Sample records for fast vectorised implementation

  1. Real-time object-to-features vectorisation via Siamese neural networks

    NASA Astrophysics Data System (ADS)

    Fedorenko, Fedor; Usilin, Sergey

    2017-03-01

    Object-to-features vectorisation is a hard problem to solve for objects that can be hard to distinguish. Siamese and Triplet neural networks are one of the more recent tools used for such task. However, most networks used are very deep networks that prove to be hard to compute in the Internet of Things setting. In this paper, a computationally efficient neural network is proposed for real-time object-to-features vectorisation into a Euclidean metric space. We use L2 distance to reflect feature vector similarity during both training and testing. In this way, feature vectors we develop can be easily classified using K-Nearest Neighbours classifier. Such approach can be used to train networks to vectorise such "problematic" objects like images of human faces, keypoint image patches, like keypoints on Arctic maps and surrounding marine areas.

  2. ACTS: from ATLAS software towards a common track reconstruction software

    NASA Astrophysics Data System (ADS)

    Gumpert, C.; Salzburger, A.; Kiehn, M.; Hrdinka, J.; Calace, N.; ATLAS Collaboration

    2017-10-01

    Reconstruction of charged particles’ trajectories is a crucial task for most particle physics experiments. The high instantaneous luminosity achieved at the LHC leads to a high number of proton-proton collisions per bunch crossing, which has put the track reconstruction software of the LHC experiments through a thorough test. Preserving track reconstruction performance under increasingly difficult experimental conditions, while keeping the usage of computational resources at a reasonable level, is an inherent problem for many HEP experiments. Exploiting concurrent algorithms and using multivariate techniques for track identification are the primary strategies to achieve that goal. Starting from current ATLAS software, the ACTS project aims to encapsulate track reconstruction software into a generic, framework- and experiment-independent software package. It provides a set of high-level algorithms and data structures for performing track reconstruction tasks as well as fast track simulation. The software is developed with special emphasis on thread-safety to support parallel execution of the code and data structures are optimised for vectorisation to speed up linear algebra operations. The implementation is agnostic to the details of the detection technologies and magnetic field configuration which makes it applicable to many different experiments.

  3. Hybrid multicore/vectorisation technique applied to the elastic wave equation on a staggered grid

    NASA Astrophysics Data System (ADS)

    Titarenko, Sofya; Hildyard, Mark

    2017-07-01

    In modern physics it has become common to find the solution of a problem by solving numerically a set of PDEs. Whether solving them on a finite difference grid or by a finite element approach, the main calculations are often applied to a stencil structure. In the last decade it has become usual to work with so called big data problems where calculations are very heavy and accelerators and modern architectures are widely used. Although CPU and GPU clusters are often used to solve such problems, parallelisation of any calculation ideally starts from a single processor optimisation. Unfortunately, it is impossible to vectorise a stencil structured loop with high level instructions. In this paper we suggest a new approach to rearranging the data structure which makes it possible to apply high level vectorisation instructions to a stencil loop and which results in significant acceleration. The suggested method allows further acceleration if shared memory APIs are used. We show the effectiveness of the method by applying it to an elastic wave propagation problem on a finite difference grid. We have chosen Intel architecture for the test problem and OpenMP (Open Multi-Processing) since they are extensively used in many applications.

  4. High performance volume-of-intersection projectors for 3D-PET image reconstruction based on polar symmetries and SIMD vectorisation.

    PubMed

    Scheins, J J; Vahedipour, K; Pietrzyk, U; Shah, N J

    2015-12-21

    For high-resolution, iterative 3D PET image reconstruction the efficient implementation of forward-backward projectors is essential to minimise the calculation time. Mathematically, the projectors are summarised as a system response matrix (SRM) whose elements define the contribution of image voxels to lines-of-response (LORs). In fact, the SRM easily comprises billions of non-zero matrix elements to evaluate the tremendous number of LORs as provided by state-of-the-art PET scanners. Hence, the performance of iterative algorithms, e.g. maximum-likelihood-expectation-maximisation (MLEM), suffers from severe computational problems due to the intensive memory access and huge number of floating point operations. Here, symmetries occupy a key role in terms of efficient implementation. They reduce the amount of independent SRM elements, thus allowing for a significant matrix compression according to the number of exploitable symmetries. With our previous work, the PET REconstruction Software TOolkit (PRESTO), very high compression factors (>300) are demonstrated by using specific non-Cartesian voxel patterns involving discrete polar symmetries. In this way, a pre-calculated memory-resident SRM using complex volume-of-intersection calculations can be achieved. However, our original ray-driven implementation suffers from addressing voxels, projection data and SRM elements in disfavoured memory access patterns. As a consequence, a rather limited numerical throughput is observed due to the massive waste of memory bandwidth and inefficient usage of cache respectively. In this work, an advantageous symmetry-driven evaluation of the forward-backward projectors is proposed to overcome these inefficiencies. The polar symmetries applied in PRESTO suggest a novel organisation of image data and LOR projection data in memory to enable an efficient single instruction multiple data vectorisation, i.e. simultaneous use of any SRM element for symmetric LORs. In addition, the calculation time is further reduced by using simultaneous multi-threading (SMT). A global speedup factor of 11 without SMT and above 100 with SMT has been achieved for the improved CPU-based implementation while obtaining equivalent numerical results.

  5. High performance volume-of-intersection projectors for 3D-PET image reconstruction based on polar symmetries and SIMD vectorisation

    NASA Astrophysics Data System (ADS)

    Scheins, J. J.; Vahedipour, K.; Pietrzyk, U.; Shah, N. J.

    2015-12-01

    For high-resolution, iterative 3D PET image reconstruction the efficient implementation of forward-backward projectors is essential to minimise the calculation time. Mathematically, the projectors are summarised as a system response matrix (SRM) whose elements define the contribution of image voxels to lines-of-response (LORs). In fact, the SRM easily comprises billions of non-zero matrix elements to evaluate the tremendous number of LORs as provided by state-of-the-art PET scanners. Hence, the performance of iterative algorithms, e.g. maximum-likelihood-expectation-maximisation (MLEM), suffers from severe computational problems due to the intensive memory access and huge number of floating point operations. Here, symmetries occupy a key role in terms of efficient implementation. They reduce the amount of independent SRM elements, thus allowing for a significant matrix compression according to the number of exploitable symmetries. With our previous work, the PET REconstruction Software TOolkit (PRESTO), very high compression factors (>300) are demonstrated by using specific non-Cartesian voxel patterns involving discrete polar symmetries. In this way, a pre-calculated memory-resident SRM using complex volume-of-intersection calculations can be achieved. However, our original ray-driven implementation suffers from addressing voxels, projection data and SRM elements in disfavoured memory access patterns. As a consequence, a rather limited numerical throughput is observed due to the massive waste of memory bandwidth and inefficient usage of cache respectively. In this work, an advantageous symmetry-driven evaluation of the forward-backward projectors is proposed to overcome these inefficiencies. The polar symmetries applied in PRESTO suggest a novel organisation of image data and LOR projection data in memory to enable an efficient single instruction multiple data vectorisation, i.e. simultaneous use of any SRM element for symmetric LORs. In addition, the calculation time is further reduced by using simultaneous multi-threading (SMT). A global speedup factor of 11 without SMT and above 100 with SMT has been achieved for the improved CPU-based implementation while obtaining equivalent numerical results.

  6. Development and Evaluation of Vectorised and Multi-Core Event Reconstruction Algorithms within the CMS Software Framework

    NASA Astrophysics Data System (ADS)

    Hauth, T.; Innocente and, V.; Piparo, D.

    2012-12-01

    The processing of data acquired by the CMS detector at LHC is carried out with an object-oriented C++ software framework: CMSSW. With the increasing luminosity delivered by the LHC, the treatment of recorded data requires extraordinary large computing resources, also in terms of CPU usage. A possible solution to cope with this task is the exploitation of the features offered by the latest microprocessor architectures. Modern CPUs present several vector units, the capacity of which is growing steadily with the introduction of new processor generations. Moreover, an increasing number of cores per die is offered by the main vendors, even on consumer hardware. Most recent C++ compilers provide facilities to take advantage of such innovations, either by explicit statements in the programs sources or automatically adapting the generated machine instructions to the available hardware, without the need of modifying the existing code base. Programming techniques to implement reconstruction algorithms and optimised data structures are presented, that aim to scalable vectorization and parallelization of the calculations. One of their features is the usage of new language features of the C++11 standard. Portions of the CMSSW framework are illustrated which have been found to be especially profitable for the application of vectorization and multi-threading techniques. Specific utility components have been developed to help vectorization and parallelization. They can easily become part of a larger common library. To conclude, careful measurements are described, which show the execution speedups achieved via vectorised and multi-threaded code in the context of CMSSW.

  7. Fast multi-core based multimodal registration of 2D cross-sections and 3D datasets.

    PubMed

    Scharfe, Michael; Pielot, Rainer; Schreiber, Falk

    2010-01-11

    Solving bioinformatics tasks often requires extensive computational power. Recent trends in processor architecture combine multiple cores into a single chip to improve overall performance. The Cell Broadband Engine (CBE), a heterogeneous multi-core processor, provides power-efficient and cost-effective high-performance computing. One application area is image analysis and visualisation, in particular registration of 2D cross-sections into 3D image datasets. Such techniques can be used to put different image modalities into spatial correspondence, for example, 2D images of histological cuts into morphological 3D frameworks. We evaluate the CBE-driven PlayStation 3 as a high performance, cost-effective computing platform by adapting a multimodal alignment procedure to several characteristic hardware properties. The optimisations are based on partitioning, vectorisation, branch reducing and loop unrolling techniques with special attention to 32-bit multiplies and limited local storage on the computing units. We show how a typical image analysis and visualisation problem, the multimodal registration of 2D cross-sections and 3D datasets, benefits from the multi-core based implementation of the alignment algorithm. We discuss several CBE-based optimisation methods and compare our results to standard solutions. More information and the source code are available from http://cbe.ipk-gatersleben.de. The results demonstrate that the CBE processor in a PlayStation 3 accelerates computational intensive multimodal registration, which is of great importance in biological/medical image processing. The PlayStation 3 as a low cost CBE-based platform offers an efficient option to conventional hardware to solve computational problems in image processing and bioinformatics.

  8. Fast multi-core based multimodal registration of 2D cross-sections and 3D datasets

    PubMed Central

    2010-01-01

    Background Solving bioinformatics tasks often requires extensive computational power. Recent trends in processor architecture combine multiple cores into a single chip to improve overall performance. The Cell Broadband Engine (CBE), a heterogeneous multi-core processor, provides power-efficient and cost-effective high-performance computing. One application area is image analysis and visualisation, in particular registration of 2D cross-sections into 3D image datasets. Such techniques can be used to put different image modalities into spatial correspondence, for example, 2D images of histological cuts into morphological 3D frameworks. Results We evaluate the CBE-driven PlayStation 3 as a high performance, cost-effective computing platform by adapting a multimodal alignment procedure to several characteristic hardware properties. The optimisations are based on partitioning, vectorisation, branch reducing and loop unrolling techniques with special attention to 32-bit multiplies and limited local storage on the computing units. We show how a typical image analysis and visualisation problem, the multimodal registration of 2D cross-sections and 3D datasets, benefits from the multi-core based implementation of the alignment algorithm. We discuss several CBE-based optimisation methods and compare our results to standard solutions. More information and the source code are available from http://cbe.ipk-gatersleben.de. Conclusions The results demonstrate that the CBE processor in a PlayStation 3 accelerates computational intensive multimodal registration, which is of great importance in biological/medical image processing. The PlayStation 3 as a low cost CBE-based platform offers an efficient option to conventional hardware to solve computational problems in image processing and bioinformatics. PMID:20064262

  9. Vectorisation of agrochemicals via amino acid carriers: influence of the spacer arm structure on the phloem mobility of phenylpyrrole conjugates in the Ricinus system.

    PubMed

    Marhadour, Sophie; Wu, Hanxiang; Yang, Wen; Marivingt-Mounir, Cécile; Bonnemain, Jean-Louis; Chollet, Jean-François

    2017-09-01

    Excessive agrochemical use poses significant threats to environmental safety and human health. Reducing pesticide use without reducing yield is necessary for sustainable agriculture. Therefore, we developed a vectorisation strategy to enhance agrochemical delivery through plant amino acid carriers. In addition to a fenpiclonil conjugate recently described, three new amino acid conjugates were synthesised by coupling fenpiclonil to an l-α-amino acid. Phloem mobility of these conjugates, which exhibit different structures of the spacer arm introduced between fenpiclonil and the α-amino acid function, was studied using the Ricinus model. Conjugate L-14, which contains a triazole ring with the shortest amino acid chain, showed the best phloem systemicity among the four conjugates. By contrast, removing the triazole ring in the spacer arm did not improve systemicity. L-14 exhibited phloem systemicity at all reported pH values (pH values from 5.0 to 6.5) of the foliar apoplast, while acidic derivatives of fenpiclonil were translocated only at pH values near 5.0. The conjugates were recognised by a pH-dependent transporter system and translocated at distance in the phloem. They exhibited a broader phloem systemicity than fenpiclonil acidic derivatives within the pH value range of the foliar apoplast. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  10. Software Design Challenges in Time Series Prediction Systems Using Parallel Implementation of Artificial Neural Networks.

    PubMed

    Manikandan, Narayanan; Subha, Srinivasan

    2016-01-01

    Software development life cycle has been characterized by destructive disconnects between activities like planning, analysis, design, and programming. Particularly software developed with prediction based results is always a big challenge for designers. Time series data forecasting like currency exchange, stock prices, and weather report are some of the areas where an extensive research is going on for the last three decades. In the initial days, the problems with financial analysis and prediction were solved by statistical models and methods. For the last two decades, a large number of Artificial Neural Networks based learning models have been proposed to solve the problems of financial data and get accurate results in prediction of the future trends and prices. This paper addressed some architectural design related issues for performance improvement through vectorising the strengths of multivariate econometric time series models and Artificial Neural Networks. It provides an adaptive approach for predicting exchange rates and it can be called hybrid methodology for predicting exchange rates. This framework is tested for finding the accuracy and performance of parallel algorithms used.

  11. Software Design Challenges in Time Series Prediction Systems Using Parallel Implementation of Artificial Neural Networks

    PubMed Central

    Manikandan, Narayanan; Subha, Srinivasan

    2016-01-01

    Software development life cycle has been characterized by destructive disconnects between activities like planning, analysis, design, and programming. Particularly software developed with prediction based results is always a big challenge for designers. Time series data forecasting like currency exchange, stock prices, and weather report are some of the areas where an extensive research is going on for the last three decades. In the initial days, the problems with financial analysis and prediction were solved by statistical models and methods. For the last two decades, a large number of Artificial Neural Networks based learning models have been proposed to solve the problems of financial data and get accurate results in prediction of the future trends and prices. This paper addressed some architectural design related issues for performance improvement through vectorising the strengths of multivariate econometric time series models and Artificial Neural Networks. It provides an adaptive approach for predicting exchange rates and it can be called hybrid methodology for predicting exchange rates. This framework is tested for finding the accuracy and performance of parallel algorithms used. PMID:26881271

  12. Towards a high performance geometry library for particle-detector simulations

    DOE PAGES

    Apostolakis, J.; Bandieramonte, M.; Bitzes, G.; ...

    2015-05-22

    Thread-parallelization and single-instruction multiple data (SIMD) ”vectorisation” of software components in HEP computing has become a necessity to fully benefit from current and future computing hardware. In this context, the Geant-Vector/GPU simulation project aims to re-engineer current software for the simulation of the passage of particles through detectors in order to increase the overall event throughput. As one of the core modules in this area, the geometry library plays a central role and vectorising its algorithms will be one of the cornerstones towards achieving good CPU performance. Here, we report on the progress made in vectorising the shape primitives, asmore » well as in applying new C++ template based optimizations of existing code available in the Geant4, ROOT or USolids geometry libraries. We will focus on a presentation of our software development approach that aims to provide optimized code for all use cases of the library (e.g., single particle and many-particle APIs) and to support different architectures (CPU and GPU) while keeping the code base small, manageable and maintainable. We report on a generic and templated C++ geometry library as a continuation of the AIDA USolids project. As a result, the experience gained with these developments will be beneficial to other parts of the simulation software, such as for the optimization of the physics library, and possibly to other parts of the experiment software stack, such as reconstruction and analysis.« less

  13. Towards a high performance geometry library for particle-detector simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Apostolakis, J.; Bandieramonte, M.; Bitzes, G.

    Thread-parallelization and single-instruction multiple data (SIMD) ”vectorisation” of software components in HEP computing has become a necessity to fully benefit from current and future computing hardware. In this context, the Geant-Vector/GPU simulation project aims to re-engineer current software for the simulation of the passage of particles through detectors in order to increase the overall event throughput. As one of the core modules in this area, the geometry library plays a central role and vectorising its algorithms will be one of the cornerstones towards achieving good CPU performance. Here, we report on the progress made in vectorising the shape primitives, asmore » well as in applying new C++ template based optimizations of existing code available in the Geant4, ROOT or USolids geometry libraries. We will focus on a presentation of our software development approach that aims to provide optimized code for all use cases of the library (e.g., single particle and many-particle APIs) and to support different architectures (CPU and GPU) while keeping the code base small, manageable and maintainable. We report on a generic and templated C++ geometry library as a continuation of the AIDA USolids project. As a result, the experience gained with these developments will be beneficial to other parts of the simulation software, such as for the optimization of the physics library, and possibly to other parts of the experiment software stack, such as reconstruction and analysis.« less

  14. Implementation of the American Society of Anesthesiology's guidelines to reduce prolonged fasting times in pediatric preoperative patients: a best practice implementation project.

    PubMed

    Costello, Carol M

    2016-10-01

    The American Society of Anesthesiology (ASA) guidelines for pediatric preoperative fasting have been a standard for well over a decade. However, use of protocols involving an excessive fasting duration exposes patients to the physiological impacts of fluid volume loss. The current project aimed to improve fluid supplementation during presurgical fasting in pediatric patients at an academic medical center. Specific objectives were to increase clinical staff knowledge regarding ASA fasting standards and implement them in specific pediatric patient populations. The Joanna Briggs Institute Practical Application of Clinical Evidence System and Getting Research into Practice tools were used. A baseline audit assessed compliance with best practice criteria regarding staff education, patient/family instruction and preoperative fasting times. Intervention outcomes were evaluated in a post implementation criteria audit. Although compliance with fasting less than 12 hours more than doubled, only half of these patients/parents adhered to the guidelines. No excessive fasting events were attributed to a language barrier. There were no insufficient fasting events. Moderate success with fasting compliance was demonstrated when patients/parents were taught the multi-step ASA non per os (nothing by mouth) instructions. This complexity may have contributed to non-compliance and pointed to the need for enhanced teaching strategies. No operative start delays related to insufficient fasting indicated surgical scheduling flexibility was not at risk, and anesthesia providers had adopted the guidelines. Interdisciplinary engagement in this project was significantly impacted by director level communication which will be a key strategy for future implementations.

  15. Brian: a simulator for spiking neural networks in python.

    PubMed

    Goodman, Dan; Brette, Romain

    2008-01-01

    "Brian" is a new simulator for spiking neural networks, written in Python (http://brian. di.ens.fr). It is an intuitive and highly flexible tool for rapidly developing new models, especially networks of single-compartment neurons. In addition to using standard types of neuron models, users can define models by writing arbitrary differential equations in ordinary mathematical notation. Python scientific libraries can also be used for defining models and analysing data. Vectorisation techniques allow efficient simulations despite the overheads of an interpreted language. Brian will be especially valuable for working on non-standard neuron models not easily covered by existing software, and as an alternative to using Matlab or C for simulations. With its easy and intuitive syntax, Brian is also very well suited for teaching computational neuroscience.

  16. A pragmatic cluster randomised trial evaluating three implementation interventions.

    PubMed

    Rycroft-Malone, Jo; Seers, Kate; Crichton, Nicola; Chandler, Jackie; Hawkes, Claire A; Allen, Claire; Bullock, Ian; Strunin, Leo

    2012-08-30

    Implementation research is concerned with bridging the gap between evidence and practice through the study of methods to promote the uptake of research into routine practice. Good quality evidence has been summarised into guideline recommendations to show that peri-operative fasting times could be considerably shorter than patients currently experience. The objective of this trial was to evaluate the effectiveness of three strategies for the implementation of recommendations about peri-operative fasting. A pragmatic cluster randomised trial underpinned by the PARIHS framework was conducted during 2006 to 2009 with a national sample of UK hospitals using time series with mixed methods process evaluation and cost analysis. Hospitals were randomised to one of three interventions: standard dissemination (SD) of a guideline package, SD plus a web-based resource championed by an opinion leader, and SD plus plan-do-study-act (PDSA). The primary outcome was duration of fluid fast prior to induction of anaesthesia. Secondary outcomes included duration of food fast, patients' experiences, and stakeholders' experiences of implementation, including influences. ANOVA was used to test differences over time and interventions. Nineteen acute NHS hospitals participated. Across timepoints, 3,505 duration of fasting observations were recorded. No significant effect of the interventions was observed for either fluid or food fasting times. The effect size was 0.33 for the web-based intervention compared to SD alone for the change in fluid fasting and was 0.12 for PDSA compared to SD alone. The process evaluation showed different types of impact, including changes to practices, policies, and attitudes. A rich picture of the implementation challenges emerged, including inter-professional tensions and a lack of clarity for decision-making authority and responsibility. This was a large, complex study and one of the first national randomised controlled trials conducted within acute care in implementation research. The evidence base for fasting practice was accepted by those participating in this study and the messages from it simple; however, implementation and practical challenges influenced the interventions' impact. A set of conditions for implementation emerges from the findings of this study, which are presented as theoretically transferable propositions that have international relevance. ISRCTN18046709--Peri-operative Implementation Study Evaluation (POISE).

  17. A Parallel Vector Machine for the PM Programming Language

    NASA Astrophysics Data System (ADS)

    Bellerby, Tim

    2016-04-01

    PM is a new programming language which aims to make the writing of computational geoscience models on parallel hardware accessible to scientists who are not themselves expert parallel programmers. It is based around the concept of communicating operators: language constructs that enable variables local to a single invocation of a parallelised loop to be viewed as if they were arrays spanning the entire loop domain. This mechanism enables different loop invocations (which may or may not be executing on different processors) to exchange information in a manner that extends the successful Communicating Sequential Processes idiom from single messages to collective communication. Communicating operators avoid the additional synchronisation mechanisms, such as atomic variables, required when programming using the Partitioned Global Address Space (PGAS) paradigm. Using a single loop invocation as the fundamental unit of concurrency enables PM to uniformly represent different levels of parallelism from vector operations through shared memory systems to distributed grids. This paper describes an implementation of PM based on a vectorised virtual machine. On a single processor node, concurrent operations are implemented using masked vector operations. Virtual machine instructions operate on vectors of values and may be unmasked, masked using a Boolean field, or masked using an array of active vector cell locations. Conditional structures (such as if-then-else or while statement implementations) calculate and apply masks to the operations they control. A shift in mask representation from Boolean to location-list occurs when active locations become sufficiently sparse. Parallel loops unfold data structures (or vectors of data structures for nested loops) into vectors of values that may additionally be distributed over multiple computational nodes and then split into micro-threads compatible with the size of the local cache. Inter-node communication is accomplished using standard OpenMP and MPI. Performance analyses of the PM vector machine, demonstrating its scaling properties with respect to domain size and the number of processor nodes will be presented for a range of hardware configurations. The PM software and language definition are being made available under unrestrictive MIT and Creative Commons Attribution licenses respectively: www.pm-lang.org.

  18. Solution of the Skyrme-Hartree-Fock-Bogolyubov equations in the Cartesian deformed harmonic-oscillator basis.. (VI) HFODD (v2.40h): A new version of the program

    NASA Astrophysics Data System (ADS)

    Dobaczewski, J.; Satuła, W.; Carlsson, B. G.; Engel, J.; Olbratowski, P.; Powałowski, P.; Sadziak, M.; Sarich, J.; Schunck, N.; Staszczak, A.; Stoitsov, M.; Zalewski, M.; Zduńczuk, H.

    2009-11-01

    We describe the new version (v2.40h) of the code HFODD which solves the nuclear Skyrme-Hartree-Fock or Skyrme-Hartree-Fock-Bogolyubov problem by using the Cartesian deformed harmonic-oscillator basis. In the new version, we have implemented: (i) projection on good angular momentum (for the Hartree-Fock states), (ii) calculation of the GCM kernels, (iii) calculation of matrix elements of the Yukawa interaction, (iv) the BCS solutions for state-dependent pairing gaps, (v) the HFB solutions for broken simplex symmetry, (vi) calculation of Bohr deformation parameters, (vii) constraints on the Schiff moments and scalar multipole moments, (viii) the DT2h transformations and rotations of wave functions, (ix) quasiparticle blocking for the HFB solutions in odd and odd-odd nuclei, (x) the Broyden method to accelerate the convergence, (xi) the Lipkin-Nogami method to treat pairing correlations, (xii) the exact Coulomb exchange term, (xiii) several utility options, and we have corrected three insignificant errors. New version program summaryProgram title: HFODD (v2.40h) Catalogue identifier: ADFL_v2_2 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADFL_v2_2.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 79 618 No. of bytes in distributed program, including test data, etc.: 372 548 Distribution format: tar.gz Programming language: FORTRAN-77 and Fortran-90 Computer: Pentium-III, AMD-Athlon, AMD-Opteron Operating system: UNIX, LINUX, Windows XP Has the code been vectorised or parallelized?: Yes, vectorised RAM: 10 Mwords Word size: The code is written in single-precision for use on a 64-bit processor. The compiler option -r8 or +autodblpad (or equivalent) has to be used to promote all real and complex single-precision floating-point items to double precision when the code is used on a 32-bit machine. Classification: 17.22 Catalogue identifier of previous version: ADFL_v2_1 Journal reference of previous version: Comput. Phys. Commun. 167 (2005) 214 External routines: Lapack (http://www.netlib.org/lapack/), Blas (http://www.netlib.org), linpack (http://www.netlib/linpack/) Does the new version supersede the previous version?: Yes Nature of problem: The nuclear mean-field and an analysis of its symmetries in realistic cases are the main ingredients of a description of nuclear states. Within the Local Density Approximation, or for a zero-range velocity-dependent Skyrme interaction, the nuclear mean-field is local and velocity dependent. The locality allows for an effective and fast solution of the self-consistent Hartree-Fock equations, even for heavy nuclei, and for various nucleonic (n-particle n-hole) configurations, deformations, excitation energies, or angular momenta. Similar Local Density Approximation in the particle-particle channel, which is equivalent to using a zero-range interaction, allows for a simple implementation of pairing effects within the Hartree-Fock-Bogolyubov method. Solution method: The program uses the Cartesian harmonic oscillator basis to expand single-particle or single-quasiparticle wave functions of neutrons and protons interacting by means of the Skyrme effective interaction and zero-range pairing interaction. The expansion coefficients are determined by the iterative diagonalization of the mean field Hamiltonians or Routhians which depend non-linearly on the local neutron and proton densities. Suitable constraints are used to obtain states corresponding to a given configuration, deformation or angular momentum. The method of solution has been presented in [1]. Summary of revisions: Projection on good angular momentum (for the Hartree-Fock states) has been implemented. Calculation of the GCM kernels has been implemented. Calculation of matrix elements of the Yukawa interaction has been implemented. The BCS solutions for state-dependent pairing gaps have been implemented. The HFB solutions for broken simplex symmetry have been implemented. Calculation of Bohr deformation parameters has been implemented. Constraints on the Schiff moments and scalar multipole moments have been implemented. The DT2h transformations and rotations of wave functions have been implemented. The quasiparticle blocking for the HFB solutions in odd and odd-odd nuclei has been implemented. The Broyden method to accelerate the convergence has been implemented. The Lipkin-Nogami method to treat pairing correlations has been implemented. The exact Coulomb exchange term has been implemented. Several utility options have been implemented. Three insignificant errors have been corrected. Restrictions: The main restriction is the CPU time required for calculations of heavy deformed nuclei and for a given precision required. Unusual features: The user must have access to an implementation of the BLAS (Basic Linear Algebra Subroutines), the NAGLIB subroutine F02AXE, or LAPACK subroutines ZHPEV, ZHPEVX, or ZHEEVR, which diagonalize complex Hermitian matrices, and the LINPACK subroutines ZGEDI and ZGECO, which invert arbitrary complex matrices and calculate determinants or provide another set of subroutines that can perform such a tasks. The LAPACK and LINPACK subroutines and an unoptimized version of the BLAS can be obtained from the Netlib Repository at the University of Tennessee, Knoxville: http://www.netlib.org/. Running time: One Hartree-Fock iteration for the superdeformed, rotating, parity conserving state of 15266Dy86 takes about six seconds on the AMD-Athlon 1600+ processor. Starting from the Woods-Saxon wave functions, about fifty iterations are required to obtain the energy converged within the precision of about 0.1 keV. In the case where every value of the angular velocity is converged separately, the complete superdeformed band with precisely determined dynamical moments J (2) can be obtained in forty minutes of CPU time on the AMD-Athlon 1600+ processor. This time can be often reduced by a factor of three when a self-consistent solution for a given rotational frequency is used as a starting point for a neighboring rotational frequency. References: J. Dobaczewski, J. Dudek, Comput. Phys. Commun. 102 (1997) 166.

  19. A pragmatic cluster randomised trial evaluating three implementation interventions

    PubMed Central

    2012-01-01

    Background Implementation research is concerned with bridging the gap between evidence and practice through the study of methods to promote the uptake of research into routine practice. Good quality evidence has been summarised into guideline recommendations to show that peri-operative fasting times could be considerably shorter than patients currently experience. The objective of this trial was to evaluate the effectiveness of three strategies for the implementation of recommendations about peri-operative fasting. Methods A pragmatic cluster randomised trial underpinned by the PARIHS framework was conducted during 2006 to 2009 with a national sample of UK hospitals using time series with mixed methods process evaluation and cost analysis. Hospitals were randomised to one of three interventions: standard dissemination (SD) of a guideline package, SD plus a web-based resource championed by an opinion leader, and SD plus plan-do-study-act (PDSA). The primary outcome was duration of fluid fast prior to induction of anaesthesia. Secondary outcomes included duration of food fast, patients’ experiences, and stakeholders’ experiences of implementation, including influences. ANOVA was used to test differences over time and interventions. Results Nineteen acute NHS hospitals participated. Across timepoints, 3,505 duration of fasting observations were recorded. No significant effect of the interventions was observed for either fluid or food fasting times. The effect size was 0.33 for the web-based intervention compared to SD alone for the change in fluid fasting and was 0.12 for PDSA compared to SD alone. The process evaluation showed different types of impact, including changes to practices, policies, and attitudes. A rich picture of the implementation challenges emerged, including inter-professional tensions and a lack of clarity for decision-making authority and responsibility. Conclusions This was a large, complex study and one of the first national randomised controlled trials conducted within acute care in implementation research. The evidence base for fasting practice was accepted by those participating in this study and the messages from it simple; however, implementation and practical challenges influenced the interventions’ impact. A set of conditions for implementation emerges from the findings of this study, which are presented as theoretically transferable propositions that have international relevance. Trial registration ISRCTN18046709 - Peri-operative Implementation Study Evaluation (POISE). PMID:22935241

  20. Browndye: A software package for Brownian dynamics

    NASA Astrophysics Data System (ADS)

    Huber, Gary A.; McCammon, J. Andrew

    2010-11-01

    A new software package, Browndye, is presented for simulating the diffusional encounter of two large biological molecules. It can be used to estimate second-order rate constants and encounter probabilities, and to explore reaction trajectories. Browndye builds upon previous knowledge and algorithms from software packages such as UHBD, SDA, and Macrodox, while implementing algorithms that scale to larger systems. Program summaryProgram title: Browndye Catalogue identifier: AEGT_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGT_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: MIT license, included in distribution No. of lines in distributed program, including test data, etc.: 143 618 No. of bytes in distributed program, including test data, etc.: 1 067 861 Distribution format: tar.gz Programming language: C++, OCaml ( http://caml.inria.fr/) Computer: PC, Workstation, Cluster Operating system: Linux Has the code been vectorised or parallelized?: Yes. Runs on multiple processors with shared memory using pthreads RAM: Depends linearly on size of physical system Classification: 3 External routines: uses the output of APBS [1] ( http://www.poissonboltzmann.org/apbs/) as input. APBS must be obtained and installed separately. Expat 2.0.1, CLAPACK, ocaml-expat, Mersenne Twister. These are included in the Browndye distribution. Nature of problem: Exploration and determination of rate constants of bimolecular interactions involving large biological molecules. Solution method: Brownian dynamics with electrostatic, excluded volume, van der Waals, and desolvation forces. Running time: Depends linearly on size of physical system and quadratically on precision of results. The included example executes in a few minutes.

  1. Implementing large scale fast track diagnostics in a comprehensive cancer center, pre- and post-measurement data.

    PubMed

    van Harten, W H; Goedbloed, N; Boekhout, A H; Heintzbergen, S

    2018-02-07

    In general, patients with a cancer suspicion visit the hospital multiple times before diagnosis is completed. Using various "operations management" techniques a few fast track diagnostic services were implemented in the Netherlands Cancer Institute (NKI) in 2006. Growing patient numbers and increasing process complexity, led to diminished service levels. To decrease the amount of patient visits and to extend these services beyond the (obvious) breast cancer services, fast track diagnostics is now implemented for all 18 cancer types that present with a frequency of minimally one per week. The throughput time (first visit to diagnosis conversation) was measured before, and after implementation of fast track diagnostics. The process was redesigned closely involving the multidisciplinary teams. In an eclectic approach elements from lean management, theory of constraints and mathematical analysis were used to organize slots per tumor type for MRI, CT, PET and echography. A post measurement was performed after 3 and 6 months. In pre measurement access time was calculated to be 10 to 15 workdays, mean throughput time was 6.0 workdays. It proved possible to design the process of 18 tumors as a fast track, of which 7 as "one stop shop" (diagnosis completed in one visit). Involvement of clinical- and board leadership, massive communication efforts and commitment of physicians to reschedule their work proved decisive. After 3 and 6 months of implementation, the mean access time was 8.2 and 8.7 workdays respectively and mean throughput time was 3.4 and 3.3 workdays respectively. Throughput- and access time were considerably shortened after implementation of fast track diagnostics for 18 cancer types. The involvement of physicians in reorganizing their work and rapid responding to their needs during the implementation phase were a crucial success factor.

  2. Preoperative fasting among burns patients in an acute care setting: a best practice implementation project.

    PubMed

    Giuliani, Sara; McArthur, Alexa; Greenwood, John

    2015-11-01

    Major burn injury patients commonly fast preoperatively before multiple surgical procedures. The Societies of Anesthesiology in Europe and the United States recommend fasting from clear fluids for two hours and solids for six to eight hours preoperatively. However, at the Royal Adelaide Hospital, patients often fast from midnight proceeding the day of surgery. This project aims to promote evidence-based practice to minimize extended preoperative fasting in major burn patients. A baseline audit was conducted measuring the percentage compliance with audit criteria, specifically on preoperative fasting documentation and appropriate instructions in line with evidence-based guidelines. Strategies were then implemented to address areas of non-compliance, which included staff education, development of documentation tools and completion of a perioperative feeding protocol for major burn patients. Following this, a post implementation audit assessed the extent of change compared with the baseline audit results. Education on evidence-based fasting guidelines was delivered to 54% of staff. This resulted in a 19% improvement in compliance with fasting documentation and a 52% increase in adherence to appropriate evidence-based instructions. There was a notable shift from the most common fasting instruction being "fast from midnight" to "fast from 03:00 hours", with an overall four-hour reduction in fasting per theater admission. These results demonstrate that education improves compliance with documentation and preoperative fasting that is more reflective of evidence-based practice. Collaboration with key stakeholders and a hospital wide fasting protocol is warranted to sustain change and further advance compliance with evidence-based practice at an organizational level.

  3. General purpose pulse shape analysis for fast scintillators implemented in digital readout electronics

    NASA Astrophysics Data System (ADS)

    Asztalos, Stephen J.; Hennig, Wolfgang; Warburton, William K.

    2016-01-01

    Pulse shape discrimination applied to certain fast scintillators is usually performed offline. In sufficiently high-event rate environments data transfer and storage become problematic, which suggests a different analysis approach. In response, we have implemented a general purpose pulse shape analysis algorithm in the XIA Pixie-500 and Pixie-500 Express digital spectrometers. In this implementation waveforms are processed in real time, reducing the pulse characteristics to a few pulse shape analysis parameters and eliminating time-consuming waveform transfer and storage. We discuss implementation of these features, their advantages, necessary trade-offs and performance. Measurements from bench top and experimental setups using fast scintillators and XIA processors are presented.

  4. [Reduced preoperative fasting periods. Current status after a survey of patients and colleagues].

    PubMed

    Breuer, J-P; Bosse, G; Prochnow, L; Seifert, S; Langelotz, C; Wassilew, G; Francois-Kettner, H; Polze, N; Spies, C

    2010-07-01

    Since October 2004 German Anaesthesiology Societies have officially recommended a decreased fasting period of 2 h for clear fluids and 6 h for solid food before elective surgery. A survey of patients and health care workers was carried out in our university clinic to assess the implementation of the new fasting recommendations. Surgical patients (n=865) as well as physicians and nurses specialized in anaesthesia and surgery (n=2,355) were invited to complete a written questionnaire. The survey inquired about prescribed and practiced duration of fasting, attitudes towards reduced preoperative fasting and knowledge of the new guidelines. Data from 784 patients (91%) and 557 health care workers (24%) were analysed. Patients reported mean fasting times of 10+/-5 h for fluids and 15+/-4 h for solid food. Of the patients 52% and 16% would have preferred to drink and eat before surgery, respectively and 10% were informed about the new recommendations of shorter preoperative fluid and solid fasting. Such patients reported significantly reduced fasting times for fluids compared with those who were recommended to fast for the traditional longer periods (8+/-6 versus 12+/-4 h, p<0.001). Preoperative fasting advice remembered by the patients significantly differed from the prescribed recommendations (2 h fluid fasting, 22 versus 53%, p<0.001). Anaesthesiologists were significantly more knowledgeable of the new guidelines (90 versus 32-42%, p<0.001) and significantly more willing to recommend the new short preoperative fasting times (75 versus 15-19%, p<0.001) than other health care workers. Of all health care workers 82% and 32% reported patients' frequent desire to drink and eat before surgery, respectively, 92% considered reduced preoperative fasting to be positive, 76% feared increased risks for patients and 42% expected a decreased flexibility in their daily work. The current guidelines for preoperative fasting have not been widely implemented. Besides a knowledge discrepancy, remarkable concerns remain regarding higher risk for patients which may be important barriers to implementation. Nevertheless, health care workers are aware of patients' desire for shorter preoperative fasting. If the new guidelines are recommended patients will make use of them. Further training of staff and adequate implementation tools are needed.

  5. CubiCal: Suite for fast radio interferometric calibration

    NASA Astrophysics Data System (ADS)

    Kenyon, J. S.; Smirnov, O. M.; Grobler, T. L.; Perkins, S. J.

    2018-05-01

    CubiCal implements several accelerated gain solvers which exploit complex optimization for fast radio interferometric gain calibration. The code can be used for both direction-independent and direction-dependent self-calibration. CubiCal is implemented in Python and Cython, and multiprocessing is fully supported.

  6. Full particle simulations of quasi-perpendicular shocks

    NASA Astrophysics Data System (ADS)

    Lembège, B.

    This tutorial-style review is dedicated to the different strategies and constraints used for analysing the dynamics of a collisionless shocks with full particle simulations. Main results obtained with such simulations can be found in published materials (recent references are provided in this text); these will be only quoted herein in order to illustrate a few aspects of these simulations. Thanks to the large improvement of super computers, full particle simulations reveal to be quite helpful for analyzing in details the dynamics of collisionless shocks. The main characteristics of such codes can be shortly reminded as follows: one resolves the full set of Poisson and Maxwell's equations without any approximation. Two approaches are commonly used for resolving this equation's set, more precisely the space derivatives: (i) the finite difference approach and (ii) the use of FFT's (Fast Fourier Transform). Two advantages of approach (ii) are that FFT's are highly optimized in supercomputers libraries, and these allow to separate all fields components into two groups: the longitudinal electrostatic component El (solution of Poisson equation) and the transverse electromagnetic components Et and Bt solutions of the Maxwell's equations (so called "fields pusher"). Such a separation is quite helpful in the post processing stage necessary for the data analysis, as will be explained in the presentation. both ions and electrons populations are treated as individual finite-size particles and suffer the effects of all fields via the Lorentz force, so called "particle pusher", which is applied to each particle. Because of the large number of particles commonly used, the particle pusher represents the most expensive part of the calculations on which most efforts of optimisation needs to be performed (in terms of "vectorisation" or of "parallelism"). Relativistic effects may be included in this force via the use of particle momemtum. Each particle has three velocity components (vx, vy, vz), but may have 1, 2 or 3 space coordinates (x, y, z) according to the dimension of the code of concern.

  7. Implementation speed of deterministic population passages compared to that of Rabi pulses

    NASA Astrophysics Data System (ADS)

    Chen, Jingwei; Wei, L. F.

    2015-02-01

    Fast Rabi π -pulse technique has been widely applied to various coherent quantum manipulations, although it requires precise designs of the pulse areas. Relaxing the precise pulse designs, various rapid adiabatic passage (RAP) approaches have been alternatively utilized to implement various population passages deterministically. However, the usual RAP protocol could not be implemented desirably fast, as the relevant adiabatic condition should be robustly satisfied during the passage. Here, we propose a modified shortcut to adiabaticity (STA) technique to accelerate significantly the desired deterministic quantum state population passages. This transitionless technique is beyond the usual rotating wave approximation (RWA) performed in the recent STA protocols, and thus can be applied to deliver various fast quantum evolutions wherein the relevant counter-rotating effects cannot be neglected. The proposal is demonstrated specifically with the driven two- and three-level systems. Numerical results show that with the present STA technique beyond the RWA the usual Stark-chirped RAPs and stimulated Raman adiabatic passages could be significantly speeded up; the deterministic population passages could be implemented as fast as the widely used fast Rabi π pulses, but are insensitive to the applied pulse areas.

  8. FastMag: Fast micromagnetic simulator for complex magnetic structures (invited)

    NASA Astrophysics Data System (ADS)

    Chang, R.; Li, S.; Lubarda, M. V.; Livshitz, B.; Lomakin, V.

    2011-04-01

    A fast micromagnetic simulator (FastMag) for general problems is presented. FastMag solves the Landau-Lifshitz-Gilbert equation and can handle multiscale problems with a high computational efficiency. The simulator derives its high performance from efficient methods for evaluating the effective field and from implementations on massively parallel graphics processing unit (GPU) architectures. FastMag discretizes the computational domain into tetrahedral elements and therefore is highly flexible for general problems. The magnetostatic field is computed via the superposition principle for both volume and surface parts of the computational domain. This is accomplished by implementing efficient quadrature rules and analytical integration for overlapping elements in which the integral kernel is singular. Thus, discretized superposition integrals are computed using a nonuniform grid interpolation method, which evaluates the field from N sources at N collocated observers in O(N) operations. This approach allows handling objects of arbitrary shape, allows easily calculating of the field outside the magnetized domains, does not require solving a linear system of equations, and requires little memory. FastMag is implemented on GPUs with ?> GPU-central processing unit speed-ups of 2 orders of magnitude. Simulations are shown of a large array of magnetic dots and a recording head fully discretized down to the exchange length, with over a hundred million tetrahedral elements on an inexpensive desktop computer.

  9. Evaluation of implementation of fasting guidelines for enterally fed critical care patients.

    PubMed

    Jenkins, Bethan; Calder, Philip C; Marino, Luise V

    2018-02-15

    Critically ill adults have increased nutrition risk. Prior to procedures patients are often fasted, leading to nutritional deficits. The use of fasting guidelines may therefore help reduce deficits from accumulating. The aim of this work was to determine the impact on nutrition support delivery following the implementation of fasting guidelines in addition to characterizing staff knowledge of the guidelines. Retrospective data were collected on n = 74 patients at two different time points; prior to launch of fasting guidelines and post launch, with regards to estimated nutritional requirements, nutritional targets, volume of enteral nutrition (EN) delivered and periods of fasting. Clinical variables of interest were collected for up to 14 days. Questionnaires assessing staff knowledge/barriers to usage of the fasting guidelines were administered to ICU staff. 3 ICUs (General, Cardiac and Neurosciences) within University Hospital Southampton NHS Foundation Trust. Mechanically ventilated adults in an ICU and receiving exclusive EN. Comparison was made between pre- and post-guideline implementation with statistically significant improvements in the % EN delivered (76.4 ± 11.8 vs. 84.1 ± 10.8 (p = 0.0009)) and duration of feeds withheld (41.5 ± 26.6 vs. 27.6 ± 20.8 h (p = 0.02)). There were non-significant improvements pre- and post-implementation in the % of energy and protein delivered (80.7 ± 16.4 vs. 86.5 ± 17.3 (p = 0.15 (NS)); 74 ± 18.3 vs. 79 ± 18.5 (p = 0.15 (NS))). 77% of staff were familiar with the guidelines, whilst 42% requested further education. The main barriers to guideline compliance were delays and unpredictable timing of procedures, and differing guidance from senior staff and non-ICU teams. Implementation of fasting guidelines led to significant improvements in EN delivery and reduced duration of feed breaks. The use of fasting guidelines is a positive step towards increasing nutrition delivery in the ICU. Further staff education and better planning around procedures is required to promote further adherence to the fasting guidelines. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Multitasking domain decomposition fast Poisson solvers on the Cray Y-MP

    NASA Technical Reports Server (NTRS)

    Chan, Tony F.; Fatoohi, Rod A.

    1990-01-01

    The results of multitasking implementation of a domain decomposition fast Poisson solver on eight processors of the Cray Y-MP are presented. The object of this research is to study the performance of domain decomposition methods on a Cray supercomputer and to analyze the performance of different multitasking techniques using highly parallel algorithms. Two implementations of multitasking are considered: macrotasking (parallelism at the subroutine level) and microtasking (parallelism at the do-loop level). A conventional FFT-based fast Poisson solver is also multitasked. The results of different implementations are compared and analyzed. A speedup of over 7.4 on the Cray Y-MP running in a dedicated environment is achieved for all cases.

  11. FAST-PT: a novel algorithm to calculate convolution integrals in cosmological perturbation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McEwen, Joseph E.; Fang, Xiao; Hirata, Christopher M.

    2016-09-01

    We present a novel algorithm, FAST-PT, for performing convolution or mode-coupling integrals that appear in nonlinear cosmological perturbation theory. The algorithm uses several properties of gravitational structure formation—the locality of the dark matter equations and the scale invariance of the problem—as well as Fast Fourier Transforms to describe the input power spectrum as a superposition of power laws. This yields extremely fast performance, enabling mode-coupling integral computations fast enough to embed in Monte Carlo Markov Chain parameter estimation. We describe the algorithm and demonstrate its application to calculating nonlinear corrections to the matter power spectrum, including one-loop standard perturbation theorymore » and the renormalization group approach. We also describe our public code (in Python) to implement this algorithm. The code, along with a user manual and example implementations, is available at https://github.com/JoeMcEwen/FAST-PT.« less

  12. Practice Guideline Recommendations on Perioperative Fasting: A Systematic Review.

    PubMed

    Lambert, Eva; Carey, Sharon

    2016-11-01

    Traditionally, perioperative fasting consisted of being nil by mouth (NBM) from midnight before surgery and fasting postoperatively until recovery of bowel function. These outdated practices persist despite emerging evidence revealing that excessive fasting results in negative outcomes and delayed recovery. Various evidence-based, multimodal, enhanced recovery protocols incorporating minimized perioperative fasting have arisen to improve patient outcomes and streamline recovery, but implementation remains limited. This article aims to review current fasting guidelines, assess their quality, summarize relevant recommendations, and identify gaps in evidence. A systematic literature search of Medline and CINAHL and a manual search of relevant websites identified guidelines containing suitable grading systems and fasting recommendations. Guideline quality was assessed using the Appraisal of Guidelines Research and Evaluation (AGREE) tool. Grading systems were standardized to the American Society for Parenteral and Enteral Nutrition format and recommendations summarized based on grading and guideline quality. Nineteen guidelines were included. Rigor of development scores ranged from 29%-95%, with only 8 guidelines explicitly declaring the use of systematic methodology. Applicability scores were lowest, averaging 32%. Ten recommendation types were extracted and summarized. Strong and consistent evidence exists for the minimization of perioperative fasting, for a 2-hour preoperative fast after clear fluids, and for early recommencement of oral food and fluid intake postoperatively. This article presents several high-level recommendations ready for immediate implementation, while poorly graded and inconsistent recommendations reveal key areas for future research. Meanwhile, guideline quality requires improvement, especially regarding rigor of development and applicability, through systematic methodology, reporting transparency, and implementation strategies. © 2015 American Society for Parenteral and Enteral Nutrition.

  13. Cardiac surgery fast-track treatment in a postanesthetic care unit: six-month results of the Leipzig fast-track concept.

    PubMed

    Ender, Joerg; Borger, Michael Andrew; Scholz, Markus; Funkat, Anne-Kathrin; Anwar, Nadeem; Sommer, Marcus; Mohr, Friedrich Wilhelm; Fassl, Jens

    2008-07-01

    The authors compared the safety and efficacy of a newly developed fast-track concept at their center, including implementation of a direct admission postanesthetic care unit, to standard perioperative management. All fast-track patients treated within the first 6 months of implementation of our direct admission postanesthetic care unit were matched via propensity scores and compared with a historical control group of patients who underwent cardiac surgery prior to fast-track implementation. A total of 421 fast-track patients were matched successfully to 421 control patients. The two groups of patients had a similar age (64 +/- 13 vs. 64 +/- 12 yr for fast-track vs. control, P = 0.45) and European System for Cardiac Operative Risk Evaluation-predicted risk of mortality (4.8 +/- 6.1% vs. 4.6 +/- 5.1%, P = 0.97). Fast-track patients had significantly shorter times to extubation (75 min [45-110] vs. 900 min [600-1140]), as well as shorter lengths of stay in the postanesthetic or intensive care unit (4 h [3.0-5] vs. 20 h [16-25]), intermediate care unit (21 h [17-39] vs. 26 h [19-49]), and hospital (10 days [8-12] vs. 11 days [9-14]) (expressed as median and interquartile range, all P < 0.01). Fast-track patients also had a lower risk of postoperative low cardiac output syndrome (0.5% vs. 2.9%, P < 0.05) and mortality (0.5% vs. 3.3%, P < 0.01). The Leipzig fast-track protocol is a safe and effective method to manage cardiac surgery patients after a variety of operations.

  14. Application of simplified Complexity Theory concepts for healthcare social systems to explain the implementation of evidence into practice.

    PubMed

    Chandler, Jacqueline; Rycroft-Malone, Jo; Hawkes, Claire; Noyes, Jane

    2016-02-01

    To examine the application of core concepts from Complexity Theory to explain the findings from a process evaluation undertaken in a trial evaluating implementation strategies for recommendations about reducing surgical fasting times. The proliferation of evidence-based guidance requires a greater focus on its implementation. Theory is required to explain the complex processes across the multiple healthcare organizational levels. This social healthcare context involves the interaction between professionals, patients and the organizational systems in care delivery. Complexity Theory may provide an explanatory framework to explain the complexities inherent in implementation in social healthcare contexts. A secondary thematic analysis of qualitative process evaluation data informed by Complexity Theory. Seminal texts applying Complexity Theory to the social context were annotated, key concepts extracted and core Complexity Theory concepts identified. These core concepts were applied as a theoretical lens to provide an explanation of themes from a process evaluation of a trial evaluating the implementation of strategies to reduce surgical fasting times. Sampled substantive texts provided a representative spread of theoretical development and application of Complexity Theory from late 1990's-2013 in social science, healthcare, management and philosophy. Five Complexity Theory core concepts extracted were 'self-organization', 'interaction', 'emergence', 'system history' and 'temporality'. Application of these concepts suggests routine surgical fasting practice is habituated in the social healthcare system and therefore it cannot easily be reversed. A reduction to fasting times requires an incentivised new approach to emerge in the surgical system's priority of completing the operating list. The application of Complexity Theory provides a useful explanation for resistance to change fasting practice. Its utility in implementation research warrants further attention and evaluation. © 2015 John Wiley & Sons Ltd.

  15. Further optimization of SeDDaRA blind image deconvolution algorithm and its DSP implementation

    NASA Astrophysics Data System (ADS)

    Wen, Bo; Zhang, Qiheng; Zhang, Jianlin

    2011-11-01

    Efficient algorithm for blind image deconvolution and its high-speed implementation is of great value in practice. Further optimization of SeDDaRA is developed, from algorithm structure to numerical calculation methods. The main optimization covers that, the structure's modularization for good implementation feasibility, reducing the data computation and dependency of 2D-FFT/IFFT, and acceleration of power operation by segmented look-up table. Then the Fast SeDDaRA is proposed and specialized for low complexity. As the final implementation, a hardware system of image restoration is conducted by using the multi-DSP parallel processing. Experimental results show that, the processing time and memory demand of Fast SeDDaRA decreases 50% at least; the data throughput of image restoration system is over 7.8Msps. The optimization is proved efficient and feasible, and the Fast SeDDaRA is able to support the real-time application.

  16. FAST (Faceted Application of Subject Terminology) Users: Summary and Case Studies

    ERIC Educational Resources Information Center

    Mixter, Jeffrey; Childress, Eric R.

    2013-01-01

    Over the past ten years, various organizations, both public and private, have expressed interest in implementing the Faceted Application of Subject Terminology (FAST) in their cataloging workflows. As interest in FAST has grown, so too has interest in knowing how FAST is being used and by whom. Since 2002 eighteen institutions in six countries…

  17. Fast and Adaptive Lossless Onboard Hyperspectral Data Compression System

    NASA Technical Reports Server (NTRS)

    Aranki, Nazeeh I.; Keymeulen, Didier; Kimesh, Matthew A.

    2012-01-01

    Modern hyperspectral imaging systems are able to acquire far more data than can be downlinked from a spacecraft. Onboard data compression helps to alleviate this problem, but requires a system capable of power efficiency and high throughput. Software solutions have limited throughput performance and are power-hungry. Dedicated hardware solutions can provide both high throughput and power efficiency, while taking the load off of the main processor. Thus a hardware compression system was developed. The implementation uses a field-programmable gate array (FPGA). The implementation is based on the fast lossless (FL) compression algorithm reported in Fast Lossless Compression of Multispectral-Image Data (NPO-42517), NASA Tech Briefs, Vol. 30, No. 8 (August 2006), page 26, which achieves excellent compression performance and has low complexity. This algorithm performs predictive compression using an adaptive filtering method, and uses adaptive Golomb coding. The implementation also packetizes the coded data. The FL algorithm is well suited for implementation in hardware. In the FPGA implementation, one sample is compressed every clock cycle, which makes for a fast and practical realtime solution for space applications. Benefits of this implementation are: 1) The underlying algorithm achieves a combination of low complexity and compression effectiveness that exceeds that of techniques currently in use. 2) The algorithm requires no training data or other specific information about the nature of the spectral bands for a fixed instrument dynamic range. 3) Hardware acceleration provides a throughput improvement of 10 to 100 times vs. the software implementation. A prototype of the compressor is available in software, but it runs at a speed that does not meet spacecraft requirements. The hardware implementation targets the Xilinx Virtex IV FPGAs, and makes the use of this compressor practical for Earth satellites as well as beyond-Earth missions with hyperspectral instruments.

  18. A new fast algorithm for computing a complex number: Theoretic transforms

    NASA Technical Reports Server (NTRS)

    Reed, I. S.; Liu, K. Y.; Truong, T. K.

    1977-01-01

    A high-radix fast Fourier transformation (FFT) algorithm for computing transforms over GF(sq q), where q is a Mersenne prime, is developed to implement fast circular convolutions. This new algorithm requires substantially fewer multiplications than the conventional FFT.

  19. Current Barriers to Successful Implementation of FIST Principles

    DTIC Science & Technology

    2013-07-01

    risks will surface during development that could not have been predicted. Managing a thin budget with no schedule slack for these unknown-unknowns is...Fleischer » Keywords: Fast, Inexpensive, Simple, Tiny (FIST); Program Management ; Heuristics; Innovation; Oversight Current Barriers to Successful...Implementation of FIST Principles Capt Brandon Keller, USAF, and Lt Col J. Robert Wirthlin, USAF The Fast, Inexpensive, Simple, and Tiny (FIST

  20. Fast and Adaptive Lossless On-Board Hyperspectral Data Compression System for Space Applications

    NASA Technical Reports Server (NTRS)

    Aranki, Nazeeh; Bakhshi, Alireza; Keymeulen, Didier; Klimesh, Matthew

    2009-01-01

    Efficient on-board lossless hyperspectral data compression reduces the data volume necessary to meet NASA and DoD limited downlink capabilities. The techniques also improves signature extraction, object recognition and feature classification capabilities by providing exact reconstructed data on constrained downlink resources. At JPL a novel, adaptive and predictive technique for lossless compression of hyperspectral data was recently developed. This technique uses an adaptive filtering method and achieves a combination of low complexity and compression effectiveness that far exceeds state-of-the-art techniques currently in use. The JPL-developed 'Fast Lossless' algorithm requires no training data or other specific information about the nature of the spectral bands for a fixed instrument dynamic range. It is of low computational complexity and thus well-suited for implementation in hardware, which makes it practical for flight implementations of pushbroom instruments. A prototype of the compressor (and decompressor) of the algorithm is available in software, but this implementation may not meet speed and real-time requirements of some space applications. Hardware acceleration provides performance improvements of 10x-100x vs. the software implementation (about 1M samples/sec on a Pentium IV machine). This paper describes a hardware implementation of the JPL-developed 'Fast Lossless' compression algorithm on a Field Programmable Gate Array (FPGA). The FPGA implementation targets the current state of the art FPGAs (Xilinx Virtex IV and V families) and compresses one sample every clock cycle to provide a fast and practical real-time solution for Space applications.

  1. A fast template periodogram

    NASA Astrophysics Data System (ADS)

    Hoffman, John; VanderPlas, Jake; Hartman, Joel; Bakos, Gáspár

    2017-09-01

    This proceedings contribution presents a novel, non-linear extension to the Lomb-Scargle periodogram that allows periodograms to be generated for arbitrary signal shapes. Such periodograms are already known as "template periodograms" or "periodic matched filters," but current implementations are computationally inefficient. The "fast template periodogram" presented here improves existing techniques by a factor of ˜a few for small test cases (O(10) observations), and over three orders of magnitude for lightcurves containing O(104) observations. The fast template periodogram scales asymptotically as O(HNf log HNf + H4Nf), where H denotes the number of harmonics required to adequately approximate the template and Nf is the number of trial frequencies. Existing implementations scale as O(NobsNf), where Nobs is the number of observations in the lightcurve. An open source Python implementation is available on GitHub.

  2. Methods for performing fast discrete curvelet transforms of data

    DOEpatents

    Candes, Emmanuel; Donoho, David; Demanet, Laurent

    2010-11-23

    Fast digital implementations of the second generation curvelet transform for use in data processing are disclosed. One such digital transformation is based on unequally-spaced fast Fourier transforms (USFFT) while another is based on the wrapping of specially selected Fourier samples. Both digital transformations return a table of digital curvelet coefficients indexed by a scale parameter, an orientation parameter, and a spatial location parameter. Both implementations are fast in the sense that they run in about O(n.sup.2 log n) flops for n by n Cartesian arrays or about O(N log N) flops for Cartesian arrays of size N=n.sup.3; in addition, they are also invertible, with rapid inversion algorithms of about the same complexity.

  3. Simulation of the space station information system in Ada

    NASA Technical Reports Server (NTRS)

    Spiegel, James R.

    1986-01-01

    The Flexible Ada Simulation Tool (FAST) is a discrete event simulation language which is written in Ada. FAST has been used to simulate a number of options for ground data distribution of Space Station payload data. The fact that Ada language is used for implementation has allowed a number of useful interactive features to be built into FAST and has facilitated quick enhancement of its capabilities to support new modeling requirements. General simulation concepts are discussed, and how these concepts are implemented in FAST. The FAST design is discussed, and it is pointed out how the used of the Ada language enabled the development of some significant advantages over classical FORTRAN based simulation languages. The advantages discussed are in the areas of efficiency, ease of debugging, and ease of integrating user code. The specific Ada language features which enable these advances are discussed.

  4. Fast Solvers for Moving Material Interfaces

    DTIC Science & Technology

    2008-01-01

    interface method—with the semi-Lagrangian contouring method developed in References [16–20]. We are now finalizing portable C / C ++ codes for fast adaptive ...stepping scheme couples a CIR predictor with a trapezoidal corrector using the velocity evaluated from the CIR approximation. It combines the...formula with efficient geometric algorithms and fast accurate contouring techniques. A modular adaptive implementation with fast new geometry modules

  5. A fast finite-difference algorithm for topology optimization of permanent magnets

    NASA Astrophysics Data System (ADS)

    Abert, Claas; Huber, Christian; Bruckner, Florian; Vogler, Christoph; Wautischer, Gregor; Suess, Dieter

    2017-09-01

    We present a finite-difference method for the topology optimization of permanent magnets that is based on the fast-Fourier-transform (FFT) accelerated computation of the stray-field. The presented method employs the density approach for topology optimization and uses an adjoint method for the gradient computation. Comparison to various state-of-the-art finite-element implementations shows a superior performance and accuracy. Moreover, the presented method is very flexible and easy to implement due to various preexisting FFT stray-field implementations that can be used.

  6. The availability and accessibility of nutrition information in fast food outlets in five states post-menu labelling legislation in New South Wales.

    PubMed

    Wellard, Lyndal; Havill, Michelle; Hughes, Clare; Watson, Wendy L; Chapman, Kathy

    2015-12-01

    1) Explore the availability and accessibility of fast food energy and nutrient information post-NSW menu labelling legislation in states with and without menu labelling legislation. 2) Determine whether availability and accessibility differed compared with pre-menu labelling legislation in NSW. We visited 210 outlets of the five largest fast food chains in five Australian states to observe the availability and accessibility of energy and nutrient information. Results were compared with 197 outlets surveyed pre-menu labelling. Most outlets (95%) provided energy values, half provided nutrient values and 3% provided information for all menu items. The total amount of information available increased post-NSW menu labelling implementation (473 versus 178 pre-implementation, p<0.001); however, fewer outlets provided nutrient values (26% versus 97% pre-implementation, p<0.001). Fast food chains surveyed had voluntarily introduced menu labelling nationally. However, more nutrient information was available in-store in 2010, showing that fast food chains are able to provide comprehensive nutrition information, yet they have stopped doing so. Menu labelling legislation should compel fast food chains to provide accessible nutrition information including nutrient values in addition to energy for all menu items in-store. Additionally, public education campaigns are needed to ensure customers can use menu labelling. © 2015 Public Health Association of Australia.

  7. An Efficient Pipeline Wavefront Phase Recovery for the CAFADIS Camera for Extremely Large Telescopes

    PubMed Central

    Magdaleno, Eduardo; Rodríguez, Manuel; Rodríguez-Ramos, José Manuel

    2010-01-01

    In this paper we show a fast, specialized hardware implementation of the wavefront phase recovery algorithm using the CAFADIS camera. The CAFADIS camera is a new plenoptic sensor patented by the Universidad de La Laguna (Canary Islands, Spain): international patent PCT/ES2007/000046 (WIPO publication number WO/2007/082975). It can simultaneously measure the wavefront phase and the distance to the light source in a real-time process. The pipeline algorithm is implemented using Field Programmable Gate Arrays (FPGA). These devices present architecture capable of handling the sensor output stream using a massively parallel approach and they are efficient enough to resolve several Adaptive Optics (AO) problems in Extremely Large Telescopes (ELTs) in terms of processing time requirements. The FPGA implementation of the wavefront phase recovery algorithm using the CAFADIS camera is based on the very fast computation of two dimensional fast Fourier Transforms (FFTs). Thus we have carried out a comparison between our very novel FPGA 2D-FFTa and other implementations. PMID:22315523

  8. An efficient pipeline wavefront phase recovery for the CAFADIS camera for extremely large telescopes.

    PubMed

    Magdaleno, Eduardo; Rodríguez, Manuel; Rodríguez-Ramos, José Manuel

    2010-01-01

    In this paper we show a fast, specialized hardware implementation of the wavefront phase recovery algorithm using the CAFADIS camera. The CAFADIS camera is a new plenoptic sensor patented by the Universidad de La Laguna (Canary Islands, Spain): international patent PCT/ES2007/000046 (WIPO publication number WO/2007/082975). It can simultaneously measure the wavefront phase and the distance to the light source in a real-time process. The pipeline algorithm is implemented using Field Programmable Gate Arrays (FPGA). These devices present architecture capable of handling the sensor output stream using a massively parallel approach and they are efficient enough to resolve several Adaptive Optics (AO) problems in Extremely Large Telescopes (ELTs) in terms of processing time requirements. The FPGA implementation of the wavefront phase recovery algorithm using the CAFADIS camera is based on the very fast computation of two dimensional fast Fourier Transforms (FFTs). Thus we have carried out a comparison between our very novel FPGA 2D-FFTa and other implementations.

  9. Intermittent fasting: A “new” historical strategy for controlling seizures?

    PubMed Central

    Hartman, Adam L.; Rubenstein, James E.; Kossoff, Eric H.

    2013-01-01

    Summary In antiquity, fasting was a treatment for epilepsy and a rationale for the ketogenic diet (KD). Preclinical data indicate the KD and intermittent fasting do not share identical anticonvulsant mechanisms. We implemented an intermittent fasting regimen in six children with an incomplete response to a KD. Three patients adhered to the combined intermittent fasting/KD regimen for 2 months and four had transient improvement in seizure control, albeit with some hunger-related adverse reactions. PMID:23206889

  10. Overview of implementation of DARPA GPU program in SAIC

    NASA Astrophysics Data System (ADS)

    Braunreiter, Dennis; Furtek, Jeremy; Chen, Hai-Wen; Healy, Dennis

    2008-04-01

    This paper reviews the implementation of DARPA MTO STAP-BOY program for both Phase I and II conducted at Science Applications International Corporation (SAIC). The STAP-BOY program conducts fast covariance factorization and tuning techniques for space-time adaptive process (STAP) Algorithm Implementation on Graphics Processor unit (GPU) Architectures for Embedded Systems. The first part of our presentation on the DARPA STAP-BOY program will focus on GPU implementation and algorithm innovations for a prototype radar STAP algorithm. The STAP algorithm will be implemented on the GPU, using stream programming (from companies such as PeakStream, ATI Technologies' CTM, and NVIDIA) and traditional graphics APIs. This algorithm will include fast range adaptive STAP weight updates and beamforming applications, each of which has been modified to exploit the parallel nature of graphics architectures.

  11. Implementing a Cancer Fast-track Programme between primary and specialised care in Catalonia (Spain): a mixed methods study

    PubMed Central

    Prades, J; Espinàs, J A; Font, R; Argimon, J M; Borràs, J M

    2011-01-01

    Background: The Cancer Fast-track Programme's aim was to reduce the time that elapsed between well-founded suspicion of breast, colorectal and lung cancer and the start of initial treatment in Catalonia (Spain). We sought to analyse its implementation and overall effectiveness. Methods: A quantitative analysis of the programme was performed using data generated by the hospitals on the basis of seven fast-track monitoring indicators for the period 2006–2009. In addition, we conducted a qualitative study, based on 83 semistructured interviews with primary and specialised health professionals and health administrators, to obtain their perception of the programme's implementation. Results: About half of all new patients with breast, lung or colorectal cancer were diagnosed via the fast track, though the cancer detection rate declined across the period. Mean time from detection of suspected cancer in primary care to start of initial treatment was 32 days for breast, 30 for colorectal and 37 for lung cancer (2009). Professionals associated with the implementation of the programme showed that general practitioners faced with suspicion of cancer had changed their conduct with the aim of preventing lags. Furthermore, hospitals were found to have pursued three specific implementation strategies (top-down, consensus-based and participatory), which made for the cohesion and sustainability of the circuits. Conclusion: The programme has contributed to speeding up diagnostic assessment and treatment of patients with suspicion of cancer, and to clarifying the patient pathway between primary and specialised care. PMID:21829194

  12. Intermittent fasting: a "new" historical strategy for controlling seizures?

    PubMed

    Hartman, Adam L; Rubenstein, James E; Kossoff, Eric H

    2013-05-01

    In antiquity, fasting was a treatment for epilepsy and a rationale for the ketogenic diet (KD). Preclinical data indicate the KD and intermittent fasting do not share identical anticonvulsant mechanisms. We implemented an intermittent fasting regimen in six children with an incomplete response to a KD. Three patients adhered to the combined intermittent fasting/KD regimen for 2 months and four had transient improvement in seizure control, albeit with some hunger-related adverse reactions. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Using single buffers and data reorganization to implement a multi-megasample fast Fourier transform

    NASA Technical Reports Server (NTRS)

    Brown, R. D.

    1992-01-01

    Data ordering in large fast Fourier transforms (FFT's) is both conceptually and implementationally difficult. Discribed here is a method of visualizing data orderings as vectors of address bits, which enables the engineer to use more efficient data orderings and reduce double-buffer memory designs. Also detailed are the difficulties and algorithmic solutions involved in FFT lengths up to 4 megasamples (Msamples) and sample rates up to 80 MHz.

  14. Fast implementation of length-adaptive privacy amplification in quantum key distribution

    NASA Astrophysics Data System (ADS)

    Zhang, Chun-Mei; Li, Mo; Huang, Jing-Zheng; Patcharapong, Treeviriyanupab; Li, Hong-Wei; Li, Fang-Yi; Wang, Chuan; Yin, Zhen-Qiang; Chen, Wei; Keattisak, Sripimanwat; Han, Zhen-Fu

    2014-09-01

    Post-processing is indispensable in quantum key distribution (QKD), which is aimed at sharing secret keys between two distant parties. It mainly consists of key reconciliation and privacy amplification, which is used for sharing the same keys and for distilling unconditional secret keys. In this paper, we focus on speeding up the privacy amplification process by choosing a simple multiplicative universal class of hash functions. By constructing an optimal multiplication algorithm based on four basic multiplication algorithms, we give a fast software implementation of length-adaptive privacy amplification. “Length-adaptive” indicates that the implementation of privacy amplification automatically adapts to different lengths of input blocks. When the lengths of the input blocks are 1 Mbit and 10 Mbit, the speed of privacy amplification can be as fast as 14.86 Mbps and 10.88 Mbps, respectively. Thus, it is practical for GHz or even higher repetition frequency QKD systems.

  15. Effect of an emergency department fast track on Press-Ganey patient satisfaction scores.

    PubMed

    Hwang, Calvin E; Lipman, Grant S; Kane, Marlena

    2015-01-01

    Mandated patient surveys have become an integral part of Medicare remuneration, putting hundreds of millions of dollars in funding at risk. The Centers for Medicare & Medicaid Services (CMS) recently announced a patient experience survey for the emergency department (ED). Development of an ED Fast Track, where lower acuity patients are rapidly seen, has been shown to improve many of the metrics that CMS examines. This is the first study examining if ED Fast Track implementation affects Press-Ganey scores of patient satisfaction. We analyzed returned Press-Ganey questionnaires from all ESI 4 and 5 patients seen 11AM - 1PM, August-December 2011 (pre-fast track), and during the identical hours of fast track, August-December 2012. Raw ordinal scores were converted to continuous scores for paired student t-test analysis. We calculated an odds ratio with 100% satisfaction considered a positive response. An academic ED with 52,000 annual visits had 140 pre-fast track and 85 fast track respondents. Implementation of a fast track significantly increased patient satisfaction with the following: wait times (68% satisfaction to 88%, OR 4.13, 95% CI [2.32-7.33]), doctor courtesy (90% to 95%, OR 1.97, 95% CI [1.04-3.73]), nurse courtesy (87% to 95%, OR 2.75, 95% CI [1.46-5.15]), pain control (79% to 87%, OR 2.13, 95% CI [1.16-3.92]), likelihood to recommend (81% to 90%, OR 2.62, 95% CI [1.42-4.83]), staff caring (82% to 91%, OR 2.82, 95% CI [1.54-5.19]), and staying informed about delays (66% to 83%, OR 3.00, 95% CI [1.65-5.44]). Implementation of an ED Fast Track more than doubled the odds of significant improvements in Press-Ganey patient satisfaction metrics and may play an important role in improving ED performance on CMS benchmarks.

  16. Hardware Implementation of Lossless Adaptive and Scalable Hyperspectral Data Compression for Space

    NASA Technical Reports Server (NTRS)

    Aranki, Nazeeh; Keymeulen, Didier; Bakhshi, Alireza; Klimesh, Matthew

    2009-01-01

    On-board lossless hyperspectral data compression reduces data volume in order to meet NASA and DoD limited downlink capabilities. The technique also improves signature extraction, object recognition and feature classification capabilities by providing exact reconstructed data on constrained downlink resources. At JPL a novel, adaptive and predictive technique for lossless compression of hyperspectral data was recently developed. This technique uses an adaptive filtering method and achieves a combination of low complexity and compression effectiveness that far exceeds state-of-the-art techniques currently in use. The JPL-developed 'Fast Lossless' algorithm requires no training data or other specific information about the nature of the spectral bands for a fixed instrument dynamic range. It is of low computational complexity and thus well-suited for implementation in hardware. A modified form of the algorithm that is better suited for data from pushbroom instruments is generally appropriate for flight implementation. A scalable field programmable gate array (FPGA) hardware implementation was developed. The FPGA implementation achieves a throughput performance of 58 Msamples/sec, which can be increased to over 100 Msamples/sec in a parallel implementation that uses twice the hardware resources This paper describes the hardware implementation of the 'Modified Fast Lossless' compression algorithm on an FPGA. The FPGA implementation targets the current state-of-the-art FPGAs (Xilinx Virtex IV and V families) and compresses one sample every clock cycle to provide a fast and practical real-time solution for space applications.

  17. The software-defined fast post-processing for GEM soft x-ray diagnostics in the Tungsten Environment in Steady-state Tokamak thermal fusion reactor

    NASA Astrophysics Data System (ADS)

    Krawczyk, Rafał Dominik; Czarski, Tomasz; Linczuk, Paweł; Wojeński, Andrzej; Kolasiński, Piotr; GÄ ska, Michał; Chernyshova, Maryna; Mazon, Didier; Jardin, Axel; Malard, Philippe; Poźniak, Krzysztof; Kasprowicz, Grzegorz; Zabołotny, Wojciech; Kowalska-Strzeciwilk, Ewa; Malinowski, Karol

    2018-06-01

    This article presents a novel software-defined server-based solutions that were introduced in the fast, real-time computation systems for soft X-ray diagnostics for the WEST (Tungsten Environment in Steady-state Tokamak) reactor in Cadarache, France. The objective of the research was to provide a fast processing of data at high throughput and with low latencies for investigating the interplay between the particle transport and magnetohydrodynamic activity. The long-term objective is to implement in the future a fast feedback signal in the reactor control mechanisms to sustain the fusion reaction. The implemented electronic measurement device is anticipated to be deployed in the WEST. A standalone software-defined computation engine was designed to handle data collected at high rates in the server back-end of the system. Signals are obtained from the front-end field-programmable gate array mezzanine cards that acquire and perform a selection from the gas electron multiplier detector. A fast, authorial library for plasma diagnostics was written in C++. It originated from reference offline MATLAB implementations. They were redesigned for runtime analysis during the experiment in the novel online modes of operation. The implementation allowed the benchmarking, evaluation, and optimization of plasma processing algorithms with the possibility to check the consistency with reference computations written in MATLAB. The back-end software and hardware architecture are presented with data evaluation mechanisms. The online modes of operation for the WEST are discussed. The results concerning the performance of the processing and the introduced functionality are presented.

  18. Multi-GPU and multi-CPU accelerated FDTD scheme for vibroacoustic applications

    NASA Astrophysics Data System (ADS)

    Francés, J.; Otero, B.; Bleda, S.; Gallego, S.; Neipp, C.; Márquez, A.; Beléndez, A.

    2015-06-01

    The Finite-Difference Time-Domain (FDTD) method is applied to the analysis of vibroacoustic problems and to study the propagation of longitudinal and transversal waves in a stratified media. The potential of the scheme and the relevance of each acceleration strategy for massively computations in FDTD are demonstrated in this work. In this paper, we propose two new specific implementations of the bi-dimensional scheme of the FDTD method using multi-CPU and multi-GPU, respectively. In the first implementation, an open source message passing interface (OMPI) has been included in order to massively exploit the resources of a biprocessor station with two Intel Xeon processors. Moreover, regarding CPU code version, the streaming SIMD extensions (SSE) and also the advanced vectorial extensions (AVX) have been included with shared memory approaches that take advantage of the multi-core platforms. On the other hand, the second implementation called the multi-GPU code version is based on Peer-to-Peer communications available in CUDA on two GPUs (NVIDIA GTX 670). Subsequently, this paper presents an accurate analysis of the influence of the different code versions including shared memory approaches, vector instructions and multi-processors (both CPU and GPU) and compares them in order to delimit the degree of improvement of using distributed solutions based on multi-CPU and multi-GPU. The performance of both approaches was analysed and it has been demonstrated that the addition of shared memory schemes to CPU computing improves substantially the performance of vector instructions enlarging the simulation sizes that use efficiently the cache memory of CPUs. In this case GPU computing is slightly twice times faster than the fine tuned CPU version in both cases one and two nodes. However, for massively computations explicit vector instructions do not worth it since the memory bandwidth is the limiting factor and the performance tends to be the same than the sequential version with auto-vectorisation and also shared memory approach. In this scenario GPU computing is the best option since it provides a homogeneous behaviour. More specifically, the speedup of GPU computing achieves an upper limit of 12 for both one and two GPUs, whereas the performance reaches peak values of 80 GFlops and 146 GFlops for the performance for one GPU and two GPUs respectively. Finally, the method is applied to an earth crust profile in order to demonstrate the potential of our approach and the necessity of applying acceleration strategies in these type of applications.

  19. Enhanced recovery after surgery-Preoperative fasting and glucose loading-A review.

    PubMed

    Sarin, Ankit; Chen, Lee-Lynn; Wick, Elizabeth C

    2017-10-01

    In this review, we explore the rationale and history behind the practice of preoperative fasting in elective surgery including the gradual move toward longer fasting and the more recent change in direction of practice. Gastric emptying physiology and the metabolic effects of prolonged fasting and carbohydrate loading are examined. Most recent guidelines related to these topics are discussed and practical recommendations for implementing these guidelines are suggested. © 2017 Wiley Periodicals, Inc.

  20. Fast algorithm for computing complex number-theoretic transforms

    NASA Technical Reports Server (NTRS)

    Reed, I. S.; Liu, K. Y.; Truong, T. K.

    1977-01-01

    A high-radix FFT algorithm for computing transforms over FFT, where q is a Mersenne prime, is developed to implement fast circular convolutions. This new algorithm requires substantially fewer multiplications than the conventional FFT.

  1. Safety of a no-fast protocol for tracheotomy in critical care

    PubMed Central

    Hartl, Trevor; Anderson, Donald; Levi, Jasna

    2015-01-01

    Summary With modern anesthesia, aspiration is an exceedingly rare complication, and we have learned that a prolonged fast can result in serious adverse effects in critically ill patients. We discuss the no-fast protocol implemented at Vancouver General Hospital in 2007 for intubated, tube-fed adult patients who underwent elective open tracheotomy. PMID:25621914

  2. A Parallel Implementation of Multilevel Recursive Spectral Bisection for Application to Adaptive Unstructured Meshes. Chapter 1

    NASA Technical Reports Server (NTRS)

    Barnard, Stephen T.; Simon, Horst; Lasinski, T. A. (Technical Monitor)

    1994-01-01

    The design of a parallel implementation of multilevel recursive spectral bisection is described. The goal is to implement a code that is fast enough to enable dynamic repartitioning of adaptive meshes.

  3. Massively Parallel Solution of Poisson Equation on Coarse Grain MIMD Architectures

    NASA Technical Reports Server (NTRS)

    Fijany, A.; Weinberger, D.; Roosta, R.; Gulati, S.

    1998-01-01

    In this paper a new algorithm, designated as Fast Invariant Imbedding algorithm, for solution of Poisson equation on vector and massively parallel MIMD architectures is presented. This algorithm achieves the same optimal computational efficiency as other Fast Poisson solvers while offering a much better structure for vector and parallel implementation. Our implementation on the Intel Delta and Paragon shows that a speedup of over two orders of magnitude can be achieved even for moderate size problems.

  4. Fast concurrent array-based stacks, queues and deques using fetch-and-increment-bounded, fetch-and-decrement-bounded and store-on-twin synchronization primitives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Dong; Gara, Alana; Heidelberger, Philip

    Implementation primitives for concurrent array-based stacks, queues, double-ended queues (deques) and wrapped deques are provided. In one aspect, each element of the stack, queue, deque or wrapped deque data structure has its own ticket lock, allowing multiple threads to concurrently use multiple elements of the data structure and thus achieving high performance. In another aspect, new synchronization primitives FetchAndIncrementBounded (Counter, Bound) and FetchAndDecrementBounded (Counter, Bound) are implemented. These primitives can be implemented in hardware and thus promise a very fast throughput for queues, stacks and double-ended queues.

  5. treeman: an R package for efficient and intuitive manipulation of phylogenetic trees.

    PubMed

    Bennett, Dominic J; Sutton, Mark D; Turvey, Samuel T

    2017-01-07

    Phylogenetic trees are hierarchical structures used for representing the inter-relationships between biological entities. They are the most common tool for representing evolution and are essential to a range of fields across the life sciences. The manipulation of phylogenetic trees-in terms of adding or removing tips-is often performed by researchers not just for reasons of management but also for performing simulations in order to understand the processes of evolution. Despite this, the most common programming language among biologists, R, has few class structures well suited to these tasks. We present an R package that contains a new class, called TreeMan, for representing the phylogenetic tree. This class has a list structure allowing phylogenetic trees to be manipulated more efficiently. Computational running times are reduced because of the ready ability to vectorise and parallelise methods. Development is also improved due to fewer lines of code being required for performing manipulation processes. We present three use cases-pinning missing taxa to a supertree, simulating evolution with a tree-growth model and detecting significant phylogenetic turnover-that demonstrate the new package's speed and simplicity.

  6. 76 FR 6369 - Changes To Implement the Prioritized Examination Track (Track I) of the Enhanced Examination...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-04

    ... (Track I), providing fast examination for applicants desiring it, upon payment of the applicable fee and... examiners or supervisory patent examiners, specialized examiner training for fast track processing...

  7. Fast-track surgery: Toward comprehensive peri-operative care

    PubMed Central

    Nanavati, Aditya J.; Prabhakar, S.

    2014-01-01

    Fast-track surgery is a multimodal approach to patient care using a combination of several evidence-based peri-operative interventions to expedite recovery after surgery. It is an extension of the critical pathway that integrates modalities in surgery, anesthesia, and nutrition, enforces early mobilization and feeding, and emphasizes reduction of the surgical stress response. It entails a great partnership between a surgeon and an anesthesiologist with several other specialists to form a multi-disciplinary team, which may then engage in patient care. The practice of fast-track surgery has yielded excellent results and there has been a significant reduction in hospital stay without a rise in complications or re-admissions. The effective implementation begins with the formulation of a protocol, carrying out each intervention and gathering outcome data. The care of a patient is divided into three phases: Before, during, and after surgery. Each stage needs active participation of few or all the members of the multi-disciplinary team. Other than surgical technique, anesthetic drugs, and techniques form the cornerstone in the ability of the surgeon to carry out a fast-track surgery safely. It is also the role of this team to keep abreast with the latest development in fast-track methodology and make appropriate changes to policy. In the Indian healthcare system, there is a huge benefit that may be achieved by the successful implementation of a fast-track surgery program at an institutional level. The lack of awareness regarding this concept, fear and apprehension regarding its implementation are the main barriers that need to be overcome. PMID:25886214

  8. Fast-track surgery: Toward comprehensive peri-operative care.

    PubMed

    Nanavati, Aditya J; Prabhakar, S

    2014-01-01

    Fast-track surgery is a multimodal approach to patient care using a combination of several evidence-based peri-operative interventions to expedite recovery after surgery. It is an extension of the critical pathway that integrates modalities in surgery, anesthesia, and nutrition, enforces early mobilization and feeding, and emphasizes reduction of the surgical stress response. It entails a great partnership between a surgeon and an anesthesiologist with several other specialists to form a multi-disciplinary team, which may then engage in patient care. The practice of fast-track surgery has yielded excellent results and there has been a significant reduction in hospital stay without a rise in complications or re-admissions. The effective implementation begins with the formulation of a protocol, carrying out each intervention and gathering outcome data. The care of a patient is divided into three phases: Before, during, and after surgery. Each stage needs active participation of few or all the members of the multi-disciplinary team. Other than surgical technique, anesthetic drugs, and techniques form the cornerstone in the ability of the surgeon to carry out a fast-track surgery safely. It is also the role of this team to keep abreast with the latest development in fast-track methodology and make appropriate changes to policy. In the Indian healthcare system, there is a huge benefit that may be achieved by the successful implementation of a fast-track surgery program at an institutional level. The lack of awareness regarding this concept, fear and apprehension regarding its implementation are the main barriers that need to be overcome.

  9. Implementation and simulations of the sphere solution in FAST

    NASA Astrophysics Data System (ADS)

    Murgolo, F. P.; Schirone, M. G.; Lattanzi, M.; Bernacca, P. L.

    1989-06-01

    The details of the implementation of the sphere solution software in the Fundamental Astronomy by Space Techniques (FAST) consortium, are described. The simulation results for realistic data sets, both with and without grid-step errors are given. Expected errors on the astrometric parameters of the primary stars and the precision of the reference great circle zero points, are provided as a function of mission duration. The design matrix, the diagrams of the context processor and the processors experimental results are given.

  10. Accelerating Monte Carlo simulations with an NVIDIA ® graphics processor

    NASA Astrophysics Data System (ADS)

    Martinsen, Paul; Blaschke, Johannes; Künnemeyer, Rainer; Jordan, Robert

    2009-10-01

    Modern graphics cards, commonly used in desktop computers, have evolved beyond a simple interface between processor and display to incorporate sophisticated calculation engines that can be applied to general purpose computing. The Monte Carlo algorithm for modelling photon transport in turbid media has been implemented on an NVIDIA ® 8800 GT graphics card using the CUDA toolkit. The Monte Carlo method relies on following the trajectory of millions of photons through the sample, often taking hours or days to complete. The graphics-processor implementation, processing roughly 110 million scattering events per second, was found to run more than 70 times faster than a similar, single-threaded implementation on a 2.67 GHz desktop computer. Program summaryProgram title: Phoogle-C/Phoogle-G Catalogue identifier: AEEB_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEB_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 51 264 No. of bytes in distributed program, including test data, etc.: 2 238 805 Distribution format: tar.gz Programming language: C++ Computer: Designed for Intel PCs. Phoogle-G requires a NVIDIA graphics card with support for CUDA 1.1 Operating system: Windows XP Has the code been vectorised or parallelized?: Phoogle-G is written for SIMD architectures RAM: 1 GB Classification: 21.1 External routines: Charles Karney Random number library. Microsoft Foundation Class library. NVIDA CUDA library [1]. Nature of problem: The Monte Carlo technique is an effective algorithm for exploring the propagation of light in turbid media. However, accurate results require tracing the path of many photons within the media. The independence of photons naturally lends the Monte Carlo technique to implementation on parallel architectures. Generally, parallel computing can be expensive, but recent advances in consumer grade graphics cards have opened the possibility of high-performance desktop parallel-computing. Solution method: In this pair of programmes we have implemented the Monte Carlo algorithm described by Prahl et al. [2] for photon transport in infinite scattering media to compare the performance of two readily accessible architectures: a standard desktop PC and a consumer grade graphics card from NVIDIA. Restrictions: The graphics card implementation uses single precision floating point numbers for all calculations. Only photon transport from an isotropic point-source is supported. The graphics-card version has no user interface. The simulation parameters must be set in the source code. The desktop version has a simple user interface; however some properties can only be accessed through an ActiveX client (such as Matlab). Additional comments: The random number library used has a LGPL ( http://www.gnu.org/copyleft/lesser.html) licence. Running time: Runtime can range from minutes to months depending on the number of photons simulated and the optical properties of the medium. References:http://www.nvidia.com/object/cuda_home.html. S. Prahl, M. Keijzer, Sl. Jacques, A. Welch, SPIE Institute Series 5 (1989) 102.

  11. Massively parallel algorithms for real-time wavefront control of a dense adaptive optics system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fijany, A.; Milman, M.; Redding, D.

    1994-12-31

    In this paper massively parallel algorithms and architectures for real-time wavefront control of a dense adaptive optic system (SELENE) are presented. The authors have already shown that the computation of a near optimal control algorithm for SELENE can be reduced to the solution of a discrete Poisson equation on a regular domain. Although, this represents an optimal computation, due the large size of the system and the high sampling rate requirement, the implementation of this control algorithm poses a computationally challenging problem since it demands a sustained computational throughput of the order of 10 GFlops. They develop a novel algorithm,more » designated as Fast Invariant Imbedding algorithm, which offers a massive degree of parallelism with simple communication and synchronization requirements. Due to these features, this algorithm is significantly more efficient than other Fast Poisson Solvers for implementation on massively parallel architectures. The authors also discuss two massively parallel, algorithmically specialized, architectures for low-cost and optimal implementation of the Fast Invariant Imbedding algorithm.« less

  12. Flexible, fast and accurate sequence alignment profiling on GPGPU with PaSWAS.

    PubMed

    Warris, Sven; Yalcin, Feyruz; Jackson, Katherine J L; Nap, Jan Peter

    2015-01-01

    To obtain large-scale sequence alignments in a fast and flexible way is an important step in the analyses of next generation sequencing data. Applications based on the Smith-Waterman (SW) algorithm are often either not fast enough, limited to dedicated tasks or not sufficiently accurate due to statistical issues. Current SW implementations that run on graphics hardware do not report the alignment details necessary for further analysis. With the Parallel SW Alignment Software (PaSWAS) it is possible (a) to have easy access to the computational power of NVIDIA-based general purpose graphics processing units (GPGPUs) to perform high-speed sequence alignments, and (b) retrieve relevant information such as score, number of gaps and mismatches. The software reports multiple hits per alignment. The added value of the new SW implementation is demonstrated with two test cases: (1) tag recovery in next generation sequence data and (2) isotype assignment within an immunoglobulin 454 sequence data set. Both cases show the usability and versatility of the new parallel Smith-Waterman implementation.

  13. Flight Research into Simple Adaptive Control on the NASA FAST Aircraft

    NASA Technical Reports Server (NTRS)

    Hanson, Curtis E.

    2011-01-01

    A series of simple adaptive controllers with varying levels of complexity were designed, implemented and flight tested on the NASA Full-Scale Advanced Systems Testbed (FAST) aircraft. Lessons learned from the development and flight testing are presented.

  14. A novel approach to Hough Transform for implementation in fast triggers

    NASA Astrophysics Data System (ADS)

    Pozzobon, Nicola; Montecassiano, Fabio; Zotto, Pierluigi

    2016-10-01

    Telescopes of position sensitive detectors are common layouts in charged particles tracking, and programmable logic devices, such as FPGAs, represent a viable choice for the real-time reconstruction of track segments in such detector arrays. A compact implementation of the Hough Transform for fast triggers in High Energy Physics, exploiting a parameter reduction method, is proposed, targeting the reduction of the needed storage or computing resources in current, or next future, state-of-the-art FPGA devices, while retaining high resolution over a wide range of track parameters. The proposed approach is compared to a Standard Hough Transform with particular emphasis on their application to muon detectors. In both cases, an original readout implementation is modeled.

  15. In silico FRET from simulated dye dynamics

    NASA Astrophysics Data System (ADS)

    Hoefling, Martin; Grubmüller, Helmut

    2013-03-01

    Single molecule fluorescence resonance energy transfer (smFRET) experiments probe molecular distances on the nanometer scale. In such experiments, distances are recorded from FRET transfer efficiencies via the Förster formula, E=1/(1+(). The energy transfer however also depends on the mutual orientation of the two dyes used as distance reporter. Since this information is typically inaccessible in FRET experiments, one has to rely on approximations, which reduce the accuracy of these distance measurements. A common approximation is an isotropic and uncorrelated dye orientation distribution. To assess the impact of such approximations, we present the algorithms and implementation of a computational toolkit for the simulation of smFRET on the basis of molecular dynamics (MD) trajectory ensembles. In this study, the dye orientation dynamics, which are used to determine dynamic FRET efficiencies, are extracted from MD simulations. In a subsequent step, photons and bursts are generated using a Monte Carlo algorithm. The application of the developed toolkit on a poly-proline system demonstrated good agreement between smFRET simulations and experimental results and therefore confirms our computational method. Furthermore, it enabled the identification of the structural basis of measured heterogeneity. The presented computational toolkit is written in Python, available as open-source, applicable to arbitrary systems and can easily be extended and adapted to further problems. Catalogue identifier: AENV_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENV_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GPLv3, the bundled SIMD friendly Mersenne twister implementation [1] is provided under the SFMT-License. No. of lines in distributed program, including test data, etc.: 317880 No. of bytes in distributed program, including test data, etc.: 54774217 Distribution format: tar.gz Programming language: Python, Cython, C (ANSI C99). Computer: Any (see memory requirements). Operating system: Any OS with CPython distribution (e.g. Linux, MacOSX, Windows). Has the code been vectorised or parallelized?: Yes, in Ref. [2], 4 CPU cores were used. RAM: About 700MB per process for the simulation setup in Ref. [2]. Classification: 16.1, 16.7, 23. External routines: Calculation of Rκ2-trajectories from GROMACS [3] MD trajectories requires the GromPy Python module described in Ref. [4] or a GROMACS 4.6 installation. The md2fret program uses a standard Python interpreter (CPython) v2.6+ and < v3.0 as well as the NumPy module. The analysis examples require the Matplotlib Python module. Nature of problem: Simulation and interpretation of single molecule FRET experiments. Solution method: Combination of force-field based molecular dynamics (MD) simulating the dye dynamics and Monte Carlo sampling to obtain photon statistics of FRET kinetics. Additional comments: !!!!! The distribution file for this program is over 50 Mbytes and therefore is not delivered directly when download or Email is requested. Instead a html file giving details of how the program can be obtained is sent. !!!!! Running time: A single run in Ref. [2] takes about 10 min on a Quad Core Intel Xeon CPU W3520 2.67GHz with 6GB physical RAM References: [1] M. Saito, M. Matsumoto, SIMD-oriented fast Mersenne twister: a 128-bit pseudorandom number generator, in: A. Keller, S. Heinrich, H. Niederreiter (Eds.), Monte Carlo and Quasi-Monte Carlo Methods 2006, Springer; Berlin, Heidelberg, 2008, pp. 607-622. [2] M. Hoefling, N. Lima, D. Hänni, B. Schuler, C. A. M. Seidel, H. Grubmüller, Structural heterogeneity and quantitative FRET efficiency distributions of polyprolines through a hybrid atomistic simulation and Monte Carlo approach, PLoS ONE 6 (5) (2011) e19791. [3] D. V. D. Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, H. J. C. Berendsen, GROMACS: fast, flexible, and free., J Comput Chem 26 (16) (2005) 1701-1718. [4] R. Pool, A. Feenstra, M. Hoefling, R. Schulz, J. C. Smith, J. Heringa, Enabling grand-canonical Monte Carlo: Extending the flexibility of gromacs through the GromPy Python interface module, Journal of Chemical Theory and Computation 33 (12) (2012) 1207-1214.

  16. Fast-Track Teacher Recruitment.

    ERIC Educational Resources Information Center

    Grant, Franklin Dean

    2001-01-01

    Schools need a Renaissance human-resources director to implement strategic staffing and fast-track teacher-recruitment plans. The HR director must attend to customer satisfaction, candidate supply, web-based recruitment possibilities, stabilization of newly hired staff, retention of veteran staff, utilization of retired employees, and latest…

  17. Complexity-reduced implementations of complete and null-space-based linear discriminant analysis.

    PubMed

    Lu, Gui-Fu; Zheng, Wenming

    2013-10-01

    Dimensionality reduction has become an important data preprocessing step in a lot of applications. Linear discriminant analysis (LDA) is one of the most well-known dimensionality reduction methods. However, the classical LDA cannot be used directly in the small sample size (SSS) problem where the within-class scatter matrix is singular. In the past, many generalized LDA methods has been reported to address the SSS problem. Among these methods, complete linear discriminant analysis (CLDA) and null-space-based LDA (NLDA) provide good performances. The existing implementations of CLDA are computationally expensive. In this paper, we propose a new and fast implementation of CLDA. Our proposed implementation of CLDA, which is the most efficient one, is equivalent to the existing implementations of CLDA in theory. Since CLDA is an extension of null-space-based LDA (NLDA), our implementation of CLDA also provides a fast implementation of NLDA. Experiments on some real-world data sets demonstrate the effectiveness of our proposed new CLDA and NLDA algorithms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Assessing ERP SAP implementation in the small and medium enterprises (SMEs) in Indonesia

    NASA Astrophysics Data System (ADS)

    Yohannes; Gunawan, W.; Ikhsan, R. B.; Aries

    2018-03-01

    The consistent growth of Indonesian SMEs has received attention of global IT vendors. One of major ERP player in Indonesian market such as SAP, has introduced ERP solutions for SMEs through SAP Business One. Due to its fast growth, unfortunately, there are still very few articles can be found to understand the ERP implementation in Indonesian SMEs. The article addressed the common factors that affect the successful of the ERP implementation at SMEs. They are: identifying vendor quality, opening balance data migration, and A-SAP methodology. The article applied case study method to examine the fast growth companies owned by same owners, such as: GRK, MMM, and KM25; with the objectives to identify the practical pattern of ERP implementation in SMEs that will be useful for SAP project manager and consultants.

  19. Assessment of Quality Indicators for Acute Myocardial Infarction in the FAST-MI (French Registry of Acute ST-Elevation or Non-ST-Elevation Myocardial Infarction) Registries.

    PubMed

    Schiele, François; Gale, Chris P; Simon, Tabassome; Fox, Keith A A; Bueno, Hector; Lettino, Maddalena; Tubaro, Marco; Puymirat, Etienne; Ferrières, Jean; Meneveau, Nicolas; Danchin, Nicolas

    2017-06-01

    The Acute Cardiovascular Care Association defined quality indicators (QIs) for the management of acute myocardial infarction. The application of these QIs to existing databases is appealing. It remains to be determined what the rates of implementation are, how the QIs are related to long-term survival, and whether quality categorization is possible. The QIs were extracted from the French nationwide registries French Registry of Acute ST-Elevation or Non-ST-Elevation Myocardial Infarction (FAST-MI) 2005 (n=3670) and FAST-MI 2010 (n=4169). Implementation rates for each QI are reported for both cohorts. The composite QI was used for benchmarking, and the relationship between QIs and 3-year survival was determined using a Cox model. In FAST-MI 2010, 12 individual and 2 composite QIs could be assessed. Four QIs were not recorded in FAST-MI 2010 and 4 in 2005, either because of treatment nonavailability or because of data not recorded. The degree of implementation ranged from 12% to 89%, with higher rates in 2010 as compared with 2005. Seven individual QIs were associated with survival, and there was a significant and gradual association between survival and categories of the composite QI. Center categorization was possible in 26% to 30% of participating centers; 16 (27%) centers in 2005 and 14 (20%) in 2010 were categorized as low quality. Twelve of 17 individual QIs could be assessed from FAST-MI 2010. The composite QI was significantly associated with 3-year survival and distinguished centers with high, average, and low quality of care. © 2017 American Heart Association, Inc.

  20. A reliable, fast and low cost maximum power point tracker for photovoltaic applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enrique, J.M.; Andujar, J.M.; Bohorquez, M.A.

    This work presents a new maximum power point tracker system for photovoltaic applications. The developed system is an analog version of the ''P and O-oriented'' algorithm. It maintains its main advantages: simplicity, reliability and easy practical implementation, and avoids its main disadvantages: inaccurateness and relatively slow response. Additionally, the developed system can be implemented in a practical way at a low cost, which means an added value. The system also shows an excellent behavior for very fast variables in incident radiation levels. (author)

  1. Microprocessor implementation of an FFT for ionospheric VLF observations

    NASA Technical Reports Server (NTRS)

    Elvidge, J.; Kintner, P.; Holzworth, R.

    1984-01-01

    A fast Fourier transform algorithm is implemented on a CMOS microprocessor for application to very low-frequency electric fields (less than 10 kHz) sensed on high-altitude scientific balloons. Two FFT's are calculated simultaneously by associating them with conjugate symmetric and conjugate antisymmetric results. One goal of the system was to detect spectral signatures associated with fast time variations present in natural signals such as whistlers and chorus. Although a full evaluation of the system was not possible for operational reasons, a measure of the system's success has been defined and evaluated.

  2. BeamDyn: a high-fidelity wind turbine blade solver in the FAST modular framework

    DOE PAGES

    Wang, Qi; Sprague, Michael A.; Jonkman, Jason; ...

    2017-03-14

    Here, this paper presents a numerical implementation of the geometrically exact beam theory based on the Legendre-spectral-finite-element (LSFE) method. The displacement-based geometrically exact beam theory is presented, and the special treatment of three-dimensional rotation parameters is reviewed. An LSFE is a high-order finite element with nodes located at the Gauss-Legendre-Lobatto points. These elements can be an order of magnitude more computationally efficient than low-order finite elements for a given accuracy level. The new module, BeamDyn, is implemented in the FAST modularization framework for dynamic simulation of highly flexible composite-material wind turbine blades within the FAST aeroelastic engineering model. The frameworkmore » allows for fully interactive simulations of turbine blades in operating conditions. Numerical examples are provided to validate BeamDyn and examine the LSFE performance as well as the coupling algorithm in the FAST modularization framework. BeamDyn can also be used as a stand-alone high-fidelity beam tool.« less

  3. BeamDyn: a high-fidelity wind turbine blade solver in the FAST modular framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Qi; Sprague, Michael A.; Jonkman, Jason

    Here, this paper presents a numerical implementation of the geometrically exact beam theory based on the Legendre-spectral-finite-element (LSFE) method. The displacement-based geometrically exact beam theory is presented, and the special treatment of three-dimensional rotation parameters is reviewed. An LSFE is a high-order finite element with nodes located at the Gauss-Legendre-Lobatto points. These elements can be an order of magnitude more computationally efficient than low-order finite elements for a given accuracy level. The new module, BeamDyn, is implemented in the FAST modularization framework for dynamic simulation of highly flexible composite-material wind turbine blades within the FAST aeroelastic engineering model. The frameworkmore » allows for fully interactive simulations of turbine blades in operating conditions. Numerical examples are provided to validate BeamDyn and examine the LSFE performance as well as the coupling algorithm in the FAST modularization framework. BeamDyn can also be used as a stand-alone high-fidelity beam tool.« less

  4. Fast global orbit feedback system in PLS-II

    NASA Astrophysics Data System (ADS)

    Lee, J.; Kim, C.; Kim, J. M.; Kim, K. R.; Lee, E. H.; Lee, J. W.; Lee, T. Y.; Park, C. D.; Shin, S.; Yoon, J. C.; Cho, W. S.; Park, G. S.; Kim, S. C.

    2016-12-01

    The transverse position of the electron beam in the Pohang Light Source-II is stabilized by the global orbit feedback system. A slow orbit feedback system has been operating at 2 Hz, and a fast orbit feedback (FOFB) system at 813 Hz was installed recently. This FOFB system consists of 96 electron-beam-position monitors, 48 horizontal fast correctors, 48 vertical fast correctors and Versa Module Europa bus control system. We present the design and implementation of the FOFB system and its test result. Simulation analysis is presented and future improvements are suggested.

  5. Fast controller for a unity-power-factor PWM rectifier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eissa, M.O.; Leeb, S.B.; Verghese, G.C.

    1996-01-01

    This paper presents an analog implementation of a fast controller for a unity-power-factor (UPF) PWM rectifier. The best settling times of many popular controllers for this type of converter are on the order of a few line cycles, corresponding to bandwidths under 20 Hz. The fast controller demonstrated in this paper can exercise control action at a rate comparable to the switching frequency rather than the line frequency. In order to accomplish this while maintaining unity power factor during steady-state operation, the fast controller employs a ripple-feedback cancellation scheme.

  6. Intermittent fasting and cardiovascular disease: current evidence and unresolved questions.

    PubMed

    Tinsley, Grant M; Horne, Benjamin D

    2018-01-01

    Intermittent fasting has produced a variety of beneficial health effects in animal models, although high-quality research in humans has been limited. This special report examines current evidences for intermittent fasting in humans, discusses issues that require further examination, and recommends new research that can improve the knowledge base in this emerging research area. While potentially useful for health improvement, intermittent fasting requires further study prior to widespread implementation for health purposes. Randomized, longer-term studies are needed to determine whether using intermittent fasting as a lifestyle rather than a diet is feasible and beneficial for the health of some members of the human population.

  7. Fast and Scalable Computation of the Forward and Inverse Discrete Periodic Radon Transform.

    PubMed

    Carranza, Cesar; Llamocca, Daniel; Pattichis, Marios

    2016-01-01

    The discrete periodic radon transform (DPRT) has extensively been used in applications that involve image reconstructions from projections. Beyond classic applications, the DPRT can also be used to compute fast convolutions that avoids the use of floating-point arithmetic associated with the use of the fast Fourier transform. Unfortunately, the use of the DPRT has been limited by the need to compute a large number of additions and the need for a large number of memory accesses. This paper introduces a fast and scalable approach for computing the forward and inverse DPRT that is based on the use of: a parallel array of fixed-point adder trees; circular shift registers to remove the need for accessing external memory components when selecting the input data for the adder trees; an image block-based approach to DPRT computation that can fit the proposed architecture to available resources; and fast transpositions that are computed in one or a few clock cycles that do not depend on the size of the input image. As a result, for an N × N image (N prime), the proposed approach can compute up to N(2) additions per clock cycle. Compared with the previous approaches, the scalable approach provides the fastest known implementations for different amounts of computational resources. For example, for a 251×251 image, for approximately 25% fewer flip-flops than required for a systolic implementation, we have that the scalable DPRT is computed 36 times faster. For the fastest case, we introduce optimized just 2N + ⌈log(2) N⌉ + 1 and 2N + 3 ⌈log(2) N⌉ + B + 2 cycles, architectures that can compute the DPRT and its inverse in respectively, where B is the number of bits used to represent each input pixel. On the other hand, the scalable DPRT approach requires more 1-b additions than for the systolic implementation and provides a tradeoff between speed and additional 1-b additions. All of the proposed DPRT architectures were implemented in VHSIC Hardware Description Language (VHDL) and validated using an Field-Programmable Gate Array (FPGA) implementation.

  8. Enabling fast charging - Infrastructure and economic considerations

    NASA Astrophysics Data System (ADS)

    Burnham, Andrew; Dufek, Eric J.; Stephens, Thomas; Francfort, James; Michelbacher, Christopher; Carlson, Richard B.; Zhang, Jiucai; Vijayagopal, Ram; Dias, Fernando; Mohanpurkar, Manish; Scoffield, Don; Hardy, Keith; Shirk, Matthew; Hovsapian, Rob; Ahmed, Shabbir; Bloom, Ira; Jansen, Andrew N.; Keyser, Matthew; Kreuzer, Cory; Markel, Anthony; Meintz, Andrew; Pesaran, Ahmad; Tanim, Tanvir R.

    2017-11-01

    The ability to charge battery electric vehicles (BEVs) on a time scale that is on par with the time to fuel an internal combustion engine vehicle (ICEV) would remove a significant barrier to the adoption of BEVs. However, for viability, fast charging at this time scale needs to also occur at a price that is acceptable to consumers. Therefore, the cost drivers for both BEV owners and charging station providers are analyzed. In addition, key infrastructure considerations are examined, including grid stability and delivery of power, the design of fast charging stations and the design and use of electric vehicle service equipment. Each of these aspects have technical barriers that need to be addressed, and are directly linked to economic impacts to use and implementation. This discussion focuses on both the economic and infrastructure issues which exist and need to be addressed for the effective implementation of fast charging at 400 kW and above. In so doing, it has been found that there is a distinct need to effectively manage the intermittent, high power demand of fast charging, strategically plan infrastructure corridors, and to further understand the cost of operation of charging infrastructure and BEVs.

  9. Enabling fast charging – Infrastructure and economic considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burnham, Andrew; Dufek, Eric J.; Stephens, Thomas

    The ability to charge battery electric vehicles (BEVs) on a time scale that is on par with the time to fuel an internal combustion engine vehicle (ICEV) would remove a significant barrier to the adoption of BEVs. However, for viability, fast charging at this time scale needs to also occur at a price that is acceptable to consumers. Therefore, the cost drivers for both BEV owners and charging station providers are analyzed. In addition, key infrastructure considerations are examined, including grid stability and delivery of power, the design of fast charging stations and the design and use of electric vehiclemore » service equipment. Each of these aspects have technical barriers that need to be addressed, and are directly linked to economic impacts to use and implementation. This discussion focuses on both the economic and infrastructure issues which exist and need to be addressed for the effective implementation of fast charging at 400 kW and above. In so doing, it has been found that there is a distinct need to effectively manage the intermittent, high power demand of fast charging, strategically plan infrastructure corridors, and to further understand the cost of operation of charging infrastructure and BEVs.« less

  10. Enabling fast charging – Infrastructure and economic considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burnham, Andrew; Dufek, Eric J.; Stephens, Thomas

    The ability to charge battery electric vehicles (BEVs) on a time scale that is on par with the time to fuel an internal combustion engine vehicle (ICEV) would remove a significant barrier to the adoption of BEVs. However, for viability, fast charging at this time scale needs to also occur at a price that is acceptable to consumers. Therefore, the cost drivers for both BEV owners and charging station providers are analyzed. In addition, key infrastructure considerations are examined, including grid stability and delivery of power, the design of fast charging stations and the design and use of electric vehiclemore » service equipment. Each of these aspects have technical barriers that need to be addressed, and are directly linked to economic impacts to use and implementation. Here, this discussion focuses on both the economic and infrastructure issues which exist and need to be addressed for the effective implementation of fast charging up to 350 kW. In doing so, it has been found that there is a distinct need to effectively manage the intermittent, high power demand of fast charging, strategically plan infrastructure corridors, and to further understand the cost of operation of charging infrastructure and BEVs.« less

  11. Enabling fast charging – Infrastructure and economic considerations

    DOE PAGES

    Burnham, Andrew; Dufek, Eric J.; Stephens, Thomas; ...

    2017-10-23

    The ability to charge battery electric vehicles (BEVs) on a time scale that is on par with the time to fuel an internal combustion engine vehicle (ICEV) would remove a significant barrier to the adoption of BEVs. However, for viability, fast charging at this time scale needs to also occur at a price that is acceptable to consumers. Therefore, the cost drivers for both BEV owners and charging station providers are analyzed. In addition, key infrastructure considerations are examined, including grid stability and delivery of power, the design of fast charging stations and the design and use of electric vehiclemore » service equipment. Each of these aspects have technical barriers that need to be addressed, and are directly linked to economic impacts to use and implementation. Here, this discussion focuses on both the economic and infrastructure issues which exist and need to be addressed for the effective implementation of fast charging up to 350 kW. In doing so, it has been found that there is a distinct need to effectively manage the intermittent, high power demand of fast charging, strategically plan infrastructure corridors, and to further understand the cost of operation of charging infrastructure and BEVs.« less

  12. Fast or Frugal, but Not Both: Decision Heuristics Under Time Pressure

    PubMed Central

    2017-01-01

    Heuristics are simple, yet effective, strategies that people use to make decisions. Because heuristics do not require all available information, they are thought to be easy to implement and to not tax limited cognitive resources, which has led heuristics to be characterized as fast-and-frugal. We question this monolithic conception of heuristics by contrasting the cognitive demands of two popular heuristics, Tallying and Take-the-Best. We contend that heuristics that are frugal in terms of information usage may not always be fast because of the attentional control required to implement this focus in certain contexts. In support of this hypothesis, we find that Take-the-Best, while being more frugal in terms of information usage, is slower to implement and fares worse under time pressure manipulations than Tallying. This effect is then reversed when search costs for Take-the-Best are reduced by changing the format of the stimuli. These findings suggest that heuristics are heterogeneous and should be unpacked according to their cognitive demands to determine the circumstances a heuristic best applies. PMID:28557503

  13. Fast or frugal, but not both: Decision heuristics under time pressure.

    PubMed

    Bobadilla-Suarez, Sebastian; Love, Bradley C

    2018-01-01

    Heuristics are simple, yet effective, strategies that people use to make decisions. Because heuristics do not require all available information, they are thought to be easy to implement and to not tax limited cognitive resources, which has led heuristics to be characterized as fast-and-frugal. We question this monolithic conception of heuristics by contrasting the cognitive demands of two popular heuristics, Tallying and Take-the-Best. We contend that heuristics that are frugal in terms of information usage may not always be fast because of the attentional control required to implement this focus in certain contexts. In support of this hypothesis, we find that Take-the-Best, while being more frugal in terms of information usage, is slower to implement and fares worse under time pressure manipulations than Tallying. This effect is then reversed when search costs for Take-the-Best are reduced by changing the format of the stimuli. These findings suggest that heuristics are heterogeneous and should be unpacked according to their cognitive demands to determine the circumstances a heuristic best applies. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  14. Fast Geostatistical Inversion using Randomized Matrix Decompositions and Sketchings for Heterogeneous Aquifer Characterization

    NASA Astrophysics Data System (ADS)

    O'Malley, D.; Le, E. B.; Vesselinov, V. V.

    2015-12-01

    We present a fast, scalable, and highly-implementable stochastic inverse method for characterization of aquifer heterogeneity. The method utilizes recent advances in randomized matrix algebra and exploits the structure of the Quasi-Linear Geostatistical Approach (QLGA), without requiring a structured grid like Fast-Fourier Transform (FFT) methods. The QLGA framework is a more stable version of Gauss-Newton iterates for a large number of unknown model parameters, but provides unbiased estimates. The methods are matrix-free and do not require derivatives or adjoints, and are thus ideal for complex models and black-box implementation. We also incorporate randomized least-square solvers and data-reduction methods, which speed up computation and simulate missing data points. The new inverse methodology is coded in Julia and implemented in the MADS computational framework (http://mads.lanl.gov). Julia is an advanced high-level scientific programing language that allows for efficient memory management and utilization of high-performance computational resources. Inversion results based on series of synthetic problems with steady-state and transient calibration data are presented.

  15. Implementation of fast macromolecular proton fraction mapping on 1.5 and 3 Tesla clinical MRI scanners: preliminary experience

    NASA Astrophysics Data System (ADS)

    Yarnykh, V.; Korostyshevskaya, A.

    2017-08-01

    Macromolecular proton fraction (MPF) is a biophysical parameter describing the amount of macromolecular protons involved into magnetization exchange with water protons in tissues. MPF represents a significant interest as a magnetic resonance imaging (MRI) biomarker of myelin for clinical applications. A recent fast MPF mapping method enabled clinical translation of MPF measurements due to time-efficient acquisition based on the single-point constrained fit algorithm. However, previous MPF mapping applications utilized only 3 Tesla MRI scanners and modified pulse sequences, which are not commonly available. This study aimed to test the feasibility of MPF mapping implementation on a 1.5 Tesla clinical scanner using standard manufacturer’s sequences and compare the performance of this method between 1.5 and 3 Tesla scanners. MPF mapping was implemented on 1.5 and 3 Tesla MRI units of one manufacturer with either optimized custom-written or standard product pulse sequences. Whole-brain three-dimensional MPF maps obtained from a single volunteer were compared between field strengths and implementation options. MPF maps demonstrated similar quality at both field strengths. MPF values in segmented brain tissues and specific anatomic regions appeared in close agreement. This experiment demonstrates the feasibility of fast MPF mapping using standard sequences on 1.5 T and 3 T clinical scanners.

  16. Implementation and audit of 'Fast-Track Surgery' in gynaecological oncology surgery.

    PubMed

    Sidhu, Verinder S; Lancaster, Letitia; Elliott, David; Brand, Alison H

    2012-08-01

    Fast-track surgery is a multidisciplinary approach to surgery that results in faster recovery from surgery and decreased length of stay (LOS). The aims of this study were as follows: (i) to report on the processes required for the introduction of fast-track surgery to a gynaecological oncology unit and (ii) to report the results of a clinical audit conducted after the protocol's implementation. A fast-track protocol, specific to our unit, was developed after a series of multidisciplinary meetings. The protocol, agreed upon by those involved in the care of women in our unit, was then introduced into clinical practice. An audit was conducted of all women undergoing laparotomy, with known or suspected malignancy. Information on LOS, complication and readmission rates was collected. Descriptive statistics and Poisson regression were used for statistical analysis. The developed protocol involved a multidisciplinary approach to pre-, intra- and postoperative care. The audit included 104 consecutive women over a 6-month period, who were followed for 6 weeks postoperatively. The median LOS was 4 days. The readmission rate was 7% and the complication rate was 19% (1% intraoperative, 4% major and 14% minor). Multivariate analysis revealed that increased duration of surgery and increasing age were predictors of longer LOS. The development of a fast-track protocol is achievable in a gynaecological oncology unit, with input from a multidisciplinary team. Effective implementation of the protocol can result in a short LOS, with acceptable complication and readmission rates when applied non-selectively to gynaecological oncology patients. © 2012 The Authors ANZJOG © 2012 The Royal Australian and New Zealand College of Obstetricians and Gynaecologists.

  17. INVESTIGATION OF OPEN-PATH FTIR FOR FAST DEPLOYMENT EMERGENCY RESPONSE TO CHEMICAL THREATS AND ACCIDENTS.

    EPA Science Inventory

    We have performed a series of experiments to determine the tradeoff in detection sensitivity for implementing design features for an Open-Path Fourier Transform Infrared (OP-FTIR) chemical analyzer that would be quick to deploy under emergency response conditions. The fast-deplo...

  18. Plasma mirror implementation on LFEX laser for ion and fast electron fast ignition

    NASA Astrophysics Data System (ADS)

    Morace, A.; Kojima, S.; Arikawa, Y.; Fujioka, S.; Yogo, A.; Tosaki, S.; Sakata, S.; Abe, Y.; Lee, S. H.; Matsuo, K.; Sagisaka, A.; Kondo, K.; Pirozhkov, A. S.; Norimatsu, T.; Jitsuno, T.; Miyanaga, N.; Shiraga, H.; Nakai, M.; Nishimura, H.; Azechi, H.

    2017-12-01

    In this work we report the successful implementation of plasma mirror (PM) technology on an LFEX laser facility at the Institute of Laser Engineering, Osaka University. The LFEX laser pulse was successfully refocused at the target chamber center (TCC) by means of a spherical plasma mirror, resulting in 5  ×  1018 W cm-2 laser intensity, with 45% reflectivity at a laser flux of about 90 J cm-2 on the PM. Experimental results show stable focusing and pointing of the LFEX pulse after PM refocusing. The contrast improvement was demonstrated by both cooler fast electron slope temperature distribution as well as by the ability to shoot sub-µm plastic foils obtaining proton beams with maximum energy exceeding 20 MeV. Experimental results are qualitatively reproduced by 2D particle in cell simulations.

  19. A framework for porting the NeuroBayes machine learning algorithm to FPGAs

    NASA Astrophysics Data System (ADS)

    Baehr, S.; Sander, O.; Heck, M.; Feindt, M.; Becker, J.

    2016-01-01

    The NeuroBayes machine learning algorithm is deployed for online data reduction at the pixel detector of Belle II. In order to test, characterize and easily adapt its implementation on FPGAs, a framework was developed. Within the framework an HDL model, written in python using MyHDL, is used for fast exploration of possible configurations. Under usage of input data from physics simulations figures of merit like throughput, accuracy and resource demand of the implementation are evaluated in a fast and flexible way. Functional validation is supported by usage of unit tests and HDL simulation for chosen configurations.

  20. Applying High-Speed Vision Sensing to an Industrial Robot for High-Performance Position Regulation under Uncertainties

    PubMed Central

    Huang, Shouren; Bergström, Niklas; Yamakawa, Yuji; Senoo, Taku; Ishikawa, Masatoshi

    2016-01-01

    It is traditionally difficult to implement fast and accurate position regulation on an industrial robot in the presence of uncertainties. The uncertain factors can be attributed either to the industrial robot itself (e.g., a mismatch of dynamics, mechanical defects such as backlash, etc.) or to the external environment (e.g., calibration errors, misalignment or perturbations of a workpiece, etc.). This paper proposes a systematic approach to implement high-performance position regulation under uncertainties on a general industrial robot (referred to as the main robot) with minimal or no manual teaching. The method is based on a coarse-to-fine strategy that involves configuring an add-on module for the main robot’s end effector. The add-on module consists of a 1000 Hz vision sensor and a high-speed actuator to compensate for accumulated uncertainties. The main robot only focuses on fast and coarse motion, with its trajectories automatically planned by image information from a static low-cost camera. Fast and accurate peg-and-hole alignment in one dimension was implemented as an application scenario by using a commercial parallel-link robot and an add-on compensation module with one degree of freedom (DoF). Experimental results yielded an almost 100% success rate for fast peg-in-hole manipulation (with regulation accuracy at about 0.1 mm) when the workpiece was randomly placed. PMID:27483274

  1. Fast packet switch architectures for broadband integrated services digital networks

    NASA Technical Reports Server (NTRS)

    Tobagi, Fouad A.

    1990-01-01

    Background information on networking and switching is provided, and the various architectures that have been considered for fast packet switches are described. The focus is solely on switches designed to be implemented electronically. A set of definitions and a brief description of the functionality required of fast packet switches are given. Three basic types of packet switches are identified: the shared-memory, shared-medium, and space-division types. Each of these is described, and examples are given.

  2. Efficient Kriging via Fast Matrix-Vector Products

    NASA Technical Reports Server (NTRS)

    Memarsadeghi, Nargess; Raykar, Vikas C.; Duraiswami, Ramani; Mount, David M.

    2008-01-01

    Interpolating scattered data points is a problem of wide ranging interest. Ordinary kriging is an optimal scattered data estimator, widely used in geosciences and remote sensing. A generalized version of this technique, called cokriging, can be used for image fusion of remotely sensed data. However, it is computationally very expensive for large data sets. We demonstrate the time efficiency and accuracy of approximating ordinary kriging through the use of fast matrixvector products combined with iterative methods. We used methods based on the fast Multipole methods and nearest neighbor searching techniques for implementations of the fast matrix-vector products.

  3. Digital-only PLL with adaptive search step

    NASA Astrophysics Data System (ADS)

    Lin, Ming-Lang; Huang, Shu-Chuan; Liu, Jie-Cherng

    2014-06-01

    In this paper, an all-digital phase-locked loop (PLL) with adaptively controlled up/down counter serves as the loop filter is presented, and it is implemented on a field-programmable gate array. The detailed circuit of the adaptive up/down counter implementing the adaptive search algorithm is also given, in which the search step for frequency acquisition is adaptively scaled down in half until it is reduced to zero. The phase jitter of the proposed PLL can be lowered, yet keeping with fast lock-in time. Thus, the dilemma between the low phase jitter and fast lock-in time of the traditional PLL can be resolved. Simulation results and circuit implementation show that the locked count, phase jitter and lock-in time of the proposed PLL are consistent with the theoretical predictions.

  4. Enhanced method of fast re-routing with load balancing in software-defined networks

    NASA Astrophysics Data System (ADS)

    Lemeshko, Oleksandr; Yeremenko, Oleksandra

    2017-11-01

    A two-level method of fast re-routing with load balancing in a software-defined network (SDN) is proposed. The novelty of the method consists, firstly, in the introduction of a two-level hierarchy of calculating the routing variables responsible for the formation of the primary and backup paths, and secondly, in ensuring a balanced load of the communication links of the network, which meets the requirements of the traffic engineering concept. The method provides implementation of link, node, path, and bandwidth protection schemes for fast re-routing in SDN. The separation in accordance with the interaction prediction principle along two hierarchical levels of the calculation functions of the primary (lower level) and backup (upper level) routes allowed to abandon the initial sufficiently large and nonlinear optimization problem by transiting to the iterative solution of linear optimization problems of half the dimension. The analysis of the proposed method confirmed its efficiency and effectiveness in terms of obtaining optimal solutions for ensuring balanced load of communication links and implementing the required network element protection schemes for fast re-routing in SDN.

  5. Minimizing irreversible losses in quantum systems by local counterdiabatic driving

    PubMed Central

    Sels, Dries; Polkovnikov, Anatoli

    2017-01-01

    Counterdiabatic driving protocols have been proposed [Demirplak M, Rice SA (2003) J Chem Phys A 107:9937–9945; Berry M (2009) J Phys A Math Theor 42:365303] as a means to make fast changes in the Hamiltonian without exciting transitions. Such driving in principle allows one to realize arbitrarily fast annealing protocols or implement fast dissipationless driving, circumventing standard adiabatic limitations requiring infinitesimally slow rates. These ideas were tested and used both experimentally and theoretically in small systems, but in larger chaotic systems, it is known that exact counterdiabatic protocols do not exist. In this work, we develop a simple variational approach allowing one to find the best possible counterdiabatic protocols given physical constraints, like locality. These protocols are easy to derive and implement both experimentally and numerically. We show that, using these approximate protocols, one can drastically suppress heating and increase fidelity of quantum annealing protocols in complex many-particle systems. In the fast limit, these protocols provide an effective dual description of adiabatic dynamics, where the coupling constant plays the role of time and the counterdiabatic term plays the role of the Hamiltonian. PMID:28461472

  6. Fast and precise thermoregulation system in physiological brain slice experiment

    NASA Astrophysics Data System (ADS)

    Sheu, Y. H.; Young, M. S.

    1995-12-01

    We have developed a fast and precise thermoregulation system incorporated within a physiological experiment on a brain slice. The thermoregulation system is used to control the temperature of a recording chamber in which the brain slice is placed. It consists of a single-chip microcomputer, a set command module, a display module, and an FLC module. A fuzzy control algorithm was developed and a fuzzy logic controller then designed for achieving fast, smooth thermostatic performance and providing precise temperature control with accuracy to 0.1 °C, from room temperature through 42 °C (experimental temperature range). The fuzzy logic controller is implemented by microcomputer software and related peripheral hardware circuits. Six operating modes of thermoregulation are offered with the system and this can be further extended according to experimental needs. The test results of this study demonstrate that the fuzzy control method is easily implemented by a microcomputer and also verifies that this method provides a simple way to achieve fast and precise high-performance control of a nonlinear thermoregulation system in a physiological brain slice experiment.

  7. Fast solution of elliptic partial differential equations using linear combinations of plane waves.

    PubMed

    Pérez-Jordá, José M

    2016-02-01

    Given an arbitrary elliptic partial differential equation (PDE), a procedure for obtaining its solution is proposed based on the method of Ritz: the solution is written as a linear combination of plane waves and the coefficients are obtained by variational minimization. The PDE to be solved is cast as a system of linear equations Ax=b, where the matrix A is not sparse, which prevents the straightforward application of standard iterative methods in order to solve it. This sparseness problem can be circumvented by means of a recursive bisection approach based on the fast Fourier transform, which makes it possible to implement fast versions of some stationary iterative methods (such as Gauss-Seidel) consuming O(NlogN) memory and executing an iteration in O(Nlog(2)N) time, N being the number of plane waves used. In a similar way, fast versions of Krylov subspace methods and multigrid methods can also be implemented. These procedures are tested on Poisson's equation expressed in adaptive coordinates. It is found that the best results are obtained with the GMRES method using a multigrid preconditioner with Gauss-Seidel relaxation steps.

  8. PCI bus content-addressable-memory (CAM) implementation on FPGA for pattern recognition/image retrieval in a distributed environment

    NASA Astrophysics Data System (ADS)

    Megherbi, Dalila B.; Yan, Yin; Tanmay, Parikh; Khoury, Jed; Woods, C. L.

    2004-11-01

    Recently surveillance and Automatic Target Recognition (ATR) applications are increasing as the cost of computing power needed to process the massive amount of information continues to fall. This computing power has been made possible partly by the latest advances in FPGAs and SOPCs. In particular, to design and implement state-of-the-Art electro-optical imaging systems to provide advanced surveillance capabilities, there is a need to integrate several technologies (e.g. telescope, precise optics, cameras, image/compute vision algorithms, which can be geographically distributed or sharing distributed resources) into a programmable system and DSP systems. Additionally, pattern recognition techniques and fast information retrieval, are often important components of intelligent systems. The aim of this work is using embedded FPGA as a fast, configurable and synthesizable search engine in fast image pattern recognition/retrieval in a distributed hardware/software co-design environment. In particular, we propose and show a low cost Content Addressable Memory (CAM)-based distributed embedded FPGA hardware architecture solution with real time recognition capabilities and computing for pattern look-up, pattern recognition, and image retrieval. We show how the distributed CAM-based architecture offers a performance advantage of an order-of-magnitude over RAM-based architecture (Random Access Memory) search for implementing high speed pattern recognition for image retrieval. The methods of designing, implementing, and analyzing the proposed CAM based embedded architecture are described here. Other SOPC solutions/design issues are covered. Finally, experimental results, hardware verification, and performance evaluations using both the Xilinx Virtex-II and the Altera Apex20k are provided to show the potential and power of the proposed method for low cost reconfigurable fast image pattern recognition/retrieval at the hardware/software co-design level.

  9. Real-time monitoring of CO2 storage sites: Application to Illinois Basin-Decatur Project

    USGS Publications Warehouse

    Picard, G.; Berard, T.; Chabora, E.; Marsteller, S.; Greenberg, S.; Finley, R.J.; Rinck, U.; Greenaway, R.; Champagnon, C.; Davard, J.

    2011-01-01

    Optimization of carbon dioxide (CO2) storage operations for efficiency and safety requires use of monitoring techniques and implementation of control protocols. The monitoring techniques consist of permanent sensors and tools deployed for measurement campaigns. Large amounts of data are thus generated. These data must be managed and integrated for interpretation at different time scales. A fast interpretation loop involves combining continuous measurements from permanent sensors as they are collected to enable a rapid response to detected events; a slower loop requires combining large datasets gathered over longer operational periods from all techniques. The purpose of this paper is twofold. First, it presents an analysis of the monitoring objectives to be performed in the slow and fast interpretation loops. Second, it describes the implementation of the fast interpretation loop with a real-time monitoring system at the Illinois Basin-Decatur Project (IBDP) in Illinois, USA. ?? 2011 Published by Elsevier Ltd.

  10. Fast polarimetric dehazing method for visibility enhancement in HSI colour space

    NASA Astrophysics Data System (ADS)

    Zhang, Wenfei; Liang, Jian; Ren, Liyong; Ju, Haijuan; Bai, Zhaofeng; Wu, Zhaoxin

    2017-09-01

    Image haze removal has attracted much attention in optics and computer vision fields in recent years due to its wide applications. In particular, the fast and real-time dehazing methods are of significance. In this paper, we propose a fast dehazing method in hue, saturation and intensity colour space based on the polarimetric imaging technique. We implement the polarimetric dehazing method in the intensity channel, and the colour distortion of the image is corrected using the white patch retinex method. This method not only reserves the detailed information restoration capacity, but also improves the efficiency of the polarimetric dehazing method. Comparison studies with state of the art methods demonstrate that the proposed method obtains equal or better quality results and moreover the implementation is much faster. The proposed method is promising in real-time image haze removal and video haze removal applications.

  11. [Principles of fast track surgery. Multimodal perioperative therapy programme].

    PubMed

    Kehlet, H

    2009-08-01

    Recent evidence has documented that a combination of single-modality evidence-based care principles into a multimodal effort to enhance postoperative recovery (the fast track methodology) has led to enhanced recovery with reduced medical morbidity, need for hospitalisation and convalescence. Nevertheless, general implementation of fast track surgery has been relatively slow despite concomitant economic benefits. Further improvement in postoperative outcome may be obtained by developments within each care principle with a specific focus on minimally invasive surgery, effective multimodal, non-opioid analgesia and pharmacological stress reduction.

  12. Orthogonal fast spherical Bessel transform on uniform grid

    NASA Astrophysics Data System (ADS)

    Serov, Vladislav V.

    2017-07-01

    We propose an algorithm for the orthogonal fast discrete spherical Bessel transform on a uniform grid. Our approach is based upon the spherical Bessel transform factorization into the two subsequent orthogonal transforms, namely the fast Fourier transform and the orthogonal transform founded on the derivatives of the discrete Legendre orthogonal polynomials. The method utility is illustrated by its implementation for the problem of a two-atomic molecule in a time-dependent external field simulating the one utilized in the attosecond streaking technique.

  13. Focusing light through dynamical samples using fast continuous wavefront optimization.

    PubMed

    Blochet, B; Bourdieu, L; Gigan, S

    2017-12-01

    We describe a fast continuous optimization wavefront shaping system able to focus light through dynamic scattering media. A micro-electro-mechanical system-based spatial light modulator, a fast photodetector, and field programmable gate array electronics are combined to implement a continuous optimization of a wavefront with a single-mode optimization rate of 4.1 kHz. The system performances are demonstrated by focusing light through colloidal solutions of TiO 2 particles in glycerol with tunable temporal stability.

  14. Navigator GPS Receiver for Fast Acquisition and Weak Signal Space Applications

    NASA Technical Reports Server (NTRS)

    Winternitz, Luke; Moreau, Michael; Boegner, Gregory J.; Sirotzky, Steve

    2004-01-01

    NASA Goddard Space Flight Center (GSFC) is developing a new space-borne GPS receiver that can operate effectively in the full range of Earth orbiting missions from Low Earth Orbit (LEO) to geostationary and beyond. Navigator is designed to be a fully space flight qualified GPS receiver optimized for fast signal acquisition and weak signal tracking. The fast acquisition capabilities provide exceptional time to first fix performance (TIFF) with no a priori receiver state or GPS almanac information, even in the presence of high Doppler shifts present in LEO (or near perigee in highly eccentric orbits). The fast acquisition capability also makes it feasible to implement extended correlation intervals and therefore significantly reduce Navigator s acquisition threshold. This greatly improves GPS observability when the receiver is above the GPS constellation (and satellites must be tracked from the opposite side of the Earth) by providing at least 10 dB of increased acquisition sensitivity. Fast acquisition and weak signal tracking algorithms have been implemented and validated on a hardware development board. A fully functional version of the receiver, employing most of the flight parts, with integrated navigation software is expected by mid 2005. An ultimate goal of this project is to license the Navigator design to an industry partner who will then market the receiver as a commercial product.

  15. Nutritional and behavioral effects of gorge and fast feeding in captive lions.

    PubMed

    Altman, Joanne D; Gross, Kathy L; Lowry, Stephen R

    2005-01-01

    Nonhuman animals in captivity manifest behaviors and physiological conditions that are not common in the wild. Lions in captivity face problems of obesity, inactivity, and stereotypy. To mediate common problems of captive lions, this study implemented a gorge and fast feeding schedule that better models naturalistic patterns: African lions (Panthera leo) gradually adapted from a conventional feeding program to a random gorge and fast feeding schedule. Digestibility increased significantly and food intake and metabolizable energy intake correspondingly decreased. Lions also showed an increase in appetitive active behaviors, no increase in agonistic behavior, and paced half as frequently on fast days as on feeding days. Thus, switching captive lions to a gorge and fast feeding schedule resulted in improved nutritional status and increased activity.

  16. Large-Scale Linear Optimization through Machine Learning: From Theory to Practical System Design and Implementation

    DTIC Science & Technology

    2016-08-10

    AFRL-AFOSR-JP-TR-2016-0073 Large-scale Linear Optimization through Machine Learning: From Theory to Practical System Design and Implementation ...2016 4.  TITLE AND SUBTITLE Large-scale Linear Optimization through Machine Learning: From Theory to Practical System Design and Implementation 5a...performances on various machine learning tasks and it naturally lends itself to fast parallel implementations . Despite this, very little work has been

  17. A DTN-Based Multiple Access Fast Forward Service for the NASA Space Network

    NASA Technical Reports Server (NTRS)

    Israel, David; Davis, Faith; Marquart. Jane

    2011-01-01

    The NASA Space Network provides a demand access return link service capable of providing users a space link "on demand". An equivalent service in the forward link direction is not possible due to Tracking and Data Relay Spacecraft (TDRS) constraints. A Disruption Tolerant Networking (DTN)-based Multiple Access Fast Forward (MAFF) service has been proposed to provide a forward link to a user as soon as possible. Previous concept studies have identified a basic architecture and implementation approach. This paper reviews the user scenarios and benefits of an MAFF service and proposes an implementation approach based on the use of DTN protocols.

  18. A VLSI pipeline design of a fast prime factor DFT on a finite field

    NASA Technical Reports Server (NTRS)

    Truong, T. K.; Hsu, I. S.; Shao, H. M.; Reed, I. S.; Shyu, H. C.

    1986-01-01

    A conventional prime factor discrete Fourier transform (DFT) algorithm is used to realize a discrete Fourier-like transform on the finite field, GF(q sub n). A pipeline structure is used to implement this prime factor DFT over GF(q sub n). This algorithm is developed to compute cyclic convolutions of complex numbers and to decode Reed-Solomon codes. Such a pipeline fast prime factor DFT algorithm over GF(q sub n) is regular, simple, expandable, and naturally suitable for VLSI implementation. An example illustrating the pipeline aspect of a 30-point transform over GF(q sub n) is presented.

  19. GPU-accelerated non-uniform fast Fourier transform-based compressive sensing spectral domain optical coherence tomography.

    PubMed

    Xu, Daguang; Huang, Yong; Kang, Jin U

    2014-06-16

    We implemented the graphics processing unit (GPU) accelerated compressive sensing (CS) non-uniform in k-space spectral domain optical coherence tomography (SD OCT). Kaiser-Bessel (KB) function and Gaussian function are used independently as the convolution kernel in the gridding-based non-uniform fast Fourier transform (NUFFT) algorithm with different oversampling ratios and kernel widths. Our implementation is compared with the GPU-accelerated modified non-uniform discrete Fourier transform (MNUDFT) matrix-based CS SD OCT and the GPU-accelerated fast Fourier transform (FFT)-based CS SD OCT. It was found that our implementation has comparable performance to the GPU-accelerated MNUDFT-based CS SD OCT in terms of image quality while providing more than 5 times speed enhancement. When compared to the GPU-accelerated FFT based-CS SD OCT, it shows smaller background noise and less side lobes while eliminating the need for the cumbersome k-space grid filling and the k-linear calibration procedure. Finally, we demonstrated that by using a conventional desktop computer architecture having three GPUs, real-time B-mode imaging can be obtained in excess of 30 fps for the GPU-accelerated NUFFT based CS SD OCT with frame size 2048(axial) × 1,000(lateral).

  20. AUTOMATIC GENERATION OF FFT FOR TRANSLATIONS OF MULTIPOLE EXPANSIONS IN SPHERICAL HARMONICS

    PubMed Central

    Mirkovic, Dragan; Pettitt, B. Montgomery; Johnsson, S. Lennart

    2009-01-01

    The fast multipole method (FMM) is an efficient algorithm for calculating electrostatic interactions in molecular simulations and a promising alternative to Ewald summation methods. Translation of multipole expansion in spherical harmonics is the most important operation of the fast multipole method and the fast Fourier transform (FFT) acceleration of this operation is among the fastest methods of improving its performance. The technique relies on highly optimized implementation of fast Fourier transform routines for the desired expansion sizes, which need to incorporate the knowledge of symmetries and zero elements in the input arrays. Here a method is presented for automatic generation of such, highly optimized, routines. PMID:19763233

  1. Fast-response free-running frequency-stabilized dc-to-dc converter employing a state plane-trajectory control law

    NASA Technical Reports Server (NTRS)

    Huffman, S. D.; Burns, W. W., III; Wilson, T. G.; Owen, H. A., Jr.

    1976-01-01

    Implementations of a state-plane-trajectory control law for energy storage dc-to-dc converters are presented. Performance characteristics of experimental voltage step-up converter systems employing these implementations are reported and compared to theoretical predictions.

  2. Thermochemical Process Integration, Scale-Up, and Piloting Publications |

    Science.gov Websites

    -Economic Assessment of Ex Situ Catalytic Fast Pyrolysis of Biomass: A Fixed Bed Reactor Implementation Scenario for Future Feasibility, Topics in Catalysis Image of a schematic of hot gas filter and ex situ Research Pathways with In Situ and Ex Situ Upgrading of Fast Pyrolysis Vapors, NREL Technical Report Image

  3. Acceleration through a Holistic Support Model: An Implementation and Outcomes Analysis of FastStart@CCD

    ERIC Educational Resources Information Center

    Edgecombe, Nikki; Jaggars, Shanna Smith; Baker, Elaine DeLott; Bailey, Thomas

    2013-01-01

    Originally designed for students who test into at least two levels of developmental education in a particular subject area, FastStart is a compressed course program model launched in 2005 at the Community College of Denver (CCD). The program combines multiple semester-length courses into a single intensive semester, while providing case…

  4. FASTQ quality control dashboard

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2016-07-25

    FQCDB builds up existing open source software, FastQC, implementing a modern web interface for across parsed output of FastQC. In addition, FQCDB is extensible as a web service to include additional plots of type line, boxplot, or heatmap, across data formatted according to guidelines. The interface is also configurable via more readable JSON format, enabling customization by non-web programmers.

  5. Fast or Frugal, but Not Both: Decision Heuristics under Time Pressure

    ERIC Educational Resources Information Center

    Bobadilla-Suarez, Sebastian; Love, Bradley C.

    2018-01-01

    Heuristics are simple, yet effective, strategies that people use to make decisions. Because heuristics do not require all available information, they are thought to be easy to implement and to not tax limited cognitive resources, which has led heuristics to be characterized as fast-and-frugal. We question this monolithic conception of heuristics…

  6. GPU Lossless Hyperspectral Data Compression System for Space Applications

    NASA Technical Reports Server (NTRS)

    Keymeulen, Didier; Aranki, Nazeeh; Hopson, Ben; Kiely, Aaron; Klimesh, Matthew; Benkrid, Khaled

    2012-01-01

    On-board lossless hyperspectral data compression reduces data volume in order to meet NASA and DoD limited downlink capabilities. At JPL, a novel, adaptive and predictive technique for lossless compression of hyperspectral data, named the Fast Lossless (FL) algorithm, was recently developed. This technique uses an adaptive filtering method and achieves state-of-the-art performance in both compression effectiveness and low complexity. Because of its outstanding performance and suitability for real-time onboard hardware implementation, the FL compressor is being formalized as the emerging CCSDS Standard for Lossless Multispectral & Hyperspectral image compression. The FL compressor is well-suited for parallel hardware implementation. A GPU hardware implementation was developed for FL targeting the current state-of-the-art GPUs from NVIDIA(Trademark). The GPU implementation on a NVIDIA(Trademark) GeForce(Trademark) GTX 580 achieves a throughput performance of 583.08 Mbits/sec (44.85 MSamples/sec) and an acceleration of at least 6 times a software implementation running on a 3.47 GHz single core Intel(Trademark) Xeon(Trademark) processor. This paper describes the design and implementation of the FL algorithm on the GPU. The massively parallel implementation will provide in the future a fast and practical real-time solution for airborne and space applications.

  7. Hi-Corrector: a fast, scalable and memory-efficient package for normalizing large-scale Hi-C data.

    PubMed

    Li, Wenyuan; Gong, Ke; Li, Qingjiao; Alber, Frank; Zhou, Xianghong Jasmine

    2015-03-15

    Genome-wide proximity ligation assays, e.g. Hi-C and its variant TCC, have recently become important tools to study spatial genome organization. Removing biases from chromatin contact matrices generated by such techniques is a critical preprocessing step of subsequent analyses. The continuing decline of sequencing costs has led to an ever-improving resolution of the Hi-C data, resulting in very large matrices of chromatin contacts. Such large-size matrices, however, pose a great challenge on the memory usage and speed of its normalization. Therefore, there is an urgent need for fast and memory-efficient methods for normalization of Hi-C data. We developed Hi-Corrector, an easy-to-use, open source implementation of the Hi-C data normalization algorithm. Its salient features are (i) scalability-the software is capable of normalizing Hi-C data of any size in reasonable times; (ii) memory efficiency-the sequential version can run on any single computer with very limited memory, no matter how little; (iii) fast speed-the parallel version can run very fast on multiple computing nodes with limited local memory. The sequential version is implemented in ANSI C and can be easily compiled on any system; the parallel version is implemented in ANSI C with the MPI library (a standardized and portable parallel environment designed for solving large-scale scientific problems). The package is freely available at http://zhoulab.usc.edu/Hi-Corrector/. © The Author 2014. Published by Oxford University Press.

  8. A Fast Visible Camera Divertor-Imaging Diagnostic on DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roquemore, A; Maingi, R; Lasnier, C

    2007-06-19

    In recent campaigns, the Photron Ultima SE fast framing camera has proven to be a powerful diagnostic when applied to imaging divertor phenomena on the National Spherical Torus Experiment (NSTX). Active areas of NSTX divertor research addressed with the fast camera include identification of types of EDGE Localized Modes (ELMs)[1], dust migration, impurity behavior and a number of phenomena related to turbulence. To compare such edge and divertor phenomena in low and high aspect ratio plasmas, a multi-institutional collaboration was developed for fast visible imaging on NSTX and DIII-D. More specifically, the collaboration was proposed to compare the NSTX smallmore » type V ELM regime [2] and the residual ELMs observed during Type I ELM suppression with external magnetic perturbations on DIII-D[3]. As part of the collaboration effort, the Photron camera was installed recently on DIII-D with a tangential view similar to the view implemented on NSTX, enabling a direct comparison between the two machines. The rapid implementation was facilitated by utilization of the existing optics that coupled the visible spectral output from the divertor vacuum ultraviolet UVTV system, which has a view similar to the view developed for the divertor tangential TV camera [4]. A remote controlled filter wheel was implemented, as was the radiation shield required for the DIII-D installation. The installation and initial operation of the camera are described in this paper, and the first images from the DIII-D divertor are presented.« less

  9. FastGCN: A GPU Accelerated Tool for Fast Gene Co-Expression Networks

    PubMed Central

    Liang, Meimei; Zhang, Futao; Jin, Gulei; Zhu, Jun

    2015-01-01

    Gene co-expression networks comprise one type of valuable biological networks. Many methods and tools have been published to construct gene co-expression networks; however, most of these tools and methods are inconvenient and time consuming for large datasets. We have developed a user-friendly, accelerated and optimized tool for constructing gene co-expression networks that can fully harness the parallel nature of GPU (Graphic Processing Unit) architectures. Genetic entropies were exploited to filter out genes with no or small expression changes in the raw data preprocessing step. Pearson correlation coefficients were then calculated. After that, we normalized these coefficients and employed the False Discovery Rate to control the multiple tests. At last, modules identification was conducted to construct the co-expression networks. All of these calculations were implemented on a GPU. We also compressed the coefficient matrix to save space. We compared the performance of the GPU implementation with those of multi-core CPU implementations with 16 CPU threads, single-thread C/C++ implementation and single-thread R implementation. Our results show that GPU implementation largely outperforms single-thread C/C++ implementation and single-thread R implementation, and GPU implementation outperforms multi-core CPU implementation when the number of genes increases. With the test dataset containing 16,000 genes and 590 individuals, we can achieve greater than 63 times the speed using a GPU implementation compared with a single-thread R implementation when 50 percent of genes were filtered out and about 80 times the speed when no genes were filtered out. PMID:25602758

  10. FastGCN: a GPU accelerated tool for fast gene co-expression networks.

    PubMed

    Liang, Meimei; Zhang, Futao; Jin, Gulei; Zhu, Jun

    2015-01-01

    Gene co-expression networks comprise one type of valuable biological networks. Many methods and tools have been published to construct gene co-expression networks; however, most of these tools and methods are inconvenient and time consuming for large datasets. We have developed a user-friendly, accelerated and optimized tool for constructing gene co-expression networks that can fully harness the parallel nature of GPU (Graphic Processing Unit) architectures. Genetic entropies were exploited to filter out genes with no or small expression changes in the raw data preprocessing step. Pearson correlation coefficients were then calculated. After that, we normalized these coefficients and employed the False Discovery Rate to control the multiple tests. At last, modules identification was conducted to construct the co-expression networks. All of these calculations were implemented on a GPU. We also compressed the coefficient matrix to save space. We compared the performance of the GPU implementation with those of multi-core CPU implementations with 16 CPU threads, single-thread C/C++ implementation and single-thread R implementation. Our results show that GPU implementation largely outperforms single-thread C/C++ implementation and single-thread R implementation, and GPU implementation outperforms multi-core CPU implementation when the number of genes increases. With the test dataset containing 16,000 genes and 590 individuals, we can achieve greater than 63 times the speed using a GPU implementation compared with a single-thread R implementation when 50 percent of genes were filtered out and about 80 times the speed when no genes were filtered out.

  11. Compliance in 2017 With Federal Calorie Labeling in 90 Chain Restaurants and 10 Retail Food Outlets Prior to Required Implementation.

    PubMed

    Cleveland, Lauren P; Simon, Denise; Block, Jason P

    2018-06-21

    To examine early compliance with the delayed federal calorie labeling regulation that requires posting calories on menus and menu boards at retail food chains with 20 or more establishments nationally. We explored implementation of calorie labeling at 90 of the largest US chain restaurants and the 10 highest-grossing supermarket chains from May to December 2017. We contacted corporate offices and at least 2 locations for each chain, made site visits when possible, and supplemented these efforts with targeted Internet searches. Overall, 71 (79%) restaurant chains partially or fully implemented labeling, as did 9 (90%) supermarket chains. Fast-food and fast-casual restaurants fully implemented labeling at a modestly higher rate than did full-service restaurants. Most of the retail food chains we assessed implemented calorie labeling policies in advance of the May 2018 compliance date. Public Health Implications. Although implementation of federal calorie labeling has been delayed repeatedly in the 8 years since the passage of the legislation, retail food chains have demonstrated a high rate of compliance with calorie labeling in advance of the required May 2018 implementation date. Despite reports from some retail food industries that compliance will be difficult, current implementation shows the feasibility of complying. (Am J Public Health. Published online ahead of print June 21, 2018: e1-e4. doi:10.2105/AJPH.2018.304513).

  12. Collective Thomson scattering measurements of fast-ion transport due to sawtooth crashes in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Rasmussen, J.; Nielsen, S. K.; Stejner, M.; Galdon-Quiroga, J.; Garcia-Munoz, M.; Geiger, B.; Jacobsen, A. S.; Jaulmes, F.; Korsholm, S. B.; Lazanyi, N.; Leipold, F.; Ryter, F.; Salewski, M.; Schubert, M.; Stober, J.; Wagner, D.; the ASDEX Upgrade Team; the EUROFusion MST1 Team

    2016-11-01

    Sawtooth instabilities can modify heating and current-drive profiles and potentially increase fast-ion losses. Understanding how sawteeth redistribute fast ions as a function of sawtooth parameters and of fast-ion energy and pitch is hence a subject of particular interest for future fusion devices. Here we present the first collective Thomson scattering (CTS) measurements of sawtooth-induced redistribution of fast ions at ASDEX Upgrade. These also represent the first localized fast-ion measurements on the high-field side of this device. The results indicate fast-ion losses in the phase-space measurement volume of about 50% across sawtooth crashes, in good agreement with values predicted with the Kadomtsev sawtooth model implemented in TRANSP and with the sawtooth model in the EBdyna_go code. In contrast to the case of sawteeth, we observe no fast-ion redistribution in the presence of fishbone modes. We highlight how CTS measurements can discriminate between different sawtooth models, in particular when aided by multi-diagnostic velocity-space tomography, and briefly discuss our results in light of existing measurements from other fast-ion diagnostics.

  13. Development towards a fast ion loss detector for the reversed field pinch.

    PubMed

    Bonofiglo, P J; Anderson, J K; Almagri, A F; Kim, J; Clark, J; Capecchi, W; Sears, S H; Egedal, J

    2016-11-01

    A fast ion loss detector has been constructed and implemented on the Madison Symmetric Torus (MST) to investigate energetic ion losses and transport due to energetic particle and MHD instabilities. The detector discriminates particle orbits solely on pitch and consists of two thin-foil, particle collecting plates that are symmetric with respect to the device aperture. One plate collects fast ion signal, while the second aids in the minimization of background and noise effects. Initial measurements are reported along with suggestions for the next design phase of the detector.

  14. Fast discrete cosine transform structure suitable for implementation with integer computation

    NASA Astrophysics Data System (ADS)

    Jeong, Yeonsik; Lee, Imgeun

    2000-10-01

    The discrete cosine transform (DCT) has wide applications in speech and image coding. We propose a fast DCT scheme with the property of reduced multiplication stages and fewer additions and multiplications. The proposed algorithm is structured so that most multiplications are performed at the final stage, which reduces the propagation error that could occur in the integer computation.

  15. High Performance Computing Multicast

    DTIC Science & Technology

    2012-02-01

    responsiveness, first-tier applications often implement replicated in- memory key-value stores , using them to store state or to cache data from services...alternative that replicates data , combines agreement on update ordering with amnesia freedom, and supports both good scalability and fast response. A...alternative that replicates data , combines agreement on update ordering with amnesia freedom, and supports both good scalability and fast response

  16. Fast Legendre moment computation for template matching

    NASA Astrophysics Data System (ADS)

    Li, Bing C.

    2017-05-01

    Normalized cross correlation (NCC) based template matching is insensitive to intensity changes and it has many applications in image processing, object detection, video tracking and pattern recognition. However, normalized cross correlation implementation is computationally expensive since it involves both correlation computation and normalization implementation. In this paper, we propose Legendre moment approach for fast normalized cross correlation implementation and show that the computational cost of this proposed approach is independent of template mask sizes which is significantly faster than traditional mask size dependent approaches, especially for large mask templates. Legendre polynomials have been widely used in solving Laplace equation in electrodynamics in spherical coordinate systems, and solving Schrodinger equation in quantum mechanics. In this paper, we extend Legendre polynomials from physics to computer vision and pattern recognition fields, and demonstrate that Legendre polynomials can help to reduce the computational cost of NCC based template matching significantly.

  17. First demonstration of the fast-to-slow corrector current shift in the NSLS-II storage ring

    NASA Astrophysics Data System (ADS)

    Yang, Xi; Tian, Yuke; Yu, Li Hua; Smaluk, Victor

    2018-04-01

    To realize the full benefits of the high brightness and ultra-small beam sizes of NSLS-II, it is essential that the photon beams are exceedingly stable. In the circumstances of implementing local bumps, changing ID gaps, and long term drifting, the fast orbit feedback (FOFB) requires shifting the fast corrector strengths to the slow correctors to prevent the fast corrector saturation and to make the beam orbit stable in the sub-micron level. As the result, a reliable and precise technique of fast-to-slow corrector strength shift has been developed and tested at NSLS-II. This technique is based on the fast corrector response to the slow corrector change when the FOFB is on. In this article, the shift technique is described and the result of proof-of-principle experiment carried out at NSLS-II is presented. The maximum fast corrector current was reduced from greater than 0.45 A to less than 0.04 A with the orbit perturbation within ±1 μm.

  18. Fast Implementation of Quantum Phase Gates and Creation of Cluster States via Transitionless Quantum Driving

    NASA Astrophysics Data System (ADS)

    Zhang, Chun-Ling; Liu, Wen-Wu

    2018-05-01

    In this paper, combining transitionless quantum driving and quantum Zeno dynamics, we propose an efficient scheme to fast implement a two-qubit quantum phase gate which can be used to generate cluster state of atoms trapped in distant cavities. The influence of various of various error sources including spontaneous emission and photon loss on the fidelity is analyzed via numerical simulation. The results show that this scheme not only takes less time than adiabatic scheme but also is not sensitive to both error sources. Additionally, a creation of N-atom cluster states is put forward as a typical example of the applications of the phase gates.

  19. Examples of design and achievement of vision systems for mobile robotics applications

    NASA Astrophysics Data System (ADS)

    Bonnin, Patrick J.; Cabaret, Laurent; Raulet, Ludovic; Hugel, Vincent; Blazevic, Pierre; M'Sirdi, Nacer K.; Coiffet, Philippe

    2000-10-01

    Our goal is to design and to achieve a multiple purpose vision system for various robotics applications : wheeled robots (like cars for autonomous driving), legged robots (six, four (SONY's AIBO) legged robots, and humanoid), flying robots (to inspect bridges for example) in various conditions : indoor or outdoor. Considering that the constraints depend on the application, we propose an edge segmentation implemented either in software, or in hardware using CPLDs (ASICs or FPGAs could be used too). After discussing the criteria of our choice, we propose a chain of image processing operators constituting an edge segmentation. Although this chain is quite simple and very fast to perform, results appear satisfactory. We proposed a software implementation of it. Its temporal optimization is based on : its implementation under the pixel data flow programming model, the gathering of local processing when it is possible, the simplification of computations, and the use of fast access data structures. Then, we describe a first dedicated hardware implementation of the first part, which requires 9CPLS in this low cost version. It is technically possible, but more expensive, to implement these algorithms using only a signle FPGA.

  20. Implementation and Integration of Regional Health Care Data Networks in the Hellenic National Health Service

    PubMed Central

    Vidalis, Ioannis; Papanikolaou, Christos; Vagelatos, Aristides

    2002-01-01

    Background Modern health care is provided with close cooperation among many different institutions and professionals, using their specialized expertise in a common effort to deliver best-quality and, at the same time, cost-effective services. Within this context of the growing need for information exchange, the demand for realization of data networks interconnecting various health care institutions at a regional level, as well as a national level, has become a practical necessity. Objectives To present the technical solution that is under consideration for implementing and interconnecting regional health care data networks in the Hellenic National Health System. Methods The most critical requirements for deploying such a regional health care data network were identified as: fast implementation, security, quality of service, availability, performance, and technical support. Results The solution proposed is the use of proper virtual private network technologies for implementing functionally-interconnected regional health care data networks. Conclusions The regional health care data network is considered to be a critical infrastructure for further development and penetration of information and communication technologies in the Hellenic National Health System. Therefore, a technical approach was planned, in order to have a fast cost-effective implementation, conforming to certain specifications. PMID:12554551

  1. Implementation and integration of regional health care data networks in the Hellenic National Health Service.

    PubMed

    Lampsas, Petros; Vidalis, Ioannis; Papanikolaou, Christos; Vagelatos, Aristides

    2002-12-01

    Modern health care is provided with close cooperation among many different institutions and professionals, using their specialized expertise in a common effort to deliver best-quality and, at the same time, cost-effective services. Within this context of the growing need for information exchange, the demand for realization of data networks interconnecting various health care institutions at a regional level, as well as a national level, has become a practical necessity. To present the technical solution that is under consideration for implementing and interconnecting regional health care data networks in the Hellenic National Health System. The most critical requirements for deploying such a regional health care data network were identified as: fast implementation, security, quality of service, availability, performance, and technical support. The solution proposed is the use of proper virtual private network technologies for implementing functionally-interconnected regional health care data networks. The regional health care data network is considered to be a critical infrastructure for further development and penetration of information and communication technologies in the Hellenic National Health System. Therefore, a technical approach was planned, in order to have a fast cost-effective implementation, conforming to certain specifications.

  2. Incompressible SPH (ISPH) with fast Poisson solver on a GPU

    NASA Astrophysics Data System (ADS)

    Chow, Alex D.; Rogers, Benedict D.; Lind, Steven J.; Stansby, Peter K.

    2018-05-01

    This paper presents a fast incompressible SPH (ISPH) solver implemented to run entirely on a graphics processing unit (GPU) capable of simulating several millions of particles in three dimensions on a single GPU. The ISPH algorithm is implemented by converting the highly optimised open-source weakly-compressible SPH (WCSPH) code DualSPHysics to run ISPH on the GPU, combining it with the open-source linear algebra library ViennaCL for fast solutions of the pressure Poisson equation (PPE). Several challenges are addressed with this research: constructing a PPE matrix every timestep on the GPU for moving particles, optimising the limited GPU memory, and exploiting fast matrix solvers. The ISPH pressure projection algorithm is implemented as 4 separate stages, each with a particle sweep, including an algorithm for the population of the PPE matrix suitable for the GPU, and mixed precision storage methods. An accurate and robust ISPH boundary condition ideal for parallel processing is also established by adapting an existing WCSPH boundary condition for ISPH. A variety of validation cases are presented: an impulsively started plate, incompressible flow around a moving square in a box, and dambreaks (2-D and 3-D) which demonstrate the accuracy, flexibility, and speed of the methodology. Fragmentation of the free surface is shown to influence the performance of matrix preconditioners and therefore the PPE matrix solution time. The Jacobi preconditioner demonstrates robustness and reliability in the presence of fragmented flows. For a dambreak simulation, GPU speed ups demonstrate up to 10-18 times and 1.1-4.5 times compared to single-threaded and 16-threaded CPU run times respectively.

  3. A simplified implementation of edge detection in MATLAB is faster and more sensitive than fast fourier transform for actin fiber alignment quantification.

    PubMed

    Kemeny, Steven Frank; Clyne, Alisa Morss

    2011-04-01

    Fiber alignment plays a critical role in the structure and function of cells and tissues. While fiber alignment quantification is important to experimental analysis and several different methods for quantifying fiber alignment exist, many studies focus on qualitative rather than quantitative analysis perhaps due to the complexity of current fiber alignment methods. Speed and sensitivity were compared in edge detection and fast Fourier transform (FFT) for measuring actin fiber alignment in cells exposed to shear stress. While edge detection using matrix multiplication was consistently more sensitive than FFT, image processing time was significantly longer. However, when MATLAB functions were used to implement edge detection, MATLAB's efficient element-by-element calculations and fast filtering techniques reduced computation cost 100 times compared to the matrix multiplication edge detection method. The new computation time was comparable to the FFT method, and MATLAB edge detection produced well-distributed fiber angle distributions that statistically distinguished aligned and unaligned fibers in half as many sample images. When the FFT sensitivity was improved by dividing images into smaller subsections, processing time grew larger than the time required for MATLAB edge detection. Implementation of edge detection in MATLAB is simpler, faster, and more sensitive than FFT for fiber alignment quantification.

  4. Fast multipole method using Cartesian tensor in beam dynamic simulation

    DOE PAGES

    Zhang, He; Huang, He; Li, Rui; ...

    2017-03-06

    Here, the fast multipole method (FMM) using traceless totally symmetric Cartesian tensor to calculate the Coulomb interaction between charged particles will be presented. The Cartesian tensor-based FMM can be generalized to treat other non-oscillating interactions with the help of the differential algebra or the truncated power series algebra. Issues on implementation of the FMM in beam dynamic simulations are also discussed.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piot, P.; Halavanau, A.

    This paper discusses the implementation of a python- based high-level interface to the Fermilab acnet control system. The interface has been successfully employed during the commissioning of the Fermilab Accelerator Science & Technology (FAST) facility. Specifically, we present examples of applications at FAST which include the interfacing of the elegant program to assist lattice matching, an automated emittance measurement via the quadrupole-scan method and tranverse transport matrix measurement of a superconducting RF cavity.

  6. Implementation of Adaptive Digital Controllers on Programmable Logic Devices

    NASA Technical Reports Server (NTRS)

    Gwaltney, David A.; King, Kenneth D.; Smith, Keary J.; Ormsby, John (Technical Monitor)

    2002-01-01

    Much has been made of the capabilities of FPGA's (Field Programmable Gate Arrays) in the hardware implementation of fast digital signal processing (DSP) functions. Such capability also makes and FPGA a suitable platform for the digital implementation of closed loop controllers. There are myriad advantages to utilizing an FPGA for discrete-time control functions which include the capability for reconfiguration when SRAM- based FPGA's are employed, fast parallel implementation of multiple control loops and implementations that can meet space level radiation tolerance in a compact form-factor. Other researchers have presented the notion that a second order digital filter with proportional-integral-derivative (PID) control functionality can be implemented in an FPGA. At Marshall Space Flight Center, the Control Electronics Group has been studying adaptive discrete-time control of motor driven actuator systems using digital signal processor (DSF) devices. Our goal is to create a fully digital, flight ready controller design that utilizes an FPGA for implementation of signal conditioning for control feedback signals, generation of commands to the controlled system, and hardware insertion of adaptive control algorithm approaches. While small form factor, commercial DSP devices are now available with event capture, data conversion, pulse width modulated outputs and communication peripherals, these devices are not currently available in designs and packages which meet space level radiation requirements. Meeting our goals requires alternative compact implementation of such functionality to withstand the harsh environment encountered on spacecraft. Radiation tolerant FPGA's are a feasible option for reaching these goals.

  7. Fast track in hip arthroplasty

    PubMed Central

    Hansen, Torben Bæk

    2017-01-01

    ‘Fast-track’ surgery was introduced more than 20 years ago and may be defined as a co-ordinated peri-operative approach aimed at reducing surgical stress and facilitating post-operative recovery.The fast-track programmes have now been introduced into total hip arthroplasty (THA) surgery with reduction in post-operative length of stay, shorter convalescence and rapid functional recovery without increased morbidity and mortality. This has been achieved by focusing on a multidisciplinary collaboration and establishing ‘fast-track’ units, with a well-defined organisational set-up tailored to deliver an accelerated peri-operative course of fast-track surgical THA procedures.Fast-track THA surgery now works extremely well in the standard THA patient. However, all patients are different and fine-tuning of the multiple areas in fast-track pathways to get patients with special needs or high co-morbidity burden through a safe and effective fast-track THA pathway is important.In this narrative review, the principles of fast-track THA surgery are presented together with the present status of implementation and perspectives for further improvements. Cite this article: EFORT Open Rev 2017;2. DOI: 10.1302/2058-5241.2.160060. Originally published online at www.efortopenreviews.org PMID:28630756

  8. Hierarchical parallelisation of functional renormalisation group calculations - hp-fRG

    NASA Astrophysics Data System (ADS)

    Rohe, Daniel

    2016-10-01

    The functional renormalisation group (fRG) has evolved into a versatile tool in condensed matter theory for studying important aspects of correlated electron systems. Practical applications of the method often involve a high numerical effort, motivating the question in how far High Performance Computing (HPC) can leverage the approach. In this work we report on a multi-level parallelisation of the underlying computational machinery and show that this can speed up the code by several orders of magnitude. This in turn can extend the applicability of the method to otherwise inaccessible cases. We exploit three levels of parallelisation: Distributed computing by means of Message Passing (MPI), shared-memory computing using OpenMP, and vectorisation by means of SIMD units (single-instruction-multiple-data). Results are provided for two distinct High Performance Computing (HPC) platforms, namely the IBM-based BlueGene/Q system JUQUEEN and an Intel Sandy-Bridge-based development cluster. We discuss how certain issues and obstacles were overcome in the course of adapting the code. Most importantly, we conclude that this vast improvement can actually be accomplished by introducing only moderate changes to the code, such that this strategy may serve as a guideline for other researcher to likewise improve the efficiency of their codes.

  9. Code Modernization of VPIC

    NASA Astrophysics Data System (ADS)

    Bird, Robert; Nystrom, David; Albright, Brian

    2017-10-01

    The ability of scientific simulations to effectively deliver performant computation is increasingly being challenged by successive generations of high-performance computing architectures. Code development to support efficient computation on these modern architectures is both expensive, and highly complex; if it is approached without due care, it may also not be directly transferable between subsequent hardware generations. Previous works have discussed techniques to support the process of adapting a legacy code for modern hardware generations, but despite the breakthroughs in the areas of mini-app development, portable-performance, and cache oblivious algorithms the problem still remains largely unsolved. In this work we demonstrate how a focus on platform agnostic modern code-development can be applied to Particle-in-Cell (PIC) simulations to facilitate effective scientific delivery. This work builds directly on our previous work optimizing VPIC, in which we replaced intrinsic based vectorisation with compile generated auto-vectorization to improve the performance and portability of VPIC. In this work we present the use of a specialized SIMD queue for processing some particle operations, and also preview a GPU capable OpenMP variant of VPIC. Finally we include a lessons learnt. Work performed under the auspices of the U.S. Dept. of Energy by the Los Alamos National Security, LLC Los Alamos National Laboratory under contract DE-AC52-06NA25396 and supported by the LANL LDRD program.

  10. Increasing the speed of medical image processing in MatLab®

    PubMed Central

    Bister, M; Yap, CS; Ng, KH; Tok, CH

    2007-01-01

    MatLab® has often been considered an excellent environment for fast algorithm development but is generally perceived as slow and hence not fit for routine medical image processing, where large data sets are now available e.g., high-resolution CT image sets with typically hundreds of 512x512 slices. Yet, with proper programming practices – vectorization, pre-allocation and specialization – applications in MatLab® can run as fast as in C language. In this article, this point is illustrated with fast implementations of bilinear interpolation, watershed segmentation and volume rendering. PMID:21614269

  11. Low-power lead-cooled fast reactor loaded with MOX-fuel

    NASA Astrophysics Data System (ADS)

    Sitdikov, E. R.; Terekhova, A. M.

    2017-01-01

    Fast reactor for the purpose of implementation of research, education of undergraduate and doctoral students in handling innovative fast reactors and training specialists for atomic research centers and nuclear power plants (BRUTs) was considered. Hard neutron spectrum achieved in the fast reactor with compact core and lead coolant. Possibility of prompt neutron runaway of the reactor is excluded due to the low reactivity margin which is less than the effective fraction of delayed neutrons. The possibility of using MOX fuel in the BRUTs reactor was examined. The effect of Keff growth connected with replacement of natural lead coolant to 208Pb coolant was evaluated. The calculations and reactor core model were performed using the Serpent Monte Carlo code.

  12. Simultaneous fast scanning XRF, dark field, phase-, and absorption contrast tomography

    NASA Astrophysics Data System (ADS)

    Medjoubi, Kadda; Bonissent, Alain; Leclercq, Nicolas; Langlois, Florent; Mercère, Pascal; Somogyi, Andrea

    2013-09-01

    Scanning hard X-ray nanoprobe imaging provides a unique tool for probing specimens with high sensitivity and large penetration depth. Moreover, the combination of complementary techniques such as X-ray fluorescence, absorption, phase contrast and dark field imaging gives complete quantitative information on the sample structure, composition and chemistry. The multi-technique "FLYSCAN" data acquisition scheme developed at Synchrotron SOLEIL permits to perform fast continuous scanning imaging and as such makes scanning tomography techniques feasible in a time-frame well-adapted to typical user experiments. Here we present the recent results of simultaneous fast scanning multi-technique tomography performed at Soleil. This fast scanning scheme will be implemented at the Nanoscopium beamline for large field of view 2D and 3D multimodal imaging.

  13. A general purpose subroutine for fast fourier transform on a distributed memory parallel machine

    NASA Technical Reports Server (NTRS)

    Dubey, A.; Zubair, M.; Grosch, C. E.

    1992-01-01

    One issue which is central in developing a general purpose Fast Fourier Transform (FFT) subroutine on a distributed memory parallel machine is the data distribution. It is possible that different users would like to use the FFT routine with different data distributions. Thus, there is a need to design FFT schemes on distributed memory parallel machines which can support a variety of data distributions. An FFT implementation on a distributed memory parallel machine which works for a number of data distributions commonly encountered in scientific applications is presented. The problem of rearranging the data after computing the FFT is also addressed. The performance of the implementation on a distributed memory parallel machine Intel iPSC/860 is evaluated.

  14. Fast Fourier transform-based solution of 2D and 3D magnetization problems in type-II superconductivity

    NASA Astrophysics Data System (ADS)

    Prigozhin, Leonid; Sokolovsky, Vladimir

    2018-05-01

    We consider the fast Fourier transform (FFT) based numerical method for thin film magnetization problems (Vestgården and Johansen 2012 Supercond. Sci. Technol. 25 104001), compare it with the finite element methods, and evaluate its accuracy. Proposed modifications of this method implementation ensure stable convergence of iterations and enhance its efficiency. A new method, also based on the FFT, is developed for 3D bulk magnetization problems. This method is based on a magnetic field formulation, different from the popular h-formulation of eddy current problems typically employed with the edge finite elements. The method is simple, easy to implement, and can be used with a general current–voltage relation; its efficiency is illustrated by numerical simulations.

  15. Stimulated Raman adiabatic control of a nuclear spin in diamond

    NASA Astrophysics Data System (ADS)

    Coto, Raul; Jacques, Vincent; Hétet, Gabriel; Maze, Jerónimo R.

    2017-08-01

    Coherent manipulation of nuclear spins is a highly desirable tool for both quantum metrology and quantum computation. However, most of the current techniques to control nuclear spins lack fast speed, impairing their robustness against decoherence. Here, based on stimulated Raman adiabatic passage, and its modification including shortcuts to adiabaticity, we present a fast protocol for the coherent manipulation of nuclear spins. Our proposed Λ scheme is implemented in the microwave domain and its excited-state relaxation can be optically controlled through an external laser excitation. These features allow for the initialization of a nuclear spin starting from a thermal state. Moreover we show how to implement Raman control for performing Ramsey spectroscopy to measure the dynamical and geometric phases acquired by nuclear spins.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krempasky, J.; Flechsig, U.; Korhonen, T.

    Synchronous monochromator and insertion device energy scans were implemented at the Surfaces/Interfaces:Microscopy (SIM) beamline in order to provide the users fast X-ray magnetic dichroism studies (XMCD). A simple software control scheme is proposed based on a fast monochromator run-time energy readback which quickly updates the insertion device requested energy during an on-the-fly X-ray absorption scan (XAS). In this scheme the Plain Grating Monochromator (PGM) motion control, being much slower compared with the insertion device (APPLE-II type undulator), acts as a 'master' controlling the undulator 'slave' energy position. This master-slave software implementation exploits EPICS distributed device control over computer network andmore » allows for a quasi-synchronous motion control combined with data acquisition needed for the XAS or XMCD experiment.« less

  17. Design of fast signal processing readout front-end electronics implemented in CMOS 40 nm technology

    NASA Astrophysics Data System (ADS)

    Kleczek, Rafal

    2016-12-01

    The author presents considerations on the design of fast readout front-end electronics implemented in a CMOS 40 nm technology with an emphasis on the system dead time, noise performance and power dissipation. The designed processing channel consists of a charge sensitive amplifier with different feedback types (Krummenacher, resistive and constant current blocks), a threshold setting block, a discriminator and a counter with logic circuitry. The results of schematic and post-layout simulations with randomly generated input pulses in a time domain according to the Poisson distribution are presented and analyzed. Dead time below 20 ns is possible while keeping noise ENC ≈ 90 e- for a detector capacitance CDET = 160 fF.

  18. A fast sorting algorithm for a hypersonic rarefied flow particle simulation on the connection machine

    NASA Technical Reports Server (NTRS)

    Dagum, Leonardo

    1989-01-01

    The data parallel implementation of a particle simulation for hypersonic rarefied flow described by Dagum associates a single parallel data element with each particle in the simulation. The simulated space is divided into discrete regions called cells containing a variable and constantly changing number of particles. The implementation requires a global sort of the parallel data elements so as to arrange them in an order that allows immediate access to the information associated with cells in the simulation. Described here is a very fast algorithm for performing the necessary ranking of the parallel data elements. The performance of the new algorithm is compared with that of the microcoded instruction for ranking on the Connection Machine.

  19. BeamDyn: A High-Fidelity Wind Turbine Blade Solver in the FAST Modular Framework: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Q.; Sprague, M.; Jonkman, J.

    2015-01-01

    BeamDyn, a Legendre-spectral-finite-element implementation of geometrically exact beam theory (GEBT), was developed to meet the design challenges associated with highly flexible composite wind turbine blades. In this paper, the governing equations of GEBT are reformulated into a nonlinear state-space form to support its coupling within the modular framework of the FAST wind turbine computer-aided engineering (CAE) tool. Different time integration schemes (implicit and explicit) were implemented and examined for wind turbine analysis. Numerical examples are presented to demonstrate the capability of this new beam solver. An example analysis of a realistic wind turbine blade, the CX-100, is also presented asmore » validation.« less

  20. U.S.-Russian Civilian Nuclear Cooperation Agreement: Issues for Congress

    DTIC Science & Technology

    2010-07-09

    for nuclear cooperation in 1973 to allow for cooperation in controlled thermonuclear fusion, fast breeder reactors , and fundamental research. The...that a 123 agreement is needed to implement this action plan—for example, full scale technical cooperation on fast reactors and demonstration of...superpowers convened a Joint Coordinating Committee for Civilian Reactor Safety starting in 1988.10 After the fall of the Soviet Union and prior to July

  1. Restructuring for the 90s and Beyond: Solution Based Learning in the Era of Smart Homes, Wired Communities, Fast Systems, Global Networks, and Fast Forward Learners in a Borderless World.

    ERIC Educational Resources Information Center

    Groff, Warren H.

    An ultimate purpose of education is human resource development to provide society with a critical mass of intellectual capital and competent workforces. To accomplish this end, leaders implement planning processes to guide policy-making, develop institutions, and allocate resources. Although new information technologies are becoming commonplace in…

  2. Fast-responder: Rapid mobile-phone access to recent remote sensing imagery for first responders

    NASA Astrophysics Data System (ADS)

    Talbot, L. M.; Talbot, B. G.

    We introduce Fast-Responder, a novel prototype data-dissemination application and architecture concept to rapidly deliver remote sensing imagery to smartphones to enable situational awareness. The architecture implements a Fast-Earth image caching system on the phone and interacts with a Fast-Earth server. Prototype evaluation successfully demonstrated that National Guard users could select a location, download multiple remote sensing images, and flicker between images, all in less than a minute on a 3G mobile commercial link. The Fast-Responder architecture is a significant advance that is designed to meet the needs of mobile users, such as National Guard response units, to rapidly access information during a crisis, such as a natural or man-made disaster. This paper focuses on the architecture design and advanced user interface concepts for small-screens for highly active mobile users. Novel Fast-Responder concepts can also enable rapid dissemination and evaluation of imagery on the desktop, opening new technology horizons for both desktop and mobile users.

  3. Hardware Implementation of Lossless Adaptive Compression of Data From a Hyperspectral Imager

    NASA Technical Reports Server (NTRS)

    Keymeulen, Didlier; Aranki, Nazeeh I.; Klimesh, Matthew A.; Bakhshi, Alireza

    2012-01-01

    Efficient onboard data compression can reduce the data volume from hyperspectral imagers on NASA and DoD spacecraft in order to return as much imagery as possible through constrained downlink channels. Lossless compression is important for signature extraction, object recognition, and feature classification capabilities. To provide onboard data compression, a hardware implementation of a lossless hyperspectral compression algorithm was developed using a field programmable gate array (FPGA). The underlying algorithm is the Fast Lossless (FL) compression algorithm reported in Fast Lossless Compression of Multispectral- Image Data (NPO-42517), NASA Tech Briefs, Vol. 30, No. 8 (August 2006), p. 26 with the modification reported in Lossless, Multi-Spectral Data Comressor for Improved Compression for Pushbroom-Type Instruments (NPO-45473), NASA Tech Briefs, Vol. 32, No. 7 (July 2008) p. 63, which provides improved compression performance for data from pushbroom-type imagers. An FPGA implementation of the unmodified FL algorithm was previously developed and reported in Fast and Adaptive Lossless Onboard Hyperspectral Data Compression System (NPO-46867), NASA Tech Briefs, Vol. 36, No. 5 (May 2012) p. 42. The essence of the FL algorithm is adaptive linear predictive compression using the sign algorithm for filter adaption. The FL compressor achieves a combination of low complexity and compression effectiveness that exceeds that of stateof- the-art techniques currently in use. The modification changes the predictor structure to tolerate differences in sensitivity of different detector elements, as occurs in pushbroom-type imagers, which are suitable for spacecraft use. The FPGA implementation offers a low-cost, flexible solution compared to traditional ASIC (application specific integrated circuit) and can be integrated as an intellectual property (IP) for part of, e.g., a design that manages the instrument interface. The FPGA implementation was benchmarked on the Xilinx Virtex IV LX25 device, and ported to a Xilinx prototype board. The current implementation has a critical path of 29.5 ns, which dictated a clock speed of 33 MHz. The critical path delay is end-to-end measurement between the uncompressed input data and the output compression data stream. The implementation compresses one sample every clock cycle, which results in a speed of 33 Msample/s. The implementation has a rather low device use of the Xilinx Virtex IV LX25, making the total power consumption of the implementation about 1.27 W.

  4. Integrated Multiscale Modeling of Molecular Computing Devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregory Beylkin

    2012-03-23

    Significant advances were made on all objectives of the research program. We have developed fast multiresolution methods for performing electronic structure calculations with emphasis on constructing efficient representations of functions and operators. We extended our approach to problems of scattering in solids, i.e. constructing fast algorithms for computing above the Fermi energy level. Part of the work was done in collaboration with Robert Harrison and George Fann at ORNL. Specific results (in part supported by this grant) are listed here and are described in greater detail. (1) We have implemented a fast algorithm to apply the Green's function for themore » free space (oscillatory) Helmholtz kernel. The algorithm maintains its speed and accuracy when the kernel is applied to functions with singularities. (2) We have developed a fast algorithm for applying periodic and quasi-periodic, oscillatory Green's functions and those with boundary conditions on simple domains. Importantly, the algorithm maintains its speed and accuracy when applied to functions with singularities. (3) We have developed a fast algorithm for obtaining and applying multiresolution representations of periodic and quasi-periodic Green's functions and Green's functions with boundary conditions on simple domains. (4) We have implemented modifications to improve the speed of adaptive multiresolution algorithms for applying operators which are represented via a Gaussian expansion. (5) We have constructed new nearly optimal quadratures for the sphere that are invariant under the icosahedral rotation group. (6) We obtained new results on approximation of functions by exponential sums and/or rational functions, one of the key methods that allows us to construct separated representations for Green's functions. (7) We developed a new fast and accurate reduction algorithm for obtaining optimal approximation of functions by exponential sums and/or their rational representations.« less

  5. Implementation of Adaptive Digital Controllers on Programmable Logic Devices

    NASA Technical Reports Server (NTRS)

    Gwaltney, David A.; King, Kenneth D.; Smith, Keary J.; Monenegro, Justino (Technical Monitor)

    2002-01-01

    Much has been made of the capabilities of FPGA's (Field Programmable Gate Arrays) in the hardware implementation of fast digital signal processing. Such capability also makes an FPGA a suitable platform for the digital implementation of closed loop controllers. Other researchers have implemented a variety of closed-loop digital controllers on FPGA's. Some of these controllers include the widely used proportional-integral-derivative (PID) controller, state space controllers, neural network and fuzzy logic based controllers. There are myriad advantages to utilizing an FPGA for discrete-time control functions which include the capability for reconfiguration when SRAM-based FPGA's are employed, fast parallel implementation of multiple control loops and implementations that can meet space level radiation tolerance requirements in a compact form-factor. Generally, a software implementation on a DSP (Digital Signal Processor) or microcontroller is used to implement digital controllers. At Marshall Space Flight Center, the Control Electronics Group has been studying adaptive discrete-time control of motor driven actuator systems using digital signal processor (DSP) devices. While small form factor, commercial DSP devices are now available with event capture, data conversion, pulse width modulated (PWM) outputs and communication peripherals, these devices are not currently available in designs and packages which meet space level radiation requirements. In general, very few DSP devices are produced that are designed to meet any level of radiation tolerance or hardness. The goal of this effort is to create a fully digital, flight ready controller design that utilizes an FPGA for implementation of signal conditioning for control feedback signals, generation of commands to the controlled system, and hardware insertion of adaptive control algorithm approaches. An alternative is required for compact implementation of such functionality to withstand the harsh environment encountered on spacecraft. Radiation tolerant FPGA's are a feasible option for reaching this goal.

  6. Implementation of Adaptive Digital Controllers on Programmable Logic Devices

    NASA Technical Reports Server (NTRS)

    Gwaltney, David A.; King, Kenneth D.; Smith, Keary J.; Montenegro, Justino (Technical Monitor)

    2002-01-01

    Much has been made of the capabilities of Field Programmable Gate Arrays (FPGA's) in the hardware implementation of fast digital signal processing functions. Such capability also makes an FPGA a suitable platform for the digital implementation of closed loop controllers. Other researchers have implemented a variety of closed-loop digital controllers on FPGA's. Some of these controllers include the widely used Proportional-Integral-Derivative (PID) controller, state space controllers, neural network and fuzzy logic based controllers. There are myriad advantages to utilizing an FPGA for discrete-time control functions which include the capability for reconfiguration when SRAM- based FPGA's are employed, fast parallel implementation of multiple control loops and implementations that can meet space level radiation tolerance requirements in a compact form-factor. Generally, a software implementation on a Digital Signal Processor (DSP) device or microcontroller is used to implement digital controllers. At Marshall Space Flight Center, the Control Electronics Group has been studying adaptive discrete-time control of motor driven actuator systems using DSP devices. While small form factor, commercial DSP devices are now available with event capture, data conversion, Pulse Width Modulated (PWM) outputs and communication peripherals, these devices are not currently available in designs and packages which meet space level radiation requirements. In general, very few DSP devices are produced that are designed to meet any level of radiation tolerance or hardness. An alternative is required for compact implementation of such functionality to withstand the harsh environment encountered on spacemap. The goal of this effort is to create a fully digital, flight ready controller design that utilizes an FPGA for implementation of signal conditioning for control feedback signals, generation of commands to the controlled system, and hardware insertion of adaptive-control algorithm approaches. Radiation tolerant FPGA's are a feasible option for reaching this goal.

  7. Compute-unified device architecture implementation of a block-matching algorithm for multiple graphical processing unit cards

    PubMed Central

    Massanes, Francesc; Cadennes, Marie; Brankov, Jovan G.

    2012-01-01

    In this paper we describe and evaluate a fast implementation of a classical block matching motion estimation algorithm for multiple Graphical Processing Units (GPUs) using the Compute Unified Device Architecture (CUDA) computing engine. The implemented block matching algorithm (BMA) uses summed absolute difference (SAD) error criterion and full grid search (FS) for finding optimal block displacement. In this evaluation we compared the execution time of a GPU and CPU implementation for images of various sizes, using integer and non-integer search grids. The results show that use of a GPU card can shorten computation time by a factor of 200 times for integer and 1000 times for a non-integer search grid. The additional speedup for non-integer search grid comes from the fact that GPU has built-in hardware for image interpolation. Further, when using multiple GPU cards, the presented evaluation shows the importance of the data splitting method across multiple cards, but an almost linear speedup with a number of cards is achievable. In addition we compared execution time of the proposed FS GPU implementation with two existing, highly optimized non-full grid search CPU based motion estimations methods, namely implementation of the Pyramidal Lucas Kanade Optical flow algorithm in OpenCV and Simplified Unsymmetrical multi-Hexagon search in H.264/AVC standard. In these comparisons, FS GPU implementation still showed modest improvement even though the computational complexity of FS GPU implementation is substantially higher than non-FS CPU implementation. We also demonstrated that for an image sequence of 720×480 pixels in resolution, commonly used in video surveillance, the proposed GPU implementation is sufficiently fast for real-time motion estimation at 30 frames-per-second using two NVIDIA C1060 Tesla GPU cards. PMID:22347787

  8. Compute-unified device architecture implementation of a block-matching algorithm for multiple graphical processing unit cards.

    PubMed

    Massanes, Francesc; Cadennes, Marie; Brankov, Jovan G

    2011-07-01

    In this paper we describe and evaluate a fast implementation of a classical block matching motion estimation algorithm for multiple Graphical Processing Units (GPUs) using the Compute Unified Device Architecture (CUDA) computing engine. The implemented block matching algorithm (BMA) uses summed absolute difference (SAD) error criterion and full grid search (FS) for finding optimal block displacement. In this evaluation we compared the execution time of a GPU and CPU implementation for images of various sizes, using integer and non-integer search grids.The results show that use of a GPU card can shorten computation time by a factor of 200 times for integer and 1000 times for a non-integer search grid. The additional speedup for non-integer search grid comes from the fact that GPU has built-in hardware for image interpolation. Further, when using multiple GPU cards, the presented evaluation shows the importance of the data splitting method across multiple cards, but an almost linear speedup with a number of cards is achievable.In addition we compared execution time of the proposed FS GPU implementation with two existing, highly optimized non-full grid search CPU based motion estimations methods, namely implementation of the Pyramidal Lucas Kanade Optical flow algorithm in OpenCV and Simplified Unsymmetrical multi-Hexagon search in H.264/AVC standard. In these comparisons, FS GPU implementation still showed modest improvement even though the computational complexity of FS GPU implementation is substantially higher than non-FS CPU implementation.We also demonstrated that for an image sequence of 720×480 pixels in resolution, commonly used in video surveillance, the proposed GPU implementation is sufficiently fast for real-time motion estimation at 30 frames-per-second using two NVIDIA C1060 Tesla GPU cards.

  9. An Accurate and Efficient Algorithm for Detection of Radio Bursts with an Unknown Dispersion Measure, for Single-dish Telescopes and Interferometers

    NASA Astrophysics Data System (ADS)

    Zackay, Barak; Ofek, Eran O.

    2017-01-01

    Astronomical radio signals are subjected to phase dispersion while traveling through the interstellar medium. To optimally detect a short-duration signal within a frequency band, we have to precisely compensate for the unknown pulse dispersion, which is a computationally demanding task. We present the “fast dispersion measure transform” algorithm for optimal detection of such signals. Our algorithm has a low theoretical complexity of 2{N}f{N}t+{N}t{N}{{Δ }}{{log}}2({N}f), where Nf, Nt, and NΔ are the numbers of frequency bins, time bins, and dispersion measure bins, respectively. Unlike previously suggested fast algorithms, our algorithm conserves the sensitivity of brute-force dedispersion. Our tests indicate that this algorithm, running on a standard desktop computer and implemented in a high-level programming language, is already faster than the state-of-the-art dedispersion codes running on graphical processing units (GPUs). We also present a variant of the algorithm that can be efficiently implemented on GPUs. The latter algorithm’s computation and data-transport requirements are similar to those of a two-dimensional fast Fourier transform, indicating that incoherent dedispersion can now be considered a nonissue while planning future surveys. We further present a fast algorithm for sensitive detection of pulses shorter than the dispersive smearing limits of incoherent dedispersion. In typical cases, this algorithm is orders of magnitude faster than enumerating dispersion measures and coherently dedispersing by convolution. We analyze the computational complexity of pulsed signal searches by radio interferometers. We conclude that, using our suggested algorithms, maximally sensitive blind searches for dispersed pulses are feasible using existing facilities. We provide an implementation of these algorithms in Python and MATLAB.

  10. Calorie Labeling, Fast Food Purchasing and Restaurant Visits

    PubMed Central

    Elbel, Brian; Mijanovich, Tod; Dixon, Beth; Abrams, Courtney; Weitzman, Beth; Kersh, Rogan; Auchincloss, Amy H.; Ogedegbe, Gbenga

    2013-01-01

    Objective Obesity is a pressing public health problem without proven population-wide solutions. Researchers sought to determine whether a city-mandated policy requiring calorie labeling at fast food restaurants was associated with consumer awareness of labels, calories purchased and fast food restaurant visits. Design and Methods Difference-in-differences design, with data collected from consumers outside fast food restaurants and via a random digit dial telephone survey, before (December 2009) and after (June 2010) labeling in Philadelphia (which implemented mandatory labeling) and Baltimore (matched comparison city). Measures included: self-reported use of calorie information, calories purchased determined via fast food receipts, and self-reported weekly fast-food visits. Results The consumer sample was predominantly Black (71%), and high school educated (62%). Post-labeling, 38% of Philadelphia consumers noticed the calorie labels for a 33 percentage point (p<.001) increase relative to Baltimore. Calories purchased and number of fast food visits did not change in either city over time. Conclusions While some consumer reports noticing and using calorie information, no population level changes were noted in calories purchased or fast food visits. Other controlled studies are needed to examine the longer term impact of labeling as it becomes national law. PMID:24136905

  11. fast_protein_cluster: parallel and optimized clustering of large-scale protein modeling data.

    PubMed

    Hung, Ling-Hong; Samudrala, Ram

    2014-06-15

    fast_protein_cluster is a fast, parallel and memory efficient package used to cluster 60 000 sets of protein models (with up to 550 000 models per set) generated by the Nutritious Rice for the World project. fast_protein_cluster is an optimized and extensible toolkit that supports Root Mean Square Deviation after optimal superposition (RMSD) and Template Modeling score (TM-score) as metrics. RMSD calculations using a laptop CPU are 60× faster than qcprot and 3× faster than current graphics processing unit (GPU) implementations. New GPU code further increases the speed of RMSD and TM-score calculations. fast_protein_cluster provides novel k-means and hierarchical clustering methods that are up to 250× and 2000× faster, respectively, than Clusco, and identify significantly more accurate models than Spicker and Clusco. fast_protein_cluster is written in C++ using OpenMP for multi-threading support. Custom streaming Single Instruction Multiple Data (SIMD) extensions and advanced vector extension intrinsics code accelerate CPU calculations, and OpenCL kernels support AMD and Nvidia GPUs. fast_protein_cluster is available under the M.I.T. license. (http://software.compbio.washington.edu/fast_protein_cluster) © The Author 2014. Published by Oxford University Press.

  12. Calorie labeling, fast food purchasing and restaurant visits.

    PubMed

    Elbel, Brian; Mijanovich, Tod; Dixon, L Beth; Abrams, Courtney; Weitzman, Beth; Kersh, Rogan; Auchincloss, Amy H; Ogedegbe, Gbenga

    2013-11-01

    Obesity is a pressing public health problem without proven population-wide solutions. Researchers sought to determine whether a city-mandated policy requiring calorie labeling at fast food restaurants was associated with consumer awareness of labels, calories purchased and fast food restaurant visits. Difference-in-differences design, with data collected from consumers outside fast food restaurants and via a random digit dial telephone survey, before (December 2009) and after (June 2010) labeling in Philadelphia (which implemented mandatory labeling) and Baltimore (matched comparison city). Measures included: self-reported use of calorie information, calories purchased determined via fast food receipts, and self-reported weekly fast-food visits. The consumer sample was predominantly Black (71%), and high school educated (62%). Postlabeling, 38% of Philadelphia consumers noticed the calorie labels for a 33% point (P < 0.001) increase relative to Baltimore. Calories purchased and number of fast food visits did not change in either city over time. While some consumers report noticing and using calorie information, no population level changes were noted in calories purchased or fast food visits. Other controlled studies are needed to examine the longer term impact of labeling as it becomes national law. Copyright © 2013 The Obesity Society.

  13. Rapid feedback control and stabilization of an optical tweezers with a budget microcontroller

    NASA Astrophysics Data System (ADS)

    Nino, Daniel; Wang, Haowei; Milstein, Joshua N.

    2014-09-01

    Laboratories ranging the scientific disciplines employ feedback control to regulate variables within their experiments, from the flow of liquids within a microfluidic device to the temperature within a cell incubator. We have built an inexpensive, yet fast and rapidly deployed, feedback control system that is straightforward and flexible to implement from a commercially available Arduino Due microcontroller. This is in comparison with the complex, time-consuming and often expensive electronics that are commonly implemented. As an example of its utility, we apply our feedback controller to the task of stabilizing the main trapping laser of an optical tweezers. The feedback controller, which is inexpensive yet fast and rapidly deployed, was implemented from hacking an open source Arduino Due microcontroller. Our microcontroller based feedback system can stabilize the laser intensity to a few tenths of a per cent at 200 kHz, which is an order of magnitude better than the laser's base specifications, illustrating the utility of these devices.

  14. Recent advances and plans in processing and geocoding of SAR data at the DFD

    NASA Technical Reports Server (NTRS)

    Noack, W.

    1993-01-01

    Because of the needs of future projects like ENVISAT and the experiences made with the current operational ERS-1 facilities, a radical change in the synthetic aperture radar (SAR) processing scenarios can be predicted for the next years. At the German PAF several new developments were initialized which are driven mainly either by user needs or by system and operational constraints ('lessons learned'). At the end there will be a major simplification and uniformation of all used computer systems. Especially the following changes are likely to be implemented at the German PAF: transcription before archiving, processing of all standard products with high throughput directly at the receiving stations, processing of special 'high-valued' products at the PAF, usage of a single type of processor hardware, implementation of a large and fast on-line data archive, and improved and unified fast data network between the processing and archiving facilities. A short description of the current operational SAR facilities as well as the future implementations are given.

  15. A fast implementation of MPC-based motion cueing algorithms for mid-size road vehicle motion simulators

    NASA Astrophysics Data System (ADS)

    Bruschetta, M.; Maran, F.; Beghi, A.

    2017-06-01

    The use of dynamic driving simulators is constantly increasing in the automotive community, with applications ranging from vehicle development to rehab and driver training. The effectiveness of such devices is related to their capabilities of well reproducing the driving sensations, hence it is crucial that the motion control strategies generate both realistic and feasible inputs to the platform. Such strategies are called motion cueing algorithms (MCAs). In recent years several MCAs based on model predictive control (MPC) techniques have been proposed. The main drawback associated with the use of MPC is its computational burden, that may limit their application to high performance dynamic simulators. In the paper, a fast, real-time implementation of an MPC-based MCA for 9 DOF, high performance platform is proposed. Effectiveness of the approach in managing the available working area is illustrated by presenting experimental results from an implementation on a real device with a 200 Hz control frequency.

  16. Fast and Flexible Successive-Cancellation List Decoders for Polar Codes

    NASA Astrophysics Data System (ADS)

    Hashemi, Seyyed Ali; Condo, Carlo; Gross, Warren J.

    2017-11-01

    Polar codes have gained significant amount of attention during the past few years and have been selected as a coding scheme for the next generation of mobile broadband standard. Among decoding schemes, successive-cancellation list (SCL) decoding provides a reasonable trade-off between the error-correction performance and hardware implementation complexity when used to decode polar codes, at the cost of limited throughput. The simplified SCL (SSCL) and its extension SSCL-SPC increase the speed of decoding by removing redundant calculations when encountering particular information and frozen bit patterns (rate one and single parity check codes), while keeping the error-correction performance unaltered. In this paper, we improve SSCL and SSCL-SPC by proving that the list size imposes a specific number of bit estimations required to decode rate one and single parity check codes. Thus, the number of estimations can be limited while guaranteeing exactly the same error-correction performance as if all bits of the code were estimated. We call the new decoding algorithms Fast-SSCL and Fast-SSCL-SPC. Moreover, we show that the number of bit estimations in a practical application can be tuned to achieve desirable speed, while keeping the error-correction performance almost unchanged. Hardware architectures implementing both algorithms are then described and implemented: it is shown that our design can achieve 1.86 Gb/s throughput, higher than the best state-of-the-art decoders.

  17. Fast space-varying convolution using matrix source coding with applications to camera stray light reduction.

    PubMed

    Wei, Jianing; Bouman, Charles A; Allebach, Jan P

    2014-05-01

    Many imaging applications require the implementation of space-varying convolution for accurate restoration and reconstruction of images. Here, we use the term space-varying convolution to refer to linear operators whose impulse response has slow spatial variation. In addition, these space-varying convolution operators are often dense, so direct implementation of the convolution operator is typically computationally impractical. One such example is the problem of stray light reduction in digital cameras, which requires the implementation of a dense space-varying deconvolution operator. However, other inverse problems, such as iterative tomographic reconstruction, can also depend on the implementation of dense space-varying convolution. While space-invariant convolution can be efficiently implemented with the fast Fourier transform, this approach does not work for space-varying operators. So direct convolution is often the only option for implementing space-varying convolution. In this paper, we develop a general approach to the efficient implementation of space-varying convolution, and demonstrate its use in the application of stray light reduction. Our approach, which we call matrix source coding, is based on lossy source coding of the dense space-varying convolution matrix. Importantly, by coding the transformation matrix, we not only reduce the memory required to store it; we also dramatically reduce the computation required to implement matrix-vector products. Our algorithm is able to reduce computation by approximately factoring the dense space-varying convolution operator into a product of sparse transforms. Experimental results show that our method can dramatically reduce the computation required for stray light reduction while maintaining high accuracy.

  18. Fast Initialization of Bubble-Memory Systems

    NASA Technical Reports Server (NTRS)

    Looney, K. T.; Nichols, C. D.; Hayes, P. J.

    1986-01-01

    Improved scheme several orders of magnitude faster than normal initialization scheme. State-of-the-art commercial bubble-memory device used. Hardware interface designed connects controlling microprocessor to bubblememory circuitry. System software written to exercise various functions of bubble-memory system in comparison made between normal and fast techniques. Future implementations of approach utilize E2PROM (electrically-erasable programable read-only memory) to provide greater system flexibility. Fastinitialization technique applicable to all bubble-memory devices.

  19. High Hydrogen Content Graphene Hydride Compounds & High Cross-­ Section Cladding Coatings for Fast Neutron Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandrashekhar, MVS

    The objective is to develop and implement a superior low-cost, large area (potentially >32in), easily deployable, close proximity, harsh environment innovative neutron sensor needed for next generation fuel cycle monitoring. We will exploit recent breakthroughs at the PI’s lab on the electrochemistry of epitaxial graphene (EG) formed on commercial SiC wafers, a transformative nanomaterial system with superior radiation detection and durability properties to develop a new paradigm in detection for fast neutrons, a by-product of fission reactors. There are currently few effective detection/monitoring schemes, especially solid-state ones at present. This is essential for monitoring and control of future fuel cyclesmore » to make them more efficient and reliable. By exploiting these novel materials, as well as innovative hybrid SiC/EG/Cladding device architectures conceived by the team, will develop low-cost, high performance solutions to fast-neutron detection. Finally, we will also explore 3-terminal device implementations for neutron detectors with built-in electronic gain to further shrink these devices and improve their sensitivity.« less

  20. Fast animation of lightning using an adaptive mesh.

    PubMed

    Kim, Theodore; Lin, Ming C

    2007-01-01

    We present a fast method for simulating, animating, and rendering lightning using adaptive grids. The "dielectric breakdown model" is an elegant algorithm for electrical pattern formation that we extend to enable animation of lightning. The simulation can be slow, particularly in 3D, because it involves solving a large Poisson problem. Losasso et al. recently proposed an octree data structure for simulating water and smoke, and we show that this discretization can be applied to the problem of lightning simulation as well. However, implementing the incomplete Cholesky conjugate gradient (ICCG) solver for this problem can be daunting, so we provide an extensive discussion of implementation issues. ICCG solvers can usually be accelerated using "Eisenstat's trick," but the trick cannot be directly applied to the adaptive case. Fortunately, we show that an "almost incomplete Cholesky" factorization can be computed so that Eisenstat's trick can still be used. We then present a fast rendering method based on convolution that is competitive with Monte Carlo ray tracing but orders of magnitude faster, and we also show how to further improve the visual results using jittering.

  1. Implementation and characterization of active feed-forward for deterministic linear optics quantum computing

    NASA Astrophysics Data System (ADS)

    Böhi, P.; Prevedel, R.; Jennewein, T.; Stefanov, A.; Tiefenbacher, F.; Zeilinger, A.

    2007-12-01

    In general, quantum computer architectures which are based on the dynamical evolution of quantum states, also require the processing of classical information, obtained by measurements of the actual qubits that make up the computer. This classical processing involves fast, active adaptation of subsequent measurements and real-time error correction (feed-forward), so that quantum gates and algorithms can be executed in a deterministic and hence error-free fashion. This is also true in the linear optical regime, where the quantum information is stored in the polarization state of photons. The adaptation of the photon’s polarization can be achieved in a very fast manner by employing electro-optical modulators, which change the polarization of a trespassing photon upon appliance of a high voltage. In this paper we discuss techniques for implementing fast, active feed-forward at the single photon level and we present their application in the context of photonic quantum computing. This includes the working principles and the characterization of the EOMs as well as a description of the switching logics, both of which allow quantum computation at an unprecedented speed.

  2. Application of neural networks with novel independent component analysis methodologies to a Prussian blue modified glassy carbon electrode array.

    PubMed

    Wang, Liang; Yang, Die; Fang, Cheng; Chen, Zuliang; Lesniewski, Peter J; Mallavarapu, Megharaj; Naidu, Ravendra

    2015-01-01

    Sodium potassium absorption ratio (SPAR) is an important measure of agricultural water quality, wherein four exchangeable cations (K(+), Na(+), Ca(2+) and Mg(2+)) should be simultaneously determined. An ISE-array is suitable for this application because its simplicity, rapid response characteristics and lower cost. However, cross-interferences caused by the poor selectivity of ISEs need to be overcome using multivariate chemometric methods. In this paper, a solid contact ISE array, based on a Prussian blue modified glassy carbon electrode (PB-GCE), was applied with a novel chemometric strategy. One of the most popular independent component analysis (ICA) methods, the fast fixed-point algorithm for ICA (fastICA), was implemented by the genetic algorithm (geneticICA) to avoid the local maxima problem commonly observed with fastICA. This geneticICA can be implemented as a data preprocessing method to improve the prediction accuracy of the Back-propagation neural network (BPNN). The ISE array system was validated using 20 real irrigation water samples from South Australia, and acceptable prediction accuracies were obtained. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. WindPACT Reference Wind Turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dykes, Katherine L; Rinker, Jennifer

    To fully understand how loads and turbine cost scale with turbine size, it is necessary to have identical turbine models that have been scaled to different rated powers. The report presents the WindPACT baseline models, which are a series of four baseline models that were designed to facilitate investigations into the scalings of loads and turbine cost with size. The models have four different rated powers (750 kW, 1.5 MW, 3.0 MW, and 5.0 MW), and each model was designed to its specified rated power using the same design methodology. The models were originally implemented in FAST_AD, the predecessor tomore » NREL's open-source wind turbine simulator FAST, but have yet to be implemented in FAST. This report contains the specifications for all four WindPACT baseline models - including structural, aerodynamic, and control specifications - along with the inherent assumptions and equations that were used to calculate the model parameters. It is hoped that these baseline models will serve as extremely useful resources for investigations into the scalings of costs, loads, or optimization routines.« less

  4. A fast method to emulate an iterative POCS image reconstruction algorithm.

    PubMed

    Zeng, Gengsheng L

    2017-10-01

    Iterative image reconstruction algorithms are commonly used to optimize an objective function, especially when the objective function is nonquadratic. Generally speaking, the iterative algorithms are computationally inefficient. This paper presents a fast algorithm that has one backprojection and no forward projection. This paper derives a new method to solve an optimization problem. The nonquadratic constraint, for example, an edge-preserving denoising constraint is implemented as a nonlinear filter. The algorithm is derived based on the POCS (projections onto projections onto convex sets) approach. A windowed FBP (filtered backprojection) algorithm enforces the data fidelity. An iterative procedure, divided into segments, enforces edge-enhancement denoising. Each segment performs nonlinear filtering. The derived iterative algorithm is computationally efficient. It contains only one backprojection and no forward projection. Low-dose CT data are used for algorithm feasibility studies. The nonlinearity is implemented as an edge-enhancing noise-smoothing filter. The patient studies results demonstrate its effectiveness in processing low-dose x ray CT data. This fast algorithm can be used to replace many iterative algorithms. © 2017 American Association of Physicists in Medicine.

  5. Lax-Friedrichs sweeping scheme for static Hamilton-Jacobi equations

    NASA Astrophysics Data System (ADS)

    Kao, Chiu Yen; Osher, Stanley; Qian, Jianliang

    2004-05-01

    We propose a simple, fast sweeping method based on the Lax-Friedrichs monotone numerical Hamiltonian to approximate viscosity solutions of arbitrary static Hamilton-Jacobi equations in any number of spatial dimensions. By using the Lax-Friedrichs numerical Hamiltonian, we can easily obtain the solution at a specific grid point in terms of its neighbors, so that a Gauss-Seidel type nonlinear iterative method can be utilized. Furthermore, by incorporating a group-wise causality principle into the Gauss-Seidel iteration by following a finite group of characteristics, we have an easy-to-implement, sweeping-type, and fast convergent numerical method. However, unlike other methods based on the Godunov numerical Hamiltonian, some computational boundary conditions are needed in the implementation. We give a simple recipe which enforces a version of discrete min-max principle. Some convergence analysis is done for the one-dimensional eikonal equation. Extensive 2-D and 3-D numerical examples illustrate the efficiency and accuracy of the new approach. To our knowledge, this is the first fast numerical method based on discretizing the Hamilton-Jacobi equation directly without assuming convexity and/or homogeneity of the Hamiltonian.

  6. Solutions of large-scale electromagnetics problems involving dielectric objects with the parallel multilevel fast multipole algorithm.

    PubMed

    Ergül, Özgür

    2011-11-01

    Fast and accurate solutions of large-scale electromagnetics problems involving homogeneous dielectric objects are considered. Problems are formulated with the electric and magnetic current combined-field integral equation and discretized with the Rao-Wilton-Glisson functions. Solutions are performed iteratively by using the multilevel fast multipole algorithm (MLFMA). For the solution of large-scale problems discretized with millions of unknowns, MLFMA is parallelized on distributed-memory architectures using a rigorous technique, namely, the hierarchical partitioning strategy. Efficiency and accuracy of the developed implementation are demonstrated on very large problems involving as many as 100 million unknowns.

  7. Fast parallel approach for 2-D DHT-based real-valued discrete Gabor transform.

    PubMed

    Tao, Liang; Kwan, Hon Keung

    2009-12-01

    Two-dimensional fast Gabor transform algorithms are useful for real-time applications due to the high computational complexity of the traditional 2-D complex-valued discrete Gabor transform (CDGT). This paper presents two block time-recursive algorithms for 2-D DHT-based real-valued discrete Gabor transform (RDGT) and its inverse transform and develops a fast parallel approach for the implementation of the two algorithms. The computational complexity of the proposed parallel approach is analyzed and compared with that of the existing 2-D CDGT algorithms. The results indicate that the proposed parallel approach is attractive for real time image processing.

  8. Processing techniques for software based SAR processors

    NASA Technical Reports Server (NTRS)

    Leung, K.; Wu, C.

    1983-01-01

    Software SAR processing techniques defined to treat Shuttle Imaging Radar-B (SIR-B) data are reviewed. The algorithms are devised for the data processing procedure selection, SAR correlation function implementation, multiple array processors utilization, cornerturning, variable reference length azimuth processing, and range migration handling. The Interim Digital Processor (IDP) originally implemented for handling Seasat SAR data has been adapted for the SIR-B, and offers a resolution of 100 km using a processing procedure based on the Fast Fourier Transformation fast correlation approach. Peculiarities of the Seasat SAR data processing requirements are reviewed, along with modifications introduced for the SIR-B. An Advanced Digital SAR Processor (ADSP) is under development for use with the SIR-B in the 1986 time frame as an upgrade for the IDP, which will be in service in 1984-5.

  9. Ultrafast adiabatic quantum algorithm for the NP-complete exact cover problem

    PubMed Central

    Wang, Hefeng; Wu, Lian-Ao

    2016-01-01

    An adiabatic quantum algorithm may lose quantumness such as quantum coherence entirely in its long runtime, and consequently the expected quantum speedup of the algorithm does not show up. Here we present a general ultrafast adiabatic quantum algorithm. We show that by applying a sequence of fast random or regular signals during evolution, the runtime can be reduced substantially, whereas advantages of the adiabatic algorithm remain intact. We also propose a randomized Trotter formula and show that the driving Hamiltonian and the proposed sequence of fast signals can be implemented simultaneously. We illustrate the algorithm by solving the NP-complete 3-bit exact cover problem (EC3), where NP stands for nondeterministic polynomial time, and put forward an approach to implementing the problem with trapped ions. PMID:26923834

  10. Fast and accurate quantum molecular dynamics of dense plasmas across temperature regimes

    DOE PAGES

    Sjostrom, Travis; Daligault, Jerome

    2014-10-10

    Here, we develop and implement a new quantum molecular dynamics approximation that allows fast and accurate simulations of dense plasmas from cold to hot conditions. The method is based on a carefully designed orbital-free implementation of density functional theory. The results for hydrogen and aluminum are in very good agreement with Kohn-Sham (orbital-based) density functional theory and path integral Monte Carlo calculations for microscopic features such as the electron density as well as the equation of state. The present approach does not scale with temperature and hence extends to higher temperatures than is accessible in the Kohn-Sham method and lowermore » temperatures than is accessible by path integral Monte Carlo calculations, while being significantly less computationally expensive than either of those two methods.« less

  11. ppcor: An R Package for a Fast Calculation to Semi-partial Correlation Coefficients.

    PubMed

    Kim, Seongho

    2015-11-01

    Lack of a general matrix formula hampers implementation of the semi-partial correlation, also known as part correlation, to the higher-order coefficient. This is because the higher-order semi-partial correlation calculation using a recursive formula requires an enormous number of recursive calculations to obtain the correlation coefficients. To resolve this difficulty, we derive a general matrix formula of the semi-partial correlation for fast computation. The semi-partial correlations are then implemented on an R package ppcor along with the partial correlation. Owing to the general matrix formulas, users can readily calculate the coefficients of both partial and semi-partial correlations without computational burden. The package ppcor further provides users with the level of the statistical significance with its test statistic.

  12. Three-dimensional atomic force microscopy mapping at the solid-liquid interface with fast and flexible data acquisition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Söngen, Hagen, E-mail: soengen@uni-mainz.de; Graduate School Materials Science in Mainz, Staudinger Weg 9, 55128 Mainz; Nalbach, Martin

    2016-06-15

    We present the implementation of a three-dimensional mapping routine for probing solid-liquid interfaces using frequency modulation atomic force microscopy. Our implementation enables fast and flexible data acquisition of up to 20 channels simultaneously. The acquired data can be directly synchronized with commercial atomic force microscope controllers, making our routine easily extendable for related techniques that require additional data channels, e.g., Kelvin probe force microscopy. Moreover, the closest approach of the tip to the sample is limited by a user-defined threshold, providing the possibility to prevent potential damage to the tip. The performance of our setup is demonstrated by visualizing themore » hydration structure above the calcite (10.4) surface in water.« less

  13. FAST: A multi-processed environment for visualization of computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Bancroft, Gordon V.; Merritt, Fergus J.; Plessel, Todd C.; Kelaita, Paul G.; Mccabe, R. Kevin

    1991-01-01

    Three-dimensional, unsteady, multi-zoned fluid dynamics simulations over full scale aircraft are typical of the problems being investigated at NASA Ames' Numerical Aerodynamic Simulation (NAS) facility on CRAY2 and CRAY-YMP supercomputers. With multiple processor workstations available in the 10-30 Mflop range, we feel that these new developments in scientific computing warrant a new approach to the design and implementation of analysis tools. These larger, more complex problems create a need for new visualization techniques not possible with the existing software or systems available as of this writing. The visualization techniques will change as the supercomputing environment, and hence the scientific methods employed, evolves even further. The Flow Analysis Software Toolkit (FAST), an implementation of a software system for fluid mechanics analysis, is discussed.

  14. Time efficient Gabor fused master slave optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Cernat, Ramona; Bradu, Adrian; Rivet, Sylvain; Podoleanu, Adrian

    2018-02-01

    In this paper the benefits in terms of operation time that Master/Slave (MS) implementation of optical coherence tomography can bring in comparison to Gabor fused (GF) employing conventional fast Fourier transform based OCT are presented. The Gabor Fusion/Master Slave Optical Coherence Tomography architecture proposed here does not need any data stitching. Instead, a subset of en-face images is produced for each focus position inside the sample to be imaged, using a reduced number of theoretically inferred Master masks. These en-face images are then assembled into a final volume. When the channelled spectra are digitized into 1024 sampling points, and more than 4 focus positions are required to produce the final volume, the Master Slave implementation of the instrument is faster than the conventional fast Fourier transform based procedure.

  15. Arroyo Management Plan (Alameda County): A Plan for Implementing Access and Restoring Riparian Habitats

    Treesearch

    Kent E. Watson; Jim Horner; Louise Mozingo

    1989-01-01

    Innovative techniques for restoring riparian habitats are of little value without a community endorsed plan for their implementation. A flood control district commissioned the Arroyo Management Plan in order to determine how it might provide public access and improve habitat along its current and future channels in a fast-growing area of Northern California. The Plan,...

  16. IMPLEMENTATION OF FIRST-PASSAGE TIME APPROACH FOR OBJECT KINETIC MONTE CARLO SIMULATIONS OF IRRADIATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nandipati, Giridhar; Setyawan, Wahyu; Heinisch, Howard L.

    2014-06-30

    The objective of the work is to implement a first-passage time (FPT) approach to deal with very fast 1D diffusing SIA clusters in KSOME (kinetic simulations of microstructural evolution) [1] to achieve longer time-scales during irradiation damage simulations. The goal is to develop FPT-KSOME, which has the same flexibility as KSOME.

  17. FleCSPH - a parallel and distributed SPH implementation based on the FleCSI framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Junghans, Christoph; Loiseau, Julien

    2017-06-20

    FleCSPH is a multi-physics compact application that exercises FleCSI parallel data structures for tree-based particle methods. In particular, FleCSPH implements a smoothed-particle hydrodynamics (SPH) solver for the solution of Lagrangian problems in astrophysics and cosmology. FleCSPH includes support for gravitational forces using the fast multipole method (FMM).

  18. Efficient implementation of multidimensional fast fourier transform on a distributed-memory parallel multi-node computer

    DOEpatents

    Bhanot, Gyan V [Princeton, NJ; Chen, Dong [Croton-On-Hudson, NY; Gara, Alan G [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Heidelberger, Philip [Cortlandt Manor, NY; Steinmacher-Burow, Burkhard D [Mount Kisco, NY; Vranas, Pavlos M [Bedford Hills, NY

    2012-01-10

    The present in invention is directed to a method, system and program storage device for efficiently implementing a multidimensional Fast Fourier Transform (FFT) of a multidimensional array comprising a plurality of elements initially distributed in a multi-node computer system comprising a plurality of nodes in communication over a network, comprising: distributing the plurality of elements of the array in a first dimension across the plurality of nodes of the computer system over the network to facilitate a first one-dimensional FFT; performing the first one-dimensional FFT on the elements of the array distributed at each node in the first dimension; re-distributing the one-dimensional FFT-transformed elements at each node in a second dimension via "all-to-all" distribution in random order across other nodes of the computer system over the network; and performing a second one-dimensional FFT on elements of the array re-distributed at each node in the second dimension, wherein the random order facilitates efficient utilization of the network thereby efficiently implementing the multidimensional FFT. The "all-to-all" re-distribution of array elements is further efficiently implemented in applications other than the multidimensional FFT on the distributed-memory parallel supercomputer.

  19. Efficient implementation of a multidimensional fast fourier transform on a distributed-memory parallel multi-node computer

    DOEpatents

    Bhanot, Gyan V [Princeton, NJ; Chen, Dong [Croton-On-Hudson, NY; Gara, Alan G [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Heidelberger, Philip [Cortlandt Manor, NY; Steinmacher-Burow, Burkhard D [Mount Kisco, NY; Vranas, Pavlos M [Bedford Hills, NY

    2008-01-01

    The present in invention is directed to a method, system and program storage device for efficiently implementing a multidimensional Fast Fourier Transform (FFT) of a multidimensional array comprising a plurality of elements initially distributed in a multi-node computer system comprising a plurality of nodes in communication over a network, comprising: distributing the plurality of elements of the array in a first dimension across the plurality of nodes of the computer system over the network to facilitate a first one-dimensional FFT; performing the first one-dimensional FFT on the elements of the array distributed at each node in the first dimension; re-distributing the one-dimensional FFT-transformed elements at each node in a second dimension via "all-to-all" distribution in random order across other nodes of the computer system over the network; and performing a second one-dimensional FFT on elements of the array re-distributed at each node in the second dimension, wherein the random order facilitates efficient utilization of the network thereby efficiently implementing the multidimensional FFT. The "all-to-all" re-distribution of array elements is further efficiently implemented in applications other than the multidimensional FFT on the distributed-memory parallel supercomputer.

  20. Consumer estimation of recommended and actual calories at fast food restaurants.

    PubMed

    Elbel, Brian

    2011-10-01

    Recently, localities across the United States have passed laws requiring the mandatory labeling of calories in all chain restaurants, including fast food restaurants. This policy is set to be implemented at the federal level. Early studies have found these policies to be at best minimally effective in altering food choice at a population level. This paper uses receipt and survey data collected from consumers outside fast food restaurants in low-income communities in New York City (NYC) (which implemented labeling) and a comparison community (which did not) to examine two fundamental assumptions necessary (though not sufficient) for calorie labeling to be effective: that consumers know how many calories they should be eating throughout the course of a day and that currently customers improperly estimate the number of calories in their fast food order. Then, we examine whether mandatory menu labeling influences either of these assumptions. We find that approximately one-third of consumers properly estimate that the number of calories an adult should consume daily. Few (8% on average) believe adults should be eating over 2,500 calories daily, and approximately one-third believe adults should eat lesser than 1,500 calories daily. Mandatory labeling in NYC did not change these findings. However, labeling did increase the number of low-income consumers who correctly estimated (within 100 calories) the number of calories in their fast food meal, from 15% before labeling in NYC increasing to 24% after labeling. Overall knowledge remains low even with labeling. Additional public policies likely need to be considered to influence obesity on a large scale.

  1. Consumer Estimation of Recommended and Actual Calories at Fast Food Restaurants

    PubMed Central

    Elbel, Brian

    2013-01-01

    Recently, localities across the United States have passed laws requiring the mandatory labeling of calories in all chain restaurants, including fast food restaurants. This policy is set to be implemented at the federal level. Early studies have found these policies to be at best minimally effective in altering food choice at a population level. This paper uses receipt and survey data collected from consumers outside fast food restaurants in low-income communities in New York City (NYC) (which implemented labeling) and a comparison community (which did not) to examine two fundamental assumptions necessary (though not sufficient) for calorie labeling to be effective: that consumers know how many calories they should be eating throughout the course of a day and that currently customers improperly estimate the number of calories in their fast food order. Then, we examine whether mandatory menu labeling influences either of these assumptions. We find that approximately one-third of consumers properly estimate that the number of calories an adult should consume daily. Few (8% on average) believe adults should be eating over 2,500 calories daily, and approximately one-third believe adults should eat lesser than 1,500 calories daily. Mandatory labeling in NYC did not change these findings. However, labeling did increase the number of low-income consumers who correctly estimated (within 100 calories) the number of calories in their fast food meal, from 15% before labeling in NYC increasing to 24% after labeling. Overall knowledge remains low even with labeling. Additional public policies likely need to be considered to influence obesity on a large scale. PMID:21779085

  2. A fast image registration approach of neural activities in light-sheet fluorescence microscopy images

    NASA Astrophysics Data System (ADS)

    Meng, Hui; Hui, Hui; Hu, Chaoen; Yang, Xin; Tian, Jie

    2017-03-01

    The ability of fast and single-neuron resolution imaging of neural activities enables light-sheet fluorescence microscopy (LSFM) as a powerful imaging technique in functional neural connection applications. The state-of-art LSFM imaging system can record the neuronal activities of entire brain for small animal, such as zebrafish or C. elegans at single-neuron resolution. However, the stimulated and spontaneous movements in animal brain result in inconsistent neuron positions during recording process. It is time consuming to register the acquired large-scale images with conventional method. In this work, we address the problem of fast registration of neural positions in stacks of LSFM images. This is necessary to register brain structures and activities. To achieve fast registration of neural activities, we present a rigid registration architecture by implementation of Graphics Processing Unit (GPU). In this approach, the image stacks were preprocessed on GPU by mean stretching to reduce the computation effort. The present image was registered to the previous image stack that considered as reference. A fast Fourier transform (FFT) algorithm was used for calculating the shift of the image stack. The calculations for image registration were performed in different threads while the preparation functionality was refactored and called only once by the master thread. We implemented our registration algorithm on NVIDIA Quadro K4200 GPU under Compute Unified Device Architecture (CUDA) programming environment. The experimental results showed that the registration computation can speed-up to 550ms for a full high-resolution brain image. Our approach also has potential to be used for other dynamic image registrations in biomedical applications.

  3. An efficient implementation of Forward-Backward Least-Mean-Square Adaptive Line Enhancers

    NASA Technical Reports Server (NTRS)

    Yeh, H.-G.; Nguyen, T. M.

    1995-01-01

    An efficient implementation of the forward-backward least-mean-square (FBLMS) adaptive line enhancer is presented in this article. Without changing the characteristics of the FBLMS adaptive line enhancer, the proposed implementation technique reduces multiplications by 25% and additions by 12.5% in two successive time samples in comparison with those operations of direct implementation in both prediction and weight control. The proposed FBLMS architecture and algorithm can be applied to digital receivers for enhancing signal-to-noise ratio to allow fast carrier acquisition and tracking in both stationary and nonstationary environments.

  4. Fast-forward Langevin dynamics with momentum flips

    NASA Astrophysics Data System (ADS)

    Hijazi, Mahdi; Wilkins, David M.; Ceriotti, Michele

    2018-05-01

    Stochastic thermostats based on the Langevin equation, in which a system is coupled to an external heat bath, are popular methods for temperature control in molecular dynamics simulations due to their ergodicity and their ease of implementation. Traditionally, these thermostats suffer from sluggish behavior in the limit of high friction, unlike thermostats of the Nosé-Hoover family whose performance degrades more gently in the strong coupling regime. We propose a simple and easy-to-implement modification to the integration scheme of the Langevin algorithm that addresses the fundamental source of the overdamped behavior of high-friction Langevin dynamics: if the action of the thermostat causes the momentum of a particle to change direction, it is flipped back. This fast-forward Langevin equation preserves the momentum distribution and so guarantees the correct equilibrium sampling. It mimics the quadratic behavior of Nosé-Hoover thermostats and displays similarly good performance in the strong coupling limit. We test the efficiency of this scheme by applying it to a 1-dimensional harmonic oscillator, as well as to water and Lennard-Jones polymers. The sampling efficiency of the fast-forward Langevin equation thermostat, measured by the correlation time of relevant system variables, is at least as good as the traditional Langevin thermostat, and in the overdamped regime, the fast-forward thermostat performs much better, improving the efficiency by an order of magnitude at the highest frictions we considered.

  5. TH-A-19A-08: Intel Xeon Phi Implementation of a Fast Multi-Purpose Monte Carlo Simulation for Proton Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souris, K; Lee, J; Sterpin, E

    2014-06-15

    Purpose: Recent studies have demonstrated the capability of graphics processing units (GPUs) to compute dose distributions using Monte Carlo (MC) methods within clinical time constraints. However, GPUs have a rigid vectorial architecture that favors the implementation of simplified particle transport algorithms, adapted to specific tasks. Our new, fast, and multipurpose MC code, named MCsquare, runs on Intel Xeon Phi coprocessors. This technology offers 60 independent cores, and therefore more flexibility to implement fast and yet generic MC functionalities, such as prompt gamma simulations. Methods: MCsquare implements several models and hence allows users to make their own tradeoff between speed andmore » accuracy. A 200 MeV proton beam is simulated in a heterogeneous phantom using Geant4 and two configurations of MCsquare. The first one is the most conservative and accurate. The method of fictitious interactions handles the interfaces and secondary charged particles emitted in nuclear interactions are fully simulated. The second, faster configuration simplifies interface crossings and simulates only secondary protons after nuclear interaction events. Integral depth-dose and transversal profiles are compared to those of Geant4. Moreover, the production profile of prompt gammas is compared to PENH results. Results: Integral depth dose and transversal profiles computed by MCsquare and Geant4 are within 3%. The production of secondaries from nuclear interactions is slightly inaccurate at interfaces for the fastest configuration of MCsquare but this is unlikely to have any clinical impact. The computation time varies between 90 seconds for the most conservative settings to merely 59 seconds in the fastest configuration. Finally prompt gamma profiles are also in very good agreement with PENH results. Conclusion: Our new, fast, and multi-purpose Monte Carlo code simulates prompt gammas and calculates dose distributions in less than a minute, which complies with clinical time constraints. It has been successfully validated with Geant4. This work has been financialy supported by InVivoIGT, a public/private partnership between UCL and IBA.« less

  6. First demonstration of the fast-to-slow corrector current shift in the NSLS-II storage ring

    DOE PAGES

    Yang, Xi; Tian, Yuke; Yu, Li Hua; ...

    2018-04-01

    In order to realize the full benefits of the high brightness and ultra-small beam sizes of NSLS-II, it is essential that the photon beams are exceedingly stable. In the circumstances of implementing local bumps, changing ID gaps, and long term drifting, the fast orbit feedback (FOFB) requires shifting the fast corrector strengths to the slow correctors to prevent the fast corrector saturation and to make the beam orbit stable in the sub-micron level. As the result, a reliable and precise technique of fast-to-slow corrector strength shift has been developed and tested at NSLS-II. This technique is based on the fastmore » corrector response to the slow corrector change when the FOFB is on. In this article, the shift technique is described and the result of proof-of-principle experiment carried out at NSLS-II is presented. The maximum fast corrector current was reduced from greater than 0.45 A to less than 0.04 A with the orbit perturbation within ±1 μm.« less

  7. First demonstration of the fast-to-slow corrector current shift in the NSLS-II storage ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xi; Tian, Yuke; Yu, Li Hua

    In order to realize the full benefits of the high brightness and ultra-small beam sizes of NSLS-II, it is essential that the photon beams are exceedingly stable. In the circumstances of implementing local bumps, changing ID gaps, and long term drifting, the fast orbit feedback (FOFB) requires shifting the fast corrector strengths to the slow correctors to prevent the fast corrector saturation and to make the beam orbit stable in the sub-micron level. As the result, a reliable and precise technique of fast-to-slow corrector strength shift has been developed and tested at NSLS-II. This technique is based on the fastmore » corrector response to the slow corrector change when the FOFB is on. In this article, the shift technique is described and the result of proof-of-principle experiment carried out at NSLS-II is presented. The maximum fast corrector current was reduced from greater than 0.45 A to less than 0.04 A with the orbit perturbation within ±1 μm.« less

  8. Vanishing points detection using combination of fast Hough transform and deep learning

    NASA Astrophysics Data System (ADS)

    Sheshkus, Alexander; Ingacheva, Anastasia; Nikolaev, Dmitry

    2018-04-01

    In this paper we propose a novel method for vanishing points detection based on convolutional neural network (CNN) approach and fast Hough transform algorithm. We show how to determine fast Hough transform neural network layer and how to use it in order to increase usability of the neural network approach to the vanishing point detection task. Our algorithm includes CNN with consequence of convolutional and fast Hough transform layers. We are building estimator for distribution of possible vanishing points in the image. This distribution can be used to find candidates of vanishing point. We provide experimental results from tests of suggested method using images collected from videos of road trips. Our approach shows stable result on test images with different projective distortions and noise. Described approach can be effectively implemented for mobile GPU and CPU.

  9. Bridging Quantum, Classical and Stochastic Shortcuts to Adiabaticity

    NASA Astrophysics Data System (ADS)

    Patra, Ayoti

    Adiabatic invariants - quantities that are preserved under the slow driving of a system's external parameters - are important in classical mechanics, quantum mechanics and thermodynamics. Adiabatic processes allow a system to be guided to evolve to a desired final state. However, the slow driving of a quantum system makes it vulnerable to environmental decoherence, and for both quantum and classical systems, it is often desirable and time-efficient to speed up a process. Shortcuts to adiabaticity are strategies for preserving adiabatic invariants under rapid driving, typically by means of an auxiliary field that suppresses excitations, otherwise generated during rapid driving. Several theoretical approaches have been developed to construct such shortcuts. In this dissertation we focus on two different approaches, namely counterdiabatic driving and fast-forward driving, which were originally developed for quantum systems. The counterdiabatic approach introduced independently by Dermirplak and Rice [J. Phys. Chem. A, 107:9937, 2003], and Berry [J. Phys. A: Math. Theor., 42:365303, 2009] formally provides an exact expression for the auxiliary Hamiltonian, which however is abstract and difficult to translate into an experimentally implementable form. By contrast, the fast-forward approach developed by Masuda and Nakamura [Proc. R. Soc. A, 466(2116):1135, 2010] provides an auxiliary potential that may be experimentally implementable but generally applies only to ground states. The central theme of this dissertation is that classical shortcuts to adiabaticity can provide useful physical insights and lead to experimentally implementable shortcuts for analogous quantum systems. We start by studying a model system of a tilted piston to provide a proof of principle that quantum shortcuts can successfully be constructed from their classical counterparts. In the remainder of the dissertation, we develop a general approach based on flow-fields which produces simple expressions for auxiliary terms required for both counterdiabatic and fast-forward driving. We demonstrate the applicability of this approach for classical, quantum as well as stochastic systems. We establish strong connections between counterdiabatic and fast-forward approaches, and also between shortcut protocols required for classical, quantum and stochastic systems. In particular, we show how the fast-forward approach can be extended to highly excited states of quantum systems.

  10. Distributed simulation for formation flying applications

    NASA Technical Reports Server (NTRS)

    Sohl, Garett A.; Udomkesmalee, Santi; Kellogg, Jennifer L.

    2005-01-01

    High fidelity engineering simulation plays a key role in the rapidly developing field of space-based formation flying. This paper describes the design and implementation of the Formation Algorithms and Simulation Testbed (FAST).

  11. Integrated mobile robot control

    NASA Technical Reports Server (NTRS)

    Amidi, Omead; Thorpe, Charles

    1991-01-01

    This paper describes the structure, implementation, and operation of a real-time mobile robot controller which integrates capabilities such as: position estimation, path specification and tracking, human interfaces, fast communication, and multiple client support. The benefits of such high-level capabilities in a low-level controller was shown by its implementation for the Navlab autonomous vehicle. In addition, performance results from positioning and tracking systems are reported and analyzed.

  12. The LO Model and the Traditional French Organisational Culture: A Paradigmatic Contradiction Leading to a Limited Implementation

    ERIC Educational Resources Information Center

    Belet, Daniel

    2010-01-01

    This article deals with the issue of the very weak implementation of the LO model in France, although it appears as an appealing new management paradigm that can allow companies to better face a fast changing environment. The author argues that there is a strong philosophical contradiction between this innovative management model and the still…

  13. Integrated mobile robot control

    NASA Astrophysics Data System (ADS)

    Amidi, Omead; Thorpe, Chuck E.

    1991-03-01

    This paper describes the strucwre implementation and operation of a real-time mobile robot controller which integrates capabilities such as: position estimation path specification and hacking human interfaces fast communication and multiple client support The benefits of such high-level capabilities in a low-level controller was shown by its implementation for the Naviab autonomous vehicle. In addition performance results from positioning and tracking systems are reported and analyzed.

  14. Simulator evaluation of the final approach spacing tool

    NASA Technical Reports Server (NTRS)

    Davis, Thomas J.; Erzberger, Heinz; Green, Steven M.

    1990-01-01

    The design and simulator evaluation of an automation tool for assisting terminal radar approach controllers in sequencing and spacing traffic onto the final approach course is described. The automation tool, referred to as the Final Approach Spacing Tool (FAST), displays speed and heading advisories for arrivals as well as sequencing information on the controller's radar display. The main functional elements of FAST are a scheduler that schedules and sequences the traffic, a 4-D trajectory synthesizer that generates the advisories, and a graphical interface that displays the information to the controller. FAST was implemented on a high performance workstation. It can be operated as a stand-alone in the Terminal Radar Approach Control (TRACON) Facility or as an element of a system integrated with automation tools in the Air Route Traffic Control Center (ARTCC). FAST was evaluated by experienced TRACON controllers in a real-time air traffic control simulation. Simulation results show that FAST significantly reduced controller workload and demonstrated a potential for an increase in landing rate.

  15. High-stability 48-core bendable and movable optical cable for FAST telescope optical transmission system

    NASA Astrophysics Data System (ADS)

    Liu, Hongfei; Pan, Gaofeng; Lin, Zhong; Liu, Cheng; Zhu, Wenbai; Nan, Rendong; Li, Chunsheng; Gao, Guanjun; Luo, Wenyong; Jin, Chengjin; Song, Jinyou

    2017-11-01

    The construction of FAST telescope was completed in Guizhou province of China in September 2016, and a kind of novel high-stability 48-core bendable and movable optical cable was developed and applied in analog data optical transmission system of FAST. Novel structure and selective material of this optical cable ensure high stability of optical power in the process of cables round-trip motion when telescope is tracking a radio source. The 105 times bend and stretch accelerated experiment for this optical cable was implemented, and real-time optical and RF signal power fluctuation were measured. The physical structure of optical cables after 105 times round-trip motion is in good condition; the real-time optical power attenuation fluctuation is smaller than 0.044 dB; the real-time RF power fluctuation is smaller than 0.12 dB. The optical cable developed in this letter meets the requirement of FAST and has been applied in FAST telescope.

  16. The fast multipole method and point dipole moment polarizable force fields.

    PubMed

    Coles, Jonathan P; Masella, Michel

    2015-01-14

    We present an implementation of the fast multipole method for computing Coulombic electrostatic and polarization forces from polarizable force-fields based on induced point dipole moments. We demonstrate the expected O(N) scaling of that approach by performing single energy point calculations on hexamer protein subunits of the mature HIV-1 capsid. We also show the long time energy conservation in molecular dynamics at the nanosecond scale by performing simulations of a protein complex embedded in a coarse-grained solvent using a standard integrator and a multiple time step integrator. Our tests show the applicability of fast multipole method combined with state-of-the-art chemical models in molecular dynamical systems.

  17. The application of digital signal processing techniques to a teleoperator radar system

    NASA Technical Reports Server (NTRS)

    Pujol, A.

    1982-01-01

    A digital signal processing system was studied for the determination of the spectral frequency distribution of echo signals from a teleoperator radar system. The system consisted of a sample and hold circuit, an analog to digital converter, a digital filter, and a Fast Fourier Transform. The system is interfaced to a 16 bit microprocessor. The microprocessor is programmed to control the complete digital signal processing. The digital filtering and Fast Fourier Transform functions are implemented by a S2815 digital filter/utility peripheral chip and a S2814A Fast Fourier Transform chip. The S2815 initially simulates a low-pass Butterworth filter with later expansion to complete filter circuit (bandpass and highpass) synthesizing.

  18. New fast DCT algorithms based on Loeffler's factorization

    NASA Astrophysics Data System (ADS)

    Hong, Yoon Mi; Kim, Il-Koo; Lee, Tammy; Cheon, Min-Su; Alshina, Elena; Han, Woo-Jin; Park, Jeong-Hoon

    2012-10-01

    This paper proposes a new 32-point fast discrete cosine transform (DCT) algorithm based on the Loeffler's 16-point transform. Fast integer realizations of 16-point and 32-point transforms are also provided based on the proposed transform. For the recent development of High Efficiency Video Coding (HEVC), simplified quanti-zation and de-quantization process are proposed. Three different forms of implementation with the essentially same performance, namely matrix multiplication, partial butterfly, and full factorization can be chosen accord-ing to the given platform. In terms of the number of multiplications required for the realization, our proposed full-factorization is 3~4 times faster than a partial butterfly, and about 10 times faster than direct matrix multiplication.

  19. A digitally implemented preambleless demodulator for maritime and mobile data communications

    NASA Astrophysics Data System (ADS)

    Chalmers, Harvey; Shenoy, Ajit; Verahrami, Farhad B.

    The hardware design and software algorithms for a low-bit-rate, low-cost, all-digital preambleless demodulator are described. The demodulator operates under severe high-noise conditions, fast Doppler frequency shifts, large frequency offsets, and multipath fading. Sophisticated algorithms, including a fast Fourier transform (FFT)-based burst acquisition algorithm, a cycle-slip resistant carrier phase tracker, an innovative Doppler tracker, and a fast acquisition symbol synchronizer, were developed and extensively simulated for reliable burst reception. The compact digital signal processor (DSP)-based demodulator hardware uses a unique personal computer test interface for downloading test data files. The demodulator test results demonstrate a near-ideal performance within 0.2 dB of theory.

  20. Solution of the Skyrme-Hartree-Fock-Bogolyubov equations in the Cartesian deformed harmonic-oscillator basis. (IV) HFODD (v2.08i): a new version of the program

    NASA Astrophysics Data System (ADS)

    Dobaczewski, J.; Olbratowski, P.

    2004-04-01

    We describe the new version (v2.08i) of the code HFODD which solves the nuclear Skyrme-Hartree-Fock or Skyrme-Hartree-Fock-Bogolyubov problem by using the Cartesian deformed harmonic-oscillator basis. In the new version, all symmetries can be broken, which allows for calculations with angular frequency and angular momentum tilted with respect to the mass distribution. The new version contains an interface to the LAPACK subroutine ZHPEVX. Program summaryTitle of the program:HFODD (v2.08i) Catalogue number: ADTO Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADTO Reference in CPC for earlier version of program: J. Dobaczewski and J. Dudek, Comput. Phys. Commun. 131 (2000) 164 (v1.75r) Catalogue number of previous version: ADML Licensing provisions: none Does the new version supersede the previous one: yes Computers on which the program has been tested: SG Power Challenge L, Pentium-II, Pentium-III, AMD-Athlon Operating systems: UNIX, LINUX, Windows-2000 Programming language used: FORTRAN-77 and FORTRAN-90 Memory required to execute with typical data: 10 Mwords No. of bits in a word: The code is written in single-precision for the use on a 64-bit processor. The compiler option -r8 or +autodblpad (or equivalent) has to be used to promote all real and complex single-precision floating-point items to double precision when the code is used on a 32-bit machine. Has the code been vectorised?: Yes No. of bytes in distributed program, including test data, etc.: 265352 No. of lines in distributed program: 52656 Distribution format: tar gzip file Nature of physical problem: The nuclear mean-field and an analysis of its symmetries in realistic cases are the main ingredients of a description of nuclear states. Within the Local Density Approximation, or for a zero-range velocity-dependent Skyrme interaction, the nuclear mean-field is local and velocity dependent. The locality allows for an effective and fast solution of the self-consistent Hartree-Fock equations, even for heavy nuclei, and for various nucleonic (n-particle n-hole) configurations, deformations, excitation energies, or angular momenta. Similar Local Density Approximation in the particle-particle channel, which is equivalent to using a zero-range interaction, allows for a simple implementation of pairing effects within the Hartree-Fock-Bogolyubov method. Method of solution: The program uses the Cartesian harmonic oscillator basis to expand single-particle or single-quasiparticle wave functions of neutrons and protons interacting by means of the Skyrme effective interaction and zero-range pairing interaction. The expansion coefficients are determined by the iterative diagonalization of the mean field Hamiltonians or Routhians which depend non-linearly on the local neutron and proton densities. Suitable constraints are used to obtain states corresponding to a given configuration, deformation or angular momentum. The method of solution has been presented in: J. Dobaczewski, J. Dudek, Comput. Phys. Commun. 102 (1997) 166. Summary of revisions:Two insignificant errors have been corrected. Breaking of all the three plane-reflection symmetries has been implemented. Breaking of all the three time-reversal×plane-reflection symmetries has been implemented. Conservation of parity with simultaneously broken simplex has been implemented. Tilted-axis cranking has been implemented. Cranking with isovector angular frequency has been implemented. Quadratic constraint on tilted angular momentum has been added. Constraint on the vector product of angular frequency and angular momentum has been added. Calculation of surface multipole moments has been added. Constraints on surface multipole moments have been added. Calculation of magnetic moments has been added. Calculation of multipole and surface multipole moments in the center-of-mass reference frame has been added. Calculation of multipole, surface multipole, and magnetic moments in the principal-axes (intrinsic) reference frame has been added. Calculation of angular momenta in the center-of-mass and principal-axes reference frames has been added. New single-particle observables for a diabatic blocking have been added. Solution of the Hartree-Fock-Bogolyubov equations has been implemented. Non-standard spin-orbit energy density has been implemented. Non-standard center-of-mass corrections have been implemented. Definition of the time-odd terms through the Landau parameters has been implemented. Definition of Skyrme forces taken from the literature now includes the force parameters as well as the value of the nucleon mass and the treatment of tensor, spin-orbit, and center-of-mass terms specific to the given force. Interface to the LAPACK subroutine ZHPEVX has been implemented. Computer memory management has been improved by implementing the memory-allocation features available within FORTRAN-90. Restrictions on the complexity of the problem: The main restriction is the CPU time required for calculations of heavy deformed nuclei and for a given precision required. Pairing correlations are only included for even-even nuclei and conserved simplex symmetry. Typical running time: One Hartree-Fock iteration for the superdeformed, rotating, parity conserving state of 15266Dy 86 takes about six seconds on the AMD-Athlon 1600+ processor. Starting from the Woods-Saxon wave functions, about fifty iterations are required to obtain the energy converged within the precision of about 0.1 keV. In case when every value of the angular velocity is converged separately, the complete superdeformed band with precisely determined dynamical moments J(2) can be obtained within forty minutes of CPU on the AMD-Athlon 1600+ processor. This time can be often reduced by a factor of three when a self-consistent solution for a given rotational frequency is used as a starting point for a neighboring rotational frequency. Unusual features of the program: The user must have an access to the NAGLIB subroutine F02AXE, or to the LAPACK subroutines ZHPEV or ZHPEVX, which diagonalize complex hermitian matrices, or provide another subroutine which can perform such a task. The LAPACK subroutines ZHPEV and ZHPEVX can be obtained from the Netlib Repository at University of Tennessee, Knoxville: http://netlib2.cs.utk.edu/cgi-bin/netlibfiles.pl?filename=/lapack/complex16/zhpev.f and http://netlib2.cs.utk.edu/cgi-bin/netlibfiles.pl?filename=/lapack/complex16/zhpevx.f respectively.

  1. FPGA based charge fast histogramming for GEM detector

    NASA Astrophysics Data System (ADS)

    Poźniak, Krzysztof T.; Byszuk, A.; Chernyshova, M.; Cieszewski, R.; Czarski, T.; Dominik, W.; Jakubowska, K.; Kasprowicz, G.; Rzadkiewicz, J.; Scholz, M.; Zabolotny, W.

    2013-10-01

    This article presents a fast charge histogramming method for the position sensitive X-ray GEM detector. The energy resolved measurements are carried out simultaneously for 256 channels of the GEM detector. The whole process of histogramming is performed in 21 FPGA chips (Spartan-6 series from Xilinx) . The results of the histogramming process are stored in an external DDR3 memory. The structure of an electronic measuring equipment and a firmware functionality implemented in the FPGAs is described. Examples of test measurements are presented.

  2. Lot quality assurance sampling of sputum acid-fast bacillus smears for assessing sputum smear microscopy centers.

    PubMed

    Selvakumar, N; Murthy, B N; Prabhakaran, E; Sivagamasundari, S; Vasanthan, Samuel; Perumal, M; Govindaraju, R; Chauhan, L S; Wares, Fraser; Santha, T; Narayanan, P R

    2005-02-01

    Assessment of 12 microscopy centers in a tuberculosis unit by blinded checking of eight sputum smears selected by using a lot quality assurance sampling (LQAS) method and by unblinded checking of all positive and five negative slides, among the slides examined in a month in a microscopy centre, revealed that the LQAS method can be implemented in the field to monitor the performance of acid-fast bacillus microscopy centers in national tuberculosis control programs.

  3. Lot Quality Assurance Sampling of Sputum Acid-Fast Bacillus Smears for Assessing Sputum Smear Microscopy Centers

    PubMed Central

    Selvakumar, N.; Murthy, B. N.; Prabhakaran, E.; Sivagamasundari, S.; Vasanthan, Samuel; Perumal, M.; Govindaraju, R.; Chauhan, L. S.; Wares, Fraser; Santha, T.; Narayanan, P. R.

    2005-01-01

    Assessment of 12 microscopy centers in a tuberculosis unit by blinded checking of eight sputum smears selected by using a lot quality assurance sampling (LQAS) method and by unblinded checking of all positive and five negative slides, among the slides examined in a month in a microscopy centre, revealed that the LQAS method can be implemented in the field to monitor the performance of acid-fast bacillus microscopy centers in national tuberculosis control programs. PMID:15695704

  4. The fast encryption package

    NASA Technical Reports Server (NTRS)

    Bishop, Matt

    1988-01-01

    The organization of some tools to help improve passwork security at a UNIX-based site is described along with how to install and use them. These tools and their associated library enable a site to force users to pick reasonably safe passwords (safe being site configurable) and to enable site management to try to crack existing passworks. The library contains various versions of a very fast implementation of the Data Encryption Standard and of the one-way encryption functions used to encryp the password.

  5. A fluctuation-induced plasma transport diagnostic based upon fast-Fourier transform spectral analysis

    NASA Technical Reports Server (NTRS)

    Powers, E. J.; Kim, Y. C.; Hong, J. Y.; Roth, J. R.; Krawczonek, W. M.

    1978-01-01

    A diagnostic, based on fast Fourier-transform spectral analysis techniques, that provides experimental insight into the relationship between the experimentally observable spectral characteristics of the fluctuations and the fluctuation-induced plasma transport is described. The model upon which the diagnostic technique is based and its experimental implementation is discussed. Some characteristic results obtained during the course of an experimental study of fluctuation-induced transport in the electric field dominated NASA Lewis bumpy torus plasma are presented.

  6. A fast Karhunen-Loeve transform for a class of random processes

    NASA Technical Reports Server (NTRS)

    Jain, A. K.

    1976-01-01

    It is shown that for a class of finite first-order Markov signals, the Karhunen-Loeve (KL) transform for data compression is a set of periodic sine functions if the boundary values of the signal are fixed or known. These sine functions are shown to be related to the Fourier transform so that a fast Fourier transform algorithm can be used to implement the KL transform. Extension to two dimensions with reference to images with separable contravariance function is shown.

  7. Fast Model Generalized Pseudopotential Theory Interatomic Potential Routine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-03-18

    MGPT is an unclassified source code for the fast evaluation and application of quantum-based MGPT interatomic potentials for mrtals. The present version of MGPT has been developed entirely at LLNL, but is specifically designed for implementation in the open-source molecular0dynamics code LAMMPS maintained by Sandia National Laboratories. Using MGPT in LAMMPS, with separate input potential data, one can perform large-scale atomistic simulations of the structural, thermodynamic, defeat and mechanical properties of transition metals with quantum-mechanical realism.

  8. Innovations en vaccinologie: enjeux et perspectives pour l’Afrique

    PubMed Central

    Diop, Doudou; Sanicas, Melvin

    2017-01-01

    La vaccination est incontestablement l’une des interventions de santé publique les plus efficaces et les plus rentables qui soient. Les vaccins continuent de révolutionner notre capacité à prévenir les maladies et à améliorer la santé. Avec toutes les avancées technologiques, nous sommes en mesure d’étendre les avantages des vaccins à plus de gens et de fournir une meilleure protection contre les maladies infectieuses mortelles. Toutefois, avec le développement incessant de nouvelles souches microbiennes à travers le monde, la recherche en vaccinologie se doit d’innover continuellement. D’énormes progrès ont été réalisés pour améliorer la couverture vaccinale et introduire de nouveaux vaccins en Afrique. De nouveaux types de vaccins associés à des outils de vectorisation, d’administration et de délivrance spécifiques mais aussi des adjuvants susceptibles de moduler finement la réponse immunitaire sont attendus dans le futur. En Afrique, il est nécessaire de développer une approche régionale afin de répondre efficacement aux nombreux défis. Une meilleure information, la formation des personnels de santé en vaccinologie et des recherches bien ciblées sont les clés des futurs accomplissements dans le domaine. PMID:28690749

  9. Object tracking on mobile devices using binary descriptors

    NASA Astrophysics Data System (ADS)

    Savakis, Andreas; Quraishi, Mohammad Faiz; Minnehan, Breton

    2015-03-01

    With the growing ubiquity of mobile devices, advanced applications are relying on computer vision techniques to provide novel experiences for users. Currently, few tracking approaches take into consideration the resource constraints on mobile devices. Designing efficient tracking algorithms and optimizing performance for mobile devices can result in better and more efficient tracking for applications, such as augmented reality. In this paper, we use binary descriptors, including Fast Retina Keypoint (FREAK), Oriented FAST and Rotated BRIEF (ORB), Binary Robust Independent Features (BRIEF), and Binary Robust Invariant Scalable Keypoints (BRISK) to obtain real time tracking performance on mobile devices. We consider both Google's Android and Apple's iOS operating systems to implement our tracking approach. The Android implementation is done using Android's Native Development Kit (NDK), which gives the performance benefits of using native code as well as access to legacy libraries. The iOS implementation was created using both the native Objective-C and the C++ programing languages. We also introduce simplified versions of the BRIEF and BRISK descriptors that improve processing speed without compromising tracking accuracy.

  10. Continuous Evaluation of Fast Processes in Climate Models Using ARM Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhijin; Sha, Feng; Liu, Yangang

    2016-02-02

    This five-year award supports the project “Continuous Evaluation of Fast Processes in Climate Models Using ARM Measurements (FASTER)”. The goal of this project is to produce accurate, consistent and comprehensive data sets for initializing both single column models (SCMs) and cloud resolving models (CRMs) using data assimilation. A multi-scale three-dimensional variational data assimilation scheme (MS-3DVAR) has been implemented. This MS-3DVAR system is built on top of WRF/GSI. The Community Gridpoint Statistical Interpolation (GSI) system is an operational data assimilation system at the National Centers for Environmental Prediction (NCEP) and has been implemented in the Weather Research and Forecast (WRF) model.more » This MS-3DVAR is further enhanced by the incorporation of a land surface 3DVAR scheme and a comprehensive aerosol 3DVAR scheme. The data assimilation implementation focuses in the ARM SGP region. ARM measurements are assimilated along with other available satellite and radar data. Reanalyses are then generated for a few selected period of time. This comprehensive data assimilation system has also been employed for other ARM-related applications.« less

  11. Hybrid MPI/OpenMP Implementation of the ORAC Molecular Dynamics Program for Generalized Ensemble and Fast Switching Alchemical Simulations.

    PubMed

    Procacci, Piero

    2016-06-27

    We present a new release (6.0β) of the ORAC program [Marsili et al. J. Comput. Chem. 2010, 31, 1106-1116] with a hybrid OpenMP/MPI (open multiprocessing message passing interface) multilevel parallelism tailored for generalized ensemble (GE) and fast switching double annihilation (FS-DAM) nonequilibrium technology aimed at evaluating the binding free energy in drug-receptor system on high performance computing platforms. The production of the GE or FS-DAM trajectories is handled using a weak scaling parallel approach on the MPI level only, while a strong scaling force decomposition scheme is implemented for intranode computations with shared memory access at the OpenMP level. The efficiency, simplicity, and inherent parallel nature of the ORAC implementation of the FS-DAM algorithm, project the code as a possible effective tool for a second generation high throughput virtual screening in drug discovery and design. The code, along with documentation, testing, and ancillary tools, is distributed under the provisions of the General Public License and can be freely downloaded at www.chim.unifi.it/orac .

  12. Real-Time Reed-Solomon Decoder

    NASA Technical Reports Server (NTRS)

    Maki, Gary K.; Cameron, Kelly B.; Owsley, Patrick A.

    1994-01-01

    Generic Reed-Solomon decoder fast enough to correct errors in real time in practical applications designed to be implemented in fewer and smaller very-large-scale integrated, VLSI, circuit chips. Configured to operate in pipelined manner. One outstanding aspect of decoder design is that Euclid multiplier and divider modules contain Galoisfield multipliers configured as combinational-logic cells. Operates at speeds greater than older multipliers. Cellular configuration highly regular and requires little interconnection area, making it ideal for implementation in extraordinarily dense VLSI circuitry. Flight electronics single chip version of this technology implemented and available.

  13. Optoelectronic Reservoir Computing

    PubMed Central

    Paquot, Y.; Duport, F.; Smerieri, A.; Dambre, J.; Schrauwen, B.; Haelterman, M.; Massar, S.

    2012-01-01

    Reservoir computing is a recently introduced, highly efficient bio-inspired approach for processing time dependent data. The basic scheme of reservoir computing consists of a non linear recurrent dynamical system coupled to a single input layer and a single output layer. Within these constraints many implementations are possible. Here we report an optoelectronic implementation of reservoir computing based on a recently proposed architecture consisting of a single non linear node and a delay line. Our implementation is sufficiently fast for real time information processing. We illustrate its performance on tasks of practical importance such as nonlinear channel equalization and speech recognition, and obtain results comparable to state of the art digital implementations. PMID:22371825

  14. Adaptive Monocular Visual-Inertial SLAM for Real-Time Augmented Reality Applications in Mobile Devices.

    PubMed

    Piao, Jin-Chun; Kim, Shin-Dug

    2017-11-07

    Simultaneous localization and mapping (SLAM) is emerging as a prominent issue in computer vision and next-generation core technology for robots, autonomous navigation and augmented reality. In augmented reality applications, fast camera pose estimation and true scale are important. In this paper, we present an adaptive monocular visual-inertial SLAM method for real-time augmented reality applications in mobile devices. First, the SLAM system is implemented based on the visual-inertial odometry method that combines data from a mobile device camera and inertial measurement unit sensor. Second, we present an optical-flow-based fast visual odometry method for real-time camera pose estimation. Finally, an adaptive monocular visual-inertial SLAM is implemented by presenting an adaptive execution module that dynamically selects visual-inertial odometry or optical-flow-based fast visual odometry. Experimental results show that the average translation root-mean-square error of keyframe trajectory is approximately 0.0617 m with the EuRoC dataset. The average tracking time is reduced by 7.8%, 12.9%, and 18.8% when different level-set adaptive policies are applied. Moreover, we conducted experiments with real mobile device sensors, and the results demonstrate the effectiveness of performance improvement using the proposed method.

  15. Fast segmentation of satellite images using SLIC, WebGL and Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Donchyts, Gennadii; Baart, Fedor; Gorelick, Noel; Eisemann, Elmar; van de Giesen, Nick

    2017-04-01

    Google Earth Engine (GEE) is a parallel geospatial processing platform, which harmonizes access to petabytes of freely available satellite images. It provides a very rich API, allowing development of dedicated algorithms to extract useful geospatial information from these images. At the same time, modern GPUs provide thousands of computing cores, which are mostly not utilized in this context. In the last years, WebGL became a popular and well-supported API, allowing fast image processing directly in web browsers. In this work, we will evaluate the applicability of WebGL to enable fast segmentation of satellite images. A new implementation of a Simple Linear Iterative Clustering (SLIC) algorithm using GPU shaders will be presented. SLIC is a simple and efficient method to decompose an image in visually homogeneous regions. It adapts a k-means clustering approach to generate superpixels efficiently. While this approach will be hard to scale, due to a significant amount of data to be transferred to the client, it should significantly improve exploratory possibilities and simplify development of dedicated algorithms for geoscience applications. Our prototype implementation will be used to improve surface water detection of the reservoirs using multispectral satellite imagery.

  16. A fast radiative transfer model for visible through shortwave infrared spectral reflectances in clear and cloudy atmospheres

    NASA Astrophysics Data System (ADS)

    Wang, Chenxi; Yang, Ping; Nasiri, Shaima L.; Platnick, Steven; Baum, Bryan A.; Heidinger, Andrew K.; Liu, Xu

    2013-02-01

    A computationally efficient radiative transfer model (RTM) for calculating visible (VIS) through shortwave infrared (SWIR) reflectances is developed for use in satellite and airborne cloud property retrievals. The full radiative transfer equation (RTE) for combinations of cloud, aerosol, and molecular layers is solved approximately by using six independent RTEs that assume the plane-parallel approximation along with a single-scattering approximation for Rayleigh scattering. Each of the six RTEs can be solved analytically if the bidirectional reflectance/transmittance distribution functions (BRDF/BTDF) of the cloud/aerosol layers are known. The adding/doubling (AD) algorithm is employed to account for overlapped cloud/aerosol layers and non-Lambertian surfaces. Two approaches are used to mitigate the significant computational burden of the AD algorithm. First, the BRDF and BTDF of single cloud/aerosol layers are pre-computed using the discrete ordinates radiative transfer program (DISORT) implemented with 128 streams, and second, the required integral in the AD algorithm is numerically implemented on a twisted icosahedral mesh. A concise surface BRDF simulator associated with the MODIS land surface product (MCD43) is merged into a fast RTM to accurately account for non-isotropic surface reflectance. The resulting fast RTM is evaluated with respect to its computational accuracy and efficiency. The simulation bias between DISORT and the fast RTM is large (e.g., relative error >5%) only when both the solar zenith angle (SZA) and the viewing zenith angle (VZA) are large (i.e., SZA>45° and VZA>70°). For general situations, i.e., cloud/aerosol layers above a non-Lambertian surface, the fast RTM calculation rate is faster than that of the 128-stream DISORT by approximately two orders of magnitude.

  17. Exploratory Analysis of Fast-Food Chain Restaurant Menus Before and After Implementation of Local Calorie-Labeling Policies, 2005–2011

    PubMed Central

    Namba, Alexa; Leonberg, Beth L.; Wootan, Margo G.

    2013-01-01

    Introduction Since 2008, several states and municipalities have implemented regulations requiring provision of nutrition information at chain restaurants to address obesity. Although early research into the effect of such labels on consumer decisions has shown mixed results, little information exists on the restaurant industry’s response to labeling. The objective of this exploratory study was to evaluate the effect of menu labeling on fast-food menu offerings over 7 years, from 2005 through 2011. Methods Menus from 5 fast-food chains that had outlets in jurisdictions subject to menu-labeling laws (cases) were compared with menus from 4 fast-food chains operating in jurisdictions not requiring labeling (controls). A trend analysis assessed whether case restaurants improved the healthfulness of their menus relative to the control restaurants. Results Although the overall prevalence of “healthier” food options remained low, a noteworthy increase was seen after 2008 in locations with menu-labeling laws relative to those without such laws. Healthier food options increased from 13% to 20% at case locations while remaining static at 8% at control locations (test for difference in the trend, P = .02). Since 2005, the average calories for an à la carte entrée remained moderately high (approximately 450 kilocalories), with less than 25% of all entrées and sides qualifying as healthier and no clear systematic differences in the trend between chain restaurants in case versus control areas (P ≥ .50). Conclusion These findings suggest that menu labeling has thus far not affected the average nutritional content of fast-food menu items, but it may motivate restaurants to increase the availability of healthier options. PMID:23786908

  18. FAST: A fully asynchronous and status-tracking pattern for geoprocessing services orchestration

    NASA Astrophysics Data System (ADS)

    Wu, Huayi; You, Lan; Gui, Zhipeng; Gao, Shuang; Li, Zhenqiang; Yu, Jingmin

    2014-09-01

    Geoprocessing service orchestration (GSO) provides a unified and flexible way to implement cross-application, long-lived, and multi-step geoprocessing service workflows by coordinating geoprocessing services collaboratively. Usually, geoprocessing services and geoprocessing service workflows are data and/or computing intensive. The intensity feature may make the execution process of a workflow time-consuming. Since it initials an execution request without blocking other interactions on the client side, an asynchronous mechanism is especially appropriate for GSO workflows. Many critical problems remain to be solved in existing asynchronous patterns for GSO including difficulties in improving performance, status tracking, and clarifying the workflow structure. These problems are a challenge when orchestrating performance efficiency, making statuses instantly available, and constructing clearly structured GSO workflows. A Fully Asynchronous and Status-Tracking (FAST) pattern that adopts asynchronous interactions throughout the whole communication tier of a workflow is proposed for GSO. The proposed FAST pattern includes a mechanism that actively pushes the latest status to clients instantly and economically. An independent proxy was designed to isolate the status tracking logic from the geoprocessing business logic, which assists the formation of a clear GSO workflow structure. A workflow was implemented in the FAST pattern to simulate the flooding process in the Poyang Lake region. Experimental results show that the proposed FAST pattern can efficiently tackle data/computing intensive geoprocessing tasks. The performance of all collaborative partners was improved due to the asynchronous mechanism throughout communication tier. A status-tracking mechanism helps users retrieve the latest running status of a GSO workflow in an efficient and instant way. The clear structure of the GSO workflow lowers the barriers for geospatial domain experts and model designers to compose asynchronous GSO workflows. Most importantly, it provides better support for locating and diagnosing potential exceptions.

  19. Exploratory analysis of fast-food chain restaurant menus before and after implementation of local calorie-labeling policies, 2005-2011.

    PubMed

    Namba, Alexa; Auchincloss, Amy; Leonberg, Beth L; Wootan, Margo G

    2013-06-20

    Since 2008, several states and municipalities have implemented regulations requiring provision of nutrition information at chain restaurants to address obesity. Although early research into the effect of such labels on consumer decisions has shown mixed results, little information exists on the restaurant industry's response to labeling. The objective of this exploratory study was to evaluate the effect of menu labeling on fast-food menu offerings over 7 years, from 2005 through 2011. Menus from 5 fast-food chains that had outlets in jurisdictions subject to menu-labeling laws (cases) were compared with menus from 4 fast-food chains operating in jurisdictions not requiring labeling (controls). A trend analysis assessed whether case restaurants improved the healthfulness of their menus relative to the control restaurants. Although the overall prevalence of "healthier" food options remained low, a noteworthy increase was seen after 2008 in locations with menu-labeling laws relative to those without such laws. Healthier food options increased from 13% to 20% at case locations while remaining static at 8% at control locations (test for difference in the trend, P = .02). Since 2005, the average calories for an à la carte entrée remained moderately high (approximately 450 kilocalories), with less than 25% of all entrées and sides qualifying as healthier and no clear systematic differences in the trend between chain restaurants in case versus control areas (P ≥ .50). These findings suggest that menu labeling has thus far not affected the average nutritional content of fast-food menu items, but it may motivate restaurants to increase the availability of healthier options.

  20. High Efficiency, Low Distortion 3D Diffusion Tensor Imaging with Variable Density Spiral Fast Spin Echoes (3D DW VDS RARE)

    PubMed Central

    Frank, Lawrence R.; Jung, Youngkyoo; Inati, Souheil; Tyszka, J. Michael; Wong, Eric C.

    2009-01-01

    We present an acquisition and reconstruction method designed to acquire high resolution 3D fast spin echo diffusion tensor images while mitigating the major sources of artifacts in DTI - field distortions, eddy currents and motion. The resulting images, being 3D, are of high SNR, and being fast spin echoes, exhibit greatly reduced field distortions. This sequence utilizes variable density spiral acquisition gradients, which allow for the implementation of a self-navigation scheme by which both eddy current and motion artifacts are removed. The result is that high resolution 3D DTI images are produced without the need for eddy current compensating gradients or B0 field correction. In addition, a novel method for fast and accurate reconstruction of the non-Cartesian data is employed. Results are demonstrated in the brains of normal human volunteers. PMID:19778618

  1. Fast Reliability Assessing Method for Distribution Network with Distributed Renewable Energy Generation

    NASA Astrophysics Data System (ADS)

    Chen, Fan; Huang, Shaoxiong; Ding, Jinjin; Ding, Jinjin; Gao, Bo; Xie, Yuguang; Wang, Xiaoming

    2018-01-01

    This paper proposes a fast reliability assessing method for distribution grid with distributed renewable energy generation. First, the Weibull distribution and the Beta distribution are used to describe the probability distribution characteristics of wind speed and solar irradiance respectively, and the models of wind farm, solar park and local load are built for reliability assessment. Then based on power system production cost simulation probability discretization and linearization power flow, a optimal power flow objected with minimum cost of conventional power generation is to be resolved. Thus a reliability assessment for distribution grid is implemented fast and accurately. The Loss Of Load Probability (LOLP) and Expected Energy Not Supplied (EENS) are selected as the reliability index, a simulation for IEEE RBTS BUS6 system in MATLAB indicates that the fast reliability assessing method calculates the reliability index much faster with the accuracy ensured when compared with Monte Carlo method.

  2. One-dimensional biomass fast pyrolysis model with reaction kinetics integrated in an Aspen Plus Biorefinery Process Model

    DOE PAGES

    Humbird, David; Trendewicz, Anna; Braun, Robert; ...

    2017-01-12

    A biomass fast pyrolysis reactor model with detailed reaction kinetics and one-dimensional fluid dynamics was implemented in an equation-oriented modeling environment (Aspen Custom Modeler). Portions of this work were detailed in previous publications; further modifications have been made here to improve stability and reduce execution time of the model to make it compatible for use in large process flowsheets. The detailed reactor model was integrated into a larger process simulation in Aspen Plus and was stable for different feedstocks over a range of reactor temperatures. Sample results are presented that indicate general agreement with experimental results, but with higher gasmore » losses caused by stripping of the bio-oil by the fluidizing gas in the simulated absorber/condenser. Lastly, this integrated modeling approach can be extended to other well-defined, predictive reactor models for fast pyrolysis, catalytic fast pyrolysis, as well as other processes.« less

  3. Experimental demonstration of a real-time high-throughput digital DC blocker for compensating ADC imperfections in optical fast-OFDM receivers.

    PubMed

    Zhang, Lu; Ouyang, Xing; Shao, Xiaopeng; Zhao, Jian

    2016-06-27

    Performance degradation induced by the DC components at the output of real-time analogue-to-digital converter (ADC) is experimentally investigated for optical fast-OFDM receiver. To compensate this degradation, register transfer level (RTL) circuits for real-time digital DC blocker with 20GS/s throughput are proposed and implemented in field programmable gate array (FPGA). The performance of the proposed real-time digital DC blocker is experimentally investigated in a 15Gb/s optical fast-OFDM system with intensity modulation and direct detection over 40 km standard single-mode fibre. The results show that the fixed-point DC blocker has negligible performance penalty compared to the offline floating point one, and can overcome the error floor of the fast OFDM receiver caused by the DC components from the real-time ADC output.

  4. Fast frequency domain method to detect skew in a document image

    NASA Astrophysics Data System (ADS)

    Mehta, Sunita; Walia, Ekta; Dutta, Maitreyee

    2015-12-01

    In this paper, a new fast frequency domain method based on Discrete Wavelet Transform and Fast Fourier Transform has been implemented for the determination of the skew angle in a document image. Firstly, image size reduction is done by using two-dimensional Discrete Wavelet Transform and then skew angle is computed using Fast Fourier Transform. Skew angle error is almost negligible. The proposed method is experimented using a large number of documents having skew between -90° and +90° and results are compared with Moments with Discrete Wavelet Transform method and other commonly used existing methods. It has been determined that this method works more efficiently than the existing methods. Also, it works with typed, picture documents having different fonts and resolutions. It overcomes the drawback of the recently proposed method of Moments with Discrete Wavelet Transform that does not work with picture documents.

  5. Method of developing all-optical trinary JK, D-type, and T-type flip-flops using semiconductor optical amplifiers.

    PubMed

    Garai, Sisir Kumar

    2012-04-10

    To meet the demand of very fast and agile optical networks, the optical processors in a network system should have a very fast execution rate, large information handling, and large information storage capacities. Multivalued logic operations and multistate optical flip-flops are the basic building blocks for such fast running optical computing and data processing systems. In the past two decades, many methods of implementing all-optical flip-flops have been proposed. Most of these suffer from speed limitations because of the low switching response of active devices. The frequency encoding technique has been used because of its many advantages. It can preserve its identity throughout data communication irrespective of loss of light energy due to reflection, refraction, attenuation, etc. The action of polarization-rotation-based very fast switching of semiconductor optical amplifiers increases processing speed. At the same time, tristate optical flip-flops increase information handling capacity.

  6. One-dimensional biomass fast pyrolysis model with reaction kinetics integrated in an Aspen Plus Biorefinery Process Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humbird, David; Trendewicz, Anna; Braun, Robert

    A biomass fast pyrolysis reactor model with detailed reaction kinetics and one-dimensional fluid dynamics was implemented in an equation-oriented modeling environment (Aspen Custom Modeler). Portions of this work were detailed in previous publications; further modifications have been made here to improve stability and reduce execution time of the model to make it compatible for use in large process flowsheets. The detailed reactor model was integrated into a larger process simulation in Aspen Plus and was stable for different feedstocks over a range of reactor temperatures. Sample results are presented that indicate general agreement with experimental results, but with higher gasmore » losses caused by stripping of the bio-oil by the fluidizing gas in the simulated absorber/condenser. Lastly, this integrated modeling approach can be extended to other well-defined, predictive reactor models for fast pyrolysis, catalytic fast pyrolysis, as well as other processes.« less

  7. Implementation of a fast digital optical matrix-vector multiplier using a holographic look-up table and residue arithmetic

    NASA Technical Reports Server (NTRS)

    Habiby, Sarry F.; Collins, Stuart A., Jr.

    1987-01-01

    The design and implementation of a digital (numerical) optical matrix-vector multiplier are presented. A Hughes liquid crystal light valve, the residue arithmetic representation, and a holographic optical memory are used to construct position coded optical look-up tables. All operations are performed in effectively one light valve response time with a potential for a high information density.

  8. Implementation of a fast digital optical matrix-vector multiplier using a holographic look-up table and residue arithmetic.

    PubMed

    Habiby, S F; Collins, S A

    1987-11-01

    The design and implementation of a digital (numerical) optical matrix-vector multiplier are presented. A Hughes liquid crystal light valve, the residue arithmetic representation, and a holographic optical memory are used to construct position coded optical look-up tables. All operations are performed in effectively one light valve response time with a potential for a high information density.

  9. Hardware accelerator of convolution with exponential function for image processing applications

    NASA Astrophysics Data System (ADS)

    Panchenko, Ivan; Bucha, Victor

    2015-12-01

    In this paper we describe a Hardware Accelerator (HWA) for fast recursive approximation of separable convolution with exponential function. This filter can be used in many Image Processing (IP) applications, e.g. depth-dependent image blur, image enhancement and disparity estimation. We have adopted this filter RTL implementation to provide maximum throughput in constrains of required memory bandwidth and hardware resources to provide a power-efficient VLSI implementation.

  10. Implementation and clinical application of a deformation method for fast simulation of biological tissue formed by fibers and fluid.

    PubMed

    Sardinha, Ana Gabriella de Oliveira; Oyama, Ceres Nunes de Resende; de Mendonça Maroja, Armando; Costa, Ivan F

    2016-01-01

    The aim of this paper is to provide a general discussion, algorithm, and actual working programs of the deformation method for fast simulation of biological tissue formed by fibers and fluid. In order to demonstrate the benefit of the clinical applications software, we successfully used our computational program to deform a 3D breast image acquired from patients, using a 3D scanner, in a real hospital environment. The method implements a quasi-static solution for elastic global deformations of objects. Each pair of vertices of the surface is connected and defines an elastic fiber. The set of all the elastic fibers defines a mesh of smaller size than the volumetric meshes, allowing for simulation of complex objects with less computational effort. The behavior similar to the stress tensor is obtained by the volume conservation equation that mixes the 3D coordinates. Step by step, we show the computational implementation of this approach. As an example, a 2D rectangle formed by only 4 vertices is solved and, for this simple geometry, all intermediate results are shown. On the other hand, actual implementations of these ideas in the form of working computer routines are provided for general 3D objects, including a clinical application.

  11. GPU Lossless Hyperspectral Data Compression System

    NASA Technical Reports Server (NTRS)

    Aranki, Nazeeh I.; Keymeulen, Didier; Kiely, Aaron B.; Klimesh, Matthew A.

    2014-01-01

    Hyperspectral imaging systems onboard aircraft or spacecraft can acquire large amounts of data, putting a strain on limited downlink and storage resources. Onboard data compression can mitigate this problem but may require a system capable of a high throughput. In order to achieve a high throughput with a software compressor, a graphics processing unit (GPU) implementation of a compressor was developed targeting the current state-of-the-art GPUs from NVIDIA(R). The implementation is based on the fast lossless (FL) compression algorithm reported in "Fast Lossless Compression of Multispectral-Image Data" (NPO- 42517), NASA Tech Briefs, Vol. 30, No. 8 (August 2006), page 26, which operates on hyperspectral data and achieves excellent compression performance while having low complexity. The FL compressor uses an adaptive filtering method and achieves state-of-the-art performance in both compression effectiveness and low complexity. The new Consultative Committee for Space Data Systems (CCSDS) Standard for Lossless Multispectral & Hyperspectral image compression (CCSDS 123) is based on the FL compressor. The software makes use of the highly-parallel processing capability of GPUs to achieve a throughput at least six times higher than that of a software implementation running on a single-core CPU. This implementation provides a practical real-time solution for compression of data from airborne hyperspectral instruments.

  12. The Block V Receiver fast acquisition algorithm for the Galileo S-band mission

    NASA Technical Reports Server (NTRS)

    Aung, M.; Hurd, W. J.; Buu, C. M.; Berner, J. B.; Stephens, S. A.; Gevargiz, J. M.

    1994-01-01

    A fast acquisition algorithm for the Galileo suppressed carrier, subcarrier, and data symbol signals under low data rate, signal-to-noise ratio (SNR) and high carrier phase-noise conditions has been developed. The algorithm employs a two-arm fast Fourier transform (FFT) method utilizing both the in-phase and quadrature-phase channels of the carrier. The use of both channels results in an improved SNR in the FFT acquisition, enabling the use of a shorter FFT period over which the carrier instability is expected to be less significant. The use of a two-arm FFT also enables subcarrier and symbol acquisition before carrier acquisition. With the subcarrier and symbol loops locked first, the carrier can be acquired from an even shorter FFT period. Two-arm tracking loops are employed to lock the subcarrier and symbol loops parameter modification to achieve the final (high) loop SNR in the shortest time possible. The fast acquisition algorithm is implemented in the Block V Receiver (BVR). This article describes the complete algorithm design, the extensive computer simulation work done for verification of the design and the analysis, implementation issues in the BVR, and the acquisition times of the algorithm. In the expected case of the Galileo spacecraft at Jupiter orbit insertion PD/No equals 14.6 dB-Hz, R(sym) equals 16 symbols per sec, and the predicted acquisition time of the algorithm (to attain a 0.2-dB degradation from each loop to the output symbol SNR) is 38 sec.

  13. A fast algorithm for identifying friends-of-friends halos

    NASA Astrophysics Data System (ADS)

    Feng, Y.; Modi, C.

    2017-07-01

    We describe a simple and fast algorithm for identifying friends-of-friends features and prove its correctness. The algorithm avoids unnecessary expensive neighbor queries, uses minimal memory overhead, and rejects slowdown in high over-density regions. We define our algorithm formally based on pair enumeration, a problem that has been heavily studied in fast 2-point correlation codes and our reference implementation employs a dual KD-tree correlation function code. We construct features in a hierarchical tree structure, and use a splay operation to reduce the average cost of identifying the root of a feature from O [ log L ] to O [ 1 ] (L is the size of a feature) without additional memory costs. This reduces the overall time complexity of merging trees from O [ L log L ] to O [ L ] , reducing the number of operations per splay by orders of magnitude. We next introduce a pruning operation that skips merge operations between two fully self-connected KD-tree nodes. This improves the robustness of the algorithm, reducing the number of merge operations in high density peaks from O [δ2 ] to O [ δ ] . We show that for cosmological data set the algorithm eliminates more than half of merge operations for typically used linking lengths b ∼ 0 . 2 (relative to mean separation). Furthermore, our algorithm is extremely simple and easy to implement on top of an existing pair enumeration code, reusing the optimization effort that has been invested in fast correlation function codes.

  14. Massively Parallel Processing for Fast and Accurate Stamping Simulations

    NASA Astrophysics Data System (ADS)

    Gress, Jeffrey J.; Xu, Siguang; Joshi, Ramesh; Wang, Chuan-tao; Paul, Sabu

    2005-08-01

    The competitive automotive market drives automotive manufacturers to speed up the vehicle development cycles and reduce the lead-time. Fast tooling development is one of the key areas to support fast and short vehicle development programs (VDP). In the past ten years, the stamping simulation has become the most effective validation tool in predicting and resolving all potential formability and quality problems before the dies are physically made. The stamping simulation and formability analysis has become an critical business segment in GM math-based die engineering process. As the simulation becomes as one of the major production tools in engineering factory, the simulation speed and accuracy are the two of the most important measures for stamping simulation technology. The speed and time-in-system of forming analysis becomes an even more critical to support the fast VDP and tooling readiness. Since 1997, General Motors Die Center has been working jointly with our software vendor to develop and implement a parallel version of simulation software for mass production analysis applications. By 2001, this technology was matured in the form of distributed memory processing (DMP) of draw die simulations in a networked distributed memory computing environment. In 2004, this technology was refined to massively parallel processing (MPP) and extended to line die forming analysis (draw, trim, flange, and associated spring-back) running on a dedicated computing environment. The evolution of this technology and the insight gained through the implementation of DM0P/MPP technology as well as performance benchmarks are discussed in this publication.

  15. Interaction between high harmonic fast waves and fast ions in NSTX/NSTX-U plasmas

    NASA Astrophysics Data System (ADS)

    Bertelli, N.; Valeo, E. J.; Gorelenkova, M.; Green, D. L.; RF SciDAC Team

    2016-10-01

    Fast wave (FW) heating in the ion cyclotron range of frequency (ICRF) has been successfully used to sustain and control the fusion plasma performance, and it will likely play an important role in the ITER experiment. As demonstrated in the NSTX and DIII-D experiments the interactions between fast waves and fast ions can be so strong to significantly modify the fast ion population from neutral beam injection. In fact, it has been recently found in NSTX that FWs can modify and, under certain conditions, even suppress the energetic particle driven instabilities, such as toroidal Alfvén eigenmodes and global Alfvén eigenmodes and fishbones. This paper examines such interactions in NSTX/NSTX-U plasmas by using the recent extension of the RF full-wave code TORIC to include non-Maxwellian ions distribution functions. Particular attention is given to the evolution of the fast ions distribution function w/ and w/o RF. Tests on the RF kick-operator implemented in the Monte-Carlo particle code NUBEAM is also discussed in order to move towards a self consistent evaluation of the RF wave-field and the ion distribution functions in the TRANSP code. Work supported by US DOE Contract DE-AC02-09CH11466.

  16. ORBIT modelling of fast particle redistribution induced by sawtooth instability

    NASA Astrophysics Data System (ADS)

    Kim, Doohyun; Podestà, Mario; Poli, Francesca; Princeton Plasma Physics Laboratory Team

    2017-10-01

    Initial tests on NSTX-U show that introducing energy selectivity for sawtooth (ST) induced fast ion redistribution improves the agreement between experimental and simulated quantities, e.g. neutron rate. Thus, it is expected that a proper description of the fast particle redistribution due to ST can improve the modelling of ST instability and interpretation of experiments using a transport code. In this work, we use ORBIT code to characterise the redistribution of fast particles. In order to simulate a ST crash, a spatial and temporal displacement is implemented as ξ (ρ , t , θ , ϕ) = ∑ξmn (ρ , t) cos (mθ + nϕ) to produce perturbed magnetic fields from the equilibrium field B-> , δB-> = ∇ × (ξ-> × B->) , which affect the fast particle distribution. From ORBIT simulations, we find suitable amplitudes of ξ for each ST crash to reproduce the experimental results. The comparison of the simulation and the experimental results will be discussed as well as the dependence of fast ion redistribution on fast ion phase space variables (i.e. energy, magnetic moment and toroidal angular momentum). Work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences under Contract Number DE-AC02-09CH11466.

  17. On a model of three-dimensional bursting and its parallel implementation

    NASA Astrophysics Data System (ADS)

    Tabik, S.; Romero, L. F.; Garzón, E. M.; Ramos, J. I.

    2008-04-01

    A mathematical model for the simulation of three-dimensional bursting phenomena and its parallel implementation are presented. The model consists of four nonlinearly coupled partial differential equations that include fast and slow variables, and exhibits bursting in the absence of diffusion. The differential equations have been discretized by means of a second-order accurate in both space and time, linearly-implicit finite difference method in equally-spaced grids. The resulting system of linear algebraic equations at each time level has been solved by means of the Preconditioned Conjugate Gradient (PCG) method. Three different parallel implementations of the proposed mathematical model have been developed; two of these implementations, i.e., the MPI and the PETSc codes, are based on a message passing paradigm, while the third one, i.e., the OpenMP code, is based on a shared space address paradigm. These three implementations are evaluated on two current high performance parallel architectures, i.e., a dual-processor cluster and a Shared Distributed Memory (SDM) system. A novel representation of the results that emphasizes the most relevant factors that affect the performance of the paralled implementations, is proposed. The comparative analysis of the computational results shows that the MPI and the OpenMP implementations are about twice more efficient than the PETSc code on the SDM system. It is also shown that, for the conditions reported here, the nonlinear dynamics of the three-dimensional bursting phenomena exhibits three stages characterized by asynchronous, synchronous and then asynchronous oscillations, before a quiescent state is reached. It is also shown that the fast system reaches steady state in much less time than the slow variables.

  18. Spherical Demons: Fast Surface Registration

    PubMed Central

    Yeo, B.T. Thomas; Sabuncu, Mert; Vercauteren, Tom; Ayache, Nicholas; Fischl, Bruce; Golland, Polina

    2009-01-01

    We present the fast Spherical Demons algorithm for registering two spherical images. By exploiting spherical vector spline interpolation theory, we show that a large class of regularizers for the modified demons objective function can be efficiently implemented on the sphere using convolution. Based on the one parameter subgroups of diffeomorphisms, the resulting registration is diffeomorphic and fast – registration of two cortical mesh models with more than 100k nodes takes less than 5 minutes, comparable to the fastest surface registration algorithms. Moreover, the accuracy of our method compares favorably to the popular FreeSurfer registration algorithm. We validate the technique in two different settings: (1) parcellation in a set of in-vivo cortical surfaces and (2) Brodmann area localization in ex-vivo cortical surfaces. PMID:18979813

  19. Spherical demons: fast surface registration.

    PubMed

    Yeo, B T Thomas; Sabuncu, Mert; Vercauteren, Tom; Ayache, Nicholas; Fischl, Bruce; Golland, Polina

    2008-01-01

    We present the fast Spherical Demons algorithm for registering two spherical images. By exploiting spherical vector spline interpolation theory, we show that a large class of regularizers for the modified demons objective function can be efficiently implemented on the sphere using convolution. Based on the one parameter subgroups of diffeomorphisms, the resulting registration is diffeomorphic and fast - registration of two cortical mesh models with more than 100k nodes takes less than 5 minutes, comparable to the fastest surface registration algorithms. Moreover, the accuracy of our method compares favorably to the popular FreeSurfer registration algorithm. We validate the technique in two different settings: (1) parcellation in a set of in-vivo cortical surfaces and (2) Brodmann area localization in ex-vivo cortical surfaces.

  20. Fast neutron flux analyzer with real-time digital pulse shape discrimination

    NASA Astrophysics Data System (ADS)

    Ivanova, A. A.; Zubarev, P. V.; Ivanenko, S. V.; Khilchenko, A. D.; Kotelnikov, A. I.; Polosatkin, S. V.; Puryga, E. A.; Shvyrev, V. G.; Sulyaev, Yu. S.

    2016-08-01

    Investigation of subthermonuclear plasma confinement and heating in magnetic fusion devices such as GOL-3 and GDT at the Budker Institute (Novosibirsk, Russia) requires sophisticated equipment for neutron-, gamma- diagnostics and upgrading data acquisition systems with online data processing. Measurement of fast neutron flux with stilbene scintillation detectors raised the problem of discrimination of the neutrons (n) from background cosmic particles (muons) and neutron-induced gamma rays (γ). This paper describes a fast neutron flux analyzer with real-time digital pulse-shape discrimination (DPSD) algorithm FPGA-implemented for the GOL-3 and GDT devices. This analyzer was tested and calibrated with the help of 137Cs and 252Cf radiation sources. The Figures of Merit (FOM) calculated for different energy cuts are presented.

  1. Improving the Numerical Stability of Fast Matrix Multiplication

    DOE PAGES

    Ballard, Grey; Benson, Austin R.; Druinsky, Alex; ...

    2016-10-04

    Fast algorithms for matrix multiplication, namely those that perform asymptotically fewer scalar operations than the classical algorithm, have been considered primarily of theoretical interest. Apart from Strassen's original algorithm, few fast algorithms have been efficiently implemented or used in practical applications. However, there exist many practical alternatives to Strassen's algorithm with varying performance and numerical properties. Fast algorithms are known to be numerically stable, but because their error bounds are slightly weaker than the classical algorithm, they are not used even in cases where they provide a performance benefit. We argue in this study that the numerical sacrifice of fastmore » algorithms, particularly for the typical use cases of practical algorithms, is not prohibitive, and we explore ways to improve the accuracy both theoretically and empirically. The numerical accuracy of fast matrix multiplication depends on properties of the algorithm and of the input matrices, and we consider both contributions independently. We generalize and tighten previous error analyses of fast algorithms and compare their properties. We discuss algorithmic techniques for improving the error guarantees from two perspectives: manipulating the algorithms, and reducing input anomalies by various forms of diagonal scaling. In conclusion, we benchmark performance and demonstrate our improved numerical accuracy.« less

  2. Medical image diagnoses by artificial neural networks with image correlation, wavelet transform, simulated annealing

    NASA Astrophysics Data System (ADS)

    Szu, Harold H.

    1993-09-01

    Classical artificial neural networks (ANN) and neurocomputing are reviewed for implementing a real time medical image diagnosis. An algorithm known as the self-reference matched filter that emulates the spatio-temporal integration ability of the human visual system might be utilized for multi-frame processing of medical imaging data. A Cauchy machine, implementing a fast simulated annealing schedule, can determine the degree of abnormality by the degree of orthogonality between the patient imagery and the class of features of healthy persons. An automatic inspection process based on multiple modality image sequences is simulated by incorporating the following new developments: (1) 1-D space-filling Peano curves to preserve the 2-D neighborhood pixels' relationship; (2) fast simulated Cauchy annealing for the global optimization of self-feature extraction; and (3) a mini-max energy function for the intra-inter cluster-segregation respectively useful for top-down ANN designs.

  3. Potential Application of a Graphical Processing Unit to Parallel Computations in the NUBEAM Code

    NASA Astrophysics Data System (ADS)

    Payne, J.; McCune, D.; Prater, R.

    2010-11-01

    NUBEAM is a comprehensive computational Monte Carlo based model for neutral beam injection (NBI) in tokamaks. NUBEAM computes NBI-relevant profiles in tokamak plasmas by tracking the deposition and the slowing of fast ions. At the core of NUBEAM are vector calculations used to track fast ions. These calculations have recently been parallelized to run on MPI clusters. However, cost and interlink bandwidth limit the ability to fully parallelize NUBEAM on an MPI cluster. Recent implementation of double precision capabilities for Graphical Processing Units (GPUs) presents a cost effective and high performance alternative or complement to MPI computation. Commercially available graphics cards can achieve up to 672 GFLOPS double precision and can handle hundreds of thousands of threads. The ability to execute at least one thread per particle simultaneously could significantly reduce the execution time and the statistical noise of NUBEAM. Progress on implementation on a GPU will be presented.

  4. The design of a fast Level 1 Track trigger for the ATLAS High Luminosity Upgrade

    NASA Astrophysics Data System (ADS)

    Miller Allbrooke, Benedict Marc; ATLAS Collaboration

    2017-10-01

    The ATLAS experiment at the high-luminosity LHC will face a five-fold increase in the number of interactions per collision relative to the ongoing Run 2. This will require a proportional improvement in rejection power at the earliest levels of the detector trigger system, while preserving good signal efficiency, due to the increase in the likelihood of individual trigger thresholds being passed as a result of pile-up related activity. One critical aspect of this improvement will be the implementation of precise track reconstruction, through which sharper turn-on curves, b-tagging and tau-tagging techniques can in principle be implemented. The challenge of such a project comes in the development of a fast, precise custom electronic device integrated in the hardware-based first trigger level of the experiment, with repercussions propagating as far as the detector read-out philosophy.

  5. Parasail: SIMD C library for global, semi-global, and local pairwise sequence alignments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daily, Jeffrey A.

    Sequence alignment algorithms are a key component of many bioinformatics applications. Though various fast Smith-Waterman local sequence alignment implementations have been developed for x86 CPUs, most are embedded into larger database search tools. In addition, fast implementations of Needleman-Wunsch global sequence alignment and its semi-global variants are not as widespread. This article presents the first software library for local, global, and semi-global pairwise intra-sequence alignments and improves the performance of previous intra-sequence implementations. As a result, a faster intra-sequence pairwise alignment implementation is described and benchmarked. Using a 375 residue query sequence a speed of 136 billion cell updates permore » second (GCUPS) was achieved on a dual Intel Xeon E5-2670 12-core processor system, the highest reported for an implementation based on Farrar’s ’striped’ approach. When using only a single thread, parasail was 1.7 times faster than Rognes’s SWIPE. For many score matrices, parasail is faster than BLAST. The software library is designed for 64 bit Linux, OS X, or Windows on processors with SSE2, SSE41, or AVX2. Source code is available from https://github.com/jeffdaily/parasail under the Battelle BSD-style license. In conclusion, applications that require optimal alignment scores could benefit from the improved performance. For the first time, SIMD global, semi-global, and local alignments are available in a stand-alone C library.« less

  6. Adaptive time-stepping Monte Carlo integration of Coulomb collisions

    NASA Astrophysics Data System (ADS)

    Särkimäki, K.; Hirvijoki, E.; Terävä, J.

    2018-01-01

    We report an accessible and robust tool for evaluating the effects of Coulomb collisions on a test particle in a plasma that obeys Maxwell-Jüttner statistics. The implementation is based on the Beliaev-Budker collision integral which allows both the test particle and the background plasma to be relativistic. The integration method supports adaptive time stepping, which is shown to greatly improve the computational efficiency. The Monte Carlo method is implemented for both the three-dimensional particle momentum space and the five-dimensional guiding center phase space. Detailed description is provided for both the physics and implementation of the operator. The focus is in adaptive integration of stochastic differential equations, which is an overlooked aspect among existing Monte Carlo implementations of Coulomb collision operators. We verify that our operator converges to known analytical results and demonstrate that careless implementation of the adaptive time step can lead to severely erroneous results. The operator is provided as a self-contained Fortran 95 module and can be included into existing orbit-following tools that trace either the full Larmor motion or the guiding center dynamics. The adaptive time-stepping algorithm is expected to be useful in situations where the collision frequencies vary greatly over the course of a simulation. Examples include the slowing-down of fusion products or other fast ions, and the Dreicer generation of runaway electrons as well as the generation of fast ions or electrons with ion or electron cyclotron resonance heating.

  7. Parasail: SIMD C library for global, semi-global, and local pairwise sequence alignments

    DOE PAGES

    Daily, Jeffrey A.

    2016-02-10

    Sequence alignment algorithms are a key component of many bioinformatics applications. Though various fast Smith-Waterman local sequence alignment implementations have been developed for x86 CPUs, most are embedded into larger database search tools. In addition, fast implementations of Needleman-Wunsch global sequence alignment and its semi-global variants are not as widespread. This article presents the first software library for local, global, and semi-global pairwise intra-sequence alignments and improves the performance of previous intra-sequence implementations. As a result, a faster intra-sequence pairwise alignment implementation is described and benchmarked. Using a 375 residue query sequence a speed of 136 billion cell updates permore » second (GCUPS) was achieved on a dual Intel Xeon E5-2670 12-core processor system, the highest reported for an implementation based on Farrar’s ’striped’ approach. When using only a single thread, parasail was 1.7 times faster than Rognes’s SWIPE. For many score matrices, parasail is faster than BLAST. The software library is designed for 64 bit Linux, OS X, or Windows on processors with SSE2, SSE41, or AVX2. Source code is available from https://github.com/jeffdaily/parasail under the Battelle BSD-style license. In conclusion, applications that require optimal alignment scores could benefit from the improved performance. For the first time, SIMD global, semi-global, and local alignments are available in a stand-alone C library.« less

  8. Spatial Brain Control Interface using Optical and Electrophysiological Measures

    DTIC Science & Technology

    2013-08-27

    appropriate for implementing a reliable brain-computer interface ( BCI ). The LSVM method 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 27-08-2013 13...Machine (LSVM) was the most appropriate for implementing a reliable brain-computer interface ( BCI ). The LSVM method was applied to the imaging data...local field potentials proved to be fast and strongly tuned for the spatial parameters of the task. Thus, a reliable BCI that can predict upcoming

  9. Application of Fast Dynamic Allan Variance for the Characterization of FOGs-Based Measurement While Drilling.

    PubMed

    Wang, Lu; Zhang, Chunxi; Gao, Shuang; Wang, Tao; Lin, Tie; Li, Xianmu

    2016-12-07

    The stability of a fiber optic gyroscope (FOG) in measurement while drilling (MWD) could vary with time because of changing temperature, high vibration, and sudden power failure. The dynamic Allan variance (DAVAR) is a sliding version of the Allan variance. It is a practical tool that could represent the non-stationary behavior of the gyroscope signal. Since the normal DAVAR takes too long to deal with long time series, a fast DAVAR algorithm has been developed to accelerate the computation speed. However, both the normal DAVAR algorithm and the fast algorithm become invalid for discontinuous time series. What is worse, the FOG-based MWD underground often keeps working for several days; the gyro data collected aboveground is not only very time-consuming, but also sometimes discontinuous in the timeline. In this article, on the basis of the fast algorithm for DAVAR, we make a further advance in the fast algorithm (improved fast DAVAR) to extend the fast DAVAR to discontinuous time series. The improved fast DAVAR and the normal DAVAR are used to responsively characterize two sets of simulation data. The simulation results show that when the length of the time series is short, the improved fast DAVAR saves 78.93% of calculation time. When the length of the time series is long ( 6 × 10 5 samples), the improved fast DAVAR reduces calculation time by 97.09%. Another set of simulation data with missing data is characterized by the improved fast DAVAR. Its simulation results prove that the improved fast DAVAR could successfully deal with discontinuous data. In the end, a vibration experiment with FOGs-based MWD has been implemented to validate the good performance of the improved fast DAVAR. The results of the experience testify that the improved fast DAVAR not only shortens computation time, but could also analyze discontinuous time series.

  10. Application of Fast Dynamic Allan Variance for the Characterization of FOGs-Based Measurement While Drilling

    PubMed Central

    Wang, Lu; Zhang, Chunxi; Gao, Shuang; Wang, Tao; Lin, Tie; Li, Xianmu

    2016-01-01

    The stability of a fiber optic gyroscope (FOG) in measurement while drilling (MWD) could vary with time because of changing temperature, high vibration, and sudden power failure. The dynamic Allan variance (DAVAR) is a sliding version of the Allan variance. It is a practical tool that could represent the non-stationary behavior of the gyroscope signal. Since the normal DAVAR takes too long to deal with long time series, a fast DAVAR algorithm has been developed to accelerate the computation speed. However, both the normal DAVAR algorithm and the fast algorithm become invalid for discontinuous time series. What is worse, the FOG-based MWD underground often keeps working for several days; the gyro data collected aboveground is not only very time-consuming, but also sometimes discontinuous in the timeline. In this article, on the basis of the fast algorithm for DAVAR, we make a further advance in the fast algorithm (improved fast DAVAR) to extend the fast DAVAR to discontinuous time series. The improved fast DAVAR and the normal DAVAR are used to responsively characterize two sets of simulation data. The simulation results show that when the length of the time series is short, the improved fast DAVAR saves 78.93% of calculation time. When the length of the time series is long (6×105 samples), the improved fast DAVAR reduces calculation time by 97.09%. Another set of simulation data with missing data is characterized by the improved fast DAVAR. Its simulation results prove that the improved fast DAVAR could successfully deal with discontinuous data. In the end, a vibration experiment with FOGs-based MWD has been implemented to validate the good performance of the improved fast DAVAR. The results of the experience testify that the improved fast DAVAR not only shortens computation time, but could also analyze discontinuous time series. PMID:27941600

  11. Smart light random memory sprays Retinex: a fast Retinex implementation for high-quality brightness adjustment and color correction.

    PubMed

    Banić, Nikola; Lončarić, Sven

    2015-11-01

    Removing the influence of illumination on image colors and adjusting the brightness across the scene are important image enhancement problems. This is achieved by applying adequate color constancy and brightness adjustment methods. One of the earliest models to deal with both of these problems was the Retinex theory. Some of the Retinex implementations tend to give high-quality results by performing local operations, but they are computationally relatively slow. One of the recent Retinex implementations is light random sprays Retinex (LRSR). In this paper, a new method is proposed for brightness adjustment and color correction that overcomes the main disadvantages of LRSR. There are three main contributions of this paper. First, a concept of memory sprays is proposed to reduce the number of LRSR's per-pixel operations to a constant regardless of the parameter values, thereby enabling a fast Retinex-based local image enhancement. Second, an effective remapping of image intensities is proposed that results in significantly higher quality. Third, the problem of LRSR's halo effect is significantly reduced by using an alternative illumination processing method. The proposed method enables a fast Retinex-based image enhancement by processing Retinex paths in a constant number of steps regardless of the path size. Due to the halo effect removal and remapping of the resulting intensities, the method outperforms many of the well-known image enhancement methods in terms of resulting image quality. The results are presented and discussed. It is shown that the proposed method outperforms most of the tested methods in terms of image brightness adjustment, color correction, and computational speed.

  12. Implementation of Ramadan-specific diabetes management recommendations: a multi-centered prospective study from Pakistan

    PubMed Central

    2014-01-01

    Background To observe the outcome of implementation of Ramadan-specific diabetes management recommendations in fasting individuals with diabetes through health care providers. Methods This multi-centered prospective study was conducted at nine diabetes specialist centers in four provinces of Pakistan. The study was carried out in two phases; pre-Ramadan recruitment interview (visit A) and post-Ramadan follow up interview (visit B) of the same patients. Pre-Ramadan individual counseling was given and educational material provided to each patient by health care providers during visit A. Results Out of 388 patients with diabetes, blood glucose level was checked by all patients with type 1 and 71.43% patients with type 2 diabetes when they developed hypoglycemic symptoms during Ramadan. Of patients with type 1 and type 2 diabetes, 33.33% and 48% discontinued their fast when they felt hypoglycemic symptoms, respectively. None of the patient with type 1, while 18.87% patients with type 2 diabetes discontinued fast on the development of hyperglycemic symptoms. Drug dosage and timing were altered in 80% patients with type 1 and 90.5% patients with type 2 diabetes during Ramadan. Majority of the patients with type 2 diabetes changed from moderate/severe levels of physical activity before Ramadan to light physical activity during Ramadan (p<0.000). None of the patients required hospitalization when they developed symptomatic hypoglycemia or hyperglycemia and none developed diabetic ketoacidosis and hyperglycemic hyperosmolar state during Ramadan. Conclusion We observed that it is practicable to implement Ramadan-specific diabetes management recommendations through health care providers. PMID:24559109

  13. Development of FAST.Farm: A New Multiphysics Engineering Tool for Wind Farm Design and Analysis: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jonkman, Jason; Annoni, Jennifer; Hayman, Greg

    2017-01-01

    This paper presents the development of FAST.Farm, a new multiphysics tool applicable to engineering problems in research and industry involving wind farm performance and cost optimization that is needed to address the current underperformance, failures, and expenses plaguing the wind industry. Achieving wind cost-of-energy targets - which requires improvements in wind farm performance and reliability, together with reduced uncertainty and expenditures - has been eluded by the complicated nature of the wind farm design problem, especially the sophisticated interaction between atmospheric phenomena and wake dynamics and array effects. FAST.Farm aims to balance the need for accurate modeling of the relevantmore » physics for predicting power performance and loads while maintaining low computational cost to support a highly iterative and probabilistic design process and system-wide optimization. FAST.Farm makes use of FAST to model the aero-hydro-servo-elastics of distinct turbines in the wind farm, and it is based on some of the principles of the Dynamic Wake Meandering (DWM) model, but avoids many of the limitations of existing DWM implementations.« less

  14. fastPACE Train-the-Trainer: A scalable new educational program to accelerate training in biomedical innovation, entrepreneurship, and commercialization.

    PubMed

    Servoss, Jonathan; Chang, Connie; Fay, Jonathan; Lota, Kanchan Sehgal; Mashour, George A; Ward, Kevin R

    2017-10-01

    The Institute of Medicine recommended the advance of innovation and entrepreneurship training programs within the Clinical & Translational Science Award (CTSA) program; however, there remains a gap in adoption by CTSA institutes. The University of Michigan's Michigan Institute for Clinical & Health Research and Fast Forward Medical Innovation (FFMI) partnered to develop a pilot program designed to teach CTSA hubs how to implement innovation and entrepreneurship programs at their home institutions. The program provided a 2-day onsite training experience combined with observation of an ongoing course focused on providing biomedical innovation, commercialization and entrepreneurial training to a medical academician audience (FFMI fast PACE). All 9 participating CTSA institutes reported a greater connection to biomedical research commercialization resources. Six launched their own version of the FFMI fast PACE course or modified existing programs. Two reported greater collaboration with their technology transfer offices. The FFMI fast PACE course and training program may be suitable for CTSA hubs looking to enhance innovation and entrepreneurship within their institutions and across their innovation ecosystems.

  15. UKIRT fast guide system improvements

    NASA Astrophysics Data System (ADS)

    Balius, Al; Rees, Nicholas P.

    1997-09-01

    The United Kingdom Infra-Red Telescope (UKIRT) has recently undergone the first major upgrade program since its construction. One part of the upgrade program was an adaptive tip-tilt secondary mirror closed with a CCD system collectively called the fast guide system. The installation of the new secondary and associated systems was carried out in the first half of 1996. Initial testing of the fast guide system has shown great improvement in guide accuracy. The initial installation included a fixed integration time CCD. In the first part of 1997 an integration time controller based on computed guide star luminosity was implemented in the fast guide system. Also, a Kalman type estimator was installed in the image tracking loop based on a dynamic model and knowledge of the statistical properties of the guide star position error measurement as a function of computed guide star magnitude and CCD integration time. The new configuration was tested in terms of improved guide performance nd graceful degradation when tracking faint guide stars. This paper describes the modified fast guide system configuration and reports the results of performance tests.

  16. Fast rerouting schemes for protected mobile IP over MPLS networks

    NASA Astrophysics Data System (ADS)

    Wen, Chih-Chao; Chang, Sheng-Yi; Chen, Huan; Chen, Kim-Joan

    2005-10-01

    Fast rerouting is a critical traffic engineering operation in the MPLS networks. To implement the Mobile IP service over the MPLS network, one can collaborate with the fast rerouting operation to enhance the availability and survivability. MPLS can protect critical LSP tunnel between Home Agent (HA) and Foreign Agent (FA) using the fast rerouting scheme. In this paper, we propose a simple but efficient algorithm to address the triangle routing problem for the Mobile IP over the MPLS networks. We consider this routing issue as a link weighting and capacity assignment (LW-CA) problem. The derived solution is used to plan the fast restoration mechanism to protect the link or node failure. In this paper, we first model the LW-CA problem as a mixed integer optimization problem. Our goal is to minimize the call blocking probability on the most congested working truck for the mobile IP connections. Many existing network topologies are used to evaluate the performance of our scheme. Results show that our proposed scheme can obtain the best performance in terms of the smallest blocking probability compared to other schemes.

  17. Public Health Information Systems: Priorities and Practices for Successful Deployments.

    PubMed

    Pearce, Martin

    2016-01-01

    A fast paced workshop designed for senior public health decision makers and clinical leaders implementing information systems to support delivery of public health programs. The tutorial will introduce public health information systems and provide best practices for implementing solutions related to immunization, communicable disease case management and outbreak management. Using a combination of formats, the tutorial will: • Highlight key functionality of public health information systems. • Review global crises currently exposing gaps and deficiencies in public health information. • Examine governance, planning, and implementation priorities. • Highlight considerations supporting implementations nationally and in special populations. • Provide real, actionable lessons learned to take away and apply in the real world.

  18. Nutrient Intakes of the Enlisted Personnel Aboard the USS Saratoga Before and After Implementing ’Fast Food’ to the Food Service System.

    DTIC Science & Technology

    1982-05-01

    intakes. In 1978, vitamin A fortified milk shakes (dry base) and vitamin C fortified extruded French fried potatoes and vitamin C fortified non...dry base) and vitamin C fortified extruded French fried potatoes and vitamin C fortified non-carbonated beverages were provided with the "Fast Food...identification of any unusual food items, and assignment of each food item as a component of either a meal or between-meal snack . The LAIR Nutrient Factor File

  19. Software Models Impact Stresses

    NASA Technical Reports Server (NTRS)

    Hanshaw, Timothy C.; Roy, Dipankar; Toyooka, Mark

    1991-01-01

    Generalized Impact Stress Software designed to assist engineers in predicting stresses caused by variety of impacts. Program straightforward, simple to implement on personal computers, "user friendly", and handles variety of boundary conditions applied to struck body being analyzed. Applications include mathematical modeling of motions and transient stresses of spacecraft, analysis of slamming of piston, of fast valve shutoffs, and play of rotating bearing assembly. Provides fast and inexpensive analytical tool for analysis of stresses and reduces dependency on expensive impact tests. Written in FORTRAN 77. Requires use of commercial software package PLOT88.

  20. Fast-acting sprinkler system design considerations for propellant manufacture

    NASA Astrophysics Data System (ADS)

    Matthews, A. L.; Crable, J. M.; Kristoff, P. T.

    1984-08-01

    Fast-acting sprinkler systems for detection and suppression of fires in propellant operations, which require activation in the millisecond range in order to be effective, can be easily defeated unless particular attention is paid to design and maintenance details. Of primary consideration are detector selection and placement in processes to minimize the effect of environmental influences. Also important are nozzle placement, water flow density, water supply pressure, and pattern and sloping of piping. When all of these design criteria are properly implemented, water application can occur within 100 ms of fire detection.

  1. Large-Constraint-Length, Fast Viterbi Decoder

    NASA Technical Reports Server (NTRS)

    Collins, O.; Dolinar, S.; Hsu, In-Shek; Pollara, F.; Olson, E.; Statman, J.; Zimmerman, G.

    1990-01-01

    Scheme for efficient interconnection makes VLSI design feasible. Concept for fast Viterbi decoder provides for processing of convolutional codes of constraint length K up to 15 and rates of 1/2 to 1/6. Fully parallel (but bit-serial) architecture developed for decoder of K = 7 implemented in single dedicated VLSI circuit chip. Contains six major functional blocks. VLSI circuits perform branch metric computations, add-compare-select operations, and then store decisions in traceback memory. Traceback processor reads appropriate memory locations and puts out decoded bits. Used as building block for decoders of larger K.

  2. A pipeline design of a fast prime factor DFT on a finite field

    NASA Technical Reports Server (NTRS)

    Truong, T. K.; Hsu, In-Shek; Shao, H. M.; Reed, Irving S.; Shyu, Hsuen-Chyun

    1988-01-01

    A conventional prime factor discrete Fourier transform (DFT) algorithm is used to realize a discrete Fourier-like transform on the finite field, GF(q sub n). This algorithm is developed to compute cyclic convolutions of complex numbers and to decode Reed-Solomon codes. Such a pipeline fast prime factor DFT algorithm over GF(q sub n) is regular, simple, expandable, and naturally suitable for VLSI implementation. An example illustrating the pipeline aspect of a 30-point transform over GF(q sub n) is presented.

  3. A DSP equipped digitizer for online analysis of nuclear detector signals

    NASA Astrophysics Data System (ADS)

    Pasquali, G.; Ciaranfi, R.; Bardelli, L.; Bini, M.; Boiano, A.; Giannelli, F.; Ordine, A.; Poggi, G.

    2007-01-01

    In the framework of the NUCL-EX collaboration, a DSP equipped fast digitizer has been implemented and it has now reached the production stage. Each sampling channel is implemented on a separate daughter-board to be plugged on a VME mother-board. Each channel features a 12-bit, 125 MSamples/s ADC and a Digital Signal Processor (DSP) for online analysis of detector signals. A few algorithms have been written and successfully tested on detectors of different types (scintillators, solid-state, gas-filled), implementing pulse shape discrimination, constant fraction timing, semi-Gaussian shaping, gated integration.

  4. A comparison of the Health Star Rating system when used for restaurant fast foods and packaged foods.

    PubMed

    Dunford, Elizabeth K; Wu, Jason H Y; Wellard-Cole, Lyndal; Watson, Wendy; Crino, Michelle; Petersen, Kristina; Neal, Bruce

    2017-10-01

    In June 2014, the Australian government agreed to the voluntary implementation of an interpretive 'Health Star Rating' (HSR) front-of-pack labelling system for packaged foods. The aim of the system is to make it easier for consumers to compare the healthiness of products based on number of stars. With many Australians consuming fast food there is a strong rationale for extending the HSR system to include fast food items. To examine the performance of the HSR system when applied to fast foods. Nutrient content data for fast food menu items were collected from the websites of 13 large Australian fast-food chains. The HSR was calculated for each menu item. Statistics describing HSR values for fast foods were calculated and compared to results for comparable packaged foods. Data for 1529 fast food products were compared to data for 3810 packaged food products across 16 of 17 fast food product categories. The mean HSR for the fast foods was 2.5 and ranged from 0.5 to 5.0 and corresponding values for the comparator packaged foods were 2.6 and 0.5 to 5.0. Visual inspection of the data showed broadly comparable distributions of HSR values across the fast food and the packaged food categories, although statistically significant differences were apparent for seven categories (all p < 0.04). In some cases these differences reflected the large sample size and the power to detect small variations across fast foods and packaged food, and in others it appeared to reflect primarily differences in the mix of product types within a category. These data support the idea that the HSR system could be extended to Australian fast foods. There are likely to be significant benefits to the community from the use of a single standardised signposting system for healthiness across all fresh, packaged and restaurant foods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. A pipeline VLSI design of fast singular value decomposition processor for real-time EEG system based on on-line recursive independent component analysis.

    PubMed

    Huang, Kuan-Ju; Shih, Wei-Yeh; Chang, Jui Chung; Feng, Chih Wei; Fang, Wai-Chi

    2013-01-01

    This paper presents a pipeline VLSI design of fast singular value decomposition (SVD) processor for real-time electroencephalography (EEG) system based on on-line recursive independent component analysis (ORICA). Since SVD is used frequently in computations of the real-time EEG system, a low-latency and high-accuracy SVD processor is essential. During the EEG system process, the proposed SVD processor aims to solve the diagonal, inverse and inverse square root matrices of the target matrices in real time. Generally, SVD requires a huge amount of computation in hardware implementation. Therefore, this work proposes a novel design concept for data flow updating to assist the pipeline VLSI implementation. The SVD processor can greatly improve the feasibility of real-time EEG system applications such as brain computer interfaces (BCIs). The proposed architecture is implemented using TSMC 90 nm CMOS technology. The sample rate of EEG raw data adopts 128 Hz. The core size of the SVD processor is 580×580 um(2), and the speed of operation frequency is 20MHz. It consumes 0.774mW of power during the 8-channel EEG system per execution time.

  6. Implementation of a fast 16-Bit dynamic clamp using LabVIEW-RT.

    PubMed

    Kullmann, Paul H M; Wheeler, Diek W; Beacom, Joshua; Horn, John P

    2004-01-01

    The dynamic-clamp method provides a powerful electrophysiological tool for creating virtual ionic conductances in living cells and studying their influence on membrane potential. Here we describe G-clamp, a new way to implement a dynamic clamp using the real-time version of the Lab-VIEW programming environment together with a Windows host, an embedded microprocessor that runs a real-time operating system and a multifunction data-acquisition board. The software includes descriptions of a fast voltage-dependent sodium conductance, delayed rectifier, M-type and A-type potassium conductances, and a leak conductance. The system can also read synaptic conductance waveforms from preassembled data files. These virtual conductances can be reliably implemented at speeds < or =43 kHz while simultaneously saving two channels of data with 16-bit precision. G-clamp also includes utilities for measuring current-voltage relations, synaptic strength, and synaptic gain. Taking an approach built on a commercially available software/hardware platform has resulted in a system that is easy to assemble and upgrade. In addition, the graphical programming structure of LabVIEW should make it relatively easy for others to adapt G-clamp for new experimental applications.

  7. WMS Server 2.0

    NASA Technical Reports Server (NTRS)

    Plesea, Lucian; Wood, James F.

    2012-01-01

    This software is a simple, yet flexible server of raster map products, compliant with the Open Geospatial Consortium (OGC) Web Map Service (WMS) 1.1.1 protocol. The server is a full implementation of the OGC WMS 1.1.1 as a fastCGI client and using Geospatial Data Abstraction Library (GDAL) for data access. The server can operate in a proxy mode, where all or part of the WMS requests are done on a back server. The server has explicit support for a colocated tiled WMS, including rapid response of black (no-data) requests. It generates JPEG and PNG images, including 16-bit PNG. The GDAL back-end support allows great flexibility on the data access. The server is a port to a Linux/GDAL platform from the original IRIX/IL platform. It is simpler to configure and use, and depending on the storage format used, it has better performance than other available implementations. The WMS server 2.0 is a high-performance WMS implementation due to the fastCGI architecture. The use of GDAL data back end allows for great flexibility. The configuration is relatively simple, based on a single XML file. It provides scaling and cropping, as well as blending of multiple layers based on layer transparency.

  8. Parallel heuristics for scalable community detection

    DOE PAGES

    Lu, Hao; Halappanavar, Mahantesh; Kalyanaraman, Ananth

    2015-08-14

    Community detection has become a fundamental operation in numerous graph-theoretic applications. Despite its potential for application, there is only limited support for community detection on large-scale parallel computers, largely owing to the irregular and inherently sequential nature of the underlying heuristics. In this paper, we present parallelization heuristics for fast community detection using the Louvain method as the serial template. The Louvain method is an iterative heuristic for modularity optimization. Originally developed in 2008, the method has become increasingly popular owing to its ability to detect high modularity community partitions in a fast and memory-efficient manner. However, the method ismore » also inherently sequential, thereby limiting its scalability. Here, we observe certain key properties of this method that present challenges for its parallelization, and consequently propose heuristics that are designed to break the sequential barrier. For evaluation purposes, we implemented our heuristics using OpenMP multithreading, and tested them over real world graphs derived from multiple application domains. Compared to the serial Louvain implementation, our parallel implementation is able to produce community outputs with a higher modularity for most of the inputs tested, in comparable number or fewer iterations, while providing real speedups of up to 16x using 32 threads.« less

  9. Fast-response free-running dc-to-dc converter employing a state-trajectory control law

    NASA Technical Reports Server (NTRS)

    Huffman, S. D.; Burns, W. W., III; Wilson, T. G.; Owen, H. A., Jr.

    1977-01-01

    A recently proposed state-trajectory control law for a family of energy-storage dc-to-dc converters has been implemented for the voltage step-up configuration. Two methods of realization are discussed; one employs a digital processor and the other uses analog computational circuits. Performance characteristics of experimental voltage step-up converters operating under the control of each of these implementations are reported and compared to theoretical predictions and computer simulations.

  10. Toward Fast and Accurate Binding Affinity Prediction with pmemdGTI: An Efficient Implementation of GPU-Accelerated Thermodynamic Integration.

    PubMed

    Lee, Tai-Sung; Hu, Yuan; Sherborne, Brad; Guo, Zhuyan; York, Darrin M

    2017-07-11

    We report the implementation of the thermodynamic integration method on the pmemd module of the AMBER 16 package on GPUs (pmemdGTI). The pmemdGTI code typically delivers over 2 orders of magnitude of speed-up relative to a single CPU core for the calculation of ligand-protein binding affinities with no statistically significant numerical differences and thus provides a powerful new tool for drug discovery applications.

  11. Adaptive Monocular Visual–Inertial SLAM for Real-Time Augmented Reality Applications in Mobile Devices

    PubMed Central

    Piao, Jin-Chun; Kim, Shin-Dug

    2017-01-01

    Simultaneous localization and mapping (SLAM) is emerging as a prominent issue in computer vision and next-generation core technology for robots, autonomous navigation and augmented reality. In augmented reality applications, fast camera pose estimation and true scale are important. In this paper, we present an adaptive monocular visual–inertial SLAM method for real-time augmented reality applications in mobile devices. First, the SLAM system is implemented based on the visual–inertial odometry method that combines data from a mobile device camera and inertial measurement unit sensor. Second, we present an optical-flow-based fast visual odometry method for real-time camera pose estimation. Finally, an adaptive monocular visual–inertial SLAM is implemented by presenting an adaptive execution module that dynamically selects visual–inertial odometry or optical-flow-based fast visual odometry. Experimental results show that the average translation root-mean-square error of keyframe trajectory is approximately 0.0617 m with the EuRoC dataset. The average tracking time is reduced by 7.8%, 12.9%, and 18.8% when different level-set adaptive policies are applied. Moreover, we conducted experiments with real mobile device sensors, and the results demonstrate the effectiveness of performance improvement using the proposed method. PMID:29112143

  12. X-33 Environmental Impact Statement: A Fast Track Approach

    NASA Technical Reports Server (NTRS)

    McCaleb, Rebecca C.; Holland, Donna L.

    1998-01-01

    NASA is required by the National Environmental Policy Act (NEPA) to prepare an appropriate level environmental analysis for its major projects. Development of the X-33 Technology Demonstrator and its associated flight test program required an environmental impact statement (EIS) under the NEPA. The EIS process is consists of four parts: the "Notice of Intent" to prepare an EIS and scoping; the draft EIS which is distributed for review and comment; the final ETS; and the "Record of Decision." Completion of this process normally takes from 2 - 3 years, depending on the complexity of the proposed action. Many of the agency's newest fast track, technology demonstration programs require NEPA documentation, but cannot sustain the lengthy time requirement between program concept development to implementation. Marshall Space Flight Center, in cooperation with Kennedy Space Center, accomplished the NEPA process for the X-33 Program in 13 months from Notice of Intent to Record of Decision. In addition, the environmental team implemented an extensive public involvement process, conducting a total of 23 public meetings for scoping and draft EIS comment along with numerous informal meetings with public officials, civic organizations, and Native American Indians. This paper will discuss the fast track approach used to successfully accomplish the NEPA process for X-33 on time.

  13. Weighted divergence correction scheme and its fast implementation

    NASA Astrophysics Data System (ADS)

    Wang, ChengYue; Gao, Qi; Wei, RunJie; Li, Tian; Wang, JinJun

    2017-05-01

    Forcing the experimental volumetric velocity fields to satisfy mass conversation principles has been proved beneficial for improving the quality of measured data. A number of correction methods including the divergence correction scheme (DCS) have been proposed to remove divergence errors from measurement velocity fields. For tomographic particle image velocimetry (TPIV) data, the measurement uncertainty for the velocity component along the light thickness direction is typically much larger than for the other two components. Such biased measurement errors would weaken the performance of traditional correction methods. The paper proposes a variant for the existing DCS by adding weighting coefficients to the three velocity components, named as the weighting DCS (WDCS). The generalized cross validation (GCV) method is employed to choose the suitable weighting coefficients. A fast algorithm for DCS or WDCS is developed, making the correction process significantly low-cost to implement. WDCS has strong advantages when correcting velocity components with biased noise levels. Numerical tests validate the accuracy and efficiency of the fast algorithm, the effectiveness of GCV method, and the advantages of WDCS. Lastly, DCS and WDCS are employed to process experimental velocity fields from the TPIV measurement of a turbulent boundary layer. This shows that WDCS achieves a better performance than DCS in improving some flow statistics.

  14. S-HARP: A parallel dynamic spectral partitioner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sohn, A.; Simon, H.

    1998-01-01

    Computational science problems with adaptive meshes involve dynamic load balancing when implemented on parallel machines. This dynamic load balancing requires fast partitioning of computational meshes at run time. The authors present in this report a fast parallel dynamic partitioner, called S-HARP. The underlying principles of S-HARP are the fast feature of inertial partitioning and the quality feature of spectral partitioning. S-HARP partitions a graph from scratch, requiring no partition information from previous iterations. Two types of parallelism have been exploited in S-HARP, fine grain loop level parallelism and coarse grain recursive parallelism. The parallel partitioner has been implemented in Messagemore » Passing Interface on Cray T3E and IBM SP2 for portability. Experimental results indicate that S-HARP can partition a mesh of over 100,000 vertices into 256 partitions in 0.2 seconds on a 64 processor Cray T3E. S-HARP is much more scalable than other dynamic partitioners, giving over 15 fold speedup on 64 processors while ParaMeTiS1.0 gives a few fold speedup. Experimental results demonstrate that S-HARP is three to 10 times faster than the dynamic partitioners ParaMeTiS and Jostle on six computational meshes of size over 100,000 vertices.« less

  15. Fast parallel tandem mass spectral library searching using GPU hardware acceleration.

    PubMed

    Baumgardner, Lydia Ashleigh; Shanmugam, Avinash Kumar; Lam, Henry; Eng, Jimmy K; Martin, Daniel B

    2011-06-03

    Mass spectrometry-based proteomics is a maturing discipline of biologic research that is experiencing substantial growth. Instrumentation has steadily improved over time with the advent of faster and more sensitive instruments collecting ever larger data files. Consequently, the computational process of matching a peptide fragmentation pattern to its sequence, traditionally accomplished by sequence database searching and more recently also by spectral library searching, has become a bottleneck in many mass spectrometry experiments. In both of these methods, the main rate-limiting step is the comparison of an acquired spectrum with all potential matches from a spectral library or sequence database. This is a highly parallelizable process because the core computational element can be represented as a simple but arithmetically intense multiplication of two vectors. In this paper, we present a proof of concept project taking advantage of the massively parallel computing available on graphics processing units (GPUs) to distribute and accelerate the process of spectral assignment using spectral library searching. This program, which we have named FastPaSS (for Fast Parallelized Spectral Searching), is implemented in CUDA (Compute Unified Device Architecture) from NVIDIA, which allows direct access to the processors in an NVIDIA GPU. Our efforts demonstrate the feasibility of GPU computing for spectral assignment, through implementation of the validated spectral searching algorithm SpectraST in the CUDA environment.

  16. FPS-RAM: Fast Prefix Search RAM-Based Hardware for Forwarding Engine

    NASA Astrophysics Data System (ADS)

    Zaitsu, Kazuya; Yamamoto, Koji; Kuroda, Yasuto; Inoue, Kazunari; Ata, Shingo; Oka, Ikuo

    Ternary content addressable memory (TCAM) is becoming very popular for designing high-throughput forwarding engines on routers. However, TCAM has potential problems in terms of hardware and power costs, which limits its ability to deploy large amounts of capacity in IP routers. In this paper, we propose new hardware architecture for fast forwarding engines, called fast prefix search RAM-based hardware (FPS-RAM). We designed FPS-RAM hardware with the intent of maintaining the same search performance and physical user interface as TCAM because our objective is to replace the TCAM in the market. Our RAM-based hardware architecture is completely different from that of TCAM and has dramatically reduced the costs and power consumption to 62% and 52%, respectively. We implemented FPS-RAM on an FPGA to examine its lookup operation.

  17. Unsteady jet in designing innovative drug delivery system

    NASA Astrophysics Data System (ADS)

    Wang, Cong; Mazur, Paul; Cosse, Julia; Rider, Stephanie; Gharib, Morteza

    2014-11-01

    Micro-needle injections, a promising pain-free drug delivery method, is constrained by its limited penetration depth. This deficiency can be overcome by implementing fast unsteady jet that can penetrate sub-dermally. The development of a faster liquid jet would increase the penetration depth and delivery volume of micro-needles. In this preliminary work, the nonlinear transient behavior of an elastic tube balloon in providing fast discharge is analyzed. A physical model that combines the Mooney Rivlin Material model and Young-Lapalce's Law was developed and used to investigate the fast discharging dynamic phenomenon. A proof of concept prototype was constructed to demonstrate the feasibility of a simple thumb-sized delivery system to generate liquid jet with desired speed in the range of 5-10 m/s. This work is supported by ZCUBE Corporation.

  18. Enabling fast charging – Introduction and overview

    DOE PAGES

    Michelbacher, Christopher; Ahmed, Shabbir; Bloom, Ira; ...

    2017-10-23

    Argonne National Laboratory (Argonne), Idaho National Laboratory (INL), and the National Renewable Energy Laboratory (NREL), with guidance from VTO, initiated this study to understand the technical, cost, infrastructure, and implementation barriers associated with high rate charging up to 350 kW.

  19. Knowledge-Based Runway Assignment for Arrival Aircraft in the Terminal Area

    DOT National Transportation Integrated Search

    1997-01-01

    A knowledge-based system for scheduling arrival traffic in the terminal area, : referred to as the Final Approach Spacing Tool (FAST), has been implemented and : operationally tested at the Dallas/Fort Worth Terminal Radar Approach Control : (TRACON)...

  20. New Factorization Techniques and Fast Serial and Parrallel Algorithms for Operational Space Control of Robot Manipulators

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Djouani, Karim; Fried, George; Pontnau, Jean

    1997-01-01

    In this paper a new factorization technique for computation of inverse of mass matrix, and the operational space mass matrix, as arising in implementation of the operational space control scheme, is presented.

  1. fastBMA: scalable network inference and transitive reduction.

    PubMed

    Hung, Ling-Hong; Shi, Kaiyuan; Wu, Migao; Young, William Chad; Raftery, Adrian E; Yeung, Ka Yee

    2017-10-01

    Inferring genetic networks from genome-wide expression data is extremely demanding computationally. We have developed fastBMA, a distributed, parallel, and scalable implementation of Bayesian model averaging (BMA) for this purpose. fastBMA also includes a computationally efficient module for eliminating redundant indirect edges in the network by mapping the transitive reduction to an easily solved shortest-path problem. We evaluated the performance of fastBMA on synthetic data and experimental genome-wide time series yeast and human datasets. When using a single CPU core, fastBMA is up to 100 times faster than the next fastest method, LASSO, with increased accuracy. It is a memory-efficient, parallel, and distributed application that scales to human genome-wide expression data. A 10 000-gene regulation network can be obtained in a matter of hours using a 32-core cloud cluster (2 nodes of 16 cores). fastBMA is a significant improvement over its predecessor ScanBMA. It is more accurate and orders of magnitude faster than other fast network inference methods such as the 1 based on LASSO. The improved scalability allows it to calculate networks from genome scale data in a reasonable time frame. The transitive reduction method can improve accuracy in denser networks. fastBMA is available as code (M.I.T. license) from GitHub (https://github.com/lhhunghimself/fastBMA), as part of the updated networkBMA Bioconductor package (https://www.bioconductor.org/packages/release/bioc/html/networkBMA.html) and as ready-to-deploy Docker images (https://hub.docker.com/r/biodepot/fastbma/). © The Authors 2017. Published by Oxford University Press.

  2. Evaluation and utilization of preassembled frozen commercial fast real-time qPCR master mixes for detection of cytomegalovirus and BK virus.

    PubMed

    Glover, William A; Atienza, Ederlyn E; Nesbitt, Shannon; Kim, Woo J; Castor, Jared; Cook, Linda; Jerome, Keith R

    2016-01-01

    Quantitative DNA detection of cytomegalovirus (CMV) and BK virus (BKV) is critical in the management of transplant patients. Quantitative laboratory-developed procedures for CMV and BKV have been described in which much of the processing is automated, resulting in rapid, reproducible, and high-throughput testing of transplant patients. To increase the efficiency of such assays, the performance and stability of four commercial preassembled frozen fast qPCR master mixes (Roche FastStart Universal Probe Master Mix with Rox, Bio-Rad SsoFast Probes Supermix with Rox, Life Technologies TaqMan FastAdvanced Master Mix, and Life Technologies Fast Universal PCR Master Mix), in combination with in-house designed primers and probes, was evaluated using controls and standards from standard CMV and BK assays. A subsequent parallel evaluation using patient samples was performed comparing the performance of freshly prepared assay mixes versus aliquoted frozen master mixes made with two of the fast qPCR mixes (Life Technologies TaqMan FastAdvanced Master Mix, and Bio-Rad SsoFast Probes Supermix with Rox), chosen based on their performance and compatibility with existing PCR cycling conditions. The data demonstrate that the frozen master mixes retain excellent performance over a period of at least 10 weeks. During the parallel testing using clinical specimens, no difference in quantitative results was observed between the preassembled frozen master mixes and freshly prepared master mixes. Preassembled fast real-time qPCR frozen master mixes perform well and represent an additional strategy laboratories can implement to reduce assay preparation times, and to minimize technical errors and effort necessary to perform clinical PCR. © 2015 Wiley Periodicals, Inc.

  3. Is fasting safe? A chart review of adverse events during medically supervised, water-only fasting.

    PubMed

    Finnell, John S; Saul, Bradley C; Goldhamer, Alan C; Myers, Toshia R

    2018-02-20

    Evidence suggests that fasting, during which only water is consumed, results in potentially health promoting physiological effects. However, peer-reviewed research assessing the safety of water-only fasting is lacking. To address this, we conducted a chart review to describe adverse events (AEs) that occurred during medically supervised, water-only fasting. Electronic charts from patient visits to a residential medical facility from 2006 to 2011 were reviewed. Patients who were at least 21 years of age and water-only fasted for ≥2 consecutive days with a refeeding period equal to half of the fast length were included. Out of 2539 charts, 768 visits met our inclusion and exclusion criteria. AEs were abstracted from chart notes and classified according to CTCAE (v4.03) and MedDRA (v12.1) terminology. Descriptive analysis of AEs is reported. During the protocol period, the highest grade AE (HGAE) in 555 visits was a grade 2 event or lower, in 212 visits it was a grade 3 event, in 1 visit it was a grade 4 event, and there were no grade 5 events. There were 2 (0.002%) visits with a serious adverse event (SAE). The majority of AEs identified were mild (n = 4490, 75%) in nature and known reactions to fasting. To our knowledge, this is the most comprehensive analysis of AEs experienced during medically supervised, water-only fasting conducted to date. Overall, our data indicate that the majority of AEs experienced were mild to moderate and known reactions to fasting. This suggests that the protocol used in this study can be safely implemented in a medical setting with minimal risk of a SAE.

  4. A fast non-Fourier method for Landau-fluid operators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dimits, A. M., E-mail: dimits1@llnl.gov; Joseph, I.; Umansky, M. V.

    An efficient and versatile non-Fourier method for the computation of Landau-fluid (LF) closure operators [Hammett and Perkins, Phys. Rev. Lett. 64, 3019 (1990)] is presented, based on an approximation by a sum of modified-Helmholtz-equation solves (SMHS) in configuration space. This method can yield fast-Fourier-like scaling of the computational time requirements and also provides a very compact data representation of these operators, even for plasmas with large spatial nonuniformity. As a result, the method can give significant savings compared with direct application of “delocalization kernels” [e.g., Schurtz et al., Phys. Plasmas 7, 4238 (2000)], both in terms of computational cost andmore » memory requirements. The method is of interest for the implementation of Landau-fluid models in situations where the spatial nonuniformity, particular geometry, or boundary conditions render a Fourier implementation difficult or impossible. Systematic procedures have been developed to optimize the resulting operators for accuracy and computational cost. The four-moment Landau-fluid model of Hammett and Perkins has been implemented in the BOUT++ code using the SMHS method for LF closure. Excellent agreement has been obtained for the one-dimensional plasma density response function between driven initial-value calculations using this BOUT++ implementation and matrix eigenvalue calculations using both Fourier and SMHS non-Fourier implementations of the LF closures. The SMHS method also forms the basis for the implementation, which has been carried out in the BOUT++ code, of the parallel and toroidal drift-resonance LF closures. The method is a key enabling tool for the extension of gyro-Landau-fluid models [e.g., Beer and Hammett, Phys. Plasmas 3, 4046 (1996)] to codes that treat regions with strong profile variation, such as the tokamak edge and scrapeoff-layer.« less

  5. Parasail: SIMD C library for global, semi-global, and local pairwise sequence alignments.

    PubMed

    Daily, Jeff

    2016-02-10

    Sequence alignment algorithms are a key component of many bioinformatics applications. Though various fast Smith-Waterman local sequence alignment implementations have been developed for x86 CPUs, most are embedded into larger database search tools. In addition, fast implementations of Needleman-Wunsch global sequence alignment and its semi-global variants are not as widespread. This article presents the first software library for local, global, and semi-global pairwise intra-sequence alignments and improves the performance of previous intra-sequence implementations. A faster intra-sequence local pairwise alignment implementation is described and benchmarked, including new global and semi-global variants. Using a 375 residue query sequence a speed of 136 billion cell updates per second (GCUPS) was achieved on a dual Intel Xeon E5-2670 24-core processor system, the highest reported for an implementation based on Farrar's 'striped' approach. Rognes's SWIPE optimal database search application is still generally the fastest available at 1.2 to at best 2.4 times faster than Parasail for sequences shorter than 500 amino acids. However, Parasail was faster for longer sequences. For global alignments, Parasail's prefix scan implementation is generally the fastest, faster even than Farrar's 'striped' approach, however the opal library is faster for single-threaded applications. The software library is designed for 64 bit Linux, OS X, or Windows on processors with SSE2, SSE41, or AVX2. Source code is available from https://github.com/jeffdaily/parasail under the Battelle BSD-style license. Applications that require optimal alignment scores could benefit from the improved performance. For the first time, SIMD global, semi-global, and local alignments are available in a stand-alone C library.

  6. A fast non-Fourier method for Landau-fluid operatorsa)

    NASA Astrophysics Data System (ADS)

    Dimits, A. M.; Joseph, I.; Umansky, M. V.

    2014-05-01

    An efficient and versatile non-Fourier method for the computation of Landau-fluid (LF) closure operators [Hammett and Perkins, Phys. Rev. Lett. 64, 3019 (1990)] is presented, based on an approximation by a sum of modified-Helmholtz-equation solves (SMHS) in configuration space. This method can yield fast-Fourier-like scaling of the computational time requirements and also provides a very compact data representation of these operators, even for plasmas with large spatial nonuniformity. As a result, the method can give significant savings compared with direct application of "delocalization kernels" [e.g., Schurtz et al., Phys. Plasmas 7, 4238 (2000)], both in terms of computational cost and memory requirements. The method is of interest for the implementation of Landau-fluid models in situations where the spatial nonuniformity, particular geometry, or boundary conditions render a Fourier implementation difficult or impossible. Systematic procedures have been developed to optimize the resulting operators for accuracy and computational cost. The four-moment Landau-fluid model of Hammett and Perkins has been implemented in the BOUT++ code using the SMHS method for LF closure. Excellent agreement has been obtained for the one-dimensional plasma density response function between driven initial-value calculations using this BOUT++ implementation and matrix eigenvalue calculations using both Fourier and SMHS non-Fourier implementations of the LF closures. The SMHS method also forms the basis for the implementation, which has been carried out in the BOUT++ code, of the parallel and toroidal drift-resonance LF closures. The method is a key enabling tool for the extension of gyro-Landau-fluid models [e.g., Beer and Hammett, Phys. Plasmas 3, 4046 (1996)] to codes that treat regions with strong profile variation, such as the tokamak edge and scrapeoff-layer.

  7. FUX-Sim: Implementation of a fast universal simulation/reconstruction framework for X-ray systems.

    PubMed

    Abella, Monica; Serrano, Estefania; Garcia-Blas, Javier; García, Ines; de Molina, Claudia; Carretero, Jesus; Desco, Manuel

    2017-01-01

    The availability of digital X-ray detectors, together with advances in reconstruction algorithms, creates an opportunity for bringing 3D capabilities to conventional radiology systems. The downside is that reconstruction algorithms for non-standard acquisition protocols are generally based on iterative approaches that involve a high computational burden. The development of new flexible X-ray systems could benefit from computer simulations, which may enable performance to be checked before expensive real systems are implemented. The development of simulation/reconstruction algorithms in this context poses three main difficulties. First, the algorithms deal with large data volumes and are computationally expensive, thus leading to the need for hardware and software optimizations. Second, these optimizations are limited by the high flexibility required to explore new scanning geometries, including fully configurable positioning of source and detector elements. And third, the evolution of the various hardware setups increases the effort required for maintaining and adapting the implementations to current and future programming models. Previous works lack support for completely flexible geometries and/or compatibility with multiple programming models and platforms. In this paper, we present FUX-Sim, a novel X-ray simulation/reconstruction framework that was designed to be flexible and fast. Optimized implementation for different families of GPUs (CUDA and OpenCL) and multi-core CPUs was achieved thanks to a modularized approach based on a layered architecture and parallel implementation of the algorithms for both architectures. A detailed performance evaluation demonstrates that for different system configurations and hardware platforms, FUX-Sim maximizes performance with the CUDA programming model (5 times faster than other state-of-the-art implementations). Furthermore, the CPU and OpenCL programming models allow FUX-Sim to be executed over a wide range of hardware platforms.

  8. Wishart Deep Stacking Network for Fast POLSAR Image Classification.

    PubMed

    Jiao, Licheng; Liu, Fang

    2016-05-11

    Inspired by the popular deep learning architecture - Deep Stacking Network (DSN), a specific deep model for polarimetric synthetic aperture radar (POLSAR) image classification is proposed in this paper, which is named as Wishart Deep Stacking Network (W-DSN). First of all, a fast implementation of Wishart distance is achieved by a special linear transformation, which speeds up the classification of POLSAR image and makes it possible to use this polarimetric information in the following Neural Network (NN). Then a single-hidden-layer neural network based on the fast Wishart distance is defined for POLSAR image classification, which is named as Wishart Network (WN) and improves the classification accuracy. Finally, a multi-layer neural network is formed by stacking WNs, which is in fact the proposed deep learning architecture W-DSN for POLSAR image classification and improves the classification accuracy further. In addition, the structure of WN can be expanded in a straightforward way by adding hidden units if necessary, as well as the structure of the W-DSN. As a preliminary exploration on formulating specific deep learning architecture for POLSAR image classification, the proposed methods may establish a simple but clever connection between POLSAR image interpretation and deep learning. The experiment results tested on real POLSAR image show that the fast implementation of Wishart distance is very efficient (a POLSAR image with 768000 pixels can be classified in 0.53s), and both the single-hidden-layer architecture WN and the deep learning architecture W-DSN for POLSAR image classification perform well and work efficiently.

  9. Fast ion transport at a gas-metal interface

    DOE PAGES

    McDevitt, Christopher J.; Tang, Xian-Zhu; Guo, Zehua

    2017-11-06

    Fast ion transport and the resulting fusion yield reduction are computed at a gas-metal interface. The extent of fusion yield reduction is observed to depend sensitively on the charge state of the surrounding pusher material and the width of the atomically mixed region. These sensitivities suggest that idealized boundary conditions often implemented at the gas-pusher interface for the purpose of estimating fast ion loss will likely overestimate fusion reactivity reduction in several important limits. Additionally, the impact of a spatially complex material interface is investigated by considering a collection of droplets of the pusher material immersed in a DT plasma.more » It is found that for small Knudsen numbers, the extent of fusion yield reduction scales with the surface area of the material interface. As the Knudsen number is increased, but, the simple surface area scaling is broken, suggesting that hydrodynamic mix has a nontrivial impact on the extent of fast ion losses.« less

  10. [Preoperative fasting and fluid management in pediatric patients].

    PubMed

    Sumiyoshi, Rieko

    2013-09-01

    Preoperative fasting is principally intended to minimize the risk of pulmonary aspiration of gastric contents and facilitate the safe and efficient conduct of anesthesia. Liberalization of fasting guidelines has been implemented in most countries. In general, clear fluids are allowed up to 2h before anesthesia, and light meals up to 6h. In infants, most recommendations now allow breast milk feeding up to 4h and other kinds of milk up to 6h. Recently, the concept of preoperative oral rehydration using a carbohydrate-rich beverage up to 2h has also gained support. Drinking carbohydrate-rich fluids before elective surgery may reduce dehydration, improve hemodynamic stability under anesthesia, facilitate intravenous access, maintain glucose homeostasis, reduce patient irritability, and improve child and parent satisfaction. These guidelines apply to healthy children only. Exclusion criteria included obesity, diabetes, gastroesophageal reflux, ileus, bowel obstruction and emergency care. In particular, trauma and other emergency cases are at higher risk for aspiration regardless of fasting interval and should be managed appropriately.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jonkman, Jason; Annoni, Jennifer; Hayman, Greg

    This paper presents the development of FAST.Farm, a new multiphysics tool applicable to engineering problems in research and industry involving wind farm performance and cost optimization that is needed to address the current underperformance, failures, and expenses plaguing the wind industry. Achieving wind cost-of-energy targets - which requires improvements in wind farm performance and reliability, together with reduced uncertainty and expenditures - has been eluded by the complicated nature of the wind farm design problem, especially the sophisticated interaction between atmospheric phenomena and wake dynamics and array effects. FAST.Farm aims to balance the need for accurate modeling of the relevantmore » physics for predicting power performance and loads while maintaining low computational cost to support a highly iterative and probabilistic design process and system-wide optimization. FAST.Farm makes use of FAST to model the aero-hydro-servo-elastics of distinct turbines in the wind farm, and it is based on some of the principles of the Dynamic Wake Meandering (DWM) model, but avoids many of the limitations of existing DWM implementations.« less

  12. Motion-Blur-Free High-Speed Video Shooting Using a Resonant Mirror

    PubMed Central

    Inoue, Michiaki; Gu, Qingyi; Takaki, Takeshi; Ishii, Idaku; Tajima, Kenji

    2017-01-01

    This study proposes a novel concept of actuator-driven frame-by-frame intermittent tracking for motion-blur-free video shooting of fast-moving objects. The camera frame and shutter timings are controlled for motion blur reduction in synchronization with a free-vibration-type actuator vibrating with a large amplitude at hundreds of hertz so that motion blur can be significantly reduced in free-viewpoint high-frame-rate video shooting for fast-moving objects by deriving the maximum performance of the actuator. We develop a prototype of a motion-blur-free video shooting system by implementing our frame-by-frame intermittent tracking algorithm on a high-speed video camera system with a resonant mirror vibrating at 750 Hz. It can capture 1024 × 1024 images of fast-moving objects at 750 fps with an exposure time of 0.33 ms without motion blur. Several experimental results for fast-moving objects verify that our proposed method can reduce image degradation from motion blur without decreasing the camera exposure time. PMID:29109385

  13. BMSW - Fast Solar Wind Monitor - three years in orbit: Status and prospects

    NASA Astrophysics Data System (ADS)

    Prech, Lubomir; Zastenker, Georgy; Nemecek, Zdenek; Safrankova, Jana; Vaverka, Jakub; Cermak, Ivo; Chesalin, Lev S.; Gavrilova, Elena

    Fast Solar Wind Monitor BMSW is an instrument flown as a part of the PLASMA-F complex onboard the Russian Spektr-R radioastronomical spacecraft. The spacecraft was launched on July 18, 2011. During the COSPAR-2014 Assembly meeting, the instrument is supposed to celebrate three successful years in operation. With a set of 6 Faraday’s cups, the instrument has a unique time resolution --- 0.5--1 s for a full energy spectrum (96 energy steps) and 31~ms for basic solar wind plasma parameters directing the instrument to study of fast solar wind discontinuities including interplanetary shocks, a fast variability of proton and alpha particle parameters, and to study of solar wind turbulence up to the ion kinetic scales. The measurement technique, its implementation, and ground data processing are discussed in the contribution. The performance of the instrument design and electronics are presented. We discuss heritage of this instrument utilized in design of future instruments being prepared for the further projects as Luna-Glob.

  14. A fast Fourier transform on multipoles (FFTM) algorithm for solving Helmholtz equation in acoustics analysis.

    PubMed

    Ong, Eng Teo; Lee, Heow Pueh; Lim, Kian Meng

    2004-09-01

    This article presents a fast algorithm for the efficient solution of the Helmholtz equation. The method is based on the translation theory of the multipole expansions. Here, the speedup comes from the convolution nature of the translation operators, which can be evaluated rapidly using fast Fourier transform algorithms. Also, the computations of the translation operators are accelerated by using the recursive formulas developed recently by Gumerov and Duraiswami [SIAM J. Sci. Comput. 25, 1344-1381(2003)]. It is demonstrated that the algorithm can produce good accuracy with a relatively low order of expansion. Efficiency analyses of the algorithm reveal that it has computational complexities of O(Na), where a ranges from 1.05 to 1.24. However, this method requires substantially more memory to store the translation operators as compared to the fast multipole method. Hence, despite its simplicity in implementation, this memory requirement issue may limit the application of this algorithm to solving very large-scale problems.

  15. Implementation of Zuerich's transit priority program

    DOT National Transportation Integrated Search

    2001-10-01

    Zrich is famous for the quality of its public transit system and it has one of the highest levels of per capita transit ridership in the world. This is because its transit service is fast, frequent, reliable, and inexpensive, due in large part to i...

  16. Evaluation of the FAA Advanced Flow Control Procedures.

    DOT National Transportation Integrated Search

    1972-01-01

    The report is an evaluation of the present FAA Advanced Flow Control Procedures (AFCP), based on data gathered from its implementation on February 5, 1971 and on a fast-time digital simulation of traffic feeding into the NY airports on that day. The ...

  17. Analysis of corridor delay under SCATS control : FAST-TRAC Phase III deliverable

    DOT National Transportation Integrated Search

    1998-04-01

    The study was designed to determine the change in travel time following the implementation of the Sydney Coordinated Adaptive Traffic System (SCATS) in Oakland County, Michigan. A before/after comparison was used to examine the change in travel time ...

  18. Resonator reset in circuit QED by optimal control for large open quantum systems

    NASA Astrophysics Data System (ADS)

    Boutin, Samuel; Andersen, Christian Kraglund; Venkatraman, Jayameenakshi; Ferris, Andrew J.; Blais, Alexandre

    2017-10-01

    We study an implementation of the open GRAPE (gradient ascent pulse engineering) algorithm well suited for large open quantum systems. While typical implementations of optimal control algorithms for open quantum systems rely on explicit matrix exponential calculations, our implementation avoids these operations, leading to a polynomial speedup of the open GRAPE algorithm in cases of interest. This speedup, as well as the reduced memory requirements of our implementation, are illustrated by comparison to a standard implementation of open GRAPE. As a practical example, we apply this open-system optimization method to active reset of a readout resonator in circuit QED. In this problem, the shape of a microwave pulse is optimized such as to empty the cavity from measurement photons as fast as possible. Using our open GRAPE implementation, we obtain pulse shapes, leading to a reset time over 4 times faster than passive reset.

  19. Measure Guideline. Five Steps to Implement the Public Housing Authority Energy-Efficient Unit Turnover Checklist

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liaukus, Christine

    2015-07-09

    Five Steps to Implementing the PHA Energy Efficient Unit Turnover Package (ARIES, 2014) is a guide to prepare for the installation of energy efficient measures during a typical public housing authority unit turnover. While a PHA is cleaning, painting and readying a unit for a new resident, there is an opportunity to incorporate energy efficiency measures to further improve the unit's performance. The measures on the list are simple enough to be implemented by in-house maintenance personnel, inexpensive enough to be folded into operating expenses without needing capital budget, and fast enough to implement without substantially changing the number ofmore » days between occupancies, a critical factor for organizations where the demand for dwelling units far outweighs the supply. The following guide lays out a five step plan to implement the EE Unit Turnover Package in your PHA, from an initial Self-Assessment through to Package Implementation.« less

  20. Implementing a comprehensive program for the prevention of conduct problems in rural communities: the Fast Track experience. The Conduct Problems Prevention Research Group.

    PubMed

    Bierman, K L

    1997-08-01

    Childhood conduct problems are predictive of a number of serious long-term difficulties (e.g., school failure, delinquent behavior, and mental health problems), making the design of effective prevention programs a priority. The Fast Track Program is a demonstration project currently underway in four demographically diverse areas of the United States, testing the feasibility and effectiveness of a comprehensive, multicomponent prevention program targeting children at risk for conduct disorders. This paper describes some lessons learned about the implementation of this program in a rural area. Although there are many areas of commonality in terms of program needs, program design, and implementation issues in rural and urban sites, rural areas differ from urban areas along the dimensions of geographical dispersion and regionalism, and community stability and insularity. Rural programs must cover a broad geographical area and must be sensitive to the multiple, small and regional communities that constitute their service area. Small schools, homogeneous populations, traditional values, limited recreational, educational and mental health services, and politically conservative climates are all more likely to emerge as characteristics of rural rather than urban sites (Sherman, 1992). These characteristics may both pose particular challenges to the implementation of prevention programs in rural areas, as well as offer particular benefits. Three aspects of program implementation are described in detail: (a) community entry and program initiation in rural areas, (b) the adaptation of program components and service delivery to meet the needs of rural families and schools, and (c) issues in administrative organization of a broadly dispersed tricounty rural prevention program.

  1. Implementing a Comprehensive Program for the Prevention of Conduct Problems in Rural Communities: The Fast Track Experience1

    PubMed Central

    Bierman, Karen L.

    2012-01-01

    Childhood conduct problems are predictive of a number of serious long-term difficulties (e.g., school failure, delinquent behavior, and mental health problems), making the design of effective prevention programs a priority. The Fast Track Program is a demonstration project currently underway in four demographically diverse areas of the United States, testing the feasibility and effectiveness of a comprehensive, multicomponent prevention program targeting children at risk for conduct disorders. This paper describes some lessons learned about the implementation of this program in a rural area. Although there are many areas of commonality in terms of program needs, program design, and implementation issues in rural and urban sites, rural areas differ from urban areas along the dimensions of geographical dispersion and regionalism, and community stability and insularity. Rural programs must cover a broad geographical area and must be sensitive to the multiple, small and regional communities that constitute their service area. Small schools, homogeneous populations, traditional values, limited recreational, educational and mental health services, and politically conservative climates are all more likely to emerge as characteristics of rural rather than urban sites (Sherman, 1992). These characteristics may both pose particular challenges to the implementation of prevention programs in rural areas, as well as offer particular benefits. Three aspects of program implementation are described in detail: (a) community entry and program initiation in rural areas, (b) the adaptation of program components and service delivery to meet the needs of rural families and schools, and (c) issues in administrative organization of a broadly dispersed tricounty rural prevention program. PMID:9338956

  2. UAV remote sening for precision agriculture

    NASA Astrophysics Data System (ADS)

    Vigneau, Nathalie; Chéron, Corentin; Mainfroy, Florent; Faroux, Romain

    2014-05-01

    Airinov offers to farmers, scientists and experimenters (plant breeders, etc.) its technical skills about UAVs, cartography and agronomic remote sensing. The UAV is a 2-m-wingspan flying wing. It can carry away either a RGB camera or a multispectral sensor, which records reflectance in 4 spectral bands. The spectral characteristics of the sensor are modular. Each spectral band is comprised between 400 and 850 nm and the FWHM (Full Width at Half Maximum) is between 10 and 40 nm. The spatial resolution varies according to sensor, flying height and user needs from 15cm/px for multispectral sensor at 150m to 1.5cm/px for RGB camera at 50m. The flight is totally automatic thanks to on-board autopilot, IMU (Inertial Measurement Unit) and GPS. Data processing (unvignetting, mosaicking, correction in reflectance) leads to agronomic variables as LAI (Leaf Area Index) or chlorophyll content for barley, wheat, rape and maize as well as vegetation indices as NDVI (Normalized Difference Vegetation Index). Using these data, Airinov can product advices for farmers as nitrogen preconisation for rape. For scientists, Airinov offers trial plot monitoring by micro-plots vectorisation and numerical data exctraction micro-plot by micro-plot. This can lead to kinetic curve for LAI or NDVI to compare cover establishment for different genotypes for example. Airinov's system is a new way to monitor plots with a lot of data (biophysical or biochemical parameters) at high rate, high spatial resolution and high precision.

  3. Satellite images survey for the identification of the coastal sedimentary system changes and associated vulnerability along the western bay of the Gulf of Tunis (northern Africa)

    NASA Astrophysics Data System (ADS)

    Hzami, Abderraouf; Amrouni, Oula; Romanescu, Gheorghe; Constantin Stoleriu, Cristian; Mihu-Pintilie, Alin; Saâdi, Abdeljaouad

    2018-04-01

    The aim of this study consists in testing the effectiveness of satellite data in order to monitoring shoreline and sedimentary features changes, especially the rapidly changing of Gulf of Tunis coast. The study area is located in the Gulf of Tunis western bay (Southern Mediterranean Sea) which is characterized by sandy beaches of Ghar Melah and Raoued (Medjerda Delta area). The aerial photographs and satellite imageries were used for mapping the evolution of shoreline. Diachronic data (satellite imagery, aerial photography and topographic maps) were used to monitor and to quantify, the evolution of the coastal areas. These thematic data were digitally overlaid and vectorised for highlighting the shoreline changes between 1936 and 2016, in order to map the rate of erosion and accretion along the shoreline. Results show that the accretion and degradation are related to the Medjerda: change of outlet in 1973 and impoundment of the Sidi Salem dam in 1982. We found that the general trend of the coastal geomorphic processes can be monitored with satellite imageries (such as Sentinel A2, Spots 4 and 5), due to its repetitive coverage along the time and their high quality concerning the spectral contrast between land and sea areas. Improved satellite imageries with high resolution should be a valuable tool for complementing traditional methods for mapping and assessing the sedimentary structures (such as shoreline, delta, marine bars), and monitoring especially the lowlands coastal areas (slightly eroded).

  4. Fast implementation of the 1\\rightarrow3 orbital state quantum cloning machine

    NASA Astrophysics Data System (ADS)

    Lin, Jin-Zhong

    2018-05-01

    We present a scheme to implement a 1→3 orbital state quantum cloning machine assisted by quantum Zeno dynamics. By constructing shortcuts to adiabatic passage with transitionless quantum driving, we can complete this scheme effectively and quickly in one step. The effects of decoherence, including spontaneous emission and the decay of the cavity, are also discussed. The numerical simulation results show that high fidelity can be obtained and the feasibility analysis indicates that this can also be realized in experiments.

  5. Fast data transmission from serial data acquisition for the GEM detector system

    NASA Astrophysics Data System (ADS)

    Kolasinski, Piotr; Pozniak, Krzysztof T.; Czarski, Tomasz; Byszuk, Adrian; Chernyshova, Maryna; Kasprowicz, Grzegorz; Krawczyk, Rafal D.; Wojenski, Andrzej; Zabolotny, Wojciech

    2015-09-01

    This article proposes new method of storing data and transferring it to PC in the X-ray GEM detector system. The whole process is performed by FPGA chips (Spartan-6 series from Xilinx). Comparing to previous methods, new approach allows to store much more data in the system. New, improved implementation of the communication algorithm significantly increases transfer rate between system and PC. In PC data is merged and processed by MATLAB. The structure of firmware implemented in the FPGAs is described.

  6. General purpose molecular dynamics simulations fully implemented on graphics processing units

    NASA Astrophysics Data System (ADS)

    Anderson, Joshua A.; Lorenz, Chris D.; Travesset, A.

    2008-05-01

    Graphics processing units (GPUs), originally developed for rendering real-time effects in computer games, now provide unprecedented computational power for scientific applications. In this paper, we develop a general purpose molecular dynamics code that runs entirely on a single GPU. It is shown that our GPU implementation provides a performance equivalent to that of fast 30 processor core distributed memory cluster. Our results show that GPUs already provide an inexpensive alternative to such clusters and discuss implications for the future.

  7. pytc: Open-Source Python Software for Global Analyses of Isothermal Titration Calorimetry Data.

    PubMed

    Duvvuri, Hiranmayi; Wheeler, Lucas C; Harms, Michael J

    2018-05-08

    Here we describe pytc, an open-source Python package for global fits of thermodynamic models to multiple isothermal titration calorimetry experiments. Key features include simplicity, the ability to implement new thermodynamic models, a robust maximum likelihood fitter, a fast Bayesian Markov-Chain Monte Carlo sampler, rigorous implementation, extensive documentation, and full cross-platform compatibility. pytc fitting can be done using an application program interface or via a graphical user interface. It is available for download at https://github.com/harmslab/pytc .

  8. Notes on implementation of sparsely distributed memory

    NASA Technical Reports Server (NTRS)

    Keeler, J. D.; Denning, P. J.

    1986-01-01

    The Sparsely Distributed Memory (SDM) developed by Kanerva is an unconventional memory design with very interesting and desirable properties. The memory works in a manner that is closely related to modern theories of human memory. The SDM model is discussed in terms of its implementation in hardware. Two appendices discuss the unconventional approaches of the SDM: Appendix A treats a resistive circuit for fast, parallel address decoding; and Appendix B treats a systolic array for high throughput read and write operations.

  9. High-Precision Pulse Generator

    NASA Technical Reports Server (NTRS)

    Katz, Richard; Kleyner, Igor

    2011-01-01

    A document discusses a pulse generator with subnanosecond resolution implemented with a low-cost field-programmable gate array (FPGA) at low power levels. The method used exploits the fast carry chains of certain FPGAs. Prototypes have been built and tested in both Actel AX and Xilinx Virtex 4 technologies. In-flight calibration or control can be performed by using a similar and related technique as a time interval measurement circuit by measuring a period of the stable oscillator, as the delays through the fast carry chains will vary as a result of manufacturing variances as well as the result of environmental conditions (voltage, aging, temperature, and radiation).

  10. Successful Methods Travel Fast.

    ERIC Educational Resources Information Center

    Elliott, Cynthia B.; Langlois, Janet Churchman

    2002-01-01

    Describes Louisiana's Early Literacy Initiative, which helps PreK-3 teachers become change agents for improving literacy teaching and learning in their schools and districts. It begins with a summer training institute emphasizing new instructional perspectives, and follow-up ensures that teachers are implementing their new knowledge, skills, and…

  11. Fast Demand Forecast of Electric Vehicle Charging Stations for Cell Phone Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majidpour, Mostafa; Qiu, Charlie; Chung, Ching-Yen

    This paper describes the core cellphone application algorithm which has been implemented for the prediction of energy consumption at Electric Vehicle (EV) Charging Stations at UCLA. For this interactive user application, the total time of accessing database, processing the data and making the prediction, needs to be within a few seconds. We analyze four relatively fast Machine Learning based time series prediction algorithms for our prediction engine: Historical Average, kNearest Neighbor, Weighted k-Nearest Neighbor, and Lazy Learning. The Nearest Neighbor algorithm (k Nearest Neighbor with k=1) shows better performance and is selected to be the prediction algorithm implemented for themore » cellphone application. Two applications have been designed on top of the prediction algorithm: one predicts the expected available energy at the station and the other one predicts the expected charging finishing time. The total time, including accessing the database, data processing, and prediction is about one second for both applications.« less

  12. Definition of a Robust Supervisory Control Scheme for Sodium-Cooled Fast Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ponciroli, R.; Passerini, S.; Vilim, R. B.

    In this work, an innovative control approach for metal-fueled Sodium-cooled Fast Reactors is proposed. With respect to the classical approach adopted for base-load Nuclear Power Plants, an alternative control strategy for operating the reactor at different power levels by respecting the system physical constraints is presented. In order to achieve a higher operational flexibility along with ensuring that the implemented control loops do not influence the system inherent passive safety features, a dedicated supervisory control scheme for the dynamic definition of the corresponding set-points to be supplied to the PID controllers is designed. In particular, the traditional approach based onmore » the adoption of tabulated lookup tables for the set-point definition is found not to be robust enough when failures of the implemented SISO (Single Input Single Output) actuators occur. Therefore, a feedback algorithm based on the Reference Governor approach, which allows for the optimization of reference signals according to the system operating conditions, is proposed.« less

  13. Detector-device-independent quantum key distribution: Security analysis and fast implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boaron, Alberto; Korzh, Boris; Houlmann, Raphael

    One of the most pressing issues in quantum key distribution (QKD) is the problem of detector side-channel attacks. To overcome this problem, researchers proposed an elegant “time-reversal” QKD protocol called measurement-device-independent QKD (MDI-QKD), which is based on time-reversed entanglement swapping. But, MDI-QKD is more challenging to implement than standard point-to-point QKD. Recently, we proposed an intermediary QKD protocol called detector-device-independent QKD (DDI-QKD) in order to overcome the drawbacks of MDI-QKD, with the hope that it would eventually lead to a more efficient detector side-channel-free QKD system. We analyze the security of DDI-QKD and elucidate its security assumptions. We find thatmore » DDI-QKD is not equivalent to MDI-QKD, but its security can be demonstrated with reasonable assumptions. On the more practical side, we consider the feasibility of DDI-QKD and present a fast experimental demonstration (clocked at 625 MHz), capable of secret key exchange up to more than 90 km.« less

  14. Electronic Implementation of Integrated End-of-life Care: A Local Approach

    PubMed Central

    Schlieper, Daniel; Altreuther, Christiane; Schallenburger, Manuela; Neukirchen, Martin; Schmitz, Andrea

    2017-01-01

    Introduction: The Liverpool Care Pathway for the Dying Patient is an instrument to deliver integrated care for patients in their last hours of life. Originally a paper-based system, this study investigates the feasibility of an electronic version. Methods: An electronic Liverpool Care Pathway was implemented in a specialized palliative care unit of a German university hospital. Its use is exemplified by means of auditing and analysis of the proportion of recorded items. Results: In the years 2013 and 2014 the electronic Liverpool Care Pathway was used for the care of 159 patients. The uptake of the instrument was high (67%). Most items were recorded. Apart from a high usability, the fast data retrieval allows fast analysis for auditing and research. Conclusions and discussion: The electronic instrument is feasible in a computerized ward and has strong advantages for retrospective analysis. Trial registration: Internal Clinical Trial Register of the Medical Faculty, Heinrich Heine University Düsseldorf, No. 2015124683 (7 December 2015). PMID:28970746

  15. Detector-device-independent quantum key distribution: Security analysis and fast implementation

    DOE PAGES

    Boaron, Alberto; Korzh, Boris; Houlmann, Raphael; ...

    2016-08-09

    One of the most pressing issues in quantum key distribution (QKD) is the problem of detector side-channel attacks. To overcome this problem, researchers proposed an elegant “time-reversal” QKD protocol called measurement-device-independent QKD (MDI-QKD), which is based on time-reversed entanglement swapping. But, MDI-QKD is more challenging to implement than standard point-to-point QKD. Recently, we proposed an intermediary QKD protocol called detector-device-independent QKD (DDI-QKD) in order to overcome the drawbacks of MDI-QKD, with the hope that it would eventually lead to a more efficient detector side-channel-free QKD system. We analyze the security of DDI-QKD and elucidate its security assumptions. We find thatmore » DDI-QKD is not equivalent to MDI-QKD, but its security can be demonstrated with reasonable assumptions. On the more practical side, we consider the feasibility of DDI-QKD and present a fast experimental demonstration (clocked at 625 MHz), capable of secret key exchange up to more than 90 km.« less

  16. Suppression law of quantum states in a 3D photonic fast Fourier transform chip

    PubMed Central

    Crespi, Andrea; Osellame, Roberto; Ramponi, Roberta; Bentivegna, Marco; Flamini, Fulvio; Spagnolo, Nicolò; Viggianiello, Niko; Innocenti, Luca; Mataloni, Paolo; Sciarrino, Fabio

    2016-01-01

    The identification of phenomena able to pinpoint quantum interference is attracting large interest. Indeed, a generalization of the Hong–Ou–Mandel effect valid for any number of photons and optical modes would represent an important leap ahead both from a fundamental perspective and for practical applications, such as certification of photonic quantum devices, whose computational speedup is expected to depend critically on multi-particle interference. Quantum distinctive features have been predicted for many particles injected into multimode interferometers implementing the Fourier transform over the optical modes. Here we develop a scalable approach for the implementation of the fast Fourier transform algorithm using three-dimensional photonic integrated interferometers, fabricated via femtosecond laser writing technique. We observe the suppression law for a large number of output states with four- and eight-mode optical circuits: the experimental results demonstrate genuine quantum interference between the injected photons, thus offering a powerful tool for diagnostic of photonic platforms. PMID:26843135

  17. A combined finite element-boundary integral formulation for solution of two-dimensional scattering problems via CGFFT. [Conjugate Gradient Fast Fourier Transformation

    NASA Technical Reports Server (NTRS)

    Collins, Jeffery D.; Volakis, John L.; Jin, Jian-Ming

    1990-01-01

    A new technique is presented for computing the scattering by 2-D structures of arbitrary composition. The proposed solution approach combines the usual finite element method with the boundary-integral equation to formulate a discrete system. This is subsequently solved via the conjugate gradient (CG) algorithm. A particular characteristic of the method is the use of rectangular boundaries to enclose the scatterer. Several of the resulting boundary integrals are therefore convolutions and may be evaluated via the fast Fourier transform (FFT) in the implementation of the CG algorithm. The solution approach offers the principal advantage of having O(N) memory demand and employs a 1-D FFT versus a 2-D FFT as required with a traditional implementation of the CGFFT algorithm. The speed of the proposed solution method is compared with that of the traditional CGFFT algorithm, and results for rectangular bodies are given and shown to be in excellent agreement with the moment method.

  18. Improved Fast Centralized Retransmission Scheme for High-Layer Functional Split in 5G Network

    NASA Astrophysics Data System (ADS)

    Xu, Sen; Hou, Meng; Fu, Yu; Bian, Honglian; Gao, Cheng

    2018-01-01

    In order to satisfy the varied 5G critical requirements and the virtualization of the RAN hardware, a two-level architecture for 5G RAN has been studied in 3GPP 5G SI stage. The performance of the PDCP-RLC split option and intra-RLC split option, two mainly concerned options for high layer functional split, exist an ongoing debate. This paper firstly gives an overview of CU-DU split study work in 3GPP. By the comparison of implementation complexity, the standardization impact and system performance, our evaluation result shows the PDCP-RLC split Option outperforms the intra-RLC split option. Aiming to how to reduce the retransmission delay during the intra-CU inter-DU handover, the mainly drawback of PDCP-RLC split option, this paper proposes an improved fast centralized retransmission solution with a low implementation complexity. Finally, system level simulations show that the PDCP-RLC split option with the proposed scheme can significantly improve the UE’s experience.

  19. Fast interactive real-time volume rendering of real-time three-dimensional echocardiography: an implementation for low-end computers

    NASA Technical Reports Server (NTRS)

    Saracino, G.; Greenberg, N. L.; Shiota, T.; Corsi, C.; Lamberti, C.; Thomas, J. D.

    2002-01-01

    Real-time three-dimensional echocardiography (RT3DE) is an innovative cardiac imaging modality. However, partly due to lack of user-friendly software, RT3DE has not been widely accepted as a clinical tool. The object of this study was to develop and implement a fast and interactive volume renderer of RT3DE datasets designed for a clinical environment where speed and simplicity are not secondary to accuracy. Thirty-six patients (20 regurgitation, 8 normal, 8 cardiomyopathy) were imaged using RT3DE. Using our newly developed software, all 3D data sets were rendered in real-time throughout the cardiac cycle and assessment of cardiac function and pathology was performed for each case. The real-time interactive volume visualization system is user friendly and instantly provides consistent and reliable 3D images without expensive workstations or dedicated hardware. We believe that this novel tool can be used clinically for dynamic visualization of cardiac anatomy.

  20. Density functional theory for molecular and periodic systems using density fitting and continuous fast multipole method: Analytical gradients.

    PubMed

    Łazarski, Roman; Burow, Asbjörn Manfred; Grajciar, Lukáš; Sierka, Marek

    2016-10-30

    A full implementation of analytical energy gradients for molecular and periodic systems is reported in the TURBOMOLE program package within the framework of Kohn-Sham density functional theory using Gaussian-type orbitals as basis functions. Its key component is a combination of density fitting (DF) approximation and continuous fast multipole method (CFMM) that allows for an efficient calculation of the Coulomb energy gradient. For exchange-correlation part the hierarchical numerical integration scheme (Burow and Sierka, Journal of Chemical Theory and Computation 2011, 7, 3097) is extended to energy gradients. Computational efficiency and asymptotic O(N) scaling behavior of the implementation is demonstrated for various molecular and periodic model systems, with the largest unit cell of hematite containing 640 atoms and 19,072 basis functions. The overall computational effort of energy gradient is comparable to that of the Kohn-Sham matrix formation. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Ultra-fast quantitative imaging using ptychographic iterative engine based digital micro-mirror device

    NASA Astrophysics Data System (ADS)

    Sun, Aihui; Tian, Xiaolin; Kong, Yan; Jiang, Zhilong; Liu, Fei; Xue, Liang; Wang, Shouyu; Liu, Cheng

    2018-01-01

    As a lensfree imaging technique, ptychographic iterative engine (PIE) method can provide both quantitative sample amplitude and phase distributions avoiding aberration. However, it requires field of view (FoV) scanning often relying on mechanical translation, which not only slows down measuring speed, but also introduces mechanical errors decreasing both resolution and accuracy in retrieved information. In order to achieve high-accurate quantitative imaging with fast speed, digital micromirror device (DMD) is adopted in PIE for large FoV scanning controlled by on/off state coding by DMD. Measurements were implemented using biological samples as well as USAF resolution target, proving high resolution in quantitative imaging using the proposed system. Considering its fast and accurate imaging capability, it is believed the DMD based PIE technique provides a potential solution for medical observation and measurements.

  2. Real-time quantitative Schlieren imaging by fast Fourier demodulation of a checkered backdrop

    NASA Astrophysics Data System (ADS)

    Wildeman, Sander

    2018-06-01

    A quantitative synthetic Schlieren imaging (SSI) method based on fast Fourier demodulation is presented. Instead of a random dot pattern (as usually employed in SSI), a 2D periodic pattern (such as a checkerboard) is used as a backdrop to the refractive object of interest. The range of validity and accuracy of this "Fast Checkerboard Demodulation" (FCD) method are assessed using both synthetic data and experimental recordings of patterns optically distorted by small waves on a water surface. It is found that the FCD method is at least as accurate as sophisticated, multi-stage, digital image correlation (DIC) or optical flow (OF) techniques used with random dot patterns, and it is significantly faster. Efficient, fully vectorized, implementations of both the FCD and DIC/OF schemes developed for this study are made available as open source Matlab scripts.

  3. Fast Image Restoration for Spatially Varying Defocus Blur of Imaging Sensor

    PubMed Central

    Cheong, Hejin; Chae, Eunjung; Lee, Eunsung; Jo, Gwanghyun; Paik, Joonki

    2015-01-01

    This paper presents a fast adaptive image restoration method for removing spatially varying out-of-focus blur of a general imaging sensor. After estimating the parameters of space-variant point-spread-function (PSF) using the derivative in each uniformly blurred region, the proposed method performs spatially adaptive image restoration by selecting the optimal restoration filter according to the estimated blur parameters. Each restoration filter is implemented in the form of a combination of multiple FIR filters, which guarantees the fast image restoration without the need of iterative or recursive processing. Experimental results show that the proposed method outperforms existing space-invariant restoration methods in the sense of both objective and subjective performance measures. The proposed algorithm can be employed to a wide area of image restoration applications, such as mobile imaging devices, robot vision, and satellite image processing. PMID:25569760

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindley, Benjamin A.; Parks, Geoffrey T.; Franceschini, Fausto

    Multiple recycle of long-lived actinides has the potential to greatly reduce the required storage time for spent nuclear fuel or high level nuclear waste. This is generally thought to require fast reactors as most transuranic (TRU) isotopes have low fission probabilities in thermal reactors. Reduced-moderation LWRs are a potential alternative to fast reactors with reduced time to deployment as they are based on commercially mature LWR technology. Thorium (Th) fuel is neutronically advantageous for TRU multiple recycle in LWRs due to a large improvement in the void coefficient. If Th fuel is used in reduced-moderation LWRs, it appears neutronically feasiblemore » to achieve full actinide recycle while burning an external supply of TRU, with related potential improvements in waste management and fuel utilization. In this paper, the fuel cycle of TRU-bearing Th fuel is analysed for reduced-moderation PWRs and BWRs (RMPWRs and RBWRs). RMPWRs have the advantage of relatively rapid implementation and intrinsically low conversion ratios. However, it is challenging to simultaneously satisfy operational and fuel cycle constraints. An RBWR may potentially take longer to implement than an RMPWR due to more extensive changes from current BWR technology. However, the harder neutron spectrum can lead to favourable fuel cycle performance. A two-stage fuel cycle, where the first pass is Th-Pu MOX, is a technically reasonable implementation of either concept. The first stage of the fuel cycle can therefore be implemented at relatively low cost as a Pu disposal option, with a further policy option of full recycle in the medium term. (authors)« less

  5. Fast and Efficient XML Data Access for Next-Generation Mass Spectrometry.

    PubMed

    Röst, Hannes L; Schmitt, Uwe; Aebersold, Ruedi; Malmström, Lars

    2015-01-01

    In mass spectrometry-based proteomics, XML formats such as mzML and mzXML provide an open and standardized way to store and exchange the raw data (spectra and chromatograms) of mass spectrometric experiments. These file formats are being used by a multitude of open-source and cross-platform tools which allow the proteomics community to access algorithms in a vendor-independent fashion and perform transparent and reproducible data analysis. Recent improvements in mass spectrometry instrumentation have increased the data size produced in a single LC-MS/MS measurement and put substantial strain on open-source tools, particularly those that are not equipped to deal with XML data files that reach dozens of gigabytes in size. Here we present a fast and versatile parsing library for mass spectrometric XML formats available in C++ and Python, based on the mature OpenMS software framework. Our library implements an API for obtaining spectra and chromatograms under memory constraints using random access or sequential access functions, allowing users to process datasets that are much larger than system memory. For fast access to the raw data structures, small XML files can also be completely loaded into memory. In addition, we have improved the parsing speed of the core mzML module by over 4-fold (compared to OpenMS 1.11), making our library suitable for a wide variety of algorithms that need fast access to dozens of gigabytes of raw mass spectrometric data. Our C++ and Python implementations are available for the Linux, Mac, and Windows operating systems. All proposed modifications to the OpenMS code have been merged into the OpenMS mainline codebase and are available to the community at https://github.com/OpenMS/OpenMS.

  6. Fast and Efficient XML Data Access for Next-Generation Mass Spectrometry

    PubMed Central

    Röst, Hannes L.; Schmitt, Uwe; Aebersold, Ruedi; Malmström, Lars

    2015-01-01

    Motivation In mass spectrometry-based proteomics, XML formats such as mzML and mzXML provide an open and standardized way to store and exchange the raw data (spectra and chromatograms) of mass spectrometric experiments. These file formats are being used by a multitude of open-source and cross-platform tools which allow the proteomics community to access algorithms in a vendor-independent fashion and perform transparent and reproducible data analysis. Recent improvements in mass spectrometry instrumentation have increased the data size produced in a single LC-MS/MS measurement and put substantial strain on open-source tools, particularly those that are not equipped to deal with XML data files that reach dozens of gigabytes in size. Results Here we present a fast and versatile parsing library for mass spectrometric XML formats available in C++ and Python, based on the mature OpenMS software framework. Our library implements an API for obtaining spectra and chromatograms under memory constraints using random access or sequential access functions, allowing users to process datasets that are much larger than system memory. For fast access to the raw data structures, small XML files can also be completely loaded into memory. In addition, we have improved the parsing speed of the core mzML module by over 4-fold (compared to OpenMS 1.11), making our library suitable for a wide variety of algorithms that need fast access to dozens of gigabytes of raw mass spectrometric data. Availability Our C++ and Python implementations are available for the Linux, Mac, and Windows operating systems. All proposed modifications to the OpenMS code have been merged into the OpenMS mainline codebase and are available to the community at https://github.com/OpenMS/OpenMS. PMID:25927999

  7. Computational Methods for Sparse Solution of Linear Inverse Problems

    DTIC Science & Technology

    2009-03-01

    this approach is that the algorithms take advantage of fast matrix–vector multiplications. An implementation is available as pdco and SolveBP in the...M. A. Saunders, “ PDCO : primal-dual interior-point method for con- vex objectives,” Systems Optimization Laboratory, Stanford University, Tech. Rep

  8. Fast and unbiased estimator of the time-dependent Hurst exponent.

    PubMed

    Pianese, Augusto; Bianchi, Sergio; Palazzo, Anna Maria

    2018-03-01

    We combine two existing estimators of the local Hurst exponent to improve both the goodness of fit and the computational speed of the algorithm. An application with simulated time series is implemented, and a Monte Carlo simulation is performed to provide evidence of the improvement.

  9. Fast and unbiased estimator of the time-dependent Hurst exponent

    NASA Astrophysics Data System (ADS)

    Pianese, Augusto; Bianchi, Sergio; Palazzo, Anna Maria

    2018-03-01

    We combine two existing estimators of the local Hurst exponent to improve both the goodness of fit and the computational speed of the algorithm. An application with simulated time series is implemented, and a Monte Carlo simulation is performed to provide evidence of the improvement.

  10. Neuron-Type-Specific Utility in a Brain-Machine Interface: a Pilot Study.

    PubMed

    Garcia-Garcia, Martha G; Bergquist, Austin J; Vargas-Perez, Hector; Nagai, Mary K; Zariffa, Jose; Marquez-Chin, Cesar; Popovic, Milos R

    2017-11-01

    Firing rates of single cortical neurons can be volitionally modulated through biofeedback (i.e. operant conditioning), and this information can be transformed to control external devices (i.e. brain-machine interfaces; BMIs). However, not all neurons respond to operant conditioning in BMI implementation. Establishing criteria that predict neuron utility will assist translation of BMI research to clinical applications. Single cortical neurons (n=7) were recorded extracellularly from primary motor cortex of a Long-Evans rat. Recordings were incorporated into a BMI involving up-regulation of firing rate to control the brightness of a light-emitting-diode and subsequent reward. Neurons were classified as 'fast-spiking', 'bursting' or 'regular-spiking' according to waveform-width and intrinsic firing patterns. Fast-spiking and bursting neurons were found to up-regulate firing rate by a factor of 2.43±1.16, demonstrating high utility, while regular-spiking neurons decreased firing rates on average by a factor of 0.73±0.23, demonstrating low utility. The ability to select neurons with high utility will be important to minimize training times and maximize information yield in future clinical BMI applications. The highly contrasting utility observed between fast-spiking and bursting neurons versus regular-spiking neurons allows for the hypothesis to be advanced that intrinsic electrophysiological properties may be useful criteria that predict neuron utility in BMI implementation.

  11. Fast parallel tandem mass spectral library searching using GPU hardware acceleration

    PubMed Central

    Baumgardner, Lydia Ashleigh; Shanmugam, Avinash Kumar; Lam, Henry; Eng, Jimmy K.; Martin, Daniel B.

    2011-01-01

    Mass spectrometry-based proteomics is a maturing discipline of biologic research that is experiencing substantial growth. Instrumentation has steadily improved over time with the advent of faster and more sensitive instruments collecting ever larger data files. Consequently, the computational process of matching a peptide fragmentation pattern to its sequence, traditionally accomplished by sequence database searching and more recently also by spectral library searching, has become a bottleneck in many mass spectrometry experiments. In both of these methods, the main rate limiting step is the comparison of an acquired spectrum with all potential matches from a spectral library or sequence database. This is a highly parallelizable process because the core computational element can be represented as a simple but arithmetically intense multiplication of two vectors. In this paper we present a proof of concept project taking advantage of the massively parallel computing available on graphics processing units (GPUs) to distribute and accelerate the process of spectral assignment using spectral library searching. This program, which we have named FastPaSS (for Fast Parallelized Spectral Searching) is implemented in CUDA (Compute Unified Device Architecture) from NVIDIA which allows direct access to the processors in an NVIDIA GPU. Our efforts demonstrate the feasibility of GPU computing for spectral assignment, through implementation of the validated spectral searching algorithm SpectraST in the CUDA environment. PMID:21545112

  12. A point implicit time integration technique for slow transient flow problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kadioglu, Samet Y.; Berry, Ray A.; Martineau, Richard C.

    2015-05-01

    We introduce a point implicit time integration technique for slow transient flow problems. The method treats the solution variables of interest (that can be located at cell centers, cell edges, or cell nodes) implicitly and the rest of the information related to same or other variables are handled explicitly. The method does not require implicit iteration; instead it time advances the solutions in a similar spirit to explicit methods, except it involves a few additional function(s) evaluation steps. Moreover, the method is unconditionally stable, as a fully implicit method would be. This new approach exhibits the simplicity of implementation ofmore » explicit methods and the stability of implicit methods. It is specifically designed for slow transient flow problems of long duration wherein one would like to perform time integrations with very large time steps. Because the method can be time inaccurate for fast transient problems, particularly with larger time steps, an appropriate solution strategy for a problem that evolves from a fast to a slow transient would be to integrate the fast transient with an explicit or semi-implicit technique and then switch to this point implicit method as soon as the time variation slows sufficiently. We have solved several test problems that result from scalar or systems of flow equations. Our findings indicate the new method can integrate slow transient problems very efficiently; and its implementation is very robust.« less

  13. Mandating nutrient menu labeling in restaurants: potential public health benefits.

    PubMed

    Stran, Kimberly A; Turner, Lori W; Knol, Linda

    2013-03-01

    Many Americans have replaced home-cooked meals with fast food and restaurants meals. This contributes to increased incidences of overweight and obesity. Implementing policies that require restaurants to disclose nutrition information has the potential to improve nutrition knowledge and food behaviors. The purpose of this paper was to examine the potential health benefits of nutrient menu labeling in restaurants, the progress of this legislation and to provide results regarding the implementation of these policies. Data sources were obtained from a search of multiple databases including PubMed, Science Direct, Academic Search Premier, and Google Scholar. Study inclusion criteria were publication in the past ten years, obesity prevention, and utilization of nutrition labeling on menus in restaurants. The initial policies to provide consumers with nutrition information in restaurant settings began at the state levels in 2006. These laws demonstrated success, other states followed, and a national law was passed and is being implemented. Mandating nutrient menu disclosure has the potential to influence a large number of people; this legislation has the opportunity to impact Americans who dine at a fast food or chain restaurant. Given the growing obesity epidemic, continued research is necessary to gauge the effectiveness of this new law and its effects on the health status of the American people.

  14. High performance embedded system for real-time pattern matching

    NASA Astrophysics Data System (ADS)

    Sotiropoulou, C.-L.; Luciano, P.; Gkaitatzis, S.; Citraro, S.; Giannetti, P.; Dell'Orso, M.

    2017-02-01

    In this paper we present an innovative and high performance embedded system for real-time pattern matching. This system is based on the evolution of hardware and algorithms developed for the field of High Energy Physics and more specifically for the execution of extremely fast pattern matching for tracking of particles produced by proton-proton collisions in hadron collider experiments. A miniaturized version of this complex system is being developed for pattern matching in generic image processing applications. The system works as a contour identifier able to extract the salient features of an image. It is based on the principles of cognitive image processing, which means that it executes fast pattern matching and data reduction mimicking the operation of the human brain. The pattern matching can be executed by a custom designed Associative Memory chip. The reference patterns are chosen by a complex training algorithm implemented on an FPGA device. Post processing algorithms (e.g. pixel clustering) are also implemented on the FPGA. The pattern matching can be executed on a 2D or 3D space, on black and white or grayscale images, depending on the application and thus increasing exponentially the processing requirements of the system. We present the firmware implementation of the training and pattern matching algorithm, performance and results on a latest generation Xilinx Kintex Ultrascale FPGA device.

  15. FreeContact: fast and free software for protein contact prediction from residue co-evolution.

    PubMed

    Kaján, László; Hopf, Thomas A; Kalaš, Matúš; Marks, Debora S; Rost, Burkhard

    2014-03-26

    20 years of improved technology and growing sequences now renders residue-residue contact constraints in large protein families through correlated mutations accurate enough to drive de novo predictions of protein three-dimensional structure. The method EVfold broke new ground using mean-field Direct Coupling Analysis (EVfold-mfDCA); the method PSICOV applied a related concept by estimating a sparse inverse covariance matrix. Both methods (EVfold-mfDCA and PSICOV) are publicly available, but both require too much CPU time for interactive applications. On top, EVfold-mfDCA depends on proprietary software. Here, we present FreeContact, a fast, open source implementation of EVfold-mfDCA and PSICOV. On a test set of 140 proteins, FreeContact was almost eight times faster than PSICOV without decreasing prediction performance. The EVfold-mfDCA implementation of FreeContact was over 220 times faster than PSICOV with negligible performance decrease. EVfold-mfDCA was unavailable for testing due to its dependency on proprietary software. FreeContact is implemented as the free C++ library "libfreecontact", complete with command line tool "freecontact", as well as Perl and Python modules. All components are available as Debian packages. FreeContact supports the BioXSD format for interoperability. FreeContact provides the opportunity to compute reliable contact predictions in any environment (desktop or cloud).

  16. A hardware implementation of the discrete Pascal transform for image processing

    NASA Astrophysics Data System (ADS)

    Goodman, Thomas J.; Aburdene, Maurice F.

    2006-02-01

    The discrete Pascal transform is a polynomial transform with applications in pattern recognition, digital filtering, and digital image processing. It already has been shown that the Pascal transform matrix can be decomposed into a product of binary matrices. Such a factorization leads to a fast and efficient hardware implementation without the use of multipliers, which consume large amounts of hardware. We recently developed a field-programmable gate array (FPGA) implementation to compute the Pascal transform. Our goal was to demonstrate the computational efficiency of the transform while keeping hardware requirements at a minimum. Images are uploaded into memory from a remote computer prior to processing, and the transform coefficients can be offloaded from the FPGA board for analysis. Design techniques like as-soon-as-possible scheduling and adder sharing allowed us to develop a fast and efficient system. An eight-point, one-dimensional transform completes in 13 clock cycles and requires only four adders. An 8x8 two-dimensional transform completes in 240 cycles and requires only a top-level controller in addition to the one-dimensional transform hardware. Finally, through minor modifications to the controller, the transform operations can be pipelined to achieve 100% utilization of the four adders, allowing one eight-point transform to complete every seven clock cycles.

  17. A parallel approach of COFFEE objective function to multiple sequence alignment

    NASA Astrophysics Data System (ADS)

    Zafalon, G. F. D.; Visotaky, J. M. V.; Amorim, A. R.; Valêncio, C. R.; Neves, L. A.; de Souza, R. C. G.; Machado, J. M.

    2015-09-01

    The computational tools to assist genomic analyzes show even more necessary due to fast increasing of data amount available. With high computational costs of deterministic algorithms for sequence alignments, many works concentrate their efforts in the development of heuristic approaches to multiple sequence alignments. However, the selection of an approach, which offers solutions with good biological significance and feasible execution time, is a great challenge. Thus, this work aims to show the parallelization of the processing steps of MSA-GA tool using multithread paradigm in the execution of COFFEE objective function. The standard objective function implemented in the tool is the Weighted Sum of Pairs (WSP), which produces some distortions in the final alignments when sequences sets with low similarity are aligned. Then, in studies previously performed we implemented the COFFEE objective function in the tool to smooth these distortions. Although the nature of COFFEE objective function implies in the increasing of execution time, this approach presents points, which can be executed in parallel. With the improvements implemented in this work, we can verify the execution time of new approach is 24% faster than the sequential approach with COFFEE. Moreover, the COFFEE multithreaded approach is more efficient than WSP, because besides it is slightly fast, its biological results are better.

  18. A practical implementation of multi-frequency widefield frequency-domain FLIM

    PubMed Central

    Chen, Hongtao

    2013-01-01

    Widefield frequency-domain fluorescence lifetime imaging microscopy (FD-FLIM) is a fast and accurate method to measure the fluorescence lifetime, especially in kinetic studies in biomedical researches. However, the small range of modulation frequencies available in commercial instruments makes this technique limited in its applications. Here we describe a practical implementation of multi-frequency widefield FD-FLIM using a pulsed supercontinuum laser and a direct digital synthesizer. In this instrument we use a pulse to modulate the image intensifier rather than the more conventional sine wave modulation. This allows parallel multi-frequency FLIM measurement using the Fast Fourier Transform and the cross-correlation technique, which permits precise and simultaneous isolation of individual frequencies. In addition, the pulse modulation at the cathode of image intensifier restored the loss of optical resolution caused by the defocusing effect when the voltage at the cathode is sinusoidally modulated. Furthermore, in our implementation of this technique, data can be graphically analyzed by the phasor method while data are acquired, which allows easy fit-free lifetime analysis of FLIM images. Here our measurements of standard fluorescent samples and a Föster resonance energy transfer pair demonstrate that the widefield multi-frequency FLIM system is a valuable and simple tool in fluorescence imaging studies. PMID:23296945

  19. Selecting and Improving Quasi-Experimental Designs in Effectiveness and Implementation Research.

    PubMed

    Handley, Margaret A; Lyles, Courtney R; McCulloch, Charles; Cattamanchi, Adithya

    2018-04-01

    Interventional researchers face many design challenges when assessing intervention implementation in real-world settings. Intervention implementation requires holding fast on internal validity needs while incorporating external validity considerations (such as uptake by diverse subpopulations, acceptability, cost, and sustainability). Quasi-experimental designs (QEDs) are increasingly employed to achieve a balance between internal and external validity. Although these designs are often referred to and summarized in terms of logistical benefits, there is still uncertainty about (a) selecting from among various QEDs and (b) developing strategies to strengthen the internal and external validity of QEDs. We focus here on commonly used QEDs (prepost designs with nonequivalent control groups, interrupted time series, and stepped-wedge designs) and discuss several variants that maximize internal and external validity at the design, execution and implementation, and analysis stages.

  20. Investigation of Response Amplitude Operators for Floating Offshore Wind Turbines: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramachandran, G. K. V.; Robertson, A.; Jonkman, J. M.

    This paper examines the consistency between response amplitude operators (RAOs) computed from WAMIT, a linear frequency-domain tool, to RAOs derived from time-domain computations based on white-noise wave excitation using FAST, a nonlinear aero-hydro-servo-elastic tool. The RAO comparison is first made for a rigid floating wind turbine without wind excitation. The investigation is further extended to examine how these RAOs change for a flexible and operational wind turbine. The RAOs are computed for below-rated, rated, and above-rated wind conditions. The method is applied to a floating wind system composed of the OC3-Hywind spar buoy and NREL 5-MW wind turbine. The responsesmore » are compared between FAST and WAMIT to verify the FAST model and to understand the influence of structural flexibility, aerodynamic damping, control actions, and waves on the system responses. The results show that based on the RAO computation procedure implemented, the WAMIT- and FAST-computed RAOs are similar (as expected) for a rigid turbine subjected to waves only. However, WAMIT is unable to model the excitation from a flexible turbine. Further, the presence of aerodynamic damping decreased the platform surge and pitch responses, as computed by both WAMIT and FAST when wind was included. Additionally, the influence of gyroscopic excitation increased the yaw response, which was captured by both WAMIT and FAST.« less

  1. Quantitative DWI implemented after DCE-MRI yields increased specificity for BI-RADS 3 and 4 breast lesions.

    PubMed

    Dijkstra, Hildebrand; Dorrius, Monique D; Wielema, Mirjam; Pijnappel, Ruud M; Oudkerk, Matthijs; Sijens, Paul E

    2016-12-01

    To assess if specificity can be increased when semiautomated breast lesion analysis of quantitative diffusion-weighted imaging (DWI) is implemented after dynamic contrast-enhanced (DCE-) magnetic resonance imaging (MRI) in the workup of BI-RADS 3 and 4 breast lesions larger than 1 cm. In all, 120 consecutive patients (mean-age, 48 years; age range, 23-75 years) with 139 breast lesions (≥1 cm) were examined (2010-2014) with 1.5T DCE-MRI and DWI (b = 0, 50, 200, 500, 800, 1000 s/mm 2 ) and the BI-RADS classification and histopathology were obtained. For each lesion malignancy was excluded using voxelwise semiautomated breast lesion analysis based on previously defined thresholds for the apparent diffusion coefficient (ADC) and the three intravoxel incoherent motion (IVIM) parameters: molecular diffusion (D slow ), microperfusion (D fast ), and the fraction of D fast (f fast ). The sensitivity (Se), specificity (Sp), and negative predictive value (NPV) based on only IVIM parameters combined in parallel (D slow , D fast , and f fast ), or the ADC or the BI-RADS classification by DCE-MRI were compared. Subsequently, the Se, Sp, and NPV of the combination of the BI-RADS classification by DCE-MRI followed by the IVIM parameters in parallel (or the ADC) were compared. In all, 23 of 139 breast lesions were benign. Se and Sp of DCE-MRI was 100% and 30.4% (NPV = 100%). Se and Sp of IVIM parameters in parallel were 92.2% and 52.2% (NPV = 57.1%) and for the ADC 95.7% and 17.4%, respectively (NPV = 44.4%). In all, 26 of 139 lesions were classified as BI-RADS 3 (n = 7) or BI-RADS 4 (n = 19). DCE-MRI combined with ADC (Se = 99.1%, Sp = 34.8%) or IVIM (Se = 99.1%, Sp = 56.5%) did significantly improve (P = 0.016) Sp of DCE-MRI alone for workup of BI-RADS 3 and 4 lesions (NPV = 92.9%). Quantitative DWI has a lower NPV compared to DCE-MRI for evaluation of breast lesions and may therefore not be able to replace DCE-MRI; when implemented after DCE-MRI as problem solver for BI-RADS 3 and 4 lesions, the combined specificity improves significantly. J. Magn. Reson. Imaging 2016;44:1642-1649. © 2016 International Society for Magnetic Resonance in Medicine.

  2. Implementation of projective measurements with linear optics and continuous photon counting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeoka, Masahiro; Sasaki, Masahide; Loock, Peter van

    2005-02-01

    We investigate the possibility of implementing a given projection measurement using linear optics and arbitrarily fast feedforward based on the continuous detection of photons. In particular, we systematically derive the so-called Dolinar scheme that achieves the minimum-error discrimination of binary coherent states. Moreover, we show that the Dolinar-type approach can also be applied to projection measurements in the regime of photonic-qubit signals. Our results demonstrate that for implementing a projection measurement with linear optics, in principle, unit success probability may be approached even without the use of expensive entangled auxiliary states, as they are needed in all known (near-)deterministic linear-opticsmore » proposals.« less

  3. A high performance hardware implementation image encryption with AES algorithm

    NASA Astrophysics Data System (ADS)

    Farmani, Ali; Jafari, Mohamad; Miremadi, Seyed Sohrab

    2011-06-01

    This paper describes implementation of a high-speed encryption algorithm with high throughput for encrypting the image. Therefore, we select a highly secured symmetric key encryption algorithm AES(Advanced Encryption Standard), in order to increase the speed and throughput using pipeline technique in four stages, control unit based on logic gates, optimal design of multiplier blocks in mixcolumn phase and simultaneous production keys and rounds. Such procedure makes AES suitable for fast image encryption. Implementation of a 128-bit AES on FPGA of Altra company has been done and the results are as follow: throughput, 6 Gbps in 471MHz. The time of encrypting in tested image with 32*32 size is 1.15ms.

  4. FRIEND Engine Framework: a real time neurofeedback client-server system for neuroimaging studies

    PubMed Central

    Basilio, Rodrigo; Garrido, Griselda J.; Sato, João R.; Hoefle, Sebastian; Melo, Bruno R. P.; Pamplona, Fabricio A.; Zahn, Roland; Moll, Jorge

    2015-01-01

    In this methods article, we present a new implementation of a recently reported FSL-integrated neurofeedback tool, the standalone version of “Functional Real-time Interactive Endogenous Neuromodulation and Decoding” (FRIEND). We will refer to this new implementation as the FRIEND Engine Framework. The framework comprises a client-server cross-platform solution for real time fMRI and fMRI/EEG neurofeedback studies, enabling flexible customization or integration of graphical interfaces, devices, and data processing. This implementation allows a fast setup of novel plug-ins and frontends, which can be shared with the user community at large. The FRIEND Engine Framework is freely distributed for non-commercial, research purposes. PMID:25688193

  5. Clinical implementation of pharmacogenetics.

    PubMed

    García-González, Xandra; Cabaleiro, Teresa; Herrero, María José; McLeod, Howard; López-Fernández, Luis A

    2016-03-01

    In the last decade, pharmacogenetic research has been performed in different fields. However, the application of pharmacogenetic findings to clinical practice has not been as fast as desirable. The current situation of clinical implementation of pharmacogenetics is discussed. This review focuses on the advances of pharmacogenomics to individualize cancer treatments, the relationship between pharmacogenetics and pharmacodynamics in the clinical course of transplant patients receiving a combination of immunosuppressive therapy, the needs and barriers facing pharmacogenetic clinical application, and the situation of pharmacogenetic testing in Spain. It is based on lectures presented by speakers of the Clinical Implementation of Pharmacogenetics Symposium at the VII Conference of the Spanish Pharmacogenetics and Pharmacogenomics Society, held in April 20, 2015.

  6. A wideband fast multipole boundary element method for half-space/plane-symmetric acoustic wave problems

    NASA Astrophysics Data System (ADS)

    Zheng, Chang-Jun; Chen, Hai-Bo; Chen, Lei-Lei

    2013-04-01

    This paper presents a novel wideband fast multipole boundary element approach to 3D half-space/plane-symmetric acoustic wave problems. The half-space fundamental solution is employed in the boundary integral equations so that the tree structure required in the fast multipole algorithm is constructed for the boundary elements in the real domain only. Moreover, a set of symmetric relations between the multipole expansion coefficients of the real and image domains are derived, and the half-space fundamental solution is modified for the purpose of applying such relations to avoid calculating, translating and saving the multipole/local expansion coefficients of the image domain. The wideband adaptive multilevel fast multipole algorithm associated with the iterative solver GMRES is employed so that the present method is accurate and efficient for both lowand high-frequency acoustic wave problems. As for exterior acoustic problems, the Burton-Miller method is adopted to tackle the fictitious eigenfrequency problem involved in the conventional boundary integral equation method. Details on the implementation of the present method are described, and numerical examples are given to demonstrate its accuracy and efficiency.

  7. Design and evaluation of an air traffic control Final Approach Spacing Tool

    NASA Technical Reports Server (NTRS)

    Davis, Thomas J.; Erzberger, Heinz; Green, Steven M.; Nedell, William

    1991-01-01

    This paper describes the design and simulator evaluation of an automation tool for assisting terminal radar approach controllers in sequencing and spacing traffic onto the final approach course. The automation tool, referred to as the Final Approach Spacing Tool (FAST), displays speed and heading advisories for arriving aircraft as well as sequencing information on the controller's radar display. The main functional elements of FAST are a scheduler that schedules and sequences the traffic, a four-dimensional trajectory synthesizer that generates the advisories, and a graphical interface that displays the information to the controller. FAST has been implemented on a high-performance workstation. It can be operated as a stand-alone in the terminal radar approach control facility or as an element of a system integrated with automation tools in the air route traffic control center. FAST was evaluated by experienced air traffic controllers in a real-time air traffic control simulation. simulation results summarized in the paper show that the automation tools significantly reduced controller work load and demonstrated a potential for an increase in landing rate.

  8. Fast and high resolution thermal detector based on an aluminum nitride piezoelectric microelectromechanical resonator with an integrated suspended heat absorbing element

    NASA Astrophysics Data System (ADS)

    Hui, Yu; Rinaldi, Matteo

    2013-03-01

    This letter presents a miniaturized, fast, and high resolution thermal detector, in which a heat absorbing element and a temperature sensitive microelectromechanical system (MEMS) resonator are perfectly overlapped but separated by a microscale air gap. This unique design guarantees efficient and fast (˜10s μs) heat transfer from the absorbing element to the temperature sensitive device and enables high resolution thermal power detection (˜nW), thanks to the low noise performance of the high quality factor (Q = 2305) MEMS resonant thermal detector. A device prototype was fabricated, and its detection capabilities were experimentally characterized. A thermal power as low as 150 nW was experimentally measured, and a noise equivalent power of 6.5 nW/Hz1/2 was extracted. A device thermal time constant of only 350 μs was measured (smallest ever reported for MEMS resonant thermal detectors), indicating the great potential of the proposed technology for the implementation of ultra-fast and high resolution un-cooled resonant thermal detectors.

  9. ATLAS fast physics monitoring: TADA

    NASA Astrophysics Data System (ADS)

    Sabato, G.; Elsing, M.; Gumpert, C.; Kamioka, S.; Moyse, E.; Nairz, A.; Eifert, T.; ATLAS Collaboration

    2017-10-01

    The ATLAS experiment at the LHC has been recording data from proton-proton collisions with 13 TeV center-of-mass energy since spring 2015. The collaboration is using a fast physics monitoring framework (TADA) to automatically perform a broad range of fast searches for early signs of new physics and to monitor the data quality across the year with the full analysis level calibrations applied to the rapidly growing data. TADA is designed to provide fast feedback directly after the collected data has been fully calibrated and processed at the Tier-0. The system can monitor a large range of physics channels, offline data quality and physics performance quantities. TADA output is available on a website accessible by the whole collaboration. It gets updated twice a day with the data from newly processed runs. Hints of potentially interesting physics signals or performance issues identified in this way are reported to be followed up by physics or combined performance groups. The note reports as well about the technical aspects of TADA: the software structure to obtain the input TAG files, the framework workflow and structure, the webpage and its implementation.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoke, Anderson; Shirazi, Mariko; Chakraborty, Sudipta

    As deployment of power electronic coupled generation such as photovoltaic (PV) systems increases, grid operators have shown increasing interest in calling on inverter-coupled generation to help mitigate frequency contingency events by rapidly surging active power into the grid. When responding to contingency events, the faster the active power is provided, the more effective it may be for arresting the frequency event. This paper proposes a predictive PV inverter control method for very fast and accurate control of active power. This rapid active power control method will increase the effectiveness of various higher-level controls designed to mitigate grid frequency contingency events,more » including fast power-frequency droop, inertia emulation, and fast frequency response, without the need for energy storage. The rapid active power control method, coupled with a maximum power point estimation method, is implemented in a prototype PV inverter connected to a PV array. The prototype inverter's response to various frequency events is experimentally confirmed to be fast (beginning within 2 line cycles and completing within 4.5 line cycles of a severe test event) and accurate (below 2% steady-state error).« less

  11. Application of Fast Multipole Methods to the NASA Fast Scattering Code

    NASA Technical Reports Server (NTRS)

    Dunn, Mark H.; Tinetti, Ana F.

    2008-01-01

    The NASA Fast Scattering Code (FSC) is a versatile noise prediction program designed to conduct aeroacoustic noise reduction studies. The equivalent source method is used to solve an exterior Helmholtz boundary value problem with an impedance type boundary condition. The solution process in FSC v2.0 requires direct manipulation of a large, dense system of linear equations, limiting the applicability of the code to small scales and/or moderate excitation frequencies. Recent advances in the use of Fast Multipole Methods (FMM) for solving scattering problems, coupled with sparse linear algebra techniques, suggest that a substantial reduction in computer resource utilization over conventional solution approaches can be obtained. Implementation of the single level FMM (SLFMM) and a variant of the Conjugate Gradient Method (CGM) into the FSC is discussed in this paper. The culmination of this effort, FSC v3.0, was used to generate solutions for three configurations of interest. Benchmarking against previously obtained simulations indicate that a twenty-fold reduction in computational memory and up to a four-fold reduction in computer time have been achieved on a single processor.

  12. Fast, Parallel and Secure Cryptography Algorithm Using Lorenz's Attractor

    NASA Astrophysics Data System (ADS)

    Marco, Anderson Gonçalves; Martinez, Alexandre Souto; Bruno, Odemir Martinez

    A novel cryptography method based on the Lorenz's attractor chaotic system is presented. The proposed algorithm is secure and fast, making it practical for general use. We introduce the chaotic operation mode, which provides an interaction among the password, message and a chaotic system. It ensures that the algorithm yields a secure codification, even if the nature of the chaotic system is known. The algorithm has been implemented in two versions: one sequential and slow and the other, parallel and fast. Our algorithm assures the integrity of the ciphertext (we know if it has been altered, which is not assured by traditional algorithms) and consequently its authenticity. Numerical experiments are presented, discussed and show the behavior of the method in terms of security and performance. The fast version of the algorithm has a performance comparable to AES, a popular cryptography program used commercially nowadays, but it is more secure, which makes it immediately suitable for general purpose cryptography applications. An internet page has been set up, which enables the readers to test the algorithm and also to try to break into the cipher.

  13. FAST: a framework for simulation and analysis of large-scale protein-silicon biosensor circuits.

    PubMed

    Gu, Ming; Chakrabartty, Shantanu

    2013-08-01

    This paper presents a computer aided design (CAD) framework for verification and reliability analysis of protein-silicon hybrid circuits used in biosensors. It is envisioned that similar to integrated circuit (IC) CAD design tools, the proposed framework will be useful for system level optimization of biosensors and for discovery of new sensing modalities without resorting to laborious fabrication and experimental procedures. The framework referred to as FAST analyzes protein-based circuits by solving inverse problems involving stochastic functional elements that admit non-linear relationships between different circuit variables. In this regard, FAST uses a factor-graph netlist as a user interface and solving the inverse problem entails passing messages/signals between the internal nodes of the netlist. Stochastic analysis techniques like density evolution are used to understand the dynamics of the circuit and estimate the reliability of the solution. As an example, we present a complete design flow using FAST for synthesis, analysis and verification of our previously reported conductometric immunoassay that uses antibody-based circuits to implement forward error-correction (FEC).

  14. Fast time-resolved electrostatic force microscopy: Achieving sub-cycle time resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karatay, Durmus U.; Harrison, Jeffrey S.; Glaz, Micah S.

    The ability to measure microsecond- and nanosecond-scale local dynamics below the diffraction limit with widely available atomic force microscopy hardware would enable new scientific studies in fields ranging from biology to semiconductor physics. However, commercially available scanning-probe instruments typically offer the ability to measure dynamics only on time scales of milliseconds to seconds. Here, we describe in detail the implementation of fast time-resolved electrostatic force microscopy using an oscillating cantilever as a means to measure fast local dynamics following a perturbation to a sample. We show how the phase of the oscillating cantilever relative to the perturbation event is criticalmore » to achieving reliable sub-cycle time resolution. We explore how noise affects the achievable time resolution and present empirical guidelines for reducing noise and optimizing experimental parameters. Specifically, we show that reducing the noise on the cantilever by using photothermal excitation instead of piezoacoustic excitation further improves time resolution. We demonstrate the discrimination of signal rise times with time constants as fast as 10 ns, and simultaneous data acquisition and analysis for dramatically improved image acquisition times.« less

  15. Foundational Approaches in Science Teaching (FAST)--A Structured "Inquiry" Oriented Junior Science Curriculum

    ERIC Educational Resources Information Center

    Dekkers, John; Rouse, Fae

    1977-01-01

    Provides a detailed description of the three-year Foundational Approaches in Science Education curriculum developed at the University of Hawaii. The program utilizes a spiral approach with topics in ecology, physical science and relational study. Sample units and implementation suggestions are provided. (CP)

  16. NHPP for FRBs, Version 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence, Earl; Wiel, Scott Vander

    This code implements the non-homogeneous poisson process model for estimating the rate of fast radio bursts. It includes modeling terms for the distribution of events in the Universe and the detection sensitivity of the radio telescopes and arrays used in observation. The model is described in LA-UR-16-26261.

  17. Design and implementation of a cross-sectional nutritional phenotyping study of healthy US adults

    USDA-ARS?s Scientific Manuscript database

    Metabolic imbalance is a key determinant of risk of chronic diseases. Metabolic health cannot be assessed solely by body mass calculations or by static, fasted state biochemical readouts. Although previous studies have described temporal responses to dietary challenges, these studies fail to assess ...

  18. An International Academic Partnership through a Policy Implementation Lens: Top-Down, Bottom-Up or Somewhere in Between?

    ERIC Educational Resources Information Center

    Gieser, James D.

    2015-01-01

    Leaders of higher education institutions are eager to identify effective internationalization strategies in today's fast-paced, interconnected global environment. International academic partnerships are a common yet understudied strategy designed to take advantage of globalization's opportunities and to meet an institution's internationalization…

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Xiao; Blazek, Jonathan A.; McEwen, Joseph E.

    Cosmological perturbation theory is a powerful tool to predict the statistics of large-scale structure in the weakly non-linear regime, but even at 1-loop order it results in computationally expensive mode-coupling integrals. Here we present a fast algorithm for computing 1-loop power spectra of quantities that depend on the observer's orientation, thereby generalizing the FAST-PT framework (McEwen et al., 2016) that was originally developed for scalars such as the matter density. This algorithm works for an arbitrary input power spectrum and substantially reduces the time required for numerical evaluation. We apply the algorithm to four examples: intrinsic alignments of galaxies inmore » the tidal torque model; the Ostriker-Vishniac effect; the secondary CMB polarization due to baryon flows; and the 1-loop matter power spectrum in redshift space. Code implementing this algorithm and these applications is publicly available at https://github.com/JoeMcEwen/FAST-PT.« less

  20. Simulation for Wind Turbine Generators -- With FAST and MATLAB-Simulink Modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, M.; Muljadi, E.; Jonkman, J.

    This report presents the work done to develop generator and gearbox models in the Matrix Laboratory (MATLAB) environment and couple them to the National Renewable Energy Laboratory's Fatigue, Aerodynamics, Structures, and Turbulence (FAST) program. The goal of this project was to interface the superior aerodynamic and mechanical models of FAST to the excellent electrical generator models found in various Simulink libraries and applications. The scope was limited to Type 1, Type 2, and Type 3 generators and fairly basic gear-train models. Future work will include models of Type 4 generators and more-advanced gear-train models with increased degrees of freedom. Asmore » described in this study, implementation of the developed drivetrain model enables the software tool to be used in many ways. Several case studies are presented as examples of the many types of studies that can be performed using this tool.« less

  1. Real-time and high accuracy frequency measurements for intermediate frequency narrowband signals

    NASA Astrophysics Data System (ADS)

    Tian, Jing; Meng, Xiaofeng; Nie, Jing; Lin, Liwei

    2018-01-01

    Real-time and accurate measurements of intermediate frequency signals based on microprocessors are difficult due to the computational complexity and limited time constraints. In this paper, a fast and precise methodology based on the sigma-delta modulator is designed and implemented by first generating the twiddle factors using the designed recursive scheme. This scheme requires zero times of multiplications and only half amounts of addition operations by using the discrete Fourier transform (DFT) and the combination of the Rife algorithm and Fourier coefficient interpolation as compared with conventional methods such as DFT and Fast Fourier Transform. Experimentally, when the sampling frequency is 10 MHz, the real-time frequency measurements with intermediate frequency and narrowband signals have a measurement mean squared error of ±2.4 Hz. Furthermore, a single measurement of the whole system only requires approximately 0.3 s to achieve fast iteration, high precision, and less calculation time.

  2. An Ultrasonic Scanning Technique for In-Situ `Bowing' Measurement of Prototype Fast Breeder Reactor Fuel Sub-Assembly

    NASA Astrophysics Data System (ADS)

    Swaminathan, K.; Asokane, C.; Sylvia, J. I.; Kalyanasundaram, P.; Swaminathan, P.

    2012-02-01

    An ultrasonic under-sodium scanner has been developed for deployment in Prototype Fast Breeder Reactor (PFBR) which is in advanced stage of construction at Kalpakkam, India. Its purpose is to scan the above-core plenum for detection, if any, of displacement of sub-assemblies. During its burn-up in the reactor, the head of a Fuel Sub-Assembly (FSA) may undergo a lateral shift from its original position (called `bowing') due to the fast neutron induced damage on its structural material. A simple scanning technique has been developed for measuring the extent of bowing in-situ. This paper describes a PC-controlled mock-up of the scanner used to implement the scanning technique and the results obtained of scanning a mock-up FSA head under water. The details of the liquid-sodium proof transducer developed for use in the PFBR scanner and its performance are also discussed.

  3. Fast traffic sign recognition with a rotation invariant binary pattern based feature.

    PubMed

    Yin, Shouyi; Ouyang, Peng; Liu, Leibo; Guo, Yike; Wei, Shaojun

    2015-01-19

    Robust and fast traffic sign recognition is very important but difficult for safe driving assistance systems. This study addresses fast and robust traffic sign recognition to enhance driving safety. The proposed method includes three stages. First, a typical Hough transformation is adopted to implement coarse-grained location of the candidate regions of traffic signs. Second, a RIBP (Rotation Invariant Binary Pattern) based feature in the affine and Gaussian space is proposed to reduce the time of traffic sign detection and achieve robust traffic sign detection in terms of scale, rotation, and illumination. Third, the techniques of ANN (Artificial Neutral Network) based feature dimension reduction and classification are designed to reduce the traffic sign recognition time. Compared with the current work, the experimental results in the public datasets show that this work achieves robustness in traffic sign recognition with comparable recognition accuracy and faster processing speed, including training speed and recognition speed.

  4. Fast emulation of track reconstruction in the CMS simulation

    NASA Astrophysics Data System (ADS)

    Komm, Matthias; CMS Collaboration

    2017-10-01

    Simulated samples of various physics processes are a key ingredient within analyses to unlock the physics behind LHC collision data. Samples with more and more statistics are required to keep up with the increasing amounts of recorded data. During sample generation, significant computing time is spent on the reconstruction of charged particle tracks from energy deposits which additionally scales with the pileup conditions. In CMS, the FastSimulation package is developed for providing a fast alternative to the standard simulation and reconstruction workflow. It employs various techniques to emulate track reconstruction effects in particle collision events. Several analysis groups in CMS are utilizing the package, in particular those requiring many samples to scan the parameter space of physics models (e.g. SUSY) or for the purpose of estimating systematic uncertainties. The strategies for and recent developments in this emulation are presented, including a novel, flexible implementation of tracking emulation while retaining a sufficient, tuneable accuracy.

  5. Fast Traffic Sign Recognition with a Rotation Invariant Binary Pattern Based Feature

    PubMed Central

    Yin, Shouyi; Ouyang, Peng; Liu, Leibo; Guo, Yike; Wei, Shaojun

    2015-01-01

    Robust and fast traffic sign recognition is very important but difficult for safe driving assistance systems. This study addresses fast and robust traffic sign recognition to enhance driving safety. The proposed method includes three stages. First, a typical Hough transformation is adopted to implement coarse-grained location of the candidate regions of traffic signs. Second, a RIBP (Rotation Invariant Binary Pattern) based feature in the affine and Gaussian space is proposed to reduce the time of traffic sign detection and achieve robust traffic sign detection in terms of scale, rotation, and illumination. Third, the techniques of ANN (Artificial Neutral Network) based feature dimension reduction and classification are designed to reduce the traffic sign recognition time. Compared with the current work, the experimental results in the public datasets show that this work achieves robustness in traffic sign recognition with comparable recognition accuracy and faster processing speed, including training speed and recognition speed. PMID:25608217

  6. SpotCaliper: fast wavelet-based spot detection with accurate size estimation.

    PubMed

    Püspöki, Zsuzsanna; Sage, Daniel; Ward, John Paul; Unser, Michael

    2016-04-15

    SpotCaliper is a novel wavelet-based image-analysis software providing a fast automatic detection scheme for circular patterns (spots), combined with the precise estimation of their size. It is implemented as an ImageJ plugin with a friendly user interface. The user is allowed to edit the results by modifying the measurements (in a semi-automated way), extract data for further analysis. The fine tuning of the detections includes the possibility of adjusting or removing the original detections, as well as adding further spots. The main advantage of the software is its ability to capture the size of spots in a fast and accurate way. http://bigwww.epfl.ch/algorithms/spotcaliper/ zsuzsanna.puspoki@epfl.ch Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere

    NASA Technical Reports Server (NTRS)

    Gorski, K. M.; Hivon, Eric; Banday, A. J.; Wandelt, Benjamin D.; Hansen, Frode K.; Reinecke, Mstvos; Bartelmann, Matthia

    2005-01-01

    HEALPix the Hierarchical Equal Area isoLatitude Pixelization is a versatile structure for the pixelization of data on the sphere. An associated library of computational algorithms and visualization software supports fast scientific applications executable directly on discretized spherical maps generated from very large volumes of astronomical data. Originally developed to address the data processing and analysis needs of the present generation of cosmic microwave background experiments (e.g., BOOMERANG, WMAP), HEALPix can be expanded to meet many of the profound challenges that will arise in confrontation with the observational output of future missions and experiments, including, e.g., Planck, Herschel, SAFIR, and the Beyond Einstein inflation probe. In this paper we consider the requirements and implementation constraints on a framework that simultaneously enables an efficient discretization with associated hierarchical indexation and fast analysis/synthesis of functions defined on the sphere. We demonstrate how these are explicitly satisfied by HEALPix.

  8. Fast multipole methods on a cluster of GPUs for the meshless simulation of turbulence

    NASA Astrophysics Data System (ADS)

    Yokota, R.; Narumi, T.; Sakamaki, R.; Kameoka, S.; Obi, S.; Yasuoka, K.

    2009-11-01

    Recent advances in the parallelizability of fast N-body algorithms, and the programmability of graphics processing units (GPUs) have opened a new path for particle based simulations. For the simulation of turbulence, vortex methods can now be considered as an interesting alternative to finite difference and spectral methods. The present study focuses on the efficient implementation of the fast multipole method and pseudo-particle method on a cluster of NVIDIA GeForce 8800 GT GPUs, and applies this to a vortex method calculation of homogeneous isotropic turbulence. The results of the present vortex method agree quantitatively with that of the reference calculation using a spectral method. We achieved a maximum speed of 7.48 TFlops using 64 GPUs, and the cost performance was near 9.4/GFlops. The calculation of the present vortex method on 64 GPUs took 4120 s, while the spectral method on 32 CPUs took 4910 s.

  9. Pre-Hardware Optimization and Implementation Of Fast Optics Closed Control Loop Algorithms

    NASA Technical Reports Server (NTRS)

    Kizhner, Semion; Lyon, Richard G.; Herman, Jay R.; Abuhassan, Nader

    2004-01-01

    One of the main heritage tools used in scientific and engineering data spectrum analysis is the Fourier Integral Transform and its high performance digital equivalent - the Fast Fourier Transform (FFT). The FFT is particularly useful in two-dimensional (2-D) image processing (FFT2) within optical systems control. However, timing constraints of a fast optics closed control loop would require a supercomputer to run the software implementation of the FFT2 and its inverse, as well as other image processing representative algorithm, such as numerical image folding and fringe feature extraction. A laboratory supercomputer is not always available even for ground operations and is not feasible for a night project. However, the computationally intensive algorithms still warrant alternative implementation using reconfigurable computing technologies (RC) such as Digital Signal Processors (DSP) and Field Programmable Gate Arrays (FPGA), which provide low cost compact super-computing capabilities. We present a new RC hardware implementation and utilization architecture that significantly reduces the computational complexity of a few basic image-processing algorithm, such as FFT2, image folding and phase diversity for the NASA Solar Viewing Interferometer Prototype (SVIP) using a cluster of DSPs and FPGAs. The DSP cluster utilization architecture also assures avoidance of a single point of failure, while using commercially available hardware. This, combined with the control algorithms pre-hardware optimization, or the first time allows construction of image-based 800 Hertz (Hz) optics closed control loops on-board a spacecraft, based on the SVIP ground instrument. That spacecraft is the proposed Earth Atmosphere Solar Occultation Imager (EASI) to study greenhouse gases CO2, C2H, H2O, O3, O2, N2O from Lagrange-2 point in space. This paper provides an advanced insight into a new type of science capabilities for future space exploration missions based on on-board image processing for control and for robotics missions using vision sensors. It presents a top-level description of technologies required for the design and construction of SVIP and EASI and to advance the spatial-spectral imaging and large-scale space interferometry science and engineering.

  10. Aspen Plus Model for In Situ and Ex Situ Upgrading of Fast Pyrolysis Vapors for the Conversion of Biomass to Hydrocarbon Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    This is an Aspen Plus process model for in situ and ex situ upgrading of fast pyrolysis vapors for the conversion of biomass to hydrocarbon fuels. It is based on conceptual designs that allow projections of future commercial implementations of the technologies based on a combination of research and existing commercial technologies. The process model was developed from the ground up at NREL. Results from the model are documented in a detailed design report NREL/TP-5100-62455 (available at http://www.nrel.gov/docs/fy15osti/62455.pdf).

  11. The use of diet in the treatment of epilepsy.

    PubMed

    Bailey, Elizabeth E; Pfeifer, Heidi H; Thiele, Elizabeth A

    2005-02-01

    Fasting and other dietary regimens have been used to treat epilepsy since biblical times. The ketogenic diet, which mimics the metabolism of fasting, was used by modern physicians to treat intractable epilepsy beginning in the 1920s. With the rising popularity of drug treatments however, the ketogenic diet lost its previous status and was used in only a handful of clinics for most of the 20th century. The diet regained widespread recognition as a viable treatment option beginning in 1992 due to the efforts of parent advocate groups. Despite challenges to implementation of the treatment, the ketogenic diet has significant potential as a powerful tool for fighting epilepsy.

  12. A fast discrete S-transform for biomedical signal processing.

    PubMed

    Brown, Robert A; Frayne, Richard

    2008-01-01

    Determining the frequency content of a signal is a basic operation in signal and image processing. The S-transform provides both the true frequency and globally referenced phase measurements characteristic of the Fourier transform and also generates local spectra, as does the wavelet transform. Due to this combination, the S-transform has been successfully demonstrated in a variety of biomedical signal and image processing tasks. However, the computational demands of the S-transform have limited its application in medicine to this point in time. This abstract introduces the fast S-transform, a more efficient discrete implementation of the classic S-transform with dramatically reduced computational requirements.

  13. Returning nurses to the workforce: developing a fast track back program.

    PubMed

    Burns, Helen K; Sakraida, Teresa J; Englert, Nadine C; Hoffmann, Rosemary L; Tuite, Patricia; Foley, Susan M

    2006-01-01

    Fast Track Back: Re-entry into Nursing Practice program. Describes the development, implementation, and evaluation of a state-of-the-art re-entry program facilitating the return of licensed nonpracticing RNs to the workforce through a quality education program that retools them for the workforce in the areas of pharmacology, skill development using the latest technology, practice standards, and nursing issues. The program consists of didactic content taught via classroom, Internet, skills laboratory, and high fidelity human simulated technology and a clinical component. The program is a mechanism that enables re-entry nurses to improve skills and competencies necessary to practice in today's healthcare environment.

  14. A semi-direct procedure using a local relaxation factor and its application to an internal flow problem

    NASA Technical Reports Server (NTRS)

    Chang, S. C.

    1984-01-01

    Generally, fast direct solvers are not directly applicable to a nonseparable elliptic partial differential equation. This limitation, however, is circumvented by a semi-direct procedure, i.e., an iterative procedure using fast direct solvers. An efficient semi-direct procedure which is easy to implement and applicable to a variety of boundary conditions is presented. The current procedure also possesses other highly desirable properties, i.e.: (1) the convergence rate does not decrease with an increase of grid cell aspect ratio, and (2) the convergence rate is estimated using the coefficients of the partial differential equation being solved.

  15. Fast computational scheme of image compression for 32-bit microprocessors

    NASA Technical Reports Server (NTRS)

    Kasperovich, Leonid

    1994-01-01

    This paper presents a new computational scheme of image compression based on the discrete cosine transform (DCT), underlying JPEG and MPEG International Standards. The algorithm for the 2-d DCT computation uses integer operations (register shifts and additions / subtractions only); its computational complexity is about 8 additions per image pixel. As a meaningful example of an on-board image compression application we consider the software implementation of the algorithm for the Mars Rover (Marsokhod, in Russian) imaging system being developed as a part of Mars-96 International Space Project. It's shown that fast software solution for 32-bit microprocessors may compete with the DCT-based image compression hardware.

  16. Digital SAR processing using a fast polynomial transform

    NASA Technical Reports Server (NTRS)

    Butman, S.; Lipes, R.; Rubin, A.; Truong, T. K.

    1981-01-01

    A new digital processing algorithm based on the fast polynomial transform is developed for producing images from Synthetic Aperture Radar data. This algorithm enables the computation of the two dimensional cyclic correlation of the raw echo data with the impulse response of a point target, thereby reducing distortions inherent in one dimensional transforms. This SAR processing technique was evaluated on a general-purpose computer and an actual Seasat SAR image was produced. However, regular production runs will require a dedicated facility. It is expected that such a new SAR processing algorithm could provide the basis for a real-time SAR correlator implementation in the Deep Space Network.

  17. Concentric transmon qubit featuring fast tunability and site-selective Z coupling

    NASA Astrophysics Data System (ADS)

    Weides, Martin; Braumueller, Jochen; Sandberg, Martin; Vissers, Michael; Schneider, Andre; Schloer, Steffen; Gruenhaupt, Lukas; Rotzinger, Hannes; Marthaler, Michael; Lukashenko, Alexander; Dieter, Amadeus; Ustinov, Alexey; Pappas, David

    We present a planar qubit design based on a superconducting circuit that we call concentric transmon. While employing a simple fabrication process using Al evaporation and lift-off lithography, we observe qubit lifetimes and coherence times in the order of 10 μs. We systematically characterize loss channels such as incoherent dielectric loss, Purcell decay and radiative losses. The implementation of a gradiometric SQUID loop allows for a fast tuning of the qubit transition frequency and therefore for full tomographic control of the quantum circuit. The presented qubit design features a passive direct Z coupling between neighboring qubits, being a pending quest in the field of quantum simulation.

  18. Fast Boundary Element Method for acoustics with the Sparse Cardinal Sine Decomposition

    NASA Astrophysics Data System (ADS)

    Alouges, François; Aussal, Matthieu; Parolin, Emile

    2017-07-01

    This paper presents the newly proposed method Sparse Cardinal Sine Decomposition that allows fast convolution on unstructured grids. We focus on its use when coupled with finite element techniques to solve acoustic problems with the (compressed) Boundary Element Method. In addition, we also compare the computational performances of two equivalent Matlab® and Python implementations of the method. We show validation test cases in order to assess the precision of the approach. Eventually, the performance of the method is illustrated by the computation of the acoustic target strength of a realistic submarine from the Benchmark Target Strength Simulation international workshop.

  19. Fission Chain Restart Theory

    DOE PAGES

    Kim, K. S.; Nakae, L. F.; Prasad, M. K.; ...

    2017-07-31

    We present that fast nanosecond timescale neutron and gamma-ray counting can be performed with a (liquid) scintillator array. Fission chains in metal evolve over a timescale of tens of nanoseconds. If the metal is surrounded by moderator, neutrons leaking from the metal can thermalize and diffuse in the moderator. With finite probability, the diffusing neutrons can return to the metal and restart the fast fission chain. The timescale for this restart process is microseconds. A theory describing time evolving fission chains for metal surrounded by moderator, including this restart process, is presented. Finally, this theory is sufficiently simple for itmore » to be implemented for real-time analysis.« less

  20. Intelligent video storage of visual evidences on site in fast deployment

    NASA Astrophysics Data System (ADS)

    Desurmont, Xavier; Bastide, Arnaud; Delaigle, Jean-Francois

    2004-07-01

    In this article we present a generic, flexible, scalable and robust approach for an intelligent real-time forensic visual system. The proposed implementation could be rapidly deployable and integrates minimum logistic support as it embeds low complexity devices (PCs and cameras) that communicate through wireless network. The goal of these advanced tools is to provide intelligent video storage of potential video evidences for fast intervention during deployment around a hazardous sector after a terrorism attack, a disaster, an air crash or before attempt of it. Advanced video analysis tools, such as segmentation and tracking are provided to support intelligent storage and annotation.

  1. NGMIX: Gaussian mixture models for 2D images

    NASA Astrophysics Data System (ADS)

    Sheldon, Erin

    2015-08-01

    NGMIX implements Gaussian mixture models for 2D images. Both the PSF profile and the galaxy are modeled using mixtures of Gaussians. Convolutions are thus performed analytically, resulting in fast model generation as compared to methods that perform the convolution in Fourier space. For the galaxy model, NGMIX supports exponential disks and de Vaucouleurs and Sérsic profiles; these are implemented approximately as a sum of Gaussians using the fits from Hogg & Lang (2013). Additionally, any number of Gaussians can be fit, either completely free or constrained to be cocentric and co-elliptical.

  2. A SCILAB Program for Computing General-Relativistic Models of Rotating Neutron Stars by Implementing Hartle's Perturbation Method

    NASA Astrophysics Data System (ADS)

    Papasotiriou, P. J.; Geroyannis, V. S.

    We implement Hartle's perturbation method to the computation of relativistic rigidly rotating neutron star models. The program has been written in SCILAB (© INRIA ENPC), a matrix-oriented high-level programming language. The numerical method is described in very detail and is applied to many models in slow or fast rotation. We show that, although the method is perturbative, it gives accurate results for all practical purposes and it should prove an efficient tool for computing rapidly rotating pulsars.

  3. Ring-array processor distribution topology for optical interconnects

    NASA Technical Reports Server (NTRS)

    Li, Yao; Ha, Berlin; Wang, Ting; Wang, Sunyu; Katz, A.; Lu, X. J.; Kanterakis, E.

    1992-01-01

    The existing linear and rectangular processor distribution topologies for optical interconnects, although promising in many respects, cannot solve problems such as clock skews, the lack of supporting elements for efficient optical implementation, etc. The use of a ring-array processor distribution topology, however, can overcome these problems. Here, a study of the ring-array topology is conducted with an aim of implementing various fast clock rate, high-performance, compact optical networks for digital electronic multiprocessor computers. Practical design issues are addressed. Some proof-of-principle experimental results are included.

  4. On-board multicarrier demodulator for mobile applications using DSP implementation

    NASA Astrophysics Data System (ADS)

    Yim, W. H.; Kwan, C. C. D.; Coakley, F. P.; Evans, B. G.

    1990-11-01

    This paper describes the design and implementation of an on-board multicarrier demodulator using commercial digital signal processors. This is for use in a mobile satellite communication system employing an up-link SCPC/FDMA scheme. Channels are separated by a flexible multistage digital filter bank followed by a channel multiplexed digital demodulator array. The cross/dot product design approach of error detector leads to a new QPSK frequency control algorithm that allows fast acquisition without special preamble pattern. Timing correction is performed digitally using an extended stack of polyphase sub-filters.

  5. An edge preserving differential image coding scheme

    NASA Technical Reports Server (NTRS)

    Rost, Martin C.; Sayood, Khalid

    1992-01-01

    Differential encoding techniques are fast and easy to implement. However, a major problem with the use of differential encoding for images is the rapid edge degradation encountered when using such systems. This makes differential encoding techniques of limited utility, especially when coding medical or scientific images, where edge preservation is of utmost importance. A simple, easy to implement differential image coding system with excellent edge preservation properties is presented. The coding system can be used over variable rate channels, which makes it especially attractive for use in the packet network environment.

  6. Computation of Alfvèn eigenmode stability and saturation through a reduced fast ion transport model in the TRANSP tokamak transport code

    NASA Astrophysics Data System (ADS)

    Podestà, M.; Gorelenkova, M.; Gorelenkov, N. N.; White, R. B.

    2017-09-01

    Alfvénic instabilities (AEs) are well known as a potential cause of enhanced fast ion transport in fusion devices. Given a specific plasma scenario, quantitative predictions of (i) expected unstable AE spectrum and (ii) resulting fast ion transport are required to prevent or mitigate the AE-induced degradation in fusion performance. Reduced models are becoming an attractive tool to analyze existing scenarios as well as for scenario prediction in time-dependent simulations. In this work, a neutral beam heated NSTX discharge is used as reference to illustrate the potential of a reduced fast ion transport model, known as kick model, that has been recently implemented for interpretive and predictive analysis within the framework of the time-dependent tokamak transport code TRANSP. Predictive capabilities for AE stability and saturation amplitude are first assessed, based on given thermal plasma profiles only. Predictions are then compared to experimental results, and the interpretive capabilities of the model further discussed. Overall, the reduced model captures the main properties of the instabilities and associated effects on the fast ion population. Additional information from the actual experiment enables further tuning of the model’s parameters to achieve a close match with measurements.

  7. Computation of Alfvèn eigenmode stability and saturation through a reduced fast ion transport model in the TRANSP tokamak transport code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Podestà, M.; Gorelenkova, M.; Gorelenkov, N. N.

    Alfvénic instabilities (AEs) are well known as a potential cause of enhanced fast ion transport in fusion devices. Given a specific plasma scenario, quantitative predictions of (i) expected unstable AE spectrum and (ii) resulting fast ion transport are required to prevent or mitigate the AE-induced degradation in fusion performance. Reduced models are becoming an attractive tool to analyze existing scenarios as well as for scenario prediction in time-dependent simulations. Here, in this work, a neutral beam heated NSTX discharge is used as reference to illustrate the potential of a reduced fast ion transport model, known as kick model, that hasmore » been recently implemented for interpretive and predictive analysis within the framework of the time-dependent tokamak transport code TRANSP. Predictive capabilities for AE stability and saturation amplitude are first assessed, based on given thermal plasma profiles only. Predictions are then compared to experimental results, and the interpretive capabilities of the model further discussed. Overall, the reduced model captures the main properties of the instabilities and associated effects on the fast ion population. Finally, additional information from the actual experiment enables further tuning of the model's parameters to achieve a close match with measurements.« less

  8. Five Years Later: Awareness Of New York City's Calorie Labels Declined, With No Changes In Calories Purchased.

    PubMed

    Cantor, Jonathan; Torres, Alejandro; Abrams, Courtney; Elbel, Brian

    2015-11-01

    To follow up on a previous study that examined how the mandated displaying of calorie information on menu boards in fast-food restaurants in New York City influenced consumers' behavior, we analyzed itemized cash register receipts and survey responses from 7,699 consumers at four fast-food chains. Using a difference-in-differences study design, we found that consumers exposed to menu labeling immediately after the mandate took effect in 2008 and at three points in 2013-14 reported seeing and using the information more often than their counterparts at fast-food restaurants without menu labeling. In each successive period of data collection, the percentage of respondents noticing and using the information declined, while remaining above the prelabeling baseline. There were no statistically significant changes over time in levels of calories or other nutrients purchased or in the frequency of visits to fast-food restaurants. Menu labeling at fast-food chain restaurants, which the Affordable Care Act requires to be implemented nationwide in 2016, remains an unproven strategy for improving the nutritional quality of consumer food choices at the population level. Additional policy efforts that go beyond labeling and possibly alter labeling to increase its impact must be considered. Project HOPE—The People-to-People Health Foundation, Inc.

  9. Computation of Alfvèn eigenmode stability and saturation through a reduced fast ion transport model in the TRANSP tokamak transport code

    DOE PAGES

    Podestà, M.; Gorelenkova, M.; Gorelenkov, N. N.; ...

    2017-07-20

    Alfvénic instabilities (AEs) are well known as a potential cause of enhanced fast ion transport in fusion devices. Given a specific plasma scenario, quantitative predictions of (i) expected unstable AE spectrum and (ii) resulting fast ion transport are required to prevent or mitigate the AE-induced degradation in fusion performance. Reduced models are becoming an attractive tool to analyze existing scenarios as well as for scenario prediction in time-dependent simulations. Here, in this work, a neutral beam heated NSTX discharge is used as reference to illustrate the potential of a reduced fast ion transport model, known as kick model, that hasmore » been recently implemented for interpretive and predictive analysis within the framework of the time-dependent tokamak transport code TRANSP. Predictive capabilities for AE stability and saturation amplitude are first assessed, based on given thermal plasma profiles only. Predictions are then compared to experimental results, and the interpretive capabilities of the model further discussed. Overall, the reduced model captures the main properties of the instabilities and associated effects on the fast ion population. Finally, additional information from the actual experiment enables further tuning of the model's parameters to achieve a close match with measurements.« less

  10. Knockdown of angiopoietin-like 2 mimics the benefits of intermittent fasting on insulin responsiveness and weight loss.

    PubMed

    Martel, Cécile; Pinçon, Anthony; Bélanger, Alexandre Maxime; Luo, Xiaoyan; Gillis, Marc-Antoine; de Montgolfier, Olivia; Thorin-Trescases, Nathalie; Thorin, Éric

    2018-01-01

    Angiopoietin-like 2 (ANGPTL2) is an inflammatory adipokine linking obesity to insulin resistance. Intermittent fasting, on the other hand, is a lifestyle intervention able to prevent obesity and diabetes but difficult to implement and maintain. Our objectives were to characterize a link between ANGPTL2 and intermittent fasting and to investigate whether the knockdown of ANGPTL2 reproduces the benefits of intermittent fasting on weight gain and insulin responsiveness in knockdown and wild-type littermates mice. Intermittent fasting, access to food ad libitum once every other day, was initiated at the age of three months and maintained for four months. Intermittent fasting decreased by 63% (p < 0.05) gene expression of angptl2 in adipose tissue of wild-type mice. As expected, intermittent fasting improved insulin sensitivity (p < 0.05) and limited weight gain (p < 0.05) in wild-type mice. Knockdown mice fed ad libitum, however, were comparable to wild-type mice following the intermittent fasting regimen: insulin sensitivity and weight gain were identical, while intermittent fasting had no additional impact on these parameters in knockdown mice. Energy intake was similar between both wild-type fed intermittent fasting and ANGPTL2 knockdown mice fed ad libitum, suggesting that intermittent fasting and knockdown of ANGPTL2 equally lower feeding efficiency. These results suggest that the reduction of ANGPTL2 could be a useful and promising strategy to prevent obesity and insulin resistance, although further investigation of the mechanisms linking ANGPTL2 and intermittent fasting is warranted. Impact statement Intermittent fasting is an efficient diet pattern to prevent weight gain and improve insulin sensitivity. It is, however, a difficult regimen to follow and compliance is expected to be very low. In this work, we demonstrate that knockdown of ANGPTL2 in mice fed ad libitum mimics the beneficial effects of intermittent fasting on weight gain and insulin sensitivity in wild-type mice. ANGPTL2 is a cytokine positively associated with fat mass in humans, which inactivation in mice improves resistance to a high-fat metabolic challenge. This study provides a novel pathway by which IF acts to limit obesity despite equivalent energy intake. The development of a pharmacological ANGPTL2 antagonist could provide an efficient tool to reduce the burden of obesity.

  11. [Shortened hospital stay for elective cesarean section after initiation of a fast-track program and midwifery home-care].

    PubMed

    Gunnarsdottir, Johanna; Bjornsdottir, Thorbjörg Edda; Halldorsson, Thorhallur Ingi; Halldorsdottir, Gudrun; Geirsson, Reynir Tomas

    2011-07-01

    To audit whether hospital stay shortened without increasing readmissions after implementation of fast-track methodology for elective cesarean section and characterize what influences length of stay. A fast-track program was initiated in November 2008, with a one year clinical audit and satisfaction survey. Discharge criteria were predefined and midwife home visits included if discharge was within 48 hours. Hospital stay by parity for women with elective section for singleton pregnancy between 1.11. 2008 - 31.10. 2009 (n=213, fast-track 182) was compared to 2003 (n=199) and 2007 (n=183). Readmissions and outpatient visits 2007 and 2008-9 were counted. Reasons for longer stay were recorded in fast-track, and body mass index. Median hospital stay decreased significantly from 81 to 52 hours between 2007 and 2008-9. Readmissions were four in each period and outpatient visit rates similar. In 2008-9, 66% of all women were discharged within 48 hours. Women in the fast-track program were satisfied with early discharge. Hospital stay for parous women was shorter in 2007 compared to 2003, but unchanged for nulliparas. Parity had a minimal influence on length of stay in 2008-9, although nulliparous women ≤ 25 years were more likely to stay >48 hours. Body mass index did not correlate with length of stay. Pain was rarely the reason for a longer stay in the fast-track program and 90% were satisfied with pain-medication after discharge. Most healthy women can be discharged early after singleton birth by elective cesarean, without increasing readmissions.

  12. Comparison of a carbohydrate-free diet vs. fasting on plasma glucose, insulin and glucagon in type 2 diabetes.

    PubMed

    Nuttall, Frank Q; Almokayyad, Rami M; Gannon, Mary C

    2015-02-01

    Hyperglycemia improves when patients with type 2 diabetes are placed on a weight-loss diet. Improvement typically occurs soon after diet implementation. This rapid response could result from low fuel supply (calories), lower carbohydrate content of the weight-loss diet, and/or weight loss per se. To differentiate these effects, glucose, insulin, C-peptide and glucagon were determined during the last 24 h of a 3-day period without food (severe calorie restriction) and a calorie-sufficient, carbohydrate-free diet. Seven subjects with untreated type 2 diabetes were studied. A randomized-crossover design with a 4-week washout period between arms was used. Results from both the calorie-sufficient, carbohydrate-free diet and the 3-day fast were compared with the initial standard diet consisting of 55% carbohydrate, 15% protein and 30% fat. The overnight fasting glucose concentration decreased from 196 (standard diet) to 160 (carbohydrate-free diet) to 127 mg/dl (fasting). The 24 h glucose and insulin area responses decreased by 35% and 48% on day 3 of the carbohydrate-free diet, and by 49% and 69% after fasting. Overnight basal insulin and glucagon remained unchanged. Short-term fasting dramatically lowered overnight fasting and 24 h integrated glucose concentrations. Carbohydrate restriction per se could account for 71% of the reduction. Insulin could not entirely explain the glucose responses. In the absence of carbohydrate, the net insulin response was 28% of the standard diet. Glucagon did not contribute to the metabolic adaptations observed. Published by Elsevier Inc.

  13. Protein-protein docking on hardware accelerators: comparison of GPU and MIC architectures

    PubMed Central

    2015-01-01

    Background The hardware accelerators will provide solutions to computationally complex problems in bioinformatics fields. However, the effect of acceleration depends on the nature of the application, thus selection of an appropriate accelerator requires some consideration. Results In the present study, we compared the effects of acceleration using graphics processing unit (GPU) and many integrated core (MIC) on the speed of fast Fourier transform (FFT)-based protein-protein docking calculation. The GPU implementation performed the protein-protein docking calculations approximately five times faster than the MIC offload mode implementation. The MIC native mode implementation has the advantage in the implementation costs. However, the performance was worse with larger protein pairs because of memory limitations. Conclusion The results suggest that GPU is more suitable than MIC for accelerating FFT-based protein-protein docking applications. PMID:25707855

  14. Parallel point-multiplication architecture using combined group operations for high-speed cryptographic applications

    PubMed Central

    Saeedi, Ehsan; Kong, Yinan

    2017-01-01

    In this paper, we propose a novel parallel architecture for fast hardware implementation of elliptic curve point multiplication (ECPM), which is the key operation of an elliptic curve cryptography processor. The point multiplication over binary fields is synthesized on both FPGA and ASIC technology by designing fast elliptic curve group operations in Jacobian projective coordinates. A novel combined point doubling and point addition (PDPA) architecture is proposed for group operations to achieve high speed and low hardware requirements for ECPM. It has been implemented over the binary field which is recommended by the National Institute of Standards and Technology (NIST). The proposed ECPM supports two Koblitz and random curves for the key sizes 233 and 163 bits. For group operations, a finite-field arithmetic operation, e.g. multiplication, is designed on a polynomial basis. The delay of a 233-bit point multiplication is only 3.05 and 3.56 μs, in a Xilinx Virtex-7 FPGA, for Koblitz and random curves, respectively, and 0.81 μs in an ASIC 65-nm technology, which are the fastest hardware implementation results reported in the literature to date. In addition, a 163-bit point multiplication is also implemented in FPGA and ASIC for fair comparison which takes around 0.33 and 0.46 μs, respectively. The area-time product of the proposed point multiplication is very low compared to similar designs. The performance (1Area×Time=1AT) and Area × Time × Energy (ATE) product of the proposed design are far better than the most significant studies found in the literature. PMID:28459831

  15. Parallel point-multiplication architecture using combined group operations for high-speed cryptographic applications.

    PubMed

    Hossain, Md Selim; Saeedi, Ehsan; Kong, Yinan

    2017-01-01

    In this paper, we propose a novel parallel architecture for fast hardware implementation of elliptic curve point multiplication (ECPM), which is the key operation of an elliptic curve cryptography processor. The point multiplication over binary fields is synthesized on both FPGA and ASIC technology by designing fast elliptic curve group operations in Jacobian projective coordinates. A novel combined point doubling and point addition (PDPA) architecture is proposed for group operations to achieve high speed and low hardware requirements for ECPM. It has been implemented over the binary field which is recommended by the National Institute of Standards and Technology (NIST). The proposed ECPM supports two Koblitz and random curves for the key sizes 233 and 163 bits. For group operations, a finite-field arithmetic operation, e.g. multiplication, is designed on a polynomial basis. The delay of a 233-bit point multiplication is only 3.05 and 3.56 μs, in a Xilinx Virtex-7 FPGA, for Koblitz and random curves, respectively, and 0.81 μs in an ASIC 65-nm technology, which are the fastest hardware implementation results reported in the literature to date. In addition, a 163-bit point multiplication is also implemented in FPGA and ASIC for fair comparison which takes around 0.33 and 0.46 μs, respectively. The area-time product of the proposed point multiplication is very low compared to similar designs. The performance ([Formula: see text]) and Area × Time × Energy (ATE) product of the proposed design are far better than the most significant studies found in the literature.

  16. NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations

    NASA Astrophysics Data System (ADS)

    Valiev, M.; Bylaska, E. J.; Govind, N.; Kowalski, K.; Straatsma, T. P.; Van Dam, H. J. J.; Wang, D.; Nieplocha, J.; Apra, E.; Windus, T. L.; de Jong, W. A.

    2010-09-01

    The latest release of NWChem delivers an open-source computational chemistry package with extensive capabilities for large scale simulations of chemical and biological systems. Utilizing a common computational framework, diverse theoretical descriptions can be used to provide the best solution for a given scientific problem. Scalable parallel implementations and modular software design enable efficient utilization of current computational architectures. This paper provides an overview of NWChem focusing primarily on the core theoretical modules provided by the code and their parallel performance. Program summaryProgram title: NWChem Catalogue identifier: AEGI_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGI_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Open Source Educational Community License No. of lines in distributed program, including test data, etc.: 11 709 543 No. of bytes in distributed program, including test data, etc.: 680 696 106 Distribution format: tar.gz Programming language: Fortran 77, C Computer: all Linux based workstations and parallel supercomputers, Windows and Apple machines Operating system: Linux, OS X, Windows Has the code been vectorised or parallelized?: Code is parallelized Classification: 2.1, 2.2, 3, 7.3, 7.7, 16.1, 16.2, 16.3, 16.10, 16.13 Nature of problem: Large-scale atomistic simulations of chemical and biological systems require efficient and reliable methods for ground and excited solutions of many-electron Hamiltonian, analysis of the potential energy surface, and dynamics. Solution method: Ground and excited solutions of many-electron Hamiltonian are obtained utilizing density-functional theory, many-body perturbation approach, and coupled cluster expansion. These solutions or a combination thereof with classical descriptions are then used to analyze potential energy surface and perform dynamical simulations. Additional comments: Full documentation is provided in the distribution file. This includes an INSTALL file giving details of how to build the package. A set of test runs is provided in the examples directory. The distribution file for this program is over 90 Mbytes and therefore is not delivered directly when download or Email is requested. Instead a html file giving details of how the program can be obtained is sent. Running time: Running time depends on the size of the chemical system, complexity of the method, number of cpu's and the computational task. It ranges from several seconds for serial DFT energy calculations on a few atoms to several hours for parallel coupled cluster energy calculations on tens of atoms or ab-initio molecular dynamics simulation on hundreds of atoms.

  17. Theories and Research in Educational Technology and Distance Learning Instruction through Blackboard

    ERIC Educational Resources Information Center

    Ouyang, John Ronghua; Stanley, Nile

    2014-01-01

    Educational technology is a fast-growing and increasingly developed subject in education during the past 50 years. The focus of the development of its theories and research is oriented into the methods and effectiveness of its implementation. This presentation is reviewing various educational technology related theories, exploring and discussing…

  18. Embedding speech into virtual realities

    NASA Technical Reports Server (NTRS)

    Bohn, Christian-Arved; Krueger, Wolfgang

    1993-01-01

    In this work a speaker-independent speech recognition system is presented, which is suitable for implementation in Virtual Reality applications. The use of an artificial neural network in connection with a special compression of the acoustic input leads to a system, which is robust, fast, easy to use and needs no additional hardware, beside a common VR-equipment.

  19. Challenges of Engineering Higher Education in a Transitional Economy: A Russian Experience

    ERIC Educational Resources Information Center

    Matveev, Alexei; Matveev, Olga; Zhukov, Vassily

    2005-01-01

    Education and training serve as critical elements of advancement of a nation's economy in transition. The restructuring of the power engineering industry in Russia has called for a fast implementation of new management system in electric power engineering and radical training of professional managers at different levels in organizations.…

  20. Fast demodulation of pattern images by spiral phase transform in structured-illumination reflectance imaging for detection of bruises in apples

    USDA-ARS?s Scientific Manuscript database

    A structured-illumination reflectance imaging (SIRI) system was recently developed in our laboratory for enhanced quality evaluation of horticultural products. It was implemented using a digital camera to acquire reflectance images from food products subjected to sinusoidal patterns (or other simila...

  1. Creating Mandalas for the Management of Acute Pain Symptoms in Pediatric Patients

    ERIC Educational Resources Information Center

    Stinley, Nora E.; Norris, Deborah O.; Hinds, Pamela S.

    2015-01-01

    This randomized controlled clinical trial explored the feasibility of implementing a fast-acting mandala intervention to reduce physical pain and psychological anxiety experienced during needle sticks. Forty pediatric patients participated in this two-group study: 20 participants created a mandala on an iPad (Treatment Group) and 20 participants…

  2. Development Of A Navier-Stokes Computer Code

    NASA Technical Reports Server (NTRS)

    Yoon, Seokkwan; Kwak, Dochan

    1993-01-01

    Report discusses aspects of development of CENS3D computer code, solving three-dimensional Navier-Stokes equations of compressible, viscous, unsteady flow. Implements implicit finite-difference or finite-volume numerical-integration scheme, called "lower-upper symmetric-Gauss-Seidel" (LU-SGS), offering potential for very low computer time per iteration and for fast convergence.

  3. Hybrid Learning in Higher Education: The Potential of Teaching and Learning with Robot-Mediated Communication

    ERIC Educational Resources Information Center

    Gleason, Benjamin; Greenhow, Christine

    2017-01-01

    Blended learning, which combines online and face-to-face pedagogy, is a fast-growing mode of instruction as universities strive for equitable and alternative pathways to course enrollment, retention, and educational attainment. However, challenges to successfully implementing blended instruction are that "social presence," or students'…

  4. InfoQuest: Information Delivery at UNL.

    ERIC Educational Resources Information Center

    Pearson, Debra; Zillig, Brian; Lewandowski, Sharon

    The University of Nebraska-Lincoln (UNL) Libraries designed and implemented a fast and efficient method of transferring materials between and among the UNL campuses for users of the UNL Libraries. The prior array of services were difficult to use and did not serve all patron types. That system relied upon student workers to retrieve and deliver…

  5. Benefits of Using Online Student Response Systems in Japanese EFL Classrooms

    ERIC Educational Resources Information Center

    Mork, Cathrine-Mette

    2014-01-01

    Online student response systems (OSRSs) are fast replacing classroom response systems (CRSs), also known as personal or audience response systems or "clickers". OSRSs can more easily be implemented in the classroom because they are web-based and allow students to use any browser and device to do the "clicking" required to…

  6. Green's function solution to radiative heat transfer between longitudinal gray fins

    NASA Technical Reports Server (NTRS)

    Frankel, J. I.; Silvestri, J. J.

    1991-01-01

    A demonstration is presented of the applicability and versatility of a pure integral formulation for radiative-conductive heat-transfer problems. Preliminary results have been obtained which indicate that this formulation allows an accurate, fast, and stable computation procedure to be implemented. Attention is given to the accessory problem defining Green's function.

  7. Laboratories for Educational Innovation: Honors Programs in the Netherlands

    ERIC Educational Resources Information Center

    Wolfensberger, Marca V. C.; Van Eijl, Pierre; Pilot, Albert

    2012-01-01

    In Dutch universities, honors programs are a fast growing development. The first such programs started in 1993. Twenty years later a large number of programs are implemented at nearly all research universities and also at many universities of applied sciences in the Netherlands. Recent data have revealed significant diversity in the types and…

  8. Cell-based approaches for screening and prioritization of chemicals that may cause developmental neurotoxicity

    EPA Science Inventory

    The National Academies report on Toxicity Testing in the 21st Century envisioned the use of in vitro toxicity tests using cells of human origin to predict the ability of chemicals to cause toxicity in vivo. Successful implementation of this strategy will ultimately result in fast...

  9. Development of Fast Algorithms Using Recursion, Nesting and Iterations for Computational Electromagnetics

    NASA Technical Reports Server (NTRS)

    Chew, W. C.; Song, J. M.; Lu, C. C.; Weedon, W. H.

    1995-01-01

    In the first phase of our work, we have concentrated on laying the foundation to develop fast algorithms, including the use of recursive structure like the recursive aggregate interaction matrix algorithm (RAIMA), the nested equivalence principle algorithm (NEPAL), the ray-propagation fast multipole algorithm (RPFMA), and the multi-level fast multipole algorithm (MLFMA). We have also investigated the use of curvilinear patches to build a basic method of moments code where these acceleration techniques can be used later. In the second phase, which is mainly reported on here, we have concentrated on implementing three-dimensional NEPAL on a massively parallel machine, the Connection Machine CM-5, and have been able to obtain some 3D scattering results. In order to understand the parallelization of codes on the Connection Machine, we have also studied the parallelization of 3D finite-difference time-domain (FDTD) code with PML material absorbing boundary condition (ABC). We found that simple algorithms like the FDTD with material ABC can be parallelized very well allowing us to solve within a minute a problem of over a million nodes. In addition, we have studied the use of the fast multipole method and the ray-propagation fast multipole algorithm to expedite matrix-vector multiplication in a conjugate-gradient solution to integral equations of scattering. We find that these methods are faster than LU decomposition for one incident angle, but are slower than LU decomposition when many incident angles are needed as in the monostatic RCS calculations.

  10. Telemedicine with integrated data security in ATM-based networks

    NASA Astrophysics Data System (ADS)

    Thiel, Andreas; Bernarding, Johannes; Kurth, Ralf; Wenzel, Rudiger; Villringer, Arno; Tolxdorff, Thomas

    1997-05-01

    Telemedical services rely on the digital transfer of large amounts of data in a short time. The acceptance of these services requires therefore new hard- and software concepts. The fast exchange of data is well performed within a high- speed ATM-based network. The fast access to the data from different platforms imposes more difficult problems, which may be divided into those relating to standardized data formats and those relating to different levels of data security across nations. For a standardized access to the formats and those relating to different levels of data security across nations. For a standardized access to the image data, a DICOM 3.0 server was implemented.IMages were converted into the DICOM 3.0 standard if necessary. The access to the server is provided by an implementation of DICOM in JAVA allowing access to the data from different platforms. Data protection measures to ensure the secure transfer of sensitive patient data are not yet solved within the DICOM concept. We investigated different schemes to protect data using the DICOM/JAVA modality with as little impact on data transfer speed as possible.

  11. A 75-ps Gated CMOS Image Sensor with Low Parasitic Light Sensitivity

    PubMed Central

    Zhang, Fan; Niu, Hanben

    2016-01-01

    In this study, a 40 × 48 pixel global shutter complementary metal-oxide-semiconductor (CMOS) image sensor with an adjustable shutter time as low as 75 ps was implemented using a 0.5-μm mixed-signal CMOS process. The implementation consisted of a continuous contact ring around each p+/n-well photodiode in the pixel array in order to apply sufficient light shielding. The parasitic light sensitivity of the in-pixel storage node was measured to be 1/8.5 × 107 when illuminated by a 405-nm diode laser and 1/1.4 × 104 when illuminated by a 650-nm diode laser. The pixel pitch was 24 μm, the size of the square p+/n-well photodiode in each pixel was 7 μm per side, the measured random readout noise was 217 e− rms, and the measured dynamic range of the pixel of the designed chip was 5500:1. The type of gated CMOS image sensor (CIS) that is proposed here can be used in ultra-fast framing cameras to observe non-repeatable fast-evolving phenomena. PMID:27367699

  12. A 75-ps Gated CMOS Image Sensor with Low Parasitic Light Sensitivity.

    PubMed

    Zhang, Fan; Niu, Hanben

    2016-06-29

    In this study, a 40 × 48 pixel global shutter complementary metal-oxide-semiconductor (CMOS) image sensor with an adjustable shutter time as low as 75 ps was implemented using a 0.5-μm mixed-signal CMOS process. The implementation consisted of a continuous contact ring around each p+/n-well photodiode in the pixel array in order to apply sufficient light shielding. The parasitic light sensitivity of the in-pixel storage node was measured to be 1/8.5 × 10⁷ when illuminated by a 405-nm diode laser and 1/1.4 × 10⁴ when illuminated by a 650-nm diode laser. The pixel pitch was 24 μm, the size of the square p+/n-well photodiode in each pixel was 7 μm per side, the measured random readout noise was 217 e(-) rms, and the measured dynamic range of the pixel of the designed chip was 5500:1. The type of gated CMOS image sensor (CIS) that is proposed here can be used in ultra-fast framing cameras to observe non-repeatable fast-evolving phenomena.

  13. Detector-device-independent quantum key distribution: Security analysis and fast implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boaron, Alberto; Korzh, Boris; Boso, Gianluca

    One of the most pressing issues in quantum key distribution (QKD) is the problem of detector side-channel attacks. To overcome this problem, researchers proposed an elegant “time-reversal” QKD protocol called measurement-device-independent QKD (MDI-QKD), which is based on time-reversed entanglement swapping. However, MDI-QKD is more challenging to implement than standard point-to-point QKD. Recently, an intermediary QKD protocol called detector-device-independent QKD (DDI-QKD) has been proposed to overcome the drawbacks of MDI-QKD, with the hope that it would eventually lead to a more efficient detector side-channel-free QKD system. Here, we analyze the security of DDI-QKD and elucidate its security assumptions. We find thatmore » DDI-QKD is not equivalent to MDI-QKD, but its security can be demonstrated with reasonable assumptions. On the more practical side, we consider the feasibility of DDI-QKD and present a fast experimental demonstration (clocked at 625 MHz), capable of secret key exchange up to more than 90 km.« less

  14. RS-Forest: A Rapid Density Estimator for Streaming Anomaly Detection.

    PubMed

    Wu, Ke; Zhang, Kun; Fan, Wei; Edwards, Andrea; Yu, Philip S

    Anomaly detection in streaming data is of high interest in numerous application domains. In this paper, we propose a novel one-class semi-supervised algorithm to detect anomalies in streaming data. Underlying the algorithm is a fast and accurate density estimator implemented by multiple fully randomized space trees (RS-Trees), named RS-Forest. The piecewise constant density estimate of each RS-tree is defined on the tree node into which an instance falls. Each incoming instance in a data stream is scored by the density estimates averaged over all trees in the forest. Two strategies, statistical attribute range estimation of high probability guarantee and dual node profiles for rapid model update, are seamlessly integrated into RS-Forest to systematically address the ever-evolving nature of data streams. We derive the theoretical upper bound for the proposed algorithm and analyze its asymptotic properties via bias-variance decomposition. Empirical comparisons to the state-of-the-art methods on multiple benchmark datasets demonstrate that the proposed method features high detection rate, fast response, and insensitivity to most of the parameter settings. Algorithm implementations and datasets are available upon request.

  15. Fast Learning for Immersive Engagement in Energy Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bush, Brian W; Bugbee, Bruce; Gruchalla, Kenny M

    The fast computation which is critical for immersive engagement with and learning from energy simulations would be furthered by developing a general method for creating rapidly computed simplified versions of NREL's computation-intensive energy simulations. Created using machine learning techniques, these 'reduced form' simulations can provide statistically sound estimates of the results of the full simulations at a fraction of the computational cost with response times - typically less than one minute of wall-clock time - suitable for real-time human-in-the-loop design and analysis. Additionally, uncertainty quantification techniques can document the accuracy of the approximate models and their domain of validity. Approximationmore » methods are applicable to a wide range of computational models, including supply-chain models, electric power grid simulations, and building models. These reduced-form representations cannot replace or re-implement existing simulations, but instead supplement them by enabling rapid scenario design and quality assurance for large sets of simulations. We present an overview of the framework and methods we have implemented for developing these reduced-form representations.« less

  16. RS-Forest: A Rapid Density Estimator for Streaming Anomaly Detection

    PubMed Central

    Wu, Ke; Zhang, Kun; Fan, Wei; Edwards, Andrea; Yu, Philip S.

    2015-01-01

    Anomaly detection in streaming data is of high interest in numerous application domains. In this paper, we propose a novel one-class semi-supervised algorithm to detect anomalies in streaming data. Underlying the algorithm is a fast and accurate density estimator implemented by multiple fully randomized space trees (RS-Trees), named RS-Forest. The piecewise constant density estimate of each RS-tree is defined on the tree node into which an instance falls. Each incoming instance in a data stream is scored by the density estimates averaged over all trees in the forest. Two strategies, statistical attribute range estimation of high probability guarantee and dual node profiles for rapid model update, are seamlessly integrated into RS-Forest to systematically address the ever-evolving nature of data streams. We derive the theoretical upper bound for the proposed algorithm and analyze its asymptotic properties via bias-variance decomposition. Empirical comparisons to the state-of-the-art methods on multiple benchmark datasets demonstrate that the proposed method features high detection rate, fast response, and insensitivity to most of the parameter settings. Algorithm implementations and datasets are available upon request. PMID:25685112

  17. A Robust and Fast Computation Touchless Palm Print Recognition System Using LHEAT and the IFkNCN Classifier

    PubMed Central

    Jaafar, Haryati; Ibrahim, Salwani; Ramli, Dzati Athiar

    2015-01-01

    Mobile implementation is a current trend in biometric design. This paper proposes a new approach to palm print recognition, in which smart phones are used to capture palm print images at a distance. A touchless system was developed because of public demand for privacy and sanitation. Robust hand tracking, image enhancement, and fast computation processing algorithms are required for effective touchless and mobile-based recognition. In this project, hand tracking and the region of interest (ROI) extraction method were discussed. A sliding neighborhood operation with local histogram equalization, followed by a local adaptive thresholding or LHEAT approach, was proposed in the image enhancement stage to manage low-quality palm print images. To accelerate the recognition process, a new classifier, improved fuzzy-based k nearest centroid neighbor (IFkNCN), was implemented. By removing outliers and reducing the amount of training data, this classifier exhibited faster computation. Our experimental results demonstrate that a touchless palm print system using LHEAT and IFkNCN achieves a promising recognition rate of 98.64%. PMID:26113861

  18. Implementation of a long leg X-point target divertor in the ARC fusion pilot plant

    NASA Astrophysics Data System (ADS)

    Kuang, A. Q.; Cao, N. M.; Creely, A. J.; Dennett, C. A.; Hecla, J.; Hoffman, H.; Major, M.; Ruiz Ruiz, J.; Tinguely, R. A.; Tolman, E. A.; Brunner, D.; Labombard, B.; Sorbom, B. N.; Whyte, D. G.; Grover, P.; Laughman, C.

    2017-10-01

    A long leg X-point target divertor geometry in a double null geometry has been implemented in the ARC pilot plant design, exploiting ARC's demountable toroidal field (TF) coils and FLiBe immersion blanket, which allow superconducting poloidal field coils to be located inside the TF coils, adequately shielded from neutrons. This new design maintains the original TF coil size, core plasma shape, and attains a tritium breedin ratio 1.08. The long leg divertor geometry provides significant advantages. Neutron transport computations indicate a factor of 10 reduction in divertor material neutron damage rate compared to the first wall, easing requirements for high heat flux components. Simulations have shown that long legged divertors are able to maintain a passively stable detachment front that stays in the divertor leg over a wide power window, in principle, responding immediately to fast changes in power exhaust. The ARC design exploits this new paradigm for divertor heat flux control: fewer concerns about coping with fast transients and a focus on neutron-tolerant diagnostics to measure and adjust detachment front locations in the outer divertor legs over long timescales.

  19. Role of focused assessment with sonography for trauma as a screening tool for blunt abdominal trauma in young children after high energy trauma.

    PubMed

    Tummers, W; van Schuppen, J; Langeveld, H; Wilde, J; Banderker, E; van As, A

    2016-06-01

    The objective of the study was to review the utility of focused assessement with sonography for trauma (FAST) as a screening tool for blunt abdominal trauma (BAT) in children involved in high energy trauma (HET), and to determine whether a FAST could replace computed tomography (CT) in clinical decision-making regarding paediatric BAT. Children presented at the Trauma Unit of the Red Cross War Memorial Children's Hospital, Cape Town, after HET, and underwent both a physical examination and a FAST. The presence of free fluid in the abdomen and pelvis was assessed using a FAST. Sensitivity, specificity, and positive and negative predictive values (PPV and NPV) for identifying intraabdominal injury were calculated for the physical examination and the FAST, both individually and when combined. Seventy-five patients were included as per the criteria for HET as follows: pedestrian motor vehicle crashes (MVCs) ( n = 46), assault ( n = 14), fall from a height ( n = 9), MVC passenger ( n = 4) and other ( n = 2). The ages of the patients ranged from 3 months to 13 years. The sensitivity of the physical examination was 0.80, specificity 0.83, PPV 0.42 and NPV 0.96. The sensitivity of the FAST was 0.50, specificity 1.00, PPV 1.00 and NPV 0.93. Sensitivity increased to 0.90 when the physical examination was combined with the FAST. Nonoperative management was used in 73 patients. Two underwent an operation. A FAST should be performed in combination with a physical examination on every paediatric patient involved in HET to detect BAT. When both are negative, nonoperative management can be implemented without fear of missing a clinically significant injury. FAST is a safe, effective and easily accessible alternative to CT, which avoids ionising radiation and aids in clinical decision-making.

  20. Automatic Adaptation to Fast Input Changes in a Time-Invariant Neural Circuit

    PubMed Central

    Bharioke, Arjun; Chklovskii, Dmitri B.

    2015-01-01

    Neurons must faithfully encode signals that can vary over many orders of magnitude despite having only limited dynamic ranges. For a correlated signal, this dynamic range constraint can be relieved by subtracting away components of the signal that can be predicted from the past, a strategy known as predictive coding, that relies on learning the input statistics. However, the statistics of input natural signals can also vary over very short time scales e.g., following saccades across a visual scene. To maintain a reduced transmission cost to signals with rapidly varying statistics, neuronal circuits implementing predictive coding must also rapidly adapt their properties. Experimentally, in different sensory modalities, sensory neurons have shown such adaptations within 100 ms of an input change. Here, we show first that linear neurons connected in a feedback inhibitory circuit can implement predictive coding. We then show that adding a rectification nonlinearity to such a feedback inhibitory circuit allows it to automatically adapt and approximate the performance of an optimal linear predictive coding network, over a wide range of inputs, while keeping its underlying temporal and synaptic properties unchanged. We demonstrate that the resulting changes to the linearized temporal filters of this nonlinear network match the fast adaptations observed experimentally in different sensory modalities, in different vertebrate species. Therefore, the nonlinear feedback inhibitory network can provide automatic adaptation to fast varying signals, maintaining the dynamic range necessary for accurate neuronal transmission of natural inputs. PMID:26247884

  1. Input-independent, Scalable and Fast String Matching on the Cray XMT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villa, Oreste; Chavarría-Miranda, Daniel; Maschhoff, Kristyn J

    2009-05-25

    String searching is at the core of many security and network applications like search engines, intrusion detection systems, virus scanners and spam filters. The growing size of on-line content and the increasing wire speeds push the need for fast, and often real- time, string searching solutions. For these conditions, many software implementations (if not all) targeting conventional cache-based microprocessors do not perform well. They either exhibit overall low performance or exhibit highly variable performance depending on the types of inputs. For this reason, real-time state of the art solutions rely on the use of either custom hardware or Field-Programmable Gatemore » Arrays (FPGAs) at the expense of overall system flexibility and programmability. This paper presents a software based implementation of the Aho-Corasick string searching algorithm on the Cray XMT multithreaded shared memory machine. Our so- lution relies on the particular features of the XMT architecture and on several algorith- mic strategies: it is fast, scalable and its performance is virtually content-independent. On a 128-processor Cray XMT, it reaches a scanning speed of ≈ 28 Gbps with a performance variability below 10 %. In the 10 Gbps performance range, variability is below 2.5%. By comparison, an Intel dual-socket, 8-core system running at 2.66 GHz achieves a peak performance which varies from 500 Mbps to 10 Gbps depending on the type of input and dictionary size.« less

  2. Coupling fast fluid dynamics and multizone airflow models in Modelica Buildings library to simulate the dynamics of HVAC systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Wei; Sevilla, Thomas Alonso; Zuo, Wangda

    Historically, multizone models are widely used in building airflow and energy performance simulations due to their fast computing speed. However, multizone models assume that the air in a room is well mixed, consequently limiting their application. In specific rooms where this assumption fails, the use of computational fluid dynamics (CFD) models may be an alternative option. Previous research has mainly focused on coupling CFD models and multizone models to study airflow in large spaces. While significant, most of these analyses did not consider the coupled simulation of the building airflow with the building's Heating, Ventilation, and Air-Conditioning (HVAC) systems. Thismore » paper tries to fill the gap by integrating the models for HVAC systems with coupled multizone and CFD simulations for airflows, using the Modelica simul ation platform. To improve the computational efficiency, we incorporated a simplified CFD model named fast fluid dynamics (FFD). We first introduce the data synchronization strategy and implementation in Modelica. Then, we verify the implementation using two case studies involving an isothermal and a non-isothermal flow by comparing model simulations to experiment data. Afterward, we study another three cases that are deemed more realistic. This is done by attaching a variable air volume (VAV) terminal box and a VAV system to previous flows to assess the capability of the models in studying the dynamic control of HVAC systems. Finally, we discuss further research needs on the coupled simulation using the models.« less

  3. Closed-loop control of renal perfusion pressure in physiological experiments.

    PubMed

    Campos-Delgado, D U; Bonilla, I; Rodríguez-Martínez, M; Sánchez-Briones, M E; Ruiz-Hernández, E

    2013-07-01

    This paper presents the design, experimental modeling, and control of a pump-driven renal perfusion pressure (RPP)-regulatory system to implement precise and relatively fast RPP regulation in rats. The mechatronic system is a simple, low-cost, and reliable device to automate the RPP regulation process based on flow-mediated occlusion. Hence, the regulated signal is the RPP measured in the left femoral artery of the rat, and the manipulated variable is the voltage applied to a dc motor that controls the occlusion of the aorta. The control system is implemented in a PC through the LabView software, and a data acquisition board NI USB-6210. A simple first-order linear system is proposed to approximate the dynamics in the experiment. The parameters of the model are chosen to minimize the error between the predicted and experimental output averaged from eight input/output datasets at different RPP operating conditions. A closed-loop servocontrol system based on a pole-placement PD controller plus dead-zone compensation was proposed for this purpose. First, the feedback structure was validated in simulation by considering parameter uncertainty, and constant and time-varying references. Several experimental tests were also conducted to validate in real time the closed-loop performance for stepwise and fast switching references, and the results show the effectiveness of the proposed automatic system to regulate the RPP in the rat, in a precise, accurate (mean error less than 2 mmHg) and relatively fast mode (10-15 s of response time).

  4. The Evolution of the Multicoloured Face of Mandrills: Insights from the Perceptual Space of Colour Vision

    PubMed Central

    Renoult, Julien P.; Schaefer, H. Martin; Sallé, Bettina; Charpentier, Marie J. E.

    2011-01-01

    Multicomponent signals consist of several traits that are perceived as a whole. Although many animals rely on multicomponent signals to communicate, the selective pressures shaping these signals are still poorly understood. Previous work has mainly investigated the evolution of multicomponent signals by studying each trait individually, which may not accurately reflect the selective pressures exerted by the holistic perception of signal receivers. Here, we study the design of the multicoloured face of an Old World primate, the mandrill (Mandrillus sphinx), in relation to two aspects of signalling that are expected to be selected by receivers: conspicuousness and information. Using reflectance data on the blue and red colours of the faces of 34 males and a new method of hue vectorisation in a perceptual space of colour vision, we show that the blue hue maximises contrasts to both the red hue and the foliage background colouration, thereby increasing the conspicuousness of the whole display. We further show that although blue saturation, red saturation and the contrast between blue and red colours are all correlated with dominance, dominance is most accurately indicated by the blue-red contrast. Taken together our results suggest that the evolution of blue and red facial colours in male mandrills are not independent and are likely driven by the holistic perception of conspecifics. In this view, we propose that the multicoloured face of mandrills acts as a multicomponent signal. Last, we show that information accuracy increases with the conspicuousness of the whole display, indicating that both aspects of signalling can evolve in concert. PMID:22216180

  5. Moving magnets in a micromagnetic finite-difference framework

    NASA Astrophysics Data System (ADS)

    Rissanen, Ilari; Laurson, Lasse

    2018-05-01

    We present a method and an implementation for smooth linear motion in a finite-difference-based micromagnetic simulation code, to be used in simulating magnetic friction and other phenomena involving moving microscale magnets. Our aim is to accurately simulate the magnetization dynamics and relative motion of magnets while retaining high computational speed. To this end, we combine techniques for fast scalar potential calculation and cubic b-spline interpolation, parallelizing them on a graphics processing unit (GPU). The implementation also includes the possibility of explicitly simulating eddy currents in the case of conducting magnets. We test our implementation by providing numerical examples of stick-slip motion of thin films pulled by a spring and the effect of eddy currents on the switching time of magnetic nanocubes.

  6. Overcoming Molehills and Mountains Implementing a New Program

    NASA Technical Reports Server (NTRS)

    Salute, Joan; McDougal, John; Stephens, Karen

    2011-01-01

    This slide presentation reviews some of the challenges and accomplishments of implementing a new program. The purpose of the presentation is to: (1) Share the challenges that were encountered formulating a new program concurrent with formulating & implementing new spacecraft development projects: (a) Immature mission concepts put on the fast track (b) Need to reconcile ambitious objectives with cost and budget reality (c) Changes of major stakeholders (d) Timing, timing, timing (e) Changing ground rules, assumptions, and risk tolerance (f) The role of centers, (2) Share the successes to date despite the challenges (3) Demonstrate how interdependencies between the program, projects, NASA HQ environment, and external political forces affect the process, and how expectations must be managed while dealing with external factors and great change.

  7. A Real-Time Data Acquisition and Processing Framework Based on FlexRIO FPGA and ITER Fast Plant System Controller

    NASA Astrophysics Data System (ADS)

    Yang, C.; Zheng, W.; Zhang, M.; Yuan, T.; Zhuang, G.; Pan, Y.

    2016-06-01

    Measurement and control of the plasma in real-time are critical for advanced Tokamak operation. It requires high speed real-time data acquisition and processing. ITER has designed the Fast Plant System Controllers (FPSC) for these purposes. At J-TEXT Tokamak, a real-time data acquisition and processing framework has been designed and implemented using standard ITER FPSC technologies. The main hardware components of this framework are an Industrial Personal Computer (IPC) with a real-time system and FlexRIO devices based on FPGA. With FlexRIO devices, data can be processed by FPGA in real-time before they are passed to the CPU. The software elements are based on a real-time framework which runs under Red Hat Enterprise Linux MRG-R and uses Experimental Physics and Industrial Control System (EPICS) for monitoring and configuring. That makes the framework accord with ITER FPSC standard technology. With this framework, any kind of data acquisition and processing FlexRIO FPGA program can be configured with a FPSC. An application using the framework has been implemented for the polarimeter-interferometer diagnostic system on J-TEXT. The application is able to extract phase-shift information from the intermediate frequency signal produced by the polarimeter-interferometer diagnostic system and calculate plasma density profile in real-time. Different algorithms implementations on the FlexRIO FPGA are compared in the paper.

  8. Fast l₁-SPIRiT compressed sensing parallel imaging MRI: scalable parallel implementation and clinically feasible runtime.

    PubMed

    Murphy, Mark; Alley, Marcus; Demmel, James; Keutzer, Kurt; Vasanawala, Shreyas; Lustig, Michael

    2012-06-01

    We present l₁-SPIRiT, a simple algorithm for auto calibrating parallel imaging (acPI) and compressed sensing (CS) that permits an efficient implementation with clinically-feasible runtimes. We propose a CS objective function that minimizes cross-channel joint sparsity in the wavelet domain. Our reconstruction minimizes this objective via iterative soft-thresholding, and integrates naturally with iterative self-consistent parallel imaging (SPIRiT). Like many iterative magnetic resonance imaging reconstructions, l₁-SPIRiT's image quality comes at a high computational cost. Excessively long runtimes are a barrier to the clinical use of any reconstruction approach, and thus we discuss our approach to efficiently parallelizing l₁-SPIRiT and to achieving clinically-feasible runtimes. We present parallelizations of l₁-SPIRiT for both multi-GPU systems and multi-core CPUs, and discuss the software optimization and parallelization decisions made in our implementation. The performance of these alternatives depends on the processor architecture, the size of the image matrix, and the number of parallel imaging channels. Fundamentally, achieving fast runtime requires the correct trade-off between cache usage and parallelization overheads. We demonstrate image quality via a case from our clinical experimentation, using a custom 3DFT spoiled gradient echo (SPGR) sequence with up to 8× acceleration via Poisson-disc undersampling in the two phase-encoded directions.

  9. Fast ℓ1-SPIRiT Compressed Sensing Parallel Imaging MRI: Scalable Parallel Implementation and Clinically Feasible Runtime

    PubMed Central

    Murphy, Mark; Alley, Marcus; Demmel, James; Keutzer, Kurt; Vasanawala, Shreyas; Lustig, Michael

    2012-01-01

    We present ℓ1-SPIRiT, a simple algorithm for auto calibrating parallel imaging (acPI) and compressed sensing (CS) that permits an efficient implementation with clinically-feasible runtimes. We propose a CS objective function that minimizes cross-channel joint sparsity in the Wavelet domain. Our reconstruction minimizes this objective via iterative soft-thresholding, and integrates naturally with iterative Self-Consistent Parallel Imaging (SPIRiT). Like many iterative MRI reconstructions, ℓ1-SPIRiT’s image quality comes at a high computational cost. Excessively long runtimes are a barrier to the clinical use of any reconstruction approach, and thus we discuss our approach to efficiently parallelizing ℓ1-SPIRiT and to achieving clinically-feasible runtimes. We present parallelizations of ℓ1-SPIRiT for both multi-GPU systems and multi-core CPUs, and discuss the software optimization and parallelization decisions made in our implementation. The performance of these alternatives depends on the processor architecture, the size of the image matrix, and the number of parallel imaging channels. Fundamentally, achieving fast runtime requires the correct trade-off between cache usage and parallelization overheads. We demonstrate image quality via a case from our clinical experimentation, using a custom 3DFT Spoiled Gradient Echo (SPGR) sequence with up to 8× acceleration via poisson-disc undersampling in the two phase-encoded directions. PMID:22345529

  10. Implementation of an Unequal Path Length, Heterodyne Interferometer on the MOCHI LabJet Experiment

    NASA Astrophysics Data System (ADS)

    Card, Alexander Harrison

    The MOCHI LabJet experiment aims to explore the stability of magnetic flux tubes through the medium of laboratory astrophysical plasmas. The boundary conditions of large gravitational bodies, namely accretion disks, are replicated and allowed to influence a plasma over short timescales. Observation of the plasma is enabled through use of a variety of fast diagnostics, including an unequal path length, heterodyne, quadrature phase differential interferometer, the development and implementation of which is described in detail. The LabJet gun, a triple-electrode planar plasma gun featuring azimuthally symmetric gas injection achieves a new, long-duration, highly-stabilized, jet plasma formation. The line-integrated density in this new LabJet formation is found to be ne = (6 +/- 3)x1020 [m-2]. By observing the axial expansion rate of the jet over multiple chord locations (all perpendicular to the propagation axis), the interferometer provides an Alfvén velocity measurement of vA = 41.3 +/- 5.4 [km/s], which at the jet density observed indicates an axial magnetic field strength of Bz = 0.15 +/- 0.04 [T]. Various other laboratory components are also detailed, such as a shot-based MDSplus data storage architecture implemented into the LabVIEW experiment control code, and the production and performance of ten fast neutral gas injection valves which when fired in unison provide a total particle inventory of (7.8 +/- 0.6)x1023 [HI particles].

  11. mrsFAST-Ultra: a compact, SNP-aware mapper for high performance sequencing applications.

    PubMed

    Hach, Faraz; Sarrafi, Iman; Hormozdiari, Farhad; Alkan, Can; Eichler, Evan E; Sahinalp, S Cenk

    2014-07-01

    High throughput sequencing (HTS) platforms generate unprecedented amounts of data that introduce challenges for processing and downstream analysis. While tools that report the 'best' mapping location of each read provide a fast way to process HTS data, they are not suitable for many types of downstream analysis such as structural variation detection, where it is important to report multiple mapping loci for each read. For this purpose we introduce mrsFAST-Ultra, a fast, cache oblivious, SNP-aware aligner that can handle the multi-mapping of HTS reads very efficiently. mrsFAST-Ultra improves mrsFAST, our first cache oblivious read aligner capable of handling multi-mapping reads, through new and compact index structures that reduce not only the overall memory usage but also the number of CPU operations per alignment. In fact the size of the index generated by mrsFAST-Ultra is 10 times smaller than that of mrsFAST. As importantly, mrsFAST-Ultra introduces new features such as being able to (i) obtain the best mapping loci for each read, and (ii) return all reads that have at most n mapping loci (within an error threshold), together with these loci, for any user specified n. Furthermore, mrsFAST-Ultra is SNP-aware, i.e. it can map reads to reference genome while discounting the mismatches that occur at common SNP locations provided by db-SNP; this significantly increases the number of reads that can be mapped to the reference genome. Notice that all of the above features are implemented within the index structure and are not simple post-processing steps and thus are performed highly efficiently. Finally, mrsFAST-Ultra utilizes multiple available cores and processors and can be tuned for various memory settings. Our results show that mrsFAST-Ultra is roughly five times faster than its predecessor mrsFAST. In comparison to newly enhanced popular tools such as Bowtie2, it is more sensitive (it can report 10 times or more mappings per read) and much faster (six times or more) in the multi-mapping mode. Furthermore, mrsFAST-Ultra has an index size of 2GB for the entire human reference genome, which is roughly half of that of Bowtie2. mrsFAST-Ultra is open source and it can be accessed at http://mrsfast.sourceforge.net. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. SU-E-T-422: Fast Analytical Beamlet Optimization for Volumetric Intensity-Modulated Arc Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Kenny S K; Lee, Louis K Y; Xing, L

    2015-06-15

    Purpose: To implement a fast optimization algorithm on CPU/GPU heterogeneous computing platform and to obtain an optimal fluence for a given target dose distribution from the pre-calculated beamlets in an analytical approach. Methods: The 2D target dose distribution was modeled as an n-dimensional vector and estimated by a linear combination of independent basis vectors. The basis set was composed of the pre-calculated beamlet dose distributions at every 6 degrees of gantry angle and the cost function was set as the magnitude square of the vector difference between the target and the estimated dose distribution. The optimal weighting of the basis,more » which corresponds to the optimal fluence, was obtained analytically by the least square method. Those basis vectors with a positive weighting were selected for entering into the next level of optimization. Totally, 7 levels of optimization were implemented in the study.Ten head-and-neck and ten prostate carcinoma cases were selected for the study and mapped to a round water phantom with a diameter of 20cm. The Matlab computation was performed in a heterogeneous programming environment with Intel i7 CPU and NVIDIA Geforce 840M GPU. Results: In all selected cases, the estimated dose distribution was in a good agreement with the given target dose distribution and their correlation coefficients were found to be in the range of 0.9992 to 0.9997. Their root-mean-square error was monotonically decreasing and converging after 7 cycles of optimization. The computation took only about 10 seconds and the optimal fluence maps at each gantry angle throughout an arc were quickly obtained. Conclusion: An analytical approach is derived for finding the optimal fluence for a given target dose distribution and a fast optimization algorithm implemented on the CPU/GPU heterogeneous computing environment greatly reduces the optimization time.« less

  13. Loop Mirror Laser Neural Network with a Fast Liquid-Crystal Display

    NASA Astrophysics Data System (ADS)

    Mos, Evert C.; Schleipen, Jean J. H. B.; de Waardt, Huug; Khoe, Djan G. D.

    1999-07-01

    In our laser neural network (LNN) all-optical threshold action is obtained by application of controlled optical feedback to a laser diode. Here an extended experimental LNN is presented with as many as 32 neurons and 12 inputs. In the setup we use a fast liquid-crystal display to implement an optical matrix vector multiplier. This display, based on ferroelectric liquid-crystal material, enables us to present 125 training examples s to the LNN. To maximize the optical feedback efficiency of the setup, a loop mirror is introduced. We use a -rule learning algorithm to train the network to perform a number of functions toward the application area of telecommunication data switching.

  14. Digital SAR processing using a fast polynomial transform

    NASA Technical Reports Server (NTRS)

    Truong, T. K.; Lipes, R. G.; Butman, S. A.; Reed, I. S.; Rubin, A. L.

    1984-01-01

    A new digital processing algorithm based on the fast polynomial transform is developed for producing images from Synthetic Aperture Radar data. This algorithm enables the computation of the two dimensional cyclic correlation of the raw echo data with the impulse response of a point target, thereby reducing distortions inherent in one dimensional transforms. This SAR processing technique was evaluated on a general-purpose computer and an actual Seasat SAR image was produced. However, regular production runs will require a dedicated facility. It is expected that such a new SAR processing algorithm could provide the basis for a real-time SAR correlator implementation in the Deep Space Network. Previously announced in STAR as N82-11295

  15. Highly parallel demagnetization field calculation using the fast multipole method on tetrahedral meshes with continuous sources

    NASA Astrophysics Data System (ADS)

    Palmesi, P.; Exl, L.; Bruckner, F.; Abert, C.; Suess, D.

    2017-11-01

    The long-range magnetic field is the most time-consuming part in micromagnetic simulations. Computational improvements can relieve problems related to this bottleneck. This work presents an efficient implementation of the Fast Multipole Method [FMM] for the magnetic scalar potential as used in micromagnetics. The novelty lies in extending FMM to linearly magnetized tetrahedral sources making it interesting also for other areas of computational physics. We treat the near field directly and in use (exact) numerical integration on the multipole expansion in the far field. This approach tackles important issues like the vectorial and continuous nature of the magnetic field. By using FMM the calculations scale linearly in time and memory.

  16. A Comparative Study of Interferometric Regridding Algorithms

    NASA Technical Reports Server (NTRS)

    Hensley, Scott; Safaeinili, Ali

    1999-01-01

    THe paper discusses regridding options: (1) The problem of interpolating data that is not sampled on a uniform grid, that is noisy, and contains gaps is a difficult problem. (2) Several interpolation algorithms have been implemented: (a) Nearest neighbor - Fast and easy but shows some artifacts in shaded relief images. (b) Simplical interpolator - uses plane going through three points containing point where interpolation is required. Reasonably fast and accurate. (c) Convolutional - uses a windowed Gaussian approximating the optimal prolate spheroidal weighting function for a specified bandwidth. (d) First or second order surface fitting - Uses the height data centered in a box about a given point and does a weighted least squares surface fit.

  17. AN EFFICIENT HIGHER-ORDER FAST MULTIPOLE BOUNDARY ELEMENT SOLUTION FOR POISSON-BOLTZMANN BASED MOLECULAR ELECTROSTATICS

    PubMed Central

    Bajaj, Chandrajit; Chen, Shun-Chuan; Rand, Alexander

    2011-01-01

    In order to compute polarization energy of biomolecules, we describe a boundary element approach to solving the linearized Poisson-Boltzmann equation. Our approach combines several important features including the derivative boundary formulation of the problem and a smooth approximation of the molecular surface based on the algebraic spline molecular surface. State of the art software for numerical linear algebra and the kernel independent fast multipole method is used for both simplicity and efficiency of our implementation. We perform a variety of computational experiments, testing our method on a number of actual proteins involved in molecular docking and demonstrating the effectiveness of our solver for computing molecular polarization energy. PMID:21660123

  18. FQC Dashboard: integrates FastQC results into a web-based, interactive, and extensible FASTQ quality control tool.

    PubMed

    Brown, Joseph; Pirrung, Meg; McCue, Lee Ann

    2017-06-09

    FQC is software that facilitates quality control of FASTQ files by carrying out a QC protocol using FastQC, parsing results, and aggregating quality metrics into an interactive dashboard designed to richly summarize individual sequencing runs. The dashboard groups samples in dropdowns for navigation among the data sets, utilizes human-readable configuration files to manipulate the pages and tabs, and is extensible with CSV data. FQC is implemented in Python 3 and Javascript, and is maintained under an MIT license. Documentation and source code is available at: https://github.com/pnnl/fqc . joseph.brown@pnnl.gov. © The Author(s) 2017. Published by Oxford University Press.

  19. System and methods for predicting transmembrane domains in membrane proteins and mining the genome for recognizing G-protein coupled receptors

    DOEpatents

    Trabanino, Rene J; Vaidehi, Nagarajan; Hall, Spencer E; Goddard, William A; Floriano, Wely

    2013-02-05

    The invention provides computer-implemented methods and apparatus implementing a hierarchical protocol using multiscale molecular dynamics and molecular modeling methods to predict the presence of transmembrane regions in proteins, such as G-Protein Coupled Receptors (GPCR), and protein structural models generated according to the protocol. The protocol features a coarse grain sampling method, such as hydrophobicity analysis, to provide a fast and accurate procedure for predicting transmembrane regions. Methods and apparatus of the invention are useful to screen protein or polynucleotide databases for encoded proteins with transmembrane regions, such as GPCRs.

  20. Enabling Chemistry of Gases and Aerosols for Assessment of Short-Lived Climate Forcers: Improving Solar Radiation Modeling in the DOE-ACME and CESM models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prather, Michael

    This proposal seeks to maintain the DOE-ACME (offshoot of CESM) as one of the leading CCMs to evaluate near-term climate mitigation. It will implement, test, and optimize the new UCI photolysis codes within CESM CAM5 and new CAM versions in ACME. Fast-J is a high-order-accuracy (8 stream) code for calculating solar scattering and absorption in a single column atmosphere containing clouds, aerosols, and gases that was developed at UCI and implemented in CAM5 under the previous BER/SciDAC grant.

  1. Cluster-state quantum computing enhanced by high-fidelity generalized measurements.

    PubMed

    Biggerstaff, D N; Kaltenbaek, R; Hamel, D R; Weihs, G; Rudolph, T; Resch, K J

    2009-12-11

    We introduce and implement a technique to extend the quantum computational power of cluster states by replacing some projective measurements with generalized quantum measurements (POVMs). As an experimental demonstration we fully realize an arbitrary three-qubit cluster computation by implementing a tunable linear-optical POVM, as well as fast active feedforward, on a two-qubit photonic cluster state. Over 206 different computations, the average output fidelity is 0.9832+/-0.0002; furthermore the error contribution from our POVM device and feedforward is only of O(10(-3)), less than some recent thresholds for fault-tolerant cluster computing.

  2. Fast casual multicast

    NASA Technical Reports Server (NTRS)

    Birman, Kenneth; Schiper, Andre; Stephenson, Pat

    1990-01-01

    A new protocol is presented that efficiently implements a reliable, causally ordered multicast primitive and is easily extended into a totally ordered one. Intended for use in the ISIS toolkit, it offers a way to bypass the most costly aspects of ISIS while benefiting from virtual synchrony. The facility scales with bounded overhead. Measured speedups of more than an order of magnitude were obtained when the protocol was implemented within ISIS. One conclusion is that systems such as ISIS can achieve performance competitive with the best existing multicast facilities--a finding contradicting the widespread concern that fault-tolerance may be unacceptably costly.

  3. HOMAR: A computer code for generating homotopic grids using algebraic relations: User's manual

    NASA Technical Reports Server (NTRS)

    Moitra, Anutosh

    1989-01-01

    A computer code for fast automatic generation of quasi-three-dimensional grid systems for aerospace configurations is described. The code employs a homotopic method to algebraically generate two-dimensional grids in cross-sectional planes, which are stacked to produce a three-dimensional grid system. Implementation of the algebraic equivalents of the homotopic relations for generating body geometries and grids are explained. Procedures for controlling grid orthogonality and distortion are described. Test cases with description and specification of inputs are presented in detail. The FORTRAN computer program and notes on implementation and use are included.

  4. A fast hidden line algorithm with contour option. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Thue, R. E.

    1984-01-01

    The JonesD algorithm was modified to allow the processing of N-sided elements and implemented in conjunction with a 3-D contour generation algorithm. The total hidden line and contour subsystem is implemented in the MOVIE.BYU Display package, and is compared to the subsystems already existing in the MOVIE.BYU package. The comparison reveals that the modified JonesD hidden line and contour subsystem yields substantial processing time savings, when processing moderate sized models comprised of 1000 elements or less. There are, however, some limitations to the modified JonesD subsystem.

  5. Efficient implementation of parallel three-dimensional FFT on clusters of PCs

    NASA Astrophysics Data System (ADS)

    Takahashi, Daisuke

    2003-05-01

    In this paper, we propose a high-performance parallel three-dimensional fast Fourier transform (FFT) algorithm on clusters of PCs. The three-dimensional FFT algorithm can be altered into a block three-dimensional FFT algorithm to reduce the number of cache misses. We show that the block three-dimensional FFT algorithm improves performance by utilizing the cache memory effectively. We use the block three-dimensional FFT algorithm to implement the parallel three-dimensional FFT algorithm. We succeeded in obtaining performance of over 1.3 GFLOPS on an 8-node dual Pentium III 1 GHz PC SMP cluster.

  6. Statistical innovations in diagnostic device evaluation.

    PubMed

    Yu, Tinghui; Li, Qin; Gray, Gerry; Yue, Lilly Q

    2016-01-01

    Due to rapid technological development, innovations in diagnostic devices are proceeding at an extremely fast pace. Accordingly, the needs for adopting innovative statistical methods have emerged in the evaluation of diagnostic devices. Statisticians in the Center for Devices and Radiological Health at the Food and Drug Administration have provided leadership in implementing statistical innovations. The innovations discussed in this article include: the adoption of bootstrap and Jackknife methods, the implementation of appropriate multiple reader multiple case study design, the application of robustness analyses for missing data, and the development of study designs and data analyses for companion diagnostics.

  7. EFFECTS OF RAMADAN FASTING ON BLOOD PRESSURE IN NORMOTENSIVE MALES.

    PubMed

    Samad, Fatima; Qazi, Fahd; Pervaiz, Mohammad B; Kella, Danesh K; Mansoor, Maryah; Osmani, Bushra Z; Mir, Fazia; Kadir, Muhammad Masood

    2015-01-01

    Research has been done to investigate the effect of intermittent complete fasting on human physiological parameters but the effect of fasting on blood pressure remains relatively unexplored. Research in animal models suggests a hypotensive effect with an undetermined mechanism. Muslims worldwide fast daily from dawn to dusk throughout the Islamic month of Ramadan. This study was to investigate the proposed hypotensive effect of Ramadan fasting in males over A period of 20 days and to study the relationship of the pattern of blood pressure variation with body mass index change. A repeated measures observational study design was implemented with convenient sampling. Study group included 40 normotensive, non-smoker males with no known comorbidities between the ages of 18-40 who fasted daily in the month of Ramadan. One set of BP readings, each, was taken one week before the start of Ramadan and on the 7th, 14th and 21st day of Ramadan which included pre and post Iftar measurements along with other variables. Data was analysed by repeated measures ANOVA using SPSS. The differences were compared with critical values generated by Tukey's Method. There was a significant drop in systolic BP of 7.61 mmHg before Iftar, 2.72 mm-Hg after Iftar (p<0.005). There was a significant effect of Ramadan on diastolic BP (p<0.005), the drop being 3.19 mmHg. The drop in body mass index was significant only before Iftar at 0.3 kg/m2 (p<0.005). Pulse rate showed a significant drop of 7.79 bpm before Iftar and a significant rise of 3.96 bpm (p<0.005). Intermittent fasting causes a drop in both systolic and diastolic blood pressure in normotensive males.

  8. Bio-inspired microfluidics: The case of the velvet worm

    NASA Astrophysics Data System (ADS)

    Concha, Andres; Mellado, Paula; Morera-Brenes, Bernal; Sampaio-Costa, Cristiano; Mahadevan, L.; Monge-Najera, Julian

    The rapid squirt of a proteinaceous slime jet endow velvet worms (Onychophora) with a unique mechanism for defense from predators and for capturing prey by entangling them in a disordered web that immobilizes their target. However, to date neither qualitative nor quantitative descriptions have been provided for this unique adaptation. We have investigated the mechanism that allows velvet worms the fast oscillatory motion of their oral papillae and the exiting liquid jet that oscillates with frequencies f ~ 30 - 60 Hz. Using anatomical images and high speed videography, we show that even without fast muscular action of the papilla, a strong contraction of the slime reservoir and the geometry of the reservoir-papilla system suffices to accelerate the slime to speeds up to v ~ 5 m /s in about Δt ~ 60 ms. A theoretical analysis and a physical simulacrum allow us to infer that this fast oscillatory motion is the result of an elastohydrodynamic instability driven by the interplay between the elasticity of oral papillae and the fast unsteady flow during squirting. We propose several applications that can be implemented using this instability, ranging from high-throughput droplet production, printing, and micro-nanofiber production among others. A.C was partially supported by Fondecyt Grant 11130075.

  9. An Approach in Radiation Therapy Treatment Planning: A Fast, GPU-Based Monte Carlo Method.

    PubMed

    Karbalaee, Mojtaba; Shahbazi-Gahrouei, Daryoush; Tavakoli, Mohammad B

    2017-01-01

    An accurate and fast radiation dose calculation is essential for successful radiation radiotherapy. The aim of this study was to implement a new graphic processing unit (GPU) based radiation therapy treatment planning for accurate and fast dose calculation in radiotherapy centers. A program was written for parallel running based on GPU. The code validation was performed by EGSnrc/DOSXYZnrc. Moreover, a semi-automatic, rotary, asymmetric phantom was designed and produced using a bone, the lung, and the soft tissue equivalent materials. All measurements were performed using a Mapcheck dosimeter. The accuracy of the code was validated using the experimental data, which was obtained from the anthropomorphic phantom as the gold standard. The findings showed that, compared with those of DOSXYZnrc in the virtual phantom and for most of the voxels (>95%), <3% dose-difference or 3 mm distance-to-agreement (DTA) was found. Moreover, considering the anthropomorphic phantom, compared to the Mapcheck dose measurements, <5% dose-difference or 5 mm DTA was observed. Fast calculation speed and high accuracy of GPU-based Monte Carlo method in dose calculation may be useful in routine radiation therapy centers as the core and main component of a treatment planning verification system.

  10. A methodology for achieving high-speed rates for artificial conductance injection in electrically excitable biological cells.

    PubMed

    Butera, R J; Wilson, C G; Delnegro, C A; Smith, J C

    2001-12-01

    We present a novel approach to implementing the dynamic-clamp protocol (Sharp et al., 1993), commonly used in neurophysiology and cardiac electrophysiology experiments. Our approach is based on real-time extensions to the Linux operating system. Conventional PC-based approaches have typically utilized single-cycle computational rates of 10 kHz or slower. In thispaper, we demonstrate reliable cycle-to-cycle rates as fast as 50 kHz. Our system, which we call model reference current injection (MRCI); pronounced merci is also capable of episodic logging of internal state variables and interactive manipulation of model parameters. The limiting factor in achieving high speeds was not processor speed or model complexity, but cycle jitter inherent in the CPU/motherboard performance. We demonstrate these high speeds and flexibility with two examples: 1) adding action-potential ionic currents to a mammalian neuron under whole-cell patch-clamp and 2) altering a cell's intrinsic dynamics via MRCI while simultaneously coupling it via artificial synapses to an internal computational model cell. These higher rates greatly extend the applicability of this technique to the study of fast electrophysiological currents such fast a currents and fast excitatory/inhibitory synapses.

  11. Fast software-based volume rendering using multimedia instructions on PC platforms and its application to virtual endoscopy

    NASA Astrophysics Data System (ADS)

    Mori, Kensaku; Suenaga, Yasuhito; Toriwaki, Jun-ichiro

    2003-05-01

    This paper describes a software-based fast volume rendering (VolR) method on a PC platform by using multimedia instructions, such as SIMD instructions, which are currently available in PCs' CPUs. This method achieves fast rendering speed through highly optimizing software rather than an improved rendering algorithm. In volume rendering using a ray casting method, the system requires fast execution of the following processes: (a) interpolation of voxel or color values at sample points, (b) computation of normal vectors (gray-level gradient vectors), (c) calculation of shaded values obtained by dot-products of normal vectors and light source direction vectors, (d) memory access to a huge area, and (e) efficient ray skipping at translucent regions. The proposed software implements these fundamental processes in volume rending by using special instruction sets for multimedia processing. The proposed software can generate virtual endoscopic images of a 3-D volume of 512x512x489 voxel size by volume rendering with perspective projection, specular reflection, and on-the-fly normal vector computation on a conventional PC without any special hardware at thirteen frames per second. Semi-translucent display is also possible.

  12. General purpose graphic processing unit implementation of adaptive pulse compression algorithms

    NASA Astrophysics Data System (ADS)

    Cai, Jingxiao; Zhang, Yan

    2017-07-01

    This study introduces a practical approach to implement real-time signal processing algorithms for general surveillance radar based on NVIDIA graphical processing units (GPUs). The pulse compression algorithms are implemented using compute unified device architecture (CUDA) libraries such as CUDA basic linear algebra subroutines and CUDA fast Fourier transform library, which are adopted from open source libraries and optimized for the NVIDIA GPUs. For more advanced, adaptive processing algorithms such as adaptive pulse compression, customized kernel optimization is needed and investigated. A statistical optimization approach is developed for this purpose without needing much knowledge of the physical configurations of the kernels. It was found that the kernel optimization approach can significantly improve the performance. Benchmark performance is compared with the CPU performance in terms of processing accelerations. The proposed implementation framework can be used in various radar systems including ground-based phased array radar, airborne sense and avoid radar, and aerospace surveillance radar.

  13. System, apparatus and methods to implement high-speed network analyzers

    DOEpatents

    Ezick, James; Lethin, Richard; Ros-Giralt, Jordi; Szilagyi, Peter; Wohlford, David E

    2015-11-10

    Systems, apparatus and methods for the implementation of high-speed network analyzers are provided. A set of high-level specifications is used to define the behavior of the network analyzer emitted by a compiler. An optimized inline workflow to process regular expressions is presented without sacrificing the semantic capabilities of the processing engine. An optimized packet dispatcher implements a subset of the functions implemented by the network analyzer, providing a fast and slow path workflow used to accelerate specific processing units. Such dispatcher facility can also be used as a cache of policies, wherein if a policy is found, then packet manipulations associated with the policy can be quickly performed. An optimized method of generating DFA specifications for network signatures is also presented. The method accepts several optimization criteria, such as min-max allocations or optimal allocations based on the probability of occurrence of each signature input bit.

  14. SWIFT: SPH With Inter-dependent Fine-grained Tasking

    NASA Astrophysics Data System (ADS)

    Schaller, Matthieu; Gonnet, Pedro; Chalk, Aidan B. G.; Draper, Peter W.

    2018-05-01

    SWIFT runs cosmological simulations on peta-scale machines for solving gravity and SPH. It uses the Fast Multipole Method (FMM) to calculate gravitational forces between nearby particles, combining these with long-range forces provided by a mesh that captures both the periodic nature of the calculation and the expansion of the simulated universe. SWIFT currently uses a single fixed but time-variable softening length for all the particles. Many useful external potentials are also available, such as galaxy haloes or stratified boxes that are used in idealised problems. SWIFT implements a standard LCDM cosmology background expansion and solves the equations in a comoving frame; equations of state of dark-energy evolve with scale-factor. The structure of the code allows implementation for modified-gravity solvers or self-interacting dark matter schemes to be implemented. Many hydrodynamics schemes are implemented in SWIFT and the software allows users to add their own.

  15. Efficient implementation of arbitrary quantum state engineering in four-state system by counterdiabatic driving

    NASA Astrophysics Data System (ADS)

    Wang, Song-Bai; Chen, Ye-Hong; Wu, Qi-Cheng; Shi, Zhi-Cheng; Huang, Bi-Hua; Song, Jie; Xia, Yan

    2018-07-01

    A scheme is proposed to implement quantum state engineering (QSE) in a four-state system via counterdiabatic driving. In the scheme, single- and multi-mode driving methods are used respectively to drive the system to a target state at a predefined time. It is found that a fast QSE can be realized by utilizing simply designed pulses. In addition, a beneficial discussion on the energy consumption between the single- and multi-mode driving protocols shows that the multi-mode driving method seems to have a wider range of applications than the single-mode driving method with respect to different parameters. Finally, the scheme is also helpful for implementing the generalization QSE in high-dimensional systems via the concept of a dressed state. Therefore, the scheme can be implemented with the present experimental technology, which is useful in quantum information processing.

  16. A Real-Time Marker-Based Visual Sensor Based on a FPGA and a Soft Core Processor

    PubMed Central

    Tayara, Hilal; Ham, Woonchul; Chong, Kil To

    2016-01-01

    This paper introduces a real-time marker-based visual sensor architecture for mobile robot localization and navigation. A hardware acceleration architecture for post video processing system was implemented on a field-programmable gate array (FPGA). The pose calculation algorithm was implemented in a System on Chip (SoC) with an Altera Nios II soft-core processor. For every frame, single pass image segmentation and Feature Accelerated Segment Test (FAST) corner detection were used for extracting the predefined markers with known geometries in FPGA. Coplanar PosIT algorithm was implemented on the Nios II soft-core processor supplied with floating point hardware for accelerating floating point operations. Trigonometric functions have been approximated using Taylor series and cubic approximation using Lagrange polynomials. Inverse square root method has been implemented for approximating square root computations. Real time results have been achieved and pixel streams have been processed on the fly without any need to buffer the input frame for further implementation. PMID:27983714

  17. GPU-based streaming architectures for fast cone-beam CT image reconstruction and demons deformable registration.

    PubMed

    Sharp, G C; Kandasamy, N; Singh, H; Folkert, M

    2007-10-07

    This paper shows how to significantly accelerate cone-beam CT reconstruction and 3D deformable image registration using the stream-processing model. We describe data-parallel designs for the Feldkamp, Davis and Kress (FDK) reconstruction algorithm, and the demons deformable registration algorithm, suitable for use on a commodity graphics processing unit. The streaming versions of these algorithms are implemented using the Brook programming environment and executed on an NVidia 8800 GPU. Performance results using CT data of a preserved swine lung indicate that the GPU-based implementations of the FDK and demons algorithms achieve a substantial speedup--up to 80 times for FDK and 70 times for demons when compared to an optimized reference implementation on a 2.8 GHz Intel processor. In addition, the accuracy of the GPU-based implementations was found to be excellent. Compared with CPU-based implementations, the RMS differences were less than 0.1 Hounsfield unit for reconstruction and less than 0.1 mm for deformable registration.

  18. A Real-Time Marker-Based Visual Sensor Based on a FPGA and a Soft Core Processor.

    PubMed

    Tayara, Hilal; Ham, Woonchul; Chong, Kil To

    2016-12-15

    This paper introduces a real-time marker-based visual sensor architecture for mobile robot localization and navigation. A hardware acceleration architecture for post video processing system was implemented on a field-programmable gate array (FPGA). The pose calculation algorithm was implemented in a System on Chip (SoC) with an Altera Nios II soft-core processor. For every frame, single pass image segmentation and Feature Accelerated Segment Test (FAST) corner detection were used for extracting the predefined markers with known geometries in FPGA. Coplanar PosIT algorithm was implemented on the Nios II soft-core processor supplied with floating point hardware for accelerating floating point operations. Trigonometric functions have been approximated using Taylor series and cubic approximation using Lagrange polynomials. Inverse square root method has been implemented for approximating square root computations. Real time results have been achieved and pixel streams have been processed on the fly without any need to buffer the input frame for further implementation.

  19. Hybrid deterministic/stochastic simulation of complex biochemical systems.

    PubMed

    Lecca, Paola; Bagagiolo, Fabio; Scarpa, Marina

    2017-11-21

    In a biological cell, cellular functions and the genetic regulatory apparatus are implemented and controlled by complex networks of chemical reactions involving genes, proteins, and enzymes. Accurate computational models are indispensable means for understanding the mechanisms behind the evolution of a complex system, not always explored with wet lab experiments. To serve their purpose, computational models, however, should be able to describe and simulate the complexity of a biological system in many of its aspects. Moreover, it should be implemented by efficient algorithms requiring the shortest possible execution time, to avoid enlarging excessively the time elapsing between data analysis and any subsequent experiment. Besides the features of their topological structure, the complexity of biological networks also refers to their dynamics, that is often non-linear and stiff. The stiffness is due to the presence of molecular species whose abundance fluctuates by many orders of magnitude. A fully stochastic simulation of a stiff system is computationally time-expensive. On the other hand, continuous models are less costly, but they fail to capture the stochastic behaviour of small populations of molecular species. We introduce a new efficient hybrid stochastic-deterministic computational model and the software tool MoBioS (MOlecular Biology Simulator) implementing it. The mathematical model of MoBioS uses continuous differential equations to describe the deterministic reactions and a Gillespie-like algorithm to describe the stochastic ones. Unlike the majority of current hybrid methods, the MoBioS algorithm divides the reactions' set into fast reactions, moderate reactions, and slow reactions and implements a hysteresis switching between the stochastic model and the deterministic model. Fast reactions are approximated as continuous-deterministic processes and modelled by deterministic rate equations. Moderate reactions are those whose reaction waiting time is greater than the fast reaction waiting time but smaller than the slow reaction waiting time. A moderate reaction is approximated as a stochastic (deterministic) process if it was classified as a stochastic (deterministic) process at the time at which it crosses the threshold of low (high) waiting time. A Gillespie First Reaction Method is implemented to select and execute the slow reactions. The performances of MoBios were tested on a typical example of hybrid dynamics: that is the DNA transcription regulation. The simulated dynamic profile of the reagents' abundance and the estimate of the error introduced by the fully deterministic approach were used to evaluate the consistency of the computational model and that of the software tool.

  20. Neutronic calculation of fast reactors by the EUCLID/V1 integrated code

    NASA Astrophysics Data System (ADS)

    Koltashev, D. A.; Stakhanova, A. A.

    2017-01-01

    This article considers neutronic calculation of a fast-neutron lead-cooled reactor BREST-OD-300 by the EUCLID/V1 integrated code. The main goal of development and application of integrated codes is a nuclear power plant safety justification. EUCLID/V1 is integrated code designed for coupled neutronics, thermomechanical and thermohydraulic fast reactor calculations under normal and abnormal operating conditions. EUCLID/V1 code is being developed in the Nuclear Safety Institute of the Russian Academy of Sciences. The integrated code has a modular structure and consists of three main modules: thermohydraulic module HYDRA-IBRAE/LM/V1, thermomechanical module BERKUT and neutronic module DN3D. In addition, the integrated code includes databases with fuel, coolant and structural materials properties. Neutronic module DN3D provides full-scale simulation of neutronic processes in fast reactors. Heat sources distribution, control rods movement, reactivity level changes and other processes can be simulated. Neutron transport equation in multigroup diffusion approximation is solved. This paper contains some calculations implemented as a part of EUCLID/V1 code validation. A fast-neutron lead-cooled reactor BREST-OD-300 transient simulation (fuel assembly floating, decompression of passive feedback system channel) and cross-validation with MCU-FR code results are presented in this paper. The calculations demonstrate EUCLID/V1 code application for BREST-OD-300 simulating and safety justification.

  1. A preliminary fast may potentiate response to a subsequent low-salt, low-fat vegan diet in the management of hypertension - fasting as a strategy for breaking metabolic vicious cycles.

    PubMed

    McCarty, M F

    2003-05-01

    Although a salted diet appears to be a sine qua non for the development of essential hypertension, low-salt diets often have a modest or even negligible impact on the blood pressure of hypertensives; this suggests that salt, perhaps often acting in concert with other aspects of a modern, rich diet, may set in place certain metabolic vicious cycles that sustain blood pressure elevation even when dietary salt is eliminated. Therapeutic fasting is known to lower elevated blood pressure - presumably in large part because it minimizes insulin secretion - and may have the potential to break some of these vicious cycles. Goldhamer has recently reported that a regimen comprised of a water-only fast of moderate duration, followed by a transition to a low-fat, low-salt, whole-food vegan diet, achieves dramatic reductions in the blood pressure of hypertensives, such that the large majority of patients can be restored to normotensive status, in the absence of any drug therapy. Although long-term follow-up of these subjects has been sporadic, the available data suggest that these large reductions is blood pressure can be conserved in patients who remain compliant with the follow-up diet - in other words, a 'cure' for hypertension may be feasible. If a protein-sparing modified fast can be shown to be virtually as effective as a total fast for achieving these benefits, it may be possible to implement this regimen safely on an outpatient basis. The ability of therapeutic fasts to break metabolic vicious cycles may also contribute to the efficacy of fasting in the treatment of type 2 diabetes and autoimmune disorders. As a general principle, if a metabolic disorder is susceptible to prevention - but not reversal - by a specific diet, and therapeutic fasting has a temporary favorable impact on this disorder, then a more definitive therapy may consist of a therapeutic fast, followed up by the protective diet as a maintenance regimen.

  2. Fast Neural Solution Of A Nonlinear Wave Equation

    NASA Technical Reports Server (NTRS)

    Barhen, Jacob; Toomarian, Nikzad

    1996-01-01

    Neural algorithm for simulation of class of nonlinear wave phenomena devised. Numerically solves special one-dimensional case of Korteweg-deVries equation. Intended to be executed rapidly by neural network implemented as charge-coupled-device/charge-injection device, very-large-scale integrated-circuit analog data processor of type described in "CCD/CID Processors Would Offer Greater Precision" (NPO-18972).

  3. Review of recent developments and applications in low-pressure (vacuum outlet) gas chromatography

    USDA-ARS?s Scientific Manuscript database

    The concept of low pressure (LP) vacuum outlet gas chromatography (GC) was introduced more than 50 years ago, but it was not until the 2000s that its theoretical applicability to fast analysis of GC-amenable chemicals was realized. In practice, LPGC is implemented by placing the outlet of a short, ...

  4. QRIS and Inclusion: Do State QRIS Standards Support the Learning Needs of All Children? CEELO FastFact

    ERIC Educational Resources Information Center

    Horowitz, Michelle; Squires, Jim

    2014-01-01

    As the country quickly builds its efforts to enhance quality in early education and care classrooms, states are implementing Quality Rating and Improvement Systems (QRIS) to recognize and improve the quality of programs. QRIS also provides technical support and increased financial benefits for participating programs to attain higher levels of…

  5. Evaluating Intelligent Interfaces for Post-Editing Automatic Transcriptions of Online Video Lectures

    ERIC Educational Resources Information Center

    Valor Miró, J. D.; Spencer, R. N.; Pérez González de Martos, A.; Garcés Díaz-Munío, G.; Turró, C.; Civera, J.; Juan, A.

    2014-01-01

    Video lectures are fast becoming an everyday educational resource in higher education. They are being incorporated into existing university curricula around the world, while also emerging as a key component of the open education movement. In 2007, the Universitat Politècnica de València (UPV) implemented its poliMedia lecture capture system for…

  6. QUEST - A Bayesian adaptive psychometric method

    NASA Technical Reports Server (NTRS)

    Watson, A. B.; Pelli, D. G.

    1983-01-01

    An adaptive psychometric procedure that places each trial at the current most probable Bayesian estimate of threshold is described. The procedure takes advantage of the common finding that the human psychometric function is invariant in form when expressed as a function of log intensity. The procedure is simple, fast, and efficient, and may be easily implemented on any computer.

  7. Mobile Phones for Teaching and Learning: Implementation and Students' and Teachers' Attitudes

    ERIC Educational Resources Information Center

    AlTameemy, Farooq

    2017-01-01

    Mobile phones have become so ubiquitous that they turned into an important part of our life. According to Parsons, mobile subscriptions exceed 6 billion subscriptions globally. Similarly, Ipsos and Verizon (as cited in Tan & El-Bendary) found out that adopting mobile phones with smart technologies has increased fast which also coincided with a…

  8. Medicaid Matters: Children's Health and Medicaid Eligibility Expansions

    ERIC Educational Resources Information Center

    Lykens, Kristine A.; Jargowsky, Paul A.

    2002-01-01

    In the late 1980s, a series of federal laws were enacted which expanded Medicaid eligibility to more of the nation's children. States had a great amount of discretion in how fast and how far these expansions were implemented. As a result, there was great variation among the states in defining who was eligible for the program. This variation…

  9. DARPA/ISTO Rapid VLSI Implementation

    DTIC Science & Technology

    1991-12-01

    temperature tigation. Motorola MCI00E111, very fast 1:9 clock buffers. were procured to drive high - speed waveforrms onto the substrate clock distribution...The hot image is normalized to a rootn- temperature image, which removes all optical anomalies and leaves a high -resolution thermal image. 69 j APT...9 High -density DRAM ..................... 9 Aquarius MI Packaging Study ........................ ....... 10 NUT Alewife

  10. Shark: Fast Data Analysis Using Coarse-grained Distributed Memory

    DTIC Science & Technology

    2013-05-01

    Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 7.1.1 Java Objects...often MySQL or Derby) with a namespace for tables, table metadata, and par- tition information. Table data is stored in an HDFS directory, while a...saving time and space for large data sets. This is achieved with support for custom SerDe (serialization/deserialization) java interface implementations

  11. Novel Methods for Electromagnetic Simulation and Design

    DTIC Science & Technology

    2016-08-03

    The resulting discretized integral equations are compatible with fast multipoleaccelerated solvers and will form the basis for high fidelity...expansion”) which are high-order, efficient and easy to use on arbitrarily triangulated surfaces. The resulting discretized integral equations are...created a user interface compatible with both low and high order discretizations , and implemented the generalized Debye approach of [4]. The

  12. Learning in Social Networks: Rationale and Ideas for Its Implementation in Higher Education

    ERIC Educational Resources Information Center

    Alvarez, Ibis M.; Olivera-Smith, Marialexa

    2013-01-01

    The internet has fast become a prevalent medium for collaboration between people and social networks, in particular, have gained vast popularity and relevance over the past few years. Within this framework, our paper will analyse the role played by social networks in current teaching practices. Specifically, we focus on the principles guiding the…

  13. Assessment-Based Intervention for Severe Behavior Problems in a Natural Family Context.

    ERIC Educational Resources Information Center

    Vaughn, Bobbie J.; Clarke, Shelley; Dunlap, Glen

    1997-01-01

    Functional assessments and assessment-based interventions were conducted with an 8-year-old boy with disabilities and severe problem behavior in the context of two family routines: using the home bathroom and dining in a fast-food restaurant. A multiple baseline design demonstrated the effectiveness of the intervention package as implemented by…

  14. Efficient Hardware Implementation of the Lightweight Block Encryption Algorithm LEA

    PubMed Central

    Lee, Donggeon; Kim, Dong-Chan; Kwon, Daesung; Kim, Howon

    2014-01-01

    Recently, due to the advent of resource-constrained trends, such as smartphones and smart devices, the computing environment is changing. Because our daily life is deeply intertwined with ubiquitous networks, the importance of security is growing. A lightweight encryption algorithm is essential for secure communication between these kinds of resource-constrained devices, and many researchers have been investigating this field. Recently, a lightweight block cipher called LEA was proposed. LEA was originally targeted for efficient implementation on microprocessors, as it is fast when implemented in software and furthermore, it has a small memory footprint. To reflect on recent technology, all required calculations utilize 32-bit wide operations. In addition, the algorithm is comprised of not complex S-Box-like structures but simple Addition, Rotation, and XOR operations. To the best of our knowledge, this paper is the first report on a comprehensive hardware implementation of LEA. We present various hardware structures and their implementation results according to key sizes. Even though LEA was originally targeted at software efficiency, it also shows high efficiency when implemented as hardware. PMID:24406859

  15. Event Management of RFID Data Streams: Fast Moving Consumer Goods Supply Chains

    NASA Astrophysics Data System (ADS)

    Mo, John P. T.; Li, Xue

    Radio Frequency Identification (RFID) is a wireless communication technology that uses radio-frequency waves to transfer information between tagged objects and readers without line of sight. This creates tremendous opportunities for linking real world objects into a world of "Internet of things". Application of RFID to Fast Moving Consumer Goods sector will introduce billions of RFID tags in the world. Almost everything is tagged for tracking and identification purposes. This phenomenon will impose a new challenge not only to the network capacity but also to the scalability of processing of RFID events and data. This chapter uses two national demonstrator projects in Australia as case studies to introduce an event managementframework to process high volume RFID data streams in real time and automatically transform physical RFID observations into business-level events. The model handles various temporal event patterns, both simple and complex, with temporal constraints. The model can be implemented in a data management architecture that allows global RFID item tracking and enables fast, large-scale RFID deployment.

  16. A Low-Power High-Speed Smart Sensor Design for Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Fang, Wai-Chi

    1997-01-01

    A low-power high-speed smart sensor system based on a large format active pixel sensor (APS) integrated with a programmable neural processor for space exploration missions is presented. The concept of building an advanced smart sensing system is demonstrated by a system-level microchip design that is composed with an APS sensor, a programmable neural processor, and an embedded microprocessor in a SOI CMOS technology. This ultra-fast smart sensor system-on-a-chip design mimics what is inherent in biological vision systems. Moreover, it is programmable and capable of performing ultra-fast machine vision processing in all levels such as image acquisition, image fusion, image analysis, scene interpretation, and control functions. The system provides about one tera-operation-per-second computing power which is a two order-of-magnitude increase over that of state-of-the-art microcomputers. Its high performance is due to massively parallel computing structures, high data throughput rates, fast learning capabilities, and advanced VLSI system-on-a-chip implementation.

  17. Fast and accurate grid representations for atom-based docking with partner flexibility.

    PubMed

    de Vries, Sjoerd J; Zacharias, Martin

    2017-06-30

    Macromolecular docking methods can broadly be divided into geometric and atom-based methods. Geometric methods use fast algorithms that operate on simplified, grid-like molecular representations, while atom-based methods are more realistic and flexible, but far less efficient. Here, a hybrid approach of grid-based and atom-based docking is presented, combining precalculated grid potentials with neighbor lists for fast and accurate calculation of atom-based intermolecular energies and forces. The grid representation is compatible with simultaneous multibody docking and can tolerate considerable protein flexibility. When implemented in our docking method ATTRACT, grid-based docking was found to be ∼35x faster. With the OPLSX forcefield instead of the ATTRACT coarse-grained forcefield, the average speed improvement was >100x. Grid-based representations may allow atom-based docking methods to explore large conformational spaces with many degrees of freedom, such as multiple macromolecules including flexibility. This increases the domain of biological problems to which docking methods can be applied. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. Comparing SiGe HBT Amplifier Circuits for Fast Single-shot Spin Readout

    NASA Astrophysics Data System (ADS)

    England, Troy; Curry, Matthew; Carr, Stephen; Mounce, Andrew; Jock, Ryan; Sharma, Peter; Bureau-Oxton, Chloe; Rudolph, Martin; Hardin, Terry; Carroll, Malcolm

    Fast, low-power quantum state readout is one of many challenges facing quantum information processing. Single electron transistors (SETs) are potentially fast, sensitive detectors for performing spin readout. From a circuit perspective, however, their output impedance and nonlinear conductance are ill suited to drive the parasitic capacitance of coaxial conductors used in cryogenic environments, necessitating a cryogenic amplification stage. We will compare two amplifiers based on single-transistor circuits implemented with silicon germanium heterojunction bipolar transistors. Both amplifiers provide gain at low power levels, but the dynamics of each circuit vary significantly. We will explore the gain mechanisms, linearity, and noise of each circuit and explain the situations in which each amplifier is best used. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  19. A display module implemented by the fast high-temperatue response of carbon nanotube thin yarns.

    PubMed

    Wei, Yang; Liu, Peng; Jiang, Kaili; Fan, Shoushan

    2012-05-09

    Suspending superaligned multiwalled carbon nanotube (MWCNT) films were processed into CNT thin yarns, about 1 μm in diameter, by laser cutting and an ethanol atomization bath treatment. The fast high-temperature response under a vacuum was revealed by monitoring the incandescent light with a photo diode. The thin yarns can be electrically heated up to 2170 K in 0.79 mS, and the succeeding cool-down time is 0.36 mS. The fast response is attributed to the ultrasmall mass of the independent single yarn, large radiation coefficient, and improved thermal conductance through the two cool ends. The millisecond response time makes it possible to use the visible hot thin yarns as light-emitting elements of an incandescent display. A fully sealed display with 16 × 16 matrix was successfully fabricated using screen-printed thick electrodes and CNT thin yarns. It can display rolling characters with a low power consumption. More applications can be further developed based on the addressable CNT thermal arrays.

  20. Motorization of a surgical microscope for intra-operative navigation and intuitive control.

    PubMed

    Finke, M; Schweikard, A

    2010-09-01

    During surgical procedures, various medical systems, e.g. microscope or C-arm, are used. Their precise and repeatable manual positioning can be very cumbersome and interrupts the surgeon's work flow. Robotized systems can assist the surgeon but they require suitable kinematics and control. However, positioning must be fast, flexible and intuitive. We describe a fully motorized surgical microscope. Hardware components as well as implemented applications are specified. The kinematic equations are described and a novel control concept is proposed. Our microscope combines fast manual handling with accurate, automatic positioning. Intuitive control is provided by a small remote control mounted to one of the surgical instruments. Positioning accuracy and repeatability are < 1 mm and vibrations caused by automatic movements fade away in about 1 s. The robotic system assists the surgeon, so that he can position the microscope precisely and repeatedly without interrupting the clinical workflow. The combination of manual und automatic control guarantees fast and flexible positioning during surgical procedures. Copyright 2010 John Wiley & Sons, Ltd.

Top