of fast hidden line plot techniques that provide interactive response. A high speed hidden line technique was developed to facilitate the plotting of NASTRAN finite element models. Based on testing using 14 different models, the new hidden line algorithm (JONES-D) appears to be very fast: its speed equals that for normal (all lines visible) plotting and when compared to other existing methods it appears to be substantially faster. It also appears to be very reliable: no plot errors were observed using the new method to plot NASTRAN models. The new algorithm was made part of the NPLOT NASTRAN plot package and was used by structural analysts for normal production tasks.

  14. Fast Three-Dimensional Single-Particle Tracking in Natural Brain Tissue

    PubMed Central

    Sokoll, Stefan; Prokazov, Yury; Hanses, Magnus; Biermann, Barbara; Tönnies, Klaus; Heine, Martin

    2015-01-01

    Observation of molecular dynamics is often biased by the optical very heterogeneous environment of cells and complex tissue. Here, we have designed an algorithm that facilitates molecular dynamic analyses within brain slices. We adjust fast astigmatism-based three-dimensional single-particle tracking techniques to depth-dependent optical aberrations induced by the refractive index mismatch so that they are applicable to complex samples. In contrast to existing techniques, our online calibration method determines the aberration directly from the acquired two-dimensional image stream by exploiting the inherent particle movement and the redundancy introduced by the astigmatism. The method improves the positioning by reducing the systematic errors introduced by the aberrations, and allows correct derivation of the cellular morphology and molecular diffusion parameters in three dimensions independently of the imaging depth. No additional experimental effort for the user is required. Our method will be useful for many imaging configurations, which allow imaging in deep cellular structures. PMID:26445447

  15. Fast wavelet based algorithms for linear evolution equations

    NASA Technical Reports Server (NTRS)

    Engquist, Bjorn; Osher, Stanley; Zhong, Sifen

    1992-01-01

    A class was devised of fast wavelet based algorithms for linear evolution equations whose coefficients are time independent. The method draws on the work of Beylkin, Coifman, and Rokhlin which they applied to general Calderon-Zygmund type integral operators. A modification of their idea is applied to linear hyperbolic and parabolic equations, with spatially varying coefficients. A significant speedup over standard methods is obtained when applied to hyperbolic equations in one space dimension and parabolic equations in multidimensions.

  16. Study of image matching algorithm and sub-pixel fitting algorithm in target tracking

    NASA Astrophysics Data System (ADS)

    Yang, Ming-dong; Jia, Jianjun; Qiang, Jia; Wang, Jian-yu

    2015-03-01

    Image correlation matching is a tracking method that searched a region most approximate to the target template based on the correlation measure between two images. Because there is no need to segment the image, and the computation of this method is little. Image correlation matching is a basic method of target tracking. This paper mainly studies the image matching algorithm of gray scale image, which precision is at sub-pixel level. The matching algorithm used in this paper is SAD (Sum of Absolute Difference) method. This method excels in real-time systems because of its low computation complexity. The SAD method is introduced firstly and the most frequently used sub-pixel fitting algorithms are introduced at the meantime. These fitting algorithms can't be used in real-time systems because they are too complex. However, target tracking often requires high real-time performance, we put forward a fitting algorithm named paraboloidal fitting algorithm based on the consideration above, this algorithm is simple and realized easily in real-time system. The result of this algorithm is compared with that of surface fitting algorithm through image matching simulation. By comparison, the precision difference between these two algorithms is little, it's less than 0.01pixel. In order to research the influence of target rotation on precision of image matching, the experiment of camera rotation was carried on. The detector used in the camera is a CMOS detector. It is fixed to an arc pendulum table, take pictures when the camera rotated different angles. Choose a subarea in the original picture as the template, and search the best matching spot using image matching algorithm mentioned above. The result shows that the matching error is bigger when the target rotation angle is larger. It's an approximate linear relation. Finally, the influence of noise on matching precision was researched. Gaussian noise and pepper and salt noise were added in the image respectively, and the image

  17. Particle filtering algorithm for tracking multiple road-constrained targets

    NASA Astrophysics Data System (ADS)

    Agate, Craig S.; Sullivan, Kevin J.

    2003-08-01

    We propose a particle filtering algorithm for tracking multiple ground targets in a road-constrained environment through the use of GMTI radar measurements. Particle filters approximate the probability density function (PDF) of a target's state by a set of discrete points in the state space. The particle filter implements the step of propagating the target dynamics by simulating them. Thus, the dynamic model is not limited to that of a linear model with Gaussian noise, and the state space is not limited to linear vector spaces. Indeed, the road network is a subset (not even a vector space) of R2. Constraining the target to lie on the road leads to adhoc approaches for the standard Kalman filter. However, since the particle filter simulates the dynamics, it is able to simply sample points in the road network. Furthermore, while the target dynamics are modeled with a parasitic acceleration, a non-Gaussian discrete random variable noise process is used to simulate the target going through an intersection and choosing the next segment in the road network on which to travel. The algorithm is implemented in the SLAMEM simulation (an extensive simulation which models roads, terrain, sensors and vehicles using GVS). Tracking results from the simulation are presented.

  18. Mean-shift tracking algorithm based on adaptive fusion of multi-feature

    NASA Astrophysics Data System (ADS)

    Yang, Kai; Xiao, Yanghui; Wang, Ende; Feng, Junhui

    2015-10-01

    The classic mean-shift tracking algorithm has achieved success in the field of computer vision because of its speediness and efficiency. However, classic mean-shift tracking algorithm would fail to track in some complicated conditions such as some parts of the target are occluded, little color difference between the target and background exists, or sudden change of illumination and so on. In order to solve the problems, an improved algorithm is proposed based on the mean-shift tracking algorithm and adaptive fusion of features. Color, edges and corners of the target are used to describe the target in the feature space, and a method for measuring the discrimination of various features is presented to make feature selection adaptive. Then the improved mean-shift tracking algorithm is introduced based on the fusion of various features. For the purpose of solving the problem that mean-shift tracking algorithm with the single color feature is vulnerable to sudden change of illumination, we eliminate the effects by the fusion of affine illumination model and color feature space which ensures the correctness and stability of target tracking in that condition. Using a group of videos to test the proposed algorithm, the results show that the tracking correctness and stability of this algorithm are better than the mean-shift tracking algorithm with single feature space. Furthermore the proposed algorithm is more robust than the classic algorithm in the conditions of occlusion, target similar with background or illumination change.

  19. Mixture reduction algorithms for target tracking in clutter

    NASA Astrophysics Data System (ADS)

    Salmond, David J.

    1990-10-01

    The Bayesian solution of the problem of tracking a target in random clutter gives rise to Gaussian mixture distributions, which are composed of an ever increasing number of components. To implement such a tracking filter, the growth of components must be controlled by approximating the mixture distribution. A popular and economical scheme is the Probabilistic Data Association Filter (PDAF), which reduces the mixture to a single Gaussian component at each time step. However this approximation may destroy valuable information, especially if several significant, well spaced components are present. In this paper, two new algorithms for reducing Gaussian mixture distributions are presented. These techniques preserve the mean and covariance of the mixture, and the fmal approximation is itself a Gaussian mixture. The reduction is achieved by successively merging pairs of components or groups of components until their number is reduced to some specified limit. Further reduction will then proceed while the approximation to the main features of the original distribution is still good. The performance of the most economical of these algorithms has been compared with that of the PDAF for the problem of tracking a single target which moves in a plane according to a second order model. A linear sensor which measures target position is corrupted by uniformly distributed clutter. Given a detection probability of unity and perfect knowledge of initial target position and velocity, this problem depends on only tw‡ non-dimensional parameters. Monte Carlo simulation has been employed to identify the region of this parameter space where significant performance improvement is obtained over the PDAF.

  20. A fast learning algorithm for deep belief nets.

    PubMed

    Hinton, Geoffrey E; Osindero, Simon; Teh, Yee-Whye

    2006-07-01

    We show how to use "complementary priors" to eliminate the explaining-away effects that make inference difficult in densely connected belief nets that have many hidden layers. Using complementary priors, we derive a fast, greedy algorithm that can learn deep, directed belief networks one layer at a time, provided the top two layers form an undirected associative memory. The fast, greedy algorithm is used to initialize a slower learning procedure that fine-tunes the weights using a contrastive version of the wake-sleep algorithm. After fine-tuning, a network with three hidden layers forms a very good generative model of the joint distribution of handwritten digit images and their labels. This generative model gives better digit classification than the best discriminative learning algorithms. The low-dimensional manifolds on which the digits lie are modeled by long ravines in the free-energy landscape of the top-level associative memory, and it is easy to explore these ravines by using the directed connections to display what the associative memory has in mind.

  1. A Fast Conformal Mapping Algorithm with No FFT

    NASA Astrophysics Data System (ADS)

    Luchini, P.; Manzo, F.

    1992-08-01

    An algorithm is presented for the computation of a conformal mapping discretized on a non-uniformly spaced point set, useful for the numerical solution of many problems of fluid dynamics. Most existing iterative techniques, both those having a linear and those having a quadratic type of convergence, rely on the fast Fourier transform ( FFT) algorithm for calculating a convolution integral which represents the most time-consuming phase of the computation. The FFT, however, definitely cannot be applied to a non-uniform spacing. The algorithm presented in this paper has been made possible by the construction of a calculation method for convolution integrals which, despite not using an FFT, maintains a computation time of the same order as that of the FFT. The new technique is successfully applied to the problem of conformally mapping a closely spaced cascade of airfoils onto a circle, which requires an exceedingly large number of points if it is solved with uniform spacing.

  2. Fast algorithm for calculating chemical kinetics in turbulent reacting flow

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, K.; Pratt, D. T.

    1986-01-01

    This paper addresses the need for a fast batch chemistry solver to perform the kinetics part of a split operator formulation of turbulent reacting flows, with special attention focused on the solution of the ordinary differential equations governing a homogeneous gas-phase chemical reaction. For this purpose, a two-part predictor-corrector algorithm which incorporates an exponentially fitted trapezoidal method was developed. The algorithm performs filtering of ill-posed initial conditions, automatic step-size selection, and automatic selection of Jacobi-Newton or Newton-Raphson iteration for convergence to achieve maximum computational efficiency while observing a prescribed error tolerance. The new algorithm, termed CREK1D (combustion reaction kinetics, one-dimensional), compared favorably with the code LSODE when tested on two representative problems drawn from combustion kinetics, and is faster than LSODE.

  3. A fast image encryption algorithm based on chaotic map

    NASA Astrophysics Data System (ADS)

    Liu, Wenhao; Sun, Kehui; Zhu, Congxu

    2016-09-01

    Derived from Sine map and iterative chaotic map with infinite collapse (ICMIC), a new two-dimensional Sine ICMIC modulation map (2D-SIMM) is proposed based on a close-loop modulation coupling (CMC) model, and its chaotic performance is analyzed by means of phase diagram, Lyapunov exponent spectrum and complexity. It shows that this map has good ergodicity, hyperchaotic behavior, large maximum Lyapunov exponent and high complexity. Based on this map, a fast image encryption algorithm is proposed. In this algorithm, the confusion and diffusion processes are combined for one stage. Chaotic shift transform (CST) is proposed to efficiently change the image pixel positions, and the row and column substitutions are applied to scramble the pixel values simultaneously. The simulation and analysis results show that this algorithm has high security, low time complexity, and the abilities of resisting statistical analysis, differential, brute-force, known-plaintext and chosen-plaintext attacks.

  4. Fast polarization-state tracking scheme based on radius-directed linear Kalman filter.

    PubMed

    Yang, Yanfu; Cao, Guoliang; Zhong, Kangping; Zhou, Xian; Yao, Yong; Lau, Alan Pak Tao; Lu, Chao

    2015-07-27

    We propose and experimentally demonstrate a fast polarization tracking scheme based on radius-directed linear Kalman filter. It has the advantages of fast convergence and is inherently insensitive to phase noise and frequency offset effects. The scheme is experimentally compared to conventional polarization tracking methods on the polarization rotation angular frequency. The results show that better tracking capability with more than one order of magnitude improvement is obtained in the cases of polarization multiplexed QPSK and 16QAM signals. The influences of the filter tuning parameters on tracking performance are also investigated in detail.

  5. 42 CFR 422.626 - Fast-track appeals of service terminations to independent review entities (IREs).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 3 2011-10-01 2011-10-01 false Fast-track appeals of service terminations to... Grievances, Organization Determinations and Appeals § 422.626 Fast-track appeals of service terminations to independent review entities (IREs). (a) Enrollee's right to a fast-track appeal of an MA...

  6. 42 CFR 422.626 - Fast-track appeals of service terminations to independent review entities (IREs).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 3 2013-10-01 2013-10-01 false Fast-track appeals of service terminations to... ADVANTAGE PROGRAM Grievances, Organization Determinations and Appeals § 422.626 Fast-track appeals of service terminations to independent review entities (IREs). (a) Enrollee's right to a fast-track appeal...

  7. A novel robust and efficient algorithm for charge particle tracking in high background flux

    NASA Astrophysics Data System (ADS)

    Fanelli, C.; Cisbani, E.; Del Dotto, A.

    2015-05-01

    The high luminosity that will be reached in the new generation of High Energy Particle and Nuclear physics experiments implies large high background rate and large tracker occupancy, representing therefore a new challenge for particle tracking algorithms. For instance, at Jefferson Laboratory (JLab) (VA,USA), one of the most demanding experiment in this respect, performed with a 12 GeV electron beam, is characterized by a luminosity up to 1039cm-2s-1. To this scope, Gaseous Electron Multiplier (GEM) based trackers are under development for a new spectrometer that will operate at these high rates in the Hall A of JLab. Within this context, we developed a new tracking algorithm, based on a multistep approach: (i) all hardware - time and charge - information are exploited to minimize the number of hits to associate; (ii) a dedicated Neural Network (NN) has been designed for a fast and efficient association of the hits measured by the GEM detector; (iii) the measurements of the associated hits are further improved in resolution through the application of Kalman filter and Rauch- Tung-Striebel smoother. The algorithm is shortly presented along with a discussion of the promising first results.

  8. A parallel, volume-tracking algorithm for unstructured meshes

    SciTech Connect

    Mosso, S.J.; Swartz, B.K.; Kothe, D.B.; Ferrell, R.C.

    1996-10-01

    Many diverse areas of industry benefit from the use of volume of fluid methods to predict the movement of materials. Casting is a common method of part fabrication. The accurate prediction of the casting process is pivotal to industry. Mold design and casting is currently considered an art by industry. It typically involves many trial mold designs, and the rejection of defective parts is costly. Failure of cast parts, because residual stresses reduce the part`s strength, can be catastrophic. Cast parts should have precise geometric details that reduce or eliminate the need for machining after casting. Volume of fluid codes will help designers predict how the molten metal fills a mold and where ay trapped voids remain. Prediction of defects due to thermal contraction or expansion will eliminate defective, trial mold designs and speed the parts to market with fewer rejections. Increasing the predictability and therefore the accuracy of the casting process will reduce the art that is involved in mold design and parts casting. Here, recent enhancements to multidimensional volume-tracking algorithms are presented. Illustrations in two dimensions are given. The improvements include new, local algorithms for interface normal constructions and a new full remapping algorithm for time integration. These methods are used on structured and unstructured grids.

  9. A fast marching algorithm for the factored eikonal equation

    NASA Astrophysics Data System (ADS)

    Treister, Eran; Haber, Eldad

    2016-11-01

    The eikonal equation is instrumental in many applications in several fields ranging from computer vision to geoscience. This equation can be efficiently solved using the iterative Fast Sweeping (FS) methods and the direct Fast Marching (FM) methods. However, when used for a point source, the original eikonal equation is known to yield inaccurate numerical solutions, because of a singularity at the source. In this case, the factored eikonal equation is often preferred, and is known to yield a more accurate numerical solution. One application that requires the solution of the eikonal equation for point sources is travel time tomography. This inverse problem may be formulated using the eikonal equation as a forward problem. While this problem has been solved using FS in the past, the more recent choice for applying it involves FM methods because of the efficiency in which sensitivities can be obtained using them. However, while several FS methods are available for solving the factored equation, the FM method is available only for the original eikonal equation. In this paper we develop a Fast Marching algorithm for the factored eikonal equation, using both first and second order finite-difference schemes. Our algorithm follows the same lines as the original FM algorithm and requires the same computational effort. In addition, we show how to obtain sensitivities using this FM method and apply travel time tomography, formulated as an inverse factored eikonal equation. Numerical results in two and three dimensions show that our algorithm solves the factored eikonal equation efficiently, and demonstrate the achieved accuracy for computing the travel time. We also demonstrate a recovery of a 2D and 3D heterogeneous medium by travel time tomography using the eikonal equation for forward modeling and inversion by Gauss-Newton.

  10. A novel fast median filter algorithm without sorting

    NASA Astrophysics Data System (ADS)

    Yang, Weiping; Zhang, Zhilong; Lu, Xinping; Li, Jicheng; Chen, Dong; Yang, Guopeng

    2016-04-01

    As one of widely applied nonlinear smoothing filtering methods, median filter is quite effective for removing salt-andpepper noise and impulsive noise while maintaining image edge information without blurring its boundaries, but its computation load is the maximal drawback while applied in real-time processing systems. In order to solve the issue, researchers have proposed many effective fast algorithms and published many papers. However most of the algorithms are based on sorting operations so as to make real-time implementation difficult. In this paper considering the large scale Boolean calculation function and convenient shift operation which are two of the advantages of FPGA(Field Programmable Gate Array), we proposed a novel median value finding algorithm without sorting, which can find the median value effectively and its performing time almost keeps changeless despite how large the filter radius is. Based on the algorithm, a real-time median filter has been realized. A lot of tests demonstrate the validity and correctness of proposed algorithm.

  11. A fast contour descriptor algorithm for supernova imageclassification

    SciTech Connect

    Aragon, Cecilia R.; Aragon, David Bradburn

    2006-07-16

    We describe a fast contour descriptor algorithm and its application to a distributed supernova detection system (the Nearby Supernova Factory) that processes 600,000 candidate objects in 80 GB of image data per night. Our shape-detection algorithm reduced the number of false positives generated by the supernova search pipeline by 41% while producing no measurable impact on running time. Fourier descriptors are an established method of numerically describing the shapes of object contours, but transform-based techniques are ordinarily avoided in this type of application due to their computational cost. We devised a fast contour descriptor implementation for supernova candidates that meets the tight processing budget of the application. Using the lowest-order descriptors (F{sub 1} and F{sub -1}) and the total variance in the contour, we obtain one feature representing the eccentricity of the object and another denoting its irregularity. Because the number of Fourier terms to be calculated is fixed and small, the algorithm runs in linear time, rather than the O(n log n) time of an FFT. Constraints on object size allow further optimizations so that the total cost of producing the required contour descriptors is about 4n addition/subtraction operations, where n is the length of the contour.

  12. Repositioning: the fast track to new anti-malarial medicines?

    PubMed Central

    2014-01-01

    Background Repositioning of existing drugs has been suggested as a fast track for developing new anti-malarial agents. The compound libraries of GlaxoSmithKline (GSK), Pfizer and AstraZeneca (AZ) comprising drugs that have undergone clinical studies in other therapeutic areas, but not achieved approval, and a set of US Food and Drug Administration (FDA)-approved drugs and other bio-actives were tested against Plasmodium falciparum blood stages. Methods Molecules were tested initially against erythrocytic co-cultures of P. falciparum to measure proliferation inhibition using one of the following methods: SYBR®I dye DNA staining assay (3D7, K1 or NF54 strains); [3H] hypoxanthine radioisotope incorporation assay (3D7 and 3D7A strain); or 4’,6-diamidino-2-phenylindole (DAPI) DNA imaging assay (3D7 and Dd2 strains). After review of the available clinical pharmacokinetic and safety data, selected compounds with low μM activity and a suitable clinical profile were tested in vivo either in a Plasmodium berghei four-day test or in the P. falciparum Pf3D70087/N9 huSCID ‘humanized’ mouse model. Results Of the compounds included in the GSK and Pfizer sets, 3.8% (9/238) had relevant in vitro anti-malarial activity while 6/100 compounds from the AZ candidate drug library were active. In comparison, around 0.6% (24/3,800) of the FDA-approved drugs and other bio-actives were active. After evaluation of available clinical data, four investigational drugs, active in vitro were tested in the P. falciparum humanized mouse model: UK-112,214 (PAF-H1 inhibitor), CEP-701 (protein kinase inhibitor), CEP-1347 (protein kinase inhibitor), and PSC-833 (p-glycoprotein inhibitor). Only UK-112,214 showed significant efficacy against P. falciparum in vivo, although at high doses (ED90 131.3 mg/kg [95% CI 112.3, 156.7]), and parasitaemia was still present 96 hours after treatment commencement. Of the six actives from the AZ library, two compounds (AZ-1 and AZ-3) were marginally

  13. Vision-based vehicle detection and tracking algorithm design

    NASA Astrophysics Data System (ADS)

    Hwang, Junyeon; Huh, Kunsoo; Lee, Donghwi

    2009-12-01

    The vision-based vehicle detection in front of an ego-vehicle is regarded as promising for driver assistance as well as for autonomous vehicle guidance. The feasibility of vehicle detection in a passenger car requires accurate and robust sensing performance. A multivehicle detection system based on stereo vision has been developed for better accuracy and robustness. This system utilizes morphological filter, feature detector, template matching, and epipolar constraint techniques in order to detect the corresponding pairs of vehicles. After the initial detection, the system executes the tracking algorithm for the vehicles. The proposed system can detect front vehicles such as the leading vehicle and side-lane vehicles. The position parameters of the vehicles located in front are obtained based on the detection information. The proposed vehicle detection system is implemented on a passenger car, and its performance is verified experimentally.

  14. 77 FR 1697 - Agency Information Collection Activities: Fast Track Generic Clearance for the Collection of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-11

    ... HUMAN SERVICES Indian Health Service Agency Information Collection Activities: Fast Track Generic Clearance for the Collection of Qualitative Feedback on Agency Service Delivery: IHS Web Site Customer... on Agency Service Delivery: IHS Web site Customer Service Satisfaction Survey. Abstract:...

  15. A fast direct sampling algorithm for equilateral closed polygons

    NASA Astrophysics Data System (ADS)

    Cantarella, Jason; Duplantier, Bertrand; Shonkwiler, Clayton; Uehara, Erica

    2016-07-01

    Sampling equilateral closed polygons is of interest in the statistical study of ring polymers. Over the past 30 years, previous authors have proposed a variety of simple Markov chain algorithms (but have not been able to show that they converge to the correct probability distribution) and complicated direct samplers (which require extended-precision arithmetic to evaluate numerically unstable polynomials). We present a simple direct sampler which is fast and numerically stable, and analyze its runtime using a new formula for the volume of equilateral polygon space as a Dirichlet-type integral.

  16. A fast-marching like algorithm for geometrical shock dynamics

    NASA Astrophysics Data System (ADS)

    Noumir, Y.; Le Guilcher, A.; Lardjane, N.; Monneau, R.; Sarrazin, A.

    2015-03-01

    We develop a new algorithm for the computation of the Geometrical Shock Dynamics (GSD) model. The method relies on the fast-marching paradigm and enables the discrete evaluation of the first arrival time of a shock wave and its local velocity on a Cartesian grid. The proposed algorithm is based on a first order upwind finite difference scheme and reduces to a local nonlinear system of two equations solved by an iterative procedure. Reference solutions are built for a smooth radial configuration and for the 2D Riemann problem. The link between the GSD model and p-systems is given. Numerical experiments demonstrate the efficiency of the scheme and its ability to handle singularities.

  17. Algorithms for High-Speed Noninvasive Eye-Tracking System

    NASA Technical Reports Server (NTRS)

    Talukder, Ashit; Morookian, John-Michael; Lambert, James

    2010-01-01

    Two image-data-processing algorithms are essential to the successful operation of a system of electronic hardware and software that noninvasively tracks the direction of a person s gaze in real time. The system was described in High-Speed Noninvasive Eye-Tracking System (NPO-30700) NASA Tech Briefs, Vol. 31, No. 8 (August 2007), page 51. To recapitulate from the cited article: Like prior commercial noninvasive eyetracking systems, this system is based on (1) illumination of an eye by a low-power infrared light-emitting diode (LED); (2) acquisition of video images of the pupil, iris, and cornea in the reflected infrared light; (3) digitization of the images; and (4) processing the digital image data to determine the direction of gaze from the centroids of the pupil and cornea in the images. Most of the prior commercial noninvasive eyetracking systems rely on standard video cameras, which operate at frame rates of about 30 Hz. Such systems are limited to slow, full-frame operation. The video camera in the present system includes a charge-coupled-device (CCD) image detector plus electronic circuitry capable of implementing an advanced control scheme that effects readout from a small region of interest (ROI), or subwindow, of the full image. Inasmuch as the image features of interest (the cornea and pupil) typically occupy a small part of the camera frame, this ROI capability can be exploited to determine the direction of gaze at a high frame rate by reading out from the ROI that contains the cornea and pupil (but not from the rest of the image) repeatedly. One of the present algorithms exploits the ROI capability. The algorithm takes horizontal row slices and takes advantage of the symmetry of the pupil and cornea circles and of the gray-scale contrasts of the pupil and cornea with respect to other parts of the eye. The algorithm determines which horizontal image slices contain the pupil and cornea, and, on each valid slice, the end coordinates of the pupil and cornea

  18. Peak detection in fiber Bragg grating using a fast phase correlation algorithm

    NASA Astrophysics Data System (ADS)

    Lamberti, A.; Vanlanduit, S.; De Pauw, B.; Berghmans, F.

    2014-05-01

    Fiber Bragg grating sensing principle is based on the exact tracking of the peak wavelength location. Several peak detection techniques have already been proposed in literature. Among these, conventional peak detection (CPD) methods such as the maximum detection algorithm (MDA), do not achieve very high precision and accuracy, especially when the Signal to Noise Ratio (SNR) and the wavelength resolution are poor. On the other hand, recently proposed algorithms, like the cross-correlation demodulation algorithm (CCA), are more precise and accurate but require higher computational effort. To overcome these limitations, we developed a novel fast phase correlation algorithm (FPC) which performs as well as the CCA, being at the same time considerably faster. This paper presents the FPC technique and analyzes its performances for different SNR and wavelength resolutions. Using simulations and experiments, we compared the FPC with the MDA and CCA algorithms. The FPC detection capabilities were as precise and accurate as those of the CCA and considerably better than those of the CPD. The FPC computational time was up to 50 times lower than CCA, making the FPC a valid candidate for future implementation in real-time systems.

  19. Detection of a faint fast-moving near-Earth asteroid using the synthetic tracking technique

    SciTech Connect

    Zhai, Chengxing; Shao, Michael; Nemati, Bijan; Werne, Thomas; Zhou, Hanying; Turyshev, Slava G.; Sandhu, Jagmit; Hallinan, Gregg; Harding, Leon K.

    2014-09-01

    We report a detection of a faint near-Earth asteroid (NEA) using our synthetic tracking technique and the CHIMERA instrument on the Palomar 200 inch telescope. With an apparent magnitude of 23 (H = 29, assuming detection at 20 lunar distances), the asteroid was moving at 6.°32 day{sup –1} and was detected at a signal-to-noise ratio (S/N) of 15 using 30 s of data taken at a 16.7 Hz frame rate. The detection was confirmed by a second observation 77 minutes later at the same S/N. Because of its high proper motion, the NEA moved 7 arcsec over the 30 s of observation. Synthetic tracking avoided image degradation due to trailing loss that affects conventional techniques relying on 30 s exposures; the trailing loss would have degraded the surface brightness of the NEA image on the CCD down to an approximate magnitude of 25 making the object undetectable. This detection was a result of our 12 hr blind search conducted on the Palomar 200 inch telescope over two nights, scanning twice over six (5.°3 × 0.°046) fields. Detecting only one asteroid is consistent with Harris's estimates for the distribution of the asteroid population, which was used to predict a detection of 1.2 NEAs in the H-magnitude range 28-31 for the two nights. The experimental design, data analysis methods, and algorithms are presented. We also demonstrate milliarcsecond-level astrometry using observations of two known bright asteroids on the same system with synthetic tracking. We conclude by discussing strategies for scheduling observations to detect and characterize small and fast-moving NEAs using the new technique.

  20. Detection of a Faint Fast-moving Near-Earth Asteroid Using the Synthetic Tracking Technique

    NASA Astrophysics Data System (ADS)

    Zhai, Chengxing; Shao, Michael; Nemati, Bijan; Werne, Thomas; Zhou, Hanying; Turyshev, Slava G.; Sandhu, Jagmit; Hallinan, Gregg; Harding, Leon K.

    2014-09-01

    We report a detection of a faint near-Earth asteroid (NEA) using our synthetic tracking technique and the CHIMERA instrument on the Palomar 200 inch telescope. With an apparent magnitude of 23 (H = 29, assuming detection at 20 lunar distances), the asteroid was moving at 6.°32 day-1 and was detected at a signal-to-noise ratio (S/N) of 15 using 30 s of data taken at a 16.7 Hz frame rate. The detection was confirmed by a second observation 77 minutes later at the same S/N. Because of its high proper motion, the NEA moved 7 arcsec over the 30 s of observation. Synthetic tracking avoided image degradation due to trailing loss that affects conventional techniques relying on 30 s exposures; the trailing loss would have degraded the surface brightness of the NEA image on the CCD down to an approximate magnitude of 25 making the object undetectable. This detection was a result of our 12 hr blind search conducted on the Palomar 200 inch telescope over two nights, scanning twice over six (5.°3 × 0.°046) fields. Detecting only one asteroid is consistent with Harris's estimates for the distribution of the asteroid population, which was used to predict a detection of 1.2 NEAs in the H-magnitude range 28-31 for the two nights. The experimental design, data analysis methods, and algorithms are presented. We also demonstrate milliarcsecond-level astrometry using observations of two known bright asteroids on the same system with synthetic tracking. We conclude by discussing strategies for scheduling observations to detect and characterize small and fast-moving NEAs using the new technique.

  1. Fast Field Calibration of MIMU Based on the Powell Algorithm

    PubMed Central

    Ma, Lin; Chen, Wanwan; Li, Bin; You, Zheng; Chen, Zhigang

    2014-01-01

    The calibration of micro inertial measurement units is important in ensuring the precision of navigation systems, which are equipped with microelectromechanical system sensors that suffer from various errors. However, traditional calibration methods cannot meet the demand for fast field calibration. This paper presents a fast field calibration method based on the Powell algorithm. As the key points of this calibration, the norm of the accelerometer measurement vector is equal to the gravity magnitude, and the norm of the gyro measurement vector is equal to the rotational velocity inputs. To resolve the error parameters by judging the convergence of the nonlinear equations, the Powell algorithm is applied by establishing a mathematical error model of the novel calibration. All parameters can then be obtained in this manner. A comparison of the proposed method with the traditional calibration method through navigation tests shows the classic performance of the proposed calibration method. The proposed calibration method also saves more time compared with the traditional calibration method. PMID:25177801

  2. A fast poly-energetic iterative FBP algorithm

    NASA Astrophysics Data System (ADS)

    Lin, Yuan; Samei, Ehsan

    2014-04-01

    The beam hardening (BH) effect can influence medical interpretations in two notable ways. First, high attenuation materials, such as bones, can induce strong artifacts, which severely deteriorate the image quality. Second, voxel values can significantly deviate from the real values, which can lead to unreliable quantitative evaluation results. Some iterative methods have been proposed to eliminate the BH effect, but they cannot be widely applied for clinical practice because of the slow computational speed. The purpose of this study was to develop a new fast and practical poly-energetic iterative filtered backward projection algorithm (piFBP). The piFBP is composed of a novel poly-energetic forward projection process and a robust FBP-type backward updating process. In the forward projection process, an adaptive base material decomposition method is presented, based on which diverse body tissues (e.g., lung, fat, breast, soft tissue, and bone) and metal implants can be incorporated to accurately evaluate poly-energetic forward projections. In the backward updating process, one robust and fast FBP-type backward updating equation with a smoothing kernel is introduced to avoid the noise accumulation in the iteration process and to improve the convergence properties. Two phantoms were designed to quantitatively validate our piFBP algorithm in terms of the beam hardening index (BIdx) and the noise index (NIdx). The simulation results showed that piFBP possessed fast convergence speed, as the images could be reconstructed within four iterations. The variation range of the BIdx's of various tissues across phantom size and spectrum were reduced from [-7.5, 17.5] for FBP to [-0.1, 0.1] for piFBP while the NIdx's were maintained in the same low level (about [0.3, 1.7]). When a metal implant presented in a complex phantom, piFBP still had excellent reconstruction performance, as the variation range of the BIdx's of body tissues were reduced from [-2.9, 15.9] for FBP to [-0

  3. A combined object-tracking algorithm for omni-directional vision-based AGV navigation

    NASA Astrophysics Data System (ADS)

    Yuan, Wei; Sun, Jie; Cao, Zuo-Liang; Tian, Jing; Yang, Ming

    2010-03-01

    A combined object-tracking algorithm that realizes the realtime tracking of the selected object through the omni-directional vision with a fisheye lens is presented. The new method combines the modified continuously adaptive mean shift algorithm with the Kalman filter method. With the proposed method, the object-tracking problem when the object reappears after being sheltered completely or moving out of the field of view is solved. The experimental results perform well, and the algorithm proposed here improves the robustness and accuracy of the tracking in the omni-directional vision.

  4. A fast, robust algorithm for power line interference cancellation in neural recording

    NASA Astrophysics Data System (ADS)

    Keshtkaran, Mohammad Reza; Yang, Zhi

    2014-04-01

    Objective. Power line interference may severely corrupt neural recordings at 50/60 Hz and harmonic frequencies. The interference is usually non-stationary and can vary in frequency, amplitude and phase. To retrieve the gamma-band oscillations at the contaminated frequencies, it is desired to remove the interference without compromising the actual neural signals at the interference frequency bands. In this paper, we present a robust and computationally efficient algorithm for removing power line interference from neural recordings. Approach. The algorithm includes four steps. First, an adaptive notch filter is used to estimate the fundamental frequency of the interference. Subsequently, based on the estimated frequency, harmonics are generated by using discrete-time oscillators, and then the amplitude and phase of each harmonic are estimated by using a modified recursive least squares algorithm. Finally, the estimated interference is subtracted from the recorded data. Main results. The algorithm does not require any reference signal, and can track the frequency, phase and amplitude of each harmonic. When benchmarked with other popular approaches, our algorithm performs better in terms of noise immunity, convergence speed and output signal-to-noise ratio (SNR). While minimally affecting the signal bands of interest, the algorithm consistently yields fast convergence (<100 ms) and substantial interference rejection (output SNR >30 dB) in different conditions of interference strengths (input SNR from -30 to 30 dB), power line frequencies (45-65 Hz) and phase and amplitude drifts. In addition, the algorithm features a straightforward parameter adjustment since the parameters are independent of the input SNR, input signal power and the sampling rate. A hardware prototype was fabricated in a 65 nm CMOS process and tested. Software implementation of the algorithm has been made available for open access at https://github.com/mrezak/removePLI. Significance. The proposed

  5. The Fleet Application for Scheduling and Tracking (FAST) Management Website

    NASA Technical Reports Server (NTRS)

    Marrero-Perez, Radames J.

    2014-01-01

    The FAST application was designed to replace the paper and pen method of checking out and checking in GSA Vehicles at KSC. By innovating from a paper and pen based checkout system to a fully digital one, not only the resources wasted by printing the checkout forms have been reduced, but it also reduces significantly the time that users and fleet managers need to interact with the system as well as improving the record accuracy for each vehicle. The vehicle information is pulled from a centralized database server in the SPSDL. In an attempt to add a new feature to the FAST application, the author of this report (alongside the FAST developers) has been designing and developing the FAST Management Website. The GSA fleet managers had to rely on the FAST developers in order to add new vehicles, edit vehicles and previous transactions, or for generating vehicles reports. By providing an easy-to-use FAST Management Website portal, the GSA fleet managers are now able to easily move vehicles, edit records, and print reports.

  6. Open-source feature-tracking algorithm for sea ice drift retrieval from Sentinel-1 SAR imagery

    NASA Astrophysics Data System (ADS)

    Muckenhuber, Stefan; Andreevich Korosov, Anton; Sandven, Stein

    2016-04-01

    A computationally efficient, open-source feature-tracking algorithm, called ORB, is adopted and tuned for sea ice drift retrieval from Sentinel-1 SAR (Synthetic Aperture Radar) images. The most suitable setting and parameter values have been found using four Sentinel-1 image pairs representative of sea ice conditions between Greenland and Severnaya Zemlya during winter and spring. The performance of the algorithm is compared to two other feature-tracking algorithms, namely SIFT (Scale-Invariant Feature Transform) and SURF (Speeded-Up Robust Features). Having been applied to 43 test image pairs acquired over Fram Strait and the north-east of Greenland, the tuned ORB (Oriented FAST and Rotated BRIEF) algorithm produces the highest number of vectors (177 513, SIFT: 43 260 and SURF: 25 113), while being computationally most efficient (66 s, SIFT: 182 s and SURF: 99 s per image pair using a 2.7 GHz processor with 8 GB memory). For validation purposes, 314 manually drawn vectors have been compared with the closest calculated vectors, and the resulting root mean square error of ice drift is 563 m. All test image pairs show a significantly better performance of the HV (horizontal transmit, vertical receive) channel due to higher informativeness. On average, around four times as many vectors have been found using HV polarization. All software requirements necessary for applying the presented feature-tracking algorithm are open source to ensure a free and easy implementation.

  7. A versatile pitch tracking algorithm: from human speech to killer whale vocalizations.

    PubMed

    Shapiro, Ari Daniel; Wang, Chao

    2009-07-01

    In this article, a pitch tracking algorithm [named discrete logarithmic Fourier transformation-pitch detection algorithm (DLFT-PDA)], originally designed for human telephone speech, was modified for killer whale vocalizations. The multiple frequency components of some of these vocalizations demand a spectral (rather than temporal) approach to pitch tracking. The DLFT-PDA algorithm derives reliable estimations of pitch and the temporal change of pitch from the harmonic structure of the vocal signal. Scores from both estimations are combined in a dynamic programming search to find a smooth pitch track. The algorithm is capable of tracking killer whale calls that contain simultaneous low and high frequency components and compares favorably across most signal to noise ratio ranges to the peak-picking and sidewinder algorithms that have been used for tracking killer whale vocalizations previously.

  8. A fast general-purpose clustering algorithm based on FPGAs for high-throughput data processing

    NASA Astrophysics Data System (ADS)

    Annovi, A.; Beretta, M.

    2010-05-01

    We present a fast general-purpose algorithm for high-throughput clustering of data "with a two-dimensional organization". The algorithm is designed to be implemented with FPGAs or custom electronics. The key feature is a processing time that scales linearly with the amount of data to be processed. This means that clustering can be performed in pipeline with the readout, without suffering from combinatorial delays due to looping multiple times through all the data. This feature makes this algorithm especially well suited for problems where the data have high density, e.g. in the case of tracking devices working under high-luminosity condition such as those of LHC or super-LHC. The algorithm is organized in two steps: the first step (core) clusters the data; the second step analyzes each cluster of data to extract the desired information. The current algorithm is developed as a clustering device for modern high-energy physics pixel detectors. However, the algorithm has much broader field of applications. In fact, its core does not specifically rely on the kind of data or detector it is working for, while the second step can and should be tailored for a given application. For example, in case of spatial measurement with silicon pixel detectors, the second step performs center of charge calculation. Applications can thus be foreseen to other detectors and other scientific fields ranging from HEP calorimeters to medical imaging. An additional advantage of this two steps approach is that the typical clustering related calculations (second step) are separated from the combinatorial complications of clustering. This separation simplifies the design of the second step and it enables it to perform sophisticated calculations achieving offline quality in online applications. The algorithm is general purpose in the sense that only minimal assumptions on the kind of clustering to be performed are made.

  9. Fast Dating Using Least-Squares Criteria and Algorithms.

    PubMed

    To, Thu-Hien; Jung, Matthieu; Lycett, Samantha; Gascuel, Olivier

    2016-01-01

    Phylogenies provide a useful way to understand the evolutionary history of genetic samples, and data sets with more than a thousand taxa are becoming increasingly common, notably with viruses (e.g., human immunodeficiency virus (HIV)). Dating ancestral events is one of the first, essential goals with such data. However, current sophisticated probabilistic approaches struggle to handle data sets of this size. Here, we present very fast dating algorithms, based on a Gaussian model closely related to the Langley-Fitch molecular-clock model. We show that this model is robust to uncorrelated violations of the molecular clock. Our algorithms apply to serial data, where the tips of the tree have been sampled through times. They estimate the substitution rate and the dates of all ancestral nodes. When the input tree is unrooted, they can provide an estimate for the root position, thus representing a new, practical alternative to the standard rooting methods (e.g., midpoint). Our algorithms exploit the tree (recursive) structure of the problem at hand, and the close relationships between least-squares and linear algebra. We distinguish between an unconstrained setting and the case where the temporal precedence constraint (i.e., an ancestral node must be older that its daughter nodes) is accounted for. With rooted trees, the former is solved using linear algebra in linear computing time (i.e., proportional to the number of taxa), while the resolution of the latter, constrained setting, is based on an active-set method that runs in nearly linear time. With unrooted trees the computing time becomes (nearly) quadratic (i.e., proportional to the square of the number of taxa). In all cases, very large input trees (>10,000 taxa) can easily be processed and transformed into time-scaled trees. We compare these algorithms to standard methods (root-to-tip, r8s version of Langley-Fitch method, and BEAST). Using simulated data, we show that their estimation accuracy is similar to that

  10. Fast Dating Using Least-Squares Criteria and Algorithms.

    PubMed

    To, Thu-Hien; Jung, Matthieu; Lycett, Samantha; Gascuel, Olivier

    2016-01-01

    Phylogenies provide a useful way to understand the evolutionary history of genetic samples, and data sets with more than a thousand taxa are becoming increasingly common, notably with viruses (e.g., human immunodeficiency virus (HIV)). Dating ancestral events is one of the first, essential goals with such data. However, current sophisticated probabilistic approaches struggle to handle data sets of this size. Here, we present very fast dating algorithms, based on a Gaussian model closely related to the Langley-Fitch molecular-clock model. We show that this model is robust to uncorrelated violations of the molecular clock. Our algorithms apply to serial data, where the tips of the tree have been sampled through times. They estimate the substitution rate and the dates of all ancestral nodes. When the input tree is unrooted, they can provide an estimate for the root position, thus representing a new, practical alternative to the standard rooting methods (e.g., midpoint). Our algorithms exploit the tree (recursive) structure of the problem at hand, and the close relationships between least-squares and linear algebra. We distinguish between an unconstrained setting and the case where the temporal precedence constraint (i.e., an ancestral node must be older that its daughter nodes) is accounted for. With rooted trees, the former is solved using linear algebra in linear computing time (i.e., proportional to the number of taxa), while the resolution of the latter, constrained setting, is based on an active-set method that runs in nearly linear time. With unrooted trees the computing time becomes (nearly) quadratic (i.e., proportional to the square of the number of taxa). In all cases, very large input trees (>10,000 taxa) can easily be processed and transformed into time-scaled trees. We compare these algorithms to standard methods (root-to-tip, r8s version of Langley-Fitch method, and BEAST). Using simulated data, we show that their estimation accuracy is similar to that

  11. Fast Dating Using Least-Squares Criteria and Algorithms

    PubMed Central

    To, Thu-Hien; Jung, Matthieu; Lycett, Samantha; Gascuel, Olivier

    2016-01-01

    Phylogenies provide a useful way to understand the evolutionary history of genetic samples, and data sets with more than a thousand taxa are becoming increasingly common, notably with viruses (e.g., human immunodeficiency virus (HIV)). Dating ancestral events is one of the first, essential goals with such data. However, current sophisticated probabilistic approaches struggle to handle data sets of this size. Here, we present very fast dating algorithms, based on a Gaussian model closely related to the Langley–Fitch molecular-clock model. We show that this model is robust to uncorrelated violations of the molecular clock. Our algorithms apply to serial data, where the tips of the tree have been sampled through times. They estimate the substitution rate and the dates of all ancestral nodes. When the input tree is unrooted, they can provide an estimate for the root position, thus representing a new, practical alternative to the standard rooting methods (e.g., midpoint). Our algorithms exploit the tree (recursive) structure of the problem at hand, and the close relationships between least-squares and linear algebra. We distinguish between an unconstrained setting and the case where the temporal precedence constraint (i.e., an ancestral node must be older that its daughter nodes) is accounted for. With rooted trees, the former is solved using linear algebra in linear computing time (i.e., proportional to the number of taxa), while the resolution of the latter, constrained setting, is based on an active-set method that runs in nearly linear time. With unrooted trees the computing time becomes (nearly) quadratic (i.e., proportional to the square of the number of taxa). In all cases, very large input trees (>10,000 taxa) can easily be processed and transformed into time-scaled trees. We compare these algorithms to standard methods (root-to-tip, r8s version of Langley–Fitch method, and BEAST). Using simulated data, we show that their estimation accuracy is similar to

  12. Fast imaging system and algorithm for monitoring microlymphatics

    NASA Astrophysics Data System (ADS)

    Akl, T.; Rahbar, E.; Zawieja, D.; Gashev, A.; Moore, J.; Coté, G.

    2010-02-01

    The lymphatic system is not well understood and tools to quantify aspects of its behavior are needed. A technique to monitor lymph velocity that can lead to flow, the main determinant of transport, in a near real time manner can be extremely valuable. We recently built a new system that measures lymph velocity, vessel diameter and contractions using optical microscopy digital imaging with a high speed camera (500fps) and a complex processing algorithm. The processing time for a typical data period was significantly reduced to less than 3 minutes in comparison to our previous system in which readings were available 30 minutes after the vessels were imaged. The processing was based on a correlation algorithm in the frequency domain, which, along with new triggering methods, reduced the processing and acquisition time significantly. In addition, the use of a new data filtering technique allowed us to acquire results from recordings that were irresolvable by the previous algorithm due to their high noise level. The algorithm was tested by measuring velocities and diameter changes in rat mesenteric micro-lymphatics. We recorded velocities of 0.25mm/s on average in vessels of diameter ranging from 54um to 140um with phasic contraction strengths of about 6 to 40%. In the future, this system will be used to monitor acute effects that are too fast for previous systems and will also increase the statistical power when dealing with chronic changes. Furthermore, we plan on expanding its functionality to measure the propagation of the contractile activity.

  13. Tracking at CDF: algorithms and experience from Run I and Run II

    SciTech Connect

    Snider, F.D.; /Fermilab

    2005-10-01

    The authors describe the tracking algorithms used during Run I and Run II by CDF at the Fermilab Tevatron Collider, covering the time from about 1992 through the present, and discuss the performance of the algorithms at high luminosity. By tracing the evolution of the detectors and algorithms, they reveal some of the successful strategies used by CDF to address the problems of tracking at high luminosities.

  14. A fast algorithm for the phonemic segmentation of continuous speech

    NASA Astrophysics Data System (ADS)

    Smidt, D.

    1986-04-01

    The method of differential learning (DL method) was applied to the fast phonemic classification of acoustic speech spectra. The method was also tested with a simple algorithm for continuous speech recognition. In every learning step of the DL method only that single pattern component which deviates most from the reference value is used for a new rule. Several rules of this type were connected in a conjunctive or disjunctive way. Tests with a single speaker demonstrate good classification capability and a very high speed. The inclusion of automatically additional features selected according to their relevance is discussed. It is shown that there exists a correspondence between processes related to the DL method and pattern recognition in living beings with their ability for generalization and differentiation.

  15. A fast Monte Carlo algorithm for source localization on graphs

    NASA Astrophysics Data System (ADS)

    Agaskar, Ameya; Lu, Yue M.

    2013-09-01

    Epidemic models on networks have long been studied by biologists and social sciences to determine the steady state levels of an infection on a network. Recently, however, several authors have begun considering the more difficult problem of estimating the source of an infection given information about its behavior some time after the initial infection. In this paper, we describe a technique to estimate the source of an infection on a general graph based on observations from a small set of observers during a fixed time window at some unknown time after the initial infection. We describe an alternate representation for the susceptible-infected (SI) infection model based on geodesic distances on a randomly-weighted version of the graph; this representation allows us to exploit fast algorithms to compute geodesic distances to estimate the marginal distributions for each observer and compute a pseudo-likelihood function that is maximized to find the source.

  16. FAST TRACK COMMUNICATION: A stable toolkit method in quantum control

    NASA Astrophysics Data System (ADS)

    Belhadj, M.; Salomon, J.; Turinici, G.

    2008-09-01

    Recently the 'toolkit' discretization introduced to accelerate the numerical resolution of the time-dependent Schrödinger equation arising in quantum optimal control problems demonstrated good results on a large range of models. However, when coupling this class of methods with the so-called monotonically convergent algorithms, numerical instabilities affect the convergence of the discretized scheme. We present an adaptation of the 'toolkit' method which preserves the monotonicity of the procedure. The theoretical properties of the new algorithm are illustrated by numerical simulations.

  17. Note: Fast neutron efficiency in CR-39 nuclear track detectors

    SciTech Connect

    Cavallaro, S.

    2015-03-15

    CR-39 samples are commonly employed for fast neutron detection in fusion reactors and in inertial confinement fusion experiments. The literature reported efficiencies are strongly depending on experimental conditions and, in some cases, highly dispersed. The present note analyses the dependence of efficiency as a function of various parameters and experimental conditions in both the radiator-assisted and the stand-alone CR-39 configurations. Comparisons of literature experimental data with Monte Carlo calculations and optimized efficiency values are shown and discussed.

  18. Note: fast neutron efficiency in CR-39 nuclear track detectors.

    PubMed

    Cavallaro, S

    2015-03-01

    CR-39 samples are commonly employed for fast neutron detection in fusion reactors and in inertial confinement fusion experiments. The literature reported efficiencies are strongly depending on experimental conditions and, in some cases, highly dispersed. The present note analyses the dependence of efficiency as a function of various parameters and experimental conditions in both the radiator-assisted and the stand-alone CR-39 configurations. Comparisons of literature experimental data with Monte Carlo calculations and optimized efficiency values are shown and discussed.

  19. Restoring integrity—A grounded theory of coping with a fast track surgery programme

    PubMed Central

    Jørgensen, Lene Bastrup; Fridlund, Bengt

    2016-01-01

    Aims and objectives The aim of this study was to generate a theory conceptualizing and explaining behavioural processes involved in coping in order to identify the predominant coping types and coping type-specific features. Background Patients undergoing fast track procedures do not experience a higher risk of complications, readmission, or mortality. However, such programmes presuppose an increasing degree of patient involvement, placing high educational, physical, and mental demands on the patients. There is a lack of knowledge about how patients understand and cope with fast track programmes. Design The study design used classical grounded theory. Methods The study used a multimodal approach with qualitative and quantitative data sets from 14 patients. Results Four predominant types of coping, with distinct physiological, cognitive, affective, and psychosocial features, existed among patients going through a fast track total hip replacement programme. These patients’ main concern was to restore their physical and psychosocial integrity, which had been compromised by reduced function and mobility in daily life. To restore integrity they economized their mental resources, while striving to fulfil the expectations of the fast track programme. This goal was achieved by being mentally proactive and physically active. Three out of the four predominant types of coping matched the expectations expressed in the fast track programme. The non-matching behaviour was seen among the most nervous patients, who claimed the right to diverge from the programme. Conclusion In theory, four predominant types of coping with distinct physiological, cognitive, affective, and psychosocial features occur among patients going through a fast track total hip arthroplasty programme. PMID:26751199

  20. The research of moving objects behavior detection and tracking algorithm in aerial video

    NASA Astrophysics Data System (ADS)

    Yang, Le-le; Li, Xin; Yang, Xiao-ping; Li, Dong-hui

    2015-12-01

    The article focuses on the research of moving target detection and tracking algorithm in Aerial monitoring. Study includes moving target detection, moving target behavioral analysis and Target Auto tracking. In moving target detection, the paper considering the characteristics of background subtraction and frame difference method, using background reconstruction method to accurately locate moving targets; in the analysis of the behavior of the moving object, using matlab technique shown in the binary image detection area, analyzing whether the moving objects invasion and invasion direction; In Auto Tracking moving target, A video tracking algorithm that used the prediction of object centroids based on Kalman filtering was proposed.

  1. New method for fast detection of railway track smoothness by fiber optic gyro

    NASA Astrophysics Data System (ADS)

    Wang, Lixin; Liang, Lei; Hu, Wenbin

    2000-05-01

    In this article, the conducting schemes for fiber optic gyro (FOG) used int he fast detecting of the smoothness of rail track has been proposed from the practical use point of view. The relevant approximate method of calculating has been given. The experiments in lab have been carried out, and the factors to influence the detecting precision of the smoothness of rail track such as the precision of FOG have been analyzed.

  2. A guidance and control algorithm for scent tracking micro-robotic vehicle swarms

    SciTech Connect

    Dohner, J.L.

    1998-03-01

    Cooperative micro-robotic scent tracking vehicles are designed to collectively sniff out locations of high scent concentrations in unknown, geometrically complex environments. These vehicles are programmed with guidance and control algorithms that allow inter cooperation among vehicles. In this paper a cooperative guidance and control algorithm for scent tracking micro-robotic vehicles is presented. This algorithm is comprised of a sensory compensation sub-algorithm using point source cancellation, a guidance sub-algorithm using gradient descent tracking, and a control sub-algorithm using proportional feedback. The concepts of social rank and point source cancellation are new concepts introduced within. Simulation results for cooperative vehicles swarms are given. Limitations are discussed.

  3. Tracking Changing Environments: Innovators Are Fast, but Not Flexible Learners

    PubMed Central

    Griffin, Andrea S.; Guez, David; Lermite, Françoise; Patience, Madeleine

    2013-01-01

    Behavioural innovations are increasingly thought to provide a rich source of phenotypic plasticity and evolutionary change. Innovation propensity shows substantial variation across avian taxa and provides an adaptive mechanism by which behaviour is flexibly adjusted to changing environmental conditions. Here, we tested for the first time the prediction that inter-individual variation in innovation propensity is equally a measure of behavioural flexibility. We used Indian mynas, Sturnus tristis, a highly successful worldwide invader. Results revealed that mynas that solved an extractive foraging task more quickly learnt to discriminate between a cue that predicted food, and one that did not more quickly. However, fast innovators were slower to change their behaviour when the significance of the food cues changed. This unexpected finding appears at odds with the well-established view that avian taxa with larger brains relative to their body size, and therefore greater neural processing power, are both faster, and more flexible learners. We speculate that the existence of this relationship across taxa can be reconciled with its absence within species by assuming that fast, innovative learners and non innovative, slow, flexible learners constitute two separate individual strategies, which are both underpinned by enhanced neural processing power. This idea is consistent with the recent proposal that individuals may differ consistently in ‘cognitive style’, differentially trading off speed against accuracy in cognitive tasks. PMID:24391981

  4. Biased Randomized Algorithm for Fast Model-Based Diagnosis

    NASA Technical Reports Server (NTRS)

    Williams, Colin; Vartan, Farrokh

    2005-01-01

    A biased randomized algorithm has been developed to enable the rapid computational solution of a propositional- satisfiability (SAT) problem equivalent to a diagnosis problem. The closest competing methods of automated diagnosis are described in the preceding article "Fast Algorithms for Model-Based Diagnosis" and "Two Methods of Efficient Solution of the Hitting-Set Problem" (NPO-30584), which appears elsewhere in this issue. It is necessary to recapitulate some of the information from the cited articles as a prerequisite to a description of the present method. As used here, "diagnosis" signifies, more precisely, a type of model-based diagnosis in which one explores any logical inconsistencies between the observed and expected behaviors of an engineering system. The function of each component and the interconnections among all the components of the engineering system are represented as a logical system. Hence, the expected behavior of the engineering system is represented as a set of logical consequences. Faulty components lead to inconsistency between the observed and expected behaviors of the system, represented by logical inconsistencies. Diagnosis - the task of finding the faulty components - reduces to finding the components, the abnormalities of which could explain all the logical inconsistencies. One seeks a minimal set of faulty components (denoted a minimal diagnosis), because the trivial solution, in which all components are deemed to be faulty, always explains all inconsistencies. In the methods of the cited articles, the minimal-diagnosis problem is treated as equivalent to a minimal-hitting-set problem, which is translated from a combinatorial to a computational problem by mapping it onto the Boolean-satisfiability and integer-programming problems. The integer-programming approach taken in one of the prior methods is complete (in the sense that it is guaranteed to find a solution if one exists) and slow and yields a lower bound on the size of the

  5. L1Track: A fast Level 1 track trigger for the ATLAS high luminosity upgrade

    NASA Astrophysics Data System (ADS)

    Cerri, Alessandro

    2016-07-01

    With the planned high-luminosity upgrade of the LHC (HL-LHC), the ATLAS detector will see its collision rate increase by approximately a factor of 5 with respect to the current LHC operation. The earliest hardware-based ATLAS trigger stage ("Level 1") will have to provide a higher rejection factor in a more difficult environment: a new improved Level 1 trigger architecture is under study, which includes the possibility of extracting with low latency and high accuracy tracking information in time for the decision taking process. In this context, the feasibility of potential approaches aimed at providing low-latency high-quality tracking at Level 1 is discussed.

  6. Modal analysis of rotating plate using tracking laser Doppler vibrometer: algorithm modification

    NASA Astrophysics Data System (ADS)

    Khalil, Hossam; Kim, Dongkyu; Nam, Joonsik; Park, Kyihwan

    2015-07-01

    A modified algorithm for tracking laser Doppler vibrometer (TLDV) is introduced to measure the vibration of rotating objects. The proposed algorithm unlike the old algorithm for TLDV can be used when the speed of the object to be tracked varies continuously or alternating in a small range. The proposed algorithm is to use encoder only as a position sensor. The position from the encoder is used to calculate the driving signals to the galvanometers. To verify the proposed method, experimental modal analysis of the circular plate in stationary and rotating cases are made.

  7. Fast Flux Test Facility Asbestos Location Tracking Program

    SciTech Connect

    REYNOLDS, J.A.

    1999-04-13

    Procedure Number HNF-PRO-408, revision 0, paragraph 1.0, ''Purpose,'' and paragraph 2.0, ''Requirements for Facility Management of Asbestos,'' relate building inspection and requirements for documentation of existing asbestos-containing building material (ACBM) per each building assessment. This documentation shall be available to all personnel (including contractor personnel) entering the facility at their request. Corrective action was required by 400 Area Integrated Annual Appraisal/Audit for Fiscal Year 1992 (IAA-92-0007) to provide this notification documentation. No formal method had been developed to communicate the location and nature of ACBM to maintenance personnel in the Fast Flux Test Facility (FFTF) 400 Area. The scope of this Data Package Document is to locate and evaluate any ACBM found at FFTF which constitutes a baseline. This includes all buildings within the protected area. These findings are compiled from earlier reports, numerous work packages and engineering evaluations of employee findings.

  8. Fast track-finding processor based on RAM look-up table for the VENUS detector at KEK

    NASA Astrophysics Data System (ADS)

    Ohsugi, T.; Chiba, Y.; Hayashibara, I.; Taketani, A.; Yasuishi, S.; Arai, Y.; Sakamoto, H.; Uehara, S.

    1988-06-01

    We have developed a fast track-finding processor using signals from the central tracking chamber of the VENUS detector in the TRISTAN experiments. Particle tracks are recognized by a look-up table made with a high-speed static RAM. This method enables us to implement the track finder in the first level triggering. The track finder has been working excellently under heavy background due to synchrotron radiation. A processing time of 110 ns is attained.

  9. FAST TRACK PAPER: Receiver function decomposition of OBC data: theory

    NASA Astrophysics Data System (ADS)

    Edme, Pascal; Singh, Satish C.

    2009-06-01

    This paper deals with theoretical aspects of wavefield decomposition of Ocean Bottom Cable (OBC) data in the τ-p domain, considering a horizontally layered medium. We present both the acoustic decomposition and elastic decomposition procedures in a simple and compatible way. Acoustic decomposition aims at estimating the primary upgoing P wavefield just above the ocean-bottom, whereas elastic decomposition aims at estimating the primary upgoing P and S wavefields just below the ocean-bottom. Specific issues due to the interference phenomena at the receiver level are considered. Our motivation is to introduce the two-step decomposition scheme called `receiver function' (RF) decomposition that aims at determining the primary upgoing P and S wavefields (RFP and RFS, free of any water layer multiples). We show that elastic decomposition is a necessary step (acting as pre-conditioning) before applying the multiple removal step by predictive deconvolution. We show the applicability of our algorithm on a synthetic data example.

  10. An algorithm for fast DNS cavitating flows simulations using homogeneous mixture approach

    NASA Astrophysics Data System (ADS)

    Žnidarčič, A.; Coutier-Delgosha, O.; Marquillie, M.; Dular, M.

    2015-12-01

    A new algorithm for fast DNS cavitating flows simulations is developed. The algorithm is based on Kim and Moin projection method form. Homogeneous mixture approach with transport equation for vapour volume fraction is used to model cavitation and various cavitation models can be used. Influence matrix and matrix diagonalisation technique enable fast parallel computations.

  11. Fast Track Initiative: Building a Global Compact for Education. Education Notes

    ERIC Educational Resources Information Center

    Human Development Network Education, 2005

    2005-01-01

    This note series is intended to summarize lessons learned and key policy findings on the World Bank's work in education. "Fast Track Initiative" ("FTI") was launched in 2002 as a partnership between donor and developing countries to accelerate progress towards the Millennium Development Goal (MDG) of universal primary education. "FTI" is built on…

  12. New Medical-School Programs Put Students on a Fast Track to the White Coat

    ERIC Educational Resources Information Center

    Mangan, Katherine

    2009-01-01

    California's lieutenant governor has proposed a fast-track medical school that would shave three years off the training needed to become a physician. It is not the first time such an idea has been offered. The proposal, for a hoped-for medical school at the University of California at Merced, struck some medical educators as both unrealistic and…

  13. The Effects of the Fast Track Preventive Intervention on the Development of Conduct Disorder across Childhood

    ERIC Educational Resources Information Center

    Child Development, 2011

    2011-01-01

    The impact of the Fast Track intervention on externalizing disorders across childhood was examined. Eight hundred-ninety-one early-starting children (69% male; 51% African American) were randomly assigned by matched sets of schools to intervention or control conditions. The 10-year intervention addressed parent behavior-management, child social…

  14. Ultrasound Image-guided Tracking Algorithm for Moving-tumor Treatment

    NASA Astrophysics Data System (ADS)

    Chang, Kai-Hsiang; Ho, Ming-Chih; Yeh, Chi-Chuan; Lian, Feng-Li; Yen, Jia-Yush; Chen, Yung-Yaw

    2011-09-01

    Image-guided technology, such as MR-guided focused ultrasound surgery, has recently proposed as a treatment for moving-tumor. However, the 3 Hz frame rate of MR imaging is still too slow for real-time tracking of the tumor in motion. The fact that a 30 Hz frame rate can easily be achieved with the ultrasound imaging system makes it a very viable option. In this study, an ultrasound imaging tracking algorithm for liver tumor has been developed. The proposed ultrasound imaging tracking algorithm utilized the concepts of pattern matching, local search, and image correlation to track a pre-specified target area in real time. In order to know the resolution of the proposed tracking algorithm, animal experiments were conducted. Three 6 degree-of-freedom electromagnetic tracking sensors, the 3D guidance trakSTAR, were surgically attached to the liver of anesthetized pigs. The liver motion could then be derived from the position signal from the trakSTAR sensors with a resolution of 0.5 mm. The in-vivo experiments showed the tracking accuracy of the ultrasound-guided tracking algorithm is better than 1 mm for moving tumors.

  15. Visual Tracking Based on an Improved Online Multiple Instance Learning Algorithm.

    PubMed

    Wang, Li Jia; Zhang, Hua

    2016-01-01

    An improved online multiple instance learning (IMIL) for a visual tracking algorithm is proposed. In the IMIL algorithm, the importance of each instance contributing to a bag probability is with respect to their probabilities. A selection strategy based on an inner product is presented to choose weak classifier from a classifier pool, which avoids computing instance probabilities and bag probability M times. Furthermore, a feedback strategy is presented to update weak classifiers. In the feedback update strategy, different weights are assigned to the tracking result and template according to the maximum classifier score. Finally, the presented algorithm is compared with other state-of-the-art algorithms. The experimental results demonstrate that the proposed tracking algorithm runs in real-time and is robust to occlusion and appearance changes.

  16. Visual Tracking Based on an Improved Online Multiple Instance Learning Algorithm.

    PubMed

    Wang, Li Jia; Zhang, Hua

    2016-01-01

    An improved online multiple instance learning (IMIL) for a visual tracking algorithm is proposed. In the IMIL algorithm, the importance of each instance contributing to a bag probability is with respect to their probabilities. A selection strategy based on an inner product is presented to choose weak classifier from a classifier pool, which avoids computing instance probabilities and bag probability M times. Furthermore, a feedback strategy is presented to update weak classifiers. In the feedback update strategy, different weights are assigned to the tracking result and template according to the maximum classifier score. Finally, the presented algorithm is compared with other state-of-the-art algorithms. The experimental results demonstrate that the proposed tracking algorithm runs in real-time and is robust to occlusion and appearance changes. PMID:26843855

  17. Visual Tracking Based on an Improved Online Multiple Instance Learning Algorithm

    PubMed Central

    Wang, Li Jia; Zhang, Hua

    2016-01-01

    An improved online multiple instance learning (IMIL) for a visual tracking algorithm is proposed. In the IMIL algorithm, the importance of each instance contributing to a bag probability is with respect to their probabilities. A selection strategy based on an inner product is presented to choose weak classifier from a classifier pool, which avoids computing instance probabilities and bag probability M times. Furthermore, a feedback strategy is presented to update weak classifiers. In the feedback update strategy, different weights are assigned to the tracking result and template according to the maximum classifier score. Finally, the presented algorithm is compared with other state-of-the-art algorithms. The experimental results demonstrate that the proposed tracking algorithm runs in real-time and is robust to occlusion and appearance changes. PMID:26843855

  18. Research on shaftless fast-steering mirror used in a precision tracking-aiming system

    NASA Astrophysics Data System (ADS)

    Zhou, Jianmin; Yin, Hongyan; Wang, Yonghui; Guo, Jin

    2007-12-01

    Based on the analysis of principle of tracking and aiming system, some important factors to design the structure of tracking-aiming system and the layout of optical system are discussed. Besides, the paper gives the present developing situation of fast-steering mirror at home and abroad, analyzes the advantages and disadvantages of FSM with axis, and presents a novel design of flexible axis FSM. The main axis of composite axis system is tracked by motor to drive the frame, and the sub-axis is tracked by voice coil motor (VCM) to drive FSM. The structure of FSM and designing principle of VCM are introduced, and the emulation analyses of inherent frequency and deformation under load of the FSM with software COSMOS are also given.

  19. Lightning Jump Algorithm and Relation to Thunderstorm Cell Tracking, GLM Proxy and other Meteorological Measurements

    NASA Technical Reports Server (NTRS)

    Schultz, Christopher J.; Carey, Larry; Cecil, Dan; Bateman, Monte; Stano, Geoffrey; Goodman, Steve

    2012-01-01

    Objective of project is to refine, adapt and demonstrate the Lightning Jump Algorithm (LJA) for transition to GOES -R GLM (Geostationary Lightning Mapper) readiness and to establish a path to operations Ongoing work . reducing risk in GLM lightning proxy, cell tracking, LJA algorithm automation, and data fusion (e.g., radar + lightning).

  20. A fast and memory-sparing probabilistic selection algorithm for the GPU

    SciTech Connect

    Monroe, Laura M; Wendelberger, Joanne; Michalak, Sarah

    2010-09-29

    A fast and memory-sparing probabilistic top-N selection algorithm is implemented on the GPU. This probabilistic algorithm gives a deterministic result and always terminates. The use of randomization reduces the amount of data that needs heavy processing, and so reduces both the memory requirements and the average time required for the algorithm. This algorithm is well-suited to more general parallel processors with multiple layers of memory hierarchy. Probabilistic Las Vegas algorithms of this kind are a form of stochastic optimization and can be especially useful for processors having a limited amount of fast memory available.

  1. A novel track reconstruction algorithm for photoelectric X-ray polarimetry

    NASA Astrophysics Data System (ADS)

    Li, Tenglin; Li, Hong; Feng, Hua; Zeng, Ming

    2016-07-01

    The key to the photoelectric X-ray polarimetry is the determination of the emission direction of photoelectrons. Due to the low mass of an electron, the ionization track is not straight and the useful information is stored only in its initial part where less energy is deposited. We present a new algorithm in order to reconstruct the electron track from a 2D track image that is blurred due to diffusion during drift in the gas chamber. The algorithm is based on the shortest path problem in graph theory, and a spatial energy filter is implemented as an improvement. Tested with simulated data, which approximate the real measurement with the gas pixel detector, we find that the new algorithm is able to trace the initial part of the track more closely and produce a higher degree of modulation than past algorithms, especially for long tracks created by high energy X-rays, in which cases the past algorithms may fail due to complicated track patterns.

  2. A fast look-up algorithm for detecting repetitive DNA sequences

    SciTech Connect

    Guan, X.; Uberbacher, E.C.

    1996-12-31

    We have presented a fast linear time algorithm for recognizing tandem repeats. Our algorithm is a one pass algorithm. No information about the periodicity of tandem repeats is needed. The use of the indices calculated from non-continuous and overlapping {kappa}-tuples allow tandem repeats with insertions and deletions to be recognized.

  3. Fast and stable algorithms for computing the principal square root of a complex matrix

    NASA Technical Reports Server (NTRS)

    Shieh, Leang S.; Lian, Sui R.; Mcinnis, Bayliss C.

    1987-01-01

    This note presents recursive algorithms that are rapidly convergent and more stable for finding the principal square root of a complex matrix. Also, the developed algorithms are utilized to derive the fast and stable matrix sign algorithms which are useful in developing applications to control system problems.

  4. A novel multitarget tracking algorithm for Myosin VI protein molecules on actin filaments in TIRFM sequences.

    PubMed

    Li, G; Sanchez, V; Nagaraj, P C S B; Khan, S; Rajpoot, N

    2015-12-01

    We propose a novel multitarget tracking framework for Myosin VI protein molecules in total internal reflection fluorescence microscopy sequences which integrates an extended Hungarian algorithm with an interacting multiple model filter. The extended Hungarian algorithm, which is a linear assignment problem based method, helps to solve measurement assignment and spot association problems commonly encountered when dealing with multiple targets, although a two-motion model interacting multiple model filter increases the tracking accuracy by modelling the nonlinear dynamics of Myosin VI protein molecules on actin filaments. The evaluation of our tracking framework is conducted on both real and synthetic total internal reflection fluorescence microscopy sequences. The results show that the framework achieves higher tracking accuracies compared to the state-of-the-art tracking methods, especially for sequences with high spot density. PMID:26259144

  5. Out-of-sequence measurement updates for multi-hypothesis tracking algorithms

    NASA Astrophysics Data System (ADS)

    Chan, Stephanie; Paffenroth, Randy

    2008-04-01

    In multi-sensor tracking systems, observations are often exchanged over a network for processing. Network delays create situations in which measurements arrive out-of-sequence. The out-of-sequence measurement (OOSM) update problem is of particular significance in networked multiple hypothesis tracking (MHT) algorithms. The advantage of MHT is the ability to revoke past measurement assignment decisions as future information becomes available. Accordingly, we not only have to deal with network delays for initial assignment, but must also address delayed assignment revocations. We study the performance of extant algorithms and two algorithm modifications for the purpose of OOSM filtering in MHT architectures.

  6. Online Tracking Algorithms on GPUs for the P̅ANDA Experiment at FAIR

    NASA Astrophysics Data System (ADS)

    Bianchi, L.; Herten, A.; Ritman, J.; Stockmanns, T.; Adinetz, A.; Kraus, J.; Pleiter, D.

    2015-12-01

    P̅ANDA is a future hadron and nuclear physics experiment at the FAIR facility in construction in Darmstadt, Germany. In contrast to the majority of current experiments, PANDA's strategy for data acquisition is based on event reconstruction from free-streaming data, performed in real time entirely by software algorithms using global detector information. This paper reports the status of the development of algorithms for the reconstruction of charged particle tracks, optimized online data processing applications, using General-Purpose Graphic Processing Units (GPU). Two algorithms for trackfinding, the Triplet Finder and the Circle Hough, are described, and details of their GPU implementations are highlighted. Average track reconstruction times of less than 100 ns are obtained running the Triplet Finder on state-of- the-art GPU cards. In addition, a proof-of-concept system for the dispatch of data to tracking algorithms using Message Queues is presented.

  7. FAST-PT: a novel algorithm to calculate convolution integrals in cosmological perturbation theory

    NASA Astrophysics Data System (ADS)

    McEwen, Joseph E.; Fang, Xiao; Hirata, Christopher M.; Blazek, Jonathan A.

    2016-09-01

    We present a novel algorithm, FAST-PT, for performing convolution or mode-coupling integrals that appear in nonlinear cosmological perturbation theory. The algorithm uses several properties of gravitational structure formation—the locality of the dark matter equations and the scale invariance of the problem—as well as Fast Fourier Transforms to describe the input power spectrum as a superposition of power laws. This yields extremely fast performance, enabling mode-coupling integral computations fast enough to embed in Monte Carlo Markov Chain parameter estimation. We describe the algorithm and demonstrate its application to calculating nonlinear corrections to the matter power spectrum, including one-loop standard perturbation theory and the renormalization group approach. We also describe our public code (in Python) to implement this algorithm. The code, along with a user manual and example implementations, is available at https://github.com/JoeMcEwen/FAST-PT.

  8. Fast TPC Online Tracking on GPUs and Asynchronous Data Processing in the ALICE HLT to facilitate Online Calibration

    NASA Astrophysics Data System (ADS)

    Rohr, David; Gorbunov, Sergey; Krzewicki, Mikolaj; Breitner, Timo; Kretz, Matthias; Lindenstruth, Volker

    2015-12-01

    ALICE (A Large Heavy Ion Experiment) is one of the four major experiments at the Large Hadron Collider (LHC) at CERN, which is today the most powerful particle accelerator worldwide. The High Level Trigger (HLT) is an online compute farm of about 200 nodes, which reconstructs events measured by the ALICE detector in real-time. The HLT uses a custom online data-transport framework to distribute data and workload among the compute nodes. ALICE employs several calibration-sensitive subdetectors, e.g. the TPC (Time Projection Chamber). For a precise reconstruction, the HLT has to perform the calibration online. Online- calibration can make certain Offline calibration steps obsolete and can thus speed up Offline analysis. Looking forward to ALICE Run III starting in 2020, online calibration becomes a necessity. The main detector used for track reconstruction is the TPC. Reconstructing the trajectories in the TPC is the most compute-intense step during event reconstruction. Therefore, a fast tracking implementation is of great importance. Reconstructed TPC tracks build the basis for the calibration making a fast online-tracking mandatory. We present several components developed for the ALICE High Level Trigger to perform fast event reconstruction and to provide features required for online calibration. As first topic, we present our TPC tracker, which employs GPUs to speed up the processing, and which bases on a Cellular Automaton and on the Kalman filter. Our TPC tracking algorithm has been successfully used in 2011 and 2012 in the lead-lead and the proton-lead runs. We have improved it to leverage features of newer GPUs and we have ported it to support OpenCL, CUDA, and CPUs with a single common source code. This makes us vendor independent. As second topic, we present framework extensions required for online calibration. The extensions, however, are generic and can be used for other purposes as well. We have extended the framework to support asynchronous compute

  9. A fast portable implementation of the Secure Hash Algorithm, III.

    SciTech Connect

    McCurley, Kevin S.

    1992-10-01

    In 1992, NIST announced a proposed standard for a collision-free hash function. The algorithm for producing the hash value is known as the Secure Hash Algorithm (SHA), and the standard using the algorithm in known as the Secure Hash Standard (SHS). Later, an announcement was made that a scientist at NSA had discovered a weakness in the original algorithm. A revision to this standard was then announced as FIPS 180-1, and includes a slight change to the algorithm that eliminates the weakness. This new algorithm is called SHA-1. In this report we describe a portable and efficient implementation of SHA-1 in the C language. Performance information is given, as well as tips for porting the code to other architectures. We conclude with some observations on the efficiency of the algorithm, and a discussion of how the efficiency of SHA might be improved.

  10. A Novel Validation Algorithm Allows for Automated Cell Tracking and the Extraction of Biologically Meaningful Parameters

    PubMed Central

    Madany Mamlouk, Amir; Schicktanz, Simone; Kruse, Charli

    2011-01-01

    Automated microscopy is currently the only method to non-invasively and label-free observe complex multi-cellular processes, such as cell migration, cell cycle, and cell differentiation. Extracting biological information from a time-series of micrographs requires each cell to be recognized and followed through sequential microscopic snapshots. Although recent attempts to automatize this process resulted in ever improving cell detection rates, manual identification of identical cells is still the most reliable technique. However, its tedious and subjective nature prevented tracking from becoming a standardized tool for the investigation of cell cultures. Here, we present a novel method to accomplish automated cell tracking with a reliability comparable to manual tracking. Previously, automated cell tracking could not rival the reliability of manual tracking because, in contrast to the human way of solving this task, none of the algorithms had an independent quality control mechanism; they missed validation. Thus, instead of trying to improve the cell detection or tracking rates, we proceeded from the idea to automatically inspect the tracking results and accept only those of high trustworthiness, while rejecting all other results. This validation algorithm works independently of the quality of cell detection and tracking through a systematic search for tracking errors. It is based only on very general assumptions about the spatiotemporal contiguity of cell paths. While traditional tracking often aims to yield genealogic information about single cells, the natural outcome of a validated cell tracking algorithm turns out to be a set of complete, but often unconnected cell paths, i.e. records of cells from mitosis to mitosis. This is a consequence of the fact that the validation algorithm takes complete paths as the unit of rejection/acceptance. The resulting set of complete paths can be used to automatically extract important biological parameters with high

  11. Fast inverse scattering solutions using the distorted Born iterative method and the multilevel fast multipole algorithm

    PubMed Central

    Hesford, Andrew J.; Chew, Weng C.

    2010-01-01

    The distorted Born iterative method (DBIM) computes iterative solutions to nonlinear inverse scattering problems through successive linear approximations. By decomposing the scattered field into a superposition of scattering by an inhomogeneous background and by a material perturbation, large or high-contrast variations in medium properties can be imaged through iterations that are each subject to the distorted Born approximation. However, the need to repeatedly compute forward solutions still imposes a very heavy computational burden. To ameliorate this problem, the multilevel fast multipole algorithm (MLFMA) has been applied as a forward solver within the DBIM. The MLFMA computes forward solutions in linear time for volumetric scatterers. The typically regular distribution and shape of scattering elements in the inverse scattering problem allow the method to take advantage of data redundancy and reduce the computational demands of the normally expensive MLFMA setup. Additional benefits are gained by employing Kaczmarz-like iterations, where partial measurements are used to accelerate convergence. Numerical results demonstrate both the efficiency of the forward solver and the successful application of the inverse method to imaging problems with dimensions in the neighborhood of ten wavelengths. PMID:20707438

  12. Interacting with target tracking algorithms in a gaze-enhanced motion video analysis system

    NASA Astrophysics Data System (ADS)

    Hild, Jutta; Krüger, Wolfgang; Heinze, Norbert; Peinsipp-Byma, Elisabeth; Beyerer, Jürgen

    2016-05-01

    Motion video analysis is a challenging task, particularly if real-time analysis is required. It is therefore an important issue how to provide suitable assistance for the human operator. Given that the use of customized video analysis systems is more and more established, one supporting measure is to provide system functions which perform subtasks of the analysis. Recent progress in the development of automated image exploitation algorithms allow, e.g., real-time moving target tracking. Another supporting measure is to provide a user interface which strives to reduce the perceptual, cognitive and motor load of the human operator for example by incorporating the operator's visual focus of attention. A gaze-enhanced user interface is able to help here. This work extends prior work on automated target recognition, segmentation, and tracking algorithms as well as about the benefits of a gaze-enhanced user interface for interaction with moving targets. We also propose a prototypical system design aiming to combine both the qualities of the human observer's perception and the automated algorithms in order to improve the overall performance of a real-time video analysis system. In this contribution, we address two novel issues analyzing gaze-based interaction with target tracking algorithms. The first issue extends the gaze-based triggering of a target tracking process, e.g., investigating how to best relaunch in the case of track loss. The second issue addresses the initialization of tracking algorithms without motion segmentation where the operator has to provide the system with the object's image region in order to start the tracking algorithm.

  13. Vision-based measurement for rotational speed by improving Lucas-Kanade template tracking algorithm.

    PubMed

    Guo, Jie; Zhu, Chang'an; Lu, Siliang; Zhang, Dashan; Zhang, Chunyu

    2016-09-01

    Rotational angle and speed are important parameters for condition monitoring and fault diagnosis of rotating machineries, and their measurement is useful in precision machining and early warning of faults. In this study, a novel vision-based measurement algorithm is proposed to complete this task. A high-speed camera is first used to capture the video of the rotational object. To extract the rotational angle, the template-based Lucas-Kanade algorithm is introduced to complete motion tracking by aligning the template image in the video sequence. Given the special case of nonplanar surface of the cylinder object, a nonlinear transformation is designed for modeling the rotation tracking. In spite of the unconventional and complex form, the transformation can realize angle extraction concisely with only one parameter. A simulation is then conducted to verify the tracking effect, and a practical tracking strategy is further proposed to track consecutively the video sequence. Based on the proposed algorithm, instantaneous rotational speed (IRS) can be measured accurately and efficiently. Finally, the effectiveness of the proposed algorithm is verified on a brushless direct current motor test rig through the comparison with results obtained by the microphone. Experimental results demonstrate that the proposed algorithm can extract accurately rotational angles and can measure IRS with the advantage of noncontact and effectiveness. PMID:27607300

  14. Ballistic target tracking algorithm based on improved particle filtering

    NASA Astrophysics Data System (ADS)

    Ning, Xiao-lei; Chen, Zhan-qi; Li, Xiao-yang

    2015-10-01

    Tracking ballistic re-entry target is a typical nonlinear filtering problem. In order to track the ballistic re-entry target in the nonlinear and non-Gaussian complex environment, a novel chaos map particle filter (CMPF) is used to estimate the target state. CMPF has better performance in application to estimate the state and parameter of nonlinear and non-Gassuian system. The Monte Carlo simulation results show that, this method can effectively solve particle degeneracy and particle impoverishment problem by improving the efficiency of particle sampling to obtain the better particles to part in estimation. Meanwhile CMPF can improve the state estimation precision and convergence velocity compared with EKF, UKF and the ordinary particle filter.

  15. Lightning Jump Algorithm and Relation to Thunderstorm Cell Tracking, GLM Proxy and Other Meteorological Measurements

    NASA Technical Reports Server (NTRS)

    Schultz, Christopher J.; Carey, Lawrence D.; Cecil, Daniel J.; Bateman, Monte

    2012-01-01

    The lightning jump algorithm has a robust history in correlating upward trends in lightning to severe and hazardous weather occurrence. The algorithm uses the correlation between the physical principles that govern an updraft's ability to produce microphysical and kinematic conditions conducive for electrification and its role in the development of severe weather conditions. Recent work has demonstrated that the lightning jump algorithm concept holds significant promise in the operational realm, aiding in the identification of thunderstorms that have potential to produce severe or hazardous weather. However, a large amount of work still needs to be completed in spite of these positive results. The total lightning jump algorithm is not a stand-alone concept that can be used independent of other meteorological measurements, parameters, and techniques. For example, the algorithm is highly dependent upon thunderstorm tracking to build lightning histories on convective cells. Current tracking methods show that thunderstorm cell tracking is most reliable and cell histories are most accurate when radar information is incorporated with lightning data. In the absence of radar data, the cell tracking is a bit less reliable but the value added by the lightning information is much greater. For optimal application, the algorithm should be integrated with other measurements that assess storm scale properties (e.g., satellite, radar). Therefore, the recent focus of this research effort has been assessing the lightning jump's relation to thunderstorm tracking, meteorological parameters, and its potential uses in operational meteorology. Furthermore, the algorithm must be tailored for the optically-based GOES-R Geostationary Lightning Mapper (GLM), as what has been observed using Very High Frequency Lightning Mapping Array (VHF LMA) measurements will not exactly translate to what will be observed by GLM due to resolution and other instrument differences. Herein, we present some of

  16. Preventing Serious Conduct Problems in School-Age Youths: The Fast Track Program

    PubMed Central

    Slough, Nancy M.; McMahon, Robert J.; Bierman, Karen L.; Coie, John D.; Dodge, Kenneth A.; Foster, E. Michael; Greenberg, Mark T.; Lochman, John E.; McMahon, Robert J.; Pinderhughes, Ellen E.

    2009-01-01

    Children with early-starting conduct Problems have a very poor prognosis and exact a high cost to society. The Fast Track project is a multisite, collaborative research project investigating the efficacy of a comprehensive, long-term, multicomponent intervention designed to prevent the development of serious conduct problems in high-risk children. In this article, we (a) provide an overview of the development model that serves as the conceptual foundation for the Fast Track intervention and describe its integration into the intervention model; (b) outline the research design and intervention model, with an emphasis on the elementary school phase of the intervention; and (c) summarize findings to dale concerning intervention outcomes. We then provide a case illustration, and conclude with a discussion of guidelines for practitioners who work with children with conduct problems. PMID:19890487

  17. A fast algorithm for nonnegative matrix factorization and its convergence.

    PubMed

    Li, Li-Xin; Wu, Lin; Zhang, Hui-Sheng; Wu, Fang-Xiang

    2014-10-01

    Nonnegative matrix factorization (NMF) has recently become a very popular unsupervised learning method because of its representational properties of factors and simple multiplicative update algorithms for solving the NMF. However, for the common NMF approach of minimizing the Euclidean distance between approximate and true values, the convergence of multiplicative update algorithms has not been well resolved. This paper first discusses the convergence of existing multiplicative update algorithms. We then propose a new multiplicative update algorithm for minimizing the Euclidean distance between approximate and true values. Based on the optimization principle and the auxiliary function method, we prove that our new algorithm not only converges to a stationary point, but also does faster than existing ones. To verify our theoretical results, the experiments on three data sets have been conducted by comparing our proposed algorithm with other existing methods.

  18. [A fast non-local means algorithm for denoising of computed tomography images].

    PubMed

    Kang, Changqing; Cao, Wenping; Fang, Lei; Hua, Li; Cheng, Hong

    2012-11-01

    A fast non-local means image denoising algorithm is presented based on the single motif of existing computed tomography images in medical archiving systems. The algorithm is carried out in two steps of prepossessing and actual possessing. The sample neighborhood database is created via the data structure of locality sensitive hashing in the prepossessing stage. The CT image noise is removed by non-local means algorithm based on the sample neighborhoods accessed fast by locality sensitive hashing. The experimental results showed that the proposed algorithm could greatly reduce the execution time, as compared to NLM, and effectively preserved the image edges and details.

  19. Fast left ventricle tracking in CMR images using localized anatomical affine optical flow

    NASA Astrophysics Data System (ADS)

    Queirós, Sandro; Vilaça, João. L.; Morais, Pedro; Fonseca, Jaime C.; D'hooge, Jan; Barbosa, Daniel

    2015-03-01

    In daily cardiology practice, assessment of left ventricular (LV) global function using non-invasive imaging remains central for the diagnosis and follow-up of patients with cardiovascular diseases. Despite the different methodologies currently accessible for LV segmentation in cardiac magnetic resonance (CMR) images, a fast and complete LV delineation is still limitedly available for routine use. In this study, a localized anatomically constrained affine optical flow method is proposed for fast and automatic LV tracking throughout the full cardiac cycle in short-axis CMR images. Starting from an automatically delineated LV in the end-diastolic frame, the endocardial and epicardial boundaries are propagated by estimating the motion between adjacent cardiac phases using optical flow. In order to reduce the computational burden, the motion is only estimated in an anatomical region of interest around the tracked boundaries and subsequently integrated into a local affine motion model. Such localized estimation enables to capture complex motion patterns, while still being spatially consistent. The method was validated on 45 CMR datasets taken from the 2009 MICCAI LV segmentation challenge. The proposed approach proved to be robust and efficient, with an average distance error of 2.1 mm and a correlation with reference ejection fraction of 0.98 (1.9 +/- 4.5%). Moreover, it showed to be fast, taking 5 seconds for the tracking of a full 4D dataset (30 ms per image). Overall, a novel fast, robust and accurate LV tracking methodology was proposed, enabling accurate assessment of relevant global function cardiac indices, such as volumes and ejection fraction

  20. A fast track path improves access to palliative care for people with learning disabilities.

    PubMed

    Whitington, Jane; Ma, Peng

    People with learning disabilities often experience inequalities in accessing general health services. This group, their families and carers need access to effective palliative care when facing a life limiting illness. This article describes the development and implementation of a fast track referral pathway for people with learning disabilities at St Francis Hospice in Essex. Our aim is to share this pathway so others can replicate the collaborative working to improve access to palliative care services for this group. PMID:20514883

  1. FAST: A fully asynchronous and status-tracking pattern for geoprocessing services orchestration

    NASA Astrophysics Data System (ADS)

    Wu, Huayi; You, Lan; Gui, Zhipeng; Gao, Shuang; Li, Zhenqiang; Yu, Jingmin

    2014-09-01

    Geoprocessing service orchestration (GSO) provides a unified and flexible way to implement cross-application, long-lived, and multi-step geoprocessing service workflows by coordinating geoprocessing services collaboratively. Usually, geoprocessing services and geoprocessing service workflows are data and/or computing intensive. The intensity feature may make the execution process of a workflow time-consuming. Since it initials an execution request without blocking other interactions on the client side, an asynchronous mechanism is especially appropriate for GSO workflows. Many critical problems remain to be solved in existing asynchronous patterns for GSO including difficulties in improving performance, status tracking, and clarifying the workflow structure. These problems are a challenge when orchestrating performance efficiency, making statuses instantly available, and constructing clearly structured GSO workflows. A Fully Asynchronous and Status-Tracking (FAST) pattern that adopts asynchronous interactions throughout the whole communication tier of a workflow is proposed for GSO. The proposed FAST pattern includes a mechanism that actively pushes the latest status to clients instantly and economically. An independent proxy was designed to isolate the status tracking logic from the geoprocessing business logic, which assists the formation of a clear GSO workflow structure. A workflow was implemented in the FAST pattern to simulate the flooding process in the Poyang Lake region. Experimental results show that the proposed FAST pattern can efficiently tackle data/computing intensive geoprocessing tasks. The performance of all collaborative partners was improved due to the asynchronous mechanism throughout communication tier. A status-tracking mechanism helps users retrieve the latest running status of a GSO workflow in an efficient and instant way. The clear structure of the GSO workflow lowers the barriers for geospatial domain experts and model designers to

  2. Nurse initiated thrombolysis in the accident and emergency department: safe, accurate, and faster than fast track

    PubMed Central

    Heath, S; Bain, R; Andrews, A; Chida, S; Kitchen, S; Walters, M

    2003-01-01

    Objective: To reduce the time between arrival at hospital of a patient with acute myocardial infarction and administration of thrombolytic therapy (door to needle time) by the introduction of nurse initiated thrombolysis in the accident and emergency department. Methods: Two acute chest pain nurse specialists (ACPNS) based in A&E for 62.5 hours of the week were responsible for initiating thrombolysis in the A&E department. The service reverts to a "fast track" system outside of these hours, with the on call medical team prescribing thrombolysis on the coronary care unit. Prospectively gathered data were analysed for a nine month period and a head to head comparison made between the mean and median door to needle times for both systems of thrombolysis delivery. Results: Data from 91 patients were analysed; 43 (47%) were thrombolysed in A&E by the ACPNS and 48 (53%) were thrombolysed in the coronary care unit by the on call medical team. The ACPNS achieved a median door to needle time of 23 minutes (IQR=17 to 32) compared with 56 minutes (IQR=34 to 79.5) for the fast track. The proportion of patients thrombolysed in 30 minutes by the ACPNS and fast track system was 72% (31 of 43) and 21% (10 of 48) respectively (difference=51%, 95% confidence intervals 34% to 69%, p<0.05). Conclusion: Diagnosis of acute myocardial infarction and administration of thrombolysis by experienced cardiology nurses in A&E is a safe and effective strategy for reducing door to needle times, even when compared with a conventional fast track system. PMID:12954678

  3. Data Association and Bullet Tracking Algorithms for the Fight Sight Experiment

    SciTech Connect

    Breitfeller, E; Roberts, R

    2005-10-07

    Previous LLNL investigators developed a bullet and projectile tracking system over a decade ago. Renewed interest in the technology has spawned research that culminated in a live-fire experiment, called Fight Sight, in September 2005. The experiment was more complex than previous LLNL bullet tracking experiments in that it included multiple shooters with simultaneous fire, new sensor-shooter geometries, large amounts of optical clutter, and greatly increased sensor-shooter distances. This presentation describes the data association and tracking algorithms for the Fight Sight experiment. Image processing applied to the imagery yields a sequence of bullet features which are input to a data association routine. The data association routine matches features with existing tracks, or initializes new tracks as needed. A Kalman filter is used to smooth and extrapolate existing tracks. The Kalman filter is also used to back-track bullets to their point of origin, thereby revealing the location of the shooter. It also provides an error ellipse for each shooter, quantifying the uncertainty of shooter location. In addition to describing the data association and tracking algorithms, several examples from the Fight Sight experiment are also presented.

  4. Recent numerical and algorithmic advances within the volume tracking framework for modeling interfacial flows

    DOE PAGESBeta

    François, Marianne M.

    2015-05-28

    A review of recent advances made in numerical methods and algorithms within the volume tracking framework is presented. The volume tracking method, also known as the volume-of-fluid method has become an established numerical approach to model and simulate interfacial flows. Its advantage is its strict mass conservation. However, because the interface is not explicitly tracked but captured via the material volume fraction on a fixed mesh, accurate estimation of the interface position, its geometric properties and modeling of interfacial physics in the volume tracking framework remain difficult. Several improvements have been made over the last decade to address these challenges.more » In this study, the multimaterial interface reconstruction method via power diagram, curvature estimation via heights and mean values and the balanced-force algorithm for surface tension are highlighted.« less

  5. Recent numerical and algorithmic advances within the volume tracking framework for modeling interfacial flows

    SciTech Connect

    François, Marianne M.

    2015-05-28

    A review of recent advances made in numerical methods and algorithms within the volume tracking framework is presented. The volume tracking method, also known as the volume-of-fluid method has become an established numerical approach to model and simulate interfacial flows. Its advantage is its strict mass conservation. However, because the interface is not explicitly tracked but captured via the material volume fraction on a fixed mesh, accurate estimation of the interface position, its geometric properties and modeling of interfacial physics in the volume tracking framework remain difficult. Several improvements have been made over the last decade to address these challenges. In this study, the multimaterial interface reconstruction method via power diagram, curvature estimation via heights and mean values and the balanced-force algorithm for surface tension are highlighted.

  6. The implementation of an automated tracking algorithm for the track detection of migratory anticyclones affecting the Mediterranean

    NASA Astrophysics Data System (ADS)

    Hatzaki, Maria; Flocas, Elena A.; Simmonds, Ian; Kouroutzoglou, John; Keay, Kevin; Rudeva, Irina

    2013-04-01

    Migratory cyclones and anticyclones mainly account for the short-term weather variations in extra-tropical regions. By contrast to cyclones that have drawn major scientific attention due to their direct link to active weather and precipitation, climatological studies on anticyclones are limited, even though they also are associated with extreme weather phenomena and play an important role in global and regional climate. This is especially true for the Mediterranean, a region particularly vulnerable to climate change, and the little research which has been done is essentially confined to the manual analysis of synoptic charts. For the construction of a comprehensive climatology of migratory anticyclonic systems in the Mediterranean using an objective methodology, the Melbourne University automatic tracking algorithm is applied, based to the ERA-Interim reanalysis mean sea level pressure database. The algorithm's reliability in accurately capturing the weather patterns and synoptic climatology of the transient activity has been widely proven. This algorithm has been extensively applied for cyclone studies worldwide and it has been also successfully applied for the Mediterranean, though its use for anticyclone tracking is limited to the Southern Hemisphere. In this study the performance of the tracking algorithm under different data resolutions and different choices of parameter settings in the scheme is examined. Our focus is on the appropriate modification of the algorithm in order to efficiently capture the individual characteristics of the anticyclonic tracks in the Mediterranean, a closed basin with complex topography. We show that the number of the detected anticyclonic centers and the resulting tracks largely depend upon the data resolution and the search radius. We also find that different scale anticyclones and secondary centers that lie within larger anticyclone structures can be adequately represented; this is important, since the extensions of major

  7. Fast Optimal Load Balancing Algorithms for 1D Partitioning

    SciTech Connect

    Pinar, Ali; Aykanat, Cevdet

    2002-12-09

    One-dimensional decomposition of nonuniform workload arrays for optimal load balancing is investigated. The problem has been studied in the literature as ''chains-on-chains partitioning'' problem. Despite extensive research efforts, heuristics are still used in parallel computing community with the ''hope'' of good decompositions and the ''myth'' of exact algorithms being hard to implement and not runtime efficient. The main objective of this paper is to show that using exact algorithms instead of heuristics yields significant load balance improvements with negligible increase in preprocessing time. We provide detailed pseudocodes of our algorithms so that our results can be easily reproduced. We start with a review of literature on chains-on-chains partitioning problem. We propose improvements on these algorithms as well as efficient implementation tips. We also introduce novel algorithms, which are asymptotically and runtime efficient. We experimented with data sets from two different applications: Sparse matrix computations and Direct volume rendering. Experiments showed that the proposed algorithms are 100 times faster than a single sparse-matrix vector multiplication for 64-way decompositions on average. Experiments also verify that load balance can be significantly improved by using exact algorithms instead of heuristics. These two findings show that exact algorithms with efficient implementations discussed in this paper can effectively replace heuristics.

  8. Improving GPU-accelerated adaptive IDW interpolation algorithm using fast kNN search.

    PubMed

    Mei, Gang; Xu, Nengxiong; Xu, Liangliang

    2016-01-01

    This paper presents an efficient parallel Adaptive Inverse Distance Weighting (AIDW) interpolation algorithm on modern Graphics Processing Unit (GPU). The presented algorithm is an improvement of our previous GPU-accelerated AIDW algorithm by adopting fast k-nearest neighbors (kNN) search. In AIDW, it needs to find several nearest neighboring data points for each interpolated point to adaptively determine the power parameter; and then the desired prediction value of the interpolated point is obtained by weighted interpolating using the power parameter. In this work, we develop a fast kNN search approach based on the space-partitioning data structure, even grid, to improve the previous GPU-accelerated AIDW algorithm. The improved algorithm is composed of the stages of kNN search and weighted interpolating. To evaluate the performance of the improved algorithm, we perform five groups of experimental tests. The experimental results indicate: (1) the improved algorithm can achieve a speedup of up to 1017 over the corresponding serial algorithm; (2) the improved algorithm is at least two times faster than our previous GPU-accelerated AIDW algorithm; and (3) the utilization of fast kNN search can significantly improve the computational efficiency of the entire GPU-accelerated AIDW algorithm. PMID:27610308

  9. Improving GPU-accelerated adaptive IDW interpolation algorithm using fast kNN search.

    PubMed

    Mei, Gang; Xu, Nengxiong; Xu, Liangliang

    2016-01-01

    This paper presents an efficient parallel Adaptive Inverse Distance Weighting (AIDW) interpolation algorithm on modern Graphics Processing Unit (GPU). The presented algorithm is an improvement of our previous GPU-accelerated AIDW algorithm by adopting fast k-nearest neighbors (kNN) search. In AIDW, it needs to find several nearest neighboring data points for each interpolated point to adaptively determine the power parameter; and then the desired prediction value of the interpolated point is obtained by weighted interpolating using the power parameter. In this work, we develop a fast kNN search approach based on the space-partitioning data structure, even grid, to improve the previous GPU-accelerated AIDW algorithm. The improved algorithm is composed of the stages of kNN search and weighted interpolating. To evaluate the performance of the improved algorithm, we perform five groups of experimental tests. The experimental results indicate: (1) the improved algorithm can achieve a speedup of up to 1017 over the corresponding serial algorithm; (2) the improved algorithm is at least two times faster than our previous GPU-accelerated AIDW algorithm; and (3) the utilization of fast kNN search can significantly improve the computational efficiency of the entire GPU-accelerated AIDW algorithm.

  10. Determining the bias and variance of a deterministic finger-tracking algorithm.

    PubMed

    Morash, Valerie S; van der Velden, Bas H M

    2016-06-01

    Finger tracking has the potential to expand haptic research and applications, as eye tracking has done in vision research. In research applications, it is desirable to know the bias and variance associated with a finger-tracking method. However, assessing the bias and variance of a deterministic method is not straightforward. Multiple measurements of the same finger position data will not produce different results, implying zero variance. Here, we present a method of assessing deterministic finger-tracking variance and bias through comparison to a non-deterministic measure. A proof-of-concept is presented using a video-based finger-tracking algorithm developed for the specific purpose of tracking participant fingers during a psychological research study. The algorithm uses ridge detection on videos of the participant's hand, and estimates the location of the right index fingertip. The algorithm was evaluated using data from four participants, who explored tactile maps using only their right index finger and all right-hand fingers. The algorithm identified the index fingertip in 99.78 % of one-finger video frames and 97.55 % of five-finger video frames. Although the algorithm produced slightly biased and more dispersed estimates relative to a human coder, these differences (x=0.08 cm, y=0.04 cm) and standard deviations (σ x =0.16 cm, σ y =0.21 cm) were small compared to the size of a fingertip (1.5-2.0 cm). Some example finger-tracking results are provided where corrections are made using the bias and variance estimates. PMID:26174712

  11. A Comparison of "Reading Mastery Fast Cycle" and "Horizons Fast Track A-B" on the Reading Achievement of Students with Mild Disabilities

    ERIC Educational Resources Information Center

    Cooke, Nancy L.; Gibbs, Susan L.; Campbell, Monica L.; Shalvis, Shawnna L.

    2004-01-01

    This study examined the reading gains of students with mild disabilities who were taught with one of two programs: "Horizons Fast Track A-B" (Engelmann, Engelmann, & Seitz-Davis, 1997) or "Reading Mastery Fast Cycle" (Engelmann & Bruner, 1995). A quasi-experimental design with preexisting groups was used to examine changes from pretest to…

  12. [Dosimetry of fast neutrons in 1W nuclear reactor with plastic nuclear-track detectors].

    PubMed

    Yasubuchi, S; Hoshi, M; Itoh, T; Hisanaga, S; Niwa, T; Miki, R; Kondo, S

    1989-09-01

    A nuclear reactor at Kinki University is operated at the maximum of 1W. It produces fission neutrons as much as gamma-rays. To facilitate its use for neutron radiobiology, fast neutrons inside the reactor were measured with nuclear-track detectors TS 16 N and a pair of ion chambers. The angular dependence of TS 16 N response, an anisotropy of fast neutron fluxes in the reactor and misuse of the kerma factor assumed for radiation protection business are the major causes of discrepancy is measured doses by the two methods. Correction factors for the three causes are proposed. After correction, neutron doses estimated with TS 16 N and chambers agree within 5%. The dose-rate at the reactor's center is about 20 tissue-cGy/h. This is the first in situ dosimetry of fast neutrons in a reactor with track detectors attached to biologic samples. Our routine usage has demonstrated that, if used with caution, TS 16 N elements are handy, reliable monitors for fast neutron dosimetry as they are insensitive to contaminated gamma-rays and small enough to be attached to biologic samples.

  13. Low-Complexity Saliency Detection Algorithm for Fast Perceptual Video Coding

    PubMed Central

    Liu, Pengyu; Jia, Kebin

    2013-01-01

    A low-complexity saliency detection algorithm for perceptual video coding is proposed; low-level encoding information is adopted as the characteristics of visual perception analysis. Firstly, this algorithm employs motion vector (MV) to extract temporal saliency region through fast MV noise filtering and translational MV checking procedure. Secondly, spatial saliency region is detected based on optimal prediction mode distributions in I-frame and P-frame. Then, it combines the spatiotemporal saliency detection results to define the video region of interest (VROI). The simulation results validate that the proposed algorithm can avoid a large amount of computation work in the visual perception characteristics analysis processing compared with other existing algorithms; it also has better performance in saliency detection for videos and can realize fast saliency detection. It can be used as a part of the video standard codec at medium-to-low bit-rates or combined with other algorithms in fast video coding. PMID:24489495

  14. International collaborative project to compare and track the nutritional composition of fast foods

    PubMed Central

    2012-01-01

    Background Chronic diseases are the leading cause of premature death and disability in the world with over-nutrition a primary cause of diet-related ill health. Excess quantities of energy, saturated fat, sugar and salt derived from fast foods contribute importantly to this disease burden. Our objective is to collate and compare nutrient composition data for fast foods as a means of supporting improvements in product formulation. Methods/design Surveys of fast foods will be done in each participating country each year. Information on the nutrient composition for each product will be sought either through direct chemical analysis, from fast food companies, in-store materials or from company websites. Foods will be categorized into major groups for the primary analyses which will compare mean levels of saturated fat, sugar, sodium, energy and serving size at baseline and over time. Countries currently involved include Australia, New Zealand, France, UK, USA, India, Spain, China and Canada, with more anticipated to follow. Discussion This collaborative approach to the collation and sharing of data will enable low-cost tracking of fast food composition around the world. This project represents a significant step forward in the objective and transparent monitoring of industry and government commitments to improve the quality of fast foods. PMID:22838731

  15. A new line density tracking algorithm for PEPT and its application to multiple tracers

    NASA Astrophysics Data System (ADS)

    Bickell, M.; Buffler, A.; Govender, I.; Parker, D. J.

    2012-08-01

    A new algorithm for the analysis of list mode data from positron emission particle tracking experiments is described. The method is based upon the premise that the location of the tracer is within a region of space through which the majority of lines of response pass. The algorithm scans through the data set only once and makes use of the entire set of lines of response, thus efficiently achieving the maximum possible spatial resolution. The application of the approach to the tracking of both single and multiple tracers is explored.

  16. Context exploitation in intelligence, surveillance, and reconnaissance for detection and tracking algorithms

    NASA Astrophysics Data System (ADS)

    Tucker, Jonathan D.; Stanfill, S. Robert

    2015-05-01

    Intelligence, Surveillance, and Reconnaissance (ISR) missions involve complex analysis of sensor data that can benefit from the exploitation of geographically aligned context. In this paper we discuss our approach to utilizing geo-registered imagery and context for the purpose of aiding ISR detection and tracking applications. Specifically this includes rendering context masks on imagery, increasing the speed at which detection algorithms process data, providing a way to intelligently control detection density for given ground areas, identifying difficult traffic terrain, refining peak suppression for congested areas, reducing target center of mass location errors, and increasing track coverage and duration through track prediction error robustness.

  17. Development of Fast Algorithms Using Recursion, Nesting and Iterations for Computational Electromagnetics

    NASA Technical Reports Server (NTRS)

    Chew, W. C.; Song, J. M.; Lu, C. C.; Weedon, W. H.

    1995-01-01

    In the first phase of our work, we have concentrated on laying the foundation to develop fast algorithms, including the use of recursive structure like the recursive aggregate interaction matrix algorithm (RAIMA), the nested equivalence principle algorithm (NEPAL), the ray-propagation fast multipole algorithm (RPFMA), and the multi-level fast multipole algorithm (MLFMA). We have also investigated the use of curvilinear patches to build a basic method of moments code where these acceleration techniques can be used later. In the second phase, which is mainly reported on here, we have concentrated on implementing three-dimensional NEPAL on a massively parallel machine, the Connection Machine CM-5, and have been able to obtain some 3D scattering results. In order to understand the parallelization of codes on the Connection Machine, we have also studied the parallelization of 3D finite-difference time-domain (FDTD) code with PML material absorbing boundary condition (ABC). We found that simple algorithms like the FDTD with material ABC can be parallelized very well allowing us to solve within a minute a problem of over a million nodes. In addition, we have studied the use of the fast multipole method and the ray-propagation fast multipole algorithm to expedite matrix-vector multiplication in a conjugate-gradient solution to integral equations of scattering. We find that these methods are faster than LU decomposition for one incident angle, but are slower than LU decomposition when many incident angles are needed as in the monostatic RCS calculations.

  18. A video demonstration of the Li's anastomosis-the key part of the "non-tube no fasting" fast track program for resectable esophageal carcinoma.

    PubMed

    Zheng, Yan; Li, Yin; Wang, Zongfei; Sun, Haibo; Zhang, Ruixiang

    2015-07-01

    The main obstacle of fast track surgery for esophagectomy is early oral feeding. The main concern of early oral feeding is the possibility of increasing the incidence of anastomotic leakage. Dr. Yin Li used the Li's anastomosis to ensure oral feeding at will the first day after esophagectomy. This safe and efficient anastomosis method significantly reduced the anastomotic leak rate, the number of post-operative days and stricture. Importantly, the "non-tube no fasting" fast track program for esophageal cancer patients was conducted smoothly with Li's anastomosis. This article was focused on the surgical procedure of Li's anastomosis.

  19. A personal neutron monitoring system based on CR-39 recoil proton track detectors: assessment of Hp(10) using image process algorithms.

    PubMed

    Bedogni, R; Fantuzzi, E

    2002-01-01

    At the Individual Monitoring Service (IMS) of the ENEA Institute for Radiation Protection (IRP), the Hp(10) fast neutron dosemeter consists of a CR-39 (PADC, poly allyl diglycol carbonate) recoil protons track detector. The tracks across the detector surface are magnified through a chemical etching procedure and counted by a semi-automated system which consists of a microscope, a camera and a PC. A new analysis system, based on the National Instruments vision tools, was developed. The track area distribution for each reading field is recorded and numerical algorithms were developed in order to correct the energy dependence of the response and to recognise the tracks due to the background. This improves the dose evaluation system in terms of accuracy and discrimination or the background. PMID:12382731

  20. Probabilistic tracking control for non-Gaussian stochastic process using novel iterative learning algorithms

    NASA Astrophysics Data System (ADS)

    Yi, Yang; Sun, ChangYin; Guo, Lei

    2013-07-01

    A new generalised iterative learning algorithm is presented for complex dynamic non-Gaussian stochastic processes. After designed neural networks are used to approximate the output probability density function (PDF) of the stochastic system in the repetitive processes or the batch processes, the complex probabilistic tracking control to the output PDF is simplified into a parameter tuning problem between two adjacent repetitive processes. Under this framework, this article studies a novel model free iterative learning control problem and proposes a convex optimisation algorithm based on a set of designed linear matrix inequalities and L 1 optimisation index. It is noted that such an algorithm can improve the tracking performance and robustness for the closed-loop PDF control. A simulated example is given, which effectively demonstrates the use of the proposed control algorithm.

  1. Vectorized Rebinning Algorithm for Fast Data Down-Sampling

    NASA Technical Reports Server (NTRS)

    Dean, Bruce; Aronstein, David; Smith, Jeffrey

    2013-01-01

    A vectorized rebinning (down-sampling) algorithm, applicable to N-dimensional data sets, has been developed that offers a significant reduction in computer run time when compared to conventional rebinning algorithms. For clarity, a two-dimensional version of the algorithm is discussed to illustrate some specific details of the algorithm content, and using the language of image processing, 2D data will be referred to as "images," and each value in an image as a "pixel." The new approach is fully vectorized, i.e., the down-sampling procedure is done as a single step over all image rows, and then as a single step over all image columns. Data rebinning (or down-sampling) is a procedure that uses a discretely sampled N-dimensional data set to create a representation of the same data, but with fewer discrete samples. Such data down-sampling is fundamental to digital signal processing, e.g., for data compression applications.

  2. Fast algorithm for automatically computing Strahler stream order

    USGS Publications Warehouse

    Lanfear, Kenneth J.

    1990-01-01

    An efficient algorithm was developed to determine Strahler stream order for segments of stream networks represented in a Geographic Information System (GIS). The algorithm correctly assigns Strahler stream order in topologically complex situations such as braided streams and multiple drainage outlets. Execution time varies nearly linearly with the number of stream segments in the network. This technique is expected to be particularly useful for studying the topology of dense stream networks derived from digital elevation model data.

  3. A fast neural-network algorithm for VLSI cell placement.

    PubMed

    Aykanat, Cevdet; Bultan, Tevfik; Haritaoğlu, Ismail

    1998-12-01

    Cell placement is an important phase of current VLSI circuit design styles such as standard cell, gate array, and Field Programmable Gate Array (FPGA). Although nondeterministic algorithms such as Simulated Annealing (SA) were successful in solving this problem, they are known to be slow. In this paper, a neural network algorithm is proposed that produces solutions as good as SA in substantially less time. This algorithm is based on Mean Field Annealing (MFA) technique, which was successfully applied to various combinatorial optimization problems. A MFA formulation for the cell placement problem is derived which can easily be applied to all VLSI design styles. To demonstrate that the proposed algorithm is applicable in practice, a detailed formulation for the FPGA design style is derived, and the layouts of several benchmark circuits are generated. The performance of the proposed cell placement algorithm is evaluated in comparison with commercial automated circuit design software Xilinx Automatic Place and Route (APR) which uses SA technique. Performance evaluation is conducted using ACM/SIGDA Design Automation benchmark circuits. Experimental results indicate that the proposed MFA algorithm produces comparable results with APR. However, MFA is almost 20 times faster than APR on the average.

  4. Fracture propagation in brittle materials as a standard dissipative process: General theorems and crack tracking algorithms

    NASA Astrophysics Data System (ADS)

    Salvadori, A.; Fantoni, F.

    2016-10-01

    The present work frames the problem of three-dimensional quasi-static crack propagation in brittle materials into the theory of standard dissipative processes. Variational formulations are stated. They characterize the three dimensional crack front "quasi-static velocity" as minimizer of constrained quadratic functionals. An implicit in time crack tracking algorithm that computationally handles the constraint via the penalty method algorithm is introduced and proof of concept is provided.

  5. A target group tracking algorithm for wireless sensor networks using azimuthal angle of arrival information

    NASA Astrophysics Data System (ADS)

    Zhang, Chun; Fei, Shu-Min; Zhou, Xing-Peng

    2012-12-01

    In this paper, we explore the technology of tracking a group of targets with correlated motions in a wireless sensor network. Since a group of targets moves collectively and is restricted within a limited region, it is not worth consuming scarce resources of sensors in computing the trajectory of each single target. Hence, in this paper, the problem is modeled as tracking a geographical continuous region covered by all targets. A tracking algorithm is proposed to estimate the region covered by the target group in each sampling period. Based on the locations of sensors and the azimuthal angle of arrival (AOA) information, the estimated region covering all the group members is obtained. Algorithm analysis provides the fundamental limits to the accuracy of localizing a target group. Simulation results show that the proposed algorithm is superior to the existing hull algorithm due to the reduction in estimation error, which is between 10% and 40% of the hull algorithm, with a similar density of sensors. And when the density of sensors increases, the localization accuracy of the proposed algorithm improves dramatically.

  6. TRACC: Algorithm for Predicting and Tracking Barges on Inland Waterways

    2010-04-23

    Algorithm developed in this work is used to predict the location and estimate the traveling speed of a barge moving in inland waterway network. Measurements obtained from GPS or other systems are corrupted with measurement noise and reported at large, irregular time intervals. Thus, creating uncertainty about the current location of the barge and minimizing the effectiveness of emergency response activities in case of an accident or act of terrorism. Developing a prediction algorithm becomemore » a non-trivial problem due to estimation of speed becomes challenging, attributed to the complex interactions between multiple systems associated in the process. This software, uses systems approach in modeling the motion dynamics of the barge and estimates the location and speed of the barge at next, user defined, time interval. In this work, first, to estimate the speed a non-linear, stochastic modeling technique was developed that take local variations and interactions existing in the system. Output speed is then used as an observation in a statistically optimal filtering technique, Kalman filter, formulated in state-space to minimize numerous errors observed in the system. The combined system synergistically fuses the local information available with measurements obtained to predict the location and speed of traveling of the barge accurately.« less

  7. TRACC: Algorithm for Predicting and Tracking Barges on Inland Waterways

    SciTech Connect

    Randeniya, Duminda I.B.

    2010-04-23

    Algorithm developed in this work is used to predict the location and estimate the traveling speed of a barge moving in inland waterway network. Measurements obtained from GPS or other systems are corrupted with measurement noise and reported at large, irregular time intervals. Thus, creating uncertainty about the current location of the barge and minimizing the effectiveness of emergency response activities in case of an accident or act of terrorism. Developing a prediction algorithm become a non-trivial problem due to estimation of speed becomes challenging, attributed to the complex interactions between multiple systems associated in the process. This software, uses systems approach in modeling the motion dynamics of the barge and estimates the location and speed of the barge at next, user defined, time interval. In this work, first, to estimate the speed a non-linear, stochastic modeling technique was developed that take local variations and interactions existing in the system. Output speed is then used as an observation in a statistically optimal filtering technique, Kalman filter, formulated in state-space to minimize numerous errors observed in the system. The combined system synergistically fuses the local information available with measurements obtained to predict the location and speed of traveling of the barge accurately.

  8. A High-Speed Vision-Based Sensor for Dynamic Vibration Analysis Using Fast Motion Extraction Algorithms.

    PubMed

    Zhang, Dashan; Guo, Jie; Lei, Xiujun; Zhu, Changan

    2016-01-01

    The development of image sensor and optics enables the application of vision-based techniques to the non-contact dynamic vibration analysis of large-scale structures. As an emerging technology, a vision-based approach allows for remote measuring and does not bring any additional mass to the measuring object compared with traditional contact measurements. In this study, a high-speed vision-based sensor system is developed to extract structure vibration signals in real time. A fast motion extraction algorithm is required for this system because the maximum sampling frequency of the charge-coupled device (CCD) sensor can reach up to 1000 Hz. Two efficient subpixel level motion extraction algorithms, namely the modified Taylor approximation refinement algorithm and the localization refinement algorithm, are integrated into the proposed vision sensor. Quantitative analysis shows that both of the two modified algorithms are at least five times faster than conventional upsampled cross-correlation approaches and achieve satisfactory error performance. The practicability of the developed sensor is evaluated by an experiment in a laboratory environment and a field test. Experimental results indicate that the developed high-speed vision-based sensor system can extract accurate dynamic structure vibration signals by tracking either artificial targets or natural features. PMID:27110784

  9. A High-Speed Vision-Based Sensor for Dynamic Vibration Analysis Using Fast Motion Extraction Algorithms.

    PubMed

    Zhang, Dashan; Guo, Jie; Lei, Xiujun; Zhu, Changan

    2016-04-22

    The development of image sensor and optics enables the application of vision-based techniques to the non-contact dynamic vibration analysis of large-scale structures. As an emerging technology, a vision-based approach allows for remote measuring and does not bring any additional mass to the measuring object compared with traditional contact measurements. In this study, a high-speed vision-based sensor system is developed to extract structure vibration signals in real time. A fast motion extraction algorithm is required for this system because the maximum sampling frequency of the charge-coupled device (CCD) sensor can reach up to 1000 Hz. Two efficient subpixel level motion extraction algorithms, namely the modified Taylor approximation refinement algorithm and the localization refinement algorithm, are integrated into the proposed vision sensor. Quantitative analysis shows that both of the two modified algorithms are at least five times faster than conventional upsampled cross-correlation approaches and achieve satisfactory error performance. The practicability of the developed sensor is evaluated by an experiment in a laboratory environment and a field test. Experimental results indicate that the developed high-speed vision-based sensor system can extract accurate dynamic structure vibration signals by tracking either artificial targets or natural features.

  10. A High-Speed Vision-Based Sensor for Dynamic Vibration Analysis Using Fast Motion Extraction Algorithms

    PubMed Central

    Zhang, Dashan; Guo, Jie; Lei, Xiujun; Zhu, Changan

    2016-01-01

    The development of image sensor and optics enables the application of vision-based techniques to the non-contact dynamic vibration analysis of large-scale structures. As an emerging technology, a vision-based approach allows for remote measuring and does not bring any additional mass to the measuring object compared with traditional contact measurements. In this study, a high-speed vision-based sensor system is developed to extract structure vibration signals in real time. A fast motion extraction algorithm is required for this system because the maximum sampling frequency of the charge-coupled device (CCD) sensor can reach up to 1000 Hz. Two efficient subpixel level motion extraction algorithms, namely the modified Taylor approximation refinement algorithm and the localization refinement algorithm, are integrated into the proposed vision sensor. Quantitative analysis shows that both of the two modified algorithms are at least five times faster than conventional upsampled cross-correlation approaches and achieve satisfactory error performance. The practicability of the developed sensor is evaluated by an experiment in a laboratory environment and a field test. Experimental results indicate that the developed high-speed vision-based sensor system can extract accurate dynamic structure vibration signals by tracking either artificial targets or natural features. PMID:27110784

  11. A fast readout algorithm for Cluster Counting/Timing drift chambers on a FPGA board

    NASA Astrophysics Data System (ADS)

    Cappelli, L.; Creti, P.; Grancagnolo, F.; Pepino, A.; Tassielli, G.

    2013-08-01

    A fast readout algorithm for Cluster Counting and Timing purposes has been implemented and tested on a Virtex 6 core FPGA board. The algorithm analyses and stores data coming from a Helium based drift tube instrumented by 1 GSPS fADC and represents the outcome of balancing between cluster identification efficiency and high speed performance. The algorithm can be implemented in electronics boards serving multiple fADC channels as an online preprocessing stage for drift chamber signals.

  12. Fast Combinatorial Algorithm for the Solution of Linearly Constrained Least Squares Problems

    DOEpatents

    Van Benthem, Mark H.; Keenan, Michael R.

    2008-11-11

    A fast combinatorial algorithm can significantly reduce the computational burden when solving general equality and inequality constrained least squares problems with large numbers of observation vectors. The combinatorial algorithm provides a mathematically rigorous solution and operates at great speed by reorganizing the calculations to take advantage of the combinatorial nature of the problems to be solved. The combinatorial algorithm exploits the structure that exists in large-scale problems in order to minimize the number of arithmetic operations required to obtain a solution.

  13. Fast Algorithm for Continuous Monitoring with Ambient Noise

    NASA Astrophysics Data System (ADS)

    Martin, E. R.; Lindsey, N.; Biondi, B. C.; Chang, J. P.; Ajo Franklin, J. B.; Dou, S.; Daley, T. M.; Freifeld, B. M.; Robertson, M.; Ulrich, C.; Wagner, A. M.; Bjella, K.

    2015-12-01

    A common approach to analyzing ambient seismic noise involves O(n^2) pairwise cross-correlations of n sensors. Following cross-correlations the resulting coherent waveforms are then synthesized into a velocity estimate, often in the form of a dispersion image. As we move towards larger surveys and arrays for continuous subsurface monitoring, this computation can become prohibitively expensive. We show that theoretically equivalent results can be achieved by a simple algorithm which skips the cross-correlations, and scales as O(n). Additionally, this algorithm is embarrassingly parallel, and is significantly cheaper than the commonly used algorithms. We demonstrate the algorithm on two field data sets: (1) a continuously recording linear trenched distributed acoustic sensing (DAS) array designed as a pilot test to develop a permafrost thaw monitoring system, and (2) the Long Beach Array, an irregularly spaced 3D array. These results show superior performance in both speed and numerical accuracy. An open-source implementation of this algorithm is available.

  14. Simple, fast codebook training algorithm by entropy sequence for vector quantization

    NASA Astrophysics Data System (ADS)

    Pang, Chao-yang; Yao, Shaowen; Qi, Zhang; Sun, Shi-xin; Liu, Jingde

    2001-09-01

    The traditional training algorithm for vector quantization such as the LBG algorithm uses the convergence of distortion sequence as the condition of the end of algorithm. We presented a novel training algorithm for vector quantization in this paper. The convergence of the entropy sequence of each region sequence is employed as the condition of the end of the algorithm. Compared with the famous LBG algorithm, it is simple, fast and easy to be comprehended and controlled. We test the performance of the algorithm by typical test image Lena and Barb. The result shows that the PSNR difference between the algorithm and LBG is less than 0.1dB, but the running time of it is at most one second of LBG.

  15. Dim moving target tracking algorithm based on particle discriminative sparse representation

    NASA Astrophysics Data System (ADS)

    Li, Zhengzhou; Li, Jianing; Ge, Fengzeng; Shao, Wanxing; Liu, Bing; Jin, Gang

    2016-03-01

    The small dim moving target usually submerged in strong noise, and its motion observability is debased by numerous false alarms for low signal-to-noise ratio (SNR). A target tracking algorithm based on particle filter and discriminative sparse representation is proposed in this paper to cope with the uncertainty of dim moving target tracking. The weight of every particle is the crucial factor to ensuring the accuracy of dim target tracking for particle filter (PF) that can achieve excellent performance even under the situation of non-linear and non-Gaussian motion. In discriminative over-complete dictionary constructed according to image sequence, the target dictionary describes target signal and the background dictionary embeds background clutter. The difference between target particle and background particle is enhanced to a great extent, and the weight of every particle is then measured by means of the residual after reconstruction using the prescribed number of target atoms and their corresponding coefficients. The movement state of dim moving target is then estimated and finally tracked by these weighted particles. Meanwhile, the subspace of over-complete dictionary is updated online by the stochastic estimation algorithm. Some experiments are induced and the experimental results show the proposed algorithm could improve the performance of moving target tracking by enhancing the consistency between the posteriori probability distribution and the moving target state.

  16. Outline of a fast hardware implementation of Winograd's DFT algorithm

    NASA Technical Reports Server (NTRS)

    Zohar, S.

    1980-01-01

    The main characteristics of the discrete Fourier transform (DFT) algorithm considered by Winograd (1976) is a significant reduction in the number of multiplications. Its primary disadvantage is a higher structural complexity. It is, therefore, difficult to translate the reduced number of multiplications into faster execution of the DFT by means of a software implementation of the algorithm. For this reason, a hardware implementation is considered in the current study, taking into account a design based on the algorithm prescription discussed by Zohar (1979). The hardware implementation of a FORTRAN subroutine is proposed, giving attention to a pipelining scheme in which 5 consecutive data batches are being operated on simultaneously, each batch undergoing one of 5 processing phases.

  17. Fast track in colo-rectal surgery. Preliminary experience in a rural hospital

    PubMed Central

    FRONTERA, D.; ARENA, L.; CORSALE, I.; FRANCIOLI, N.; MAMMOLITI, F.; BUCCIANELLI, E.

    2014-01-01

    Background “Fast Track surgery” is a therapeutic program of large application, despite some doubts about its applicability and real validity. Literature review shows that this approach to colo-rectal surgery, particularly video-assisted, can allow a rapid recovery, better performance and a faster postoperative functional autonomy of the work, which can be discharged without cause additional welfare costs; in addition it can be reproducible in different health reality. Purpose To analyze the possibility to apply the Fast Truck protocol in patients undergoing colorectal surgery in a rural hospital and non specialistic Unit of Surgery. Patients and methods We have conducted a prospective, randomized study on 80 patients subjected to colorectal surgery in the last year. Results The protocol was observed in 95% of cases, compliance with the Fast Track was high and general morbidity was limited (7.8%). Conclusion This “aggressive” approach, which has fundamentally altered the usual surgical behavior, seems to allow a mean length of stay significantly lower than in controls (p < 0.05) with positive implications for patients and containment of health care costs, even after discharge (no need for home care in 92% of cases, no early re-admittance to the hospital). Homogeneous protocols are desirable, as well as an increased enrollment, to consolidate these rehabilitation programs in order to provide a reference for all hospitals. PMID:25644732

  18. Gradient maintenance: A new algorithm for fast online replanning

    SciTech Connect

    Ahunbay, Ergun E. Li, X. Allen

    2015-06-15

    Purpose: Clinical use of online adaptive replanning has been hampered by the unpractically long time required to delineate volumes based on the image of the day. The authors propose a new replanning algorithm, named gradient maintenance (GM), which does not require the delineation of organs at risk (OARs), and can enhance automation, drastically reducing planning time and improving consistency and throughput of online replanning. Methods: The proposed GM algorithm is based on the hypothesis that if the dose gradient toward each OAR in daily anatomy can be maintained the same as that in the original plan, the intended plan quality of the original plan would be preserved in the adaptive plan. The algorithm requires a series of partial concentric rings (PCRs) to be automatically generated around the target toward each OAR on the planning and the daily images. The PCRs are used in the daily optimization objective function. The PCR dose constraints are generated with dose–volume data extracted from the original plan. To demonstrate this idea, GM plans generated using daily images acquired using an in-room CT were compared to regular optimization and image guided radiation therapy repositioning plans for representative prostate and pancreatic cancer cases. Results: The adaptive replanning using the GM algorithm, requiring only the target contour from the CT of the day, can be completed within 5 min without using high-power hardware. The obtained adaptive plans were almost as good as the regular optimization plans and were better than the repositioning plans for the cases studied. Conclusions: The newly proposed GM replanning algorithm, requiring only target delineation, not full delineation of OARs, substantially increased planning speed for online adaptive replanning. The preliminary results indicate that the GM algorithm may be a solution to improve the ability for automation and may be especially suitable for sites with small-to-medium size targets surrounded by

  19. A Simple and Fast Spline Filtering Algorithm for Surface Metrology

    PubMed Central

    Zhang, Hao; Ott, Daniel; Song, John; Tong, Mingsi; Chu, Wei

    2015-01-01

    Spline filters and their corresponding robust filters are commonly used filters recommended in ISO (the International Organization for Standardization) standards for surface evaluation. Generally, these linear and non-linear spline filters, composed of symmetric, positive-definite matrices, are solved in an iterative fashion based on a Cholesky decomposition. They have been demonstrated to be relatively efficient, but complicated and inconvenient to implement. A new spline-filter algorithm is proposed by means of the discrete cosine transform or the discrete Fourier transform. The algorithm is conceptually simple and very convenient to implement. PMID:26958443

  20. Tracking Problem Solving by Multivariate Pattern Analysis and Hidden Markov Model Algorithms

    ERIC Educational Resources Information Center

    Anderson, John R.

    2012-01-01

    Multivariate pattern analysis can be combined with Hidden Markov Model algorithms to track the second-by-second thinking as people solve complex problems. Two applications of this methodology are illustrated with a data set taken from children as they interacted with an intelligent tutoring system for algebra. The first "mind reading" application…

  1. Through-Wall Multiple Targets Vital Signs Tracking Based on VMD Algorithm

    PubMed Central

    Yan, Jiaming; Hong, Hong; Zhao, Heng; Li, Yusheng; Gu, Chen; Zhu, Xiaohua

    2016-01-01

    Targets located at the same distance are easily neglected in most through-wall multiple targets detecting applications which use the single-input single-output (SISO) ultra-wideband (UWB) radar system. In this paper, a novel multiple targets vital signs tracking algorithm for through-wall detection using SISO UWB radar has been proposed. Taking advantage of the high-resolution decomposition of the Variational Mode Decomposition (VMD) based algorithm, the respiration signals of different targets can be decomposed into different sub-signals, and then, we can track the time-varying respiration signals accurately when human targets located in the same distance. Intensive evaluation has been conducted to show the effectiveness of our scheme with a 0.15 m thick concrete brick wall. Constant, piecewise-constant and time-varying vital signs could be separated and tracked successfully with the proposed VMD based algorithm for two targets, even up to three targets. For the multiple targets’ vital signs tracking issues like urban search and rescue missions, our algorithm has superior capability in most detection applications. PMID:27537880

  2. Through-Wall Multiple Targets Vital Signs Tracking Based on VMD Algorithm.

    PubMed

    Yan, Jiaming; Hong, Hong; Zhao, Heng; Li, Yusheng; Gu, Chen; Zhu, Xiaohua

    2016-01-01

    Targets located at the same distance are easily neglected in most through-wall multiple targets detecting applications which use the single-input single-output (SISO) ultra-wideband (UWB) radar system. In this paper, a novel multiple targets vital signs tracking algorithm for through-wall detection using SISO UWB radar has been proposed. Taking advantage of the high-resolution decomposition of the Variational Mode Decomposition (VMD) based algorithm, the respiration signals of different targets can be decomposed into different sub-signals, and then, we can track the time-varying respiration signals accurately when human targets located in the same distance. Intensive evaluation has been conducted to show the effectiveness of our scheme with a 0.15 m thick concrete brick wall. Constant, piecewise-constant and time-varying vital signs could be separated and tracked successfully with the proposed VMD based algorithm for two targets, even up to three targets. For the multiple targets' vital signs tracking issues like urban search and rescue missions, our algorithm has superior capability in most detection applications. PMID:27537880

  3. A Linac Simulation Code for Macro-Particles Tracking and Steering Algorithm Implementation

    SciTech Connect

    sun, yipeng

    2012-05-03

    In this paper, a linac simulation code written in Fortran90 is presented and several simulation examples are given. This code is optimized to implement linac alignment and steering algorithms, and evaluate the accelerator errors such as RF phase and acceleration gradient, quadrupole and BPM misalignment. It can track a single particle or a bunch of particles through normal linear accelerator elements such as quadrupole, RF cavity, dipole corrector and drift space. One-to-one steering algorithm and a global alignment (steering) algorithm are implemented in this code.

  4. Visual Servoing of Quadrotor Micro-Air Vehicle Using Color-Based Tracking Algorithm

    NASA Astrophysics Data System (ADS)

    Azrad, Syaril; Kendoul, Farid; Nonami, Kenzo

    This paper describes a vision-based tracking system using an autonomous Quadrotor Unmanned Micro-Aerial Vehicle (MAV). The vision-based control system relies on color target detection and tracking algorithm using integral image, Kalman filters for relative pose estimation, and a nonlinear controller for the MAV stabilization and guidance. The vision algorithm relies on information from a single onboard camera. An arbitrary target can be selected in real-time from the ground control station, thereby outperforming template and learning-based approaches. Experimental results obtained from outdoor flight tests, showed that the vision-control system enabled the MAV to track and hover above the target as long as the battery is available. The target does not need to be pre-learned, or a template for detection. The results from image processing are sent to navigate a non-linear controller designed for the MAV by the researchers in our group.

  5. A general algorithm for peak-tracking in multi-dimensional NMR experiments.

    PubMed

    Ravel, P; Kister, G; Malliavin, T E; Delsuc, M A

    2007-04-01

    We present an algorithmic method allowing automatic tracking of NMR peaks in a series of spectra. It consists in a two phase analysis. The first phase is a local modeling of the peak displacement between two consecutive experiments using distance matrices. Then, from the coefficients of these matrices, a value graph containing the a priori set of possible paths used by these peaks is generated. On this set, the minimization under constraint of the target function by a heuristic approach provides a solution to the peak-tracking problem. This approach has been named GAPT, standing for General Algorithm for NMR Peak Tracking. It has been validated in numerous simulations resembling those encountered in NMR spectroscopy. We show the robustness and limits of the method for situations with many peak-picking errors, and presenting a high local density of peaks. It is then applied to the case of a temperature study of the NMR spectrum of the Lipid Transfer Protein (LTP).

  6. Least average residual algorithm (LARA) for tracking the motion of Arctic sea ice

    SciTech Connect

    Das Peddada, S.; McDevitt, R.

    1996-07-01

    Suppose one has two images A and B of a collection of ice floes taken at times t{sub 0} and t{sub 1}, respectively. Given an ice flow 1 in A, the authors develop a new automated tracking algorithm to track the position of A in image B. The proposed least average residual algorithm (LARA) performs a constrained search for matching ice floes by determining an appropriate search space for each floe to be tracked. LARA takes a stepwide approach with suitable decision rules at various stages. It takes into account various distinguishing characteristics such as: (i) the geometry of the ice field; (ii) size of an ice floe; and (iii) geometry of the floe. LARA also attempts to detect broken floes and amalgamated floes.

  7. New color-based tracking algorithm for joints of the upper extremities

    NASA Astrophysics Data System (ADS)

    Wu, Xiangping; Chow, Daniel H. K.; Zheng, Xiaoxiang

    2007-11-01

    To track the joints of the upper limb of stroke sufferers for rehabilitation assessment, a new tracking algorithm which utilizes a developed color-based particle filter and a novel strategy for handling occlusions is proposed in this paper. Objects are represented by their color histogram models and particle filter is introduced to track the objects within a probability framework. Kalman filter, as a local optimizer, is integrated into the sampling stage of the particle filter that steers samples to a region with high likelihood and therefore fewer samples is required. A color clustering method and anatomic constraints are used in dealing with occlusion problem. Compared with the general basic particle filtering method, the experimental results show that the new algorithm has reduced the number of samples and hence the computational consumption, and has achieved better abilities of handling complete occlusion over a few frames.

  8. Attitude determination using vector observations: A fast optimal matrix algorithm

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis

    1993-01-01

    The attitude matrix minimizing Wahba's loss function is computed directly by a method that is competitive with the fastest known algorithm for finding this optimal estimate. The method also provides an estimate of the attitude error covariance matrix. Analysis of the special case of two vector observations identifies those cases for which the TRIAD or algebraic method minimizes Wahba's loss function.

  9. An Iterative CT Reconstruction Algorithm for Fast Fluid Flow Imaging.

    PubMed

    Van Eyndhoven, Geert; Batenburg, K Joost; Kazantsev, Daniil; Van Nieuwenhove, Vincent; Lee, Peter D; Dobson, Katherine J; Sijbers, Jan

    2015-11-01

    The study of fluid flow through solid matter by computed tomography (CT) imaging has many applications, ranging from petroleum and aquifer engineering to biomedical, manufacturing, and environmental research. To avoid motion artifacts, current experiments are often limited to slow fluid flow dynamics. This severely limits the applicability of the technique. In this paper, a new iterative CT reconstruction algorithm for improved a temporal/spatial resolution in the imaging of fluid flow through solid matter is introduced. The proposed algorithm exploits prior knowledge in two ways. First, the time-varying object is assumed to consist of stationary (the solid matter) and dynamic regions (the fluid flow). Second, the attenuation curve of a particular voxel in the dynamic region is modeled by a piecewise constant function over time, which is in accordance with the actual advancing fluid/air boundary. Quantitative and qualitative results on different simulation experiments and a real neutron tomography data set show that, in comparison with the state-of-the-art algorithms, the proposed algorithm allows reconstruction from substantially fewer projections per rotation without image quality loss. Therefore, the temporal resolution can be substantially increased, and thus fluid flow experiments with faster dynamics can be performed.

  10. Fast algorithms for combustion kinetics calculations: A comparison

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, K.

    1984-01-01

    To identify the fastest algorithm currently available for the numerical integration of chemical kinetic rate equations, several algorithms were examined. Findings to date are summarized. The algorithms examined include two general-purpose codes EPISODE and LSODE and three special-purpose (for chemical kinetic calculations) codes CHEMEQ, CRK1D, and GCKP84. In addition, an explicit Runge-Kutta-Merson differential equation solver (IMSL Routine DASCRU) is used to illustrate the problems associated with integrating chemical kinetic rate equations by a classical method. Algorithms were applied to two test problems drawn from combustion kinetics. These problems included all three combustion regimes: induction, heat release and equilibration. Variations of the temperature and species mole fraction are given with time for test problems 1 and 2, respectively. Both test problems were integrated over a time interval of 1 ms in order to obtain near-equilibration of all species and temperature. Of the codes examined in this study, only CREK1D and GCDP84 were written explicitly for integrating exothermic, non-isothermal combustion rate equations. These therefore have built-in procedures for calculating the temperature.

  11. Fast Quantum Algorithms for Numerical Integrals and Stochastic Processes

    NASA Technical Reports Server (NTRS)

    Abrams, D.; Williams, C.

    1999-01-01

    We discuss quantum algorithms that calculate numerical integrals and descriptive statistics of stochastic processes. With either of two distinct approaches, one obtains an exponential speed increase in comparison to the fastest known classical deterministic algotithms and a quadratic speed increase incomparison to classical Monte Carlo methods.

  12. A Fast Retrieving Algorithm of Hierarchical Relationships Using Trie Structures.

    ERIC Educational Resources Information Center

    Koyama, Masafumi; Morita, Kazuhiro; Fuketa, Masao; Aoe, Jun-Ichi

    1998-01-01

    Presents a faster method for determining hierarchical relationships in information retrieval by using trie structures instead of a linear storage of a concept code. Highlights include case structures, a knowledge representation for natural-language understanding with semantic constraints; a compression algorithm of tries; and evaluation.…

  13. Atom ejection from a fast-ion track: A molecular-dynamics study

    SciTech Connect

    Urbassek, H.M. ); Kafemann, H. ); Johnson, R.E. )

    1994-01-01

    As a model for atom ejection from fast-ion tracks, molecular-dynamics simulations of a cylindrical track of energized particles are performed. An idealized situation is studied where every atom in a cylindrical track of radius [ital R][sub 0] is energized with energy [ital E][sub 0]. The emission yield [ital Y]([ital E][sub 0],[ital R][sub 0]) shows the existence of two ejection regimes. If the particle energy [ital E][sub 0] is below the sublimation energy [ital U] of the material, a threshold regime is seen in which [ital Y] rises roughly like the third power of [ital E][sub 0]; for high-energy densities [ital E][sub 0][approx gt][ital U], the yield rises much more slowly, roughly linearly. In both cases, ejected particles mostly originate from the track, rather than from its surroundings, and from the first or the first few monolayers. The behavior found is interpreted here in terms of emission due to a pressure-driven jet (linear regime) or due to a pressure pulse (threshold regime). These both behave differently from the often-used thermal-spike sputtering model.

  14. Evaluation of optical flow algorithms for tracking endocardial surfaces on three-dimensional ultrasound data

    NASA Astrophysics Data System (ADS)

    Duan, Qi; Angelini, Elsa D.; Herz, Susan L.; Ingrassia, Christopher M.; Gerard, Olivier; Costa, Kevin D.; Holmes, Jeffrey W.; Laine, Andrew F.

    2005-04-01

    With relatively high frame rates and the ability to acquire volume data sets with a stationary transducer, 3D ultrasound systems, based on matrix phased array transducers, provide valuable three-dimensional information, from which quantitative measures of cardiac function can be extracted. Such analyses require segmentation and visual tracking of the left ventricular endocardial border. Due to the large size of the volumetric data sets, manual tracing of the endocardial border is tedious and impractical for clinical applications. Therefore the development of automatic methods for tracking three-dimensional endocardial motion is essential. In this study, we evaluate a four-dimensional optical flow motion tracking algorithm to determine its capability to follow the endocardial border in three dimensional ultrasound data through time. The four-dimensional optical flow method was implemented using three-dimensional correlation. We tested the algorithm on an experimental open-chest dog data set and a clinical data set acquired with a Philips' iE33 three-dimensional ultrasound machine. Initialized with left ventricular endocardial data points obtained from manual tracing at end-diastole, the algorithm automatically tracked these points frame by frame through the whole cardiac cycle. A finite element surface was fitted through the data points obtained by both optical flow tracking and manual tracing by an experienced observer for quantitative comparison of the results. Parameterization of the finite element surfaces was performed and maps displaying relative differences between the manual and semi-automatic methods were compared. The results showed good consistency between manual tracing and optical flow estimation on 73% of the entire surface with fewer than 10% difference. In addition, the optical flow motion tracking algorithm greatly reduced processing time (about 94% reduction compared to human involvement per cardiac cycle) for analyzing cardiac function in three

  15. MDSIMAID: automatic parameter optimization in fast electrostatic algorithms.

    PubMed

    Crocker, Michael S; Hampton, Scott S; Matthey, Thierry; Izaguirre, Jesús A

    2005-07-30

    MDSIMAID is a recommender system that optimizes parallel Particle Mesh Ewald (PME) and both sequential and parallel multigrid (MG) summation fast electrostatic solvers. MDSIMAID optimizes the running time or parallel scalability of these methods within a given error tolerance. MDSIMAID performs a run time constrained search on the parameter space of each method starting from semiempirical performance models. Recommended parameters are presented to the user. MDSIMAID's optimization of MG leads to configurations that are up to 14 times faster or 17 times more accurate than published recommendations. Optimization of PME can improve its parallel scalability, making it run twice as fast in parallel in our tests. MDSIMAID and its Python source code are accessible through a Web portal located at http://mdsimaid.cse.nd.edu.

  16. Morbidity and mortality after bilateral simultaneous total knee arthroplasty in a fast-track setting

    PubMed Central

    Gromov, Kirill; Troelsen, Anders; Stahl Otte, Kristian; Ørsnes, Thue; Husted, Henrik

    2016-01-01

    Background and purpose The safety aspects of bilateral simultaneous total knee arthroplasty (BSTKA) are still debated. In this retrospective single-center study, we investigated early morbidity and mortality following BSTKA in a modern fast-track setting. We also identified risk factors for re-admission within 90 days and for a length of stay (LOS) of more than 5 days. Patients and methods 284 patients were selected to receive BSTKA at our institution from 2008 through 2014 in a well-described, standardized fast-track setup (Husted 2012a, b). All re-admissions within 90 days were identified and mortality rates and time until death were recorded. Transfusion rates and numbers of transfusions were also recorded. Logistic regression analysis was used to identify risk factors for re-admission within 90 days, and also for a LOS of more than 5 days. Results 90-day mortality was 0%. 10% of the patients were re-admitted within 90 days. Median time to re-admission was 18 (3–75) days. 153 patients (54%) received postoperative blood transfusions. An ASA score of 3 was identified as an independent risk factor for re-admission within 90 days (OR = 5, 95% CI: 1.3–19) and for LOS of > 5 days (OR = 6, 95% CI: 1.6–21). Higher BMI was a weak risk factor for re-admission within 90 days. Interpretation BSTKA in selected patients without cardiopulmonary disease in a fast-track setting appears to be safe with respect to early postoperative morbidity and mortality. Surgeons should be aware that patients with an ASA score of 3 have an increased risk of re-admission and a prolonged length of stay, while patients with higher BMI have an increased risk of re-admission following BSTKA. PMID:26823094

  17. "Fast-Tracking": Ain't No Golden Parachute So Don't Slide off the Rainbow.

    ERIC Educational Resources Information Center

    Newburger, Craig; Butler, Jerry

    Awareness of the corporate cultural phenomenon of fast-tracking, a process whereby executives are advanced within and among organizations, should assist communication students and practicing professionals to become more effective corporate communicators. A critical distinction between self-directed fast-trackers and their corporately-sanctioned…

  18. Real Time Optima Tracking Using Harvesting Models of the Genetic Algorithm

    NASA Technical Reports Server (NTRS)

    Baskaran, Subbiah; Noever, D.

    1999-01-01

    Tracking optima in real time propulsion control, particularly for non-stationary optimization problems is a challenging task. Several approaches have been put forward for such a study including the numerical method called the genetic algorithm. In brief, this approach is built upon Darwinian-style competition between numerical alternatives displayed in the form of binary strings, or by analogy to 'pseudogenes'. Breeding of improved solution is an often cited parallel to natural selection in.evolutionary or soft computing. In this report we present our results of applying a novel model of a genetic algorithm for tracking optima in propulsion engineering and in real time control. We specialize the algorithm to mission profiling and planning optimizations, both to select reduced propulsion needs through trajectory planning and to explore time or fuel conservation strategies.

  19. A steady tracking technology adopted to fast FH/BPSK signal under satellite channel

    NASA Astrophysics Data System (ADS)

    Guo, SuLi; Lou, Zhigang; Wang, XiDuo; Xia, ShuangZhi

    2015-07-01

    In order to survive under the conditions with great jamming and interference, fast frequency hopped signal are employed in satellite communication system. This paper discusses the nonlinear phases induced by the equipment and atmosphere, and their influence on the FFH/BPSK tracking loop. Two methods are developed including compensating phase which is based on channel estimation and compensating Doppler frequency based on velocity normalization. Simulation results for a real circuit with proper parameters shows that the degradation due to the demodulation of frequency-hopped is only a fraction of one dB in an AWGN environment under satellite channel.

  20. FPGA design and implementation of a fast pixel purity index algorithm for endmember extraction in hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Valencia, David; Plaza, Antonio; Vega-Rodríguez, Miguel A.; Pérez, Rosa M.

    2005-11-01

    Hyperspectral imagery is a class of image data which is used in many scientific areas, most notably, medical imaging and remote sensing. It is characterized by a wealth of spatial and spectral information. Over the last years, many algorithms have been developed with the purpose of finding "spectral endmembers," which are assumed to be pure signatures in remotely sensed hyperspectral data sets. Such pure signatures can then be used to estimate the abundance or concentration of materials in mixed pixels, thus allowing sub-pixel analysis which is crucial in many remote sensing applications due to current sensor optics and configuration. One of the most popular endmember extraction algorithms has been the pixel purity index (PPI), available from Kodak's Research Systems ENVI software package. This algorithm is very time consuming, a fact that has generally prevented its exploitation in valid response times in a wide range of applications, including environmental monitoring, military applications or hazard and threat assessment/tracking (including wildland fire detection, oil spill mapping and chemical and biological standoff detection). Field programmable gate arrays (FPGAs) are hardware components with millions of gates. Their reprogrammability and high computational power makes them particularly attractive in remote sensing applications which require a response in near real-time. In this paper, we present an FPGA design for implementation of PPI algorithm which takes advantage of a recently developed fast PPI (FPPI) algorithm that relies on software-based optimization. The proposed FPGA design represents our first step toward the development of a new reconfigurable system for fast, onboard analysis of remotely sensed hyperspectral imagery.

  1. A Fast Implementation of the ISODATA Clustering Algorithm

    NASA Technical Reports Server (NTRS)

    Memarsadeghi, Nargess; Mount, David M.; Netanyahu, Nathan S.; LeMoigne, Jacqueline

    2005-01-01

    Clustering is central to many image processing and remote sensing applications. ISODATA is one of the most popular and widely used clustering methods in geoscience applications, but it can run slowly, particularly with large data sets. We present a more efficient approach to ISODATA clustering, which achieves better running times by storing the points in a kd-tree and through a modification of the way in which the algorithm estimates the dispersion of each cluster. We also present an approximate version of the algorithm which allows the user to further improve the running time, at the expense of lower fidelity in computing the nearest cluster center to each point. We provide both theoretical and empirical justification that our modified approach produces clusterings that are very similar to those produced by the standard ISODATA approach. We also provide empirical studies on both synthetic data and remotely sensed Landsat and MODIS images that show that our approach has significantly lower running times.

  2. Fast automatic algorithm for bifurcation detection in vascular CTA scans

    NASA Astrophysics Data System (ADS)

    Brozio, Matthias; Gorbunova, Vladlena; Godenschwager, Christian; Beck, Thomas; Bernhardt, Dominik

    2012-02-01

    Endovascular imaging aims at identifying vessels and their branches. Automatic vessel segmentation and bifurcation detection eases both clinical research and routine work. In this article a state of the art bifurcation detection algorithm is developed and applied on vascular computed tomography angiography (CTA) scans to mark the common iliac artery and its branches, the internal and external iliacs. In contrast to other methods our algorithm does not rely on a complete segmentation of a vessel in the 3D volume, but evaluates the cross-sections of the vessel slice by slice. Candidates for vessels are obtained by thresholding, following by 2D connected component labeling and prefiltering by size and position. The remaining candidates are connected in a squared distanced weighted graph. With Dijkstra algorithm the graph is traversed to get candidates for the arteries. We use another set of features considering length and shape of the paths to determine the best candidate and detect the bifurcation. The method was tested on 119 datasets acquired with different CT scanners and varying protocols. Both easy to evaluate datasets with high resolution and no apparent clinical diseases and difficult ones with low resolution, major calcifications, stents or poor contrast between the vessel and surrounding tissue were included. The presented results are promising, in 75.7% of the cases the bifurcation was labeled correctly, and in 82.7% the common artery and one of its branches were assigned correctly. The computation time was on average 0.49 s +/- 0.28 s, close to human interaction time, which makes the algorithm applicable for time-critical applications.

  3. Calculation of Computational Complexity for Radix-2 (p) Fast Fourier Transform Algorithms for Medical Signals.

    PubMed

    Amirfattahi, Rassoul

    2013-10-01

    Owing to its simplicity radix-2 is a popular algorithm to implement fast fourier transform. Radix-2(p) algorithms have the same order of computational complexity as higher radices algorithms, but still retain the simplicity of radix-2. By defining a new concept, twiddle factor template, in this paper, we propose a method for exact calculation of multiplicative complexity for radix-2(p) algorithms. The methodology is described for radix-2, radix-2 (2) and radix-2 (3) algorithms. Results show that radix-2 (2) and radix-2 (3) have significantly less computational complexity compared with radix-2. Another interesting result is that while the number of complex multiplications in radix-2 (3) algorithm is slightly more than radix-2 (2), the number of real multiplications for radix-2 (3) is less than radix-2 (2). This is because of the twiddle factors in the form of which need less number of real multiplications and are more frequent in radix-2 (3) algorithm.

  4. Comparison of different tracking algorithms analysing subantarctic cyclones: A contribution to the IMILAST programme

    NASA Astrophysics Data System (ADS)

    Grieger, Jens; Leckebusch, Gregor C.; Raible, Christoph C.; Rudeva, Irina; Simmonds, Ian

    2015-04-01

    Cyclones are a dominant feature of the mid- and high-latitude atmospheric circulation, however their definition is not straightforward as their characteristics are complex. Thus, a number of studies present different objective cyclone detection and tracking algorithms focusing on different aspects of what is thought to be the main characteristic of a cyclone. For example, studies use either the rotational character of cyclones by using the vorticity as main field to identify cyclones or the mass character by using the pressure field. In this study, 14 different objective identification and tracking algorithms are compared by analyzing subantarctic cyclones. This region is of especial interest because it hosts the greatest frequencies of cyclogenesis and cyclone occurrence across the whole Southern Hemisphere. The character of cyclones there are strongly influenced by the intense baroclinicity and the presence of the Antarctic massif. The study is part of the Intercomparison of Mid Latitude STorm diagnostics (IMILAST) project. As a common basis ERA-Interim reanalysis data between 1979-2008 is used. This contribution investigates the output of the different tracking algorithms for the representation of extra-tropical cyclones around Antarctica, and all cyclone tracks south of 60° S are selected. We focus on three sectors around Antarctica, namely East Antarctica, Amundsen-Bellingshausen Seas, and Weddell Sea, for a differentiated comparison of the different tracking methodologies. A track-to-track analysis allows the evaluation of differences and similarities of the methodologies for the representation of subantarctic cyclones. As known from similar studies for the entire Southern Hemisphere, absolute numbers of identified cyclone tracks differ significantly. This is also the case for all sectors around Antarctica. Differences are even more pronounced in austral winter (JJA) due to the different treatment of cyclone intensities by the numerous tracking methods

  5. Parallel algorithms and architectures for very fast AI search

    SciTech Connect

    Gu, J.

    1989-01-01

    A wide range of problems in natural and artificial intelligence, computer vision, computer graphics, database engineering, operations research, symbolic logic, robot manipulation and hardware design automation are special cases of Consistent Labeling Problems (CLP). CLP has long been viewed as an efficient computational model based on a unit constraint relation containing 2N-tuples of units and labels which specifies which N-tuples of labels are compatible with which N-tuples of units. Due to high computation cost and design complexity, most currently best-known algorithms and computer architectures have usually proven infeasible for solving the consistent labeling problems. Efficiency in CLP computation during the last decade has only been improved a few times. This research presents several parallel algorithms and computer architectures for solving CLP within a parallel processing framework. For problems of practical interest, 4 to 10 orders of magnitude of efficiency improvement can be easily reached. Several simple wafer scale computer architectures are given which implement these parallel algorithms at a surprisingly low cost.

  6. Integration of an On-Axis General Sun-Tracking Formula in the Algorithm of an Open-Loop Sun-Tracking System

    PubMed Central

    Chong, Kok-Keong; Wong, Chee-Woon; Siaw, Fei-Lu; Yew, Tiong-Keat; Ng, See-Seng; Liang, Meng-Suan; Lim, Yun-Seng; Lau, Sing-Liong

    2009-01-01

    A novel on-axis general sun-tracking formula has been integrated in the algorithm of an open-loop sun-tracking system in order to track the sun accurately and cost effectively. Sun-tracking errors due to installation defects of the 25 m2 prototype solar concentrator have been analyzed from recorded solar images with the use of a CCD camera. With the recorded data, misaligned angles from ideal azimuth-elevation axes have been determined and corrected by a straightforward changing of the parameters' values in the general formula of the tracking algorithm to improve the tracking accuracy to 2.99 mrad, which falls below the encoder resolution limit of 4.13 mrad. PMID:22408483

  7. Integration of an on-axis general sun-tracking formula in the algorithm of an open-loop sun-tracking system.

    PubMed

    Chong, Kok-Keong; Wong, Chee-Woon; Siaw, Fei-Lu; Yew, Tiong-Keat; Ng, See-Seng; Liang, Meng-Suan; Lim, Yun-Seng; Lau, Sing-Liong

    2009-01-01

    A novel on-axis general sun-tracking formula has been integrated in the algorithm of an open-loop sun-tracking system in order to track the sun accurately and cost effectively. Sun-tracking errors due to installation defects of the 25 m(2) prototype solar concentrator have been analyzed from recorded solar images with the use of a CCD camera. With the recorded data, misaligned angles from ideal azimuth-elevation axes have been determined and corrected by a straightforward changing of the parameters' values in the general formula of the tracking algorithm to improve the tracking accuracy to 2.99 mrad, which falls below the encoder resolution limit of 4.13 mrad.

  8. Fast time-reversible algorithms for molecular dynamics of rigid-body systems

    NASA Astrophysics Data System (ADS)

    Kajima, Yasuhiro; Hiyama, Miyabi; Ogata, Shuji; Kobayashi, Ryo; Tamura, Tomoyuki

    2012-06-01

    In this paper, we present time-reversible simulation algorithms for rigid bodies in the quaternion representation. By advancing a time-reversible algorithm [Y. Kajima, M. Hiyama, S. Ogata, and T. Tamura, J. Phys. Soc. Jpn. 80, 114002 (2011), 10.1143/JPSJ.80.114002] that requires iterations in calculating the angular velocity at each time step, we propose two kinds of iteration-free fast time-reversible algorithms. They are easily implemented in codes. The codes are compared with that of existing algorithms through demonstrative simulation of a nanometer-sized water droplet to find their stability of the total energy and computation speeds.

  9. Fast time-reversible algorithms for molecular dynamics of rigid-body systems.

    PubMed

    Kajima, Yasuhiro; Hiyama, Miyabi; Ogata, Shuji; Kobayashi, Ryo; Tamura, Tomoyuki

    2012-06-21

    In this paper, we present time-reversible simulation algorithms for rigid bodies in the quaternion representation. By advancing a time-reversible algorithm [Y. Kajima, M. Hiyama, S. Ogata, and T. Tamura, J. Phys. Soc. Jpn. 80, 114002 (2011)] that requires iterations in calculating the angular velocity at each time step, we propose two kinds of iteration-free fast time-reversible algorithms. They are easily implemented in codes. The codes are compared with that of existing algorithms through demonstrative simulation of a nanometer-sized water droplet to find their stability of the total energy and computation speeds. PMID:22779579

  10. Fast and accurate image recognition algorithms for fresh produce food safety sensing

    NASA Astrophysics Data System (ADS)

    Yang, Chun-Chieh; Kim, Moon S.; Chao, Kuanglin; Kang, Sukwon; Lefcourt, Alan M.

    2011-06-01

    This research developed and evaluated the multispectral algorithms derived from hyperspectral line-scan fluorescence imaging under violet LED excitation for detection of fecal contamination on Golden Delicious apples. The algorithms utilized the fluorescence intensities at four wavebands, 680 nm, 684 nm, 720 nm, and 780 nm, for computation of simple functions for effective detection of contamination spots created on the apple surfaces using four concentrations of aqueous fecal dilutions. The algorithms detected more than 99% of the fecal spots. The effective detection of feces showed that a simple multispectral fluorescence imaging algorithm based on violet LED excitation may be appropriate to detect fecal contamination on fast-speed apple processing lines.

  11. A Simple Algorithm to Identify and Track Trough and Ridge in Reanalysis Data

    NASA Astrophysics Data System (ADS)

    Iwabe, C. M. N.; Fusco, D.

    2015-12-01

    Currently, researchers work with large volumes of data, and this can spend more time to climatology and meteorology analysis. The use of objective methods are essential to reduce the time of data analysis. An indication of synoptic systems development in surface is the presence of trough in the middle level (500 hPa). That atmospheric pattern denotes strong indication of instability and changes in the weather. Many of algorithms tracking of meteorological systems are two-dimensional. For example, the tracking of cyclones are based on identification of minimum center of sea level pressure or center of cyclonic vorticity close to the surface. The goal of this work is the creation of the algorithm that identifies and tracks the trough and ridge at middle levels (500 hPa), which can be used for three-dimensional identification/tracking of the cyclone on surface. The algorithm consists in identifying the area where the trough/ridge is contained, besides to provide information of the location of the axis of the trough/ridge and its slope, amplitude and intensity. So, allowing associate the features of the trough/ridge with the features of the systems at the surface.

  12. Fast algorithms for classical X-->0 diffusion-reaction processes.

    PubMed

    Thalmann, Fabrice; Lee, Nam-Kyung

    2009-02-21

    The Doi formalism treats a reaction-diffusion process as a quantum many-body problem. We use this second-quantized formulation as a starting point to derive a numerical scheme for simulating X-->0 reaction-diffusion processes, following a well-established time discretization procedure. In the case of a reaction zone localized in the configuration space, this formulation provides also a systematic way of designing an optimized, multiple time step algorithm, spending most of the computation time to sample the configurations where the reaction is likely to occur.

  13. Fast track anesthesia for liver transplantation: Review of the current practice

    PubMed Central

    Aniskevich, Stephen; Pai, Sher-Lu

    2015-01-01

    Historically, patients undergoing liver transplantation were left intubated and extubated in the intensive care unit (ICU) after a period of recovery. Proponents of this practice argued that these patients were critically ill and need time to be properly optimized from a physiological and pain standpoint prior to extubation. Recently, there has been a growing movement toward early extubation in transplant centers worldwide. Initially fueled by research into early extubation following cardiac surgery, extubation in the operating room or soon after arrival to the ICU, has been shown to be safe with proper patient selection. Additionally, as experience at determining appropriate candidates has improved, some institutions have developed systems to allow select patients to bypass the ICU entirely and be admitted to the surgical ward after transplant. We discuss the history of early extubation and the arguments in favor and against fast track anesthesia. We also described our practice of fast track anesthesia at Mayo Clinic Florida, in which, we extubate approximately 60% of our patients in the operating room and send them to the surgical ward after a period of time in the post anesthesia recovery unit. PMID:26380654

  14. Fast-track program in laparoscopic liver surgery: Theory or fact?

    PubMed Central

    Sánchez-Pérez, Belinda; Aranda-Narváez, José Manuel; Suárez-Muñoz, Miguel Angel; elAdel-delFresno, Moises; Fernández-Aguilar, José Luis; Pérez-Daga, Jose Antonio; Pulido-Roa, Ysabel; Santoyo-Santoyo, Julio

    2012-01-01

    AIM: To analyze our results after the introduction of a fast-track (FT) program after laparoscopic liver surgery in our Hepatobiliarypancreatic Unit. METHODS: All patients (43) undergoing laparoscopic liver surgery between March 2004 and March 2010 were included and divided into two consecutive groups: Control group (CG) from March 2004 until December 2006 with traditional perioperative cares (17 patients) and fast-track group (FTG) from January 2007 until March 2010 with FT program cares (26 patients). Primary endpoint was the influence of the program on the postoperative stay, the amount of re-admissions, morbidity and mortality. Secondarily we considered duration of surgery, use of drains, conversion to open surgery, intensive cares needs and transfusion. RESULTS: Both groups were homogeneous in age and sex. No differences in technique, time of surgery or conversion to open surgery were found, but more malignant diseases were operated in the FTG, and then transfusions were higher in FTG. Readmissions and morbidity were similar in both groups, without mortality. Postoperative stay was similar, with a median of 3 for CG vs 2.5 for FTG. However, the 80.8% of patients from FTG left the hospital within the first 3 d after surgery (58.8% for CG). CONCLUSION: The introduction of a FT program after laparoscopic liver surgery improves the recovery of patients without increasing complications or re-admissions, which leads to a reduction of the stay and costs. PMID:23493957

  15. A fast algorithm for the simulation of arterial pulse waves

    NASA Astrophysics Data System (ADS)

    Du, Tao; Hu, Dan; Cai, David

    2016-06-01

    One-dimensional models have been widely used in studies of the propagation of blood pulse waves in large arterial trees. Under a periodic driving of the heartbeat, traditional numerical methods, such as the Lax-Wendroff method, are employed to obtain asymptotic periodic solutions at large times. However, these methods are severely constrained by the CFL condition due to large pulse wave speed. In this work, we develop a new numerical algorithm to overcome this constraint. First, we reformulate the model system of pulse wave propagation using a set of Riemann variables and derive a new form of boundary conditions at the inlet, the outlets, and the bifurcation points of the arterial tree. The new form of the boundary conditions enables us to design a convergent iterative method to enforce the boundary conditions. Then, after exchanging the spatial and temporal coordinates of the model system, we apply the Lax-Wendroff method in the exchanged coordinate system, which turns the large pulse wave speed from a liability to a benefit, to solve the wave equation in each artery of the model arterial system. Our numerical studies show that our new algorithm is stable and can perform ∼15 times faster than the traditional implementation of the Lax-Wendroff method under the requirement that the relative numerical error of blood pressure be smaller than one percent, which is much smaller than the modeling error.

  16. Fast algorithms for glassy materials: methods and explorations

    NASA Astrophysics Data System (ADS)

    Middleton, A. Alan

    2014-03-01

    Glassy materials with frozen disorder, including random magnets such as spin glasses and interfaces in disordered materials, exhibit striking non-equilibrium behavior such as the ability to store a history of external parameters (memory). Precisely due to their glassy nature, direct simulation of models of these materials is very slow. In some fortunate cases, however, algorithms exist that exactly compute thermodynamic quantities. Such cases include spin glasses in two dimensions and interfaces and random field magnets in arbitrary dimensions at zero temperature. Using algorithms built using ideas developed by computer scientists and mathematicians, one can even directly sample equilibrium configurations in very large systems, as if one picked the configurations out of a ``hat'' of all configurations weighted by their Boltzmann factors. This talk will provide some of the background for these methods and discuss the connections between physics and computer science, as used by a number of groups. Recent applications of these methods to investigating phase transitions in glassy materials and to answering qualitative questions about the free energy landscape and memory effects will be discussed. This work was supported in part by NSF grant DMR-1006731. Creighton Thomas and David Huse also contributed to much of the work to be presented.

  17. Fast Quantum Algorithm for Predicting Descriptive Statistics of Stochastic Processes

    NASA Technical Reports Server (NTRS)

    Williams Colin P.

    1999-01-01

    Stochastic processes are used as a modeling tool in several sub-fields of physics, biology, and finance. Analytic understanding of the long term behavior of such processes is only tractable for very simple types of stochastic processes such as Markovian processes. However, in real world applications more complex stochastic processes often arise. In physics, the complicating factor might be nonlinearities; in biology it might be memory effects; and in finance is might be the non-random intentional behavior of participants in a market. In the absence of analytic insight, one is forced to understand these more complex stochastic processes via numerical simulation techniques. In this paper we present a quantum algorithm for performing such simulations. In particular, we show how a quantum algorithm can predict arbitrary descriptive statistics (moments) of N-step stochastic processes in just O(square root of N) time. That is, the quantum complexity is the square root of the classical complexity for performing such simulations. This is a significant speedup in comparison to the current state of the art.

  18. The small-voxel tracking algorithm for simulating chemical reactions among diffusing molecules

    SciTech Connect

    Gillespie, Daniel T. Gillespie, Carol A.; Seitaridou, Effrosyni

    2014-12-21

    Simulating the evolution of a chemically reacting system using the bimolecular propensity function, as is done by the stochastic simulation algorithm and its reaction-diffusion extension, entails making statistically inspired guesses as to where the reactant molecules are at any given time. Those guesses will be physically justified if the system is dilute and well-mixed in the reactant molecules. Otherwise, an accurate simulation will require the extra effort and expense of keeping track of the positions of the reactant molecules as the system evolves. One molecule-tracking algorithm that pays careful attention to the physics of molecular diffusion is the enhanced Green's function reaction dynamics (eGFRD) of Takahashi, Tănase-Nicola, and ten Wolde [Proc. Natl. Acad. Sci. U.S.A. 107, 2473 (2010)]. We introduce here a molecule-tracking algorithm that has the same theoretical underpinnings and strategic aims as eGFRD, but a different implementation procedure. Called the small-voxel tracking algorithm (SVTA), it combines the well known voxel-hopping method for simulating molecular diffusion with a novel procedure for rectifying the unphysical predictions of the diffusion equation on the small spatiotemporal scale of molecular collisions. Indications are that the SVTA might be more computationally efficient than eGFRD for the problematic class of non-dilute systems. A widely applicable, user-friendly software implementation of the SVTA has yet to be developed, but we exhibit some simple examples which show that the algorithm is computationally feasible and gives plausible results.

  19. A new fast scanning system for the measurement of large angle tracks in nuclear emulsions

    NASA Astrophysics Data System (ADS)

    Alexandrov, A.; Buonaura, A.; Consiglio, L.; D'Ambrosio, N.; De Lellis, G.; Di Crescenzo, A.; Di Marco, N.; Galati, G.; Lauria, A.; Montesi, M. C.; Pupilli, F.; Shchedrina, T.; Tioukov, V.; Vladymyrov, M.

    2015-11-01

    Nuclear emulsions have been widely used in particle physics to identify new particles through the observation of their decays thanks to their unique spatial resolution. Nevertheless, before the advent of automatic scanning systems, the emulsion analysis was very demanding in terms of well trained manpower. Due to this reason, they were gradually replaced by electronic detectors, until the '90s, when automatic microscopes started to be developed in Japan and in Europe. Automatic scanning was essential to conceive large scale emulsion-based neutrino experiments like CHORUS, DONUT and OPERA. Standard scanning systems have been initially designed to recognize tracks within a limited angular acceptance (θ lesssim 30°) where θ is the track angle with respect to a line perpendicular to the emulsion plane. In this paper we describe the implementation of a novel fast automatic scanning system aimed at extending the track recognition to the full angular range and improving the present scanning speed. Indeed, nuclear emulsions do not have any intrinsic limit to detect particle direction. Such improvement opens new perspectives to use nuclear emulsions in several fields in addition to large scale neutrino experiments, like muon radiography, medical applications and dark matter directional detection.

  20. Compiling fast partial derivatives of functions given by algorithms

    SciTech Connect

    Speelpenning, B.

    1980-01-01

    If the gradient of the function y = f(x/sub 1/,..., x/sub n/) is desired, where f is given by an algoritym Af(x, n, y), most numerical analysts will use numerical differencing. This is a sampling scheme that approximates derivatives by the slope of secants in closely spaced points. Symbolic methods that make full use of the program text of Af should be able to come up with a better way to evaluate the gradient of F. The system Jake described produces gradients significantly faster than numerical differencing. Jake can handle algorithms Af with arbitrary flow of control. Measurements performed on one particular machine suggest that Jake is faster than numerical differencing for n > 8. Somewhat weaker results were obtained for the problem of computing Jacobians of arbitrary shape.

  1. Efficient parallel algorithm for statistical ion track simulations in crystalline materials

    NASA Astrophysics Data System (ADS)

    Jeon, Byoungseon; Grønbech-Jensen, Niels

    2009-02-01

    We present an efficient parallel algorithm for statistical Molecular Dynamics simulations of ion tracks in solids. The method is based on the Rare Event Enhanced Domain following Molecular Dynamics (REED-MD) algorithm, which has been successfully applied to studies of, e.g., ion implantation into crystalline semiconductor wafers. We discuss the strategies for parallelizing the method, and we settle on a host-client type polling scheme in which a multiple of asynchronous processors are continuously fed to the host, which, in turn, distributes the resulting feed-back information to the clients. This real-time feed-back consists of, e.g., cumulative damage information or statistics updates necessary for the cloning in the rare event algorithm. We finally demonstrate the algorithm for radiation effects in a nuclear oxide fuel, and we show the balanced parallel approach with high parallel efficiency in multiple processor configurations.

  2. Ultra-fast fluence optimization for beam angle selection algorithms

    NASA Astrophysics Data System (ADS)

    Bangert, M.; Ziegenhein, P.; Oelfke, U.

    2014-03-01

    Beam angle selection (BAS) including fluence optimization (FO) is among the most extensive computational tasks in radiotherapy. Precomputed dose influence data (DID) of all considered beam orientations (up to 100 GB for complex cases) has to be handled in the main memory and repeated FOs are required for different beam ensembles. In this paper, the authors describe concepts accelerating FO for BAS algorithms using off-the-shelf multiprocessor workstations. The FO runtime is not dominated by the arithmetic load of the CPUs but by the transportation of DID from the RAM to the CPUs. On multiprocessor workstations, however, the speed of data transportation from the main memory to the CPUs is non-uniform across the RAM; every CPU has a dedicated memory location (node) with minimum access time. We apply a thread node binding strategy to ensure that CPUs only access DID from their preferred node. Ideal load balancing for arbitrary beam ensembles is guaranteed by distributing the DID of every candidate beam equally to all nodes. Furthermore we use a custom sorting scheme of the DID to minimize the overall data transportation. The framework is implemented on an AMD Opteron workstation. One FO iteration comprising dose, objective function, and gradient calculation takes between 0.010 s (9 beams, skull, 0.23 GB DID) and 0.070 s (9 beams, abdomen, 1.50 GB DID). Our overall FO time is < 1 s for small cases, larger cases take ~ 4 s. BAS runs including FOs for 1000 different beam ensembles take ~ 15-70 min, depending on the treatment site. This enables an efficient clinical evaluation of different BAS algorithms.

  3. An Improved Interacting Multiple Model Filtering Algorithm Based on the Cubature Kalman Filter for Maneuvering Target Tracking

    PubMed Central

    Zhu, Wei; Wang, Wei; Yuan, Gannan

    2016-01-01

    In order to improve the tracking accuracy, model estimation accuracy and quick response of multiple model maneuvering target tracking, the interacting multiple models five degree cubature Kalman filter (IMM5CKF) is proposed in this paper. In the proposed algorithm, the interacting multiple models (IMM) algorithm processes all the models through a Markov Chain to simultaneously enhance the model tracking accuracy of target tracking. Then a five degree cubature Kalman filter (5CKF) evaluates the surface integral by a higher but deterministic odd ordered spherical cubature rule to improve the tracking accuracy and the model switch sensitivity of the IMM algorithm. Finally, the simulation results demonstrate that the proposed algorithm exhibits quick and smooth switching when disposing different maneuver models, and it also performs better than the interacting multiple models cubature Kalman filter (IMMCKF), interacting multiple models unscented Kalman filter (IMMUKF), 5CKF and the optimal mode transition matrix IMM (OMTM-IMM). PMID:27258285

  4. An Improved Interacting Multiple Model Filtering Algorithm Based on the Cubature Kalman Filter for Maneuvering Target Tracking.

    PubMed

    Zhu, Wei; Wang, Wei; Yuan, Gannan

    2016-01-01

    In order to improve the tracking accuracy, model estimation accuracy and quick response of multiple model maneuvering target tracking, the interacting multiple models five degree cubature Kalman filter (IMM5CKF) is proposed in this paper. In the proposed algorithm, the interacting multiple models (IMM) algorithm processes all the models through a Markov Chain to simultaneously enhance the model tracking accuracy of target tracking. Then a five degree cubature Kalman filter (5CKF) evaluates the surface integral by a higher but deterministic odd ordered spherical cubature rule to improve the tracking accuracy and the model switch sensitivity of the IMM algorithm. Finally, the simulation results demonstrate that the proposed algorithm exhibits quick and smooth switching when disposing different maneuver models, and it also performs better than the interacting multiple models cubature Kalman filter (IMMCKF), interacting multiple models unscented Kalman filter (IMMUKF), 5CKF and the optimal mode transition matrix IMM (OMTM-IMM). PMID:27258285

  5. An Improved Interacting Multiple Model Filtering Algorithm Based on the Cubature Kalman Filter for Maneuvering Target Tracking.

    PubMed

    Zhu, Wei; Wang, Wei; Yuan, Gannan

    2016-06-01

    In order to improve the tracking accuracy, model estimation accuracy and quick response of multiple model maneuvering target tracking, the interacting multiple models five degree cubature Kalman filter (IMM5CKF) is proposed in this paper. In the proposed algorithm, the interacting multiple models (IMM) algorithm processes all the models through a Markov Chain to simultaneously enhance the model tracking accuracy of target tracking. Then a five degree cubature Kalman filter (5CKF) evaluates the surface integral by a higher but deterministic odd ordered spherical cubature rule to improve the tracking accuracy and the model switch sensitivity of the IMM algorithm. Finally, the simulation results demonstrate that the proposed algorithm exhibits quick and smooth switching when disposing different maneuver models, and it also performs better than the interacting multiple models cubature Kalman filter (IMMCKF), interacting multiple models unscented Kalman filter (IMMUKF), 5CKF and the optimal mode transition matrix IMM (OMTM-IMM).

  6. A Trend for Increased Risk of Revision Surgery due to Deep Infection following Fast-Track Hip Arthroplasty.

    PubMed

    Amlie, Einar; Lerdal, Anners; Gay, Caryl L; Høvik, Øystein; Nordsletten, Lars; Dimmen, Sigbjørn

    2016-01-01

    Rates of revision surgery due to deep infection following total hip arthroplasty (THA) increased at a Norwegian hospital following implementation of fast-track procedures. The purpose of this study was to determine whether selected demographic (age and sex) and clinical (body mass index, American Society of Anesthesiologists (ASA) classification, surgery duration, length of hospital stay, cemented versus uncemented prosthesis, and fast-track procedures) factors were associated with higher risk of revision surgery due to deep infection following THA. In a prospective designed study 4,406 patients undergoing primary THA between January 2001 and January 2013 where included. Rates of infection-related revision surgery within 3 months of THA were higher among males and among patients who received fast-track THA. Adjusting for sex and age, the implemented fast-track elements were significantly associated with increased risk of revision surgery. Risk of infection-related revision surgery was unrelated to body mass index, physical status, surgery duration, length of hospital stay, and prosthesis type. Because local infiltration analgesia, drain cessation, and early mobilization were introduced in combination, it could not be determined which component or combination of components imposed the increased risk. The findings in this small sample raise concern about fast-track THA but require replication in other samples. PMID:27034841

  7. A Trend for Increased Risk of Revision Surgery due to Deep Infection following Fast-Track Hip Arthroplasty

    PubMed Central

    Amlie, Einar; Lerdal, Anners; Gay, Caryl L.; Høvik, Øystein; Nordsletten, Lars; Dimmen, Sigbjørn

    2016-01-01

    Rates of revision surgery due to deep infection following total hip arthroplasty (THA) increased at a Norwegian hospital following implementation of fast-track procedures. The purpose of this study was to determine whether selected demographic (age and sex) and clinical (body mass index, American Society of Anesthesiologists (ASA) classification, surgery duration, length of hospital stay, cemented versus uncemented prosthesis, and fast-track procedures) factors were associated with higher risk of revision surgery due to deep infection following THA. In a prospective designed study 4,406 patients undergoing primary THA between January 2001 and January 2013 where included. Rates of infection-related revision surgery within 3 months of THA were higher among males and among patients who received fast-track THA. Adjusting for sex and age, the implemented fast-track elements were significantly associated with increased risk of revision surgery. Risk of infection-related revision surgery was unrelated to body mass index, physical status, surgery duration, length of hospital stay, and prosthesis type. Because local infiltration analgesia, drain cessation, and early mobilization were introduced in combination, it could not be determined which component or combination of components imposed the increased risk. The findings in this small sample raise concern about fast-track THA but require replication in other samples. PMID:27034841

  8. Fractional-Fourier-transform calculation through the fast-Fourier-transform algorithm

    NASA Astrophysics Data System (ADS)

    García, Javier; Mas, David; Dorsch, Rainer G.

    1996-12-01

    A method for the calculation of the fractional Fourier transform (FRT) by means of the fast Fourier transform (FFT) algorithm is presented. The process involves mainly two FFT s in cascade; thus the process has the same complexity as this algorithm. The method is valid for fractional orders varying from 1 to 1. Scaling factors for the FRT and Fresnel diffraction when calculated through the FFT are discussed.

  9. A preliminary report on the development of MATLAB tensor classes for fast algorithm prototyping.

    SciTech Connect

    Bader, Brett William; Kolda, Tamara Gibson

    2004-07-01

    We describe three MATLAB classes for manipulating tensors in order to allow fast algorithm prototyping. A tensor is a multidimensional or N-way array. We present a tensor class for manipulating tensors which allows for tensor multiplication and 'matricization.' We have further added two classes for representing tensors in decomposed format: cp{_}tensor and tucker{_}tensor. We demonstrate the use of these classes by implementing several algorithms that have appeared in the literature.

  10. Fast estimation of defect profiles from the magnetic flux leakage signal based on a multi-power affine projection algorithm.

    PubMed

    Han, Wenhua; Shen, Xiaohui; Xu, Jun; Wang, Ping; Tian, Guiyun; Wu, Zhengyang

    2014-01-01

    Magnetic flux leakage (MFL) inspection is one of the most important and sensitive nondestructive testing approaches. For online MFL inspection of a long-range railway track or oil pipeline, a fast and effective defect profile estimating method based on a multi-power affine projection algorithm (MAPA) is proposed, where the depth of a sampling point is related with not only the MFL signals before it, but also the ones after it, and all of the sampling points related to one point appear as serials or multi-power. Defect profile estimation has two steps: regulating a weight vector in an MAPA filter and estimating a defect profile with the MAPA filter. Both simulation and experimental data are used to test the performance of the proposed method. The results demonstrate that the proposed method exhibits high speed while maintaining the estimated profiles clearly close to the desired ones in a noisy environment, thereby meeting the demand of accurate online inspection. PMID:25192314

  11. Study of absolute fast neutron dosimetry using CR-39 track detectors

    NASA Astrophysics Data System (ADS)

    El-Sersy, A. R.

    2010-06-01

    In this work, CR-39 track detectors have extensively been used in the determination of fast neutron fluence-to-dose factor. The registration efficiency, ɛ, of CR-39 detectors for fast neutrons was calculated using different theoretical approaches according to each mode of neutron interaction with the constituent atoms (H, C and O) of the detector material. The induced proton-recoiled showed the most common interaction among the others. The dependence of ɛ on both neutron energy and etching time was also studied. In addition, the neutron dose was calculated as a function of neutron energy in the range from 0.5 to 14 MeV using the values of (d E/d X) for each recoil particle in CR-39 detector. Results showed that the values of ɛ were obviously affected by both neutron energy and etching time where the contribution in ɛ from proton recoil was the most. The contribution from carbon and oxygen recoils in dose calculation was pronounced due to their higher corresponding values of d E/d X in comparison to those from proton recoils. The present calculated fluence-to-dose factor was in agreement with that either from ICRP no. 74 or from TRS no. 285 of IAEA, which reflected the importance of using CR-39 in absolute fast neutron dosimetry.

  12. Probe Vehicle Track-Matching Algorithm Based on Spatial Semantic Features

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Song, X.; Zheng, L.; Yang, C.; Yu, M.; Sun, M.

    2015-07-01

    The matching of GPS received locations to roads is challenging. Traditional matching method is based on the position of the GPS receiver, the vehicle position and vehicle behavior near the receiving time. However, for probe vehicle trajectories, the sampling interval is too sparse and there is a poor correlation between adjacent sampling points, so it cannot partition the GPS noise through the historical positions. For the data mining of probe vehicle tracks based on spatial semantics, the matching is learned from the traditional electronic navigation map matching, and it is proposed that the probe vehicle track matching algorithm is based on spatial semantic features. Experimental results show that the proposed global-path matching method gets a good matching results, and restores the true path through the probe vehicle track.

  13. PTM Along Track Algorithm to Maintain Spacing During Same Direction Pair-Wise Trajectory Management Operations

    NASA Technical Reports Server (NTRS)

    Carreno, Victor A.

    2015-01-01

    Pair-wise Trajectory Management (PTM) is a cockpit based delegated responsibility separation standard. When an air traffic service provider gives a PTM clearance to an aircraft and the flight crew accepts the clearance, the flight crew will maintain spacing and separation from a designated aircraft. A PTM along track algorithm will receive state information from the designated aircraft and from the own ship to produce speed guidance for the flight crew to maintain spacing and separation

  14. Fiber tracking algorithm in combined PIV/PTV measurement of fiber suspension flow

    NASA Astrophysics Data System (ADS)

    Hoseini, Afshin Abbasi; Zavareh, Zahra; Lundell, Fredrik; Anderson, Helge I.

    2013-10-01

    A new algorithm for fiber tracking in combined PIV/PTV measurement of fiber suspension flow is proposed based on SOM neural network and is examined by synthetic images of fibers showing 2D suspension flows. There is a new idea in the algorithm to take the orientation of fibers into account for matching as well as their position. In two-phase PIV measurements of fiber-laded suspension flows, fiber tracking has a key role together with PIV measurement of fluid phase. The essential parts of fiber tracking are to correctly identify and match fibers in successive images. The development of a method in order to determine the position and orientation of fibers using steerable filter with a reasonable accuracy have already been done, [3]. The present study is concentrated in the development of an algorithm for pairing fibers in consecutive images. The method used is based on the SOM neural network that finds most likely matching link in images on the basis of feature extraction and clustering. The fundamental concept is finding the corresponding fibers with the nearest characteristics, position and angle in images. It improves not only the robustness against loss-of-pair fibers between two image frames but also reliable matching at large numbers of dispersed fibers image using one more characteristics of fibers in image, namely their orientation, in addition to their coordinate vector.

  15. Fast-track surgery in gynaecology and gynaecologic oncology: a review of a rolling clinical audit.

    PubMed

    Carter, Jonathan

    2012-01-01

    Clinical audit is the process by which clinicians are able to demonstrate to themselves, their patients, hospital administrators, and healthcare financial providers the outcome and safety of their clinical practice. It is a process by which the public can be assured of safety and outcomes. A fast-track surgery program was initiated in January 2008, and this paper represents a rolling clinical audit of the outcomes of that program until the end of June 2012. Three hundred and eighty-nine patients underwent fast track surgical management after having a laparotomy for suspected or confirmed gynaecological cancer. There were no exclusions and the data presented represents the practice and outcomes of all patients referred to a single gynaecological oncologist. The majority of patients were deemed to have complex surgical procedures performed usually through a vertical midline incision. One third of patients had a nonzero performance status, median weight was 68 kilograms, and median BMI was 26.5 with 31% being classified as obese. Median operating time was 2.25 hours, and the median estimated blood loss was 175 mL. Overall the median length of stay (LOS) was 3 days with 95% of patients tolerating early oral feeding. Four percent of patients required readmission, and 0.5% were required to return to the operating room. Whilst the wound infection rate was 2.6%, there were no ureteric, bowel or neurovascular injuries. Overall there were 2 bladder injuries (0.5%), and the incidence of venous thromboembolism was 1%. Subset analysis was also undertaken. Whilst a number of variables were associated with reduced LOS, on multivariate analysis, benign pathology, shorter operating time, and the ability to tolerate early oral feeding were found to be significant. The data and experience presented is the largest and most extensive reported in the literature relating to fast-track surgery in gynaecology and gynaecologic oncology. The public can be reassured of the safety and

  16. Modified fast frequency acquisition via adaptive least squares algorithm

    NASA Technical Reports Server (NTRS)

    Kumar, Rajendra (Inventor)

    1992-01-01

    A method and the associated apparatus for estimating the amplitude, frequency, and phase of a signal of interest are presented. The method comprises the following steps: (1) inputting the signal of interest; (2) generating a reference signal with adjustable amplitude, frequency and phase at an output thereof; (3) mixing the signal of interest with the reference signal and a signal 90 deg out of phase with the reference signal to provide a pair of quadrature sample signals comprising respectively a difference between the signal of interest and the reference signal and a difference between the signal of interest and the signal 90 deg out of phase with the reference signal; (4) using the pair of quadrature sample signals to compute estimates of the amplitude, frequency, and phase of an error signal comprising the difference between the signal of interest and the reference signal employing a least squares estimation; (5) adjusting the amplitude, frequency, and phase of the reference signal from the numerically controlled oscillator in a manner which drives the error signal towards zero; and (6) outputting the estimates of the amplitude, frequency, and phase of the error signal in combination with the reference signal to produce a best estimate of the amplitude, frequency, and phase of the signal of interest. The preferred method includes the step of providing the error signal as a real time confidence measure as to the accuracy of the estimates wherein the closer the error signal is to zero, the higher the probability that the estimates are accurate. A matrix in the estimation algorithm provides an estimate of the variance of the estimation error.

  17. Comparing precorrected-FFT and fast multipole algorithms for solving three-dimensional potential integral equations

    SciTech Connect

    White, J.; Phillips, J.R.; Korsmeyer, T.

    1994-12-31

    Mixed first- and second-kind surface integral equations with (1/r) and {partial_derivative}/{partial_derivative} (1/r) kernels are generated by a variety of three-dimensional engineering problems. For such problems, Nystroem type algorithms can not be used directly, but an expansion for the unknown, rather than for the entire integrand, can be assumed and the product of the singular kernal and the unknown integrated analytically. Combining such an approach with a Galerkin or collocation scheme for computing the expansion coefficients is a general approach, but generates dense matrix problems. Recently developed fast algorithms for solving these dense matrix problems have been based on multipole-accelerated iterative methods, in which the fast multipole algorithm is used to rapidly compute the matrix-vector products in a Krylov-subspace based iterative method. Another approach to rapidly computing the dense matrix-vector products associated with discretized integral equations follows more along the lines of a multigrid algorithm, and involves projecting the surface unknowns onto a regular grid, then computing using the grid, and finally interpolating the results from the regular grid back to the surfaces. Here, the authors describe a precorrectted-FFT approach which can replace the fast multipole algorithm for accelerating the dense matrix-vector product associated with discretized potential integral equations. The precorrected-FFT method, described below, is an order n log(n) algorithm, and is asymptotically slower than the order n fast multipole algorithm. However, initial experimental results indicate the method may have a significant constant factor advantage for a variety of engineering problems.

  18. Preliminary versions of the MATLAB tensor classes for fast algorithm prototyping.

    SciTech Connect

    Bader, Brett William; Kolda, Tamara Gibson

    2004-07-01

    We present the source code for three MATLAB classes for manipulating tensors in order to allow fast algorithm prototyping. A tensor is a multidimensional or Nway array. This is a supplementary report; details on using this code are provided separately in SAND-XXXX.

  19. An evolutionary computation based algorithm for calculating solar differential rotation by automatic tracking of coronal bright points

    NASA Astrophysics Data System (ADS)

    Shahamatnia, Ehsan; Dorotovič, Ivan; Fonseca, Jose M.; Ribeiro, Rita A.

    2016-03-01

    Developing specialized software tools is essential to support studies of solar activity evolution. With new space missions such as Solar Dynamics Observatory (SDO), solar images are being produced in unprecedented volumes. To capitalize on that huge data availability, the scientific community needs a new generation of software tools for automatic and efficient data processing. In this paper a prototype of a modular framework for solar feature detection, characterization, and tracking is presented. To develop an efficient system capable of automatic solar feature tracking and measuring, a hybrid approach combining specialized image processing, evolutionary optimization, and soft computing algorithms is being followed. The specialized hybrid algorithm for tracking solar features allows automatic feature tracking while gathering characterization details about the tracked features. The hybrid algorithm takes advantages of the snake model, a specialized image processing algorithm widely used in applications such as boundary delineation, image segmentation, and object tracking. Further, it exploits the flexibility and efficiency of Particle Swarm Optimization (PSO), a stochastic population based optimization algorithm. PSO has been used successfully in a wide range of applications including combinatorial optimization, control, clustering, robotics, scheduling, and image processing and video analysis applications. The proposed tool, denoted PSO-Snake model, was already successfully tested in other works for tracking sunspots and coronal bright points. In this work, we discuss the application of the PSO-Snake algorithm for calculating the sidereal rotational angular velocity of the solar corona. To validate the results we compare them with published manual results performed by an expert.

  20. Speed-up hyperspheres homotopic path tracking algorithm for PWL circuits simulations.

    PubMed

    Ramirez-Pinero, A; Vazquez-Leal, H; Jimenez-Fernandez, V M; Sedighi, H M; Rashidi, M M; Filobello-Nino, U; Castaneda-Sheissa, R; Huerta-Chua, J; Sarmiento-Reyes, L A; Laguna-Camacho, J R; Castro-Gonzalez, F

    2016-01-01

    In the present work, we introduce an improved version of the hyperspheres path tracking method adapted for piecewise linear (PWL) circuits. This enhanced version takes advantage of the PWL characteristics from the homotopic curve, achieving faster path tracking and improving the performance of the homotopy continuation method (HCM). Faster computing time allows the study of complex circuits with higher complexity; the proposed method also decrease, significantly, the probability of having a diverging problem when using the Newton-Raphson method because it is applied just twice per linear region on the homotopic path. Equilibrium equations of the studied circuits are obtained applying the modified nodal analysis; this method allows to propose an algorithm for nonlinear circuit analysis. Besides, a starting point criteria is proposed to obtain better performance of the HCM and a technique for avoiding the reversion phenomenon is also proposed. To prove the efficiency of the path tracking method, several cases study with bipolar (BJT) and CMOS transistors are provided. Simulation results show that the proposed approach can be up to twelve times faster than the original path tracking method and also helps to avoid several reversion cases that appears when original hyperspheres path tracking scheme was employed.

  1. Speed-up hyperspheres homotopic path tracking algorithm for PWL circuits simulations.

    PubMed

    Ramirez-Pinero, A; Vazquez-Leal, H; Jimenez-Fernandez, V M; Sedighi, H M; Rashidi, M M; Filobello-Nino, U; Castaneda-Sheissa, R; Huerta-Chua, J; Sarmiento-Reyes, L A; Laguna-Camacho, J R; Castro-Gonzalez, F

    2016-01-01

    In the present work, we introduce an improved version of the hyperspheres path tracking method adapted for piecewise linear (PWL) circuits. This enhanced version takes advantage of the PWL characteristics from the homotopic curve, achieving faster path tracking and improving the performance of the homotopy continuation method (HCM). Faster computing time allows the study of complex circuits with higher complexity; the proposed method also decrease, significantly, the probability of having a diverging problem when using the Newton-Raphson method because it is applied just twice per linear region on the homotopic path. Equilibrium equations of the studied circuits are obtained applying the modified nodal analysis; this method allows to propose an algorithm for nonlinear circuit analysis. Besides, a starting point criteria is proposed to obtain better performance of the HCM and a technique for avoiding the reversion phenomenon is also proposed. To prove the efficiency of the path tracking method, several cases study with bipolar (BJT) and CMOS transistors are provided. Simulation results show that the proposed approach can be up to twelve times faster than the original path tracking method and also helps to avoid several reversion cases that appears when original hyperspheres path tracking scheme was employed. PMID:27386338

  2. Comparison of imaging plates with track detectors for fast-neutron dosimetry.

    PubMed

    Belafrites, A; Nourreddine, A; Mouhssine, D; Nachab, A; Pape, A; Boucenna, A; Fernández, F

    2004-01-01

    Imaging plate (IP) radiation detectors are widely used in industrial radiography, medical imagery and autoradiography. When an IP is exposed to ionising radiation, some of the energy is absorbed to form a latent image. The energy stored, which is proportional to the dose received, can be liberated by a selective optical stimulation and collected to reconstitute the distribution of the ionising radiation on the IP. In this work, IPs for use in fast-neutron measurements are characterised. The response of our IP dosemeters in conjunction with their reading system was found to be linear in dose between 75 microSv and 10 mSv. This performance is compared with those of dosemeters based on the plastic track detectors PN3 and CR-39.

  3. Electric eels use high-voltage to track fast-moving prey

    PubMed Central

    Catania, Kenneth C.

    2015-01-01

    Electric eels (Electrophorus electricus) are legendary for their ability to incapacitate fish, humans, and horses with hundreds of volts of electricity. The function of this output as a weapon has been obvious for centuries but its potential role for electroreception has been overlooked. Here it is shown that electric eels use high-voltage simultaneously as a weapon and for precise and rapid electrolocation of fast-moving prey and conductors. Their speed, accuracy, and high-frequency pulse rate are reminiscent of bats using a ‘terminal feeding buzz' to track insects. Eel's exhibit ‘sensory conflict' when mechanosensory and electrosensory cues are separated, striking first toward mechanosensory cues and later toward conductors. Strikes initiated in the absence of conductors are aborted. In addition to providing new insights into the evolution of strongly electric fish and showing electric eels to be far more sophisticated than previously described, these findings reveal a trait with markedly dichotomous functions. PMID:26485580

  4. Health Preemption Behind Closed Doors: Trade Agreements and Fast-Track Authority

    PubMed Central

    Crosbie, Eric; Gonzalez, Mariaelena

    2014-01-01

    Noncommunicable diseases result from consuming unhealthy products, including tobacco, which are promoted by transnational corporations. The tobacco industry uses preemption to block or reverse tobacco control policies. Preemption removes authority from jurisdictions where tobacco companies’ influence is weak and transfers it to jurisdictions where they have an advantage. International trade agreements relocate decisions about tobacco control policy to venues where there is little opportunity for public scrutiny, participation, and debate. Tobacco companies are using these agreements to preempt domestic authority over tobacco policy. Other transnational corporations that profit by promoting unhealthy foods could do the same. “Fast-track authority,” in which Congress cedes ongoing oversight authority to the President, further distances the public from the debate. With international agreements binding governments to prioritize trade over health, transparency and public oversight of the trade negotiation process is necessary to safeguard public health interests. PMID:25033124

  5. Fast cine-magnetic resonance imaging point tracking for prostate cancer radiation therapy planning

    NASA Astrophysics Data System (ADS)

    Dowling, J.; Dang, K.; Fox, Chris D.; Chandra, S.; Gill, Suki; Kron, T.; Pham, D.; Foroudi, F.

    2014-03-01

    The analysis of intra-fraction organ motion is important for improving the precision of radiation therapy treatment delivery. One method to quantify this motion is for one or more observers to manually identify anatomic points of interest (POIs) on each slice of a cine-MRI sequence. However this is labour intensive and inter- and intra- observer variation can introduce uncertainty. In this paper a fast method for non-rigid registration based point tracking in cine-MRI sagittal and coronal series is described which identifies POIs in 0.98 seconds per sagittal slice and 1.35 seconds per coronal slice. The manual and automatic points were highly correlated (r>0.99, p<0.001) for all organs and the difference generally less than 1mm. For prostate planning peristalsis and rectal gas can result in unpredictable out of plane motion, suggesting the results may require manual verification.

  6. The Effects of the Fast Track Preventive Intervention on the Development of Conduct Disorder Across Childhood

    PubMed Central

    2013-01-01

    The impact of the Fast Track intervention on externalizing disorders across childhood was examined. Eight hundred-ninety-one early-starting children (69% male; 51% African American) were randomly assigned by matched sets of schools to intervention or control conditions. The 10-year intervention addressed parent behavior-management, child social cognitive skills, reading, home visiting, mentoring, and classroom curricula. Outcomes included psychiatric diagnoses after grades 3, 6, 9, and 12 for conduct disorder, oppositional defiant disorder, attention deficit hyperactivity disorder, and any externalizing disorder. Significant interaction effects between intervention and initial risk level indicated that intervention prevented the lifetime prevalence of all diagnoses, but only among those at highest initial risk, suggesting that targeted intervention can prevent externalizing disorders to promote the raising of healthy children. PMID:21291445

  7. The Vanderbilt University fast track to IAIMS: transition from planning to implementation.

    PubMed Central

    Stead, W W; Borden, R; Bourne, J; Giuse, D; Giuse, N; Harris, T R; Miller, R A; Olsen, A J

    1996-01-01

    Vanderbilt University Medical Center is implementing an Integrated Advanced Information Management System (IAIMS) using a fast-track approach. The elapsed time between start-up and completion of implementation will be 7.5 years. The Start-Up and Planning phases of the project are complete. The Implementation phase asks one question: How does an organization create an environment that redirects and coordinates a variety of individual activities so that they come together to provide an IAIMS? Four answers to this question are being tested. First, design resources to be "scalable"--i.e., capable of supporting enterprise-wide use. Second, provide information technology planning activities as ongoing core functions that direct local efforts. Third, design core infrastructure resources to be both reusable and expandable at the local level. Fourth, use milestones to measure progress toward selected endpoints to permit early refinement of plans and strategies. PMID:8880678

  8. Electric eels use high-voltage to track fast-moving prey.

    PubMed

    Catania, Kenneth C

    2015-10-20

    Electric eels (Electrophorus electricus) are legendary for their ability to incapacitate fish, humans, and horses with hundreds of volts of electricity. The function of this output as a weapon has been obvious for centuries but its potential role for electroreception has been overlooked. Here it is shown that electric eels use high-voltage simultaneously as a weapon and for precise and rapid electrolocation of fast-moving prey and conductors. Their speed, accuracy, and high-frequency pulse rate are reminiscent of bats using a 'terminal feeding buzz' to track insects. Eel's exhibit 'sensory conflict' when mechanosensory and electrosensory cues are separated, striking first toward mechanosensory cues and later toward conductors. Strikes initiated in the absence of conductors are aborted. In addition to providing new insights into the evolution of strongly electric fish and showing electric eels to be far more sophisticated than previously described, these findings reveal a trait with markedly dichotomous functions.

  9. Comparison of imaging plates with track detectors for fast-neutron dosimetry.

    PubMed

    Belafrites, A; Nourreddine, A; Mouhssine, D; Nachab, A; Pape, A; Boucenna, A; Fernández, F

    2004-01-01

    Imaging plate (IP) radiation detectors are widely used in industrial radiography, medical imagery and autoradiography. When an IP is exposed to ionising radiation, some of the energy is absorbed to form a latent image. The energy stored, which is proportional to the dose received, can be liberated by a selective optical stimulation and collected to reconstitute the distribution of the ionising radiation on the IP. In this work, IPs for use in fast-neutron measurements are characterised. The response of our IP dosemeters in conjunction with their reading system was found to be linear in dose between 75 microSv and 10 mSv. This performance is compared with those of dosemeters based on the plastic track detectors PN3 and CR-39. PMID:15353669

  10. The effects of the fast track preventive intervention on the development of conduct disorder across childhood.

    PubMed

    2011-01-01

    The impact of the Fast Track intervention on externalizing disorders across childhood was examined. Eight hundred-ninety-one early-starting children (69% male; 51% African American) were randomly assigned by matched sets of schools to intervention or control conditions. The 10-year intervention addressed parent behavior-management, child social cognitive skills, reading, home visiting, mentoring, and classroom curricula. Outcomes included psychiatric diagnoses after grades 3, 6, 9, and 12 for conduct disorder, oppositional defiant disorder, attention deficit hyperactivity disorder, and any externalizing disorder. Significant interaction effects between intervention and initial risk level indicated that intervention prevented the lifetime prevalence of all diagnoses, but only among those at highest initial risk, suggesting that targeted intervention can prevent externalizing disorders to promote the raising of healthy children.

  11. Tracking Down a Fast Instability in the PEP-II LER

    SciTech Connect

    Wienands, U.; Akre, R.; Curry, S.; DeBarger, S.; Decker, F.J.; Ecklund, S.; Fisher, A.S.; Heifets, S.A.; Krasnykh, A.; Kulikov, A.; Novokhatski, A.; Seeman, J.; Sullivan, M.K.; Teytelman, D.; Van Winkle, D.; Yocky, G.; /SLAC

    2007-05-18

    During Run 5, the beam in the PEP-II Low Energy Ring (LER) became affected by a predominantly vertical instability with very fast growth rate of 10...60/ms and varying threshold. The coherent amplitude of the oscillation was limited to approx. 1 mm peak and would damp down over a few tens of turns, however, beam loss set in even as the amplitude signal damped, causing a beam abort. This led to the conclusion that the bunches were actually blowing up. The appearance of a 2{nu}{sub S} line in the spectrum suggested a possible head-tail nature of the instability, although chromaticity was not effective in changing the threshold. The crucial hints in tracking down the cause turned out to be vacuum activity near the rf cavities and observance of signals on the cavity probes of certain rf cavities.

  12. The value of materials R&D in the fast track development of fusion power

    NASA Astrophysics Data System (ADS)

    Ward, D. J.; Taylor, N. P.; Cook, I.

    2007-08-01

    The objective of the international fusion program is the creation of power plants with attractive safety and environmental features and viable economics. There is a range of possible plants that can meet these objectives, as studied for instance in the recent EU studies of power plant concepts. All of the concepts satisfy safety and environmental objectives but the economic performance is interpreted differently in different world regions according to the perception of future energy markets. This leads to different materials performance targets and the direction and timescales of the materials development programme needed to meet those targets. In this paper, the implications for materials requirements of a fast track approach to fusion development are investigated. This includes a quantification of the overall benefits of more advanced materials: including the effect of trading off an extended development time against a reduced cost of electricity for resulting power plants.

  13. Globally convergent algorithms for estimating generalized gamma distributions in fast signal and image processing.

    PubMed

    Song, Kai-Sheng

    2008-08-01

    Many applications in real-time signal, image, and video processing require automatic algorithms for rapid characterizations of signals and images through fast estimation of their underlying statistical distributions. We present fast and globally convergent algorithms for estimating the three-parameter generalized gamma distribution (G Gamma D). The proposed method is based on novel scale-independent shape estimation (SISE) equations. We show that the SISE equations have a unique global root in their semi-infinite domains and the probability that the sample SISE equations have a unique global root tends to one. The consistency of the global root, its scale, and index shape estimators is obtained. Furthermore, we establish that, with probability tending to one, Newton-Raphson (NR) algorithms for solving the sample SISE equations converge globally to the unique root from any initial value in its given domain. In contrast to existing methods, another remarkable novelty is that the sample SISE equations are completely independent of gamma and polygamma functions and involve only elementary mathematical operations, making the algorithms well suited for real-time both hardware and software implementations. The SISE estimators also allow the maximum likelihood (ML) ratio procedure to be carried out for testing the generalized Gaussian distribution (GGD) versus the G Gamma D. Finally, the fast global convergence and accuracy of our algorithms for finite samples are demonstrated by both simulation studies and real image analysis.

  14. a Fast and Robust Algorithm for Road Edges Extraction from LIDAR Data

    NASA Astrophysics Data System (ADS)

    Qiu, Kaijin; Sun, Kai; Ding, Kou; Shu, Zhen

    2016-06-01

    Fast mapping of roads plays an important role in many geospatial applications, such as infrastructure planning, traffic monitoring, and driver assistance. How to extract various road edges fast and robustly is a challenging task. In this paper, we present a fast and robust algorithm for the automatic road edges extraction from terrestrial mobile LiDAR data. The algorithm is based on a key observation: most roads around edges have difference in elevation and road edges with pavement are seen in two different planes. In our algorithm, we firstly extract a rough plane based on RANSAC algorithm, and then multiple refined planes which only contains pavement are extracted from the rough plane. The road edges are extracted based on these refined planes. In practice, there is a serious problem that the rough and refined planes usually extracted badly due to rough roads and different density of point cloud. To eliminate the influence of rough roads, the technology which is similar with the difference of DSM (digital surface model) and DTM (digital terrain model) is used, and we also propose a method which adjust the point clouds to a similar density to eliminate the influence of different density. Experiments show the validities of the proposed method with multiple datasets (e.g. urban road, highway, and some rural road). We use the same parameters through the experiments and our algorithm can achieve real-time processing speeds.

  15. A ground track control algorithm for the Topographic Mapping Laser Altimeter (TMLA)

    NASA Technical Reports Server (NTRS)

    Blaes, V.; Mcintosh, R.; Roszman, L.; Cooley, J.

    1993-01-01

    The results of an analysis of an algorithm that will provide autonomous onboard orbit control using orbits determined with Global Positioning System (GPS) data. The algorithm uses the GPS data to (1) compute the ground track error relative to a fixed longitude grid, and (2) determine the altitude adjustment required to correct the longitude error. A program was written on a personal computer (PC) to test the concept for numerous altitudes and values of solar flux using a simplified orbit model including only the J sub 2 zonal harmonic and simple orbit decay computations. The algorithm was then implemented in a precision orbit propagation program having a full range of perturbations. The analysis showed that, even with all perturbations (including actual time histories of solar flux variation), the algorithm could effectively control the spacecraft ground track and yield more than 99 percent Earth coverage in the time required to complete one coverage cycle on the fixed grid (220 to 230 days depending on altitude and overlap allowance).

  16. A fast inter mode decision algorithm in H.264/AVC for IPTV broadcasting services

    NASA Astrophysics Data System (ADS)

    Kim, Geun-Yong; Yoon, Bin-Yeong; Ho, Yo-Sung

    2007-01-01

    The new video coding standard H.264/AVC employs the rate-distortion optimization (RDO) method for choosing the best coding mode. However, since it increases the encoder complexity tremendously, it is not suitable for real-time applications, such as IPTV broadcasting services. Therefore we need a fast mode decision algorithm to reduce its encoding time. In this paper, we propose a fast mode decision algorithm considering quantization parameter (QP) because we have noticed that the frequency of best modes depends on QP. In order to consider these characteristics, we use the coded block pattern (CBP) that has "0" value when all quantized discrete cosine transform (DCT) coefficients are zero. We also use both the early SKIP mode and early 16x16 mode decisions. Experimental results show that the proposed algorithm reduces the encoding time by 74.6% for the baseline profile and 72.8% for the main profile, compared to the H.264/AVC reference software.

  17. Image Artifacts Resulting from Gamma-Ray Tracking Algorithms Used with Compton Imagers

    SciTech Connect

    Seifert, Carolyn E.; He, Zhong

    2005-10-01

    For Compton imaging it is necessary to determine the sequence of gamma-ray interactions in a single detector or array of detectors. This can be done by time-of-flight measurements if the interactions are sufficiently far apart. However, in small detectors the time between interactions can be too small to measure, and other means of gamma-ray sequencing must be used. In this work, several popular sequencing algorithms are reviewed for sequences with two observed events and three or more observed events in the detector. These algorithms can result in poor imaging resolution and introduce artifacts in the backprojection images. The effects of gamma-ray tracking algorithms on Compton imaging are explored in the context of the 4π Compton imager built by the University of Michigan.

  18. Implementation of a sensor guided flight algorithm for target tracking by small UAS

    NASA Astrophysics Data System (ADS)

    Collins, Gaemus E.; Stankevitz, Chris; Liese, Jeffrey

    2011-06-01

    Small xed-wing UAS (SUAS) such as Raven and Unicorn have limited power, speed, and maneuverability. Their missions can be dramatically hindered by environmental conditions (wind, terrain), obstructions (buildings, trees) blocking clear line of sight to a target, and/or sensor hardware limitations (xed stare, limited gimbal motion, lack of zoom). Toyon's Sensor Guided Flight (SGF) algorithm was designed to account for SUAS hardware shortcomings and enable long-term tracking of maneuvering targets by maintaining persistent eyes-on-target. SGF was successfully tested in simulation with high-delity UAS, sensor, and environment models, but real- world ight testing with 60 Unicorn UAS revealed surprising second order challenges that were not highlighted by the simulations. This paper describes the SGF algorithm, our rst round simulation results, our second order discoveries from ight testing, and subsequent improvements that were made to the algorithm.

  19. A fast-initializing digital equalizer with on-line tracking for data communications

    NASA Technical Reports Server (NTRS)

    Houts, R. C.; Barksdale, W. J.

    1974-01-01

    A theory is developed for a digital equalizer for use in reducing intersymbol interference (ISI) on high speed data communications channels. The equalizer is initialized with a single isolated transmitter pulse, provided the signal-to-noise ratio (SNR) is not unusually low, then switches to a decision directed, on-line mode of operation that allows tracking of channel variations. Conditions for optimal tap-gain settings are obtained first for a transversal equalizer structure by using a mean squared error (MSE) criterion, a first order gradient algorithm to determine the adjustable equalizer tap-gains, and a sequence of isolated initializing pulses. Since the rate of tap-gain convergence depends on the eigenvalues of a channel output correlation matrix, convergence can be improved by making a linear transformation on to obtain a new correlation matrix.

  20. Meanie3D - a mean-shift based, multivariate, multi-scale clustering and tracking algorithm

    NASA Astrophysics Data System (ADS)

    Simon, Jürgen-Lorenz; Malte, Diederich; Silke, Troemel

    2014-05-01

    Project OASE is the one of 5 work groups at the HErZ (Hans Ertel Centre for Weather Research), an ongoing effort by the German weather service (DWD) to further research at Universities concerning weather prediction. The goal of project OASE is to gain an object-based perspective on convective events by identifying them early in the onset of convective initiation and follow then through the entire lifecycle. The ability to follow objects in this fashion requires new ways of object definition and tracking, which incorporate all the available data sets of interest, such as Satellite imagery, weather Radar or lightning counts. The Meanie3D algorithm provides the necessary tool for this purpose. Core features of this new approach to clustering (object identification) and tracking are the ability to identify objects using the mean-shift algorithm applied to a multitude of variables (multivariate), as well as the ability to detect objects on various scales (multi-scale) using elements of Scale-Space theory. The algorithm works in 2D as well as 3D without modifications. It is an extension of a method well known from the field of computer vision and image processing, which has been tailored to serve the needs of the meteorological community. In spite of the special application to be demonstrated here (like convective initiation), the algorithm is easily tailored to provide clustering and tracking for a wide class of data sets and problems. In this talk, the demonstration is carried out on two of the OASE group's own composite sets. One is a 2D nationwide composite of Germany including C-Band Radar (2D) and Satellite information, the other a 3D local composite of the Bonn/Jülich area containing a high-resolution 3D X-Band Radar composite.

  1. FastGGM: An Efficient Algorithm for the Inference of Gaussian Graphical Model in Biological Networks.

    PubMed

    Wang, Ting; Ren, Zhao; Ding, Ying; Fang, Zhou; Sun, Zhe; MacDonald, Matthew L; Sweet, Robert A; Wang, Jieru; Chen, Wei

    2016-02-01

    Biological networks provide additional information for the analysis of human diseases, beyond the traditional analysis that focuses on single variables. Gaussian graphical model (GGM), a probability model that characterizes the conditional dependence structure of a set of random variables by a graph, has wide applications in the analysis of biological networks, such as inferring interaction or comparing differential networks. However, existing approaches are either not statistically rigorous or are inefficient for high-dimensional data that include tens of thousands of variables for making inference. In this study, we propose an efficient algorithm to implement the estimation of GGM and obtain p-value and confidence interval for each edge in the graph, based on a recent proposal by Ren et al., 2015. Through simulation studies, we demonstrate that the algorithm is faster by several orders of magnitude than the current implemented algorithm for Ren et al. without losing any accuracy. Then, we apply our algorithm to two real data sets: transcriptomic data from a study of childhood asthma and proteomic data from a study of Alzheimer's disease. We estimate the global gene or protein interaction networks for the disease and healthy samples. The resulting networks reveal interesting interactions and the differential networks between cases and controls show functional relevance to the diseases. In conclusion, we provide a computationally fast algorithm to implement a statistically sound procedure for constructing Gaussian graphical model and making inference with high-dimensional biological data. The algorithm has been implemented in an R package named "FastGGM".

  2. FastGGM: An Efficient Algorithm for the Inference of Gaussian Graphical Model in Biological Networks.

    PubMed

    Wang, Ting; Ren, Zhao; Ding, Ying; Fang, Zhou; Sun, Zhe; MacDonald, Matthew L; Sweet, Robert A; Wang, Jieru; Chen, Wei

    2016-02-01

    Biological networks provide additional information for the analysis of human diseases, beyond the traditional analysis that focuses on single variables. Gaussian graphical model (GGM), a probability model that characterizes the conditional dependence structure of a set of random variables by a graph, has wide applications in the analysis of biological networks, such as inferring interaction or comparing differential networks. However, existing approaches are either not statistically rigorous or are inefficient for high-dimensional data that include tens of thousands of variables for making inference. In this study, we propose an efficient algorithm to implement the estimation of GGM and obtain p-value and confidence interval for each edge in the graph, based on a recent proposal by Ren et al., 2015. Through simulation studies, we demonstrate that the algorithm is faster by several orders of magnitude than the current implemented algorithm for Ren et al. without losing any accuracy. Then, we apply our algorithm to two real data sets: transcriptomic data from a study of childhood asthma and proteomic data from a study of Alzheimer's disease. We estimate the global gene or protein interaction networks for the disease and healthy samples. The resulting networks reveal interesting interactions and the differential networks between cases and controls show functional relevance to the diseases. In conclusion, we provide a computationally fast algorithm to implement a statistically sound procedure for constructing Gaussian graphical model and making inference with high-dimensional biological data. The algorithm has been implemented in an R package named "FastGGM". PMID:26872036

  3. Context-specific selection of algorithms for recursive feature tracking in endoscopic image using a new methodology.

    PubMed

    Selka, F; Nicolau, S; Agnus, V; Bessaid, A; Marescaux, J; Soler, L

    2015-03-01

    In minimally invasive surgery, the tracking of deformable tissue is a critical component for image-guided applications. Deformation of the tissue can be recovered by tracking features using tissue surface information (texture, color,...). Recent work in this field has shown success in acquiring tissue motion. However, the performance evaluation of detection and tracking algorithms on such images are still difficult and are not standardized. This is mainly due to the lack of ground truth data on real data. Moreover, in order to avoid supplementary techniques to remove outliers, no quantitative work has been undertaken to evaluate the benefit of a pre-process based on image filtering, which can improve feature tracking robustness. In this paper, we propose a methodology to validate detection and feature tracking algorithms, using a trick based on forward-backward tracking that provides an artificial ground truth data. We describe a clear and complete methodology to evaluate and compare different detection and tracking algorithms. In addition, we extend our framework to propose a strategy to identify the best combinations from a set of detector, tracker and pre-process algorithms, according to the live intra-operative data. Experimental results have been performed on in vivo datasets and show that pre-process can have a strong influence on tracking performance and that our strategy to find the best combinations is relevant for a reasonable computation cost.

  4. Strain estimation by a Fourier Series-based extrema tracking algorithm for elastography.

    PubMed

    Wang, Wenxia; Hu, Danfeng; Wang, Jiajun; Zou, Wei

    2015-09-01

    In this paper, a new strain estimator using extrema tracking based on Fourier Series expansion (ETBFS) is proposed for ultrasonic elastography. In this method, the extremum is determined by solving an equation constructed by obtaining the first order derivative of the Fourier Series expansion and setting it to zero. Unlike other tracking algorithms, the ETBFS method can locate the extrema of radio frequency (RF) signals exactly between two adjacent sampling points and achieve a sub-sample accuracy without additional explicit interpolation. The correspondence between the located extrema in the pre- and post-compressed RF signal segments are constructed with a fine matching technique, with which the displacements and strains are estimated. Experimental results on a finite-element-modeling (FEM) simulation phantom show that the new proposed method can provide a more accurate displacement estimation than the standard cross-correlation (CC)-based method and the scale-invariant keypoints tracking (SIKT) algorithm. Moreover, performance analysis in terms of elastographic signal-to-noise ratio (SNRe), elastographic contrast-to-noise ratio (CNRe) and the real-versus-estimated strain error (RESE) also indicate that the dynamic range of the strain filter and its sensitivity can be improved with this new method.

  5. FctClus: A Fast Clustering Algorithm for Heterogeneous Information Networks.

    PubMed

    Yang, Jing; Chen, Limin; Zhang, Jianpei

    2015-01-01

    It is important to cluster heterogeneous information networks. A fast clustering algorithm based on an approximate commute time embedding for heterogeneous information networks with a star network schema is proposed in this paper by utilizing the sparsity of heterogeneous information networks. First, a heterogeneous information network is transformed into multiple compatible bipartite graphs from the compatible point of view. Second, the approximate commute time embedding of each bipartite graph is computed using random mapping and a linear time solver. All of the indicator subsets in each embedding simultaneously determine the target dataset. Finally, a general model is formulated by these indicator subsets, and a fast algorithm is derived by simultaneously clustering all of the indicator subsets using the sum of the weighted distances for all indicators for an identical target object. The proposed fast algorithm, FctClus, is shown to be efficient and generalizable and exhibits high clustering accuracy and fast computation speed based on a theoretic analysis and experimental verification. PMID:26090857

  6. A fast and accurate frequency estimation algorithm for sinusoidal signal with harmonic components

    NASA Astrophysics Data System (ADS)

    Hu, Jinghua; Pan, Mengchun; Zeng, Zhidun; Hu, Jiafei; Chen, Dixiang; Tian, Wugang; Zhao, Jianqiang; Du, Qingfa

    2016-10-01

    Frequency estimation is a fundamental problem in many applications, such as traditional vibration measurement, power system supervision, and microelectromechanical system sensors control. In this paper, a fast and accurate frequency estimation algorithm is proposed to deal with low efficiency problem in traditional methods. The proposed algorithm consists of coarse and fine frequency estimation steps, and we demonstrate that it is more efficient than conventional searching methods to achieve coarse frequency estimation (location peak of FFT amplitude) by applying modified zero-crossing technique. Thus, the proposed estimation algorithm requires less hardware and software sources and can achieve even higher efficiency when the experimental data increase. Experimental results with modulated magnetic signal show that the root mean square error of frequency estimation is below 0.032 Hz with the proposed algorithm, which has lower computational complexity and better global performance than conventional frequency estimation methods.

  7. Fast phase-added stereogram algorithm for generation of photorealistic 3D content.

    PubMed

    Kang, Hoonjong; Stoykova, Elena; Yoshikawa, Hiroshi

    2016-01-20

    A new phase-added stereogram algorithm for accelerated computation of holograms from a point cloud model is proposed. The algorithm relies on the hologram segmentation, sampling of directional information, and usage of the fast Fourier transform with a finer grid in the spatial frequency domain than is provided by the segment size. The algorithm gives improved quality of reconstruction due to new phase compensation introduced in the segment fringe patterns. The result is finer beam steering leading to high peak intensity and a large peak signal-to-noise ratio in reconstruction. The feasibility of the algorithm is checked by the generation of 3D contents for a color wavefront printer. PMID:26835945

  8. Catalyzing Country Ownership and Aid Effectiveness: Role of the Education for All-Fast Track Initiative Catalytic Fund

    ERIC Educational Resources Information Center

    Bashir, Sajitha

    2009-01-01

    This article examines the contribution of the Education for All-Fast Track Initiative (EFA-FTI) global partnership in strengthening aid effectiveness in the education sector, and specifically how the implementation modalities of the EFA-FTI Catalytic Fund (CF) have contributed to this strengthening. The empirical findings are based on a review…

  9. Characterization and classification of adherent cells in monolayer culture using automated tracking and evolutionary algorithms.

    PubMed

    Zhang, Zhen; Bedder, Matthew; Smith, Stephen L; Walker, Dawn; Shabir, Saqib; Southgate, Jennifer

    2016-08-01

    This paper presents a novel method for tracking and characterizing adherent cells in monolayer culture. A system of cell tracking employing computer vision techniques was applied to time-lapse videos of replicate normal human uro-epithelial cell cultures exposed to different concentrations of adenosine triphosphate (ATP) and a selective purinergic P2X antagonist (PPADS), acquired over a 24h period. Subsequent analysis following feature extraction demonstrated the ability of the technique to successfully separate the modulated classes of cell using evolutionary algorithms. Specifically, a Cartesian Genetic Program (CGP) network was evolved that identified average migration speed, in-contact angular velocity, cohesivity and average cell clump size as the principal features contributing to the separation. Our approach not only provides non-biased and parsimonious insight into modulated class behaviours, but can be extracted as mathematical formulae for the parameterization of computational models. PMID:27267455

  10. Tracking Problem Solving by Multivariate Pattern Analysis and Hidden Markov Model Algorithms

    PubMed Central

    Anderson, John R.

    2011-01-01

    Multivariate pattern analysis can be combined with hidden Markov model algorithms to track the second-by-second thinking as people solve complex problems. Two applications of this methodology are illustrated with a data set taken from children as they interacted with an intelligent tutoring system for algebra. The first “mind reading” application involves using fMRI activity to track what students are doing as they solve a sequence of algebra problems. The methodology achieves considerable accuracy at determining both what problem-solving step the students are taking and whether they are performing that step correctly. The second “model discovery” application involves using statistical model evaluation to determine how many substates are involved in performing a step of algebraic problem solving. This research indicates that different steps involve different numbers of substates and these substates are associated with different fluency in algebra problem solving. PMID:21820455

  11. Tracking problem solving by multivariate pattern analysis and Hidden Markov Model algorithms.

    PubMed

    Anderson, John R

    2012-03-01

    Multivariate pattern analysis can be combined with Hidden Markov Model algorithms to track the second-by-second thinking as people solve complex problems. Two applications of this methodology are illustrated with a data set taken from children as they interacted with an intelligent tutoring system for algebra. The first "mind reading" application involves using fMRI activity to track what students are doing as they solve a sequence of algebra problems. The methodology achieves considerable accuracy at determining both what problem-solving step the students are taking and whether they are performing that step correctly. The second "model discovery" application involves using statistical model evaluation to determine how many substates are involved in performing a step of algebraic problem solving. This research indicates that different steps involve different numbers of substates and these substates are associated with different fluency in algebra problem solving.

  12. Fast-track extreme event attribution: How fast can we disentangle thermodynamic (forced) and dynamic (internal) contributions?

    NASA Astrophysics Data System (ADS)

    Haustein, Karsten; Otto, Friederike; Uhe, Peter; Allen, Myles; Cullen, Heidi

    2016-04-01

    provide sufficient guidance to determine the dynamic contribution to the event on the basis of monthly mean values. No such link can be made (North Atlantic/Western Europe region) for shorter time-scales, unless the observed state of the circulation is taken as reference for the model analysis (e.g. Christidis et al. 2014). We present results from our most recent attribution analysis for the December 2015 UK floods (Storm Desmond and Eva), during which we find a robust teleconnection link between Pacific SSTs and North Atlantic Jetstream anomalies. This is true for both experiments, with forecast and observed SSTs. We propose a fast and simple analysis method based on the comparison of current climatological circulation patterns with actual and natural conditions. Alternative methods are discussed and analysed regarding their potential for fast-track attribution of the role of dynamics. Also, we briefly revisit the issue of internal vs forced dynamic contributions.

  13. Detection and tracking of a moving target using SAR images with the particle filter-based track-before-detect algorithm.

    PubMed

    Gao, Han; Li, Jingwen

    2014-01-01

    A novel approach to detecting and tracking a moving target using synthetic aperture radar (SAR) images is proposed in this paper. Achieved with the particle filter (PF) based track-before-detect (TBD) algorithm, the approach is capable of detecting and tracking the low signal-to-noise ratio (SNR) moving target with SAR systems, which the traditional track-after-detect (TAD) approach is inadequate for. By incorporating the signal model of the SAR moving target into the algorithm, the ambiguity in target azimuth position and radial velocity is resolved while tracking, which leads directly to the true estimation. With the sub-area substituted for the whole area to calculate the likelihood ratio and a pertinent choice of the number of particles, the computational efficiency is improved with little loss in the detection and tracking performance. The feasibility of the approach is validated and the performance is evaluated with Monte Carlo trials. It is demonstrated that the proposed approach is capable to detect and track a moving target with SNR as low as 7 dB, and outperforms the traditional TAD approach when the SNR is below 14 dB. PMID:24949640

  14. Detection and Tracking of a Moving Target Using SAR Images with the Particle Filter-Based Track-Before-Detect Algorithm

    PubMed Central

    Gao, Han; Li, Jingwen

    2014-01-01

    A novel approach to detecting and tracking a moving target using synthetic aperture radar (SAR) images is proposed in this paper. Achieved with the particle filter (PF) based track-before-detect (TBD) algorithm, the approach is capable of detecting and tracking the low signal-to-noise ratio (SNR) moving target with SAR systems, which the traditional track-after-detect (TAD) approach is inadequate for. By incorporating the signal model of the SAR moving target into the algorithm, the ambiguity in target azimuth position and radial velocity is resolved while tracking, which leads directly to the true estimation. With the sub-area substituted for the whole area to calculate the likelihood ratio and a pertinent choice of the number of particles, the computational efficiency is improved with little loss in the detection and tracking performance. The feasibility of the approach is validated and the performance is evaluated with Monte Carlo trials. It is demonstrated that the proposed approach is capable to detect and track a moving target with SNR as low as 7 dB, and outperforms the traditional TAD approach when the SNR is below 14 dB. PMID:24949640

  15. Temporal Gillespie Algorithm: Fast Simulation of Contagion Processes on Time-Varying Networks

    PubMed Central

    Vestergaard, Christian L.; Génois, Mathieu

    2015-01-01

    Stochastic simulations are one of the cornerstones of the analysis of dynamical processes on complex networks, and are often the only accessible way to explore their behavior. The development of fast algorithms is paramount to allow large-scale simulations. The Gillespie algorithm can be used for fast simulation of stochastic processes, and variants of it have been applied to simulate dynamical processes on static networks. However, its adaptation to temporal networks remains non-trivial. We here present a temporal Gillespie algorithm that solves this problem. Our method is applicable to general Poisson (constant-rate) processes on temporal networks, stochastically exact, and up to multiple orders of magnitude faster than traditional simulation schemes based on rejection sampling. We also show how it can be extended to simulate non-Markovian processes. The algorithm is easily applicable in practice, and as an illustration we detail how to simulate both Poissonian and non-Markovian models of epidemic spreading. Namely, we provide pseudocode and its implementation in C++ for simulating the paradigmatic Susceptible-Infected-Susceptible and Susceptible-Infected-Recovered models and a Susceptible-Infected-Recovered model with non-constant recovery rates. For empirical networks, the temporal Gillespie algorithm is here typically from 10 to 100 times faster than rejection sampling. PMID:26517860

  16. A fast and high performance multiple data integration algorithm for identifying human disease genes

    PubMed Central

    2015-01-01

    Background Integrating multiple data sources is indispensable in improving disease gene identification. It is not only due to the fact that disease genes associated with similar genetic diseases tend to lie close with each other in various biological networks, but also due to the fact that gene-disease associations are complex. Although various algorithms have been proposed to identify disease genes, their prediction performances and the computational time still should be further improved. Results In this study, we propose a fast and high performance multiple data integration algorithm for identifying human disease genes. A posterior probability of each candidate gene associated with individual diseases is calculated by using a Bayesian analysis method and a binary logistic regression model. Two prior probability estimation strategies and two feature vector construction methods are developed to test the performance of the proposed algorithm. Conclusions The proposed algorithm is not only generated predictions with high AUC scores, but also runs very fast. When only a single PPI network is employed, the AUC score is 0.769 by using F2 as feature vectors. The average running time for each leave-one-out experiment is only around 1.5 seconds. When three biological networks are integrated, the AUC score using F3 as feature vectors increases to 0.830, and the average running time for each leave-one-out experiment takes only about 12.54 seconds. It is better than many existing algorithms. PMID:26399620

  17. A fast parallel algorithm for determining all roots of a polynomial with real roots

    SciTech Connect

    Benor, M.; Feig, E.; Kozen, D.; Tiwari, P.

    1988-12-01

    Given a polynomial rho(z) of degree n with m bit integer coefficients and an integer ..mu.., the problem of determining all its roots with error less than 2/sup -..mu../ is considered. It is shown that this problem is in the class NC if rho(z) has all real roots. Some very interesting properties of a Sturm sequence of a polynomial with distinct real roots are proved and used in the design of a fast parallel algorithm for this problem. Using Newton identities and a novel numerical integration scheme for evaluating a contour integral to high precision, this algorithm determines good approximations to the linear factors of rho(z).

  18. A fast optimization algorithm for multicriteria intensity modulated proton therapy planning

    SciTech Connect

    Chen Wei; Craft, David; Madden, Thomas M.; Zhang, Kewu; Kooy, Hanne M.; Herman, Gabor T.

    2010-09-15

    Purpose: To describe a fast projection algorithm for optimizing intensity modulated proton therapy (IMPT) plans and to describe and demonstrate the use of this algorithm in multicriteria IMPT planning. Methods: The authors develop a projection-based solver for a class of convex optimization problems and apply it to IMPT treatment planning. The speed of the solver permits its use in multicriteria optimization, where several optimizations are performed which span the space of possible treatment plans. The authors describe a plan database generation procedure which is customized to the requirements of the solver. The optimality precision of the solver can be specified by the user. Results: The authors apply the algorithm to three clinical cases: A pancreas case, an esophagus case, and a tumor along the rib cage case. Detailed analysis of the pancreas case shows that the algorithm is orders of magnitude faster than industry-standard general purpose algorithms (MOSEK's interior point optimizer, primal simplex optimizer, and dual simplex optimizer). Additionally, the projection solver has almost no memory overhead. Conclusions: The speed and guaranteed accuracy of the algorithm make it suitable for use in multicriteria treatment planning, which requires the computation of several diverse treatment plans. Additionally, given the low memory overhead of the algorithm, the method can be extended to include multiple geometric instances and proton range possibilities, for robust optimization.

  19. Optical bullet-tracking algorithms for weapon localization in urban environments

    SciTech Connect

    Roberts, R S; Breitfeller, E F

    2006-03-31

    Localization of the sources of small-arms fire, mortars, and rocket propelled grenades is an important problem in urban combat. Weapons of this type produce characteristic signatures, such as muzzle flashes, that are visible in the infrared. Indeed, several systems have been developed that exploit the infrared signature of muzzle flash to locate the positions of shooters. However, systems based on muzzle flash alone can have difficulty localizing weapons if the muzzle flash is obscured or suppressed. Moreover, optical clutter can be problematic to systems that rely on muzzle flash alone. Lawrence Livermore National Laboratory (LLNL) has developed a projectile tracking system that detects and localizes sources of small-arms fire, mortars and similar weapons using the thermal signature of the projectile rather than a muzzle flash. The thermal signature of a projectile, caused by friction as the projectile travels along its trajectory, cannot be concealed and is easily discriminated from optical clutter. The LLNL system was recently demonstrated at the MOUT facility of the Aberdeen Test Center [1]. In the live-fire demonstration, shooters armed with a variety of small-arms, including M-16s, AK-47s, handguns, mortars and rockets, were arranged at several positions in around the facility. Experiments ranged from a single-weapon firing a single-shot to simultaneous fire of all weapons on full automatic. The LLNL projectile tracking system was demonstrated to localize multiple shooters at ranges up to 400m, far greater than previous demonstrations. Furthermore, the system was shown to be immune to optical clutter that is typical in urban combat. This paper describes the image processing and localization algorithms designed to exploit the thermal signature of projectiles for shooter localization. The paper begins with a description of the image processing that extracts projectile information from a sequence of infrared images. Key to the processing is an adaptive spatio

  20. Experimental investigation of a moving averaging algorithm for motion perpendicular to the leaf travel direction in dynamic MLC target tracking

    SciTech Connect

    Yoon, Jai-Woong; Sawant, Amit; Suh, Yelin; Cho, Byung-Chul; Suh, Tae-Suk; Keall, Paul

    2011-07-15

    Purpose: In dynamic multileaf collimator (MLC) motion tracking with complex intensity-modulated radiation therapy (IMRT) fields, target motion perpendicular to the MLC leaf travel direction can cause beam holds, which increase beam delivery time by up to a factor of 4. As a means to balance delivery efficiency and accuracy, a moving average algorithm was incorporated into a dynamic MLC motion tracking system (i.e., moving average tracking) to account for target motion perpendicular to the MLC leaf travel direction. The experimental investigation of the moving average algorithm compared with real-time tracking and no compensation beam delivery is described. Methods: The properties of the moving average algorithm were measured and compared with those of real-time tracking (dynamic MLC motion tracking accounting for both target motion parallel and perpendicular to the leaf travel direction) and no compensation beam delivery. The algorithm was investigated using a synthetic motion trace with a baseline drift and four patient-measured 3D tumor motion traces representing regular and irregular motions with varying baseline drifts. Each motion trace was reproduced by a moving platform. The delivery efficiency, geometric accuracy, and dosimetric accuracy were evaluated for conformal, step-and-shoot IMRT, and dynamic sliding window IMRT treatment plans using the synthetic and patient motion traces. The dosimetric accuracy was quantified via a {gamma}-test with a 3%/3 mm criterion. Results: The delivery efficiency ranged from 89 to 100% for moving average tracking, 26%-100% for real-time tracking, and 100% (by definition) for no compensation. The root-mean-square geometric error ranged from 3.2 to 4.0 mm for moving average tracking, 0.7-1.1 mm for real-time tracking, and 3.7-7.2 mm for no compensation. The percentage of dosimetric points failing the {gamma}-test ranged from 4 to 30% for moving average tracking, 0%-23% for real-time tracking, and 10%-47% for no compensation

  1. SMG: Fast scalable greedy algorithm for influence maximization in social networks

    NASA Astrophysics Data System (ADS)

    Heidari, Mehdi; Asadpour, Masoud; Faili, Hesham

    2015-02-01

    Influence maximization is the problem of finding k most influential nodes in a social network. Many works have been done in two different categories, greedy approaches and heuristic approaches. The greedy approaches have better influence spread, but lower scalability on large networks. The heuristic approaches are scalable and fast but not for all type of networks. Improving the scalability of greedy approach is still an open and hot issue. In this work we present a fast greedy algorithm called State Machine Greedy that improves the existing algorithms by reducing calculations in two parts: (1) counting the traversing nodes in estimate propagation procedure, (2) Monte-Carlo graph construction in simulation of diffusion. The results show that our method makes a huge improvement in the speed over the existing greedy approaches.

  2. Track-Before-Detect Algorithm for Faint Moving Objects based on Random Sampling and Consensus

    NASA Astrophysics Data System (ADS)

    Dao, P.; Rast, R.; Schlaegel, W.; Schmidt, V.; Dentamaro, A.

    2014-09-01

    There are many algorithms developed for tracking and detecting faint moving objects in congested backgrounds. One obvious application is detection of targets in images where each pixel corresponds to the received power in a particular location. In our application, a visible imager operated in stare mode observes geostationary objects as fixed, stars as moving and non-geostationary objects as drifting in the field of view. We would like to achieve high sensitivity detection of the drifters. The ability to improve SNR with track-before-detect (TBD) processing, where target information is collected and collated before the detection decision is made, allows respectable performance against dim moving objects. Generally, a TBD algorithm consists of a pre-processing stage that highlights potential targets and a temporal filtering stage. However, the algorithms that have been successfully demonstrated, e.g. Viterbi-based and Bayesian-based, demand formidable processing power and memory. We propose an algorithm that exploits the quasi constant velocity of objects, the predictability of the stellar clutter and the intrinsically low false alarm rate of detecting signature candidates in 3-D, based on an iterative method called "RANdom SAmple Consensus” and one that can run real-time on a typical PC. The technique is tailored for searching objects with small telescopes in stare mode. Our RANSAC-MT (Moving Target) algorithm estimates parameters of a mathematical model (e.g., linear motion) from a set of observed data which contains a significant number of outliers while identifying inliers. In the pre-processing phase, candidate blobs were selected based on morphology and an intensity threshold that would normally generate unacceptable level of false alarms. The RANSAC sampling rejects candidates that conform to the predictable motion of the stars. Data collected with a 17 inch telescope by AFRL/RH and a COTS lens/EM-CCD sensor by the AFRL/RD Satellite Assessment Center is

  3. A Real-Time Position-Locating Algorithm for CCD-Based Sunspot Tracking

    NASA Technical Reports Server (NTRS)

    Taylor, Jaime R.

    1996-01-01

    NASA Marshall Space Flight Center's (MSFC) EXperimental Vector Magnetograph (EXVM) polarimeter measures the sun's vector magnetic field. These measurements are taken to improve understanding of the sun's magnetic field in the hopes to better predict solar flares. Part of the procedure for the EXVM requires image motion stabilization over a period of a few minutes. A high speed tracker can be used to reduce image motion produced by wind loading on the EXVM, fluctuations in the atmosphere and other vibrations. The tracker consists of two elements, an image motion detector and a control system. The image motion detector determines the image movement from one frame to the next and sends an error signal to the control system. For the ground based application to reduce image motion due to atmospheric fluctuations requires an error determination at the rate of at least 100 hz. It would be desirable to have an error determination rate of 1 kHz to assure that higher rate image motion is reduced and to increase the control system stability. Two algorithms are presented that are typically used for tracking. These algorithms are examined for their applicability for tracking sunspots, specifically their accuracy if only one column and one row of CCD pixels are used. To examine the accuracy of this method two techniques are used. One involves moving a sunspot image a known distance with computer software, then applying the particular algorithm to see how accurately it determines this movement. The second technique involves using a rate table to control the object motion, then applying the algorithms to see how accurately each determines the actual motion. Results from these two techniques are presented.

  4. Rolling element bearing fault diagnosis based on the combination of genetic algorithms and fast kurtogram

    NASA Astrophysics Data System (ADS)

    Zhang, Yongxiang; Randall, R. B.

    2009-07-01

    The rolling element bearing is a key part in many mechanical facilities and the diagnosis of its faults is very important in the field of predictive maintenance. Till date, the resonant demodulation technique (envelope analysis) has been widely exploited in practice. However, much practical diagnostic equipment for carrying out the analysis gives little flexibility to change the analysis parameters for different working conditions, such as variation in rotating speed and different fault types. Because the signals from a flawed bearing have features of non-stationarity, wide frequency range and weak strength, it can be very difficult to choose the best analysis parameters for diagnosis. However, the kurtosis of the vibration signals of a bearing is different from normal to bad condition, and is robust in varying conditions. The fast kurtogram gives rough analysis parameters very efficiently, but filter centre frequency and bandwidth cannot be chosen entirely independently. Genetic algorithms have a strong ability for optimization, but are slow unless initial parameters are close to optimal. Therefore, the authors present a model and algorithm to design the parameters for optimal resonance demodulation using the combination of fast kurtogram for initial estimates, and a genetic algorithm for final optimization. The feasibility and the effectiveness of the proposed method are demonstrated by experiment and give better results than the classical method of arbitrarily choosing a resonance to demodulate. The method gives more flexibility in choosing optimal parameters than the fast kurtogram alone.

  5. Burst suppression probability algorithms: state-space methods for tracking EEG burst suppression

    NASA Astrophysics Data System (ADS)

    Chemali, Jessica; Ching, ShiNung; Purdon, Patrick L.; Solt, Ken; Brown, Emery N.

    2013-10-01

    Objective. Burst suppression is an electroencephalogram pattern in which bursts of electrical activity alternate with an isoelectric state. This pattern is commonly seen in states of severely reduced brain activity such as profound general anesthesia, anoxic brain injuries, hypothermia and certain developmental disorders. Devising accurate, reliable ways to quantify burst suppression is an important clinical and research problem. Although thresholding and segmentation algorithms readily identify burst suppression periods, analysis algorithms require long intervals of data to characterize burst suppression at a given time and provide no framework for statistical inference. Approach. We introduce the concept of the burst suppression probability (BSP) to define the brain's instantaneous propensity of being in the suppressed state. To conduct dynamic analyses of burst suppression we propose a state-space model in which the observation process is a binomial model and the state equation is a Gaussian random walk. We estimate the model using an approximate expectation maximization algorithm and illustrate its application in the analysis of rodent burst suppression recordings under general anesthesia and a patient during induction of controlled hypothermia. Main result. The BSP algorithms track burst suppression on a second-to-second time scale, and make possible formal statistical comparisons of burst suppression at different times. Significance. The state-space approach suggests a principled and informative way to analyze burst suppression that can be used to monitor, and eventually to control, the brain states of patients in the operating room and in the intensive care unit.

  6. A Region Tracking-Based Vehicle Detection Algorithm in Nighttime Traffic Scenes

    PubMed Central

    Wang, Jianqiang; Sun, Xiaoyan; Guo, Junbin

    2013-01-01

    The preceding vehicles detection technique in nighttime traffic scenes is an important part of the advanced driver assistance system (ADAS). This paper proposes a region tracking-based vehicle detection algorithm via the image processing technique. First, the brightness of the taillights during nighttime is used as the typical feature, and we use the existing global detection algorithm to detect and pair the taillights. When the vehicle is detected, a time series analysis model is introduced to predict vehicle positions and the possible region (PR) of the vehicle in the next frame. Then, the vehicle is only detected in the PR. This could reduce the detection time and avoid the false pairing between the bright spots in the PR and the bright spots out of the PR. Additionally, we present a thresholds updating method to make the thresholds adaptive. Finally, experimental studies are provided to demonstrate the application and substantiate the superiority of the proposed algorithm. The results show that the proposed algorithm can simultaneously reduce both the false negative detection rate and the false positive detection rate.

  7. Pivotal role of ATP in macrophages fast tracking wound repair and regeneration.

    PubMed

    Kotwal, Girish J; Sarojini, Harshini; Chien, Sufan

    2015-09-01

    Chronic wounds occurring during aging or diabetes pose a significant burden to patients. The classical four-phase wound healing process has a 3-6 day lag before granulation starts to appear and it requires an intermediate step of activation of resident fibroblasts during the remodeling phase for production of collagen. This brief communication discusses published articles that demonstrate how the entire wound healing process can be fast tracked by intracellular ATP delivery, which triggers a novel pathway where alternatively activated macrophages play absolutely critical and central roles. This novel pathway involves an increase in proinflammatory cytokines (TNF, IL-1β, IL-6) and a chemokine (MCP-1) release. This is followed by activation of purinergic receptor (a family of plasma membrane receptors found in almost all mammalian cells), production of platelets and platelet microparticles, and activation of ATP-dependent chromatin remodeling enzymes. The end result is a massive influx and in situ proliferation of macrophages, increases in vascular endothelial growth factors that promote neovascularization, and most prominently, the direct production of collagen. PMID:26053302

  8. The constraints on day-case total knee arthroplasty: the fastest fast track.

    PubMed

    Thienpont, E; Lavand'homme, P; Kehlet, H

    2015-10-01

    Total knee arthroplasty (TKA) is a major orthopaedic intervention. The length of a patient's stay has been progressively reduced with the introduction of enhanced recovery protocols: day-case surgery has become the ultimate challenge. This narrative review shows the potential limitations of day-case TKA. These constraints may be social, linked to patient's comorbidities, or due to surgery-related adverse events (e.g. pain, post-operative nausea and vomiting, etc.). Using patient stratification, tailored surgical techniques and multimodal opioid-sparing analgesia, day-case TKA might be achievable in a limited group of patients. The younger, male patient without comorbidities and with an excellent social network around him might be a candidate. Demographic changes, effective recovery programmes and less invasive surgical techniques such as unicondylar knee arthroplasty, may increase the size of the group of potential day-case patients. The cost reduction achieved by day-case TKA needs to be balanced against any increase in morbidity and mortality and the cost of advanced follow-up at a distance with new technology. These factors need to be evaluated before adopting this ultimate 'fast-track' approach. PMID:26430085

  9. [Anxiety in patients undergoing fast-track knee arthroplasty in the light of recent literature].

    PubMed

    Ziętek, Paweł; Ziętek, Joanna; Szczypiór, Karina

    2014-01-01

    The rapid progress in knee implants technology and operational techniques go together with more and more modem medical programs, designed to optimize the patients' care and shorten their stay in hospital. However, this does not guarantee any elimination ofperioperative stress in patients. Anxiety is a negative emotional state arising from stressful circumstances accompanied by activation of the autonomous nervous system. Anxiety causes negative physiological changes, including wound healing, resistance to anesthetic induction, it is associated with an increased perioperative pain and prolong recovery period. The purpose of this work is to present the current state of knowledge on the preoperative anxiety and discuss its impact on pain and other parameters in patients undergoing fast-track arthroplasty of big joints. The work also shows selected issues of anxiety pathomechanism, and actual methods reducing preoperative anxiety in hospitalized patients. The common prevalence of anxiety in patients undergoing surgery induces the attempt to routinely identify patients with higher anxiety, which may be a predictive factor of worse results after TKA. Undertaking widely understood psychological support in these patients before and after the operation could be a favorable element, which would influence thefinal result of the treatment of patients after big joints arthroplasties. PMID:25639020

  10. Predictor Variables Associated With Positive Fast Track Outcomes at the End of Third Grade

    PubMed Central

    2009-01-01

    Progress has been made in understanding the outcome effects of preventive interventions and treatments designed to reduce children's conduct problems. However, limited research has explored the factors that may affect the degree to which an intervention is likely to benefit particular individuals. This study examines selected child, family, and community baseline characteristics that may predict proximal outcomes from the Fast Track intervention. The primary goal of this study was to examine predictors of outcomes after 3 years of intervention participation, at the end of 3rd grade. Three types of proximal outcomes were examined: parent-rated aggression, teacher-rated oppositional-aggressive behavior, and special education involvement. The relation between 11 risk factors and these 3 outcomes was examined, with separate regression analyses for the intervention and control groups. Moderate evidence of prediction of outcome effects was found, although none of the baseline variables were found to predict all 3 outcomes, and different patterns of prediction emerged for home versus school outcomes. PMID:11930970

  11. Mass tracking and material accounting in the Integral Fast Reactor (IFR)

    SciTech Connect

    Orechwa, Y.; Adams, C.H.; White, A.M.

    1991-01-01

    The Integral Fast Reactor (IFR) is a generic advanced liquid metal cooled reactor concept being developed at Argonne National Laboratory (ANL). There are a number of technical features of the IFR which contribute to its potential as a next-generation reactor. These are associated with large safety margins with regard to off-normal events involving the heat transport system, and the use of metallic fuel which makes possible the utilization of innovative fuel cycle processes. The latter feature permits fuel cycle closure the compact, low-cost reprocessing facilities, collocated with the reactor plant. These primary features are being demonstrated in the facilities at ANL-West, utilizing Experimental Breeder Reactor 2 and the associated Fuel Cycle Facility (FCF) as an IFR prototype. The demonstration of this IFR prototype includes the design and implementation of the Mass-Tracking System (MTG). In this system, data from the operations of the FCF, including weights and batch-process parameters, are collected and maintained by the MTG running on distributed workstations. The components of the MTG System include: (1) an Oracle database manager with a Fortran interface, (2) a set of MTG Tasks'' which collect, manipulate and report data, (3) a set of MTG Terminal Sessions'' which provide some interactive control of the Tasks, and (4) a set of servers which manage the Tasks and which provide the communications link between the MTG System and Operator Control Stations, which control process equipment and monitoring devices within the FCF.

  12. Fast inhomogeneous plane wave algorithm for the analysis of electromagnetic scattering

    NASA Astrophysics Data System (ADS)

    Hu, Bin; Chew, Weng Cho; Velamparambil, Sanjay

    2001-01-01

    The fast inhomogeneous plane wave algorithm has been developed to accelerate the solution of three-dimensional electromagnetic scattering problems in free space. By expanding the kernel of the Green's function using the Weyl identity and choosing a proper steepest descent path, the diagonalization of the translation matrix is achieved after the interpolation and extrapolation techniques are applied. The proposed algorithm is implemented on top of the scalable multipole engine, a portable implementation of the dynamic multilevel fast multipole algorithm for distributed-memory computers. The computational time per matrix vector multiplication is reduced to O(NlogN) and the memory requirement is reduced to O(N), where N is the number of unknowns in the discretized integral equation. The algorithm is validated by applying it to the solution of the electromagnetic scattering from the perfect electric conducting scatterers. This approach can be easily extended to more general problems with complicated Green's function expressed in terms of the plane wave spectral integrals, such as the ones encountered in the multilayered medium studies.

  13. Study of cluster reconstruction and track fitting algorithms for CGEM-IT at BESIII

    NASA Astrophysics Data System (ADS)

    Guo, Yue; Wang, Liang-Liang; Ju, Xu-Dong; Wu, Ling-Hui; Xiu, Qing-Lei; Wang, Hai-Xia; Dong, Ming-Yi; Hu, Jing-Ran; Li, Wei-Dong; Li, Wei-Guo; Liu, Huai-Min; Qun, Ou-Yang; Shen, Xiao-Yan; Yuan, Ye; Zhang, Yao

    2016-01-01

    Considering the effects of aging on the existing Inner Drift Chamber (IDC) of BESIII, a GEM-based inner tracker, the Cylindrical-GEM Inner Tracker (CGEM-IT), is proposed to be designed and constructed as an upgrade candidate for the IDC. This paper introduces a full simulation package for the CGEM-IT with a simplified digitization model, and describes the development of software for cluster reconstruction and track fitting, using a track fitting algorithm based on the Kalman filter method. Preliminary results for the reconstruction algorithms which are obtained using a Monte Carlo sample of single muon events in the CGEM-IT, show that the CGEM-IT has comparable momentum resolution and transverse vertex resolution to the IDC, and a better z-direction resolution than the IDC. Supported by National Key Basic Research Program of China (2015CB856700), National Natural Science Foundation of China (11205184, 11205182) and Joint Funds of National Natural Science Foundation of China (U1232201)

  14. Fast and fully automatic phalanx segmentation using a grayscale-histogram morphology algorithm

    NASA Astrophysics Data System (ADS)

    Hsieh, Chi-Wen; Liu, Tzu-Chiang; Jong, Tai-Lang; Chen, Chih-Yen; Tiu, Chui-Mei; Chan, Din-Yuen

    2011-08-01

    Bone age assessment is a common radiological examination used in pediatrics to diagnose the discrepancy between the skeletal and chronological age of a child; therefore, it is beneficial to develop a computer-based bone age assessment to help junior pediatricians estimate bone age easily. Unfortunately, the phalanx on radiograms is not easily separated from the background and soft tissue. Therefore, we proposed a new method, called the grayscale-histogram morphology algorithm, to segment the phalanges fast and precisely. The algorithm includes three parts: a tri-stage sieve algorithm used to eliminate the background of hand radiograms, a centroid-edge dual scanning algorithm to frame the phalanx region, and finally a segmentation algorithm based on disk traverse-subtraction filter to segment the phalanx. Moreover, two more segmentation methods: adaptive two-mean and adaptive two-mean clustering were performed, and their results were compared with the segmentation algorithm based on disk traverse-subtraction filter using five indices comprising misclassification error, relative foreground area error, modified Hausdorff distances, edge mismatch, and region nonuniformity. In addition, the CPU time of the three segmentation methods was discussed. The result showed that our method had a better performance than the other two methods. Furthermore, satisfactory segmentation results were obtained with a low standard error.

  15. Fast Contour-Tracing Algorithm Based on a Pixel-Following Method for Image Sensors.

    PubMed

    Seo, Jonghoon; Chae, Seungho; Shim, Jinwook; Kim, Dongchul; Cheong, Cheolho; Han, Tack-Don

    2016-03-09

    Contour pixels distinguish objects from the background. Tracing and extracting contour pixels are widely used for smart/wearable image sensor devices, because these are simple and useful for detecting objects. In this paper, we present a novel contour-tracing algorithm for fast and accurate contour following. The proposed algorithm classifies the type of contour pixel, based on its local pattern. Then, it traces the next contour using the previous pixel's type. Therefore, it can classify the type of contour pixels as a straight line, inner corner, outer corner and inner-outer corner, and it can extract pixels of a specific contour type. Moreover, it can trace contour pixels rapidly because it can determine the local minimal path using the contour case. In addition, the proposed algorithm is capable of the compressing data of contour pixels using the representative points and inner-outer corner points, and it can accurately restore the contour image from the data. To compare the performance of the proposed algorithm to that of conventional techniques, we measure their processing time and accuracy. In the experimental results, the proposed algorithm shows better performance compared to the others. Furthermore, it can provide the compressed data of contour pixels and restore them accurately, including the inner-outer corner, which cannot be restored using conventional algorithms.

  16. Fast Contour-Tracing Algorithm Based on a Pixel-Following Method for Image Sensors.

    PubMed

    Seo, Jonghoon; Chae, Seungho; Shim, Jinwook; Kim, Dongchul; Cheong, Cheolho; Han, Tack-Don

    2016-01-01

    Contour pixels distinguish objects from the background. Tracing and extracting contour pixels are widely used for smart/wearable image sensor devices, because these are simple and useful for detecting objects. In this paper, we present a novel contour-tracing algorithm for fast and accurate contour following. The proposed algorithm classifies the type of contour pixel, based on its local pattern. Then, it traces the next contour using the previous pixel's type. Therefore, it can classify the type of contour pixels as a straight line, inner corner, outer corner and inner-outer corner, and it can extract pixels of a specific contour type. Moreover, it can trace contour pixels rapidly because it can determine the local minimal path using the contour case. In addition, the proposed algorithm is capable of the compressing data of contour pixels using the representative points and inner-outer corner points, and it can accurately restore the contour image from the data. To compare the performance of the proposed algorithm to that of conventional techniques, we measure their processing time and accuracy. In the experimental results, the proposed algorithm shows better performance compared to the others. Furthermore, it can provide the compressed data of contour pixels and restore them accurately, including the inner-outer corner, which cannot be restored using conventional algorithms. PMID:27005632

  17. Fast Contour-Tracing Algorithm Based on a Pixel-Following Method for Image Sensors

    PubMed Central

    Seo, Jonghoon; Chae, Seungho; Shim, Jinwook; Kim, Dongchul; Cheong, Cheolho; Han, Tack-Don

    2016-01-01

    Contour pixels distinguish objects from the background. Tracing and extracting contour pixels are widely used for smart/wearable image sensor devices, because these are simple and useful for detecting objects. In this paper, we present a novel contour-tracing algorithm for fast and accurate contour following. The proposed algorithm classifies the type of contour pixel, based on its local pattern. Then, it traces the next contour using the previous pixel’s type. Therefore, it can classify the type of contour pixels as a straight line, inner corner, outer corner and inner-outer corner, and it can extract pixels of a specific contour type. Moreover, it can trace contour pixels rapidly because it can determine the local minimal path using the contour case. In addition, the proposed algorithm is capable of the compressing data of contour pixels using the representative points and inner-outer corner points, and it can accurately restore the contour image from the data. To compare the performance of the proposed algorithm to that of conventional techniques, we measure their processing time and accuracy. In the experimental results, the proposed algorithm shows better performance compared to the others. Furthermore, it can provide the compressed data of contour pixels and restore them accurately, including the inner-outer corner, which cannot be restored using conventional algorithms. PMID:27005632

  18. A fast approximate nearest neighbor search algorithm in the Hamming space.

    PubMed

    Esmaeili, Mani Malek; Ward, Rabab Kreidieh; Fatourechi, Mehrdad

    2012-12-01

    A fast approximate nearest neighbor search algorithm for the (binary) Hamming space is proposed. The proposed Error Weighted Hashing (EWH) algorithm is up to 20 times faster than the popular locality sensitive hashing (LSH) algorithm and works well even for large nearest neighbor distances where LSH fails. EWH significantly reduces the number of candidate nearest neighbors by weighing them based on the difference between their hash vectors. EWH can be used for multimedia retrieval and copy detection systems that are based on binary fingerprinting. On a fingerprint database with more than 1,000 videos, for a specific detection accuracy, we demonstrate that EWH is more than 10 times faster than LSH. For the same retrieval time, we show that EWH has a significantly better detection accuracy with a 15 times lower error rate.

  19. A comparative study of automatic image segmentation algorithms for target tracking in MR-IGRT.

    PubMed

    Feng, Yuan; Kawrakow, Iwan; Olsen, Jeff; Parikh, Parag J; Noel, Camille; Wooten, Omar; Du, Dongsu; Mutic, Sasa; Hu, Yanle

    2016-01-01

    On-board magnetic resonance (MR) image guidance during radiation therapy offers the potential for more accurate treatment delivery. To utilize the real-time image information, a crucial prerequisite is the ability to successfully segment and track regions of interest (ROI). The purpose of this work is to evaluate the performance of different segmentation algorithms using motion images (4 frames per second) acquired using a MR image-guided radiotherapy (MR-IGRT) system. Manual con-tours of the kidney, bladder, duodenum, and a liver tumor by an experienced radiation oncologist were used as the ground truth for performance evaluation. Besides the manual segmentation, images were automatically segmented using thresholding, fuzzy k-means (FKM), k-harmonic means (KHM), and reaction-diffusion level set evolution (RD-LSE) algorithms, as well as the tissue tracking algorithm provided by the ViewRay treatment planning and delivery system (VR-TPDS). The performance of the five algorithms was evaluated quantitatively by comparing with the manual segmentation using the Dice coefficient and target registration error (TRE) measured as the distance between the centroid of the manual ROI and the centroid of the automatically segmented ROI. All methods were able to successfully segment the bladder and the kidney, but only FKM, KHM, and VR-TPDS were able to segment the liver tumor and the duodenum. The performance of the thresholding, FKM, KHM, and RD-LSE algorithms degraded as the local image contrast decreased, whereas the performance of the VP-TPDS method was nearly independent of local image contrast due to the reference registration algorithm. For segmenting high-contrast images (i.e., kidney), the thresholding method provided the best speed (< 1 ms) with a satisfying accuracy (Dice = 0.95). When the image contrast was low, the VR-TPDS method had the best automatic contour. Results suggest an image quality determination procedure before segmentation and a combination of

  20. Software-based Diffusion MR Human Brain Phantom for Evaluating Fiber-tracking Algorithms.

    PubMed

    Shi, Yundi; Roger, Gwendoline; Vachet, Clement; Budin, Francois; Maltbie, Eric; Verde, Audrey; Hoogstoel, Marion; Berger, Jean-Baptiste; Styner, Martin

    2013-03-13

    Fiber tracking provides insights into the brain white matter network and has become more and more popular in diffusion MR imaging. Hardware or software phantom provides an essential platform to investigate, validate and compare various tractography algorithms towards a "gold standard". Software phantoms excel due to their flexibility in varying imaging parameters, such as tissue composition, SNR, as well as potential to model various anatomies and pathologies. This paper describes a novel method in generating diffusion MR images with various imaging parameters from realistically appearing, individually varying brain anatomy based on predefined fiber tracts within a high-resolution human brain atlas. Specifically, joint, high resolution DWI and structural MRI brain atlases were constructed with images acquired from 6 healthy subjects (age 22-26) for the DWI data and 56 healthy subject (age 18-59) for the structural MRI data. Full brain fiber tracking was performed with filtered, two-tensor tractography in atlas space. A deformation field based principal component model from the structural MRI as well as unbiased atlas building was then employed to generate synthetic structural brain MR images that are individually varying. Atlas fiber tracts were accordingly warped into each synthetic brain anatomy. Diffusion MR images were finally computed from these warped tracts via a composite hindered and restricted model of diffusion with various imaging parameters for gradient directions, image resolution and SNR. Furthermore, an open-source program was developed to evaluate the fiber tracking results both qualitatively and quantitatively based on various similarity measures. PMID:24357914

  1. Complexity reducing algorithm for near optimal fusion (CRANOF) with application to tracking and information fusion

    NASA Astrophysics Data System (ADS)

    Bamber, D.; Goodman, I. R.; Torrez, William C.; Nguyen, H. T.

    2001-08-01

    Conditional probability logics (CPL's), such as Adams', while producing many satisfactory results, do not agree with commonsense reasoning for a number of key entailment schemes, including transitivity and contraposition. Also, CPL's and bayesian techniques, often: (1) use restrictive independence/simplification assumptions; (2) lack a rationale behind choice of prior distribution; (3) require highly complex implementation calculations; (4) introduce ad hoc techniques. To address the above difficulties, a new CPL is being developed: CRANOF - Complexity Reducing Algorithm for Near Optimal Fusion -based upon three factors: (i) second order probability logic (SOPL), i.e., probability of probabilities within a bayesian framework; (ii) justified use of Dirichlet family priors, based on an extension of Lukacs' characterization theorem; and (iii) replacement of the theoretical optimal solution by a near optimal one where the complexity of computations is reduced significantly. A fundamental application of CRANOF to correlation and tracking is provided here through a generic example in a form similar to transitivity: two track histories are to be merged or left alone, based upon observed kinematic and non-kinematic attribute information and conditional probabilities connecting the observed data to the degrees of matching of attributes, as well as relating the matching of prescribed groups of attributes from each track history to the correlation level between the histories.

  2. Designs and Algorithms to Map Eye Tracking Data with Dynamic Multielement Moving Objects

    PubMed Central

    Mandal, Saptarshi

    2016-01-01

    Design concepts and algorithms were developed to address the eye tracking analysis issues that arise when (1) participants interrogate dynamic multielement objects that can overlap on the display and (2) visual angle error of the eye trackers is incapable of providing exact eye fixation coordinates. These issues were addressed by (1) developing dynamic areas of interests (AOIs) in the form of either convex or rectangular shapes to represent the moving and shape-changing multielement objects, (2) introducing the concept of AOI gap tolerance (AGT) that controls the size of the AOIs to address the overlapping and visual angle error issues, and (3) finding a near optimal AGT value. The approach was tested in the context of air traffic control (ATC) operations where air traffic controller specialists (ATCSs) interrogated multiple moving aircraft on a radar display to detect and control the aircraft for the purpose of maintaining safe and expeditious air transportation. In addition, we show how eye tracking analysis results can differ based on how we define dynamic AOIs to determine eye fixations on moving objects. The results serve as a framework to more accurately analyze eye tracking data and to better support the analysis of human performance. PMID:27725830

  3. Mechanics of swimming of multi-body bacterial swarmers using non-labeled cell tracking algorithm

    NASA Astrophysics Data System (ADS)

    Phuyal, Kiran; Kim, Min Jun

    2013-01-01

    To better understand the survival strategy of bacterial swarmers and the mechanical advantages offered by the linear chain (head-tail) attachment of the multiple bacterial bodies in an individual swarmer cell at low Reynolds number, a non-labeled cell tracking algorithm was used to quantify the mechanics of multi-body flagellated bacteria, Serratia marcescens, swimming in a motility buffer that originally exhibited the swarming motility. Swarming is a type of bacterial motility that is characterized by the collective coordinated motion of differentiated swarmer cells on a two-dimensional surface such as agar. In this study, the bacterial swarmers with multiple cell bodies (2, 3, and 4) were extracted from the swarm plate, and then tracked individually after resuspending in the motility medium. Their motion was investigated and compared with individual undifferentiated swimming bacterial cells. The swarmers when released into the motility buffer swam actively without tumbles. Their speeds, orientations, and the diffusive properties were studied by tracking the individual cell trajectories over a short distance in two-dimensional field when the cells are swimming at a constant depth in a bulk aqueous environment. At short time scales, the ballistic trajectory was dominant for both multi-body swarmers and undifferentiated cells.

  4. FastGGM: An Efficient Algorithm for the Inference of Gaussian Graphical Model in Biological Networks

    PubMed Central

    Ding, Ying; Fang, Zhou; Sun, Zhe; MacDonald, Matthew L.; Sweet, Robert A.; Wang, Jieru; Chen, Wei

    2016-01-01

    Biological networks provide additional information for the analysis of human diseases, beyond the traditional analysis that focuses on single variables. Gaussian graphical model (GGM), a probability model that characterizes the conditional dependence structure of a set of random variables by a graph, has wide applications in the analysis of biological networks, such as inferring interaction or comparing differential networks. However, existing approaches are either not statistically rigorous or are inefficient for high-dimensional data that include tens of thousands of variables for making inference. In this study, we propose an efficient algorithm to implement the estimation of GGM and obtain p-value and confidence interval for each edge in the graph, based on a recent proposal by Ren et al., 2015. Through simulation studies, we demonstrate that the algorithm is faster by several orders of magnitude than the current implemented algorithm for Ren et al. without losing any accuracy. Then, we apply our algorithm to two real data sets: transcriptomic data from a study of childhood asthma and proteomic data from a study of Alzheimer’s disease. We estimate the global gene or protein interaction networks for the disease and healthy samples. The resulting networks reveal interesting interactions and the differential networks between cases and controls show functional relevance to the diseases. In conclusion, we provide a computationally fast algorithm to implement a statistically sound procedure for constructing Gaussian graphical model and making inference with high-dimensional biological data. The algorithm has been implemented in an R package named “FastGGM”. PMID:26872036

  5. Error analysis and algorithm implementation for an improved optical-electric tracking device based on MEMS

    NASA Astrophysics Data System (ADS)

    Sun, Hong; Wu, Qian-zhong

    2013-09-01

    In order to improve the precision of optical-electric tracking device, proposing a kind of improved optical-electric tracking device based on MEMS, in allusion to the tracking error of gyroscope senor and the random drift, According to the principles of time series analysis of random sequence, establish AR model of gyro random error based on Kalman filter algorithm, then the output signals of gyro are multiple filtered with Kalman filter. And use ARM as micro controller servo motor is controlled by fuzzy PID full closed loop control algorithm, and add advanced correction and feed-forward links to improve response lag of angle input, Free-forward can make output perfectly follow input. The function of lead compensation link is to shorten the response of input signals, so as to reduce errors. Use the wireless video monitor module and remote monitoring software (Visual Basic 6.0) to monitor servo motor state in real time, the video monitor module gathers video signals, and the wireless video module will sent these signals to upper computer, so that show the motor running state in the window of Visual Basic 6.0. At the same time, take a detailed analysis to the main error source. Through the quantitative analysis of the errors from bandwidth and gyro sensor, it makes the proportion of each error in the whole error more intuitive, consequently, decrease the error of the system. Through the simulation and experiment results shows the system has good following characteristic, and it is very valuable for engineering application.

  6. A fast iterated conditional modes algorithm for water-fat decomposition in MRI.

    PubMed

    Huang, Fangping; Narayan, Sreenath; Wilson, David; Johnson, David; Zhang, Guo-Qiang

    2011-08-01

    Decomposition of water and fat in magnetic resonance imaging (MRI) is important for biomedical research and clinical applications. In this paper, we propose a two-phased approach for the three-point water-fat decomposition problem. Our contribution consists of two components: 1) a background-masked Markov random field (MRF) energy model to formulate the local smoothness of field inhomogeneity; 2) a new iterated conditional modes (ICM) algorithm accounting for high-performance optimization of the MRF energy model. The MRF energy model is integrated with background masking to prevent error propagation of background estimates as well as improve efficiency. The central component of our new ICM algorithm is the stability tracking (ST) mechanism intended to dynamically track iterative stability on pixels so that computation per iteration is performed only on instable pixels. The ST mechanism significantly improves the efficiency of ICM. We also develop a median-based initialization algorithm to provide good initial guesses for ICM iterations, and an adaptive gradient-based scheme for parametric configuration of the MRF model. We evaluate the robust of our approach with high-resolution mouse datasets acquired from 7T MRI. PMID:21402510

  7. Fast NJ-like algorithms to deal with incomplete distance matrices

    PubMed Central

    Criscuolo, Alexis; Gascuel, Olivier

    2008-01-01

    Background Distance-based phylogeny inference methods first estimate evolutionary distances between every pair of taxa, then build a tree from the so-obtained distance matrix. These methods are fast and fairly accurate. However, they hardly deal with incomplete distance matrices. Such matrices are frequent with recent multi-gene studies, when two species do not share any gene in analyzed data. The few existing algorithms to infer trees with satisfying accuracy from incomplete distance matrices have time complexity in O(n4) or more, where n is the number of taxa, which precludes large scale studies. Agglomerative distance algorithms (e.g. NJ [1,2]) are much faster, with time complexity in O(n3) which allows huge datasets and heavy bootstrap analyses to be dealt with. These algorithms proceed in three steps: (a) search for the taxon pair to be agglomerated, (b) estimate the lengths of the two so-created branches, (c) reduce the distance matrix and return to (a) until the tree is fully resolved. But available agglomerative algorithms cannot deal with incomplete matrices. Results We propose an adaptation to incomplete matrices of three agglomerative algorithms, namely NJ, BIONJ [3] and MVR [4]. Our adaptation generalizes to incomplete matrices the taxon pair selection criterion of NJ (also used by BIONJ and MVR), and combines this generalized criterion with that of ADDTREE [5]. Steps (b) and (c) are also modified, but O(n3) time complexity is kept. The performance of these new algorithms is studied with large scale simulations, which mimic multi-gene phylogenomic datasets. Our new algorithms – named NJ*, BIONJ* and MVR* – infer phylogenetic trees that are as least as accurate as those inferred by other available methods, but with much faster running times. MVR* presents the best overall performance. This algorithm accounts for the variance of the pairwise evolutionary distance estimates, and is well suited for multi-gene studies where some distances are accurately

  8. Time-resolved observation of fast domain-walls driven by vertical spin currents in short tracks

    SciTech Connect

    Sampaio, Joao; Lequeux, Steven; Chanthbouala, Andre; Cros, Vincent; Grollier, Julie; Matsumoto, Rie; Yakushiji, Kay; Kubota, Hitoshi; Fukushima, Akio; Yuasa, Shinji; Nishimura, Kazumasa; Nagamine, Yoshinori; Maehara, Hiroki; Tsunekawa, Koji

    2013-12-09

    We present time-resolved measurements of the displacement of magnetic domain-walls (DWs) driven by vertical spin-polarized currents in track-shaped magnetic tunnel junctions. In these structures, we observe very high DW velocities (600 m/s) at current densities below 10{sup 7} A/cm{sup 2}. We show that the efficient spin-transfer torque combined with a short propagation distance allows avoiding the Walker breakdown process and achieving deterministic, reversible, and fast (≈1 ns) DW-mediated switching of magnetic tunnel junction elements, which is of great interest for the implementation of fast DW-based spintronic devices.

  9. Time-resolved observation of fast domain-walls driven by vertical spin currents in short tracks

    NASA Astrophysics Data System (ADS)

    Sampaio, Joao; Lequeux, Steven; Metaxas, Peter J.; Chanthbouala, Andre; Matsumoto, Rie; Yakushiji, Kay; Kubota, Hitoshi; Fukushima, Akio; Yuasa, Shinji; Nishimura, Kazumasa; Nagamine, Yoshinori; Maehara, Hiroki; Tsunekawa, Koji; Cros, Vincent; Grollier, Julie

    2013-12-01

    We present time-resolved measurements of the displacement of magnetic domain-walls (DWs) driven by vertical spin-polarized currents in track-shaped magnetic tunnel junctions. In these structures, we observe very high DW velocities (600 m/s) at current densities below 107 A/cm2. We show that the efficient spin-transfer torque combined with a short propagation distance allows avoiding the Walker breakdown process and achieving deterministic, reversible, and fast (≈1 ns) DW-mediated switching of magnetic tunnel junction elements, which is of great interest for the implementation of fast DW-based spintronic devices.

  10. Statistical iterative reconstruction using fast optimization transfer algorithm with successively increasing factor in Digital Breast Tomosynthesis

    NASA Astrophysics Data System (ADS)

    Xu, Shiyu; Zhang, Zhenxi; Chen, Ying

    2014-03-01

    Statistical iterative reconstruction exhibits particularly promising since it provides the flexibility of accurate physical noise modeling and geometric system description in transmission tomography system. However, to solve the objective function is computationally intensive compared to analytical reconstruction methods due to multiple iterations needed for convergence and each iteration involving forward/back-projections by using a complex geometric system model. Optimization transfer (OT) is a general algorithm converting a high dimensional optimization to a parallel 1-D update. OT-based algorithm provides a monotonic convergence and a parallel computing framework but slower convergence rate especially around the global optimal. Based on an indirect estimation on the spectrum of the OT convergence rate matrix, we proposed a successively increasing factor- scaled optimization transfer (OT) algorithm to seek an optimal step size for a faster rate. Compared to a representative OT based method such as separable parabolic surrogate with pre-computed curvature (PC-SPS), our algorithm provides comparable image quality (IQ) with fewer iterations. Each iteration retains a similar computational cost to PC-SPS. The initial experiment with a simulated Digital Breast Tomosynthesis (DBT) system shows that a total 40% computing time is saved by the proposed algorithm. In general, the successively increasing factor-scaled OT exhibits a tremendous potential to be a iterative method with a parallel computation, a monotonic and global convergence with fast rate.

  11. A fast rank-reduction algorithm for three-dimensional seismic data interpolation

    NASA Astrophysics Data System (ADS)

    Jia, Yongna; Yu, Siwei; Liu, Lina; Ma, Jianwei

    2016-09-01

    Rank-reduction methods have been successfully used for seismic data interpolation and noise attenuation. However, highly intense computation is required for singular value decomposition (SVD) in most rank-reduction methods. In this paper, we propose a simple yet efficient interpolation algorithm, which is based on the Hankel matrix, for randomly missing traces. Following the multichannel singular spectrum analysis (MSSA) technique, we first transform the seismic data into a low-rank block Hankel matrix for each frequency slice. Then, a fast orthogonal rank-one matrix pursuit (OR1MP) algorithm is employed to minimize the low-rank constraint of the block Hankel matrix. In the new algorithm, only the left and right top singular vectors are needed to be computed, thereby, avoiding the complexity of computation required for SVD. Thus, we improve the calculation efficiency significantly. Finally, we anti-average the rank-reduction block Hankel matrix and obtain the reconstructed data in the frequency domain. Numerical experiments on 3D seismic data show that the proposed interpolation algorithm provides much better performance than the traditional MSSA algorithm in computational speed, especially for large-scale data processing.

  12. Fast instantaneous center of rotation estimation algorithm for a skied-steered robot

    NASA Astrophysics Data System (ADS)

    Kniaz, V. V.

    2015-05-01

    Skid-steered robots are widely used as mobile platforms for machine vision systems. However it is hard to achieve a stable motion of such robots along desired trajectory due to an unpredictable wheel slip. It is possible to compensate the unpredictable wheel slip and stabilize the motion of the robot using visual odometry. This paper presents a fast optical flow based algorithm for estimation of instantaneous center of rotation, angular and longitudinal speed of the robot. The proposed algorithm is based on Horn-Schunck variational optical flow estimation method. The instantaneous center of rotation and motion of the robot is estimated by back projection of optical flow field to the ground surface. The developed algorithm was tested using skid-steered mobile robot. The robot is based on a mobile platform that includes two pairs of differential driven motors and a motor controller. Monocular visual odometry system consisting of a singleboard computer and a low cost webcam is mounted on the mobile platform. A state-space model of the robot was derived using standard black-box system identification. The input (commands) and the output (motion) were recorded using a dedicated external motion capture system. The obtained model was used to control the robot without visual odometry data. The paper is concluded with the algorithm quality estimation by comparison of the trajectories estimated by the algorithm with the data from motion capture system.

  13. Fast Adapting Ensemble: A New Algorithm for Mining Data Streams with Concept Drift

    PubMed Central

    Ortíz Díaz, Agustín; Ramos-Jiménez, Gonzalo; Frías Blanco, Isvani; Caballero Mota, Yailé; Morales-Bueno, Rafael

    2015-01-01

    The treatment of large data streams in the presence of concept drifts is one of the main challenges in the field of data mining, particularly when the algorithms have to deal with concepts that disappear and then reappear. This paper presents a new algorithm, called Fast Adapting Ensemble (FAE), which adapts very quickly to both abrupt and gradual concept drifts, and has been specifically designed to deal with recurring concepts. FAE processes the learning examples in blocks of the same size, but it does not have to wait for the batch to be complete in order to adapt its base classification mechanism. FAE incorporates a drift detector to improve the handling of abrupt concept drifts and stores a set of inactive classifiers that represent old concepts, which are activated very quickly when these concepts reappear. We compare our new algorithm with various well-known learning algorithms, taking into account, common benchmark datasets. The experiments show promising results from the proposed algorithm (regarding accuracy and runtime), handling different types of concept drifts. PMID:25879051

  14. Fast algorithm for scaling analysis with higher-order detrending moving average method

    NASA Astrophysics Data System (ADS)

    Tsujimoto, Yutaka; Miki, Yuki; Shimatani, Satoshi; Kiyono, Ken

    2016-05-01

    Among scaling analysis methods based on the root-mean-square deviation from the estimated trend, it has been demonstrated that centered detrending moving average (DMA) analysis with a simple moving average has good performance when characterizing long-range correlation or fractal scaling behavior. Furthermore, higher-order DMA has also been proposed; it is shown to have better detrending capabilities, removing higher-order polynomial trends than original DMA. However, a straightforward implementation of higher-order DMA requires a very high computational cost, which would prevent practical use of this method. To solve this issue, in this study, we introduce a fast algorithm for higher-order DMA, which consists of two techniques: (1) parallel translation of moving averaging windows by a fixed interval; (2) recurrence formulas for the calculation of summations. Our algorithm can significantly reduce computational cost. Monte Carlo experiments show that the computational time of our algorithm is approximately proportional to the data length, although that of the conventional algorithm is proportional to the square of the data length. The efficiency of our algorithm is also shown by a systematic study of the performance of higher-order DMA, such as the range of detectable scaling exponents and detrending capability for removing polynomial trends. In addition, through the analysis of heart-rate variability time series, we discuss possible applications of higher-order DMA.

  15. Fast automated yeast cell counting algorithm using bright-field and fluorescence microscopic images

    PubMed Central

    2013-01-01

    Background The faithful determination of the concentration and viability of yeast cells is important for biological research as well as industry. To this end, it is important to develop an automated cell counting algorithm that can provide not only fast but also accurate and precise measurement of yeast cells. Results With the proposed method, we measured the precision of yeast cell measurements by using 0%, 25%, 50%, 75% and 100% viability samples. As a result, the actual viability measured with the proposed yeast cell counting algorithm is significantly correlated to the theoretical viability (R2 = 0.9991). Furthermore, we evaluated the performance of our algorithm in various computing platforms. The results showed that the proposed algorithm could be feasible to use with low-end computing platforms without loss of its performance. Conclusions Our yeast cell counting algorithm can rapidly provide the total number and the viability of yeast cells with exceptional accuracy and precision. Therefore, we believe that our method can become beneficial for a wide variety of academic field and industries such as biotechnology, pharmaceutical and alcohol production. PMID:24215650

  16. A fast and automatic fusion algorithm for unregistered multi-exposure image sequence

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Yu, Feihong

    2014-09-01

    Human visual system (HVS) can visualize all the brightness levels of the scene through visual adaptation. However, the dynamic range of most commercial digital cameras and display devices are smaller than the dynamic range of human eye. This implies low dynamic range (LDR) images captured by normal digital camera may lose image details. We propose an efficient approach to high dynamic (HDR) image fusion that copes with image displacement and image blur degradation in a computationally efficient manner, which is suitable for implementation on mobile devices. The various image registration algorithms proposed in the previous literatures are unable to meet the efficiency and performance requirements in the application of mobile devices. In this paper, we selected Oriented Brief (ORB) detector to extract local image structures. The descriptor selected in multi-exposure image fusion algorithm has to be fast and robust to illumination variations and geometric deformations. ORB descriptor is the best candidate in our algorithm. Further, we perform an improved RANdom Sample Consensus (RANSAC) algorithm to reject incorrect matches. For the fusion of images, a new approach based on Stationary Wavelet Transform (SWT) is used. The experimental results demonstrate that the proposed algorithm generates high quality images at low computational cost. Comparisons with a number of other feature matching methods show that our method gets better performance.

  17. Fast algorithm for solving the Hankel/Toeplitz Structured Total Least Squares problem

    NASA Astrophysics Data System (ADS)

    Lemmerling, Philippe; Mastronardi, Nicola; van Huffel, Sabine

    2000-07-01

    The Structured Total Least Squares (STLS) problem is a natural extension of the Total Least Squares (TLS) problem when constraints on the matrix structure need to be imposed. Similar to the ordinary TLS approach, the STLS approach can be used to determine the parameter vector of a linear model, given some noisy measurements. In many signal processing applications, the imposition of this matrix structure constraint is necessary for obtaining Maximum Likelihood (ML) estimates of the parameter vectorE In this paper we consider the Toeplitz (Hankel) STLS problem (i.e., an STLS problem in which the Toeplitz (Hankel) structure needs to be preserved). A fast implementation of an algorithm for solving this frequently occurring STLS problem is proposed. The increased efficiency is obtained by exploiting the low displacement rank of the involved matrices and the sparsity of the associated generators. The fast implementation is compared to two other implementations of algorithms for solving the Toeplitz (Hankel) STLS problem. The comparison is carried out on a recently proposed speech compression scheme. The numerical results confirm the high efficiency of the newly proposed fast implementation: the straightforward implementations have a complexity of O((m+n)3) and O(m3) whereas the proposed implementation has a complexity of O(mn+n2).

  18. How Fast Is Your Body Motion? Determining a Sufficient Frame Rate for an Optical Motion Tracking System Using Passive Markers

    PubMed Central

    Song, Min-Ho; Godøy, Rolf Inge

    2016-01-01

    This paper addresses how to determine a sufficient frame (sampling) rate for an optical motion tracking system using passive reflective markers. When using passive markers for the optical motion tracking, avoiding identity confusion between the markers becomes a problem as the speed of motion increases, necessitating a higher frame rate to avoid a failure of the motion tracking caused by marker confusions and/or dropouts. Initially, one might believe that the Nyquist-Shannon sampling rate estimated from the assumed maximal temporal variation of a motion (i.e. a sampling rate at least twice that of the maximum motion frequency) could be the complete solution to the problem. However, this paper shows that also the spatial distance between the markers should be taken into account in determining the suitable frame rate of an optical motion tracking with passive markers. In this paper, a frame rate criterion for the optical tracking using passive markers is theoretically derived and also experimentally verified using a high-quality optical motion tracking system. Both the theoretical and the experimental results showed that the minimum frame rate is proportional to the ratio between the maximum speed of the motion and the minimum spacing between markers, and may also be predicted precisely if the proportional constant is known in advance. The inverse of the proportional constant is here defined as the tracking efficiency constant and it can be easily determined with some test measurements. Moreover, this newly defined constant can provide a new way of evaluating the tracking algorithm performance of an optical tracking system. PMID:26967900

  19. A fast and precise indoor localization algorithm based on an online sequential extreme learning machine.

    PubMed

    Zou, Han; Lu, Xiaoxuan; Jiang, Hao; Xie, Lihua

    2015-01-01

    Nowadays, developing indoor positioning systems (IPSs) has become an attractive research topic due to the increasing demands on location-based service (LBS) in indoor environments. WiFi technology has been studied and explored to provide indoor positioning service for years in view of the wide deployment and availability of existing WiFi infrastructures in indoor environments. A large body of WiFi-based IPSs adopt fingerprinting approaches for localization. However, these IPSs suffer from two major problems: the intensive costs of manpower and time for offline site survey and the inflexibility to environmental dynamics. In this paper, we propose an indoor localization algorithm based on an online sequential extreme learning machine (OS-ELM) to address the above problems accordingly. The fast learning speed of OS-ELM can reduce the time and manpower costs for the offline site survey. Meanwhile, its online sequential learning ability enables the proposed localization algorithm to adapt in a timely manner to environmental dynamics. Experiments under specific environmental changes, such as variations of occupancy distribution and events of opening or closing of doors, are conducted to evaluate the performance of OS-ELM. The simulation and experimental results show that the proposed localization algorithm can provide higher localization accuracy than traditional approaches, due to its fast adaptation to various environmental dynamics. PMID:25599427

  20. A Fast and Precise Indoor Localization Algorithm Based on an Online Sequential Extreme Learning Machine †

    PubMed Central

    Zou, Han; Lu, Xiaoxuan; Jiang, Hao; Xie, Lihua

    2015-01-01

    Nowadays, developing indoor positioning systems (IPSs) has become an attractive research topic due to the increasing demands on location-based service (LBS) in indoor environments. WiFi technology has been studied and explored to provide indoor positioning service for years in view of the wide deployment and availability of existing WiFi infrastructures in indoor environments. A large body of WiFi-based IPSs adopt fingerprinting approaches for localization. However, these IPSs suffer from two major problems: the intensive costs of manpower and time for offline site survey and the inflexibility to environmental dynamics. In this paper, we propose an indoor localization algorithm based on an online sequential extreme learning machine (OS-ELM) to address the above problems accordingly. The fast learning speed of OS-ELM can reduce the time and manpower costs for the offline site survey. Meanwhile, its online sequential learning ability enables the proposed localization algorithm to adapt in a timely manner to environmental dynamics. Experiments under specific environmental changes, such as variations of occupancy distribution and events of opening or closing of doors, are conducted to evaluate the performance of OS-ELM. The simulation and experimental results show that the proposed localization algorithm can provide higher localization accuracy than traditional approaches, due to its fast adaptation to various environmental dynamics. PMID:25599427

  1. A Hierarchical Algorithm for Fast Debye Summation with Applications to Small Angle Scattering

    PubMed Central

    Gumerov, Nail A.; Berlin, Konstantin; Fushman, David; Duraiswami, Ramani

    2012-01-01

    Debye summation, which involves the summation of sinc functions of distances between all pair of atoms in three dimensional space, arises in computations performed in crystallography, small/wide angle X-ray scattering (SAXS/WAXS) and small angle neutron scattering (SANS). Direct evaluation of Debye summation has quadratic complexity, which results in computational bottleneck when determining crystal properties, or running structure refinement protocols that involve SAXS or SANS, even for moderately sized molecules. We present a fast approximation algorithm that efficiently computes the summation to any prescribed accuracy ε in linear time. The algorithm is similar to the fast multipole method (FMM), and is based on a hierarchical spatial decomposition of the molecule coupled with local harmonic expansions and translation of these expansions. An even more efficient implementation is possible when the scattering profile is all that is required, as in small angle scattering reconstruction (SAS) of macromolecules. We examine the relationship of the proposed algorithm to existing approximate methods for profile computations, and show that these methods may result in inaccurate profile computations, unless an error bound derived in this paper is used. Our theoretical and computational results show orders of magnitude improvement in computation complexity over existing methods, while maintaining prescribed accuracy. PMID:22707386

  2. Fast mode decision algorithm for scalable video coding based on luminance coded block pattern

    NASA Astrophysics Data System (ADS)

    Kim, Tae-Jung; Yoo, Jeong-Ju; Hong, Jin-Woo; Suh, Jae-Won

    2013-01-01

    A fast mode decision algorithm is proposed to reduce the computation complexity of adaptive inter layer prediction method, which is a motion estimation algorithm for video compression in scalable video coding (SVC) encoder systems. SVC is standard as an extension of H.264/AVC to provide multimedia services within variable transport environments and across various terminal systems. SVC supports an adaptive inter mode prediction, which includes not only the temporal prediction modes with varying block sizes but also inter layer prediction modes based on correlation between the lower layer information and the current layer. To achieve high coding efficiency, a rate distortion optimization technique is employed to select the best coding mode and reference frame for each MB. As a result, the performance gains of SVC come with increased computational complexity. To overcome this problem, we propose fast mode decision based on coded block pattern (CBP) of 16×16 mode and reference block of best CBP. The experimental results in SVC with combined scalability structure show that the proposed algorithm achieves up to an average 61.65% speed up factor in the encoding time with a negligible bit increment and a minimal image quality loss. In addition, experimental results in spatial and quality scalability show that the computational complexity has been reduced about 55.32% and 52.69%, respectively.

  3. Fast intra-prediction algorithms for high efficiency video coding standard

    NASA Astrophysics Data System (ADS)

    Kibeya, Hassan; Belghith, Fatma; Ben Ayed, Mohammed Ali; Masmoudi, Nouri

    2016-01-01

    High efficiency video coding (HEVC) is the latest video compression standard that provides significant performance improvement on the compression ratio compared to all existing video coding standards. The intra-prediction procedure plays an important role in the HEVC encoder, and it is being achieved by providing up to 35 intra-modes with a larger coding unit requiring a high computational complexity that needs to be alleviated. Toward this end, the paper proposes two fast intra-mode decision algorithms that exploit the features of video sequences. First, an early detection of zero transform and quantified coefficients method is applied to generate threshold values employed for early termination of the intra-decision process and hence accelerates the encoding procedure. Another fast intra-mode decision algorithm is elaborated that relies on a refinement technique. Based on statistical analyses of frequently chosen modes, only a small part of the candidate modes is chosen for intra-prediction process, which reduces the complexity of the intra-encoding procedure. The performance of the proposed algorithms is verified through comparative analysis of encoding time, visual image quality, and compression ratio. Compared to HM 10.0, the encoding time reduction can reach 69% with only a slight degradation of image quality and compression ratio.

  4. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood.

    PubMed

    Guindon, Stéphane; Gascuel, Olivier

    2003-10-01

    The increase in the number of large data sets and the complexity of current probabilistic sequence evolution models necessitates fast and reliable phylogeny reconstruction methods. We describe a new approach, based on the maximum- likelihood principle, which clearly satisfies these requirements. The core of this method is a simple hill-climbing algorithm that adjusts tree topology and branch lengths simultaneously. This algorithm starts from an initial tree built by a fast distance-based method and modifies this tree to improve its likelihood at each iteration. Due to this simultaneous adjustment of the topology and branch lengths, only a few iterations are sufficient to reach an optimum. We used extensive and realistic computer simulations to show that the topological accuracy of this new method is at least as high as that of the existing maximum-likelihood programs and much higher than the performance of distance-based and parsimony approaches. The reduction of computing time is dramatic in comparison with other maximum-likelihood packages, while the likelihood maximization ability tends to be higher. For example, only 12 min were required on a standard personal computer to analyze a data set consisting of 500 rbcL sequences with 1,428 base pairs from plant plastids, thus reaching a speed of the same order as some popular distance-based and parsimony algorithms. This new method is implemented in the PHYML program, which is freely available on our web page: http://www.lirmm.fr/w3ifa/MAAS/.

  5. A fast and precise indoor localization algorithm based on an online sequential extreme learning machine.

    PubMed

    Zou, Han; Lu, Xiaoxuan; Jiang, Hao; Xie, Lihua

    2015-01-15

    Nowadays, developing indoor positioning systems (IPSs) has become an attractive research topic due to the increasing demands on location-based service (LBS) in indoor environments. WiFi technology has been studied and explored to provide indoor positioning service for years in view of the wide deployment and availability of existing WiFi infrastructures in indoor environments. A large body of WiFi-based IPSs adopt fingerprinting approaches for localization. However, these IPSs suffer from two major problems: the intensive costs of manpower and time for offline site survey and the inflexibility to environmental dynamics. In this paper, we propose an indoor localization algorithm based on an online sequential extreme learning machine (OS-ELM) to address the above problems accordingly. The fast learning speed of OS-ELM can reduce the time and manpower costs for the offline site survey. Meanwhile, its online sequential learning ability enables the proposed localization algorithm to adapt in a timely manner to environmental dynamics. Experiments under specific environmental changes, such as variations of occupancy distribution and events of opening or closing of doors, are conducted to evaluate the performance of OS-ELM. The simulation and experimental results show that the proposed localization algorithm can provide higher localization accuracy than traditional approaches, due to its fast adaptation to various environmental dynamics.

  6. A Fast Robot Identification and Mapping Algorithm Based on Kinect Sensor.

    PubMed

    Zhang, Liang; Shen, Peiyi; Zhu, Guangming; Wei, Wei; Song, Houbing

    2015-01-01

    Internet of Things (IoT) is driving innovation in an ever-growing set of application domains such as intelligent processing for autonomous robots. For an autonomous robot, one grand challenge is how to sense its surrounding environment effectively. The Simultaneous Localization and Mapping with RGB-D Kinect camera sensor on robot, called RGB-D SLAM, has been developed for this purpose but some technical challenges must be addressed. Firstly, the efficiency of the algorithm cannot satisfy real-time requirements; secondly, the accuracy of the algorithm is unacceptable. In order to address these challenges, this paper proposes a set of novel improvement methods as follows. Firstly, the ORiented Brief (ORB) method is used in feature detection and descriptor extraction. Secondly, a bidirectional Fast Library for Approximate Nearest Neighbors (FLANN) k-Nearest Neighbor (KNN) algorithm is applied to feature match. Then, the improved RANdom SAmple Consensus (RANSAC) estimation method is adopted in the motion transformation. In the meantime, high precision General Iterative Closest Points (GICP) is utilized to register a point cloud in the motion transformation optimization. To improve the accuracy of SLAM, the reduced dynamic covariance scaling (DCS) algorithm is formulated as a global optimization problem under the G2O framework. The effectiveness of the improved algorithm has been verified by testing on standard data and comparing with the ground truth obtained on Freiburg University's datasets. The Dr Robot X80 equipped with a Kinect camera is also applied in a building corridor to verify the correctness of the improved RGB-D SLAM algorithm. With the above experiments, it can be seen that the proposed algorithm achieves higher processing speed and better accuracy. PMID:26287198

  7. A Fast Robot Identification and Mapping Algorithm Based on Kinect Sensor

    PubMed Central

    Zhang, Liang; Shen, Peiyi; Zhu, Guangming; Wei, Wei; Song, Houbing

    2015-01-01

    Internet of Things (IoT) is driving innovation in an ever-growing set of application domains such as intelligent processing for autonomous robots. For an autonomous robot, one grand challenge is how to sense its surrounding environment effectively. The Simultaneous Localization and Mapping with RGB-D Kinect camera sensor on robot, called RGB-D SLAM, has been developed for this purpose but some technical challenges must be addressed. Firstly, the efficiency of the algorithm cannot satisfy real-time requirements; secondly, the accuracy of the algorithm is unacceptable. In order to address these challenges, this paper proposes a set of novel improvement methods as follows. Firstly, the ORiented Brief (ORB) method is used in feature detection and descriptor extraction. Secondly, a bidirectional Fast Library for Approximate Nearest Neighbors (FLANN) k-Nearest Neighbor (KNN) algorithm is applied to feature match. Then, the improved RANdom SAmple Consensus (RANSAC) estimation method is adopted in the motion transformation. In the meantime, high precision General Iterative Closest Points (GICP) is utilized to register a point cloud in the motion transformation optimization. To improve the accuracy of SLAM, the reduced dynamic covariance scaling (DCS) algorithm is formulated as a global optimization problem under the G2O framework. The effectiveness of the improved algorithm has been verified by testing on standard data and comparing with the ground truth obtained on Freiburg University’s datasets. The Dr Robot X80 equipped with a Kinect camera is also applied in a building corridor to verify the correctness of the improved RGB-D SLAM algorithm. With the above experiments, it can be seen that the proposed algorithm achieves higher processing speed and better accuracy. PMID:26287198

  8. A Fast Robot Identification and Mapping Algorithm Based on Kinect Sensor.

    PubMed

    Zhang, Liang; Shen, Peiyi; Zhu, Guangming; Wei, Wei; Song, Houbing

    2015-08-14

    Internet of Things (IoT) is driving innovation in an ever-growing set of application domains such as intelligent processing for autonomous robots. For an autonomous robot, one grand challenge is how to sense its surrounding environment effectively. The Simultaneous Localization and Mapping with RGB-D Kinect camera sensor on robot, called RGB-D SLAM, has been developed for this purpose but some technical challenges must be addressed. Firstly, the efficiency of the algorithm cannot satisfy real-time requirements; secondly, the accuracy of the algorithm is unacceptable. In order to address these challenges, this paper proposes a set of novel improvement methods as follows. Firstly, the ORiented Brief (ORB) method is used in feature detection and descriptor extraction. Secondly, a bidirectional Fast Library for Approximate Nearest Neighbors (FLANN) k-Nearest Neighbor (KNN) algorithm is applied to feature match. Then, the improved RANdom SAmple Consensus (RANSAC) estimation method is adopted in the motion transformation. In the meantime, high precision General Iterative Closest Points (GICP) is utilized to register a point cloud in the motion transformation optimization. To improve the accuracy of SLAM, the reduced dynamic covariance scaling (DCS) algorithm is formulated as a global optimization problem under the G2O framework. The effectiveness of the improved algorithm has been verified by testing on standard data and comparing with the ground truth obtained on Freiburg University's datasets. The Dr Robot X80 equipped with a Kinect camera is also applied in a building corridor to verify the correctness of the improved RGB-D SLAM algorithm. With the above experiments, it can be seen that the proposed algorithm achieves higher processing speed and better accuracy.

  9. Impact of a Fast-Track Esophagectomy Protocol on Esophageal Cancer Patient Outcomes and Hospital Charges

    PubMed Central

    Shewale, Jitesh B.; Correa, Arlene M.; Baker, Carla M.; Villafane-Ferriol, Nicole; Hofstetter, Wayne L.; Jordan, Victoria S.; Kehlet, Henrik; Lewis, Katie M.; Mehran, Reza J.; Summers, Barbara L.; Schaub, Diane; Wilks, Sonia A.; Swisher, Stephen G.

    2016-01-01

    Objective To evaluate the effects of a fast-track esophagectomy protocol (FTEP) on esophageal cancer patients' safety, length of hospital stay (LOS) and hospital charges. Background FTEP involved transferring patients to the telemetry unit instead of the surgical intensive care unit (SICU) after esophagectomy. Methods We retrospectively reviewed 708 consecutive patients who underwent esophagectomy for primary esophageal cancer during the 4 years before (group A; 322 patients) or 4 years after (group B; 386 patients) the institution of an FTEP. Postoperative morbidity and mortality, LOS, and hospital charges were reviewed. Results Compared with group A, group B had significantly shorter median LOS (12 days vs 8 days; P < 0.001); lower mean numbers of SICU days (4.5 days vs 1.2 days; P < 0.001) and telemetry days (12.7 days vs 9.7 days; P < 0.001); and lower rates of atrial arrhythmia (27% vs 19%; P = 0.013) and pulmonary complications (27% vs 20%; P = 0.016). Multivariable analysis revealed FTEP to be associated with shorter LOS (P < 0.001) even after adjustment for predictors like tumor histology and location. FTEP was also associated with a lower rate of pulmonary complications (odds ratio = 0.655; 95% confidence interval = 0.456, 0.942; P = 0.022). In addition, the median hospital charges associated with primary admission and readmission within 90 days for group B ($65,649) were lower than that for group A ($79,117; P < 0.001). Conclusion These findings suggest that an FTEP reduces patients' LOS, perioperative morbidity and hospital charges. PMID:25243545

  10. Traditional healers and the "Fast-Track" HIV response: is success possible without them?

    PubMed

    Leclerc-Madlala, Suzanne; Green, Edward; Hallin, Mary

    2016-07-01

    The rapid scale-up of effective HIV prevention strategies is a central theme of the post-2015 health and development agenda. All major global HIV and AIDS funders have aligned their policies and plans to achieve sharp reductions in new HIV infections and reach epidemic control by 2030. In these "fast-track" plans, increased antiretroviral treatment coverage and the attainment of viral suppression are pivotal, and there is firm recognition of the need for countries to mobilise more domestic resources and build stronger community clinic systems. There is little in these bold plans, however, to suggest that the now 30-year-old call by the World Health Organization (WHO) and other organisations to establish systematic collaborations with the traditional health sector will finally be heeded. In the context of sub-Saharan Africa's HIV epidemic, a significant body of literature demonstrates the critical role that traditional healers can play in improving the success of health programmes, including those for HIV prevention. This paper provides a brief history of collaboration with traditional healers for HIV followed by a description of several successful collaborations and discussion of key elements for success. We argue that the traditional health sector is a major resource that has yet to be sufficiently mobilised against HIV. As we shift from a short-term HIV response to a longer-term and more sustainable response, there is an urgent need to accelerate efforts to leverage and partner with the hundreds of thousands of traditional health practitioners who are already providing health services in communities. Failure to better attune our work to the medical pluralism of communities affected by HIV will continue to hinder HIV programming success and help assure that ambitious post-2015 HIV prevention and control goals are not realised.

  11. Traditional healers and the "Fast-Track" HIV response: is success possible without them?

    PubMed

    Leclerc-Madlala, Suzanne; Green, Edward; Hallin, Mary

    2016-07-01

    The rapid scale-up of effective HIV prevention strategies is a central theme of the post-2015 health and development agenda. All major global HIV and AIDS funders have aligned their policies and plans to achieve sharp reductions in new HIV infections and reach epidemic control by 2030. In these "fast-track" plans, increased antiretroviral treatment coverage and the attainment of viral suppression are pivotal, and there is firm recognition of the need for countries to mobilise more domestic resources and build stronger community clinic systems. There is little in these bold plans, however, to suggest that the now 30-year-old call by the World Health Organization (WHO) and other organisations to establish systematic collaborations with the traditional health sector will finally be heeded. In the context of sub-Saharan Africa's HIV epidemic, a significant body of literature demonstrates the critical role that traditional healers can play in improving the success of health programmes, including those for HIV prevention. This paper provides a brief history of collaboration with traditional healers for HIV followed by a description of several successful collaborations and discussion of key elements for success. We argue that the traditional health sector is a major resource that has yet to be sufficiently mobilised against HIV. As we shift from a short-term HIV response to a longer-term and more sustainable response, there is an urgent need to accelerate efforts to leverage and partner with the hundreds of thousands of traditional health practitioners who are already providing health services in communities. Failure to better attune our work to the medical pluralism of communities affected by HIV will continue to hinder HIV programming success and help assure that ambitious post-2015 HIV prevention and control goals are not realised. PMID:27399048

  12. The Implementation of the Fast Track Program: An Example of a Large-Scale Prevention Science Efficacy Trial

    PubMed Central

    2009-01-01

    In 1990, the Fast Track Project was initiated to evaluate the feasibility and effectiveness of a comprehensive, multicomponent prevention program targeting children at risk for conduct disorders in four demographically diverse American communities (Conduct Problems Prevention Research Group [CPPRG], 1992). Representing a prevention science approach toward community-based preventive intervention, the Fast Track intervention design was based upon the available data base elucidating the epidemiology of risk for conduct disorder and suggesting key causal developmental influences (R. P. Weissberg & M. T. Greenberg, 1998). Critical questions about this approach to prevention center around the extent to which such a science-based program can be effective at (1) engaging community members and stakeholders, (2) maintaining intervention fidelity while responding appropriately to the local norms and needs of communities that vary widely in their demographic and cultural/ethnic composition, and (3) maintaining community engagement in the long-term to support effective and sustainable intervention dissemination. This paper discusses these issues, providing examples from the Fast Track project to illustrate the process of program implementation and the evidence available regarding the success of this science-based program at engaging communities in sustainable and effective ways as partners in prevention programming. PMID:11930968

  13. Improvements in fast-response flood modeling: desktop parallel computing and domain tracking

    SciTech Connect

    Judi, David R; Mcpherson, Timothy N; Burian, Steven J

    2009-01-01

    It is becoming increasingly important to have the ability to accurately forecast flooding, as flooding accounts for the most losses due to natural disasters in the world and the United States. Flood inundation modeling has been dominated by one-dimensional approaches. These models are computationally efficient and are considered by many engineers to produce reasonably accurate water surface profiles. However, because the profiles estimated in these models must be superimposed on digital elevation data to create a two-dimensional map, the result may be sensitive to the ability of the elevation data to capture relevant features (e.g. dikes/levees, roads, walls, etc...). Moreover, one-dimensional models do not explicitly represent the complex flow processes present in floodplains and urban environments and because two-dimensional models based on the shallow water equations have significantly greater ability to determine flow velocity and direction, the National Research Council (NRC) has recommended that two-dimensional models be used over one-dimensional models for flood inundation studies. This paper has shown that two-dimensional flood modeling computational time can be greatly reduced through the use of Java multithreading on multi-core computers which effectively provides a means for parallel computing on a desktop computer. In addition, this paper has shown that when desktop parallel computing is coupled with a domain tracking algorithm, significant computation time can be eliminated when computations are completed only on inundated cells. The drastic reduction in computational time shown here enhances the ability of two-dimensional flood inundation models to be used as a near-real time flood forecasting tool, engineering, design tool, or planning tool. Perhaps even of greater significance, the reduction in computation time makes the incorporation of risk and uncertainty/ensemble forecasting more feasible for flood inundation modeling (NRC 2000; Sayers et al

  14. Algorithms for Accurate and Fast Plotting of Contour Surfaces in 3D Using Hexahedral Elements

    NASA Astrophysics Data System (ADS)

    Singh, Chandan; Saini, Jaswinder Singh

    2016-07-01

    In the present study, Fast and accurate algorithms for the generation of contour surfaces in 3D are described using hexahedral elements which are popular in finite element analysis. The contour surfaces are described in the form of groups of boundaries of contour segments and their interior points are derived using the contour equation. The locations of contour boundaries and the interior points on contour surfaces are as accurate as the interpolation results obtained by hexahedral elements and thus there are no discrepancies between the analysis and visualization results.

  15. A Generalized Fast Frequency Sweep Algorithm for Coupled Circuit-EM Simulations

    SciTech Connect

    Ouyang, G; Jandhyala, V; Champagne, N; Sharpe, R; Fasenfest, B J; Rockway, J D

    2004-12-14

    An Asymptotic Wave Expansion (AWE) technique is implemented into the EIGER computational electromagnetics code. The AWE fast frequency sweep is formed by separating the components of the integral equations by frequency dependence, then using this information to find a rational function approximation of the results. The standard AWE method is generalized to work for several integral equations, including the EFIE for conductors and the PMCHWT for dielectrics. The method is also expanded to work for two types of coupled circuit-EM problems as well as lumped load circuit elements. After a simple bisecting adaptive sweep algorithm is developed, dramatic speed improvements are seen for several example problems.

  16. Lazy skip-lists: An algorithm for fast hybridization-expansion quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Sémon, P.; Yee, Chuck-Hou; Haule, Kristjan; Tremblay, A.-M. S.

    2014-08-01

    The solution of a generalized impurity model lies at the heart of electronic structure calculations with dynamical mean field theory. In the strongly correlated regime, the method of choice for solving the impurity model is the hybridization-expansion continuous-time quantum Monte Carlo (CT-HYB). Enhancements to the CT-HYB algorithm are critical for bringing new physical regimes within reach of current computational power. Taking advantage of the fact that the bottleneck in the algorithm is a product of hundreds of matrices, we present optimizations based on the introduction and combination of two concepts of more general applicability: (a) skip lists and (b) fast rejection of proposed configurations based on matrix bounds. Considering two very different test cases with d electrons, we find speedups of ˜25 up to ˜500 compared to the direct evaluation of the matrix product. Even larger speedups are likely with f electron systems and with clusters of correlated atoms.

  17. Hessian Schatten-norm regularization for CBCT image reconstruction using fast iterative shrinkage-thresholding algorithm

    NASA Astrophysics Data System (ADS)

    Li, Xinxin; Wang, Jiang; Tan, Shan

    2015-03-01

    Statistical iterative reconstruction in Cone-beam computed tomography (CBCT) uses prior knowledge to form different kinds of regularization terms. The total variation (TV) regularization has shown state-of-the-art performance in suppressing noises and preserving edges. However, it produces the well-known staircase effect. In this paper, a method that involves second-order differential operators was employed to avoid the staircase effect. The ability to avoid staircase effect lies in that higher-order derivatives can avoid over-sharpening the regions of smooth intensity transitions. Meanwhile, a fast iterative shrinkage-thresholding algorithm was used for the corresponding optimization problem. The proposed Hessian Schatten norm-based regularization keeps lots of favorable properties of TV, such as translation and scale invariant, with getting rid of the staircase effect that appears in TV-based reconstructions. The experiments demonstrated the outstanding ability of the proposed algorithm over TV method especially in suppressing the staircase effect.

  18. ADaM: augmenting existing approximate fast matching algorithms with efficient and exact range queries

    PubMed Central

    2014-01-01

    Background Drug discovery, disease detection, and personalized medicine are fast-growing areas of genomic research. With the advancement of next-generation sequencing techniques, researchers can obtain an abundance of data for many different biological assays in a short period of time. When this data is error-free, the result is a high-quality base-pair resolution picture of the genome. However, when the data is lossy the heuristic algorithms currently used when aligning next-generation sequences causes the corresponding accuracy to drop. Results This paper describes a program, ADaM (APF DNA Mapper) which significantly increases final alignment accuracy. ADaM works by first using an existing program to align "easy" sequences, and then using an algorithm with accuracy guarantees (the APF) to align the remaining sequences. The final result is a technique that increases the mapping accuracy from only 60% to over 90% for harder-to-align sequences. PMID:25079667

  19. Fast nearfield to farfield conversion algorithm for circular synthetic aperture sonar.

    PubMed

    Plotnick, Daniel S; Marston, Philip L; Marston, Timothy M

    2014-08-01

    Monostatic circular synthetic aperture sonar (CSAS) images are formed by processing azimuthal angle dependent backscattering from a target at a fixed distance from a collocated source/receiver. Typical CSAS imaging algorithms [Ferguson and Wyber, J. Acoust. Soc. Am. 117, 2915-2928 (2005)] assume scattering data are taken in the farfield. Experimental constraints may make farfield measurements impractical and thus require objects to be scanned in the nearfield. Left uncorrected this results in distortions of the target image and in the angular dependence of features. A fast approximate Hankel function based algorithm is presented to convert nearfield data to the farfield. Images and spectrograms of an extended target are compared for both cases.

  20. A fast sorting algorithm for a hypersonic rarefied flow particle simulation on the connection machine

    NASA Technical Reports Server (NTRS)

    Dagum, Leonardo

    1989-01-01

    The data parallel implementation of a particle simulation for hypersonic rarefied flow described by Dagum associates a single parallel data element with each particle in the simulation. The simulated space is divided into discrete regions called cells containing a variable and constantly changing number of particles. The implementation requires a global sort of the parallel data elements so as to arrange them in an order that allows immediate access to the information associated with cells in the simulation. Described here is a very fast algorithm for performing the necessary ranking of the parallel data elements. The performance of the new algorithm is compared with that of the microcoded instruction for ranking on the Connection Machine.

  1. A novel non-model-based 6-DOF electromagnetic tracking method using non-iterative algorithm.

    PubMed

    Ge, Xin; Lai, Dakun; Wu, Xiaomei; Fang, Zuxiang

    2009-01-01

    Electromagnetic tracking, a non-fluoroscopic image navigation method most often used in minimally invasive therapy, has prominent advantages and features over the traditional X-ray radioscopy. Using two rotating coils and one 3-axis magnetic sensor, a novel 6 degree of freedom (DOF) electromagnetic tracking method is proposed in this paper. Two alternate rotating magnetic fields are generated in turns by these coils and the moving-around sensor simultaneously detects the magnetic filed flux density in 3 orthogonal directions. As the magnitude of a magnetic field comes to the maximum only when the rotating coil directly points toward the sensor, the spatial position and orientation of the sensor can be determined using triangulation measurement. An embodiment and the corresponding system framework of this method are developed and a non-model-based non-iterative algorithm is presented to calculate the 6-DOF of position and orientation. Moreover, simulation experiments are performed to validate the proposed method. The obtained results show that the averaged position error is 0.2365 cm and the averaged orientation error is below 1 degree away from low resolution area.

  2. Adaptation of a Fast Optimal Interpolation Algorithm to the Mapping of Oceangraphic Data

    NASA Technical Reports Server (NTRS)

    Menemenlis, Dimitris; Fieguth, Paul; Wunsch, Carl; Willsky, Alan

    1997-01-01

    A fast, recently developed, multiscale optimal interpolation algorithm has been adapted to the mapping of hydrographic and other oceanographic data. This algorithm produces solution and error estimates which are consistent with those obtained from exact least squares methods, but at a small fraction of the computational cost. Problems whose solution would be completely impractical using exact least squares, that is, problems with tens or hundreds of thousands of measurements and estimation grid points, can easily be solved on a small workstation using the multiscale algorithm. In contrast to methods previously proposed for solving large least squares problems, our approach provides estimation error statistics while permitting long-range correlations, using all measurements, and permitting arbitrary measurement locations. The multiscale algorithm itself, published elsewhere, is not the focus of this paper. However, the algorithm requires statistical models having a very particular multiscale structure; it is the development of a class of multiscale statistical models, appropriate for oceanographic mapping problems, with which we concern ourselves in this paper. The approach is illustrated by mapping temperature in the northeastern Pacific. The number of hydrographic stations is kept deliberately small to show that multiscale and exact least squares results are comparable. A portion of the data were not used in the analysis; these data serve to test the multiscale estimates. A major advantage of the present approach is the ability to repeat the estimation procedure a large number of times for sensitivity studies, parameter estimation, and model testing. We have made available by anonymous Ftp a set of MATLAB-callable routines which implement the multiscale algorithm and the statistical models developed in this paper.

  3. Fast parallel algorithms and enumeration techniques for partial k-trees

    SciTech Connect

    Narayanan, C.

    1989-01-01

    Recent research by several authors have resulted in systematic way of developing linear-time sequential algorithms for a host of problem: on a fairly general class of graphs variously known as bounded decomposable graphs, graphs of bounded treewidth, partial k-trees, etc. Partial k-trees arise in a variety of real-life applications such as network reliability, VLSI design and database systems and hence fast sequential algorithms on these graphs have been found to be desirable. The linear-time methodologies were independently developed by Bern, Lawler, and Wong ((10)), Arnborg and Proskurowski ((6)), Bodlaender ((14)), and Courcelle ((25)). Wimer ((89)) significantly extended the work of Bern, Lawler and Wong. All of these approaches share the common thread of using dynamic programming on a tree structure. In particular the methodology of Wimer uses a parse-tree as the data structure. The methodologies claim linear-time algorithms on partial k-trees for fixed k, for a number of combinatorial optimization problems given the tree structure as input. It is known that obtaining the tree structure is NP-hard. This dissertation investigates three important classes of problems: (1) Developing parallel algorithms for constructing a k-tree embedding, finding a tree decomposition and most notably obtaining a parse-tree for a partial k-tree. (2) Developing parallel algorithms for parse-tree computations, testing isomorphism of k-trees, and finding a 2-tree embedding of a cactus. (3) Obtaining techniques for counting vertex/edge subsets satisfying a certain property in some classes of partial k-trees. The parallel algorithms the author has developed are in class NC and are either new or improve upon the existing results of Bodlaender (13). The difference equations he has obtained for counting certain sub-graphs are not known in the literature so far.

  4. A Fast Cluster Motif Finding Algorithm for ChIP-Seq Data Sets

    PubMed Central

    Zhang, Yipu; Wang, Ping

    2015-01-01

    New high-throughput technique ChIP-seq, coupling chromatin immunoprecipitation experiment with high-throughput sequencing technologies, has extended the identification of binding locations of a transcription factor to the genome-wide regions. However, the most existing motif discovery algorithms are time-consuming and limited to identify binding motifs in ChIP-seq data which normally has the significant characteristics of large scale data. In order to improve the efficiency, we propose a fast cluster motif finding algorithm, named as FCmotif, to identify the (l,  d) motifs in large scale ChIP-seq data set. It is inspired by the emerging substrings mining strategy to find the enriched substrings and then searching the neighborhood instances to construct PWM and cluster motifs in different length. FCmotif is not following the OOPS model constraint and can find long motifs. The effectiveness of proposed algorithm has been proved by experiments on the ChIP-seq data sets from mouse ES cells. The whole detection of the real binding motifs and processing of the full size data of several megabytes finished in a few minutes. The experimental results show that FCmotif has advantageous to deal with the (l,  d) motif finding in the ChIP-seq data; meanwhile it also demonstrates better performance than other current widely-used algorithms such as MEME, Weeder, ChIPMunk, and DREME. PMID:26236718

  5. A Fast Cluster Motif Finding Algorithm for ChIP-Seq Data Sets.

    PubMed

    Zhang, Yipu; Wang, Ping

    2015-01-01

    New high-throughput technique ChIP-seq, coupling chromatin immunoprecipitation experiment with high-throughput sequencing technologies, has extended the identification of binding locations of a transcription factor to the genome-wide regions. However, the most existing motif discovery algorithms are time-consuming and limited to identify binding motifs in ChIP-seq data which normally has the significant characteristics of large scale data. In order to improve the efficiency, we propose a fast cluster motif finding algorithm, named as FCmotif, to identify the (l,  d) motifs in large scale ChIP-seq data set. It is inspired by the emerging substrings mining strategy to find the enriched substrings and then searching the neighborhood instances to construct PWM and cluster motifs in different length. FCmotif is not following the OOPS model constraint and can find long motifs. The effectiveness of proposed algorithm has been proved by experiments on the ChIP-seq data sets from mouse ES cells. The whole detection of the real binding motifs and processing of the full size data of several megabytes finished in a few minutes. The experimental results show that FCmotif has advantageous to deal with the (l,  d) motif finding in the ChIP-seq data; meanwhile it also demonstrates better performance than other current widely-used algorithms such as MEME, Weeder, ChIPMunk, and DREME. PMID:26236718

  6. Parallelization of an Adaptive Multigrid Algorithm for Fast Solution of Finite Element Structural Problems

    SciTech Connect

    Crane, N K; Parsons, I D; Hjelmstad, K D

    2002-03-21

    Adaptive mesh refinement selectively subdivides the elements of a coarse user supplied mesh to produce a fine mesh with reduced discretization error. Effective use of adaptive mesh refinement coupled with an a posteriori error estimator can produce a mesh that solves a problem to a given discretization error using far fewer elements than uniform refinement. A geometric multigrid solver uses increasingly finer discretizations of the same geometry to produce a very fast and numerically scalable solution to a set of linear equations. Adaptive mesh refinement is a natural method for creating the different meshes required by the multigrid solver. This paper describes the implementation of a scalable adaptive multigrid method on a distributed memory parallel computer. Results are presented that demonstrate the parallel performance of the methodology by solving a linear elastic rocket fuel deformation problem on an SGI Origin 3000. Two challenges must be met when implementing adaptive multigrid algorithms on massively parallel computing platforms. First, although the fine mesh for which the solution is desired may be large and scaled to the number of processors, the multigrid algorithm must also operate on much smaller fixed-size data sets on the coarse levels. Second, the mesh must be repartitioned as it is adapted to maintain good load balancing. In an adaptive multigrid algorithm, separate mesh levels may require separate partitioning, further complicating the load balance problem. This paper shows that, when the proper optimizations are made, parallel adaptive multigrid algorithms perform well on machines with several hundreds of processors.

  7. A Fast Algorithm for Learning Overcomplete Dictionary for Sparse Representation Based on Proximal Operators.

    PubMed

    Li, Zhenni; Ding, Shuxue; Li, Yujie

    2015-09-01

    We present a fast, efficient algorithm for learning an overcomplete dictionary for sparse representation of signals. The whole problem is considered as a minimization of the approximation error function with a coherence penalty for the dictionary atoms and with the sparsity regularization of the coefficient matrix. Because the problem is nonconvex and nonsmooth, this minimization problem cannot be solved efficiently by an ordinary optimization method. We propose a decomposition scheme and an alternating optimization that can turn the problem into a set of minimizations of piecewise quadratic and univariate subproblems, each of which is a single variable vector problem, of either one dictionary atom or one coefficient vector. Although the subproblems are still nonsmooth, remarkably they become much simpler so that we can find a closed-form solution by introducing a proximal operator. This leads to an efficient algorithm for sparse representation. To our knowledge, applying the proximal operator to the problem with an incoherence term and obtaining the optimal dictionary atoms in closed form with a proximal operator technique have not previously been studied. The main advantages of the proposed algorithm are that, as suggested by our analysis and simulation study, it has lower computational complexity and a higher convergence rate than state-of-the-art algorithms. In addition, for real applications, it shows good performance and significant reductions in computational time.

  8. Performance Evaluation of Block Acquisition and Tracking Algorithms Using an Open Source GPS Receiver Platform

    NASA Technical Reports Server (NTRS)

    Ramachandran, Ganesh K.; Akopian, David; Heckler, Gregory W.; Winternitz, Luke B.

    2011-01-01

    Location technologies have many applications in wireless communications, military and space missions, etc. US Global Positioning System (GPS) and other existing and emerging Global Navigation Satellite Systems (GNSS) are expected to provide accurate location information to enable such applications. While GNSS systems perform very well in strong signal conditions, their operation in many urban, indoor, and space applications is not robust or even impossible due to weak signals and strong distortions. The search for less costly, faster and more sensitive receivers is still in progress. As the research community addresses more and more complicated phenomena there exists a demand on flexible multimode reference receivers, associated SDKs, and development platforms which may accelerate and facilitate the research. One of such concepts is the software GPS/GNSS receiver (GPS SDR) which permits a facilitated access to algorithmic libraries and a possibility to integrate more advanced algorithms without hardware and essential software updates. The GNU-SDR and GPS-SDR open source receiver platforms are such popular examples. This paper evaluates the performance of recently proposed block-corelator techniques for acquisition and tracking of GPS signals using open source GPS-SDR platform.

  9. A novel small area fast block matching algorithm based on high-accuracy gyro in digital image stabilization

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Zhao, Yuejin; Yu, Fei; Zhu, Weiwen; Lang, Guanqing; Dong, Liquan

    2010-11-01

    This paper presents a novel fast block matching algorithm based on high-accuracy Gyro for steadying shaking image. It acquires motion vector from Gyro firstly. Then determines searching initial position and divides image motion into three modes of small, medium and large using the motion vector from Gyro. Finally, fast block matching algorithm is designed by improving four types of templates (square, diamond, hexagon, octagon). Experimental result shows that the algorithm can speed up 50% over common method (such as NTSS, FSS, DS) and maintain the same accuracy.

  10. Exhausting Attentional Tracking Resources with a Single Fast-Moving Object

    ERIC Educational Resources Information Center

    Holcombe, Alex O.; Chen, Wei-Ying

    2012-01-01

    Driving on a busy road, eluding a group of predators, or playing a team sport involves keeping track of multiple moving objects. In typical laboratory tasks, the number of visual targets that humans can track is about four. Three types of theories have been advanced to explain this limit. The fixed-limit theory posits a set number of attentional…

  11. Applying the uniform resampling (URS) algorithm to a lissajous trajectory: fast image reconstruction with optimal gridding.

    PubMed

    Moriguchi, H; Wendt, M; Duerk, J L

    2000-11-01

    Various kinds of nonrectilinear Cartesian k-space trajectories have been studied, such as spiral, circular, and rosette trajectories. Although the nonrectilinear Cartesian sampling techniques generally have the advantage of fast data acquisition, the gridding process prior to 2D-FFT image reconstruction usually requires a number of additional calculations, thus necessitating an increase in the computation time. Further, the reconstructed image often exhibits artifacts resulting from both the k-space sampling pattern and the gridding procedure. To date, it has been demonstrated in only a few studies that the special geometric sampling patterns of certain specific trajectories facilitate fast image reconstruction. In other words, the inherent link among the trajectory, the sampling scheme, and the associated complexity of the regridding/reconstruction process has been investigated to only a limited extent. In this study, it is demonstrated that a Lissajous trajectory has the special geometric characteristics necessary for rapid reconstruction of nonrectilinear Cartesian k-space trajectories with constant sampling time intervals. Because of the applicability of a uniform resampling (URS) algorithm, a high-quality reconstructed image is obtained in a short reconstruction time when compared to other gridding algorithms. PMID:11064412

  12. Rapid multi-field T1 estimation algorithm for Fast Field-Cycling MRI

    NASA Astrophysics Data System (ADS)

    Broche, Lionel M.; James Ross, P.; Pine, Kerrin J.; Lurie, David J.

    2014-01-01

    Fast Field-Cycling MRI (FFC-MRI) is an emerging MRI technique that allows the main magnetic field to vary, allowing probing T1 at various magnetic field strengths. This technique offers promising possibilities but requires long scan times to improve the signal-to-noise ratio. This paper presents an algorithm derived from the two-point method proposed by Edelstein that can estimate T1 using only one image per field, thereby shortening the scan time by a factor of nearly two, taking advantage of the fact that the equilibrium magnetisation is proportional to the magnetic field strength. Therefore the equilibrium magnetisation only needs measuring once, then T1 can be found from inversion recovery experiments using the Bloch equations. The precision and accuracy of the algorithm are estimated using both simulated and experimental data, by Monte-Carlo simulations and by comparison with standard techniques on a phantom. The results are acceptable but usage is limited to the case where variations of the main magnetic field are fast compared with T1 and where the dispersion curve is relatively linear. The speed-up of T1-dispersion measurements resulting from the new method is likely to make FFC-MRI more acceptable when it is applied in the clinic.

  13. Optimal design of groundwater remediation systems using a multi-objective fast harmony search algorithm

    NASA Astrophysics Data System (ADS)

    Luo, Qiankun; Wu, Jianfeng; Sun, Xiaomin; Yang, Yun; Wu, Jichun

    2012-12-01

    A new multi-objective optimization methodology is developed, whereby a multi-objective fast harmony search (MOFHS) is coupled with a groundwater flow and transport model to search for optimal design of groundwater remediation systems under general hydrogeological conditions. The MOFHS incorporates the niche technique into the previously improved fast harmony search and is enhanced by adding the Pareto solution set filter and an elite individual preservation strategy to guarantee uniformity and integrity of the Pareto front of multi-objective optimization problems. Also, the operation library of individual fitness is introduced to improve calculation speed. Moreover, the MOFHS is coupled with the commonly used flow and transport codes MODFLOW and MT3DMS, to search for optimal design of pump-and-treat systems, aiming at minimization of the remediation cost and minimization of the mass remaining in aquifers. Compared with three existing multi-objective optimization methods, including the improved niched Pareto genetic algorithm (INPGA), the non-dominated sorting genetic algorithm II (NSGAII), and the multi-objective harmony search (MOHS), the proposed methodology then demonstrated its applicability and efficiency through a two-dimensional hypothetical test problem and a three-dimensional field problem in Indiana (USA).

  14. Radiation-hardened fast acquisition/weak signal tracking system and method

    NASA Technical Reports Server (NTRS)

    Winternitz, Luke (Inventor); Boegner, Gregory J. (Inventor); Sirotzky, Steve (Inventor)

    2009-01-01

    A global positioning system (GPS) receiver and method of acquiring and tracking GPS signals comprises an antenna adapted to receive GPS signals; an analog radio frequency device operatively connected to the antenna and adapted to convert the GPS signals from an analog format to a digital format; a plurality of GPS signal tracking correlators operatively connected to the analog RF device; a GPS signal acquisition component operatively connected to the analog RF device and the plurality of GPS signal tracking correlators, wherein the GPS signal acquisition component is adapted to calculate a maximum vector on a databit correlation grid; and a microprocessor operatively connected to the plurality of GPS signal tracking correlators and the GPS signal acquisition component, wherein the microprocessor is adapted to compare the maximum vector with a predetermined correlation threshold to allow the GPS signal to be fully acquired and tracked.

  15. The performance analysis of three-dimensional track-before-detect algorithm based on Fisher-Tippett-Gnedenko theorem

    NASA Astrophysics Data System (ADS)

    Cho, Hoonkyung; Chun, Joohwan; Song, Sungchan

    2016-09-01

    The dim moving target tracking from the infrared image sequence in the presence of high clutter and noise has been recently under intensive investigation. The track-before-detect (TBD) algorithm processing the image sequence over a number of frames before decisions on the target track and existence is known to be especially attractive in very low SNR environments (⩽ 3 dB). In this paper, we shortly present a three-dimensional (3-D) TBD with dynamic programming (TBD-DP) algorithm using multiple IR image sensors. Since traditional two-dimensional TBD algorithm cannot track and detect the along the viewing direction, we use 3-D TBD with multiple sensors and also strictly analyze the detection performance (false alarm and detection probabilities) based on Fisher-Tippett-Gnedenko theorem. The 3-D TBD-DP algorithm which does not require a separate image registration step uses the pixel intensity values jointly read off from multiple image frames to compute the merit function required in the DP process. Therefore, we also establish the relationship between the pixel coordinates of image frame and the reference coordinates.

  16. A novel square-root cubature information weighted consensus filter algorithm for multi-target tracking in distributed camera networks.

    PubMed

    Chen, Yanming; Zhao, Qingjie

    2015-01-01

    This paper deals with the problem of multi-target tracking in a distributed camera network using the square-root cubature information filter (SCIF). SCIF is an efficient and robust nonlinear filter for multi-sensor data fusion. In camera networks, multiple cameras are arranged in a dispersed manner to cover a large area, and the target may appear in the blind area due to the limited field of view (FOV). Besides, each camera might receive noisy measurements. To overcome these problems, this paper proposes a novel multi-target square-root cubature information weighted consensus filter (MTSCF), which reduces the effect of clutter or spurious measurements using joint probabilistic data association (JPDA) and proper weights on the information matrix and information vector. The simulation results show that the proposed algorithm can efficiently track multiple targets in camera networks and is obviously better in terms of accuracy and stability than conventional multi-target tracking algorithms. PMID:25951338

  17. A novel square-root cubature information weighted consensus filter algorithm for multi-target tracking in distributed camera networks.

    PubMed

    Chen, Yanming; Zhao, Qingjie

    2015-05-05

    This paper deals with the problem of multi-target tracking in a distributed camera network using the square-root cubature information filter (SCIF). SCIF is an efficient and robust nonlinear filter for multi-sensor data fusion. In camera networks, multiple cameras are arranged in a dispersed manner to cover a large area, and the target may appear in the blind area due to the limited field of view (FOV). Besides, each camera might receive noisy measurements. To overcome these problems, this paper proposes a novel multi-target square-root cubature information weighted consensus filter (MTSCF), which reduces the effect of clutter or spurious measurements using joint probabilistic data association (JPDA) and proper weights on the information matrix and information vector. The simulation results show that the proposed algorithm can efficiently track multiple targets in camera networks and is obviously better in terms of accuracy and stability than conventional multi-target tracking algorithms.

  18. First Look at a Cloud Identification and Tracking Algorithm - Cloud Lifecycle during MC3E. A case study

    NASA Astrophysics Data System (ADS)

    Borque, P.; Kollias, P.; Giangrande, S. E.

    2012-12-01

    Tracking algorithms have been developed for decades, most devoted to following the evolution of severe weather systems and nowcasting storm future position for warning applications. In this work, we center our analysis on observations of non-precipitating clouds. Documenting cloud evolution as they transit through different stages of their lifetime can provide unparalleled potential for meaningful advances in our understanding of cloud dynamics and microphysics. This can result in a unique opportunity for model evaluation and subsequent improvements in model parameterizations. Tracking the evolution of short-lived clouds requires synergistic, complementary, overlapping multi-radar platforms. For this, our study capitalizes on the ARM multi-frequency heterogeneous radar network facility deployed during the Midlatitude Continental Convective Clouds Experiment (MC3E) over central United States. Here, the evolution of cloud proprieties, as well as a detail description and a sensitivity analysis of the tracking algorithm developed, will be presented.

  19. A comparative study on the contour tracking algorithms in ultrasound tongue images with automatic re-initialization.

    PubMed

    Xu, Kele; Gábor Csapó, Tamás; Roussel, Pierre; Denby, Bruce

    2016-05-01

    The feasibility of an automatic re-initialization of contour tracking is explored by using an image similarity-based method in the ultrasound tongue sequences. To this end, the re-initialization method was incorporated into current state-of-art tongue tracking algorithms, and a quantitative comparison was made between different algorithms by computing the mean sum of distances errors. The results demonstrate that with automatic re-initialization, the tracking error can be reduced from an average of 5-6 to about 4 pixels, a result obtained by using a large number of hand-labeled frames and similarity measurements to extract the contours, which results in improved performance. PMID:27250201

  20. A Novel Square-Root Cubature Information Weighted Consensus Filter Algorithm for Multi-Target Tracking in Distributed Camera Networks

    PubMed Central

    Chen, Yanming; Zhao, Qingjie

    2015-01-01

    This paper deals with the problem of multi-target tracking in a distributed camera network using the square-root cubature information filter (SCIF). SCIF is an efficient and robust nonlinear filter for multi-sensor data fusion. In camera networks, multiple cameras are arranged in a dispersed manner to cover a large area, and the target may appear in the blind area due to the limited field of view (FOV). Besides, each camera might receive noisy measurements. To overcome these problems, this paper proposes a novel multi-target square-root cubature information weighted consensus filter (MTSCF), which reduces the effect of clutter or spurious measurements using joint probabilistic data association (JPDA) and proper weights on the information matrix and information vector. The simulation results show that the proposed algorithm can efficiently track multiple targets in camera networks and is obviously better in terms of accuracy and stability than conventional multi-target tracking algorithms. PMID:25951338

  1. Fast intersections on nested tetrahedrons (FINT): An algorithm for adaptive finite element based distributed parameter estimation.

    PubMed

    Lee, Jae Hoon; Joshi, Amit; Sevick-Muraca, Eva M

    2008-01-01

    A variety of biomedical imaging techniques such as optical and fluorescence tomography, electrical impedance tomography, and ultrasound imaging can be cast as inverse problems, wherein image reconstruction involves the estimation of spatially distributed parameter(s) of the PDE system describing the physics of the imaging process. Finite element discretization of imaged domain with tetrahedral elements is a popular way of solving the forward and inverse imaging problems on complicated geometries. A dual-adaptive mesh-based approach wherein, one mesh is used for solving the forward imaging problem and the other mesh used for iteratively estimating the unknown distributed parameter, can result in high resolution image reconstruction at minimum computation effort, if both the meshes are allowed to adapt independently. Till date, no efficient method has been reported to identify and resolve intersection between tetrahedrons in independently refined or coarsened dual meshes. Herein, we report a fast and robust algorithm to identify and resolve intersection of tetrahedrons within nested dual meshes generated by 8-similar subtetrahedron subdivision scheme. The algorithm exploits finite element weight functions and gives rise to a set of weight functions on each vertex of disjoint tetrahedron pieces that completely cover up the intersection region of two tetrahedrons. The procedure enables fully adaptive tetrahedral finite elements by supporting independent refinement and coarsening of each individual mesh while preserving fast identification and resolution of intersection. The computational efficiency of the algorithm is demonstrated by diffuse photon density wave solutions obtained from a single- and a dual-mesh, and by reconstructing a fluorescent inclusion in simulated phantom from boundary frequency domain fluorescence measurements.

  2. Fast and Accurate Cell Tracking by a Novel Optical-Digital Hybrid Method

    NASA Astrophysics Data System (ADS)

    Torres-Cisneros, M.; Aviña-Cervantes, J. G.; Pérez-Careta, E.; Ambriz-Colín, F.; Tinoco, Verónica; Ibarra-Manzano, O. G.; Plascencia-Mora, H.; Aguilera-Gómez, E.; Ibarra-Manzano, M. A.; Guzman-Cabrera, R.; Debeir, Olivier; Sánchez-Mondragón, J. J.

    2013-09-01

    An innovative methodology to detect and track cells using microscope images enhanced by optical cross-correlation techniques is proposed in this paper. In order to increase the tracking sensibility, image pre-processing has been implemented as a morphological operator on the microscope image. Results show that the pre-processing process allows for additional frames of cell tracking, therefore increasing its robustness. The proposed methodology can be used in analyzing different problems such as mitosis, cell collisions, and cell overlapping, ultimately designed to identify and treat illnesses and malignancies.

  3. A fast density-based clustering algorithm for real-time Internet of Things stream.

    PubMed

    Amini, Amineh; Saboohi, Hadi; Wah, Teh Ying; Herawan, Tutut

    2014-01-01

    Data streams are continuously generated over time from Internet of Things (IoT) devices. The faster all of this data is analyzed, its hidden trends and patterns discovered, and new strategies created, the faster action can be taken, creating greater value for organizations. Density-based method is a prominent class in clustering data streams. It has the ability to detect arbitrary shape clusters, to handle outlier, and it does not need the number of clusters in advance. Therefore, density-based clustering algorithm is a proper choice for clustering IoT streams. Recently, several density-based algorithms have been proposed for clustering data streams. However, density-based clustering in limited time is still a challenging issue. In this paper, we propose a density-based clustering algorithm for IoT streams. The method has fast processing time to be applicable in real-time application of IoT devices. Experimental results show that the proposed approach obtains high quality results with low computation time on real and synthetic datasets.

  4. Improving the quantitative testing of fast aspherics surfaces with null screen using Dijkstra algorithm

    NASA Astrophysics Data System (ADS)

    Moreno Oliva, Víctor Iván; Castañeda Mendoza, Álvaro; Campos García, Manuel; Díaz Uribe, Rufino

    2011-09-01

    The null screen is a geometric method that allows the testing of fast aspherical surfaces, this method measured the local slope at the surface and by numerical integration the shape of the surface is measured. The usual technique for the numerical evaluation of the surface is the trapezoidal rule, is well-known fact that the truncation error increases with the second power of the spacing between spots of the integration path. Those paths are constructed following spots reflected on the surface and starting in an initial select spot. To reduce the numerical errors in this work we propose the use of the Dijkstra algorithm.1 This algorithm can find the shortest path from one spot (or vertex) to another spot in a weighted connex graph. Using a modification of the algorithm it is possible to find the minimal path from one select spot to all others ones. This automates and simplifies the integration process in the test with null screens. In this work is shown the efficient proposed evaluating a previously surface with a traditional process.

  5. A fast calculating two-stream-like multiple scattering algorithm that captures azimuthal and elevation variations

    NASA Astrophysics Data System (ADS)

    Fiorino, Steven T.; Elmore, Brannon; Schmidt, Jaclyn; Matchefts, Elizabeth; Burley, Jarred L.

    2016-05-01

    Properly accounting for multiple scattering effects can have important implications for remote sensing and possibly directed energy applications. For example, increasing path radiance can affect signal noise. This study describes the implementation of a fast-calculating two-stream-like multiple scattering algorithm that captures azimuthal and elevation variations into the Laser Environmental Effects Definition and Reference (LEEDR) atmospheric characterization and radiative transfer code. The multiple scattering algorithm fully solves for molecular, aerosol, cloud, and precipitation single-scatter layer effects with a Mie algorithm at every calculation point/layer rather than an interpolated value from a pre-calculated look-up-table. This top-down cumulative diffusivity method first considers the incident solar radiance contribution to a given layer accounting for solid angle and elevation, and it then measures the contribution of diffused energy from previous layers based on the transmission of the current level to produce a cumulative radiance that is reflected from a surface and measured at the aperture at the observer. Then a unique set of asymmetry and backscattering phase function parameter calculations are made which account for the radiance loss due to the molecular and aerosol constituent reflectivity within a level and allows for a more accurate characterization of diffuse layers that contribute to multiple scattered radiances in inhomogeneous atmospheres. The code logic is valid for spectral bands between 200 nm and radio wavelengths, and the accuracy is demonstrated by comparing the results from LEEDR to observed sky radiance data.

  6. Fast hybrid CPU- and GPU-based CT reconstruction algorithm using air skipping technique.

    PubMed

    Lee, Byeonghun; Lee, Ho; Shin, Yeong Gil

    2010-01-01

    This paper presents a fast hybrid CPU- and GPU-based CT reconstruction algorithm to reduce the amount of back-projection operation using air skipping involving polygon clipping. The algorithm easily and rapidly selects air areas that have significantly higher contrast in each projection image by applying K-means clustering method on CPU, and then generates boundary tables for verifying valid region using segmented air areas. Based on these boundary tables of each projection image, clipped polygon that indicates active region when back-projection operation is performed on GPU is determined on each volume slice. This polygon clipping process makes it possible to use smaller number of voxels to be back-projected, which leads to a faster GPU-based reconstruction method. This approach has been applied to a clinical data set and Shepp-Logan phantom data sets having various ratio of air region for quantitative and qualitative comparison and analysis of our and conventional GPU-based reconstruction methods. The algorithm has been proved to reduce computational time to half without losing any diagnostic information, compared to conventional GPU-based approaches.

  7. A New Fast Algorithm to Completely Account for Non-Lambertian Surface Reflection of The Earth

    NASA Technical Reports Server (NTRS)

    Qin, Wen-Han; Herman, Jay R.; Ahmad, Ziauddin; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Surface bidirectional reflectance distribution function (BRDF) influences not only radiance just about the surface, but that emerging from the top of the atmosphere (TOA). In this study we propose a new, fast and accurate, algorithm CASBIR (correction for anisotropic surface bidirectional reflection) to account for such influences on radiance measured above TOA. This new algorithm is based on a 4-stream theory that separates the radiation field into direct and diffuse components in both upwelling and downwelling directions. This is important because the direct component accounts for a substantial portion of incident radiation under a clear sky, and the BRDF effect is strongest in the reflection of the direct radiation reaching the surface. The model is validated by comparison with a full-scale, vector radiation transfer model for the atmosphere-surface system. The result demonstrates that CASBIR performs very well (with overall relative difference of less than one percent) for all solar and viewing zenith and azimuth angles considered in wavelengths from ultraviolet to near-infrared over three typical, but very different surface types. Application of this algorithm includes both accounting for non-Lambertian surface scattering on the emergent radiation above TOA and a potential approach for surface BRDF retrieval from satellite measured radiance.

  8. A Fast Density-Based Clustering Algorithm for Real-Time Internet of Things Stream

    PubMed Central

    Ying Wah, Teh

    2014-01-01

    Data streams are continuously generated over time from Internet of Things (IoT) devices. The faster all of this data is analyzed, its hidden trends and patterns discovered, and new strategies created, the faster action can be taken, creating greater value for organizations. Density-based method is a prominent class in clustering data streams. It has the ability to detect arbitrary shape clusters, to handle outlier, and it does not need the number of clusters in advance. Therefore, density-based clustering algorithm is a proper choice for clustering IoT streams. Recently, several density-based algorithms have been proposed for clustering data streams. However, density-based clustering in limited time is still a challenging issue. In this paper, we propose a density-based clustering algorithm for IoT streams. The method has fast processing time to be applicable in real-time application of IoT devices. Experimental results show that the proposed approach obtains high quality results with low computation time on real and synthetic datasets. PMID:25110753

  9. Fast algorithm for minutiae matching based on multiple-ridge information

    NASA Astrophysics Data System (ADS)

    Wang, Guoyou; Hu, Jing

    2001-09-01

    Autonomous real-time fingerprint verification, how to judge whether two fingerprints come from the same finger or not, is an important and difficult problem in AFIS (Automated Fingerprint Identification system). In addition to the nonlinear deformation, two fingerprints from the same finger may also be dissimilar due to translation or rotation, all these factors do make the dissimilarities more great and lead to misjudgment, thus the correct verification rate highly depends on the deformation degree. In this paper, we present a new fast simple algorithm for fingerprint matching, derived from the Chang et al.'s method, to solve the problem of optimal matches between two fingerprints under nonlinear deformation. The proposed algorithm uses not only the feature points of fingerprints but also the multiple information of the ridge to reduce the computational complexity in fingerprint verification. Experiments with a number of fingerprint images have shown that this algorithm has higher efficiency than the existing of methods due to the reduced searching operations.

  10. Accuracy of tumor motion compensation algorithm from a robotic respiratory tracking system: A simulation study

    SciTech Connect

    Seppenwoolde, Yvette; Berbeco, Ross I.; Nishioka, Seiko; Shirato, Hiroki; Heijmen, Ben

    2007-07-15

    The Synchrony{sup TM} Respiratory Tracking System (RTS) is a treatment option of the CyberKnife robotic treatment device to irradiate extra-cranial tumors that move due to respiration. Advantages of RTS are that patients can breath normally and that there is no loss of linac duty cycle such as with gated therapy. Tracking is based on a measured correspondence model (linear or polynomial) between internal tumor motion and external (chest/abdominal) marker motion. The radiation beam follows the tumor movement via the continuously measured external marker motion. To establish the correspondence model at the start of treatment, the 3D internal tumor position is determined at 15 discrete time points by automatic detection of implanted gold fiducials in two orthogonal x-ray images; simultaneously, the positions of the external markers are measured. During the treatment, the relationship between internal and external marker positions is continuously accounted for and is regularly checked and updated. Here we use computer simulations based on continuously and simultaneously recorded internal and external marker positions to investigate the effectiveness of tumor tracking by the RTS. The Cyberknife does not allow continuous acquisition of x-ray images to follow the moving internal markers (typical imaging frequency is once per minute). Therefore, for the simulations, we have used data for eight lung cancer patients treated with respiratory gating. All of these patients had simultaneous and continuous recordings of both internal tumor motion and external abdominal motion. The available continuous relationship between internal and external markers for these patients allowed investigation of the consequences of the lower acquisition frequency of the RTS. With the use of the RTS, simulated treatment errors due to breathing motion were reduced largely and consistently over treatment time for all studied patients. A considerable part of the maximum reduction in treatment error

  11. Evaluation of a photovoltaic energy mechatronics system with a built-in quadratic maximum power point tracking algorithm

    SciTech Connect

    Chao, R.M.; Ko, S.H.; Lin, I.H.; Pai, F.S.; Chang, C.C.

    2009-12-15

    The historically high cost of crude oil price is stimulating research into solar (green) energy as an alternative energy source. In general, applications with large solar energy output require a maximum power point tracking (MPPT) algorithm to optimize the power generated by the photovoltaic effect. This work aims to provide a stand-alone solution for solar energy applications by integrating a DC/DC buck converter to a newly developed quadratic MPPT algorithm along with its appropriate software and hardware. The quadratic MPPT method utilizes three previously used duty cycles with their corresponding power outputs. It approaches the maximum value by using a second order polynomial formula, which converges faster than the existing MPPT algorithm. The hardware implementation takes advantage of the real-time controller system from National Instruments, USA. Experimental results have shown that the proposed solar mechatronics system can correctly and effectively track the maximum power point without any difficulties. (author)

  12. Automatic building detection based on Purposive FastICA (PFICA) algorithm using monocular high resolution Google Earth images

    NASA Astrophysics Data System (ADS)

    Ghaffarian, Saman; Ghaffarian, Salar

    2014-11-01

    This paper proposes an improved FastICA model named as Purposive FastICA (PFICA) with initializing by a simple color space transformation and a novel masking approach to automatically detect buildings from high resolution Google Earth imagery. ICA and FastICA algorithms are defined as Blind Source Separation (BSS) techniques for unmixing source signals using the reference data sets. In order to overcome the limitations of the ICA and FastICA algorithms and make them purposeful, we developed a novel method involving three main steps: 1-Improving the FastICA algorithm using Moore-Penrose pseudo inverse matrix model, 2-Automated seeding of the PFICA algorithm based on LUV color space and proposed simple rules to split image into three regions; shadow + vegetation, baresoil + roads and buildings, respectively, 3-Masking out the final building detection results from PFICA outputs utilizing the K-means clustering algorithm with two number of clusters and conducting simple morphological operations to remove noises. Evaluation of the results illustrates that buildings detected from dense and suburban districts with divers characteristics and color combinations using our proposed method have 88.6% and 85.5% overall pixel-based and object-based precision performances, respectively.

  13. Evaluation of algorithms for microperfusion assessment by fast simulations of laser Doppler power spectral density.

    PubMed

    Wojtkiewicz, S; Liebert, A; Rix, H; Maniewski, R

    2011-12-21

    In classical laser Doppler (LD) perfusion measurements, zeroth- and first-order moments of the power spectral density of the LD signal are utilized for the calculation of a signal corresponding to the concentration, speed and flow of red blood cells (RBCs). We have analysed the nonlinearities of the moments in relation to RBC speed distributions, parameters of filters utilized in LD instruments and the signal-to-noise ratio. We have developed a new method for fast simulation of the spectrum of the LD signal. The method is based on a superposition of analytically calculated Doppler shift probability distributions derived for the assumed light scattering phase function. We have validated the method by a comparison of the analytically calculated spectra with results of Monte Carlo (MC) simulations. For the semi-infinite, homogeneous medium and the single Doppler scattering regime, the analytical calculation describes LD spectra with the same accuracy as the MC simulation. The method allows for simulating the LD signal in time domain and furthermore analysing the index of perfusion for the assumed wavelength of the light, optical properties of the tissue and concentration of RBCs. Fast simulations of the LD signal in time domain and its frequency spectrum can be utilized in applications where knowledge of the LD photocurrent is required, e.g. in the development of detectors for tissue microperfusion monitoring or in measurements of the LD autocorrelation function for perfusion measurements. The presented fast method for LD spectra calculation can be used as a tool for evaluation of signal processing algorithms used in the LD method and/or for the development of new algorithms of the LD flowmetry and imaging. We analysed LD spectra obtained by analytical calculations using a classical algorithm applied in classical LD perfusion measurements. We observed nonlinearity of the first moment M₁ for low and high speeds of particles (v < 2 mm s⁻¹, v > 10 mm s⁻¹). It was

  14. Evaluation of algorithms for microperfusion assessment by fast simulations of laser Doppler power spectral density

    NASA Astrophysics Data System (ADS)

    Wojtkiewicz, S.; Liebert, A.; Rix, H.; Maniewski, R.

    2011-12-01

    In classical laser Doppler (LD) perfusion measurements, zeroth- and first-order moments of the power spectral density of the LD signal are utilized for the calculation of a signal corresponding to the concentration, speed and flow of red blood cells (RBCs). We have analysed the nonlinearities of the moments in relation to RBC speed distributions, parameters of filters utilized in LD instruments and the signal-to-noise ratio. We have developed a new method for fast simulation of the spectrum of the LD signal. The method is based on a superposition of analytically calculated Doppler shift probability distributions derived for the assumed light scattering phase function. We have validated the method by a comparison of the analytically calculated spectra with results of Monte Carlo (MC) simulations. For the semi-infinite, homogeneous medium and the single Doppler scattering regime, the analytical calculation describes LD spectra with the same accuracy as the MC simulation. The method allows for simulating the LD signal in time domain and furthermore analysing the index of perfusion for the assumed wavelength of the light, optical properties of the tissue and concentration of RBCs. Fast simulations of the LD signal in time domain and its frequency spectrum can be utilized in applications where knowledge of the LD photocurrent is required, e.g. in the development of detectors for tissue microperfusion monitoring or in measurements of the LD autocorrelation function for perfusion measurements. The presented fast method for LD spectra calculation can be used as a tool for evaluation of signal processing algorithms used in the LD method and/or for the development of new algorithms of the LD flowmetry and imaging. We analysed LD spectra obtained by analytical calculations using a classical algorithm applied in classical LD perfusion measurements. We observed nonlinearity of the first moment M1 for low and high speeds of particles (v < 2 mm s-1, v > 10 mm s-1). It was also

  15. Costs and Effectiveness of the Fast Track Intervention for Antisocial Behavior

    PubMed Central

    Foster, E. Michael

    2013-01-01

    Background Antisocial behavior is enormously costly to the youth involved, their families, victims, taxpayers and other members of society. These costs are generated by school failure, delinquency and involvement in the juvenile justice system, drug use, health services and other services. For prevention programs to be cost effective, they must reduce these costly behaviors and outcomes. Aim The Fast Track intervention is a 10-year, multi-component prevention program targeting antisocial behavior. The intervention identified children at school entry and provided intervention services over a 10-year period. This study examined the intervention’s impact on outcomes affecting societal costs using data through late adolescence. Methodology The intervention is being evaluated through a multi-cohort, multi-site, multi-year randomized control trial of program participants and comparable children and youth in similar schools, and that study provides the data for these analyses. Schools within four sites (Durham, NC; Nashville, TN; Seattle, WA; and rural central Pennsylvania) were selected as high-risk based on crime and poverty statistics of the neighborhoods they served. Within each site, schools were divided into multiple sets matched for demographics (size, percentage free/reduced lunch, ethnic composition); one set within each pair was randomly assigned to the intervention and one to the control condition. Within participating schools, high-risk children were identified using a multiple-gating procedure. For each of three annual cohorts, all kindergarteners (9,594 total) in 54 schools were screened for classroom conduct problems by teachers. Those children scoring in the top 40% within cohort and site were then solicited for the next stage of screening for home behavior problems by the parents, and 91% agreed (n = 3,274). The teacher and parent screening scores were then standardized within site and combined into a sum score. These summed scores represented a total

  16. Pre-Hardware Optimization and Implementation Of Fast Optics Closed Control Loop Algorithms

    NASA Technical Reports Server (NTRS)

    Kizhner, Semion; Lyon, Richard G.; Herman, Jay R.; Abuhassan, Nader

    2004-01-01

    One of the main heritage tools used in scientific and engineering data spectrum analysis is the Fourier Integral Transform and its high performance digital equivalent - the Fast Fourier Transform (FFT). The FFT is particularly useful in two-dimensional (2-D) image processing (FFT2) within optical systems control. However, timing constraints of a fast optics closed control loop would require a supercomputer to run the software implementation of the FFT2 and its inverse, as well as other image processing representative algorithm, such as numerical image folding and fringe feature extraction. A laboratory supercomputer is not always available even for ground operations and is not feasible for a night project. However, the computationally intensive algorithms still warrant alternative implementation using reconfigurable computing technologies (RC) such as Digital Signal Processors (DSP) and Field Programmable Gate Arrays (FPGA), which provide low cost compact super-computing capabilities. We present a new RC hardware implementation and utilization architecture that significantly reduces the computational complexity of a few basic image-processing algorithm, such as FFT2, image folding and phase diversity for the NASA Solar Viewing Interferometer Prototype (SVIP) using a cluster of DSPs and FPGAs. The DSP cluster utilization architecture also assures avoidance of a single point of failure, while using commercially available hardware. This, combined with the control algorithms pre-hardware optimization, or the first time allows construction of image-based 800 Hertz (Hz) optics closed control loops on-board a spacecraft, based on the SVIP ground instrument. That spacecraft is the proposed Earth Atmosphere Solar Occultation Imager (EASI) to study greenhouse gases CO2, C2H, H2O, O3, O2, N2O from Lagrange-2 point in space. This paper provides an advanced insight into a new type of science capabilities for future space exploration missions based on on-board image processing

  17. Adaptive welding of fillet welds using a fast seam-tracking sensor in combination with a standard industrial robot

    NASA Astrophysics Data System (ADS)

    Pischetsrieder, Alexandra

    1996-08-01

    In laser welding, problems often arise from the accuracy required by the laser process, particularly where joints have narrow tolerance limits, e.g. with a fillet weld at an overlap joint. In a number of applications seam-tracking sensors can improve this situation. They are able to detect and follow the joint geometry autonomously. In addition to the tolerances, a varying gap between the parts to weld can cause welding flaws. To solve the problems caused by the height of the gap a functionality for adaptive welding can be integrated into the tracking sensor, rendering possible a determined influence on process parameters. Functional dependencies between the height of the gap and the welding parameters are presented in this paper. To further enhance the accuracy of path tracking the dynamic behavior of the system is investigated. With the integration of these dependencies into the tracking sensor, an algorithm for adaptive welding has been obtained, which takes another step towards the raise of profitability of laser installations by a simplified weld seam preparation and an enhanced stability of the welding process.

  18. High-dynamic GPS tracking

    NASA Technical Reports Server (NTRS)

    Hinedi, S.; Statman, J. I.

    1988-01-01

    The results of comparing four different frequency estimation schemes in the presence of high dynamics and low carrier-to-noise ratios are given. The comparison is based on measured data from a hardware demonstration. The tested algorithms include a digital phase-locked loop, a cross-product automatic frequency tracking loop, and extended Kalman filter, and finally, a fast Fourier transformation-aided cross-product frequency tracking loop. The tracking algorithms are compared on their frequency error performance and their ability to maintain lock during severe maneuvers at various carrier-to-noise ratios. The measured results are shown to agree with simulation results carried out and reported previously.

  19. Program for the analysis of time series. [by means of fast Fourier transform algorithm

    NASA Technical Reports Server (NTRS)

    Brown, T. J.; Brown, C. G.; Hardin, J. C.

    1974-01-01

    A digital computer program for the Fourier analysis of discrete time data is described. The program was designed to handle multiple channels of digitized data on general purpose computer systems. It is written, primarily, in a version of FORTRAN 2 currently in use on CDC 6000 series computers. Some small portions are written in CDC COMPASS, an assembler level code. However, functional descriptions of these portions are provided so that the program may be adapted for use on any facility possessing a FORTRAN compiler and random-access capability. Properly formatted digital data are windowed and analyzed by means of a fast Fourier transform algorithm to generate the following functions: (1) auto and/or cross power spectra, (2) autocorrelations and/or cross correlations, (3) Fourier coefficients, (4) coherence functions, (5) transfer functions, and (6) histograms.

  20. Fast String Search on Multicore Processors: Mapping fundamental algorithms onto parallel hardware

    SciTech Connect

    Scarpazza, Daniele P.; Villa, Oreste; Petrini, Fabrizio

    2008-04-01

    String searching is one of these basic algorithms. It has a host of applications, including search engines, network intrusion detection, virus scanners, spam filters, and DNA analysis, among others. The Cell processor, with its multiple cores, promises to speed-up string searching a lot. In this article, we show how we mapped string searching efficiently on the Cell. We present two implementations: • The fast implementation supports a small dictionary size (approximately 100 patterns) and provides a throughput of 40 Gbps, which is 100 times faster than reference implementations on x86 architectures. • The heavy-duty implementation is slower (3.3-4.3 Gbps), but supports dictionaries with tens of thousands of strings.

  1. Automatic brain tumor segmentation with a fast Mumford-Shah algorithm

    NASA Astrophysics Data System (ADS)

    Müller, Sabine; Weickert, Joachim; Graf, Norbert

    2016-03-01

    We propose a fully-automatic method for brain tumor segmentation that does not require any training phase. Our approach is based on a sequence of segmentations using the Mumford-Shah cartoon model with varying parameters. In order to come up with a very fast implementation, we extend the recent primal-dual algorithm of Strekalovskiy et al. (2014) from the 2D to the medically relevant 3D setting. Moreover, we suggest a new confidence refinement and show that it can increase the precision of our segmentations substantially. Our method is evaluated on 188 data sets with high-grade gliomas and 25 with low-grade gliomas from the BraTS14 database. Within a computation time of only three minutes, we achieve Dice scores that are comparable to state-of-the-art methods.

  2. Fast parallel interferometric 3D tracking of numerous optically trapped particles and their hydrodynamic interaction.

    PubMed

    Ruh, Dominic; Tränkle, Benjamin; Rohrbach, Alexander

    2011-10-24

    Multi-dimensional, correlated particle tracking is a key technology to reveal dynamic processes in living and synthetic soft matter systems. In this paper we present a new method for tracking micron-sized beads in parallel and in all three dimensions - faster and more precise than existing techniques. Using an acousto-optic deflector and two quadrant-photo-diodes, we can track numerous optically trapped beads at up to tens of kHz with a precision of a few nanometers by back-focal plane interferometry. By time-multiplexing the laser focus, we can calibrate individually all traps and all tracking signals in a few seconds and in 3D. We show 3D histograms and calibration constants for nine beads in a quadratic arrangement, although trapping and tracking is easily possible for more beads also in arbitrary 2D arrangements. As an application, we investigate the hydrodynamic coupling and diffusion anomalies of spheres trapped in a 3 × 3 arrangement. PMID:22109012

  3. A multi-threaded mosaicking algorithm for fast image composition of fluorescence bladder images

    NASA Astrophysics Data System (ADS)

    Behrens, Alexander; Bommes, Michael; Stehle, Thomas; Gross, Sebastian; Leonhardt, Steffen; Aach, Til

    2010-02-01

    The treatment of urinary bladder cancer is usually carried out using fluorescence endoscopy. A narrow-band bluish illumination activates a tumor marker resulting in a red fluorescence. Because of low illumination power the distance between endoscope and bladder wall is kept low during the whole bladder scan, which is carried out before treatment. Thus, only a small field of view (FOV) of the operation field is provided, which impedes navigation and relocating of multi-focal tumors. Although off-line calculated panorama images can assist surgery planning, the immediate display of successively growing overview images composed from single video frames in real-time during the bladder scan, is well suited to ease navigation and reduce the risk of missing tumors. Therefore we developed an image mosaicking algorithm for fluorescence endoscopy. Due to fast computation requirements a flexible multi-threaded software architecture based on our RealTimeFrame platform is developed. Different algorithm tasks, like image feature extraction, matching and stitching are separated and applied by independent processing threads. Thus, different implementation of single tasks can be easily evaluated. In an optimization step we evaluate the trade-off between feature repeatability and total processing time, consider the thread synchronization, and achieve a constant workload of each thread. Thus, a fast computation of panoramic images is performed on a standard hardware platform, preserving full input image resolution (780x576) at the same time. Displayed on a second clinical monitor, the extended FOV of the image composition promises high potential for surgery assistance.

  4. Hybrid-dual-fourier tomographic algorithm for a fast three-dimensionial optical image reconstruction in turbid media

    NASA Technical Reports Server (NTRS)

    Alfano, Robert R. (Inventor); Cai, Wei (Inventor)

    2007-01-01

    A reconstruction technique for reducing computation burden in the 3D image processes, wherein the reconstruction procedure comprises an inverse and a forward model. The inverse model uses a hybrid dual Fourier algorithm that combines a 2D Fourier inversion with a 1D matrix inversion to thereby provide high-speed inverse computations. The inverse algorithm uses a hybrid transfer to provide fast Fourier inversion for data of multiple sources and multiple detectors. The forward model is based on an analytical cumulant solution of a radiative transfer equation. The accurate analytical form of the solution to the radiative transfer equation provides an efficient formalism for fast computation of the forward model.

  5. Do Algorithms Homogenize Students' Achievements in Secondary School Better than Teachers' Tracking Decisions?

    ERIC Educational Resources Information Center

    Klapproth, Florian

    2015-01-01

    Two objectives guided this research. First, this study examined how well teachers' tracking decisions contribute to the homogenization of their students' achievements. Second, the study explored whether teachers' tracking decisions would be outperformed in homogenizing the students' achievements by statistical models of tracking decisions. These…

  6. Fast-digitizing and track-finding electronics for the vertex detector in the Opal experiment at the Large Electron Positron Collider (LEP) at Cern

    SciTech Connect

    Jaroslawski, S.; Jeffs, M.; Matson, R.; Milborrow, R.; White, D. )

    1990-10-01

    The vertex front-end electronics is described. It comprises fast analog-to-digital conversion circuits and a fast programmable track trigger processor. The function of the electronics is to examine, within one LEP beam crossing (22 {mu}s), data generated in the detector for the evidence of charged particle tracks. Measurements of ionization drift times are based on a gated 93-MHz oscillator synchronized to a precision crystal clock and give points in space. The axial positions of these points along the detector are found by analyzing the difference in time of arrivals of signals at the ends of the detector ({ital z} by timing). Particle tracks are found by 36 track finders operating in parallel and are matched by semicuston coincidence chips. The track information is used in the first stage of data reduction in Opal (the first-level trigger).

  7. Spatially reduced image extraction from MPEG-2 video: fast algorithms and applications

    NASA Astrophysics Data System (ADS)

    Song, Junehwa; Yeo, Boon-Lock

    1997-12-01

    The MPEG-2 video standards are targeted for high-quality video broadcast and distribution, and are optimized for efficient storage and transmission. However, it is difficult to process MPEG-2 for video browsing and database applications without first decompressing the video. Yeo and Liu have proposed fast algorithms for the direct extraction of spatially reduced images from MPEG-1 video. Reduced images have been demonstrated to be effective for shot detection, shot browsing and editing, and temporal processing of video for video presentation and content annotation. In this paper, we develop new tools to handle the extra complexity in MPEG-2 video for extracting spatially reduced images. In particular, we propose new classes of discrete cosine transform (DCT) domain and DCT inverse motion compensation operations for handling the interlaced modes in the different frame types of MPEG-2, and design new and efficient algorithms for generating spatially reduced images of an MPEG-2 video. We also describe key video applications on the extracted reduced images.

  8. Fast Fourier transformation resampling algorithm and its application in satellite image processing

    NASA Astrophysics Data System (ADS)

    Li, Zhenping

    2014-01-01

    The image resampling algorithm, fast Fourier transformation resampling (FFTR), is introduced. The FFTR uses a global function in the Fourier expansion form to represent an image, and the image resampling is achieved by the introduction of a phase shift in the Fourier expansion. The comparison with the cubic spline interpolation approach in the image resampling is presented, which shows that FFTR is more accurate in the satellite image resampling. The FFTR algorithm is also generally reversible, because both the resampled and its original images share the same Fourier spectrum. The resampling for the images with hot spots is discussed. The hot spots in an image are the pixels with the second-order derivatives that are order of magnitude larger than the average value. The images with the hot spots are resampled with the introduction of a local Gaussian function to model the hot spot data, so that the remaining data for the Fourier expansion are continuous. Its application to the infrared channel image of Geostationary Operational Environmental Satellite Imager, to mitigate a diurnally changing band co-registration, is presented.

  9. Fast parallel algorithm for three-dimensional distance-driven model in iterative computed tomography reconstruction

    NASA Astrophysics Data System (ADS)

    Chen, Jian-Lin; Li, Lei; Wang, Lin-Yuan; Cai, Ai-Long; Xi, Xiao-Qi; Zhang, Han-Ming; Li, Jian-Xin; Yan, Bin

    2015-02-01

    The projection matrix model is used to describe the physical relationship between reconstructed object and projection. Such a model has a strong influence on projection and backprojection, two vital operations in iterative computed tomographic reconstruction. The distance-driven model (DDM) is a state-of-the-art technology that simulates forward and back projections. This model has a low computational complexity and a relatively high spatial resolution; however, it includes only a few methods in a parallel operation with a matched model scheme. This study introduces a fast and parallelizable algorithm to improve the traditional DDM for computing the parallel projection and backprojection operations. Our proposed model has been implemented on a GPU (graphic processing unit) platform and has achieved satisfactory computational efficiency with no approximation. The runtime for the projection and backprojection operations with our model is approximately 4.5 s and 10.5 s per loop, respectively, with an image size of 256×256×256 and 360 projections with a size of 512×512. We compare several general algorithms that have been proposed for maximizing GPU efficiency by using the unmatched projection/backprojection models in a parallel computation. The imaging resolution is not sacrificed and remains accurate during computed tomographic reconstruction. Projected supported by the National High Technology Research and Development Program of China (Grant No. 2012AA011603) and the National Natural Science Foundation of China (Grant No. 61372172).

  10. A fast loop-closure algorithm to accelerate residue matching in computational enzyme design.

    PubMed

    Xue, Jing; Huang, Xiaoqiang; Lin, Min; Zhu, Yushan

    2016-02-01

    Constructing an active site on an inert scaffold is still a challenge in chemical biology. Herein, we describe the incorporation of a Newton-direction-based fast loop-closure algorithm for catalytic residue matching into our enzyme design program ProdaMatch. This was developed to determine the sites and geometries of the catalytic residues as well as the position of the transition state with high accuracy in order to satisfy the geometric constraints on the interactions between catalytic residues and the transition state. Loop-closure results for 64,827 initial loops derived from 21 loops in the test set showed that 99.51% of the initial loops closed to within 0.05 Å in fewer than 400 iteration steps, while the large majority of the initial loops closed within 100 iteration steps. The revised version of ProdaMatch containing the novel loop-closure algorithm identified all native matches for ten scaffolds in the native active-site recapitulation test. Its high speed and accuracy when matching catalytic residues with a scaffold make this version of ProdaMatch potentially useful for scaffold selection through the incorporation of more complex theoretical enzyme models which may yield higher initial activities in de novo enzyme design.

  11. A Fast Full Tensor Gravity computation algorithm for High Resolution 3D Geologic Interpretations

    NASA Astrophysics Data System (ADS)

    Jayaram, V.; Crain, K.; Keller, G. R.

    2011-12-01

    approach on different CPU-GPU system configurations. The algorithm calculates the expected gravity at station locations where the observed gravity and FTG data were acquired. This algorithm can be used for all fast forward model calculations of 3D geologic interpretations for data from airborne, space and submarine gravity, and FTG instrumentation.

  12. Can Genetics Predict Response to Complex Behavioral Interventions? Evidence from a Genetic Analysis of the Fast Track Randomized Control Trial

    PubMed Central

    Albert, Dustin; Belsky, Daniel W.; Crowley, D. Max; Latendresse, Shawn J.; Aliev, Fazil; Riley, Brien; Sun, Cuie; Dick, Danielle M.; Dodge, Kenneth R.

    2014-01-01

    Early interventions are a preferred method for addressing behavioral problems in high-risk children, but often have only modest effects. Identifying sources of variation in intervention effects can suggest means to improve efficiency. One potential source of such variation is the genome. We conducted a genetic analysis of the Fast Track Randomized Control Trial, a 10-year-long intervention to prevent high-risk kindergarteners from developing adult externalizing problems including substance abuse and antisocial behavior. We tested whether variants of the glucocorticoid receptor gene NR3C1 were associated with differences in response to the Fast Track intervention. We found that in European-American children, a variant of NR3C1 identified by the single-nucleotide polymorphism rs10482672 was associated with increased risk for externalizing psychopathology in control group children and decreased risk for externalizing psychopathology in intervention group children. Variation in NR3C1 measured in this study was not associated with differential intervention response in African-American children. We discuss implications for efforts to prevent externalizing problems in high-risk children and for public policy in the genomic era. PMID:26106668

  13. Can Genetics Predict Response to Complex Behavioral Interventions? Evidence from a Genetic Analysis of the Fast Track Randomized Control Trial.

    PubMed

    Albert, Dustin; Belsky, Daniel W; Crowley, D Max; Latendresse, Shawn J; Aliev, Fazil; Riley, Brien; Sun, Cuie; Dick, Danielle M; Dodge, Kenneth A

    2015-01-01

    Early interventions are a preferred method for addressing behavioral problems in high-risk children, but often have only modest effects. Identifying sources of variation in intervention effects can suggest means to improve efficiency. One potential source of such variation is the genome. We conducted a genetic analysis of the Fast Track randomized control trial, a 10-year-long intervention to prevent high-risk kindergarteners from developing adult externalizing problems including substance abuse and antisocial behavior. We tested whether variants of the glucocorticoid receptor gene NR3C1 were associated with differences in response to the Fast Track intervention. We found that in European-American children, a variant of NR3C1 identified by the single-nucleotide polymorphism rs10482672 was associated with increased risk for externalizing psychopathology in control group children and decreased risk for externalizing psychopathology in intervention group children. Variation in NR3C1 measured in this study was not associated with differential intervention response in African-American children. We discuss implications for efforts to prevent externalizing problems in high-risk children and for public policy in the genomic era.

  14. A fast algorithm for voxel-based deterministic simulation of X-ray imaging

    NASA Astrophysics Data System (ADS)

    Li, Ning; Zhao, Hua-Xia; Cho, Sang-Hyun; Choi, Jung-Gil; Kim, Myoung-Hee

    2008-04-01

    Deterministic method based on ray tracing technique is known as a powerful alternative to the Monte Carlo approach for virtual X-ray imaging. The algorithm speed is a critical issue in the perspective of simulating hundreds of images, notably to simulate tomographic acquisition or even more, to simulate X-ray radiographic video recordings. We present an algorithm for voxel-based deterministic simulation of X-ray imaging using voxel-driven forward and backward perspective projection operations and minimum bounding rectangles (MBRs). The algorithm is fast, easy to implement, and creates high-quality simulated radiographs. As a result, simulated radiographs can typically be obtained in split seconds with a simple personal computer. Program summaryProgram title: X-ray Catalogue identifier: AEAD_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAD_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 416 257 No. of bytes in distributed program, including test data, etc.: 6 018 263 Distribution format: tar.gz Programming language: C (Visual C++) Computer: Any PC. Tested on DELL Precision 380 based on a Pentium D 3.20 GHz processor with 3.50 GB of RAM Operating system: Windows XP Classification: 14, 21.1 Nature of problem: Radiographic simulation of voxelized objects based on ray tracing technique. Solution method: The core of the simulation is a fast routine for the calculation of ray-box intersections and minimum bounding rectangles, together with voxel-driven forward and backward perspective projection operations. Restrictions: Memory constraints. There are three programs in all. A. Program for test 3.1(1): Object and detector have axis-aligned orientation; B. Program for test 3.1(2): Object in arbitrary orientation; C. Program for test 3.2: Simulation of X-ray video

  15. Finite interval tracking algorithm for nonlinear multi-agent systems with communication delays

    NASA Astrophysics Data System (ADS)

    Dong, Lijing; Chai, Senchun; Zhang, Baihai; Li, Xiangshun; Kiong Nguang, Sing

    2016-11-01

    We propose an iterative learning control (ILC) tracking strategy to solve the tracking problem of multi-agent systems with nonlinear dynamics and time-varying communication delays. The distributed tracking strategy, in which each tracking agent only utilises its own and neighbours' information, enables the tracking agents successfully track a maneuvering target in a finite time interval although with presence of time delays. Compared with the existing related work, the quantitative relationship between the boundary of tracking errors and the estimation of time delays is derived. Furthermore, in many practical control problems, identical initialisation condition may not be satisfied, which is called initial-shift problem. Hence, a forgetting factor is introduced to deal with that problem. It is proved that the presented results are effective via conducting numerical examples.

  16. An improved spatial tracking algorithm applied to coronary veins into Cardiac Multi-Slice Computed Tomography volume

    PubMed Central

    Garcia, Marie-Paule; Toumoulin, Christine; Garreau, Mireille; Kulik, Carine; Boulmier, Dominique; Leclercq, Christophe

    2008-01-01

    This paper describes an enhanced vessel tracking algorithm. The method specifity relies on the coronary venous tree extraction through Cardiac Multi-Slice Computed Tomography (MSCT). Indeed, contrast inhomogeneities are a major issue in the data sets that necessit a robust tracking procedure. The method is based on an existing moment-based algorithm designed for coronary arteries into MSCT volume. In order to extract the whole path of interest, improvements concerning progression strategy are proposed. Furthermore, the original procedure is combinated with an automatic recentring method based on ray casting. This enhanced method has been tested on three data sets. According to the first results, the method appears robust to curvatures, contrast inhomogeneities and low contrast blood veins. PMID:19163593

  17. Using a new algorithm to track mixed-Rossby gravity waves (MRG) waves in reanalysis data

    NASA Astrophysics Data System (ADS)

    Au-Yeung, A. Y. M.; Tam, C. Y.

    2015-12-01

    A new algorithm has been developed to track westward travelling mixed-Rossby gravity waves (MRG) waves in the western Pacific based on the theoretical meridional wind structure stated in the shallow water equation (SWE) solutions. Applied to space-time filtered (period=3 to 8 days and wavenumber =-20 to 0), asymmetric meridional wind data at the 850hPa level from the NCEP CFS reanalysis, the algorithm finds locations with Gaussian-shaped meridional wind structure stated in SWE solutions through space and time. Two groups of MRG waves were found: one with higher wavenumber (11) and another one with lower-wavenumber (6). Moreover, the MRG waves show very different dispersive properties and occurrence behavior in the western and eastern equatorial Pacific. While both groups appear in the western Pacific, mainly 6 waves were found in the eastern Pacific. The fact that both 6 and 11 waves appear in the western Pacific agrees with past discussions on the co-existence of MRG waves and tropical-disturbance type (TD-type) waves. Also, the high wavenumber wave activities mainly appear west of the dateline, meaning that some triggering process may have taken place there. Northwestward wave train movement was found west of 140E in the low-level wind composites. On the other hand, negative correlation between meridional wind and temperature (negative) found in the vertical composites indicates downward vertical wave activity flux prior to the occurrences of MRG waves. Finally, in the western Pacific, kinetic energy energetics suggests that energy source of transient eddies is from the confluent background flow and also the zonal wind shear terms in the western Pacific. Overall, our method provides a way to identify the MRG waves instantaneously; in contrast, most of the methods employed in the past (e.g., spectral analysis or lag correlation/regression) are based on aggregates of data and they can only examine wave properties averaged over a certain period of time. Since MRG

  18. Analysis of Tracking Measuring Method of Focus Cabin of Five-hundred-meter Aperture Spherical radio Telescope(FAST)

    NASA Astrophysics Data System (ADS)

    Yuan, Hui; Zhu, Lichun

    2015-08-01

    FAST (Five-hundred-meter Aperture Spherical radio Telescope) project is one of the Chinese mega-Science Projects to build the largest single dish radio telescope in the world. FAST has three outstanding innovation aspects: in the karst depression which is large to host the 500-meter telescope, an active main reflector correcting for spherical aberration on the ground to achieve a full polarization is being built, the light-weight feed focus cabin in which a parallel robot as a secondary adjustable system to move with high precision is driven by cables and servomechanism plus. The part of main reflector which is illuminated by the feed is continually adjusted to fit the paraboloid of revolution in real time when tracking the radio source. How to get high precise real-time feedback data of moving focus cabin’s position when tracking the source is one of the crucial problems for the astronomical observation.At present 24 steady basis pillars for measurement whose position coordinates are already known, have been built in the construction field of FAST. Total stations will be installed on one of those pillars, and prisms will be installed on focus cabin. The purpose of this study was to assess the accuracy and reliability of two measuring method: the space distance intersection calculation method and polar measuring method. The space distance intersection calculation method is only using multiple measuring distances between three pillars and prism and known coordinates of pillars to calculate the prism’s coordinates, the polar measurement is using the measuring distance and angles to get the prism’s coordinate.

  19. A fast 3-D object recognition algorithm for the vision system of a special-purpose dexterous manipulator

    NASA Technical Reports Server (NTRS)

    Hung, Stephen H. Y.

    1989-01-01

    A fast 3-D object recognition algorithm that can be used as a quick-look subsystem to the vision system for the Special-Purpose Dexterous Manipulator (SPDM) is described. Global features that can be easily computed from range data are used to characterize the images of a viewer-centered model of an object. This algorithm will speed up the processing by eliminating the low level processing whenever possible. It may identify the object, reject a set of bad data in the early stage, or create a better environment for a more powerful algorithm to carry the work further.

  20. Model parameter adaption-based multi-model algorithm for extended object tracking using a random matrix.

    PubMed

    Li, Borui; Mu, Chundi; Han, Shuli; Bai, Tianming

    2014-01-01

    Traditional object tracking technology usually regards the target as a point source object. However, this approximation is no longer appropriate for tracking extended objects such as large targets and closely spaced group objects. Bayesian extended object tracking (EOT) using a random symmetrical positive definite (SPD) matrix is a very effective method to jointly estimate the kinematic state and physical extension of the target. The key issue in the application of this random matrix-based EOT approach is to model the physical extension and measurement noise accurately. Model parameter adaptive approaches for both extension dynamic and measurement noise are proposed in this study based on the properties of the SPD matrix to improve the performance of extension estimation. An interacting multi-model algorithm based on model parameter adaptive filter using random matrix is also presented. Simulation results demonstrate the effectiveness of the proposed adaptive approaches and multi-model algorithm. The estimation performance of physical extension is better than the other algorithms, especially when the target maneuvers. The kinematic state estimation error is lower than the others as well. PMID:24763252

  1. Model parameter adaption-based multi-model algorithm for extended object tracking using a random matrix.

    PubMed

    Li, Borui; Mu, Chundi; Han, Shuli; Bai, Tianming

    2014-04-24

    Traditional object tracking technology usually regards the target as a point source object. However, this approximation is no longer appropriate for tracking extended objects such as large targets and closely spaced group objects. Bayesian extended object tracking (EOT) using a random symmetrical positive definite (SPD) matrix is a very effective method to jointly estimate the kinematic state and physical extension of the target. The key issue in the application of this random matrix-based EOT approach is to model the physical extension and measurement noise accurately. Model parameter adaptive approaches for both extension dynamic and measurement noise are proposed in this study based on the properties of the SPD matrix to improve the performance of extension estimation. An interacting multi-model algorithm based on model parameter adaptive filter using random matrix is also presented. Simulation results demonstrate the effectiveness of the proposed adaptive approaches and multi-model algorithm. The estimation performance of physical extension is better than the other algorithms, especially when the target maneuvers. The kinematic state estimation error is lower than the others as well.

  2. Fast Track Teacher Education: A Review of the Research Literature on "Teach For All" Schemes

    ERIC Educational Resources Information Center

    McConney, Andrew; Price, Anne; Woods-McConney, Amanda

    2012-01-01

    This review of the research literature was commissioned by the New Zealand Post-Primary Teachers Association (PPTA) Te Wehengarua as a means of informing the decision-making of the Association and its members about the Teach For All (TFA) scheme seeking to prepare teachers for New Zealand's schools. The systematic review is about fast track…

  3. Research on fast Fourier transforms algorithm of huge remote sensing image technology with GPU and partitioning technology.

    PubMed

    Yang, Xue; Li, Xue-You; Li, Jia-Guo; Ma, Jun; Zhang, Li; Yang, Jan; Du, Quan-Ye

    2014-02-01

    Fast Fourier transforms (FFT) is a basic approach to remote sensing image processing. With the improvement of capacity of remote sensing image capture with the features of hyperspectrum, high spatial resolution and high temporal resolution, how to use FFT technology to efficiently process huge remote sensing image becomes the critical step and research hot spot of current image processing technology. FFT algorithm, one of the basic algorithms of image processing, can be used for stripe noise removal, image compression, image registration, etc. in processing remote sensing image. CUFFT function library is the FFT algorithm library based on CPU and FFTW. FFTW is a FFT algorithm developed based on CPU in PC platform, and is currently the fastest CPU based FFT algorithm function library. However there is a common problem that once the available memory or memory is less than the capacity of image, there will be out of memory or memory overflow when using the above two methods to realize image FFT arithmetic. To address this problem, a CPU and partitioning technology based Huge Remote Fast Fourier Transform (HRFFT) algorithm is proposed in this paper. By improving the FFT algorithm in CUFFT function library, the problem of out of memory and memory overflow is solved. Moreover, this method is proved rational by experiment combined with the CCD image of HJ-1A satellite. When applied to practical image processing, it improves effect of the image processing, speeds up the processing, which saves the time of computation and achieves sound result.

  4. An accelerated photo-magnetic imaging reconstruction algorithm based on an analytical forward solution and a fast Jacobian assembly method

    NASA Astrophysics Data System (ADS)

    Nouizi, F.; Erkol, H.; Luk, A.; Marks, M.; Unlu, M. B.; Gulsen, G.

    2016-10-01

    We previously introduced photo-magnetic imaging (PMI), an imaging technique that illuminates the medium under investigation with near-infrared light and measures the induced temperature increase using magnetic resonance thermometry (MRT). Using a multiphysics solver combining photon migration and heat diffusion, PMI models the spatiotemporal distribution of temperature variation and recovers high resolution optical absorption images using these temperature maps. In this paper, we present a new fast non-iterative reconstruction algorithm for PMI. This new algorithm uses analytic methods during the resolution of the forward problem and the assembly of the sensitivity matrix. We validate our new analytic-based algorithm with the first generation finite element method (FEM) based reconstruction algorithm previously developed by our team. The validation is performed using, first synthetic data and afterwards, real MRT measured temperature maps. Our new method accelerates the reconstruction process 30-fold when compared to a single iteration of the FEM-based algorithm.

  5. The 183-WSL fast rain rate retrieval algorithm: Part I: Retrieval design

    NASA Astrophysics Data System (ADS)

    Laviola, Sante; Levizzani, Vincenzo

    2011-03-01

    The Water vapour Strong Lines at 183 GHz (183-WSL) fast retrieval method retrieves rain rates and classifies precipitation types for applications in nowcasting and weather monitoring. The retrieval scheme consists of two fast algorithms, over land and over ocean, that use the water vapour absorption lines at 183.31 GHz corresponding to the channels 3 (183.31 ± 1 GHz), 4 (183.31 ± 3 GHz) and 5 (183.31 ± 7 GHz) of the Advanced Microwave Sounding Unit module B (AMSU-B) and of the Microwave Humidity Sounder (MHS) flying on NOAA-15-18 and Metop-A satellite series, respectively. The method retrieves rain rates by exploiting the extinction of radiation due to rain drops following four subsequent steps. After ingesting the satellite data stream, the window channels at 89 and 150 GHz are used to compute scattering-based thresholds and the 183-WSLW module for rainfall area discrimination and precipitation type classification as stratiform or convective on the basis of the thresholds calculated for land/mixed and sea surfaces. The thresholds are based on the brightness temperature difference Δwin = TB89 - TB150 and are different over land (L) and over sea (S): cloud droplets and water vapour (Δwin < 3 K L; Δwin < 0 K S), stratiform rain (3 K < Δwin < 10 K L; 0 K < Δwin < 10 K S), and convective rain (Δwin > 10 K L and S). The thresholds, initially empirically derived from observations, are corroborated by the simulations of the RTTOV radiative transfer model applied to 20000 ECMWF atmospheric profiles at midlatitudes and the use of data from the Nimrod radar network. A snow cover mask and a digital elevation model are used to eliminate false rain area attribution, especially over elevated terrain. A probability of detection logistic function is also applied in the transition region from no-rain to rain adjacent to the clouds to ensure continuity of the rainfall field. Finally, the last step is dedicated to the rain rate retrieval with the modules 183-WSLS (stratiform

  6. FAST TRACK COMMUNICATION: Factorizing numbers with classical interference: several implementations in optics

    NASA Astrophysics Data System (ADS)

    Rangelov, A. A.

    2009-01-01

    Truncated Fourier, Gauss, Kummer and exponential sums can be used to factorize numbers: for a factor these sums equal unity in absolute value, whereas they nearly vanish for any other number. We show how this factorization algorithm can emerge from superpositions of classical light waves and we present a number of simple implementations in optics.

  7. A Comparative Study of Postoperative Pulmonary Complications Using Fast Track Regimen and Conservative Analgesic Treatment: A Randomized Clinical Trial

    PubMed Central

    Aghdam, Babak Abri; Golzari, Samad Eslam Jamal; Moghadaszadeh, Majid

    2011-01-01

    Background Postoperative pulmonary complications and pain are important causes of postoperative morbidity following thoracotomy. This study aimed to compare the effects of fast track and conservative treatment regimens on patients undergoing thoracotomy. Materials and Methods In this randomized controlled clinical trial, we recruited 60 patients admitted to the thoracic ICU of Imam Reza Hospital in two matched groups of 30 patients each. Group 1 patients received fast track regimen randomly; whereas, group 2 cases randomly received conservative analgesic regimen after thoracotomy and pulmonary resection. The outcome was determined based on the incidence of pulmonary complications and reduction of post-thoracotomy pain in all patients with forced expiratory volume in one second (FEV1) <75% predicted value which was measured while the patients were in ICU. The length of ICU stay, thoracotomy pain, morbidity, pulmonary complications and mortality were compared in two groups. Results A total of 60 patients, 45 (75%) males and 15(25%) females with ASA class I-III were recruited in this study. Postoperative pulmonary complications were observed in 5 (16.7%) patients in group 1 versus 17 (56.7%) patients in group 2. There were statistically significant differences in development of postoperative pulmonary complications such as atelectasis and prolonged air leak between both groups (P< 0.001 and P = 0.003). There was also a statistically significant difference in the rate of preoperative FEV1 (p = 0.001) and ASA scoring (p = 0.01) and value of FEV1 < 75% predicted in the two groups. The difference in length of ICU stay in two groups was statistically significant (P= 0.003 and P = 0.017 in FEV1 < 75% group). Four patients in group 1 and 9 patients in group 2 had FEV1reduced to less than 75% of predicted value (p = 0.03). Conclusion Using fast track regimen reduced postoperative pain and incidence of some pulmonary complications significantly when compared to the

  8. A fast video clip retrieval algorithm based on VA-file

    NASA Astrophysics Data System (ADS)

    Liu, Fangjie; Dong, DaoGuo; Miao, Xiaoping; Xue, XiangYang

    2003-12-01

    Video clip retrieval is a significant research topic of content-base multimedia retrieval. Generally, video clip retrieval process is carried out as following: (1) segment a video clip into shots; (2) extract a key frame from each shot as its representative; (3) denote every key frame as a feature vector, and thus a video clip can be denoted as a sequence of feature vectors; (4) retrieve match clip by computing the similarity between the feature vector sequence of a query clip and the feature vector sequence of any clip in database. To carry out fast video clip retrieval the index structure is indispensable. According to our literature survey, S2-tree [17] is the one and only index structure having been applied to support video clip retrieval, which combines the characteristics of both X-tree and Suffix-tree and converts the series vectors retrieval to string matching. But S2-tree structure will not be applicable if the feature vector's dimension is beyond 20, because the X-tree itself cannot be used to sustain similarity query effectively when dimensions of vectors are beyond 20. Furthermore, it cannot support flexible similarity definitions between two vector sequences. VA-file represents the vector approximately by compressing the original data and it maintains the original order when representing vectors in a sequence, which is a very valuable merit for vector sequences matching. In this paper, a new video clip similarity model as well as video clip retrieval algorithm based on VA-File are proposed. The experiments show that our algorithm incredibly shortened the retrieval time compared to sequential scanning without index structure.

  9. An algorithm for computing the 2D structure of fast rotating stars

    NASA Astrophysics Data System (ADS)

    Rieutord, Michel; Espinosa Lara, Francisco; Putigny, Bertrand

    2016-08-01

    Stars may be understood as self-gravitating masses of a compressible fluid whose radiative cooling is compensated by nuclear reactions or gravitational contraction. The understanding of their time evolution requires the use of detailed models that account for a complex microphysics including that of opacities, equation of state and nuclear reactions. The present stellar models are essentially one-dimensional, namely spherically symmetric. However, the interpretation of recent data like the surface abundances of elements or the distribution of internal rotation have reached the limits of validity of one-dimensional models because of their very simplified representation of large-scale fluid flows. In this article, we describe the ESTER code, which is the first code able to compute in a consistent way a two-dimensional model of a fast rotating star including its large-scale flows. Compared to classical 1D stellar evolution codes, many numerical innovations have been introduced to deal with this complex problem. First, the spectral discretization based on spherical harmonics and Chebyshev polynomials is used to represent the 2D axisymmetric fields. A nonlinear mapping maps the spheroidal star and allows a smooth spectral representation of the fields. The properties of Picard and Newton iterations for solving the nonlinear partial differential equations of the problem are discussed. It turns out that the Picard scheme is efficient on the computation of the simple polytropic stars, but Newton algorithm is unsurpassed when stellar models include complex microphysics. Finally, we discuss the numerical efficiency of our solver of Newton iterations. This linear solver combines the iterative Conjugate Gradient Squared algorithm together with an LU-factorization serving as a preconditioner of the Jacobian matrix.

  10. Adaptive ILC algorithms of nonlinear continuous systems with non-parametric uncertainties for non-repetitive trajectory tracking

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Dong; Lv, Mang-Mang; Ho, John K. L.

    2016-07-01

    In this article, two adaptive iterative learning control (ILC) algorithms are presented for nonlinear continuous systems with non-parametric uncertainties. Unlike general ILC techniques, the proposed adaptive ILC algorithms allow that both the initial error at each iteration and the reference trajectory are iteration-varying in the ILC process, and can achieve non-repetitive trajectory tracking beyond a small initial time interval. Compared to the neural network or fuzzy system-based adaptive ILC schemes and the classical ILC methods, in which the number of iterative variables is generally larger than or equal to the number of control inputs, the first adaptive ILC algorithm proposed in this paper uses just two iterative variables, while the second even uses a single iterative variable provided that some bound information on system dynamics is known. As a result, the memory space in real-time ILC implementations is greatly reduced.

  11. Indirect Effects of the Fast Track Intervention on Conduct Disorder Symptoms and Callous-Unemotional Traits: Distinct Pathways Involving Discipline and Warmth.

    PubMed

    Pasalich, Dave S; Witkiewitz, Katie; McMahon, Robert J; Pinderhughes, Ellen E

    2016-04-01

    Little is known about intervening processes that explain how prevention programs improve particular youth antisocial outcomes. We examined whether parental harsh discipline and warmth in childhood differentially account for Fast Track intervention effects on conduct disorder (CD) symptoms and callous-unemotional (CU) traits in early adolescence. Participants included 891 high-risk kindergarteners (69% male; 51% African American) from urban and rural United States communities who were randomized into either the Fast Track intervention (n = 445) or non-intervention control (n = 446) groups. The 10-year intervention included parent management training and other services (e.g., social skills training, universal classroom curriculum) targeting various risk factors for the development of conduct problems. Harsh discipline (Grades 1 to 3) and warmth (Grades 1 and 2) were measured using parent responses to vignettes and direct observations of parent-child interaction, respectively. Parents reported on children's CD symptoms in Grade 6 and CU traits in Grade 7. Results demonstrated indirect effects of the Fast Track intervention on reducing risk for youth antisocial outcomes. That is, Fast Track was associated with lower scores on harsh discipline, which in turn predicted decreased levels of CD symptoms. In addition, Fast Track was associated with higher scores on warmth, which in turn predicted reduced levels of CU traits. Our findings inform developmental and intervention models of youth antisocial behavior by providing evidence for the differential role of harsh discipline and warmth in accounting for indirect effects of Fast Track on CD symptoms versus CU traits, respectively. PMID:26242993

  12. Indirect Effects of the Fast Track Intervention on Conduct Disorder Symptoms and Callous-Unemotional Traits: Distinct Pathways Involving Discipline and Warmth.

    PubMed

    Pasalich, Dave S; Witkiewitz, Katie; McMahon, Robert J; Pinderhughes, Ellen E

    2016-04-01

    Little is known about intervening processes that explain how prevention programs improve particular youth antisocial outcomes. We examined whether parental harsh discipline and warmth in childhood differentially account for Fast Track intervention effects on conduct disorder (CD) symptoms and callous-unemotional (CU) traits in early adolescence. Participants included 891 high-risk kindergarteners (69% male; 51% African American) from urban and rural United States communities who were randomized into either the Fast Track intervention (n = 445) or non-intervention control (n = 446) groups. The 10-year intervention included parent management training and other services (e.g., social skills training, universal classroom curriculum) targeting various risk factors for the development of conduct problems. Harsh discipline (Grades 1 to 3) and warmth (Grades 1 and 2) were measured using parent responses to vignettes and direct observations of parent-child interaction, respectively. Parents reported on children's CD symptoms in Grade 6 and CU traits in Grade 7. Results demonstrated indirect effects of the Fast Track intervention on reducing risk for youth antisocial outcomes. That is, Fast Track was associated with lower scores on harsh discipline, which in turn predicted decreased levels of CD symptoms. In addition, Fast Track was associated with higher scores on warmth, which in turn predicted reduced levels of CU traits. Our findings inform developmental and intervention models of youth antisocial behavior by providing evidence for the differential role of harsh discipline and warmth in accounting for indirect effects of Fast Track on CD symptoms versus CU traits, respectively.

  13. A Fast, Locally Adaptive, Interactive Retrieval Algorithm for the Analysis of DIAL Measurements

    NASA Astrophysics Data System (ADS)

    Samarov, D. V.; Rogers, R.; Hair, J. W.; Douglass, K. O.; Plusquellic, D.

    2010-12-01

    Differential absorption light detection and ranging (DIAL) is a laser-based tool which is used for remote, range-resolved measurement of particular gases in the atmosphere, such as carbon-dioxide and methane. In many instances it is of interest to study how these gases are distributed over a region such as a landfill, factory, or farm. While a single DIAL measurement only tells us about the distribution of a gas along a single path, a sequence of consecutive measurements provides us with information on how that gas is distributed over a region, making DIAL a natural choice for such studies. DIAL measurements present a number of interesting challenges; first, in order to convert the raw data to concentration it is necessary to estimate the derivative along the path of the measurement. Second, as the distribution of gases across a region can be highly heterogeneous it is important that the spatial nature of the measurements be taken into account. Finally, since it is common for the set of collected measurements to be quite large it is important for the method to be computationally efficient. Existing work based on Local Polynomial Regression (LPR) has been developed which addresses the first two issues, but the issue of computational speed remains an open problem. In addition to the latter, another desirable property is to allow user input into the algorithm. In this talk we present a novel method based on LPR which utilizes a variant of the RODEO algorithm to provide a fast, locally adaptive and interactive approach to the analysis of DIAL measurements. This methodology is motivated by and applied to several simulated examples and a study out of NASA Langley Research Center (LaRC) looking at the estimation of aerosol extinction in the atmosphere. A comparison study of our method against several other algorithms is also presented. References Chaudhuri, P., Marron, J.S., Scale-space view of curve estimation, Annals of Statistics 28 (2000) 408-428. Duong, T., Cowling

  14. Development of hybrid particle tracking algorithms and their applications in airflow measurement within an aircraft cabin mock-up

    NASA Astrophysics Data System (ADS)

    Yan, Wei

    Obtaining reliable experimental airflow data within an indoor environment is a challenging task and critical in studying and solving indoor air quality problems. The Hybrid Particle Tracking Velocimetry (HPTV) system is aimed at fulfilling this need. It was developed based on existing Particle Tracking Velocimety (PTV) and Volumetric Particle Tracking Velocimetry (VPTV) techniques. The HPTV system requires three charge-coupled device (CCD) cameras to view the illuminated flow field and capture the trajectories of the seeded particles. By adopting the hybrid spatial matching and object tracking algorithms, this system can acquire the 3-Dimensional velocity components within a large volume with relatively high spatial and temporal resolution. Synthetic images were employed to validate the performance of three components of the system: image processing, camera calibration and 3D velocity reconstruction. These three components are also the main error sources. The accuracy of the whole algorithm was analyzed and discussed through a back projection approach. The results showed that the algorithms performed effectively and accurately. The reconstructed 3D trajectories and streaks agreed well with the simulated streamline of the particles. As an overall testing and application of the system, HPTV was applied to measure the airflow pattern within a full-scale, five-row section of a Boeing 767-300 aircraft cabin mockup. A complete experimental procedure was developed and strictly followed throughout the experiment. Both global flow field at the whole cabin scale and the local flow field at the breathing zone of one passenger were studied. Each test case was also simulated numerically using a commercial computational fluid dynamic (CFD) package. Through comparison between the results from the numerical simulation and the experimental measurement, the potential model validation capability of the system was demonstrated. Possible reasons explaining the difference between

  15. Fast front-end electronics for semiconductor tracking detectors: Trends and perspectives

    NASA Astrophysics Data System (ADS)

    Rivetti, Angelo

    2014-11-01

    In the past few years, extensive research efforts pursued by both the industry and the academia have lead to major improvements in the performance of Analog to Digital Converters (ADCs) and Time to Digital Converters (TDCs). ADCs achieving 8-10 bit resolution, 50-100 MHz conversion frequency and less than 1 mW power consumption are the today's standard, while TDCs have reached sub-picosecond time resolution. These results have been made possible by architectural upgrades combined with the use of ultra deep submicron CMOS technologies with minimum feature size of 130 nm or smaller. Front-end ASICs in which a prompt digitization is followed by signal conditioning in the digital domain can now be envisaged also within the tight power budget typically available in high density tracking systems. Furthermore, tracking detectors embedding high resolution timing capabilities are gaining interest. In the paper, ADC's and TDC's developments which are of particular relevance for the design front-end electronics for semiconductor trackers are discussed along with the benefits and challenges of exploiting such high performance building blocks in implementing the next generation of ASICs for high granularity particle detectors.

  16. Multi channel thermal hydraulic analysis of gas cooled fast reactor using genetic algorithm

    SciTech Connect

    Drajat, R. Z.; Su'ud, Z.; Soewono, E.; Gunawan, A. Y.

    2012-05-22

    There are three analyzes to be done in the design process of nuclear reactor i.e. neutronic analysis, thermal hydraulic analysis and thermodynamic analysis. The focus in this article is the thermal hydraulic analysis, which has a very important role in terms of system efficiency and the selection of the optimal design. This analysis is performed in a type of Gas Cooled Fast Reactor (GFR) using cooling Helium (He). The heat from nuclear fission reactions in nuclear reactors will be distributed through the process of conduction in fuel elements. Furthermore, the heat is delivered through a process of heat convection in the fluid flow in cooling channel. Temperature changes that occur in the coolant channels cause a decrease in pressure at the top of the reactor core. The governing equations in each channel consist of mass balance, momentum balance, energy balance, mass conservation and ideal gas equation. The problem is reduced to finding flow rates in each channel such that the pressure drops at the top of the reactor core are all equal. The problem is solved numerically with the genetic algorithm method. Flow rates and temperature distribution in each channel are obtained here.

  17. Computation of radiation pressure force on arbitrary shaped homogenous particles by multilevel fast multipole algorithm.

    PubMed

    Yang, Minglin; Ren, Kuan Fang; Gou, Mingjiang; Sheng, Xinqing

    2013-06-01

    A full-wave numerical method based on the surface integral equation for computing radiation pressure force (RPF) exerted by a shaped light beam on arbitrary shaped homogenous particles is presented. The multilevel fast multipole algorithm is employed to reduce memory requirement and to improve its capability. The resultant matrix equation is solved by using an iterative solver to obtain equivalent electric and magnetic currents. Then RPF is computed by vector flux of the Maxwell's stress tensor over a spherical surface tightly enclosing the particle. So the analytical expressions for electromagnetic fields of incident beam in near region are used. Some numerical results are performed to illustrate the validity and capability of the developed method. Good agreements between our method and the Lorenz-Mie theory for spherical and small spheroidal particle are found while our method has powerful capability for computing RPF of any shaped beam on a relatively large particle of complex shape. Tests for ellipsoidal and red blood cell-like particles illuminated by Gaussian beam have shown that the size of the particle can be as large as 50-100 wavelengths, respectively, for the relative refractive of 1.33 and 1.1.

  18. HaploGrep: a fast and reliable algorithm for automatic classification of mitochondrial DNA haplogroups.

    PubMed

    Kloss-Brandstätter, Anita; Pacher, Dominic; Schönherr, Sebastian; Weissensteiner, Hansi; Binna, Robert; Specht, Günther; Kronenberg, Florian

    2011-01-01

    An ongoing source of controversy in mitochondrial DNA (mtDNA) research is based on the detection of numerous errors in mtDNA profiles that led to erroneous conclusions and false disease associations. Most of these controversies could be avoided if the samples' haplogroup status would be taken into consideration. Knowing the mtDNA haplogroup affiliation is a critical prerequisite for studying mechanisms of human evolution and discovering genes involved in complex diseases, and validating phylogenetic consistency using haplogroup classification is an important step in quality control. However, despite the availability of Phylotree, a regularly updated classification tree of global mtDNA variation, the process of haplogroup classification is still time-consuming and error-prone, as researchers have to manually compare the polymorphisms found in a population sample to those summarized in Phylotree, polymorphism by polymorphism, sample by sample. We present HaploGrep, a fast, reliable and straight-forward algorithm implemented in a Web application to determine the haplogroup affiliation of thousands of mtDNA profiles genotyped for the entire mtDNA or any part of it. HaploGrep uses the latest version of Phylotree and offers an all-in-one solution for quality assessment of mtDNA profiles in clinical genetics, population genetics and forensics. HaploGrep can be accessed freely at http://haplogrep.uibk.ac.at.

  19. Evaluation of the influence of pulmonary hypertension in ultra-fast-track anesthesia technique in adult patients undergoing cardiac surgery

    PubMed Central

    da Silva, Paulo Sérgio; Cartacho, Márcio Portugal Trindade; de Castro, Casimiro Cardoso; Salgado Filho, Marcello Fonseca; Brandão, Antônio Carlos Aguiar

    2015-01-01

    Objective To evaluate the influence of pulmonary hypertension in the ultra-fast-track anesthesia technique in adult cardiac surgery. Methods A retrospective study. They were included 40 patients divided into two groups: GI (without pulmonary hypertension) and GII (with pulmonary hypertension). Based on data obtained by transthoracic echocardiography. We considered as the absence of pulmonary hypertension: a pulmonary artery systolic pressure (sPAP) <36 mmHg, with tricuspid regurgitation velocity <2.8 m/s and no additional echocardiographic signs of PH, and PH as presence: a sPAP >40 mmHg associated with additional echocardiographic signs of PH. It was established as influence of pulmonary hypertension: the impossibility of extubation in the operating room, the increase in the time interval for extubation and reintubation the first 24 hours postoperatively. Univariate and multivariate analyzes were performed when necessary. Considered significant a P value <0.05. Results The GI was composed of 21 patients and GII for 19. All patients (100%) were extubated in the operating room in a medium time interval of 17.58±8.06 min with a median of 18 min in GII and 17 min in GI. PH did not increase the time interval for extubation (P=0.397). It required reintubation of 2 patients in GII (5% of the total), without statistically significant as compared to GI (P=0.488). Conclusion In this study, pulmonary hypertension did not influence on ultra-fast-track anesthesia in adult cardiac surgery. PMID:27163419

  20. A "package solution" fast track program can reduce the diagnostic waiting time in head and neck cancer.

    PubMed

    Sorensen, Jesper Roed; Johansen, Jørgen; Gano, Lars; Sørensen, Jens Ahm; Larsen, Stine Rosenkilde; Andersen, Peter Bøgeskov; Thomassen, Anders; Godballe, Christian

    2014-05-01

    In 2007, a fast track program for patients with suspicion of head and neck cancer (HNC) was introduced in Denmark to reduce unnecessary waiting time. The program was based on so called "package solutions" including pre-booked slots for outpatient evaluation, imaging, and diagnostic surgical procedures. The purpose of this study is to present a model for fast track handling of patients suspicious of cancer in the head and neck region and to evaluate the effect of implementation on the diagnostic work up time. Patients with suspicion of HNC referred to the same university department of ENT Head and Neck Surgery during three comparable time intervals 2006-2007, 2007-2008, and 2011-2012 (groups 1-3) were investigated. We recorded the time from patient referral, to first consultation and final diagnosis. The first interval was before initiation of the "package solution", the second just after the introduction, and the third interval represents the current situation. The median time from referral to first consultation was reduced from eight calendar days in group 1 to only one day in groups 2 and 3 (p < 0.001). The combined median time from referral to the final cancer diagnosis decreased from 24 calendar days in group 1 to 7 and 10 days in groups 2 and 3, respectively (p < 0.005). The hit rate of finding malignancy was 41% in group 1, 49% in group 2, and 43% in group 3 with no difference among the groups (p = 0.13). The frequency of newly diagnosed HNC was 19% in group 1, 21% in group 2, and 17% in group 3 (p = 0.52). A "package solution" including pre-booked slots for diagnostic procedures is feasible and can significantly reduce the waiting time for patients with suspicion of HNC. PMID:23775302